
www.allitebooks.com

http://www.allitebooks.org

NGUI for Unity

Master NGUI components swiftly, and employ them
to create a thrilling, action-packed 2D sci-fi game

Charles Bernardoff

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

NGUI for Unity

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1170114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-866-7

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Charles Bernardoff

Reviewers
Adrián del Campo

Andreas Grech

Philip Pierce

Abdelrahman Saher

Acquisition Editor
Subho Gupta

Commissioning Editor
Shaon Basu

Technical Editors
Shubhangi H. Dhamgaye

Rohit Kumar Singh

Copy Editors
Roshni Banerjee

Aditya Nair

Shambhavi Pai

Project Coordinator
Joel Goveya

Proofreader
Simran Bhogal

Indexer
Hemangini Bari

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Author

Charles Bernardoff has a bachelor's degree in Game Design and Level Design
delivered by ISART Digital, a video games school located in Paris, France.

With four years of experience as game designer, level designer, and C# scripter
at Cyanide Studio, Playsoft, and Airbus, Charles has worked on the PC versions
of Blood Bowl, Dungeonbowl, and Confrontation. He has also worked on Unity
and Flash mobile games, such as Space Run 3D, Oggy, and Psycho Gnomes.

He now works as Game Designer and Unity developer on PC and mobile Serious
Games at Airbus.

I wish to personally thank Abdelrahman Saher, Usuario, and
Andreas Grech, great reviewers who helped in making the book
better. I also want to thank my family and friends for their great
support while I was working on this project.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Adrián del Campo studied Computer Science at the Antonio de Nebrija
University, specializing in server and DB administration. After a few years of
working as a sysadmin and Java programmer, he decided to move to the game
industry, pursuing a master's degree in Game Development at the Universidad
Complutense. After that, he worked in top companies such as Pyro Studios and is
currently working in Mediatonic Ltd. as a video game programmer. You can find
him on twitter as @acampoh.

Andreas Grech is a Malta-based programmer and coffee aficionado. With over
seven years of professional experience in the software development industry, he has
worked on desktop applications, web experiences, and video games.

After earning his degrees from MCAST and the Fraunhofer-Gesellschaft and later
working in Oslo, Norway, for a number of years, he settled back in Malta to start
working in the video games industry, professionally with the Unity game engine.

Since then, Andreas has written a number of video games in Unity, including
Typocalypse 3D, a web-based typing-shooter game, and No Photos, Please!, a local
two-player stealth party video game. He also maintains a technical blog about his
programming experiences at http://blog.dreasgrech.com.

www.allitebooks.com

http://www.allitebooks.org

Philip Pierce is a software developer with 20 years' experience in mobile, web,
desktop, and server development; database design and management; and game
development. His background includes creating AI for games and business software,
converting AAA games between various platforms, developing multithreaded
applications, and creating patented client/server communication technologies.

Philip has won several hackathons, including Best Mobile App at the AT&T
Developer Summit 2013, and a runner-up for Best Windows 8 App at PayPal's
Battlethon Miami. His most recent project was converting Rail Rush and Temple
Run 2 from the Android platform to Arcade platforms.

Philip's portfolios can be found at http://www.rocketgamesmobile.com and
http://www.philippiercedeveloper.com.

Abdelrahman Saher graduated with a B.Sc. in Computer Science in 2012. After
graduation, Abdelrahman worked with the video game company Every1Plays,
where he participated in the programming of a couple of mobile games. Later, in
2013, Abdelrahman moved into the challenging role of lead programmer with the
video game company AppsInnovate. Apart from his work, Abdelrahman recently
started his own start-up video game company, Robonite.

I would like to thank my family and friends for helping me and
always being there for me.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started with NGUI	 7

What is NGUI?	 7
UnityGUI versus NGUI	 7
Atlases	 8
Events	 8
Localization	 8
Shaders	 9

Importing NGUI	 9
Creating your UI	 10

UI Wizard	 10
Window	 10
Parameters	 10

Separate UI Layer	 11
Your UI structure	 11

UI Root (2D)	 11
Parameters	 12

Camera	 13
Parameters	 14

Anchor	 17
Parameters	 17

Panel	 18
Parameters	 18

Summary	 20

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Creating Widgets	 21
Creating our first widget	 21

Widget Wizard	 21
Selecting an atlas	 22
Creating a widget from a template	 22
Transforming widgets	 23

Moving widgets	 23
Rotating widgets	 23
Scaling widgets	 24

Common widget parameters	 24
Sprites	 25

Sliced sprites	 26
Tiled sprites	 26
Filled sprites	 28

Labels	 28
Parameters	 29
Creating the title bar	 29

Buttons	 31
Parameters	 32
The play and exit buttons	 33

Text input	 35
Parameters	 36
Creating a nickname box	 36

Slider	 38
Parameters	 39
Creating a volume slider	 39

Toggle	 42
Parameters	 43
Creating a sound toggle	 43

Popup list	 46
Parameters	 46
Creating a difficulty selector	 47

Summary	 50
Chapter 3: Enhancing your UI	 51

NGUI components	 51
The draggable panel	 52

Parameters	 52
Dragging the MainMenu	 53

Table of Contents

[iii]

The drag-and-drop system	 54
Powers selection	 54

Draggable items container	 55
Draggable items	 56
The drop surface	 59
Prefab instantiated on drop	 60
Handling an invalid drop	 63
Replacing the current item	 64
Removing the current item	 66

Animations with NGUI	 67
Smooth powers apparition	 68
Clipping to hide options	 68

Scrollable text	 72
Localization system	 73

Localization files	 74
Localization component	 74
Language selection box	 74
Localizing a Label	 76

Summary	 77
Chapter 4: C# with NGUI	 79

Events methods	 79
Creating a tool tip	 81

The tool tip reference	 81
Showing the tool tip	 82

Tween methods	 84
Main menu apparition	 85

Simple Tween	 85
Smooth Tween	 85

Using keys for navigation	 86
Error notification	 88
Saving the nickname	 93
Sending messages	 93
Forwarding an event	 95
Summary	 96

Chapter 5: Building a Scrollable Viewport	 97
Preparing the Game scene	 97
The scrollable viewport	 98

Draggable background	 99
Linking scroll bars	 100
Keyboard scrolling	 103

Table of Contents

[iv]

Creating draggable barriers	 104
The BarrierObject prefab	 105
Dropping a barrier on Viewport	 107

Creating an ActiveBarrier prefab	 109
The ActiveBarrier prefab	 109
Instantiating the ActiveBarrier prefab	 111
Barrier's building process	 112
Forwarding events to viewport	 114

BarrierObject cooldown	 115
Cooldown implementation	 115
BarrierObject smooth apparition	 117

The barrier availability tool tip	 117
Summary	 118

Chapter 6: Atlas and Font Customization	 119
The Atlas prefab	 119
Creating a new Atlas	 120
Adding sprites to Atlas	 120

Simple sprites	 121
Adding sprites to Atlas	 121
Available powers icons	 122
Selected powers icons	 123

Sliced sprites	 125
Adding a sprite to Atlas	 125
Configuring a sliced sprite	 126
The Main Menu window	 127

Tiled sprites	 128
Adding a font	 129

Exporting a font using BMFont	 129
Creating a font in Unity	 131
Assigning a new font to Label	 132

Customizing the MainMenu	 133
Summary	 135

Chapter 7: Creating a Game with NGUI	 137
Enemy spawning	 138

Creating the enemies container	 138
Creating the Enemy prefab	 138
Creating the enemy spawn controller	 140
Forwarding events to viewport	 143

Table of Contents

[v]

Handling enemy collisions	 144
Collisions with active barriers	 144
Colliding with the bottom of the screen	 147

Healthbar	 147
The EndOfScreen widget	 149

Creating self-destruct code	 150
The hacking slider	 151
Self-destruct code	 153
Assigning code to an enemy	 154
The hacking process	 155
Handling player input	 158

Summary	 159
Index	 161

Preface
This book is dedicated to beginners of the Next-Gen UI kit, also known as NGUI.
You may have heard about this Unity 3D plugin; it is popular amongst developers
for its easy-to-use and effective WYSIWYG workflow.

NGUI provides built-in components and scripts to create beautiful user interfaces
for your projects, with most of the work happening inside the editor.

Through this book, you will gather the necessary knowledge to create interesting
user interfaces. The seven chapters of this book are practical and will guide you
through the creation of both a main menu and a 2D game.

What this book covers
Chapter 1, Getting Started with NGUI, describes NGUI's functionalities and workflow.
We will then import the plugin and create our first UI system and study its structure.

Chapter 2, Creating Widgets, introduces us to our first widget and explains
how we can configure it. It then explains how to create a main menu using
the Widget template

Chapter 3, Enhancing Your UI, explains the drag-and-drop system and how to
create draggable windows. It also covers the use of animations, scrollable text,
and localization with NGUI.

Chapter 4, C# with NGUI, introduces C# event methods and advanced
code-oriented components that will be used to create tool tips, notifications,
and Tweens through code.

Chapter 5, Building a Scrollable Viewport, introduces us to an interactive
fullscreen-scrolling viewport using scroll bars, keyboard arrows, and
draggable items.

Preface

[2]

Chapter 6, Atlas and Font Customization, explains how you can customize your UI
using your own sprites and fonts; this will enable us to modify the appearance
of our entire main menu.

Chapter 7, Creating a Game with NGUI, covers game features, such as spawning
mobile enemies, handling player input, and detecting collisions between widgets
to create a game.

What you need for this book
In order to follow this book, you will need the Unity 3D software available at
http://unity3d.com/unity/download.

You may use any version of Unity, but I recommend the 4.x cycle. Just the Add
Component button and copy-paste component features will buy you some time.
You must be familiar with Unity's basic workflow; the words GameObjects,
Layers, and Components should not be a secret for you.

All the code pertaining to coding skills are available here and explained with
comments on each line. So if you are not familiar with them, you will still be
able to understand it.

While working with this book, we will create our own Sprites. If you do not
want to or cannot create these assets by yourself, don't worry; the ones I have
created for this book will be available for download.

You will also need the NGUI plugin for Unity by Tasharen Entertainment.
You can buy it directly from the Unity Asset Store or you can click on the Buy
Now button at the bottom of the page http://www.tasharen.com/?page_id=140.

Who this book is for
Whether you are a beginner starting to work with Unity 3D, an intermediate, or a
professional developer searching for an effective UI solution, this book is for you.

You have worked on games or apps for PC, console, or mobile platforms, but are
you struggling with Unity's built-in UI system to create your game's interfaces and
menus? This is where you should be.

Once you have finished reading this book, you will discover that building a user
interface can be easy, fast, and fun!

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Declare a new Difficulty variable
to store current difficulty."

A block of code is set as follows:

public void OnDifficultyChange()
{
 //If Difficulty changes to Normal, set Difficulties.Normal
 if(UIPopupList.current.value == "Normal")
 Difficulty = Difficulties.Normal;
 //Otherwise, set it to Hard
 else Difficulty = Difficulties.Hard;
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

//We will need the Slider
UISlider slider;

void Awake ()
{
 //Get the Slider
 slider = GetComponent<UISlider>();
 //Set the Slider's value to last saved volume
 slider.value = NGUITools.soundVolume;
}

New terms and important words are shown in bold. Words that you see
on the screen, in menus or dialog boxes for example, appear in the text like
this: "You can now click on the Create Your UI button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/8667OT_ColorGraphics.pdf

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with NGUI
In this first chapter, we will talk about the overall workflow of NGUI before we
import the plugin and create our first UI. Then we will look into the UI's structure,
important parameters, and general behavior.

What is NGUI?
The Next-Gen User Interface kit is a plugin for Unity 3D. It has the great advantage
of being easy to use, very powerful, and optimized compared to Unity's built-in GUI
system, UnityGUI. Since it is written in C#, it is easily understandable and you may
tweak it or add your own features, if necessary.

The NGUI Standard License costs $95. With this, you will have useful example
scenes included. I recommend this license to start comfortably—a free evaluation
version is available, but it is limited, outdated, and not recommended.

The NGUI Professional License, priced at $200, gives you access to NGUI's GIT
repository to access the latest beta features and releases in advance.

A $2000 Site License is available for an unlimited number of developers within
the same studio.

Let's have an overview of the main features of this plugin and see how they work.

UnityGUI versus NGUI
With Unity's GUI, you must create the entire UI in code by adding lines that display
labels, textures, or any other UI element on the screen. These lines have to be written
inside a special function, OnGUI(), that is called for every frame. This is no longer
necessary; with NGUI, UI elements are simple GameObjects!

Getting Started with NGUI

[8]

You can create widgets—this is what NGUI calls labels, sprites, input fields, and
so on—move them, rotate them, and change their dimensions using handles or
the Inspector. Copying, pasting, creating prefabs, and every other useful feature
of Unity's workflow is also available.

These widgets are viewed by a camera and rendered on a layer that you can
specify. Most of the parameters are accessible through Unity's Inspector, and
you can see what your UI looks like directly in the Game window, without
having to hit the Play button.

Atlases
Sprites and fonts are all contained in a large texture called atlas. With only a few
clicks, you can easily create and edit your atlases. If you don't have any images
to create your own UI assets, simple default atlases come with the plugin.

That system means that for a complex UI window composed of different textures
and fonts, the same material and texture will be used when rendering. This results
in only one draw call for the entire window. This, along with other optimizations,
makes NGUI the perfect tool to work on mobile platforms.

Events
NGUI also comes with an easy-to-use event framework that is written in C#. The
plugin comes with a large number of additional components that you can attach to
GameObjects. These components can perform advanced tasks depending on which
events are triggered: hover, click, input, and so on. Therefore, you may enhance your
UI experience while keeping it simple to configure. Code less, get more!

Localization
NGUI comes with its own localization system, enabling you to easily set up and
change your UI's language with the push of a button. All your strings are located
in the .txt files: one file per language.

Chapter 1

[9]

Shaders
Lighting, normal mapping, and refraction shaders are supported in NGUI, which
can give you beautiful results. Clipping is also a shader-controlled feature with
NGUI, used for showing or hiding specific areas of your UI.

We've now covered what NGUI's main features are, and how it can be useful to
us as a plugin, and now it's time to import it inside Unity.

Importing NGUI
After buying the product from the Asset Store or getting the evaluation version,
you have to download it. Perform the following steps to do so:

1.	 Create a new Unity project.
2.	 Navigate to Window | Asset Store. Select your download library.
3.	 Click on the Download button next to NGUI: Next-Gen UI.
4.	 When the download completes, click on the NGUI icon / product name

in the library to access the product page.
5.	 Click on the Import button and wait for a pop-up window to appear.
6.	 Check the checkbox for NGUI v.3.0.2.unitypackage and click on Import.
7.	 In the Project view, navigate to Assets | NGUI and double-click on

NGUI v.3.0.2.
8.	 A new imported pop-up window will appear. Click on Import again.
9.	 Click any button on the toolbar to refresh it. The NGUI tray will appear!

The NGUI tray will look like the following screenshot:

You have now successfully imported NGUI to your project. Let's create your
first 2D UI.

Getting Started with NGUI

[10]

Creating your UI
We will now create our first 2D user interface with NGUI's UI Wizard. This wizard
will add all the elements needed for NGUI to work.

Before we continue, please save your scene as Menu.unity.

UI Wizard
Create your UI by opening the UI Wizard by navigating to NGUI | Open | UI
Wizard from the toolbar. Let's now take a look at the UI Wizard window and
its parameters.

Window
You should now have the following pop-up window with two parameters:

Parameters
The two parameters are as follows:

•	 Layer: This is the layer on which your UI will be displayed
•	 Camera: This will decide if the UI will have a camera, and its drop-down

options are as follows:

°° None: No camera will be created
°° Simple 2D: Uses a camera with orthographic projection
°° Advanced 3D: Uses a camera with perspective projection

Chapter 1

[11]

Separate UI Layer
I recommend that you separate your UI from other usual layers. We should do it
as shown in the following steps:

1.	 Click on the drop-down menu next to the Layer parameter.
2.	 Select Add Layer.
3.	 Create a new layer and name it GUI2D.
4.	 Go back to the UI Wizard window and select this new GUI2D layer

for your UI.

You can now click on the Create Your UI button. Your first 2DUI has been created!

Your UI structure
The wizard has created four new GameObjects on the scene for us:

•	 UI Root (2D)
•	 Camera
•	 Anchor
•	 Panel

Let's now review each in detail.

UI Root (2D)
The UIRoot component scales widgets down to keep them at a manageable size. It is
also responsible for the Scaling Style—it will either scale UI elements to remain pixel
perfect or to occupy the same percentage of the screen, depending on the parameters
you specify.

Select the UI Root (2D) GameObject in the Hierarchy. It has the UIRoot.cs script
attached to it. This script adjusts the scale of the GameObject it's attached to in order
to let you specify widget coordinates in pixels, instead of Unity units as shown in the
following screenshot:

Getting Started with NGUI

[12]

Parameters
The UIRoot component has four parameters:

•	 Scaling Style: The following are the available scaling styles:
°° PixelPerfect: This will ensure that your UI will always try to remain

at the same size in pixels, no matter what resolution. In this scaling
mode, a 300 x 200 window will be huge on a 320 x 240 screen and tiny
on a 1920 x 1080 screen. That also means that if you have a smaller
resolution than your UI, it will be cropped.

°° FixedSize: This will ensure that your UI will be proportionally
resized depending on the screen's height. The result is that your UI
will not be pixel perfect but will scale to fit the current screen size.

°° FixedSizeOnMobiles: This will ensure fixed size on mobiles and
pixel perfect everywhere else.

•	 Manual Height: With the FixedSize scaling style, the scale will be based
on this height. If your screen's height goes over or under this value, it will
be resized to be displayed identically while maintaining the aspect ratio
(width/height proportional relationship).

•	 Minimum Height: With the PixelPerfect scaling style, this parameter defines
the minimum height for the screen. If your screen height goes below this
value, your UI will resize. It will be as if the Scaling Style parameter was
set to FixedSize with Manual Height set to this value.

•	 Maximum Height: With the PixelPerfect scaling style, this parameter defines
the maximum height for the screen. If your screen height goes over this
value, your UI will resize. It will be as if the Scaling Style parameter was
set to FixedSize with Manual Height set to this value.

Please set the Scaling Style parameter to FixedSize with a Manual
Height value of 1080. This will allow us to have the same UI on any
screen size up to 1920 x 1080.

Chapter 1

[13]

Even though the UI will look the same on different resolutions, the aspect ratio is
still a problem since the rescale is based on the screen's height only. If you want
to cover both 4:3 and 16:9 screens, your UI should not be too large—try to keep it
square. Otherwise, your UI might be cropped on certain screen resolutions.

On the other hand, if you want a 16:9 UI, I recommend you force this aspect ratio
only. Let's do it now for this project by performing the following steps:

1.	 Navigate to Edit | Project Settings | Player.
2.	 In the Inspector option, unfold the Resolution and Presentation group.
3.	 Unfold the Supported Aspect Ratios group.
4.	 Check only the 16:9 box.

Now that we have seen the UI Root's different parameters, let's discuss
the camera.

Camera
Select the Camera GameObject in the Hierarchy view. It has the UICamera.cs
script attached to it. This script must be attached to any camera that needs to
interact with your UI.

Its purpose is to send different messages concerning events that happen to UI
elements such as colliders attached to a button. Some of the more frequently
used events are OnClick() and OnHover().

You may have multiple cameras if you consider it necessary; for example,
you can have an orthographic camera for 2D in-game UI elements and a
separate perspective camera for a 3D pause menu.

For the purpose of this book, we will stick with only one camera.

Getting Started with NGUI

[14]

Parameters
The UICamera.cs script has a large number of parameters as shown in the
following screenshot:

These parameters are as follows:

•	 Event Type: Select which event type this camera will send.
°° World: This is used for interacting with 3D-world GameObjects
°° UI: This is used for interacting with the 2D UI

•	 Event Mask: Select which layer will be used to receive events.
°° In our case, we will set it to GUI2D since our UI will reside on it.

Chapter 1

[15]

•	 Debug: This consists of the enable or disable debug mode options.
This option is useful when you have unwanted behavior.

°° Enabled: When Debug is enabled, the currently hovered object
will be displayed on the top left-hand corner of the screen

•	 Allow Multi Touch: This consists of the enable or disable touch mode
options that allow simultaneous touches. This is mandatory if you want
to use pinch-to-zoom or other such gestures on mobile platforms.

•	 Sticky Press: This consists of the enable or disable sticky press mode options.
°° Enabled: If you drag your finger out of a pressed button, it will

remain in the pressed state and no other element will receive
upcoming events from that finger until it is released

°° Disabled: If you drag your finger out of a pressed button, it will no
longer be pressed and other elements will receive upcoming events
from that finger

•	 Sticky Tooltip: It consists of the enable or disable sticky tool tip mode options.
°° Enabled: The tool tip disappears when the mouse moves out of

the widget
°° Disabled: The tool tip disappears as soon as the mouse moves

•	 Tooltip Delay: It consists of the required stationary time in seconds
before the widget's tool tip is displayed.

•	 Raycast Range: A raycast is an invisible ray that is cast from one point
towards a specific direction and is stopped if it encounters another object.
The camera uses raycasts from the mouse or touch position towards the
camera's forward direction to detect collisions and handle events. You may
set the range of this raycast if you need to limit the interaction to a certain
range. The default -1 value implies that the raycast's range will be as far as
the camera can see.

•	 Event Sources: These Booleans let you specify what events this camera
listens to.

°° Mouse: This is used for mouse movements, left/right/middle click,
and scroll wheel.

°° Touch: This is used for touch-enabled devices.
°° Keyboard: This is used for keyboard input. It uses the OnKey() event.
°° Controller: This is used for joystick-based devices. It uses the

OnKey() event.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with NGUI

[16]

•	 Thresholds: These values come in handy when you want to specify the
minimum values before a particular event is triggered. This may vary
from one game/app to another.

°° Mouse Drag: When a mouse button is pressed (the OnPress() event
is triggered), this value determines how far in pixels the mouse must
move before it is considered a drag, and sends OnDrag() events to
the dragged object

°° Mouse Click: When a mouse button is pressed (the OnPress() event
is triggered), this value determines how far in pixels the mouse can
travel before the button release has no effect (the OnClick() event is
not triggered)

°° Touch Drag: This is the same as Mouse Drag, but for touch-based
devices

°° Touch Tap: This is the same as Mouse Click, but for touch-based
devices

•	 Axes and Keys: These parameters let you assign Unity input axes and keys
to NGUI's input system.

°° Horizontal: This is the input axis for horizontal movement
(the left and right key events)

°° Vertical: This is the input axis for vertical movement
(the up and down key events)

°° Scroll: This is the input axis for scrolling
°° Submit 1: This is the primary keycode for validation
°° Submit 2: This is the secondary keycode for validation
°° Cancel 1: This is the primary keycode for cancel.
°° Cancel 2: This is the secondary keycode for cancel.

You can edit Unity inputs at any time by navigating to
Edit | Project Settings | Input.

Ok, we have seen what the main parameters of the UICamera component are.
We have to see what the camera's anchor child is.

Chapter 1

[17]

Anchor
An anchor is used to attach GameObjects to the same area inside the camera
view. For example, you can attach them to borders or corners of the screen,
or another widget.

Select the Anchor GameObject in the Hierarchy view. It has the UIAnchor
component attached to it. It is configured to center content on the screen based
on the parent camera.

Before we create widgets, we must understand how these UIAnchor parameters
modify their placement behavior.

Parameters
The UIAnchor component has seven parameters as seen in the following screenshot:

These parameters are as follows:

•	 Ui Camera: This is the reference camera from which our anchor bounds
are determined. By default, it is set to the camera used by the UI.

•	 Container: If you drag and drop a GameObject in this field, it will overwrite
the camera anchoring. This can be useful if you need to anchor your panels
or widgets based on a container GameObject, instead of a camera. Your
content will be placed using the assigned container's position.

•	 Side: Do you want your child GameObjects to be centered or attached to
one side or corner of your referenced camera/container? You can choose
your anchor point here.

Getting Started with NGUI

[18]

•	 Half Pixel Offset: You should leave this Boolean checked. It makes widget
positions pixel perfect on Windows machines.

•	 Run Only Once: This Boolean can be checked if your screen resolution never
changes, or if you want it to remove it on start. As a result, your anchor will
be executed at the start and then removed and no longer be updated.

•	 Relative Offset: This Vector2 class takes two values between -1 and 1 to add
a relative offset to the final position. With a value of 0.12 for X and 0.32 for Y,
it will result in an offset of 12% horizontally and 32% vertically—it will look
the same on any resolution because the offset depends on the screen size.

•	 Pixel Offset: This parameter is like Relative Offset, but it is absolute
instead of relative. You can enter the offset in pixels—it will look different
depending on the resolution because the offset will stay identical in pixels
on all screen sizes.

We have explained the different UIAnchor parameters, but what is this last child,
Panel? Let's look into that, and we'll be ready to create our first widget!

Panel
Select the Panel GameObject in the Hierarchy view. It has a UIPanel
component attached.

A panel's purpose is to hold widgets and render geometry in only one
draw call. You may create multiple panels to split your UI, but it will add
a draw call per new panel.

Parameters
The UIPanel.cs script has eight parameters as shown in the following screenshot:

Chapter 1

[19]

These parameters are as follows:

•	 Alpha: You may change the transparency level of the entire panel. All child
widgets will be affected by this alpha value, but nested panels won't.

•	 Depth: This is used to define which panel is rendered over another. A panel
with a depth value of 1 will appear in front of a panel with a depth value of
0. You can use either the Back or Forward button to change the Depth or
simply enter a number in the field. Panels can also have negative depth.

•	 Normals: This Boolean must be checked if you need it to react to lighting
using shaders. It will calculate normals for your UI geometry.

•	 Cull: This Boolean gives you the ability to disable the child widgets
rendering while the panel is being dragged, which improves performance.

•	 Static: If all your panel's widgets are static and won't ever move, check
this—it will improve performance!

