
www.allitebooks.com

http://www.allitebooks.org


Multilevel Business Processes

www.allitebooks.com

http://www.allitebooks.org


Christoph G. Schuetz

Multilevel Business 
Processes

Modeling and Data Analysis

With a foreword by Prof. Dr. Michael Schrefl 

www.allitebooks.com

http://www.allitebooks.org


Christoph G. Schuetz
Linz, Austria

Dissertation Johannes Kepler Universität Linz, 2015

ISBN 978-3-658-11083-3    ISBN 978-3-658-11084-0 (eBook)
DOI 10.1007/978-3-658-11084-0

Library of Congress Control Number: 2015947820

Springer Vieweg
© Springer Fachmedien Wiesbaden 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, speci  cally the rights of translation, reprinting, reuse of illus-
trations, recitation, broadcasting, reproduction on micro  lms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by 
similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this 
publication does not imply, even in the absence of a speci  c statement, that such names are 
exempt from the relevant protective laws and regulations and therefore free for general use. 
The publisher, the authors and the editors are safe to assume that the advice and information in this 
book are believed to be true and accurate at the date of publication. Neither the publisher nor the 
authors or the editors give a warranty, express or implied, with respect to the material contained 
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer Vieweg is a brand of Springer Fachmedien Wiesbaden
Springer Fachmedien Wiesbaden is part of Springer Science+Business Media
(www.springer.com)

www.allitebooks.com

http://www.allitebooks.org


Foreword

The multilevel modeling approach has gained prominence during the last
couple of years, highlighted by high-quality contributions in various fields,
such as database modeling and software engineering, as well as the emergence
of the MULTI workshop series co-located with the MoDELS conference.
Multilevel models more naturally reflect the reality of many information
systems. In this respect process-aware information systems are no exception.
Multilevel models capture interdependencies between business processes at
different organizational levels and allow for a convenient representation of
business process variability which, in turn, facilitates the analysis of business
processes across different organizational units.

In his dissertation, which is now published in this book, Christoph G.
Schuetz proposes a multilevel modeling approach for the artifact-centric rep-
resentation of business processes. The proposed approach towards multilevel
business process modeling extends an existing object-oriented data model,
the multilevel object, for the representation of data at multiple levels of
abstraction. This extension, the multilevel business artifact, describes, in a
single object, a process instance as well as data-centric process models at mul-
tiple, iterative instantiation levels. Multilevel business artifacts are arranged
in concretization hierarchies, which allows for the specialization of business
process models in different sub-hierarchies of an organization. The resulting
business process model is hetero-homogeneous: A globally homogeneous
model interspersed with heterogeneities in individual sub-hierarchies.

This book, on the one hand, examines the conceptual modeling aspects
of multilevel business processes without neglecting, on the other hand, the
implementation aspects. An XML-based logical representation allows for
the automation of multilevel business processes. Furthermore, this book
investigates the advantages of hetero-homogeneous models for quantitative
business process analysis.

Linz, June 2015 Michael Schrefl

www.allitebooks.com

http://www.allitebooks.org


Preface

Tennis, like any activity, can be mastered
if one knows the principles behind it.

— Alexander McCall Smith, “Portuguese Irregular Verbs”

This book with the title “Multilevel Business Processes: Modeling and Data
Analysis” is a revised version of my business informatics dissertation of
the same name [117], submitted to the Johannes Kepler University (JKU)
Linz, Austria, for the doctorate program in social and economic sciences
in January 2015. As such, the book is the result of my research activities
with Michael Schrefl and Bernd Neumayr at the Department of Business
Informatics – Data & Knowledge Engineering (DKE) of JKU Linz started in
March 2010. Michael Schrefl and Werner Retschitzegger served as reviewers
of the dissertation and members of the defense committee. Josef Küng
complemented the defense committee as third member. Preliminary results
were published at various international conferences and workshops [115, 111,
114] as well as in a technical report [110]. This book features revised and
extended versions of these preliminary results.

The fundamentals for the modeling part of this book were developed
together with Lois M. L. Delcambre during my research stay at Portland
State University (PSU) in Portland, Oregon, USA, from 1st March to 31st

August 2012; this research stay was supported by a Marshall Plan Scholarship
awarded by the Austrian Marshall Plan Foundation. The fundamentals of
the XML-based logical representation and the data analysis part of this book
were developed during my research stay with Marc H. Scholl’s database
group at the University of Konstanz, Germany, from 1st March to 31st

August 2014; this research stay was supported by a Marietta Blau Grant
awarded by the Austrian Federal Ministry of Science and Research. My
research was further supported by a study grant awarded by the Faculty
of Social Sciences, Economics and Business at JKU Linz, partly financing
conference visits. My doctoral studies were also sponsored by Pro Scientia,
which contributed towards literature expenses.

www.allitebooks.com

http://www.allitebooks.org


VIII Preface

In addition to my main contributors, thesis supervisors, committee mem-
bers, and host professors, special acknowledgments are due for my colleagues
Michael Huemer, Michael Karlinger, Dieter Steiner, Stefan Berger, and Felix
Burgstaller at DKE for their support. Margit Brandl provided invaluable
administrative support and patiently listened to my explanations of various
research topics. Many thanks go to Scott Britell, Jeremy Steinhauer, and
David Maier at PSU who were open for discussion during the weekly ‘slim
meetings’ at PSU and beyond. Leonard Wörteler from the BaseX team
provided highly useful advice on XQuery and the BaseX database man-
agement system. Andreas Weiler from the University of Konstanz, with
whom I shared an office during my research stay, helped create an enjoyable
workplace. Last, but not least, Michael Grossniklaus at PSU and later at
the University of Konstanz gave invaluable advice on various matters.

My time as a doctoral student and research assistant at DKE was a rich
and interesting experience. Although hard at times, I had a wonderful
time conducting the research that underlies this book, meeting many great
people on the way. I publish this book in the hope that it will be useful and
that readers will find the topic as interesting as I did while conducting the
research for this book. The interested reader is also referred to my personal
website1, which contains links to source code and other material.

Linz, June 2015 Christoph G. Schuetz

1http://christoph.schuetz.ws/

www.allitebooks.com

http://www.allitebooks.org


Contents

1 Introduction 1
1.1 Multilevel Business Processes . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 11
2.1 Multilevel Modeling . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Business Process Modeling . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Data- and Artifact-Centric Modeling . . . . . . . . . . 12
2.2.2 Variability and Flexibility . . . . . . . . . . . . . . . . 13
2.2.3 Behavior-Consistent Specialization . . . . . . . . . . . 14
2.2.4 Business Process Model Abstraction . . . . . . . . . . 15

2.3 Business Process Automation . . . . . . . . . . . . . . . . . . 15
2.4 Business Process Intelligence . . . . . . . . . . . . . . . . . . 16
2.5 Modeling Languages . . . . . . . . . . . . . . . . . . . . . . . 17

I Modeling 19

3 Multilevel Object Core 21
3.1 Hetero-Homogeneous Data Modeling . . . . . . . . . . . . . . 21
3.2 Multilevel Objects . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Multilevel Relationships . . . . . . . . . . . . . . . . . . . . . 41
3.4 The Finer Points of Multilevel Objects . . . . . . . . . . . . . 53

4 Multilevel Business Artifacts 57
4.1 Multilevel Objects with Life Cycle Models . . . . . . . . . . . 57

4.1.1 Simple Level Hierarchies . . . . . . . . . . . . . . . . . 58
4.1.2 Parallel Level Hierarchies . . . . . . . . . . . . . . . . 67

4.2 Multilevel Business Artifact Relationships . . . . . . . . . . . 71
4.2.1 Multilevel Coherence . . . . . . . . . . . . . . . . . . . 71
4.2.2 Arbitrary Relationship Levels . . . . . . . . . . . . . . 75

www.allitebooks.com

http://www.allitebooks.org


X Contents

4.3 Multilevel Predicates for Synchronization . . . . . . . . . . . 76
4.3.1 Vertical Synchronization . . . . . . . . . . . . . . . . . 76
4.3.2 Horizontal Synchronization . . . . . . . . . . . . . . . 97
4.3.3 Hybrid Synchronization . . . . . . . . . . . . . . . . . 102

5 Hetero-Homogeneous Business Process Models 105
5.1 Multilevel Business Artifact Hierarchies . . . . . . . . . . . . 105

5.1.1 Concretization with Simple Hierarchies . . . . . . . . 106
5.1.2 Concretization with Parallel Hierarchies . . . . . . . . 119
5.1.3 Incremental Evolution through Reflection . . . . . . . 120

5.2 Process Model Hierarchies within Levels . . . . . . . . . . . . 124
5.2.1 Business Process Variants . . . . . . . . . . . . . . . . 124
5.2.2 Incremental Evolution through Mutation . . . . . . . 127

6 XML Representation 131
6.1 Multilevel Business Artifacts in XML . . . . . . . . . . . . . . 131

6.1.1 Simple Hierarchies . . . . . . . . . . . . . . . . . . . . 132
6.1.2 Parallel Hierarchies . . . . . . . . . . . . . . . . . . . . 142

6.2 Multilevel Relationships in XML . . . . . . . . . . . . . . . . 145
6.3 Multilevel Predicates in State Chart XML . . . . . . . . . . . 146

II Data Analysis 169

7 Multilevel Business Process Automation 171
7.1 Multilevel Business Process Management System . . . . . . . 171

7.1.1 Multilevel Business Artifact Database . . . . . . . . . 172
7.1.2 XQuery-based Interpreter for State Chart XML . . . . 176
7.1.3 Event Processor . . . . . . . . . . . . . . . . . . . . . 179

7.2 Application Development . . . . . . . . . . . . . . . . . . . . 187
7.3 Event Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8 Multilevel Business Process Intelligence 197
8.1 Data Analysis with Multilevel Business Artifacts . . . . . . . 197

8.1.1 Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . 198
8.1.2 Aggregation of Measures . . . . . . . . . . . . . . . . . 199

8.2 Hetero-Homogeneous Data Analysis . . . . . . . . . . . . . . 207
8.3 Multilevel Synchronization over Performance Data . . . . . . 210

www.allitebooks.com

http://www.allitebooks.org


Contents XI

9 Conclusion 213
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

References 219

www.allitebooks.com

http://www.allitebooks.org


List of Figures

1.1 Multilevel business process pyramid . . . . . . . . . . . . . . . . 2
1.2 An MBA model for a generic multilevel business process with

an extended life cycle model for operational data objects in the
aTacticalObj sub-hierarchy . . . . . . . . . . . . . . . . . . . . . . 4

3.1 A heterogeneous object diagram for the representation of data
about car rentals . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 The upper bound model as an extension of the lower bound model
for the objects in Figure 3.1 . . . . . . . . . . . . . . . . . . . . . 23

3.3 A hierarchy of data objects and its hetero-homogeneous model . 24
3.4 An m-object model for the organization of car rental data . . . . 27
3.5 The core metamodel for multilevel objects in UML . . . . . . . . 30
3.6 The data attached to an m-object’s introduced and inherited

levels in the core metamodel for m-objects in Figure 3.5 . . . . . 36
3.7 An m-relationship model for the representation of context-specific

knowledge expressed in the REA ontology using a UML-like syntax 43
3.8 An m-relationship representing an individual rental transaction . 45
3.9 An m-relationship model for the representation of rental agree-

ments and its terms . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.10 An m-relationship representing an individual rental agreement . 47
3.11 The core metamodel for multilevel relationships . . . . . . . . . . 48

4.1 The metamodel for MBAs with simple hierarchies as a specializa-
tion of the core metamodel for m-objects (revised and extended
from [111, 114]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 MBA Rental for the management of a company’s car rental
business (revised from [114]) . . . . . . . . . . . . . . . . . . . . . 61

4.3 The data attached to a homogeneous MBA’s introduced and
inherited levels as a specialization of the core metamodel for
m-objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 The metamodel for MBA relationships with multilevel coherence 72



XIV List of Figures

4.5 A multilevel relationship between MBAs Rental and Car for the
management of car rentals . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Graphical notation for the state synchronization predicates in
Table 4.3 as preconditions (revised and extended from [114]) . . 86

4.7 Graphical notation for the state synchronization predicates in
Table 4.3 as postconditions (revised and extended from [114]) . . 87

4.8 MBA Rental with multilevel predicates for vertical synchroniza-
tion (revised from [114]) . . . . . . . . . . . . . . . . . . . . . . . 90

4.9 Graphical notation for the concretization predicates in Table 4.4
(revised from [114]) . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.10 MBA Rental with parallel hierarchies and vertical synchronization
dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.11 The MBA relationship from Figure 4.5 between Rental and Car
extended with vertical synchronization dependencies . . . . . . . 94

4.12 Options for the specification of the execution semantics of syn-
chronization dependencies . . . . . . . . . . . . . . . . . . . . . . 96

4.13 MBA Rental with parallel hierarchies and horizontal synchroniza-
tion dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.14 The MBA relationship from Figure 4.5 extended with horizontal
synchronization dependencies over coordinates . . . . . . . . . . 103

5.1 MBA Rental for the management of a company’s rental business
and a concretization for the management of private rentals . . . 108

5.2 MBA Corporate for the management of corporate rentals as a
concretization of MBA Rental . . . . . . . . . . . . . . . . . . . . 110

5.3 Adaptation for hetero-homogeneous modeling of the MBA meta-
model in Figure 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 The data attached to a hetero-homogeneous MBA’s introduced
and inherited levels as a specialization of the core metamodel for
m-objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 The state machine metamodel with reflection pattern methods . 117
5.6 Changes in an MBA’s data and life cycle models from one state

to another (adapted from previous work [111]) . . . . . . . . . . 121
5.7 MBA Rental with meta-process model elements (adapted from

previous work [111]) . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.8 An MBA which associates an entire class hierarchy with one of

its levels [114] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.9 Multilevel concretization with class hierarchies [114] . . . . . . . 128



List of Figures XV

6.1 An XML schema for the representation of MBAs with simple
level hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 An XML schema for the representation of MBAs with parallel
level hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.1 An MBA with actual cycle times for the different states of its
top-level life cycle model . . . . . . . . . . . . . . . . . . . . . . . 198

8.2 An MBA with actual cycle times for the top-level life cycle model
and average cycle times for the second-level life cycle model . . . 200

8.3 An MBA with actual cycle times for the top-level life cycle model
and average cycle times for the non-top level life cycle models as
well as probabilities for alternative paths . . . . . . . . . . . . . . 204

8.4 A hetero-homogeneous concretization hierarchy of MBAs with
average cycle times and probabilities for alternative paths . . . . 208



List of Tables

4.1 Multilevel predicates over ancestry relationships . . . . . . . . . 79
4.2 Multilevel predicates for vertical synchronization over attributes 81
4.3 Multilevel predicates for vertical state synchronization . . . . . . 83
4.4 Multilevel predicates for concretization . . . . . . . . . . . . . . . 89
4.5 Multilevel predicates for concretization of MBA relationships . . 93
4.6 Multilevel predicates for synchronization over states and at-

tributes of parallel MBAs . . . . . . . . . . . . . . . . . . . . . . 98
4.7 Multilevel predicates for expressing conditions over the coordi-

nates of an MBA relationship . . . . . . . . . . . . . . . . . . . . 100
4.8 Multilevel predicates for expressing conditions over links . . . . . 101

6.1 Functions for vertical synchronization over attributes . . . . . . . 149
6.2 Functions for vertical synchronization over states . . . . . . . . . 151
6.3 Action element for the manipulation of an ancestor’s data model 161
6.4 Action element for sending an external event to an ancestor . . . 162
6.5 Action element for the manipulation of descendants’ data models 163
6.6 Action element for sending an external event to descendants . . . 164
6.7 Action element for concretization . . . . . . . . . . . . . . . . . . 165
6.8 Action element for the manipulation of a newly created descen-

dant’s data model . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.1 Main XQuery functions for MBA database management . . . . . 173
7.2 Main XQuery functions for SCXML interpretation . . . . . . . . 177
7.3 Main XQuery functions for management of events sent to MBAs 180



List of Consistency Rules

3.1 A level’s set of ancestor levels is the transitive closure of parent
levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 The level hierarchy of an m-object is acyclic . . . . . . . . . . . . 32
3.3 An m-object has a single top level with no parent . . . . . . . . . 32
3.4 A level’s parent level must not be a transitive parent level . . . . 32
3.5 A level’s parent levels must belong to same m-object . . . . . . . 32
3.6 An m-object’s set of ancestors is the transitive closure of abstractions 34
3.7 An m-object has at most one ancestor at a particular level . . . . 34
3.8 The ancestor query retrieves an m-object’s ancestor at a level . . 34
3.9 An m-object’s set of descendants is transitive closure of con-

cretizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.10 The descendants query retrieves an m-object’s descendants at a

level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.11 An m-object’s top level must be second level in all abstractions . 34
3.12 An m-object inherits its abstractions’ levels from top level down-

wards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.13 An m-object’s sets of introduced and inherited levels are disjoint 35
3.14 The relative order of levels does not change during concretization 35
3.15 An inherited level inherits the parent levels from abstractions . . 38
3.16 An inherited level inherits elements from abstractions . . . . . . 38
3.17 An inherited level’s set of parent levels derives from the union of

new parent levels and inherited parent levels . . . . . . . . . . . 38
3.18 An inherited level’s set of elements derives from the union of new

elements and inherited elements . . . . . . . . . . . . . . . . . . . 40
3.19 A level’s parent levels derive from introduced or inherited level

links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.20 A level’s elements derive from introduced or inherited level links 40
3.21 An introduced level’s new element must not already have been

introduced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.22 An inherited level’s new element must not already have been

introduced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



XX List of Consistency Rules

3.23 For all ancestor levels of an m-object’s top level there must be
an ancestor m-object at this ancestor level . . . . . . . . . . . . . 41

3.24 An m-relationship level references only levels from the coordinates 50
3.25 An m-relationship level references a level from every coordinate . 50
3.26 A relationship level’s parent level is an immediate ancestor level 50
3.27 An m-relationship’s top level corresponds to the sequence of the

coordinate top levels . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.28 An m-relationship’s ancestors derive from the coordinates . . . . 51
3.29 An m-relationship’s descendants derive from the coordinates . . 51
3.30 An m-relationship’s abstraction is a most concrete ancestor . . . 51
3.31 An m-relationship’s concretization is a most abstract descendant 52
3.32 A relationship level’s ancestors derive from the coordinates . . . 52
3.33 Any two m-relationships with the same label are in a concretiza-

tion relationship or have a common ancestor . . . . . . . . . . . 52

4.1 An MBA must associate an object with its top level . . . . . . . 59
4.2 Only with its top level an MBA may associate an object . . . . . 59
4.3 An MBA’s instance data object is the top-level instance data object 59
4.4 All classes that an MBA associates with a level are specializations

of the Object metaclass . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 The classifier association end of Object represents the type of the

object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 A level’s class is the data model that the MBA attaches to that

level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7 An object must be an instance of the MBA’s class at that level . 66
4.8 In a homogeneous model, only a hierarchy’s most abstract MBA

introduces levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.9 The coordinates of an MBA relationship must not be in same

concretization hierarchy . . . . . . . . . . . . . . . . . . . . . . . 73
4.10 All classes that an MBA relationship associates with a level are

specializations of the LinkObject metaclass . . . . . . . . . . . . . 73

5.1 A level’s data models are arranged in a specialization hierarchy
with a single root . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 A newly introduced class must be a leaf node in the class hierarchy113
5.3 A specialized class’ life cycle model is the specialization of the

general class’ life cycle model . . . . . . . . . . . . . . . . . . . . 113
5.4 A non-top level’s data models are abstract classes . . . . . . . . 116
5.5 The top level has a single non-abstract class . . . . . . . . . . . . 116



List of Consistency Rules XXI

5.6 The class of a level is the most specific data model in that level’s
class hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



List of Code Listings

6.1 The logical representation of the level hierarchy of an MBA named
Rental for the management of car rental data . . . . . . . . . . . 134

6.2 The logical representation of MBAs Corporate and Private as
concretizations of Rental . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 The logical representation of a concretization hierarchy of MBAs
for the management of car rental data with an MBA named
Rental as root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 The logical representation of the top-level data and life cycle
model of MBA Rental . . . . . . . . . . . . . . . . . . . . . . . . 139

6.5 System variables in the logical representation of the top-level
data model of MBA Rental . . . . . . . . . . . . . . . . . . . . . 140

6.6 The logical representation of the rental-level data and life cycle
model of MBA Rental with an emphasis on multilevel synchro-
nization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.7 The logical representation of the renterType-level data and life
cycle model of MBA Rental with an emphasis on multilevel syn-
chronization – Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.8 The logical representation of the renterType-level data and life
cycle model of MBA Rental with an emphasis on multilevel syn-
chronization – Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.9 The logical representation of the business-level data and life cycle
model of MBA Rental with an emphasis on multilevel synchro-
nization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.1 The logical representation of the top-level data model of MBA
Rental with external event queue and current status . . . . . . . 175

7.2 The XQuery code for changing an MBA’s current states . . . . . 181
7.3 A possible implementation of the custom action element for

sending events to descendants at a particular level . . . . . . . . 182
7.4 The logical representation of top-level life cycle model of MBA

Rental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.5 The XQuery code for inducing the processing of executable content186



XXIV List of Code Listings

7.6 The event log of MBA Rental – Part 1 . . . . . . . . . . . . . . . 190
7.7 The event log of MBA Rental – Part 2 . . . . . . . . . . . . . . . 191
7.8 The XQuery code for the derivation of the state log from an

MBA’s event log . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.1 The derivation rule for the average cycle time for the Opening
state from the descendants of MBA Private in Figure 8.1 . . . . . 201

8.2 The derivation rule for the average cycle time for the Opening
state from the descendants of MBA Private (Figure 8.1) that are
in the Closed state . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8.3 An XQuery implementation of the calculation rule for the average
cycle time of a given state . . . . . . . . . . . . . . . . . . . . . . 206



1 Introduction

In this book we introduce the notion of multilevel business process which
has its origins in the hierarchical organization of companies; the multilevel
business process pyramid serves as the business-theoretic model. The formal
representation of multilevel business processes is a pre-requisite for their
(semi-)automated execution using information technology. The multilevel
business artifact (MBA) serves as the conceptual modeling construct for
the representation of multilevel business processes, putting emphasis on the
data objects involved in the business processes.

1.1 Multilevel Business Processes
The hierarchical organization is arguably the most popular organizational
structure for companies. Many, if not most, companies are hierarchical
organizations in some way or another. Top management steers the course
of the company, defining vision and goals. Middle management puts into
practice the objectives set by top management. The lower-level operatives,
on the other hand, are concerned with handling everyday business cases. In
general, these generic hierarchy levels are referred to as the strategic, tactical,
and operational layers of a company [124]. The specific implementation
of these levels, including the number of hierarchy levels, varies between
industries and companies.

Using the extended event-driven process chain (eEPC) notation, Figure 1.1
illustrates the multilevel business process pyramid, a generic value creation
process across the various hierarchy levels of an organization. In eEPC
notation [107], hexagons denote events, rounded boxes denote functions (or
activities), ellipses denote organizational units (or actors), and rectangles
denote data objects. The multilevel business process pyramid mirrors the
hierarchical organization which traditionally comprises strategic, tactical,
and operational layers, although the specific implementation of these levels,
including the number and appellations of the individual hierarchy levels, may
differ between companies. At each level, different actors conduct different,
value-creating activities using different data objects. The higher levels in the

C. G. Schuetz, Multilevel Business Processes, 
DOI 10.1007/978-3-658-11084-0_1, © Springer Fachmedien Wiesbaden 2015

www.allitebooks.com

http://www.allitebooks.org


2 1 Introduction

Board

Middle
Management

Rank and 
File

Handle 
Strategic Data

Strategic 
Data

Tactical 
Data

Handle 
Operational Data

Operational
Data

VStrategy 
Defined

V

Handle 
Tactical Data

Company 
Founded

Directives 
Issued

V

V

Tactics 
Defined

Ta
ct

ic
al

O
pe

ra
tio

na
l

Strategic

Strategic 
Unit

Created

Figure 1.1: Multilevel business process pyramid

organization coordinate the lower levels, the lower levels provide feedback
to the higher levels. The different data objects play a central role for the
interactions between these levels. The strategic data produced by top man-
agement constrains middle management which, in turn, produces tactical
data that constrains lower-level operatives but also provides feedback to top
management which can adjust corporate strategy accordingly. The multi-
level business process pyramid should not be confused with the BPTrends
business process pyramid [42, p. xxvi et seq.] which describes concepts and
methodologies related to business process management at different levels of
concern with different participants.

The multilevel business process pyramid is orthogonal to the different
levels of detail which are inherent to any business process architecture [27,
p. 42]. Typically, business process model abstraction refers to the reduction
of complexity in business process models by grouping individual activities
into sub-processes [119], thereby providing a more general view on the
underlying business process. The recursive grouping of sub-processes into



1.1 Multilevel Business Processes 3

more general processes produces a process hierarchy, each recursion step
yielding a different level of detail in the description of the overall business
process [42, p. 80 et seqq.]. Similarly, the notion of function hierarchy in
the object-process methodology allows for the stepwise refinement of the
activities associated with an object into sub-activities involving component
objects [26, p. 267 et seqq.]. A multilevel business process model, however,
describes the activities conducted at the different hierarchy levels within
a company, involving different actors and data objects at each level. The
business processes at the different hierarchy levels interact with each other.
In this sense, the relationships between the processes at different hierarchy
levels correspond to the “consumer–producer relation” pattern [27, p. 42],
where the output of one process serves as input for another. Still, the
activities at each hierarchy level may be grouped into sub-processes which,
in turn, may themselves be grouped into more general processes, and so
forth, yielding a separate process hierarchy at each level.

The multilevel business artifact (MBA) applies the artifact-centric ap-
proach to multilevel business process modeling [111, 114]. Artifact-centric
business process management organizes business processes around a com-
pany’s data objects and the operations that manipulate these data, yielding
business artifacts which encapsulate, in a single object, the data model along
with the corresponding life cycle model [82, 55]. It is common to model object
life cycles with variants of finite state machines [47], describing the legal
execution order of a data object’s operations. The MBA approach extends
this principle to the realm of multilevel modeling. An MBA encapsulates, in
a single object, data and life cycle models at various levels of abstraction
which are hierarchically ordered. For each level, an MBA defines a class and
the corresponding life cycle model; for its top level, an MBA also represents
instance data. Then, a level’s class is in a one-to-many relationship with the
child level’s class.

Figure 1.2 illustrates an MBA model for the generic value creation process
of the multilevel business process pyramid, focusing on strategic, tactical,
and operational data objects, describing their data and life cycle models. In
practice, these generic levels are replaced by levels that reflect the specific
business case, for example, product categories, brands, models, and physical
entities in a manufacturing company. The graphical illustration of MBAs
consists of several boxes, linked by dotted lines, with different compartments.
Each box represents a level of abstraction, the boxes being top-down ordered
according to the position in the level hierarchy. The top compartment of
each box contains the name of the level in angle brackets (‹level›), the



4 1 Introduction

+ operationalDataItem [*]

‹ operationalDataObject ›

+ strategicDataItem = {item1, … , itemn}

aStrategicObj: ‹ strategicDataObject ›

+ tacticalDataItem [*]

‹ tacticalDataObject ›

new

addOperationalDataObject
[ 2({ancestors, descendants})]

editDataItems
[ 2({ancestors, descendants})]

addTacticalDataObject [ 1(descendants)]
editDataItems

[ 1(descendants)]

Handling Strategic Data

Handling Operational Data

Handling Tactical Data

[ 3(ancestors)] 
editDataItems

[ 3(ancestors)] 

new
+ operationalDataItem [*]

‹ operationalDataObject ›

+ tacticalDataItem = {item1, … , itemn}

aTacticalObj : ‹ tacticalDataObject ›

addOperationalDataObject
[ 2({ancestors, descendants})]

editDataItems
[ 2({ancestors, descendants})]

Handling Operational Data

Handling Tactical Data

[ 3(ancestors) and 4(ancestors)] 
editDataItems

[ 3(ancestors) and 4(ancestors)] 

new

aTacticalObj-specific 
State

Editing

aTacticalObj-
specific
operation

concretization of

Figure 1.2: An MBA model for a generic multilevel business process with an
extended life cycle model for operational data objects in the aTacticalObj sub-
hierarchy

middle compartment describes a data model using UML notation, and the
bottom compartment contains a UML state machine diagram [88, p. 535
et seq.] describing a life cycle model. In UML state machine diagrams,
rounded boxes denote states, a filled black circle denotes the initial state,
arrows between states denote transitions which are labeled with the name
of the triggering operation and possibly pre- and post-conditions in square
brackets before/above and after/below the event name, respectively. The
top compartment in the top-level box contains, underlined, the name of the
MBA followed by the level name separated by colon, signifying instantiation
of the top-level data and life cycle models. Figure 1.2 thus depicts two MBAs,
namely aStrategicObj at the strategicDataObject level and aTacticalObj at
the tacticalDataObject level.



1.1 Multilevel Business Processes 5

MBA aStrategicObj in Figure 1.2 represents an individual data object
at the strategic level of the multilevel business process pyramid and also
describes the common schema for the tactical and operational data objects
underneath it. For each of these levels, strategicDataObject and tacticalData-
Object, MBA aStrategicObj therefore defines both data model and life cycle
model which other MBAs at the respective levels may then instantiate. In
this sense, aStrategicObj is an aggregate of the data objects at the various
levels, namely those data objects that directly or indirectly instantiate the
respective data and life cycle models defined by aStrategicObj.

The feedback and coordination interactions between the different levels
of the multilevel business process pyramid translate into synchronization
dependencies between the life cycle models of the different levels of an
MBA. Pre- and post-conditions of transitions over states and attributes
of descendants and ancestors describe such synchronization dependencies
between levels. Figure 1.2 employs generic logic predicates, denoted by Greek
letters Φ and Ψ with a subscripted number, over ancestors and descendants
as pre- and post-conditions. These predicates may refer to those attributes
and states of descendants and ancestors that occur in the data and life cycle
models for the respective levels as defined by the same MBA. In this book,
we propose specific predicates for various cases of synchronization.

The concretization relationship between MBAs indicates instantiation of
a level and thus, at the same time, membership to a particular aggregate.
Concretization, however, is not arbitrary but follows specific, well-defined
rules. First, the concretizing MBA’s top level must be second level of the more
abstract parent MBA. For example, MBA aTacticalObj is a concretization
of aStrategicObj, with the top level of aTacticalObj, that is, tacticalData-
Object, being a second level of aStrategicObj. Then, the concretizing MBA
inherits from its parent all levels underneath this second level. Finally, the
concretizing MBA’s data and life cycle models for the inherited levels are
specializations of the models that the parent defines for the respective levels;
for the specialization of life cycle models, some form of behavior-consistent
specialization (see [108]) applies. For example, MBA aTacticalObj refines
the inherited life cycle model at the operationalDataObject level, adding sub-
states to inherited states with additional operations as well as strengthening
pre- and post-conditions for inherited operations. Note that Figure 1.2
depicts inherited model elements in gray color. The concretizing MBAs with
their specialized data and life cycle models may themselves be subject to
concretization. Thus, a concretizing MBA represents an individual data
object at a particular level underneath its parent MBA and, at the same



6 1 Introduction

time, an entire sub-hierarchy with its own set of concretizations at each level,
resulting in a kind of hierarchy/instance duality.

The MBA model in Figure 1.2 is hetero-homogeneous. The hetero-
homogeneous approach for the representation of hierarchical information
grounds on the following principle: a homogeneous global schema inter-
spersed with heterogeneities in well-defined partitions of the hierarchy. MBA
aStrategicObj describes the common schema for all descendant MBAs at the
tacticalDataObject and operationalDataObject levels. MBA aTacticalObj is
such a descendant at the tacticalDataObject level, following the common
schema but introducing a behavior-specialized life cycle model for the descen-
dants of aTacticalObj at the operationalDataObject level. Other descendants
of aStrategicObj at the tacticalDataObject level might themselves introduce
heterogeneities relevant for their own descendant MBAs while satisfying the
common schema.

1.2 Contributions
In this book we investigate multilevel business processes. We extend the
multilevel object (m-object) for artifact-centric business process modeling,
thereby introducing a hetero-homogeneous approach towards the represen-
tation of variability. We further investigate the automation of multilevel
business processes, providing a logical representation and outlining the design
for a multilevel business process management system. Finally, we provide
the fundamental for multilevel business process intelligence and leverage the
advantages of hetero-homogeneous business process models for data analysis.

We propose a core metamodel for m-objects which contributes towards
a more holistic understanding of m-objects. The core metamodel is a
generalized formalization based on UML which abstracts from the details
of the various application domains of m-objects. The core metamodel may
serve as the formal foundation for future extensions of m-objects as well
as an improved, UML-based representation of the metamodels for existing
application domains of m-objects.

We introduce the multilevel business artifact (MBA) as a special kind of
m-object which associates data and life cycle models with its abstraction
levels. The proposed MBA modeling approach employs UML state machines
for the representation of life cycle models. A set of OCL syntax macros –
multilevel predicates – and the corresponding graphical notation allow for
the explicit representation of synchronization dependencies between the data



1.2 Contributions 7

and life cycle models at the various abstraction levels. Thus, the MBA
makes explicit the interactions between the various hierarchy levels within
an organization, potentially leading to a better alignment of lower-level
operational processes with higher-level management processes.

The MBA, in conjunction with multilevel concretization, introduces the
concept of hetero-homogeneous models, known from data warehousing, to
business process modeling. An MBA represents the homogeneous schema of
an abstraction hierarchy of processes. Multilevel concretization allows for
the introduction of heterogeneities into sub-hierarchies which comply with
the homogeneous global schema. The life cycle models in the sub-hierarchies
are variants of the homogeneous global schema. Multilevel concretization
grants liberties to business process modelers in tailoring the business process
models to the particularities of individual departments or local branches
of a company, accounting for the variability of real-world processes. On
the other hand, in order to allow for the enforcement of organization-wide
business practices, multilevel concretization consciously limits the degree of
freedom of modelers in modeling variants for sub-hierarchies. In particular,
the life cycle models defined by the more concrete MBAs must extend and
refine the homogeneous schema according to well-defined rules of behavior-
consistent specialization. The precise semantics of behavior consistency may
differ with the application scenario but influences the degree of freedom for
the modeler. The hetero-homogeneous approach overcomes the dichotomy
between flexibility and compliance with standard operating procedures.

We investigate the possibility of the MBA-based, (semi-)automated exe-
cution of multilevel business processes. To this end, we introduce an XML
representation for MBAs and the concept for a multilevel business process
management system working with the XML representation of MBAs. A thus
constructed multilevel business process management system will produce
event logs which may serve as the basis for business process performance
analysis, allowing for the calculation of quantitative performance measures
such as cycle time. Multilevel synchronization dependencies may then refer
to the calculated performance measures.

We further investigate the advantages of hetero-homogeneous business
process models for performance analysis, leveraging observation consistency
for data analysis. The existence of a generally homogeneous schema allows
for the calculation of organization-wide performance indicators. The preser-
vation of heterogeneities in the schemas of sub-hierarchies, on the other
hand, allows for a more detailed analysis of the business situation in certain
departments or local branches of the company.



8 1 Introduction

1.3 Outline
The remainder of this book is organized as follows.

Background. In Chapter 2 we review related work and briefly introduce
existing technologies that serve as the basis for the development of a method-
ology for the conceptual and logical modeling of multilevel business processes
as well as their automation and analysis. This book builds on previous work
from multilevel domain modeling, business process modeling, business pro-
cess automation, and business process intelligence. The presented approach
employs standards such as UML, OCL, XML, XQuery, and SCXML.

Multilevel Object Core. In Chapter 3 we describe the fundamentals of the
hetero-homogeneous approach to data modeling and introduce a generalized
metamodel which identifies the very essence of m-objects, abstracting from
the details of the manifold application domains that m-objects have been
successfully applied to. This core metamodel roots the presented approach
for multilevel business process modeling in the broader context of multilevel
modeling. The subsequent chapters extend the core metamodel which
provides a framework for the formal definition of general consistency rules
for multilevel business process models.

Multilevel Business Artifacts. In Chapter 4 we present the multilevel
business artifact (MBA), an extension of the m-object for artifact-centric,
conceptual modeling of multilevel business processes. An MBA encapsulates,
in a single object, data and life cycle models of data objects at various levels
of abstraction. Multilevel predicates describe synchronization dependencies
between the data and life cycle models of the different levels of an MBA.

Hetero-Homogeneous Business Process Models. In Chapter 5 we
present a hetero-homogeneous approach towards the representation of vari-
ability in artifact-centric business process models. A hetero-homogeneous
business process model features a homogeneous, global schema for data and
business processes which all parts of the hierarchy are conforming with. Dif-
ferent parts of the hierarchy may specialize the global schema, following the
rules for behavior-consistent specialization. The specialized schema becomes
the homogeneous schema of a well-defined sub-hierarchy. Sub-hierarchies of
this sub-hierarchy may again specialize the schema, and so on.

XML Representation. In Chapter 6 we introduce a logical representation
of MBAs using XML. In order to allow for the (semi-)automated execution
of multilevel business processes using information technology, the conceptual



1.3 Outline 9

model must be converted into a logical model which serves as the input for
the business process execution engine. The logical representation of MBAs
models object life cycles using State Chart XML (SCXML), an XML-based
state machine language.

Multilevel Business Process Automation. In Chapter 7 we propose
a design for a multilevel business process management system. The core
components of this system are an MBA database and an XQuery-based
SCXML interpreter. The (semi-)automated execution of multilevel business
processes produces event logs which may serve as the basis for quantitative
business process analysis.

Multilevel Business Process Intelligence. In Chapter 8 we introduce an
approach for quantitative business process analysis using multilevel models.
We investigate the definition of multilevel synchronization dependencies
over performance data. We further investigate the advantages of hetero-
homogeneous business process models for performance analysis. Due to
observation consistency, hetero-homogeneous models enable data analysts to
leverage additional data which would otherwise be lost for the analysis.

We conclude with a summary, a discussion of the MBA-based modeling
approach, and an outlook on future work.



2 Background

In this chapter we review related work and briefly present approaches
and technologies used in the development of the presented approach for
multilevel business process modeling and data analysis. Multilevel business
process modeling builds on existing research on multilevel domain modeling,
especially multilevel objects [76]. The proposed modeling approach qualifies
as data- or artifact-centric business process modeling [82] and relies on
the notion of behavior-consistent specialization of life cycle models [108].
Multilevel business process models are executable in an automated way, the
resulting traces being subject to business process intelligence. The multilevel
business process modeling approach relies on UML (with OCL) as modeling
language and for the definition of the formal metamodel; XML serves as the
format for logical representation.

2.1 Multilevel Modeling
A plethora of multilevel modeling approaches exists in the literature [10]. A
common feature of these approaches is the support for arbitrary-depth in-
stantiation/classification hierarchies. For a multitude of use cases, multilevel
modeling approaches lead to a more accurate representation of reality than
“traditional” modeling approaches with two-level instantiation/classification
hierarchies [59].

The multilevel object [77] (m-object) is a versatile approach to multilevel
modeling. The m-object combines elements of other multilevel modeling
approaches, most notably powertypes, materialization, and deep instantiation
(see [81] for a detailed comparison). A mapping of m-objects to OWL [79]
renders multilevel modeling accessible to ontology engineers. The design
of data warehouses using m-objects leads to an improved representation of
heterogeneities in OLAP cubes [80]. In this spirit we extend the m-object
modeling approach to the realm of business process management.

The notion of powertype derives from powersets in set theory [20] and has
since been included in the UML standard [88, p. 54]. The instances of a pow-
ertype are subtypes of another object type, thereby providing metamodeling

C. G. Schuetz, Multilevel Business Processes, 
DOI 10.1007/978-3-658-11084-0_2, © Springer Fachmedien Wiesbaden 2015



12 2 Background

capabilities [85, p. 28]. Gonzalez-Perez and Henderson-Sellers [33] propose a
powertype-based approach without strict separation of traditional two-level
instantiation with classes and objects, using instead the notion of “clabject”.
In this approach, the powertype pattern consists of “a pair of classes in
which one of them (the powertype) partitions the other (the partitioned
type) by having the instances of the former be subtypes of the latter” [33,
p. 83]. The relation of the m-object modeling approach to powertype-based
approaches [29] is as follows. A level of an m-object may act as partitioned
type and powertype at the same time. In an MBA’s level hierarchy, a parent
level is the powertype of the child level.

Other concepts related to m-objects are materialization and deep instan-
tiation. Materialization [95, 25] blurs the boundaries between aggregation
and instantiation. Deep instantiation [11] introduces potencies to multilevel
instantiation hierarchies. Attributes of a class may have potencies assigned.
An attribute’s potency specifies the number of instantiation steps to be taken
until the assignment of a value to this attribute happens. Dual deep instan-
tiation abandons the strict metamodeling confinements of deep instantiation
and distinguishes between source and target potencies [78].

2.2 Business Process Modeling

In large parts of this book we deal with business process modeling. More
specifically, we propose an artifact-centric modeling approach for multilevel
business processes. In this context, variability and flexibility are important
aspects, with the notion of behavior consistency being closely related. Or-
thogonal to multilevel business processes is the traditional notion of business
process model abstraction.

2.2.1 Data- and Artifact-Centric Modeling

A business artifact [82] encapsulates, in a single object, a data model
along with the corresponding business process model for working with
the data, referred to as the object life cycle model. Object life cycles are
commonly modeled using variants of finite state machines [47]. Object
behavior diagrams [55], for example, employ Petri nets for the representation
of object life cycles. Other work [66, 72] leverages the expressive power of
the BPMN standard for artifact-centric business process modeling. The

www.allitebooks.com

http://www.allitebooks.org


2.2 Business Process Modeling 13

guard-stage-milestone approach [48, 49], on the other hand, produces a more
declarative representation of object life cycles.

Various existing approaches towards business process management put
their emphasis on the data objects involved in a process. The object-process
methodology [26] defines the notions of objects, processes, and states as
the main modeling primitives. States describe objects and processes change
the states of objects. The PHILharmonicFlows framework [57, 56] supports
object-aware business process management and distinguishes between micro
and macro process modeling, the former capturing the behavior of individual
objects, the latter representing interactions between objects. Proclets [5, 6]
are an object-oriented representation of business processes, where a proclet
corresponds to an object that is attached with an explicit life cycle model.
The proclet modeling approach especially emphasizes the interaction between
objects, rather than considering objects only in isolation.

The UML standard describes model types that may be employed
for artifact-centric business process modeling. In such a UML-based
approach [30], a UML class diagram represents the data model of business
artifacts and UML state machines typically represent the life cycle model of
artifacts. UML-based artifact-centric business process models are accessible
to methods for the formal verification of correctness [19]. In this book, we
employ UML state machines for representing object life cycles.

2.2.2 Variability and Flexibility
Central to the notion of variability is the concept of process variant. Differ-
ent process variants may exist for achieving the same goal. These process
variants have the same underlying core process but may differ from the
core process with respect to the exact type and sequence of conducted
activities [98, p. 45]. Configurable process models make explicit the vari-
ation points between different process variants [105]. Questionnaire-based
approaches may reduce the complexity of handling multiple configurable
process variants and facilitate the tailoring of a configurable process model to
the specific needs of individual users [58, p. 105]. The operational approach
towards the management of process variants performs change operations on
a base process model, allowing for the insertion/deletion and modification
of process fragments at specified variation points [40, 41]. Business process
families [37] adapt the principle of software product lines for the representa-
tion of business processes. A business process family comprises a reference
business process model and a set of features. The features relate to elements



14 2 Background

in the process model and serve as the basis for customization. Process owners
may customize the reference business process by using different selections of
features. A business process family may also be characterized as a “collection
of processes meeting a common goal but in different ways” [102].

Real-world business situations often necessitate dynamic adaptations of
business process models [99]. Change patterns may guide modelers through
the adaptation of process models and instances, thereby ensuring correctness
of the resulting adaptation [138]. Flexible approaches towards business
process management allow for the quick implementation of new processes
and on-the-fly adaptation of process instances [97]. Business processes may
also be flexible by design, providing process owners with different choices [98,
p. 59 et seq.]. Meta-processes may allow for the dynamic construction of
business process models, resulting in a business process model that optimally
fits the needs of the current situation [104]. For artifact-centric business
process modeling, the representation of a process design entity along with
the actual business process model supports the handling of flexibility [65].

2.2.3 Behavior-Consistent Specialization
The notion of behavior consistency realizes variability in data- and artifact-
centric business process models. A life cycle model that is a behavior-
consistent specialization of another, more general life cycle model is a variant
of this more general life cycle model. Different frameworks for behavior-
consistent specialization rely on various different modeling languages, for
example, Petri nets [3], UML state machines [125], or object/behavior
diagrams [108]. More recent work [141] has investigated the observation-
consistent specialization of synchronization dependencies. In the context of
process views, behavior-consistent specialization assists with the propagation
of local changes to a central process model [67].

Two flavors of observation consistency may be distinguished, namely obser-
vation consistency and invocation consistency [108]. Observation consistency
applies to situations where the specialized life cycle model is observable in the
same way as the more general life cycle model. In this case, any execution of
a specialized life cycle model must be a valid execution of the more general
life cycle model, when disregarding the refinements and extensions of the
specialized life cycle model. The notion of invocation consistency is stronger
than observation consistency, additionally demanding that any sequence of
activities that is valid in the more general life cycle model must also be a
valid in the specialized life cycle model.



2.3 Business Process Automation 15

2.2.4 Business Process Model Abstraction
In business process modeling, abstraction commonly refers to the description
of the same process at different levels of granularity. A process may thus
be composed by several sub-processes. For example, the negotiation and
signing phase sub-processes constitute the conclusion of a contract. Most
business process modeling languages allow for the representation of such
abstraction hierarchies. UML state machines allow for the nesting of states
under composite states [88, p. 560]. BPMN allows for the representation
of sub-processes, the notation allowing for both a collapsed and expanded
presentation in order to hide unnecessary details from the user [16, p. 118].

Business process model abstraction is essential to handling complexity
of large-scale models [119]. Typically, business process model abstraction
refers to the reduction of complexity in business process models by grouping
individual activities into sub-processes [118], thereby providing a more
general view on the underlying business process. Business process model
abstraction is part of the broader research field on well-structuredness of
business process models [96]. This whole field is orthogonal to multilevel
business process modeling: Rules for well-structuredness may be applied
individually to each of the business process models at the different levels in
a multilevel business process model.

2.3 Business Process Automation
Business process management systems support modeling and execution
of business processes [27, p. 298 et seq.]. In particular, business process
management systems ensure the valid execution order of the activities of
a business process and provision the appropriate resources needed for the
completion of these activities. Some of these activities may even be com-
pleted autonomously by the software system, without human intervention.
An automated business process may be referred to as workflow [27, p. 298].
The automation of business processes requires a suitable representation
language [94]. For example, BPEL is a widely-supported modeling language
for business process automation [84, 62]. The modeling language YAWL
also comes with an execution environment, its formal foundation in Petri
nets making it accessible to formal verification [44]. The Genesys Orchestra-
tion Server [32] employs State Chart XML, an XML-based representation
language for state machines. For artifact-centric business processes, the
Siena system [23] was among the first prototypes (cf. [24]) for the execution



16 2 Background

of artifact-centric business processes. The Siena system employs XML for
the representation of business artifacts, similar to the approach for business
process automation as presented in this book, which also adopts an XML
representation in order to allow for the execution of multilevel business
processes. The Barcelona system [43] supports the design and execution of
business processes using guard-stage-milestone models.

2.4 Business Process Intelligence

Following a review of BPI literature, Felden et al. [31, p. 200] define BPI as
“the analytical process of identifying, defining, modelling and improving value
creating business processes”. In the chapter on business process intelligence
of their comprehensive book about the fundamentals of business process
management, Dumas et al. present tools and techniques for “intelligently
using the data generated from the execution of the process” [27, p. 353].
Business process intelligence (BPI) comprises a multitude of tools and
techniques related to the analysis, monitoring, control, and optimization of
business process execution [36]. An important aspect of business process
intelligence is the discovery of processes through the mining of event data [21].
Other authors [74] use the term “business process analytics” as an umbrella
term for various techniques for the analysis of event log data generated
during the execution of business processes.

A data warehouse may organize the base data for business process analysis.
In that case, the data warehouse is then often referred to as process data
warehouse [36] or simply process warehouse [64, 63], Process models may
serve as the starting point for the definition of the schema for such a data
warehouse [126, 70, 69]. Other work [122] investigates how knowledge about
the life cycle models of the analyzed business objects may enrich a data
warehouse schema. Furthermore, business processes may also require access
to the data in a data warehouse and adjust further processing accordingly,
based on the contents of the data warehouse [121, 123].

In business process analysis, measures may either refer to the models of
business processes or the execution thereof [106]. Business process models
may be analyzed with respect to their complexity and understandability, for
example. A popular measure of interest for process execution is the cycle
time, that is, the amount of time needed to complete a process instance [27,
p. 219 et seq.]. In this book, we focus on the analysis of measures related to
business process execution, in particular cycle time.



2.5 Modeling Languages 17

2.5 Modeling Languages
Conceptual models describe the domain of an information system [86]. The
Unified Modeling Language (UML) defines model elements for both static
and behavioral modeling [88], state machine diagrams and activity diagrams
being the most notable for the modeling of behavior. Protocol state machines
define the legal execution order of the methods of a class [88, p. 535 et seq.].
In this book, we rely on UML state machine diagrams in order to model
artifact-centric business process modeling, in conjunction with UML class
diagrams for representing the data elements.

Conceptual data models translate into database schemas [28]. The Extensi-
ble Markup Language (XML), although introduced as a web technology, has
gained prominence for the specification of semi-structured logical database
schemas. Examples for available XML database management systems are
BaseX1 and eXist-db2. In this book, we employ an XML database for the
storage of business artifacts.

For business process automation, modelers must translate business process
models into executable models, or workflow models [94]. State Chart XML
(SCXML) is a W3C proposed recommendation for the representation of
state machines using XML [136]. We use SCXML in the logical represen-
tation of business artifacts since its model elements and their semantics
are very similar to UML state machines, allowing for an easy translation of
conceptual multilevel business process models that use UML state machines
into a corresponding logical representation. We differ from the SCXML
specification in employing the XPath data model as described by the candi-
date recommendation [129] and last call working draft [130] since it neatly
integrates into XML and XQuery; the feature was dropped due to lack of
implementation [129].

XQuery is the standard query, manipulation, and programming language
for XML data [134, 128]. The XQuery Update Facility (XQUF) [128]
introduces data manipulation operations for XML documents. The concept
of node identity from the XQuery and XPath data model [135] allows for (a
sort of) object-oriented programming style. In this case, XML elements may
be regarded as objects and passed to functions under preservation of their
identity. Manipulation operations on these elements then propagate directly
to the database.

1http://basex.org/
2http://exist-db.org/



Part I

Modeling



3 Multilevel Object Core

The multilevel object (m-object) is a versatile construct for modeling mul-
tilevel abstraction hierarchies with applications in domain modeling [77],
ontology engineering [79], data warehousing [80, 116, 112], business model
intelligence [113], and business process modeling [111, 114]. The employ-
ment of m-objects in the design process allows for the representation of
heterogeneities while preserving advantages of homogeneous models, yield-
ing hetero-homogeneous models. In this chapter we summarize the hetero-
homogeneous modeling approach and present a core metamodel for m-objects
which generalizes the specializations for different application domains. We
formally define the metamodel using UML; we employ OCL for the definition
of consistency criteria and derivations. Although based on the foundational
work on m-objects [76] we present an independent, generalized formalization
which itself contributes towards a holistic understanding of m-objects.

