
[1]

www.allitebooks.com

http://www.allitebooks.org

NLTK Essentials

Build cool NLP and machine learning applications
using NLTK and other Python libraries

Nitin Hardeniya

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

NLTK Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1220715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-690-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Nitin Hardeniya

Reviewers
Afroz Hussain

Sujit Pal

Kumar Raj

Commissioning Editor
Kunal Parikh

Acquisition Editor
Kevin Colaco

Content Development Editor
Samantha Gonsalves

Technical Editor
Rohan Uttam Gosavi

Copy Editors
Neha Vyas

Brandt D'Mello

Samantha Lyon

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Nitin Hardeniya is a data scientist with more than 4 years of experience working
with companies such as Fidelity, Groupon, and [24]7-inc. He has worked on a
variety of business problems across different domains. He holds a master's degree
in computational linguistics from IIIT-H. He is the author of 5 patents in the field
of customer experience.

He is passionate about language processing and large unstructured data. He has
been using Python for almost 5 years in his day-to-day work. He believes that Python
could be a single-point solution to most of the problems related to data science.

He has put on his hacker's hat to write this book and has tried to give you an
introduction to all the sophisticated tools related to NLP and machine learning in
a very simplified form. In this book, he has also provided a workaround using some
of the amazing capabilities of Python libraries, such as NLTK, scikit-learn, pandas,
and NumPy.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Afroz Hussain is a data scientist by profession and is currently associated with a
US-based data science and ML start-up, PredictifyMe. He has experience of working
on many data science projects and has extensive experience of Python, scikit-learn,
and text mining with NLTK. He has more than 10 years of programming and
software development experience along with the experience of working on data
analysis and business intelligence projects. He has acquired new skills in data
science by taking online courses and taking part in Kaggle competitions.

Sujit Pal works at Elsevier Labs, which is a research and development group within
the Reed-Elsevier PLC group. His interests are in the fields of information retrieval,
distributed processing, ontology development, natural language processing, and
machine learning. He is also interested in and writes code in Python, Scala, and Java.
He combines his skills in these areas in order to help build new features or feature
improvements for different products across the company. He believes in lifelong
learning and blogs about his experiences at sujitpal.blogspot.com.

Kumar Raj serves as a data scientist II at Hewlett-Packard Software solutions in
the research and development department, where he is responsible for developing
the analytics layer for core HP software products. He is a graduate from Indian
Institute of Technology, Kharagpur, and has more than 2 years of experience
in various big data analytics domains, namely text analytics, web crawling and
scraping, HR analytics, virtualization system performance optimization, and
climate change forecasting.

www.allitebooks.com

sujitpal.blogspot.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Introduction to Natural Language Processing	 1

Why learn NLP?	 2
Let's start playing with Python!	 5

Lists	 5
Helping yourself	 6
Regular expression	 8
Dictionaries	 9
Writing functions 	 10

Diving into NLTK	 11
Your turn	 17
Summary	 17

Chapter 2: Text Wrangling and Cleansing	 19
What is text wrangling?	 19
Text cleansing	 22
Sentence splitter	 22
Tokenization	 23
Stemming	 24
Lemmatization	 26
Stop word removal	 26
Rare word removal	 27
Spell correction	 28
Your turn	 28
Summary	 29

Chapter 3: Part of Speech Tagging	 31
What is Part of speech tagging	 31

Stanford tagger	 34
Diving deep into a tagger	 35

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Sequential tagger	 36
N-gram tagger	 37
Regex tagger	 38

Brill tagger	 39
Machine learning based tagger	 39

Named Entity Recognition (NER)	 40
NER tagger	 40

Your Turn	 42
Summary	 43

Chapter 4: Parsing Structure in Text	 45
Shallow versus deep parsing	 46
The two approaches in parsing	 46
Why we need parsing	 46
Different types of parsers	 48

A recursive descent parser	 48
A shift-reduce parser	 48
A chart parser	 49
A regex parser	 49

Dependency parsing	 50
Chunking	 52
Information extraction	 55

Named-entity recognition (NER)	 56
Relation extraction	 57

Summary	 58
Chapter 5: NLP Applications	 59

Building your first NLP application	 60
Other NLP applications	 63

Machine translation	 63
Statistical machine translation	 65
Information retrieval	 65

Boolean retrieval	 66
Vector space model	 66
The probabilistic model	 67

Speech recognition	 68
Text classification	 68
Information extraction	 70
Question answering systems	 70
Dialog systems	 71
Word sense disambiguation	 71
Topic modeling	 71

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Language detection	 72
Optical character recognition	 72

Summary	 72
Chapter 6: Text Classification	 73

Machine learning	 74
Text classification	 75
Sampling	 77

Naive Bayes	 80
Decision trees	 83
Stochastic gradient descent	 84
Logistic regression	 85
Support vector machines	 85

The Random forest algorithm	 87
Text clustering	 87

K-means	 88
Topic modeling in text	 89

Installing gensim	 89
References 	 91
Summary	 92

Chapter 7: Web Crawling	 93
Web crawlers	 93
Writing your first crawler	 94
Data flow in Scrapy	 97

The Scrapy shell	 98
Items	 103

The Sitemap spider	 105
The item pipeline	 106
External references	 108
Summary	 108

Chapter 8: Using NLTK with Other Python Libraries	 109
NumPy	 110

ndarray	 110
Indexing	 111

Basic operations	 111
Extracting data from an array	 113
Complex matrix operations	 114

Reshaping and stacking	 116
Random numbers	 118

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

SciPy	 118
Linear algebra	 119
eigenvalues and eigenvectors	 120
The sparse matrix	 121
Optimization	 122

pandas	 124
Reading data	 124
Series data	 127
Column transformation	 128
Noisy data	 128

matplotlib	 130
Subplot	 131
Adding an axis	 133
A scatter plot	 134
A bar plot	 134
3D plots	 134

External references	 135
Summary	 135

Chapter 9: Social Media Mining in Python	 137
Data collection	 138

Twitter	 138
Data extraction	 142

Trending topics	 143
Geovisualization	 144

Influencers detection	 145
Facebook	 146
Influencer friends	 151

Summary	 153
Chapter 10: Text Mining at Scale	 155

Different ways of using Python on Hadoop	 156
Python streaming	 156
Hive/Pig UDF	 156
Streaming wrappers	 157

NLTK on Hadoop	 157
A UDF	 157
Python streaming	 160

Scikit-learn on Hadoop	 161
PySpark	 165
Summary	 167

Index	 169

[v]

Preface
This book is about NLTK and how NLTK can be used in conjunction with other
Python libraries. NLTK is one of the most popular and widely used libraries in
the natural language processing (NLP) community. The beauty of NLTK lies in
its simplicity, where most of the complex NLP tasks can be implemented by using
a few lines of code.

The first half of this book starts with an introduction to Python and NLP. In this
book, you'll learn a few generic preprocessing techniques, such as tokenization,
stemming, and stop word removal, and some NLP-specific preprocessing, such
as POS tagging and NER that are involved in most text-related NLP tasks. We
gradually move on to more complex NLP tasks, such as parsing and other NLP
applications.

The second half of this book focuses more on how some of the NLP applications,
such as text classification, can be deployed using NLTK and scikit-learn. We talk
about some other Python libraries that you should know about for text-mining-related
or NLP-related tasks. We also look at data gathering from the Web and social media
and how NLTK can be used on a large scale in this chapter.

What this book covers
Chapter 1, Introduction to Natural Language Processing, talks about some of the basic
concepts in NLP and introduces you to NLTK and Python. This chapter focuses on
getting you up to speed with NLTK and how to start with the installation of the
required libraries to build one very basic word cloud example.

Chapter 2, Text Wrangling and Cleansing, talks about all the preprocessing steps
required in any text mining/NLP task. In this chapter, we discuss tokenization,
stemming, stop word removal, and other text cleansing processes in detail and how
easy it is to implement these in NLTK.

Preface

[vi]

Chapter 3, Part of Speech Tagging, focuses on giving you an overview of POS tagging.
In this chapter, you will also see how to apply some of these taggers using NLTK
and we will talk about the different NLP taggers available in NLTK.

Chapter 4, Parsing Structure in Text, moves deep in NLP. It talks about different
parsing methods and how it can be implemented using NLTK. It talks about the
importance of parsing in the context of NLP and some of the common information
extraction techniques, such as entity extraction.

Chapter 5, NLP Applications, talks about different NLP applications. This chapter will
help you build one simple NLP application using some of the knowledge you've
assimilated so far.

Chapter 6, Text Classification, describes some of the common classification techniques
in machine learning. This chapter mainly focuses on a text corpus and how to build a
pipeline to implement a text classifier using NLTK and scikit. We also talk about text
clustering and topic modeling.

Chapter 7, Web Crawling, deals with the other aspects of NLP, data science, and data
gathering and talks about how to get the data from one of the biggest sources of
text data, which is the Web. We will learn to build a good crawler using the Python
library, Scrapy.

Chapter 8, Using NLTK with Other Python Libraries, talks about some of the backbone
Python libraries, such as NumPy and SciPy. It also gives you a brief introduction to
pandas for data processing and matplotlib for visualization.

Chapter 9, Social Media Mining in Python, is dedicated to data collection. Here, we talk
about social media and other problems related to social media. We also discuss the
aspects of how to gather, analyze, and visualize data from social media.

Chapter 10, Text Mining at Scale, talks about how we can scale NLTK and some other
Python libraries to perform at scale in the era of big data. We give a brief over view
of how NLTK and scikit can be used with Hadoop.

Preface

[vii]

What you need for this book
We need the following software for this book:

Chapter
number

Software
required
(with
version)

Free/
Proprietary

Download links
to the software

Hardware
specifications

OS
required

1-5 Python/
Anaconda
NLTK

Free https://www.
python.org/

http://
continuum.io/
downloads

http://www.
nltk.org/

Common Unix
Printing System

any

6 scikit-learn
and gensim

Free http://
scikit-learn.
org/stable/

https://
radimrehurek.
com/gensim/

Common Unix
Printing System

any

7 Scrapy Free http://
scrapy.org/

Common Unix
Printing System

any

8 NumPy,
SciPy,
pandas, and
matplotlib

Free http://www.
numpy.org/

http://www.
scipy.org/

http://
pandas.
pydata.org/

http://
matplotlib.
org/

Common Unix
Printing System

any

9 Twitter
Python
APIs and
Facebook
Python
APIs

Free https://dev.
twitter.com/
overview/
api/twitter-
libraries

https://
developers.
facebook.com

Common Unix
Printing System

any

https://www.python.org/
https://www.python.org/
http://continuum.io/downloads
http://continuum.io/downloads
http://continuum.io/downloads
http://www.nltk.org/
http://www.nltk.org/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
http://scrapy.org/
http://scrapy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.scipy.org/
http://www.scipy.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
https://dev.twitter.com/overview/api/twitter-libraries
https://dev.twitter.com/overview/api/twitter-libraries
https://dev.twitter.com/overview/api/twitter-libraries
https://dev.twitter.com/overview/api/twitter-libraries
https://dev.twitter.com/overview/api/twitter-libraries
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com

Preface

[viii]

Who this book is for
If you are an NLP or machine learning enthusiast with some or no experience in
text processing, then this book is for you. This book is also ideal for expert Python
programmers who want to learn NLTK quickly.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We need to create a file named NewsSpider.py and put it in the path /tutorial/
spiders."

A Python block of code is set as follows:

>>>import nltk

>>>import numpy

A Hive block of code is set as follows:

add FILE vectorizer.pkl;

add FILE classifier.pkl;

In chapter 7, Web Crawling, we have used a IPython notation for Scrapy shell

In [1] : sel.xpath('//title/text()')

Out[1]: [<Selector xpath='//title/text()' data=u' Google News'>]

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[ix]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introduction to Natural
Language Processing

I will start with the introduction to Natural Language Processing (NLP). Language
is a central part of our day to day life, and it's so interesting to work on any problem
related to languages. I hope this book will give you a flavor of NLP, will motivate
you to learn some amazing concepts of NLP, and will inspire you to work on some of
the challenging NLP applications.

In my own language, the study of language processing is called NLP. People
who are deeply involved in the study of language are linguists, while the term
'computational linguist' applies to the study of processing languages with
the application of computation. Essentially, a computational linguist will be a
computer scientist who has enough understanding of languages, and can apply his
computational skills to model different aspects of the language. While computational
linguists address the theoretical aspect of language, NLP is nothing but the
application of computational linguistics.

NLP is more about the application of computers on different language nuances,
and building real-world applications using NLP techniques. In a practical context,
NLP is analogous to teaching a language to a child. Some of the most common
tasks like understanding words, sentences, and forming grammatically and
structurally correct sentences, are very natural to humans. In NLP, some of these
tasks translate to tokenization, chunking, part of speech tagging, parsing, machine
translation, speech recognition, and most of them are still the toughest challenges
for computers. I will be talking more on the practical side of NLP, assuming that we
all have some background in NLP. The expectation for the reader is to have minimal
understanding of any programming language and an interest in NLP and Language.

By end of the chapter we want readers

•	 A brief introduction to NLP and related concepts.

Introduction to Natural Language Processing

[2]

•	 Install Python, NLTK and other libraries.
•	 Write some very basic Python and NLTK code snippets.

If you have never heard the term NLP, then please take some time to read any of the
books mentioned here—just for an initial few chapters. A quick reading of at least
the Wikipedia page relating to NLP is a must:

•	 Speech and Language Processing by Daniel Jurafsky and James H. Martin
•	 Statistical Natural Language Processing by Christopher D. Manning and

Hinrich Schütze

Why learn NLP?
I start my discussion with the Gartner's new hype cycle and you can clearly see NLP
on top of the cycle. Currently, NLP is one of the rarest skill sets that is required in
the industry. After the advent of big data, the major challenge is that we need more
people who are good with not just structured, but also with semi or unstructured
data. We are generating petabytes of Weblogs, tweets, Facebook feeds, chats,
e-mails, and reviews. Companies are collecting all these different kind of data for
better customer targeting and meaningful insights. To process all these unstructured
data source we need people who understand NLP.

We are in the age of information; we can't even imagine our life without Google.
We use Siri for the most of basic stuff. We use spam filters for filtering spam emails.
We need spell checker on our Word document. There are many examples of real
world NLP applications around us.

Image is taken from http://www.gartner.com/newsroom/id/2819918

http://www.gartner.com/newsroom/id/2819918

Chapter 1

[3]

Let me also give you some examples of the amazing NLP applications that you can
use, but are not aware that they are built on NLP:

•	 Spell correction (MS Word/ any other editor)
•	 Search engines (Google, Bing, Yahoo, wolframalpha)
•	 Speech engines (Siri, Google Voice)
•	 Spam classifiers (All e-mail services)
•	 News feeds (Google, Yahoo!, and so on)
•	 Machine translation (Google Translate, and so on)
•	 IBM Watson

Building these applications requires a very specific skill set with a great
understanding of language and tools to process the language efficiently. So it's not
just hype that makes NLP one of the most niche areas, but it's the kind of application
that can be created using NLP that makes it one of the most unique skills to have.

To achieve some of the above applications and other basic NLP preprocessing, there
are many open source tools available. Some of them are developed by organizations
to build their own NLP applications, while some of them are open-sourced. Here is a
small list of available NLP tools:

•	 GATE
•	 Mallet
•	 Open NLP
•	 UIMA
•	 Stanford toolkit
•	 Genism
•	 Natural Language Tool Kit (NLTK)

Most of the tools are written in Java and have similar functionalities. Some of them
are robust and have a different variety of NLP tools available. However, when it
comes to the ease of use and explanation of the concepts, NLTK scores really high.
NLTK is also a very good learning kit because the learning curve of Python (on
which NLTK is written) is very fast. NLTK has incorporated most of the NLP tasks,
it's very elegant and easy to work with. For all these reasons, NLTK has become one
of the most popular libraries in the NLP community:

www.allitebooks.com

http://www.allitebooks.org

Introduction to Natural Language Processing

[4]

I am assuming all you guys know Python. If not, I urge you to learn Python. There
are many basic tutorials on Python available online. There are lots of books also
available that give you a quick overview of the language. We will also look into some
of the features of Python, while going through the different topics. But for now, even
if you only know the basics of Python, such as lists, strings, regular expressions, and
basic I/O, you should be good to go.

Python can be installed from the following website:
https://www.python.org/downloads/

http://continuum.io/downloads

https://store.enthought.com/downloads/

I would recommend using Anaconda or Canopy Python distributions. The reason
being that these distributions come with bundled libraries, such as scipy, numpy,
scikit, and so on, which are used for data analysis and other applications related
to NLP and related fields. Even NLTK is part of this distribution.

Please follow the instructions and install NLTK and NLTK data:
http://www.nltk.org/install.html

Let's test everything.

Open the terminal on your respective operating systems. Then run:

$ python

This should open the Python interpreter:

Python 2.6.6 (r266:84292, Oct 15 2013, 07:32:41)

[GCC 4.4.7 20120313 (Red Hat 4.4.7-4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

I hope you got a similar looking output here. There is a chance that you will have
received a different looking output, but ideally you will get the latest version of Python
(I recommend that to be 2.7), the compiler GCC, and the operating system details. I
know the latest version of Python will be in 3.0+ range, but as with any other open
source systems, we should tries to hold back to a more stable version as opposed to
jumping on to the latest version. If you have moved to Python 3.0+, please have a look
at the link below to gain an understanding about what new features have been added:

https://docs.python.org/3/whatsnew/3.4.html.

https://www.python.org/downloads/ http://continuum.io/downloads https://store.enthought.com/downloads/
https://www.python.org/downloads/ http://continuum.io/downloads https://store.enthought.com/downloads/
https://www.python.org/downloads/ http://continuum.io/downloads https://store.enthought.com/downloads/
http://www.nltk.org/install.html
https://docs.python.org/3/whatsnew/3.4.html

Chapter 1

[5]

UNIX based systems will have Python as a default program. Windows users can
set the path to get Python working. Let's check whether we have installed NLTK
correctly:

>>>import nltk

>>>print "Python and NLTK installed successfully"

Python and NLTK installed successfully

Hey, we are good to go!

Let's start playing with Python!
We'll not be diving too deep into Python; however, we'll give you a quick tour of
Python essentials. Still, I think for the benefit of the audience, we should have a quick
five minute tour. We'll talk about the basics of data structures, some frequently used
functions, and the general construct of Python in the next few sections.

I highly recommend the two hour Google Python class. https://
developers.google.com/edu/python should be good enough
to start. Please go through the Python website https://www.
python.org/ for more tutorials and other resources.

Lists
Lists are one of the most commonly used data structures in Python. They are pretty
much comparable to arrays in other programming languages. Let's start with some
of the most important functions that a Python list provide.

Try the following in the Python console:

>>> lst=[1,2,3,4]

>>> # mostly like arrays in typical languages

>>>print lst

[1, 2, 3, 4]

Python lists can be accessed using much more flexible indexing. Here are some
examples:

>>>print 'First element' +lst[0]

You will get an error message like this:

TypeError: cannot concatenate 'str' and 'int' objects

https://developers.google.com/edu/python
https://developers.google.com/edu/python
https://www.python.org/ for more tutorials and other resources
https://www.python.org/ for more tutorials and other resources

Introduction to Natural Language Processing

[6]

The reason being that Python is an interpreted language, and checks for the type
of the variables at the time it evaluates the expression. We need not initialize
and declare the type of variable at the time of declaration. Our list has integer object
and cannot be concatenated as a print function. It will only accept a string object. For
this reason, we need to convert list elements to string. The process is also known as
type casting.

>>>print 'First element :' +str(lst[0])

>>>print 'last element :' +str(lst[-1])

>>>print 'first three elements :' +str(lst[0:2])

>>>print 'last three elements :'+str(lst[-3:])

First element :1

last element :4

first three elements :[1, 2,3]

last three elements :[2, 3, 4]

Helping yourself
The best way to learn more about different data types and functions is to use help
functions like help() and dir(lst).

The dir(python object) command is used to list all the given attributes of the
given Python object. Like if you pass a list object, it will list all the cool things you
can do with lists:

>>>dir(lst)

>>>' , '.join(dir(lst))

'__add__ , __class__ , __contains__ , __delattr__ , __delitem__ , __
delslice__ , __doc__ , __eq__ , __format__ , __ge__ , __getattribute__
, __getitem__ , __getslice__ , __gt__ , __hash__ , __iadd__ , __imul__
, __init__ , __iter__ , __le__ , __len__ , __lt__ , __mul__ , __ne__ ,
__new__ , __reduce__ , __reduce_ex__ , __repr__ , __reversed__ , __rmul__
, __setattr__ , __setitem__ , __setslice__ , __sizeof__ , __str__ , __
subclasshook__ , append , count , extend , index , insert , pop , remove
, reverse , sort'

With the help(python object) command, we can get detailed documentation
for the given Python object, and also give a few examples of how to use the Python
object:

>>>help(lst.index)

Help on built-in function index:

Chapter 1

[7]

index(...)

 L.index(value, [start, [stop]]) -> integer -- return first index of
value.

This function raises a ValueError if the value is not present.

So help and dir can be used on any Python data type, and are a very nice way to
learn about the function and other details of that object. It also provides you with
some basic examples to work with, which I found useful in most cases.

Strings in Python are very similar to other languages, but the manipulation of strings
is one of the main features of Python. It's immensely easy to work with strings in
Python. Even something very simple, like splitting a string, takes effort in Java / C,
while you will see how easy it is in Python.

Using the help function that we used previously, you can get help for any Python
object and any function. Let's have some more examples with the other most
commonly used data type strings:

•	 Split: This is a method to split the string based on some delimiters.
If no argument is provided it assumes whitespace as delimiter.
>>> mystring="Monty Python ! And the holy Grail ! \n"

>>> print mystring.split()

['Monty', 'Python', '!', 'and', 'the', 'holy', 'Grail', '!']

•	 Strip: This is a method that can remove trailing whitespace, like '\n', '\n\r'
from the string:
>>> print mystring.strip()

>>>Monty Python ! and the holy Grail !

If you notice the '\n' character is stripped off. There are also methods like
rstrip() and lstrip() to strip trailing whitespaces to the right and left
of the string.

•	 Upper/Lower: We can change the case of the string using these methods:
>>> print (mystring.upper()

>>>MONTY PYTHON !AND THE HOLY GRAIL !

Introduction to Natural Language Processing

[8]

•	 Replace: This will help you substitute a substring from the string:

>>> print mystring.replace('!','''''')

>>> Monty Python and the holy Grail

There are tons of string functions. I have just talked about some of the most
frequently used.

Please look the following link for more functions and examples:
https://docs.python.org/2/library/string.html.

Regular expressions
One other important skill for an NLP enthusiast is working with regular expression.
Regular expression is effectively pattern matching on strings. We heavily use pattern
extrication to get meaningful information from large amounts of messy text data.
The following are all the regular expressions you need. I haven't used any regular
expressions beyond these in my entire life:

•	 (a period): This expression matches any single character except newline \n.
•	 \w: This expression will match a character or a digit equivalent to [a-z A-Z

0-9]
•	 \W (upper case W) matches any non-word character.
•	 \s: This expression (lowercase s) matches a single whitespace character -

space, newline, return, tab, form [\n\r\t\f].
•	 \S: This expression matches any non-whitespace character.
•	 \t: This expression performs a tab operation.
•	 \n: This expression is used for a newline character.
•	 \r: This expression is used for a return character.
•	 \d: Decimal digit [0-9].
•	 ^: This expression is used at the start of the string.
•	 $: This expression is used at the end of the string.
•	 \: This expression is used to nullify the specialness of the special character.

For example, you want to match the $ symbol, then add \ in front of it.

https://docs.python.org/2/library/string.html

Chapter 1

[9]

Let's search for something in the running example, where mystring is the same
string object, and we will try to look for some patterns in that. A substring search is
one of the common use-cases of the re module. Let's implement this:

>>># We have to import re module to use regular expression

>>>import re

>>>if re.search('Python',mystring):

>>> print "We found python "

>>>else:

>>> print "NO "

Once this is executed, we get the message as follows:

We found python

We can do more pattern finding using regular expressions. One of the common
functions that is used in finding all the patterns in a string is findall. It will look for
the given patterns in the string, and will give you a list of all the matched objects:

>>>import re

>>>print re.findall('!',mystring)

['!', '!']

As we can see there were two instances of the "!" in the mystring and findall
return both object as a list.

Dictionaries
The other most commonly used data structure is dictionaries, also known as
associative arrays/memories in other programming languages. Dictionaries are
data structures that are indexed by keys, which can be any immutable type; such as
strings and numbers can always be keys.

Dictionaries are handy data structure that used widely across programming
languages to implement many algorithms. Python dictionaries are one of the most
elegant implementations of hash tables in any programming language. It's so easy to
work around dictionary, and the great thing is that with few nuggets of code you can
build a very complex data structure, while the same task can take so much time and
coding effort in other languages. This gives the programmer more time to focus on
algorithms rather than the data structure itself.