•	 Show All: This will show all draw calls in the Inspector view.
•	 Panel Tool: This is a panel managing tool. You can visualize and select each

panel in the scene. You can open it with Alt + Shift + P or navigate to NGUI
| Open | Panel Tool. Will this panel show in the Panel Tool parameter?
This should be unchecked for dynamically created temporary panels through
code, like a warning message or ammo pick-up notification.

•	 Clipping: This will let us hide widgets outside a given rectangle. When
turned on, you will be able to choose the clipping rectangle's dimensions
with the Center and Size parameters. Anything outside this rectangle
will be hidden.

°° None: No clipping—the entire panel will be displayed.
°° Hard Clip: Clipping enabled—rough clipping of widgets outside

the box.
°° Soft Alpha: Clipping enabled—soft clipping with fade-out / fade-in

borders.
We've now taken a look at the parameters of the UIPanel component, which will
be used to hold our widgets.

Getting Started with NGUI

[20]

Summary
During this chapter, we discussed NGUI's basic workflow—it works with
GameObjects, uses atlases to combine multiple textures in one large texture,
has an event system, can use shaders, and has a localization system.

After importing the NGUI plugin, we created our first 2D UI with the UI Wizard,
reviewed its parameters, and created our own GUI 2D layer for our UI to reside on.

Finally, we analyzed the four GameObjects that were created automatically for us by
NGUI. After reviewing their parameters, we can summarize their roles as follows:

•	 The UI Root holds the UI and scales it for pixel perfect or fixed sizes
•	 The Camera views the UI and sends messages to the widgets for interactions
•	 The Anchor can attach elements to the borders of screen or objects and

add offsets
•	 The Panel holds our widgets and renders them, with or without clipping

We are now ready to create our first widget. It's time to move on to the next chapter.

Creating Widgets
In this chapter, we will create our first sprite widget and understand how it works.
Then we will create one sample of each important widget template, and analyze their
corresponding parameters so that you know how to create and configure them.

At the end of this chapter, we will have a functional main menu with most of
NGUI's widgets.

Creating our first widget
We will create our first sprite widget to display our main menu's background
window. In order to do that easily, NGUI has a Widget Wizard with a few
templates for us.

Widget Wizard
The Widget Wizard can be opened by navigating to NGUI | Open | Widget Wizard.
It will look like the following screenshot:

Creating Widgets

[22]

As you can see in the previous screenshot, to create a widget, you require Atlas
and Font to be configured. As said in Chapter 1, Getting Started with NGUI, an atlas
is a large texture containing the sprites that you need to create your UI. For the rest
of this chapter, we will use the default atlas named SciFi Atlas, which is included
in the plugin.

Selecting an atlas
Let's select our default SciFi atlas, which contains the necessary sprites, as follows:

1.	 In the Project view, navigate to Assets | NGUI | Examples | Atlases | SciFi.
2.	 Drag-and-drop the prefab SciFi Atlas.prefab in the Atlas field.
3.	 Drag-and-drop the prefab SciFi Font – Header.prefab in the Font field.

We have our Atlas and Font prefabs selected. We can now create a widget from
a template.

Creating a widget from a template
Let's create a widget from a template by performing the following steps:

1.	 Click on the drop-down menu next to the Template field.
2.	 Select the Sprite option as Template.
3.	 Click on the drop-down menu next to the Sprite field.
4.	 Select the sprite named Dark.
5.	 Leave the Pivot option as Center.
6.	 Make sure you have selected Panel in the Hierarchy view.
7.	 Click on the Add To button.

Ok, our sprite widget has been created!

The widget wizard adds the new widget as the child of the selected
GameObject or panel. If you have selected the wrong GameObject,
you can still drag-and-drop the new widget into the right
GameObject after it is created.

Chapter 2

[23]

Transforming widgets
We have created our first widget: Sprite (Dark). Select it in the Hierarchy view
and try the following manipulations to change its transform values.

Moving widgets
In the Scene view, you can use the handles to move your widget or you may enter
coordinates directly in the Inspector view's X, Y, or Z parameters. The following
screenshot is of the Scene view with the three parameters visible:

You should always leave the Z coordinates at 0. If you need to place a widget
behind or in front of another, use the Back and Forward buttons in the Inspector
view to control your widget's depth.

You may move your widget on only one axis by pressing Shift
before you click on the axis's handle.

Rotating widgets
On the Scene view, place your mouse cursor on the outside of any blue circle
surrounding your widget. Your cursor will have a rotation icon next to it. You can
now keep your left mouse button pressed and move your mouse to rotate the widget.

Creating Widgets

[24]

By default, rotation is set to have a 15 degrees step. If you wish to have a
more precise rotation—a 1 degree step—just hold Shift while rotating.

Scaling widgets
You may have noticed that in the Inspector view, the scale value is grayed out.
That's because you should use the Dimensions parameter of the UISprite
component instead.

On the Scene view, place your mouse cursor on any blue circle surrounding your
widget. Your cursor will have a resize icon next to it. You can now click and drag
your mouse to resize the widget.

Using the blue handles will not keep your widget centered to its current
position. If you want to resize your widget proportionally on both sides,
click on the space in front of the X or Y parameter of Dimensions of the
UISprite component and drag your mouse left or right.

To keep everything pixel perfect, you should avoid scaling widgets up or down
with Unity's scale tool. Try to do everything with Dimensions. Let's see what
other parameters we have for widgets.

Common widget parameters
Select Sprite (Dark) and you will find the parameters seen in the following
screenshot in the Inspector view:

Chapter 2

[25]

These parameters exist for any type of widget. Let's see what they are:

•	 Color Tint: This is the widget's alpha-enabled color.
•	 Clipboard: If you click on the Copy button, the current Color Tint selection

is copied to this parameter. If you click on the Paste button, the Clipboard
parameter's selection will be pasted to Color Tint.

•	 Pivot: This presents two sets of buttons that can be used to choose which
corner or side you want the widget's pivot to be placed.

•	 Depth: This can be used to display your widget in front or behind others.
•	 Dimensions: This can be used to display size in pixels instead of scaling.

Now that we have seen the widget parameters, please enter these Dimensions for
our newly created Sprite (Dark): 1300 x 850.

Our sprite window just got enormous and ugly. Why? Because it's a 15 x 15 sprite
stretched to 1300 x 850! Let's talk about sprites and see how we can correct this.

Sprites
We have created our first sprite and understood how to move, rotate, and change its
dimensions. We actually scaled it up massively compared to its original size. But this
15 x 15 sprite has something special.

If you select the Sprite (Dark) GameObject, you will see it has four dotted lines
inside the Preview window in the Inspector view. This means it's a sliced sprite:

www.allitebooks.com

http://www.allitebooks.org

Creating Widgets

[26]

Sliced sprites
A sliced sprite is an image divided in nine sections, making it resizable
while conserving its corners' proportions. Sliced sprites may be scaled as
you wish—they still look beautiful.

Since Sprite (Dark) is a 9-slice sprite, we must tell our UISprite component
to treat it as such. Perform the following steps to do so:

1.	 Select the Sprite (Dark) GameObject.
2.	 Click on the drop-down menu next to its Sprite Type field.
3.	 Select Sliced.

Notice how the sprite looks good now—it's not stretched anymore!

The Fill Center parameter allows you to only show the
sprite's borders and leave only transparency inside.
Even though sliced sprites are perfect for windows and
variable size boxes, you may display regular sprites by
leaving Sprite Type as Simple.

Tiled sprites
A tiling sprite is a pattern meant to be repeated indefinitely—it can be used to cover
a large surface by repeating the same texture. Let's try it right now:

1.	 In the Hierarchy view, rename Sprite (Dark) as Window.
2.	 Select our Window GameObject and perform the following steps:

1.	 Make sure it is at {0, 0, 0} position and has a scale of {1, 1, 1}.
2.	 Make sure Depth is set to 0.
3.	 In the Color Tint parameter, change R to 115, G to 240, B to 255,

and A to 255.

Ok, we have our window. Let's create a tiled background to make it look better by
performing the following steps:

1.	 Select our Window GameObject and duplicate it with Ctrl + D.
2.	 Rename the duplicate as Background.

Chapter 2

[27]

3.	 Select the new Background GameObject and perform the following steps:
1.	 Set its UISprite's Depth parameter to 1.
2.	 Click on the drop-down menu next to the Sprite Type field.
3.	 Select Tiled. It doesn't look good because our sprite is not a

tiling sprite.
4.	 Click on the Sprite button.
5.	 Select the Honeycomb sprite, which is a tiling sprite.
6.	 In the Color Tint parameter, change R to 115, G to 240, B to 255,

and A to 255.

4.	 Attach a component to it by navigating to Component | NGUI | UI |
Stretch and perform the following steps:

1.	 Drag-and-drop our Window GameObject inside the Container field.
2.	 Set the Style field to Both.

5.	 Attach a component to it by navigating to NGUI | Attach | Anchor and
drag-and-drop our Window GameObject inside the Container field.

That looks better! We now have a tiling sprite for our window's background,
and it looks as follows:

We used the UIStretch component to avoid setting dimensions manually; if you
change the window's Dimensions, the background will resize itself automatically.

The UIAnchor component is used to make sure the background also moves with
the window.

Creating Widgets

[28]

Filled sprites
A filled sprite is useful to create life bars or progress bars; with this, you can set a
sprite and change the Fill Amount parameter between 0 and 1 to hide a part of it.
The following screenshot shows a partially hidden progress bar:

Let's create this effect with the following steps:

1.	 Select our Background GameObject and set Sprite Type to Filled.
2.	 Set Fill Dir to Horizontal.

Move the Fill Amount slider and you can see what it does on the game view. You've
understood the filled sprite system. Now set the Sprite Type field back to Tiled.

Ok, we've seen different sprite widgets and parameters. Let's learn how to add text.

Labels
Labels are used to display text on the screen with a specific font as shown in the
following screenshot:

Let's create a label widget with the following steps:

1.	 Select the Panel GameObject.
2.	 Navigate to NGUI | Open | Widget Wizard.
3.	 Select the Label template.
4.	 We have already selected a font; it will be used for this label.
5.	 Click on the Add To button.

A new label has been added to the panel and placed at the center of the screen.

Chapter 2

[29]

Parameters
With Label selected, the UILabel parameters are shown in the Inspector view.
They are as follows:

•	 Text: This is a large textbox that lets you type the text to be displayed.
•	 Overflow: This offers four different behaviors for the widget when the

text is larger than the label's Dimensions. The four behaviors are as follows:
°° Shrink Content: This shrinks the text in order to fit
°° Clamp Content: This ensures overflow will never happen
°° Resize Freely: This resizes to display all the content and overflow
°° Resize Height: This resizes height only—column style

•	 Encoding: This must be checked if you want to change the characters'
color by inserting the [RRGGBB] hexadecimal values.

•	 Effect: This will help you add a shadow or outline effect to your label.
You can adjust the Distance and Color values.

•	 Max Lines: This is the maximum number of lines assigned for the label.
For unlimited lines, leave it as 0.

•	 Pivot: The pivot also defines how the text is aligned.

Creating the title bar
Let's add a title for our window that will look like the following screenshot:

Please proceed with the following steps to create this title bar for our window:

1.	 Select Panel and create a new child with Alt + Shift + N.
2.	 Rename that new child as Title. It will be our Title bar container.
3.	 Drag-and-drop the Label GameObject into the Title GameObject.
4.	 Select our Title GameObject.
5.	 Navigate to NGUI | Open | Widget Wizard.

Creating Widgets

[30]

6.	 Create a new sprite using the Highlight sprite and perform the
following steps:

1.	 Rename this new sprite (Highlight) as Background.
2.	 Set Sprite Type to Sliced.
3.	 Change the Pivot option to Top (the button with the up arrow).
4.	 Reset its Transform position to {0, 0, 0}.
5.	 In the Color Tint parameter, change R to 95, G to 255, B to 150,

and A to 200.
6.	 Enter Depth as 2.

7.	 Attach a component to it by navigating to Component | NGUI | UI |
Stretch and perform the following steps:

1.	 Drag our Window GameObject into the Container field.
2.	 Set Style to Horizontal.
3.	 Enter its UISprite's Y dimension as 62.

8.	 Select the Label GameObject from Title and perform the following steps:
1.	 Change its text to [AAFFFF]Main Menu.
2.	 Set its Overflow parameter to Resize Freely.
3.	 Enter Depth as 3.

9.	 Attach a component to it by navigating to NGUI | Attach | Anchor and
perform the following steps:

1.	 Drag-and-drop the Background GameObject from Title in the
Container field.

2.	 Set the Side parameter to Center.

10.	 Select our Title GameObject in the Hierarchy view.
11.	 Attach a component to it by navigating to NGUI | Attach | Anchor and

perform the following steps:

1.	 Drag our Window GameObject into the Container field.
2.	 Set the Side parameter to Top.

Chapter 2

[31]

The Hierarchy and Inspector views of our Title GameObject should look like the
ones in the following screenshot:

We now have a window that actually looks like a window. We used anchors to avoid
setting positions manually. Now let's add some buttons!

Buttons
With NGUI, buttons are easy to create and configure.

Let's create our first one by performing the following steps:

1.	 Select the Panel GameObject.
2.	 Create a new child with Alt + Shift + N and perform the following steps:

1.	 Rename it as Buttons. It will be our buttons container.

3.	 Navigate to NGUI | Open | Widget Wizard and perform the
following steps:

1.	 Select the Button Template.
2.	 For the Background field, select the sprite named Button.

4.	 With the Buttons GameObject selected, click on the Add To button.

Creating Widgets

[32]

A button has just been created and centered on the screen. If you look at the
Hierarchy view, you will see that a button is composed of a container GameObject
named Button and two children: a Background sprite and Label. That's how NGUI
works; templates are simply assembled components and widgets. If you wanted
to, you could build a button from scratch using the right components on empty
GameObjects.

Click on the Play button. You can see that hover and click are already set! Turn off
the Play mode, select the new Button GameObject, and look at the Inspector view.

Interactive widgets have a box collider attached to them, and that is the case with
this button. The collider is used to detect collisions with the cursor.

Parameters
A button has a UIButton component that handles seven button parameters:

•	 Target: This GameObject is transformed and modified when the user hovers
or presses the button. By default, this is Background.

•	 Normal: This is the color tint when nothing is happening.
•	 Hover: This is the color tint when the user's cursor is over the button.
•	 Pressed: This is the color tint when the user clicks on the button.
•	 Disabled: This is the color tint when the button is disabled (can't be clicked).
•	 Duration: This is the duration of transitions between states.
•	 Notify: This is the parameter that lets you choose a method to call when the

button is clicked. You must first drag a GameObject into the Notify field.
A Method field will then appear, listing the GameObject's attached script
methods, as shown in the following screenshot:

In the previous example, I dragged the Panel GameObject into the Notify field.
My Panel GameObject has a ButtonManager.cs script attached to it—this script
has a ButtonClicked() method. I can now select it in the Method field. It will be
called on click.

Chapter 2

[33]

Only public methods without arguments will show in the
Method field of the Notify parameter.

There is also a PlaySound component attached to this button. It lets you choose
an audio clip to play when the selected event occurs. You can edit the Pitch and
Volume parameters.

You can add as many PlaySound components as you want if you
need a sound to be played whenever the user hovers or clicks on
something, for example.

The play and exit buttons
We will now add two buttons to our window that will exit or launch the game.
They will appear as shown in the following screenshot:

We need a GameObject that will manage the game. It will contain the GameManager.
cs script attached in order to manage generic behaviors such as exiting or launching
the game. Let's create it first; follow these steps to do so:

1.	 Create a new GameObject at the root of Hierarchy with Ctlr + Shift + N
and perform the following steps:

1.	 Rename it as GameManager.

2.	 Create and attach a new GameManager.cs C# script to it and perform
the following steps:

1.	 Open this new GameManager.cs script.
2.	 Inside this new script, add this new method called ExitPressed()

with the following code lines:

public void ExitPressed()
{
 //Exit Now
 Application.Quit();
}

Creating Widgets

[34]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Now that the exit method is ready, let's create and configure the two buttons as
shown in the following steps:

1.	 Select the Button GameObject and perform the following steps:
1.	 Rename it as Exit.
2.	 Drag the GameManager GameObject into the Notify field.
3.	 Choose GameManager.ExitPressed in the Method field.
4.	 In the Normal color tint parameter, change R to 185, G to 255,

B to 255, and A to 255.
5.	 In the Hover color tint parameter, change R to 0, G to 220, B to 255,

and A to 255.

2.	 Attach a component to it by navigating to NGUI | Attach | Anchor and
perform the following steps:

1.	 Drag our Window GameObject into the Container field.
2.	 Set the Side parameter to BottomLeft.
3.	 Set Pixel Offset to {135, 60}.

3.	 Select our Exit button's child Background GameObject and perform the
following steps:

1.	 Enter Depth as 2.

4.	 Select our Exit button's child Label GameObject and perform the
following steps:

1.	 Change its text to Exit.
2.	 Enter Depth as 3.

Chapter 2

[35]

Ok, we have our Exit button. Let's create our Play button as follows:

1.	 Duplicate the Exit button and perform the following steps:
1.	 Rename this new duplicate as Play.
2.	 Click on the Minus button next to the UIButton's Notify field to

remove the GameManager GameObject from it.
3.	 Set its Side parameter to BottomRight.
4.	 Set Pixel Offset to {-135, 60}.

2.	 Attach a Component to it by navigating to Component | NGUI | Examples
| Load Level On Click, and set its Level Name string parameter to Game.

3.	 Select our Play button's child Label GameObject, and change its text to Play.

Perfect, now if you build your scene, you will have a functional Exit button with
only one line of code! The Pixel Offset parameter maintains our buttons at the
same distance from the window's borders even if you change resolutions or the
window's dimensions. We will create our game scene later.

Image buttons can also be created with the Widget Wizard. They are
identical to normal buttons, except that they use images for the Normal,
Hover, Pressed, and Disabled states instead of color and scale tweens.

Text input
Now we will learn how to add a text input to create a nickname box. Perform the
following steps to do so:

1.	 Select the Panel GameObject and create a new child with Alt + Shift + N. Then
rename this new child as Nickname. It will be our nickname box container.

2.	 Navigate to NGUI | Open | Widget Wizard.
1.	 From the Project view, navigate to NGUI | Examples |

Atlases | SciFi.
2.	 Drag the SciFi Font – Normal prefab into the Font field.
3.	 Select the Input template.
4.	 Set Sprite (Dark) as the Background parameter.

3.	 With the Nickname GameObject selected, click on the Add To button.

A new widget named Input has been added to the scene.

www.allitebooks.com

http://www.allitebooks.org

Creating Widgets

[36]

Parameters
An Input GameObject has been created. Let's look at its Inspector parameters:

•	 Input Label: This is the text label that is to be used for this input.
•	 Inactive Color: This is the text color while the text is not selected.
•	 Active Color: This is the text color while the text is being edited.
•	 Default Text: This is either Blank or with the label's default text.

Blank will delete the label's text when the Input GameObject is selected.
•	 Keyboard Type: This allows the different sets of characters to be authorized.

This will also change the keyboard layout on mobile platforms.
•	 Select on Tab: Drag into this field the GameObject that you want to be

selected when the Tab key is pressed while editing the input.
•	 Auto-save Key: This enables the label's text to be automatically saved to

the specified PlayerPrefs() key.
•	 Max Characters: This is the number of maximum characters allowed.

0 means infinite.
•	 Carat Character: This is the end of text character.
•	 Password: If you activate this Boolean, the label's characters will be

replaced by * on the screen.
•	 Auto-correct: This enables or disables autocorrection on mobile platforms.

Creating a nickname box
Let's use this text input to create a nickname box that will look like the
following screenshot:

Let's create the nickname box seen in the preceding screenshot.
Perform the following steps to do so:

1.	 Duplicate the Window GameObject and perform the following steps:
1.	 Rename the new duplicate as Background.
2.	 Drag it into the Nickname container GameObject.
3.	 Enter Depth as 2.
4.	 Set Dimensions to 440 x 120.

Chapter 2

[37]

2.	 Select our Input GameObject and perform the following steps:
1.	 Reset its Box Collider component's center to {0, 0, 0}.
2.	 Type in Nickname for the Auto-save Key parameter.
3.	 Enter Max Characters as 25.

3.	 Attach a component to it by navigating to NGUI | Attach | Anchor and
perform the following steps:

1.	 Drag the Background GameObject from Nickname inside the
Container field.

2.	 Set the Pixel Offset to {0, -17}.

4.	 Duplicate the Label child GameObject from Title and perform the
following steps:

1.	 Drag it inside the Nickname GameObject.
2.	 Change its text to [AAFFFF]Nickname.
3.	 Drag the Background GameObject from Nickname inside the

Container field.
4.	 Set the Side parameter to Top.
5.	 Set Pixel Offset to {0, -32}.

5.	 Select the Background child GameObject from Input and perform the
following steps:

1.	 Enter Depth as 3.
2.	 Set Pivot to Center (middle button + middle button).
3.	 Reset the Transform field's position to {0, 0, 0}.
4.	 In the Color Tint parameter, change R to 100, G to 230, B to 255,

and A to 255.

6.	 Select the Label child GameObject from Input and perform the
following steps:

1.	 Enter Depth as 4.
2.	 Set Pivot to Center (middle button + middle button).
3.	 Reset the Transform field's position to {0, 0, 0}.
4.	 Change the Label GameObject's text to Enter your Name Here.

7.	 Select the Nickname container GameObject.

Creating Widgets

[38]

8.	 Attach a component to it and navigate to NGUI | Attach | Anchor and
perform the following steps:

1.	 Drag-and-drop our Window GameObject inside the Container field.
2.	 Set the Side parameter to Top.
3.	 Set Pixel Offset to {0, -220}.

Ok, we have a Nickname box. Your Hierarchy view should look like the
following screenshot:

The user can enter his nickname, up to 25 characters. If you move or change the
window's dimensions, our box will move to stay at the same place.

Slider
Now let's add a volume slider for the user to move and select his/her volume level.

A slider template is available, enabling you to adjust parameters easily by sliding
a thumb along a bar. Perform the following steps to create a volume slider:

1.	 Select the Panel GameObject and create a new child with Alt + Shift + N.
2.	 Rename that new child as Volume. It will be our volume settings container.
3.	 Navigate to NGUI | Open | Widget Wizard and perform the

following steps:
1.	 Select the Slider template.
2.	 Set the Dark Sprite to Empty.
3.	 Set the Light Sprite to Full.
4.	 Set Highlight to Thumb.

4.	 With the Volume GameObject selected, click on the Add To button.

Chapter 2

[39]

Parameters
A slider has been created. It has 6 parameters as follows:

•	 Value: This is the slider's current value, which is between 0 and 1.
•	 Steps: This is the number of steps to completely fill or empty the slider.
•	 Direction: This is the slider's fill direction, either Horizontal or Vertical.
•	 Foreground: This is the sprite used to fill the slider.
•	 Thumb: This is the sprite used for the handle to change the slider's

value. By leaving this as null, a simple progress bar will be created
(user cannot interact).

•	 Notify: This is the GameObject that lets you choose a method to call when
there is a change in the slider's value. When a GameObject is assigned,
you may choose a method to call on the value change.

Creating a volume slider
We can use this slider to create our volume slider, which will look like the
following screenshot:

Proceed with the following steps to create it:

1.	 Duplicate the Background GameObject from Nickname and perform the
following steps:

1.	 Drag the duplicate inside the Volume container GameObject.
2.	 Set its Dimensions to 320 x 135.

2.	 Attach a component to it by navigating to NGUI | Attach | Anchor and
perform the following steps:

1.	 Drag our Window GameObject inside the Container field.
2.	 Set the Pixel Offset to {-420, -90}.

Creating Widgets

[40]

3.	 Duplicate the Label GameObject from Nickname and perform the
following steps:

1.	 Drag it inside the Volume GameObject.
2.	 Drag our Volume's Background GameObject inside the

Container field.
3.	 Change its text to [AAFFFF]Volume.

4.	 Select the Slider GameObject.
5.	 Attach a component to it by navigating to NGUI | Attach | Anchor and

perform the following steps:
1.	 Drag the Background GameObject from Volume inside the

Container field.
2.	 Set Pixel Offset to {-100, -23}.

6.	 Select the Background GameObject from Slider and perform the
following steps:

1.	 Enter Depth as 3.
2.	 In the Color Tint parameter, change R to 80, G to 220, B to 85,

and A to 255.

7.	 Select the Foreground GameObject from Slider and perform the
following steps:

1.	 Enter Depth as 4.
2.	 In the Color Tint parameter, change R to 95, G to 255, B to 190,

and A to 255.

8.	 Select the Thumb GameObject from the Slider and perform the
following steps:

1.	 Enter Depth as 5.
2.	 In the Color Tint parameter, change R to 100, G to 255, B to 250,

and A to 255.

Chapter 2

[41]

Ok, we now have a nice volume slider! Your Hierarchy view should look like the
following screenshot:

We will now link it to the game's volume with a new script. Let's add some music
to our main menu. First, add an audio file of your choice to your Unity project as
shown in the following steps:

1.	 Select our Main Camera GameObject.
2.	 Attach a component to it by navigating to Component | Audio |

AudioSource and perform the following steps:
1.	 Drag a music file from the Project view to the AudioSource

parameter's Audio Clip field.

3.	 Select the Slider GameObject from Volume and perform the following steps:

1.	 Create and attach a new VolumeManager.cs C# script to it.
2.	 Open this new VolumeManager.cs script.

In this new script, we will first need to declare and initialize the necessary variables.
Add the following variable declarations and the Awake() method:

//We will need the Slider
UISlider slider;

void Awake ()
{
 //Get the Slider
 slider = GetComponent<UISlider>();
 //Set the Slider's value to last saved volume
 slider.value = NGUITools.soundVolume;
}

Creating Widgets

[42]

Here we initialized the slider's value to NGUITools.soundVolume because this
float is persistent and will be saved across scenes—even if you exit the game.

Now let's create an OnVolumeChange() method that will modify our AudioListener
method's volume each time the slider's value is changed:

public void OnVolumeChange ()
{
 //Change NGUI's UI Sounds volume
 NGUITools.soundVolume = UISlider.current.value;
 //Change the Game AudioListener's volume
 AudioListener.volume = UISlider.current.value;
}

Ok, the method is ready. We just need to call it each time the slider's value changes.
Let's use the UISlider component's Notify field as follows:

1.	 Select the Slider GameObject from Volume and perform the following steps:
1.	 Drag-and-drop the Slider GameObject from Volume into the

Notify field.
2.	 For the Method field, select VolumeManager.OnVolumeChange.