3.1 Hetero-Homogeneous Data Modeling
The origin of m-objects and the hetero-homogeneous modeling approach
lies in domain (or conceptual) modeling. The purpose of a conceptual
model is twofold [93]. On the one hand, a conceptual model describes
the expected instance data in all variants, serving as a documentation for
application developers of what is to be expected. On the other hand, a
conceptual model prescribes the structure of the data, acting as a schema,
thereby constraining application developers. For homogeneous instance
data, modelers easily represent the application domain using classes and
associations. For heterogeneous instance data, however, domain modelers
resort to inheritance, increasing the complexity of the resulting model and
entailing other, application-dependent issues, for example, summarizability
problems in data warehousing.

Consider, for example, the UML object diagram in Figure 3.1 which illus-
trates data associated with a company’s rental business; the example derives
from the EU-Rent use case [90]. In this example, the rental business manages
individual rentals in different countries and markets these rentals to different

C. G. Schuetz, Multilevel Business Processes, 
DOI 10.1007/978-3-658-11084-0_3, © Springer Fachmedien Wiesbaden 2015



22 3 Multilevel Object Core

+ maximumRate = 500

corporate

+ minDriverAge = 18

austria

+ negotiatedRentalRates 
= {250, 300, 400}

acmeAgreement

+ description = 'The car rental business of the EU-rent company.'

rentalBusiness

+ renterType + country

+ maximumRate = 250

private

+ renterType

+ agreement

+ individualRental

+ individualRental

+ rate = 250
+ actualPickUpDate =

28/08/2014

rentalTX1183

+ individualRental

+ individualRental

+ rate = 250
+ actualPickUpDate =

25/07/2014
+ privateUpgrade = 100

rentalHX3006

Figure 3.1: A heterogeneous object diagram for the representation of data about
car rentals

renter types. In addition, for corporate renters, each individual rental falls
under a corporate rental agreement. The example object diagram assumes
no schema information, that is, omits stating classes for the illustrated data
objects. Still, the role names at the link ends allow for the clustering of the
different objects into abstraction levels which allow for the observation of
the rental business at varying granularities. The rentalBusiness object links
to corporate and private under the renterType role as well as to austria under
the country role. Objects corporate and private then constitute the renterType
level whereas austria constitutes the country level. Similarly, objects rental-
HX3006 and rentalTX1183 constitute the individualRental level as they are
linked to other objects under the individualRental role. The acmeAgreement
object constitutes the agreement level.



3.1 Hetero-Homogeneous Data Modeling 23

Lower Bound Model

+ description

RentalBusiness

+ maximumRate

RenterType

+ rate
+ actualPickUpDate

IndividualRental

+ minDriverAge

Country
**

1 1

+ negotiatedRentalRates [1..*]

RentalAgreement
**

1 1

+ country+ renterType

+ individualRental + individualRental

+ individualRental

*

*

1

+ privateUpgrade

CorporateRental

+ agreement

« Singleton »
RenterTypeCorporate

1

Figure 3.2: The upper bound model as an extension of the lower bound model
for the objects in Figure 3.1

The clustering of the data objects in Figure 3.1 into abstraction levels
may serve as a starting point for the definition of a UML class diagram as
the conceptual model for the EU-Rent use case. In this case, however, one
may notice the inherent heterogeneity of the object diagram. The rental-
HX3006 object has an additional attribute privateUpgrade with respect to
the rentalTX1183 object, both objects being at the same abstraction level
individualRental. Furthermore, whereas the private object directly links to
an object at the individualRental level, the corporate object links transitively,
via the acmeAgreement object, to the individualRental level. Thus, in order
to accurately represent the objects in a class diagram, taking into account
the variability between the different abstraction levels, modelers must resort
to the specialization mechanism.

The lower bound model [17, 93] fulfils the conceptual model’s purpose
of constraining the stored data, describing only the common elements of
the data objects at the different abstraction levels. For example, Figure 3.2
defines classes RentalBusiness, RenterType, Country, and IndividualRental as
the lower bound model for the data objects in Figure 3.1. An instance of the
RentalBusiness class associates multiple instances of the classes RenterType



24 3 Multilevel Object Core

S

acmeAgreement

corporate

rentalBusiness

renterType

business

agreement

individualRental

private

rentalHX3006 rentalTX1183

S'

(a) hierarchy

S

IndividualRental
*

S'

CorporateRental
*

RentalAgreement
*

1

RentalBusiness

RenterType
*

1

1

RenterTypeCorporate

1

(b) hetero-homogeneous model

Figure 3.3: A hierarchy of data objects and its hetero-homogeneous model

and Country which, in turn, associate multiple instances of the Individual-
Rental class. The lower bound model omits the description of objects at the
agreement level as well as an inclusion of the privateUpgrade attribute in
the IndividualRental class since the lower bound model represents a “least
common denominator”.

The upper bound model [17, 93] fulfils the conceptual model’s descriptive
function, employing specialization in order to represent additional features
of data objects at some abstraction levels. Using specialization, Figure 3.2
defines the upper bound model for the objects in Figure 3.1, which consists
of the lower bound model extended with classes RenterTypeCorporate, Rental-
Agreement, and CorporateRental. The RenterTypeCorporate class specializes
RenterType by introducing an association to the RentalAgreement class which
associates the CorporateRental class. In turn, the CorporateRental class
specializes the Rental class by introducing the privateUpgrade attribute.

Given hierarchically-organized information, the hetero-homogeneous mod-
eling approach stipulates the stepwise definition of lower bound models
for hierarchies, sub-hierarchies, sub-hierarchies of sub-hierarchies, etc., the
model for each sub-hierarchy extending the more general hierarchy using
specialization. The ensemble of these lower bound models for the various
sub-hierarchies then constitutes the upper bound model for the entire hi-
erarchy. Each hierarchy is homogeneous with respect to its lower bound
model but heterogeneous in the sense that sub-hierarchies may specialize
the homogeneous, lower bound model by introducing additional features.
The same principle recursively applies to sub-hierarchies.

www.allitebooks.com

http://www.allitebooks.org


3.2 Multilevel Objects 25

Consider, for example, the hierarchical organization of data objects in
Figure 3.3a which derives from the object diagram in Figure 3.1 and con-
sists of levels business, renterType, agreement, and individualRental but omits
attributes as well as the country level for presentation purposes. The abstrac-
tion levels are ordered from most abstract to most concrete. Lines between
the data objects establish inter-level links between data objects. The set
S of data objects, which comprises rentalBusiness, corporate, private, acme-
Agreement, rentalHX3006, and rentalTX1183, constitutes the main hierarchy.
The subset S’ of S, which comprises corporate, acmeAgreement, and rental-
HX3006, constitutes a specific sub-hierarchy. For each of these sets of objects,
S and S’, Figure 3.3b defines a lower bound model. The abstraction levels
translate into classes, the inter-level links between data objects translate into
associations between the respective classes. The lower bound model for the
main hierarchy over the set S consists of classes RentalBusiness, RenterType,
and IndividualRental. The lower bound model for the sub-hierarchy over
the set S’ consists of classes RenterTypeCorporate, RentalAgreement, and
CorporateRental. Together, these lower bound models constitute the upper
bound model for the entire hierarchy. Subsequently, a modeler may define
further lower bound models for other sub-hierarchies as well.

Each individual lower bound model in Figure 3.3b already represents a
sort of proto m-object, encapsulating the model of an entire (sub-)hierarchy
of data objects. The data objects in the sub-hierarchy are homogeneous
with respect to this lower bound model, they conform at least to this model
but may have additional features not captured by the lower bound model
for this particular hierarchy. After all, the lower bound model prescribes
only a minimal structure and does not account for each and every case. The
hetero-homogeneous approach demands a stepwise, recursive definition of
a lower bound model for each sub-hierarchy specializing the more general
hierarchy’s model.

3.2 Multilevel Objects

A multilevel object (m-object) represents, in a single object, an entire
hierarchy of abstraction levels. With each abstraction level in this hierarchy,
an m-object associates a set of arbitrary model elements. Furthermore, an
m-object may be the concretization of other m-objects. The thus directly
or transitively related m-objects constitute a concretization hierarchy. In
such a hierarchy, a concretization inherits from its abstractions a subset



26 3 Multilevel Object Core

of their levels, including the associated elements. On the other hand, a
concretization may also introduce new levels and elements with respect to its
abstractions. Modeling with m-objects is an incremental, top-down approach
for the representation of hierarchical information, always from more abstract
to more concrete m-object.

In the graphical representation of (core) m-objects (Figure 3.4), each level
is a box with two compartments. The top compartment of each box contains
the name of the respective level between angle brackets (‹ level ›). The
other compartment contains the model elements that the m-object associates
with the respective level. Gray color denotes inherited levels and model
elements. The boxes are arranged according to their hierarchical order and
linked by dotted lines joining the left and right corners of the boxes. The
top compartment of the top level’s box contains the name of the m-object
in addition to the level name, underlined and separated by a colon.

Figure 3.4 illustrates an m-object model for the hierarchical organization of
car rental data; the example adapts and extends the EU-Rent use case [90].
The EU-Rent company’s rental business manages primarily data about
individual rentals, such as rental rates and car pick-up dates as well as
information about authorized drivers. Each individual rental is offered to
a particular type of client, that is, renter type, and occurs in a particular
country. The renter type determines the individual rental’s maximum rate,
the value of which is a management decision based on market studies. The
country, on the other hand, imposes legal regulations such as the minimum
age for driving.

For particular renter types and countries, EU-Rent might capture addi-
tional information due to different business practices and/or legal regulationss.
First, corporate clients could negotiate a set of rental rates under a frame-
work rental agreement between EU-rent and the client company. Employees
of corporate clients may, however, choose to upgrade their car for a personal
fee. Second, in Austria, due to legal requirements and/or particular policies,
for example, by local insurers, EU-Rent might store the issue dates of the
authorized drivers’ licenses in addition to the driver information commonly
captured by local branches in other countries.

Using UML classes and instance specifications (objects) as the model
elements attached to the different levels, the m-objects in Figure 3.4 represent
the extended EU-Rent use case with heterogeneities in specific parts of
the business. The model consists of m-objects Rental at the business level,
Corporate at the renterType level, Austria at the country level, ACMEAgreement
at the rentalAgreement level, and RentalTX1183 at the individualRental level.



3.2 Multilevel Objects 27

‹ individualRental ›

Rental : ‹ business ›

‹ renterType ›

+ description = 'The car rental business of the company.'

rentalBusiness : RentalBusiness

+ description

RentalBusiness

+ maximumRate

RenterType

+ rate
+ actualPickUpDate

IndividualRental

‹ country ›

+ minDriverAge

Country

Corporate: ‹ renterType ›

concretization of

RenterType
+ maximumRate = 500

corporate : RenterType

Austria: ‹ country ›

concretization of

Country
+ minDriverAge = 18

austria : Country

‹ individualRental ›

IndividualRental

‹ individualRental ›

IndividualRental
+ privateUpgrade

CorporateRental

‹ rentalAgreement ›

+ negotiatedRentalRates [1..*]

RentalAgreement

+ licenseIssueDate

AustrianDriverAustrianRental

+ licenseNr
+ age

Driver+ driver

Driver+ driver

+ driver
{redefines driver}

ACMEAgreement : ‹ rentalAgreement ›

concretization of

RentalAgreement

+ negotiatedRentalRates 
= {250, 300, 400}

acmeAgreement : 
RentalAgreement

‹ rental ›

IndividualRental CorporateRental

concretization of

RentalTX1183 : ‹ rental ›

IndividualRental

AustrianRental

Driver+ driver

AustrianDriver

{redefines driver}
+ driver

CorporateRental

+ driver
concretization of

1*

* 1

1*

1*

1*

+ licenseNr = 23421
+ age = 30
+ licenseIssueDate =

20/03/2003

d52 : AustrianDriver

+ rate = 250
+ actualPickUpDate =

25/07/2014
+ privateUpgrade = 100

rentalTX1183 : 
CorporateAustrianRental

Figure 3.4: An m-object model for the organization of car rental data



28 3 Multilevel Object Core

The presented example basically follows the rules for m-objects in multilevel
domain modeling [76, p. 97 et seq.], although for illustration purposes some
specifics differ from the original formalization in order to keep the model
more understandable. Thus, in this example, each m-object associates a
number of classes with each of its levels; for the top level, an m-object also
defines instance specifications (objects) for the top-level classes.

The Rental m-object organizes levels business, renterType, country, and
rental in a hierarchy where rental is under both country and renterType,
each of these two levels having, in turn, business as parent level. For the
business level, Rental defines the RentalBusiness class and a corresponding
instance specification which assigns a value to the description attribute. For
the renterType level, Rental defines the RenterType class which represents
different renter types each having a maximum rental rate (attribute maximum-
Rate). For the country level, Rental defines the Country class representing
the company’s different local branches with each country having a certain
minimum age for driving (minDriverAge). For the individualRental level, Rental
defines the IndividualRental class which represents individual car rentals with
a specific rental rate (rate), a particular pick up date (actualPickUpDate),
and one or more authorized drivers, represented by an association from
IndividualRental to the Driver class at the driver association end; a driver has
a specific license number (licenseNr) and age. The Rental m-object represents
the homogeneous model for the entire rental business.

The Austria m-object, as a concretization of Rental, represents both a node
at the country level in the hierarchy as well as an entire sub-hierarchy. For
its top level country, Austria defines an instance specification for the Country
class inherited from the abstraction, Rental. The country level is a second
level of Rental and Austria inherits all levels from Rental that are underneath
country, in this case, individualRental. For the individualRental level, the
Austria m-object defines the AustrianRental and AustrianDriver classes as
specializations of the classes inherited from the Rental m-object, namely
IndividualRental and Driver, respectively.

The other (direct) concretization of the Rental m-object, Corporate, at
the renterType level, represents the corporate renter type. The Corporate
m-object introduces an additional level rentalAgreement between renterType
and its inherited level individualRental. The rentalAgreement level stores
information about the framework agreements that companies may negotiate
with EU-Rent over corporate rentals. For the individualRental level, the
Corporate m-object defines the CorporateRental class as a specialization of
the inherited IndividualRental class.



3.2 Multilevel Objects 29

Whereas m-objects Rental, Austria, and Corporate introduce both schema
and instance data, ACMEAgreement and RentalTX1183 introduce only in-
stance data of data objects. When using m-objects for conceptual modeling,
modelers may omit these instance-only m-objects and include them only in
cases when clarification is necessary, similar to the use of instance specifica-
tions in UML. An implementation that uses m-objects, however, may also
choose to represent instance data as m-objects [109]. Furthermore, what is
instance data at one level may be considered schema information at another,
more specific level. For instance, the maximum rental rate is instance data at
the renterType level whereas it constrains the possible rental rates, and thus
represents schema information, at the individualRental and rentalAgreement
levels. Although omitted in Figure 3.4, such dependencies between levels
are an essential feature of multilevel models and should be made explicit
using OCL constraints. Special applications of m-objects, for example, in
business process modeling [114], may provide dedicated predicates for the
representation of dependencies between abstraction levels.

In the core metamodel, an m-object is little more than a collection of
hierarchically ordered containers for arbitrary model elements. The ensemble
of m-objects, which are themselves hierarchically ordered, constitutes a hier-
archical model; each m-object both is a node and represents a sub-hierarchy
in the hierarchical model. The concretization of m-objects allows for the
introduction of additional levels in well-defined sub-hierarchies provided this
introduction does not violate the previously defined level order. Similarly, an
m-object may introduce additional model elements while inheriting the model
elements defined by more abstract m-objects. The core metamodel, however,
does not prescribe any particular rules for the relationships between inherited
and introduced model elements. For particular modeling purposes, the core
metamodel for m-objects may be specialized by restricting the attached
model elements to particular types of model elements and demanding special
relationships between the inherited and introduced model elements. For
example, a specialization of the core metamodel for artifact-centric business
process modeling may restrict the attached model elements to classes and
state machines. Furthermore, introduced classes and state machines must
be consistent specializations of inherited classes and state machines.

We formalize the basic characteristics of m-objects in a generalized core
metamodel. Figure 3.5 defines, using UML, the elements of this core meta-
model for m-objects. An m-object (abstract metaclass MultilevelObject) has
several levels of abstraction (association end level to abstract metaclass Level).
With each of these abstraction levels an m-object associates, represented by



30 3 Multilevel Object Core

+ ancestor(level : Level) : 
MultilevelObject [0..1]

+ descendants(level : Level) :
MultilevelObject [*]

MultilevelObject
1

+ topLevel*

**

{subsets level}
+introducedLevel

**

{subsets level}
+/inheritedLevel

1..**

{union}
+ /level

Level

MObjectToLevel

+ /parentLevel

*

*

+ /element
* *

+ abstraction

*

+ concretization
*

Element

+ name 
«identifier alt=objectName»

IndividualMultilevelObject
+ name

«identifier alt=levelName»

AtomicLevel

1..**

{redefines level}
+ /level

*0..1

{redefines introducedLevel}
+introducedLevel

**

{redefines inheritedLevel}
+/inheritedLevel

Figure 3.5: The core metamodel for multilevel objects in UML. Note that for
the definition of explicit identifiers we use the notation proposed in the Ontology
Definition Metamodel [87, pp. 290-293]. The «identifier» stereotype marks attributes
or association ends as part of the explicit identifier of the respective class. The
optional alt attribute allows for the distinction of alternative identifiers.

association class MObjectToLevel, a number of parent levels (association end
parentLevel) – thereby establishing the hierarchical order of the abstraction
levels – and, in the general case, a number of arbitrary model elements
(association end element to metaclass Element). Furthermore, m-objects
are typically arranged in a concretization hierarchy. An m-object may
have multiple concretizations (association end concretization to metaclass
MultilevelObject) and, conversely, may be an abstraction (association end
abstraction) of several other m-objects.

The MultilevelObject metaclass generalizes the characteristics of individual
m-objects and multilevel relationships. An individual m-object (metaclass
IndividualMultilevelObject) is an m-object with a unique name, the levels
of which are named and atomic (metaclass AtomicLevel), as opposed to
relationship levels which consist of several levels (see Section 3.3). A multi-



3.2 Multilevel Objects 31

level relationship (m-relationship), on the other hand, connects a number
of other m-objects at multiple levels of abstraction. With each relationship
(or connection) level, an m-relationship may associate a number of model
elements. An m-relationship is thus a kind of m-object. This section focuses
on m-objects in the general case as well as the particularities of individual
m-objects. Section 3.3, on the other hand, is dedicated to a more detailed
discussion of m-relationships.

In the remainder of this section we define additional consistency rules for
m-object models according to the core metamodel. Using OCL, we define
these consistency rules over the core metamodel for m-objects (Figure 3.5).
The consistency rules, in part, derive from Neumayr’s formalization of m-
objects [76], thereby adapting the original formalization for the UML context.
Unlike this original formalization, which defines consistency rules mainly
over fully specified m-objects, the presented OCL formalization also defines
derivation rules for inherited model information, which potentially enables
the construction of more intuitive modeling tools. With derivation rules for
inheritance in place, modelers may more easily concretize an m-object by
specifying only the information “delta” with respect to the abstraction. The
derivation rules then determine an m-object’s full specification.

The ensemble of an m-object’s MObjectToLevel links (Figure 3.5) consti-
tutes the m-object’s level hierarchy. Within the m-object’s level hierarchy, a
particular level’s set of ancestor levels corresponds to the transitive closure
of this level’s set of parent levels («OclHelper» ancestorLevel in Rule 3.1),
that is, includes the parent levels, parent levels of parent levels, and so
forth; ancestorLevel refers to «OclHelper» transitiveParentLevel which defines
transitive parent levels of a level’s parent level. The thus resulting level
hierarchy is acyclic (Rule 3.2) with a single top level; an m-object is said
to be at its top level. An m-object’s top level (association end topLevel)
refers to the single level which has no parent level within the m-object’s level
hierarchy (Rule 3.3). In order to avoid level skipping, a level’s parent level
must not, at the same time, be part of the transitive closure of the parent
level’s parent levels (Rule 3.4). Furthermore, a parent level must always
belong to the same m-object as all of its child levels (Rule 3.5).

A level may belong to multiple m-objects. Therefore, a level’s parent
and child levels, as well as the model elements associated with the level,
are defined local to a particular m-object, as described by association class
MObjectToLevel in Figure 3.5. Different m-objects may thus associate with
the same level different parent and child levels as well as different model
elements. These variations, however, are not arbitrary but depend on the



32 3 Multilevel Object Core

Rule 3.1: A level’s set of ancestor levels is the transitive closure of parent levels
1 context MObjectToLevel
2 def: transitiveParentLevel : Set(Level) =
3 self.parentLevel->closure(p |
4 p.MObjectToLevel->select(l |
5 l.MultilevelObject = self.MultilevelObject
6 ).parentLevel
7 )
8 def: ancestorLevel : Set(Level) =
9 self.transitiveParentLevel->union(self.parentLevel)

Rule 3.2: The level hierarchy of an m-object is acyclic
1 context MObjectToLevel inv:
2 not self.ancestorLevel->includes(self.level)

Rule 3.3: An m-object has a single top level with no parent
1 context MultilevelObject inv:
2 let mobjectToTop : Collection(MObjectToLevel) =
3 self.MObjectToLevel->select(parentLevel->isEmpty())
4 in mobjectToTop->size() = 1 and
5 mobjectToTop->any(true).level = self.topLevel

Rule 3.4: A level’s parent level must not be a transitive parent level
1 context MObjectToLevel inv:
2 not self.parentLevel->exists(l |
3 self.transitiveParentLevel->includes(l)
4 )

Rule 3.5: A level’s parent levels must belong to same m-object
1 context MObjectToLevel inv:
2 self.parentLevel->forAll(p |
3 self.MultilevelObject.level->includes(p)
4 )



3.2 Multilevel Objects 33

hierarchical organization of m-objects. The variations are governed by the
semantics of the concretization relationship which presents characteristics
of inheritance and specialization as well as a kind of aggregation. Different
applications of m-objects may, however, provide varying interpretations
of the exact nature of the concretization relationship. In particular, an
application may require inherited and introduced model elements to be in a
specific relationship with each other, as illustrated in the previous example
from the adapted EU-Rent use case which employs semantics from multilevel
domain modeling for the concretization relationship.

M-objects are themselves hierarchically organized: An m-object may be the
concretization of multiple other m-objects (association end concretization in
Figure 3.5). Conversely, an m-object may also be the abstraction of multiple
other m-objects (association end abstraction). The concretization relationship
is also transitive. A transitive abstraction of an m-object is referred to as
ancestor. An m-object’s set of ancestor m-objects («OclHelper» ancestors in
Rule 3.6) corresponds to the transitive closure of the m-object’s abstractions.
At any given level, an m-object has at most one ancestor m-object (Rule 3.7).
The ancestor method takes an abstraction level as argument and returns
the m-object’s single ancestor at the argument level (Rule 3.8), provided
there exists an ancestor at the given argument abstraction level. Likewise,
a transitive concretization of an m-object is referred to as descendant. An
m-object’s set of descendant m-objects («OclHelper» descendants in Rule 3.9)
corresponds to the transitive closure of the m-object’s concretizations. An m-
object’s descendants method, in turn, takes an abstraction level as argument
and returns all of the m-object’s descendants at that argument abstraction
level (Rule 3.10).

The hierarchical order of m-objects mirrors the level hierarchy: An m-
object’s top level must be a second level in the level hierarchies of this
m-object’s abstractions (Rule 3.11). Then, from its abstractions, an m-object
inherits (association end inheritedLevel in Figure 3.5) all levels underneath
this second level (Rule 3.12), that is, the concretizing m-object’s own top level.
Besides inheriting levels from its ancestors, an m-object may also introduce
additional levels into the level hierarchy (association end introducedLevel)
with respect to its abstractions. The set of levels (association end level) of
an m-object is a derived union of this m-object’s pairwise disjoint (Rule 3.13)
subsets of introduced levels and inherited levels. Introduced levels must not
change the relative order of (inherited) levels with respect to the abstractions
(Rule 3.14). Thus, a concretization represents a sub-hierarchy, possibly with
additional levels, of the level hierarchy described by the abstractions.



34 3 Multilevel Object Core

Rule 3.6: An m-object’s set of ancestors is the transitive closure of abstractions
1 context MultilevelObject def:
2 ancestors : Set(MultilevelObject) =
3 self->closure(abstraction)

Rule 3.7: An m-object has at most one ancestor at a particular level
1 context MultilevelObject inv:
2 Level.allInstances()->forAll(l |
3 self.ancestors->select(topLevel = l)->size() <= 1
4 )

Rule 3.8: The ancestor query retrieves an m-object’s ancestor at a level
1 context MultilevelObject::ancestor
2 (level : Level) : MultilevelObject body:
3 self.ancestors->any(o | o.topLevel = level)

Rule 3.9: An m-object’s set of descendants is transitive closure of concretizations
1 context MultilevelObject def:
2 descendants : Set(MultilevelObject) =
3 self->closure(concretization)

Rule 3.10: The descendants query retrieves an m-object’s descendants at a level
1 context MultilevelObject::descendants
2 (level : Level) : Set(MultilevelObject) body:
3 self.descendants->select(o | o.topLevel = level)

Rule 3.11: An m-object’s top level must be second level in all abstractions
1 context MultilevelObject inv:
2 self.abstraction->forAll(o |
3 o.MObjectToLevel->select(l |
4 l.level = self.topLevel
5 ).parentLevel->includes(o.topLevel)
6 )

www.allitebooks.com

http://www.allitebooks.org


3.2 Multilevel Objects 35

Rule 3.12: An m-object inherits its abstractions’ levels from top level downwards
1 context MultilevelObject::inheritedLevel :
2 Set(Level) derive:
3 self.abstraction.MObjectToLevel->select(l |
4 l.ancestorLevel->includes(self.topLevel) or
5 l.level = self.topLevel
6 ).level->asSet()

Rule 3.13: An m-object’s sets of introduced and inherited levels are disjoint
1 context MultilevelObject inv:
2 self.introducedLevel->forAll(l |
3 not self.inheritedLevel->includes(l)
4 )

Rule 3.14: The relative order of levels does not change during concretization
1 context MultilevelObject inv:
2 let commonLevels : Set(Level) =
3 self.level->intersection(self.abstraction.level)
4 in commonLevels->forAll(l1, l2 | (
5 self.abstraction.MObjectToLevel->exists(m |
6 m.level = l1 and m.ancestorLevel->includes(l2)
7 ) implies self.MObjectToLevel->exists(m |
8 m.level = l1 and m.ancestorLevel->includes(l2)
9 )

10 ) and (
11 self.MObjectToLevel->exists(m |
12 m.level = l1 and m.ancestorLevel->includes(l2)
13 ) implies
14 self.abstraction.MObjectToLevel->exists(m |
15 m.level = l1 and m.ancestorLevel->includes(l2)
16 )
17 )
18 )



36 3 Multilevel Object Core

LevelMultilevelObject
**

+ introducedLevel

MObjectToIntroducedLevel
+ element
* 0..1Element

+ parentLevel

*

*

(a) introduced levels

LevelMultilevelObject
**

+ /inheritedLevel

MObjectToInheritedLevel *

*+ newParentLevel + /inheritedParentLevel*

*

Element
+ newElement

+ /inheritedElement

0..1

**

*

(b) inherited levels

Figure 3.6: The data attached to an m-object’s introduced and inherited levels
in the core metamodel for m-objects in Figure 3.5

In the particular case of individual m-objects, that is, instances of the
IndividualMultilevelObject metaclass, a unique introduction rule for levels
requires that each level is introduced by a single m-object only. The 0..1-
multiplicity at the IndividualMultilevelObject end of the redefined introduced-
Level association (Figure 3.5), in conjunction with the disjointness condition
for the sets of introduced and inherited levels (Rule 3.13), enforces this
unique introduction rule for levels. Therefore, any two individual m-objects
(IndividualMultilevelObject instances) that share a level must either be in
a concretization relationship or have a common ancestor that introduces
the shared level. The unique introduction rule for levels ensures semantic
equality of levels across sub-hierarchies. With the unique introduction rule in
place, a level shared by different m-objects carries the same meaning in each
m-object’s level hierarchy. The unique introduction rule for levels, however,
does not apply to all kinds of m-objects. In particular, m-relationships have
no unique introduction rule: The semantic equality of relationship levels
derives from the individual levels (see Section 3.3).

An m-object’s level hierarchy as well as the set of elements associated with
each of the levels in the level hierarchy derive from the data that are attached
to an m-object’s introduced and inherited levels. The MObjectToIntroduced-
Level and MObjectToInheritedLevel association classes, which are not shown



3.2 Multilevel Objects 37

in Figure 3.5, connect the MultilevelObject class with Level. Figure 3.6 defines
MObjectToIntroducedLevel and MObjectToInheritedLevel as part of the core
metamodel for m-objects. These association classes describe the data that
an m-object attaches to its introduced and inherited levels, respectively.
In the case of the MObjectToIntroducedLevel association class the attached
elements are asserted. In the case of the MObjectToInheritedLevel association
class some of the attached elements are asserted, others are derived. In the
following, we define, using OCL, the corresponding derivation rules for the
inheritance of elements.

For an introduced level, an m-object (association class MObjectToIntro-
ducedLevel in Figure 3.6a) asserts a number of parent levels (association
end parentLevel) and model elements (association end element). A model
element (metaclass Element) may belong to at most one MObjectToIntro-
ducedLevel instance, that is, a particular model element may be introduced
by a single m-object only (unique introduction rule for elements). Note,
however, that multiple m-objects may, through inheritance, associate the
same element with the same level. Consequently, two m-objects that share
a given model element are either in a concretization relationship or have a
common ancestor m-object.

For an inherited level, an m-object (association class MObjectToInherited-
Level in Figure 3.6b) derives from its abstractions a number of parent
levels (association end inheritedParentLevel) and model elements (association
end inheritedElement). An inherited level’s inherited parent levels correspond
to the union of the parent levels that the m-object’s abstractions associate
with the respective level (Rule 3.15). Parent levels that are not in the
concretization’s level hierarchy are omitted (Rule 3.15, Lines 6-8). An
inherited level’s inherited model elements correspond to the union of the
model elements that the m-object’s abstractions associate with the respective
level (Rule 3.16).

For an inherited level, an m-object (Figure 3.6b) may also assert a num-
ber of parent levels (association end newParentLevel) and model elements
(association end newElement). Then, the parent levels and elements of an
inherited level derive from the inherited data and the newly asserted data.
The inherited level’s set of parent levels («OclHelper» parentLevel in Rule 3.17)
corresponds to the union of the newly asserted parent levels and a subset of
the inherited parent levels: only those inherited parent levels are included
that are not already in the transitive closure of any newly asserted parent
level’s set of parent levels (Rule 3.17, Lines 6-14) in order to avoid skip
levels, that is, optional levels which in some paths through the hierarchy



38 3 Multilevel Object Core

Rule 3.15: An inherited level inherits the parent levels from abstractions
1 context MObjectToInheritedLevel::
2 inheritedParentLevel : Set(Level) derive:
3 let obj : MultilevelObject = self.MultilevelObject
4 in obj.abstraction.MObjectToLevel->select(l |
5 l.level = self.inheritedLevel
6 ).parentLevel->asSet()->select(l |
7 obj.inheritedLevel->includes(l)
8 )

Rule 3.16: An inherited level inherits elements from abstractions
1 context MObjectToInheritedLevel::inheritedElement :
2 Set(Element) derive:
3 let obj : MultilevelObject = self.MultilevelObject
4 in obj.abstraction.MObjectToLevel->select(l |
5 l.level = self.inheritedLevel
6 ).element->asSet()

Rule 3.17: An inherited level’s set of parent levels derives from the union of new
parent levels and inherited parent levels
1 context MObjectToInheritedLevel def:
2 parentLevel : Set(Level) =
3 let obj : MultilevelObject = self.MultilevelObject
4 in self.newParentLevel->union(
5 self.inheritedParentLevel->select(i |
6 not self.newParentLevel->includes(n |
7 let objToN : Set(MObjectToIntroducedLevel) =
8 obj.MObjectToIntroducedLevel->select(m |
9 m.introducedLevel = n

10 ) in objToN.parentLevel->closure(p |
11 p.MObjectToIntroducedLevel->select(
12 l | l.MultilevelObject = obj).parentLevel
13 )->union(objToN.parentLevel)->includes(i)
14 )
15 )
16 )



3.2 Multilevel Objects 39

have no associated instances. Note that only an introduced level can serve
as newly asserted parent level. Otherwise, the resulting m-object would
violate the requirements of non-skip levels only (Rule 3.4) and/or stable level
order (Rule 3.14). The inherited level’s set of elements («OclHelper» element
in Rule 3.18) corresponds to the union of the newly asserted elements and the
inherited elements. Depending on whether a level is introduced or inherited
by the m-object, the level’s parent levels (Rule 3.19) and elements (Rule 3.20)
derive from the m-object’s introduced level links (MObjectToIntroducedLevel)
and inherited level links (MObjectToInheritedLevel), respectively.

The unique introduction rule for model elements requires that each model
element be introduced only once. First, an m-object must not associate a pre-
viously introduced model element with a newly introduced level (Rule 3.21).
Second, an m-object must not associate a previously introduced model el-
ement with an inherited level (Rule 3.22). The unique introduction rule
for model elements, much like its counterpart for levels, ensures semantic
equality between different sub-hierarchies: any two m-objects that share a
model element must either be in a concretization relationship or have a com-
mon ancestor that introduces the shared model element. Unlike the unique
introduction for levels, the unique introduction rule for model elements also
applies to the general case and, consequently, m-relationships.

In Rule 3.21, A_MObjectToInheritedLevel_newElement refers the asso-
ciation in Fig. 3.6b between MObjectToInheritedLevel and Element, where
Element assumes the newElement role. The OCL standard [92, p. 19] specifies
the default name of an association that the modeler has not explicitly named
as being composed of a capital A, followed by an underscore, followed by
the lexically first association end name, followed by an underscore, followed
by the other association end name. In case the modeler has not explicitly
named an association end, the name of the class constitutes the respective
association end’s name.

Alternative paths in an m-object’s level hierarchy are possible. These
alternative paths, however, constitute mandatory rather than optional paths,
that is, the hierarchy supports navigation along each of these paths. There-
fore, an m-object must have an ancestor m-object at each of its top level’s
ancestor levels as defined by any ancestor m-object (Rule 3.23). This rule
guarantees a certain homogeneity within the level hierarchy of an m-object,
which is particularly important for data warehousing; optional paths would
result in a fully heterogeneous hierarchy. An m-object’s level hierarchy,
however, defines a least common hierarchical schema that descendants must
follow although they can extend the least common schema.



40 3 Multilevel Object Core

Rule 3.18: An inherited level’s set of elements derives from the union of new
elements and inherited elements
1 context MObjectToInheritedLevel def:
2 element : Set(Element) =
3 self.newElement->union(self.inheritedElement)

Rule 3.19: A level’s parent levels derive from introduced or inherited level links
1 context MObjectToLevel::parentLevel : Set(Level)
2 derive:
3 let obj : MultilevelObject = self.MultilevelObject
4 in if obj.introducedLevel->includes(self.level)
5 then obj.MObjectToIntroducedLevel->select(l |
6 l.introducedLevel = self.level
7 ).parentLevel
8 else obj.MObjectToInheritedLevel->select(l |
9 l.inheritedLevel = self.level

10 ).parentLevel
11 endif

Rule 3.20: A level’s elements derive from introduced or inherited level links
1 context MObjectToLevel::element : Set(Element)
2 derive:
3 let obj : MultilevelObject = self.MultilevelObject
4 in if obj.introducedLevel->includes(self.level)
5 then mobject.MObjectToIntroducedLevel->select(l |
6 l.introducedLevel = self.level
7 ).element
8 else obj.MObjectToInheritedLevel->select(l |
9 l.inheritedLevel = self.level

10 ).element
11 endif



3.3 Multilevel Relationships 41

Rule 3.21: An introduced level’s new element must not already have been intro-
duced
1 context MObjectToIntroducedLevel inv:
2 self.element->forAll(e |
3 e.A_MObjectToInheritedLevel_newElement->isEmpty()
4 )

Rule 3.22: An inherited level’s new element must not already have been introduced
1 context MObjectToInheritedLevel inv:
2 self.newElement->forAll(e |
3 e.MObjectToIntroducedLevel->isEmpty()
4 )

Rule 3.23: For all ancestor levels of an m-object’s top level there must be an
ancestor m-object at this ancestor level
1 context MultilevelObject inv:
2 self.ancestors.MObjectToLevel->select(l |
3 l.level = self.topLevel
4 ).ancestorLevel->asSet()->forAll(l |
5 self.ancestors->exists(o | o.topLevel = l)
6 )

3.3 Multilevel Relationships
A multilevel relationship (m-relationship) connects m-objects at various
levels of abstraction. The connected m-objects are referred to as the m-
relationship’s coordinates. Furthermore, an m-relationship has a label. An m-
relationship also has multiple, hierarchically ordered relationship levels, each
representing a connection between levels of the coordinate m-objects. Being
a kind of m-object itself, an m-relationship may associate a set of arbitrary
model elements with each relationship level. Likewise, m-relationships are
arranged in concretization hierarchies.

In the graphical representation (Figures 3.7-3.10), diamonds represent m-
relationships. An m-relationship’s label is in the center of the diamond, solid
lines lead from the diamond to the boxes that represent the m-relationship’s



42 3 Multilevel Object Core

coordinate m-objects. Dotted lines running through the diamond and con-
necting the boxes that represent the coordinate m-objects’ individual levels
represent relationship levels. For the representation of the attached model
elements, the graphical representation of m-relationships adopts the nota-
tion for m-objects, a dashed line graphically linking the joined boxes that
represent the relationship levels of the m-relationship. Rather than names
of individual levels, however, the top compartment of each box contains a
comma-separated pair of level names inside angle brackets; the level names
refer to the connected levels from the coordinate m-objects.

Figure 3.7 illustrates the use of m-relationships for the representation of
context-specific, business-related knowledge in the adapted EU-Rent use case
by means of the REA business model ontology [45]. The main elements of the
REA ontology are Resources, Events, and Agents. Business model ontologies
formalize the value-adding processes at a higher level of abstraction than
business process models. Typically, a business model ontology documents the
exchange of goods and money between different actors, thereby abstracting
from individual tasks and activities [34]. Business model ontologies also allow
for the formalization of business policies and practices. Business modeling
using a business model ontology may be regarded as a precursor to business
process modeling. Note that even though the illustrations use a UML-like
notation for the representation, REA models are not UML models.

The m-relationship in Figure 3.7 between m-objects Rental and Car ex-
presses the fact that the EU-Rent company’s rental business is concerned
with renting cars to customers. The company offers a variety of car mod-
els to the different renter types, as expressed by the ‹ renterType, model ›
relationship level, and provides individual renters with physical car enti-
ties, as expressed by the ‹ renter, physicalEntity › level. With each of these
relationship levels, the m-relationship between Rental and Car associates
REA model elements which constitute the vocabulary for the more concrete
m-relationships. Thus, for the ‹ renterType, model › level, the m-relationship
demands from its concretizations the definition of policies that apply to
a renter type and a car model. For the ‹ renter, physicalEntity › level, the
m-relationship demands from its concretizations the recording of individual
transactions, capturing the reception of rental services by individual renters
in exchange for payments. Note that possible attributes of the RentalPolicy
policy as well as the attributes of the Payment and Rental events are omitted
in Figure 3.7. For example, a rental policy might have a description detailing
the policy, a payment might record the paid amount, the rental might record
the rental duration.



3.3 Multilevel Relationships 43

rent

rent

Car : ‹ vehicleType ›

‹ physicalEntity ›

Rental : ‹ business ›

‹ renterType ›

‹ renter ›

concretization of

Corporate : ‹ renterType ›

‹ rentalAgreement ›

‹ renter ›

concretization of

‹ renterType, model ›

‹ renter, physicalEntity ›

‹ model ›

AudiA8 : ‹ model ›

‹ physicalEntity ›

concretization of

(Corporate, AudiA8) : ‹ renterType, model ›

« event »
Payment

« provide » « duality »« agent »
Renter

« resource »
CarPhysicalEntity

« stockflow »« event »
Rental

« receive »

‹ renter, physicalEntity ›

« event »
Payment

« provide » « duality »« agent »
Renter

« resource »
CarPhysicalEntity

« stockflow »« event »
Rental

« receive »

« agentType »
RenterType

« resourceType »
CarModel

« apply »« policy »
RentalPolicy

« apply »

« agentType »
RenterType

« resourceType »
CarModel

« apply »« policy »
RentalPolicy

« apply »

« policy »
: RentalPolicy

« resourceType »
AudiA8 : CarModel

« apply »« agentType »
Corporate : RenterType

« apply »

« event »
LumpSum

« provide » « duality »

Figure 3.7: An m-relationship model for the representation of context-specific
knowledge expressed in the REA ontology using a UML-like syntax



44 3 Multilevel Object Core

The m-relationship in Figure 3.7 between m-objects Corporate and AudiA8
is a concretization of the m-relationship between Rental and Car, instantiating
the REA model at the ‹ renterType, model › level, extending the REA model
at the ‹ renter, physicalEntity › level. At the ‹ renterType, model › level, the m-
relationship between Corporate and AudiA8 introduces a policy which applies
to the corporate renter type and the Audi A8 car model; the specifics of this
policy are omitted in the illustration. At the ‹ renter, physicalEntity › level,
the m-relationship introduces the LumpSum event. Thus, for the Corporate
renter type and the AudiA8 car model, the company accepts compensation by
lump sum, which covers a group of individual rentals and might not depend
on driven distance and rental duration, rather than having an individual
payment for each individual rental. Note that the inclusion of the LumpSum
event as a possibility for payment applies only for the Corporate renter
type and only for the AudiA8 model. In reality, the EU-Rent company
might rather allow payment by means of lump sum for corporate renters
regardless the car model. In this case, the LumpSum event would have to be
introduced at the ‹ renter, physicalEntity › level by an m-relationship between
the m-objects Corporate and Car.

The m-relationship between m-objects TX1183 and AudiA8-KN45 in Fig-
ure 3.8 describes an individual rental transaction by associating as model
elements the involved agent, event, and resource instances. Renter TX1183
rents the AudiA8-KN45 in the course of rental RentalTX1183 paid for by
means of the ACMEPayment2014 lump sum payment. The m-relationship
follows the inherited REA model for the ‹ renter, physicalEntity › level as
defined by the more abstract m-relationships in Figure 3.7, the inherited
elements being depicted in gray color.

Assume now the EU-Rent company wishes to extend its business model
for the Corporate renter type, the extension of the business model applying to
rentals of all car models by any corporate renter. Corporate renters, unlike
other renter types, such as private renters, conclude a rental agreement
with EU-Rent which defines general conditions for all future rentals of the
corporate renter. In the agreement, a client company and EU-Rent may
then detail rental conditions for specific car models. In this case, an m-
relationship between the m-objects Corporate and Car must define these
additional rental terms and policies. For example, in Figure 3.9, such an
m-relationship between the m-objects Corporate and Car introduces for the
‹ rentalAgreement, model › level an REA model for the formalization of rental
terms agreed upon by a client enterprise for rentals of a particular car model.
In this example, such a rental agreement between the EU-Rent company and

www.allitebooks.com

http://www.allitebooks.org


3.3 Multilevel Relationships 45

rent

AudiA8 : ‹ model ›Corporate : ‹ renterType ›

‹ rentalAgreement ›

‹ renter ›

concretization of

ACMEAgreement : ‹ rentalAgreement ›

‹ renter ›

concretization of

‹ physicalEntity ›

AudiA8-KN45 : ‹ model ›

‹ physicalEntity ›

(TX1183, AudiA8-KN45) : ‹ renter, physicalEntity ›

concretization of

TX1183 : ‹ renter ›

concretization of

rent

« event »
Payment

« provide » « duality »« agent »
Renter

« resource »
CarPhysicalEntity

« stockflow »« event »
Rental

« receive »

« event »
LumpSum

« provide »

« event »
ACMEPayment2014 :

LumpSum

« provide » « duality »

« agent »
TX1183:
Renter

« resource »
AudiA8-KN45 : 

CarPhysicalEntity

« stockflow »

« event »
RentalTX1183 : 

Rental

« receive »

Figure 3.8: An m-relationship representing an individual rental transaction

a client enterprise may have several negotiated rental rates as the clauses
of the contract. A corresponding RentalRate term represents an amount of
money. For rentals under such a contract, renters may then choose among a
set of pre-negotiated rental rates.

The m-relationship between m-objects ACMEAgreement and AudiA8 in
Figure 3.10 describes a rental agreement between EU-Rent and the ACME
company concerning the AudiA8 car model. This m-relationship associates
with the ‹ rentalAgreement, model › level instances of the REA model elements
defined by the m-relationship between Corporate and Car in Figure 3.9 for
the ‹ rentalAgreement, model › level. This rental agreement contains as clause



46 3 Multilevel Object Core

a negotiated rental rate of 120 (monetary units). Thus, the amount of 120
is one of the negotiated rental rates for future car rentals of the AudiA8 car
model that EU-Rent and ACME have agreed upon. There may be additional
rental rates as contract clauses which are not shown in the example.

An m-relationship’s top level, just like the top level of an m-object, must be
second level of a possibly existing abstraction. Therefore, the m-relationship
between m-objects Rental and Car in Figure 3.9 introduces the ‹ renterType,
vehicleType › level in order to allow for a descendant at this level. On
the one hand, this requirement forces modelers to carefully consider where
changes in the multilevel model are allowed while restricting unwanted (and
possibly unnecessary) changes. On the other hand, for some applications
using m-objects, this requirement may prove too strict. For example, in
data warehousing [80], enforcing this rule would deprive the modeler of
much needed flexibility. In data warehouse applications, m-relationships
associate measure definitions and measure values with their relationship
levels. Unlike the general modeling case, which puts an emphasis on the
top-down definition of data models, data warehousing places the focus
on the bottom-up aggregation of data. Formally, one may consider the
implicit existence of all combinations of the coordinate m-objects’ levels as
relationship levels of an m-relationship.

Figure 3.11 extends the core metamodel for m-objects (Figure 3.5) with ele-
ments for the representation of m-relationships. An m-relationship (metaclass
MultilevelRelationship) is a kind of m-object, that is, the MultilevelRelationship
metaclass is a specialization of MultilevelObject. An m-relationship has a
sequence, that is, an ordered list, of coordinates (association end coordinate
to metaclass MultilevelObject), the m-objects that are connected by the
m-relationship; the m-relationship represents a connection between its coor-
dinate m-objects. These connections may exist on several relationship levels
(redefines association end level to metaclass RelationshipLevel). With each
relationship level, the m-relationship may associate a number of arbitrary
model elements, just like an individual m-object with atomic levels.

A relationship level is a kind of level that references several other levels (as-
sociation end level to metaclass Level) in a sequence. Thereby, the associated
levels mirror the coordinates of the relationship level’s m-relationship: Each
level stems from the respective coordinate’s level hierarchy. The order of
the relationship level’s sequence of referenced levels corresponds to the or-
der of the m-relationship’s sequence of coordinates. For each position in a
relationship level’s sequence of referenced levels, the level at the respective
position belongs to the m-object at the same position in the m-relationship’s



3.3 Multilevel Relationships 47

rent

rent

Car : ‹ vehicleType ›

‹ physicalEntity ›

Rental : ‹ business ›

‹ renterType ›

‹ renter ›

concretization of

Corporate : ‹ renterType ›

‹ rentalAgreement ›

‹ renter ›

concretization of

‹ rentalAgreement, model ›

‹ model ›

« agreement »
Rental

Agreement

« party »
client « clause »

1..*
+ rentalRate

« term »
RentalRate

« agent »
Enterprise

« resourceType »
CarModel

« reservation »

Figure 3.9: An m-relationship model for the representation of rental agreements
and its terms

rent

AudiA8 : ‹ model ›ACMEAgreement : ‹ rentalAgreement ›

‹ renter › ‹ physicalEntity ›

(ACMEAgreement, AudiA8) : ‹ rentalAgreement, model ›

« agreement »
Rental

Agreement

« party »
client « clause »

1..*
+ rentalRate

« term »
RentalRate

« agent »
Enterprise

« resourceType »
CarModel

« reservation »

« agent »
ACME : 

Enterprise

« agreement »
ACMEAgreement : 

Agreement

« party »
client

+ rentalRate = 120

« term »
: RentalRate

« clause »
« resourceType »

AudiA8 : 
CarModel

« reservation »

Figure 3.10: An m-relationship representing an individual rental agreement



48 3 Multilevel Object Core

+ label «identifier alt=relID»
+ ancestor(level : Level) : 

MultilevelRelationship [0..1]
+ descendants(level : Level) : 

MultilevelRelationship [*]

MultilevelRelationship
1

{redefines topLevel}
+ topLevel*

**

{redefines introducedLevel}
+introducedLevel

**

{redefines inheritedLevel}
+/inheritedLevel

1..**

{redefines level}
+ /level

RelationshipLevel

MRelationshipToLevel

{redefines parentLevel}
+ /parentLevel

*

*

MultilevelObject

MObjectToLevel

Level

2..*

*

+ coordinate

+ level
2..*

*

«identifier alt=relID»
{seq}

«identifier alt=relationshipLevel»
{seq}

{redefines abstraction}
+ /abstraction

*

+ /concretization
{redefines
concretization}

*

Figure 3.11: The core metamodel for multilevel relationships. Note that marking
multiple attributes or association ends with the «identifier» stereotype amounts to
the definition of a compound key. When using the same alt name, the thus marked
components are part of the same alternative compound key.

sequence of coordinates (Rule 3.24). Conversely, for each position in an
m-relationship’s sequence of coordinates, a relationship level references some
level from the coordinate m-object at the same position in the relationship
level’s sequence of levels (Rule 3.25). The sequence of referenced levels
constitutes a relationship level’s identifier.

Each level of an m-relationship indicates some kind of relationship between
the referenced levels which belong to the m-relationship’s coordinate m-
objects. The exact semantics of the relationships between the referenced
levels depends on the specific application domain, for example, in data
warehousing [80], a relationship level represents a fact class at some level
of granularity whereas in domain modeling a relationship level represents
a relationship between the classes at the respective levels of the connected
m-objects. In business process modeling, a relationship level may represent
interaction of processes. At the same time, an m-relationship is a link, that
is, a relationship occurrence, between its coordinate m-objects. The top
relationship level of an m-relationship, therefore, must correspond to the list
of top levels of all the m-relationship’s coordinate m-objects (Rule 3.27).



3.3 Multilevel Relationships 49

Much like individual m-objects, concretization relationships organize m-
relationships into abstraction hierarchies. Unlike m-objects, however, a
concretization relationship between m-relationships is not explicitly modeled
but rather derives from the hierarchical order of the connected m-objects.
The coordinates of m-relationships determine the relative order between
the m-relationships. Given some m-relationship, in order for another m-
relationship with the same label to be considered an ancestor of the former,
the two m-relationships must have the same number of coordinates and at
each position in the respective sequence of coordinates, the former (descen-
dant) m-relationship’s coordinate must be a descendant of or equal to the
latter (ancestor) m-relationship’s coordinate (Rule 3.28); an m-relationship’s
descendants derive vice versa (Rule 3.29). An abstraction of an m-relationship
is a most concrete ancestor of the m-relationship (Rule 3.30), a concretization
of an m-relationship is a most abstract descendant (Rule 3.31).