Introduction to Natural Language Processing

[10]

I am using one of the very common use cases of dictionaries to get the frequency
distribution of words in a given text. With just few lines of the following code, you
can get the frequency of words. Just try the same task in any other language and you
will understand how amazing Python is:

>>># declare a dictionary

>>>word_freq={}

>>>for tok in string.split():

>>> if tok in word_freq:

>>> word_freq [tok]+=1

>>> else:

>>> word_freq [tok]=1

>>>print word_freq

{'!': 2, 'and': 1, 'holy': 1, 'Python': 1, 'Grail': 1, 'the': 1, 'Monty':
1}

Writing functions
As any other programming langauge Python also has its way of writing functions.
Function in Python start with keyword def followed by the function name and
parentheses (). Similar to any other programming language any arguments and the
type of the argument should be placed within these parentheses. The actual code
starts with (:) colon symbol. The initial lines of the code are typically doc string
(comments), then we have code body and function ends with a return statement. For
example in the given example the function wordfreq start with def keyword, there
is no argument to this function and the function ends with a return statement.

>>>import sys

>>>def wordfreq (mystring):

>>>	 '''

>>>	 Function to generated the frequency distribution of the given text

>>>	 '''

>>>	 print mystring

>>>	 word_freq={}

>>>	 for tok in mystring.split():

>>>		 if tok in word_freq:

>>>			 word_freq [tok]+=1

>>>		 else:

>>>			 word_freq [tok]=1

Chapter 1

[11]

>>>	 print word_freq

>>>def main():

>>>	 str="This is my fist python program"

>>>	 wordfreq(str)

>>>if __name__ == '__main__':

>>>	 main()

This was the same code that we wrote in the previous section the idea of writing in a
form of function is to make the code re-usable and readable. The interpreter style of
writing Python is also very common but for writing big programes it will be a good
practice to use function/classes and one of the programming paradigm. We also
wanted the user to write and run first Python program. You need to follow
these steps to achive this.

1.	 Open an empty python file mywordfreq.py in your prefered text editor.
2.	 Write/Copy the code above in the code snippet to the file.
3.	 Open the command prompt in your Operating system.
4.	 Run following command prompt:

$ python mywordfreq,py "This is my fist python program !!"

5.	 Output should be:
{'This': 1, 'is': 1, 'python': 1, 'fist': 1, 'program': 1, 'my':
1}

Now you have a very basic understanding about some common data-structures that
python provides. You can write a full Python program and able to run that. I think
this is good enough I think with this much of an introduction to Python you can
manage for the initial chapters.

Please have a look at some Python tutorials on the following
website to learn more commands on Python:
https://wiki.python.org/moin/BeginnersGuide

Diving into NLTK
Instead of going further into the theoretical aspects of natural language processing,
let's start with a quick dive into NLTK. I am going to start with some basic example
use cases of NLTK. There is a good chance that you have already done something
similar. First, I will give a typical Python programmer approach, and then move on
to NLTK for a much more efficient, robust, and clean solution.

https://wiki.python.org/moin/BeginnersGuide

Introduction to Natural Language Processing

[12]

We will start analyzing with some example text content. For the current example, I
have taken the content from Python's home page.

>>>import urllib2

>>># urllib2 is use to download the html content of the web link

>>>response = urllib2.urlopen('http://python.org/')

>>># You can read the entire content of a file using read() method

>>>html = response.read()

>>>print len(html)

47020

We don't have any clue about the kind of topics that are discussed in this URL, so
let's start with an exploratory data analysis (EDA). Typically in a text domain, EDA
can have many meanings, but will go with a simple case of what kinds of terms
dominate the document. What are the topics? How frequent they are? The process
will involve some level of preprocessing steps. We will try to do this first in a pure
Python way, and then we will do it using NLTK.

Let's start with cleaning the html tags. One ways to do this is to select just the
tokens, including numbers and character. Anybody who has worked with regular
expression should be able to convert html string into list of tokens:

>>># Regular expression based split the string

>>>tokens = [tok for tok in html.split()]

>>>print "Total no of tokens :"+ str(len(tokens))

>>># First 100 tokens

>>>print tokens[0:100]

Total no of tokens :2860

['<!doctype', 'html>', '<!--[if', 'lt', 'IE', '7]>', '<html', 'class="no-
js', 'ie6', 'lt-ie7', 'lt-ie8', 'lt-ie9">', '<![endif]-->', '<!--[if',
'IE', '7]>', '<html', 'class="no-js', 'ie7', 'lt-ie8', 'lt-ie9">',
'<![endif]-->', ''type="text/css"', 'media="not', 'print,', 'braille,'
...]

As you can see, there is an excess of html tags and other unwanted characters when
we use the preceding method. A cleaner version of the same task will look something
like this:

>>>import re

>>># using the split function

>>>#https://docs.python.org/2/library/re.html

>>>tokens = re.split('\W+',html)

Chapter 1

[13]

>>>print len(tokens)

>>>print tokens[0:100]

5787

['', 'doctype', 'html', 'if', 'lt', 'IE', '7', 'html', 'class', 'no',
'js', 'ie6', 'lt', 'ie7', 'lt', 'ie8', 'lt', 'ie9', 'endif', 'if',
'IE', '7', 'html', 'class', 'no', 'js', 'ie7', 'lt', 'ie8', 'lt', 'ie9',
'endif', 'if', 'IE', '8', 'msapplication', 'tooltip', 'content', 'The',
'official', 'home', 'of', 'the', 'Python', 'Programming', 'Language',
'meta', 'name', 'apple' ...]

This looks much cleaner now. But still you can do more; I leave it to you to try
to remove as much noise as you can. You can clean some HTML tags that are
still popping up, You probably also want to look for word length as a criteria and
remove words that have a length one—it will remove elements like 7, 8, and so on,
which are just noise in this case. Now instead writing some of these preprocessing
steps from scratch let's move to NLTK for the same task. There is a function called
clean_html() that can do all the cleaning that we were looking for:

>>>import nltk

>>># http://www.nltk.org/api/nltk.html#nltk.util.clean_html

>>>clean = nltk.clean_html(html)

>>># clean will have entire string removing all the html noise

>>>tokens = [tok for tok in clean.split()]

>>>print tokens[:100]

['Welcome', 'to', 'Python.org', 'Skip', 'to', 'content', '▼',
'Close', 'Python', 'PSF', 'Docs', 'PyPI', 'Jobs', 'Community', '▲',
'The', 'Python', 'Network', '≡', 'Menu', 'Arts', 'Business' ...]

Cool, right? This definitely is much cleaner and easier to do.

Let's try to get the frequency distribution of these terms. First, let's do it the Pure
Python way, then I will tell you the NLTK recipe.

>>>import operator

>>>freq_dis={}

>>>for tok in tokens:

>>> if tok in freq_dis:

>>> freq_dis[tok]+=1

>>> else:

>>> freq_dis[tok]=1

>>># We want to sort this dictionary on values (freq in this case)

www.allitebooks.com

http://www.allitebooks.org

Introduction to Natural Language Processing

[14]

>>>sorted_freq_dist= sorted(freq_dis.items(), key=operator.itemgetter(1),
reverse=True)

>>> print sorted_freq_dist[:25]

[('Python', 55), ('>>>', 23), ('and', 21), ('to', 18), (',', 18), ('the',
14), ('of', 13), ('for', 12), ('a', 11), ('Events', 11), ('News', 11),
('is', 10), ('2014-', 10), ('More', 9), ('#', 9), ('3', 9), ('=', 8),
('in', 8), ('with', 8), ('Community', 7), ('The', 7), ('Docs', 6),
('Software', 6), (':', 6), ('3:', 5), ('that', 5), ('sum', 5)]

Naturally, as this is Python's home page, Python and the (>>>) interpreter symbol
are the most common terms, also giving a sense of the website.

A better and more efficient approach is to use NLTK's FreqDist() function. For this,
we will take a look at the same code we developed before:

>>>import nltk

>>>Freq_dist_nltk=nltk.FreqDist(tokens)

>>>print Freq_dist_nltk

>>>for k,v in Freq_dist_nltk.items():

>>> print str(k)+':'+str(v)

<FreqDist: 'Python': 55, '>>>': 23, 'and': 21, ',': 18, 'to': 18, 'the':
14, 'of': 13, 'for': 12, 'Events': 11, 'News': 11, ...>

Python:55

>>>:23

and:21

,:18

to:18

the:14

of:13

for:12

Events:11

News:11

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[15]

Let's now do some more funky things. Let's plot this:

>>>Freq_dist_nltk.plot(50, cumulative=False)

>>># below is the plot for the frequency distributions

We can see that the cumulative frequency is growing, and at some point the curve is
going into long tail. Still, there is some noise, there are words like the, of, for, and =.
These are useless words, and there is a terminology for them. These words are stop
words; words like the, a, an, and so on. Article pronouns are generally present in
most of the documents, hence they are not discriminative enough to be informative.
In most of the NLP and information retrieval tasks, people generally remove stop
words. Let's go back again to our running example:

>>>stopwords=[word.strip().lower() for word in open("PATH/english.stop.
txt")]

>>>clean_tokens=[tok for tok in tokens if len(tok.lower())>1 and (tok.
lower() not in stopwords)]

Introduction to Natural Language Processing

[16]

>>>Freq_dist_nltk=nltk.FreqDist(clean_tokens)

>>>Freq_dist_nltk.plot(50, cumulative=False)

Please go to http://www.wordle.net/advanced for more
word clouds.

Looks much cleaner now! After finishing this much, you can go to wordle and put
the distribution in a form of a CSV and you should be able to get something like this
word cloud:

http://www.wordle.net/advanced

Chapter 1

[17]

Your turn
•	 Please try the same exercise for different URLs.
•	 Try to reach the word cloud.

Summary
To summarize, this chapter was intended to give you a brief introduction to
Natural Language Processing. The book does assume some background in NLP and
programming in Python, but we have tried to give a very quick head start to Python
and NLP. We have installed all the related packages that are require for us to work
with NLTK. We wanted to give you, with a few simple lines of code, an idea of how
to use NLTK. We were able to deliver an amazing word cloud, which is a great way
of visualizing the topics in a large amount of unstructured text, and is quite popular
in the industry for text analytics. I think the goal was to set up everything around
NLTK, and to get Python working smoothly on your system. You should also be
able to write and run basic Python programs. I wanted the reader to feel the power
of the NLTK library, and build a small running example that will involve a basic
application around word cloud. If the reader is able to generate the word cloud,
I think we were successful.

In the next few chapters, we will learn more about Python as a language, and its
features related to process natural language. We will explore some of the basic
NLP preprocessing steps and learn about some of basic concepts related to NLP.

[19]

Text Wrangling and
Cleansing

The previous chapter was all about you getting a head start on Python as well as
NLTK. We learned about how we can start some meaningful EDA with any corpus
of text. We did all the pre-processing part in a very crude and simple manner.
In this chapter, will go over preprocessing steps like tokenization, stemming,
lemmatization, and stop word removal in more detail. We will explore all the tools
in NLTK for text wrangling. We will talk about all the pre-processing steps used in
modern NLP applications, the different ways to achieve some of these tasks, as well
as the general do's and don'ts. The idea is to give you enough information about
these tools so that you can decide what kind of pre-processing tool you need for
your application. By the end of this chapter, readers should know :

•	 About all the data wrangling, and to perform it using NLTK
•	 What is the importance of text cleansing and what are the common tasks that

can be achieved using NLTK

What is text wrangling?
It's really hard to define the term text/data wrangling. I will define it as all the
pre-processing and all the heavy lifting you do before you have a machine readable
and formatted text from raw data. The process involves data munging, text
cleansing, specific preprocessing, tokenization, stemming or lemmatization
and stop word removal. Let's start with a basic example of parsing a csv file:

>>>import csv

>>>with open('example.csv','rb') as f:

>>> reader = csv.reader(f,delimiter=',',quotechar='"')

>>> for line in reader :

>>> print line[1] # assuming the second field is the raw sting

Text Wrangling and Cleansing

[20]

Here we are trying to parse a csv, in above code line will be a list of all the column
elements of the csv. We can customize this to work on any delimiter and quoting
character. Now once we have the raw string, we can apply different kinds of text
wrangling that we learned in the last chapter. The point here is to equip you with
enough detail to deal with any day to day csv files.

A clear process flow for some of the most commonly accepted document types is
shown in the following block diagram:

Data Sources

Python parsers

CSV HTML XML Databases

import csv

Import
HTMLparser
SAX Parser
DOM Parser

import
XMLParser

Json PDF NoSQL

import json
PDFminer
https://pypi.python.
org/pypi/pdfminer/

PY0DBC

https://code.google.
com/p/pyodbc/wiki/
GettingStarted

http:
//stackoverflow.
comquestions/5832
531/nasql-db-for-
python

Raw text

Tokenization

Stop word removal

Stemming / Lemmatization

Text cleansing

I have listed most common data sources in the first stack of the diagram. In most
cases, the data will be residing in one of these data formats. In the next step, I have
listed the most commonly used Python wrappers around those data formats. For
example, in the case of a csv file, Python's csv module is the most robust way of
handling the csv file. It allows you to play with different splitters, different quote
characters, and so on.

The other most commonly used files are json.

Chapter 2

[21]

For example, json looks like:

{
 "array": [1,2,3,4],
 "boolean": True,
 "object": {
 "a": "b"
 },
 "string": "Hello World"
}

Let's say we want to process the string. The parsing code will be:

>>>import json

>>>jsonfile = open('example.json')

>>>data = json.load(jsonfile)

>>>print data['string']

"Hello World"

We are just loading a json file using the json module. Python allows you to choose
and process it to a raw string form. Please have a look at the diagram to get more
details about all the data sources, and their parsing packages in Python. I have only
given pointers here; please feel free to search the web for more details about these
packages.

So before you write your own parser to parse these different document formats,
please have a look at the second row for available parsers in Python. Once you reach
a raw string, all the pre-processing steps can be applied as a pipeline, or you might
choose to ignore some of them. We will talk about tokenization, stemmers, and
lemmatizers in the next section in detail. We will also talk about the variants, and
when to use one case over the other.

Now that you have an idea of what text wrangling is, try to
connect to any one of the databases using one of the Python
modules described in the preceding image.

Text Wrangling and Cleansing

[22]

Text cleansing
Once we have parsed the text from a variety of data sources, the challenge is to
make sense of this raw data. Text cleansing is loosely used for most of the cleaning
to be done on text, depending on the data source, parsing performance, external
noise and so on. In that sense, what we did in Chapter 1, Introduction to Natural
Language Processing for cleaning the html using html_clean, can be labeled as text
cleansing. In another case, where we are parsing a PDF, there could be unwanted
noisy characters, non ASCII characters to be removed, and so on. Before going on to
next steps we want to remove these to get a clean text to process further. With a data
source like xml, we might only be interested in some specific elements of the tree,
with databases we may have to manipulate splitters, and sometimes we are only
interested in specific columns. In summary, any process that is done with the aim to
make the text cleaner and to remove all the noise surrounding the text can be termed
as text cleansing. There are no clear boundaries between the terms data munging,
text cleansing, and data wrangling they can be used interchangeably in a similar
context. In the next few sections, we will talk about some of the most common pre-
processing steps while doing any NLP task.

Sentence splitter
Some of the NLP applications require splitting a large raw text into sentences to
get more meaningful information out. Intuitively, a sentence is an acceptable unit
of conversation. When it comes to computers, it is a harder task than it looks. A
typical sentence splitter can be something as simple as splitting the string on (.), to
something as complex as a predictive classifier to identify sentence boundaries:

>>>inputstring = ' This is an example sent. The sentence splitter will
split on sent markers. Ohh really !!'

>>>from nltk.tokenize import sent_tokenize

>>>all_sent = sent_tokenize(inputstring)

>>>print all_sent

[' This is an example sent', 'The sentence splitter will split on
markers.','Ohh really !!']

We are trying to split the raw text string into a list of sentences. The preceding
function, sent_tokenize, internally uses a sentence boundary detection algorithm
that comes pre-built into NLTK. If your application requires a custom sentence
splitter, there are ways that we can train a sentence splitter of our own:

>>>import nltk.tokenize.punkt

>>>tokenizer = nltk.tokenize.punkt.PunktSentenceTokenizer()

Chapter 2

[23]

The preceding sentence splitter is available in all the 17 languages. You just need to
specify the respective pickle object. In my experience, this is good enough to deal
with a variety of the text corpus, and there is a lesser chance that you will have to
build your own.

Tokenization
A word (Token) is the minimal unit that a machine can understand and process. So
any text string cannot be further processed without going through tokenization.
Tokenization is the process of splitting the raw string into meaningful tokens. The
complexity of tokenization varies according to the need of the NLP application, and
the complexity of the language itself. For example, in English it can be as simple as
choosing only words and numbers through a regular expression. But for Chinese and
Japanese, it will be a very complex task.

>>>s = "Hi Everyone ! hola gr8" # simplest tokenizer

>>>print s.split()

['Hi', 'Everyone', '!', 'hola', 'gr8']

>>>from nltk.tokenize import word_tokenize

>>>word_tokenize(s)

['Hi', 'Everyone', '!', 'hola', 'gr8']

>>>from nltk.tokenize import regexp_tokenize, wordpunct_tokenize,
blankline_tokenize

>>>regexp_tokenize(s, pattern='\w+')

['Hi', 'Everyone', 'hola', 'gr8']

>>>regexp_tokenize(s, pattern='\d+')

['8']

>>>wordpunct_tokenize(s)

['Hi', ',', 'Everyone', '!!', 'hola', 'gr8']

>>>blankline_tokenize(s)

['Hi, Everyone !! hola gr8']

In the preceding code we have used various tokenizers. To start with we used the
simplest: the split() method of Python strings. This is the most basic tokenizer, that
uses white space as delimiter. But the split() method itself can be configured for
some more complex tokenization. In the preceding example, you will find hardly a
difference between the s.split() and word_tokenize methods.

www.allitebooks.com

http://www.allitebooks.org

Text Wrangling and Cleansing

[24]

The word_tokenize method is a generic and more robust method of tokenization for
any kind of text corpus. The word_tokenize method comes pre-built with NLTK. If
you are not able to access it, you made some mistakes in installing NLTK data. Please
refer to Chapter 1, Introduction to Natural Language Processing for installation.

There are two most commonly used tokenizers. The first is word_tokenize, which is
the default one, and will work in most cases. The other is regex_tokenize, which is
more of a customized tokenizer for the specific needs of the user. Most of the other
tokenizers can be derived from regex tokenizers. You can also build a very specific
tokenizer using a different pattern. In line 8 of the preceding code, we split the same
string with the regex tokenizer. We use \w+ as a regular expression, which means
we need all the words and digits from the string, and other symbols can be used as a
splitter, same as what we do in line 10 where we specify \d+ as regex. The result will
produce only digits from the string.

Can you build a regex tokenizer that will only select words that are either small,
capitals, numbers, or money symbols?

Hint: Just look for the regular expression for the preceding query and use a
regex_tokenize.

You can also have a look at some of the demos available online:
http://text-processing.com/demo.

Stemming
Stemming, in literal terms, is the process of cutting down the branches of a tree to
its stem. So effectively, with the use of some basic rules, any token can be cut down
to its stem. Stemming is more of a crude rule-based process by which we want to
club together different variations of the token. For example, the word eat will have
variations like eating, eaten, eats, and so on. In some applications, as it does not
make sense to differentiate between eat and eaten, we typically use stemming to club
both grammatical variances to the root of the word. While stemming is used most of
the time for its simplicity, there are cases of complex language or complex NLP tasks
where it's necessary to use lemmatization instead. Lemmatization is a more robust
and methodical way of combining grammatical variations to the root of a word.

http://text-processing.com/demo

Chapter 2

[25]

In the following snippet, we show a few stemmers:

>>>from nltk.stem import PorterStemmer # import Porter stemmer

>>>from nltk.stem.lancaster import LancasterStemmer

>>>from nltk.stem.Snowball import SnowballStemmer

>>>pst = PorterStemmer() # create obj of the PorterStemmer

>>>lst = LancasterStemmer() # create obj of LancasterStemmer

>>>lst.stem("eating")

eat

>>>pst.stem("shopping")

shop

A basic rule-based stemmer, like removing –s/es or -ing or -ed can give you a
precision of more than 70 percent, while Porter stemmer also uses more rules and
can achieve very good accuracies.

We are creating different stemmer objects, and applying a stem() method on the
string. As you can see, there is not much of a difference when you look at a simple
example, however there are many stemming algorithms around, and the precision
and performance of them differ. You may want to have a look at http://www.nltk.
org/api/nltk.stem.html for more details. I have used Porter Stemmer most often,
and if you are working with English, it's good enough. There is a family of Snowball
stemmers that can be used for Dutch, English, French, German, Italian, Portuguese,
Romanian, Russian, and so on. I also came across a light weight stemmer for Hindi
on http://research.variancia.com/hindi_stemmer.

I would suggest a study of all the stemmers for those who want to
explore more about stemmers on http://en.wikipedia.org/wiki/
Stemming.
But most users can live with Porter and Snowball stemmer for a large
number of use cases. In modern NLP applications, sometimes people
even ignore stemming as a pre-processing step, so it typically depends
on your domain and application. I would also like to tell you the fact
that if you want to use some NLP taggers, like Part of Speech tagger
(POS), NER or dependency parser, you should avoid stemming, because
stemming will modify the token and this can result in a different result.
We will go into this further when we talk about taggers in general.

http://www.nltk.org/api/nltk.stem.html
http://www.nltk.org/api/nltk.stem.html
http://research.variancia.com/hindi_stemmer
http://en.wikipedia.org/wiki/Stemming
http://en.wikipedia.org/wiki/Stemming

Text Wrangling and Cleansing

[26]

Lemmatization
Lemmatization is a more methodical way of converting all the grammatical/inflected
forms of the root of the word. Lemmatization uses context and part of speech to
determine the inflected form of the word and applies different normalization rules
for each part of speech to get the root word (lemma):

>>>from nltk.stem import WordNetLemmatizer

>>>wlem = WordNetLemmatizer()

>>>wlem.lemmatize("ate")

eat

Here, WordNetLemmatizer is using wordnet, which takes a word and searches
wordnet, a semantic dictionary. It also uses a morph analysis to cut to the root and
search for the specific lemma (variation of the word). Hence, in our example it is
possible to get eat for the given variation ate, which was never possible with stemming.

•	 Can you explain what the difference is between Stemming and
lemmatization?

•	 Can you come up with a Porter stemmer (Rule-based) for your
native language?

•	 Why would it be harder to implement a stemmer for languages like Chinese?

Stop word removal
Stop word removal is one of the most commonly used preprocessing steps across
different NLP applications. The idea is simply removing the words that occur
commonly across all the documents in the corpus. Typically, articles and pronouns
are generally classified as stop words. These words have no significance in some
of the NLP tasks like information retrieval and classification, which means these
words are not very discriminative. On the contrary, in some NLP applications stop
word removal will have very little impact. Most of the time, the stop word list for
the given language is a well hand-curated list of words that occur most commonly
across corpuses. While the stop word lists for most languages are available online,
these are also ways to automatically generate the stop word list for the given corpus.
A very simple way to build a stop word list is based on word's document frequency
(Number of documents the word presents), where the words present across the
corpus can be treated as stop words. Enough research has been done to get the
optimum list of stop words for some specific corpus. NLTK comes with a pre-built
list of stop words for around 22 languages.

Chapter 2

[27]

To implement the process of stop word removal, below is code that uses NLTK stop
word. You can also create a dictionary on a lookup based approach like we did in
Chapter 1, Introduction to Natural Language Processing.

>>>from nltk.corpus import stopwords

>>>stoplist = stopwords.words('english') # config the language name

NLTK supports 22 languages for removing the stop words

>>>text = "This is just a test"

>>>cleanwordlist = [word for word in text.split() if word not in
stoplist]

apart from just and test others are stopwords

['test']

In the preceding code snippet, we have deployed a cleaner version of the same
stop word removal we did in Chapter 1, Introduction to Natural Language Processing.
Previously, we were using a lookup based approach. Even in this case, NLTK
internally did a very similar approach. I would recommend using the NLTK list
of stop words, because this is more of a standardized list, and this is robust when
compared to any other implementation. We also have a way to use similar methods
for other languages by just passing the language name as a parameter
to the stop words constructor.

•	 What's the math behind removing stop words?
•	 Can we perform other NLP operations after stop word removal?

Rare word removal
This is very intuitive, as some of the words that are very unique in nature like names,
brands, product names, and some of the noise characters, such as html leftouts, also
need to be removed for different NLP tasks. For example, it would be really bad
to use names as a predictor for a text classification problem, even if they come out
as a significant predictor. We will talk about this further in subsequent chapters.
We definitely don't want all these noisy tokens to be present. We also use length
of the words as a criteria for removing words with very a short length or a very
long length:

>>># tokens is a list of all tokens in corpus

>>>freq_dist = nltk.FreqDist(token)

>>>rarewords = freq_dist.keys()[-50:]

>>>after_rare_words = [word for word in token not in rarewords]

Text Wrangling and Cleansing

[28]

We are using the FreqDist() function to get the distribution of the terms in the
corpus, selecting the rarest one into a list, and then filtering our original corpus.
We can also do it for individual documents, as well.