Now, each time the slider's value is modified, our method will be called.

You can hit the Play button; the game's volume will change with the slider.
The volume is saved even when you exit the game and restart!

Toggle
Now that we have a volume slider, let's add an enable/disable sound checkbox,
which will turn down the volume to 0 and hide our volume slider.

First, create a toggle widget as follows:

1.	 Select the Panel GameObject and create a new child with Alt + Shift + N.
2.	 Rename that new child as Sound. It will be our sound toggle container.
3.	 Navigate to NGUI | Open | Widget Wizard and perform the

following steps:

1.	 Select Toggle as Template.
2.	 Select the Dark Sprite as Background.
3.	 Select the X Sprite as Checkmark.
4.	 With the Sound container selected, click on the Add To button.

Chapter 2

[43]

A checkbox with a label has just been created as shown in the following screenshot:

Parameters
Select our new Toggle GameObject. Let's look at the UIToggle's Inspector parameters:

•	 Group: This is the toggle's group. Toggles of the same group will act as
radio buttons; only one of them can be checked at once.

•	 Start State: This defines in which state the toggle will be at the start.
•	 Animation: This is the animation that will play when the checkbox

changes state.
•	 Sprite: This lets us choose the widget to be used as a checkmark; we should

use our X sprite here.
•	 Transition: This is either Smooth or Instant; uses alpha fade in / fade out.
•	 Notify: This is the GameObject to notify on when toggled. When a

GameObject is assigned, you may choose a public method to call on
a toggle event.

Creating a sound toggle
We have seen the UIToggle's parameters. Now we will create this sound toggle
as shown in the following screenshot:

Let's use our recently added Toggle GameObject to create the window shown here.
Follow these steps to do so:

1.	 Select both the Background and Label GameObjects from Volume and
perform the following steps:

1.	 Duplicate them.
2.	 Drag-and-drop those new duplicates inside our Sound container.

Creating Widgets

[44]

2.	 Select the Background GameObject from Sound and enter its UIAnchor's
Pixel Offset parameter as {-420, 43}.

3.	 Select the Label GameObject from Sound and change its text to
[AAFFFF]Sound.

4.	 Select the Toggle GameObject and check the Start State Boolean in
UIToggle.

5.	 Attach a component to it by navigating to NGUI | Attach | Anchor
and perform the following steps:

1.	 Drag the Background GameObject from Sound inside the
Container field.

2.	 Enter its Pixel Offset parameter as {-38, -20}.

6.	 Add a component to it by navigating to NGUI | Interaction | Toggled
Objects, and drag our Volume container GameObject into the Activate array.

7.	 Select the Background sprite GameObject from Toggle and perform the
following steps:

1.	 Enter Depth as 3.
2.	 In the Color Tint parameter, change R to 130, G to 255, B to 130,

and A to 255.

8.	 Select the Checkmark sprite GameObject from Toggle and perform the
following steps:

1.	 Enter Depth as 4.
2.	 In the Color Tint parameter, change R to 50, G to 255, B to 70,

and A to 255.

9.	 Select the Label GameObject from Toggle and perform the following steps:

1.	 Enter Depth as 3.
2.	 Change its text to [AAFFFF]Enabled.
3.	 In the Color Tint parameter, change R to 200, G to 255, B to

250, and A to 255.

Hit the Play button. We have a nice sound box with a sound toggle checkbox that
hides/shows the Volume box when needed. But it does not turn off the sound yet.

We need to make some changes to our VolumeManager.cs script to correct this.

Chapter 2

[45]

First, open our VolumeManager.cs script. We will add a new OnSoundToggle()
method that will be called when the toggle changes state. It will set the volume
directly to 0, or to the slider's value. Add this new method to VolumeManager.cs
as shown in the following code lines:

public void OnSoundToggle()
{
 float newVolume = 0;
 //If sound toggled ON, set new volume to slider value
 if(UIToggle.current.value)
 newVolume = slider.value;
 //Apply newVolume to volumes
 AudioListener.volume = newVolume;
 NGUITools.soundVolume = newVolume;
}

Ok, the previous method will set both our volumes to 0 or the slider's value,
depending on the toggle's state. Let's link it to our sound's toggle by selecting
our Toggle GameObject and dragging the Slider GameObject from Volume inside
the Notify field in UIToggle, below the On Value Change section. Then, for the
Method field, select VolumeManager.OnSoundToggle.

Hit the Play button. That's it. When we click on the Toggle checkbox from Volume,
the volume reacts accordingly.

But if we turn the sound off using the toggle and stop running, when we hit Play
again, the checkbox is still checked and the volume slider is displayed, but the
volume is at 0.

That's because our volume is set to 0, but the checkbox is still checked at start. Let's
add a simple line of code that will set the start state to false if the volume is at 0:

1.	 Open our VolumeManager.cs script.
2.	 Declare a new global variable named public UIToggle soundToggle.
3.	 At the end of the Awake() method, add the following lines of code:

//If volume is at 0, uncheck the Sound Checkbox
if(NGUITools.soundVolume == 0) soundToggle.value = false;

4.	 Save the script and return to Unity.
5.	 Select the Slider GameObject from Volume.

Drag theToggle GameObject from Volume in the volume manager's Sound
Toggle field.

www.allitebooks.com

http://www.allitebooks.org

Creating Widgets

[46]

Hit the Play button. That's it. If you disable sound using the toggle and exit the Play
mode and then launch it again, the checkbox stays unchecked and the volume slider
is not displayed. Perfect!

Popup list
We will now learn how to create the popup list, see its parameters, and create a
difficulty selector for our game.

1.	 Select the Panel GameObject and create a new child with Alt + Shift + N.
2.	 Rename that new child as Difficulty. It's our difficulty box container.
3.	 Navigate to NGUI | Open | Widget Wizard and perform the

following steps:
1.	 Select Popup List as Template
2.	 Select Dark as Foreground.
3.	 Select Dark as Background.
4.	 Select the Highlight sprite as Highlight.

4.	 With our Difficulty GameObject selected, click on the Add To button.

Parameters
A Popup List GameObject has just been created. Let's look at its parameters:

•	 Atlas: This is the atlas used for the popup list's sprites.
•	 Font: This is the font used for the popup list's options.
•	 Text Label: This is the label to update when Popup List changes selection.
•	 Options: This is the list of options that will pop up—one per line.
•	 Default: This is the option selected at start.
•	 Position: You may force the list of options to appear Above or Below the

Popup List's button. If this parameter is set to Auto, NGUI will choose
one of both depending on the available space.

•	 Localized: This enables localization on options.
•	 Background: This is the background sprite for the popup list's

options container.
•	 Highlight: This is the sprite for the currently hovered option.
•	 Text Color: This is the options list's text color tint.

Chapter 2

[47]

•	 Background: This is the popup list's background color tint.
•	 Highlight: This is the hovered option's background color tint.
•	 Padding: This is the padding of the X and Y options.
•	 Text Scale: This is the options' text scale.
•	 Animated: If this is unchecked, the options' display will be instantaneous.
•	 Notify: This is the GameObject that lets you choose a method to call when

the selected option changes.

Below the UIPopup List component, we have the usual UIButton and UIPlay
Sound components that we have already seen before.

A Popup Menu template is also available in the Widget Wizard.
The only difference is that the menu does not indicate which
choice you have selected; the button's label is not updated.

Creating a difficulty selector
We will now use our new Popup List GameObject to select the game's difficulty level
as shown in the following screenshot:

Let's create this difficulty selector as shown in the following steps:

1.	 Select the Background and Label GameObjects from Sound and perform
the following steps:

1.	 Duplicate them.
2.	 Drag-and-drop them into our Difficulty container.

2.	 Select the Background GameObject from Difficulty and enter its Pixel Offset
parameter to {420, 43}.

Creating Widgets

[48]

3.	 Select the Label GameObject from Difficulty and change its text to [AAFFFF]
Difficulty.

4.	 Select our Popup List in the Hierarchy view and perform the following steps:
1.	 Rename it as Popup.
2.	 Type in Normal and Hard separated by a line.
3.	 In Text Color, change R to 190, G to 250, B to 255, and A to 255.
4.	 In Background, change R to 70, G to 250, B to 255, and A to 255.
5.	 In Highlight, change R to 70, G to 255, B to 150, and A to 255.
6.	 In Hover, change R to 70, G to 255, B to 150, and A to 255.

5.	 Attach a component to it by navigating to NGUI | Attach | Anchor
and perform the following steps:

1.	 Drag the Background GameObject from Difficulty in the
Container field.

2.	 Enter Pixel Offset as {-76, -20}.

6.	 Select our popup's Sprite GameObject and perform the following steps:
1.	 In Color Tint, change R to 170, G to 255, B to 190, and A to 255.
2.	 Enter Depth as 3.

7.	 Select our popup's Label GameObject and perform the following steps:

1.	 In Color Tint, change R to 135, G to 255, B to 170, and A to 255.
2.	 Enter Depth as 4.

Ok, we now have a Popup List GameObject that lets us select the game's difficulty
level. Your Hierarchy panel should look like the following screenshot:

Chapter 2

[49]

Now it's time to link it to a method that will take that difficulty into account.
Do this by performing the following steps:

1.	 Open our GameManager.cs script.
2.	 Declare a new enum for our difficulty levels as follows:

public enum Difficulties
{
 Normal,
 Hard
}

3.	 Declare a new Difficulty variable to store the current difficulty as follows:
public static Difficulties Difficulty =
 Difficulties.Normal;

We used a static variable because it won't be destroyed when loading the game
scene. By default, the difficulty level is set to Normal.

Now we need to add the OnDifficultyChange() method that will change our
Difficulty variable when Popup List changes state as follows:

public void OnDifficultyChange()
{
 //If Difficulty changes to Normal, set Difficulties.Normal
 if(UIPopupList.current.value == "Normal")
 Difficulty = Difficulties.Normal;
 //Otherwise, set it to Hard
 else Difficulty = Difficulties.Hard;
}

Our method is ready; we need to call it when Popup List changes state.
Do so by performing the following steps:

1.	 Save all the modified scripts and return to Unity.
2.	 Select the Popup List GameObjectfrom Difficulty and perform the

following steps:

1.	 Drag our GameManager GameObject into the Notify field.
2.	 For the Method field, select GameManager.OnDifficultyChange.

Now, the Popup List GameObject will change the Difficulty variable according to
its value. We will be able to access this static variable once we're in the game.

Creating Widgets

[50]

Summary
In this chapter, we have learned how to create and configure most of NGUI's
widgets—sprites, labels, buttons, text inputs, sliders, toggles, and popup lists.

We now have a main menu with interactive elements. We also used NGUI's
notification event system to change variables in code and register the user's choices.

We used UIAnchors and UIStretch components to properly position our
widgets—we just have to move each box's background sprite to move the entire
element. This is much more effective than having to move each GameObject
manually! You should have a main menu that looks like the following screenshot:

Ok, now it is time to enhance our UI experience and make this better. Let's move
on to Chapter 3, Enhancing your UI.

Enhancing your UI
In this chapter, we will learn how to enhance our UI experience by using more
advanced features, which are as follows:

•	 Draggable panels and animations
•	 The drag-and-drop system
•	 Automatic content alignment
•	 Clipping
•	 Scrollable text
•	 The localization system

Let's start by talking about NGUI components and their overall behavior.

NGUI components
In Chapter 2, Creating Widgets, we added the UIStretch and UIAnchor components
to our widgets, and also the Load Level On Click component. There are many more
components, and the purpose of this chapter is to discuss these components. We will
use the most important ones in this chapter. It is possible to add a component to any
kind of widget—considering it is logical of course.

This component-oriented structure makes NGUI extremely flexible and modular.
We will start by making our main menu a draggable window.

Enhancing your UI

[52]

The draggable panel
We will now learn how to turn our menu into a draggable window. Let's add the
correct component to it and study its parameters, which are as follows:

1.	 Select the Panel GameObject.
2.	 Rename it as MainMenu.
3.	 Attach the Draggable Panel component to it by navigating to

Component | NGUI | Interaction.

The MainMenu GameObject now has a UIDraggable Panel component
attached to it.

Parameters
The following are the 13 parameters for setting values in the UIDraggable Panel:

•	 Drag Effect: This is the effect used while dragging the panel to have a
smoother drag.

•	 Restrict Within Panel: This uses the parent panel to restrain the draggable
panel within its clipping bounds.

•	 Disable Drag If Fits: If the content fits the parent panel's clipping bounds,
dragging will be disabled.

•	 Smooth Drag Start: This avoids a "jump" effect on drag start.
•	 Reposition Clipping: This repositions the Clipping to the Top Left Corner

immediately.
•	 IOS Drag Emulation: Dragging movement speed is reduced when

overpassing the clipping edges.
•	 Scroll Wheel Factor: If you want the scroll wheel to drag the panel on the y

axis, set this value to greater than 0.
•	 Momentum Amount: This is the effect applied when the panel is dropped.

The panel will keep moving after releasing the scroll wheel.
•	 Horizontal Scroll Bar: This lets you drag a scroll bar to define it as the

panel's horizontal scroll bar.
•	 Vertical Scroll Bar: This lets you drag another scroll bar to define it as the

panel's vertical scroll bar.

Chapter 3

[53]

•	 Show Scroll Bars: This allows you to show scroll bars always, show them
only if necessary, or show them while dragging.

•	 Scale: This defines which axis the panel should drag on: 0 means no
dragging, 1 allows full dragging on this axis.

•	 Relative Position On Reset: This is the offset relative to the mouse's position.
It is useful if you want an offset from the mouse's position while dragging.

Now that we have seen the component's parameters, let's use them to drag our
main menu.

Dragging the MainMenu
We have added the UIDraggable Panel component that sets this UIPanel as
a Draggable Panel. Now, we must mark our MainMenu as the GameObject
that holds the draggable content.

We will also add a Box Collider component to define where the user must click
to drag the panel:

1.	 Select our MainMenu GameObject and perform the following steps:
1.	 Set the Clipping parameter of UIPanel to Alpha Clip.
2.	 Set the Size field in Clipping to 1920 x 1080.
3.	 Uncheck the IOS Drag Emulation Boolean.

2.	 Add the Drag Panel Contents component to it.
3.	 Add the Box Collider component to it and perform the following steps:

1.	 Check the Is Trigger Boolean—we don't need collisions, just a
trigger to receive Raycasts from the UICamera.

2.	 Set its Center coordinates to {0, 395, 0}.
3.	 Set its Size coordinates to {1300, 62, 1}.

Click on the play button. By clicking on the window's title, you can drag the main
menu. But still, it isn't configured correctly; you can only move it on the x axis.

Enhancing your UI

[54]

Let's change an important parameter of the UIDraggable Panel component of
MainMenu to allow dragging on the x axis by performing the following steps:

1.	 Select our MainMenu GameObject.
2.	 Set Scale in UIDraggable Panel to {1, 1, 0}.

And that's it! Our MainMenu is now draggable on both the axes. If you drag it
outside the screen, it will move back inside when dropped. We had to define a
clipping of the screen's size for this Restrict Within Panel function to work.

The drag-and-drop system
We will now create our own drag-and-drop system that will enable the user to select
a power. They will be able to drag one of the two available powers inside a selection
box as shown in the following screenshot:

Powers selection
Let's create a drag-and-drop system to select which of the two powers the player can
choose: a Bomb power, which will explode or a Time power, which will slow down
time for a few seconds.

Chapter 3

[55]

Draggable items container
Let's start by creating a nice box for our powers and a draggable items container by
performing the following steps:

1.	 Select our MainMenu GameObject and perform the given steps:
1.	 Create a new empty child GameObject by pressing Alt + Shift + N.
2.	 Rename it as Powers.

2.	 Select the Background and Label GameObjects from Sound:
1.	 Duplicate them.
2.	 Drag these new duplicates inside our Powers GameObject.

3.	 Select the Background GameObject in Powers and perform these steps:
1.	 Set its Dimensions to 320 x 420.
2.	 Set the Pixel Offset in UIAnchor to {0, -100}.

4.	 Select the Label GameObject in Powers:
1.	 Rename it as TitleLabel.
2.	 Change its text to [AAFFFF]Powers.

5.	 Select the Label GameObject, which is a child of Title, and perform the
following steps:

1.	 Duplicate it.
2.	 Rename this new duplicate as SelectedLabel.
3.	 Drag it inside our Powers GameObject.
4.	 Drag our Background GameObject in Powers to the Container

field in its UIAnchor.
5.	 Set its Side parameter in UIAnchor to Top.
6.	 Set its Pixel Offset in UIAnchor to {0, -95}.
7.	 Change its Font to SciFi Font – Normal.
8.	 Change its text to [AAFFFF]Selected.

6.	 Select our SelectedLabel GameObject in Powers and perform the
following steps:

1.	 Duplicate it.
2.	 Rename this new duplicate as AvailableLabel.
3.	 Change its text to [AAFFFF]Available.
4.	 Set its Pixel Offset in UIAnchor to {0, -295}.

www.allitebooks.com

http://www.allitebooks.org

Enhancing your UI

[56]

7.	 Select our SelectedLabel GameObject in Powers and perform these steps:
1.	 Duplicate it.
2.	 Rename this new duplicate it as InstructionsLabel.
3.	 Change text to [55AA99]Drag Power Here—one word per line.
4.	 Set its Overflow parameter to Shrink Content.
5.	 Set its Depth to 4.
6.	 Set its Dimensions to 128 x 45.
7.	 Set its Pixel Offset in UIAnchor to {0, -175}.

8.	 Select our Background sprite GameObject in Powers and perform the
following steps:

1.	 Duplicate it.
2.	 Rename this new duplicate as PowersContainer.
3.	 Set its Dimensions to 215 x 90.
4.	 Set its Color Tint to {100, 100, 100, 255}.
5.	 Set its Depth to 3.
6.	 Drag our AvailableLabel GameObject from Powers to the

Container field in its UIAnchor.
7.	 Set its Pixel Offset in UIAnchor to {0, -60}.

Ok, we now have our powers box with the correct labels and a background.

Draggable items
Now that we have the PowersContainer, let's create the following two
draggable items:

Chapter 3

[57]

Follow the ensuing steps to create them:

1.	 Select our PowersContainer GameObject in Powers.
2.	 Create a new child GameObject with Alt + Shift + N and rename it as Bomb.
3.	 Attach a Collider object to it by navigating to NGUI | Attach. It will be used

to detect the mouse and receive the correct messages for the drag-and-drop
system by performing the following steps:

1.	 Check the Is Trigger Boolean.
2.	 Set its Size field of new Box Collider to {90, 90, 1}.

4.	 Attach a Drag Object component to it by navigating to Component | NGUI
| Interaction:

1.	 Drag our Bomb from PowersContainer in its Target field.
2.	 Set its Scale to {1, 1, 0}.
3.	 Set the Momentum Amount to 0.

5.	 Select and duplicate the Background sprite GameObject in Powers.
Then perform the following steps:

1.	 Drag it inside our new Bomb GameObject.
2.	 Set its Depth to 5.
3.	 Set its Dimensions to 90 x 90.
4.	 Remove its UIAnchor component.
5.	 Reset its Transform position values to {0, 0, 0}.

6.	 Select and duplicate the AvailableLabel GameObject in Powers.
Then perform these steps:

1.	 Rename that new duplicate as Label.
2.	 Drag it inside our new Bomb GameObject.
3.	 Change its text to [AAFFFF]Bomb.
4.	 Set its Depth to 6.
5.	 Remove its UIAnchor component.
6.	 Reset its Transform position values to {0, 0, 0}.

7.	 Select our Bomb GameObject.

Enhancing your UI

[58]

8.	 Attach a Button Color component to it by navigating to Component | NGUI
| Interaction and perform these steps:

1.	 Drag our Background GameObject from Bomb to the Target field.
2.	 Set its Pressed color to {0, 255, 0, 150}.

9.	 Create a new DragItem.cs C# script and attach this script to the Button
Color component.

We have one draggable Bomb power with a DragItem.cs script attached to it.
Let's create the second Time power by performing the following steps:

1.	 Select and duplicate our Bomb GameObject in PowersContainer.
2.	 Rename that new duplicate as Time.
3.	 Select our new Label GameObject, which is a child of Time.
4.	 Change its text to [AAFFFF]Time.

Ok, we now have our two draggable Powers, and they are on top of each other.
Let's correct this using Anchors and a Grid component, which will automatically
align our items. We can do this using the following steps:

1.	 Select our PowersContainer GameObject.
2.	 Create a new child by pressing Alt + Shift + N and rename this new

child as Grid.
3.	 Attach a Grid component to it by navigating to Component | NGUI |

Interaction.
4.	 Drag both our Bomb and Time GameObjects in our new Grid GameObject.
5.	 Select our Grid GameObject and perform the following steps:

1.	 Set its Cell Width to 105.
2.	 Check the Sorted Boolean.
3.	 Check the Reposition Now Boolean to update the table.
4.	 Set its Transform position to {-52, 0, 0}.

Chapter 3

[59]

The UIGrid component automatically aligns its children. We now have our two
draggable powers aligned. If you click on play, you'll see that you can drag them
around as shown in the following screenshot:

The drop surface
We will create a new Surface GameObject with a DropSurface.cs script and
a Box Collider component to define where the draggable items can be dropped.

When the user drops an object with a DragItem component on the Surface
GameObject, the DragItem component will be destroyed, and a "dropped
version" of the object will be instantiated as a child of the Surface GameObject.

First, let's create and configure the Surface GameObject by performing the
following steps:

1.	 Select and duplicate our Background GameObject from Powers and rename
this new duplicate as Surface.

Enhancing your UI

[60]

2.	 Select our new Surface GameObject from Powers and perform these steps:
1.	 Change its Sprite to Highlight.
2.	 Change its Color Tint to {0, 25, 5, 255}.
3.	 Set its Depth to 3.
4.	 Set its Dimensions to 130 x 130.
5.	 Drag our SelectedLabel GameObject from Powers to the Container

field in its UIAnchor.
6.	 Set its Pixel Offset to {0, -80}.

3.	 Attach a Collider object to it by navigating to NGUI | Attach | Collider.
It will detect DragItems. Then perform the following steps:

1.	 Check its Is Trigger Boolean.
2.	 Set its Size to {130, 130, 1}.

4.	 Create and attach a new DropSurface.cs C# script to it.

Good, our surface is now ready to detect our items.

Prefab instantiated on drop
Now, we need to create two prefabs for our powers that will be instantiated as
children of the Surface GameObject when a DragItem component is dropped
on it. They will look as follows:

Let's create these prefabs by performing the following steps:

1.	 Select the Bomb GameObject from Grid and the following steps:
1.	 Duplicate it.
2.	 Rename it as SelectedBomb.

Chapter 3

[61]

2.	 Select our new SelectedBomb GameObject from Grid. Then perform the
following steps:

1.	 Change its Normal color tint to R: 0, G: 145, B: 60, and A: 255.
2.	 Remove its Box Collider component.
3.	 Remove its Drag Item component.

3.	 Create and attach a new Power.cs C# script to it.
4.	 Select the Background sprite GameObject from SelectedBomb.

Then perform the following steps:
1.	 Change the Sprite to Light.
2.	 Set its Depth to 4.
3.	 Set its Dimensions to 120 x 120.

5.	 Select the Label GameObject from SelectedBomb and set its Depth to 5.
6.	 Drag our SelectedBomb GameObject into a folder of your choice in your

Project view to create a prefab from it.
7.	 Once our SelectedBomb is a prefab (blue in the scene's Hierarchy),

you may delete it from the scene.

We now have our SelectedBomb prefab. Let's declare a variable in our DragItem.
cs script that will store the prefab to instantiate on drop. We can do this by following
the ensuing steps:

1.	 Select our Bomb GameObject from Grid.
2.	 Open the DragItem.cs script attached to it and add this public variable

using the following code:
public Object CreateOnDrop;

3.	 Save the script and go back to Unity.
4.	 Select our Bomb GameObject from Grid and drag our SelectedBomb prefab

from the Project view in the Create On Drop field in its Drag Item.

Now let's do the same for our Time power in the following manner:

1.	 Select our SelectedBomb prefab in the Project view and perform the
following steps:

1.	 Duplicate it with Ctrl + D.
2.	 Rename the new duplicate prefab as SelectedTime.

Enhancing your UI

[62]

2.	 Select its Label child GameObject and change its text to [AAFFFF]Time.
3.	 Select our Time GameObject from Grid in the scene's Hierarchy.
4.	 Drag our SelectedTime prefab from the Project view in the Create On

Drop field in its Drag Item.

We can now add an OnDrop() method to our DropSurface.cs script to handle
dropped objects in the following manner:

1.	 Select our Surface GameObject from Powers.
2.	 Open its attached DropSurface.cs script.

The OnDrop() event has one argument: the dropped GameObject. Let's add this
method to our script to handle the drop by using the following code snippet:

//Called when an object is dropped on DropSurface
public void OnDrop(GameObject dropped)
{
 //Get the DragItem from the dropped object
 DragItem dragItem = dropped.GetComponent<DragItem>();
 //If it has none, don't go further
 if(dragItem == null) return;
 //Instantiate the defined CreateOnDrop Object
 GameObject newPower = NGUITools.AddChild(this.gameObject,
 dragItem.CreateOnDrop as GameObject);
 //Destroy the dropped Object
 Destroy(dropped);
}

Save the script and click on the play button. When you drop a power on the Surface
GameObject, nothing happens! Why?

That's because the OnDrop() event depends on the Raycast from Camera, and at the
moment of the drop, our dragged power's Box Collider component is in the way of
the mouse cursor and the Surface GameObject.

We just have to disable the collider of Power while it is dragged. We can do this in
the following manner:

1.	 Select our Bomb GameObject from Grid.
2.	 Open its attached DragItem.cs script.

Chapter 3

[63]

We will use the OnPress() event to do this. The OnPress() method will take the
object's pressed state as an argument in the following manner:

//Method called when the Item is Pressed or Released
void OnPress(bool pressed)
{
 //Invert the collider's state
 collider.enabled = !pressed;
}

Save the script and click on play. You can now drag-and-drop the powers on
the surface!