Unlike individual m-objects, the unique introduction rule for levels does
not concern m-relationships. Relationship levels are composed of other levels
from the level hierarchies of the m-relationship’s coordinate m-objects. The
semantics of a relationship level’s individual component levels determines
the semantics of the relationship level itself. Thus, when two m-relationships
that are not in a concretization relationship introduce the same relationship
level, there is no ambiguity with respect to the semantics of these levels.
The relationship level represents a relationship of some kind between objects
at the component levels.

Much like the order of m-relationships, which derives from the coordinate
m-objects, the order of relationship levels derives from the level hierarchies of
the m-relationship’s coordinate m-objects. Given some relationship level, in
order for another relationship level to be considered an ancestor of the former
within a particular m-relationship’s level hierarchy, the two relationship
levels must reference the same number of levels and at each position in the
respective sequence of levels, the former (descendant) relationship level’s
referenced level must be a descendant of or equal to the latter (ancestor)
relationship level’s referenced level (Rule 3.32). A relationship level’s parent
level is an immediate ancestor level (Rule 3.26). Any two m-relationships
with the same label must be in a direct or indirect concretization relationship
with each other or have a common ancestor m-relationship (Rule 3.33). This
requirement ensures compliance with the hetero-homogeneous modeling
approach, allowing for the controlled introduction of heterogeneities while
prohibiting the arbitrary introduction of heterogeneities under the same
relationship label.



50 3 Multilevel Object Core

Rule 3.24: An m-relationship level references only levels from the coordinates
1 context MRelationshipToLevel inv:
2 Set{1..self.level.level->size()}->forAll(i |
3 self.MultilevelRelationship
4 .coordinate->at(i).level->includes(
5 self.level.level->at(i)
6 )
7 )

Rule 3.25: An m-relationship level references a level from every coordinate
1 context MRelationshipToLevel inv:
2 Set{1..self.MultilevelRelationship
3 .coordinate->size()}->forAll(i |
4 self.level.level->at(i)->exists(l |
5 self.MultilevelRelationship
6 .coordinate->at(i)->includes(l)
7 )
8 )

Rule 3.26: A relationship level’s parent level is an immediate ancestor level
1 context MRelationshipToLevel::parentLevel :
2 Set(RelationshipLevel) derive:
3 self.ancestorLevel->select(a |
4 not self.ancestorLevel->exists(l |
5 l.ancestorLevel->includes(a)
6 )
7 )

Rule 3.27: An m-relationship’s top level corresponds to the sequence of the
coordinate top levels
1 context MultilevelRelationship inv:
2 Set{1..self.topLevel.level->size()}->forAll(i |
3 self.topLevel.level->at(i) =
4 self.coordinate->at(i).topLevel
5 )



3.3 Multilevel Relationships 51

Rule 3.28: An m-relationship’s ancestors derive from the coordinates
1 context MultilevelRelationship def:
2 ancestors : Set(MultilevelRelationship) =
3 MultilevelRelationship.allInstances()
4 ->excluding(self)->select(
5 r | r.label = self.label and
6 r.coordinate->size() = self.coordinate->size()
7 and Set{1..r.coordinate->size()}->forAll(i |
8 let selfCoord = self.coordinate->at(i) in
9 selfCoord.ancestors->including(selfCoord)

10 ->includes(r.coordinate->at(i))
11 )
12 )

Rule 3.29: An m-relationship’s descendants derive from the coordinates
1 context MultilevelRelationship def:
2 descendants : Set(MultilevelRelationship) =
3 MultilevelRelationship.allInstances()
4 ->excluding(self)->select(
5 r | r.label = self.label and
6 r.coordinate->size() = self.coordinate->size()
7 and Set{1..r.coordinate->size()}->forAll(i |
8 let selfCoord = self.coordinate->at(i) in
9 selfCoord.descendants->including(selfCoord)

10 ->includes(rCoord = r.coordinate->at(i))
11 )
12 )

Rule 3.30: An m-relationship’s abstraction is a most concrete ancestor
1 context MultilevelRelationship::abstraction :
2 Set(MultilevelRelationship) derive:
3 self.ancestors->select(a |
4 not self.ancestors->exists(r |
5 r.ancestors->includes(a))
6 )



52 3 Multilevel Object Core

Rule 3.31: An m-relationship’s concretization is a most abstract descendant
1 context MultilevelRelationship::concretization :
2 Set(MultilevelRelationship) derive:
3 self.descendants->select(d |
4 not self.descendants->exists(r |
5 r.descendants->includes(d)
6 )
7 )

Rule 3.32: A relationship level’s ancestors derive from the coordinates
1 context MRelationshipToLevel def:
2 ancestorLevel : Set(RelationshipLevel) =
3 self.MultilevelRelationship.level
4 ->excluding(self)->select(l |
5 Set{1..l.level->size()}->forAll(i |
6 self.level.level->at(i) = l.level->at(i) or
7 self.MultilevelRelationship.coordinate->at(i)
8 .MObjectToLevel->exists(m |
9 m.level = self.level.level->at(i) and

10 m.ancestorLevel->includes(l.level->at(i))
11 )
12 )
13 )

Rule 3.33: Any two m-relationships with the same label are in a concretization
relationship or have a common ancestor
1 context MultilevelRelationship inv:
2 MultilevelRelationship.allInstances()
3 ->excluding(self)->select(label = self.label)
4 ->forAll(r | r.ancestors->includes(self) or
5 self.ancestors->includes(r) or
6 MultilevelRelationship.allInstances()->exists(a |
7 self.ancestors->includes(a) and
8 r.ancestors->includes(a)
9 )

10 )



3.4 The Finer Points of Multilevel Objects 53

Note that we interpret the «identifier» stereotype as taking into account
the sequential order of links to objects at an association end declared a
sequence ({seq}), that is, two sequences shall only be considered equal if they
have the same elements in the same order. For m-relationship coordinates,
however, regardless the interpretation of the «identifier» stereotype, two
m-relationships with the same label and equal sets of coordinates are always
going to yield an inconsistent model. Consider two m-relationships r and r’
with the same label and equal sets of coordinates. If both m-relationships
reference the coordinates in the same sequential order then there is no
ambiguity with respect to the equality of r and r’. On the other hand, if both
m-relationships reference the coordinates in a different sequential order, the
two m-relationships cannot be in a concretization relationship – a definition
which considers the sequential order of coordinates – or have a common
ancestor. In this case, the model violates an invariant, whether or not the
coordinates are considered equal.

Since an m-relationship’s coordinates are arbitrary m-objects, an m-
relationship may also connect other m-relationships. Such an m-relationship
would constitute a higher-order m-relationship in the spirit of higher-order
relationships in the higher-order entity-relationship model (HERM [127]).
Although the core metamodel permits higher-order m-relationships – indeed,
the consistency criteria apply to such m-relationships as well – we leave their
further examination to future work. In the following, we further restrict
considerations to binary m-relationships although the generic metamodel
allows for the definition of n-ary m-relationships.

3.4 The Finer Points of Multilevel Objects

The core metamodel imposes no restrictions on the specific nature of the
model elements attached to the levels of an m-object. The generic Element
metaclass represents the most elementary kind of model elements which
subsumes all other model elements. Specific applications may restrict the
set of allowed model elements to specializations of the Element class. The
restriction to specific kinds of model elements, along with the definition of
additional constraints on these model elements, reduces flexibility of modelers
while increasing the amount of information that the m-object itself embodies.
Business model intelligence [113], for example, associates RDF resources
and properties with the levels of m-relationships that represent facts in an
OLAP cube. With RDF being a very generic representation format, such



54 3 Multilevel Object Core

business model intelligence applications grant to modelers a great deal of
flexibility. In this case, modelers may more or less freely choose what kind
of information to attach with these levels, what specific ontology to use. At
the same time, the m-relationships become little more than hierarchically
ordered context boxes for the information represented by the attached RDF
triples, which describe the semantics of the application. Business analysts
interpret these RDF triples, using m-relationships merely as a framework
for aggregation of knowledge. In multilevel domain modeling [77], on the
other hand, m-objects and m-relationships attach classes and relationships,
objects and links with the different abstraction levels. A set of very specific
consistency criteria imposes on the modeler additional rules concerning the
expected relationship between inherited and introduced model elements. For
example, concretizations must define specializations of the inherited classes
and associations at each level. In that case, m-objects and m-relationships
have very specific meanings – an m-object presents characteristics of class
and object, an m-relationship presents characteristics of association and link
– for a clearly defined application scenario, namely the flexible representation
of multilevel hierarchies of data objects.

The model elements that are attached to the level of an m-object propa-
gate downwards in a concretization hierarchy. Depending on the employed
modeling formalism, changes to model elements at one level of abstraction
may influence the model elements at another level. For example, an m-object
may associate a UML class and related model elements with some abstraction
level. In UML, every class refers to other model elements, namely attributes
and operations, among others. A concretization of said m-object inherits
for that level all the model elements related to the class, that is, the class
itself, the attributes and operations, and so on. The concretization may
then introduce an additional model element for that level, representing an
attribute of the inherited class. The element propagation from more abstract
to more concrete m-object preserves the identity of the model elements.
Thus, when considering a global model context, the additional element is
part of that class. In applications that employ UML models with m-objects,
modelers should rather resort to the UML specialization mechanism (see
Chapter 4) for adding attributes to inherited classes. On the other hand,
each m-object may be considered a local context. In this case, when work-
ing with a given m-object, only those model elements are considered that
the particular m-object associates with its levels. For example, only the
attributes and operations present in the local context are made available.
Similarly, when working with an m-object that attaches RDF triples to levels,

www.allitebooks.com

http://www.allitebooks.org


3.4 The Finer Points of Multilevel Objects 55

the m-object constitutes the knowledge base on which queries are executed,
the m-object being a named RDF graph.

The Telos language [75] was among the first approaches towards the repre-
sentation of domain knowledge at multiple instantiation levels. In modeling
environments with multiple instantiation levels, an object is instance of an-
other object at the next-higher level and, at the same time, acts as class for
the objects at the next-lower level. This class/object duality is often referred
to as “clabject” [9]. An m-object is a kind of clabject which instantiates its
top level while acting as class for concretizations at lower levels.

Atkinson and Kühne [12] distinguish between linguistic instantiation and
ontological instantiation, presenting the orthogonal classification architecture
which “acknowledges the existence of multiple ontological domain levels
and supports them directly with a uniform notation for all the levels” [13,
p. 357]. The m-object approach [77] extends the orthogonal classification
architecture with the possibility to specify different numbers and names of
ontological domain levels depending on the kinds of modeled objects.

Deep instantiation [11] associates with an attribute a potency number
that indicates the depth of characterization of the attribute, that is, the
number of instantiation steps after which the attribute has a value assigned.
M-objects associate attributes with named levels to indicate their depth
of characterization. Named levels in place of potency numbers enables the
introduction of new levels for sub-hierarchies

Dual deep instantiation (DDI [78]) builds on m-objects and deep instan-
tiation. DDI associates a property with a source potency and a target
potency in order to separately indicate the depth of characterization for a
property’s source and target, extending the principle of objects associated
with singleton classes and properties with an object enumeration as range.
In DDI, everything is an object, and objects are related by specialization
and instantiation relationships as well as potency-based associations. The
instantiation relationships collect objects into different strata, or levels of
abstraction, with instantiation hierarchies of arbitrary depth. An object
at a higher level of abstraction may specify the type of attributes and as-
sociations for its instances at a lower level of abstraction. Other instances
may subsequently specialize the type of these attributes and associations for
specific groups of objects.



4 Multilevel Business Artifacts

The representation of many real-world scenarios in conceptual models bene-
fits from the use of multilevel abstraction hierarchies. Product models, for
example, are typically grouped into product categories which, in turn, con-
stitute the company’s range of products. Multilevel abstraction hierarchies
often reflect the organizational structure of a company and the different
information needs of the various departments. Current modeling techniques,
however, lack extensive support for the representation of multilevel abstrac-
tion hierarchies in business process models. The explicit consideration of
multilevel abstraction hierarchies in business process models may improve
the alignment of processes across different organizational units.

In this chapter we present, in an extended and revised form with respect to
previous work [111, 114], the concept of multilevel business artifact (MBA) for
the joint representation of data and process models in multilevel abstraction
hierarchies. We set off from the core metamodel for multilevel objects in order
to obtain an MBA metamodel. An MBA encapsulates, in a single object, the
data and process models of various levels, thereby expanding consequently
the idea of business artifacts to the realm of multilevel abstraction hierarchies.
Multilevel predicates then allow for the synchronization of process models
at different abstraction levels. Furthermore, multilevel relationships connect
MBAs on different relationship levels.

4.1 Multilevel Objects with Life Cycle Models

The MBA modeling approach is the application of the core metamodel for
multilevel objects to artifact-centric business process modeling. An MBA is
a multilevel object (m-object) with data and life cycle models as the model
elements attached to the different abstraction levels of the hierarchy. The
attached data and life cycle models must satisfy well-defined additional
consistency rules regarding type and relationship to each other. Throughout
this section we focus on homogeneous MBA models with a single data and
life cycle model per level.

C. G. Schuetz, Multilevel Business Processes, 
DOI 10.1007/978-3-658-11084-0_4, © Springer Fachmedien Wiesbaden 2015



58 4 Multilevel Business Artifacts

4.1.1 Simple Level Hierarchies
An MBA encapsulates, in a single object, data and life cycle models at
various levels of abstraction. With each abstraction level an MBA associates
a class as the data model along with the corresponding state machine which
defines a number of states that the instances of the class enter during their
life cycle. Furthermore, the state machine specifies the legal execution order
of the methods of the respective class which cause state changes when invoked
on individual objects. At the same time, an MBA associates an object with
its top level, that is, an instance of the top-level class, having an active state
(or several) from the top-level state machine.

+ ancestor(level : Level) : MBA [0..1]
+ descendants(level : Level) : MBA [*]
+ classOfLevel(level : Level) : Class [0..1]

MBA
1..**

+ /level

MBAToLevel

+ /parentLevel

*

0..1

+ /element
{union}

2..3 *

{redefines abstraction}
+ abstraction

0..1

+ concretization
{redefines
concretization}

*

Element

Class StateMachineObject

MultilevelObject

MObjectToLevel

*

1
+ /lifeCycleModel
{subsets element}

*

1 + /dataModel
{subsets element}

+ /instanceData
{subsets element}

0..1

1

+ context
1 1

+ classifier
1*

+ /instanceData
1

1

Level

IndividualMBA

IndividualMultilevelObject

Figure 4.1: The metamodel for MBAs with simple hierarchies as a specialization
of the core metamodel for m-objects (revised and extended from [111, 114])

Figure 4.1 defines, using UML, the MBA metamodel for homogeneous
artifact-centric multilevel business process models with simple abstraction
level hierarchies as a specialization of the core m-object metamodel (see
Chapter 3). An MBA (metaclass MBA) is a kind of m-object with additional
constraints for the model elements attached to the different levels. With
each level, an MBA associates, represented by association class MBAToLevel,
a class as data model (association end dataModel to metaclass Class) and a



4.1 Multilevel Objects with Life Cycle Models 59

Rule 4.1: An MBA must associate an object with its top level
1 context MBA inv:
2 self.MBAToLevel->forAll(l |
3 l = self.topLevel implies
4 not l.instanceData.oclIsUndefined()
5 )

Rule 4.2: Only with its top level an MBA may associate an object
1 context MBA inv:
2 self.MBAToLevel->forAll(l |
3 not l.instanceData.oclIsUndefined() implies
4 l = self.topLevel
5 )

Rule 4.3: An MBA’s instance data object is the top-level instance data object
1 context MBA::instanceData : Object derive:
2 self.MBAToLevel->select(l |
3 l.level = self.topLevel
4 ).instanceData

state machine as life cycle model (association end lifeCycleModel to metaclass
StateMachine). Metaclasses Class and StateMachine are specializations of the
more general Element and basically correspond to their UML equivalents,
although we make simplifications for demonstration purposes when needed
in order to focus on the main aspects of multilevel business process models.

An MBA bears a certain class/object duality similar to the notion of
clabject [9]. Conceptually, an MBA is a data object at the top level of the
MBA’s own level hierarchy – indeed, previous formalizations of the MBA
metamodel represent MBA as a specialization of InstanceSpecification or
ClassInstance [111, 114] – while describing the data and life cycle models
for the non-top levels in the hierarchy. Formally, an MBA associates with
its top level, besides the class and state machine, through association class
MBAToLevel, an object as instance data (association end instanceData to
metaclass Object). Note that an MBA must associate instance data with the



60 4 Multilevel Business Artifacts

top level in the hierarchy (Rule 4.1), and only with the top level (Rule 4.2).
The instanceData association end from the MBA metaclass to Object reflects
the object facet of the class/object duality, and corresponds to the MBA’s
top-level instanceData element (Rule 4.3).

Notice that MBA is an abstract metaclass just like MultilevelObject from
the core m-object metamodel. The IndividualMBA metaclass (Figure 4.1)
specializes MBA as well as the IndividualMultilevelObject metaclass from
the core metamodel, thus inheriting the identifying name and the rede-
fined association ends to the AtomicLevel metaclass as well as the unique
introduction rule for levels. The MBA metaclass then defines the common
features of individual MBAs and multilevel relationships between MBAs
(see Section 4.2). The examples in this section focus on individual MBAs,
that is, non-relationship MBAs, although the definitions apply to individual
and general MBAs alike.

For the representation of life cycle models, we adopt the standard meta-
model for UML state machines. More specifically, we use protocol state
machines [88, p. 535 et seq.] for the representation of life cycle models. We
stress, though, that the employed process modeling language is substitutable
but variants of finite state machines are a popular choice for modeling object
life cycles [47]. Besides variants of finite state machines, modelers may also
resort to more declarative modeling approaches, for example, the guard-
stage-milestone approach [48]. We use the UML state machine formalism
since it is a widely-accepted standard and allows for the use of OCL [92] as
a powerful constraint language. A state machine is defined in the context
of a class and consists of states and transitions between theses states. A
transition has a source state and a target state and is linked to a call event
for a method of the context class. In general, a method may be called for a
particular object if in the object’s life cycle model there exists a transition
that is linked to the called method and this transition originates in an active
state of the object. Furthermore, possibly specified pre- and postconditions
must be satisfied. A valid method call triggers the transition of the object
from source state to target state. Methods that are not referred to by any
transition may be called in any state and do not cause a state change [88,
p. 549]. A state may have several substates which are also linked by tran-
sitions. When an object is in a substate it is also in the corresponding
superstate. Furthermore, forks and parallel regions allow for an object to be
in multiple states simultaneously.

In some way, an MBA bears similarities to the case folder in the case
management paradigm [1]. The case folder “holds a collection of business



4.1 Multilevel Objects with Life Cycle Models 61

+ rentalId : String
+ bookedDuration : Number
+ rate : Number
+ assignedCar : Car
+ renter : Person
+ actualPickUp : Date
+ actualReturn : Date
+ amountBilled : Number
+ amountPaid : Number

‹ rental ›

+ description = 'The rental business of the EU-rent company.'

Rental: ‹ business ›

+ name : String
+ maximumRate : Number
+ maximumDuration : Number
+ dailyLateFee : Number

‹ renterType ›

Restructuring reopen Running

OnOffer

Settling

cancelInDevelopment launch

Opening

DiscontinuedCanceled

createRenterType

discontinue

restructure

setMaximumRate

pickUp Open return

openRental

assignCar

setMaximumDuration
setDailyLateFee

Closedclose

bill pay

setRatesetDuration

addRenterInformation

Figure 4.2: MBA Rental for the management of a company’s car rental business
(revised from [114])

documents and other information” [71] around which knowledge-intensive
processes are organized. For case management, more declarative life cycle
models are advantageous (cf. [71]). The MBA approach, in general, is
compatible with the use of more declarative life cycle models.

The graphical representation of MBAs (Figure 4.2) borrows from UML
class diagrams. Each level of an MBA is a box with several compartments.
The top compartment of each box contains the name of the respective level
between angle brackets (‹ level ›). The other compartments contain the
definitions of attributes and the life cycle model; a fourth compartment could



62 4 Multilevel Business Artifacts

contain method definitions which may be omitted for presentation purposes,
just like any other compartment, as in UML class diagrams. The boxes
of an MBA are arranged according to the hierarchical order of the levels
that these boxes represent. Dotted lines join the left and right corners of
boxes that represent levels of the same MBA. The graphical representation
of the data and life cycle models corresponds to the standard notations
for UML class and state machine diagrams. The graphical representation
of the instance data in the top-level box corresponds to the notation for
UML object diagrams. Therefore, the top compartment in the top-level
box contains, underlined, the name of the MBA followed by the level name
separated by colon, signifying instantiation of the top-level models.

In the graphical representation of UML state machines, rounded boxes
denote states, with the name of the state inside the box, a filled black circle
denotes the initial state, a filled black circle surrounded by another circle
denotes a final state, arrows between states denote transitions which are
labeled with the triggering operation’s call event name and possibly pre-
and postconditions in square brackets before/above and after/below the
event name, respectively. Pre- and postconditions also describe synchro-
nization dependencies between the life cycle models of the different levels
(see Section 4.3). The presented example models may omit final states
when the representation of object destruction is not important or undesired
– in some circumstances, an archival state may be more appropriate than
termination/deletion of the object. Furthermore, in UML state machine
diagrams associated with an MBA’s top level, an underlined name denotes
an active state of the MBA’s instance data object.

Figure 4.2 illustrates an MBA model for the management of a company’s
car rental business; the example is based on the EU-Rent use case [90]
and previous work [114]. In this example, EU-Rent is a multinational
company which operates in the car rental business. Therefore, individual car
rentals constitute the main focus of the company’s business activities. The
company’s rental business is organized by renter types, each individual rental
falling under such a type, for example, private or corporate, with different
teams managing the different renter types. The operative business process
for handling an individual rental differs considerably from the management
process for renter types, though both levels are ultimately connected. At the
highest level, top management steers the course of the company, deciding
which renter types to serve.

MBA Rental with levels business, renterType, and rental represents the many
abstraction levels of the car rental business. The business level represents the



4.1 Multilevel Objects with Life Cycle Models 63

company’s car rental business as a whole, consisting of several renter types
(renterType), each having several individual rentals (rental) associated. The
business has a description (attribute description). A renter type has a name,
a maximum rate (maximumRate), a maximum rental duration (maximum-
Duration), and a daily fee charged for late returns (dailyLateFee). A rental
has an identifier (rentalId), an actual pickup date (actualPickUp), a booked
rental duration (bookedDuration), a rental rate which determines the total
rental fee, an assigned car (assignedCar), renter information (renter), an
actual return date (actualReturn), the billed amount (amountBilled) and the
paid amount (amountPaid) of money.

The rental business alternates between states Restructuring and Running.
In the Restructuring state, new renter types are added to the business by
calling the createRenterType method; calling the reopen method puts the
business into the Running state. While in the Running state, new renter types
cannot be added to the business, but calling the restructure method puts the
rental business back into the Restructuring state. Note that a postcondition
for the createRenterType method/transition could model the creation of
a new renter type under the car rental business, thereby constituting a
synchronization dependency (see Section 4.3). Since business is the top level,
MBA Rental associates with this level an object as instance data which, in
the example, is in the Restructuring state. Furthermore, the instance data
assigns a value to the description attribute.

A renter type moves from being in development (state InDevelopment)
to being on offer (OnOffer), Canceled, and eventually Discontinued. While
in development, the maximum rental rate, the maximum rental duration,
and the fee charged for late returns are set by methods setMaximumRate,
setMaximumDuration, and setDailyLateFee, respectively. Calling the launch
method puts a renter type into the OnOffer state. While on offer, the open-
Rental method may be called; calling the cancel method puts a renter type
into the Canceled state. Finally, in the Canceled state, calling the discontinue
method puts a renter type into the Discontinued state. The Discontinued
state, in this example, may be considered an archival state, similar to a final
state. Rather than deleting the object after completion of its life cycle, the
database may retain the object for documentation purposes and ex-post
analysis in case the object stores a history.

A rental starts in the Opening state and then moves from being Open to
the Settling state and eventually being Closed. While in the Opening state,
the rental duration and rate are determined by calling methods setDuration
and setRate, respectively. Furthermore, a car is assigned to the rental by



64 4 Multilevel Business Artifacts

calling the assignCar method, and personal information about the renter is
captured by calling the addRenterInformation method. Calling the pickUp
method signals the collecting of the car by the renter, sets the actual pickup
date (attribute actualPickUp), and puts the rental into the Open state. In
the Open state, calling the return method signals the return of the car to
the station, sets the actual return data (actualReturn), and puts the rental
into the Settling state. While in the Settling state, an amount of money is
billed and finally paid by calling methods bill and pay, respectively. Finally
calling the close method puts the rental into the Closed state. Note that a
precondition for the pickUp transition could require the attribute values for
duration, rental rate, assigned car, and renter information to be set before
allowing the pickup of a car; postconditions to the methods could model
the assignment of values to variables. Since such pre- and postconditions
are not specific to multilevel business process models, the example model
does not include these kinds of conditions. The model also omits method
parameters when not used for expressing conditions.

Even though a protocol state machine actually represents, according to
the UML standard [88, p. 545], only methods that cause state changes,
we include in the examples also transitions that cause no state change.
First, non state-changing transitions are a convenient possibility to model as
precondition of a method that an object must be in a particular state in order
for the method to be called. Furthermore, in hetero-homogeneous models
(see Chapter 5), a behavior-consistent specialization of a state machine may
refine an atomic state that has a non state-changing transition such that
a previously non state-changing method call then causes, according to the
refined state machine, a change in substates of the original atomic state. In
this case, the inclusion of non state-changing transitions in the more general
state machine allows for the stepwise refinement of business rules that the
preconditions represent.

The data models that an MBA associates with the various abstraction
levels are specializations of the Object metaclass (Rule 4.4), similar to the
Object class in Java that all classes implicitly extend [120, p. 49]. Each Object
instance is referenced by exactly one MBA as instanceData. Thus, when
considering the association bidirectional, an Object instance has run-time
access to the MBA it is associated with, thereby granting the object access
to data from ancestor and descendant MBAs. An Object instance has a
reference to its classifier, and the type of the instance always corresponds
to this classifier (Rule 4.5). The Object metaclass could be defined as
a specialization of InstanceSpecification from the UML standard or Class-



4.1 Multilevel Objects with Life Cycle Models 65

Instance from the MOF Instances Model [91, p. 48], but for the purposes of
the MBA metamodel, such a clarification is not really necessary.

The classOfLevel method retrieves the most specific class that the instance
data of an MBA’s descendants at a particular level comply with. In a
homogeneous model with a single class per level, the classOfLevel method’s
result corresponds to the data model that the MBA associates with the
particular argument level (Rule 4.6). In a hetero-homogeneous model,
where an MBA possibly associates many classes with each level, the class-
OfLevel method has a different derivation rule (see Chapter 5). In any
case, homogeneous or hetero-homogeneous, the classifier associated with an
MBA’s top-level object must conform to the class returned by the classOfLevel
method for the top level (Rule 4.7). In a homogeneous model, the classifier
of the object associated with the top level (top-level object) corresponds to
the class returned by classOfLevel for the top level. In a hetero-homogeneous
model, the top-level object’s classifier is a subclass of or equal to that class.

Concretization relationships determine the hierarchical order of MBAs,
just as with m-objects in the core metamodel. A concretizing MBA’s top
level corresponds to the second level of the abstraction (the parent MBA).
In an MBA model with simple hierarchies, each MBA has at most one
abstraction, or conversely, each MBA is the concretization of at most one
MBA. The hierarchical order of the MBAs determines the inheritance of
levels and model elements. Just as in the core m-object metamodel, the
model elements that an MBA associates with the individual levels derive
from the model elements associated with the introduced and inherited levels
(Figure 4.3). The association classes MBAToIntroducedLevel and MBATo-
InheritedLevel specialize MObjectToIntroducedLevel and MObjectToInherited-
Level, respectively, from the core metamodel. In a homogeneous model, only
the most abstract MBA of a particular hierarchy introduces levels (Rule 4.8)
and, consequently, classes and state machines. Other MBAs, at more concrete
levels, inherit levels and model elements according to the rules laid out in
the core metamodel for m-objects (see Chapter 3). These MBAs at more
concrete levels may only introduce instance data for their respective top level,
which is always an inherited level. Furthermore, in a homogeneous model,
an MBA inherits for each level exactly two model elements, namely the data
model and the life cycle model. The elements associated with the inherited
levels then correspond to the inherited model elements. A homogeneous
model is thus very inflexible, yet easy to understand and well-structured; the
hetero-homogeneous modeling approach increases the flexibility of modelers
in multilevel business process modeling (see Chapter 5).



66 4 Multilevel Business Artifacts

Rule 4.4: All classes that an MBA associates with a level are specializations of
the Object metaclass
1 context MBA inv:
2 self.MBAToLevel->forAll(l |
3 l.dataModel.conformsTo(Object)
4 )

Rule 4.5: The classifier association end of Object represents the type of the object
1 context Object inv:
2 self.oclIsTypeOf(self.classifier)

Rule 4.6: A level’s class is the data model that the MBA attaches to that level
1 context MBA::classOfLevel(level : Level) : Class
2 body: self.MBAToLevel->select(l |
3 l.level = level
4 ).dataModel

Rule 4.7: An object must be an instance of the MBA’s class at that level
1 context MBA inv:
2 self.MBAToLevel->forAll(l |
3 l.instanceData.classifier.conformsTo(
4 self.classOfLevel(l)
5 )
6 )

Rule 4.8: In a homogeneous model, only a hierarchy’s most abstract MBA
introduces levels
1 context MBA inv:
2 not self.abstraction->isEmpty() implies
3 self.introducedLevel->isEmpty()



4.1 Multilevel Objects with Life Cycle Models 67

LevelMBA
**

+ introducedLevel

MBAToIntroducedLevel
+ /element
{union, redefines element}

2..3 0..1Element

Class StateMachineObject

+ lifeCycleModel
{subsets element}

1

+ instanceData
{subsets element} 0..1

0..1

+ dataModel
{subsets element}1

1

1

MObjectToIntroducedLevel

(a) introduced levels

LevelMBA
**

+ /inheritedLevel

MBAToInheritedLevel

+ /newElement
0..1 0..1

Element

MObjectToInheritedLevel

Object

+ newInstance-
Data
{subsets
newElement}

0..1

0..1
Class

+ /inheritedDataModel
{subsets
inherited-
Element}

*

1
StateMachine

+ /inheritedLifeCycle-
Model
{subsets
inheritedElement}

*

1

{union, redefines newElement}

+ /inherited-
Element

2 *

{union, redefines inheritedElement}

(b) inherited levels

Figure 4.3: The data attached to a homogeneous MBA’s introduced and inherited
levels as a specialization of the core metamodel for m-objects

4.1.2 Parallel Level Hierarchies

In many practical situations, abstraction level hierarchies may provide
alternative groupings of individual data objects. For example, a particular
renter type provides a grouping of individual rentals and, at the same time,
the country in which the rental occurs provides an alternative grouping.
Each alternative path is then considered a separate hierarchy, although these
hierarchies may share levels. Malinowski and Zimányi, in their comprehensive
classification of hierarchies in multidimensional models [68], refer to such
hierarchies as parallel dependent hierarchies. Previous work on m-objects [80]
introduced parallel hierarchies for data warehouse modeling. The advantage
of parallel hierarchies for business process modeling is twofold. On the one



68 4 Multilevel Business Artifacts

hand, a lower-level data object may fall into the constituency of several
higher-level authorities. For example, both the regional management of the
company’s local branch and the management team responsible for the renter
type may be concerned by the company’s economic performance with respect
to individual rentals. On the other hand, parallel hierarchies allow for a
more finely-grained classification of lower-level data objects which facilitates
the assignment of tasks to employees. For example, individual rentals must
be managed and reviewed by accountants that work for the local branch
from the rental’s country.

When considering solely homogeneous MBA models, the introduction
of parallel hierarchies necessitates only a few minor changes in the MBA
metamodel. First, each level may have several parent levels, instead of a
single parent level. Then, since for all ancestor levels of an MBA’s top level
there must be an ancestor MBA at this ancestor level, the MBA metamodel
must allow multiple concretization. Thus, an MBA with parallel hierarchies
possibly has several abstractions (or parent MBAs). The restriction to at
most one ancestor MBA per abstraction level remains.

In the case of homogeneous multilevel business process models, that is,
concretizations only instantiate the inherited top-level class while leaving
other levels unchanged, the introduction of parallel hierarchies is straightfor-
ward. Since in a homogeneous model only the root MBA introduces schema
information, which the more concrete MBAs at lower levels of abstraction
then inherit, parallel hierarchies bear no potential for conflict with respect
to multiple inheritance. In the case of hetero-homogeneous models (see
Chapter 5), however, issues may arise with respect to multiple inheritance
of both the data and the life cycle models.

THE MBA METAMODEL IN O-TELOS
Even though UML serves as the language for the definition of the MBA
metamodel, MBAs are outside of traditional object-oriented thinking.
Using UML for the representation of the MBA metamodel allows for
the definition of business rules using OCL which is a convenient, easy-
to-understand, yet formal expression language. Still, other modeling
languages, for example, O-Telos [53], are also well-suited for defining
the MBA metamodel. O-Telos has a simple and thus very flexible
data model: Everything in O-Telos is an object and objects may be
related with each other. An object may specialize and/or instantiate



4.1 Multilevel Objects with Life Cycle Models 69

any object, including itself. Constraints and queries are formulated
using expressions in first-order predicate logic. The implementation
of O-Telos, ConceptBase, has already been successfully employed for
(business) process modeling [51, 52]. Other work [78] has successfully
employed ConceptBase for multilevel modeling.

Using a common notation for O-Telos, the following figure illustrates
the MBA metamodel in O-Telos. The boxes represent objects. The
arrows between these boxes represent directed relationships between
objects. An arrow labeled “in” represents an instantiation relationship.
Note that each relationship is also an object and may therefore be related
to other objects as, for example, the level relationship between MBA and
Level which itself has a parent relationship with Level.

lifeCycle

in
parent

class

object

in

abstraction

topLevel

level

Level

Object

MBA

StateMachinelifeCycleModelClass

LifeCycle

Each MBA is an instance of the MBA object. When instantiating
MBA, each relationship from MBA to another object is also instantiated.
The source object of such a relationship must be an instance of MBA,
the target object must be an instance of the object that is targeted by
the instantiated relationship.

Each level is an instance of the Level object. Levels have an identity
independent from MBAs. Therefore, different MBAs may reference the
same Level objects. MBAs establish the hierarchical order of the levels
and associate class definitions with these levels. Therefore, rather than
attaching the parent level to an instance of Level directly, the parent level
is associated with the relationship between the corresponding Level object
and the MBA. Similarly, the class definition for a level is associated with
this relationship.

Each MBA has a single, designated top level. The topLevel relationship
between the MBA object and the Level object may only be instantiated



70 4 Multilevel Business Artifacts

once per MBA. Furthermore, the topLevel relationship has a relationship
with Object. An instance of the topLevel relationship has a relationship
to an instance of Object. Every class that an MBA references must be a
specialization of the Object class.

in

in

class

in

attribute/description

description in

isA

in

Object
in

object

topLevel

level/business

String

'Our rental business'

Class

Business RentalBusiness

RenterType

Rental

level/renterType

level/rental

Rental

MBA

The previous figure illustrates MBA Rental for the management of
car rental data of the EU-Rent company as known from the previous
examples as an instantiation of the MBA metamodel in O-Telos. The
objects Business, RenterType, and Rental are instances of Level and
thus represent the levels of the MBA’s level hierarchy. The Rental-
Business object is an instance of Class and a specialization of Object.
An arrow labeled “isA” represents a specialization relationships between
objects. Notice that the level relationship from the MBA metamodel is
instantiated multiple times. MBA Rental associates a clabject with its
top level, that is, an object presenting characteristics of both class and
object. This is possible since in O-Telos an object can be an instance of
itself, that is, an object may define its own class schema.

The object associated with an MBA’s top level could also be the MBA
itself. This approach to class/object duality has one major advantage:
Even without knowledge of the MBA metamodel, a program may use
an MBA just like any other instance of a given class. If other levels are
not important for a particular program, there is no need to rewrite this
program in order to cope with MBAs.



4.2 Multilevel Business Artifact Relationships 71

4.2 Multilevel Business Artifact Relationships
In the core metamodel for m-objects, a multilevel relationship (m-
relationship) connects m-objects at various levels of abstractions. Adapting
the concept of m-relationship for multilevel business process modeling, an
MBA relationship connects MBAs at various levels of abstraction. MBA
relationships allow for a more accurate representation of many complex
business situations. The presented metamodel for MBA relationships
extends both the core m-object metamodel and the MBA metamodel as
defined in the previous section. Throughout this section, we focus on
homogeneous MBA relationships. We first propose MBA relationships with
multilevel coherence and then discuss MBA relationships with arbitrary
relationship levels.

4.2.1 Multilevel Coherence

An MBA relationship is a m-relationship between MBAs. Figure 4.4 defines
the metamodel for MBA relationships as an extension of the MBA metamodel
(Figure 4.1) and the core metamodel for m-relationships (see Chapter 3).
An MBA relationship (metaclass MBARelationship) has both MBA and
m-relationship properties. An MBA relationship associates with its levels
the same model elements as ordinary MBAs. As opposed to ordinary m-
relationships, an MBA relationship’s set of potential coordinates is restricted
to individual MBAs (association end coordinate to metaclass IndividualMBA);
an MBA relationship cannot serve as coordinate. Furthermore, an MBA
relationship always has two coordinates. Consequently, an MBA relationship
level (metaclass MBARelationshipLevel) always references exactly two atomic
levels (association end level to metaclass AtomicLevel). The restriction of an
MBA relationship’s coordinates to exactly two individual MBAs allows for
a more concise examination of the particularities of m-relationships with
respect to business process modeling.

We adopt a relaxed definition of multilevel coherence for MBA relation-
ships with a focus on prohibiting multiple concretization. The original
definition of multilevel coherence [77, p. 113] forbids the crossing of an
m-relationship’s relationship (or connection) levels. As opposed to this
original definition, multilevel coherence for MBA relationships forbids the
definition of crossing relationship levels only when their introduction leads
to multiple parents of a relationship level within an m-relationship. The
MBA relationship metamodel (Figure 4.4), therefore, restricts the maximum



72 4 Multilevel Business Artifacts

+ ancestor(level : RelationshipLevel) : MBARelationahip [0..1]
+ descendants(level : RelationshipLevel) : MBARelationship [*]
+ classOfLevel(level : RelationshipLevel) : Class [0..1]

MBARelationship

1..**

{redefines level}
+ /level

MBARelationshipLevel

MBARelationshipToLevel

+ /parentLevel

*

0..1

{redefines abstraction}
+ /abstraction

0..1

+ /concretization
{redefines
concretization}

*

MultilevelRelationship

MRelationshipToLevel
2

*
{redefines coordinate}
+ coordinate

+ /element
{union}

2..3 *Element

{redefines topLevel}
+ topLevel

1

MBAToLevel

*

IndividualMBA

MBA

LinkObject
+ /instanceData

{redefines instanceData}

1

1

Object

0..1

*
{redefines instanceData, 

subsets element}
+ /instanceData

RelationshipLevel

AtomicLevel
2

{redefines level}
+ level

*

Figure 4.4: The metamodel for MBA relationships with multilevel coherence

number of a relationship level’s parent levels to one. Thus, multilevel coher-
ence is essentially the relationship equivalent to simple hierarchies in MBAs,
although parallel relationship levels are allowed as long as they do not lead
to multiple parent levels.

MBA relationships connect MBAs in different hierarchies, that is, MBAs
that are not in a concretization relationship with each other and do not
have a common ancestor (Rule 4.9). The core metamodel does not explicitly
rule out the possibility of m-relationships between m-objects that are in a
concretization relationships. The implications of such relationships, however,
have not been investigated yet, neither by work on m-objects [76] nor by
previous work on MBAs. The main question, in this respect, concerns the
meaningfulness of MBA relationships between MBAs in a concretization
relationship. The notion of MBA relationship may well be regarded as the
counterpart of the concretization relationship, connecting MBAs in different
hierarchies whereas the concretization relationship establishes membership
in the same hierarchy of the thus connected MBAs.

An MBA relationship, being a kind of MBA, may associate data and life
cycle models with the various relationship levels. With the top relationship
level, an MBA relationship associates instance data, represented by metaclass
LinkObject which is a specialization of Object. The classes that the MBA
relationship associates with its levels are specializations of the LinkObject



4.2 Multilevel Business Artifact Relationships 73

Rule 4.9: The coordinates of an MBA relationship must not be in same con-
cretization hierarchy
1 context MBARelationship inv:
2 let c1 = self.coordinate->at(1) in
3 let c2 = self.coordinate->at(2) in
4 not c1 = c2 and
5 not c1.descendants->includes(c2) and
6 not c2.descendants->includes(c1) and
7 not MBA.allInstances()->exists(o |
8 o.descendants->includesAll(Set{c1, c2})
9 )

Rule 4.10: All classes that an MBA relationship associates with a level are
specializations of the LinkObject metaclass
1 context MBARelationship inv:
2 self.MBARelationshipToLevel->forAll(l |
3 l.dataModel.conformsTo(LinkObject)
4 )

class (Rule 4.10), which allows for references in OCL constraints to the
information represented by the MBA itself.

Figure 4.5 illustrates an alternative representation of the EU-Rent use
case (Figure 4.2) using an MBA relationship. The MBA relationship labeled
rent links Rental at the business level with Car at the vehicleType level,
signifying that the rental business deals with the car vehicle type. The MBA
relationship further associates the renterType level with the model level, the
renter level with the physicalEntity level. Notice that MBA Rental, as opposed
to the previous example, features renter as the most specific level. The rental
process itself is represented by the MBA relationship.

The MBA relationship between Rental and Car in Figure 4.5, at its top
level, ‹ business, vehicleType ›, describes the life cycle model of the Rental
business division’s involvement in the car rental sector. This involvement in
the car rental sector is either Active or Terminated, the current state being
Active. The Rental business division, under its involvement in the car rental
sector, applies different business schemes, renting certain car models to
specific renter types. The ‹ renterType, model › level represents the life cycle



74 4 Multilevel Business Artifacts

+ rentalId : String
+ bookedDuration : Number
+ rate : Number
+ actualPickUp : Date
+ actualReturn : Date
+ amountBilled : Number
+ amountPaid : Number

‹ renter, physicalEntity ›

‹ renterType, model ›

rent

Car : ‹ vehicleType ›

‹ physicalEntity ›

Rental : ‹ business ›

‹ renterType ›

‹ renter ›

‹ business, vehicleType ›

‹ model ›

Active

offerCarModelForRenterType(renterType, model)

Available retract Unavailable terminate

offer

openRental(id, renter, car)

SettlingOpening pickUp Open return Closedclose

setRatesetDuration paybill

terminate

Terminated

Terminated

Figure 4.5: A multilevel relationship between MBAs Rental and Car for the
management of car rentals

model of such business schemes, going from Available to Unavailable and,
eventually, Terminated. An example MBA relationship that instantiates the
association between the renterType level and the model level might connect
MBA Corporate with AudiA8, or MBA Private with FiatPunto. Finally, the
‹ renter, physicalEntity › level represents individual rentals of specific, physical
car entities to individual renters with a life cycle going from Opening to
Open, Settling and Closed. An example MBA relationship (not shown) that



4.2 Multilevel Business Artifact Relationships 75

instantiates the association between the renter level and the physicalEntity
level might connect some MBA named D12 at the renter level under Private
with FiatPuntoXS209 at the physicalEntity level under FiatPunto.

4.2.2 Arbitrary Relationship Levels
Multilevel coherence facilitates implementation, but many applications re-
quire the increased expressivity of parallel relationship levels. For example, in
data warehouse modeling, the representation of multilevel cubes [80] employs
arbitrary relationship levels for multilevel relationships, dropping the re-
quirement of multilevel coherence. Similarly, the representation of multilevel
business process models may benefit from allowing arbitrary relationship
levels in MBA relationships.

In the previous section, we restrict a relationship level’s number of parent
levels within the level hierarchy of a particular MBA relationship to at most
one. This means that the parentLevel end of the association between the MBA-
RelationshipToLevel association class and the MBARelationshipLevel metaclass
has a 0..1-multiplicity (Figure 4.4). Dropping the requirement of multilevel
coherence means replacing the 0..1-multiplicity of the parentLevel association
end with a *-multiplicity. As a consequence of multilevel coherence, an
MBA relationship can only (directly) concretize at most one other MBA
relationship. This means that the abstraction end of the reflexive association
of the MBARelationship metaclass has a 0..1-multiplicity. Dropping the
requirement of multilevel coherence means replacing the 0..1-multiplicity of
the abstraction association end with a *-multiplicity.

Assume, for example, the EU-Rent company offers a range of travel tours in
conjunction with car rentals. The range of tours consists of several categories,
each category consists of several tour packages, each tour package consists
of several trips. Along with each rental, a renter may book specific tour
packages. From this package, the renter may then select specific trips. Each
trip under a tour package is offered only to certain renter types. Consider
a relationship between an MBA Tour and an MBA Rental. MBA Tour
represents EU-Rent’s range of tours, having levels range, category, package,
and trip. MBA Rental represents EU-Rent’s car rental business, having levels
business, renterType, and rental. The MBA relationship has relationship levels
‹ package, rental ›, ‹ trip, renterType ›, and ‹ trip, rental ›. The relationship
levels ‹ package, rental › and ‹ trip, renterType › are crossing and would
violate multilevel coherence, as ‹ trip, rental › is a child level of both of these
relationship levels.



76 4 Multilevel Business Artifacts

Assume now the existence of an MBA CityTripsPack at the package level,
being a descendant of MBA Tour. Assume further the existence of MBAs
ViennaBusinessTrip and SalzburgTrip at the trip level, being concretizations
of CityTripsPack. An MBA relationship between ViennaBusinessTrip and
an MBA Corporate at the renterType level defines that the business trip to
the city of Vienna is available to corporate renters. An MBA relationship
between SalzburgTrip and Corporate defines that the trip to the city of
Salzburg is available to corporate renters. Likewise, an MBA relationship
between SalzburgTrip and an MBA Private at the renterType level defines
that the trip to the city of Salzburg is available to private renters. In
order for a rental-level MBA to participate in an MBA relationship with
ViennaBusinessTrip, the rental-level MBA must be a descendant of Corporate.
In an MBA relationship with SalzburgTrip, rental-level MBAs under both
Corporate and Private may participate.

4.3 Multilevel Predicates for Synchronization
Rather than existing in isolation, the objects at the different abstraction
levels are interdependent and interact with each other. Multilevel predicates
allow for a life cycle model at one level to refer to a life cycle model at another
level, thereby establishing synchronization dependencies between object life
cycles. Vertical synchronization refers to a synchronization dependency
between object life cycles at one level and object life cycles at another level
further up or down the same level hierarchy. Horizontal synchronization
refers to a synchronization dependency between object life cycles at one level
and object life cycles at a different, parallel, abstraction level of the same
hierarchy, or an object life cycle of a different hierarchy altogether. In this
section, we present revised and extended versions of multilevel predicates for
vertical synchronization from previous work [114], and introduce multilevel
predicates for horizontal synchronization.

4.3.1 Vertical Synchronization

We consider as synchronization dependencies those pre- and postconditions
of transitions in a life cycle model that refer to attributes of another class
or states in another life cycle model. Depending on whether a pre- or
postcondition constitutes the synchronization dependency, the implications
for the transition differ. In case of a postcondition, a transition in one object



4.3 Multilevel Predicates for Synchronization 77

entails attribute or state changes in other objects as well. This consideration
is consistent with other work on artifact-centric business process modeling,
which considers pre- and postconditions as business rules and business rules
that trigger state changes of multiple artifacts as synchronization rules [141,
p. 288]. In case of a precondition, on the other hand, in order for a transition
in one object to be taken, other objects must satisfy specified conditions;
unlike a synchronization dependency in a postcondition, the transition itself
has no side effects on other data objects.

We propose a set of multilevel predicates for various synchronization
patterns across different abstraction levels. These multilevel predicates act
as pre- or postconditions of transitions, and divide into the general categories
of attribute, state, and concretization predicates. Predicates for attribute
synchronization express conditions over attributes of an MBA’s ancestors
and descendants. The predicates for state synchronization derive from the
attribute predicates and express conditions over the active states of an
MBA’s ancestors and descendants. Concretization predicates model the
creation of objects at lower levels of abstraction by other objects at more
abstract levels.

We define multilevel predicates as syntax macros [60] for OCL. A syntax
macro consists of structure and definition. The macro structure constitutes
the macro as such, that is, the syntax that the modeler writes in order
to express a specific synchronization dependency. For the description of a
macro structure, we use EBNF notation [140] and adopt existing production
rules from the definition of the concrete OCL syntax in the standard [92,
p. 69 et seqq.]. The macro definition consists of the expressions in the target
language, that is, in this case, the standard OCL expressions which define
the semantics of a synchronization dependency.

Consider, for example, the following production rules in EBNF notation as
the structures of syntax macros that allow for the referencing of individual
levels of MBAs and MBA relationships; terminal symbols are in single quotes:

LevelExpCS ::= AtomicLevelExpCS | RelationshipLevelExpCS
AtomicLevelExpCS ::= ‘‹’ simpleNameCS ‘›’

RelationshipLevelExpCS ::= ‘‹’ simpleNameCS, simpleNameCS ‘›’

The production rules for referencing levels describe what we refer to as level
expressions, hence the “Exp” in the production rule names. The production
rules also follow the convention in the OCL standard that each element
of the concrete syntax has a “CS” suffix. A level expression (LevelExpCS)



78 4 Multilevel Business Artifacts

references either an atomic level (AtomicLevelExpCS) or a relationship level
(RelationshipLevelExpCS). The simpleNameCS production rule from the OCL
standard denotes special strings used for names in OCL expressions which
we reuse without going into detail here.

The non-terminal symbols in the structure of a syntax macro correspond
to metavariables in the definition of that same syntax macro. The names
of these metavariables start with “$” followed by the ordinal number of
the corresponding non-terminal symbol in the macro structure. A macro
preprocessor, upon translation of an occurrence of a macro structure, inserts
the actual string values of the metavariables at the position of the respective
metavariable in the macro definition. Consider, for example, the following
definition of AtomicLevelExpCS:

AtomicLevel.allInstances()->any(l |
l.name = "$1"

)

A valid level expression under the AtomicLevelExpCS production rule would
be ‹ renterType ›. Metavariable $1 would then assume the string value
“renterType” and the translation of the level expression into standard OCL
would read the following:

AtomicLevel.allInstances()->any(l |
l.name = "renterType"
)

Similarly, the following OCL expression constitutes the definition of the
RelationshipLevelExpCS syntax macro:

MBARelationshipLevel.allInstances()->any(l |
l.level->at(1).name = "$1" and
l.level->at(2).name = "$2"
)

A valid level expression under the RelationshipLevelExpCS production rule
would be ‹renterType, model›. Metavariable $1 would then assume the string
value “renterType”, metavariable $2 the string value “model”, and the
translation of the level expression into standard OCL would read:

MBARelationshipLevel.allInstances()->any(l |
l.level->at(1).name = "renterType" and
l.level->at(2).name = "model"
)



4.3 Multilevel Predicates for Synchronization 79

Table 4.1: Multilevel predicates over ancestry relationships

predicate isDescendantAtLevel(MBA, MBA, Level)
macro ‘mba’ OclExpressionCS ‘is’ ‘descendant’ ‘at’ ‘level’ LevelExpCS
define self.MBA.descendants($2)->includes($1)

predicate isAncestorAtLevel(MBA, MBA, Level)
macro ‘mba’ OclExpressionCS ‘is’ ‘ancestor’ ‘at’ ‘level’ LevelExpCS
define self.MBA.ancestor($2) = $1

The production rules LevelExpCS, AtomicLevelExpCS, and Relationship-
LevelExpCS are not considered multilevel predicates but rather represent
auxiliary macros. The descriptions of the syntax macro structures of the
actual multilevel predicates refer to these production rules in places where
the predicate expresses conditions involving levels, which all of the proposed
multilevel predicates do.