Spell correction
It is not a necessary to use a spellchecker for all NLP applications, but some use
cases require you to use a basic spellcheck. We can create a very basic spellchecker
by just using a dictionary lookup. There are some enhanced string algorithms that
have been developed for fuzzy string matching. One of the most commonly used is
edit-distance. NLTK also provides you with a variety of metrics module that has
edit_distance.

>>>from nltk.metrics import edit_distance

>>>edit_distance("rain","shine")

3

We will cover this module in more detail in advanced chapters. We also have one
of the most elegant codes for spellchecker from Peter Norvig, which is quite easy
to understand and written in pure Python.

I would recommend that anyone who works with natural
language processing visit the following link for spellcheck:
http://norvig.com/spell-correct.html

Your turn
Here are the answers to the open-ended questions:

•	 Try to connect any of the data base using pyodbc.
https://code.google.com/p/pyodbc/wiki/GettingStarted

•	 Can you build a regex tokenizer that will only select words that are either
small, capitals, numbers or money symbols?
[\w+] selects all the words and numbers [a-z A-Z 0-9] and [\$] will match
money symbol.

•	 What's the difference between Stemming and lemmatization?
Stemming is more of a rule-based approach to get the root of the word's
grammatical forms, while lemmatization also considers context and the POS of
the given word, then applies rules specific to grammatical variants. Stemmers
are easier to implement and the processing time is faster than lemmatizer.

http://norvig.com/spell-correct.html
https://code.google.com/p/pyodbc/wiki/GettingStarted

Chapter 2

[29]

• Can you come up with a Porter stemmer (Rule-based) for your native
language?
Hint: http://tartarus.org/martin/PorterStemmer/python.txt
http://Snowball.tartarus.org/algorithms/english/stemmer.html

• Can we perform other NLP operations after stop word removal?
No; never. All the typical NLP applications like POS tagging, chunking,
and so on will need context to generate the tags for the given text. Once we
remove the stop word, we lose the context.

• Why would it be harder to implement a stemmer for languages like Hindi or
Chinese?

Indian languages are morphologically rich and it's hard to token the
Chinese; there are challenges with the normalization of the symbols, so it's
even harder to implement steamer. We will talk about these challenges in
advanced chapters.

Summary
In this chapter we talked about all the data wrangling/munging in the context of
text. We went through some of the most common data sources, and how to parse
them with Python packages. We talked about tokenization in depth, from a very
basic string method to a custom regular expression based tokenizer.

We talked about stemming and lemmatization, and the various types of stemmers
that can be used, as well as the pros and cons of each of them. We also discussed
the stop word removal process, why it's important, when to remove stop words,
and when it's not needed. We also briefly touched upon removing rare words and
why it's important in text cleansing—both stop word and rare word removal are
essentially removing outliers from the frequency distribution. We also referred to
spell correction. There is no limit to what you can do with text wrangling and text
cleansing. Every text corpus has new challenges, and a new kind of noise that needs
to be removed. You will get to learn over time what kind of pre-processing works
best for your corpus, and what can be ignored.

In the next chapter will see some of the NLP related pre-processing, like POS
tagging, chunking, and NER. I am leaving answers or hints for some of the open
questions that we asked in the chapter.

http://Snowball.tartarus.org/algorithms/english/stemmer.html
http://tartarus.org/martin/PorterStemmer/python.txt

[31]

Part of Speech Tagging
In previous chapters, we talked about all the preprocessing steps we need, in order
to work with any text corpus. You should now be comfortable about parsing any
kind of text and should be able to clean it. You should be able to perform all text
preprocessing, such as Tokenization, Stemming, and Stop Word removal on any text.
You can perform and customize all the preprocessing tools to fit your needs. So far,
we have mainly discussed generic preprocessing to be done with text documents.
Now let's move on to more intense NLP preprocessing steps.

In this chapter, we will discuss what part of speech tagging is, and what the
significance of POS is in the context of NLP applications. We will also learn how to
use NLTK to extract meaningful information using tagging and various taggers used
for NLP intense applications. Lastly, we will learn how NLTK can be used to tag a
named entity. We will discuss in detail the various NLP taggers and also give a small
snippet to help you get going. We will also see the best practices, and where to use
what kind of tagger. By the end of this chapter, readers will learn:

•	 What is Part of speech tagging and how important it is in context of NLP
•	 What are the different ways of doing POS tagging using NLTK
•	 How to build a custom POS tagger using NLTK

What is Part of speech tagging
In your childhood, you may have heard the term Part of Speech (POS). It can really
take good amount of time to get the hang of what adjectives and adverbs actually
are. What exactly is the difference? Think about building a system where we can
encode all this knowledge. It may look very easy, but for many decades, coding this
knowledge into a machine learning model was a very hard NLP problem. I think
current state of the art POS tagging algorithms can predict the POS of the given word
with a higher degree of precision (that is approximately 97 percent). But still lots of
research going on in the area of POS tagging.

Part of Speech Tagging

[32]

Languages like English have many tagged corpuses available in the news and other
domains. This has resulted in many state of the art algorithms. Some of these taggers
are generic enough to be used across different domains and varieties of text. But in
specific use cases, the POS might not perform as expected. For these use cases, we
might need to build a POS tagger from scratch. To understand the internals of a POS,
we need to have a basic understanding of some of the machine learning techniques.
We will talk about some of these in Chapter 6, Text Classification, but we have to
discuss the basics in order to build a custom POS tagger to fit our needs.

First, we will learn some of the pertained POS taggers available, along with a set of
tokens. You can get the POS of individual words as a tuple. We will then move on to
the internal workings of some of these taggers, and we will also talk about building a
custom tagger from scratch.

When we talk about POS, the most frequent POS notification used is Penn Treebank:

Tag Description

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Pre determiner

POS Possessive ending

PRP Personal pronoun

PRP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol (mathematical or scientific)

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

Chapter 3

[33]

Tag Description

VBG Verb, gerund/present participle

VBN Verb, past

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb

Pound sign

$ Dollar sign

. Sentence-final punctuation

, Comma

: Colon, semi-colon

(Left bracket character

) Right bracket character

" Straight double quote

' Left open single quote

" Left open double quote

' Right close single quote

" Right open double quote

Looks pretty much like what we learned in primary school English class, right?
Now once we have an understanding about what these tags mean, we can run an
experiment:

>>>import nltk

>>>from nltk import word_tokenize

>>>s = "I was watching TV"

>>>print nltk.pos_tag(word_tokenize(s))

[('I', 'PRP'), ('was', 'VBD'), ('watching', 'VBG'), ('TV', 'NN')]

www.allitebooks.com

http://www.allitebooks.org

Part of Speech Tagging

[34]

If you just want to use POS for a corpus like news or something similar, you just
need to know the preceding three lines of code. In this code, we are tokenizing a
piece of text and using NLTK's pos_tag method to get a tuple of (word, pos-tag).
This is one of the pre-trained POS taggers that comes with NLTK.

It's internally using the maxent classifier (will discuss these classifiers
in advanced chapters) trained model to predict to which class of tag a
particular word belongs.
To get more details you can use the following link:
https://github.com/nltk/nltk/blob/develop/nltk/
tag/__init__.py

NLTK has used python's powerful data structures efficiently, so we have a lot more
flexibility in terms of use of the results of NLTK outputs.

You must be wondering what could be a typical use of POS in a real application.
In a typical preprocessing, we might want to look for all the nouns. Now this code
snippet will give us all the nouns in the given sentence:

>>>tagged = nltk.pos_tag(word_tokenize(s))

>>>allnoun = [word for word,pos in tagged if pos in ['NN','NNP']]

Try to answer the following questions:

•	 Can we remove stop words before POS tagging?
•	 How can we get all the verbs in the sentence?

Stanford tagger
Another awesome feature of NLTK is that it also has many wrappers around other
pre-trained taggers, such as Stanford tools. A common example of a POS tagger is
shown here:

>>>from nltk.tag.stanford import POSTagger

>>>import nltk

>>>stan_tagger = POSTagger('models/english-bidirectional-distdim.
tagger','standford-postagger.jar')

>>>tokens = nltk.word_tokenize(s)

>>>stan_tagger.tag(tokens)

https://github.com/nltk/nltk/blob/develop/nltk/tag/__init__.py
https://github.com/nltk/nltk/blob/develop/nltk/tag/__init__.py

Chapter 3

[35]

To use the above code, you need to download the Stanford tagger from
http://nlp.stanford.edu/software/stanford-postagger-
full-2014-08-27.zip. Extract both the jar and model into a folder,
and give an absolute path in argument for the POSTagger.

Summarizing this, there are mainly two ways to achieve any tagging task in NLTK:

1.	 Using NLTK's or another lib's pre-trained tagger, and applying it on the
test data. Both preceding taggers should be sufficient to deal with any POS
tagging task that deals with plain English text, and the corpus is not very
domain specific.

2.	 Building or Training a tagger to be used on test data. This is to deal with a
very specific use case and to develop a customized tagger.

Let's dig deeper into what goes on inside a typical POS tagger.

Diving deep into a tagger
A typical tagger uses a lot of trained data, with sentences tagged for each word that
will be the POS tag attached to it. Tagging is purely manual and looks like this:

Well/UH what/WP do/VBP you/PRP think/VB about/IN the/DT idea/NN of/IN ,/,
uh/UH ,/, kids/NNS having/VBG to/TO do/VB public/JJ service/NN work/NN
for/IN a/DT year/NN ?/.Do/VBP you/PRP think/VBP it/PRP 's/BES a/DT ,/,

The preceding sample is taken from the Penn Treebank switchboard corpus. People
have done lot of manual work tagging large corpuses. There is a Linguistic Data
Consortium (LDC) where people have dedicated so much time to tagging for
different languages, different kinds of text and different kinds of tagging like POS,
dependency parsing, and discourse (will talk about these later).

You can get all these resources and more information about them at
https://www.ldc.upenn.edu/. (LDC provides a fraction of data
for free but you can also purchase the entire tagged corpus. NLTK
has approximately 10 percent of the PTB.)

If we also want to train our own POS tagger, we have to do the tagging exercise for
our specific domain. This kind of tagging will require domain experts.

Typically, tagging problems like POS tagging are seen as sequence labeling problems
or a classification problem where people have tried generative and discriminative
models to predict the right tag for the given token.

http://nlp.stanford.edu/software/stanford-postagger-full-2014-08-27.zip
http://nlp.stanford.edu/software/stanford-postagger-full-2014-08-27.zip
https://www.ldc.upenn.edu/

Part of Speech Tagging

[36]

Instead of jumping directly in to more sophisticated examples, let's start with some
simple approaches for tagging.

The following snippet gives us the frequency distribution of POS tags in the
Brown corpus:

>>>from nltk.corpus import brown

>>>import nltk

>>>tags = [tag for (word, tag) in brown.tagged_words(categories='news')]

>>>print nltk.FreqDist(tags)

<FreqDist: 'NN': 13162, 'IN': 10616, 'AT': 8893, 'NP': 6866, ',': 5133,
'NNS': 5066, '.': 4452, 'JJ': 4392 >

We can see NN comes as the most frequent tag, so let's start building a very naïve POS
tagger, by assigning NN as a tag to all the test words. NLTK has a DefaultTagger
function that can be used for this. DefaultTagger function is part of the Sequence
tagger, which will be discussed next. There is a function called evaluate() that
gives the accuracy of the correctly predicted POS of the words. This is used to
benchmark the tagger against the brown corpus. In the default_tagger case, we
are getting approximately 13 percent of the predictions correct. We will use the same
benchmark for all the taggers moving forward.

>>>brown_tagged_sents = brown.tagged_sents(categories='news')

>>>default_tagger = nltk.DefaultTagger('NN')

>>>print default_tagger.evaluate(brown_tagged_sents)

0.130894842572

Sequential tagger
Not surprisingly, the above tagger performed poorly. The DefaultTagger is part
of a base class SequentialBackoffTagger that serves tags based on the Sequence.
Tagger tries to model the tags based on the context, and if it is not able to predict the
tag correctly, it consults a BackoffTagger. Typically, the DefaultTagger parameter
could be used as a BackoffTagger.

Let's move on to more sophisticated sequential taggers.

Chapter 3

[37]

N-gram tagger
N-gram tagger is a subclass of SequentialTagger, where the tagger takes previous n
words in the context, to predict the POS tag for the given token. There are variations
of these taggers where people have tried it with UnigramsTagger, BigramsTagger,
and TrigramTagger:

>>>from nltk.tag import UnigramTagger

>>>from nltk.tag import DefaultTagger

>>>from nltk.tag import BigramTagger

>>>from nltk.tag import TrigramTagger

we are dividing the data into a test and train to evaluate our taggers.

>>>train_data = brown_tagged_sents[:int(len(brown_tagged_sents) * 0.9)]

>>>test_data = brown_tagged_sents[int(len(brown_tagged_sents) * 0.9):]

>>>unigram_tagger = UnigramTagger(train_data,backoff=default_tagger)

>>>print unigram_tagger.evaluate(test_data)

0.826195866853

>>>bigram_tagger = BigramTagger(train_data, backoff=unigram_tagger)

>>>print bigram_tagger.evaluate(test_data)

0.835300351655

>>>trigram_tagger = TrigramTagger(train_data,backoff=bigram_tagger)

>>>print trigram_tagger.evaluate(test_data)

0.83327713281

Unigram just considers the conditional frequency of tags and predicts the most
frequent tag for the every given token. The bigram_tagger parameter will consider
the tags of the given word and the previous word, and tag as tuple to get the given
tag for the test word. The TrigramTagger parameter looks for the previous two
words with a similar process.

It's very evident that coverage of the TrigramTagger parameter will be less and the
accuracy of that instance will be high. On the other hand, UnigramTagger will have
better coverage. To deal with this tradeoff between precision/recall, we combine
the three taggers in the preceding snippet. First it will look for the trigram of the
given word sequence for predicting the tag; if not found it Backoff to BigramTagger
parameter and to a UnigramTagger parameter and in end to a NN tag.

Part of Speech Tagging

[38]

Regex tagger
There is one more class of sequential tagger that is a regular expression based
taggers. Here, instead of looking for the exact word, we can define a regular
expression, and at the same time we can define the corresponding tag for the given
expressions. For example, in the following code we have provided some of the most
common regex patterns to get the different parts of speech. We know some of the
patterns related to each POS category, for example we know the articles in English
and we know that anything that ends with ness will be an adjective. Instead, we
will write a bunch of regex and a pure python code, and the NLTK RegexpTagger
parameter will provide an elegant way of building a pattern based POS. This can also
be used to induce domain related POS patterns.

>>>from nltk.tag.sequential import RegexpTagger

>>>regexp_tagger = RegexpTagger(

 [(r'^-?[0-9]+(.[0-9]+)?$', 'CD'), # cardinal numbers

 (r'(The|the|A|a|An|an)$', 'AT'), # articles

 (r'.*able$', 'JJ'), # adjectives

 (r'.*ness$', 'NN'), # nouns formed from adj

 (r'.*ly$', 'RB'), # adverbs

 (r'.*s$', 'NNS'), # plural nouns

 (r'.*ing$', 'VBG'), # gerunds

 (r'.*ed$', 'VBD'), # past tense verbs

 (r'.*', 'NN') # nouns (default)

])

>>>print regexp_tagger.evaluate(test_data)

0.303627342358

We can see that by just using some of the obvious patterns for POS we are able to
reach approximately 30 percent in terms of accuracy. If we combine regex taggers,
such as the BackoffTagger, we might improve the performance. The other use case
for regex tagger is in the preprocessing step, where instead of using a raw Python
function string.sub(), we can use this tagger to tag date patterns, money patterns,
location patterns and so on.

•	 Can you modify the code of a hybrid tagger in the N-gram tagger section to
work with Regex tagger? Does that improve performance?

•	 Can you write a tagger that tags Date and Money expressions?

Chapter 3

[39]

Brill tagger
Brill tagger is a transformation based tagger, where the idea is to start with a guess
for the given tag and, in next iteration, go back and fix the errors based on the next
set of rules the tagger learned. It's also a supervised way of tagging, but unlike
N-gram tagging where we count the N-gram patterns in training data, we look for
transformation rules.

If the tagger starts with a Unigram / Bigram tagger with an acceptable accuracy, then
brill tagger, instead looking for a trigram tuple, will be looking for rules based on
tags, position and the word itself.

An example rule could be:

Replace NN with VB when the previous word is TO.

After we already have some tags based on UnigramTagger, we can refine if with just
one simple rule. This is an interactive process. With a few iterations and some more
optimized rules, the brill tagger can outperform some of the N-gram taggers. The
only piece of advice is to look out for over-fitting of the tagger for the training set.

You can also look at the work here for more example rules.
http://stp.lingfil.uu.se/~bea/publ/megyesi-
BrillsPoSTagger.pdf

•	 Can you try to write more rules based on your observation?
•	 Try to combine brill tagger with UnigramTagger.

Machine learning based tagger
Until now we have just used some of the pre-trained taggers from NLTK or Stanford.
While we have used them in the examples in previous section, the internals of the
taggers are still a black box to us. For example, pos_tag internally uses a Maximum
Entropy Classifier (MEC). While StanfordTagger also uses a modified version of
Maximum Entropy. These are discriminatory models. While there are many Hidden
Markov Model (HMM) and Conditional Random Field (CRF) based taggers, these
are generative models.

Covering all of these topics is beyond the scope of the book. I would highly
recommend the NLP class for a great understanding of these concepts. We will cover
some of the classification techniques in Chapter 6, Text Classification, but some of these
are very advanced topics in NLP, and will need more attention.

http://stp.lingfil.uu.se/~bea/publ/megyesi-BrillsPoSTagger.pdf
http://stp.lingfil.uu.se/~bea/publ/megyesi-BrillsPoSTagger.pdf

Part of Speech Tagging

[40]

If I have to explain in short, the way to categorize POS tagging problem is either as
a classification problem where given a word and the features like previous word,
context, morphological variation, and so on. We classify the given word into a POS
category, while the others try to model it as a generative model using the similar
features. It's for the reader's reference to go over some of these topics using links
in the tips.

NLP CLASS: https://www.coursera.org/course/nlp
HMM: http://mlg.eng.cam.ac.uk/zoubin/papers/
ijprai.pdf

MEC: https://web.stanford.edu/class/cs124/lec/
Maximum_Entropy_Classifiers.pdf

http://nlp.stanford.edu/software/tagger.shtml

Named Entity Recognition (NER)
Aside from POS, one of the most common labeling problems is finding entities in the
text. Typically NER constitutes name, location, and organizations. There are NER
systems that tag more entities than just three of these. The problem can be seen as
a sequence, labeling the Named entities using the context and other features. There
is a lot more research going on in this area of NLP where people are trying to tag
Biomedical entities, product entities in retail, and so on. Again, there are two ways
of tagging the NER using NLTK. One is by using the pre-trained NER model that
just scores the test data, the other is to build a Machine learning based model.
NLTK provides the ne_chunk() method and a wrapper around Stanford NER
tagger for Named Entity Recognition.

NER tagger
NLTK provides a method for Named Entity Extraction: ne_chunk. We have
shown a small snippet to demonstrate how to use it for tagging any sentence.
This method will require you to preprocess the text to tokenize for sentences,
tokens, and POS tags in the same order to be able to tag for Named entities. NLTK
used ne_chunking, where chunking is nothing but tagging multiple tokens to a call
it a meaningful entity.

https://www.coursera.org/course/nlp
http://mlg.eng.cam.ac.uk/zoubin/papers/ijprai.pdf
http://mlg.eng.cam.ac.uk/zoubin/papers/ijprai.pdf
https://web.stanford.edu/class/cs124/lec/Maximum_Entropy_Classifiers.pdf
https://web.stanford.edu/class/cs124/lec/Maximum_Entropy_Classifiers.pdf
http://nlp.stanford.edu/software/tagger.shtml

Chapter 3

[41]

NE chunking is loosely used in the same way as Named entity:

>>>import nltk

>>>from nltk import ne_chunk

>>>Sent = "Mark is studying at Stanford University in California"

>>>print(ne_chunk(nltk.pos_tag(word_tokenize(sent)), binary=False))

(S

 (PERSON Mark/NNP)

 is/VBZ

 studying/VBG

 at/IN

 (ORGANIZATION Stanford/NNP University/NNP)

 in/IN

 NY(GPE California/NNP)))

The ne_chunking method recognizes people (names), places (location), and
organizations. If binary is set to True then it provides the output for the entire
sentence tree and tags everything. Setting it to False will give us detailed person,
location and organizations information, as with the preceding example using the
Stanford NER Tagger.

Similar to the POS tagger, NLTK also has a wrapper around Stanford NER. This NER
tagger has better accuracy. The code following snippet will let you use the tagger.
You can see in the given example that we are able to tag all the entities with just
three lines of code:

>>>from nltk.tag.stanford import NERTagger

>>>st = NERTagger('<PATH>/stanford-ner/classifiers/all.3class.distsim.
crf.ser.gz',... '<PATH>/stanford-ner/stanford-ner.jar')

>>>st.tag('Rami Eid is studying at Stony Brook University in NY'.split())
[('Rami', 'PERSON'), ('Eid', 'PERSON'), ('is', 'O'), ('studying', 'O'),
('at', 'O'), ('Stony', 'ORGANIZATION'), ('Brook', 'ORGANIZATION'),
('University', 'ORGANIZATION'), ('in', 'O'), ('NY', 'LOCATION')]

If you observe closely, even with a very small test sentence, we can say Stanford
Tagger outperformed the NLTK ne_chunk tagger.

Now, these kinds of NER taggers are a nice solution for a generic kind of entity
tagging, but we have to train our own tagger, when it comes, to tag domain specific
entities like biomedical and product names, so we have to build our own NER system.
I would also recommend an NER Calais. It has ways of tagging not just typical NER,
but also some more entities. The performance of this tagger is also very good:

https://code.google.com/p/python-calais/

Part of Speech Tagging

[42]

Your Turn
Here are the answers to the questions posed in the above sections:

•	 Can we remove stop words before POS tagging?
No; If we remove the stop words, we will lose the context, and some of the
POS taggers (Pre-Trained model) use word context as features to give the
POS of the given word.

•	 How can we get all the verbs in the sentence?
We can get all the verbs in the sentence by using pos_tag
>>>tagged = nltk.pos_tag(word_tokenize(s))

>>>allverbs = [word for word,pos in tagged if pos in
['VB','VBD','VBG']]

•	 Can you modify the code of the hybrid tagger in the N-gram tagger section to
work with Regex tagger? Does that improve performance?
Yes. We can modify the code of the hybrid tagger in the N-gram tagger
section to work with the Regex tagger:
>>>print unigram_tagger.evaluate(test_data,backoff= regexp_tagger)

>>>bigram_tagger = BigramTagger(train_data, backoff=unigram_
tagger)

>>>print bigram_tagger.evaluate(test_data)

>>>trigram_tagger=TrigramTagger(train_data,backoff=bigram_tagger)

>>>print trigram_tagger.evaluate(test_data)

0.857122212053

0.866708415627

0.863914446746

The performance improves as we add some basic pattern-based rules, instead
of predicting the most frequent tag.

•	 Can you write a tagger that tags Date and Money expressions?

Yes, we can write a tagger that tags Date and Money expressions. Following
is the code:

>>>date_regex = RegexpTagger([(r'(\d{2})[/.-](\d{2})[/.-](\d{4})$'
,'DATE'),(r'\$','MONEY')])

>>>test_tokens = "I will be flying on sat 10-02-2014 with around
10M $ ".split()

>>>print date_regex.tag(test_tokens)

Chapter 3

[43]

The last two questions haven't been answered.
There can be many rules according to the reader's observation,
so there is no Right / Wrong answer here.

Can you try a similar word cloud to what we did in Chapter 1, Introduction to Natural
Language Processing with only nouns and verbs now?