Handling an invalid drop
Now, let's make sure power is repositioned to its default position if the user drops
it outside the Surface GameObject.

To achieve this, we can check the camera's last hit when the OnPress(false)
event occurs. Open our DragItem.cs and add the following lines after
collider.enabled = !pressed:

//If the Item is released
if(!pressed)
{
 //Get the last hit collider
 Collider col = UICamera.lastHit.collider;
 //If there is no collider, or no DropSurface behind the Power
 if(col == null || col.GetComponent<DropSurface>() == null)
 {
 //Get the grid in parent objects
 UIGrid grid = NGUITools.FindInParents<UIGrid>(gameObject);
 //If a grid is found, order it to Reposition now
 if(grid != null) grid.Reposition();
 }
}

Save and click on play. If you drop a Power anywhere but on the Surface
GameObject, our items will be repositioned automatically. Great!

A slight problem: you can drop both of them on the surface, and then you're stuck.
Let's explore the solution in the following sections.

Enhancing your UI

[64]

Replacing the current item
We will now ensure that you can only have one power on the surface. If you drag
a second one while the DropSurface is already occupied, the current power will
be replaced by the new one and the drag item component will reappear in the
PowersContainer GameObject.

We will need to know which power is currently dropped on the surface and which
original drag Item component must be instantiated in Grid in PowersContainer:

1.	 Select our SelectedBomb prefab in the Project view.
2.	 Open its attached Power.cs script.

This script will be used to contain information about the dropped item.
Let's declare a new enum to distinguish which type of power, and an Object
variable to set which prefab will be instantiated to make the draggable item in
power reappear when replaced:

//Declare an enum to define type of Power
public enum Type
{
 None,
 Time,
 Bomb
}
//Declare a Type variable to choose it in Inspector
public Type type;
//Object variable to define the DragItem to recreate
public Object createOnDestroy;

Now, we need to go back to Unity and create prefabs for our Bomb and Time
draggable items before we assign them to the createOnDestroy variables:

1.	 Select our Bomb GameObject from Powers in the Hierarchy of Scene
and drag it into a folder of your choice in your Project view to create a
prefab from it.

2.	 Select our SelectedBomb Prefab in the Project view and perform the
following steps:

1.	 Set its Power component's Type variable to Bomb.
2.	 Drag our new Bomb Prefab from the Project view to the Power

component's Create On Destroy field.

Chapter 3

[65]

We assigned the Type parameter of SelectedBomb to Bomb, and it now has an
assigned prefab that we will instantiate to recreate the draggable item when it
gets replaced.

Repeat steps 1 and 2, replacing the word Bomb with Time to do
the same for our Time power GameObject and prefab.

Now, we have to code a system that will register which type of power is currently
selected. We'll use the GameManager.cs script in the following manner to store it:

1.	 Open our GameManager.cs script and declare this new static variable:
//This static variable will contain the selected power
public static Power.Type SelectedPower = Power.Type.None;

2.	 Add this new static method to set our SelectedPower from other scripts:

//This static method changes the SelectedPower value
public static void SetPower(Power.Type newPower)
{
 SelectedPower = newPower;
}

Ok, we now have a method to register the currently selected power. It is time to
modify our DropSurface.cs script:

1.	 Select our Surface GameObject from Powers and open the
DropSurface.cs script.

2.	 Declare a new GameObject variable to store our Grid GameObject:
public GameObject dragItemsContainer;

3.	 Save the script, select our Surface GameObject from Powers in the Hierarchy
view. Drag our Grid GameObject from PowersContainer in its DropSurface
component's Drag Items Container field.

Now, go back to our DropSurface.cs script. We will add these following lines to
handle the fact that the user cannot drop two powers on the surface; it will replace
the previous one and recreate its original Drag Item. In the OnDrop() method, just
below the if(dragItem == null) return line, add the following:

RecreateDragItem();

Enhancing your UI

[66]

Now, add a new RecreateDragItem() method to the file:

void RecreateDragItem()
{
 //If there's already a Power selected
 if(GameManager.SelectedPower != Power.Type.None)
 {
 //Get the selected power's Power.cs script
 Power selectedPowerScript =
 transform.GetChild(0).GetComponent<Power>();
 //Add the Drag Item to the grid
 NGUITools.AddChild(dragItemsContainer,
 selectedPowerScript.createOnDestroy as GameObject);
 //Destroy the currently selected Power
 Destroy(selectedPowerScript.gameObject);
 }
}

Ok, we now have to inform the GameManager.cs script that the selected Power
has changed. We can do this by calling our SetPower() static method.

Add the following line in the OnDrop() method just before the Destroy
(dropped) line:

//Set the new selected power in the GameManager
GameManager.SetPower(newPower.GetComponent<Power>().type);

Save all the scripts and click on the play button. You can drop the first Power on
the Surface GameObject and then drop the second one. The first power is now
replaced and will reappear in the Available power container.

Unfortunately, we cannot simply remove the power. Let's correct this in the
following sections.

Removing the current item
We want to remove the selected power by clicking on it. In our DropSurface.cs
script, add this new OnClick() method that will be called when the user clicks
on the surface:

void OnClick()
{
 //Recreate the DragItem now
 RecreateDragItem();
 //Reset SelectedPower to None

Chapter 3

[67]

 GameManager.SetPower(Power.Type.None);
 //Force reposition of the grid
 dragItemsContainer.GetComponent<UIGrid>().Reposition();
}

Now click on play. You can now remove the selected power by right- or
left-clicking on it.

Animations with NGUI
One great aspect of NGUI is that you can use Unity's animation system on any kind
of widget. There also are some Tween components that let you modify most values
over time, such as dimensions, color, and scale. For example, you can change an
object's color from color A to color B in 5 seconds.

We have a nice main menu. But we actually have our options that are constantly
displayed. That is not very user friendly.

We will use animations and tweens to hide our options and show them only when
the user clicks on the Options button. With options hidden, our menu will look as
shown in the following screenshot:

But first, let's make our powers' apparition smoother.

Enhancing your UI

[68]

Smooth powers apparition
Let's add Scale Tweens on our prefabs to make them appear smoothly by
performing the following steps:

1.	 In the Project view, select our SelectedBomb prefab.
2.	 Attach a Scale Tween component by navigating to Component | NGUI |

Tween and perform the following steps:
1.	 Set its From parameter to {0, 0, 0,}.
2.	 Set its Duration to 0.2.

3.	 Right-click on the Tween Scale component and then click on
Copy Component.

4.	 Select our SelectedTime, Bomb, and Time prefabs.
5.	 In the Inspector view, right-click on any existing component name

and click on Paste Component As New.

Now, as soon as these widgets are created, they scale from 0 to 1 in 0.2 seconds,
which makes them appear smoothly.

We can now see how we'll hide and show options using a button.

Clipping to hide options
First, we have to hide our option boxes. To do that, we will use Panel Clipping and
increase their width when we need to show them. Let's set up the Clipping option:

1.	 Select our Window GameObject from MainMenu and set its Dimensions
to 515 x 850.

2.	 Select the MainMenu GameObject and perform the following steps:
1.	 Set its Depth in UIPanel to -1.
2.	 Create a new child for MainMenu with Alt + Shift + N.
3.	 Rename this new child as Container.

3.	 Select our new Container GameObject.
4.	 Attach a Panel component to it by navigating to Component | NGUI | UI.

Then perform the following steps:
1.	 Set its Depth to 0.
2.	 Set its Clipping parameter to Alpha Clip.
3.	 Set its Size to 515 x 1080.

Chapter 3

[69]

5.	 Fold all the children of MainMenu using the arrow next to each of them.
6.	 Select every child of MainMenu, except the new Container child, and drag

them all inside our new Container GameObject.

Good, our options are now hidden. Your Hierarchy should look as shown in the
following screenshot:

Let's add an Options button that will show or hide these options:

1.	 Select and duplicate our Play GameObject from Buttons and rename
this new duplicate as Options.

2.	 Select our new Options GameObject from Buttons and perform the
following steps:

1.	 Set its Side parameter in UIAnchor to Bottom.
2.	 Reset its Pixel Offset in UIAnchor to {0, 0}.
3.	 Set its Size in Box Collider to {140, 40, 0}.
4.	 Remove its Load Level On Click component.

3.	 Select our Background GameObject from Options and set its Dimensions
to 140 x 40.

4.	 Select our Label GameObject from Options:

1.	 Change its text to Options.
2.	 Set its Overflow parameter to Shrink Content.
3.	 Set its Dimensions to 90 x 25.

Enhancing your UI

[70]

Ok, so now we have an Options button. Next, we want it to enlarge our
Window and the Panel Clipping width of Container when clicked. We can do
this using code, but we will use tweens and animations in the following manner
to see how they work:

1.	 Select our Window GameObject in Container.
2.	 Attach a Tween Width component to it by navigating to

Component | NGUI | Tween. Then perform the following steps:

1.	 Set its From parameter to 515.
2.	 Set its To parameter to 1300.
3.	 Set Duration to 0.5.
4.	 Reset Dimensions to 515 x 850.
5.	 Disable the Tween Width component to prevent it from tweening

at start.

We have a Tween component that will resize the width of Window when
activated. Let's use the UIPlay Tween component to start it when the Options
button is clicked on:

1.	 Select our Options button GameObject.
2.	 Attach a Play Tween component by navigating to Component | NGUI |

Interaction. Then perform the following steps:

1.	 Drag our Window GameObject from Container in the Tween
Target field.

2.	 Set the Play direction to Toggle.

Click on play. You will see that the window resizes as needed when Options
is clicked. However, the Clipping parameter doesn't. Let's correct this using
a Unity animation:

1.	 Select our Container GameObject from MainMenu.
2.	 Open the Animation window by navigating to Window | Animation.
3.	 Click the red record button.
4.	 Save the animation as ShowOptions.anim and perform the following steps:

1.	 Re-enter 515 for the clipping X Size from UIPanel to add a key.
2.	 Move the time cursor in the Animation window to 0:30.
3.	 Enter 1300 for the clipping X Size from UIPanel to add a key.
4.	 Click on the red record button again to finish.

5.	 Uncheck its Play Automatically Boolean in the Animation component.

Chapter 3

[71]

We have our animation ready. Now, let's link the button to the animation in the
following manner:

1.	 Select our Options GameObject from Buttons.
2.	 Attach a Play Animation component to it by navigating to

Component | NGUI | Interaction. Then perform the following steps:

1.	 Drag our Container GameObject from MainMenu in the Target field.
2.	 For the Clip Name parameter, type in ShowOptions.
3.	 Set the Play direction to Toggle.

Click on play. Our window and clipping both resize perfectly in both directions
when the Options button is clicked.

But you can see that our Options widgets aren't visible until you actually drag the
main menu around; that's because the clipping is not refreshed after the animation.

1.	 To solve this, we can simply force a Drag at the end of the
Animation option.

2.	 Select our MainMenu GameObject and perform the following steps:
1.	 Create and add a new UpdatePanel.cs script to it.
2.	 Open our new UpdatePanel.cs script.

3.	 Now, add this new UpdateNow() method to the script that will force a drag
of (0, 0, 0) value on our MainMenu:
public void UpdateNow()
{
 //Force a drag of {0, 0, 0} to update Panel
 GetComponent<UIDraggablePanel>().MoveRelative(Vector3.zero);
}

4.	 Save the script and then perform the following steps:
1.	 Select our Options GameObject in Buttons.
2.	 Drag our MainMenu GameObject in the Notify field of the

UIPlay Animation component.
3.	 Choose our new UpdatePanel.UpdateNow method for the

Method field.

5.	 Click on the play button. The Options boxes now appear after the animation!

Great! We have used NGUI's Tween and Play Animations components to enhance
our UI and make it nicer and more user friendly.

Enhancing your UI

[72]

Scrollable text
Let's add a welcome textbox with instructions for the user. This text will be scrollable
using the mouse wheel or a simple click-and-drag. It will look as shown in the
following screenshot:

At the start, it will scroll automatically. Let's create it now:

1.	 Select our Nickname container GameObject, duplicate it by pressing
Ctrl + D.

2.	 Rename this new duplicate as Help.
3.	 Select this Help GameObject and perform the following steps:

1.	 Drag our Title GameObject in the Container field in its UIAnchor.
2.	 Set its Side parameter in UIAnchor to Bottom.
3.	 Set its Pixel Offset in UIAnchor to {0, -50}.

4.	 Attach a Panel component by navigating to Component | NGUI | UI:
1.	 Set its Depth to 1.
2.	 Set its Clipping parameter to Alpha Clip.
3.	 Set its Clipping Size to 440 x 85.

5.	 Attach a Collider object to it by navigating to NGUI | Attach and set
its Size to {440, 85, 0}.

6.	 Delete the Input GameObject from Help.
7.	 Select our Label GameObject from Help and perform the following steps:

1.	 Change its Font to SciFi Font – Normal.
2.	 Remove its UIAnchor component.
3.	 Set its text to:

Welcome!
[HIT RETURN KEY]
[HIT RETURN KEY]
You can Select one of two [AAFFFF]Powers[FFFFFF]:
[AAFFAA]Bomb[FFFFFF]: Explodes all enemies at once
[AAFFAA]Time[FFFFFF]: Reduces Time speed for 10 seconds

Chapter 3

[73]

8.	 Attach a Tween Position component to it by navigating to Component |
NGUI | Interaction. Then perform the following steps:

1.	 Set its From parameter to {0, -50, 0}.
2.	 Set its To parameter to {0, 20, 0}.
3.	 Set its Duration value to 1.5.
4.	 Set its Start Delay value to 3.

9.	 Set its Transform position to {0, -50, 0}.
10.	 Select the Background GameObject from Help and perform the

following steps:

1.	 Set its Dimensions to 440 x 85.
2.	 Set its Color Tint to {150, 255, 255, 255}.

Click on the play button. We now have a welcome text that scrolls automatically by
changing its Y coordinate inside a clipped Panel. Let's enable the scroll wheel and
mouse drag on this scrollable text:

1.	 Select our Help GameObject.
2.	 Attach a Drag Object component to it by navigating to Component | NGUI

| Interaction. Then perform the following steps:

1.	 Drag our Label GameObject from Help to the Target field.
2.	 Set the Scale to {0, 1, 0} to limit to vertical scrolling.
3.	 Set the Scroll Wheel Factor value to 1.
4.	 Check the Restrict Within Panel Boolean.

Click on play. You can now drag the text label manually with either a left-click and
drag or the mouse wheel. The Box Collider component on the Help GameObject
detects mouse events, and the UIDrag Object reacts accordingly by changing the Y
position of our Label.

We had to add a UIPanel component to the Help GameObject in order to restrict
movement within the clipping's bounds.

Localization system
Now that we have a complete UI, let's configure the localization system and add a
pop-up list to change our UI's language.

Enhancing your UI

[74]

Localization files
All our localized text strings must be contained in a .txt file for each language.
For the purpose of this book, we will have English and French, and we will need
the English.txt file and the French.txt file.

Let's create them right now in the following manner:

1.	 Access your project's Assets folder with your file explorer and create a new
folder named Localization.

2.	 Inside this new folder, create a new text document named English.txt.
3.	 Duplicate this new English.txt file and rename it as French.txt.
4.	 Open them both in your favorite IDE or text editor.

Ok, now our localization files are ready to be used with the localization system.

Localization component
We can now configure the localization system to work with our UI. We need to have
the localization component attached to a GameObject in the scene:

1.	 Select our GameManager GameObject and attach a Localization component
to it by navigating to Component | NGUI | Internal.

2.	 In the Project view, navigate to Assets | Localization and drag our English.
txt and French.txt files in the languages array.

The Starting Language is set to English, and we also have French available in
the array.

Language selection box
The next step is to create a language selection box as shown in the following
screenshot:

Chapter 3

[75]

If we want to see what we're doing, we should first disable the Clipping of our
Container by setting the Clipping parameter in its UIPanel to None.

Once the Clipping is disabled, follow these steps:

1.	 Select the Popup GameObject from Difficulty:
1.	 Check its Localized Boolean in UIPopup List.
2.	 Rename its child Label GameObject as CurrentDifficulty.

2.	 Select and duplicate our Difficulty GameObject in Container.
3.	 Rename the new duplicate as Language.
4.	 Select our new Background GameObject in Language and set its Pixel

Offset in UIAnchor to {420, -90}.

Sometimes, anchors don't update themselves. You may need to
deactivate and then activate the Language GameObject for the
Label's UIAnchor to update.

5.	 Select our Label GameObject from Language and change its text to
[AAFFFF]Language.

6.	 Select our Popup GameObject from Language and perform the
following steps:

1.	 Change the Options text value to have the following two options:
English
French

2.	 Set its Position to Below.
3.	 Check the Localized Boolean.

7.	 Attach a Language Selection component by navigating to
Component | NGUI | Interaction.

8.	 Rename the Label, which is a child of Popup, as CurrentLanguage.

We can now reactivate Clipping in Container by setting the Clipping parameter in
its UIPanel to Alpha Clip. The clipping Size has been saved.

That's it, our localization system is in place, and when the pop-up list changes value,
the Language Selection.cs script automatically changes the localization's Current
Language value.

Enhancing your UI

[76]

Localizing a Label
We are now ready to localize our first Label using the UILocalize component
and a Key that will define which string to use from our .txt files. Perform the
following steps:

1.	 Select our Label GameObject from Title.
2.	 Attach a Localize component to it by navigating to Component | NGUI | UI.
3.	 Set its Key parameter by typing MainMenu.
4.	 Switch to our English.txt localization file and add the following line:

MainMenu = [AAFFFF]Main Menu

5.	 Switch to our French.txt localization file and add the following line:

MainMenu = [AAFFFF]Menu Principal

Save both the .txt files and click on the play button. If you access options and
change the language to French, our window's title changes from Main Menu to
Menu Principal. That's because the UILocalize component updates the UILabel
component it's attached to using the string present after the = in our .txt localization
file. If you exit the play mode, the language will be saved and the UI will be
initialized with the last selected language.

Now, we must add a UILocalize component with its specific Key to every Label in
the scene, then add a localization string for each of them in both of our .txt files.

Don't be afraid; it isn't that long, and it will train you to use the Localization System:

1.	 In the Hierarchy view, type Label inside the search box.
2.	 Select all the Label GameObjects matching the search by pressing

Ctrl + A and attach a Localize component to the selection by navigating
to Component | NGUI | UI.

3.	 Select our Label GameObject from Title and remove its second
UILocalize component as it already had one!

Now, all of our Label GameObjects have a UILocalize component attached to them.
One by one, select them and set their Key parameter based on their text set in the
UILabel component.

You must ignore the Labels of Popup List; they don't need a UILocalize component
since we checked their Localized Booleans. Simply add localization strings for their
Options with the same names: Normal, Hard, English, and French.

Chapter 3

[77]

Don't forget to apply the same operations to labels included in
our four different powers prefabs: Time, Bomb, SelectedTime,
and SelectedBomb. New lines (return) are replaced by \n in the
localization files. Colors work identically.

When you're done with setting their Key parameters, switch to our English.txt file
and add every key you need, plus = followed by the corresponding localized text.

Now, copy all of these keys declarations and paste them in our French.txt file
and then replace the English words with French words or any other language
you choose.

By the time you're finished, our entire UI will be localized!

Summary
In this chapter, we first learned how to set up a draggable panel. Then, we created
and configured a drag-and-drop system to select which power we want using the
UIDrag Object component and the custom code.

Remember to use the UIGrid component often to automatically align objects—they
are very powerful when used wisely with UIAnchor and UIStretch components.

Using Unity's animations and NGUI's Tweens are no longer a secret for us—we
used them to create a smooth apparition for these powers, and we combined them
with Clipping to hide/show our Options menu.

Finally, we created scrollable text and learned how to use the Localization System to
set up multiple languages.

We can now take a look at using C# with NGUI in the next chapter and see what we
can accomplish using code.

C# with NGUI
In this chapter, we will talk about C# scripting with NGUI. We will learn how to
handle events and interact with them. We'll use them to:

•	 Play animations and Tweens
•	 Change labels using localized text through code
•	 Add keyboard keys for our UI
•	 Create notifications and tool tips

We will also see some of the NGUI's code-oriented components, such as event
forwarding and message sending.

Events methods
When using C# with NGUI, there are some methods that you will regularly use
when you need to know if your object is currently hovered upon, pressed, or clicked.

If you attach a script to any object with a collider on it (for example, a button or a 3D
object), you can add the following useful methods in the script to catch events:

•	 OnHover(bool state): This method is called when the object is hovered or
unhovered. The state bool gives the hover state; if state is true, the cursor
just entered the object's collider. If state is false, the cursor has just left the
collider's bounds.

•	 OnPress(bool state): This method works in the exact same way as the
previous OnHover() method, except it is called when the object is pressed.
It works with a touch or click. If you need to know which mouse button was
used to press the object, use the UICamera.currentTouchID variable; if this
int is equal to -1, it's a left-click. If it's equal to -2, it's a right-click. Finally, if
it's equal to -3, it's a middle-click.

C# with NGUI

[80]

•	 OnClick(): This method is similar to OnPress(), except that this method
is exclusively called when the click is validated, meaning when an
OnPress(true) event occurs followed by an OnPress(false) event.
It works with mouse click and touch.

You can also use the OnDoubleClick() method, which works
in the same way.

•	 OnDrag(Vector2 delta): This method is called at each frame when the
mouse or touch moves between the OnPress(true) and OnPress(false)
events. The Vector2 delta argument gives you the object's movement since
the last frame.

•	 OnDrop(GameObject droppedObj): This method is called when an object is
dropped on the GameObject on which this script is attached. The dropped
GameObject is passed as the droppedObj parameter.

•	 OnSelect(): This method is called when the user clicks on the object. It will
not be called again until another object is clicked on or the object is deselected
(click on nothing).

•	 OnInput(string text): This method is called when the user types in text
while an object is selected. The text parameter gives the entered text.

•	 OnTooltip(bool state): This method is called when the cursor is
over the object for more than the duration defined by the Tooltip Delay
inspector parameter of UICamera. If the Sticky Tooltip Boolean of
UICamera is checked, the tool tip will remain visible until the cursor
moves outside the Collider's Bounds, otherwise the tool tip disappears
as soon as the cursor moves.

•	 OnScroll(float delta): This method is called when the mouse's scroll
wheel is moved while the object is hovered—the delta parameter gives you
the amount and direction of the scroll.

•	 OnKey(KeyCode key): This method is called when the user clicks on a key
while the object is selected. The pressed key is stored in the key parameter.

If you attach your script on a 3D object to catch these events, make
sure it is on a layer included in Event Mask of UICamera.

Chapter 4

[81]

Creating a tool tip
Let's now use the OnTooltip() event to show a tool tip for our powers, as shown in
the following screenshot:

We will also make sure it is localized using methods integrated with NGUI.

The tool tip reference
First, we will create our tool tip that will be shown when needed. These are the
steps to do so:

1.	 Select and duplicate our Help GameObject with Ctrl + D. Then perform
the following steps:

1.	 Rename this new duplicate as Tooltip.
2.	 Set Depth in UIPanel to 4.
3.	 Set Clipping in UIPanel to None.
4.	 Remove its Box Collider component.
5.	 Remove its UIDrag Object component.
6.	 Remove its UIAnchor component.
7.	 Reset its Transform position to {0, 0, 0}.

2.	 Select our new Background, which is a child GameObject of Tooltip.
Then perform the following steps:

1.	 Set its Depth value to 0.
2.	 Set its Pivot parameter to Top Left (left arrow + up arrow).
3.	 Reset its Transform position to {0, 0, 0}.
4.	 Set its Dimensions to 200 x 50.

C# with NGUI

[82]

3.	 Select Label, which is a child GameObject of Tooltip. Then perform the
following steps:

1.	 Set its Depth to 1.
2.	 Change its text to This is a Tooltip.
3.	 Change its Overflow parameter to Resize Height.
4.	 Remove its Tween Position component.
5.	 Remove its UILocalize component.
6.	 Set its Pivot parameter to Top Left (left arrow + up arrow).
7.	 Set its Transform position to {15, -15, 0}.
8.	 Set its Dimensions parameter to 200 x 20.

4.	 Select our Tooltip GameObject.
5.	 Attach a Tooltip to the selected object by navigating to Component | NGUI

| UI and perform the following steps:

1.	 Drag our Label GameObject from Tooltip to its Text field.
2.	 Drag our Window GameObject from Tooltip to its Background field.

Ok. Our tool tip is ready to be displayed. The fact that we have set the Pivot
parameter of Label under Tooltip to Top left, with a position of {15, -15, 0},
will force a margin between the text and the background sprite.

The Overflow parameter will let the text be resized in height only, which will
make our tool tip coherent even if we have a long tool tip—the Background
sprite will automatically resize to fit the Label GameObject.

Showing the tool tip
We must now show the tool tip when needed. In order to do that, we just need to use
the OnTooltip() event, in which we will create a new tool tip with localized text.

In the Project view, select both our Time and Bomb prefabs and create and add a
new TooltipManager.cs C# script to it.

You can now open this new TooltipManager.cs script and declare the following
enum, which will define which type of tool tip it must display:

//Enum to define which type of tooltip must be shown
public enum Type
{

Chapter 4

[83]

 Bomb,
 Time
}

//Declare the Type enum variable
public Type type;

Ok, now add the following OnTooltip() method that will create a tool tip
with localized text depending on its current type:

//When a Tooltip event is triggered on this object
void OnTooltip(bool state)
{
 //If state is true, create a new Tooltip depending on the type
 if(state)
 UITooltip.ShowText(Localization.instance.Get(type.ToString() +
 "Tooltip"));
 //If state is false, hide tooltip by setting an empty string
 else
 UITooltip.ShowText("");
}

Save the script. As you can see, we use a useful Localization.instance.
Get(string key) method that returns localized text of the corresponding key
parameter that is passed. You can now change a label to localized text through
code anytime!

To use Localization.instance.Get(string key), your label
must not have a UILocalize component attached to it; otherwise, the
value of UILocalize will overwrite anything you assign to the label.