In mathematical logical terms, a predicate is a function which takes
a number of parameters as input and returns a boolean value as result.
Multilevel predicates are predicates in that sense although their semantics
are defined in terms of OCL syntax macros. Thus, for each multilevel
predicate, we provide a definition of the predicate signature, that is, the
input parameters. But, rather than defining the semantics of these predicates
in mathematical logical terms, we provide a syntax macro structure and
definition for each multilevel predicate. A macro preprocessor could then
translate the syntax macro into standard OCL expressions.

We first present multilevel predicates for the definition of expressions
over ancestry relationships between MBAs. Table 4.1 defines the ancestry
predicates isDescendantAtLevel and isAncestorAtLevel which require some
argument MBA to be a descendant or ancestor, respectively, of another
MBA in order for the predicate to evaluate to true. The ancestry predicates
each have three parameters. Since an ancestry predicate is always defined in
the context of an MBA, the first parameter is the MBA that the predicate is
associated with. Of course, the syntax macro itself is attached to a particular
model element – just like any other OCL constraint – which then constitutes
the context in the OCL sense that the self variable references. In the macro
definitions of multilevel predicates, self always refers to a specialization of the
Object class which allows for the navigation to the context MBA. This also
holds for macros used in the life cycle models, since the context of an OCL
constraint that is defined for a state machine is the context class [92, p. 192].



80 4 Multilevel Business Artifacts

The ancestry predicates then take another MBA as second parameter, the
potential descendant or ancestor, as well as a level as third parameter at
which this potential descendant or ancestor is situated.

The ancestry predicates in Table 4.1 constitute the most general class
of multilevel predicates; the ancestry predicates subsume the groups of
attribute, state, and concretization predicates. By adding expressions over
the potential descendant or ancestor, the modeler may express any synchro-
nization dependency using ancestry predicates; in OCL constraints, this is
achieved by nesting the syntax macros inside other OCL expressions. But,
the ancestry predicates, due to their generality, carry only little semantics
themselves, leaving the burden of expressing conditions largely to the modeler.
Thus, we introduce additional multilevel predicates where each predicate
represents a specific synchronization pattern, already abstracting, to some
extent, from routine OCL conditions for frequently occurring situations.

Attribute predicates allow for the definition of expressions over the data
models of an MBA’s ancestors or descendants (Table 4.2). Each attribute
predicate takes as first parameter the MBA that the predicate is defined
for. Predicates everyDescendantAtLevelSatisfies and someDescendantAtLevel-
Satisfies take as further parameters a level and some expression which
formalizes the condition that every or some descendant, respectively, at
the argument level must satisfy in order for the predicates to evaluate to
true. If the context MBA has no descendant at the given level, every-
DescendantAtLevelSatisfies evaluates to true, someDescendantAtLevelSatisfies
evaluates to false. Predicate isDescendantAtLevelSatisfying is similar to every-
DescendantAtLevelSatisfies and someDescendantAtLevelSatisfies, but takes
as additional parameter another MBA which must be a descendant at the
argument level and satisfy the given condition in order for the predicate
to evaluate to true. Analogously, predicates ancestorAtLevelSatisfies and
isAncestorAtLevelSatisfying allow for expressing conditions over an ancestor
at a particular level. If the context MBA has no ancestor at the given level,
ancestorAtLevelSatisfies evaluates to OclInvalid.

For the definitions of the syntax macros for multilevel predicates, we
introduce meta-metavariable $$classOfLevel, which has no corresponding
production rule in the macro structures and takes a metavariable as argument.
The macro preprocessor determines at translation time the value of $$classOf-
Level in the context of a constraint, using model information from the MBA.
In order to determine the value of $$classOfLevel, the macro preprocessor
evaluates the argument level expression and retrieves the corresponding class
using the MBA’s classOfLevel method. Importantly, the macro preprocessor



4.3 Multilevel Predicates for Synchronization 81

Table 4.2: Multilevel predicates for vertical synchronization over attributes

predicate everyDescendantAtLevelSatisfies(MBA, Level, Expression)
macro ‘every’ ‘descendant’ simpleNameCS ‘at’ ‘level’ LevelExpCS

‘satisfies’ OclExpressionCS
define self.MBA.descendants($2)->forAll(mba : MBA |

let $1 : $$classOfLevel($2) =
mba.instanceData.oclAsType($$classOfLevel($2))
in $3

)

predicate someDescendantAtLevelSatisfies(MBA, Level, Expression)
macro ‘some’ ‘descendant’ simpleNameCS ‘at’ ‘level’ LevelExpCS

‘satisfies’ OclExpressionCS
define self.MBA.descendants($2)->exists(mba : MBA |

let $1 : $$classOfLevel($2) =
mba.instanceData.oclAsType($$classOfLevel($2))
in $3

)

predicate isDescendantAtLevelSatisfying(MBA, MBA, Level, Expression)
macro ‘mba’ simpleNameCS ‘=’ OclExpressionCS ‘is’ ‘descendant’

‘at’ ‘level’ LevelExpCS ‘satisfying’ OclExpressionCS
define mba $2 is descendant at level $3 and

let $1 : $$classOfLevel($3) =
$2.instanceData.oclAsType($$classOfLevel($3)) in $4

predicate ancestorAtLevelSatisfies(MBA, Level, Expression)
macro ‘ancestor’ simpleNameCS ‘at’ ‘level’ LevelExpCS

‘satisfies’ OclExpressionCS
define let $1 : $$classOfLevel($2) =

self.MBA.ancestor($2).instanceData
.oclAsType($$classOfLevel($2)) in $3

predicate isAncestorAtLevelSatisfying(MBA, MBA, Level, Expression)
macro ‘mba’ simpleNameCS ‘=’ OclExpressionCS ‘is’ ‘ancestor’

‘at’ ‘level’ LevelExpCS ‘satisfying’ OclExpressionCS
define mba $2 is ancestor at level $3 and

let $1 : $$classOfLevel($3) =
$2.instanceData.oclAsType($$classOfLevel($3)) in $4



82 4 Multilevel Business Artifacts

replaces occurrences of the $$classOfLevel meta-metavariable with a static
reference to a class since the class of a particular level is already known at
translation time, thereby allowing for type checking of the resulting OCL
expression at compile time.

Notice that the syntax macro definitions of predicates isDescendantAt-
LevelSatisfying and isAncestorAtLevelSatisfying make use of previously defined
syntax macros themselves. Theoretically, the syntax macros could be arbi-
trarily combined, nested, and interweaved in standard OCL. In such cases,
however, the macro preprocessor must determine the adequate processing
order for the macro occurrences before translating into standard OCL. Fur-
thermore, depending on the parsing method, the description of the macro
structures may need rewriting in order for LL(1) parsers to be able to parse
the provided macros. In this work, however, we will not dwell on the details
of the development of a macro preprocessor for multilevel predicates, but
rather assume the existence of such a preprocessor which we regard more as
a device of formal specification.

Deriving from the attribute predicates, state predicates allow for the
definition of expressions over the active states of an MBA’s ancestors or
descendants (Table 4.3). Just like the attribute predicates, each state
predicate takes as first parameter the MBA that the predicate is defined for.
As further parameters, each state predicate takes a level and state, which
formalizes the condition that each MBA in a set of ancestors or descendants
at the given level, depending on the particular predicate, is in the given
state. The most basic state predicates are everyDescendantAtLevelIsInState,
someDescendantAtLevelIsInState, and ancestorAtLevelIsInState, which allow
for expressing of the condition that every/some descendant or the ancestor
at a particular level is in a given state. Predicates everyDescendantAtLevelIn-
StateSatisfies, someDescendantAtLevelInStateSatisfies, everyDescendantAtLevel-
SatisfyingIsInState, and ancestorAtLevelIsInStateAndSatisfies take an additional
expression as parameter which formalizes a condition to be satisfied. In
case of everyDescendantAtLevelInStateSatisfies, every descendant at the given
level, in case of someDescendantAtLevelInStateSatisfies, some descendant at
the given level must satisfy the expressed condition. In case of predicate
everyDescendantAtLevelSatisfyingIsInState, the expression reduces the set of
descendants which are considered for evaluation; every descendant that
satisfies the expressed condition must be in the given state. Predicate
ancestorAtLevelIsInStateAndSatisfies requires the ancestor at the given level
to be in the given state and satisfy the expressed condition in order for the
predicate to evaluate to true in the context of a given MBA.



4.3 Multilevel Predicates for Synchronization 83

Table 4.3: Multilevel predicates for vertical state synchronization

predicate everyDescendantAtLevelIsInState(MBA, Level, State)
macro ‘every’ ‘descendant’ ‘at’ ‘level’ LevelExpCS

‘is’ ‘in’ ‘state’ StateExpCS
define every descendant o at level $1 satisfies

o.oclIsInState($2)

predicate everyDescendantAtLevelInStateSatisfies
(MBA, Level, State, Expression)

macro ‘every’ ‘descendant’ simpleNameCS ‘at’ ‘level’ LevelExpCS
‘in’ ‘state’ StateExpCS ‘satisfies’ OclExpressionCS

define every descendant $1 at level $2 satisfies
$1.oclIsInState($3) implies $4

predicate everyDescendantAtLevelSatisfyingIsInState
(MBA, Level, Expression, State)

macro ‘every’ ‘descendant’ simpleNameCS ‘at’ ‘level’ LevelExpCS
‘satisfying’ OclExpressionCS ‘is’ ‘in’ ‘state’ StateExpCS

define every descendant $1 at level $2 satisfies
$3 implies $1.oclIsInState($4)

predicate someDescendantAtLevelIsInState(MBA, Level, State)
macro ‘some’ ‘descendant’ ‘at’ ‘level’ LevelExpCS

‘is’ ‘in’ ‘state’ StateExpCS
define some descendant o at level $1 satisfies

o.oclIsInState($2)

predicate someDescendantAtLevelInStateSatisfies
(MBA, Level, State, Expression)

macro ‘some’ ‘descendant’ simpleNameCS ‘at’ ‘level’ LevelExpCS
‘in’ ‘state’ StateExpCS ‘satisfies’ OclExpressionCS

define some descendant $1 at level $2 satisfies
$1.oclIsInState($3) and $4

predicate isDescendantAtLevelInState(MBA, MBA, Level, State)
macro ‘mba’ OclExpressionCS ‘is’ ‘descendant’ ‘at’ ‘level’ LevelExpCS

‘in’ ‘state’ StateExpCS
define mba o = $1 is descendant at level $2

satisfying o.oclIsInState($3)

(continues on next page)



84 4 Multilevel Business Artifacts

Table 4.3 (continued): Multilevel predicates for vertical state synchronization

predicate isDescendantAtLevelInStateSatisfying
(MBA, MBA, Level, State, Expression)

macro ‘mba’ simpleNameCS ‘=’ OclExpressionCS ‘is’ ‘descendant’
‘at’ ‘level’ LevelExpCS ‘in’ ‘state’ StateExpCS
‘satisfying’ OclExpressionCS

define mba $1 = $2 is descendant at level $3
satisfying o.oclIsInState($4)
and $5

predicate ancestorAtLevelIsInState(MBA, Level, State)
macro ‘ancestor’ ‘at’ ‘level’ LevelExpCS ‘is’ ‘in’ ‘state’ StateExpCS
define ancestor o at level $1 satisfies

o.oclIsInState($2)

predicate ancestorAtLevelIsInStateAndSatisfies
(MBA, Level, State, Expression)

macro ‘ancestor’ simpleNameCS ‘at’ ‘level’ LevelExpCS
‘is’ ‘in’ ‘state’ StateExpCS
‘and’ ‘satisfies’ OclExpressionCS

define ancestor $1 at level $2 satisfies
o.oclIsInState($3)
and $4

predicate isAncestorAtLevelInState(MBA, MBA, Level, State)
macro ‘mba’ OclExpressionCS ‘is’ ‘ancestor’ ‘at’ ‘level’ LevelExpCS

‘in’ ‘state’ StateExpCS
define mba o = $1 is ancestor at level $2

satisfying o.oclIsInState($3)

predicate isAncestorAtLevelInStateSatisfying
(MBA, MBA, Level, State, Expression)

macro ‘mba’ simpleNameCS ‘=’ OclExpressionCS ‘is’ ‘ancestor’
‘at’ ‘level’ LevelExpCS ‘in’ ‘state’ StateExpCS
‘satisfying’ OclExpressionCS

define mba $1 = $2 is ancestor at level $3
satisfying o.oclIsInState($4)
and $5



4.3 Multilevel Predicates for Synchronization 85

Unlike the other predicates for synchronization over states, predicates
isDescendantAtLevelInState, isDescendantAtLevelInStateSatisfying, isAncestor-
AtLevelInState, and isAncestorAtLevelInStateSatisfying take a second MBA as
additional parameter. These additional state predicates allow to formalize
the condition that a particular, given MBA is a descendant or ancestor, re-
spectively, at a given level in a given state, optionally satisfying an additional
condition; they derive from the predicates isDescendantAtLevelSatisfying and
isAncestorAtLevelSatisfying, respectively.

Attribute and state synchronization predicates may occur as pre- and
postconditions alike. In both cases, the concrete syntax macro that a modeler
employs in order to represent a synchronization dependency remains the
same, which holds for both structure and definition of the syntax macro.

Figures 4.6 and 4.7 define a graphical notation for state synchroniza-
tion predicates, which will be used in the examples. Note that predicates
isDescendantAtLevelInState, isDescendantAtLevelInStateSatisfying, isAncestor-
AtLevelInState, and isAncestorAtLevelInStateSatisfying have no graphical rep-
resentation. Dashed arrows between states and transitions of different levels
visualize synchronization dependencies between object life cycles at the
respective levels. The direction of the arrow determines whether the pred-
icate occurs in a precondition or in a postcondition. An arrow from a
state to a transition denotes a predicate in a precondition of the transition;
an arrow from a transition to a state denotes a predicate in a postcondi-
tion. For example, Figures 4.6a and 4.7a both graphically represent the
everyDescendantAtLevelIsInState predicate. The former figure denotes a pre-
condition, the latter a postcondition. Similarly, Figures 4.6f and 4.7f both
graphically represent the ancestorAtLevelIsInState predicate. Each graphical
notation is equivalent to attaching the macro expression in the caption of the
respective figure to the transition, with pre denoting the use as a precondition,
post denoting the use as a postcondition, as in the OCL standard.

Annotations to the arrows in the graphical representation of multilevel
predicates distinguish different kinds of multilevel predicates from each other
and bind additional arguments for these predicates where required. For
example, the mathematical symbol for universal quantification (∀) marks
predicates everyDescendantAtLevelInStateSatisfies (Figures 4.6b and 4.7b) and
everyDescendantAtLevelSatisfyingIsInState (Figures 4.6c and 4.7c), the symbol
for existential quantification (∃) marks predicates someDescendantAtLevelIs-
InState (Figures 4.6d and 4.7d) and someDescendantAtLevelInStateSatisfies
(Figures 4.6e and 4.7e). In addition, some predicates, including ancestorAt-
LevelIsInStateAndSatisfies (Figures 4.6g and 4.7g), take an OCL expression



86 4 Multilevel Business Artifacts

‹ l2 ›

‹ l1 ›
m

S

(a) pre: every descendant
at level ‹l2› is in state S

‹ l2 ›

‹ l1 ›
m

S

o : (o)

(b) pre: every descendant
o at level ‹l2› in state S
satisfies Φ(o)

‹ l2 ›

‹ l1 ›
m

S

o : (o) 

(c) pre: every descendant
o at level ‹l2› satisfying
Φ(o) is in state S

‹ l2 ›

‹ l1 ›
m

S

(d) pre: some descendant
at level ‹l2› is in state S

‹ l2 ›

‹ l1 ›
m

S

o : (o)

(e) pre: some descendant
o at level ‹l2› in state S
satisfies Φ(o)

‹ l1 ›

S

‹ l2 ›
m

(f) pre: ancestor at level
‹l1› is in state S

‹ l1 ›

S

‹ l2 ›
m

o : (o)

(g) pre: ancestor o at
level ‹l1› is in state S and
satisfies Φ(o)

Figure 4.6: Graphical notation for the state synchronization predicates in Ta-
ble 4.3 as preconditions (revised and extended from [114]). Note that predicates
over a second MBA have no graphical representation.

over a quantified variable, represented by Φ(o) in Figures 4.6 and 4.7,
denoting a generic predicate. The position of the implication arrow (⇒)
before or after the generic predicate distinguishes everyDescendantAtLevelIn-
StateSatisfies from everyDescendantAtLevelSatisfyingIsInState.

Figure 4.8 extends the EU-Rent example (Figure 4.2) with vertical synchro-
nization dependencies, illustrating both attribute and state synchronization
predicates. At the rental level, attribute synchronization predicates constrain
the possible input values of methods setRate and setDuration, limiting these



4.3 Multilevel Predicates for Synchronization 87

‹ l2 ›

‹ l1 ›
m

S

(a) post: every descen-
dant at level ‹l2› is in
state S

‹ l2 ›

‹ l1 ›
m

o : (o)

S

(b) post: every descen-
dant o at level ‹l2› in
state S satisfies Φ(o)

‹ l2 ›

‹ l1 ›
m

o : (o) 

S

(c) post: every descen-
dant o at level ‹l2› satis-
fying Φ(o) is in state S

‹ l2 ›

‹ l1 ›
m

S

(d) post: some descen-
dant at level ‹l2› is in
state S

‹ l2 ›

‹ l1 ›
m

o : (o)

S

(e) post: some descendant
o at level ‹l2› in state S
satisfies Φ(o)

‹ l1 ›

S

‹ l2 ›
m

(f) post: ancestor at level
‹l1› is in state S

‹ l1 ›

S

‹ l2 ›
m

o : (o)

(g) post: ancestor o at
level ‹l1› is in state S and
satisfies Φ(o)

Figure 4.7: Graphical notation for the state synchronization predicates in Ta-
ble 4.3 as postconditions (revised and extended from [114]). Note that predicates
over a second MBA have no graphical representation.

input values to the maximumRate and maximumDuration, respectively, as
defined by the ancestor at the renterType level. At the renterType level, the
launch method has as precondition a state synchronization predicate which
requires the ancestor at the business level to be in the Running state. The
discontinue method has as precondition a state synchronization predicate
which requires that every descendant at the rental level to be in the Closed
state. At the business level, the restructure method has as postcondition a
state synchronization predicate which requires every descendant that is not



88 4 Multilevel Business Artifacts

in the Discontinued state to be in the Canceled state after the execution of
the method. Note that in each of the previous cases, the terms “ancestor”
and “descendant” refer to an ancestor or descendant, respectively, relative
to the object of which the particular method is called at run time. Moreover,
the example in Figure 4.8 features concretization predicates.

Concretization predicates constitute a class of synchronization predicates
which model the creation of new objects at lower levels of abstraction
(Table 4.4). Concretization predicates are permissible only in postconditions
of transitions. For example, the most elementary concretization predicate
(existsNewDescendantAtLevel) demands that a new descendant at a given level
exists after the execution of the method for which the predicate constitutes
a postcondition. Other concretization predicates allow for the definition of
additional conditions which a newly created descendant must satisfy. The
existsNewDescendantAtLevelSatisfying predicate takes an arbitrary expression
as parameter; this expression typically represents a condition over the
attributes of the newly created descendant. The existsNewDescendantAt-
LevelUnder demands that a new descendant at a given level exists after
the execution of the method and that this new descendant is, at the same
time, a descendant of another given MBA as well. The latter predicate
bears importance for MBAs with parallel hierarchies as well as in hetero-
homogeneous models (see Chapter 5). The existsNewDescendantAtLevelUnder-
Satisfying predicate is a combination of the former concretization predicates.

Figure 4.9 defines a graphical notation for the concretization predicates
as also employed by the extended EU-Rent example in Figure 4.8. Dashed
arrows between a transition at one level and the initial state of another
life cycle model further down the level hierarchy represent concretization
dependencies, the arrows being annotated with the new keyword. The
graphical notation for the existsNewDescendantAtLevelSatisfying predicate
(Figure 4.9b) takes an OCL expression over a variable standing in for the
newly created object, the expression being denoted by Φ(n) in the figure.
The graphical notation for the existsNewDescendantAtLevelUnder predicate
(Figure 4.9c) has an OCL expression, following the under keyword, which
refers to another MBA. The graphical notation for the existsNewDescendant-
AtLevelUnderSatisfying predicate (Figure 4.9d) is a combination of the former
notation variants.

In the extended EU-Rent example (Figure 4.8) each level assumes respon-
sibility for the creation of the data objects at the child level. For example,
at the business level, the createRenterType method causes the creation of a
new descendant at the renterType level with the argument name. At the



4.3 Multilevel Predicates for Synchronization 89

Table 4.4: Multilevel predicates for concretization

predicate existsNewDescendantAtLevel(MBA, Level)
macro ‘exists’ ‘new’ ‘descendant’ ‘at’ ‘level’ LevelExpCS
define self.MBA.descendants($1)->exists(mba : MBA |

mba.oclIsNew()
)

predicate existsNewDescendantAtLevelSatisfying(MBA, Level, Expression)
macro ‘exists’ ‘new’ ‘descendant’ simpleNameCS

‘at’ ‘level’ LevelExpCS ‘satisfying’ OclExpressionCS
define self.MBA.descendants($2)->exists(mba : MBA |

mba.oclIsNew() and
let $1 : $$classOfLevel($2) =
mba.instanceData.oclAsType($$classOfLevel($2))
in $3

)

predicate existsNewDescendantAtLevelUnder(MBA, Level, MBA)
macro ‘exists’ ‘new’ ‘descendant’ ‘at’ ‘level’ LevelExpCS

‘under’ OclExpressionCS
define self.MBA.descendants($1)->exists(mba : MBA |

mba.oclIsNew() and
$2.descendants($1)->includes(mba)

)

predicate existsNewDescendantAtLevelUnderSatisfying
(MBA, Level, MBA, Expression)

macro ‘exists’ ‘new’ ‘descendant’ simpleNameCS
‘at’ ‘level’ LevelExpCS ‘under’ OclExpressionCS
‘satisfying’ OclExpressionCS

define self.MBA.descendants($2)->exists(mba : MBA |
mba.oclIsNew() and
$3.descendants($2)->includes(mba) and
let $1 : $$classOfLevel($2) =
mba.instanceData.oclAsType($$classOfLevel($2))
in $4

)



90 4 Multilevel Business Artifacts

+ rentalId : String
+ bookedDuration : Number
+ rate : Number
+ assignedCar : Car
+ renter : Person
+ actualPickUp : Date
+ actualReturn : Date
+ amountBilled : Number
+ amountPaid : Number

‹ rental ›

+ description = 'The rental business of the EU-rent company.'

Rental: ‹ business ›

+ name : String
+ maximumRate : Number
+ maximumDuration : Number
+ dailyLateFee : Number

‹ renterType ›

Restructuring reopen Running

OnOffer

Settling

cancelInDevelopment launch

Opening

DiscontinuedCanceled

createRenterType(name)

discontinue

restructure

setMaximumRate

pickUp Open return

openRental(id)

assignCar

setMaximumDuration
setDailyLateFee

Closedclose

bill pay

[ancestor a at level ‹ renterType › satisfies a.maximumRate >= rate]
setRate(rate)

[ancestor a at level ‹ renterType › satisfies a.maximumDuration >= duration]
setDuration(duration)

addRenterInformation

new (n | n.name = name) o : not o.oclIsInState(Discontinued) 

new (n | n.rentalId = id)

Figure 4.8: MBA Rental with multilevel predicates for vertical synchronization
(revised from [114])

renterType level, the openRental method causes the creation of a new de-
scendant at the rental level with the specified argument identifier as rentalId.
Note that in this case, again, the term “descendant” refers to a descendant
relative to the object that the particular method is called of at run time.



4.3 Multilevel Predicates for Synchronization 91

‹ l2 ›

‹ l1 ›
m

new

(a) post: exists new descendant at
level ‹l2›

‹ l2 ›

‹ l1 ›
m

new (n | (n))

(b) post: exists new descendant n at
level ‹l2› satisfying Φ(n)

‹ l3 ›

‹ l1 ›
m

‹ l2 ›

new under o

(c) post: exists new descendant n at
level ‹l2› under o

‹ l2 ›

‹ l3 ›

‹ l1 ›
m

new (n | (n))
under o

(d) post: exists new descendant n at
level ‹l2› under o satisfying Φ(n)

Figure 4.9: Graphical notation for the concretization predicates in Table 4.4
(revised from [114])

Figure 4.10 illustrates a variant with parallel hierarchies of MBA Rental
from the previous examples; the example omits most details from the previous
examples, such as the data model as well as the majority of the life cycle
models, in order to focus on the distinct aspects of parallel hierarchies. Since
every MBA at the rental level must have an ancestor at both the renterType
and the country level, the openRental method which causes the creation of
a new descendant at the rental level takes an MBA at the country level as
additional parameter. A newly created MBA at the rental level must have
the argument MBA at the country level as ancestor. An explicit constraint
as a precondition demanding an argument MBA to be at the country level
could be added for increased expressiveness of the model but is not necessary
in order to guarantee a consistent model due to the consistency criteria
defined in the core m-object and MBA metamodel. In the EU-Rent example,
passing an MBA that is not at the country level as argument would result in
a violation of the constraint that requires any MBA at the rental level to
have exactly one single ancestor at the country level.

The attribute and state synchronization predicates apply to MBAs and,
without adaptations, MBA relationships alike. The descriptions of the



92 4 Multilevel Business Artifacts

‹ rental ›

Rental: ‹ business ›

‹ renterType ›

OnOffer

Opening

openRental(id, country : MBA)

new (n | n.rentalId = id) under country

...

... ...

‹ country ›

...

Figure 4.10: MBA Rental with parallel hierarchies and vertical synchronization
dependency

macro structures of attribute and state synchronization predicates refer to
the generic LevelExpCS production rule, thus applying to both atomic and
relationship levels. Depending on the context, the modeler must employ the
appropriate kind of level; the model becomes invalid otherwise.

We provide adapted concretization predicates for MBA relationships
(Table 4.5). Even though the existing concretization predicates are applicable
to MBA relationships as well, the existing predicates might be too unspecific
for certain modeling situations. An MBA relationship always has coordinates,
which the modeler might wish to include explicitly in the life cycle model.
Thus, the adapted concretization predicates take as additional parameters the
newly created relationship’s coordinate MBAs. These adapted concretization
predicates come in two variants: The basic variant taking only the coordinate
MBAs (existsNewDescendantAtLevelBetween) and a variant with an additional
condition which must be satisfied by the newly created relationship (exists-
NewDescendantAtLevelBetweenSatisfying). The graphical representation of
the adapted predicates derives from the basic concretization predicates,
adding to the annotation expressions that refer to the coordinate MBAs,
separated by and, following the between keyword.

Figure 4.11 extends the EU-Rent example as modeled using MBA relation-
ships (Figure 4.5) with vertical synchronization dependencies, illustrating
state synchronization as well as concretization predicates in MBA relation-
ships. Each relationship level triggers the creation of links at the respective
child level as expressed through the concretization predicates attached to
the transitions triggered by the offerCarModelForRenterType and openRental



4.3 Multilevel Predicates for Synchronization 93

Table 4.5: Multilevel predicates for concretization of MBA relationships

predicate existsNewDescendantAtLevelBetween
(MBARelationship, RelationshipLevel, MBA, MBA)

macro ‘exists’ ‘new’ ‘descendant’ ‘at’ ‘level’ RelationshipLevelExpCS
‘between’ OclExpressionCS ‘and’ OclExpressionCS

define self.MBARelationship.descendants($1)->exists(
r | r.oclIsNew() and
r.coordinate->at(1) = $2 and
r.coordinate->at(2) = $3

)

predicate existsNewDescendantAtLevelBetweenSatisfying
(MBARelationship, RelationshipLevel, MBA, MBA, Expression)

macro ‘exists’ ‘new’ ‘descendant’ simpleNameCS
‘at’ ‘level’ RelationshipLevelExpCS
‘between’ OclExpressionCS ‘and’ OclExpressionCS
‘satisfying’ OclExpressionCS

define self.MBARelationship.descendants($2)->exists(
r | r.oclIsNew() and
r.coordinate->at(1) = $3 and
r.coordinate->at(2) = $4 and
let $1 : $$classOfLevel($2) =
r.instanceData.oclAsType($$classOfLevel($2))
in $5

)

method, respectively. At the ‹ business, vehicleType › level, the transition
with the terminate method as trigger has as postcondition that every de-
scendant at the ‹ renterType, model › level that is not in the Terminated
state must be in the Unavailable state. At the ‹ renterType, model › level,
the transition with the offer method as trigger has as precondition that the
ancestor at the ‹ business, vehicleType › level must be in the Active state.
Likewise, at the ‹ renterType, model › level, the transition with the terminate
method as trigger has as precondition that every descendant at the ‹ renter,
physicalEntity › level must be in the Closed state.

The precise semantics of postconditions in life cycle models possesses a
certain ambiguity. Referring to the declarative nature of OCL, Cabot [18]
and Wazlawick [137, p. 205] point out that the assignment of some value,



94 4 Multilevel Business Artifacts

+ rentalId : String
+ bookedDuration : Number
+ rate : Number
+ actualPickUp : Date
+ actualReturn : Date
+ amountBilled : Number
+ amountPaid : Number

‹ renter, physicalEntity ›

‹ renterType, model ›

rent

Car : ‹ vehicleType ›

‹ physicalEntity ›

Rental : ‹ business ›

‹ renterType ›

‹ renter ›

‹ business, vehicleType ›

‹ model ›

Active

offerCarModelForRenterType(renterType, model)
new relationship between renterType and model

Available retract Unavailable terminate

offer

openRental(id, renter, car)
new relationship (r | r.rentalId = id) between renter and car

SettlingOpening pickUp Open return Closedclose

setRatesetDuration paybill

terminate

Terminated

Terminated

r : not r.oclIsInState(Terminated) 

Figure 4.11: The MBA relationship from Figure 4.5 between Rental and Car
extended with vertical synchronization dependencies

stored in some variable x, to another variable y has ambiguous interpretations
with respect to the actual value both variables hold after the assignment.
As a solution [18, p. 202], input parameters as employed in the life cycle
models of the EU-Rent examples could and, in the case of MBAs, should
be considered constants. An alternative solution [137, p. 205] employs



4.3 Multilevel Predicates for Synchronization 95

OCL message expressions [92, p. 32 et seqq.]. Using the caret (^) operator,
preceded by an expression that evaluates to an object, followed by the name
of the message sent to the object, a modeler may express the condition that
a certain message was sent to a particular object. Assuming the existence
of predefined setter methods, the representation of value assignment to
variables then employs a message expression using call events for setter
methods. For example, in Figure 4.11, the assignment r.rentalId = id
that is part of the concretization predicate at the ‹ renterType, model › level
then becomes the message expression r^setRentalId(id).

Practical considerations require a clarification of the execution semantics
of state synchronization predicates in postconditions prior to the implemen-
tation of the multilevel business process model. A state synchronization
predicate stating as a postcondition for a transition that every descendant or
an ancestor at a particular level must be in a certain state after taking the
transition makes no allusion as to the precise execution due to the declarative
nature of OCL. More specifically, such a state synchronization predicate
does not state whether the transition annotated with the synchronization
predicate causes a transition of the respective descendants or ancestor to
the specified state, or the transition annotated with the synchronization
predicate waits for the descendants or ancestor to end up in the specified
state before completing the transition. In the first step, the conceptual
modeler might abstract from the specific execution semantics. In the second
step, however, prior to the implementation of the conceptual model for a
specific application, the modeler may wish to clarify the execution semantics
of state synchronization predicates.

Two possibilities exist for the clarification of the precise execution se-
mantics of state synchronization predicates (Figure 4.12). Using message
expressions (Figure 4.12a), the modeler may specify the invocation of meth-
ods along with the state synchronization predicate, clarifying that the
execution of a method at one level triggers the execution of methods at other
levels as well. For example, the invocation of the restructure method at the
business level of MBA Rental in the Running state has as postcondition that
every descendant at the renterType level is in the Canceled state, provided
the descendant is not already in the Discontinued state. As an additional
condition, the synchronization predicate specifies that every descendant in
the InDevelopment state, before the execution of the restructure method, must
have received a message calling for the execution of the descendant’s abort
method, in case the descendant was in the InDevelopment state before the
method call, or the cancel method, in case the descendant was in the OnOffer



96 4 Multilevel Business Artifacts

Rental: ‹ business ›

‹ renterType ›

Restructuring reopen Running

OnOffer cancelInDevelopment launch DiscontinuedCanceled discontinue

restructure

o : not o.oclIsInState(Discontinued) 
o : if (

o@pre.oclIsInState(InDevelopment)
) then o^abort
else if (
o@pre.oclIsInState(OnOffer)
) then o^cancel 

endif

‹ rental ›

abort

(a) message expressions

Rental: ‹ business ›

‹ renterType ›

Restructuring reopen Running

OnOffer cancelInDevelopment launch DiscontinuedCanceled discontinue

restructure

‹ rental ›

abort

Waiting
{necessary, sufficient}

o : not o.oclIsInState(Discontinued) 

(b) intermediate state, necessary and sufficient precondition

Figure 4.12: Options for the specification of the execution semantics of synchro-
nization dependencies

state. The second possibility for the clarification of the execution seman-
tics (Figure 4.12b) splits the original transition into two other transitions
and an intermediate Waiting state, thereby eliminating the postcondition.
The restructure method, in this case, drops its postcondition and puts the
MBA into the Waiting state. A new outgoing transition from the Waiting
state, leading to the original target state of the transition triggered by the
restructure method, has no event attached but rather has a precondition



4.3 Multilevel Predicates for Synchronization 97

annotated necessary and sufficient. Thus, as soon as every descendant not in
the Discontinued state is in the Canceled state, this necessary and sufficient
transition is triggered.

4.3.2 Horizontal Synchronization

Horizontal synchronization dependencies occur between MBAs that are not
in a concretization relationship. On the one hand, horizontal synchroniza-
tion involves individual MBAs. On the other hand, though, in many cases,
horizontal synchronization also involves an MBA relationship. In this sec-
tion, we introduce multilevel predicates for the representation of horizontal
synchronization dependencies.

The first class of horizontal synchronization dependencies consists of condi-
tions expressed over states and attributes of MBAs at parallel levels; Table 4.6
defines multilevel predicates for this kind of synchronization dependencies.
The isAtLevelSatisfies predicate is attached to a model element of an MBA
and allows for expressing a condition over the instance data of an argument
MBA at some argument level. From the isAtLevelSatisfies predicate derive
predicates isAtLevelInState and isAtLevelInStateAndSatisfies. All of the just
mentioned multilevel predicates require the argument level to be in the level
hierarchy of the MBA that the predicate is attached to, or in the level hier-
archy of another MBA that is connected with the MBA that the predicate is
attached to, in order to allow the macro preprocessor to determine the class
of the instance data ($$classOfLevel) at translation time, which is important
for type checking of the resulting OCL constraint. Multilevel predicates
isAtLevelSatisfies, isAtLevelInState, and isAtLevelInStateAndSatisfies, however,
are not exclusively reserved for horizontal synchronization but also allow
for expressing conditions over ancestor and descendant MBAs, although
multilevel predicates explicitly dedicated to vertical synchronization better
suit this purpose.

Figure 4.13 illustrates on the EU-Rent use case the application of horizontal
synchronization dependencies over parallel hierarchies. Assume an individual
rental in a country may only be opened if that particular country is currently
a target market of the EU-Rent company. MBA Rental, which represents the
rental business of the EU-Rent company, has parallel levels renterType and
country. The renterType level handles the creation of new MBAs at the rental
level, the openRental method triggering concretization. This openRental
method takes an MBA at the country level as argument. A precondition of



98 4 Multilevel Business Artifacts

Table 4.6: Multilevel predicates for synchronization over states and attributes of
parallel MBAs

predicate isAtLevelSatisfies(MBA, MBA, Level, Expression)
macro ‘mba’ simpleNameCS ‘=’ OclExpressionCS

‘is’ ‘at’ ‘level’ LevelExpCS ‘and’ ‘satisfies’ OclExpressionCS
define let $1 : $$classOfLevel($3) =

$2.instanceData.oclAsType($$classOfLevel($3))
in $4

predicate isAtLevelInState(MBA, MBA, Level, State)
macro ‘mba’ OclExpressionCS ‘is’ ‘at’ ‘level’ LevelExpCS

‘in’ ‘state’ StateExpCS
define mba o = $1 at level $2 satisfies

o.oclIsInState($3)

predicate isAtLevelInStateAndSatisfies
(MBA, MBA, Level, State, Expression)

macro ‘mba’ simpleNameCS ‘=’ OclExpressionCS
‘is’ ‘at’ ‘level’ LevelExpCS ‘in’ ‘state’ StateExpCS
‘and’ ‘satisfies’ OclExpressionCS

define mba $1 = $2 at level $3 satisfies
$1.oclIsInState($4) and $5

the transition triggered by the openRental method requires the argument
MBA to be at the country level and in the TargetMarket state.

Another class of horizontal synchronization dependencies concerns the
outgoing links of one MBA to another MBA over MBA relationships; Ta-
ble 4.8 defines multilevel predicates for this kind of synchronization dependen-
cies. Predicates everyLinkEndAtLevelSatisfies and someLinkEndAtLevelSatisfies,
which are attached to model elements of MBAs, require the instance data of
all or some MBA, respectively, at a given level connected with the context
MBA over an MBA relationship with a given label to satisfy a given condi-
tion in order to evaluate to true. Predicates everyLinkAtLevelSatisfies and
someLinkAtLevelSatisfies, on the other hand, require the instance data of all
or some MBA relationships, respectively, with a given label at a given rela-
tionship level connected with the context MBA to satisfy a given condition
in order to evaluate to true.

The last class of horizontal synchronization dependencies concerns MBA
relationships and consists of conditions expressed over states and attributes



4.3 Multilevel Predicates for Synchronization 99

‹ rental ›

Rental: ‹ business ›

‹ renterType ›

OnOffer

Opening

[mba country is at level ‹ country ›
in state TargetMarket]

openRental(id, country : MBA)
new (n | n.rentalId = id) under country

...

... ...

‹ country ›

TargetMarket... ...

Figure 4.13: MBA Rental with parallel hierarchies and horizontal synchronization
dependency

of the instance data of an MBA relationship’s coordinates. For this kind
of synchronization dependencies, Table 4.7 defines multilevel predicates
coordinateSatisfies, coordinateIsInState, and coordinateIsInStateAndSatisfies,
which are attached to model elements of MBA relationships. All of these
predicates take as additional parameter a level which identifies the coordinate
that the condition applies to. Therefore, valid argument levels are only those
levels that compose the relationship level attached to the predicate; predicates
coordinateSatisfies, coordinateIsInState, and coordinateIsInStateAndSatisfies
are for horizontal synchronization only. The coordinateSatisfies predicate
takes as additional parameter some condition over a coordinate of the MBA
relationship that the predicate is attached to. Predicates coordinateIsIn-
State and coordinateIsInStateAndSatisfies derive from the coordinateSatisfies
predicate. The coordinateIsInState predicate requires a specific coordinate
to be in a given state in order for the predicate to evaluate to true. The
coordinateIsInStateAndSatisfies predicate requires a specific coordinate to be
in a given state and satisfy some condition.

Figure 4.14 illustrates the use of multilevel predicates for the representation
of horizontal synchronization over the coordinates of an MBA relationship.
More specifically, the example illustrates the coordinateIsInState predicate,
using a graphical representation analogous to the graphical representation
of vertical state synchronization predicates (Figures 4.6 and 4.7). Assume a
renter may only pick up an assigned car if it is not occupied. Picking up the
car makes it unavailable for other customer whereas returning the car makes



100 4 Multilevel Business Artifacts

Table 4.7: Multilevel predicates for expressing conditions over the coordinates of
an MBA relationship

predicate coordinateSatisfies(MBARelationship, Level, Expression)
macro ‘coordinate’ simpleNameCS ‘at’ ‘level’ LevelExpCS

‘satisfies’ OclExpressionCS
define let $1 : $$classOfLevel($2) =

self.MBARelationship.coordiante->select(c |
c.topLevel = $2

).instanceData.oclAsType($$classOfLevel($2)) in $3

predicate coordinateIsInState(MBARelationship, Level, State)
macro ‘coordinate’ ‘at’ ‘level’ LevelExpCS ‘is’ ‘in’ ‘state’ StateExpCS
define coordinate o at level $1 satisfies

o.oclIsInState($2)

predicate coordinateIsInStateAndSatisfies
(MBARelationship, Level, State, Expression)

macro ‘coordinate’ simpleNameCS ‘at’ ‘level’ LevelExpCS
‘is’ ‘in’ ‘state’ StateExpCS ‘and’ ‘satisfies’ OclExpressionCS

define coordinate $1 at level $2 satisfies
$1.oclIsInState($3) and $4

it available. In the life cycle model at the ‹ renter, physicalEntity › level of
the MBA relationship between Rental and Car, the pickUp method triggers a
transition from the Opening to the Open state, having as precondition that
the coordinate at the physicalEntity level must be in the Free state. As a
postcondition, the transition triggered by the pickUp method requires the
coordinate at the physicalEntity level to be in the Occupied state. Similarly,
as a postcondition, the transition triggered by the return method requires
the coordinate at the physicalEntity level to be in the Free state.

In addition to horizontal synchronization over coordinates, Figure 4.14
illustrates the use of the isAtLevelInState predicate for expressing a condition
over the state of the instance data of an input MBA for the openRental
method at the ‹ renterType, model › level of the MBA relationship between
Rental and Car. Unlike in the previous example that employs the isAtLevelIn-
State predicate (Figure 4.13), the context of the use of this predicate is an
MBA relationship rather than an individual MBA. Though not a level of the
MBA relationship, the physicalEntity level is known to the MBA relationship
and the macro preprocessor is able to determine the class of this level from



4.3 Multilevel Predicates for Synchronization 101

Table 4.8: Multilevel predicates for expressing conditions over links

predicate everyLinkEndAtLevelSatisfies(MBA, Label, Level, Expression)
macro ‘every’ ‘end’ simpleNameCS ‘at’ ‘level’ LevelExpCS

‘of’ ‘link’ simpleNameCS ‘satisfies’ OclExpressionCS
define self.MBA.MBARelationship->select(r |

r.label = "$3"
).coordinate->select(c |
c.topLevel = $2
)->forAll(c |
let $1 : $$classOfLevel($2) =
c.instanceData.oclAsType($$classOfLevel($2))
in $4

)

predicate someLinkEndAtLevelSatisfies(MBA, Label, Level, Expression)
macro ‘some’ ‘end’ simpleNameCS ‘at’ ‘level’ LevelExpCS

‘of’ ‘link’ simpleNameCS ‘satisfies’ OclExpressionCS
define self.MBA.MBARelationship->select(r |

r.label = "$3"
).coordinate->select(c |
c.topLevel = $2
)->exists(c |
let $1 : $$classOfLevel($2) =
c.instanceData.oclAsType($$classOfLevel($2))
in $4

)

predicate everyLinkAtLevelSatisfies
(MBA, Label, RelationshipLevel, Expression)

macro ‘every’ ‘link’ simpleNameCS ‘labeled’ simpleNameCS
‘at’ ‘level’ RelationshipLevelExpCS ‘satisfies’ OclExpressionCS

define self.MBA.MBARelationship->select(r |
r.label = "$2" and r.topLevel = $3

)->forAll(r |
let $1 : $$classOfLevel($3) =
r.instanceData.oclAsType($$classOfLevel($3))
in $4

)

(continues on next page)



102 4 Multilevel Business Artifacts

Table 4.8 (continued): Multilevel predicates for conditions over links

predicate someLinkAtLevelSatisfies
(MBA, Label, RelationshipLevel, Expression)

macro ‘some’ ‘link’ simpleNameCS ‘labeled’ simpleNameCS
‘at’ ‘level’ RelationshipLevelExpCS ‘satisfies’ OclExpressionCS

define self.MBA.MBARelationship->select(r |
r.label = "$2" and r.topLevel = $3

)->exists(r |
let $1 : $$classOfLevel($3) =
r.instanceData.oclAsType($$classOfLevel($3))
in $4

)

the associated coordinate MBA. In this example, however, the classification
of this particular use of the isAtLevelInState predicate purely as horizontal
synchronization is disputable.

4.3.3 Hybrid Synchronization

We refer as hybrid synchronization to those dependencies that bear char-
acteristics of both vertical and horizontal synchronization. The vertical
synchronization dependencies in the previous section were limited to express-
ing conditions over the top-level data of the connected MBAs and MBA
relationships. For example, the MBA relationship in Figure 4.14 between
MBAs Rental and Car employs at the ‹ renter, phyisicalEntity › level the
coordinateIsInState predicate for expressing a condition over the physical-
Entity-level life cycle model of MBA Car as the pre-condition for the pickUp
method. An instance of the ‹ renter, phyisicalEntity › level of this MBA
relationship evaluates the predicate over the top-level instance data of the
connected MBA, requiring this MBA to be in the Free state in order to
evaluate to true. In practical situations, modelers may also be interested in
expressing conditions over the instance data of ancestors or descendants of
connected MBAs and MBA relationships. For example, instead of requiring
the physicalEntity coordinate to be in the Free state, the pre-condition might
require the model-level ancestor of the physicalEntity coordinate to be in a
particular state. The same scenario applies analogously to synchronization
dependencies over the link ends of MBAs.



4.3 Multilevel Predicates for Synchronization 103

rent

Car : ‹ vehicleType ›

‹ physicalEntity ›

Rental : ‹ business ›

‹ renterType ›

‹ renter ›

‹ model ›

Free rent Occupied

return

‹ renter, physicalEntity ›

‹ renterType, model ›

Available retract Unavailable terminate

[mba car is at level ‹ physicalEntity › in state Free]
openRental(id, renter, car)

new relationship (r | r.rentalId = id) between renter and car

SettlingOpening pickUp Open return Closedclose

Terminated

Figure 4.14: The MBA relationship from Figure 4.5 extended with horizontal
synchronization dependencies over coordinates

In this book, we will not delve into the details of hybrid synchronization
dependencies since the principles for the definition of corresponding multilevel
predicates have already been discussed at great lengths in the previous
sections. Although of practical importance for many business cases, the
definition of such predicates does not present any particular challenges
worth investigating here. The definition of multilevel predicates for hybrid
synchronization does not differ qualitatively from the definition of multilevel
predicates for vertical and horizontal synchronization. Rather, multilevel
predicates for hybrid synchronization may be seen as a combination of
the concepts for vertical and horizontal synchronization. The definition
of predicates for hybrid synchronization is thus left as an exercise to the
interested reader.



104 4 Multilevel Business Artifacts

MULTILEVEL PREDICATES IN O-TELOS
With an O-Telos formalization of MBAs, managed in the ConceptBase,
multilevel predicates may be realized using query classes which return all
instances of a specific class that satisfy a given membership condition [54,
p.32 et seq.]. Generic query classes take additional parameters which are
instantiated at query time. Consider, for example, the following generic
query class which retrieves all MBAs that have every descendant at the
argument level in the argument state.

GenericQueryClass EveryDescendantAtLevelIsInState
isA MBA with
parameter
level: Level;
state: State
constraint
everyDescendantAtLevelIsInStateRule: $
forall descendant/MBA t/MBA!topLevel obj/Object
(descendant descendantOf ~this) and
From(t,descendant) and To(t,~level) and
(t object obj)
==> (obj isInState ~state)

$
end



5 Hetero-Homogeneous Business
Process Models

Today’s dynamic business environment demands from companies variable
and flexible processes. Rather than imposing a single fixed process, process
models must account for the variability of real-world business problems.
For example, in the car rental business, a company might handle rentals of
private renters differently from rentals of corporate renters. At the same
time, the company might impose a common process model which applies
to rentals of private and corporate renters alike. Then, the process models
for private and corporate renters are variants of the common process model.
Furthermore, a process model should cater for the possibility of process
owners deviating from the standard process under specific circumstances.

In this chapter, we propose a hetero-homogeneous approach to modeling
business process variability and flexibility, revised and extended from previous
work [111, 114]. We employ the multilevel business artifact (MBA) in order
to represent within a single object the homogeneous schema of an abstraction
hierarchy of business processes. We employ multilevel concretization for
the introduction of heterogeneities into well-defined sub-hierarchies which,
although basically compliant with the homogeneous global schema, offer
to a certain degree much needed flexibility in situations that necessitate a
deviation from standard processes. In order to allow for hetero-homogeneous
business process modeling, we adapt the MBA metamodel as introduced
in Chapter 4 by allowing the introduction of additional model elements in
concretizations. We further investigate the possibility of different variants
within the same level, yielding to the association of an entire specialization
hierarchy of classes (and life cycle models) with a single level.

5.1 Multilevel Business Artifact Hierarchies
A single MBA is a hierarchically-ordered collection of artifact-centric business
process models, a multilevel business process model. Using concretization,
MBAs are themselves hierarchically organized, yielding a hierarchy of multi-

C. G. Schuetz, Multilevel Business Processes, 
DOI 10.1007/978-3-658-11084-0_5, © Springer Fachmedien Wiesbaden 2015



106 5 Hetero-Homogeneous Business Process Models

level business process models. In such a hierarchy, a more concrete MBA,
with respect to its abstraction, describes a specialized multilevel business
process model applicable to a sub-domain.

5.1.1 Concretization with Simple Hierarchies
In homogeneous multilevel business process models (see Chapter 4), multi-
level concretization merely serves as an indication of aggregate membership,
with the more concrete MBAs reduced to their object facet; the introduction
of model elements or abstraction levels is prohibited in the course concretiza-
tion. In hetero-homogeneous multilevel business process models, however, a
more concrete MBA – the concretization – may introduce additional model
elements and abstraction levels with respect to the more abstract, concretized
MBA – the abstraction. The introduction of additional model elements
follows well-defined rules: Newly introduced classes and state machines must
specialize the inherited model elements at the respective level.

Figure 5.1 illustrates the use of multilevel concretization for the introduc-
tion of heterogeneities in a particular sub-hierarchy; the example derives
from the EU-Rent use case [90] and previous work [114]. The EU-Rent
company is active in the car rental business. The company manages business
related to different renter types as well as individual rentals under a specific
renter type. MBA Rental represents the company’s rental business as a
whole and describes the business process models related to managing renter
types and individual rentals. For the management of the private renter type
and its associated rentals, the company captures additional data and follows
a specialized business process model. As a concretization of Rental, MBA
Private at the renterType level represents the private renter type as well as a
sub-hierarchy within the multilevel business process model. MBA Private
inherits from its abstraction the classes and state machines attached to the
different levels. At the same time, MBA Private specializes the inherited
classes and state machines, capturing additional data as well as having
additional states, transitions, and synchronization dependencies.