References:

https://github.com/japerk/nltk-trainer

http://en.wikipedia.org/wiki/Part-of-speech_tagging

http://en.wikipedia.org/wiki/Named-entity_recognition

http://www.inf.ed.ac.uk/teaching/courses/icl/nltk/tagging.pdf

http://www.nltk.org/api/nltk.tag.html

Summary
This chapter was intended to expose the reader to some of the most useful NLP
pre-processing steps of tagging. We have talked about the Part of Speech problem in
general, including the significance of POS in the context of NLP. We also discussed
the different ways we can use a pre-trained POS tagger in NLTK, how simple it
is to use, and how to create wonderful applications. We then talked about all the
available POS tagging options, like N-gram tagging, Regex based tagging, etc. We
have developed a mix of these taggers that can be built for domain specific corpuses.
We briefly talked about how a typical pre-trained tagger is built. We discussed
the possible approaches to address tagging problems. We also talked about NER
taggers, and how it works with NLTK. I think if, by the end of this chapter, the user
understands the importance of POS and NER in general in the context of NLP, as
well as how to run the snippet of codes using NLTK, I will consider this chapter
successful. But the journey does not end here. We know some of the shallow NLP
preprocessing steps now, and in most of the practical application POS, the NER
predominantly used. In more complex NLP applications such as the Q/A system,
Summarization, and Speech we need deeper NLP techniques like Chunking, Parsing,
Semantics. We will talk about these in the next chapter.

www.allitebooks.com

https://github.com/japerk/nltk-trainer
http://en.wikipedia.org/wiki/Part-of-speech_tagging
http://en.wikipedia.org/wiki/Named-entity_recognition
http://www.inf.ed.ac.uk/teaching/courses/icl/nltk/tagging.pdf
http://www.nltk.org/api/nltk.tag.html
http://www.allitebooks.org

[45]

Parsing Structure in Text
This chapter involves a better understanding of deep structure in text and also how
to deep parse text and use it in various NLP applications. Now, we are equipped
with various NLP preprocessing steps. Let's move to some deeper aspect of the text.
The structure of language is so complex that we can describe it by various layers of
structural processing. In this chapter we will touch upon all these structures in text,
differentiate between them, and provide you with enough details about the usage
of one of these. We will talk about context-free grammar (CFG) and how it can be
implemented with NLTK. We will also look at the various parsers and how we can
use some of the existing parsing methods in NLTK. We will write a shallow parser
in NLTK and will again talk about NER in the context of chunking. We will also
provide details about some options that exist in NLTK to do deep structural analysis.
We will also try to give you some real-world use cases of information extraction and
how it can be achieved by using some of the topics that you will learn in this chapter.
We want you to have an understanding of these topics by the end of this chapter.

In this chapter:

•	 We will also see what parsing is and what is the relevance of parsing in NLP.
•	 We will then explore different parsers and see how we can use NLTK for

parsing.
•	 Finally, we will see how parsing can be used for information extraction.

Parsing Structure in Text

[46]

Shallow versus deep parsing
In deep or full parsing, typically, grammar concepts such as CFG, and probabilistic
context-free grammar (PCFG), and a search strategy is used to give a complete
syntactic structure to a sentence. Shallow parsing is the task of parsing a limited
part of the syntactic information from the given text. While deep parsing is required
for more complex NLP applications, such as dialogue systems and summarization,
shallow parsing is more suited for information extraction and text mining varieties of
applications. I will talk about these in the next few sections with more details about
their pros and cons and how we can use them for our NLP application.

The two approaches in parsing
There are mainly two views/approaches used to deal with parsing, which are as
follows:

The rule-based approach The probabilistic approach
This approach is based on rules/grammar In this approach, you learn rules/grammar

by using probabilistic models
Manual grammatical rules are coded down
in CFG, and so on, in this approach

This uses observed probabilities of linguistic
features

This has a top-down approach This has a bottom-up approach
This approach includes CFG and Regex-
based parser

This approach includes PCFG and the
Stanford parser

Why we need parsing
I again want to take you guys back to school, where we learned grammar. Now tell
me why you learnt grammar Do you really need to learn grammar? The answer
is definitely yes! When we grow, we learn our native languages. Now, when we
typically learn languages, we learn a small set of vocabulary. We learn to combine
small chunks of phrases and then small sentences. By learning each example
sentence, we learn the structure of the language. Your mom might have corrected
you many times when you uttered an incorrect sentence. We apply a similar process
when we try to understand the sentence, but the process is so common that we never
actually pay attention to it or think about it in detail. Maybe the next time you correct
someone's grammar, you will understand.

Chapter 4

[47]

When it comes to writing a parser, we try to replicate the same process here. If we
come up with a set of rules that can be used as a template to write the sentences in a
proper order. We also need the words that can fit into these categories. We already
talked about this process. Remember POS tagging, where we knew the category of
the given word?

Now, if you've understood this, you have learned the rules of the game and what
moves are valid and can be taken for a specific step. We essentially follow a very
natural phenomenon of the human brain and try to emulate it. One of the simplest
grammar concepts to start with is CFG, where we just need a set of rules and a set of
terminal tokens.

Let's write our first grammar with very limited vocabulary and very generic rules:

toy CFG

>>>from nltk import CFG

>>>toy_grammar =

nltk.CFG.fromstring(

"""

 S -> NP VP # S indicate the entire sentence

 VP -> V NP # VP is verb phrase the

 V -> "eats" | "drinks" # V is verb

 NP -> Det N # NP is noun phrase (chunk that has noun in it)

 Det -> "a" | "an" | "the" # Det is determiner used in the sentences

 N -> "president" |"Obama" |"apple"| "coke" # N some example nouns

 """)

>>>toy_grammar.productions()

Now, this grammar concept can generate a finite amount of sentences. Think of a
situation where you just know how to combine a noun with a verb and the only
verbs and nouns you knew were the ones we used in the preceding code. Some of
the example sentences we can form from these are:

•	 President eats apple
•	 Obama drinks coke

Now, understand what's happening here. Our mind has created a grammar concept
to parse based on the preceding rules and substitutes whatever vocabulary we have.
If we are able to parse correctly, we understand the meaning.

Parsing Structure in Text

[48]

So, effectively, the grammar we learnt at school constituted the useful rules of
English. We still use those and also keep enhancing them and these are the same
rules we use to understand all English sentences. However, today's rules do not
apply to William Shakespeare's body of work.

On the other hand, the same grammar can construct meaningless sentences such as:

•	 Apple eats coke
•	 President drinks Obama

When it comes to a syntactic parser, there is a chance that a syntactically formed
sentence could be meaningless. To get to the semantics, we need a deeper
understanding of semantics structure of the sentence. I encourage you to look for
a semantic parser in case you are interested in these aspects of language.

Different types of parsers
A parser processes an input string by using a set of grammatical rules and builds
one or more rules that construct a grammar concept. Grammar is a declarative
specification of a well-formed sentence. A parser is a procedural interpretation of
grammar. It searches through the space of a variety of trees and finds an optimal tree
for the given sentence. We will go through some of the parsers available and briefly
touch upon their workings in detail for awareness, as well as for practical purposes.

A recursive descent parser
One of the most straightforward forms of parsing is recursive descent parsing. This
is a top-down process in which the parser attempts to verify that the syntax of the
input stream is correct, as it is read from left to right. A basic operation necessary
for this involves reading characters from the input stream and matching them with
the terminals from the grammar that describes the syntax of the input. Our recursive
descent parser will look ahead one character and advance the input stream reading
pointer when it gets a proper match.

A shift-reduce parser
The shift-reduce parser is a simple kind of bottom-up parser. As is common with
all bottom-up parsers, a shift-reduce parser tries to find a sequence of words and
phrases that correspond to the right-hand side of a grammar production and replaces
them with the left-hand side of the production, until the whole sentence is reduced.

Chapter 4

[49]

A chart parser
We will apply the algorithm design technique of dynamic programming to the
parsing problem. Dynamic programming stores intermediate results and reuses
them when appropriate, achieving significant efficiency gains. This technique can be
applied to syntactic parsing. This allows us to store partial solutions to the parsing
task and then allows us to look them up when necessary in order to efficiently arrive
at a complete solution. This approach to parsing is known as chart parsing.

For a better understanding of the parsers, you can go through an
example at
http://www.nltk.org/howto/parse.html.

A regex parser
A regex parser uses a regular expression defined in the form of grammar on top of a
POS-tagged string. The parser will use these regular expressions to parse the given
sentences and generate a parse tree out of this. A working example of the regex
parser is given here:

Regex parser

>>>chunk_rules=ChunkRule("<.*>+","chunk everything")

>>>import nltk

>>>from nltk.chunk.regexp import *

>>>reg_parser = RegexpParser('''

 NP: {<DT>? <JJ>* <NN>*} # NP

 P: {<IN>} # Preposition

 V: {<V.*>} # Verb

 PP: {<P> <NP>} # PP -> P NP

 VP: {<V> <NP|PP>*} # VP -> V (NP|PP)*

 ''')

>>>test_sent="Mr. Obama played a big role in the Health insurance bill"

>>>test_sent_pos=nltk.pos_tag(nltk.word_tokenize(test_sent))

>>>paresed_out=reg_parser.parse(test_sent_pos)

>>> print paresed_out

Tree('S', [('Mr.', 'NNP'), ('Obama', 'NNP'), Tree('VP', [Tree('V',
[('played', 'VBD')]), Tree('NP', [('a', 'DT'), ('big', 'JJ'), ('role',
'NN')])]), Tree('P', [('in', 'IN')]), ('Health', 'NNP'), Tree('NP',
[('insurance', 'NN'), ('bill', 'NN')])])

http://www.nltk.org/howto/parse.html

Parsing Structure in Text

[50]

The following is a graphical representation of the tree for the preceding code:

Root

Mr. Obama played DT

VBDNNP

NP

NP

NP

DT

NN

NNNN

IN

PP

in

insurance

rolebig

JJ

VP

s

a

NNP

NNP

Healththe bill

In the current example, we define the kind of patterns (a regular expression of
the POS) we think will make a phrase, for example, anything that {<DT>? <JJ>*
<NN>*} has a starting determiner followed by an adjective and then a noun is mostly
a noun phrase. Now, this is more of a linguistic rule that we have defined to get the
rule-based parse tree.

Dependency parsing
Dependency parsing (DP) is a modern parsing mechanism. The main concept of DP
is that each linguistic unit (words) is connected with each other by a directed link.
These links are called dependencies in linguistics. There is a lot of work going on in
the current parsing community. While phrase structure parsing is still widely used
for free word order languages (Czech and Turkish), dependency parsing has turned
out to be more efficient.

A very clear distinction can be made by looking at the parse tree generated by phrase
structure grammar and dependency grammar for a given example, as the sentence
"The big dog chased the cat". The parse tree for the preceding sentence is:

Chapter 4

[51]

Phrase Structure tree Dependency Tree

The big dog chased the cat

S

NP VP

Art Adj N V NP

Art N

the big dog chased the cat

If we look at both parse trees, the phrase structures try to capture the relationship
between words and phrases and then eventually between phrases. While a
dependency tree just looks for a dependency between words, for example, big is
totally dependent on dog.

NLTK provides a couple of ways to do dependency parsing. One of them is to use
a probabilistic, projective dependency parser, but it has the restriction of training
with a limited set of training data. One of the state of the art dependency parsers is
a Stanford parser. Fortunately, NLTK has a wrapper around it and in the following
example, I will talk about how to use a Stanford parser with NLTK:

Stanford Parser [Very useful]

>>>from nltk.parse.stanford import StanfordParser

>>>english_parser = StanfordParser('stanford-parser.jar', 'stanford-
parser-3.4-models.jar')

>>>english_parser.raw_parse_sents(("this is the english parser test")

Parse

(ROOT

 (S

 (NP (DT this))

 (VP (VBZ is)

 (NP (DT the) (JJ english) (NN parser) (NN test)))))

Universal dependencies

nsubj(test-6, this-1)

cop(test-6, is-2)

det(test-6, the-3)

amod(test-6, english-4)

compound(test-6, parser-5)

root(ROOT-0, test-6)

Parsing Structure in Text

[52]

Universal dependencies, enhanced

nsubj(test-6, this-1)

cop(test-6, is-2)

det(test-6, the-3)

amod(test-6, english-4)

compound(test-6, parser-5)

root(ROOT-0, test-6)

The output looks quite complex but, in reality, it's not. The output is a list of three
major outcomes, where the first is just the POS tags and the parsed tree of the
given sentences. The same is plotted in a more elegant way in the following figure.
The second is the dependency and positions of the given words. The third is the
enhanced version of dependency:

Root

is

NP

s

VBZ

VP

this

DT NP

DT NNNN

parser

JJ

englishthe test

For a better understanding of how to use a Stanford parser, refer to
http://nlpviz.bpodgursky.com/home and
http://nlp.stanford.edu:8080/parser/index.jsp.

Chunking
Chunking is shallow parsing where instead of reaching out to the deep structure
of the sentence, we try to club some chunks of the sentences that constitute some
meaning.

http://nlpviz.bpodgursky.com/home
http://nlp.stanford.edu:8080/parser/index.jsp

Chapter 4

[53]

A chunk can be defined as the minimal unit that can be processed. So, for example, the
sentence "the President speaks about the health care reforms" can be broken into two
chunks, one is "the President", which is noun dominated, and hence is called a noun
phrase (NP). The remaining part of the sentence is dominated by a verb, hence it is
called a verb phrase (VP). If you see, there is one more sub-chunk in the part "speaks
about the health care reforms". Here, one more NP exists that can be broken down
again in "speaks about" and "health care reforms", as shown in the following figure:

The President speaks about The Health Care Reforms

VP

NPNP

This is how we broke the sentence into parts and that's what we call chunking.
Formally, chunking can also be described as a processing interface to identify
non-overlapping groups in unrestricted text.

Now, we understand the difference between shallow and deep parsing. When we
reach the syntactic structure of the sentences with the help of CFG and understand
the syntactic structure of the sentence. Some cases we need to go for semantic
parsing to understand the meaning of the sentence. On the other hand, there are
cases where, we don't need analysis this deep. Let's say, from a large portion
of unstructured text, we just want to extract the key phrases, named entities, or
specific patterns of the entities. For this, we will go for shallow parsing instead of
deep parsing because deep parsing involves processing the sentence against all the
grammar rules and also the generation of a variety of syntactic tree till the parser
generates the best tree by using the process of backtracking and reiterating. This
entire process is time consuming and cumbersome and, even after all the processing,
you might not get the right parse tree. Shallow parsing guarantees the shallow parse
structure in terms of chunks which is relatively faster.

So, let's write some code snippets to do some basic chunking:

Chunking

>>>from nltk.chunk.regexp import *

>>>test_sent="The prime minister announced he had asked the chief
government whip, Philip Ruddock, to call a special party room meeting for
9am on Monday to consider the spill motion."

>>>test_sent_pos=nltk.pos_tag(nltk.word_tokenize(test_sent))

>>>rule_vp = ChunkRule(r'(<VB.*>)?(<VB.*>)+(<PRP>)?', 'Chunk VPs')

www.allitebooks.com

http://www.allitebooks.org

Parsing Structure in Text

[54]

>>>parser_vp = RegexpChunkParser([rule_vp],chunk_label='VP')

>>>print parser_vp.parse(test_sent_pos)

>>>rule_np = ChunkRule(r'(<DT>?<RB>?)?<JJ|CD>*(<JJ|CD><,>)*(<NN.*>)+',
'Chunk NPs')

>>>parser_np = RegexpChunkParser([rule_np],chunk_label="NP")

>>>print parser_np.parse(test_sent_pos)

(S

 The/DT

 prime/JJ

 minister/NN

 (VP announced/VBD he/PRP)

 (VP had/VBD asked/VBN)

 the/DT

 chief/NN

 government/NN
 whip/NN

….

….

….

(VP consider/VB)

 the/DT

 spill/NN

 motion/NN

 ./.)

(S

 (NP The/DT prime/JJ minister/NN) # 1st noun phrase

 announced/VBD

 he/PRP

 had/VBD

 asked/VBN

 (NP the/DT chief/NN government/NN whip/NN) # 2nd noun
phrase

 ,/,

 (NP Philip/NNP Ruddock/NNP)

 ,/,

Chapter 4

[55]

 to/TO

 call/VB

 (NP a/DT special/JJ party/NN room/NN meeting/NN) # 3rd noun
phrase

 for/IN

 9am/CD

 on/IN

 (NP Monday/NNP) # 4th noun phrase

 to/TO

 consider/VB

 (NP the/DT spill/NN motion/NN) # 5th noun phrase

 ./.)

The preceding code is good enough to do some basic chunking of verb and noun
phrases. A conventional pipeline in chunking is to tokenize the POS tag and the
input string before they are ed to any chunker. Here, we use a regular chunker,
as rule NP / VP defines different POS patterns that can be called a verb/noun
phrase. For example, the NP rule defines anything that starts with the determiner
and then there is a combination of an adverb, adjective, or cardinals that can be
chunked in to a noun phrase. Regular expression-based chunkers rely on chunk rules
defined manually to chunk the string. So, if we are able to write a universal rule
that can incorporate most of the noun phrase patterns, we can use regex chunkers.
Unfortunately, it's hard to come up with those kind of generic rules; the other
approach is to use a machine learning way of doing chunking. We briefly touched
upon ne_chunk() and the Stanford NER tagger that both use a pre-trained model to
tag noun phrases.

Information extraction
We learnt about taggers and parsers that we can use to build a basic information
extraction engine. Let's jump directly to a very basic IE engine and how a typical IE
engine can be developed using NLTK.

Any sort of meaningful information can be drawn only if the given input stream
goes to each of the following NLP steps. We already have enough understanding of
sentence tokenization, word tokenization, and POS tagging. Let's discuss NER and
relation extraction as well.

Parsing Structure in Text

[56]

A typical information extraction pipeline looks very similar to that shown in the
following figure:

Sentence

Tokenization

Word

Tokenization

Part-of-Speech

Tagging
Entity Detection

Relation

Extraction

raw text relations

(lis
t

o
f
s
trin

g
s
)

(lis
t

o
f
lis

t
o
f
s
trin

g
s
)

(lis
t

o
f
lis

t
o
f
tu

p
le

s
)

(lis
t

o
f
tre

e
s
)

String

Some of the other preprocessing steps, such as stop word removal and
stemming, are generally ignored and do not add any value to an IE
engine.

Named-entity recognition (NER)
We already briefly discussed NER generally in the last chapter. Essentially, NER is a
way of extracting some of the most common entities, such as names, organizations,
and locations. However, some of the modified NER can be used to extract entities
such as product names, biomedical entities, author names, brand names, and so on.

Let's start with a very generic example where we are given a text file of the content
and we need to extract some of the most insightful named entities from it:

NP chunking (NER)

>>>f=open(# absolute path for the file of text for which we want NER)

>>>text=f.read()

>>>sentences = nltk.sent_tokenize(text)

>>>tokenized_sentences = [nltk.word_tokenize(sentence) for sentence in
sentences]

>>>tagged_sentences = [nltk.pos_tag(sentence) for sentence in tokenized_
sentences]

>>>for sent in tagged_sentences:

>>>print nltk.ne_chunk(sent)

In the preceding code, we just followed the same pipeline provided in the preceding
figure. We took all the preprocessing steps, such as sentence tokenization,
tokenization, POS tagging, and NLTK. NER (pre-trained models) can be used to
extract all NERs.

Chapter 4

[57]

Relation extraction
Relation extraction is another commonly used information extraction operation.
Relation extraction as it sound is the process of extracting the different relationships
between different entities. There are variety of the relationship that exist between the
entities. We have seen relationship like inheritance/synonymous/analogous. The
definition of the relation can be dependent on the Information need. For example
in the case where we want to look from unstructured text data who is the writer of
which book then authorship could be a relation between the author name and book
name. With NLTK the idea is to use the same IE pipeline that we used till NER and
extend it with a relation pattern based on the NER tags.

So, in the following code, we used an inbuilt corpus of ieer, where the sentences
are tagged till NER and the only thing we need to specify is the relation pattern we
want and the kind of NER we want the relation to define. In the following code, a
relationship between an organization and a location has been defined and we want
to extract all the combinations of these patterns. This can be applied in various ways,
for example, in a large corpus of unstructured text, we will be able to identify some
of the organizations of our interest with their corresponding location:

>>>import re

>>>IN = re.compile(r'.*\bin\b(?!\b.+ing)')

>>>for doc in nltk.corpus.ieer.parsed_docs('NYT_19980315'):

>>> for rel in nltk.sem.extract_rels('ORG', 'LOC', doc, corpus='ieer',
pattern = IN):

>>>print(nltk.sem.rtuple(rel))

[ORG: u'WHYY'] u'in' [LOC: u'Philadelphia']

[ORG: u'McGlashan & Sarrail'] u'firm in' [LOC: u'San Mateo']

[ORG: u'Freedom Forum'] u'in' [LOC: u'Arlington']

[ORG: u'Brookings Institution'] u', the research group in' [LOC:
u'Washington']

[ORG: u'Idealab'] u', a self-described business incubator based in' [LOC:
u'Los Angeles']

..

Parsing Structure in Text

[58]

Summary
We moved beyond the basic preprocessing steps in this chapter. We looked deeper
at NLP techniques, such as parsing and information extraction. We discussed
parsing in detail, which parsers are available, and how to use NLTK to do any NLP
parsing. You understood the concept of CFG and PCFG and how to learn from a tree
bank and build a parser. We talked about shallow and deep parsing and what the
difference is between them.

We also talked about some of the information extraction essentials, such as entity
extraction and relation extraction. We talked about a typical information extraction
engine pipeline. We saw a very small and simple IE engine that can be built in
less than 100 lines of code. Think about this kind of system running on an entire
Wikipedia dump or an entire web content related to an organization. Cool, isn't it?

We will use some of the topics we've learnt in this chapter in further chapters to
build some useful NLP applications.

[59]

NLP Applications
This chapter discusses NLP applications. Here, we will put all the learning from the
previous chapters into action and will see what kind of application can be developed
using the concepts we have learned. This will be a complete hands-on chapter. In the
last few chapters we have learned most of the preprocessing steps that are required
for any NLP application. We know how to use tokenizer, POS tag, and NER and how
to perform parsing. This chapter will give you an idea how we can developed some
of the complex NLP application using the concepts we have learned.

There are so many applications of NLP in the real world. Some of the most exciting
and common examples you can observe are Google Search, Siri, machine translation,
Google News, Jeopardy, and spell check. Some of these took many years for
researchers to reach this level and bring these applications to their current state.
NLP is complicated too; we have seen in the previous chapters that most of the
processing steps, such as POS and NER, are still research problems. But with the
use of NLTK, we have solved many of these problems with reasonable accuracy.
We will not cover the more sophisticated applications such as machine translation
or speech recognition in this book. But at this point in time, you should have
enough background knowledge to understand some of the basic blocks of these
applications. As a NLP enthusiast we should have a basic understanding of these
NLP applications. I urge you to try and look for some of these NLP applications on
the web and try to understand them.

By the end of this chapter :

•	 We will introduce reader to few common NLP applications.
•	 We will develop a NLP application (News summarizer) using what

we have learnt so far.
•	 The importance of different NLP applications and essential details

about each of them.

NLP Applications

[60]

Building your first NLP application
Let's start with one of the very complex NLP applications, which is summarization.
The concept of summarization is quite simple. We are given an article/passage/
story and you will have to generate a summary of the content automatically.
Summarization actually requires deep knowledge of NLP because we need to
understand not just the structure of the sentence but also the structure of the entire
text. We also need to know about genre of the text and the theme of the content.

Since it all looks very complex to us, let's try a very intuitive approach. We will
assume that summarization is nothing but ranking of the sentences based on
their importance and significance to you. We will create a few rules based on the
understanding and the preprocessing tools we have learned so far and will try to
come up with an acceptable summary of the news article.

I have scraped an article from the New York Times in a text file nyt.txt, in the
following example. The idea here is to summarize this news article for us. Let's
build a version of Google News for our personal use.

To start off, we need to keep in mind that, typically, a sentence that has more entities
and nouns has greater importance than other sentences. We will try to normalize the
same logic while calculating an importance score, using the following code. To get
the top-n sentence, we can choose a threshold for the importance score.

Let's read the content of the news article. You can choose any news article with only
contents of the news dumped into a text file. The content will look like this:

>>>import sys

>>>f=open('nyt.txt','r')

>>>news_content=f.read()

""" President Obama on Monday will ban the federal provision of some
types of military-style equipment to local police departments and sharply
restrict the availability of others, administration officials said.

The ban is part of Mr. Obama's push to ease tensions between law
enforcement and minority communities in reaction to the crises in
Baltimore; Ferguson, Mo.; and other cities.

- - -

blic." It contains dozens of recommendations for agencies throughout the
country."""

Chapter 5

[61]

Once we parse the contents of the news we will need to split the entire news article
into a list of sentences. We will go back to our old sentence tokenizer to break the
entire news snippet into sentences. Let's also provide some form of sentence number
so that we can identify and rank a sentence. Once we have the sentence, we will pass
it through a word tokenizer and eventually through the NER tagger and POS tagger.

>>>import nltk

>>>results=[]

>>>for sent_no,sentence in enumerate(nltk.sent_tokenize(news_content)):

>>> no_of_tokens=len(nltk.word_tokenize(sentence))

>>> #print no_of_toekns

>>> # Let's do POS tagging

>>> tagged=nltk.pos_tag(nltk.word_tokenize(sentence))

>>> # Count the no of Nouns in the sentence

>>> no_of_nouns=len([word for word,pos in tagged if pos in
["NN","NNP"]])

>>> #Use NER to tag the named entities.

>>> ners=nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(sentence)),
binary=False)

>>> no_of_ners= len([chunk for chunk in ners if hasattr(chunk,
'node')])

>>> score=(no_of_ners+no_of_nouns)/float(no_of_toekns)

>>>

>>> results.append((sent_no,no_of_tokens,no_of_ners,\

no_of_nouns,score,sentence))

In the preceding code, we are iterating over a list of sentences calculating a score
based on a formula that is nothing but the fraction of tokens being entities as
compared to a normal token. We are creating a tuple of all these as the results.