Ok, we have added the code to show our tool tip with localized text. Now we have
to add these localized strings to the English.txt file using the following code:

BombTooltip = Explodes all\nenemies at once
TimeTooltip = Slows Time\nfor 10 seconds

Similarly, add the following lines in the French.txt file:

BombTooltip = Détruit tous les ennemis d'un coup
TimeTooltip = Ralentit le temps pour 10 secondes

C# with NGUI

[84]

Save these files and go back to Unity to assign the TooltipManager type's variables
by performing the following steps:

1.	 In the Project view, select our Bomb prefab and set its Type field in
TooltipManager to Bomb.

2.	 In the Project view, select our Time prefab and set its Type field in
TooltipManager to Time.
Click on the play button. When you leave your cursor on the Bomb or
Time power in the Available powers slot, our localized tool tip appears!
I actually have the feeling that the delay is too long. Let's correct this.

3.	 Select our Camera GameObject from UI Root (2D) and set its Tooltip Delay
value in UICamera to 0.3.

That's better—our localized tool tip appears within 0.3 seconds of hovering.

Tween methods
You can see all available Tweens by simply typing in Tween inside any method in
your favorite IDE. You will see a list of Tween classes thanks to autocompletion, as
shown in the following screenshot:

The strong point of these classes is that they work in one line and don't have to be
executed for each frame; you just have to call their Begin() method!

Here, we will apply Tweens on widgets since we only have that in the scene. But
keep in mind that it works in the exact same way with other GameObjects since
NGUI widgets are GameObjects.

Chapter 4

[85]

Main menu apparition
Let's use the TweenPosition class to make our main menu appear from the top of
the screen on start. We will first use a simple Tween in only one line and then we
will add an easing effect with a delay to make it nicer.

Simple Tween
We can add a Tween Position component to our Container GameObject in
MainMenu, but we need to see how we create a Tween in code. The following
is how we do so:

1.	 Select our Container GameObject from MainMenu and create and add
a new AppearFromAbove.cs C# script to it.

2.	 Now open this new AppearFromAbove.cs script and edit the Start()
method so that it first sets the position value in Container to a higher
value than the screen's height. Then Tween it back to {0, 0, 0} in 1 second
as follows:

void Start ()
{
 //First, set the Menu's Y position to be out of screen:
 this.transform.localPosition = new Vector3(0,1080,0);
 //Start a TweenPosition of 1 second towards {0,0,0}:
 TweenPosition.Begin(this.gameObject, 1, Vector3.zero);
}

Click on the play button. We now have our main menu coming down from the
top of the screen with only two lines of code!

Smooth Tween
We created a simple Tween, but you can also configure your Tween to add a
smoothing method and a delay, for example.

Let's try it now by replacing our Start() method's code with the following one:

void Start ()
{
 //First, set the Menu's Y position to be out of screen
 this.transform.localPosition = new Vector3(0, 1080, 0);

C# with NGUI

[86]

 //Start a TweenPosition of 1.5 second towards {0,0,0}
 TweenPosition tween = TweenPosition.Begin(this.gameObject, 1.5f,
 Vector3.zero);
 //Add a delay to our Tween
 tween.delay = 1f;
 //Add an easing in and out method to our Tween
 tween.method = UITweener.Method.EaseInOut;
}

Click on the play button. We have added a nice EaseInOut method to our Tween.
The menu's vertical movement is now smoother, and all of this has been added
through code. The following is a list of the different Tween methods that can add
effects to Tweens:

•	 Linear: This will create a simple linear tween—no smoothing
•	 EaseIn: This will make the tween smooth during the beginning
•	 EaseOut: This will make the tween smooth during the end
•	 EaseInOut: This will make the tween smooth both at the beginning

and at the end
•	 BounceIn: This will give the tween bounce effect at the beginning
•	 BounceOut: This will give the tween bounce effect at the end

Now that you know how to use the TweenPosition class, you are capable of
using other Tweens such as TweenScale, TweenRotation, TweenColor or any
other available Tween, because they work the same way!

Using keys for navigation
The UI we have created works with the mouse. We can easily add key navigation
for keyboard and controllers. A UIButton Keys component exists for that purpose.
You have to add it to any UI element you want to be accessible with keys (the default
Inspector window is as follows):

Chapter 4

[87]

Let's try it now with our Play, Exit, and Options buttons:

1.	 Select our Exit, Options, and Play GameObjects.
2.	 Attach a Button Keys component to them by navigating to

Component | NGUI | Interaction.
3.	 A pop up will appear, as shown in the following screenshot, asking you

if you want to replace or add a collider:

4.	 That's because they already have a Box Collider component. Click on Replace.

5.	 Select the Play button and perform the following steps:
1.	 Check its Starts Selected Boolean.
2.	 Drag our Exit button into the Selected On Left field.
3.	 Drag our Exit button into the Selected On Right field.
4.	 Drag our Options button into the Selected On Down field.

6.	 Select the Exit button and perform the following steps:
1.	 Drag our Play button into the Selected On Left field.
2.	 Drag our Play button into the Selected On Right field.
3.	 Drag our Options button into the Selected On Down field.

7.	 Select the Options button and perform the following steps:

1.	 Drag our Exit button into the Selected On Left field.
2.	 Drag our Play button into the Selected On Right field.
3.	 Drag our Play button into the Selected On Up field.

Click on play. Our Play button is selected by default, and if you use your
keyboard arrows, you will be able to navigate through those three buttons
and validate with Return.

C# with NGUI

[88]

Error notification
We want the user to enter a nickname in the input field and select a power before
he or she can launch the game.

Right now, the user can launch the game regardless of the input and selected power
value. Let's correct this by preventing the game's launch and notifying the user, as
shown in the following screenshot:

We will use a TweenScale through code that will gradually scale up the notification
from {0, 0, 0} to {1, 1, 1} by following these steps:

1.	 Select our Tooltip GameObject in the Hierarchy window.
2.	 Duplicate it with Ctrl + D.
3.	 Rename this new duplicate as Notification and perform the

following steps:
1.	 Set its Depth parameter in UIPanel to 5.
2.	 Remove its UITooltip component.
3.	 Set its Transform position to {0, -355, 0}.

4.	 Select our Label GameObject in Notification and perform the
following steps:

1.	 Change its text to This is a Notification.
2.	 Set the Overflow parameter to Shrink Content.
3.	 Set its Pivot parameter to Center (middle button + middle button).
4.	 Set its Dimensions to 550 x 80.
5.	 Reset its Transform position to {0, 0, 0}.

Chapter 4

[89]

5.	 Attach a Localize component to it by navigating to Component |
NGUI | UI.

6.	 Select our Background GameObject in Notification and perform the
following steps:

1.	 Set its Pivot parameter to Center (middle button + middle button).
2.	 Reset its Transform position to {0, 0, 0}.
3.	 Set its Dimensions parameters to 600 x 100.

7.	 Select our Notification GameObject and set its Transform scale to {0, 0, 1}.
8.	 Create and attach a new NotificationManager.cs C# script to it and open

this new NotificationManager.cs script.

Ok. We have our Notification GameObject ready with a scale of {0, 0, 1}. Let's use the
new NotificationManager.cs script to launch a TweenScale through code when
the Notification GameObject is activated.

We will use an enum to define which notification type will be displayed. This time,
we will use the UILocalize component for localized text and change the key parameter
through code instead of using the Localization.instance.Get() method.

First, declare these variables in the NotificationManager.cs script as shown
in the following code snippet:

//Create an enum to define Notification Type
public enum Type
{
 Nickname,
 Power
}
//Declare necessary variables
public UILocalize loc;
public Type type;
//Store the Notification to access it in static methods
public static NotificationManager instance;

Save the script. We will stock the instance of NotificationManager on the scene in
the script to be able to access it from any other script easily.

First, let's assign our Loc variable using the Inspector window.

Select our Notification GameObject and drag our Label GameObject in Notification
in to the Loc field.

C# with NGUI

[90]

Ok, now return to our NotificationManager.cs script. We will first create an
Awake() method with our static instance variable's initialization and disable our
Notification GameObject to make it invisible when the game starts:

void Awake()
{
 //Set the static instance to this NotificationManager
 instance = this;
 //Deactivate Notification GameObject on awake
 gameObject.SetActive(false);
}

Now that our Awake() method is written, let's create an OnEnable() method that
will declare the TweenScale object and set the corresponding key parameter for the
UILocalize component as follows:

void OnEnable ()
{
 //Start a TweenScale of 0.5 second towards {1, 1, 1}
 TweenScale tween = TweenScale.Begin(this.gameObject, 0.5f, new
 Vector3(1,1,1));
 //Add an easing in and out method to our Tween
 tween.method = UITweener.Method.EaseInOut;
 //Set the Localize key to TypeName + "Notification"
 loc.key = type.ToString() + "Notification";
 //Force Update the UILocalize with new key
 loc.Localize();
}

Don't forget that if you change a key parameter when the
UILocalize component is already active, you must call its
Localize() method to update it.

Good. Click on the play button. Activate our Notification GameObject while Unity is
running the play mode.

You can see that our Notification GameObject appears smoothly. Let's add a Show()
method to display it through code as follows:

public void Show(Type notificationType, float duration)
{
 //If there is no current Notification
 if(!gameObject.activeInHierarchy)
 {

Chapter 4

[91]

 //Set the asked Notification type
 type = notificationType;
 //Enable our Notification on scene
 gameObject.SetActive(true);
 //Start Couroutine to remove in asked duration
 StartCoroutine(Remove(duration));
 }
}

The previous method shows our notification by activating its corresponding
GameObject. The OnEnable() method will perform the tween and localization.

On its last line, the Show() method starts the Remove() coroutine. Let's add the
following Remove() coroutine that will make the notification disappear after a
given duration:

public IEnumerator Remove(float duration)
{
 //Wait for the Notification display duration
 yield return new WaitForSeconds(duration);
 //Start the TweenScale to disappear
 TweenScale.Begin(gameObject, 0.5f, new Vector3(0,0,1));
 //Wait for 0.5s, the duration of the TweenScale
 yield return new WaitForSeconds(0.5f);
 //Deactivate the Notification GameObject
 gameObject.SetActive(false);
}

Great. Now we can add the right localization strings in English.txt as follows:

NicknameNotification = [AAFFFF]Please Enter a
 [00FFAA]Nickname[AAFFFF] before you continue!
PowerNotification = [AAFFFF]Please Select a [00FFAA]Power[AAFFFF]
 before you continue!

We can also add the correct strings in French.txt as follows:

NicknameNotification = [AAFFFF]Merci d'entrer un
 [00FFAA]Pseudo[AAFFFF] avant de continuer !
PowerNotification = [AAFFFF]Merci de sélectionner un
 [00FFAA]Power-Up[AAFFFF] avant de continuer !

We can now call our Show() method if the player presses the play button with no
nickname entered, or if he or she does not select a power.

C# with NGUI

[92]

In order to do this, we will remove the current Load Level On Click component
from our Play button and attach a new LaunchValidator.cs script to it:

1.	 Select our Play button GameObject and remove its Load Level On
Click component.

2.	 Create and attach a new LaunchValidator.cs C# script to it and open
this new LaunchValidator.cs script.

In this new script, we will need our nickname's UIInput component. Let's declare
it as follows:

public UIInput nicknameInput;

Save the script. Let's assign this variable right now in the Inspector window.
Then select our Play GameObject and drag our Input GameObject from Nickname
in the Nickname Input field in its Launch Validator.

Go back to our LaunchValidator.cs script. We will now add an OnClick() method
to add a nickname and power validation before we actually load the game, as shown
in the following code snippet:

void OnClick()
{
 //If the nickname input is empty...
 if(string.IsNullOrEmpty(nicknameInput.value))
 {
 //...Show a Nickname error notification for 2.5 sec
 NotificationManager.instance.Show(NotificationManager.Type.
 Nickname, 2.5f);
 }
 //If there's a nickname but no Power is selected...
 else if(GameManager.SelectedPower == Power.Type.None)
 {
 //...Show a Power error notification for 2.5 sec...
 NotificationManager.instance.Show(NotificationManager.Type.Power,
 2.5f);
 }
 //If there is a nickname AND a Power selected...
 else
 {
 //... Load Game Scene
 Application.LoadLevel("Game");
 }
}

Click on the play button. Perfect, we now have notifications that prevent the game
from launching if the user has no nickname entered or has no power selected!

Chapter 4

[93]

Saving the nickname
In Chapter 2, Creating Widgets, we entered Nickname in the Auto-save Key
parameter of the nickname's UIInput component. It works like this: if the user
enters a nickname and presses Return, the input's label string value is saved
in the PlayerPrefs() method in the Nickname key.

Here's the issue: the nickname is saved if, and only if, the user presses Return.
That's a problem—most of the users will enter a name and select their power
directly without pressing Return—I'm sure you've done it yourself too.

We need to save the string in the PlayerPrefs() method even when the user clicks
on the Play button without pressing Return.

We must add a line at the end of the OnClick() method of our LaunchValidator.cs
script, which will save the nickname's input value before the game scene is loaded.
Just before the Application.LoadLevel("Game") line, add the following:

//Save the Nickname to PlayerPrefs before launch
PlayerPrefs.SetString("Nickname", nicknameInput.value);

Now the user's nickname is saved before launching the game, no matter what!

Sending messages
The Notify parameter in the Inspector window we used in previous chapters to call
methods on a precise event is usually enough for sending messages. However, you
may need to send a message to another GameObject and maybe to its children too.

That's where the UIButton Message component comes in handy. We will use this to
make our MainMenu GameObject scale down before the game actually quits:

1.	 Select our Exit GameObject and perform the following steps:
1.	 Attach a Button Message component to it by navigating to

Component | NGUI | Interaction.
2.	 Drag our Container GameObject from MainMenu into its Target field.
3.	 Type in CloseMenu in the Function Name parameter.

2.	 Select our Container GameObject in MainMenu and open its attached
AppearFromAbove.cs script.

C# with NGUI

[94]

In this script, add a simple CloseMenu() method containing the following lines:

void CloseMenu()
{
 //Tween the menu's scale to zero
 TweenScale.Begin(this.gameObject, 0.5f, Vector3.zero);
}

Now we need to delay the execution of the Application.Quit() method, otherwise
we won't see our Tween. We do this using the following steps:

1.	 Select our GameManager GameObject and perform the following steps:
1.	 Open its attached GameManager.cs script.
2.	 Replace the line in the ExitPressed() method with the following line:

//Call the exit function in 0.5s
Invoke("QuitNow", 0.5f);

2.	 Add a new QuitNow() method to actually exit the application as follows:

void QuitNow()
{
 Application.Quit();
}

Save the script and click on the play button. When you exit the application,
our Menu will automatically disappear. That's because the Invoke() method
enables us to call a function with delay as the second parameter.

Let's add this nice scaling effect also when the player launches the game by
performing the following steps:

1.	 Select our Play button GameObject and open its attached
LaunchValidator.cs script.

2.	 We will need our Container GameObject from MainMenu.
Declare it as follows:
public GameObject menuContainer;

3.	 Go back to Unity and assign this new menuContainer variable as follows:
1.	 Select our Play button GameObject and drag our Container

GameObject from MainMenu to its MenuContainer field.

Chapter 4

[95]

2.	 Go back to our LaunchValidator.cs script. We simply have
to replace the Application.LoadLevel("Game") line with the
following lines:

menuContainer.SendMessage("CloseMenu");
Invoke("LaunchNow", 0.5f);

4.	 Ok, now we can add a new LaunchNow() method to actually launch the
game scene as follows:
void LaunchNow()
{
 Application.LoadLevel(levelName);
}

Great, on exit or game launch, the menu scales out, which makes a nicer transition.
We have also learned how to use a UIButton Message component.

We didn't need the Include Children Boolean checked. But it's
interesting to note that you can send a message to the target and
all its children at once.

Forwarding an event
Another component may be useful in some cases: UIForward Events.
This component gives you the ability to send the events of the GameObject it's
attached to to another GameObject in the scene. It can be useful, for example, to create
a multiple selection. Let's try it to make it more clear. Perform the following steps:

1.	 Select our Bomb GameObject in Grid.
2.	 Attach a Forward Events component to it by navigating to Component |

NGUI | Interaction and then perform the following steps:

1.	 Drag our Time GameObject from Grid to the Target field.
2.	 Check the OnHover Boolean.
3.	 Check the OnPress Boolean.
4.	 Check the OnDrag Boolean.

Click on the play button. If you hover, press, and drag the Bomb power, the Time
power will also react the same way! That is what event forwarding does.

Now that you see how it works, you can remove the UIForward Events component
from our Bomb GameObject.

C# with NGUI

[96]

Summary
In this chapter, we used C# with NGUI to create localized tool tips and error
notifications. We learned how to use Tween classes to make our main menu
appear and disappear smoothly with methods that ease Tweens.

We also know how to use keys for navigation in our UI, and our nickname is now
saved when the game launches. You now know how to send messages and forward
events using NGUI components, which may be useful to you in the future.

It's time to create a new Game.unity scene and build a complete scrollable viewport,
which is the subject of Chapter 5, Building a Scrollable Viewport.

Building a Scrollable Viewport
In this chapter, we will create a new scene and build a functional scrollable viewport
in which we can drop objects that will stick to it. We will add interesting features
such as scroll bars and keyboard scrolling with arrows.

This scrollable viewport will be the base of our game from the previous chapter.
So, from here, the user will become the player. The idea is that the player can
scroll and drag barriers on a viewport, which will take a few seconds to build.
Enemies will come down from the top of the screen. If an enemy touches a barrier,
he or she will be destroyed along with the barrier—but we will deal with enemies
in Chapter 7, Creating a Game with NGUI.

The more barriers there are on the scene, the longer the building process will be for
the future barriers— this is the same idea with the barriers' cooldown.

Preparing the Game scene
We will need to have our GameManager and Notification GameObjects as prefabs
for this chapter.

From our Menu scene, create these two prefabs by dragging them separately in the
folder of your choice in the Project view.

Now, let's create a new scene with Ctrl + N and perform the following steps:

1.	 Press Ctrl + S to save it, and enter Game as the scene's name.
2.	 In our new scene, delete the Main Camera GameObject. We won't need

it for this scene.
3.	 Drag our GameManager prefab from the Project view into the

Hierarchy view.
4.	 Open the UI Tool wizard by navigating to NGUI | Create a New UI.
5.	 Add a new Layer named Game.

Building a Scrollable Viewport

[98]

6.	 Select this Game layer for the Layer parameter in our UI Tool wizard.
7.	 Click on the Create Your UI button.
8.	 Select our new Camera GameObject, and set its Background Color to

R: 0, G: 0, B: 0, and A: 255.

Make sure your Color selector popup is in the RGBA values and
not HSVA. This can be done by using the button next to the Sliders
option when you click on a Color parameter.

9.	 Select our UI Root (2D) GameObject and then perform the following steps:

1.	 Set its Scaling Style parameter to FixedSize.
2.	 Set its Manual Height to 1080.

Ok, our scene and UI are ready. Your UI Root (2D) script should be as shown in the
following screenshot:

Let's start creating our scrollable viewport.

The scrollable viewport
We will start by creating a clipped, draggable background, and then add linked
scroll bars as shown in the following screenshot:

Chapter 5

[99]

Draggable background
We want the player to be able to scroll on both axes. That means we need
a background both larger and taller than the screen size. For this game,
we will need quite a large environment to force him or her to scroll regularly.
Let's create one that is twice the screen's size.

Perform the following steps to create the environment:

1.	 Select our Panel GameObject and perform the following steps:
1.	 Rename it as Viewport.
2.	 Set its Clipping parameter to Alpha Clip.
3.	 Set its Clipping Size to 1920 x 1080.

2.	 Add a Draggable Panel component to it by navigating to Component |
NGUI | Interaction and perform the following steps:

1.	 Set its Drag Effect parameter to Momentum. We don't want the
player to scroll out of bounds with the spring effect.

2.	 Set its Momentum Amount value to 10. Over 10, the background
will continue scrolling too much on release.

3.	 Set its Scale parameter to {1, 1, 0} to enable X and Y scrolling.

3.	 Attach a Drag Panel Contents component to it by navigating to Component
| NGUI | Interaction.

4.	 Attach a collider to it by navigating to NGUI | Attach a Collider, and set its
Size to {3840, 2160, 1}.

Now that our Draggable Panel is set up, let's add a tiling background as shown in
the following screenshot:

Building a Scrollable Viewport

[100]

1. Open the Widget Tool wizard by navigating to NGUI | Create a Widget.
Then perform the following steps:

1.	 If the Atlas field is set to None, drag the SciFi Atlas prefab in it by
navigating to Assets | NGUI | Examples | Atlases.

2.	 Select the Sprite template.
3.	 Select the Honeycomb sprite.
4.	 With our Viewport selected; click on the Add To button.

2. Select the new Sprite (Honeycomb) GameObject and then perform the
following steps:

1.	 Rename it as Background.
2.	 Set its Sprite Type to Tiled.
3.	 Set its Color Tint value to {0, 40, 40, 255}.
4.	 Set its Depth value to 0.
5.	 Set its Dimensions to 3840 x 2160.

Click on the play button. That's it, we now have a scrollable viewport. You can drag
the background by dragging your mouse while clicking.

Linking scroll bars
Let's add scroll bars to know where we are on the viewport. They must be on
a separate panel rendered over our viewport, so that they won't move with the
draggable background. Perform the following steps to add the scroll bars:

1.	 Select our Anchor GameObject.
2.	 Create a new child with Alt + Shift + N and rename it as UI.
3.	 Add a Panel component to it by navigating to Component | NGUI | UI,

and set its Depth to 1 so that it can be displayed over the viewport.
4.	 Open the Widget tool wizard by navigating to NGUI | Create a Widget.

Then perform the following steps:
1.	 Select Scrollbar for the Template field.
2.	 Select Dark sprite as Background.
3.	 Select Highlight sprite as Foreground.
4.	 Select Horizontal for Direction.
5.	 With our UI GameObject selected, click on the Add To button.

Chapter 5

[101]

5.	 On our Widget Tool wizard window, select Vertical for Direction.
With our UI GameObject selected, click on the Add To button.

We have created both our horizontal and vertical scroll bars at the center
of the scene as shown in the following screenshot:

Now, we need to place them correctly and adjust their size to fit the
entire screen.

6.	 Select the vertical Scroll Bar GameObject and rename it as
VerticalScrollbar.

7.	 Attach an Anchor component to it by navigating to NGUI | Attach
and perform the following steps:

1.	 Drag our Viewport GameObject in the Container field.
2.	 Set its Side parameter to TopRight.
3.	 Set its Pixel Offset to {-11, 0}.

8.	 Select our Background GameObject from VerticalScrollbar.
Then perform the following steps:

1.	 Set its Color Tint to {130, 255, 245, 110}.
2.	 Set the Center coordinates of Box Collider to {0, -540, 0}.
3.	 Set the Size of Box Collider to {22, 1080, 0}.

9.	 Attach a Stretch component to it by navigating to Component | NGUI | UI.
1.	 Set its Style parameter to Vertical.
2.	 Set its Relative Size values to {1, 0.983} in order to leave space for

our horizontal scroll bar at the bottom of the screen.

Building a Scrollable Viewport

[102]

10.	 Select the Foreground GameObject from VerticalScrollbar, and set its
Color Tint to {0, 255, 128, 255}.

Our vertical scroll bar is configured. Let's do the same for the horizontal
scroll bar.

11.	 Select the horizontal Scroll Bar GameObject, and rename it as
HorizontalScrollbar.

12.	 Attach an Anchor component to it by navigating to NGUI | Attach.
Then perform the following steps:

1.	 Drag our Viewport GameObject into the Container field.
2.	 Set its Side parameter to BottomLeft.
3.	 Set its Pixel Offset to {0, 11}.

13.	 Select our Background GameObject from HorizontalScrollbar and
perform these steps:

1.	 Set its Color Tint to {130, 255, 245, 110}.
2.	 Set the Center coordinates of Box Collider to {960, 0, 0}.
3.	 Set the Size of Box Collider to {1920, 22, 0}.

14.	 Attach a Stretch component to it by navigating to Component | NGUI | UI,
and set its Style parameter to Horizontal.

15.	 Select the Foreground GameObject from HorizontalScrollbar, and set its
Color Tint to {0, 255, 128, 255}.

Good. Both our horizontal and vertical scroll bars are set up. Now, we need to assign
them to our scrollable viewport by performing the following steps:

1.	 Select our Viewport GameObject.
2.	 Drag our HorizontalScrollbar GameObject from UI to the Horizontal Scroll

Bar field in UIDraggable Panel.
3.	 Drag our VerticalScrollbar GameObject from UI to the Vertical Scroll Bar

field in UIDraggable Panel.
4.	 Change the Show Scroll Bars parameter to Always.

Chapter 5

[103]

Click on the play button. That's it. Our scroll bars can be used to scroll, and they
indicate where we are on the viewport as we scroll. Your hierarchy should be as
shown in the following screenshot:

Now, let's add keyboard scrolling.

Keyboard scrolling
For this game, scrolling with the keyboard is important. In order to do so, we will
create a custom script that will force our scroll bars to move depending on the pressed
key. Select our Viewport GameObject, and attach a new KeyboardScroll.cs script to
it. Open this new script, and declare the required variables and the Awake() method:

//We need the Scrollbars for keyboard scroll
UIScrollBar hScrollbar;
UIScrollBar vScrollbar;
public float keyboardSensitivity = 1;

void Awake()
{
 //Assign both scrollbars on Awake
 hScrollbar =
 GetComponent<UIDraggablePanel>().horizontalScrollBar;
 vScrollbar = GetComponent<UIDraggablePanel>().verticalScrollBar;
}

Building a Scrollable Viewport

[104]

Okay, we have both of our scroll bars on Awake(), and a float value for sensitivity.