MBA Rental has levels business, renterType, and rental. The business level
describes the life cycle model of the rental business as a whole, going from
Establishing over Running to Abandoned. The renterType level describes the
life cycle model of each renter type, going from InDevelopment over OnOffer
to Canceled and Discontinued. The rental level describes the life cycle model
of each individual rental, going from Opening over Open to Closed. At the
business level, in the Establishing state, invocation of the createRenterType



5.1 Multilevel Business Artifact Hierarchies 107

method creates a new descendant at the renterType level. In the Running
state, invocation of the abandon method puts the business into the Abandoned
state and all descendant MBAs at the renterType level that are not in the
Discontinued state into the Canceled state. At the renterType level, in the
InDevelopment state, invocation of the launch method puts a renter type
into the OnOffer state, provided the business-level ancestor is in the Running
state. While OnOffer, invocation of the openRental method creates a new new
individual rental underneath the respective renter type. Invocation of the
cancel method puts a renter type into the Canceled state and all descendant
MBAs at the rental level previously not in the Opening state into the Closed
state. In the Canceled state, invocation of the discontinue method puts a
renter type into the Discontinued state, provided all descendant MBAs at
the rental level are in the Closed state. At the rental level, in the Opening
state, invocation of the pickUp method puts the individual rental into the
Open state, provided the renterType-level ancestor is in the OnOffer state.
Invocation of the close method allows for the closing of the rental before the
actual pick-up of the car.

MBA Private inherits from Rental the levels renterType and rental as
well as the associated model elements. In the graphical representation
(Figure 5.1), inherited attributes are not shown; inherited states, transitions,
and synchronization dependencies are shown in gray color. With respect to
Rental, MBA Private describes a more detailed multilevel business process
model, the state machines associated with the individual levels of MBA
Private being observation-consistent specializations [125, 108] of the state
machines associated with the respective levels of MBA Rental. At the
renterType level of MBA Private, the state machine has a refined OnOffer
state with sub-states Active and PhasingOut. At the rental level, the class
additionally captures bad experiences (attribute badExperiences), the state
machine has a refined Opening state, with sub-states RateFixing, CarChoosing,
and Ready, a refined Open state, with sub-states Moving and Returning, as
well as a refined Closed state with sub-states Returned, Settled, Canceled,
and Archived. Furthermore, at the rental level, the state machine introduces
the Evaluating state parallel to the Open state. Also, there are specialized
synchronization dependencies in the state machines of MBA Private, meaning
that the inherited pre- and postconditions are strengthened. At the renter-
Type level of MBA Private, the post-condition of the cancel method in the
OnOffer state requires all descendants at the rental level previously not in
the Opening state to be in the Canceled state after invocation of the method.
This postcondition is a refinement of the post-condition in MBA Rental



108 5 Hetero-Homogeneous Business Process Models

+ maximumRate = 150

Private: ‹ renterType ›

OnOffer

+ badExperiences: String [*]

‹ rental ›

Opening

+ name : String
+ maximumRate : Number

‹ renterType ›

+ rentalId : String
+ rate : Number
+ assignedCar : Car

‹ rental ›

Rental: ‹ business ›

Establishing open Running

OnOffer cancelInDevelopment launch

Opening

DiscontinuedCanceled

createRenterType(name)

discontinue

setMaximumRate

pickUp Open return

openRental(id)

assignCar

Closed

setRate(rate)

new (n | n.name = name)

new (n | n.rentalId = id)

concretization of

abandon Abandoned

o : not o.oclIsInState(Discontinued)

close

o : o.oclIsInState@pre(Opening) 

InDevelopment launch

Discontinued

Canceled

discontinue

setMaximumRate

pickUp

Open Closed

Settled

Canceled

Returned settle

close

return

Evaluating

addBadExperience
Archivedarchive

archive

RateFixing CarChoosingsetRate ReadyassignCar

Moving enterBranch Returning

Active phaseOut PhasingOut

openRental(id)

cancel

o : o.oclIsInState@pre(Opening) 

new (n | n.rentalId = id)

Figure 5.1: MBA Rental for the management of a company’s car rental business
and a concretization for the management of private rentals



5.1 Multilevel Business Artifact Hierarchies 109

that requires all descendants at the rental level to be in the Closed state
after invocation of the cancel method since MBA Private, at the rental level,
introduces Canceled as a sub-state of Closed. Similarly, at the renterType
level, the pre-condition of the discontinue method in the Canceled state
requires all descendants at the rental level to be in the Archived state and,
thus, is a refinement of the corresponding pre-condition in MBA Rental
which requires all descendants to be in the Closed state; the Canceled state
is introduced as a sub-state of Closed.

Besides specializing data and life cycle models of inherited levels, a con-
cretization may introduce a whole new level altogether, provided this level
does not become the concretization’s top level (see the core m-object meta-
model in Chapter 3). Figure 5.2 illustrates MBA Corporate at the renterType
level as a concretization of MBA Rental (Figure 5.1). Inherited attributes,
states, transitions, and synchronization dependencies are shown in gray
color. MBA Corporate represents the corporate renter type itself as well as
describing data and life cycle model of individual rentals under the corporate
renter type. These corporate rentals, unlike private rentals, are part of a
corporate rental agreement, represented by the newly introduced agreement
level of MBA Corporate between renterType and rental. A rental agreement
has an agreement identifier (attribute agreementId), a set of negotiated rental
rates (negotiatedRates), and during its life cycle, an agreement goes from
being UnderNegotiation over InEffect to Dissolved.

The introduction of a new abstraction level in MBA Corporate entails at
the inherited abstraction levels an introduction of new transitions and the
modification of inherited transitions as well as a redefinition of inherited
pre- and postconditions. At the renterType level, the OnOffer state has
an additional transition triggered by the negotiateAgreement method, the
invocation of which creates a new descendant at the agreement level. As in
MBA Rental, the OnOffer state has a transition triggered by the openRental
method, the invocation of which creates a new descendant at the rental level.
In MBA Corporate, at the renterType level, the transition triggered by the
openRental method has a refined post-condition and an additional parameter
with respect to the life cycle model defined by MBA Rental. Although still
applicable, satisfying the original post-condition alone will not suffice in
order to obtain a valid concretization at the rental level. Since all individual
rentals under the corporate renter type must belong to a rental agreement,
a descendant of MBA Corporate at the rental level must be a descendant
of some MBA under MBA Corporate at the agreement level as well. Thus,
the refined post-condition requires the new MBA to be a descendant under



110 5 Hetero-Homogeneous Business Process Models

concretization of

Rental : ‹ business ›

‹ renterType ›

‹ rental ›

+ maximumRate = 250

Corporate : ‹ renterType ›

+ rentalId : String
+ rate : Number
+ assignedCar : Car

‹ rental ›

OnOffer cancelInDevelopment launch

Opening

DiscontinuedCanceled discontinue

setMaximumRate

pickUp Open return

[mba agreement 
at level ‹ agreement ›
is in state InEffect]

openRental(id, agreement)

assignCar

Closed

[ancestor a at level ‹ agreement › satisfies a.negotiatedRates->includes(rate)]
setRate(rate)

close

+ agreementId : String
+ negotiatedRates : Number [1..*]

‹ agreement ›

negotiateAgreement(id)

new (n | n.rentalId = id)
under agreement

o : o.oclIsInState@pre(Opening) 

new (n | n.agreementId = id)

InEffect dissolveUnderNegotiation conclude Dissolved

addRentalRate

Figure 5.2: MBA Corporate for the management of corporate rentals as a con-
cretization of MBA Rental



5.1 Multilevel Business Artifact Hierarchies 111

the argument MBA passed for the agreement parameter. Furthermore, the
newly introduced pre-condition of the transition triggered by the openRental
method restricts the value of the agreement parameter to MBAs at the
agreement level that are in InEffect.

Notice that the MBA Corporate inherits a synchronization dependency
between renterType and rental level, stating at the renterType level that
in the Canceled state, the invocation of the discontinue method requires
all descendants at the rental level to be in the Closed state. Furthermore,
MBA Corporate introduces two synchronization dependencies which together
represent a refinement of the former synchronization dependency. First, at
the renterType level, the invocation of the discontinue method requires all
descendants at the agreement level to be in the Dissolved state. Second, at
the agreement level, while InEffect, the invocation of the dissolve method,
which puts the agreement into the Dissolved state, requires all descendants at
the rental level to be in the Closed state. Thus, when an agreement is in the
Dissolved state, all its descendants at the rental level already are in the Closed
state. Then, at the renterType level, the requirement that all descendants
at the agreement level be in the Dissolved state subsumes the requirement
that all descendants at the rental level be in the Closed state. In practice,
however, deducing subsumption between synchronization dependencies may
be costly. Therefore, replacing inherited synchronization dependencies with
their refinements may be impracticable. Rather, inherited synchronization
dependencies are kept in the specialized state machine. The specialization of
a state machine may only strengthen pre- and postconditions [125, p. 538],
which is equivalent to appending to the original constraint an additional
condition using logic conjunction; the Eiffel language [73, p. 578 et seq.]
employs a similar solution for checking subsumption between logic expres-
sions. In the graphical representation, of course, modelers may wish to
omit inherited synchronization dependencies that are subsumed by newly
introduced synchronization dependencies.

Formally, as opposed to the MBA metamodel for homogeneous business
process models (see Chapter 4), the MBA metamodel for hetero-homogeneous
models (Figure 5.3), while leaving other elements unchanged, allows for an
MBA to possibly associate multiple classes and state machines with each level.
An MBA may introduce a single class and life cycle model per level and may
inherit multiple classes and life cycle models from its ancestors (Figure 5.4).
The introduction of classes and life cycle models, however, is not arbitrary
but follows well-defined rules. First, the classes that an MBA associates
with a particular level must be organized in a specialization hierarchy with



112 5 Hetero-Homogeneous Business Process Models

+ ancestor(level : Level) : MBA [0..1]
+ descendants(level : Level) : MBA [*]
+ classOfLevel(level : Level) : Class [0..1]

MBA
1..**

+ /level
Level

MBAToLevel

+ /parentLevel

*

0..1

+ /element
{union}

2..* *

{redefines abstraction}
+ abstraction

0..1

+ concretization
{redefines
concretization}

*

Element

Class StateMachineObject

MultilevelObject

MObjectToLevel

*

1..*
+ /lifeCycleModel
{subsets element}

*

1..* + /dataModel
{subsets element}

+ /instanceData
{subsets element}

0..1

1

+ context
1 1

+ classifier
1*

+ /instanceData
1

1

Figure 5.3: Adaptation for hetero-homogeneous modeling of the MBA metamodel
in Figure 4.1 (Metaclass IndividualMBA omitted)

a single root (Rule 5.1); a new class may then only be introduced as a leaf
node in this specialization hierarchy (Rule 5.2). Second, the corresponding
state machines of two classes that are in a specialization relationship must
be in a specialization relationship as well (Rule 5.3). Thus, the data and life
cycle models associated with the different levels are guaranteed to specialize
along a particular path in the concretization hierarchy.

The class hierarchy within a level follows the abstract superclass rule [50]
which requires that only leaf nodes of the hierarchy are instantiable classes.
For a non-top level of an MBA, all associated classes must be abstract
(Rule 5.4). At the top level, however, there exists a single non-abstract class
(Rule 5.5). This non-abstract class must be a leaf node. This follows from
the metamodel, which allows the introduction of only a single class at each
level, and Rule 5.2, which permits the introduction of new classes only as
leaf nodes, as well as Rule 5.4, which implies that all inherited classes are
abstract. The classOfLevel method returns the leaf node of the specialization
hierarchy (Rule 5.6).

Figure 5.5 illustrates a simplified and slightly adapted metamodel for UML
state machines. According to this metamodel, a state machine (metaclass
StateMachine) consists of a region (metaclass Region). A region consists of
transitions and vertices. A Transition instance refers to a source and a target



5.1 Multilevel Business Artifact Hierarchies 113

Rule 5.1: A level’s data models are arranged in a specialization hierarchy with a
single root
1 context MBAToLevel inv:
2 self.dataModel->select(r |
3 r.general->isEmpty() and
4 self.dataModel->excluding(r)->forAll(s |
5 s.general->closure(general)->includes(r)
6 )
7 )->size() = 1

Rule 5.2: A newly introduced class must be a leaf node in the class hierarchy
1 context MBAToInheritedLevel inv:
2 self.newDataModel.general->forAll(c |
3 not self.inheritedDataModel->exists(i |
4 i.general->includes(c)
5 )
6 )

Rule 5.3: A specialized class’ life cycle model is the specialization of the general
class’ life cycle model
1 context MBAToLevel inv:
2 self.dataModel->forAll(c1, c2 |
3 let s1 : StateMachine =
4 self.lifeCycleModel->any(s |
5 s.context = c1
6 ) in
7 let s2 : StateMachine =
8 self.lifeCycleModel->any(s |
9 s.context = c2

10 ) in
11 c1.general->includes(c2) implies
12 s1.extendedStateMachine = s2
13 )



114 5 Hetero-Homogeneous Business Process Models

LevelMBA
**

+ introducedLevel

MBAToIntroducedLevel
+ /element
{union, redefines element}

2..3 0..1Element

Class StateMachineObject

+ lifeCycleModel
{subsets element}

0..1

+ instanceData
{subsets element} 0..1

0..1

+ dataModel
{subsets element}1

0..1

1

MObjectToIntroducedLevel

(a) introduced levels

LevelMBA
**

+ /inheritedLevel

MBAToInheritedLevel

+ /newElement
2..3 0..1

Element

MObjectToInheritedLevel

Object

+ newInstance-
Data
{subsets
newElement}

0..1

0..1

{union, redefines newElement}

+ /inherited-
Element

2..* *

{union, redefines inheritedElement}

Class

+ newData-
Model
{subsets
newElement}

0..1

1
+ /inherited-

DataModel
{subsets
inherited-
Element}

*

1..*

StateMachine

+ newLife-
CycleModel
{subsets
new-
Element}

0..1

1
+ /inherited-

LifeCycle-
Model
{subsets
inherited-
Element}

*

1..*

(b) inherited levels

Figure 5.4: The data attached to a hetero-homogeneous MBA’s introduced and
inherited levels as a specialization of the core metamodel for m-objects

vertex. A transition references an Operation as instance, the operation must
be a method of the state machine’s context class. A transition may also refer
to multiple constraints (metaclass Constraint) as pre- and post-conditions.
The constraint language may be chosen arbitrarily; we use OCL as the
constraint language. The Vertex metaclass subsumes states in the proper
sense (metaclass State) and pseudo states (metaclass Pseudostate), that is,
forks, joins, and so on. An instance of State may have multiple subregions
which consist again of vertices. When referring to the states of a state



5.1 Multilevel Business Artifact Hierarchies 115

machine, we mean the states of the state machine’s main region as well
as all states in the transitive closure of the sub-states of the states in the
main region. Similarly, when referring to the transitions of a state machine,
we mean the transitions of the state machine’s main region as well as the
transitions in the regions of states in the transitive closure of the sub-states
of the states in the main region. When using the term “state”, we usually
mean the non-pseudo states of a state machine.

The UML standard provides for a mechanism for state machine special-
ization. The extendedStateMachine association end of the StateMachine
metaclass represents the specialization relationship between state machines.
An outgoing extendedStateMachine association end of a StateMachine instance
links to the more general state machine of which the former state machine
is a specialization. The metaclasses Region, State, Transition, and Operation
are specializations of RedefinableElement. The redefinition relationships
extendedRegion, redefinedState, redefinedTransition and redefinedOperation
define mappings between specialized elements and their corresponding ele-
ments in the more general state machine. For multilevel concretization of
MBAs with simple hierarchies, multiple specialization of state machines is
no possibility. Thus, for simplicity, we do not allow multiple specialization
in the state machine metamodel.

The employed semantics for behavior-consistent specialization determines
the possibilities for extension and refinement of an MBA’s life cycle models
in the course of multilevel concretization. Various notions for behavior
consistency exist in the literature [125, 108, 3], differing in the degree of
freedom offered to the modeler with respect to the possibilities for extension
and refinement. In general, invocation-consistent specialization denotes a
specialization mechanism which results in the specialized life cycle model
being executable in the same fashion as the more general life cycle model,
imposing a rather strict specialization regime. Compared to invocation
consistency, observation consistency is less strict with a higher degree of
freedom offered to the modeler, possibly at the cost of incompatibility with
applications relying on invocation consistency. Observation-consistent spe-
cialization denotes a specialization mechanism which results in the specialized
life cycle model, with all refined states and transitions considered unrefined
and all extensions disregarded, being observable in the same fashion as the
more general life cycle model. In this book, we employ a specific notion
of observation consistency, although we stress that the employed notion
of behavior consistency may vary between applications, depending on the
desired degree of freedom for concretization.



116 5 Hetero-Homogeneous Business Process Models

Rule 5.4: A non-top level’s data models are abstract classes
1 context MBA inv:
2 self.MBAToLevel->reject(m |
3 m.level = self.topLevel
4 ).dataModel->forAll(c |
5 c.isAbstract
6 )

Rule 5.5: The top level has a single non-abstract class
1 context MBA inv:
2 self.MBAToLevel->select(m |
3 m.level = self.topLevel
4 ).dataModel->select(c |
5 not c.isAbstract
6 )->size() = 1

Rule 5.6: The class of a level is the most specific data model in that level’s class
hierarchy
1 context MBA::classOfLevel(level : Level) : Class
2 derive:
3 let mbaToLevel : MBAToLevel =
4 self.MBAToLevel->select(l |
5 l.level = level
6 ) in
7 mbaToLevel.dataModel->select(c : Class |
8 not mbaToLevel.dataModel->exists(s : Class |
9 s.general = c

10 )
11 )



5.1 Multilevel Business Artifact Hierarchies 117

1

0..1

+ region

Region

+ stateMachine

Vertex

State

+ region
{seq}

*

0..1

0..1

Transition + source+ /outgoing
1*

+ target+ /incoming
1*

+ container

+ container
1

Constraint

+ preCondition
0..1*

+ postCondition
0..1*

Operation

+ trigger

*

0..1

+ subvertex

+ transition

*

*

+ state
Pseudostate

+ extendWithParallelRegion(vertices : Vertex[1..*], parallelRegion : Region) : State
+ refineState(state : State, region : Region) : State
+ refineTransition(transition : Transition, newSource : Vertex, newTarget : Vertex, 

newOperation : Operation, additionalPreCondition : Constraint, 
additionalPostCondition : Constraint) : Transition

StateMachine

+ context
Class

Property

+ class
0..1

+ owned-
Operation

+ extendedStateMachine0..1
*

*

*+ attribute

+ extendedRegion

0..1

*

* 0..1
+ redefinedState

+ redefinedTransition

0..1
*

0..1

+ class
0..1

1

0..1
*

+ redefined-
Operation

0..1
*

+ redefinedProperty

Figure 5.5: The state machine metamodel (adapted and extended from the UML
standard [88, p. 536]) with reflection pattern methods

In the previous examples, the state machines associated with the levels of
concretizing MBAs are observation-consistent specializations with respect
to the abstractions. The employed notion of observation consistency allows
for the refinement of states through addition of sub-states. Transitions may
have source and/or target state refined, replacing either state by a sub-state
of the original. Furthermore, parallel regions may be added, splitting the life
cycle at some point using a fork. Note that according to the UML standard,
redefinition of transitions allows refinement only for the source state. Unlike
the UML standard, we allow for the refinement of a transition’s source state.

We define a notion of observation consistency adapted from the definition
of Stumptner and Schrefl [125]. Let sc = (S, T ) and sc′ = (S′, T ′) be
UML state machines with S, S′ sets of their non-pseudo states, T, T ′ sets of
their transitions, and sc’.extendedStateMachine = sc. The function



118 5 Hetero-Homogeneous Business Process Models

h : S′ ∪ T ′ → S ∪ T ∪ {ε} maps the states and transitions of sc′ to states and
transitions of sc according to object identity and redefinition relationships.
For every element e′ ∈ S′∪T ′ without correspondence in S∪T holds h(e′) = ε,
the empty set. The function g : P(S′) ∪ P(T ′) → P(S ∪ {ε}) ∪ P(T ∪ {ε})
returns for any set {e′

1, . . . , e′
n} ∈ P(S′) ∪ P(T ′) the corresponding set

{h(e′
1), . . . , h(e′

n)}. Let tr′ = τ ′
1, σ′

1, . . . , τ ′
n, σ′

n be an arbitrary life cycle
trace of the state machine sc′, where τ ′

i ⊆ T ′ and σ′
i ⊆ S′ for i = 1 . . . n. Let

tr′/sc = [g(τ ′
1), g(σ′

1), . . . , g(τ ′
n), g(σ′

n)] be the restriction of tr′ to the state
machine sc. The state machine sc′ is an observation-consistent specialization
of sc if, and only if, for every life cycle trace tr′ the restriction tr′/sc is a valid
life cycle trace of sc, disregarding any g(τ ′

i) = {ε} where g(σ′
i−1) = g(σ′

i+1).
Consider, for example, the rental-level state machines of MBAs

Rental (sc) and Private (sc′) in Figure 5.1. The life cycle trace
tr′ = [{tinit} , {RateF ixing}, {tsetRate} , {CarChoosing}, {tassignCar} ,
{Ready}, {tpickUp, tfork1, tfork2}, {Moving, Evaluating}, {tenterBranch} ,
{Returning, Evaluating}, {taddBadExperience} , {Returning, Evaluating},
{tjoin1, tjoin2, treturn}, {Returned}, {tsettle} , {Settled}, {tarchive} ,
{Archived}] is a valid life cycle trace of sc′. The RateFixing, CarChoosing,
and Ready states map to the Opening state. The Moving and Returning
states map to the Open state. The Evaluating state maps to the empty set ε.
The Returned, Settled, and Artchived states map to the Closed state. The
tenterBranch, taddBadExperience, tsettle, and tarchive transitions map to the
empty set ε. In the restriction tr′/sc = [{tinit} , {Opening} , {tsetRate} ,
{Opening} , {tassignCar} , {Opening}), {tpickUp} , {Open} , {ε} , {Open} ,
{ε} , {Open} , {treturn} , {Closed} , {ε} , {Closed} , {ε} , {Closed}] are
four empty-set entries but since in all of these cases the previous and the
following set of states are equal, the restriction tr′/sc is nevertheless a valid
life cycle trace of the state machine sc′.

We hold a data-centric view on state machines: The transitions of a state
machine represent manipulation operations on the corresponding data object.
We further adopt the zero-time assumption for these manipulation operations.
Manual tasks with non-zero execution time carried out by humans or time-
consuming data processing tasks must be modeled as separate states. The
MBA modeling approach, however, supports the zero-time and non-zero
time assumption alike. The abandoning of the zero-time assumption has
implications on the employed definition of observation consistency.

We stress that the employed life cycle modeling formalism, the time model,
and the notion of behavior consistency are orthogonal concerns to the MBA
modeling approach. Specific applications may opt for another modeling



5.1 Multilevel Business Artifact Hierarchies 119

language, for example, Petri nets, adopt a non-zero time model for the
execution of transitions, and define stricter or looser notions of behavior
consistency. The decision for a particular notion of behavior consistency, for
example, depends on the specific purpose of a particular MBA model. A focus
on the enforcement of top-down compliance with business policies requires
adherence to the rules of (at least) observation-consistent specialization.
Likewise, for analysis purposes, observation consistency is a sufficiently strong
notion of behavior consistency. From a software engineering perspective,
however, with a focus on code reusability, invocation consistency may seem
more appropriate.

Since MBA relationships are a special kind of MBAs, the statements in this
section equally apply to the concretization of MBA relationships. An MBA
relationship may specialize data and life cycle models of inherited levels or
introduce an additional relationship level altogether. For the specialization
of life cycle models, concretizations of MBA relationships must also adhere
to the employed notion of behavior consistency.

5.1.2 Concretization with Parallel Hierarchies
The possibility of parallel hierarchies in hetero-homogeneous business process
models introduces the issue of multiple inheritance. Different MBAs at
parallel levels may specialize independently from each other an inherited
life cycle model for a given level. Through multiple concretization, an
MBA may then concretize these parallel MBAs and inherit all the life cycle
models from each abstraction, including the adaptations made by these
abstractions. These adaptations, however, may be incompatible with each
other, defining contradicting specializations which must be resolved explicitly
by the concretization. For an in-depth analysis on multiple inheritance we
refer to related work on object behavior diagrams [108, p. 124 et seq.].

In order to avoid potential conflicts in connection with multiple inheritance,
in the case of parallel paths in a level hierarchy, only MBAs in one of the
parallel paths may be allowed to specialize the inherited life cycle model for a
particular level. Consider, for example, an MBA Rental with business as the
top level. The child levels of business are renterType and country. The rental
level has both renterType and country as parent levels. An MBA Private
at the renterType level may concretize Rental and specialize the rental-level
life cycle model. A rental-level MBA that concretizes Private must then
concretize a country-level MBA that does not specialize the rental-level life
cycle model with respect to MBA Rental. Conversely, a rental-level MBA



120 5 Hetero-Homogeneous Business Process Models

that concretizes a country-level MBA specializing the rental-level life cycle
model must not concretize MBA Private.

As an alternative, in the case of parallel paths in a level hierarchy, MBAs
in different paths may be allowed to specialize only orthogonal regions of
an inherited life cycle model for a particular level. Consider again an MBA
Rental with levels business, renterType, country, and rental, where renterType
and country are both child levels of renterType. An MBA Private at the
renterType level may then refine the Opening state of the inherited rental-level
life cycle model whereas an MBA Austria at the country level may refine
the Closed state of the same inherited life cycle model. These changes are
orthogonal, a rental-level MBA may safely concretize both MBA Private and
MBA Austria.

5.1.3 Incremental Evolution through Reflection
Concretization is not a one-shot activity. Rather, concretization itself is an
incremental process. Consider, for example, MBA Corporate in Figure 5.6a
and assume this MBA inherits its levels as well as the data and life cycle
models from another, more abstract MBA. Initially, right after its creation,
MBA Corporate has only the inherited data and life cycle models, is in
the InDevelopment state, and has Null values assigned to the top-level
attributes, as shown in Figure 5.6a. While InDevelopment, a value is assigned
to the maximumRate attribute. Furthermore, the inherited data and life
cycle models are specialized, and an additional level is introduced. The
invocation of the launch methode terminates the InDevelopment phase and
puts MBA Corporate into the OnOffer state (Figure 5.6b). In this state,
the maximumRate attribute at the top level has a value assigned. The data
and life cycle models differ from the inherited models. In particular, the
rental-level data model contains an additional businessAddOns attribute and
the Opening state at the rental level was refined during the InDevelopment
phase. The agreement level was introduced between renterType and rental.

By modeling transitions with reflective methods as trigger, modelers may
explicitly define the amount of flexibility for the adaptation of business
process models at run time. Reflective methods represent modifications at
run time of the data and life cycle model. In this sense, the MBA metapro-
cess activities capture the requirements engineering process in the spirit of
evolutionary objects [100], albeit in a more prescriptive way. When directly
implemented, the inclusion of reflective methods also presents characteristics
of the models@run.time paradigm [15, 14], which champions a causal connec-



5.1 Multilevel Business Artifact Hierarchies 121

+ rentalId : String
+ rate : Number

‹ rental ›

+ maximumRate = null

Corporate : ‹ renterType ›

OnOffer

Settling

cancel

InDevelopment launch

Opening

Canceled

setMaximumRate

pickUp Open

return

openRental

Closed

close

setRate

(a) InDevelopment

+ rentalId : String
+ rate : Number
+ businessAddOns [0..*]

‹ rental ›

+ maximumRate = 320

Corporate : ‹ renterType ›

OnOffer

Settling

cancel

InDevelopment launch

Opening

Canceled

pickUp

Open

return

openRental

Closed

close

+ agreementId : String
+ negotiatedRates : Number [1..*]

‹ agreement ›

InEffect

dissolve

UnderNegotiation conclude

Dissolved

addRentalRate

RateFixing

setRate

ChooseAddOns

fixRate

chooseAddOn

setMaximumRate

(b) OnOffer

Figure 5.6: Changes in an MBA’s data and life cycle models from one state to
another (adapted from previous work [111])

tion between model and implementation, allowing for changes on the model
to directly propagate to the implementation. The MBA modeling approach
in conjunction with reflective methods generalizes for multiple levels of
abstraction the two-tier framework for handling flexibility in artifact-centric
business process models [65], which consists of the business process model
itself and a process design entity.

For state machines, there exist two kinds of reflective methods, namely
reflective CRUD and redefinition methods. Reflective CRUD (= Create,
Read, Update, Delete) methods allow for the dynamic creation, querying,
and manipulation at run time of instances of the state machine metamodel.



122 5 Hetero-Homogeneous Business Process Models

In other words, reflective CRUD methods are getter and setter methods of
metaclasses. Redefinition methods, on the other hand, represent behavior-
consistent specialization patterns. Each redefinition method is a combination
of reflective CRUD methods which extends and refines a state machine with
respect to its base state machine. The StateMachine class in Figure 5.5 has
three redefinition methods. The extendWithParallelRegion function takes a
number of vertices from the state machine as argument – the states must
belong to the same region – as well as a new region that is to be inserted in
parallel to the argument vertices using a fork. The refineState takes a state
from the state machine as argument as well as a new region that is added to
the argument state’s set of regions. The refineTransition refines an argument
transition from the state machine by defining new source and/or target states,
associating a different operation, or adding pre- and post-conditions. An
invocation of these reflective methods must not yield a behavior-inconsistent
life cycle model.

Since concretization itself is a process, an MBA may also account for
metaprocess activities in order to regulate local changes made to the im-
posed data and life cycle models. To this end, the Object metaclass must
have specific methods which invoke the reflective methods of the correspond-
ing MBA and associated model elements. By default, these methods are
invocable in any state, the life cycle model may be specialized as long as the
employed notion of behavior consistency is obeyed. The explicit inclusion
of reflective methods in the life cycle model empowers a modeler to re-
strict the possibilities for specialization in sub-hierarchies and, consequently,
deliberately limit flexibility.

Figure 5.7 illustrates MBA Rental for the management of car rentals with
reflective methods in the life cycle models. For the renterType level, MBA
Rental defines metaprocess activities in a region of the InDevelopment state.
For each renterType descendant of Rental, while in the AddingAttributes
state, modelers may add attributes to the rental-level data model of the
descendant MBA. While in the RefiningRentalOpeningAndSettling state, mod-
elers may refine states and transitions under the Opening and Settling
state of the rental-level life cycle model of the descendant MBA. The add-
AttributeAtLevel, refineTransitionAtLevel, and refineStateAtLevel are examples
of the Object-metaclass methods which invoke reflective methods of the
corresponding MBA. The macro expressions |<rental>::Opening| and
|<rental>::Settling| retrieve the Opening level and the Settling level,
respectively, from the rental-level life cycle model of the MBA in the context
of which the expression is evaluated.



5.1 Multilevel Business Artifact Hierarchies 123

‹ rental ›

Rental: ‹ business ›

‹ renterType ›

Running

Settling

InDevelopment

startRefinement

Opening pickUp Open return

assignCar

Closedclose

bill pay

setRatesetDuration

addRenterInformation

RefiningRentalOpeningAndSettling

[level = ‹ rental › and 
(state = | ‹ rental ›::Opening | or 
state = | ‹ rental ›::Settling |)]

refineStateAtLevel(level, state, region)

AddingAttributes

[level = ‹ rental ›]
addAttributeAtLevel(level, attribute)

launch

...

[false]
extendWithParallelRegionAtLevel

[t.source = | ‹ rental ›::Opening | or t.source = | ‹ rental ›::Settling |]
refineTransitionAtLevel(t, source, target, op, pre, post)

setMaximumRate
setMaximumDuration

setDailyLateFee

AttributeSetting AttributesDeterminedfinish

[not self.MBA.level->includes(level)]
addAttributeAtLevel(level, attribute)

addLevel

createRenterType

Restructuring

AdaptingRenterTypes

[level = ‹ renterType ›]
setStateMachineAtLevel(level, state)

AdaptingRentals reopenadaptRentals

restructure

[level = ‹ rental ›]
setStateMachineAtLevel(level, state)

delete

delete

Figure 5.7: MBA Rental with meta-process model elements (adapted from previ-
ous work [111])



124 5 Hetero-Homogeneous Business Process Models

Issues may arise when an operation changes at run time the life cycle
model of an MBA’s level which already has instances. Specializations of life
cycle models for already instantiated classes may be prohibited altogether.
Already existing instantiations may also be deleted before modifying the life
cycle model. Depending on the nature of the specialization, under specific
circumstances, specializations of life cycle models for already instantiated
classes may be possible. If the more abstract MBA specializes the life
cycle model of a level for which there already exist descendants, then the
specialization must occur at a point in the life cycle model that the already
existing descendants have yet to traverse.

Consider, for example, MBA Rental in Figure 5.7 as an example for
metaprocess activities at multiple levels of abstraction. At the business
level, the MBA switches between the Running and Restructuring states.
While in the Restructuring state, modelers may change the life cycle models
associated with the renterType and rental levels. In such a case, however,
prior to effecting the changes, descendants at the affected levels must be
deleted. In order to preserve historical data, modelers may also opt for an
MBA relationship between MBA Rental and a time dimension, and instead
associate the life cycle models of MBA Rental with the relationship levels of
this MBA relationship.

5.2 Process Model Hierarchies within Levels
By linking multiple classes and state machines to a particular abstraction
level, an MBA may define different process variants for this level. The
newly created MBA chooses a top-level variant for instantiation. The final
instantiation decision may also be deferred to a specified point in the life
cycle, the object being instance of a superclass until then. This section is a
revised version of our previous work on variability [114].

5.2.1 Business Process Variants

A multilevel business artifact (MBA) may link an entire specialization
hierarchy of classes with an abstraction level, which allows for the definition of
process variants within a single level. In this case, instead of a single class, an
MBA defines a set of classes for the abstraction level. A single most-general
class serves as the superclass for an arbitrary number of specializations.
The life cycle models of these classes follow rules for behavior-consistent



5.2 Process Model Hierarchies within Levels 125

specialization. Thus, each class in such a specialization hierarchy, together
with the corresponding life cycle model, is a variant of an artifact-centric
business process model.

For example, in Figure 5.8, MBA Corporate links an entire class hierarchy
with the rental level. In this hierarchy, CorporateRental is the most general
class, with CorporateAdvanceRental and CorporateCarsharingRental being
specializations. The life cycle model of class CorporateAdvanceRental refines
the Opening state. An advance rental has a scheduled pick-up date (scheduled-
PickUp) and separates the recording of basic rental information (done in the
Booking state) from the assignment of an actual car which is carried out
at a later point when the rental is already Booked. The life cycle model of
class CorporateCarsharingRental refines the Open state. A carsharing rental
is billed by driven distance (drivenDistance) and may involve changes of the
assigned car. The renter may pause an Active rental and choose another car
from a car pool before resuming the rental.

After creation, an MBA’s instance data, by default, has as classifier the
single most-general class that is linked to the top level. An MBA may
then change the classifier of the top-level instance data during the life cycle.
The setClassifier method of the Object metaclass allows for the explicit
consideration of classifier change in the life cycle model. This possibility of
incremental classification defers the final instantiation decision, increasing
the flexibility of the employees that are responsible for carrying out the
process. Incremental classification allows for the dynamic specialization
and generalization of the classifier of an MBA’s top-level object. Instance
specialization refers to a change of an object’s classifier from more general
to specialized. Instance generalization, in turn, refers to a change of an
object’s classifier from specialized to more general. Both types of incremental
classification can be combined for instance mutation which allows for a change
of an object’s classifier to another classifier that is the subclass of a common
superclass (cf. [100, p. 217]).

In order for instance specialization to be valid, certain conditions must
be met by the object. The change of classifier of an MBA’s top-level object
from more general to specialized is valid if the previous processing steps
of the object in the more general life cycle model also represent a valid
execution of the specialized life cycle model. In this case, the object can
resume execution in the specialized life cycle model. For example, consider
an MBA which associates as instance data an object of CorporateRental that
is in the Opening state. The change of this object’s classifier to Corporate-
AdvanceRental is possible and puts the object in the Booking state, a substate



126 5 Hetero-Homogeneous Business Process Models

‹ rental ›

+ drivenDistance : Number

CorporateCarsharingRental

Open

+ scheduledPickUp : Date

CorporateAdvanceRental

Corporate: ‹ renterType ›

Closed

Returned archive Archived

Opening

Booked assignCar

setDuration setRate

book setScheduledPickUp

setUpgradeFee

pickUp

Open

return

+ rentalId : String
+ actualPickUp : Date
+ rentalDuration : Number
+ rate : Number
+ assignedCar : String
+ upgradeFee : Number

CorporateRental

Opening pickUp

setDuration setRate
assignCar

setUpgradeFee
Closed

Returned archive ArchivedOpen return

Booking

Assigned

Opening

pickUp
setDuration setRate

assignCar

Paused
changeCar

pause

resume

Closed

Returned archive Archived

return

setClassifier

setUpgradeFee setClassifier

ActivesetClassifier

Figure 5.8: An MBA which associates an entire class hierarchy with one of its
levels [114]

of Opening. Consider now an MBA which associates as instance data an
object of CorporateRental that is in the Open state. The change of this
object’s classifier to CorporateAdvanceRental is not allowed. The change of
classifier would put the object in the Open state. As an instance of Corporate-
AdvanceRental the object would have had to run through the refined Opening



5.2 Process Model Hierarchies within Levels 127

state in order to present a valid life cycle. A change of classifier to Corporate-
CarsharingRental, on the other hand, is possible and puts the object in the
Active state, a substate of Open.

Instance generalization is always possible unless explicitly prohibited by the
life cycle model. Values of attributes that are introduced by the specialized
class are dropped. If in a refined state at first, after change of classifier the
MBA’s top-level instance data is in the unrefined state of the general life
cycle model. For example, consider an MBA which associates as instance
data an object of CorporateAdvanceRental in the Assigned state. A change
of this object’s classifier to CorporateRental puts the object in the Opening
state, the unrefined superstate of Assigned. The value of scheduledPickUp is
dropped since the more general class does not have this attribute.

Instance mutation refers to a change of an object’s classifier to another
subclass of the superclass of the object’s current classifier; instance mutation
is realized as a sequence of instance generalization and specialization. For
example, consider an MBA which associates as instance data an object of
CorporateAdvanceRental. A change of this object’s classifier from Corporate-
AdvanceRental to CorporateCarsharingRental is a two-step procedure. First,
the classifier changes from CorporateAdvanceRental to the more general
CorporateRental class which is the common superclass of both the Corporate-
AdvanceRental class and the CorporateCarsharingRental class. Second, the
classifier changes from CorporateRental to the CorporateCarsharingRental class.

5.2.2 Incremental Evolution through Mutation
For each inherited level, a concretization inherits all of the linked data
and life cycle models. If an inherited level is linked to a class hierarchy,
the concretization inherits the entire class hierarchy. This inherited class
hierarchy may be specialized. On the one hand, the concretization may
introduce additional subclasses. On the other hand, the concretization may
specialize individual classes of the inherited class hierarchy.

With class hierarchies involved, multilevel concretization may lead to
double specialization of classes and life cycle models. Each class of a con-
cretization’s inherited class hierarchy is a specialization of the abstraction’s
corresponding class. When the concretization adds additional features to
one of the subclasses of the inherited class hierarchy, this subclass as well
as its life cycle model must be consistent with both the abstraction’s corre-
sponding class and the superclass within the inherited class hierarchy. This
superclass may also have additional features with respect to the abstrac-



128 5 Hetero-Homogeneous Business Process Models

‹ rental ›

+ deposit : Number

PrivateAdvanceRental

Private: ‹ renterType ›

‹ rental ›

+ rentalId : String + rate : Number
+ actualPickUp : Date + assignedCar : String
+ rentalDuration : Number

Rental

+ scheduledPickUp : Date

AdvanceRental

Opening

Booked assignCar ClosedOpen returnBooking

setDuration setRate

book

ClosedOpening pickUp

setDuration setRate
assignCar

Open return

+ creditCard : Number

PrivateRental

‹ renterType ›

Rental: ‹ business ›

concretization of

Opening

Booking

setDuration setRate

Closed

Opening

pickUpsetDuration setRate Open return
BackedsetCreditCardUnbacked

assignCar

Booked assignCar Assigned

Backed

Authorized

book

depositsetCreditCardUnbacked

pickUp

Guaranteed

setScheduledPickUp

pickUp Open

Closed

return

Assigned

setScheduledPickUp

Figure 5.9: Multilevel concretization with class hierarchies [114]



5.2 Process Model Hierarchies within Levels 129

tion’s corresponding class. In this case, for the specialized subclass in the
concretization’s inherited class hierarchy, double specialization occurs.

For example, in Figure 5.9, MBA Private is a concretization of MBA
Rental which links a class hierarchy with the rental level. At the rental
level, MBA Rental defines classes Rental and AdvanceRental which are in a
specialization/generalization relationship with each other. MBA Private, at
the rental level, defines classes PrivateRental and PrivateAdvanceRental. Class
PrivateRental is a specialization of class Rental which is defined by MBA
Rental. A private rental must have credit card information and is either
Unbacked or Backed, depending on the availability of credit card information.
Class PrivateAdvanceRental is a specialization of class PrivateRental as well
as class AdvanceRental which is defined by MBA Rental. A private advance
rental requires the customer to deposit an amount of money in order to
guarantee the reservation. Once deposited, a private advance rental turns
from Authorized into Guaranteed, thereby refining the Backed state.

In this book, we do not focus on the details of behavior consistency with
multiple inheritance. We provide, however, two modeling guidelines for the
realization of observation-consistent multiple inheritance. These guidelines
simplify consistency checking under multiple inheritance but restrict the
freedom of the modeler.

In order to avoid multiple inheritance, a modeler may choose to specialize
only the leaf nodes of a class hierarchy. In this case, behavior consistency
must only be checked against the life cycle model of the superclass in the
inherited class hierarchy. This simplification, however, limits the freedom of
the modeler and reduces flexibility. Thus, it is desirable to allow multiple
inheritance for life cycle models.

Multiple inheritance with life cycle model specialization is non-conflicting
if the specializations occur in parallel regions or independent states of the
life cycle model. For example, the life cycle model of the AdvanceRental
class refines the Opening state of the life cycle model of the Rental class
(Figure 5.9). The PrivateRental class extends the life cycle model of the Rental
class with a region that is parallel to the Opening state. These specializations
are independent from each other. A combination of the two life cycle models
in the PrivateAdvanceRental class’s life cycle model is without problems.



6 XML Representation

The multilevel business artifact (MBA) allows for the artifact-centric repre-
sentation of business processes at multiple levels of abstraction. Relying on a
UML formalization, Chapters 4 and 5 as well as previous work [111, 114] fo-
cus on the conceptual modeling aspects of MBAs. Yet, the (semi-)automated
MBA-based execution of artifact-centric business processes requires a suitable
logical representation of conceptual MBA models. Many business process
modeling languages are represented in or have a standardized serialization
format based upon XML, for example, BPMN [89], WS-BPEL [84], and
ActiveXML [7]. Therefore, when using an XML-based representation format
for MBAs, an XML database may store MBAs without the need for develop-
ing a separate logical representation format for life cycle models as would be
the case when storing MBAs in a relational database, for example. Moreover,
due to its semi-structured nature, XML allows for a flexible handling of het-
erogeneities in the data model and is thus well-suited for the representation
of hetero-homogeneous models. In this chapter, as a prerequisite for the
development of an MBA-based execution environment for artifact-centric
business processes, we define a logical representation of MBAs which is based
on State Chart XML (SCXML), a W3C proposed recommendation [136] for
an XML-based state machine language.

6.1 Multilevel Business Artifacts in XML
The XML schema for the representation of MBAs derives from the MBA
metamodel in UML (see Chapters 4 and 5) and depends on the employed
flavor of MBAs. A concretization hierarchy of MBAs with simple level
hierarchies naturally translates into a nested collection of MBA elements in
the XML-based logical model, with advantages for the formulation of queries
over the concretization hierarchy. The introduction of parallel hierarchies,
however, renders such nested collections of MBAs inadequate and requires a
sequential representation of the MBAs in the concretization hierarchy. In
this section, we first examine the logical representation of MBAs with simple
hierarchies before discussing the representation of parallel hierarchies.

C. G. Schuetz, Multilevel Business Processes, 
DOI 10.1007/978-3-658-11084-0_6, © Springer Fachmedien Wiesbaden 2015



132 6 XML Representation

6.1.1 Simple Hierarchies

Each MBA in the conceptual business process model translates into an mba
element in the XML-based logical model. Figure 6.1 illustrates, using a
UML-like notation, an XML schema for the representation of MBAs. In this
graphical notation, boxes denote XML elements, with the element’s name
in the first compartment and the element’s attributes in the second. An
attribute’s data type may be one of the standard XML data types. Next to an
attribute, in square brackets, a multiplicity of “1” denotes a mandatory, “0..1”
an optional attribute. An outgoing, directed line from one element leading
to another element, going through an octagon with three squares inside,
denotes a sequence of child elements, the child element being the element
that has arrowhead and multiplicity attached to its end of the line1. An mba
element has a mandatory name attribute, an optional isDefault attribute
– which is a prerequisite for invocation-consistent implementations – contains
a topLevel element and, optionally, a concretizations element which
stores the children of the MBA.

The restriction to simple hierarchies allows for the nested storage of a
concretization hierarchy of MBAs in an XML document. XML naturally
represents simple hierarchies, each element containing a number of children
and each child element belonging to exactly one parent. The children of
an mba element’s concretizations child are full-fledged mba elements
themselves, each describing an MBA from the conceptual model. The most
abstract MBA in a concretization hierarchy becomes the root mba element of
the XML document. All concretizations of the most abstract MBA become
mba elements under the concretizations child of the root mba element.
The concretizations of these concretizations are again mba elements under
the concretizations child of the respective mba element, and so forth.
Thus, when selecting an mba element from a nested collection of MBAs, the
selected mba element contains all data related to a particular sub-hierarchy,
with the selected MBA being the root of this sub-hierarchy.

The value of an mba element’s name attribute is unique within a con-
cretization hierarchy; there must not exist another mba element with the
same name in the same concretization hierarchy. The topLevel child ele-
ment of an mba element describes the MBA’s top level. The elements child
element of the topLevel element contains the data and life cycle models
associated with the top level. Each data and life cycle model of an MBA

1This notation for sequences is similar to the XML schema visualization employed by
tools such as Altova XMLSpy, Oxygen XML Developer, and Oracle JDeveloper.



6.1 Multilevel Business Artifacts in XML 133

+ name : xs:Name [1]

topLevel

0..1

0..1

+ name : xs:Name [1]

childLevel

+ name : xs:Name [1]
+ isDefault : xs:boolean [0..1] = false

mba

+ activeVariant : xs:Name [0..1]

elements sc:scxml
1..*

0..1

0..1

elements

1..*

concretizations

0..*

1

0..1

Figure 6.1: An XML schema for the representation of MBAs with simple level hi-
erarchies. Note that the proposed elements are in the http://www.dke.jku.at/MBA
namespace, except the imported sc:scxml element which belongs to the
http://www.w3.org/2005/07/scxml namespace.

translates into an scxml element according to the SCXML standard. In
the case of the existence of multiple variants, the optional activeVariant
attribute of elements denotes the actually instantiated data and life cycle
model. The value of the activeVariant attribute then refers to the value
of the name attribute (not shown in Figure 6.1) of one of the scxml elements
under the elements element.

The childLevel child of a topLevel element describes an MBA’s sec-
ond level. Just like the topLevel element, childLevel has an elements
child containing data and and life cycle models for the particular level. Since
an MBA instantiates only the data and life cycle models at the top level,
the childLevel element lacks an activeVariant attribute. A child-
Level element may again have a childLevel child which describes the
child level of the respective level, and so forth.

Consider, for example, the mba element in Listing 6.1 with the value
“Rental” for the name attribute which is the logical representation of an
MBA Rental. This example follows the EU-Rent use case as described in



134 6 XML Representation

Listing 6.1: The logical representation of the level hierarchy of an MBA named
Rental for the management of car rental data
1 �- <mba name="Rental"
2 xmlns="http://www.dke.jku.at/MBA"
3 xmlns:sc="http://www.w3.org/2005/07/scxml">
4 �- <topLevel name="business">
5 �+ <elements ...
6 �- <childLevel name="renterType">
7 �+ <elements ...
8 �- <childLevel name="rental">
9 �+ <elements ...

10 </childLevel>
11 </childLevel>
12 </topLevel>
13 �+ <concretizations ...
14 </mba>

previous chapters, although it adapts the running example for illustration
purposes. Assume Rental is an MBA at the business level and the most
abstract MBA in the concretization hierarchy. The top level of MBA Rental
being business, the topLevel child of the mba element has value “business”
for the name attribute (Line 4). As the child level of business, and thus
second level in the hierarchy, assume MBA Rental defines the renterType level.
The topLevel child in the logical representation of MBA Rental then has a
childLevel element with the value “renterType” for the name attribute
(Line 6). Furthermore, as child of renterType, assume MBA Rental defines
the rental level. Consequently, the childLevel element with “renterType”
as name has a childLevel child with value “rental” for the name attribute
(Line 8). Under concretizations, the mba element with “Rental” as
name stores representations of the direct concretizations of MBA Rental.

Assume MBAs Corporate and Private are at the renterType level and con-
cretizations of MBA Rental. Assume further that MBA Corporate introduces
the additional agreement level between renterType and rental. Then, MBA
ACMEAgreement is at the agreement level and a concretization of MBA
Corporate. Moreover, MBAs RentalTX1183 and RentalHX3006 are at the
rental level and concretizations of MBA ACMEAgreement and thus indirect
concretizations – or descendants – of MBA Corporate.



6.1 Multilevel Business Artifacts in XML 135

Listing 6.2: The logical representation of MBAs Corporate and Private as con-
cretizations of Rental
1 �- <mba name="Rental"
2 xmlns="http://www.dke.jku.at/MBA"
3 xmlns:sc="http://www.w3.org/2005/07/scxml">
4 �+ <topLevel name="business" ...
5 �- <concretizations>
6 �- <mba name="Corporate">
7 �- <topLevel name="renterType">
8 �+ <elements ...
9 �- <childLevel name="agreement">

10 �+ <elements ...
11 �- <childLevel name="rental">
12 �+ <elements ...
13 </childLevel>
14 </childLevel>
15 </topLevel>
16 �+ <concretizations ...
17 </mba>
18 �- <mba name="Private">
19 �- <topLevel name="renterType">
20 �+ <elements ...
21 �- <childLevel name="rental">
22 �+ <elements ...
23 </childLevel>
24 </topLevel>
25 �+ <concretizations ...
26 </mba>
27 </concretizations>
28 </mba>

Listing 6.2 shows the logical representation of the direct concretiza-
tions of MBA Rental. The mba element with “Rental” as name has a
concretizations child (Line 5) which contains mba elements with values
“Corporate” (Line 6) and “Private” (Line 18), respectively, for the name
attribute. The topLevel child of the mba element with “Corporate” as
name has a childLevel element with “agreement” as name (Line 9), the



136 6 XML Representation

Listing 6.3: The logical representation of a concretization hierarchy of MBAs for
the management of car rental data with an MBA named Rental as root
1 �- <mba name="Rental"
2 xmlns="http://www.dke.jku.at/MBA"
3 xmlns:sc="http://www.w3.org/2005/07/scxml">
4 �+ <topLevel name="business" ...
5 �- <concretizations>
6 �- <mba name="Corporate">
7 �+ <topLevel name="renterType" ...
8 �- <concretizations>
9 �- <mba name="ACMEAgreement">

10 �- <topLevel name="agreement">
11 �+ <elements ...
12 �- <childLevel name="rental">
13 �+ <elements ...
14 </childLevel>
15 </topLevel>
16 �- <concretizations>
17 �- <mba name="RentalTX1183">
18 �- <topLevel name="rental">
19 �+ <elements ...
20 </topLevel>
21 </mba>
22 �+ <mba name="RentalHX3006" ...
23 </concretizations>
24 </mba>
25 </concretizations>
26 </mba>
27 �- <mba name="Private">
28 �+ <topLevel name="renterType" ...
29 �+ <concretizations ...
30 </mba>
31 </concretizations>
32 </mba>



6.1 Multilevel Business Artifacts in XML 137

childLevel element of which has “rental” as name (Listing 6.2, Line 11).
On the other hand, the topLevel child of the mba element with “Private”
as name has a childLevel element with “rental” as name (Listing 6.2,
Line 21), just like the childLevel element with “renterType” as name
in the logical representation of MBA Rental in Listing 6.1. The logical
representation of an MBA’s level hierarchy thus allows for the introduction
of a level through replacement of an inherited childLevel element with
the representation of the introduced level.