Now, the result is a tuple with all the scores, such as the number of nouns, entities,
and so on. We can sort it based on the score in descending order, as shown in the
following example:

>>>for sent in sorted(results,key=lambda x: x[4],reverse=True):

>>> print sent[5]

Now, the result of this will be sorted by the rank of the sentence. You will be amazed
by the kind of results we get for the news article.

Once we have a list of no_of_nouns and no_of_ners scores, we can actually create
some more complex rules around this. For example, a typical news article will start
with very important details about the topic, and the last sentence will be a conclusion
to the story.

NLP Applications

[62]

Can we modify the same snippet to incorporate this logic?

The other theory of this kind of summarization is that the important sentences
generally contain important words and that most of the the discriminatory words
across the corpus will be important. The sentences that has very discriminatory
words are important. A very simple measure of that is to calculate the TF-IDF (term
frequency–inverse document frequency) score of each and every word and then
look for an average score normalized by the words that are important; this can then
be used as the criteria to choose sentences for our summary.

For explaining the concepts instead of the entire article, just take the first three
sentences of the article. Let's see how you can implement something this complex
using very few lines of code:

This code require installing scikit. If you have installed anaconda or
canopy you should be fine otherwise install scikit using this link.
http://scikit-learn.org/stable/install.html

>>>import nltk

>>>from sklearn.feature_extraction.text import TfidfVectorizer

>>>results=[]

>>>news_content="Mr. Obama planned to promote the effort on Monday during
a visit to Camden, N.J. The ban is part of Mr. Obama's push to ease
tensions between law enforcement and minority \communities in reaction to
the crises in Baltimore; Ferguson, Mo. We are, without a doubt, sitting
at a defining moment in American policing, Ronald L. Davis, the director
of the Office of Community Oriented Policing Services at the Department
of Justice, told reporters in a conference call organized by the White
House"

>>>sentences=nltk.sent_tokenize(news_content)

>>>vectorizer = TfidfVectorizer(norm='l2',min_df=0, use_idf=True, smooth_
idf=False, sublinear_tf=True)

>>>sklearn_binary=vectorizer.fit_transform(sentences)

>>>print countvectorizer.get_feature_names()

>>>print sklearn_binary.toarray()

>>>for i in sklearn_binary.toarray():

>>>	 results.append(i.sum()/float(len(i.nonzero()[0]))

http://scikit-learn.org/stable/install.html

Chapter 5

[63]

In the preceding code, I am using some unknown methods, such as
TfidfVectorizer, which is a scoring method that will calculate a vector of TF-IDF
scores for each sentence in a given list of sentences. Don't worry, we will talk about
this in more detail. For this chapter, consider it as a black-box function that, for a
given list of sentences/documents, will give you the score corresponding to each
sentence and will also provide the ability to build a term-doc matrix that will look
just like our output.

We got a dictionary of all the words present across all the sentences and then we
have a list of lists where each element assigns each word its individual TF-IDF score.
If you got that right, then you can see some of the stop words will get a near-zero
score while some discriminatory words like ban and Obama will get a very high score.
Now once we have this in the code, I will look for the average TF-IDF score by using
only non-zero TF-IDF words. This will give us a similar kind of score as we got in
our first approach.

You will be amazed by the kind of results a simple algorithm can give. I think now
you are all set to write your own news summarizer that summarizes any given news
article with the two preceding algorithms and the summary will look quite decent.
While this kind of approach will give you a decent summarization, it's actually very
poor when you compare it with the current state of summarization research. I would
recommend looking for some literature relating to summarization. I would also like
you to try and combine both the approaches for summarization.

Other NLP applications
Some of the other NLP applications are text classification, machine translation,
speech recognition, information retrieval, information extraction, topic segmentation,
and discourse analysis. Some of these problems are actually very difficult NLP
tasks and a lot of research is still going on in these areas. We will discuss some of
these in depth in the next chapter, but as NLP students, we should have a basic
understanding of these applications.

Machine translation
The easiest way to understand machine translation is to know how we translate
from one language to other. Our mind parses the sentence structure and tries to
understand the sentence. Once we understand the sentence, we will try to substitute
the words from the original language with those from the target language. While
substituting, we use the grammar rules of the target sentence and finally achieve the
correct translation.

NLP Applications

[64]

Interlingua

Semantic
Decomposition

Semantic
Composition

Semantic
Structure

Semantic
Structure

Semantic
Generation

Syntactic
Structure

Syntactic
Generation

Morphological
Generation

Target Text

Direct

Syntactic
Transfer

Semantic
Transfer

Syntactic
Structure

Semantic
Analysis

Syntactic
Analysis

Word
Structure

Source Text

Morphological
Analysis

Word
Structure

Loosely, the process can be translated to something like the pyramid in the preceding
figure. If we start from the source language text, we have to tokenize the sentences
that we will parse the tree (for syntactic structure in easy words) to make sure the
sentences are correctly formulated. Semantic structure holds the meaning of the
sentences, and at the next level, we reach the state of Interlingua, which is an abstract
state that is independent from any language. There are multiple ways in which
people have developed methods of translation. The more you go on towards the root
of the pyramid, the more intense is the NLP processing required. So, based on these
levels of transfer, there are a variety of methods that are available. I have listed two
of them here:

•	 Direct translation: This will be more of a dictionary-based machine
translation while you have huge corpora of source and target language
words. This kind of transfer is possible for applications where we have a
large corpus of languages available. It's popular because of its simplicity.

•	 Syntactic transfer: Here you will try to build a parser of the source language.
There are varieties of ways in which people have approached the problem
of parsing. There are deep parsers that actually take care of some parts of
semantics too. Once you have a parser, target word substitution happens and
the target parser can generate the final sentence in the target language.

Chapter 5

[65]

Statistical machine translation
Statistical machine translation (SMT) is one of the latest approach of machine
translation, where people have come up with a variety of ways to apply statistical
methods to almost all the aspects of machine translation. The idea behind this kind
of algorithm is that we have a huge volume of corpora, parallel text, and language
models that can help us predict the language translation in the target language.
Google Translate is a great example of SMT, where it learns from the corpora of
different language pairs and builds an SMT around it.

Information retrieval
Information retrieval (IR) is also one of the most popular and widely used
applications. The best exmple of IR is Google Search, where—given an input
query from the user—the information retrieval algorithm will try to retrieve the
information which is relevant to the user's query.

In simple words, IR is the process of obtaining the most relevant information that is
needed by the user. There are a variety of ways in which the information needs can
be addressed to the system, but the system eventually retrieves the most relevant
infromation.

The way a typical IR system works is that it generates an indexing mechanism, also
known as inverted index. This is very similar to the indexing schemes used in books,
where you will have an index of the words present throughout the book on the last
pages of the book. Similarly, an IR system will create an inverted index poslist. A
typical posting list will look like this:

< Term , DocFreq, [DocId1,DocId2] >

{"the",2 --->[1,2] }

{"US",1 --->[2] }

{"president",2 --->[1,2] }

So if any word occurs in both document 1 and document 2, the posting list will be a
list of documents pointing to terms. Once you have this kind of data structure, there
are different retrieval models that can been introduced. There are different retrieval
models that work on different types of data. A few are listed in the following
sections.

NLP Applications

[66]

Boolean retrieval
In the Boolean model, we just need to run a Boolean operation on the poslist. For
example, if we are looking for a search query like "US president", the system should
look for an intersection of the postlist of "US" and "president".

{US}{president}=> [2]

Here, the second document turns out to be the relevant document.

Vector space model
The concept of vector space model (VSM) derives from geometry. The way to
visualize the documents in the high dimension space of vocabulary is to represent
it as a vector. So each and every document is represented as a vector in that space.
We can represent the vector in various ways, but one of the most useful and efficient
ways is using TF-IDF.

Given a term and a corpus, we can calculate the term frequency (TF) and inverse
document frequency (IDF) using the following formula:

() ()
(){ }

0.5 f ,
tf , 0.5

max f , :
t d

t d
w d w d
×

= +
∈

The TF is nothing but the frequency in the document. While the IDF is the inverse
of document frequency, which is the count of documents in the corpus where the
term occurs:

() { }
idf , log

:
Nt D

d D t d
=

∈ ∈

There are various normalization variants of these, but we can incorporate both of
these to create a more robust scoring mechanism to get the scoring of each term in the
document. To get to a TF-IDF score, we need to multiply these two scores as follows:

() () ()tfidf , , tf , idf ,t d D t d t D= ×

In TF-IDF, we are scoring a term for how much it is present in the current document
and how much it is spread across the corpus. This gives us an idea of the terms
that are not common across corpora and where ever they are present have a high
frequency. It becomes discriminatory to retrieve these documents. We have also used
TF-IDF in the previous section, where we describe our summarizer.The same scoring
can be used to represent the document as a vector. Once we have all the documents
represented in a vectorized form, the vector space model can be formulated.

Chapter 5

[67]

In VSM, the search query of the user is also considered as a document and
represented as a vector. Intuitively, a dot product between these two vectors can be
used to get the cosine similarity between the document and the user query.

D1

President

D2

US

The

Querv=Obama

In the preceding diagram, we see that these same documents can be represented
using each term as an axis and the query Obama will have as much relevance to D1 as
compared to D2. The scoring of the query for relevant documents can be formulated
as follows:

() , ,j 1

2 2j , ,1 1

,d q
sim ,

d q

N
i j i qi

j N N
i j i qi i

w w
d q

w w
=

= =

⋅
= = ∑

∑ ∑

The probabilistic model
The probabilistic model tries to estimate the probability of the user's need for the
document. This model assumes that the probability of the relevance depends on the
user query and document representation.The main idea is that a document that is
in the relevant set will not be present in the non-relevant set. We denote dj as the
document and q as user query; R represents the relevant set of documents, while P
represents the non-relevant set. The scoring can be done like this:

() ()
()
|

sim ,
|

j
j

j

P R d
d q

P R d
=

r

r

For more topics on IR, I would recommend that you read from the
following link:
http://nlp.stanford.edu/IR-book/html/htmledition/
irbook.html

http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

NLP Applications

[68]

Speech recognition
Speech recognition is a very old NLP problem. People have been trying to address
this since the era of World War I, and it still is one of the hottest topics in the area of
computing. The idea here is really intuitive. Given the speech uttered by a human
can we convert it to text? The problem with speech is that we produce a sequence
of sounds, called phonemes, that are hard to process, so speech segmentation itself
is a big problem. Once the speech is processable, the next step is to go through
some of the constraints (models) that are built using training data available. This
involves heavy machine learning. If you see the figure representing the modeling as
one box of applying constraints, it's actually one of the most complex components
of the entire system. While acoustic modeling involves building modes based on
phonemes, lexical models will try to address the modeling on smaller segments of
sentences, associating a meaning to each segment. Separately language models are
built on unigrams and bigrams of words.

Once we build these models, an utterence of the sentences is passed through the
process. Once processed for initial preprocessing, the sentence is passed through
these acoustic, lexical, and language models for generating the token as output.

Applying Constraints

Acoustic
Models

Lexical
Models

Language
Models

Representation Search

Recognized
Words

Speech
Signal

Training Data

Text classification
Text classification is a very interesting and common application of NLP. In your
daily work, you interact with many text classifiers. We use a spam filter, a priority
inbox, news aggregators, and so on. All of these are in fact applications built using
text classification.

Chapter 5

[69]

Text classification is a well-defined and somewhat solved problem, and it has been
applied across many domains. Typically, any text classification is the process of
classifying text documents using words and the combination of words. While it's
a typical machine learning problem, many of the preprocessing steps used in text
classification are from NLP.

An abstract diagram of text classification is shown here:

1 2

1 11 21 1

12 22 2

1 2

2

:

:

: : :

: : :

t

t

n tn n

t

n

w w w

w w w

w w

T T T

D

w

D

D

� �
� �
� �
� �
� �
� �
� �
� �� �
� �

�
�
�

�

Tokenization stop-word stemming pos_tag

preprocessing

Text
classifier

pos/
neg
class

Here we have a bunch of documents for a set of classes. For simplicity, we will use
just binary 1/0 as the class. Now let's assume it's a spam detection problem where 1
represents spam and 0 represents normal text which is not to be considered as spam.

The process involves some of the preprocessing steps we learned in previous
chapters. While some of these are essential, it depends on the kind of text
classification problem we are trying to solve. So in few cases, it's more a case of
feature engineering while we drop some of the preprocessing steps. The final
goal of feature engineering is to generate a Term doc matrix (TDM), which holds
the vocabulary of the entire corpus: columns and rows are the documents, while
the matrix represents a scoring mechanism to show the Bag of word (BOW)
representation. The weighting scheme can be varied to TF, TF-IDF, Bernoulli, and
other variations of term frequency.

There are also ways to induce features such as the POS of a given feature,
contextual POS, and others, to make our feature space more NLP intense. Once the
TDM is generated, the text classification problem becomes a typical supervised/
unsupervised classification problem, where given a set of samples, we need to
predict what sample belongs to what class. The next chapter is dedicated entirely
to this topic. This is definitely a splendid application of NLP/ML and is used quite
often for commercial purposes.

Some of the most common use cases in day-to-day scenarios are sentiment analysis,
spam classification, e-mail categorization, news categorization, patent classification,
and so on. We will talk about text classification in more detail in the next chapter.

NLP Applications

[70]

Information extraction
Information extraction (IE) is a process of extracting meaningful information
from unstructured text. IE is yet another widely popular and highly important
application. In general, an information extraction engine harnesses huge numbers
of unstructured documents and generates some sort of structured/semi-structured
knowledge base (KB) that can be deployed to build an application around it. A
simple example is that of generating a very good ontology using a huge set of
unstructured text documents. A similar project in this line is DBpedia, where all the
Wikipedia articles are used to generate the ontology of artifacts that are interrelated
or have some other relationship.

There are mainly two ways of extracting information:

•	 Rule-based extraction: This method is where one uses a template filling
mechanism. The idea is to look for some kind predefined use cases for
expected outcomes and try to mine the unstructured text for that specific
template. For example, building a knowledge base of football will involve
getting information on all the players and their profiles, the statistics, some
personal information, and so on. All that can be well defined and extracted
using either pattern-based rules or POS tags, NERs and relation extraction.

•	 Machine learning based: The other approach involves deeper NLP-based
methods such as building a parser specific to the need of our knowledge
base. Some of the KBs will require mining the entities that can't be extracted
using a pre-trained NER, so we have to build a custom NER. We might want
to develop a relation extraction algorithm specific to the KB we are trying to
build. This is a more NLP-intensive approach, where we are developing a
NLP-based parser or tagger to use for heavy machine learning.

Question answering systems
Question answering (QA) systems are intelligent systems that can address any
question based on their knowledge base. One of the major examples of this is IBM
Watson, which took part in the TV show Jeopardy and won over human opponents.
A QA system can be broken down to building components from speech recognition
for querying the knowledge base while the knowledge base is generated using
information retrieval and extraction.

Once you have a question for the system, one big problem is to classify/categorize
the question in different ways. The other aspect is to search the knowledge base
effectively and retrieve the most precise document. Even after that, we have to
generate the answer in a natural way using some of the other applications, such as
summarization and parsing.

Chapter 5

[71]

Dialog systems
Dialog systems are considered the dream application, where given a speech in source
language, the system will perform speech recognition and transcribe it to text. This
text will then go to a machine translation system that can translate the speech into
the target language and then a text-to-speech system will convert it into speech in
the target language. This is one of the most desirable applications of NLP, where
we can talk to a computer in any language and the computer will reply in the same
language. This kind of application can actually destroy the language barrier that
exists in the world.

Apple Siri and Google Voice are examples of some of the commercial applications in
the line of dialog systems intelligent enough to understand our information needs,
try to address them in a set of actions or information, and respond in a human-like
manner.

Word sense disambiguation
Word sense disambiguation (WSD) is also one of the difficult challenges not solved
even after years of research and one of the major causes of application problems,
such as question answering, summarization, search, and so on. A simple way to
understand the concept is that many words have different meanings when used in
different contexts. For example, "cold" in the following example:

•	 The ice-cream is really cold
•	 That was cold blooded!

Here the word "cold "has two different senses, and it's really hard for computers
to understand this concept. Some of the other NLP processing options, such as POS
tagging and NER, are used to resolve some of these problems.

Topic modeling
Topic modeling, in the context of a large amount of unstructured text content, is
really an amazing application, where the primary task is to identify the emerging
topics in the corpus and then categorize the documents in the corpus as per these
topics. We will discuss this briefly in the next chapter.

Topic modeling uses the same NLP preprocessing, for example, sentence split,
tokenization, stemming, and so on. The beauty of the algorithms is that we have an
unsupervised way of categorizing the document; also, topics are generated without
explicitly mentioning anything prior to the process. I encourage you to look at topic
modeling in more detail. Try reading about latent dirichlet allocation (LDA) and
latent semantics indexing (LSI) for more detail.

NLP Applications

[72]

Language detection
Given a snippet of text, the detection of language is also a problem. The application
of language detection is very important for some of the other NLP applications, such
as search, machine translation, speech, and so on. The main concept is learning from
the text as features what the language is. A variety of machine learning and NLP
techniques are used for feature engineering in the process.

Optical character recognition
Optical character recognition (OCR) is an application of NLP and computer
vision, where given a handwritten document/ non-digital document, the system
can recognize the text and extract it into digital format. This has also been widely
researched in the area of machine learning for many years. Some of the big OCR
projects are Google Books, where they use OCR to convert non-digital books into a
centralized library.

Summary
In conclusion, there are many NLP applications around us that we interact with in
our day-to-day routines. NLP is difficult and complex, and some of these problems
are still unsolved or do not yet have perfect solutions. So anybody who is looking
for problems in NLP, try exploring the literature around that. It's a great time to be
an NLP researcher. In the era of Big Data, NLP applications are very popular. Many
research labs and organizations are currently working on NLP applications such as
speech recognition, search, and text classification.

I believe we have learned a lot up until this chapter. For the next couple of chapters,
we will delve deeply into some of the applications described here. We have reached
a point where we know enough NLP related preprocessing tools and also have a
basic understanding about some of the most popular NLP applications. I hope you
leverage some of this learning to build a version of an NLP application.

In the next chapter, we will start with some of the important NLP applications, such
as text classification, text clustering, and topic modeling. We will move slightly away
from the pure NLTK applications on to how NLTK can be used in conjunction with
other libraries.

[73]

Text Classification
We were talking about some of the most common NLP tools and preprocessing
steps in the last chapter. This is the chapter where we will get to use most of the
stuff we learnt in the previous chapters, and build one of the most sophisticated
NLP applications. We will give you a generic approach about text classification and
how you can build a text classifier from scratch with very few lines of code. We
will give you a cheat sheet of all the classification algorithms in the context of text
classification.

While we will talk about some of the most common text classification algorithms, this
is just a brief introduction and to get to a detailed understanding and mathematical
background, there are many online resources and books available that you can refer
to. We will try to give you all you need to know to get you started with some working
code snippets. Text classification is a great use case of NLP, but in this chapter, instead
of using NLTK, we will use scikit-learn that has a wider range of classification
algorithms and its library is much more memory efficient for text mining.

By the end of this chapter:

•	 You will learn and understand all text classification algorithms
•	 You will learn end-to-end pipeline to build a text classifier and how to

implement it with scikit-learn and NLTK

Text Classification

[74]

The following is the scikit-learn cheat sheet for machine learning:

credit : scikit-learn

Now, as you travel along the process shown in the cheat sheet. We have a clear
guideline about what kind of algorithm is required for which problem? When we
should move from one classifier to another depending on the size of the tagged
sample? It's a good place to start following this for building practical application, and
in most cases this will work. We will focus mostly on text data while the scikit-learn
can work with other types of data as well. We will explore text classification, text
clustering, and topic detection in text (dimensionality reduction) with examples in this
chapter and build some cool NLP applications. I will not go in to more detail about the
concepts of machine learning, classification, and clustering in this chapter, as there are
enough resources available on the Web for you. We will provide you with more details
of all these concepts in the context of a text corpus. Still, let me give you a refresher.

Machine learning
There are two types of machine learning techniques—supervised learning and
Unsupervised learning:

•	 Supervised learning: Based on some historic prelabeled samples, machines
learn how to predict the future test sample, based on the following
categories:

Chapter 6

[75]

°° Classification: This is used when we need to predict whether a test
sample belongs to one of the classes. If there are only two classes,
it's a binary classification problem; otherwise, it's a multiclass
classification.

°° Regression: This is used when we need to predict a continuous
variable, such as a house price and stock index.

•	 Unsupervised learning: When we don't have any labeled data and we still
need to predict the class label, this kind of learning is called unsupervised
learning. When we need to group items based on similarity between items,
this is called a clustering problem. While if we need to represent high-
dimensional data in lower dimensions, this is more of a dimensionality
reduction problem.

•	 Semi-supervised learning: This is a class of supervised learning tasks and
techniques that also make use of unlabeled data for training. As the name
suggests, it's more of a middle ground for supervised and unsupervised
learning, where we use small amount of labeled data and large amount of
unlabeled data to build a predictive machine learning model.

•	 Reinforcement learning: This is a form of machine learning where an agent
can be programmed by a reward and punishment, without specifying how
the task is to be achieved.

If you understood the different machine learning algorithms, I want you to guess
what kind of machine learning problems the following are:

•	 You need to predict the values of weather for the next month
•	 Detection of a fraud in millions of transactions
•	 Google's priority inbox
•	 Amazon's recommendations
•	 Google news
•	 Self-driving cars

Text classification
The simplest definition of text classification is that it is a classification of text based
on the content of that text. Now, in general, all the machine learning methods and
algorithms are written for numeric features/variables. One of the most important
problems with text corpus is how to represent text as numeric features. There are
different transformations prescribed in the literature. Let's start with one
of the simplest and most widely used transformations.

Text Classification

[76]

Now, to understand the processes of text classification, let's take a real word problem
of spams. In the world of WhatsApp and SMS, you get many spam messages.
Let's start by solving this real problem of spam detection with the help of text
classification. We will be using this running example across the chapter.

Here are a few real examples of SMS's that we asked people to manually tag for us:

SMS001 ['spam', 'Had your mobile 11 months or more? U R entitled to
Update to the latest colour mobiles with camera for Free! Call The Mobile
Update Co FREE on 08002986030']

SMS002 ['ham', "I'm gonna be home soon and i don't want to talk about
this stuff anymore tonight, k? I've cried enough today."]

A similar tagged dataset can be downloaded from link here. Make sure
you create a CSV like the one show in the example. 'SMSSpamCollection'
in the following code which will correspond to this file.
https://archive.ics.uci.edu/ml/datasets/
SMS+Spam+Collection

The first thing you want to do here is what we learnt in the last few chapters about
data cleaning, tokenization, and stemming to get much cleaner content out of the
SMS. I wrote a basic function to clean the text. Let's go over the following code:

>>>import nltk

>>>from nltk.corpus import stopwords

>>>from nltk.stem import WordNetLemmatizer

>>>import csv

>>>def preprocessing(text):

>>> text = text.decode("utf8")

>>> # tokenize into words

>>> tokens = [word for sent in nltk.sent_tokenize(text) for word in
nltk.word_tokenize(sent)]

>>> # remove stopwords

>>> stop = stopwords.words('english')

>>> tokens = [token for token in tokens if token not in stop]

>>> # remove words less than three letters

>>> tokens = [word for word in tokens if len(word) >= 3]

https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection

Chapter 6

[77]

>>> # lower capitalization

>>> tokens = [word.lower() for word in tokens]

>>> # lemmatize

>>> lmtzr = WordNetLemmatizer()

>>> tokens = [lmtzr.lemmatize(word) for word in tokens]

>>> preprocessed_text= ' '.join(tokens)

>>> return preprocessed_text

We have talked about tokenization, lemmatization, and stop words in Chapter 3, Part
of Speech Tagging. In the following code, I am just parsing the SMS file and cleaning
the content to get cleaner text of the SMS. In the next few lines, I created two lists
to get all the cleaned content of the SMS and class label. In ML (Machine learning)
terms all the X and Y:

>>>smsdata = open('SMSSpamCollection') # check the structure of this
file!

>>>smsdata_data = []

>>>sms_labels = []

>>>csv_reader = csv.reader(sms,delimiter='\t')

>>>for line in csv_reader:

>>> # adding the sms_id

>>> sms_labels.append(line[0])

>>> # adding the cleaned text We are calling preprocessing method

>>> sms_data.append(preprocessing(line[1]))

>>>sms.close()

Before moving any further we need to make sure we have scikit-learn installed on
the system.

>>>import sklearn

If there is an error you made some error installing scikit. Please go to
below link and install scikit:
http://scikit-learn.org/stable/install.html

Sampling
Once we have the entire corpus in the form of lists, we need to perform some form of
sampling. Typically, the way to sample the entire corpus in development train sets,
dev-test sets, and test sets is similar to the sampling shown in the following figure.

http://scikit-learn.org/stable/install.html

Text Classification

[78]

The idea behind the whole exercise is to avoid overfitting. If we feed all the data points
to the model, then the algorithm will learn from the entire corpus, but the real test of
these algorithms is to perform on unseen data. In very simplistic terms, if we are using
the entire data in the model learning process the classifier will perform very good on
this data, but it will not be robust. The reason being, we have to tune it to perform the
best on the given data, but it doesn't learn how to deal with unknown data.