Now, let's check the horizontal and vertical input axes at each frame, and change our
scroll bars' values consequently:

void Update()
{
 //Get keyboard input axes values
 Vector2 keyDelta = Vector2.zero;
 keyDelta.Set(Input.GetAxis("Horizontal"),
 Input.GetAxis("Vertical"));
 //If no keyboard arrow is pressed, leave
 if(keyDelta == Vector2.zero) return;
 //Make it framerate independent and multiply by sensitivity
 keyDelta *= Time.deltaTime * keyboardSensitivity;
 //Scroll by adjusting scrollbars' values
 hScrollbar.value += keyDelta.x;
 vScrollbar.value -= keyDelta.y;
}

Save the script and click on the play button. You can now scroll using the keyboard
arrows. You may also adjust the Sensitivity parameter in the Inspector window
as you see fit.

Now, it's time to create draggable barriers that we can drop inside our
Viewport GameObject.

Creating draggable barriers
It is time to create our draggable barriers. The player will be able to drag-and-drop
the BarrierObject prefab in the Viewport GameObject. This BarrierObject prefab
will look as shown in the following screenshot:

Chapter 5

[105]

The BarrierObject prefab
First, we need to create our BarrierObject prefab's holder that will contain the
draggable object:

1.	 Select our UI GameObject.
2.	 Create a new child with Alt + Shift + N and rename it as Barrier.
3.	 Open the Widget Tool wizard by navigating to NGUI | Open and perform

the given steps:
1.	 Select Sprite for the Template parameter.
2.	 Select Dark sprite for the Sprite field.
3.	 With our Barrier GameObject selected, click on the Add To button.

4.	 Select our new barrier's Sprite (Dark) GameObject and perform the
following steps:

1.	 Rename it as Background.
2.	 Set its Sprite Type to Sliced.
3.	 Set its Color Tint to {0, 250, 250, 170}.
4.	 Set its Depth value to 0.
5.	 Set its Dimensions to 200 x 200.

5.	 Select our Barrier GameObject.
6.	 Attach a collider to it by navigating to NGUI | Attach a Collider and

perform the following steps:
1.	 Set its Center coordinates in Box Collider to {0, 0, 0}.
2.	 Set the Size parameter of Box Collider to {200, 200, 1}.

7.	 Attach Anchor to it by navigating to NGUI | Attach.
1.	 Drag our Viewport GameObject in its Container field.
2.	 Set its Side parameter to TopLeft.
3.	 Set its Pixel Offset to {100, -100}.

Ok, we have our BarrierObject holder's background at the top left-hand corner as
shown in the following screenshot:

Building a Scrollable Viewport

[106]

Let's create the actual BarrierObject prefab, which will be a custom button:

1.	 Select our Barrier GameObject.
2.	 Open the Widget tool wizard by navigating to NGUI | Create a Widget

and perform the following steps:
1.	 Drag the SciFi Font – Normal prefab into the Widget Tool

wizard's Font field by navigating to Assets | NGUI | Examples |
Atlases | SciFi.

2.	 Select Button for the Template field.
3.	 Select the Highlight sprite for the Background field.
4.	 With our Barrier GameObject selected, click on the Add To button.

3.	 Select our new Button GameObject from Barrier.
1.	 Rename it as BarrierObject.
2.	 Set its Center coordinates Box Collider to {0, 0, 0}.
3.	 Set Size of Box Collider to {160, 160, 0}.

4.	 Drag the Background GameObject from BarrierObject into the Target field
in UIButton. Then perform the following steps:

1.	 Set its Normal Color to {125, 255, 155, 130}.
2.	 Set its Hover Color to {100, 255, 60, 255}.
3.	 Set its Pressed Color to {20, 255, 0, 160}.
4.	 Set its Disabled Color to {115, 115, 155, 255}.

5.	 Select the Background GameObject from BarrierObject and perform
the following steps:

1.	 Set its Depth value to 1.
2.	 Set its Dimensions to 160 x 160.

6.	 Select the Label GameObject from BarrierObject and then perform the
given steps:

1.	 Set its text to [99FF99]Barrier.
2.	 Set its Depth to 2.

Chapter 5

[107]

Ok. We now have our BarrierObject in the Barrier holder. Let's make it draggable
by performing the following steps:

1.	 Select our BarrierObject GameObject.
2.	 Attach a Drag Object component to it by navigating to Component |

NGUI | Interaction.
1.	 Drag our BarrierObject GameObject in its Target field.
2.	 Set its Scale parameter to {1, 1, 0} to avoid Z scrolling.
3.	 Set its Drag Effect parameter to None. We want it to be precise.

3.	 Create and attach a new BarrierObjectController.cs C# script to it.

Click on the play button. The BarrierObject prefab is now draggable. Now, it is
time to handle the drop on the Viewport GameObject.

Before we continue, drag our BarrierObject in a folder of your choice in the
Project view to make it a prefab.

Dropping a barrier on Viewport
In order to drop a barrier inside the Viewport GameObject, we need to catch the
Viewport GameObject's OnDrop() event and check what was dropped:

1.	 Select our Viewport GameObject.
2.	 Create and attach a new ViewportHolder.cs C# script to it.
3.	 Open this new ViewportHolder.cs script.

In this script, we can add a new OnDrop() method that will be called when an
object is dropped on it:

void OnDrop(GameObject droppedObj)
{
 //Get the dropped object's BarrierObjectController
 BarrierObjectController barrierObj =
 droppedObj.GetComponent<BarrierObjectController>();

 //If it actually has one, destroy the droppedObj
 if(barrierObj != null){
 Destroy(droppedObj);
 }
}

Building a Scrollable Viewport

[108]

Save the script and click on the play button. Surprisingly, when you drop the
BarrierObject on the Viewport GameObject, nothing happens!

That's because, like in Chapter 3, Enhancing your UI, the Collider of BarrierObject
is enabled when the OnPress(false) event occurs. This obstructs the collision
detection of UICamera.

We just have to disable the collider while dragging, and re-enable it when dropping
it. Let's also make it reposition itself if it isn't dropped on the Viewport GameObject.
Open our BarrierObjectController.cs script, and add following OnPress()
method to do so:

void OnPress(bool pressed)
{
 //Invert the Collider's state
 collider.enabled = !pressed;

 //If it has just been dropped
 if(!pressed)
 {
 //Get the target's collider
 Collider col = UICamera.lastHit.collider;
 //If the target has no collider or is not the viewport
 if(col == null || col.GetComponent<ViewportHolder>() == null)
 //Reset its localPosition to {0,0,0}
 transform.localPosition = Vector3.zero;
 }
}

Save the script and click on the play button. This time, the collider is disabled when
the BarrierObject prefab is dropped. So, it is indeed dropped on the collider of
Viewport and destroyed instantly.

If it is dropped somewhere else (out of screen or on the barrier's container),
it is automatically replaced at the center of the barrier's container. Let's make
this BarrierObject a prefab by dragging it in the folder of your choice inside
the Project view.

We can now create an ActiveBarrier prefab that will be instantiated on the
Viewport GameObject.

Chapter 5

[109]

Creating an ActiveBarrier prefab
When a BarrierObject is dropped on the Viewport GameObject, we want
to instantiate an ActiveBarrier prefab that will take a few seconds to build,
using a slider as status indicator as shown in the following screenshot:

The ActiveBarrier prefab
Let's create the ActiveBarrier prefab by performing the following steps:

1.	 Select our Viewport GameObject.
2.	 Create a new child with Alt + Shift + N.
3.	 Select this new child and rename it as ActiveBarrier.
4.	 Open the Widget Tool wizard by navigating to NGUI | Create a Widget

and perform the following steps:

1.	 Select Progress Bar for the Template field.
2.	 Set Dark sprite as Empty.
3.	 Set the Highlight sprite as Full.
4.	 With our ActiveBarrier GameObject selected, click on the

Add To button.

A Progress Bar has just been created as child of the ActiveBarrier
GameObject as shown in the following screenshot:

Building a Scrollable Viewport

[110]

It doesn't look like anything. Let's configure it to look like an ActiveBarrier prefab
by performing the following steps:

1.	 Select our new Background GameObject from Progress Bar and perform
the following steps:

1.	 Uncheck its Fill Center boolean to only keep edges.
2.	 Set its Color Tint to {100, 200, 100, 255}.
3.	 Set its Depth to 1 so that it can be rendered over the

Viewport background.
4.	 Set its Dimensions to 160 x 160.

2.	 Select our Foreground GameObject from Progress Bar and perform
the following steps:

1.	 Set its Color Tint to {75, 190, 95, 255}.
2.	 Set its Depth value to 2.
3.	 Set its Dimensions to 160 x 160.

3.	 Select our Progress Bar from ActiveBarrier and perform the following steps:
1.	 Rename it as Slider.
2.	 Set its Transform Position to {-80, 0, 0} to center it.
3.	 Set the UISlider value to 0 to make sure it's empty at start.

4.	 Select our ActiveBarrier GameObject.
5.	 Attach a collider to it by navigating to NGUI | Attach, and set its Size

to {160, 160, 1}.

The slider of ActiveBarrier GameObject is ready. If you click on the play button
and change the Slider value in the Inspector view during runtime, you will see
the ActiveBarrier prefab building itself.

Let's add a label that will show the status of ActiveBarrier: either Building or Built.

1.	 Duplicate our Label GameObject in BarrierObject and perform the
following steps:

1.	 Drag it inside our ActiveBarrier GameObject.
2.	 Reset its Transform Position to {0, 0, 0}.
3.	 Set its Depth to 3.
4.	 Add a Localize component to it by navigating to Component |

NGUI | UI.
5.	 Set the key of UILocalize to BuildingBarrier.

Chapter 5

[111]

2.	 Drag our ActiveBarrier in the folder of your choice inside the Project view
to make it a prefab.

3.	 Delete the ActiveBarrier instance from the scene.

Ok, our ActiveBarrier prefab is ready. Now, add the following localization strings
to English.txt:

//Game
Barrier = [99FF99]Barrier
BuildingBarrier = [FF6666]Building\nBarrier...
Wait = Wait

Also, add the following localization strings to French.txt:

//Game
Barrier = [99FF99]Barrière
BuildingBarrier = [FF6666]Construction\nBarrière...
Wait = Attendez

Now, everything is set for our ActiveBarrier prefab.

Instantiating the ActiveBarrier prefab
Now that we have our prefab, we need to instantiate it when a BarrierObject
prefab is dropped inside the Viewport GameObject.

Open our ViewportHolder.cs script and declare our necessary variables:

//We need our two barriers Prefabs
public Object barrierObjectPrefab;
public Object activeBarrierPrefab;

//We need the BarrierObject container
public GameObject barrierContainer;

Save the script. Let's go back to the scene and assign these variables in the
Inspector view:

1.	 Select the Viewport GameObject.
2.	 Drag the BarrierObject prefab from the Project view in the BarrierObject

prefab field of Viewport Holder.
3.	 Drag the ActiveBarrier prefab from the Project view in the ActiveBarrier

prefab field Viewport Holder.
4.	 Drag the Barrier GameObject in UI from the Hierarchy view to the Barrier

Container field in Viewport Holder.

Building a Scrollable Viewport

[112]

The necessary variables are assigned. Go back to our ViewportHolder.cs
script, and add the following two lines to call the appropriate methods,
after Destroy(droppedObj):

RecreateBarrierObject();
CreateActiveBarrier(droppedObj.transform);

Now, we can add these two methods that will recreate our BarrierObject prefab.
Also, we can add an ActiveBarrier prefab to the Viewport GameObject:

void RecreateBarrierObject()
{
 //Add a BarrierObject to the container
 Transform newBarrierTrans = NGUITools.AddChild(barrierContainer,
 barrierObjectPrefab as GameObject).transform;
 //Reset its localPosition to {0,0,0}
 newBarrierTrans.localPosition = Vector3.zero;
}

void CreateActiveBarrier(Transform barrierObjectTrans)
{
 //Add an ActiveBarrier to the Viewport
 Transform newActiveBarrierTrans = NGUITools.AddChild(gameObject,
 activeBarrierPrefab as GameObject).transform;
 //Set position to the droppedObject's position
 newActiveBarrierTrans.position = barrierObjectTrans.position;
}

Click on the play button. When you drag the BarrierObject prefab onto the
Viewport GameObject, it creates our ActiveBarrier prefab; and it recreates
a BarrierObject prefab to be able to drag another one.

Barrier's building process
Right now, our dropped ActiveBarrier instances stay empty and never build.
Let's make them fill themselves at a speed depending on the number of barriers
in the scene:

1.	 Select our ActiveBarrier prefab in the Project view.
2.	 Create and add an ActiveBarrierController.cs script to it.

Chapter 5

[113]

Open this new ActiveBarrierController.cs script, and add these necessary
variables and the Awake() method to initialize them:

//We will need the Slider and the Label's UILocalize
private UISlider slider;
private UILocalize loc;

void Awake()
{
 //Get necessary components at Awake()
 slider = GetComponentInChildren<UISlider>();
 loc = GetComponentInChildren<UILocalize>();
}

Now that we have our necessary variables initialized, let's add a coroutine that will
increase the UISlider value over time, at a rate depending on a given buildTime:

public IEnumerator Build(float buildTime)
{
 while(slider.value < 1) {
 slider.value += (Time.deltaTime / buildTime);
 yield return null;
 }
 //When slider value is > 1
 BuildFinished();
}

Ok. Let's add the BuildFinished() method that will set the Slider value to 1
(in case this value is higher), and change the UILocalize key:

private void BuildFinished()
{
 //Make sure it's at 1
 slider.value = 1;
 //Set the key to "normal" barrier and update Localization
 loc.key = "Barrier";
 loc.Localize();
}

Good. We just need to edit the ViewportHolder.cs script to add a barrierCount
variable, and start the new Build() coroutine from ActiveBarrier.

Open the ViewportHolder.cs script and declare a new int after our
barrierContainer:

public int barrierCount = 0;

Building a Scrollable Viewport

[114]

Now, let's add these two simple lines of code to update the barrierCount variable
and start the Build() coroutine on our new ActiveBarrier prefab:

//Update barrierCount
barrierCount++;
//Start the Build Coroutine with the correct buildTime
StartCoroutine(newActiveBarrierTrans.GetComponent
 <ActiveBarrierController>().Build(barrierCount *2));

Click on the play button. Now, our ActiveBarrier prefab builds itself depending on
the number of ActiveBarriers on the scene!

Forwarding events to viewport
You may have noticed that you cannot scroll if you click on an ActiveBarrier prefab.
That's because it catches the events instead of our viewport.

Let's simply forward its events to the viewport:

1.	 Select our ActiveBarrier prefab in the Project view.
2.	 Attach a Forward Events component to it by navigating to Component |

NGUI | Interaction and perform the following steps:
1.	 Check its On Press Boolean.
2.	 Check its On Drag Boolean.

3.	 Open the ActiveBarrierController.cs script that is attached to it.

We need to assign the target variable of the UIForward Event component when
the ActiveBarrier prefab is created. To do so, add a new Start() method with
the following:

void Start()
{
 //Set the UIForwardEvents' target to the viewport
 GetComponent<UIForwardEvents>().target =
 transform.parent.gameObject;
}

We can now scroll no matter what. We are missing something: a cooldown
on the BarrierObjects that also depends on the number of ActiveBarriers.

Chapter 5

[115]

BarrierObject cooldown
We will implement the cooldown system that will deactivate the BarrierObject
button as shown in the following screenshot:

Then, we will make the barrier's apparition smoother by tweening its scale.

Cooldown implementation
In order to implement the required cooldown, we need to open the
BarrierObjectController.cs script and add the following two
necessary variables with an initialization on Awake():

//We will need the Button and the Label
private UIButton button;
private UILabel label;

void Awake()
{
 //Get necessary components at Awake
 button = GetComponentInChildren<UIButton>();
 label = GetComponentInChildren<UILabel>();
}

Now that we have the button and label, we can add a Cooldown() coroutine that will
deactivate the button and update the label to show the remaining time to the player:

public IEnumerator Cooldown(int cooldown)
{
 //Deactivate the Barrier button and update Color to Disable
 button.isEnabled = false;
 button.UpdateColor(false, true);

Building a Scrollable Viewport

[116]

 while(cooldown > 0)
 {
 //Update Label with localized text each second
 label.text = Localization.instance.Get("Wait") + " " +
 cooldown.ToString() + "s";
 cooldown -= 1;
 //Wait for a second, then return to start of While
 yield return new WaitForSeconds(1);
 }
 //If cooldown <= 0
 CooldownFinished();
}

The previous coroutine updates the label and decreases the cooldown. We can
now add the CooldownFinished() method that will reactivate the button and
reset the label:

void CooldownFinished()
{
 //Reset the Label's Text to "normal" Barrier
 label.text = Localization.instance.Get("Barrier");
 //Reactivate the Barrier button and update Color to Normal
 button.isEnabled = true;
 button.UpdateColor(true, true);
}

Great, everything is ready for our cooldown. We just need to start the Cooldown()
coroutine when a new BarrierObject prefab is created.

In order to do this, let's go back to our ViewportHolder.cs script and add the
following line at the very end of the RecreateBarrierObject() method:

//Start the new BarrierObject's Cooldown Coroutine
StartCoroutine(newBarrierTrans.GetComponent
 <BarrierObjectController>().Cooldown((barrierCount +1) *3));

Perfect. Here, we needed to pass barrierCount +1 as argument because at this stage
it is not yet updated (it is incremented in the CreateActiveBarrier() method).

Click on the play button. When you drop a BarrierObject prefab on the Viewport
GameObject, you will only be able to drop another one when the cooldown is
finished. The more barriers you have, the longer the cooldown.

Chapter 5

[117]

BarrierObject smooth apparition
Let's add a TweenScale to make the barrier's availability more obvious to the player.
Go back to our BarrierObjectController.cs script and add the following two
lines at the very end of the CooldownFinished() method:

//Set its scale to {0,0,0}
transform.localScale = Vector3.zero;
//Tween it back to make it appear smoothly
TweenScale.Begin(gameObject, 0.3f, new Vector3(1,1,1));

That's better. Now, the animated apparition of BarrierObject attracts the player's
eye. But, hey, we created a notification in the previous chapter. Let's reuse it to
make it even more obvious!

The barrier availability tool tip
Let's set up notifications in the game using our previous work:

1.	 Drag our Notification prefab inside our UI GameObject.
2.	 Select the new Notification GameObject in the Hierarchy view,

and then perform the following steps:

1.	 Change its Layer to Game (in the top right-hand corner of the
Inspector view).

2.	 A pop up will appear. Click on Yes, and change children.
3.	 Open the NotificationManager.cs script that is attached to it.

First, we need to add a new notification type. This is done by adding a third line
to our type enum:

BarrierAvailable

Now, add the following localization string to English.txt:

BarrierAvailableNotification = New [99FF99]Barrier[FFFFFF]
 Available!

Also, add the following localization string to French.txt:

BarrierAvailableNotification = Nouvelle [99FF99]Barrière[FFFFFF]
 Disponible !

Building a Scrollable Viewport

[118]

Everything is set. Now, go back to our BarrierObjectController.cs script, and
add the following line of code at the very end of the CooldownFinished() method:

//Show Notification to inform the player
NotificationManager.instance.Show(NotificationManager.Type.Barrier
 Available, 1.5f);

Click on the play button. A localized notification will appear as soon as a new barrier
is available. This way, we are sure that the player will not miss it.

Summary
In this chapter, we learned how to create a scrollable viewport using a scrollable
background. Also, we linked the mouse drag, scroll bars, and keyboard arrows to it.

We used the UIDrag Object component to create our drag-and-drop system,
allowing us to drag objects inside the scrollable viewport.

Coroutines helped us to create the barriers' building process and cooldown system.
The UIForward Events component was used to forward events to the viewport.
Finally, we reused our Notification prefab inside our new Game scene.

We now have the basic elements for Chapter 7, Creating a Game with NGUI. Now, it is
time to discover how to add sprites and fonts to NGUI with Chapter 6, Atlas and Font
Customization. We will then use our own assets to create a game!

Atlas and Font Customization
In this chapter, we will learn how to create a new atlas and add our own
assets. At the end of this chapter, you will know how to handle normal,
sliced, and tiled sprites.

We will use these new assets to add icons to our powers and selected powers.
We will also change the backgrounds of our different windows, and add a new
font to our project.

A small exercise will let you customize your main menu as you see fit before
we move on to the final chapter. First, we need to learn how to create our own
Game atlas.

The Atlas prefab
With NGUI, an Atlas prefab is used to contain sprites and fonts. It is composed
of the following:

•	 A large texture file containing all sprites and fonts
•	 A material with this texture file assigned, and a specific shader

The Atlas prefab has a UIAtlas component attached to it. Its purpose is to
contain information about your sprites' positions and sizes in the large texture.

It is much more efficient to use only one large texture that holds all our sprites,
instead of having separate multiple small textures.

Atlas and Font Customization

[120]

Creating a new Atlas
Let's create our own Atlas to hold our sprites and new fonts. First, open our
Menu scene. In order to do this, we will use the Atlas Maker wizard.

Navigate to NGUI | Atlas Maker, or press Alt + Shift + M to bring up the
following screen:

To create the Atlas, perform the following steps:

1.	 In the first field, type in the new atlas' name as Game.
2.	 Click on the green Create button.

Our new Game atlas has been created, and it is selected in the Atlas Maker wizard.
It is empty for now. Let's change this.

You may have as many Atlases as you want, but remember
that rendering multiple Atlases simultaneously will increase
the number of draw calls.

Adding sprites to Atlas
Let's add some sprites to our new Game atlas. We will add the following three
different types:

•	 Simple sprite: As its name suggests, it is simply an image displayed
on screen

•	 Sliced sprite: In this, the image is sliced in nine parts and it is resizable
without stretching corners

•	 Tiled sprite: In this, the tiling pattern is repeatable indefinitely

Let's start with the Simple sprites.

Chapter 6

[121]

Simple sprites
It is time to create two sprites, Bomb and Time, which will illustrate our powers.
First, we need to create the sprites and add them to our Game atlas. They will look
as shown in the following screenshot:

You may either create them yourself, or download the Assets.zip
file from http://goo.gl/bZu4mF.

If you wish to create your own sprites, a size of 128 x 128 will be enough. You can
save them either as .png to support transparency, or as .psd files—they will be
converted to the correct format when they will be imported in the Unity project.

Adding sprites to Atlas
When your Bomb and Time sprites are ready, or downloaded from the previous link,
place them in a new Assets/Textures folder in your project. Then, perform the
following steps:

1.	 Open Atlas Maker from NGUI, or Alt + Shift + M.
2.	 Make sure that our new Game Atlas is selected, as shown in the

following screenshot:

Atlas and Font Customization

[122]

3.	 In the Project view, select both our new Bomb and Time textures.
4.	 Click on the Add/Update All button in Atlas Maker.

Good. Our two new sprites have been added to the Game atlas.

Available powers icons
Let's add the icons to our Time and Bomb prefabs on the scene and perform the
following steps:

1.	 In the Hierarchy view, select Background by navigating to PowersContainer
| Grid | Bomb and perform the following steps:

1.	 Duplicate it.
2.	 Rename this new duplicate as Icon.
3.	 Change its Sprite Type parameter in UISprite to Simple.
4.	 Set its Depth to 6 so that it can be displayed over the background.

2.	 Click on the Atlas button in UISprite and in the pop-up window, select our
new Game atlas.

If the new Game Atlas is not visible in the list, drag it from the
Project view in the field next to the Atlas button.

3.	 Click on the Sprite button in UISprite and in the pop-up window, select our
Bomb sprite.

4.	 Select the Label GameObject from Bomb and perform the following steps:
1.	 Delete it—the icon and tool tip are enough!
2.	 A pop-up window appears, asking you if you want to continue

because you will lose the prefab connection. Click on Continue.

5.	 Select the Bomb GameObject from our Grid.
6.	 Click on the Apply button in the Inspector view to update the prefab.

Chapter 6

[123]

Good, our Bomb prefab is up to date with its new icon. Let's add the icon for the
Time prefab by performing the following steps:

1.	 Select our Icon GameObject Bomb and perform the following steps:
1.	 Duplicate it.
2.	 Drag this duplicate inside the Time GameObject.
3.	 Reset its Transform position to {0, 0, 0}.
4.	 Change its Sprite parameter to our own Time sprite.
5.	 Change its Dimensions to 75 x 75.

2.	 Select the Label GameObject from Time and then perform the
following steps:

1.	 Delete it—the icon and tool tip are enough!
2.	 A pop-up window appears, asking you if you want to continue

because you will lose the prefab connection. Click on Continue.

3.	 Select the Time GameObject from Grid.
4.	 Click on the Apply button in the Inspector view to update the prefab.

Ok, our draggable powers prefabs now have their own icons.

Selected powers icons
Let's also add icons for our SelectedBomb and SelectedTime prefabs so that they
look nicer:

Atlas and Font Customization

[124]

Perform the following steps to achieve this:

1.	 From the Project view, drag the SelectedBomb prefab in our Surface
GameObject.

2.	 In the Hierarchy view, select our Icon GameObject from Grid/Bomb and
perform the given steps:

1.	 Duplicate it.
2.	 Drag this duplicate inside our new SelectedBomb instance.
3.	 Reset its Transform position to {0, 0, 0}.
4.	 Set its Depth to 5.
5.	 Change its Dimensions to 120 x 120.

3.	 Select the Label GameObject from SelectedBomb and delete it.
4.	 Select the SelectedBomb GameObject from Surface and perform the

given steps:

1.	 Click on the Apply button in the Inspector view to update the prefab.
2.	 Delete the SelectedBomb instance from the scene.

Let's follow the same steps for our SelectedTime prefab:

1.	 From the Project view, drag the SelectedTime prefab in our Surface
GameObject.

2.	 In the Hierarchy view, select our Icon GameObject from Time and perform
the following steps:

1.	 Duplicate it.
2.	 Drag this duplicate inside our new SelectedTime instance.
3.	 Reset its Transform position to {0, 0, 0}.
4.	 Set its Depth to 5.
5.	 Change its Dimensions to 100 x 100.

3.	 Select the Label GameObject from SelectedTime, and delete it.
4.	 Select the SelectedTime GameObject from Surface and perform the

following steps:

1.	 Click on the Apply button in the Inspector view to update the prefab.
2.	 Delete the SelectedTime instance from the scene.

That's it. We have our own two icons for our powers. Now, we can learn how to
create and configure our own nine-sliced sprite.