Listing 6.3 shows the logical representation of direct and transitive con-
cretizations of MBA Corporate. The mba element with value “Corporate”
for the name attribute has a concretizations child that contains an
mba element with value “ACMEAgreement” for the name attribute (Line 9).
This mba element has a concretizations child (Line 16) that contains
mba elements with values “RentalTX1183” (Line 17) and “RentalHX3006”
(Line 22), respectively, for the name attribute. Possible concretizations of
MBA Private (Line 29) are omitted.

Assume now MBA Rental has a business-level life cycle model with two
states, namely Restructuring and Running, as well as methods reopen, restruc-
ture, and setMissionStatement. The invocation of the reopen method puts the
MBA into the Running state, the invocation of the restructure method puts
the MBA back into the Restructuring state. Furthermore, MBA Rental has a
missionStatement attribute at the business level. The setMissionStatement
method changes the value of the missionStatement attribute when invoked
in the Restructuring state.

Listing 6.4 shows the XML representation of the data and life cycle
model of the top level of MBA Rental. The topLevel child of the mba
element that represents MBA Rental in Listing 6.4 has an scxml element
which represents both data and life cycle model of this level. Under the
datamodel child (Listing 6.4, Line 7), a data element with the value
“missionStatement” for the id attribute (Listing 6.4, Line 8) represents
the missionStatement attribute, the existence of text contents for the data
element reflects the class/object duality at the MBA’s top level. The state
elements with the values “Restructuring” (Listing 6.4, Line 17) and “Running”
(Listing 6.4, Line 27) for the id attribute represent the Restructuring and
Running state, respectively. The state element for the Restructuring state
has two transition children. The transition child with the value
“setMissionStatement” for the event attribute (Listing 6.4, Line 18) has no
target attribute, signifying that the transition triggers no state change.
The transition element, however, has an assign child (Listing 6.4,



138 6 XML Representation

Line 20) which is an SCXML action element that models assignment of
a value to an attribute as a consequence of a triggered transition. The
value “$missionStatement” of the assign element’s location attribute
identifies as the target of the assignment the missionStatement attribute of
MBA Rental at the business level. The value of the expr attribute is an
XPath expression which identifies the value that is to be assigned to the
missionStatement attribute. For this expression to be evaluated properly, each
data element under the datamodel element becomes a variable with its
id as the name, for example, $missionStatement, and a system variable
$_event must hold the data that the user passed to the MBA along with
the latest event raised. The other transition child (Listing 6.4, Line 24)
with value “reopen” for the event attribute and the value “Running” for the
target attribute represents the transition between the states Restructuring
and Running triggered by the reopen method. The state element for the
Running state has a transition child (Listing 6.4, Line 28) with the value
“restructure” for the event attribute and the value “Restructuring” for the
target attribute which represents the transition between the states Running
and Restructuring triggered by the restructure method. The initial element
(Listing 6.4, Line 14) with its transition child establishes Restructuring
as the initial state.

The data elements that have an id starting with an underscore are
system variables used for SCXML interpretation [130, #SystemVariables2].
Only the top-level SCXML state machine of a particular MBA assigns values
to system variables. Consider, for example, the top-level SCXML state
machine in the logical representation of MBA Rental in Listing 6.5. The
data element with “_event” as id (Listing 6.5, Line 16) holds the name
and payload of the currently processed event. The data element with “_x”
as id holds platform-dependent system data which includes, in the case
of MBAs, the names of database and collection as well as the name of the
MBA itself. Each child element of this data element represents a platform-
dependent system variable, the children being in the empty namespace. The
db element (Listing 6.5, Line 10) holds the name of the XML database that
stores the MBA in the database management system. The collection
element (Listing 6.5, Line 11) holds the name of the collection that the
MBA belongs to, that is, the name of the MBA concretization hierarchy.
The mba element (Listing 6.5, Line 14) holds the name of the MBA itself.
The values of these system variables are accessible in the expressions used

2When citing W3C standards we refer to specific sections using named anchors from the
HTML documents, the names of which may be appended to the document URL.



6.1 Multilevel Business Artifacts in XML 139

Listing 6.4: The logical representation of the top-level data and life cycle model
of MBA Rental
1 �- <mba name="Rental"
2 xmlns="http://www.dke.jku.at/MBA"
3 xmlns:sc="http://www.w3.org/2005/07/scxml">
4 �- <topLevel name="business">
5 �- <elements>
6 �- <sc:scxml>
7 �- <sc:datamodel>
8 �- <sc:data id="missionStatement">
9 Renting cars

10 </sc:data>
11 �+ <sc:data id="_x" ...
12 �+ <sc:data id="_event" ...
13 </sc:datamodel>
14 �- <sc:initial>
15 �- <sc:transition target="Restructuring"/>
16 </sc:initial>
17 �- <sc:state id="Restructuring">
18 �- <sc:transition
19 event="setMissionStatement">
20 �- <sc:assign location="$missionStatement"
21 expr="$_event/data/missionStatement
22 /text()"/>
23 </sc:transition>
24 �- <sc:transition event="reopen"
25 target="Running"/>
26 </sc:state>
27 �- <sc:state id="Running">
28 �- <sc:transition event="restructure"
29 target="Restructuring"/>
30 </sc:state>
31 </sc:scxml>
32 </elements>
33 �+ <childLevel ...
34 </topLevel>
35 �+ <concretizations ...
36 </mba>



140 6 XML Representation

Listing 6.5: System variables in the logical representation of the top-level data
model of MBA Rental
1 �- <mba name="Rental"
2 xmlns="http://www.dke.jku.at/MBA"
3 xmlns:sc="http://www.w3.org/2005/07/scxml">
4 �- <topLevel name="business">
5 �- <elements>
6 �- <sc:scxml>
7 �- <sc:datamodel>
8 �+ <sc:data id="missionStatement" ...
9 �- <sc:data id="_x">

10 �- <db xmlns="">myMBAse</db>
11 �- <collection xmlns="">
12 CarRentals
13 </collection>
14 �- <mba xmlns="">Rental</mba>
15 </sc:data>
16 �- <sc:data id="_event">
17 �- <name xmlns="">
18 setMissionStatement
19 </name>
20 �- <data xmlns="">
21 �- <missionStatement>
22 Moving people
23 </missionStatement>
24 </data>
25 </sc:data>
26 </sc:datamodel>
27 �+ <sc:initial ...
28 �+ <sc:state id="Restructuring" ...
29 �+ <sc:state id="Running" ...
30 </sc:scxml>
31 </elements>
32 �+ <childLevel ...
33 </topLevel>
34 �+ <concretizations ...
35 </mba>



6.1 Multilevel Business Artifacts in XML 141

as guard conditions and in the attributes of action elements; each data
element becomes a variable with the id of the data element as variable
name. The current event data are accessible under the $_event variable.
The platform-dependent system variables are accessible as the children of
the $_x variable.

A collection corresponds to a single concretization hierarchy. The collection
is important for the unique identification of a concretization hierarchy in
case that there are multiple concretization hierarchies having a root MBA
with the same name. The attribution of a collection name to a concretization
hierarchy should be managed by the MBA database and may be system-
dependent. In case of simple hierarchies, the only requirement for the logical
representation is the existence of a collection element under the data
element for platform-dependent variables in the datamodel of the top-
level SCXML state machine of an MBA. All MBAs that are in the same
concretization hierarchy must assign the same value to this collection
element; all MBAs that are in a different concretization hierarchy must have
a different value.

The contents of the data element with value “_event” as id describe
the event currently processed by the SCXML interpreter for that particular
MBA. This description consists of the event’s name and payload. The name
child contains the name. The data child contains the payload, which can be
an arbitrary sequence of XML elements. Note that in both cases, the child
element is from the empty rather than the SCXML namespace. For example,
the currently processed event for MBA Rental in Listing 6.5 has the name
“setMissionStatement” (Line 17) and as payload a missionStatement
element (Line 20) that contains the new value for the mission statement
data element. When finished processing the event, the SCXML interpreter
clears the contents of the data element with value “_event” as id and
proceeds with the contents of the next event in the external event queue.

An mba element’s optional isDefault attribute, with default value
false, marks a possibly system-generated default MBA at a particular
level which subsumes those MBAs that initially do not have an ancestor at
the respective level. The existence of a default MBA at a particular level
is important in order to allow for the introduction of additional levels in
the course of concretization under the requirement of invocation consistency
(see Section 6.3). Since the m-object metamodel does not allow skip levels,
the introduction of a level requires the modification of concretization depen-
dencies, unless there exists a default element for each level which the system
may add newly created descendants to.



142 6 XML Representation

The XML schema in Figure 6.1 and the corresponding example XML
documents assume full specification of MBAs and concretization hierarchies
in the logical model, that is, each mba element contains both introduced and
inherited data about an MBA’s levels. The SCXML interpreter operates
on the fully-specified mba elements. The full specification of MBAs in the
logical model, however, redundantly stores inherited data, the first time in
the MBA that introduces the data, and then again in the direct and indirect
concretizations that inherit the data.

From a data management perspective, partial specification of MBAs and
concretization hierarchies in the logical model may seem more convenient
than full specification. In the spirit of database normalization, the partial
specification of MBAs in the logical model avoids redundancies caused by
the full specification of MBAs, which includes introduced and inherited data
alike. The full specification then becomes a view over the partial specification.
XML view maintenance is a separate topic [8] not covered in this book.

6.1.2 Parallel Hierarchies
The introduction of parallel hierarchies for the levels of MBAs renders inad-
equate the nested storage of MBAs in an XML document. Then, an MBA
database consists of multiple collection documents, each collection docu-
ment containing the MBAs of a single concretization hierarchy. Figure 6.2
illustrates an XML schema for the representation of MBAs with parallel
hierarchies using the same UML-like notation as in the previous section.
The root node of a collection document is the collection element which
has a mandatory name attribute and contains a sequence of mba elements.
A collection’s name must be unique within a database, across the different
collection documents. The value of the name attribute of an mba element
must be unique within a collection document. All MBAs that are in the
same concretization hierarchy must be in the same collection document. All
MBAs that are in a different concretization hierarchy must be in a different
collection document.

The levels child of an mba element contains an MBA’s level definitions,
referred to as level hierarchy and given as a sequence of level elements; an
MBA must have at least one level. Each level has a unique name (attribute
name) within the level hierarchy. The topLevel attribute of an mba
element references the name attribute of a level element under the levels
child of the mba element. A level element further consists of an elements
child and a parentLevels child, both being optional. These child elements



6.1 Multilevel Business Artifacts in XML 143

+ name : xs:Name [1]

collection

0..*

abstractions

levels

1..*

0..*

parentLevels 1..*

sc:scxml
1..*

0..1

1

0..1

0..1

+ ref : xs:Name [1]

mba

+ ref : xs:Name [1]

level

+ activeVariant : xs:Name [0..1]

elements

+ name : xs:Name [1]

level

+ name : xs:Name [1]
+ topLevel : xs:Name [1]
+ isDefault : xs:boolean [0..1] = false

mba

concretizations
0..*0..1

+ ref : xs:Name [1]

mba

ancestors
0..*0..1

+ ref : xs:Name [1]

mba

descendants
0..*0..1

+ ref : xs:Name [1]

mba

Figure 6.2: An XML schema for the representation of MBAs with parallel level hi-
erarchies. Note that the proposed elements are in the http://www.dke.jku.at/MBA
namespace, except the imported sc:scxml element which belongs to the
http://www.w3.org/2005/07/scxml namespace.



144 6 XML Representation

form the level definition. The elements child consists of a number of scxml
elements, which represent the data and life cycle models of the level. The
parentLevels child establishes the hierarchical order of the levels and
consists of a sequence of level elements with a ref attribute which refers
to another level in the same hierarchy. The representation of an MBA’s
top level must not have a parentLevels child. Across MBAs of the same
collection, levels with the same name are considered equal, possibly having
different definitions, which must be consistent according to the rules of
concretization for MBAs (see Chapter 4).

In the case of parallel hierarchies, the representation of concretization
relationships between a collection’s MBAs cannot follow the natural hierar-
chy of XML elements; two different forms of representation are conceivable.
First, an MBA may keep an abstractions element with a sequence of
mba elements having a ref attribute which refers to the name attribute
of another MBA in the same collection. Each of these mba elements refers
to an abstraction. Second, an MBA may keep a concretizations el-
ement with a sequence of mba elements having a ref attribute which
refers to the name attribute of another MBA in the collection, just like the
abstractions element, only that each of these mba elements refers to
a concretization. Both solutions have their own drawback: Whereas the
former performs well on upward navigation, the latter presents advantages
for downward navigation. Large MBA collections should therefore employ
both solutions simultaneously, with one being a view of the other, in order
to speed up navigation along the concretization hierarchy. In such a case,
using the abstractions element as the primary form of representation of
concretization relationships and defining the concretizations element as
a view over abstractions is advantageous. In the course of concretization,
when using the abstractions element as the primary representation, the
mba element that represents the more abstract MBA must not be altered.
In addition, the logical representation of an MBA may also keep, for con-
venience and performance reasons, an ancestors and a descendants
element as additional (materialized) views.

Modelers must handle the pitfalls of multiple concretization in the concep-
tual model. A direct translation of a correct conceptual model into a logical
representation avoids problems at the logical level associated with multiple
inheritance of life cycle models. Possible XQuery implementations of MBA
reflective functions, on the other hand, will give rise to the same issues
concerning multiple inheritance as encountered in conceptual modeling, and
necessitates the implementation of consistency checks.



6.2 Multilevel Relationships in XML 145

6.2 Multilevel Relationships in XML

The XML representation of MBA relationships derives from the representa-
tion of individual MBAs. MBA relationships are organized in a relationship
space which defines the dimensionality of the contained relationships, that is,
a set of MBA collections which contain the MBAs that are connected by the
MBA relationships in the relationship space. The relationship space stores
the MBA relationships, represented as mbaRelationship elements. Such
an mbaRelationship element has a schema similar to the mba element’s.
Instead of a name attribute, an mbaRelationship has a label attribute
and a coordinates child. The label attribute is a string that defines the
label of the MBA relationship. The coordinates element has a child for
each collection of the MBA relationship space, the node name of this child
element corresponds to the name of the collection, the value corresponds
to the name of an MBA from that collection. Assume the existence of
collections named “renter” and “commodity”, the former containing an MBA
Rental, the latter containing an MBA Car. Assume further the existence of
a corresponding relationship space. The following coordinates element
then characterizes a relationship between MBAs Rental and Car:

�- <coordinates>
�- <renter>Rental</renter>
�- <commodity>Car</commodity>
<coordinates>

The levels of an MBA relationship are not atomic. Instead of a name
attribute, relationship levels have a relationshipLevelId element. Such
a relationship level identifier references an atomic level from each coordinate
of the relationship. To this end, a relationshipLevelId element has a
child for each collection of the relationship space, the node name of this child
element corresponds to the name of the collection, the value corresponds to
the name of a level from the connected MBA in the respective collection.
Consider, for example, the following relationshipLevelId element for
the logical representation of relationship level ‹ renterType, model › of a
relationship between MBAs Rental and Car:

�- <relationshipLevelId>
�- <renter>renterType</renter>
�- <commodity>model</commodity>
</relationshipLevelId>



146 6 XML Representation

From a semantics point of view, the use of collection names as the names of
the child elements leads to more expressive data models compared to generic
elements. Even though the node names of the children of coordinates and
relationship level identifiers are application-dependent and not necessarily
known at programming time, programmers may still write generic queries
by using the standard fn:local-name() function for expressing select
conditions in XPath expressions.

Since the hierarchical order of MBA relationships and relationship levels
derives from the coordinate MBAs and atomic levels, the explicit storage
of this information, in general, is not necessary. In order to avoid frequent,
rather costly calculations of the hierarchical order of MBA relationships,
the MBA database may store a pre-computed list of an MBA relation-
ship’s ancestors and descendants. These pre-computed lists of ancestor and
descendant relationships may be stored in a fashion similar to the material-
ization of ancestors and descendants of an MBA with parallel hierarchies
(see Section 6.1.2).

6.3 Multilevel Predicates in State Chart XML

In the conceptual artifact-centric business process model, multilevel predi-
cates allow for expressing synchronization dependencies between different
abstraction levels of an MBA. A multilevel predicate as part of the pre-
condition of a transition in the conceptual model translates into an invocation
of a corresponding boolean XQuery function as part of the transition’s guard
expression in the logical representation. A multilevel predicate as part of the
post-condition of a transition in the conceptual model translates into the
corresponding SCXML custom action element in the logical representation.
The SCXML interpreter then conducts the operation that corresponds to a
particular custom action element.

Dedicated XQuery functions allow for expressing transition guard condi-
tions over ancestors and descendants of the MBA in the context of which
the state machine is interpreted. Tables 6.1 and 6.2 define XQuery functions
for vertical level synchronization over states and attributes, respectively.
The SCXML interpreter must evaluate these functions in the context of the
particular MBA that the state machine is interpreted for; the $mba variable
in the definition of the functions represents this context MBA. Therefore,
the value of the $mba variable is not passed to the functions as an argument
but provided by the SCXML interpreter.



6.3 Multilevel Predicates in State Chart XML 147

The cond attribute of a transition contains an XQuery expression which
the SCXML interpreter evaluates at run-time in order to determine whether
a transition shall be triggered. The XQuery functions in Tables 6.1 and 6.2
are available as inline functions for use in the cond attribute of transitions,
hence the “$” in front of their name. The definition as inline function
allows for the context-specific provision of the $mba variable by the SCXML
interpreter, transparent to the designer. Consider, for example, the following
transition with a guard condition that contains a function call for the vertical
synchronization over the attribute value of an ancestor:

<sc:transition event="setRate"
cond="$_ancestorAtLevelSatisfies(
‘renterType’,
‘$maximumRate >= ’ || $_event/data/rate/text()

)"
/>

Conceptually, a setRate method call triggers the previously defined tran-
sition under the condition that the ancestor at the renterType level has an
attribute value for maximumRate that is greater or equal to the argument
rate passed to the setRate method. For the evaluation of the expression in
the cond attribute of a transition, the contents of each data element in one
of the available datamodel elements of the state machine execution are
bound to a variable bearing the identifier of the respective data element.
In the previously defined transition, the expression in the cond attribute
refers to the data element with value “_event” as id in the data model
of the MBA that the SCXML interpreter executes the state machine of.
Note that $maximumRate refers to the value of an ancestor’s data element
as it is under single quotes and evaluated dynamically when executing the
$_ancestorAtLevelSatisfies function.

The SCXML interpreter does not independently, without context, evaluate
the expression in the cond attribute of a transition element. Rather,
the SCXML interpreter evaluates a FLWOR expression with additional
bindings, the result of the expression from the cond attribute being the
final return value. The FLWOR expression provides context information
for the evaluation of the expression in the cond attribute. Thus, in the
course of the state machine execution for a particular MBA, when evaluating
the expression in the cond attribute of the previously defined example
transition element, the SCXML interpreter must execute XQuery code
equivalent to the following:



148 6 XML Representation

let $mba :=
mba:getMBA($_x/db, $_x/collection, $_x/mba)
let $_ancestorAtLevelSatisfies :=
function($level as xs:string, $cond as xs:string) {
let $ancestor :=
mba:getAncestorAtLevel($mba, $level)

let $dataModels :=
sc:selectDataModels(mba:getConfiguration($ancestor))

return sc:eval($cond, $dataModels)
}
return $_ancestorAtLevelSatisfies(
‘renterType’,
‘$maximumRate >= ’ || $_event/data/rate/text()
)

The definitions of the XQuery functions for vertical synchronization make
use of auxiliary functions for the management of MBA databases. An XQuery
module in the MBA namespace, prefixed “mba”, organizes these management
functions. In this module, the getMBA function retrieves an mba element
from the database, using the name of the collection and the name of the MBA
as identifier. The getAncestorAtLevel function returns an mba element
that represents the ancestor at the argument level of the argument MBA,
the argument level being referred to by name, the argument MBA being
passed as the corresponding mba element from the database. Similarly, the
getDescendantsAtLevel function returns a sequence of mba elements,
each representing a descendant at the argument level of the argument MBA.
The getConfiguration function retrieves the currently active states of
the argument MBA, that is, the current status of the argument MBA’s
top-level SCXML state machine, the argument MBA passed as the mba
element from the database.

Besides the MBA management functions, the definitions of the XQuery
functions for vertical synchronization make use of (non-standard) functions
for the interpretation of SCXML state machines. An XQuery module in the
SCXML namespace, prefixed “sc”, organizes the functions of the SCXML
interpreter. In this module, the selectDataModels function retrieves
the currently valid datamodel elements of an SCXML state machine given
the state machine’s current configuration, that is, the set of active states.
The eval function dynamically evaluates an XQuery expression, passed as
string, taking into account a set of argument datamodel elements.



6.3 Multilevel Predicates in State Chart XML 149

Table 6.1: Functions for vertical synchronization over attributes

function $_everyDescendantAtLevelSatisfies
param $level as xs:string, $cond as xs:string
define let $descendants :=

mba:getDescendantsAtLevel($mba, $level)
return every $descendant in $descendants
satisfies
let $dataModels :=
sc:selectDataModels(
mba:getConfiguration($descendant)
)

return sc:eval($cond, $dataModels)

function $_someDescendantAtLevelSatisfies
param $level as xs:string, $cond as xs:string
define let $descendants :=

mba:getDescendantsAtLevel($mba, $level)
return some $descendant in $descendants
satisfies
let $dataModels :=
sc:selectDataModels(
mba:getConfiguration($descendant)
)

return sc:eval($cond, $dataModels)

function $_isDescendantAtLevelSatisfying
param $obj as element(), $level as xs:string,

$cond as xs:string
define let $descendants :=

mba:getDescendantsAtLevel($mba, $level)
let $dataModels :=
sc:selectDataModels(
mba:getConfiguration($obj)
)

return sc:eval($cond, $dataModels) and (
some $descendant in $descendants
satisfies $obj is $descendant

)

(continues on next page)



150 6 XML Representation

Table 6.1 (continued): Functions for vertical attribute synchronization

function $_ancestorAtLevelSatisfies
param $level as xs:string, $cond as xs:string
define let $ancestor :=

mba:getAncestorAtLevel($mba, $level)
let $dataModels :=
sc:selectDataModels(
mba:getConfiguration($ancestor)
)

return sc:eval($cond, $dataModels)

function $_isAncestorAtLevelSatisfying
param $obj as element(), $level as xs:string,

$cond as xs:string
define let $ancestor :=

mba:getAncestorAtLevel($mba, $level)
let $dataModels :=
sc:selectDataModels(
mba:getConfiguration($obj)
)

return sc:eval($cond, $dataModels) and
$ancestor is $obj

Table 6.1 defines XQuery functions for expressing pre-conditions over
attributes of an MBA’s ancestors and descendants. Both the $_every-
DescendantAtLevelSatisfies function and the $_someDescendant-
AtLevelSatisfies function take a level name and an expression string
as arguments, and dynamically evaluate the expression over currently valid
top-level datamodel elements of each descendant at the argument level.
The former function returns true if the argument expression evaluates to true
for every descendant at given level, the latter returns true if the expression
evaluates to true for at least one descendant. The $_isDescendantAt-
LevelSatisfying function, in addition, takes an mba element as argu-
ment, and returns true if the argument mba element is descendant at given
level and the argument expression evaluates to true for this descendant. The
$_ancestorAtLevelSatisfies function evaluates an argument expres-
sion over an ancestor. The $_isAncestorAtLevelSatisfying function
takes an mba element as argument which must be the ancestor at the given
level and the argument expression must evaluate to true for this ancestor.



6.3 Multilevel Predicates in State Chart XML 151

Table 6.2: Functions for vertical synchronization over states

function $_everyDescendantAtLevelIsInState
param $level as xs:string, $stateId as xs:string
define let $descendants :=

mba:getDescendantsAtLevel($mba, $level)
return every $descendant in $descendants
satisfies
mba:isInState($descendant, $stateId)

function $_everyDescendantAtLevelInStateSatisfies
param $level as xs:string, $stateId as xs:string,

$cond as xs:string
define let $descendants :=

mba:getDescendantsAtLevel($mba, $level)
let $descendantsInState :=
$descendants[mba:isInState(., $stateId)]

return every $desc in $descendantsInState
satisfies
let $dataModels := sc:selectDataModels(
mba:getConfiguration($desc)

)
return sc:eval($cond, $dataModels)

function $_everyDescendantAtLevelSatisfyingIsInState
param $level as xs:string, $cond as xs:string,

$stateId as xs:string
define let $descendants :=

mba:getDescendantsAtLevel($mba, $level)
let $descendantsSatisfying :=
$descendants[sc:eval(
$cond,
sc:selectDataModels(
mba:getConfiguration(.)

)
)]

return every $desc in $descendantsSatisfying
satisfies
mba:isInState($desc, $stateId)

(continues on next page)



152 6 XML Representation

Table 6.2 (continued): Functions for vertical state synchronization

function $_someDescendantAtLevelIsInState
param $level as xs:string, $stateId as xs:string
define let $descendants :=

mba:getDescendantsAtLevel($mba, $level)
return
some $descendant in $descendants
satisfies
mba:isInState($descendant, $stateId)

function $_someDescendantAtLevelInStateSatisfies
param $level as xs:string, $stateId as xs:string,

$cond as xs:string
define let $descendants :=

mba:getDescendantsAtLevel($mba, $level)
let $descendantsInState :=
$descendants[
mba:isInState(., $stateId)
]

return
some $desc in $descendantsInState
satisfies
let $dataModels :=
sc:selectDataModels(
mba:getConfiguration($desc)

)
return sc:eval($cond, $dataModels)

function $_isDescendantAtLevelInState
param $obj as element(), $level as xs:string,

$stateId as xs:string
define let $descendants :=

mba:getDescendantsAtLevel($mba, $level)
return (
some $desc in $descendants
satisfies $desc is $obj

) and
mba:isInState($obj, $stateId)

(continues on next page)



6.3 Multilevel Predicates in State Chart XML 153

Table 6.2 (continued): Functions for vertical state synchronization

function $_isDescendantAtLevelInStateSatisfying
param $obj as element(), $level as xs:string,

$stateId as xs:string, $cond as xs:string
define let $descendants :=

mba:getDescendantsAtLevel($mba, $level)
let $dataModels :=
sc:selectDataModels(
mba:getConfiguration($obj)
)

return (some $desc in $descendants
satisfies $desc is $obj

) and mba:isInState($obj, $stateId)
and sc:eval($cond, $dataModels)

function $_ancestorAtLevelIsInState
param $level as xs:string, $stateId as xs:string
define let $ancestor :=

mba:getAncestorAtLevel($mba, $level)
return mba:isInState($ancestor, $stateId)

function $_ancestorAtLevelIsInStateAndSatisfies
param $level as xs:string, $stateId as xs:string,

$cond as xs:string
define let $ancestor :=

mba:getAncestorAtLevel($mba, $level)
let $dataModels := sc:selectDataModels(
mba:getConfiguration($ancestor)

)
return mba:isInState($ancestor, $stateId)
and sc:eval($cond, $dataModels)

function $_isAncestorAtLevelInState
param $obj as element(), $level as xs:string,

$stateId as xs:string
define let $ancestor :=

mba:getAncestorAtLevel($mba, $level)
return $ancestor is $obj and
mba:isInState($obj, $stateId)

(continues on next page)



154 6 XML Representation

Table 6.2 (continued): Functions for vertical state synchronization

function $_isAncestorAtLevelInStateSatisfying
param $obj as element(), $level as xs:string,

$stateId as xs:string, $cond as xs:string
define let $ancestor :=

mba:getAncestorAtLevel($mba, $level)
let $dataModels :=
sc:selectDataModels(
mba:getConfiguration($obj)
)

return $ancestor is $obj
and mba:isInState($obj, $stateId)
and sc:eval($cond, $dataModels)

Note that the mba elements in the synchronization functions are
compared based on node identity according to the XPath data model [135,
#node-identity]. Each node in an XML document has an implicit identifier,
similar to an object identifier in object-oriented systems. The getMBA,
getDescendantsAtLevel, and getAncestorAtLevel functions
retrieve mba elements from the database which preserve their node identity.
Thus, when passing an mba element to the $_isDescendantAtLevel-
Satisfying and the $_isAncestorAtLevelSatisfying functions
for comparison, the argument mba element must have been retrieved from
the database and not be a copy with a new identity.

Table 6.2 defines XQuery functions for expressing pre-conditions over
the active states of ancestors and descendants of an MBA. The definitions
of these functions make use of the isInState function from the MBA
namespace which takes an mba element and a state identifier as arguments,
and returns true if the argument MBA is in the given state. One group of
functions allows for state synchronization with the ancestor, the other for
state synchronization with the descendants at a particular level; there are
several variants for each group of functions. The $_everyDescendant-
AtLevelIsInState function takes a level name and a state identifier as
arguments, and returns true if every descendant at the argument level is
in the argument state. Similarly, the $_someDescendantAtLevelIsIn-
State function returns true if some descendant at a specified argument
level is in the specified argument state. The $_ancestorAtLevelIsIn-



6.3 Multilevel Predicates in State Chart XML 155

State function, on the other hand, returns true if the ancestor at a specified
argument level is in the specified argument state.

Other state synchronization functions in Table 6.2 allow for the specifica-
tion of an additional condition that must be satisfied by the ancestors and
descendants at the respective levels, similar to the attribute synchroniza-
tion functions. The $_everyDescendantAtLevelInStateSatisfies
function returns true if every descendant at the argument level that is in the
argument state satisfies the given condition. The $_everyDescendantAt-
LevelSatisfyingIsInState function, on the other hand, returns true
if every descendant at the argument level that satisfies the given argument
condition is in the given argument state. The $_someDescendantAt-
LevelInStateSatisfies function returns true if some descendant at
the argument level is in the argument state and satisfies the given condition.
Similarly, the $_ancestorAtLevelIsInStateAndSatisfies function
returns true if the ancestor at the argument level is in the argument state
and satisfies the given condition.

Similar to the corresponding functions for attribute synchronization, Ta-
ble 6.2 defines state synchronization functions which check whether a par-
ticular MBA is an ancestor or descendant at a particular level in a given
state. The $_isDescendantAtLevelInState function takes an mba
element as argument which must be a descendant at an argument level and
currently be in an argument state in order for the function to return true;
the $_isDescendantAtLevelInStateSatisfying function takes an
additional condition which the descendant must satisfy in order for the
function to return true. Similarly, the $_isAncestorAtLevelInState
function takes an mba element as argument which must be ancestor at a
given level and in an argument state in order for the function to return
true; the $_isAncestorAtLevelInStateSatisfying function takes
an additional condition which the ancestor must satisfy.

Assume the existence of an MBA Rental with the business level as the top
level in the level hierarchy. Conceptually, at the rental level, MBA Rental
defines a rate and a duration attribute; the life cycle model consists of the
states Opening, Open, Settling, and Closed. At the renterType level, MBA
Rental defines a maximumRate and a maximumDuration attribute; the life
cycle model consists of the states InDevelopment, OnOffer, Canceled, and
Discontinued. Between the life cycle models of these different abstraction
levels there exist several synchronization dependencies; the logical repre-
sentation of MBA Rental in Listings 6.6-6.8 emphasizes these multilevel
synchronization dependencies.



156 6 XML Representation

Listing 6.6: The logical representation of the rental-level data and life cycle model
of MBA Rental with an emphasis on multilevel synchronization
1 �- <mba name="Rental" �+ xmlns=...>
2 �- <topLevel name="business">
3 �+ <elements ...
4 �- <childLevel name="renterType">
5 �+ <elements ...
6 �- <childLevel name="rental">
7 �- <elements>
8 �- <sc:scxml>
9 �- <sc:datamodel>

10 �- <sc:data id="rate"/>
11 �- <sc:data id="duration"/>
12 </sc:datamodel>
13 �+ <sc:initial ...
14 �- <sc:state id="Opening">
15 �- <sc:transition event="setRate"
16 cond="$_ancestorAtLevelSatisfies(
17 ‘renterType’,
18 ‘$maximumRate >= ’ ||
19 $_event/data/rate/text()
20 )"/>
21 �- <sc:assign location="$rate"
22 expr="$_event/data/rate/text()"/>
23 </sc:transition>
24 �+ <sc:transition event="setDuration" ...
25 �+ <sc:transition event="pickUp" ...
26 </sc:state>
27 �+ <sc:state id="Open" ...
28 �+ <sc:state id="Settling" ...
29 �- <sc:state id="Closed"/>
30 </sc:scxml>
31 </elements>
32 </childLevel>
33 </childLevel>
34 </topLevel>
35 �+ <concretizations ...
36 </mba>



6.3 Multilevel Predicates in State Chart XML 157

The logical representation of MBA Rental contains, at the rental level
(Listing 6.6), an assign element under a transition element with value
“setRate” for the event attribute (Line 21) represents the assignment of a
value to the rate attribute by event occurrences of setRate. The transition
element with value “setRate” for the event attribute (Line 15) defines an
additional guard condition in the cond attribute over an attribute value
of the respective ancestor at the renterType level. This transition ele-
ment makes use of the $_ancestorAtLevelSatisfies function, thereby
expressing the condition that the transition requires the ancestor’s maximum-
Rate attribute to be greater or equal than the value passed as event payload.
The SCXML interpreter dynamically evaluates the expression over the an-
cestor’s datamodel elements, with the $maximumRate variable referring
to a data element with value “maximumRate” as id in the ancestor’s
datamodel and the value in the event payload fixed in the argument string
before calling the synchronization function. Analogously, the transition
element with value “setDuration” for the event attribute (Line 24) may
have a guard condition that expresses the condition that the ancestor MBA’s
maximumDuration attribute must be greater or equal to the value passed as
argument to the setDuration method which triggers the transition.

The logical representation of MBA Rental contains, at the renterType level
(Listing 6.7), an assign element under a transition element with value
“setMaximumDuration” for the event attribute (Line 14) which represents
the assignment of a value to the maximumDuration attribute by event occur-
rences of setMaximumDuration. The transition element makes use of the
$_everyDescendantAtLevelInStateSatisfies function to express
the condition that, in order for the transition to assign a new value to the
maximumDuration attribute, the argument value passed as the new maximum
duration must be greater or equal to the value of the duration attribute of
every descendant at the rental level that is in the Open state. Consider, for
example, an event occurrence of setMaximumDuration to assign the value “60”
to maximumDuration, which according to the logical model causes an execu-
tion of the $_everyDescendantAtLevelInStateSatisfies function
in the course of the evaluation of the guard condition. The XPath expression
$_event/data/maximumDuration/text() evaluates to “60”. Then,
for every descendant MBA in the Open state, using the datamodel ele-
ments valid in the currently active states of each descendant, the SCXML
interpreter dynamically evaluates the expression 60 >= $duration, with
the $duration variable referring to the value of the data element with
value “duration” as id from the descendant’s top-level data models.



158 6 XML Representation

Listing 6.7: The logical representation of the renterType-level data and life cycle
model of MBA Rental with an emphasis on multilevel synchronization – Part 1
1 �- <mba name="Rental" �+ xmlns=...>
2 �- <topLevel name="business">
3 �+ <elements ...
4 �- <childLevel name="renterType">
5 �- <elements>
6 �- <sc:scxml>
7 �- <sc:datamodel>
8 �- <sc:data id="maximumRate"/>
9 �- <sc:data id="maximumDuration"/>

10 </sc:datamodel>
11 �+ <sc:initial ...
12 �- <sc:state id="InDevelopment">
13 �+ <sc:transition event="setMaximumRate" ...
14 �- <sc:transition event="setMaximumDuration"
15 cond="$_everyDescendantAtLevelIn-
16 StateSatisfies(‘rental’, ‘Open’,
17 $_event/data/maximumDuration/text()
18 || ‘ >= $duration’
19 )">
20 �+ <sc:assign location="$maximumDurat ...
21 </sc:transition>
22 �- <sc:transition event="launch"
23 target="OnOffer"
24 cond="$_ancestorAtLevelIsInState(
25 ‘business’, ‘Running’
26 )"/>
27 </sc:state>
28 �+ <sc:state id="OnOffer" ...
29 �+ ...
30 </sc:scxml>
31 </elements>
32 �+ <childLevel name="rental" ...
33 </childLevel>
34 </topLevel>
35 �+ <concretizations ...
36 </mba>



6.3 Multilevel Predicates in State Chart XML 159

Listing 6.8: The logical representation of the renterType-level data and life cycle
model of MBA Rental with an emphasis on multilevel synchronization – Part 2
1 �- <mba name="Rental" �+ xmlns=...>
2 �- <topLevel name="business">
3 �+ <elements ...
4 �- <childLevel name="renterType">
5 �- <elements>
6 �- <sc:scxml>
7 �- <sc:datamodel>
8 �- <sc:data id="maximumRate"/>
9 �- <sc:data id="maximumDuration"/>

10 </sc:datamodel>
11 �- <sc:initial>
12 �- <sc:transition target="InDevelopment"/>
13 </sc:initial>
14 �+ <sc:state id="InDevelopment" ...
15 �- <sc:state id="OnOffer">
16 �- <sc:transition event="cancel"
17 target="Canceled"/>
18 </sc:state>
19 �- <sc:state id="Canceled">
20 �- <sc:transition event="discontinue"
21 target="Discontinued"
22 cond="$_everyDescendantAtLevel-
23 IsInState(‘rental’, ‘Closed’)
24 "/>
25 </sc:state>
26 �- <sc:state id="Discontinued"/>
27 </sc:scxml>
28 </elements>
29 �+ <childLevel name="rental" ...
30 </childLevel>
31 </topLevel>
32 �+ <concretizations ...
33 </mba>



160 6 XML Representation

The logical representation of MBA Rental, at the renterType level (List-
ings 6.7 and 6.8), also contains transition elements with values “launch”
and “discontinue” for the event attribute which represent transitions from
the InDevelopment to the OnOffer state and from the Canceled to the Dis-
continued state, respectively. These transition elements make use of the
$_ancestorAtLevelIsInState and $_everyDescendantAtLevel-
IsInState function, respectively, for multilevel synchronization over states.
The guard condition of the transition element with value “launch” for the
event attribute (Listing 6.7, Line 22) represents the pre-condition that the
ancestor MBA at the business level must be in the Running state in order for
the transition to be followed. The guard condition of the transition ele-
ment with value “discontinue” for the event attribute (Listing 6.8, Line 20)
represents the pre-condition that every descendant MBA at the rental level
must be in the Closed state in order for the transition to be followed.

Custom action elements allow for the manipulation of ancestors and
descendants in the course of a transition between states; they are the
SCXML equivalent to multilevel predicates from the conceptual model used
in transition post-conditions. Tables 6.3-6.8 define attributes and children
of these custom action elements for multilevel synchronization. Several of
these custom action elements derive from standard SCXML action elements
for modeling executable content [130, #executable], namely those for the
assignment of attribute values for and the sending of messages to ancestor
and descendant MBAs at a particular level.

The assignAncestor action element signalizes the assignment of a
given value to a particular attribute of an ancestor MBA at some abstraction
level. Table 6.3 defines the attributes and children of the assignAncestor
element. The mandatory level attribute contains the name of the level
that the data manipulation concerns. The other features of the assign-
Ancestor element derive from the SCXML assign element [130, #assign].
The mandatory location attribute contains an XPath expression that
specifies the location in the SCXML datamodel that is to be manipulated.
The optional expr attribute contains an XQuery expression that returns the
value that is to be assigned to the specified location. As an alternative
to the expr attribute, the children of the assignAncestor element may
constitute the value that is to be assigned; either variant is permissible
for the specification of the value, but not both. The type attribute deter-
mines the type of the manipulation operation to be performed (see [130,
#assign_xpath]). If, and only if, the type of operation is “addattribute”,
the attr attribute contains the name of the attribute that is to be added.



6.3 Multilevel Predicates in State Chart XML 161

Table 6.3: Action element for the manipulation of an ancestor’s data model

<assignAncestor>

Attribute Type Description

level xs:Name Defines the level of the ancestor that is
to be manipulated.

location Path expression Specifies the location in the data
model that is to be manipulated. See
SCXML [130, #LocationExpressions].

expr Value expression Optionally determines the value that
is to be assigned. See SCXML [130,
#ValueExpressions].

type enumeration Optionally specifies the type of data
manipulation to be performed. See
SCXML [130, #xpath_assign].

attribute xs:Name Optionally specifies the name of the
attribute that is to be inserted in
case the type of assignment operation
is “addattribute”. See SCXML [130,
#xpath_assign].

Children

A sequence of XML nodes to be assigned to the specified location in the
data model of the newly created descendant. The assignAncestor
element must not have any children when the expr attribute occurs. See
SCXML [130, #assign].

The sendAncestor action element signalizes the sending of a given event
to an ancestor at a particular level. Table 6.4 defines the attributes and
children of the sendAncestor element. The mandatory level element
contains the name of the level that the target ancestor MBA is defined at.
The other features of the sendAncestor element derive from the SCXML
send element [130, #send], though, in order to focus on the core aspects
of multilevel business processes, the sendAncestor element as described
here omits most attributes of the standard send element. Optionally, an
event has a payload attached, which in the logical model is the equivalent
to the parameters of a method in the conceptual model. Most directly,



162 6 XML Representation

Table 6.4: Action element for sending an external event to an ancestor

<sendAncestor>

Attribute Type Description

level xs:Name Defines the level of the ancestor.
event EventType.datatype Specifies the name of the event that

is to be sent to the ancestor.

Children

<sc:param> Allows for the definition of key/value pairs that are
passed to the descendant as event payload. Occurs 0
or more times. See SCXML [130, #param].

<sc:content> Alternatively, the event payload may be specified as a
sequence of XML nodes. Must not occur together with
<sc:param>. Occurs 0 or 1 times. See SCXML [130,
#content].

this equivalence surfaces when a sequence of SCXML param elements as
the children of a sendAncestor element describes the event payload.
As an alternative, the sendAncestor element may have a single SCXML
content child element which contains the event payload either as a sequence
of arbitrary child elements or describes the event payload stating an XQuery
expression in the expr attribute [130, #content].

The assignDescendants element (Table 6.5) as well as the send-
Descendants element (Table 6.6) are similar to the assignAncestor
and sendAncestor element, respectively. Rather than manipulating an
ancestor’s datamodel or sending an event to an ancestor, the assign-
Descendants element and the sendDescendants element affect the
descendants at a particular level. The optional state attribute contains a
state identifer; value assignment applies to every descendant in this state.
The optional satisfying attribute allows for a further restriction of the
considered descendants by specifying a boolean XQuery expression that
every descendant must satisfy in order to be affected by the action.

The newDescendant custom action element signalizes the creation of a
new descendant at a given level. Table 6.7 defines the attributes and children
of the newDescendant element. The mandatory level attribute contains
the name of the level at which to create the descendant. A value expression



6.3 Multilevel Predicates in State Chart XML 163

Table 6.5: Action element for the manipulation of descendants’ data models

<assignDescendants>

Attribute Type Description

level xs:Name Defines the level of the descendants that
are to be manipulated.

state xs:Name Optionally defines a state that a descen-
dant must be in for the manipulation
to take place.

satisfying Value expression Optionally defines a condition that a
descendant must satisfy for the manip-
ulation to take place.

location Path expression Specifies the location in the data
model that is to be manipulated. See
SCXML [130, #LocationExpressions].

expr Value expression Optionally determines the value that
is to be assigned. See SCXML [130,
#ValueExpressions].

type enumeration Optionally specifies the type of data
manipulation to be performed. See
SCXML [130, #xpath_assign].

attribute xs:Name Optionally specifies the name of the
attribute that is to be inserted in
case the type of assignment operation
is “addattribute”. See SCXML [130,
#xpath_assign].

Children

A sequence of XML nodes to be assigned to the specified location in the
data model of the newly created descendant. The assignDescendants
element must not have any children when the expr attribute occurs. See
SCXML [130, #assign].

in the optional name attribute determines the name of the descendant that is
to be created. There must not exist another MBA with the same name in the
concretization hierarchy. The optional parents attribute determines the
names of the new MBA’s parents, which is important for level introduction.



164 6 XML Representation

Table 6.6: Action element for sending an external event to descendants

<sendDescendants>

Attribute Type Description

level xs:Name Defines the level of the descendants.
state xs:Name Optionally defines the state that a

descendant must be in for the event
to be sent.

satisfying Value expression Optionally defines a condition that a
descendant must satisfy for the event
to be sent.

event EventType.datatype Specifies the name of the event that
is to be sent to the descendants.

Children

<sc:param> Allows for the definition of key/value pairs that are
passed to the descendant as event payload. Occurs 0
or more times. See SCXML [130, #param].

<sc:content> Alternatively, the event payload may be specified as
a sequence of XML nodes. Must not occur together
with <param>. Occurs 0 or 1 times. See SCXML [130,
#content].

The assignNewDescendant custom action element signalizes the as-
signment of a given value to a particular attribute of the newly created
descendant in the course of concretization and occurs only as a child of the
newDescendant element. Table 6.8 defines the attributes and children
of the assignNewDescendant element. The features of the assign-
NewDescendant element derive from the SCXML assign element [130,
#assign, #xpath_assign].

Listing 6.9 emphasizes multilevel synchronization dependencies in the log-
ical representation of the business level of MBA Rental. The transition
element with value “createRenterType” as event (Line 12) has a new-
Descendant child element which represents the creation of a new descen-
dant MBA at the renterType level by invoking the createRenterType method
at the business level. Under this newDescendant element, an assign-
NewDescendant element models the assignment of attribute values to



6.3 Multilevel Predicates in State Chart XML 165

Table 6.7: Action element for concretization

<newDescendant>

Attribute Type Description

level xs:Name Defines the level at which to create a
new MBA.

name Value expression Optionally determines the name of the
newly created MBA.

parents Value expression Optionally determines the names of the
parents of the newly created MBA.

Children

<assignNewDescendant> Manipulates the data model of the newly
created descendant. Occurs 0 or more
times. See Table 6.8.

the newly created descendant MBA. The first assignNewDescendant
element represents the assignment of value to the new descendant’s data
element with “maximumRate” as id, using the value of the maximumRate
child element (from the empty namespace) of the event data element in the
data model (Line 15). Analogously, the second assignNewDescendant
element (Line 19, not shown in detail) represents the assignment of value
to the new descendant’s data element with “maximumDuration” as id,
using the value of the maximumDuration child element of the event data
element in the data model. Another transition element (Line 25), with
value “restructure” as event, has a sendDescendant child element which
represents the invocation of the cancel method of every descendant MBA at
the renterType level that is in the OnOffer state.

For MBA relationships, the presented functions and custom action elements
will have to be slightly adapted. First, when specifying the level that the
multilevel predicate refers to, relationship levels instead of individual levels
are referenced. To this end, a serialization format for relationship levels is
required, which might be a dedicated XML element, or simply a sequence
of strings. Second, for the concretization of MBA relationships, the new-
Descendant must be extended with additional parameters for the names
of the coordinates. Again, a serialization format for coordinates is required
(see Section 6.2).



166 6 XML Representation

Table 6.8: Action element for the manipulation of a newly created descendant’s
data model

<assignNewDescendant>

Attribute Type Description

location Path expression Specifies the location in the data
model that is to be manipulated. See
SCXML [130, #LocationExpressions].

expr Value expression Optionally determines the value that
is to be assigned. See SCXML [130,
#ValueExpressions].

type enumeration Optionally specifies the type of data
manipulation to be performed. See
SCXML [130, #xpath_assign].

attribute xs:Name Optionally determines the name of the
attribute that is to be inserted in
case the type of assignment operation
is “addattribute”. See SCXML [130,
#xpath_assign].

Children

A sequence of XML nodes to be assigned to the specified loca-
tion in the data model of the newly created descendant. The
assignNewDescendant element must not have any children when the
expr attribute occurs. See SCXML [130, #assign].

Multilevel predicates for the representation of horizontal and hybrid syn-
chronization dependencies may be implemented according to the same prin-
ciples as multilevel predicates for vertical synchronization dependencies.
In that case, inline functions and custom action elements would express
horizontal and hybrid synchronization dependencies. The OCL constraints
defined in Chapter 4 may serve as blueprint for the implementation of the
corresponding XQuery statements.

Moreover, custom action elements may also implement reflective functions
(see Section 5.1.3). In the most basic case, such a custom action element may
allow for the introduction of an additional scxml element at a particular
level of an MBA. The newly introduced scxml element becomes the payload



6.3 Multilevel Predicates in State Chart XML 167

Listing 6.9: The logical representation of the business-level data and life cycle
model of MBA Rental with an emphasis on multilevel synchronization
1 �- <mba name="Rental"
2 xmlns="http://www.dke.jku.at/MBA"
3 xmlns:sync="http://www.dke.jku.at/MBA/Sync"
4 xmlns:sc="http://www.w3.org/2005/07/scxml">
5 �- <topLevel name="business">
6 �- <elements>
7 �- <sc:scxml>
8 �+ <sc:datamodel ...
9 �+ <sc:initial ...

10 �- <sc:state id="Restructuring">
11 �+ <sc:transition event="setMissionStatem ...
12 �- <sc:transition event="createRenterType">
13 �- <sync:newDescendant level="renterType"
14 name="$_event/data/name/text()">
15 �- <sync:assignNewDescendant
16 location="$maximumRate"
17 expr="$_event/data/
18 maximumRate/text()"/>
19 �+ <sync:assignNewDescendant ...
20 </sync:newDescendant>
21 </sc:transition>
22 �+ <sc:transition event="reopen" ...
23 </sc:state>
24 �- <sc:state id="Running">
25 �- <sc:transition event="restructure"
26 target="Restructuring">
27 �- <sync:sendDescendants level="renterType"
28 state="OnOffer" event="cancel"/>
29 </sc:transition>
30 </sc:state>
31 </sc:scxml>
32 </elements>
33 �+ <childLevel name="renterType" ...
34 </topLevel>
35 �+ <concretizations ...
36 </mba>



168 6 XML Representation

of the event and eventually, given successful processing of the event, a
child of the respective level’s elements element. The system may check
adherence to the selected notion of behavior consistency. Modelers may
then specify additional pre-conditions over the argument scxml element
to further constrain the possibility of introducing heterogeneities in sub-
hierarchies. Another custom action element may then allow for changing an
MBA’s active scxml element.