To solve this kind of a problem, the best way is to divide the entire corpus into two
major sets. The development set and test set are kept away for the modeling exercise.
We just use the dev set to build and tune the model. Once we are done with the
entire modeling exercise, the results are projected based on the test set that we put
aside. Now, if the model performs well on this set, we are sure that it's accurate and
robust for any new data sample.

Sampling itself is a very complicated and well-researched stream in the machine
learning community, and it's a remedy for many data skewness and overfitting
issues. For simplicity, will use the basic sampling, where we just divide the corpus
into a split of 70:30:

>>>trainset_size = int(round(len(sms_data)*0.70))

>>># i chose this threshold for 70:30 train and test split.

>>>print 'The training set size for this classifier is ' + str(trainset_
size) + '\n'

>>>x_train = np.array([''.join(el) for el in sms_data[0:trainset_size]])

>>>y_train = np.array([el for el in sms_labels[0:trainset_size]])

>>>x_test = np.array([''.join(el) for el in sms_data[trainset_
size+1:len(sms_data)]])

>>>y_test = np.array([el for el in sms_labels[trainset_size+1:len(sms_
labels)]])or el in sms_labels[trainset_size+1:len(sms_labels)]])

>>>print x_train

>>>print y_train

Chapter 6

[79]

•	 So what do you think will happen if we use the entire data as training data?
•	 What will happen when we have a very unbalanced sample?

To understand more about the available sampling techniques, go through
http://scikit-learn.org/stable/modules/classes.
html#module-sklearn.cross_validation.

Let's jump to one of the most important things, where we transform the entire text
into a vector form. The form is referred to as the term-document matrix. If we have to
create a term-document matrix for the given example, it will look somewhat like this:

TDM anymore call camera color cried enough entitled free gon had latest mobile

SMS1 0 1 1 1 0 0 1 2 0 1 0 3

SMS2 1 0 0 0 1 1 0 0 1 0 0 0

The representation here of the text document is also known as the BOW (Bag of
Word) representation. This is one of the most commonly used representation in
text mining and other applications. Essentially, we are not considering any context
between the words to generate this kind of representation.

To generate a similar term-document matrix in Python, we use scikit vectorizers:
>>>from sklearn.feature_extraction.text import CountVectorizer

>>>sms_exp=[]

>>>for line in sms_list:

>>>	 sms_exp.append(preprocessing(line[1]))

>>>vectorizer = CountVectorizer(min_df=1)

>>>X_exp = vectorizer.fit_transform(sms_exp)

>>>print "||".join(vectorizer.get_feature_names())

>>>print X_exp.toarray()

array([[1, 0, 1, 1, 1, 0, 0, 1, 2, 0,
1, 0, 1, 3, 1, 0, 0, 0, 1, 0, 0, 2,
0, 0], [0, 1, 0, 0, 0, 1, 1, 0, 0, 1,
0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0,
1, 1,]])

The count vectorizer is a good start, but there is an issue that you will face while
using it: longer documents will have higher average count values than shorter
documents, even though they might talk about the same topics.

To avoid these potential discrepancies, it suffices to divide the number of
occurrences of each word in a document by the total number of words in
the document. This new feature is called tf (Term frequencies).

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_validation
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_validation

Text Classification

[80]

Another refinement on top of tf is to downscale weights for words that occur in
many documents in the corpus, and are therefore less informative than those that
occur only in a smaller portion of the corpus.

This downscaling is called tf–idf (term frequency–inverse document frequency).
Fortunately, scikit also provides a way to achieve the following:

>>>from sklearn.feature_extraction.text import TfidfVectorizer

>>>vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 2), stop_

words='english', strip_accents='unicode', norm='l2')

>>>X_train = vectorizer.fit_transform(x_train)

>>>X_test = vectorizer.transform(x_test)

We now have the text in a matrix format the same as we have in any machine
learning exercise. Now, X_train and X_test can be used for classification using
any machine learning algorithm. Let's talk about some of the most commonly used
machine learning algorithms in context of text classification.

Naive Bayes
Let's build your first text classifier. Let's start with a Naive Bayes classifier. Naive Bayes
relies on the Bayes algorithm and essentially, is a model of assigning a class label to the
sample based on the conditional probability class given by features/attributes. Here
we deal with frequencies/bernoulli to estimate prior and posterior probabilities.

The naive assumption here is that all features are independent of each other, which
looks counter intuitive in the case of text. However, surprisingly, Naive Bayes
performs quite well in most of the real-world use cases.

Another great thing about NB is that it's too simple and very easy to implement and
score. We need to store the frequencies and calculate the probabilities. It's really fast
in case of training as well as test (scoring). For all these reasons, in most of the cases
of text classification, it serves as a benchmark.

Let's write some code to achieve this classifier:

>>>from sklearn.naive_bayes import MultinomialNB

>>>clf = MultinomialNB().fit(X_train, y_train)

>>>y_nb_predicted = clf.predict(X_test)

>>>print y_nb_predicted

Chapter 6

[81]

>>>print ' \n confusion_matrix \n '

>>>cm = confusion_matrix(y_test, y_pred)

>>>print cm

>>>print '\n Here is the classification report:'

>>>print classification_report(y_test, y_nb_predicted)

confusion_matrix [[1205 5]
 [26 156]]

Classified

True Positive

False Positive

False Negarive

True Negarive

A
c
t
u
a
l
s

The way to read the confusion matrix is that from all the 1,392 samples in the
test set, there were 1205 true positives and 156 true negative cases. However, we
also predicted 5 false negatives and 26 false positives. There are different ways of
measuring a typical binary classification.

We have given definitions of some of the most common measures used in
classification measures:

Accuracy

Precision

Recall

precision recall2
precision recall

tp tn
tp tn fp fn
tp

tp fp
tp

tp fn

F

+
=

+ + +

=
+

=
+

⋅
= ⋅

+

Here is the classification report:

 Precision recall f1-score support

ham 0.97 1.00 0.98 1210

spam 1.00 0.77 0.87 182

avg / total 0.97 0.97 0.97 1392

Text Classification

[82]

With the preceding definition, we can now understand the results clearly. So,
effectively, all the preceding metrics look good, which means that our classifier is
performing accurately, and is robust. I would highly recommend that you look into
the module metrics for more options to analyze the results of the classifier. The most
important and balanced metric is the f1 measure (which is nothing but the harmonic
mean of precision and recall), which is used widely because it gives a better picture
of the coverage and the quality of the classification algorithms. Accuracy intuitively
tells us how many true samples have been covered from all the samples. Precision
and recall both have significance, while precision talks about how many true
positives it got and what else got covered, hand recall gives us details about how
accurate we are from the pool of true positives and false negatives.

For more information on various scikit classes visit the following link:
http://scikit-learn.org/stable/modules/classes.
html#module-sklearn.metrics

The other more important process we follow to understand our model is to really
look deep into the model by looking at the actual features that contribute to the
positive and negative classes. I just wrote a very small snippet to generate the top n
features and print them. Let's have a look at them:

>>>feature_names = vectorizer.get_feature_names()

>>>coefs = clf.coef_

>>>intercept = clf.intercept_

>>>coefs_with_fns = sorted(zip(clf.coef_[0], feature_names))

>>>n = 10

>>>top = zip(coefs_with_fns[:n], coefs_with_fns[:-(n + 1):-1])

>>>for (coef_1, fn_1), (coef_2, fn_2) in top:

>>> print('\t%.4f\t%-15s\t\t%.4f\t%-15s' % (coef_1, fn_1, coef_2,
fn_2))

-9.1602 10 den -6.0396 free
-9.1602 15 -6.3487 txt
-9.1602 1hr -6.5067 text
-9.1602 1st ur -6.5393 claim
-9.1602 2go -6.5681 reply
-9.1602 2marrow -6.5808 mobile
-9.1602 2morrow -6.5858 stop
-9.1602 2mrw -6.6124 ur
-9.1602 2nd innings -6.6245 prize
-9.1602 2nd ur -6.7856 www

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

Chapter 6

[83]

In the preceding code, I just read all the feature names from the vectorizer, got the
coefficients related to the given feature, and then printed the first-10 features. If you
want more features, just modify the value of n. If we look closely just at the features,
we get a lot of information about the model as well as more suggestions about our
feature selection and other parameters, such as preprocessing, unigrams/bigrams,
stemming, tokenizations, and so on. For example, if you look at the top features of
ham you can see that 2morrow, 2nd innings, and some of the digits are coming very
significantly. We can see on the positive class (spam) term "free" comes out a very
significant term which is intuitive while many spam messages will be about some
free offers and deal. Some of the other terms to note are prize, www, claim.

For more details, refer to http://scikitlearn.org/stable/
modules/naive_bayes.html.

Decision trees
Decision trees are one of the oldest predictive modeling techniques, where for the
given features and target, the algorithm tries to build a logic tree. There are multiple
algorithms that exist for decision trees. One of the most famous and widely used
algorithm is CART.

CART constructs binary trees using this feature, and constructs a threshold that
yields the large amount of information from each node. Let's write the code to get a
CART classifier:

>>>from sklearn import tree

>>>clf = tree.DecisionTreeClassifier().fit(X_train.toarray(), y_train)

>>>y_tree_predicted = clf.predict(X_test.toarray())

>>>print y_tree_predicted

>>>print ' \n Here is the classification report:'

>>>print classification_report(y_test, y_tree_predicted)

The only difference is in the input format of the training set. We need to modify the
sparse matrix format to a NumPy array because the scikit tree module takes only a
NumPy array.

Generally, trees are good when the number of features are very less. So, although
our results look good here, people hardly use trees in text classification. On the
other hand, trees have some really positive sides to them. It is still one the most
intuitive algorithms and is very easy to explain and implement. There are many
implementations of tree-based algorithms, such as ID3, C4.5, and C5. scikit-learn
uses an optimized version of the CART algorithm.

http://scikitlearn.org/stable/modules/naive_bayes.html
http://scikitlearn.org/stable/modules/naive_bayes.html

Text Classification

[84]

Stochastic gradient descent
Stochastic gradient descent (SGD) is a simple, yet very efficient approach that fits
linear models. It is particularly useful when the number of samples (and the number
of features) is very large. If you follow the cheat sheet, you will find SGD to be the
one-stop solution for many text classification problems. Since it also takes care of
regularization and provides different losses, it turns out to be a great choice when
experimenting with linear models.

SGD, also known as Maximum entropy (MaxEnt), provides functionality to fit linear
models for classification and regression using different (convex) loss functions and
penalties. For example, with loss = log, fits a logistic regression model, while with
loss = hinge, it fits a linear support vector machine (SVM).

An example of SGD is as follows:

>>>from sklearn.linear_model import SGDClassifier

>>>from sklearn.metrics import confusion_matrix

>>>clf = SGDClassifier(alpha=.0001, n_iter=50).fit(X_train, y_train)

>>>y_pred = clf.predict(X_test)

>>>print '\n Here is the classification report:'

>>>print classification_report(y_test, y_pred)

>>>print ' \n confusion_matrix \n '

>>>cm = confusion_matrix(y_test, y_pred)

>>>print cm

Here is the classification report:

 precision recall f1-score support

ham 0.99 1.00 0.99 1210

spam 0.96 0.91 0.93 182

avg / total 0.98 0.98 0.98 1392

Most informative features:

 -1.0002 sir 2.3815 ringtoneking

 -0.5239 bed 2.0481 filthy

 -0.4763 said 1.8576 service

 -0.4763 happy 1.7623 story

 -0.4763 might 1.6671 txt

 -0.4287 added 1.5242 new

 -0.4287 list 1.4765 ringtone

 -0.4287 morning 1.3813 reply

Chapter 6

[85]

 -0.4287 always 1.3337 message

 -0.4287 and 1.2860 call

 -0.4287 plz 1.2384 chat

 -0.3810 people 1.1908 text

 -0.3810 actually 1.1908 real

 -0.3810 urgnt 1.1431 video

Logistic regression
Logistic regression is a linear model for classification. It's also known in the literature
as logit regression, maximum-entropy classification (MaxEnt), or the log-linear
classifier. In this model, the probabilities describing the possible outcomes of a single
trial are modeled using a logit function.

As an optimization problem, the L2 binary class' penalized logistic regression
minimizes the following cost function:

()()(), 1

1 log exp 1
2

n
T T

i iw c i
min w w C y X w c

=

+ − + +∑

Similarly, L1 the binary class' regularized logistic regression solves the following
optimization problem:

()()()1, 1

1 log exp 1
2

n
T

i iw c i
min w C y X w c

=

+ − + +∑

Support vector machines
Support vector machines (SVM) is currently the-state-of-art algorithm in the field of
machine learning.

SVM is a non-probabilistic classifier. SVM constructs a set of hyperplanes in an
infinite-dimensional space, which can be used for classification, regression, or other
tasks. Intuitively, a good separation is achieved by a hyperplane that has the largest
distance to the nearest training data point of any class (the so-called functional
margin), since in general, the larger the margin, the lower the size of classifier.

Text Classification

[86]

Let's build one of the most sophisticated supervised learning algorithms with scikit:

>>>from sklearn.svm import LinearSVC

>>>svm_classifier = LinearSVC().fit(X_train, y_train)

>>>y_svm_predicted = svm_classifier.predict(X_test)

>>>print '\n Here is the classification report:'

>>>print classification_report(y_test, y_svm_predicted)

>>>cm = confusion_matrix(y_test, y_pred)

>>>print cm

Here is the classification report for the same:

 precision recall f1-score support

 ham 0.99 1.00 0.99 1210

 spam 0.97 0.90 0.93 182

avg / total 0.98 0.98 0.98 1392

confusion_matrix [[1204 6] [17 165]]

The most informative features:

 -0.9657 road 2.3724 txt

 -0.7493 mail 2.0720 claim

 -0.6701 morning 2.0451 service

 -0.6691 home 2.0008 uk

 -0.6191 executive 1.7909 150p

 -0.5984 said 1.7374 www

 -0.5978 lol 1.6997 mobile

 -0.5876 kate 1.6736 50

 -0.5754 got 1.5882 ringtone

 -0.5642 darlin 1.5629 video

 -0.5613 fullonsms 1.4816 tone

 -0.5613 fullonsms com 1.4237 prize

These are definitely the best results so far from all the supervised algorithms we
have tried. Now with this, I will stop with supervised classifiers. There are millions
of books available related to the different machine learning algorithms; even for
individual algorithms, there are many books that are available for you. I would
highly recommend you to have a deep understanding of any of the preceding
algorithms before you use them for any of the real-world applications.

Chapter 6

[87]

The Random forest algorithm
A random forest is an ensemble classifier that estimates based on the combination
of different decision trees. Effectively, it fits a number of decision tree classifiers on
various subsamples of the dataset. Also, each tree in the forest built on a random best
subset of features. Finally, the act of enabling these trees gives us the best subset of
features among all the random subsets of features. Random forest is currently one of
best performing algorithms for many classification problems.

An example of Random forest is as follows:

>>>from sklearn.ensemble import RandomForestClassifier

>>>RF_clf = RandomForestClassifier(n_estimators=10)

>>>predicted = RF_clf.predict(X_test)

>>>print '\n Here is the classification report:'

>>>print classification_report(y_test, predicted)

>>>cm = confusion_matrix(y_test, y_pred)

>>>print cm

People who still want to work with NLTK for text classification. Please
go through the following link:
http://www.nltk.org/howto/classify.html

Text clustering
The other family of problems that can come with text is unsupervised classification.
One of the most common problem statements you can get is "I have these millions
of documents (unstructured data). Is there a way I can group them into some
meaningful categories?". Now, once you have some samples of tagged data, we
could build a supervised algorithm that we talked about, but here, we need to use an
unsupervised way of grouping text documents.

Text clustering is one of the most common ways of unsupervised grouping, also
known as, clustering. There are a variety of algorithms available using clustering. I
mostly used k-means or hierarchical clustering. I will talk about both of them and
how to use them with a text corpus.

http://www.nltk.org/howto/classify.html

Text Classification

[88]

K-means
Very intuitively, as the name suggest, we are trying to find k groups around the
mean of the data points. So, the algorithm starts with picking up some random data
points as the centroid of all the data points. Then, the algorithm assigns all the data
points to it's nearest centroid. Once this iteration is done, recalculation of the centroid
happens and these iterations continue until we reach a state where the centroids
don't change (algorithm saturate).

There is a variant of the algorithm that uses mini batches to reduce the computation
time, while still attempting to optimize the same objective function.

Mini batches are subsets of the input data randomly sampled in each
training iteration. These options should always be tried once your
dataset is really huge and you want less training time.

An example of K-means is as follows:

>>>from sklearn.cluster import KMeans, MiniBatchKMeans

>>>true_k=5

>>>km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_
init=1)

>>>kmini = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1,
init_size=1000, batch_size=1000, verbose=opts.verbose)

>>># we are using the same test,train data in TFIDF form as we did in
text classification

>>>km_model=km.fit(X_train)

>>>kmini_model=kmini.fit(X_train)

>>>print "For K-mean clustering "

>>>clustering = collections.defaultdict(list)

>>>for idx, label in enumerate(km_model.labels_):

>>> clustering[label].append(idx)

>>>print "For K-mean Mini batch clustering "

>>>clustering = collections.defaultdict(list)

>>>for idx, label in enumerate(kmini_model.labels_):

>>> clustering[label].append(idx)

In the preceding code, we just imported scikit-learn's kmeans / minibatchkmeans
and fitted the same training data that we were using in the running examples. We
can also print a cluster for each sample using the last three lines of the code.

Chapter 6

[89]

Topic modeling in text
The other famous problem in the context of the text corpus is finding the topics of the
given document. The concept of topic modeling can be addressed in many different
ways. We typically use LDA (Latent Dirichlet allocation) and LSI (Latent semantic
indexing) to apply topic modeling text documents.

Typically, in most of the industries, we have huge volumes of unlabeled text
documents. In case of an unlabeled corpus to get the initial insights of the corpus,
a topic model is a great option, as it not only gives us topics of relevance, but also
categorizes the entire corpus into number of topics given to the algorithm.

We will use a new Python library "gensim" that implements these algorithms for
us. So, let's jump to the implementation of LDA and LSI for the same running SMS
dataset. Now, the only change to the problem is that we want to model different
topics in the SMS data and also want to know which document belongs to which
topic. A better and more realistic use case could be to run topic modeling on the
entire Wikipedia dump to find different kinds of topics that have been discussed
there, or to run topic modeling on billions of reviews/complaints from customers
to get an insight of the topics that people discuss.

Installing gensim
One of the easiest ways to install gensim is using a package manager:

>>>easy_install -U gensim

Otherwise, you can install it using:

>>>pip install gensim

Once you're done with the installation, run the following command:

>>>import gensim

If there is any error, go to
https://radimrehurek.com/gensim/install.html.

Now, let's look at the following code:

>>>from gensim import corpora, models, similarities

>>>from itertools import chain

>>>import nltk

https://radimrehurek.com/gensim/install.html

Text Classification

[90]

>>>from nltk.corpus import stopwords

>>>from operator import itemgetter

>>>import re

>>>documents = [document for document in sms_data]

>>>stoplist = stopwords.words('english')

>>>texts = [[word for word in document.lower().split() if word not in
stoplist] \ for document in documents]

We are just reading the document in our SMS data and removing the stop words. We
could use the same method that we did in the previous chapters to do this. Here, we
are using a library-specific way of doing things.

Gensim has all the typical NLP features as well provides some great way
to create different corpus formats, such as TFIDF, libsvm, market matrix.
It also provides conversion of one to another.

In the following code, we are converting the list of documents to a BOW model and
then, to a typical TF-IDF corpus:

>>>dictionary = corpora.Dictionary(texts)

>>>corpus = [dictionary.doc2bow(text) for text in texts]

>>>tfidf = models.TfidfModel(corpus)

>>>corpus_tfidf = tfidf[corpus]

Once you have a corpus in the required format, we have the following two methods,
where given the number of topics, the model tries to take all the documents from the
corpus to build a LDA/LSI model:

>>>si = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=100)

>>>#lsi.print_topics(20)

>>>n_topics = 5

>>>lda = models.LdaModel(corpus_tfidf, id2word=dictionary, num_topics=n_
topics)

Chapter 6

[91]

Once the model is built, we need to understand the different topics, what kind of
terms represent that topic, and we need to print some top terms related to that topic:

>>>for i in range(0, n_topics):

>>> temp = lda.show_topic(i, 10)

>>> terms = []

>>> for term in temp:

>>> terms.append(term[1])

>>> print "Top 10 terms for topic #" + str(i) + ": "+ ",
".join(terms)

Top 10 terms for topic #0: week, coming, get, great, call, good, day,
txt, like, wish

Top 10 terms for topic #1: call, ..., later, sorry, 'll, lor, home, min,
free, meeting

Top 10 terms for topic #2: ..., n't, time, got, come, want, get, wat,
need, anything

Top 10 terms for topic #3: get, tomorrow, way, call, pls, 're, send,
pick, ..., text

Top 10 terms for topic #4: ..., good, going, day, know, love, call, yup,
get, make

Now, if you look at the output, we have five different topics with clearly different
intent. Think about the same exercise for Wikipedia or a huge corpus of web pages,
and you will get some meaningful topics that represent the corpus.

References
•	 http://scikit-learn.org/

•	 https://radimrehurek.com/gensim/

•	 https://en.wikipedia.org/wiki/Document_classification

http://scikit-learn.org/ https://radimrehurek.com/gensim/ https://en.wikipedia.org/wiki/Document_classification
http://scikit-learn.org/ https://radimrehurek.com/gensim/ https://en.wikipedia.org/wiki/Document_classification
http://scikit-learn.org/ https://radimrehurek.com/gensim/ https://en.wikipedia.org/wiki/Document_classification

Text Classification

[92]

Summary
The idea behind this chapter was to introduce you to the world of text mining.
We want to give you a basic introduction to some of the most common algorithms
available with text classification and clustering .We know how some of these concept
will help you to build really great NLP applications, such as spam filters, domain
centric news feeds, web page taxonomy, and so on. Though we have not used NLTK
to classify the module in our code snippets, we used NLTK for all the preprocessing
steps. We highly recommend you to use scikit-learn over NLTK for any classification
problem. In this chapter, we started with machine learning and the types of problems
that it can address. We discussed some of the specifics of ML problems in the context
of text. We talked about some of the most common classification algorithms that are
used for text classification, clustering, and topic modeling. We also give you enough
implementation details to get the job done. I still think you need to read a lot about
each and every algorithm separately to understand the theory and to gain in-depth
understanding of them.

We also provided you an entire pipeline of the process that you need to follow
in case of any text mining problem. We covered most of the practical aspects of
machine learning, such as sampling, preprocessing, model building, and model
evaluation.

The next chapter will also not be directly related to NLTK/NLP, but it will be a great
tool for a data scientist/NLP enthusiast. In most of NLP problems, we deal with
unstructured text data, and the Web is one of the richest and biggest data sources
available for this. Let's learn how to gather data from the Web and how to efficiently
use it to build some amazing NLP applications.

[93]

Web Crawling
The largest repository of unstructured text is the Web, and if you know how to crawl
it, then you have all the data you need readily available for your experiments. Hence,
web crawling is something worth learning for people who are interested in NLTK.
This chapter is all about gathering data from the Web.

In this chapter we will use an amazing Python library called Scrapy to write our web
crawlers. We will provide you all the details to configure different settings that are
required. We will write some of the most common spider strategies and many use
cases. Scrapy also requires some understanding about XPath, crawling, scraping,
and some concepts related to the Web in general. We will touch upon these topics
and make sure you understand their practical aspects, before really getting in to their
implementation. By the end of this chapter, you will have a better understand of web
crawler.

•	 How we can write our own crawler using Scrapy
•	 Understanding about all the major Scrapy functionality

Web crawlers
One of the biggest web crawler is Google that crawls the entire World Wide Web
(WWW). Google has to traverse every page that exists on the Web and scrape/crawl
the entire content.

A web crawler is a computer program that systematically browses the web page by
page and also scrapes/crawls the content of the pages. A web crawler can also parse
the next set of URLs to be visited from the crawled content. So, if these processes
run indefinitely over the entire Web, we can crawl through all the web pages. Web
crawlers are interchangeably also called spiders, bots, and scrapers. They all mean
the same.

Web Crawling

[94]

There are a few main points we need to think about before writing our first crawler.
Now, every time a web crawler traverses a page, we must decide what kind of
content we want to select and what content we want to ignore. For applications such
as a search engine, we should ignore all the images, js files, css files, and other files
and should concentrate only on HTML content that can be indexed and exposed to
the search. In some information extraction engines, we select specific tags or parts
of a web page. We also need to extract the URLs if we want to do the crawling
recursively. This brings us to the topic of crawling strategy. Here, we need to decide
whether we want to go recursively in depth first manner or breadth first manner.
We want to follow all the URLs on the next page and then go in depth first manner
till we get the URLs, or we should go to all the URLs in the next page and do this
recursively.