Chapter 6

[125]

Sliced sprites
We used the dark sliced sprite all along this book. Let's create our own. Then, we will
change the power selection box and the background sprites of Main Menu, as shown
in the following screenshot:

Adding a sprite to Atlas
You can use a 16 x 16 square sprite, such as the dark sprite. If you wish to have larger
corners or add more details, simply use a larger texture size. You can also use the 64
x 64 Window.png file available in my Assets.zip archive.

When your new Window sprite is ready, place it in the Assets/Textures folder and
perform the following steps:

1.	 Open Atlas Maker by navigating to NGUI | Atlas Maker, or Alt + Shift + M
and make sure our new Game atlas is selected.

2.	 Select the new Window.png sprite file from Textures in the Project view.
3.	 Click on the green Add/Update All button in the Atlas Maker window.

Ok, Window.png has been added to our Game atlas, but it isn't configured. Yet.

Atlas and Font Customization

[126]

Configuring a sliced sprite
The Window sprite has been added to the atlas, but we still need to indicate the
UIAtlas component where the slicing must occur on the sprite. Let's replace our
Background of Powers, and configure its slicing parameters.

In the Hierarchy view, select the Background GameObject from Powers and
perform the following steps:

1.	 Change its Atlas parameter in UISprite to our Game Atlas.
2.	 Change its Sprite to our new Window sprite.
3.	 Click on the Edit button next to the Sprite field, as shown in the

following screenshot:

We are now in the sprite's parameter window. Here, we can configure its
Dimensions, Border, and Padding. Set these Border values to define the slicing lines:

The values shown in the previous screenshot might be different if you created
your own sprite.

Chapter 6

[127]

As you change the Border values, dotted lines appear on the sprite
at the bottom of the Inspector view in the Preview window.

The Window sprite should be sliced (as shown in the following screenshot) in the
Preview window:

When you have entered your four values, you can click on the green Return to
Background button in order to go back to where we were.

We now have a functional sliced sprite, but we need to adjust the title position
of the powers. In the Hierarchy view, select our TitleLabel GameObject from
Powers, and change its Pixel Offset in UIAnchor to {0, -18}.

Good! We configured our first sliced sprite and changed the power selection
box's background sprite with it.

The Main Menu window
Let's change our Window sprite Main Menu too. In the Hierarchy view,
select our Window GameObject from Container and perform the following steps:

1.	 Change its Atlas to our Game Atlas.
2.	 Change its Sprite to our new Window sprite.

Atlas and Font Customization

[128]

The Main Menu title is not placed exactly inside the title bar. Let's change this
by performing the following steps.

1.	 Select the Title GameObject from Container, and change its Pixel Offset
value in UIAnchor to {0, 10}.

2.	 Select the Background GameObject from Title and deactivate it for now.
3.	 Select the Background GameObject from Container and then perform the

following steps:

1.	 Change its Relative Size in UIStretch to {1, 0.95}.
2.	 Change its Pixel Offset in UIAnchor to {0, -17}.

Great. That looks better. If you wish, you may change the nickname box's
background sprites with our new Window sprite. You can even change the
buttons by using the sliced sprite Button.png included in the Assets.zip file.

The Button.png file can be used for non-button backgrounds
too, such as the notification or tool tip backgrounds. Try it out!

Tiled sprites
Let's add a tiled sprite to create a space background for our Game scene.

You can use the Space.jpg file from the Assets.zip archive, or you may create a
256 x 256 tiling sprite representing stars in space. Place the Space.jpg sprite in the
Assets/Textures folder, and then perform the following steps:

1.	 Open our Game scene.
2.	 Open Atlas Maker by navigating to NGUI | Atlas Maker, or Alt + Shift + M.

Then perform the following steps:

1.	 In the Project view, select our new Space.jpg file from Textures.
2.	 Click on the Add/Update All button of the Atlas Maker window.

Ok, the new Space.jpg sprite has now been added to our Game Atlas. Let's change
our Game scene's background to make it look like we're in space.

1.	 Select the Background GameObject from Viewport.
2.	 Change its Atlas to our Game Atlas.

Chapter 6

[129]

3.	 Change its Sprite to our new Space sprite.
4.	 Change its Color Tint to {140, 200, 200, 255}.

That's it! Small stars are now tiling in the background. Now, it is time to add a font.

Adding a font
For optimization, NGUI uses bitmaps instead of true type fonts. We need to export
our .ttf or .otf fonts to a bitmap using a free third-party tool called BMFont,
which was created by AngelCode.

Then, we will need a .txt file that will contain information about where each
glyph is located in the exported font's bitmap. You can download the BMFont
from www.angelcode.com/products/bmfont/. Free-to-use fonts are available
at www.openfontlibrary.org/.

For our first font, we will use the Pacaya font created by Daniel Johnson—it is
included in the Assets.zip archive. Download, install, and launch BMFont. Install
the font now by right-clicking on the Pacaya.otf file and then selecting Install.

Exporting a font using BMFont
Once BMFont is launched and the Pacaya font is installed, go to Options | Font
Settings. You can now select the Pacaya font in the Font field. The Size(px) field
defines the font's size at export in pixels—set it to 24 and click on OK.

Our .otf file is loaded, and we can visualize and select the characters that we
want to export with a left-click or click-and-drag. Select them all with Ctrl + A.

If you want to export a selection of characters, don't forget to select
the empty character—it's your space character.

Go to Options | Export options. Here, you must set the Bit depth to 32.
Now, the only thing you need to check is the Width and Height value of the bitmap.

Atlas and Font Customization

[130]

To see if it's currently big enough, click on OK and go to Options | Visualize.
The window shown in the following screenshot appears:

The red space represents wasted space. As you can see, we have a large amount of
wasted space. You must try to set the bitmap size to reduce this red space as much
as possible, while making sure you have enough space for all characters.

If your bitmap size is too small and can't hold all your characters, the Preview
window's title will show Preview : 1/2 instead of Preview : 1/1, as shown in the
following screenshot. Then, you should increase the bitmap size utile it displays
Preview : 1/1. For the Pacaya font with all characters selected, enter 256 x 128. It
should look as shown in the following screenshot:

For optimization, you should keep its dimensions as powers of two.

Chapter 6

[131]

Once you have set the correct bitmap size, go back to Options | Export Options.
Then, make sure the Presets field is set to White text with alpha in order to have R,
G, and B channel values at one and the glyph in channel A:

When you've done that, go to Options | Save bitmap font as… and name
it Pacaya. The .fnt file extension will be added automatically. Inside the
output folder you selected, you should have a Pacaya_0.tga file—the actual
font bitmap—and a .fnt file.

You must have only one .tga file along with your .fnt file.
Otherwise, your bitmap size is too small, and you need to
make it larger before you re-export.

Ok, now copy these two files in a new Assets/Fonts/Sources folder.

Creating a font in Unity
We have our new font files. We must now create a new font for NGUI using
these files.

In Unity, perform the following steps:

1.	 Open the Font Maker window by navigating to NGUI | Font Maker,
or Alt + Shift + F.

2.	 In the Project view, browse to your Assets/Fonts/Sources folder.

Atlas and Font Customization

[132]

3.	 Drag your Pacaya.fnt file in the Font Data field in Font Maker.
4.	 Drag the Pacaya_0.tga file in the Texture field in Font Maker.
5.	 Enter Pacaya in the Font Name field.
6.	 Click on the Atlas button and choose our Game Atlas.

This means the font's texture will be added to the Game Atlas,
resulting in no supplementary draw call when a label is displayed.

7.	 Select any file in the Sources folder in the path Assets/Fonts/ of our
Project view—our font will then be added to the current folder, but you
need to actually select a file inside the desired destination for it to work.

8.	 Click on the green Create the Font button.

A new Pacaya prefab has been created in the Sources folder in the path Assets/
Fonts/. That's the prefab NGUI needs to display the font.

Select it in the Project view, and drag it inside our Fonts folder in Assets. If you
cannot find it, simply type your font's name in the Project view's search bar.

Assigning a new font to Label
Now that we have added a new font to our project, let's assign it to a Label:

1.	 Open our Menu scene.
2.	 Select our Label GameObject by navigating to MainMenu | Container |

Nickname | Input and perform the following steps:

1.	 Click on the Font button in UILabel.
2.	 Choose our new Pacaya font.

If the new font does not appear in recent fonts, find it in your
Project view and drag it manually in the Font field in UILabel.

Ok. We have added a new font to our project and assigned it to a label!

Chapter 6

[133]

Customizing the MainMenu
The blue background of our menu's main camera is not very nice. Let's set a black
background for the camera, and add our space tiling sprite to make this better:

1.	 Select our MainMenu GameObject from Anchor, and create a new sprite
by navigating to NGUI | Create | Sprite, or press Alt + Shift + S.

2.	 Select the new Sprite GameObject from MainMenu and perform the
following steps:

1.	 Rename it as Space.
2.	 Set its Atlas type to our Game atlas.
3.	 Set its Sprite to our Space tiling sprite.
4.	 Set its Sprite Type parameter to Tiled.

3.	 Attach a Stretch component to it by navigating to Component | NGUI | UI:
4.	 Set its Style parameter to Both.

You may notice that we have ugly lines between each repetition of the Space sprite.
That is simply because there is a 1-pixel-wide border on the sprite. We can easily
correct this by reducing the sprite's border value of 1 pixel.

Select our Space GameObject from MainMenu, and click on the Edit button next
to the Sprite field, as shown in the following screenshot:

Set a value of 1 for each of the four Border parameters as shown in the
following screenshot:

Atlas and Font Customization

[134]

That's better; our tiling sprite now tiles correctly without any lines between
each pattern.

Now that you have learned how to add sprites and fonts, I would like you to change
our Main Menu elements' backgrounds to make it look better. You may proceed as
you wish—add more sprites if you want, change colors, and use your imagination!

The following is an example of what you can achieve with the Window and
Button sprites:

You might have to move or resize the UI elements. Don't forget
to use Pixel Offset in UIAnchor to move or resize instead of
positions. Same for Dimensions—don't use the scale tool of
Unity if you want to keep the widgets pixel perfect.

Chapter 6

[135]

Summary
In this chapter, we learned how to create a new Atlas and add simple,
sliced, and tiled sprites. Using these new sprites, we made our Powers,
Selected Powers, and Main Menu windows look better than before.

You now know how to use BMFont to export a font as bitmap and create
a new font prefab for NGUI.

Before we move on to the final Chapter 7, Creating a Game with NGUI, you should
have changed the appearance of your Main Menu to make it look nicer.

Creating a Game with NGUI
In this final chapter, we will create a game using NGUI elements, and this will
ensure that you understand them and know how to use them perfectly.

Together, we will learn how to create these basic game rules, which are as follows:

1.	 Enemies fall down from the top of our scrollable viewport.
2.	 The player drops Barriers on the Viewport—if the enemy collides with a built

Barrier, he or she is destroyed along with the Barrier.
3.	 Some enemies have encrypted self-destruct code. The player clicks on the

enemy to hack it. When the hacking process is complete, its destruct code is
displayed above it.

4.	 The player must type in the code to destroy the enemy.

We will also add a health bar that will represent the player's health points and will
decrease when enemies hit the bottom of the screen. The game will look as follows:

Creating a Game with NGUI

[138]

Enemy spawning
We want our enemies to spawn at the top of the viewport's background. At spawn,
the Y value can be the same for each of the enemies, but we want a random X value.

First of all, let's open our Game scene.

Creating the enemies container
Our enemies will be nested in a container placed at the top left-hand corner of
our background in order to have the {0, 0} positioned at the top left-hand corner
of the viewport.

First, let's create our enemies holder by performing the following steps:

1.	 Select our Viewport GameObject and perform the following steps:
1.	 Create a new child by pressing Alt + Shift + N.
2.	 Rename this new child as Enemies.

2.	 Attach Anchor to it by navigating to NGUI | Attach. Then perform the
following steps:

1.	 Drag our Background from Viewport into the Container field.
2.	 Set its Side parameter to TopLeft.

Ok, we now have our enemies container in which we will instantiate our
Enemy prefab.

Creating the Enemy prefab
Let's create the Enemy prefab that will be instantiated as child of the Enemies
GameObject. You must add the Enemy.png file included in the Assets.zip file to
the Game atlas before you continue or you may create your own 128 x 160 sprite.
We will use a Rigidbody to detect collisions between the enemies and our barriers.

Once the Enemy.png sprite has been added to the Game atlas, follow the given steps:

1.	 Select our Viewport GameObject and perform the following steps:
1.	 Create a new child with Alt + Shift + N.
2.	 Rename this new child as Spaceship.

2.	 Select our new Spaceship GameObject.

Chapter 7

[139]

3.	 Attach a collider to it by navigating to NGUI | Attach a Collider and
perform the following steps:

1.	 Uncheck its Is Trigger Boolean to detect collisions.
2.	 Set Size to {128, 160, 1}.

4.	 Attach a Rigidbody component to it by navigating to Component | Physics
and then perform the following steps:

1.	 Uncheck its Use Gravity Boolean.
2.	 Check its Is Kinematic Boolean.
3.	 Check the Freeze Position and Freeze Rotation Booleans for all its

Constraints in order to avoid any unwanted behavior.

5.	 With our selected Spaceship GameObject, create a new Sprite by navigating
to NGUI | Create | Sprite:

1.	 Change its Sprite to our new Enemy sprite.
2.	 Change its Dimensions to 128 x 160.
3.	 Set its Depth to 1.

6.	 Drag our Spaceship GameObject in your Prefabs folder.
7.	 Delete our Spaceship instance from the scene.

Ok, we now have our Enemy prefab ready. Let's add a new script to it that will
handle the enemy's initialization and movement, and perform the following steps:

1.	 In the Project view, select our Spaceship prefab.
2.	 Create and attach a new EnemyController.cs C# script to it.
3.	 Open this new EnemyController.cs script.

Let's create a new Initialize() method that will set the enemy's position outside
the game with a random X and a tween duration depending on the float value that is
passed as a parameter in the following manner:

public void Initialize(float _movementDuration)
{
 //Get the Viewport's Background size
 Vector2 bgSize =
 transform.parent.parent.FindChild("Background").GetComponent
 <UISprite>().localSize;
 //Get this enemy's sprite size
 Vector2 spriteSize =

Creating a Game with NGUI

[140]

 transform.FindChild("Sprite").GetComponent<UISprite>().localSize;
 //Set its position to a random X, and Y of -(enemyHeight/2)
 transform.localPosition =
 new Vector3(Random.Range(spriteSize.x *0.5f, bgSize.x -
 (spriteSize.x *0.5f)), -(spriteSize.y *0.5f), 0);
 //Tween its position towards end of background
 TweenPosition.Begin(gameObject, _movementDuration,
 new Vector3(transform.localPosition.x, -bgSize.y +
 (spriteSize.y * 0.5f), 0));
}

We used spriteSize.x * 0.5f in the preceding code because our enemy has a
centered pivot and we want to avoid spawning it outside the background's width.

The _movementDuration parameter is used to define how much time the enemy
will take to cross our entire background; it is used as speed. But to balance the speed,
a value of 10 is used, which means that the enemy will need 10 seconds to hit the
bottom of the background.

At this stage, your hierarchy should look as follows:

Creating the enemy spawn controller
Before we can launch the game, we need to add an EnemySpawnController.cs
script that will handle enemy spawn rates and instantiate enemies when needed.
To add the script, perform the following steps:

1.	 Select the Enemies GameObject from Viewport.
2.	 Create and attach a new EnemySpawnController.cs C# script.
3.	 Open this new EnemySpawnController.cs script.

Chapter 7

[141]

In this new script, we need to add a SpawnEnemy() coroutine that will be called at
random intervals to instantiate Enemy prefabs and initialize them with the correct
position and tween duration. First, we need to declare these variables as shown in
the following code snippet:

//We need our Enemy Prefab for Instantiation
public Object enemyPrefab;
//Random-control variables
public int firstEnemyDelay = 1;
//Min and Max intervals between 2 spawns
public float minInterval = 4;
public float maxInterval = 15;
//Min and Max Enemy MovementTime
public float minMovementTime = 20;
public float maxMovementTIme = 50;

The variables declared in the previous code will be used to control our random
values. You may change them in the Inspector view. We need to assign our
enemyPrefab variable.

To do this, go back to Unity and follow the given steps:

1.	 Select the Enemies GameObject from Viewport.
2.	 Drag our Spaceship prefab from the Project view inside the Enemy Prefab

field in Enemy Spawn Controller.

Ok, the necessary variables are initialized. Now, let's go back to our
EnemySpawnController.cs script and add a new SpawnEnemy() coroutine
by using the following code snippet:

//Coroutine that spawns enemies
IEnumerator SpawnEnemy()
{
 //First time, set to firstEnemyDelay
 float delay = firstEnemyDelay;
 //Loop while the game is running
 while(true){
 //Wait for the correct delay
 yield return new WaitForSeconds(delay);
 //Create a new enemy, stock its EnemyController
 EnemyController newEnemy =
 NGUITools.AddChild(gameObject, enemyPrefab as
 GameObject).GetComponent<EnemyController>();
 //Initialize it with random speed

Creating a Game with NGUI

[142]

 newEnemy.Initialize(Random.Range (minMovementTime,
 maxMovementTIme));
 //Set the new random delay
 delay = Random.Range(minInterval, maxInterval);
 }
}

Our coroutine is ready. Let's start it when the game starts running. We can use the
Start() method for this. Add this method just below our SpawnEnemy() coroutine
in the following manner:

void Start ()
{
 //Start the Spawn Coroutine with first delay
 StartCoroutine(SpawnEnemy());
}

Save the script and click on the play button. The first enemy is spawned after the
firstEnemyDelay. After the first enemy, new enemies are spawned at random X
positions, at random intervals, and at a random speed.

Your Hierarchy view should look as follows when a few enemies have spawned:

Chapter 7

[143]

Spawned enemies move down and stop at the end of the Viewport's background as
shown in the following screenshot:

Forwarding events to viewport
Ok, we now have our mobile enemies, but we still have a slight problem. You may
have noticed that you cannot drag the viewport if you click on an enemy. We had
the same problem before with the ActiveBarrier prefab.

We need to add a UIForwardEvents component to the Spaceship prefab by
performing the following steps:

1.	 In the Project view, select our Spaceship prefab.
2.	 Attach a Forward Events component to it by navigating to Component |

NGUI | Interaction. Then perform the following steps:
1.	 Check its OnPress Boolean.
2.	 Check its OnDrag Boolean.

3.	 Open its attached EnemyController.cs script.

Creating a Game with NGUI

[144]

Add the following line at the end of the Initialize() method of
EnemyController.cs script:

//Set the Viewport as target for UIForwardEvents
GetComponent<UIForwardEvents>().target =
 transform.parent.parent.gameObject;

You can now pan the viewport even if you click on an enemy. It is time to
handle collisions with barriers.

Handling enemy collisions
We need to handle collisions between our enemies and ActiveBarriers.
Since we have a Rigidbody attached to our Enemy prefab, it will receive the
OnTriggerEnter() event when it hits the collider of an ActiveBarrier GameObject.

Once the collisions with ActiveBarriers are implemented, we'll add collisions
with the bottom of the screen, which will reduce the player's health.

Collisions with active barriers
First of all, we must disable the ActiveBarrier's collider by default and enable it
when the barrier is built in the following manner:

1.	 In the Project view, select our ActiveBarrier prefab.
2.	 Disable its Box Collider component using its checkbox.
3.	 Open the ActiveBarrierController.cs script attached to it.

4.	 We will need a new built boolean that will help us know if the barrier has
finished its building process. Along with our UISlider and UILocalize
variables, declare the following:
private bool built = false;

5.	 Now, add the following two lines at the end of the BuildFinished()
method:

//Set the build value to true and activate collider
built = true;
collider.enabled = true;

Chapter 7

[145]

6.	 Ok, now the collider is enabled only when the barrier is built. We can add a
HitByEnemy() method with the concerned enemy passed as a parameter that
will destroy the barrier and the enemy in the following manner:
public void HitByEnemy(EnemyController enemy)
{
 //If the barrier isn't built, don't go further
 if(!built) return;
 //Else, kill the enemy
 StartCoroutine(enemy.Kill());
 //Kill the barrier too
 StartCoroutine(RemoveBarrier());
}

7.	 Here, we start two coroutines: one to kill the enemy and another one to
remove the barrier. Let's add the RemoveBarrier() coroutine now with
the following code snippet:
IEnumerator RemoveBarrier()
{
 //Tween for smooth disappearance
 TweenScale.Begin(gameObject, 0.2f, Vector3.zero);
 //Notify the Viewport that a Barrier has been removed
 transform.parent.SendMessage("BarrierRemoved");
 //Wait for end of tween, then destroy the barrier
 yield return new WaitForSeconds(0.2f);
 Destroy(gameObject);
}

The coroutine in the previous code scales down the barrier before it is
destroyed. We send a message to the parent (Viewport) because we
need to decrease the barrierCount value.

8.	 Let's add the BarrierRemoved() method in the ViewportHolder.cs script.
In the Hierarchy view, select our Viewport GameObject and open the
ViewportHolder.cs script attached to it.

9.	 In our ViewportHolder.cs script, add the following new
BarrierRemoved() method:
void BarrierRemoved()
{
 //Decrease the barrierCount value
 barrierCount--;
}

Creating a Game with NGUI

[146]

10.	 The barrierCount value will be updated as soon as a barrier is destroyed.
Now, let's open the EnemyController.cs script and add the Kill()
coroutine as shown in the following code snippet:
public IEnumerator Kill()
{
 //Tween for smooth disappearance
 TweenScale.Begin(gameObject, 0.2f, Vector3.zero);
 //Deactivate the collider now
 collider.enabled = false;
 //Wait end of tween, then destroy the enemy
 yield return new WaitForSeconds(0.2f);
 Destroy(gameObject);
}

11.	 Great! All of our coroutines and methods are ready. Now, we need to
call the HitByEnemy() method of the concerned ActiveBarrier when
a collision occurs.

12.	 We just have to add the following OnTriggerEnter() method inside
our EnemyController.cs script, which will call this method only if the
collided object actually is a barrier:
void OnTriggerEnter(Collider other)
{
 //Store the collided object's ActiveBarrierController
 ActiveBarrierController barrierController =
 other.GetComponent<ActiveBarrierController>();
 //If it has a BarrierController, call HitByEnemy
 if(barrierController != null)
 barrierController.HitByEnemy(this);
}

13.	 Save all of the scripts and click on the play button.

If you place a barrier on an enemy's trajectory, both of them will be destroyed when
they collide! If the building process isn't over, nothing happens.

In the case where a barrier finishes its building process while an enemy is still inside
it, a collision will occur. Perfect!

Now that the player can destroy his or her enemies, let's add a way for the enemies
to destroy the player.

Chapter 7

[147]

Colliding with the bottom of the screen
We can now add a collider at the bottom of the viewport's background that will
destroy enemies and reduce the player's health. Before we do this, let's create a
Healthbar with a HealthController script.

Healthbar
To create this Healthbar, we need the Button.png file available in the Assets.zip
file. If you haven't added it to the Game Atlas as a sliced sprite yet, please do so
before you continue.

We will use a Progress Bar to create a Healthbar on which we will add a
HealthController.cs script to handle the display of damage and health points.
Perform the following steps to do so:

1.	 In the Hierarchy view, select the UI GameObject from Anchor.
2.	 Open the Widget Tool window by navigating to NGUI | Create a Widget.

Then perform the following steps:
1.	 Select our Game Atlas.
2.	 Select the Progress Bar template.
3.	 Select our Button sprite for the Empty field.
4.	 Select our Button sprite for the Full field.
5.	 With our UI GameObject selected, click on the Add To button.

3.	 Select the new Progress Bar GameObject and rename it as Healthbar.
4.	 Attach an Anchor to it by navigating to NGUI | Attach. Then perform the

following steps:
1.	 Drag our Viewport GameObject in the Container field.
2.	 Set the Side parameter to Top.
3.	 Set Pixel Offset to {-160, -30}.

5.	 Select the Background GameObject from Healthbar and perform the
following steps:

1.	 Set Color Tint to {255, 120, 120, 140}.
2.	 Set Dimensions to 320 x 42.
3.	 Change Sprite Type to Sliced.
4.	 Click on the Edit button next to the Sprite field.
5.	 Set all four border values to 6 for slicing parameters.

Creating a Game with NGUI

[148]

6.	 Select the Foreground GameObject from Healthbar and then perform the
following steps:

1.	 Set Color Tint to {25, 245, 255, 255}.
2.	 Set Dimensions to 320 x 42.
3.	 Change Sprite Type to Sliced.

Ok, we have a configured health bar centered at the top of the screen. We need
to add a script to it that will handle health points and modify the value of Slider
accordingly. The steps to do so are as follows:

1.	 In the Hierarchy view, select our Healthbar GameObject.
2.	 Create and add a new HealthController.cs script to it.
3.	 Open this new HealthController.cs script.

In this new script, we will save a static reference to the instance of the
HealthController class so that its methods are easily accessible from other scripts.
First, let's declare necessary variables and initialize them on Awake() as shown in the
following code:

//Static variable that will store this instance
public static HealthController Instance;
//We will need the attached slider and a HP value
private UISlider slider;
private float hp = 100;

void Awake()
{
 //Store this instance in the Instance variable
 Instance = this;
 //Get the slider Component
 slider = GetComponent<UISlider>();
}

Ok, our variables are now initialized correctly. Let's create a Damage() method that
will reduce the hp value and update the slider as follows:

public void Damage(float dmgValue)
{
 //Set new HP value with a clamp between 0 and 100
 hp = Mathf.Clamp(hp - dmgValue, 0, 100);
 //Update the slider to a value between 0 and 1

Chapter 7

[149]

 slider.value = hp * 0.01f;
 //If hp <= 0, restart level
 if(hp <= 0)
 Application.LoadLevel(Application.loadedLevel);
}

Great! The Damage() method is ready. Let's create the EndOfScreen widget that
will collide with the enemies.