Part II

Data Analysis



7 Multilevel Business Process
Automation

In previous chapters, we have discussed the use of the multilevel business
artifact (MBA) for multilevel business process modeling in order to better
represent the interactions between the different hierarchy levels within a
company. As the preparation for a proof-of-concept implementation, in
Chapter 6, we have introduced an XML-based logical representation for
MBAs. Relying on this XML representation, in this chapter, we present
the implementation concept for a business process management system that
enables the MBA-based (semi-)automated execution of multilevel business
processes. A business process management system manages process-related
data and allows for the event-driven execution of business processes; a
business process management system also records event data. The recording
of event data in event logs is a pre-requisite for business process intelligence
which allows for performance analysis and the subsequent improvement of
business processes based on the analysis results.

7.1 Multilevel Business Process
Management System

The presented multilevel business process management system follows a
generic architecture for business process management systems, the main
components of which are the business process model repository, the business
process environment, and the process engine [139, p. 120 et seqq.]; the
modeling tool is another component, which may be built according to the
rules defined in the modeling part of this thesis. The implementation
concept relies heavily on XML technologies. An MBA database serves as
the multilevel business process model repository and is realized using an
XML database management system which stores an XML representation of
the MBAs that conceptually model the automated business processes. The
business process environment handles event occurrences which drive process
execution. Basically, the business process environment is an event processor

C. G. Schuetz, Multilevel Business Processes, 
DOI 10.1007/978-3-658-11084-0_7, © Springer Fachmedien Wiesbaden 2015



172 7 Multilevel Business Process Automation

which retrieves from the MBA database the XML document representing the
MBA that is affected by an event occurrence and passes this XML document
to the process engine along with the event data. The process engine consists
of a set of XQuery functions which manipulate the XML document according
to the life cycle model.

7.1.1 Multilevel Business Artifact Database
The MBA database (also: MBAse, read: m-base) holds the logical represen-
tation of the MBAs that model the automated multilevel business process.
This logical representation being in XML, an XML database management
system handles the physical storage of the XML documents representing the
MBAs, and an XQuery module provides a set of functions for the creation,
manipulation, and retrieval of MBAs from the database. Table 7.1 describes
the functions of the XQuery module for MBA data management. The
createMBAse, createCollection, and insertMBA functions allow for
the creation of an MBA database and collection as well as the subsequent
insertion of mba elements. The getMBA function allows for the retrieval of
an mba element by name from a collection in the MBA database. The other
functions take an mba element as argument and allow for the retrieval and
manipulation of data from this element.

The XQuery functions described in Table 7.1 provide the fundamental
for the various components of the multilevel business process management
system; these functions represent a basic requirement for multilevel busi-
ness process automation. The implementation of multilevel predicates for
synchronization between abstraction levels (see Chapter 6) requires the
getAncestorAtLevel and getDescendantsAtLevel functions. The
getSCXMLAtLevel function retrieves scxml elements that an MBA as-
sociates with a given abstraction level. the getSCXML function returns
the single active scxml element that an MBA associates with its top
level. The thus retrieved SCXML documents may serve as the input for an
SCXML interpreter. The getAttribute function retrieves a data element
by name from a given MBA’s active top-level scxml element. The get-
Configuration and isInState functions grant access to an argument
mba element’s current states. The getConfiguration function returns
the given MBA’s configuration, that is, the set of currently active state
and parallel elements from the MBA’s active top-level scxml element.
The isInState function takes a string as additional argument and returns
true if the given MBA’s configuration contains a state or parallel ele-



7.1 Multilevel Business Process Management System 173

Table 7.1: Main XQuery functions for MBA database management

Function Parameters Description

createMBAse $name xs:string Creates a new MBA
database.

createCollection $db xs:string, Creates a new collection
within an MBA database.$name xs:string

insertMBA $db xs:string, Inserts an mba element
into a collection within
an MBA database.

$collection
xs:string,
$mba element()

getMBA $db xs:string, Returns mba element
with given name from a
collection within an MBA
database.

$collection
xs:string,
$name xs:string

getAncestor- $mba element(), Returns mba element
that is ancestor at given
level of given MBA.

AtLevel $level
xs:string

getDescendants- $mba element(), Returns mba elements
that are descendants at
given level of given MBA.

AtLevel $level
xs:string

getSCXMLAtLevel $mba element(), Returns scxml elements
that the given MBA
defines for given level.

$level
xs:string

getSCXML $mba element() Returns given MBA’s
active top-level scxml
element.

getAttribute $mba element(), Returns data element
with given name from the
MBA’s active top-level
scxml element.

$name xs:string

(continues on next page)



174 7 Multilevel Business Process Automation

Table 7.1 (continued): XQuery functions for MBA database management

Function Parameters Description

getConfiguration $mba element() Returns currently active
state elements from
MBA’s active top-level
scxml element.

isInState $mba element(), Returns true if given
MBA’s configuration
contains state element
with given identifier.

$stateId
xs:string

add- $mba element(), Adds to MBA’s set of
current states a set of
state elements from
given MBA’s active
top-level scxml element.

CurrentStates $entrySet
element()*

remove- $mba element(), Removes from MBA’s set
of current states a set of
state elements from
given MBA’s active
top-level scxml element.

CurrentStates $exitSet
element()*

ment with the argument string value as id. The addCurrentStates and
removeCurrentStates functions change a given MBA’s configuration as
recorded in the database. Both functions take a set of state and parallel
elements from the MBA’s active top-level scxml element.

The MBA data management functions rely on node identity [135, #node-
identity], passing and manipulating mba elements, the changes made on
these elements being effective on the database. The employed XML database
management system must therefore support the retrieval of nodes from the
database under preservation of node identity and allow for the subsequent
manipulation of these nodes using the XQuery Update Facility (XQUF) [128].
Furthermore, the database management system should transparently persist
the thus executed update operations.

An MBA has a set of currently active states; the MBA database must store
the currently active states of each MBA. The SCXML standard makes no
prescriptions concerning the persistence of active states – with the exception
of history states [135, #history]. One possibility is the use of a custom



7.1 Multilevel Business Process Management System 175

Listing 7.1: The logical representation of the top-level data model of MBA Rental
with external event queue and current status
1 �- <mba name="Rental" �+ xmlns=...>
2 �- <topLevel name="business">
3 �- <elements>
4 �- <sc:scxml>
5 �- <sc:datamodel>
6 �- <sc:data id="mission">Renting</sc:data>
7 �- <sc:data id="_x">
8 �- <db xmlns="">myMBAse</db>
9 �- <collection xmlns="">

10 CarRentals
11 </collection>
12 �- <mba xmlns="">Rental</mba>
13 �- <currentStatus xmlns="">
14 �- <state ref="Running"/>
15 </currentStatus>
16 �- <externalEventQueue xmlns="">
17 �- <event name="setMission">
18 �- <mission>Moving people</mission>
19 </event>
20 �- <event name="reopen"/>
21 </externalEventQueue>
22 </sc:data>
23 �- <sc:data id="_event">
24 �- <name xmlns="">restructure</name>
25 �- <data xmlns="">
26 �- <memo>Refocusing needed</memo>
27 </data>
28 </sc:data>
29 </sc:datamodel>
30 �+ ...
31 </sc:scxml>
32 </elements>
33 �+ <childLevel name="renterType" ...
34 </topLevel>
35 �+ <concretizations ...
36 </mba>



176 7 Multilevel Business Process Automation

system variable in an mba element’s active top-level scxml element. List-
ing 7.1 contains the logical representation of the data model of MBA Rental
from previous examples, storing the currently active states of the MBA
under the currentStatus (Line 13) child of the data element with value
“_x” as id. Note that the state children of the currentStatus element
are from the empty namespace, as opposed to the state descendants of
the scxml element, which are in the SCXML namespace. The children
of currentStatus refer in their ref attribute to identifiers of state
and parallel elements from the MBA’s active top-level scxml element.
The getConfiguration function resolves these references and returns the
state and parallel elements from the MBA’s active top-level scxml
element that correspond to the references in the currentStatus element.
This set of state and parallel elements may then serve as the input for
an SCXML interpreter.

7.1.2 XQuery-based Interpreter for State Chart XML
A business process engine for the MBA-based automation of multilevel
business processes must handle SCXML. The logical representation of MBAs
employs SCXML as the representation language for the life cycle models
at the various abstraction levels. With SCXML being an XML-based state
machine language, a business process engine that deals with SCXML must
query and manipulate XML documents. Thus, it is logical to have an SCXML
implementation based on XQuery, the standard query, manipulation, and
programming language for XML.

An SCXML implementation using XQuery allows for a convenient integra-
tion of the multilevel business process engine in an XML database environ-
ment. Table 7.2 describes XQuery functions for the interpretation of SCXML
documents. The XQuery functions derive from the informative pseudo-code
algorithm described in the SCXML standard [130, #AlgorithmforSCXML-
Interpretation]; this algorithm may serve as a guide for the implementation
of an XQuery-based interpreter. Taking advantage of the XQuery and XPath
data model (XDM), an XQuery-based SCXML interpreter may operate on
the elements of an SCXML document in an object-oriented fashion.

The selectTransitions and selectEventlessTransitions
functions retrieve the set of enabled transitions given a configuration
of active states. The argument configuration must consist of a set of
state and parallel elements from the scxml element that is to be
interpreted. Due to the preservation of node identity, using a simple



7.1 Multilevel Business Process Management System 177

Table 7.2: Main XQuery functions for SCXML interpretation

Function Parameters Description

selectEventless- $configuration Returns set of enabled
transition elements
not associated with any
event.

Transitions element()*,
$dataModels
element()*

selectTransitions $configuration Returns set of enabled
transition elements
associated with given
event.

element()*,
$dataModels
element()*,

$event
xs:string

computeExitSet $configuration Returns set of state
elements from configura-
tion to be exited given
set of enabled transitions.

element()*,
$transitions
element()*

computeEntrySet $transitions Returns set of state
elements to be entered
given set of enabled
transitions.

element()*

selectDataModels $configuration Returns set of
datamodel elements
that are valid under given
configuration.

element()*

eval $expr Dynamically evaluates a
given expression over the
argument datamodel
elements.

xs:string,
$dataModels
element()*

(continues on next page)



178 7 Multilevel Business Process Automation

Table 7.2 (continued): XQuery functions for SCXML interpretation

Function Parameters Description

assign $dataModels Updates data
elements, identified by
an XPath expression,
from a given set of
data models. Different
types of operations
require different
parameters. See
SCXML [130,
#xpath_assign].

element()*,
$location
xs:string,

$expression
xs:string?,

$type
xs:string?,

$attribute
xs:string?,

$nodelist
node()*

XPath expression, the SCXML interpreter may access the enclosing
scxml element that contains the states in the configuration; a separate
parameter for passing the scxml element is not necessary in this case. The
selectTransitions function takes as additional parameter the name
of an event, selecting those transitions that are triggered by the argument
event. The selectEventlessTransitions function selects enabled
transitions without an associated event.

The computeExitSet and computeEntrySet functions retrieve, given
a set of transitions, those states of an SCXML document that are to be
entered and exited, respectively. Under preservation of node identity, both
functions take a set of transition elements as parameter and return
a set of state and parallel elements from the interpreted SCXML
document as result. Due to the preservation of node identity, the SCXML
interpreter may access the enclosing scxml element through the argument
set of transition elements. The computeExitSet function takes a
configuration of active states as additional parameter; only currently active
states may be removed from the configuration. Again, the function must
receive the argument configuration under preservation of node identity.

The selectDataModels function is an auxiliary that retrieves those
datamodel elements that are valid under a given configuration of active
states. Besides the global datamodel, each state and parallel element
in an SCXML document may itself contain a datamodel element. These
local datamodel elements are only valid when the containing state is



7.1 Multilevel Business Process Management System 179

currently active. The selectDataModels function expects an argument
configuration to be passed under preservation of node identity in order to
access the enclosing scxml element.

The eval function allows for the dynamic evaluation of an argument
string as non-updating XQuery expression which may refer to the contents of
the data elements in the argument SCXML data models. For the evaluation
of the argument string, the eval function binds the contents of each data
element in one of the argument data models to a variable bearing the data
element’s id value as name.

The functionality of executable content [130, #executable], or action
elements, may be implemented using XQuery. These functions have a
parameter for each potential attribute and child element of the corre-
sponding action element. The assign function realizes the assign ele-
ment [130, #xpath_assign]. The $location, $expression, $type, and
$attribute parameters each correspond to an attribute of the assign
element; the $nodelist parameter represents potential child elements
for inline specification of content. The assign element’s derivations for
multilevel synchronization (see Chapter 6) take additional parameters. The
implementation of the send element and its derivations for multilevel syn-
chronization depend on the event processor.

7.1.3 Event Processor
Events drive the automated business process, causing changes in the state of
the involved MBAs and in their data models. The event processor dispatches
occurring events, including the payload, to the MBAs and invokes the
SCXML interpreter. Table 7.3 describes the functions for the management
of the event queues of the MBAs in the database. The enqueueExternal-
Event function takes as arguments an mba element and the serialization
of an event, and appends the event serialization to the argument MBA’s
event queue. Conversely, the dequeueExternalEvent function removes
the first event serialization from an MBA’s event queue. The loadNext-
ExternalEvent function takes the first event serialization and loads it
into the data element with value “_event” as id.

Listing 7.2 illustrates how the event processor may invoke, upon an event
occurrence, the MBA management and SCXML interpretation functions in
order to change an MBA’s current states based on its configuration and the
active top-level scxml element. As a pre-condition, the event processor must
enqueue the events in order of their occurrence and load the serialization



180 7 Multilevel Business Process Automation

Table 7.3: Main XQuery functions for management of events sent to MBAs

Function Parameters Description

enqueue- $mba element(), Appends event with
payload to a given
MBA’s event queue.

ExternalEvent $event
element()

dequeue- $mba element() Removes the first event
from a given MBA’s
event queue.

ExternalEvent

loadNext- $mba element() Loads first event and
payload from given
MBA’s event queue into
data element with
“_event” as id.

ExternalEvent

of the next event from the queue into the processed SCXML document’s
datamodel prior to the execution of the code in Listing 7.2. Note that
out-of-order event arrival as well as differences in occurrence and detection
time [46] are orthogonal issues which must be investigated separately; the
development of a complex event processing system is not the focus of this
work. Based on the enabled transitions, the sets of states to be exited and
entered are calculated by the SCXML interpretation functions. Subsequently,
the previously calculated sets of states are added and removed, respectively,
from the MBA’s configuration.

The execution of SCXML documents requires event queue management.
The data element for storing custom system variables may serve as the
storage location for the event queue. The contents of the externalEvent-
Queue element from the empty namespace under the data element with
value “_x” as id contains serializations of the events raised for a particular
MBA in order of their occurrence. When starting the processing of a
particular event, the event processor removes the entry for the respective
event from the event queue and loads the event’s description into the data
element with value “_event” as id. For example, the event queue for
MBA Rental in Listing 7.1 consists of two events with the names “set-
Mission” (Line 17) and “reopen” (Line 20). Note that the child elements
that describe the events in the queue are from the empty rather than the
SCXML namespace. In this example, the content of the first event element



7.1 Multilevel Business Process Management System 181

Listing 7.2: The XQuery code for changing an MBA’s current states
1 declare variable $db external;
2 declare variable $collection external;
3 declare variable $name external;
4
5 let $mba := mba:getMBA($db, $collection, $name)
6 let $scxml := mba:getSCXML($mba)
7
8 let $currentEvent :=
9 $scxml/sc:datamodel/sc:data[@id = ‘_event’]

10 let $eventName := $currentEvent/name
11
12 let $configuration := mba:getConfiguration($mba)
13 let $dataModels :=
14 sc:selectDataModels($configuration)
15
16 let $transitions :=
17 sc:selectTransitions($configuration,
18 $dataModels,
19 $eventName)
20
21 let $exitSet :=
22 sc:computeExitSet($configuration, $transitions)
23 let $entrySet :=
24 sc:computeEntrySet($transitions)
25
26 return (
27 mba:removeCurrentStates($mba, $exitSet),
28 mba:addCurrentStates($mba, $entrySet)
29 )

(from empty namespace) constitutes the payload of the occurrence of the
setMission event, which during processing becomes the contents of the data
child (from empty namespace) of the sc:data element with value “_event”.
When an event is raised for a particular MBA, the event processor enqueues
the serialization of the event occurrence in the MBA’s event queue.



182 7 Multilevel Business Process Automation

Listing 7.3: A possible implementation of the custom action element for sending
events to descendants at a particular level
1 declare updating function sync:sendDescendants(
2 $mba as element(), $level as xs:string,
3 $eventId as xs:string, $stateId as xs:string?,
4 $cond as xs:string?, $param as element()*,
5 $content as element()?
6 ) {
7 let $descendants :=
8 mba:getDescendantsAtLevel($mba, $level)
9

10 let $descendantsInState :=
11 if($stateId and not($stateId = ‘’)) then
12 $descendants[mba:isInState(., $stateId)]
13 else $descendants
14
15 let $filteredDescendants :=
16 if($cond and not($cond = ‘’)) then
17 for $descendant in $descendantsInState
18 let $dataModels :=
19 sc:selectDataModels(
20 mba:getConfiguration($descendant)
21 )
22 return
23 if (sc:eval($cond, $dataModels)) then
24 $descendant
25 else ()
26 else $descendantsInState
27
28 let $event :=
29 <event xmlns="" name="{$eventId}">{
30 let $dataModels :=
31 sc:selectDataModels(
32 mba:getConfiguration($mba)
33 )
34 return if ($content) then (
35 if ($content/@expr) then
36 sc:eval($content/@expr, $dataModels)
37 else $content/*



7.1 Multilevel Business Process Management System 183

38 ) else if($param) then (
39 for $p in $param
40 return element{$p/@name}{
41 if($p/@expr) then
42 sc:eval($p/@expr, $dataModels)
43 else if($p/@location) then
44 sc:eval($p/@location, $dataModels)
45 else ()
46 }
47 ) else ()
48 }</event>
49
50 for $descendant in $filteredDescendants
51 return mba:enqueueExternalEvent(
52 $descendant, $event
53 )
54 }

The custom action elements for modeling multilevel synchronization de-
pendencies as described in Chapter 6 may also be realized using XQuery
functions. Consider, for example, the sendDescendants element which
signals the dispatch of a given event to descendants of an MBA at a partic-
ular level. The sendDescendants element has an attribute that defines
the level of the considered descendants as well as an attribute that contains
the name of the dispatched event. The set of descendants that receive an
event notification may further be restricted to MBAs in a particular state
and MBAs that satisfy an additional condition; the sendDescendants
element has optional attributes for specifying these additional restrictions.
Furthermore, the sendDescendants element may have child elements
specifying the event payload. The corresponding XQuery function, which is
in the synchronization namespace, prefixed sync, has parameters for the
potential attributes and child elements of the sendDescendants element.
The signature of the sendDescendants function in Listing 7.3 defines
these parameters. The optional $stateId and $cond parameters allow for
the further restriction of considered descendants. The optional $param pa-
rameter, which takes a list of param elements, and the optional $content
parameter contain payload specifications. The function evaluates either
$param or $content, but never both parameters.



184 7 Multilevel Business Process Automation

Listing 7.4: The logical representation of top-level life cycle model of MBA Rental
1 �- <mba name="Rental" �+ xmlns=...>
2 �- <topLevel name="business">
3 �- <elements>
4 �- <sc:scxml>
5 �+ <sc:datamodel ...
6 �- <sc:initial>
7 �- <sc:transition target="Restructuring"/>
8 </sc:initial>
9 �+ <sc:state id="Restructuring" ...

10 �- <sc:state id="Running">
11 �- <sc:transition event="restructure"
12 target="Restructuring">
13 �- <sync:sendDescendants
14 level="renterType"
15 event="cancel"
16 state="OnOffer">
17 �- <sc:param name="memo"
18 expr="$_event/memo/text()"/>
19 </sync:sendDescendants>
20 </sc:transition>
21 </sc:state>
22 </sc:scxml>
23 </elements>
24 �+ <childLevel name="renterType" ...
25 </topLevel>
26 �+ <concretizations ...
27 </mba>

Listing 7.3 contains a possible implementation of the sendDescendants
function which employs the previously defined MBA management and
SCXML interpretation functions. From the argument MBA’s descendants
at the argument level, only those descendants are selected that presently are
in the given state, provided such a state was passed to the function. The
list of descendants is further reduced by evaluating the optional condition
using the eval function. Finally, the function marshals the event, taking
into account the parameters for the definition of the payload.



7.1 Multilevel Business Process Management System 185

The action element in Listing 7.4, Line 13, has values for the level,
event, and state attributes, as well as a param child. The action element
signals the dispatch of a cancel event to all descendants at the renterType
level that are in the OnOffer state. The dispatched event contains a memo
message as payload. The corresponding function call provides argument
values that determine the name of the dispatched event as well as level
and state of the considered descendants while passing an empty list for the
parameter that holds the additional constraint condition; a param element
rather than a content element defines the event payload. Therefore, the
action element translates into the following function call, where the $mba
variable holds the logical representation of MBA Rental:

sync:sendDescendants(
$mba, ‘renterType’, ‘cancel’, ‘OnOffer’, (),
<sc:param name="memo" expr="$_event/memo/text()"/>,()
)

The previous function call enqueues the following event serialization in the
external event queues of the selected descendant MBAs:

�- <event xmlns="" name="cancel">
�- <memo>Refocusing on core competencies needed</memo>
</event>

For each action element under an activated transition, the event processor
calls the corresponding XQuery function. Listing 7.5 shows the XQuery
code for the execution of a given action element. The $content variable is
provided by the event processor and contains a copy of the action element
that is to be processed. Depending on the dynamic type of the $content
variable, a different XQuery function is invoked with the attributes and
children of the respective action element as arguments. The action elements
are processed in document order, the processing being iterative. The invoked
XQuery functions that implement the action elements are updating. The
updates of one iteration step should be visible to the next. An event processor
implementation may retrieve the action elements of a fired transition and
invoke the XQuery code in Listing 7.5 in a loop, with varying values bound
to the $content variable. The XQuery functions that implement the action
elements do not manipulate the argument values that originate from the
action element’s attributes and children. The requirement of preservation of
node identity, in this case, applies only to the passing of the mba element
itself and its data models.



186 7 Multilevel Business Process Automation

Listing 7.5: The XQuery code for inducing the processing of executable content
1 declare variable $db external;
2 declare variable $collection external;
3 declare variable $name external;
4
5 declare variable $content external;
6
7 let $mba := mba:getMBA($db, $collection, $name)
8
9 return

10 typeswitch($content)
11 case element(sc:assign) return
12 let $dataModels := sc:selectDataModels(
13 mba:getConfiguration($mba)
14 )
15 return sc:assign(
16 $dataModels, $content/@location,
17 $content/@expr, $content/@type,
18 $content/@attr, $content/*
19 )
20 case element(sync:assignAncestor) return
21 sync:assignAncestor(
22 $mba, $content/@level,
23 $content/@location, $content/@expr,
24 $content/@type, $content/@attr,
25 $content/*
26 )
27 case element(sync:sendAncestor) return
28 sync:sendAncestor(
29 $mba, $content/@level,
30 $content/@event, $content/sc:param,
31 $content/sc:content
32 )
33 case element(sync:assignDescendants) return
34 sync:assignDescendants(
35 $mba, $content/@level,
36 $content/@location, $content/@expr,
37 $content/@type, $content/@attr,



7.2 Application Development 187

38 $content/*, $content/@inState,
39 $content/@satisfying
40 )
41 case element(sync:sendDescendants) return
42 sync:sendDescendants(
43 $mba, $content/@level,
44 $content/@event, $content/@inState,
45 $content/@satisfying, $content/sc:param,
46 $content/sc:content
47 )
48 case element(sync:newDescendant) return
49 sync:newDescendant(
50 $mba, $content/@level,
51 $content/@name, $content/@parents,
52 $content/*
53 )
54 default return ()

MULTILEVEL BUSINESS PROCESS AUTOMATION
WITH CONCEPTBASE
The ConceptBase system is a possible alternative for the implementation
of a multilevel business process management system. In this case, the
ConceptBase system may serve as the business process model repository
and, by leveraging the feature for the definition of graphical notations, the
modeling component. Furthermore, the ConceptBase system supports
the formulation of active rules as event-condition-action (ECA) rules [54,
p. 60 et seq.]. Using ECA rules, the ConceptBase system may serve
as an execution engine for business processes, which other work has
demonstrated for Petri nets [51].

7.2 Application Development
The MBA-based development of software solutions yields data-centric, event-
driven applications. These applications are organized around the data of
interest; events trigger operations on these data of interest. The application
logic is defined by the SCXML documents at the various abstraction levels.



188 7 Multilevel Business Process Automation

The specification of web-service calls in these SCXML documents allows for
the modular development of software solutions.

Using MBAs, modelers specify the attributes and behavior of data objects
in a top-down fashion. For an entire hierarchy of data objects modelers
specify common attributes, business rules and policies. Then, for specific
sub-hierarchies, heterogeneities are introduced. These heterogeneities, in
turn, become part of the homogeneous model of the data objects in the
sub-hierarchy. Applications that work with a particular sub-hierarchy of
data objects may rely on the homogeneous model, with potentially positive
implications on code reusability.

The hetero-homogeneous nature of MBA-based conceptual and logical
models allows for a decentralized development process. Developers at differ-
ent organizational levels or local branches and divisions within the company
may be granted access and manipulation rights to the appropriate MBAs
in the database, or rights for the creation of MBAs at a specific level of ab-
straction within a sub-hierarchy. These developers may then autonomously
adapt, create, manipulate, and access data objects in their sphere of respon-
sibility. Yet, the semantics of multilevel concretization limits the freedom of
developers. Thus, the MBA-based development process allows developers to
enforce compliance with the homogeneous model for changes to the schema
at lower levels in the sub-hierarchy.

7.3 Event Logs

The automated execution of business processes produces event logs [27,
p. 353 et seq.] which, in the case of artifact-centric business processes,
document the manipulation of the involved data objects and their change
of states. The recording of such event logs, especially the data about time,
constitutes a basic requirement for the quantitative analysis of business
process performance. Event logs allow for the reconstruction of object life
cycles and the calculation of cycle times.

We propose the use of XES event logs for tracing the execution of mul-
tilevel business processes. The XES (eXtensible Event Stream) standard
specifies an XML-based representation format for event logs [39]. The XML
representation format makes XES particularly convenient for logging the
execution of SCXML documents; XES event logs seamlessly integrate into
SCXML documents with XPath data models.



7.3 Event Logs 189

An MBA’s active top-level scxml element contains a custom system
variable for storing event logs. These event logs then reside in a log element
from the XES namespace, prefixed xes, under the data element with
“_x” as the value for the id attribute. Listings 7.6 and 7.7 show an XES
event log embedded in the data element with value “_x” as id from the
logical representation of MBA Rental. The log element (Listing 7.6, Line 8)
has a trace child which contains a number of logged event occurrences,
each represented as an event element. An event element captures the
characteristics of an event occurrence as key/value pairs which are referred
to as the attributes of the event occurrence. Each key/value pair is an
element with a key attribute which determines the name of the represented
attribute of the event occurrence. The attribute value is either defined by
the element’s value attribute or by the element’s children, depending on
the type of the element. The type of the element itself, that is, the tag name,
determines the expected data type of the attribute value.

For an SCXML document, each event element in the XES log data repre-
sents a successfully taken transition. Although in many cases a transition is
triggered by an event, there are also “eventless” transitions. The XES event
elements must therefore be distinguished from the events that trigger the
transitions. The event log in Listings 7.6 and 7.7 records three successfully
taken transitions for MBA Rental.

The “time:timestamp” attribute [39, p. 11] and the “concept:name” at-
tribute [39, p. 14] are standard XES attributes. The former records the
time of an event occurrence, the latter the name of the event that triggered
the transition. In Listing 7.6, the event log for MBA Rental shows a taken
transition not triggered by any event (Line 11) and a transition triggered by
an event named “setMission” (Line 19). In Listing 7.7, the event log shows
a transition triggered by an event named “reopen.1” (Line 12).

The XES event model is extensible by design, allowing for the introduction
of attributes for specific applications such as SCXML. Extensions allow for
the definition of attributes and their semantics [39, p. 7 et seq.]. Techni-
cally, even the previously used standard attributes, “time:timestamp” and
“concept:name”, are defined in extensions, albeit standard extensions. Each
extension has a name, URL, and prefix. When referring to an attribute
from an extension in an event log, the prefix of the extension precedes the
attribute’s name. For example, “time:timestamp” refers to the attribute
named “timestamp” from an extension with prefix “time”; an extension
element in the event log must declare the corresponding extension (not
shown in Listings 7.6 and 7.7).



190 7 Multilevel Business Process Automation

Listing 7.6: The event log of MBA Rental – Part 1
1 �- <sc:data id="_x">
2 �- <db xmlns="">myMBAse</db>
3 �- <collection xmlns="">
4 CarRentals
5 </collection>
6 �- <mba xmlns="">Rental</mba>
7 �+ ...
8 �- <xes:log
9 xmlns:xes="http://www.xes-standard.org/">

10 �- <xes:trace>
11 �- <xes:event>
12 �- <xes:date key="time:timestamp"
13 value="2014-07-21T16:31:32.505+02:00"/>
14 �- <xes:string key="sc:initial"
15 value="Rental"/>
16 �- <xes:string key="sc:target"
17 value="Restructuring"/>
18 </xes:event>
19 �- <xes:event>
20 �- <xes:string key="concept:name"
21 value="setMission"/>
22 �- <xes:date key="time:timestamp"
23 value="2014-08-24T11:51:26.839+02:00"/>
24 �- <xes:container key="payload">
25 �- <xes:string key="mission"
26 value="Moving people"/>
27 </xes:container>
28 �- <xes:string key="sc:state"
29 value="Restructuring"/>
30 �- <xes:string key="sc:event"
31 value="setMission"/>
32 </xes:event>
33 �+ ...
34 </xes:trace>
35 </xes:log>
36 </sc:data>



7.3 Event Logs 191

Listing 7.7: The event log of MBA Rental – Part 2
1 �- <sc:data id="_x">
2 �- <db xmlns="">myMBAse</db>
3 �- <collection xmlns="">
4 CarRentals
5 </collection>
6 �- <mba xmlns="">Rental</mba>
7 �+ ...
8 �- <xes:log
9 xmlns:xes="http://www.xes-standard.org/">

10 �- <xes:trace>
11 �+ ...
12 �- <xes:event>
13 �- <xes:string key="concept:name"
14 value="reopen.1"/>
15 �- <xes:date key="time:timestamp"
16 value="2014-09-29T12:21:51.623+02:00"/>
17 �- <xes:string key="sc:state"
18 value="Restructuring"/>
19 �- <xes:string key="sc:event"
20 value="reopen"/>
21 �- <xes:string key="sc:target"
22 value="Running"/>
23 </xes:event>
24 </xes:trace>
25 </xes:log>
26 </sc:data>



192 7 Multilevel Business Process Automation

We introduce additional variables which relate an XES event element
with the corresponding transition element in the SCXML document.
The corresponding extension uses “sc” as prefix and employs the SCXML
namespace URI as extension URL. The names of the variables are “sc:state”,
“sc:initial”, “sc:target”, “sc:event”, and “sc:cond”. The variables named
“sc:state” and “sc:initial” relate to the element in the SCXML document
that contains the taken transition; an event element must not have both
variables simultaneously. The “sc:state” variable refers to the id value
of the state or parallel element that contains the transition. The
“sc:initial” variable applies to transitions under an initial element; the
variable refers to the id value of the state or parallel element that
contains the initial element, or the name of the scxml element. The
“sc:target”, “sc:event”, and “sc:cond” attributes contain the values of the
taken transition’s attributes with the same name.

According to the event log for MBA Rental, the first successfully taken
transition (Listing 7.6, Line 11) is from the initial element under the
scxml element, the name of which is “Rental”, and not triggered by any
event but fired automatically in the beginning of the execution; the target
of this transition is a state named “Restructuring”. The second transition
(Listing 7.6, Line 19) originates from the state named “Restructuring”, has
no target state, and the name of triggering events must conform to the
“setMission” descriptor. Furthermore, the triggering event had a payload
attached, represented in the event log as a container element with “pay-
load” as key (see Günther et al. [38, p. 8]). The third transition (Listing 7.7,
Line 12) also originates from the state named “Restructuring”, has a target
state named “Running”, and the name of triggering events must conform to
the “reopen” descriptor. Notice the difference between the “concept:name”
and the “sc:event” attribute. The former contains the name of the event
that actually triggered the transition, the latter contains a descriptor for
events that potentially trigger the transition. An event must conform to the
event descriptor specified by the transition in order to trigger the event [130,
#EventDescriptors], “reopen.1” conforms to the “reopen” descriptor.

In conjunction with the SCXML document, an event log allows for the
reconstruction of the sequence of states that an MBA entered during its life
cycle. A state log derives from an MBA’s event log and contains timestamps
for the entry and exit of each state in an MBA’s life cycle. Listing 7.8 shows
an XQuery function that derives from an MBA’s event log the state log
containing the timestamps for entry and exit of states. For example, the
event log in Listings 7.6 and 7.7 translates into the following state log:



7.3 Event Logs 193

<state xmlns=""
ref="Restructuring"
from="2014-07-21T16:31:32.505+02:00"
until="2014-09-29T12:21:51.623+02:00"/>

<state xmlns=""
ref="Running"
from="2014-09-29T12:21:51.623+02:00"/>

The state log consists of a set of state elements. The ref attribute refers
to the name of a state in the state machine. The from attribute contains
the timestamp of state entry, the until attribute contains the timestamp
of state exit. Entries for currently active states of the state machine do not
have an until attribute. Consequently, in the previous example state log,
the entry with value “Running” as ref refers to a currently active state,
namely Running.

The getStateLog function in Listing 7.8 first obtains a chronologically-
ordered list of XES event elements (Line 5) from the event log of the
argument mba element. A fold (Line 11) then iterates over the previously
obtained list of events in order to construct the state log. The fold also
reconstructs the historic configuration during each iteration step. For each
XES event element, the fold operation determines whether and when the
event caused any state changes. Using the SCXML interpreter functions,
the fold operation computes entry and exit sets (Lines 37 and 39) given
the historic events in the event log. For every state in the entry set, the
fold constructs a new entry in the state log (Line 41). For every already
existing entry in the state log, the fold determines whether an until value
must be added given the exit set. The fold passes a map between iteration
steps containing the preliminary state log and the current configuration after
taking into account the event log entry from the just finished iteration step.
The map constitutes the result of the fold. Listing 7.8 employs XQuery 3.1
functions [133] for management of maps.



194 7 Multilevel Business Process Automation

Listing 7.8: The XQuery code for the derivation of the state log from an MBA’s
event log
1 declare function mba:getStateLog(
2 $mba as element()
3 ) as element()* {
4 let $eventLog := mba:getAttribute(‘_x’)/xes:log
5 let $events :=
6 for $event in $eventLog/xes:trace/xes:event
7 order by
8 $event/xes:date[@key=‘time:timestamp’]/@value
9 return $event

10
11 let $stateLog := fn:fold-left($events, map:merge((
12 map:entry(‘configuration’, ()),
13 map:entry(‘stateLog’, ())
14 )), function($result, $event) {
15 let $configuration :=
16 map:get($result, ‘configuration’)
17 let $stateLog := map:get($result, ‘stateLog’)
18 let $eventTimestamp :=
19 xs:dateTime(
20 $event/xes:date[@key = ‘time:timestamp’]/@value
21 )
22 let $eventState :=
23 $event/xes:string[@key = ‘sc:state’]/@value
24 let $eventInit :=
25 $event/xes:string[@key = ‘sc:initial’]/@value
26 let $eventEvent :=
27 $event/xes:string[@key = ‘sc:event’]/@value
28 let $eventTarget :=
29 $event/xes:string[@key = ‘sc:target’]/@value
30 let $eventCond :=
31 $event/xes:string[@key = ‘sc:cond’]/@value
32 let $transition := sc:getTransition(
33 $scxml, $eventState, $eventInit,
34 $eventEvent, $eventTarget, $eventCond
35 )
36 let $entrySet :=
37 sc:computeEntrySet($transition)



7.3 Event Logs 195

38 let $exitSet :=
39 sc:computeExitSet($configuration, $transition)
40
41 let $newStateLogEntries :=
42 for $state in $entrySet return
43 <state xmlns="" ref="{$state/@id}"
44 from="{$eventTimestamp}"/>
45 let $stateLog :=
46 for $entry in $stateLog return
47 if(
48 not($entry/@until) and (
49 some $state in $exitSet satisfies
50 $state/@id = $entry/@ref
51 )
52 ) then
53 copy $new := $entry modify (
54 insert node attribute until{$eventTimestamp}
55 into $new
56 ) return $new
57 else $entry
58 let $newConfiguration := (
59 $configuration[not(
60 some $s in $exitSet satisfies $s is .
61 )],
62 $entrySet
63 )
64
65 return map:merge((
66 map:entry(‘configuration’, $newConfiguration),
67 map:entry(
68 ‘stateLog’,
69 ($stateLog, $newStateLogEntries)
70 )
71 ))
72 }
73 )
74
75 return map:get($stateLog, ‘stateLog’)
76 }



8 Multilevel Business Process
Intelligence

The automation of business processes using information technology produces
event logs serving as the basis for performance analysis. For the top-level
life cycle model, a multilevel business artifact (MBA) records performance
data. For the lower-level life cycle models, an MBA aggregates performance
data from descendants. Then, pre- and post-conditions of transitions in
the life cycle models of an MBA’s different abstraction levels may refer
to performance data from ancestors and descendants, thereby expressing
multilevel synchronization dependencies over performance data.

Hetero-homogeneous models of multilevel business processes present con-
siderable advantages for performance analysis. For each abstraction level,
an MBA describes a life cycle model that applies to every descendant at
this level. When aggregating performance data of these descendants, the
homogeneous life cycle models of the respective levels serve as the basis.
Nevertheless, a concretization may refine and extend the life cycle models
according to the rules of observation-consistent specialization, the special-
ized life cycle models being a homogeneous schema for the sub-hierarchy
represented by the concretization. When analyzing performance data of the
sub-hierarchy, analysts may leverage additional data from the specialized
life cycle models.

8.1 Data Analysis with Multilevel
Business Artifacts

Conceptually, performance measures are attributes in the data models of
MBAs. Depending on the abstraction level of the data model that contains
the performance measure, the attribute value either is asserted or derives
from the data models of descendant MBAs. The cycle time, for example,
is a basic metric in process analysis [74, 27]. Then, for the top-level life
cycle model, an MBA records in the data model the actual cycle time of
each individual state, that is, the amount of time spent in the respective

C. G. Schuetz, Multilevel Business Processes, 
DOI 10.1007/978-3-658-11084-0_8, © Springer Fachmedien Wiesbaden 2015



198 8 Multilevel Business Process Intelligence

state. For the lower-level life cycle models, in turn, an MBA applies an
aggregation function on the measure values recorded by the descendants in
order to obtain a condensed value, in this case, the average cycle time. In
practice, when working with the logical representation of MBAs, performance
measures are calculated from event logs.

8.1.1 Flow Analysis
Using flow analysis, business analysts may assess the overall performance of
a process instance by exploiting performance data of its individual activities
(cf. [27, p. 219 et seq.]). A common measure for the performance of a process
instance is the (actual) cycle time [74]. For artifact-centric business process
models, the cycle time may refer to the amount of time that a data object
spends in a particular state. Through summation of the actual cycle times
of the individual states, the analyst may obtain the overall cycle time of the
data object’s life cycle.

+ cycleTime_Opening = 10
+ cycleTime_Open = 20
+ cycleTime_Settling = 15
+ cycleTime_Closed = 100

TX1138 : ‹ rental ›

Settling
(15)

Opening
(10) pickUp Open

(20) return

assignCar

Closed
(100)close

bill pay

setRate

addRenterInformation

cancel

Figure 8.1: An MBA with actual cycle times for the different states of its top-level
life cycle model

Figure 8.1 shows an MBA named TX1138 which records cycle times for
the states in its life cycle model. For each state, the MBA has an attribute
in the data model which holds the amount of time spent in the respective
state. By convention, the names of these attributes are composed of the
name of the measure, in this case, the (actual) cycle time, and the name of
the state of which they describe the performance: “cycleTime_state”. For
example, the cycleTime_Opening attribute records the amount of time spent
in the Opening state. We also adopt the notational convention of placing
a state’s cycle time in parentheses directly under or next to the name of
the state in the state machine diagram. Thus, MBA TX1138 in Figure 8.1,



8.1 Data Analysis with Multilevel Business Artifacts 199

which currently is in the Closed state, spent ten time units in the Opening
state, twenty in Open, fifteen in Settling, and already a hundred time units,
and still counting, in the Closed state.

The sum of the actual cycle times of the individual states constitutes the
overall cycle time of the data object’s entire life cycle. For example, the
actual cycle time of the life cycle of MBA TX1138 in Figure 8.1 amounts to
145 time units. When considering Closed as a final archival state, it is more
practical to consider the overall cycle time as the amount of time passed
until entering the Closed state, which in the case of MBA TX1138 amounts
to 45 time units. Thus, in practice, the operation for the calculation of the
overall cycle time of the data object’s life cycle may take as parameter a final
state up to which the cycle times of the individual states are summarized.
The explicit specification of a final state for the calculation allows for the
comparison of data objects in different phases of their life cycle, that is,
different current states.

8.1.2 Aggregation of Measures
An MBA only asserts cycle times for the states in its top-level life cycle
model whereas for the non-top levels the MBA aggregates values from the
descendants at the respective level. For example, Figure 8.2 shows an MBA
named Private which records actual cycle times for the states in its top-level
life cycle model and average cycle times for the second-level life cycle model.
The cycleTime_InDevelopment, cycleTime_OnOffer, cycleTime_Canceled, and
cycleTime_Discontinued attributes capture the amount of time spent in the
InDevelopment, OnOffer, Canceled, and Discontinued state, respectively. Being
currently in the OnOffer state, MBA Private spent 145 time units in the
InDevelopment state and 220 time units in the OnOffer state. Since MBA
Private has not yet spent any time in the Canceled and Discontinued states, the
respective attributes contain a Null value. The averageCycleTime_Rental-
Opening, averageCycleTime_RentalOpen, averageCycleTime_RentalSettling,
and averageCycleTime_RentalClosed attributes represent the average amount
of time spent by the descendants of MBA Private in the Opening, Open,
Settling, and Closed state, respectively. The slash before the attribute name
indicates a derived attribute. As a notational convention, we place a state’s
average cycle time in parentheses directly under or next to the name of
the state in the lower-level state machine diagrams of an MBA. So, for
example, the value of the derived averageCycleTime_RentalOpening attribute
at the renterType level, which is 8, corresponds to the value in parentheses



200 8 Multilevel Business Process Intelligence

+ cycleTime_InDevelopment = 145
+ cycleTime_OnOffer = 220
+ cycleTime_Canceled = null
+ cycleTime_Discontinued = null
+ /averageCycleTime_RentalOpening = 8
+ /averageCycleTime_RentalOpen = 22
+ /averageCycleTime_RentalSettling = 15
+ /averageCycleTime_RentalClosed = 98

Private : ‹ renterType ›

OnOffer
(220) cancelInDevelopment

(145) launch DiscontinuedCanceled discontinue

setMaximumRate openRental
setMaximumDuration

setDailyLateFee

+ cycleTime_Opening
+ cycleTime_Open
+ cycleTime_Settling
+ cycleTime_Closed

‹ rental ›

Settling
(15)

Opening
(8) pickUp Open

(22) return Closed
(98)close

bill pay
addRenterInformation

assignCarsetRate cancel

Figure 8.2: An MBA with actual cycle times for the top-level life cycle model
and average cycle times for the second-level life cycle model

under the name of the Opening state at the rental level. Similarly, the value
of the derived averageCycleTime_RentalOpen attribute corresponds to the
value in parentheses under the name of the Open state. The same holds
true for the other derived attributes averageCycleTime_RentalSettling and
averageCycleTime_RentalClosed.

There are different possibilities for the calculation of average cycle times
of individual states. First, the calculation rule for the average cycle time of
a specific state may take into account only those descendants of an MBA
that assign a non-Null value to the actual cycle time of the respective state.
Consider, for example, the derivation rule for the average cycle time of the
Opening state of descendants at the rental level of MBA Private (Listing 8.1).
Assume that MBA Private associates the PrivateRenterType class with the
rental level. Then, the calculation rule sums up the individual cycle times
for the Opening state from each descendant and divides the sum by the



8.1 Data Analysis with Multilevel Business Artifacts 201

Listing 8.1: The derivation rule for the average cycle time for the Opening state
from the descendants of MBA Private in Figure 8.1
1 context PrivateRenterType::
2 averageCycleTime_RentalOpening : Integer derive:
3 let classOfLevel : Class =
4 self.MBA.MBAToLevel->select(l |
5 l.level = <rental>
6 ).dataModel in
7 let descendants : MBA =
8 self.MBA.descendants(<rental>) in
9 descendants.instanceData->collect(

10 oclAsType(classOfLevel)
11 ).cycleTime_Opening->sum() /
12 descendants.instanceData->collect(
13 oclAsType(classOfLevel)
14 ).cycleTime_Opening->select(v |
15 not v.oclIsUndefined()
16 )->size()

number of descendants with a non-Null cycle time for the Opening state
(Line 16); the standard oclIsUndefined method tests for Null values.
On the other hand, the calculation rule may take into account only those
descendants of an MBA that currently are in a specific state. Now consider
a different derivation rule for the average cycle time of the Opening state
(Listing 8.2). The alternative calculation rule sums up the individual cycle
times for the Opening state from all descendants that are currently in the
Closed state (Line 11), and divides this sum by the number of descendants
in the Closed state with a non-Null cycle time of the Opening state.

For an accurate interpretation of average cycle times as an indicator for
the expected actual cycle times of future process instances, business analysts
must be aware of the applied calculation rule. A business analyst that takes
into account all descendants for the calculation of average cycle times, but
only counts non-Null values, may be confronted with varying degrees of
significance between the average values for different states. Average cycle
times for early states in the life cycle model, due to the expectedly larger
number of considered values, may tend to be more accurate predictions.
In turn, average cycle times for late states, due to the expectedly smaller



202 8 Multilevel Business Process Intelligence

Listing 8.2: The derivation rule for the average cycle time for the Opening state
from the descendants of MBA Private (Figure 8.1) that are in the Closed state
1 context PrivateRenterType::
2 averageCycleTime_RentalOpening : Integer derive:
3 let classOfLevel : Class =
4 self.MBA.MBAToLevel->select(l |
5 l.level = <rental>
6 ).dataModel in
7 let descendants : MBA =
8 self.MBA.descendants(<rental>)->select(d |
9 d.instanceData.oclAsType(

10 classOfLevel
11 ).oclIsInState(Closed)
12 ) in
13 descendants.instanceData->collect(
14 oclAsType(classOfLevel)
15 ).cycleTime_Opening->sum() /
16 descendants.instanceData->collect(
17 oclAsType(classOfLevel)
18 ).cycleTime_Opening->select(v |
19 not v.oclIsUndefined()
20 )->size()

number of considered values, are more easily biased by outliers. By taking
into account only those descendants that currently are in a particular state,
a business analyst receives the same degree of significance for the prediction
from each state, but lags behind current trends in earlier states which
potentially could benefit the analysis. The differences between the derivation
methods diminish with an increasing number of process instances.

For sequential life cycle models and those with parallel forks, a restriction
to non-Null values, as in the calculation rule in Listing 8.2, will not alter
an average value obtained from the descendants that are in a given state,
since all descendants in this state will have entered the exact same states
during their life cycle. With alternative paths, however, two descendants X
and X’ of an MBA at the same level that are in the same state S may have
entered different states during their life cycle, and thus assign Null values
to different states. For example, descendant X may have entered state Q



8.1 Data Analysis with Multilevel Business Artifacts 203

prior to entering S whereas descendant X’ may have entered state R before
entering S. Consequently, descendant X assigns a Null value to the cycle
time attribute for state R whereas descendant X’ assigns a Null value to
the cycle time attribute for state Q. In this case, for the calculation of the
average cycle time of states R and S, a business analyst may wish to consider
only those data objects that actually entered the particular state. Then,
taking into account only the non-Null values for average calculation leads
to more accurate results.

A concretization hierarchy of MBAs already constitutes a data warehouse
dimension which enables slice operations for the analysis of performance data
for the associated life cycle models. The navigation from a given MBA to one
of its descendants restricts the value base for the calculation of average cycle
times, taking into account only the values from the particular sub-hierarchy
that the descendant represents; the business analyst receives more concrete
numbers for the analysis. Conversely, the navigation from a concretization
to its abstraction widens the value base, with the analyst receiving more
abstract, condensed numbers.

Consider, for example, MBA Rental as the root of a concretization hierarchy
which also comprises MBAs Private and TX1138 (Figure 8.3). A business
analyst may use MBA Rental as a starting point for the analysis. For the
top level of MBA Rental, the business analyst receives concrete performance
data, namely the actual cycle times for the Restructuring and Running states.
For the renterType and rental levels, the business analyst receives summarized
performance data, namely the average cycle times. The calculation of the
renterType-level average cycle times for MBA Rental considers the actual cycle
times of descendants of MBA Rental at the renterType level. The calculation
of the rental-level average cycle times for MBA Rental considers the actual
cycle times of descendants of MBA Rental at the rental level. Notice that the
average cycle times of the rental-level states for MBA Rental differ from the
average values given by MBA Private in Figure 8.2, a difference stemming
from the restriction of the set of values considered for the calculation. By
navigating from MBA Rental to Private, the business analyst receives concrete
performance data for the renterType level and summarized performance data
for the rental level with a restricted value base. The calculation of the
rental-level average cycle times for MBA Private considers only the actual
cycle times of descendants of MBA Private at the rental level.

Furthermore, the navigation from a given MBA to all of its descendants
at a particular level corresponds to a drill-down operation. Rather than a
single aggregate value, the business analyst then considers multiple values



204 8 Multilevel Business Process Intelligence

‹ rental ›

Rental: ‹ business ›

‹ renterType ›

Restructuring
(360) reopen Running

(420)

OnOffer
(210)

Settling
(10)

cancelInDevelopment
(96) launch

Opening
(12)

Discontinued
(290)

Canceled
(88)

createRenterType

discontinue

restructure

setMaximumRate

pickUp
(460/680)

Open
(19) return

openRental
setMaximumDuration

setDailyLateFee

Closed
(102)close

bill pay
addRenterInformation

concretization of

Private: ‹ renterType ›

‹ rental ›

TX1138 : ‹ rental ›

concretization of

assignCarsetRate cancel
(220/680)

Figure 8.3: An MBA with actual cycle times for the top-level life cycle model and
average cycle times for the non-top level life cycle models as well as probabilities
for alternative paths

for the analysis. In this context, summarizability issues may arise with
respect to the aggregation of average values [61]. Consider, for example, the
rental-level state machine of MBA Rental in Figure 8.3. When obtaining
the cycle times of a particular state, for example, Opening, as recorded by
the renterType-level descendants of MBA Rental, the cycle times are average
values. The average of these average values, however, will not yield the same
result for the average cycle time of the Opening state as a derivation from the
base data. Rather than storing average values, MBAs may record the sum
of the actual cycle times and the count of descendants for non-top levels.