We also need to make sure that we are not going in the self loop stage because
essentially, we traverse a graph in most of the cases. We need to make sure we have
a clear revisit strategy for a page. One of the most talked about crawled policies is
focused crawling, where we know what kind of domains/topics we are looking for,
and the ones that need to be crawled. Some of these issues will be discussed in more
detail in the spider section.

Take a look at the video on Udacity at https://www.youtube.com/
watch?v=CDXOcvUNBaA.

Writing your first crawler
Let's start with a very basic crawler that will crawl the entire content of a web
page. To write the crawlers, we will use Scrapy. Scrapy is a one of the best crawling
solutions using Python. We will explore all the different features of Scrapy in this
chapter. First, we need to install Scrapy for this exercise.

To do this, type in the following command:

$ pip install scrapy

This is the easiest way of installing Scrapy using a package manager. Let's now
test whether we got everything right or not. (Ideally, Scrapy should now be part
of sys.path):

>>>import scrapy

https://www.youtube.com/watch?v=CDXOcvUNBaA
https://www.youtube.com/watch?v=CDXOcvUNBaA

Chapter 7

[95]

If there is any error, then take a look at http://doc.scrapy.org/
en/latest/intro/install.html.

At this point, we have Scrapy working for you. Let's start with an example spider
app with Scrapy:

$ scrapy startproject tutorial

Once you write the preceding command, the directory structure should look like the
following:

tutorial/

 scrapy.cfg #the project configuration file

 tutorial/ #the project's python module, you'll later import
your code from here.

 __init__.py

 items.py #the project's items file.

 pipelines.py #the project's pipelines file.

 settings.py # the project's settings file.

 spiders/ #a directory where you'll later put your spiders.

 __init__.py

The top folder will be given the name of the example tutorial in this case. Then, there
is the project configuration file (scrapy.cfg) that will define the kind of setting file
that should be used for the project. It also provides the deploy URLs for the project.

Another important part of tutorial setting.py is where we can decide what kind
of item pipeline and spider will be used. The item.py and pipline.py are the files
that define the data and kind of preprocessing we need to do on the parsed item. The
spider folder will contain the different spiders you wrote for the specific URLs.

For our first test spider, we will dump the contents of a news in a local file. We need
to create a file named NewsSpider.py, and put it in the path /tutorial/spiders.
Let's write the first spider:

>>>from scrapy.spider import BaseSpider

>>>class NewsSpider(BaseSpider):

>>> name = "news"

>>> allowed_domains = ["nytimes.com"]

>>> start_URLss = [

http://doc.scrapy.org/en/latest/intro/install.html
http://doc.scrapy.org/en/latest/intro/install.html

Web Crawling

[96]

>>> 'http://www.nytimes.com/'

>>>]

>>>def parse(self, response):

>>> filename = response.URLs.split("/")[-2]

>>> open(filename, 'wb').write(response.body)

Once we have this spider ready, we can start crawling using the following command:

$ scrapy crawl news

After you enter the preceding command, you should see some logs like this:

[scrapy] INFO: Scrapy 0.24.5 started (bot: tutorial)

[scrapy] INFO: Optional features available: ssl, http11, boto

[scrapy] INFO: Overridden settings: {'NEWSPIDER_MODULE': 'tutorial.
spiders', 'SPIDER_MODULES': ['tutorial.spiders'], 'BOT_NAME': 'tutorial'}

[scrapy] INFO: Enabled extensions: LogStats, TelnetConsole, CloseSpider,
WebService, CoreStats, SpiderState

If you don't see logs like the ones shown in the preceding snippet, you have missed
something. Check the location of the spider and other Scrapy-related settings, such
as the name of the spider matching to the crawl command, and whether setting.py
is configured for the same spider and item pipeline or not.

Now, if you are successful, there should be a file in your local folder with the name
www.nytimes.com that has the entire web content of the www.nytimes.com page.

Let's see some of the terms that we used in the spider code in more detail:

•	 name: This is the name of the spider that works as an identifier for Scrapy to
look for the spider class. So, the crawl command argument and this name
should always match. Also make sure that it's unique and case sensitive.

•	 start_urls: This is a list of URLs where the spider will begin to crawl. The
crawler with start from a seed URL and using the parse() method, it will
parse and look for the next URL to crawl. Instead of just a single seed URL,
we can provide a list of URLs that can start the crawl.

•	 parse(): This method is called to parse the data from start URLs. The logic
of what kind of element is to be selected for specific attributes of item. This
could be as simple as dumping the entire content of HTML to as complex
as many parse methods callable from parse, and different selectors for
individual item attributes.

www.nytimes.com

Chapter 7

[97]

So, the code does nothing but starts with the given URLs (in this case, www.nytimes.
com) and crawls the entire content of the page. Typically, a crawler is more complex
and will do much more than this; now, let's take a step back and understand what
happened behind the scenes. For this, take a look at the following figure:

credit :Scrapy

Data flow in Scrapy
The data flow in Scrapy is controlled by the execution engine and goes like this:

1.	 The process starts with locating the chosen spider and opening the first URL
from the list of start_urls.

2.	 The first URL is then scheduled as a request in a scheduler. This is more of an
internal to Scrapy.

3.	 The Scrapy engine then looks for the next set of URLs to crawl.
4.	 The scheduler then sends the next URLs to the engine and the engine then

forwards it to the downloader using the downloaded middleware. These
middlewares are where we place different proxies and user-agent settings.

5.	 The downloader downloads the response from the page and passes it to the
spider, where the parse method selects specific elements from the response.

6.	 Then, the spider sends the processed item to the engine.
7.	 The engine sends the processed response to the item pipeline, where we can

add some post processing.
8.	 The same process continues for each URL until there are no remaining

requests.

www.nytimes.com
www.nytimes.com

Web Crawling

[98]

The Scrapy shell
The best way to understand Scrapy is to use it through a shell and to get your hands
dirty with some of the initial commands and tools provided by Scrapy. It allows you
to experiment and develop your XPath expressions that you can put into your spider
code.

To experiment with the Scrapy shell, I would recommend you to
install one of the developer tools (Chrome) and Firebug (Mozilla
Firefox) as a plugin. This tool will help us dig down to the very
specific part that we want from the web page.

Now, let's start with a very interesting use case where we want to capture the
trending topics from Google news (https://news.google.com/).

The steps to follow here are:

1.	 Open https://news.google.com/ in your favorite browser.
2.	 Go to the trending topic section on Google news. Then, right-click on

and select Inspect Element for the first topic, as shown in the following
screenshot:

https://news.google.com/
https://news.google.com/

Chapter 7

[99]

3.	 The moment you open this, there will be a side window that will pop up
and you will get a view.

4.	 Search and select the div tag. For this example, we are interested in
<div class="topic">.

5.	 Once this is done, you will come to know that we have actually parsed
the specific part of the web page, as shown in the following screenshot:

Now, what we actually did manually in the preceding steps can be done in an
automated way. Scrapy uses an XML path language called XPath. XPath can be used
to achieve this kind of functionality. So, let's see how we can implement the same
example using Scrapy.

To use Scrapy, put the following command in you cmd:

$scrapy shell https://news.google.com/

The moment you hit enter, the response of the Google news page is loaded in the
Scrapy shell. Now, let's move to the most important aspect of Scrapy where we want
to understand how to look for a specific HTML element of the page. Let's start and
run the example of getting topics from Google news that are shown in the preceding
image:

In [1]: sel.xpath('//div[@class="topic"]').extract()

Web Crawling

[100]

The output to this will be as follows:

Out[1]:

[<Selector xpath='//div[@class="topic"]' data=u'<div class="topic">,

<Selector xpath='//div[@class="topic"]' data=u'<div class="topic">,

<Selector xpath='//div[@class="topic"]' data=u'<div class="topic">]

Now, we need to understand some of the functions that Scrapy and XPath provide
to experiment with the shell and then, we need to update our spider to do more
sophisticated stuff. Scrapy selectors are built with the help of the lxml library, which
means that they're very similar in terms of speed and parsing accuracy.

Let's have a look at some of the most frequently used methods provided for selectors:

•	 xpath(): This returns a list of selectors, where each of the selectors
represents the nodes selected by the XPath expression given as an argument.

•	 css(): This returns a list of selectors. Here, each of the selectors represent the
nodes selected by the CSS expression given as an argument.

•	 extract():This returns content as a string with the selected data.
•	 re(): This returns a list of unicode strings extracted by applying the regular

expression given as an argument.

I am giving you a cheat sheet of these top 10 selector patterns that can cover most of
your work for you. For a more complex selector, if you search the Web, there should
be an easy solution that you can use. Let's start with extracting the title of the web
page that is very generic for all web pages:

In [2] :sel.xpath('//title/text()')

Out[2]: [<Selector xpath='//title/text()' data=u' Google News'>]

Now, once you have selected any element, you also want to extract for more
processing. Let's extract the selected content. This is a generic method that works
with any selector:

In [3]: sel.xpath('//title/text()').extract()

Out[3]: [u' Google News']

Chapter 7

[101]

The other very generic requirement is to look for all the elements in the given page.
Let's achieve this with this selector:

In [4]: sel.xpath('//ul/li')

Out [4] : list of elements (divs and all)

We can extract all the titles in the page with this selector:

In [5]: sel.xpath('//ul/li/a/text()').extract()

Out [5]: [u'India',

u'World',

u'Business',

u'Technology',

u'Entertainment',

u'More Top Stories']

With this selector, you can extract all the hyperlinks in the web page:

In [6]:sel.xpath('//ul/li/a/@href').extract()

Out [6] : List of urls

Let's select all the <td> and div elements:

In [7]:sel.xpath('td'')

In [8]:divs=sel.xpath("//div")

This will select all the divs elements and then, you can loop it:

In [9]: for d in divs:

 printd.extract()

This will print the entire content of each div in the entire page. So, in case you are not
able to get the exact div name, you can also look at the regex-based search.

Now, let's select all div elements that contain the attribute class="topic":

In [10]:sel.xpath('/div[@class="topic"]').extract()

In [11]: sel.xpath("//h1").extract() # this includes the h1 tag

This will select all the <p> elements in the page and get the class of those elements:

In [12] for node in sel.xpath("//p"):

print node.xpath("@class").extract()

Out[12] print all the <p>

Web Crawling

[102]

In [13]: sel.xpath("//li[contains(@class, 'topic')]")

Out[13]:

[<Selector xpath="//li[contains(@class, 'topic')]" data=u'<li class="nav-
item nv-FRONTPAGE selecte'>,

<Selector xpath="//li[contains(@class, 'topic')]" data=u'<li class="nav-
item nv-FRONTPAGE selecte'>]

Let's write some selector nuggets to get the data from a css file. If we just want to
extract the title from the css file, typically, everything works the same, except you
need to modify the syntax:

In [14] :sel.css('title::text').extract()

Out[14]: [u'Google News']

Use the following command to list the names of all the images used in the page:

In[15]: sel.xpath('//a[contains(@href, "image")]/img/@src').extract()

Out [15] : Will list all the images if the web developer has put the
images in /img/src

Let's see a regex-based selector:

In [16]sel.xpath('//title').re('(\w+)')

Out[16]: [u'title', u'Google', u'News', u'title']

In some cases, removing the namespaces can help us get the right pattern. A selector
has an inbuilt remove_namespaces() function to make sure that the entire document
is scanned and all the namespaces are removed. Make sure before using it whether
we want some of these namespaces to be part of the pattern or not. The following is
example of remove_namespaces() function:

In [17] sel.remove_namespaces()

sel.xpath("//link")

Now that we have more understanding about the selectors, let's modify the same old
news spider that we built previously:

>>>from scrapy.spider import BaseSpider

>>>class NewsSpider(BaseSpider):

>>> name = "news"

>>> allowed_domains = ["nytimes.com"]

>>> start_URLss = [

>>> 'http://www.nytimes.com/'

>>>]

Chapter 7

[103]

>>>def parse(self, response):

>>> sel = Selector(response)

>>> sites = sel.xpath('//ul/li')

>>> for site in sites:

>>> title = site.xpath('a/text()').extract()

>>> link = site.xpath('a/@href').extract()

>>> desc = site.xpath('text()').extract()

>>> print title, link, desc

Here, we mainly modified the parse method, which is one of the core of our spider.
This spider can now crawl through the entire page, but we do a more structured
parsing of the title, description, and URLs.

Now, let's write a more robust crawler using all the capabilities of Scrapy.

Items
Until now, we were just printing the crawled content on stdout or dumping it in a
file. A better way to do this is to define items.py every time we write a crawler. The
advantage of doing this is that we can consume these items in our parse method,
and this can also give us output in any data format, such as XML, JSON, or CSV.
So, if you go back to your old crawler, the items class will have a function like this:

>>>fromscrapy.item import Item, Field

>>>class NewsItem(scrapy.Item):

>>> # define the fields for your item here like:

>>> # name = scrapy.Field()

>>> pass

Now, let's make it like the following by adding different fields:

>>>from scrapy.item import Item, Field

>>>class NewsItem(Item):

>>> title = Field()

>>> link = Field()

>>> desc = Field()

Here, we added field() to title, link, and desc. Once we have a field in place,
our spider parse method can be modified to parse_news_item, where instead
dumping the parsed fields to a file now it can be consumed by an item object.

Web Crawling

[104]

A Rule method is a way of specifying what kind of URL needs to be crawled after
the current one. A Rule method provides SgmlLinkExtractor, which is a way of
defining the URL pattern that needs to be extracted from the crawled page. A Rule
method also provides a callback method, which is typically a pointer for a spider to
look for the parsing method, which in this case is parse_news_item. In case we have
a different way to parse, then we can have multiple rules and parse methods. A Rule
method also has a Boolean parameter to follow, which specifies whether links should
be followed by each response extracted with this rule. If the callback is None, follow
defaults to True: otherwise, it default to False.

One important point to note is that the Rule method does not use parse. This is because
the name of the default callback method is parse() and if we use it, we are actually
overriding it, and that can stop the functionality of the crawl spider. Now, let's jump
on to the following code to understand the preceding methods and parameters:

>>>from scrapy.contrib.spiders import CrawlSpider, Rule

>>>from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor

>>>from scrapy.selector import Selector

>>>from scrapy.item import NewsItem

>>>class NewsSpider(CrawlSpider):

>>> name = 'news'

>>> allowed_domains = ['news.google.com']

>>> start_urls = ['https://news.google.com']

>>> rules = (

>>> # Extract links matching cnn.com

>>> Rule(SgmlLinkExtractor(allow=('cnn.com',), deny=(http://
edition.cnn.com/',))),

>>> # Extract links matching 'news.google.com'

>>> Rule(SgmlLinkExtractor(allow=('news.google.com',)),
callback='parse_news_item'),

>>>)

>>> def parse_news_item(self, response):

>>> sel = Selector(response)

>>> item = NewsItem()

>>> item['title'] = sel.xpath('//title/text()').extract()

>>> item[topic] = sel.xpath('/div[@class="topic"]').extract()

>>> item['desc'] = sel.xpath('//td//text()').extract()

>>> return item

Chapter 7

[105]

The Sitemap spider
If the site provides sitemap.xml, then a better way to crawl the site is to use
SiteMapSpider instead.

Here, given sitemap.xml, the spider parses the URLs provided by the site itself.
This is a more polite way of crawling and good practice:

>>>from scrapy.contrib.spiders import SitemapSpider

>>>class MySpider(SitemapSpider):

>>> sitemap_URLss = ['http://www.example.com/sitemap.xml']

>>> sitemap_rules = [('/electronics/', 'parse_electronics'), ('/
apparel/', 'parse_apparel'),]

>>> def 'parse_electronics'(self, response):

>>> # you need to create an item for electronics,

>>> return

>>> def 'parse_apparel'(self, response):

>>> #you need to create an item for apparel

>>> return

In the preceding code, we wrote one parse method for each product category. It's a
great use case if you want to build a price aggregator/comparator. You might want
to parse different attributes for different products, for example, for electronics, you
might want to scrape the tech specification, accessory, and price; while for apparels,
you are more concerned about the size and color of the item. Try your hand at using
one of the retailer sites and use shell to get the patterns to scrape the size, color, and
price of different items. If you do this, you should be in a good shape to write your
first industry standard spider.

In some cases, you want to crawl a website that needs you to log in before you
can enter some parts of the website. Now, Scrapy has a workaround that too.
They implemented FormRequest, which is more of a POST call to the HTTP server
and gets the response. Let's have a deeper look into the following spider code:

>>>class LoginSpider(BaseSpider):

>>> name = 'example.com'

>>> start_URLss = ['http://www.example.com/users/login.php']

>>> def parse(self, response):

>>> return [FormRequest.from_response(response,
formdata={'username': 'john', 'password': 'secret'}, callback=self.after_
login)]

>>> def after_login(self, response):

>>> # check login succeed before going on

Web Crawling

[106]

>>> if "authentication failed" in response.body:

>>> self.log("Login failed", level=log.ERROR)

>>> return

For a website that requires just the username and password without any captcha, the
preceding code should work just by adding the specific login details. This is the part
of the parse method since you need to log in the first page in the most of the cases.
Once you log in, you can write your own after_login callback method with items
and other details.

The item pipeline
Let's talk about some more item postprocessing. Scrapy provides a way to define a
pipeline for items as well, where you can define the kind of post processing an item
has to go through. This is a very methodical and good program design.

We need to build our own item pipeline if we want to post process scraped items,
such as removing noise and case conversion, and in other cases, where we want to
derive some values from the object, for example, to calculate the age from DOB or
to calculate the discount price from the original price. In the end, we might want to
dump the item separately into a file.

The way to achieve this will be as follows:

1.	 We need to define an item pipeline in setting.py:
ITEM_PIPELINES = {

 'myproject.pipeline.CleanPipeline': 300,

 'myproject.pipeline.AgePipeline': 500,

 'myproject.pipeline.DuplicatesPipeline: 700,

 'myproject.pipeline.JsonWriterPipeline': 800,

}

2.	 Let's write a class to clean the items:
>>>from scrapy.exceptions import Item

>>>import datetime

>>>import datetime

>>>class AgePipeline(object):

>>> def process_item(self, item, spider):

>>> if item['DOB']:

>>> item['Age'] = (datetime.datetime.
strptime(item['DOB'], '%d-%m-%y').date()-datetime.datetime.
strptime('currentdate, '%d-%m-%y').date()).days/365

>>> return item

Chapter 7

[107]

3.	 We need to derive the age from DOB. We used Python's date functions to
achieve this:
>>>from scrapy import signals

>>>from scrapy.exceptions import Item

>>>class DuplicatesPipeline(object):

>>> def __init__(self):

>>> self.ids_seen = set()

>>> def process_item(self, item, spider):

>>> if item['id'] in self.ids_seen:

>>> raise DropItem("Duplicate item found: %s" % item)

>>> else:

>>> self.ids_seen.add(item['id'])

>>> return item

4.	 We also need to remove the duplicates. Python has the set() data
structure that only contains unique values, we can create a pipline
DuplicatesPipeline.py like below using Scrapy :
>>>from scrapy import signals

>>>from scrapy.exceptions import Item

>>>class DuplicatesPipeline(object):

>>> def __init__(self):

>>> self.ids_seen = set()

>>> def process_item(self, item, spider):

>>> if item['id'] in self.ids_seen:

>>> raise DropItem("Duplicate item found: %s" % item)

>>> else:

>>> self.ids_seen.add(item['id'])

>>> return item

5.	 Let's finally write the item in the JSON file using JsonWriterPipeline.py
pipeline:

>>>import json

>>>class JsonWriterPipeline(object):

>>> def __init__(self):

>>> self.file = open('items.txt', 'wb')

>>> def process_item(self, item, spider):

>>> line = json.dumps(dict(item)) + "\n"

>>> self.file.write(line)

>>> return item

Web Crawling

[108]

External references
I encourage you to follow some simple spiders and try building some cool
applications using these spiders. I would also like you to look at the following links
for reference:

•	 http://doc.scrapy.org/en/latest/intro/tutorial.html

•	 http://doc.scrapy.org/en/latest/intro/overview.html

Summary
In this chapter, you learned about another great Python library and now, you don't
need help from anybody for your data needs. You learned how you can write a very
sophisticated crawling system, and now you know how to write a focused spider. In
this chapter, we saw how to abstract the item logic from the main system and how
to write some specific spider for the most common use cases. We know some of the
most common settings that need to be taken care of in order to implement our own
spider and we wrote some complex parse methods that can be reused. We understand
selectors very well and know a hands-on way of figuring out what kind of elements
we want for specific item attributes, and we also went through Firebug to get more of
a practical understanding of selectors. Last but not least, very importantly, make sure
that you follow the security guidelines of the websites you crawl.

In the next chapter, we will explore some essential Python libraries that can be used
for natural language processing and machine learning.

http://doc.scrapy.org/en/latest/intro/tutorial.html
http://doc.scrapy.org/en/latest/intro/overview.html

[109]

Using NLTK with Other
Python Libraries

In this chapter, we will explore some of the backbone libraries of Python for machine
learning and natural language processing. Until now, we have used NLTK, Scikit,
and genism, which had very abstract functions, and were very specific to the task in
hand. Most of statistical NLP is heavily based on the vector space model, which in
turn depends on basic linear algebra covered by NumPy. Also many NLP tasks, such
as POS or NER tagging, are really classifiers in disguise. Some of the libraries we will
discuss are heavily used in all these tasks.

The idea behind this chapter is to give you a quick overview of some the most
fundamental Python libraries. This will help us understand more than just the data
structure, design, and math behind some of the coolest libraries, such as NLTK and
Scikit, which we have discussed in the previous chapters.

We will look at the following four libraries. I have tried to keep it short, but I highly
encourage you to read in more detail about these libraries if you want Python to be a
one-stop solution to most of your data science needs.

•	 NumPy (Numeric Python)
•	 SciPy (Scientific Python)
•	 Pandas (Data manipulation)
•	 Matplotlib (Visualization)

Using NLTK with Other Python Libraries

[110]

NumPy
NumPy is a Python library for dealing with numerical operations, and it's really fast.
NumPy provides some of the highly optimized data structures, such as ndarrays.
NumPy has many functions specially designed and optimized to perform some
of the most common numeric operations. This is one of the reasons NLTK, scikit-
learn, pandas, and other libraries use NumPy as a base to implement some of the
algorithms. This section will give you a brief summary with running examples
of NumPy. This will not just help us understand the fundamental data structures
beneath NLTK and other libraries, but also give us the ability to customize some of
these functionalities to our needs.

Let's start with discussion on ndarrays, how they can be used as matrices, and how
easy and efficient it is to deal with matrices in NumPy.

ndarray
An ndarray is an array object that represents a multidimensional, homogeneous
array of fixed-size items.

We will start with building an ndarray using an ordinary Python list:

>>>x=[1,2,5,7,3,11,14,25]

>>>import numpy as np

>>>np_arr=np.array(x)

>>>np_arr

As you can see, this is a linear 1D array. The real power of Numpy comes with 2D
arrays. Let's move to 2D arrays. We will create one using a Python list of lists.

>>>arr=[[1,2],[13,4],[33,78]]

>>>np_2darr= np.array(arr)

>>>type(np_2darr)

numpy.ndarray

Chapter 8

[111]

Indexing
The ndarray is indexed more like Python containers. NumPy provides a slicing
method to get different views of the ndarray.

>>>np_2darr.tolist()

[[1, 2], [13, 4], [33, 78]]

>>>np_2darr[:]

array([[1, 2], [13, 4], [33, 78]])

>>>np_2darr[:2]

array([[1, 2], [13, 4]])

>>>np_2darr[:1]

array([[1, 2]])

>>>np_2darr[2]

array([33, 78])

>>> np_2darr[2][0]

>>>33

>>> np_2darr[:-1]

array([[1, 2], [13, 4]])

Basic operations
NumPy also has some other operations that can be used in various numeric
processing. In this example, we want to get an array with values ranging from 0 to 10
with a step size of 0.1. This is typically required for any optimization routine. Some
of the most common libraries, such as Scikit and NLTK, actually use these NumPy
functions.

>>>>import numpy as np

>>>>np.arange(0.0, 1.0, 0.1)

array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

Using NLTK with Other Python Libraries

[112]

We can do something like this, and generate a array with all ones and all zeros:

>>>np.ones([2, 4])

array([[1., 1., 1., 1.], [1., 1., 1., 1.]])

>>>np.zeros([3,4])

array([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]])

Wow!

If you have done higher school math, you know that we need all these matrixes to
perform many algebraic operations. And guess what, most of the Python machine
learning libraries also do that!

>>>np.linspace(0, 2, 10)

array([0., 0.22222222, 0.44444444, 0.66666667,
0.88888889, 1.11111111, 1.33333333, 1.55555556, 1.77777778,
2,])

The linespace function returns number samples which are evenly spaced,
calculated over the interval from the start and end values. In the given example we
were trying to get 10 sample in the range of 0 to 2.

Similarly, we can do this at the log scale. The function here is:

>>>np.logspace(0,1)

array([1., 1.04811313, 1.09854114, 1.1513954, 7.90604321,
8.28642773, 8.68511374, 9.10298178, 9.54095476, 10.,])

You can still execute Python's help function to get more details about the parameter
and the return values.