The EndOfScreen widget
Let's create the EndOfScreen widget that will help detect enemy collisions
as follows:

1.	 In the Hierarchy view, select our Viewport GameObject and perform
the following steps:

1.	 Create a new child by pressing Alt + Shift + N.
2.	 Rename this new child as EndOfScreen.

2.	 Attach a collider to it by navigating to NGUI | Attach a Collider and set
Size to {3840, 43, 1}.

3.	 Attach Anchor to it by navigating to NGUI | Attach.
1.	 Drag the Background GameObject from Viewport in the

Container field.
2.	 Set its Side parameter to Bottom.
3.	 Set its Pixel Offset to {0, 33}.

4.	 Click on the Untagged / Add Tag… button at the top of the Inspector view.
5.	 Create a new DamageZone tag.
6.	 Select our EndOfScreen GameObject.
7.	 Set Tag to DamageZone.
8.	 Make sure our EndOfScreen GameObject is selected.
9.	 Create a new sprite by navigating to NGUI | Create | Sprite and perform

the following steps:

1.	 Set its Atlas type to the SciFi Atlas.
2.	 Set its Sprite type to the Honeycomb sprite.
3.	 Set its Sprite Type to Tiled.

Creating a Game with NGUI

[150]

4.	 Set its Color Tint values to R: 255, G: 120, B: 120, and A: 255.
5.	 Set its Depth value to 2.
6.	 Set its Dimensions parameter to 3840 x 43.

Good. We now have an EndOfScreen limit with a sprite and a collider. Now,
we need to edit our EnemyController.cs script's OnTriggerEnter() method to
check if the collided object has the DamageZone tag and hurt the player if needed.
Perform the following steps to do so:

1.	 In the Project view, select our SpaceShip prefab and open the
EnemyController.cs script attached to it.

2.	 Within the EnemyController.cs script, at the very first line of the
OnTriggerEnter() method, add the following lines to check if the
collided object has a DamageZone tag:
//Is the collided object a DamageZone?
if(other.CompareTag("DamageZone"))
{
 //In that case, hurt the player
 HealthController.Instance.Damage(30f);
 //Then, kill the enemy and don't go further
 StartCoroutine(Kill());
 return;
}

3.	 Save all of the scripts and click on the play button. Now, our enemies are
destroyed when they collide with the end of the Viewport, and the player's
health is decreased!

Now, let's add another way to destroy our enemies.

Creating self-destruct code
Dropping barriers on the screen is not enough. We will use a self-destruct code
to destroy enemies too.

Each enemy will get a chance to have a self-destruct code. If it has one,
an empty slider with Code Encrypted displayed inside it will appear above
the concerned enemy.

Chapter 7

[151]

When the player clicks on the enemy, the hacking process starts. When the hacking
is complete, a word will appear as shown in the following screenshot, and the player
will have to type it on his keyboard to destroy it:

The hacking slider
Let's start by creating the hacking slider indicator inside our Spaceship prefab by
performing the following steps:

1.	 In the Project view, select our Spaceship prefab.
2.	 Drag it in the Hierarchy view as child of the Viewport GameObject.
3.	 Open the Wiget Tool window by navigating to NGUI | Create a Widget

and then perform the following steps:
1.	 Select the Game Atlas.
2.	 Select the Progress Bar template.
3.	 Select the Button sprite for the Empty field.
4.	 Select the Button sprite for the Full field.

4.	 With our Spaceship instance selected, click on the Add To button.
5.	 Select the new Progress Bar GameObject and perform the following steps:

1.	 Rename it as DestructCode.
2.	 Set its Transform position to {-100, 100, 0}.
3.	 Set the value of UISlider to 0.

6.	 Select the Background GameObject from DestructCode. Then perform the
following steps:

1.	 Change its Color Tint values to {255, 140, 140, 255}.
2.	 Set its Depth value to 2.

Creating a Game with NGUI

[152]

7.	 Select the Foreground GameObject from DestructCode and then perform
the given steps:

1.	 Change Color Tint to {50, 180, 220, 255}.
2.	 Set its Depth value to 3.

Ok, the slider is ready. Let's add a label that will display Code Encrypted and
will change to the self-destruct code when the hacking process is finished.

1.	 In the Hierarchy view, select our DestructCode GameObject.
2.	 Open the Widget Tool window by navigating to NGUI | Create a Widget

and perform the given steps:
1.	 Select the SciFi Font – Normal font.
2.	 Select the Label template.
3.	 Change the Color to R: 255, G: 215, B: 190, and A: 255.

3.	 With the DestructCode GameObject selected, click on the Add To button.
4.	 Select the new Label GameObject from DestructCode and perform the

following steps:

1.	 Set its Transform position to {100, 0, 0}.
2.	 Set its text to Code Encrypted.

Your Hierarchy view and Spaceship should look as follows:

Chapter 7

[153]

Great! Let's apply these new modifications to our Spaceship prefab by performing
the following steps:

1.	 In the Hierarchy view, select our Spaceship GameObject.
2.	 Click on the Apply button at the top of the Inspector view to update

the prefab.
3.	 Delete the Spaceship instance from our Hierarchy view.

Ok, we now have a slider that will indicate the hacking status and a label that
will display the self-destruct code.

Self-destruct code
Let's add some self-destruct code and hacking status in the localization files.
Open the English.txt and add the following lines:

//Hacking status
CodeEncrypted = Code Encrypted
Hacking = [FF6666]Hacking...
//Self-Destruct Codes
Space = space
Neptune = neptune
Moon = moon
Mars = mars
Jupiter = jupiter

Now, open the French.txt file and add the following lines:

//Hacking status
CodeEncrypted = Code Crypté
Hacking = [FF6666]Piratage...
//Self-Destruct Codes
Space = espace
Neptune = neptune
Moon = lune
Mars = mars
Jupiter = jupiter

Good! We now have our necessary localization strings.

Creating a Game with NGUI

[154]

Assigning code to an enemy
We will now add a new SetDestructCode() method in our EnemyController.cs
script that will assign a self-destruct code to our enemy during initialization.
First, let's add the necessary global variables to it.

Open our EnemyController.cs script and add the following global variables:

//Boolean to check if enemy is hacked or not
public bool hacked = false;
//We will need the Self-Destruct Code Label
private UILabel codeLabel;
//We will also need the hacking slider
private UISlider hackSlider;
//We will need to store the destructCode
public string destructCode = "";
//We will need a hackSpeed float
float hackSpeed = 0.2f;

We must set these variables. Add the following lines at the end of the
Initialize() method:

//Get the hacking slider
hackSlider =
 transform.FindChild("DestructCode").GetComponent<UISlider>();
//Get the hacking status label
codeLabel =
 hackSlider.transform.FindChild("Label").GetComponent<UILabel>();

Ok, now, let's add the SetDestructCode() method that will assign a self-destruct
code to the enemy. This method will have a string parameter containing the key of
the self-destruct code to be assigned, as shown in the following code:

public void SetDestructCode(string randomWordKey)
{
 //If the randomWordKey is not empty...
 if(!string.IsNullOrEmpty(randomWordKey))
 {
 //... Get the corresponding localized code
 destructCode = Localization.instance.Get(randomWordKey);
 //Set the Label to "Code Encrypted"
 codeLabel.text = Localization.instance.Get("CodeEncrypted");
 }
 //If the randomWordKey is empty, disable hacking slider
 else
 hackSlider.gameObject.SetActive(false);
}

Ok, we have a method that sets the correct destruct code. Now, let's create a Hack()
coroutine that will be called to start the hacking process.

Chapter 7

[155]

The hacking process
The Hack() coroutine will gradually fill the hacking slider and display the enemy's
self-destruct code when the hacking is complete.

Add the Hack() coroutine to the EnemyController.cs script using the following
code snippet:

IEnumerator Hack()
{
 //Set the Label to "Hacking..."
 codeLabel.text = Localization.instance.Get("Hacking");
 //While hacking slider is not full
 while(hackSlider.value < 1)
 {
 //Increase slider value, framerate independant
 hackSlider.value += Time.deltaTime * hackSpeed;
 //Wait for next frame
 yield return null;
 }
 //Make sure slider is at 1
 hackSlider.value = 1;
 //Set the hacked bool to true for this enemy
 hacked = true;
 //Display the Self-Destruct code now
 codeLabel.text = "[99FF99]" + destructCode;
}

Now, let's add an OnClick() method that will actually launch the hacking process
when the enemy is clicked on by the player. We do this in the following manner:

void OnClick()
{
 //If the enemy has a destruct code, launch hacking
 if(!string.IsNullOrEmpty(destructCode))
 StartCoroutine(Hack());
}

Ok, the methods are set for our enemy. Now, we can edit our
EnemySpawnController.cs script to call the SetDestructCode() method
when a new enemy is initialized and pass a random destruct code in parameter.
First, we will add the necessary variables.

We will need a List array to store the enemies in the scene. A List is like an array
but easier to manage with useful methods, such as Add() and Remove(). In order to
use a List, you need to include a specific library.

Creating a Game with NGUI

[156]

Open the EnemySpawnController.cs script and simply add the following line at the
very beginning of the file, along with the two other include lines already present:

//Include Lists
using System.Collections.Generic;

Now, add these new global variables within our EnemySpawnController class:

//Chance for each enemy to have a destructCode
public float destructCodeChance = 60;
//Array of strings to store destructCodes keys
public string[] wordKeys;
//We will need a list of enemies
private List<EnemyController> enemies;
//We will need a static instance of this script
public static EnemySpawnController instance;
//This will store the current word typed by the player
public string currentWord;

Ok, now initialize some of these variables in the new Awake() method:

void Awake()
{
 //Store the instance of this script
 instance = this;
 //Initialize the List
 enemies = new List<EnemyController>();
}

Before we continue, let's assign the remaining variables in the Inspector view. Save
the script, go back to Unity, and select our Enemies GameObject from Viewport.

Now, set the Word Keys array and spawning values as follows:

Chapter 7

[157]

Good, our Word Keys array is now set up. Let's return to our
EnemySpawnController.cs script and add the following lines
in the SpawnEnemy() coroutine at the very end of its while() loop:

//Create a new empty string for destruct code
string randomCode = "";
//If the random is valid, get a random word
if(Random.Range(0f,100f) < destructCodeChance)
randomCode = GetRandomWord();
//Set the enemy's the DestructCode newEnemy.
SetDestructCode(randomCode);
//Add the enemy to the list of enemies
enemies.Add(newEnemy);

When an enemy is initialized, the previous code adds it to the List of enemies
and sets its self-destruct code. Now, using the following code, let's create the
GetRandomWord() method that will return one of our predefined words:

private string GetRandomWord()
{
 //Return a random Word Key
 return wordKeys[Random.Range(0, wordKeys.Length)];
}

Good. Some of our enemies have a destruct code assigned. Let's just add a method
to remove an enemy from the List, which will be called each time an enemy is
destroyed. The method is added as follows:

public void EnemyDestroyed(EnemyController destroyedEnemy)
{
 //Remove the destroyed enemy from the List
 enemies.Remove(destroyedEnemy);
}

Open the EnemyController.cs script. Within the Kill() coroutine, just before
the Destroy(gameObject) line, add the following line to remove the enemy from
the List:

//Remove enemy from the List
EnemySpawnController.instance.EnemyDestroyed(this);

Perfect. Save all of the scripts and hit the play button. If you click on an enemy
that has the hacking slider, the hacking process starts and displays a destruct code
when finished.

The last step is to handle the player's input in order to check if he or she types one of
the enemies' self-destruct words.

Creating a Game with NGUI

[158]

Handling player input
We will use the Update() method of our EnemySpawnController.cs script to check
which characters the player types with his or her keyboard. These characters will be
stored one by one and will be compared to our enemies' destruct codes.

Open our EnemySpawnController.cs script and create a new Update() method:

void Update()
{
 //If the player has typed a character
 if(!string.IsNullOrEmpty(Input.inputString))
 {
 //Add this new character to the currentWord
 currentWord += Input.inputString;
 //We need to know if the code matches at least 1 enemy
 bool codeMatches = false;
 //Check enemies' destruct codes one by one
 for each(EnemyController enemy in enemies)
 {
 //If the enemy has a destruct code AND is hacked
 if(enemy.destructCode != "" && enemy.hacked)
 {
 //currentWord contain the destruct code?
 if(currentWord.Contains(enemy.destructCode))
 {
 //Yes - Destroy it and update our bool
 StartCoroutine(enemy.Kill());
 codeMatches = true;
 }
 }
 }
 //Did the word match at least 1 enemy?
 if(codeMatches)
 //In that case, reset the currentWord to empty
 currentWord = "";
 }
}

Save this script. Now, when you hack an enemy, you can destroy it by typing its
self-destruct code! If multiple enemies have the same code, they will be destroyed
simultaneously.

Chapter 7

[159]

Typing a word may scroll the viewport; this is because Q, A, S,
and D are set as Horizontal and Vertical axes by default. Go to
Edit | Project Settings | Input and delete (a, d) and (s, w) from
the Horizontal and Vertical axes' Alt Positive Button and Alt
Negative Button fields respectively.

Summary
In this chapter, we used everything we learned in the earlier chapters with respect
to creating a simple game.

We created an enemy spawning system, which instantiates enemies on the scene.
Rigidbodies and colliders have been added to handle collisions between enemies
in the barriers at the bottom of the screen.

We also added a health bar widget that is linked to health points; if four enemies
touch the end of the screen, the game restarts.

The Update() method was used to handle player input and compare the typed
word with destruct codes in order to destroy enemies if needed.

For now, the game is quite simple. Some ideas to enhance the game are as follows:

•	 Add more self-destruct words
•	 Display what the player types on the screen (visual feedback)
•	 Slowly increase the spawning rate as the player destroys enemies
•	 Slowly increase the enemy's speed as the player destroys enemies
•	 Add a scoring system
•	 Implement the Time power (hint: Time.timeScale)
•	 Implement the Bomb power
•	 Make the hack time depend on barrierCount (more barriers, faster hacking)
•	 Include the possibility of removing an ActiveBarrier with a right click
•	 Add clickable objects to regain health; some enemies leave them behind
•	 Add a combo reward if the player destroys multiple enemies

within 3 seconds
•	 Include harder words for hard difficulty

Creating a Game with NGUI

[160]

•	 Insert a visual indicator (arrow) to show the direction of the enemies
outside the screen

•	 Add more visual variety in the background (galaxies and so on) to
help orientation

•	 Display a game over screen with the main menu and restart buttons
•	 Create tutorial pop ups

If you add some of the previous features, our game will become more interesting.

In order to improve your knowledge of NGUI, you can refer to more tutorials at
http://www.tasharen.com/forum/index.php?topic=6754.

The complete NGUI scripting documentation is available at
http://www.tasharen.com/ngui/docs/index.html.

That's it! We have now finished working with Unity and NGUI using this book.
Thank you for your attention and I wish you all the best for your future projects.

Index
Symbols
2D User Interface, NGUI

creating 10
parameters, UI Wizard 10
UI layer, separating 11
UI Wizard 10
window, UI Wizard 10

A
ActiveBarrier prefab

building process 112, 113
creating 109-111
events, forwarding to viewport 114
instantiating 111, 112

Anchor GameObject
about 17
parameters 17, 18

animations
hide options, clipping to 68-71
smooth powers apparition 68
using 67

Application.Quit() method 94
Atlas prefab 119
Awake() method 90

B
Barrier availability tool tip

notifications, setting up 117
BarrierObject cooldown system

BarrierObject smooth apparition 117
implementing 115, 116

BarrierRemoved() method 145

BMFont
about 129
downloading 129

BuildFinished() method 144
button widget

about 31
creating 31
exit button, adding 33, 34
parameters 32
play button, adding 33, 34

C
Camera GameObject

about 13
parameters 14-16

C# scripting
about 79
events methods 79
tween methods 84

custom UI structure
about 11
anchor 17
camera 13
panel 18
UI Root (2D) 11

D
Damage() method 149
drag-and-drop system

about 54
power selection 54

draggable barriers
BarrierObject prefab, creating 105-107
creating 104
dropping, on viewport 107, 108

[162]

E
EndOfScreen widget

creating 149, 150
enemy collisions, handling

about 144
active barriers collisions 144-146
bottom of screen collision 147
EndOfScreen widget, creating 149
Healthbar, creating 147, 148

EnemySpawnController.cs script 140
enemy spawning

about 138
enemies container, creating 138
enemy prefab, creating 138, 139
enemy spawn controller, creating 140, 141
events, forwarding to viewport 143

error notification 88
events methods

about 79
OnClick() method 80
OnDrag(Vector2 delta) method 80
OnDrop(GameObject droppedObj)

method 80
OnHover(bool state) method 79
OnInput(string text) method 80
OnKey(KeyCode key) method 80
OnPress(bool state) method 79
OnScroll(float delta) method 80
OnSelect() method 80
OnTooltip(bool state) method 80
OnTooltip() event, creating 81
tool tip, creating 81
tool tip, displaying 82, 84

ExitPressed() method 94

F
filled sprite 28
font

adding 129
assigning, to Label 132
creating, in Unity 131
exporting, BMFont used 129, 130

G
Game atlas

available powers icons, sprites 122, 123
creating 120
font, adding 129
MainMenu customization 133
Main Menu window, sliced sprites 127
selected powers icons, sprites 123, 124
simple sprites, adding 121
sliced sprites, adding 125
sliced sprites, configuring 126, 127
sprites, adding 120
tiled sprites, adding 128

game, creating
enemy collisions, handling 144
enemy spawning 138
self-destruct code, creating 150

Game scene
preparing 97, 98

GetRandomWord() method 157

H
Healthbar

creating 147
HitByEnemy() method 145

I
image buttons 35

L
label widget

about 28
creating 28
parameters 29
title bar, creating 29-31

localization system
about 73
label, localizing 76
language selection box 74, 75
localization component 74
localization files, creating 74

[163]

M
MainMenu customization

performing 133, 134

N
NGUI (Next-Gen User Interface)

about 7
animations 67
atlases 8
Atlas prefab 119
C# scripting 79
drag-and-drop system 54
draggable panel 52
error notification 88-92
events 8
game, creating 137
importing 9
localization 8
localization system 73
scrollable text 72
shaders 9
UIButton Keys component 86
UI, creating 10
widgets 21
Widget Wizard 21

NGUI Professional License 7
NGUI Standard License 7

O
OnClick() method 80
OnDifficultyChange() method 49
OnDrag(Vector2 delta) method 80
OnDrop(GameObject droppedObj)

method 80
OnEnable() method 90
OnHover(bool state) method 79
OnInput(string text) method 80
OnKey(KeyCode key) method 80
OnPress(bool state) method 79
OnScroll(float delta) method 80
OnSelect() method 80
OnTooltip(bool state) method 80
OnTooltip() event 81

OnTriggerEnter() event 144
OnTriggerEnter() method 150
OnVolumeChange() method 42

P
Panel Clipping 68
Panel GameObject

about 18
parameters 18, 19

Pixel Offset parameter 35
PlayerPrefs() method 93
popup list widget

creating 46
difficulty selector, creating 47, 49
parameters 46

powers selection, drag-and-drop system
current item, removing 66
current item, replacing 64, 65
draggable items container, creating 55, 56
draggable items, creating 56- 59
drop surface, creating 59, 60
invalid drop, handling 63
prefabs, creating 60-62

R
RecreateDragItem() method 66

S
Scale Tweens 68
SciFi Atlas

about 22
selecting 22

scrollable text
about 72
creating 72, 73

scrollable viewport
about 97
building 97, 98
draggable background 99
keyboard scrolling 103, 104
scroll bars, linking 100-102

self-destruct code
adding, localization files 153
assigning, to enemy 154

[164]

creating 150
hacking process 155, 157
hacking slider, creating 151, 153
player input, handling 158

SetDestructCode() method 154
simple Tween 85
Site License, NGUI 7
sliced sprite 26
slider widget

creating 38
parameters 39
volume slider, creating 39-42

smooth Tween 85, 86
sprites, adding to Atlas

about 120
simple sprites 121
sliced sprites 125
tiled sprites 128

sprites widget
about 25
filled sprite 28
sliced sprite 25, 26
tiling sprite 26

T
text input widget

about 35
creating 35
nickname box, creating 36, 37
parameters 36

tiling sprite 26, 27
toggle widget

about 42
creating 42
parameters 43
sound toggle, creating 43-46

transparency level 19
tween methods

about 84-86
main menu apparition 85

TweenPosition class 86
Tween Position component

about 85
simple Tween 85
smooth Tween 85, 86

U
UIAnchor component 27
UIButton Keys component

keys for navigation, using 86, 87
UIButton Message component 93-95
UIDraggable Panel component

about 52
main menu, adding 53
parameters 52

UIForward Events 95
UIInput component

nickname, saving 93
UIRoot component

about 11
parameters 12

UISprite component 26
UIStretch component 27
Unity

font, creating 131
UnityGUI

about 7
versus, NGUI 7, 8

W
widgets

about 21
Atlas, selecting 22
button widget 31, 32
creating 21
label widget 28
moving 23
parameters 24
popup list widget 46
rotating 23
scaling 24
slicer widget 38
sprites 25
text input widget 35
toggle widget 42
transforming 23
widget, creating from template 22

Widget Wizard 21

Thank you for buying
NGUI for Unity

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity 4.x Cookbook
ISBN: 978-1-84969-042-3 Paperback: 386 pages

Over 100 recipes to spice up your Unity skills

1.	 A wide range of topics are covered, ranging
in complexity, offering something for every
Unity 4 game developer

2.	 Every recipe provides step-by-step instructions,
followed by an explanation of how it all works,
and alternative approaches or refinements

3.	 Book developed with the latest version
of Unity (4.x)

Unity Shaders and Effects
Cookbook
ISBN: 978-1-84969-508-4 Paperback: 268 pages

Discover how to make your Unity projects look
stunning with Shaders and screen effects

1.	 Learn the secrets of creating AAA quality
Shaders without having to write long
algorithms

2.	 Add realism to your game with stunning
Screen Effects

3.	 Understand the structure of Surface Shaders
through easy to understand step-by-step
examples

Please check www.PacktPub.com for information on our titles

Unity for Architectural
Visualization
ISBN: 978-1-78355-906-0 Paperback: 144 pages

Transform your architectural design into an
interactive real-time experience using Unity

1.	 Simple instructions to help you set up an
interactive and real-time scene

2.	 Excellent tips on making your presentations
attractive by creating interactive designs

3.	 Most important features of computer games
covered, to develop compelling, interactive
scenes for so-called “serious games”

Unity 4.x Game AI Programming
ISBN: 978-1-84969-340-0 Paperback: 232 pages

Learn and implement game AI in Unity3D with a lot
of sample projects and next-generation techniques to
use in your Unity3D projects

1.	 A practical guide with step-by-step instructions
and example projects to learn Unity3D scripting

2.	 Learn pathfinding using A* algorithms as well
as Unity3D pro features and navigation graphs

3.	 Implement finite state machines (FSMs), path
following, and steering algorithms

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with NGUI
	What is NGUI?
	UnityGUI versus NGUI
	Atlases
	Events
	Localization
	Shaders

	Importing NGUI
	Creating your UI
	UI Wizard
	Window
	Parameters

	Separate UI Layer

	Your UI structure
	UI Root (2D)
	Parameters

	Camera
	Parameters

	Anchor
	Parameters

	Panel
	Parameters

	Summary

	Chapter 2: Creating Widgets
	Creating our first widget
	Widget Wizard
	Selecting an atlas
	Creating a widget from a template
	Transforming widgets
	Moving widgets
	Rotating widgets
	Scaling widgets

	Common widget parameters

	Sprites
	Sliced sprites
	Tiled sprites
	Filled sprites

	Labels
	Parameters
	Creating the title bar

	Buttons
	Parameters
	The play and exit buttons

	Text input
	Parameters
	Creating a nickname box

	Slider
	Parameters
	Creating a volume slider

	Toggle
	Parameters
	Creating a sound toggle

	Popup list
	Parameters
	Creating a difficulty selector

	Summary

	Chapter 3: Enhancing Your UI
	NGUI components
	The draggable panel
	Parameters
	Dragging the main menu

	The drag-and-drop system
	Powers selection
	Draggable items container
	Draggable items
	The drop surface
	Prefab instantiated on drop
	Handling an invalid drop
	Replacing the current item
	Removing the current item

	Animations with NGUI
	Smooth powers apparition
	Clipping to hide options

	Scrollable text
	Localization system
	Localization files
	Localization component
	Language selection box
	Localizing a Label

	Summary

	Chapter 4: C# with NGUI
	Events methods
	Creating a tool tip
	The tool tip reference
	Showing the tool tip

	Tween methods
	Main menu apparition
	Simple Tween
	Smooth Tween

	Using keys for navigation
	Error notification
	Saving the nickname
	Sending messages
	Event forwarding
	Summary

	Chapter 5: Building a Scrollable Viewport
	Preparing the Game scene
	The scrollable viewport
	Draggable background
	Linking scroll bars
	Keyboard scrolling

	Creating draggable barriers
	The BarrierObject prefab
	Dropping a barrier on Viewport

	Creating an ActiveBarrier prefab
	The ActiveBarrier prefab
	Instantiating the ActiveBarrier prefab
	Barrier's building process
	Forwarding events to viewport

	BarrierObject cooldown
	Cooldown implementation
	BarrierObject smooth apparition

	The barrier availability tool tip
	Summary

	Chapter 6: Atlas and Font Customization
	The Atlas prefab
	Creating a new Atlas
	Adding sprites to Atlas
	Simple sprites
	Adding sprites to Atlas
	Available powers icons
	Selected powers icons

	Sliced sprites
	Adding a sprite to Atlas
	Configuring a sliced sprite
	The Main Menu window

	Tiled sprites

	Adding a font
	Exporting a font using BMFont
	Creating a font in Unity
	Assigning a new font to Label

	Customizing the MainMenu
	Summary

	Chapter 7: Creating a Game with NGUI
	Enemy spawning
	Creating the enemies container
	Creating the Enemy prefab
	Creating the enemy spawn controller
	Forwarding events to viewport

	Handling enemy collisions
	Collisions with active barriers
	Colliding with the bottom of the screen
	Healthbar
	The EndOfScreen widget

	Creating self-destruct code
	The hacking slider
	Self-destruct code
	Assigning code to an enemy
	The hacking process
	Handling player input

	Summary

	Index