8.1 Data Analysis with Multilevel Business Artifacts 205

The average cycle times of individual states may be aggregated in order
to calculate the average cycle time of an entire object life cycle. In case
of a purely sequential life cycle model, the average cycle time of the entire
object life cycle corresponds to the sum of the average cycle times of the
individual states. An archival, final state such as Closed may be excluded
from the summarization. In case of the existence of non-parallel forks and
rework loops in the life cycle model, that is, alternative paths, the different
paths must be weighted according to their probability of occurrence (see
Dumas et al. [27, p. 219 et seq.]). In a state machine, alternative paths occur
when two or more transitions with a different target state share the same
source state. Consider, for example, the Opening state in the rental-level
state machine of MBA Rental (Figure 8.3). Both the pickUp and cancel
method may trigger a state change, each resulting in a different path. The
probability of a given path then corresponds to the ratio between the number
of taken transitions starting this particular path and the total number of
taken transitions leaving the same source state; occurrences of transitions
not leaving the state are not taken into account. For example, in Figure 8.3,
the transitions with pickUp and cancel as triggering methods are the only
transitions leaving the Opening state. In the example, out of 680 taken
transitions that originated from the Opening state, 460 occurrences were
triggered by the pickUp method whereas 220 occurrences were triggered by
the cancel method.

When working with the XML representation of an MBA, the average
cycle times of individual states are obtained through summarization from
the state logs (see Section 7.3) of the MBA’s descendants. Listing 8.3
defines an XQuery function for the calculation of the average cycle time of a
given state from the event logs of an MBA’s descendants. The average-
CycleTime function takes an mba element as argument and calculates the
average cycle time of an argument state of interest ($stateId) over the
descendants of the argument MBA at a given level ($level) that are in a
given state ($inState); the averageCycleTime function returns a result
of XML Schema built-in data type xs:duration. For each descendant
satisfying the conditions, the averageCycleTime function retrieves the
state log using the getStateLog function (see Section 7.3, Listing 7.8).
For each entry in a descendant’s state log that concerns the state of interest
(Listing 8.3, Line 16), the averageCycleTime function then calculates a
duration by subtracting from the exit timestamp the timestamp of entry
in the state, and sums up these durations using the fn:sum function. For
currently active states, the function takes the current system date/time as



206 8 Multilevel Business Process Intelligence

Listing 8.3: An XQuery implementation of the calculation rule for the average
cycle time of a given state
1 declare function analysis:averageCycleTime(
2 $mba as element(),
3 $level as xs:string,
4 $inState as xs:string,
5 $stateId as xs:string
6 ) as xs:duration {
7 let $descendants :=
8 mba:getDescendantsAtLevel($mba, $level)
9 [mba:isInState(.,$inState)]

10
11 let $cycleTimes :=
12 for $descendant in $descendants
13 let $stateLog := mba:getStateLog($descendant)
14 return fn:sum(
15 (
16 for $entry in $stateLog[@ref = $stateId]
17 return
18 if($entry/@until) then
19 xs:dateTime($entry/@until) -
20 xs:dateTime($entry/@from)
21 else fn:current-dateTime -
22 xs:dateTime($entry/@from)
23 ),
24 ()
25 )
26
27 return fn:avg($cycleTimes)
28 }

exit timestamp. The fn:sum function call’s second argument (Line 24) is
the empty sequence, which indicates that a non-existent value in the state
log of a particular descendant for the actual cycle time of the given state of
interest should not count as zero but remain an empty sequence [132, #func-
sum]. The fn:avg function then ignores these values for the calculation of
the average value over all individual values obtained from the descendants.



8.2 Hetero-Homogeneous Data Analysis 207

8.2 Hetero-Homogeneous Data Analysis

Multilevel concretization allows for the extension and refinement of life
cycle models at inherited levels according to rules of observation-consistent
specialization. When working with hetero-homogeneous models, a busi-
ness analyst may potentially leverage more finely-grained performance data
with additional measures after performing a slice operation which puts the
emphasis on a sub-hierarchy. In this section, we apply the principle of
hetero-homogeneous data warehouses [80] to business process analysis.

In case a concretization refines inherited states in its life cycle models,
a navigation from an ancestor MBA to this concretization corresponds
to a combination of slice and drill-down operation. In the sub-hierarchy
represented by the concretization, performance measures for the individual
states are then available at a more specific granularity, which allows for a
more in-depth analysis of process performance. Consider, for example, the
concretization hierarchy in Figure 8.4 with MBAs Rental at the business level
and Private at the renterType level. The navigation from MBA Rental to
Private performs a zoom-in which retrieves actual performance data for the
renterType level and restricts the set of actual cycle times of the rental-level
states considered for the calculation of average cycle times to the descendants
of Rental. Since MBA Rental refines the OnOffer state at the renterType level
as well as the Opening and Closed states at the rental level, the navigation
from Rental to Private corresponds to a drill-down operation. The business
analyst may view the average cycle times of these refined states at a finer
level of granularity.

Drill-down along the sub-state relationships at a single level must be
distinguished from drill-down along the concretization hierarchy. The former
leverages observation-consistent specialization in order to obtain a more
finely-grained view on the life cycle model in a particular sub-hierarchy. The
latter breaks down an aggregate value into a set of individual values for the
states in the homogeneous model. These flavors of drill-down are analogous
to topological and informational drill-down in graph OLAP [22] or merge
and abstract in business model intelligence [113].

Depending on the employed notion of observation consistency, a concretiza-
tion may also specialize transitions. Consider, for example, the transitions
originating from the OnOffer sub-states in the rental-level state machine of
MBA Private (Figure 8.4). The transition that originates from the Ready
state and is triggered by the pickUp call event refines the inherited transition
that is triggered by the pickUp call event as well and originates from the



208 8 Multilevel Business Process Intelligence

Private: ‹ renterType ›

OnOffer (850)

‹ rental ›

Opening (30)

‹ renterType ›

‹ rental ›

Rental: ‹ business ›

OnOffer
(970) cancelInDevelopment

(120) launch

Opening
(32)

Discontinued
(720)

Canceled
(339) discontinue

setMaximumRate

pickUp
(460/680)

Open
(8) return

openRental(id)

assignCar

Closed
(85)

setRate(rate)

concretization of

cancel
(220/680)

InDevelopment
(112) launch

Discontinued
(505)

Canceled
(328)

discontinue

setMaximumRate

Closed (55)

Settled
(18)

Canceled
(7)

Returned
(3)

settlereturn

Archived
(39)archive

archive

RateFixing
(1)

CarChoosing
(10)setRate

(460/480)

Ready
(21)assignCar

(430/460)

Active
(720) phaseOut PhasingOut

(130)

openRental(id)

cancel

Open
(9)

cancel.late
(110/430)

cancel.early
(30/460)

cancel.early
(20/480)

cancel
(160/480)

pickUp
(320/480)

pickUp
(320/430)

Figure 8.4: A hetero-homogeneous concretization hierarchy of MBAs with average
cycle times and probabilities for alternative paths



8.2 Hetero-Homogeneous Data Analysis 209

Opening state, the super-state of Ready. When adopting the SCXML match-
ing rules for event descriptors [130, #EventDescriptors], the cancel.early
and cancel.late call events both match the cancel call event, and thus the
transitions triggered by the cancel.early and cancel.late call events refine the
inherited transition between Opening and Closed that is triggered by the
cancel call event. The refinements put the data object in the Canceled state,
a sub-state of Closed.

The occurrences of the refinements of a transition count towards the total
number of occurrences of the general transition. Each refinement has its own
number of occurrences in a particular sub-hierarchy. Consider, for example,
the transition between RateFixing and Canceled triggered by the cancel.early
call event has 20 occurrences in the Private sub-hierarchy (Figure 8.4). This
number counts towards the total number of occurrences of the inherited
transition between Opening and Closed triggered by the cancel call event.
Likewise, the numbers of occurrences of the transition between CarChoosing
and Canceled as well as the transition between Ready and Canceled also count
towards the number of 160 occurrences of the inherited transition between
Opening and Closed triggered by the cancel call event.

Note that average cycle times of sub-states may not add up to the average
cycle time of the super-state. For example, in the rental-level state machine
of MBA Private (Figure 8.4), the sum of the average cycle times of the
RateFixing, CarChoosing, and Ready state does not correspond to the average
cycle time of the Opening state. Likewise, the sum of the average cycle times
of the Returned, Settled, Canceled, and Archived states does not correspond to
the average cycle time of the Closed state. Rather, the average cycle times of
the Opening and the Closed state derive directly from the base data, that is,
the state log. This kind of summarizability issue related to the aggregation
of sub-states of a super-state stems from the possibility of multiple outgoing
transitions from and incoming transitions to the various sub-states of the
super-state. In the absence of alternative paths, the average cycle times of
the sub-states simply add up to the average cycle time of the super-state. By
using path probabilities as weights, the average cycle time of a super-state
may be calculated from the sub-states. For further information about the
calculation of the cycle time of a sequence of nodes, possibly with alternative
paths, we refer to Dumas et al. [27, p. 219 et seq.].

Conceptually, with performance measures viewed as attributes of MBAs,
a concretization may introduce additional performance measures with re-
spect to its abstraction. In this case, the sub-hierarchy represented by
the concretization measures business process performance along additional



210 8 Multilevel Business Process Intelligence

criteria not applicable to the general case. For example, in a manufacturing
company, measures of process quality may differ between types of products.
While there may exist some standard quality measure that applies to the
manufacturing process of all products, for specific products the company
may examine additional indicators of process quality.

8.3 Multilevel Synchronization over
Performance Data

In many companies, business rules will trigger specific actions for cases of goal
achievement or failure thereof. Typically, business executives will be notified
and automatically prompted to act when their subordinates fail at achieving
specified performance goals. The corresponding business rules trigger actions
on one hierarchy level based on performance data of another level. Thus,
these business rules constitute multilevel synchronization dependencies.

Conceptually, multilevel synchronization dependencies over performance
data are expressed as pre-conditions that refer to performance data attributes.
For example, in case the average time spent for settling a car rental exceeds
a specified threshold value, management may be notified and the business
automatically put in a state of Restructuring in order to improve processes
and lower cycle times. In order to model such a behavior, a necessary and
sufficient pre-condition of an eventless transition at the business level may
express a condition over the derived averageCycleTime_Settling attribute,
which holds the average cycle time of the Settling state at the rental level
obtained through summarization of actual cycle times from the descendants
at the rental level.

In the logical representation, multilevel synchronization dependencies
are function calls in the cond attributes of transition elements. The
$_averageCycleTime function returns the average cycle time of a
given state at a particular level, obtained from the actual cycle times
of all descendants that are in a given state. Modelers may use the
XML Schema duration data type [131, #duration] and its derivations,
dayTimeDuration and yearMonthDuration, for expressing conditions
over cycle times. Consider, for example, a transition element that
logically represents a transition to the Restructuring state at the business
level which fires when the average cycle time of the Settling state over all
descendants at the rental level that are in the Closed state exceeds 21 days:



8.3 Multilevel Synchronization over Performance Data 211

<sc:transition
cond="xs:dayTimeDuration(

$_averageCycleTime(
‘rental’, ‘Closed’, ‘Settling’
)

) > xs:dayTimeDuration(‘P21D’)"
target="Restructuring"
/>

The $_averageCycleTime function as used in the cond attribute of
a transition element translates into an averageCycleTime function
call (Listing 8.3, see also Section 7.3). The first parameter of the average-
CycleTime function, which upon execution receives the mba element the
descendants of which serve as the basis for average calculation, is fixed to
the mba element which the SCXML document is executed for. Thus, when
evaluating the cond attribute of the previous transition element, the
SCXML interpreter will evaluate XQuery code equivalent to the following:

let $mba := mba:getMBA(
$_x/db, $_x/collection, $_x/mba
)
let $_averageCycleTime :=
analysis:averageCycleTime($mba, ?, ?, ?)
return xs:dayTimeDuration(
$_averageCycleTime(
‘rental’, ‘Closed’, ‘Settling’

)
) > xs:dayTimeDuration(‘P21D’)

Just like other kinds of pre-conditions of transitions, multilevel synchro-
nization dependencies over performance data may be strengthened upon
concretization. Consequently, company-wide performance goals may be
tightened for a particular sub-entity. For example, whereas rentals in general
must achieve an average duration of 21 days for settling the accounts, corpo-
rate rentals may have a smaller tolerance with respect to the average cycle
time of the Settling state. Furthermore, a sub-entity may define additional
pre-conditions over the average cycle times of states that are not part of the
life cycle models in other sub-hierarchies. Thus, the hetero-homogeneous
modeling approach allows for the definition of company-wide goals which
may be tailored to the particularities of sub-entities.



9 Conclusion

In this book we have explored the conceptual and logical modeling of multi-
level business processes. We have examined the automation of multilevel
business processes and the use of the generated event log data for perfor-
mance analysis. With respect to existing methodologies, the multilevel
business artifact (MBA) allows for a better representation of dependencies
between the various hierarchy levels within a company; the concretization
mechanism provides flexibility while preserving the advantages of homoge-
neous models. The fundamentals of multilevel business process management
being established, future work will further extend multilevel business process
modeling techniques and investigate applications.

9.1 Summary
Companies perform value-creating activities at various hierarchy levels within
an organization. These activities are interconnected and depend on each
other, constituting a multilevel business process. At each hierarchy level,
different data objects are involved in the multilevel business process. These
data objects are hierarchically-organized, their order reflecting, to a certain
extent, the organization hierarchy. The MBA modeling approach adopts a
multilevel modeling technique in order to obtain an artifact-centric represen-
tation of multilevel business processes. This representation makes explicit, in
the form of multilevel predicates, the synchronization dependencies between
the activities at different levels within the hierarchy.

Rather than imposing a single fixed process, process models must account
for the variability of real-world business problems. Each MBA represents the
homogeneous schema of an entire hierarchy of business artifacts. Multilevel
concretization allows for the introduction of heterogeneities in sub-hierarchies
of business artifacts, which still comply with the homogeneous global schema.
A concretizing MBA then constitutes a variant of an entire sub-hierarchy of
business artifacts. The concretizing MBA also becomes the homogeneous
model for this sub-hierarchy, which may again be concretized. At the same
time, an MBA may associate different variants of life cycle models at different

C. G. Schuetz, Multilevel Business Processes, 
DOI 10.1007/978-3-658-11084-0, © Springer Fachmedien Wiesbaden 2015



214 9 Conclusion

levels. By modeling meta-process activities in the life cycle models, the
flexibility of the concretization mechanism may be deliberately restricted in
order to enforce compliance with company-wide business policies.

A conceptual MBA model translates into an XML-based logical repre-
sentation, using State Chart XML as the modeling language for the life
cycle models at the different levels. The logical representation serves as the
basis for the (semi-)automated execution of multilevel business processes,
thereby producing event log data which enable performance analysis for
multilevel business processes. Business analysts conduct slice and drill-down
operations along a concretization hierarchy. Different sub-hierarchies may
capture process performance data at a finer granularity.

9.2 Discussion
Multilevel modeling relaxes the restriction to two-level instantiation of
traditional conceptual modeling, allowing for an arbitrary number of met-
alevels [59]. Adopting a multilevel modeling approach may prove beneficial in
many practical, real-world situations. To multilevel business processes, the
following patterns (see [59]) apply: (1) type-object, the dynamic introduction
of types, (2) dynamic features, the dynamic introduction of features for a
type, (3) element classification, application of specialization in the pres-
ence of the type-object pattern. More specifically, multilevel concretization,
with its aggregation, instantiation, and specialization facets, embodies the
type-object and element classification pattern. By explicitly representing
meta-process activities in the life cycle model, MBAs realize the dynamic
features pattern.

In general, an operational business process has a corresponding manage-
ment process [42, p. 297 et seq.]. In analogy to the arbitrary number of
metalevels in multilevel data modeling, multilevel business process modeling
enables modeling of an arbitrary number of management levels. Each level
of an MBA represents a management process for the lower levels. Further-
more, MBAs also represent the process management processes [42, p. 299 et
seq.] for each level, meta-processes the output of which are again process
models [101]. Each level of an MBA may represent, by modeling transitions
with reflective methods as trigger, a meta-process for the lower levels.

With respect to the four-worlds framework for process engineering [101],
we characterize multilevel business process management as follows. The
subject world of multilevel business process management consists of business



9.2 Discussion 215

processes at various organizational levels within a company as well as the
interactions between processes at different levels. Concerning the usage
world, in the process model domain, MBAs represent the conceptual model
of multilevel business process management. MBA-based business process
models have a descriptive purpose in the sense that they aim for a better
description of the interdependencies between organizational levels; they
have a prescriptive purpose in the sense that they describe legal execution
orders of the methods of data objects. The XML representation of MBAs
serves as the logical format in the model enactment domain and as the
fundamental for the business process management activities associated with
the process performance domain. Concerning the system world, the MBA-
based representation adopts a data- or artifact-centric view. The level of
detail of the business process descriptions as well as the modeling language
may vary. Concerning the development world, MBA-based modeling is a top-
down, hetero-homogeneous approach for the representation of abstraction
hierarchies of data objects as well as their life cycle models, allowing for the
local introduction of heterogeneities in an otherwise homogeneous model.

In practice, a multitude of use cases for business process management exist.
The multilevel approach to business process modeling covers the following
use cases (see [2] for use cases): (1) design model, the MBA serves as the
conceptual representation, (2) refine and enact model, an XML representation
of MBAs allows for multilevel business process automation, (3) select model
from collection, concretization hierarchies organize business process models,
(4) design configurable model, an MBA may associate several business process
model variants with each level, (5) log event data and analyze performance
using event data, the (semi-)automated MBA-based execution of business
processes produces event data which can be used for analysis.

The PHILharmonicFlows framework [57, 56] provides an integrated per-
spective on data and business process. Object-relational data models repre-
sent the data. From the relationships between data objects in the data model
derives a classification of data objects into data levels which are similar to
the levels of abstraction in the MBA approach. The coordination concepts
of process context and aggregation [56, p. 245] correspond to the use of mul-
tilevel predicates over states of ancestors and descendants in pre-conditions
of the transitions of an MBA’s life cycle models. The MBA approach, in
addition, provides a mechanism and guidelines for handling heterogeneities
in the hierarchical organization of data objects as well as in data and life
cycle models. For specific partitions of data objects, the level hierarchy may
comprise additional levels with specialized data and life cycle models. As



216 9 Conclusion

opposed to data levels in PHILharmonicFlows, which are determined by
relationships between data objects, level hierarchies of MBAs result from an
explicit top-down definition of levels.

The map-driven approach towards business process modeling is goal-
oriented, a map consisting of intentions and sections [103]. An intention
specifies what is to be achieved by performing the process, a section models
the application of a strategy to a particular situation in order to achieve an
intention. The map approach relies on stepwise refinement for the modeling
of business processes [83]: Another map may refine an individual section of a
map. In a spiral, maps are recursively refined. A map of the current situation
and a map of the desired situation serve as the basis for the identification
of sections that need refinement. Each of these sections is then refined by
a map which serves as the input for a new spiral iteration. In the course
of such an iteration, individual sections of the map are further refined. In
connection with the MBA-based modeling approach, the map approach may
assist with the definition of the life cycle models of the individual levels of an
MBA, recursively refining the various states of a level. In this sense, the map
approach is orthogonal to the MBA-based approach. On the other hand, the
MBA-based modeling approach allows for an incremental specification of
business process models. The MBA-based approach, however, places focus
on the preservation of heterogeneities in well-defined partitions of the data
while, at the same time, describing the common elements of all data objects.

9.3 Future Work

In many cases, a company will already have some sort of representation of
their business processes. Therefore, multilevel business process discovery
techniques will obtain multilevel business process models from existing
process descriptions. The thus obtained multilevel business process models
constitute views over existing models. The advantage of these views is
twofold. First, they provide an explicit representation of synchronization
dependencies between life cycle models at different levels of abstraction.
Second, the hetero-homogeneous nature of the obtained data models may
present advantages for performance analysis.

A process cube organizes event log data in a multidimensional space,
allowing for slice, roll-up, and drill-down operations on the business process
models obtained through process mining [4]. Process cubes present similar-
ities to previous work [113] on ontology-valued measures in OLAP cubes,



9.3 Future Work 217

which organizes business models in the cells of an OLAP cube, thereby
allowing for the combination of knowledge from different contexts. Future
work will introduce the notion of hetero-homogeneous process cube, building
on existing work about hetero-homogeneous OLAP cubes [80].

Game development and graphics programming are other potential appli-
cation areas for the MBA-based modeling approach. More specifically, the
representation of action state machines [35, p. 621 et seq.] may benefit from
the use of MBAs and hetero-homogeneous models. Action state machines
abstract from low-level programming of animations, for example, of bod-
ies and body parts, and allow for a more model-driven approach towards
graphics programming. As many complex animated objects are composed
of multiple individual components with different kinds of movement which
interact with each other, the representation of such objects using multilevel
models seems only logical. The hetero-homogeneous nature of MBAs may
increase flexibility and code reusability in graphics programming.



References

[1] van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new
paradigm for business process support. Data & Knowledge Engineering
53(2), 129–162 (2005)

[2] van der Aalst, W.M.P.: Business process management: a
comprehensive survey. ISRN Software Engineering 2013 (2013),
http://dx.doi.org/10.1155/2013/507984

[3] van der Aalst, W.M.P., van Hee, K.M., van der Toorn, R.A.:
Component-based software architectures: a framework based on inheri-
tance of behavior. Science of Computer Programming 42(2-3), 129–171
(2002)

[4] van der Aalst, W.: Process cubes: Slicing, dicing, rolling up and
drilling down event data for process mining. In: Song, M., Wynn, M.,
Liu, J. (eds.) AP-BPM 2013, LNBIP, vol. 159, pp. 1–22. Springer
(2013)

[5] van der Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Workflow
modeling using proclets. In: Scheuermann, P., Etzion, O. (eds.) CoopIS
2000, LNCS, vol. 1901, pp. 198–209. Springer (2000)

[6] van der Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Proclets: A
framework for lightweight interacting workflow processes. International
Journal of Cooperative Information Systems 10(4), 443–481 (2001)

[7] Abiteboul, S., Bourhis, P., Galland, A., Marinoiu, B.: The AXML
artifact model. In: Proceedings of the 16th International Symposium
on Temporal Representation and Reasoning. pp. 11–17 (2009)

[8] Abiteboul, S.: On views and XML. In: Proceedings of the 18th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems. pp. 1–9 (1999)

C. G. Schuetz, Multilevel Business Processes, 
DOI 10.1007/978-3-658-11084-0, © Springer Fachmedien Wiesbaden 2015



220 References

[9] Atkinson, C.: Meta-modeling for distributed object environments. In:
Proceedings of the 1st International Enterprise Distributed Object
Computing Conference. pp. 90–101 (1997)

[10] Atkinson, C., Grossmann, G., Kühne, T., de Lara, J. (eds.): Pro-
ceedings of the Workshop on Multi-Level Modelling co-located with
ACM/IEEE 17th International Conference on Model Driven Engineer-
ing Languages & Systems, CEUR Workshop Proceedings, vol. 1286.
CEUR-WS.org (2014), http://ceur-ws.org/Vol-1286

[11] Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In:
Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33.
Springer (2001)

[12] Atkinson, C., Kühne, T.: Model-driven development: A metamodeling
foundation. IEEE Software 20(5), 36–41 (2003)

[13] Atkinson, C., Kühne, T.: Reducing accidental complexity in domain
models. Software & Systems Modeling 7(3), 345–359 (2008)

[14] Bencomo, N., Bennaceur, A., Grace, P., Blair, G.S., Issarny, V.:
The role of models@run.time in supporting on-the-fly interoperability.
Computing 95(3), 167–190 (2013)

[15] Blair, G., Bencomo, N., France, R.B.: Models@run.time. IEEE Com-
puter 42(10), 22–27 (2009)

[16] Briol, P.: The Business Process Modeling Notation BPMN 2.0 Distilled.
Lulu.com (2010)

[17] Buneman, P., Davidson, S.B., Kosky, A.: Theoretical aspects of schema
merging. In: Pirotte, A., Delobel, C., Gottlob, G. (eds.) EDBT 1992,
LNCS, vol. 580, pp. 152–167. Springer (1992)

[18] Cabot, J.: From declarative to imperative UML/OCL operation speci-
fications. In: Parent, C., Schewe, K., Storey, V.C., Thalheim, B. (eds.)
ER 2007. LNCS, vol. 4801, pp. 198–213. Springer (2007)

[19] Calvanese, D., Montali, M., Estañol, M., Teniente, E.: Verifiable
UML artifact-centric business process models (extended version).
The Computing Research Repository (CoRR) abs/1408.5094 (2014),
http://arxiv.org/abs/1408.5094



References 221

[20] Cardelli, L.: Structural subtyping and the notion of power type. In:
Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. pp. 70–79 (1988)

[21] Castellanos, M.M., de Medeiros, A.K.A., Mendling, J., Weber, B.,
Weijters, A.J.M.M.: Business process intelligence. In: Handbook of
research on business process modeling, pp. 456–480. IGI Global (2009)

[22] Chen, C., Zhu, F., Yan, X., Han, J., Yu, P., Ramakrishnan, R.:
InfoNetOLAP: OLAP and mining of information networks. In: Yu,
P.S., Han, J., Faloutsos, C. (eds.) Link Mining: Models, Algorithms,
and Applications, pp. 411–438. Springer (2010)

[23] Cohn, D., Dhoolia, P., Heath, F.T., Pinel, F., Vergo, J.: Siena: From
PowerPoint to web app in 5 minutes. In: Bouguettaya, A., Krüger, I.,
Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 722–723 (2008)

[24] Cohn, D., Hull, R.: Business artifacts: A data-centric approach to
modeling business operations and processes. Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering 32(3)
(2009)

[25] Dahchour, M., Pirotte, A., Zimányi, E.: Materialization and its meta-
class implementation. IEEE Transactions on Knowledge and Data
Engineering 14(5), 1078–1094 (2002)

[26] Dori, D.: Object-Process Methodology – A Holistic Systems Paradigm.
Springer (2002)

[27] Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals
of Business Process Management. Springer (2013)

[28] Embley, D.W., Mok, W.Y.: Mapping conceptual models to database
schemas. In: Embley, D.W., Thalheim, B. (eds.) Handbook of Concep-
tual Modeling, pp. 123–163. Springer (2011)

[29] Eriksson, O., Henderson-Sellers, B., Ågerfalk, P.J.: Ontological and lin-
guistic metamodelling revisited: A language use approach. Information
and Software Technology 55(12), 2099 – 2124 (2013)

[30] Estañol, M., Queralt, A., Sancho, M., Teniente, E.: Artifact-centric
business process models in UML. In: Rosa, M.L., Soffer, P. (eds.) BPM
2012 Workshops. LNBIP, vol. 132, pp. 292–303. Springer (2013)



222 References

[31] Felden, C., Chamoni, P., Linden, M.: From process execution towards
a business process intelligence. In: Abramowicz, W., Tolksdorf, R.
(eds.) BIS 2010. LNBIP, vol. 47, pp. 195–206. Springer (2010)

[32] Genesys: Orchestration Server Developer’s Guide, Orchestration Server
8.1.3, http://docs.genesys.com/Documentation/OS/8.1.3/Developer/

[33] Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based meta-
modelling framework. Software & Systems Modeling 5(1), 72–90 (2006)

[34] Gordijn, J., Akkermans, H., van Vliet, H.: Business modelling is not
process modelling. In: Liddle, S., Mayr, H., Thalheim, B. (eds.) ER
2000 Workshop, LNCS, vol. 1921, pp. 40–51. Springer (2000)

[35] Gregory, J.: Game Engine Architecture. CRC Press, Boca Raton, FL,
2nd edn. (2014)

[36] Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan,
M.C.: Business process intelligence. Computers in Industry 53(3),
321–343 (2004)

[37] Gröner, G., Boskovic, M., Silva Parreiras, F., Gasevic, D.: Modeling
and validation of business process families. Information Systems 38(5),
709–726 (2013)

[38] Günther, C.W., Verbeek, E.: OpenXES: Developer Guide – Version
2.0, March 28, 2014. IEEE Task Force on Process Mining (2014),
http://www.xes-standard.org/openxes/developerguide

[39] Günther, C.W., Verbeek, E.: XES: Standard Definition – Version
2.0, March 28, 2014. IEEE Task Force on Process Mining (2014),
http://www.xes-standard.org/xesstandarddefinition

[40] Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in
business process models: the Provop approach. Journal of Software
Maintenance and Evolution: Research and Practice 22(6-7), 519–546
(2010)

[41] Hallerbach, A., Bauer, T., Reichert, M.: Configuration and manage-
ment of process variants. In: vom Brocke, J., Rosemann, M. (eds.)
Handbook on Business Process Management 1, pp. 237–255. Interna-
tional Handbooks on Information Systems, Springer (2010)



References 223

[42] Harmon, P.: Business process change: A guide for business managers
and BPM and Six Sigma professionals. Morgan Kaufmann, Burlington,
2nd edn. (2007)

[43] Heath, F.T., Boaz, D., Gupta, M., Vaculín, R., Sun, Y., Hull, R.,
Limonad, L.: Barcelona: A design and runtime environment for declar-
ative artifact-centric BPM. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 705–709. Springer (2013)

[44] ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N.
(eds.): Modern Business Process Automation: YAWL and its support
environment. Springer (2010)

[45] Hruby, P.: Model-driven design using business patterns. Springer
(2006)

[46] Huemer, M.: Bitemporal complex event processing of web event ad-
vertisements. Ph.D. thesis, Johannes Kepler University Linz, Austria
(2014)

[47] Hull, R.: Artifact-centric business process models: Brief survey of
research results and challenges. In: Meersman, R., Tari, Z. (eds.) OTM
2008, Part II. LNCS, vol. 5332, pp. 1152–1163. Springer (2008)

[48] Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, F.T., Hobson,
S., Linehan, M.H., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculín,
R.: Introducing the guard-stage-milestone approach for specifying
business entity lifecycles. In: Bravetti, M., Bultan, T. (eds.) WS-FM
2010. LNCS, vol. 6551, pp. 1–24. Springer (2011)

[49] Hull, R., Damaggio, E., Masellis, R.D., Fournier, F., Gupta, M.,
Heath, F.T., Hobson, S., Linehan, M.H., Maradugu, S., Nigam, A.,
Sukaviriya, P.N., Vaculín, R.: Business artifacts with guard-stage-
milestone lifecycles: managing artifact interactions with conditions
and events. In: Proceedings of the 5th ACM International Conference
on Distributed Event-Based Systems. pp. 51–62 (2011)

[50] Hürsch, W.L.: Should superclasses be abstract? In: Tokoro, M.,
Pareschi, R. (eds.) ECOOP 1994. LNCS, vol. 821, pp. 12–31. Springer
(1994)



224 References

[51] Jarke, M., Jeusfeld, M.A., Nissen, H.W., Quix, C., Staudt, M.: Meta-
modelling with datalog and classes: ConceptBase at the age of 21. In:
Norrie, M.C., Grossniklaus, M. (eds.) ICOODB 2009. LNCS, vol. 5936,
pp. 95–112. Springer (2010)

[52] Jeusfeld, M.A.: A deductive view on process-data diagrams. In: Ralyté,
J., Mirbel, I., Deneckère, R. (eds.) ME 2011. IFIP AICT, vol. 351, pp.
123–137. Springer (2011)

[53] Jeusfeld, M.A., Jarke, M., Mylopoulos, J.: Metamodeling for Method
Engineering. The MIT Press (2009)

[54] Jeusfeld, M.A., Quix, C., Jarke, M.: Concept-
Base.cc User Manual Version 7.7. University of Skövde,
RWTH Aachen (2014), http://merkur.informatik.rwth-
aachen.de/pub/bscw.cgi/d2745581/CB-Manual.pdf

[55] Kappel, G., Schrefl, M.: Object/behavior diagrams. In: Proceedings
of the 7th International Conference on Data Engineering. pp. 530–539
(1991)

[56] Künzle, V.: Object-Aware Process Management.
Ph.D. thesis, University of Ulm, Germany (2013),
http://dbis.eprints.uni-ulm.de/1010/

[57] Künzle, V., Reichert, M.: PHILharmonicFlows: towards a framework
for object-aware process management. Journal of Software Maintenance
and Evolution: Research and Practice 23(4), 205–244 (2011)

[58] La Rosa, M.: Managing variability in process-aware information sys-
tems. Ph.D. thesis, Queensland University of Technology, Brisbane,
Australia (2009)

[59] de Lara, J., Guerra, E., Cuadrado, J.S.: When and how to use mul-
tilevel modelling. ACM Transactions on Software Engineering and
Methodology 24(2), 12:1–12:46 (2014)

[60] Leavenworth, B.M.: Syntax macros and extended translation. Com-
munications of the ACM 9(11), 790–793 (1966)

[61] Lenz, H.J., Shoshani, A.: Summarizability in OLAP and statistical
data bases. In: Proceedings of the 9th International Conference on



References 225

Scientific and Statistical Database Management. pp. 132–143. IEEE
(1997)

[62] van Lessen, T., Lübke, D., Nitzsche, J.: Geschäftsprozesse automa-
tisieren mit BPEL. dpunkt.verlag, Heidelberg (2011), in German.
Automating business processes using BPEL.

[63] List, B., Bruckner, R., Machaczek, K., Schiefer, J.: A comparison of
data warehouse development methodologies case study of the process
warehouse. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.)
DEXA 2002, LNCS, vol. 2453, pp. 203–215. Springer (2002)

[64] List, B., Schiefer, J., Tjoa, A., Quirchmayr, G.: Multidimensional busi-
ness process analysis with the process warehouse. In: Abramowicz, W.,
Zurada, J. (eds.) Knowledge Discovery for Business Information Sys-
tems, The International Series in Engineering and Computer Science,
vol. 600, pp. 211–227. Springer (2002)

[65] Liu, E., Wu, F.Y., Pinel, F., Shan, Z.: A two-tier data-centric frame-
work for flexible business process management. In: 18th Americas
Conference on Information Systems. Association for Information Sys-
tems (2012)

[66] Lohmann, N., Nyolt, M.: Artifact-centric modeling using BPMN. In:
Pallis, G., Jmaiel, M., Charfi, A., Graupner, S., Karabulut, Y., Guinea,
S., Rosenberg, F., Sheng, Q.Z., Pautasso, C., Mokhtar, S.B. (eds.)
ICSOC 2011. LNCS, vol. 7221, pp. 54–65. Springer (2012)

[67] Mafazi, S., Grossmann, G., Mayer, W., Stumptner, M.: On-the-fly
change propagation for the co-evolution of business processes. In:
Meersman, R., Panetto, H., Dillon, T.S., Eder, J., Bellahsene, Z.,
Ritter, N., Leenheer, P.D., Dou, D. (eds.) OTM 2013. LNCS, vol. 8185,
pp. 75–93. Springer (2013)

[68] Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model:
From conceptual modeling to logical representation. Data and Knowl-
edge Engineering 59(2), 348–377 (2006)

[69] Mansmann, S., Neumuth, T., Scholl, M.H.: Multidimensional data
modeling for business process analysis. In: Parent, C., Schewe, K.D.,
Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 23–38.
Springer (2007)



226 References

[70] Mansmann, S., Neumuth, T., Scholl, M.H.: OLAP technology for
business process intelligence: Challenges and solutions. In: Song, I.Y.,
Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp.
111–122. Springer (2007)

[71] Marin, M., Hull, R., Vaculín, R.: Data centric BPM and the emerging
case management standard: A short survey. In: Rosa, M.L., Soffer,
P. (eds.) BPM 2012 Workshops. LNBIP, vol. 132, pp. 24–30. Springer
(2013)

[72] Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting
complex data dependencies in business processes. In: Daniel, F., Wang,
J., Weber, B. (eds.) BPM 2013, LNBIP, vol. 8094, pp. 171–186. Springer
(2013)

[73] Meyer, B.: Object-Oriented Software Construction. Prentice Hall,
Upper Saddle River, 2nd edn. (1997)

[74] zur Mühlen, M., Shapiro, R.: Business process analytics. In: vom
Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Man-
agement 2, pp. 137–157. Springer (2010)

[75] Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Repre-
senting knowledge about information systems. ACM Transactions on
Information Systems 8(4), 325–362 (1990)

[76] Neumayr, B.: Multi-level modeling with m-objects and m-relationships.
Ph.D. thesis, Johannes Kepler University Linz, Austria (2010)

[77] Neumayr, B., Grün, K., Schrefl, M.: Multi-level domain modeling with
m-objects and m-relationships. In: Proceedings of the 6th Asia-Pacific
Conference on Conceptual Modelling. pp. 107–116 (2009)

[78] Neumayr, B., Jeusfeld, M.A., Schrefl, M., Schütz, C.: Dual deep
instantiation and its ConceptBase implementation. In: Jarke, M.,
Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis,
H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 503–517.
Springer (2014)

[79] Neumayr, B., Schrefl, M.: Multi-level conceptual modeling and OWL.
In: Heuser, C.A., Pernul, G. (eds.) ER 2009 Workshops. LNCS, vol.
5833, pp. 189–199. Springer (2009)



References 227

[80] Neumayr, B., Schrefl, M., Thalheim, B.: Hetero-homogeneous hier-
archies in data warehouses. In: Proceedings of the 7th Asia-Pacific
Conference on Conceptual Modelling. pp. 61–70 (2010)

[81] Neumayr, B., Schrefl, M., Thalheim, B.: Modeling techniques for
multi-level abstraction. In: Kaschek, R., Delcambre, L.M.L. (eds.)
The Evolution of Conceptual Modeling. LNCS, vol. 6520, pp. 68–92.
Springer (2011)

[82] Nigam, A., Caswell, N.S.: Business artifacts: An approach to opera-
tional specification. IBM Systems Journal 42(3), 428–445 (2003)

[83] Nurcan, S., Etien, A., Kaabi, R.S., Zoukar, I., Rolland, C.: A strat-
egy driven business process modelling approach. Business Process
Management Journal 11(6), 628–649 (2005)

[84] OASIS: Web Services Business Process Execution Language
Version 2.0, Primer, 9 May 2007 (2007), https://www.oasis-
open.org/committees/download.php/23974/wsbpel-v2.0-primer.pdf

[85] Odell, J.J.: Advanced object-oriented analysis and design using UML,
chap. Power types, pp. 23–32. Cambridge University Press (1998)

[86] Olivé, A.: Conceptual modeling of information systems. Springer
(2007)

[87] OMG: OMG Ontology Definition Metamodel (ODM), Version 1.0
(2009), http://www.omg.org/spec/ODM/1.0/

[88] OMG: OMG Unified Modeling Language (OMG UML), Superstructure,
Version 2.4.1 (2011), http://www.omg.org/spec/UML/2.4.1/

[89] OMG: Business Process Model and Notation (BPMN), Version 2.0.2
(2013), http://www.omg.org/spec/BPMN/2.0.2/

[90] OMG: Semantics of Business Vocabulary and Business Rules
(SBVR), Annex G – EU-Rent Example, Version 1.2 (2013),
http://www.omg.org/cgi-bin/doc?formal/2013-11-08

[91] OMG: OMG Meta Object Facility (MOF) Core Specification, Version
2.4.2 (2014), http://www.omg.org/spec/SBVR/1.2/

[92] OMG: OMG Object Constraint Language (OCL), Version 2.4 (2014),
http://www.omg.org/spec/OCL/2.4/



228 References

[93] Parent, C., Spaccapietra, S.: Issues and approaches of database inte-
gration. Communications of the ACM 41(5), 166–178 (1998)

[94] Pichler, H., Eder, J.: Business process modelling and workflow design.
In: Embley, D.W., Thalheim, B. (eds.) Handbook of Conceptual
Modeling, pp. 259–286. Springer (2011)

[95] Pirotte, A., Zimányi, E., Massart, D., Yakusheva, T.: Materialization:
A powerful and ubiquitous abstraction pattern. In: Proceedings of the
20th International Conference on Very Large Data Bases. pp. 630–641
(1994)

[96] Polyvyanyy, A.: Structuring Process Models. Ph.D. thesis, Hasso Plat-
tner Institute for Software Systems Engineering, Potsdam, Germany
(2012)

[97] Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-
aware information systems. In: Jensen, K., van der Aalst, W.M. (eds.)
ToPNoC II, LNCS, vol. 5460, pp. 115–135. Springer (2009)

[98] Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Infor-
mation Systems: Challenges, Methods, Technologies. Springer (2012)

[99] Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic
changes in workflow systems – a survey. Data & Knowledge Engineering
50(1), 9–34 (2004)

[100] Rolland, C.: Modeling the evolution of artifacts. In: Proceedings of
the First IEEE International Conference on Requirements Engineering.
pp. 216–219 (1994)

[101] Rolland, C.: A comprehensive view of process engineering. In: Pernici,
B., Thanos, C. (eds.) CAiSE 1998. LNCS, vol. 1413, pp. 1–24. Springer
(1998)

[102] Rolland, C., Nurcan, S.: Business process lines to deal with the vari-
ability. In: Proceedings of the 43rd Hawaii International International
Conference on Systems Science. pp. 1–10. IEEE Computer Society
(2010)

[103] Rolland, C., Nurcan, S., Grosz, G.: A unified framework for modeling
cooperative design processes and cooperative business processes. In:



References 229

Proceedings of the 31st Hawaii International Conference on System
Sciences. pp. 376–385. IEEE Computer Society (1998)

[104] Rolland, C., Prakash, N., Benjamen, A.: A multi-model view of process
modelling. Requirements Engineering 4(4), 169–187 (1999)

[105] Rosemann, M., van der Aalst, W.M.P.: A configurable reference
modelling language. Information Systems 32(1), 1–23 (2007)

[106] Sánchez González, L., García Rubio, F., Ruiz González, F., Piat-
tini Velthuis, M.: Measurement in business processes: a systematic
review. Business Process Management Journal 16(1), 114–134 (2010)

[107] Scheer, A.W., Thomas, O., Adam, O.: Process modeling using event-
driven process chains. In: Dumas, M., van der Aalst, W.M.P., ter
Hofstede, A.H.M. (eds.) Process-Aware Information Systems, pp. 119–
145. Wiley, Hoboken (2005)

[108] Schrefl, M., Stumptner, M.: Behavior-consistent specialization of
object life cycles. ACM Transactions on Software Engineering and
Methodology 11(1), 92–148 (2002)

[109] Schütz, C.: Extending data warehouses with hetero-homogeneous
dimension hierarchies and cubes: A proof-of-concept prototype in
Oracle. Master’s thesis, Johannes Kepler University Linz (2010)

[110] Schütz, C.: Multilevel business modeling: From hetero-homogeneous
data warehouses to multilevel business processes. Tech. rep., Austrian
Marshall Plan Foundation (2012), Marshall Plan Scholarship paper.
http://marshallplan.at/images/papers_scholarship/2012/Schuetz.pdf

[111] Schütz, C., Delcambre, L.M.L., Schrefl, M.: Multilevel business arti-
facts. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops. LNBIP,
vol. 132, pp. 304–315. Springer (2013)

[112] Schütz, C., Neumayr, B., Schrefl, M.: Integration and reuse of hetero-
geneous information: Hetero-homogeneous data warehouse modeling
in the Common Warehouse Metamodel. In: Proceedings of the 18th
Americas Conference on Information Systems (2012)

[113] Schütz, C., Neumayr, B., Schrefl, M.: Business model ontologies in
OLAP cubes. In: Salinesi, C., Norrie, M.C., Pastor, O. (eds.) CAiSE
2013. LNCS, vol. 7908, pp. 514–529. Springer (2013)



230 References

[114] Schütz, C., Schrefl, M.: Variability in artifact-centric process modeling:
The hetero-homogeneous approach. In: Grossmann, G., Saeki, M.
(eds.) Proceedings of the 10th Asia-Pacific Conference on Conceptual
Modelling. CRPIT, vol. 154, pp. 29–38. Australian Computer Society
(2014)

[115] Schütz, C., Schrefl, M., Delcambre, L.M.L.: Multilevel business process
modeling: motivation, approach, design issues, and applications. In:
Proceedings of the 5th Ph.D. Workshop on Information and Knowledge
Management. pp. 91–94. ACM, New York (2012)

[116] Schütz, C., Schrefl, M., Neumayr, B., Sierninger, D.: Incremental
integration of data warehouses: the hetero-homogeneous approach.
In: Proceedings of the ACM 14th International Workshop on Data
Warehousing and OLAP. pp. 25–30 (2011)

[117] Schütz, C.G.: Multilevel Business Processes: Modeling and Data
Analysis. Ph.D. thesis, Johannes Kepler University Linz, Austria (2015)

[118] Smirnov, S., Reijers, H.A., Weske, M.: A semantic approach for
business process model abstraction. In: Mouratidis, H., Rolland, C.
(eds.) CAiSE 2011, LNCS, vol. 6741, pp. 497–511. Springer (2011)

[119] Smirnov, S., Reijers, H.A., Weske, M., Nugteren, T.: Business process
model abstraction: a definition, catalog, and survey. Distributed and
Parallel Databases 30(1), 63–99 (2012)

[120] Stärk, R., Schmid, J., Börger, E.: Java and the Java Virtual Machine.
Springer (2001)

[121] Stefanov, V., List, B.: Bridging the gap between data warehouses
and business processes: A business intelligence perspective for event-
driven process chains. In: Proceedings of the 9th IEEE International
Enterprise Distributed Object Computing Conference. pp. 3–14 (2005)

[122] Stefanov, V., List, B.: A UML profile for representing business object
states in a data warehouse. In: Song, I.Y., Eder, J., Nguyen, T.M.
(eds.) DaWaK 2007. LNCS, vol. 4654, pp. 209–220. Springer (2007)

[123] Stefanov, V., List, B., Korherr, B.: Extending UML 2 activity diagrams
with business intelligence objects. In: Tjoa, A.M., Trujillo, J. (eds.)
DaWaK 2005. LNCS, vol. 3589, pp. 53–63. Springer (2005)



References 231

[124] Steinmann, H., Schreyögg, G.: Management: Grundlagen der Un-
ternehmensführung. Gabler, Wiesbaden, 6th edn. (2005), in German.
Management: Fundamentals of business administration.

[125] Stumptner, M., Schrefl, M.: Behavior consistent inheritance in UML.
In: Laender, A., Liddle, S., Storey, V. (eds.) ER 2000, LNCS, vol.
1920, pp. 451–530. Springer (2000)

[126] Sturm, A.: Supporting business process analysis via data warehousing.
Journal of Software: Evolution and Process 24(3), 303–319 (2012)

[127] Thalheim, B.: Entity-relationship modeling: foundations of database
technology. Springer (2000)

[128] W3C: XQuery Update Facility 3.0 – W3C Working Draft 08 Jan-
uary 2013 (2013), http://www.w3.org/TR/2013/WD-xquery-update-
30-20130108/

[129] W3C: State Chart XML (SCXML): State Machine Notation for Control
Abstraction – W3C Candidate Recommendation 13 March 2014 (2014),
http://www.w3.org/TR/2014/CR-scxml-20140313/

[130] W3C: State Chart XML (SCXML): State Machine Notation for Control
Abstraction – W3C Last Call Working Draft 29 May 2014 (2014),
http://www.w3.org/TR/2014/WD-scxml-20140529/

[131] W3C: XML Schema Definition Language (XSD) 1.1 Part
2: Datatypes – W3C Recommendation 5 April 2012 (2014),
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/

[132] W3C: XPath and XQuery Functions and Operators 3.0 – W3C Recom-
mendation 08 April 2014 (2014), http://www.w3.org/TR/2014/REC-
xpath-functions-30-20140408/

[133] W3C: XPath and XQuery Functions and Operators 3.1 –
W3C Candidate Recommendation 18 December 2014 (2014),
http://www.w3.org/TR/2014/CR-xpath-functions-31-20141218/

[134] W3C: XQuery 3.0: An XML Query Language – W3C Recommendation
08 April 2014 (2014), http://www.w3.org/TR/2014/REC-xquery-30-
20140408/



232 References

[135] W3C: XQuery and XPath Data Model 3.0 – W3C Recommenda-
tion 08 April 2014 (2014), http://www.w3.org/TR/2014/REC-xpath-
datamodel-30-20140408/

[136] W3C: State Chart XML (SCXML): State Machine Notation for Control
Abstraction – W3C Proposed Recommendation 30 April 2015 (2015),
http://www.w3.org/TR/2015/PR-scxml-20150430/

[137] Wazlawick, R.S.: Object-oriented analysis and design for information
systems: Modeling with UML, OCL, and IFML. Elsevier, Burlington
(2014)

[138] Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change
support features – enhancing flexibility in process-aware information
systems. Data & Knowledge Engineering 66(3), 438–466 (2008)

[139] Weske, M.: Business Process Management: Concepts, Languages,
Architectures. Springer (2007)

[140] Wirth, N.: What can we do about the unnecessary diversity of notation
for syntactic definitions? Communications of the ACM 20(11), 822–823
(1977)

[141] Yongchareon, S., Liu, C., Zhao, X.: A framework for behavior-
consistent specialization of artifact-centric business processes. In: Bar-
ros, A., Gal, A., Kindler, E. (eds.) BPM 2012, LNCS, vol. 7481, pp.
285–301. Springer (2012)


	Foreword
	Preface
	Contents
	List of Figures
	List of Tables
	List of Consistency Rules
	List of Code Listings
	1 Introduction
	1.1 Multilevel Business Processes
	1.2 Contributions
	1.3 Outline

	2 Background
	2.1 Multilevel Modeling
	2.2 Business Process Modeling
	2.2.1 Data- and Artifact-Centric Modeling
	2.2.2 Variability and Flexibility
	2.2.3 Behavior-Consistent Specialization
	2.2.4 Business Process Model Abstraction

	2.3 Business Process Automation
	2.4 Business Process Intelligence
	2.5 Modeling Languages

	Part I Modeling
	3 Multilevel Object Core
	3.1 Hetero-Homogeneous Data Modeling
	3.2 Multilevel Objects
	3.3 Multilevel Relationships
	3.4 The Finer Points of Multilevel Objects

	4 Multilevel Business Artifacts
	4.1 Multilevel Objects with Life Cycle Models
	4.1.1 Simple Level Hierarchies
	4.1.2 Parallel Level Hierarchies

	4.2 Multilevel Business Artifact Relationships
	4.2.1 Multilevel Coherence
	4.2.2 Arbitrary Relationship Levels

	4.3 Multilevel Predicates for Synchronization
	4.3.1 Vertical Synchronization
	4.3.2 Horizontal Synchronization
	4.3.3 Hybrid Synchronization


	5 Hetero-Homogeneous Business Process Models
	5.1 Multilevel Business Artifact Hierarchies
	5.1.1 Concretization with Simple Hierarchies
	5.1.2 Concretization with Parallel Hierarchies
	5.1.3 Incremental Evolution through Reflection

	5.2 Process Model Hierarchies within Levels
	5.2.1 Business Process Variants
	5.2.2 Incremental Evolution through Mutation


	6 XML Representation
	6.1 Multilevel Business Artifacts in XML
	6.1.1 Simple Hierarchies
	6.1.2 Parallel Hierarchies

	6.2 Multilevel Relationships in XML
	6.3 Multilevel Predicates in State Chart XML


	Part II Data Analysis
	7 Multilevel Business Process Automation
	7.1 Multilevel Business Process Management System
	7.1.1 Multilevel Business Artifact Database
	7.1.2 XQuery-based Interpreter for State Chart XML
	7.1.3 Event Processor

	7.2 Application Development
	7.3 Event Logs

	8 Multilevel Business Process Intelligence
	8.1 Data Analysis with Multilevel Business Artifacts
	8.1.1 Flow Analysis
	8.1.2 Aggregation of Measures

	8.2 Hetero-Homogeneous Data Analysis
	8.3 Multilevel Synchronization over Performance Data


	9 Conclusion
	9.1 Summary
	9.2 Discussion
	9.3 Future Work

	References