>>>help(np.logspace)

Help on function logspace in module NumPy.core.function_base:

logspace(start, stop, num=50, endpoint=True, base=10.0)

 Return numbers spaced evenly on a log scale.

 In linear space, the sequence starts at ``base ** start``

 (`base` to the power of `start`) and ends with ``base ** stop``

Chapter 8

[113]

 (see `endpoint` below).

 Parameters

 start : float

So we have to provide the start and end and the number of samples we want on the
scale; in this case, we also have to provide a base.

Extracting data from an array
We can do all sorts of manipulation and filtering on the ndarrays. Let's start with a
new Ndarray, A:

>>>A = array([[0, 0, 0], [0, 1, 2], [0, 2, 4], [0, 3, 6]])

>>>B = np.array([n for n in range n for n in range(4)])

>>>B

array([0, 1, 2, 3])

We can do this kind of conditional operation, and it's very elegant. We can observe
this in the following example:

>>>less_than_3 = B<3 # we are filtering the items that are less than 3.

>>>less_than_3

array([True, True, True, False], dtype=bool)

>>>B[less_than_3]

array([0, 1, 2])

We can also assign a value to all these values, as follows:

>>>B[less_than_3] = 0

>>>: B

array([0, 0, 0, 3])

Using NLTK with Other Python Libraries

[114]

There is a way to get the diagonal of the given matrix. Let's get the diagonal for our
matrix A:

>>>np.diag(A)

array([0, 1, 4])

Complex matrix operations
One of the common matrix operations is element-wise multiplication, where we will
multiply one element of a matrix by an element of another matrix. The shape of the
resultant matrix will be same as the input matrix, for example:

>>>A = np.array([[1,2],[3,4]])

>>>A * A

array([[1, 4], [9, 16]])

However, we can't perform the following operation, which will throw an
error when executed:
>>>A * B

--

ValueError Traceback (most recent call last)

<ipython-input-53-e2f71f566704> in <module>()

----> 1 A*B

ValueError: Operands could not be broadcast together with shapes (2,2) (4,).
Simply, the numbers of columns of the first operand have to match the
number of rows in the second operand for matrix multiplication to work.

Let's do the dot product, which is the backbone of many optimization and algebraic
operations. I still feel doing this in a traditional environment was not very efficient.
Let's see how easy it is in NumPy, and how super-efficient it is in terms of memory.

>>>np.dot(A, A)

array([[7, 10], [15, 22]])

Chapter 8

[115]

We can do operations like add, subtract, and transpose, as shown in the following
example:

>>>A - A

array([[0, 0], [0, 0]])

>>>A + A

array([[2, 4], [6, 8]])

>>>np.transpose(A)

array([[1, 3], [2, 4]])

>>>>A

array([[1, 2], [2, 3]])

The same transpose operations can be performed using an alternative operation,
such as this:

>>>A.T

array([[1, 3], [2, 4]])

We can also cast these ndarrays into a matrix and perform matrix operations,
as shown in the following example:

>>>M = np.matrix(A)

>>>M

matrix([[1, 2], [3, 4]])

>>> np.conjugate(M)

matrix([[1, 2], [3, 4]])

>>> np.invert(M)

matrix([[-2, -3], [-4, -5]])

We can perform all sorts of complex matrix operations with NumPy, and they are
pretty simple to use too! Please have a look at documentation for more information
on NumPy.

Using NLTK with Other Python Libraries

[116]

Let's switch back to some of the common mathematics operations, such as min, max,
mean, and standard deviation, for the given array elements. We have generated the
normal distributed random numbers. Let's see how these things can be applied there:

>>>N = np.random.randn(1,10)

>>>N

array([[0.59238571, -0.22224549, 0.6753678, 0.48092087,
-0.37402105, -0.54067842, 0.11445297, -0.02483442,
-0.83847935, 0.03480181,]])

>>>N.mean()

-0.010232957191371551

>>>N.std()

0.47295594072935421

This was an example demonstrating how NumPy can be used to perform simple
mathematic and algebraic operations of finding out the mean and standard deviation
of a set of numbers.

Reshaping and stacking
In case of some of the numeric, algebraic operations we do need to change the shape
of resultant matrix based on the input matrices. NumPy has some of the easiest ways
of reshaping and stacking the matrix in whichever way you want.

>>>A

array([[1, 2], [3, 4]])

If we want a flat matrix, we just need to reshape it using NumPy's reshape()
function:

>>>>(r, c) = A.shape # r is rows and c is columns

>>>>r,c

(2L, 2L)

>>>>A.reshape((1, r * c))

array([[1, 2, 3, 4]])

This kind of reshaping is required in many algebraic operations. To flatten the
ndarray, we can use the flatten() function:

>>>A.flatten()

array([1, 2, 3, 4])

Chapter 8

[117]

There is a function to repeat the same elements of the given array. We need to just
specify the number of times we want the element to repeat. To repeat the ndarray,
we can use the repeat() function:

>>>np.repeat(A, 2)

array([1, 1, 2, 2, 3, 3, 4, 4])

>>>>A

array([[1, 2],[3, 4]])

In the preceding example, each element is repeated twice in sequence. A similar
function known as tile() is used for for repeating the matrix, and is shown here:

>>>np.tile(A, 4)

array([[1, 2, 1, 2, 1, 2, 1, 2], [3, 4, 3, 4, 3, 4, 3, 4]])

There are also ways to add a row or a column to the matrix. If we want to add a row,
we use the concatenate() function shown here:

>>>B = np.array([[5, 6]])

>>>np.concatenate((A, B), axis=0)

array([[1, 2], [3, 4], [5, 6]])

This can also be achieved using the Vstack() function shown here:

>>>np.vstack((A, B))

array([[1, 2], [3, 4], [5, 6]])

Also, if you want to add a column, you can use the concatenate() function in the
following manner:

>>>np.concatenate((A, B.T), axis=1)

array([[1, 2, 5], [3, 4, 6]])

Alternatively, the hstack() function can be used to add columns. This
is used very similarly to the vstack() function in the example shown
above.

Using NLTK with Other Python Libraries

[118]

Random numbers
Random number generation is also used across many tasks involving NLP and
machine learning tasks. Let's see how easy it is to get a random sample:

>>>from numpy import random

>>>#uniform random number from [0,1]

>>>random.rand(2, 5)

array([[0.82787406, 0.21619509, 0.24551583, 0.91357419, 0.39644969], [
0.91684427, 0.34859763, 0.87096617, 0.31916835, 0.09999382]])

There is one more function called random.randn(), which generates normally
distributed random numbers in the given range. So, in the following example, we
want random numbers between 2 and 5.

>>>>random.randn(2, 5)

array([[-0.59998393, -0.98022613, -0.52050449, 0.73075943, -0.62518516],
[1.00288355, -0.89613323, 0.59240039, -0.89803825, 0.11106479]])

This is achieved by using the function random.randn(2,5).

SciPy
Scientific Python or SciPy is a framework built on top of NumPy and ndarray and
was essentially developed for advanced scientific operations such as optimization,
integration, algebraic operations, and Fourier transforms.

The concept was to efficiently use ndarrays to provide some of these common
scientific algorithms in a memory-efficient manner. Because of NumPy and SciPy, we
are in a state where we can focus on writing libraries such as scikit-learn and NLTK,
which focus on domain-specific problems, while NumPy / SciPy do the heavy
lifting for us. We will give you a brief overview of the data structures and common
operations provided in SciPy. We get the details of some of the black-box libraries,
such as scikit-learn and understand what goes on behind the scenes.

>>>import scipy as sp

This is how you import SciPy. I am using sp as an alias but you can import
everything.

Chapter 8

[119]

Let's start with something we are more familiar with. Let's see how integration can
be achieved here, using the quad() function.

>>>from scipy.integrate import quad, dblquad, tplquad

>>>def f(x):

>>> return x

>>>x_lower == 0 # the lower limit of x

>>>x_upper == 1 # the upper limit of x

>>>val, abserr = = quad(f, x_lower, x_upper)

>>>print val,abserr

>>> 0.5 , 5.55111512313e-15

If we integrate the x, it will be x2/2, which is 0.5. There are other scientific functions,
such as these:

•	 Interpolation (scipy.interpolate)
•	 Fourier transforms (scipy.fftpack)
•	 Signal processing (scipy.signal)

But we will focus on only linear algebra and optimization because these are more
relevant in the context of machine learning and NLP.

Linear algebra
The linear algebra module contains a lot of matrix-related functions. Probably the
best contribution of SciPy is sparse matrix (CSR matrix), which is used heavily in
other packages for manipulation of matrices.

SciPy provides one of the best ways of storing sparse matrices and doing data
manipulation on them. It also provides some of the common operations, such as
linear equation solving. It has a great way of solving eigenvalues and eigenvectors,
matrix functions (for example, matrix exponentiation), and more complex operations
such as decompositions (SVD). Some of these are the behind-the-scenes optimization
in our ML routines. For example, SVD is the simplest form of LDA (topic modeling)
that we used in Chapter 6, Text Classification.

Using NLTK with Other Python Libraries

[120]

The following is an example showing how the linear algebra module can be used:

>>>A = = sp.rand(2, 2)

>>>B = = sp.rand(2, 2)

>>>import Scipy

>>>X = = solve(A, B)

>>>from Scipy import linalg as LA

>>>X = = LA.solve(A, B)

>>>LA.dot(A, B)

Detailed documentation is available at http://
docs.scipy.org/doc/scipy/reference/linalg.html.

eigenvalues and eigenvectors
In some of the NLP and machine learning applications, we represent the documents
as term document matrices. Eigenvalues and eigenvectors are typically calculated
for many different mathematical formulations. Say A is our matrix, and there exists a
vector v such that Av=λv.

In this case, λ will be our eigenvalue and v will be our eigenvector. One of the most
commonly used operation, the singular value decomposition (SVD)will require
some calculus functionality. It's quite simple to achieve this in SciPy.

>>>evals = LA.eigvals(A)

>>>evals

array([-0.32153198+0.j, 1.40510412+0.j])

And eigen vectors are as follows:

>>>evals, evect = LA.eig(A)

We can perform other matrix operations, such as inverse, transpose,
and determinant:

>>>LA.inv(A)

array([[-1.24454719, 1.97474827], [1.84807676, -1.15387236]])

>>>LA.det(A)

-0.4517859060209965

http://docs.scipy.org/doc/scipy/reference/linalg.html
http://docs.scipy.org/doc/scipy/reference/linalg.html

Chapter 8

[121]

The sparse matrix
In a real-world scenario, when we use a typical matrix, most of the elements of this
matrix are zeroes. It is highly inefficient to go over all these non-zero elements for
any matrix operation. As a solution to this kind of problem, a sparse matrix format
has been introduced, with the simple idea of storing only non-zero items.

A matrix in which most of the elements are non-zeroes is called a dense matrix,
and the matrix in which most of the elements are zeroes is called a sparse matrix.

A matrix is typically a 2D array with an index of row and column will provide
the value of the element. Now there are different ways in which we can store
sparse matrices:

• DOK (Dictionary of keys): Here, we store the dictionary with keys in the
format (row, col) and the values are stored as dictionary values.

• LOL (list of list): Here, we provide one list per row, with only an index of
the non-zero elements.

• COL (Coordinate list): Here, a list (row, col, value) is stored as a list.
• CRS/CSR (Compressed row Storage): A CSR matrix reads values first by

column; a row index is stored for each value, and column pointers are stored
(val, row_ind, col_ptr). Here, val is an array of the non-zero values of the
matrix, row_ind represents the row indices corresponding to the values, and
col_ptr is the list of val indexes where each column starts. The name is based
on the fact that column index information is compressed relative to the COO
format. This format is efficient for arithmetic operations, column slicing, and
matrix-vector products.

See http://docs.scipy.org/doc/scipy-0.15.1/
reference/generated/scipy.sparse.csr_matrix.html
for more information.

• CSC (sparse column): This is similar to CSR, except that the values are read
first by column; a row index is stored for each value, and column pointers are
stored. In otherwords, CSC is (val, row_ind, col_ptr).

Have a look at the documentation at:
http://docs.scipy.org/doc/scipy-0.15.1/reference/
generated/scipy.sparse.csc_matrix.html

http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csr_matrix.html
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csr_matrix.html
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csc_matrix.html
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csc_matrix.html

Using NLTK with Other Python Libraries

[122]

Let's have some hands-on experience with CSR matrix manipulation. We have a
sparse matrix A:

>>>from scipy import sparse as s

>>>A = array([[1,0,0],[0,2,0],[0,0,3]])

>>>A

array([[1, 0, 0], [0, 2, 0], [0, 0, 3]])

>>>from scipy import sparse as sp

>>>C = = sp.csr_matrix(A);

>>>C

<3x3 sparse matrix of type '<type 'NumPy.int32'>'

 with 3 stored elements in Compressed Sparse Row format>

If you read very carefully, the CSR matrix stored just three elements. Let's see what it
stored:

>>>C.toarray()

array([[1, 0, 0], [0, 2, 0], [0, 0, 3]])

>>>C * C.todense()

matrix([[1, 0, 0], [0, 4, 0], [0, 0, 9]])

This is exactly what we are looking for. Without going over all the zeroes, we still got
the same results with the CSR matrix.

>>>dot(C, C).todense()

Optimization
I hope you understand that every time we have built a classifier or a tagger in the
background, all these are some sort of optimization routine. Let's have some basic
understanding about the function provided in SciPy. We will start with getting a
minima of the given polynomial. Let's jump to one of the example snippets of the
optimization routine provided by SciPy.

>>>def f(x):

>>> returnx return x**2-4

>>>optimize.fmin_bfgs(f,0)

Optimization terminated successfully.

 Current function value: -4.000000

 Iterations: 0

Chapter 8

[123]

 Function evaluations: 3

 Gradient evaluations: 1

array([0])

Here, the first argument is the function you want the minima of, and the second is
the initial guess for the minima. In this example, we already knew that zero will be
the minima. To get more details, use the function help(), as shown here:

>>>help(optimize.fmin_bfgs)

Help on function fmin_bfgs in module Scipy.optimize.optimize:

fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-05, norm=inf,
epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1,
retall=0, callback=None)

 Minimize a function using the BFGS algorithm.

 Parameters

 f : callable f(x,*args)

 Objective function to be minimized.

 x0 : ndarray

 Initial guess.

>>>from scipy import optimize

 optimize.fsolve(f, 0.2)

array([0.46943096])

>>>def f1 def f1(x,y):

>>> return x ** 2+ y ** 2 - 4

>>>optimize.fsolve(f1, 0, 0)

array([0.])

To summarize, we now have enough knowledge about SciPy's most basic data
structures, and some of the most common optimization techniques. The intention
was to motivate you to not just run black-box machine learning or natural language
processing, but to go beyond that and get the mathematical context about the
ML algorithms you are using and also have a look at the source code and try to
understand it.

Implementing this will not just help your understanding about the algorithm, but
also allow you to optimize/customize the implementation to your need.

Using NLTK with Other Python Libraries

[124]

pandas
Let's talk about pandas, which is one of the most exciting Python libraries, especially
for people who love R and want to play around with the data in a more vectorized
manner. We will devote this part of the chapter only to pandas; we will discuss some
basic data manipulation and handling in pandas frames.

Reading data
Let's start with one of the most important tasks in any data analysis to parse the data
from a CSV/other file.

I am using https://archive.ics.uci.edu/ml/machine-
learning-databases/adult/adult.data

https://archive.ics.uci.edu/ml/machine-learning-
databases/iris/iris.names

Feel free to use any other CSV file.

To begin, please download the data to your local storage from the preceding links,
and load it into a pandas data-frame, as shown here:

>>>import pandas as pd

>>># Please provide the absolute path of the input file

>>>data = pd.read_csv("PATH\\iris.data.txt",header=0")

>>>data.head()

4.9 3.0 1.4 0.2 Iris-setosa
0 4.7 3.2 1.3 0.2 Iris-setosa
1 4.6 3.1 1.5 0.2 Iris-setosa
2 5.0 3.6 1.4 0.2 Iris-setosa

This will read a CSV file and store it in a DataFrame. Now, there are many options
you have while reading a CSV file. One of the problems is that we read the first line
of the data in this DataFrame as a header; to use the actual header, we need to set
the option header to None, and pass a list of names as column names. If we already
have the header in perfect form in the CSV, we don't need to worry about the header
as pandas, by default, assumes the first line to be the header. The header 0 in the
preceding code is actually the row number that will be treated as the header.

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.names
https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data

Chapter 8

[125]

So let's use the same data, and add the header into the frame:

>>>data = pd.read_csv("PATH\\iris.data.txt", names=["sepal length",
"sepal width", "petal length", "petal width", "Cat"], header=None)

>>>data.head()

sepal length sepal width petal length petal width Cat
0 4.9 3.0 1.4 0.2 Iris-setosa
1 4.7 3.2 1.3 0.2 Iris-setosa
2 4.6 3.1 1.5 0.2 Iris-setosa

This has created temporary column names for the frame so that, in case you have
headers in the file as a first row, you can drop the header option, and pandas will
detect the first row of the file as the header. The other common options are Sep/
Delimiter, where you want to specify the delimiter used to separate the columns.
There are at least 20 different options available, which can be used to optimize the
way we read and cleanse our data, for example removing Na's, removing blank lines,
and indexing based on the specific column. Please have a look at the different type of
files:

•	 read_csv: reading a CSV file.
•	 read_excel: reading a XLS file.
•	 read_hdf: reading a HDFS file.
•	 read_sql: reading a SQL file.
•	 read_json: reading a JSON file.

These can be the substitutes for all the different parsing methods we discussed in
Chapter 2, Text Wrangling and Cleansing. The same numbers of options are available to
write files too.

Now let's see the power of pandas frames. If you are an R programmer, you would
love to see the summary and header option we have in R.

>>>data.describe()

Using NLTK with Other Python Libraries

[126]

The describe() function will give you a brief summary of each column and the
unique values.

>>>sepal_len_cnt=data['sepal length'].value_counts()

>>>sepal_len_cnt

5.0 10

6.3 9

6.7 8

5.7 8

5.1 8

dtype: int64

>>>data['Iris-setosa'].value_counts()

Iris-versicolor 50

Iris-virginica 50

Iris-setosa 48

dtype: int64

Again for R lovers, we are now dealing with vectors, so that we can look for each
value of the column by using something like this:

>>>data['Iris-setosa'] == 'Iris-setosa'

0 True

1 True

147 False

148 False

Name: Iris-setosa, Length: 149, dtype: bool

Now we can filter the DataFrame in place. Here the setosa will have only entries
related to Iris-setosa.

>>>sntsosa=data[data['Cat'] == 'Iris-setosa']

>>>sntsosa[:5]

This is our typical SQL Group By function. We have all kinds of aggregate functions
as well.

Chapter 8

[127]

You can browse through the following link to look at Dow Jones data:
https://archive.ics.uci.edu/ml/machine-learning-
databases/00312/

Series data
Pandas also have a neat way of indexing by date, and then using the frame for all
sorts of time series kind of analysis. The best part is that once we have indexed the
data by date some of the most painful operations on the dates will be a command
away from us. Let's take a look at series data, such as stock price data for a few
stocks, and how the values of the opening and closing stock change weekly.

>>>import pandas as pd

>>>stockdata = pd.read_csv("dow_jones_index.data",parse_dates=['date'],
index_col=['date'], nrows=100)

>>>>stockdata.head()

date quarter stock open high low close volume percent_
change_
price

01/07/2011 1 AA $15.82 $16.72 $15.78 $16.42 239655616 3.79267
01/14/2011 1 AA $16.71 $16.71 $15.64 $15.97 242963398 -4.42849
01/21/2011 1 AA $16.19 $16.38 $15.60 $15.79 138428495 -2.47066

>>>max(stockdata['volume'])

 1453438639

>>>max(stockdata['percent_change_price'])

 7.6217399999999991

>>>stockdata.index

<class 'pandas.tseries.index.DatetimeIndex'>

[2011-01-07, ..., 2011-01-28]

Length: 100, Freq: None, Timezone: None

>>>stockdata.index.day

array([7, 14, 21, 28, 4, 11, 18, 25, 4, 11, 18, 25, 7, 14, 21, 28, 4,11,
18, 25, 4, 11, 18, 25, 7, 14, 21, 28, 4])

The preceding command gives the day of the week for each date.

>>>stockdata.index.month

https://archive.ics.uci.edu/ml/machine-learning-databases/00312/
https://archive.ics.uci.edu/ml/machine-learning-databases/00312/

Using NLTK with Other Python Libraries

[128]

The preceding command lists different values by month.

>>>stockdata.index.year

The preceding command lists different values by year.

You can aggregate the data using a resample with whatever aggregation you want.
It could be sum, mean, median, min, or max.

>>>import numpy as np

>>>stockdata.resample('M', how=np.sum)

Column transformation
Say we want to filter out columns or to add a column. We can achieve this by just
by providing a list of columns as an argument to axis 1. We can drop the columns
from a data frame like this:

>>>stockdata.drop(["percent_change_volume_over_last_wk"],axis=1)

Let's filter out some of the unwanted columns, and work with a limited set of
columns. We can create a new DataFrame like this:

>>>stockdata_new = pd.DataFrame(stockdata, columns=["stock","open","high"
,"low","close","volume"])

>>>stockdata_new.head()

We can also run R-like operations on the columns. Say I want to rename the columns.
I can do something like this:

>>>stockdata["previous_weeks_volume"] = 0

This will change all the values in the column to 0. We can do it conditionally and
create derived variables in place.

Noisy data
A typical day in the life of a data scientist starts with data cleaning. Removing noise,
cleaning unwanted files, making sure that date formats are correct, ignoring noisy
records, and dealing with missing values. Typically, the biggest chunk of time is
spent on data cleansing rather than on any other activity.

Chapter 8

[129]

In a real-world scenario, the data is messy in most cases, and we have to deal with
missing values, null values, Na's, and other formatting issues. So one of the major
features of any data library is to deal with all these problems and address them in
an efficient way. pandas provide some amazing features to deal with some of these
problems.

>>>stockdata.head()

>>>stockdata.dropna().head(2)

Using the preceding command we get rid of all the Na's from our data.

date quarter Stock open high low close volume percent_
change_
price

01/14/2011 1 AA $16.71 $16.71 $15.64 $15.97 242963398 -4.42849
01/21/2011 1 AA $16.19 $16.38 $15.60 $15.79 138428495 -2.47066
01/28/2011 1 AA $15.87 $16.63 $15.82 $16.13 151379173 1.63831

You also noticed that we have a $ symbol in front of the value, which makes the
numeric operation hard. Let's get rid of that, as it will give us noisy results otherwise
(for example. $43.86 is not among the top values here).

>>>import numpy

>>>stockdata_new.open.describe()

count 100

unique 99

top $43.86

freq 2

Name: open, dtype: object

We can perform some operations on two columns, and derive a new variable out of
this:

>>>stockdata_new.open = stockdata_new.open.str.replace('$', '').convert_
objects(convert_numeric=True)

>>>stockdata_new.close = stockdata_new.close.str.replace('$', '').
convert_objects(convert_numeric=True)

>>>(stockdata_new.close - stockdata_new.open).convert_objects(convert_
numeric=True)

Using NLTK with Other Python Libraries

[130]

>>>stockdata_new.open.describe()

count 100.000000

mean 51.286800

std 32.154889

min 13.710000

25% 17.705000

50% 46.040000

75% 72.527500

max 106.900000

Name: open, dtype: float64

We can also perform some arithmetic operations, and create new variables out of it.

>>>stockdata_new['newopen'] = stockdata_new.open.apply(lambda x: 0.8 * x)

>>>stockdata_new.newopen.head(5)

We can filter the data on the value of a column in this way too. For example, let's
filter out a dataset for one of the companies among all those that we have the stock
values for.

>>>stockAA = stockdata_new.query('stock=="AA"')

>>>stockAA.head()

To summarize, we have seen some useful functions related to data reading, cleaning,
manipulation, and aggregation in this section of pandas. In the next section, will try
to use some of these data frames to generate visualization out of this data.

matplotlib
matplotlib is a very popular visualization library written in Python. We will cover
some of the most commonly used visualizations. Let's start by importing the library:

>>>import matplotlib

>>>import matplotlib.pyplot as plt

>>>import numpy

Chapter 8

[131]

We will use the same running data set from the Dow Jones index for some of the
visualizations now. We already have stock data for company "AA". Let's make one
more frame for a new company CSCO, and plot some of these:

>>>stockCSCO = stockdata_new.query('stock=="CSCO"')

>>>stockCSCO.head()

>>>from matplotlib import figure

>>>plt.figure()

>>>plt.scatter(stockdata_new.index.date,stockdata_new.volume)

>>>plt.xlabel('day') # added the name of the x axis

>>>plt.ylabel('stock close value') # add label to y-axis

>>>plt.title('title') # add the title to your graph

>>>plt.savefig("matplot1.jpg") # savefig in local

You can also save the figure as a JPEG/PNG file. This can be done using the
savefig() function shown here:

>>>plt.savefig("matplot1.jpg")

Subplot
Subplot is the best way to layout your plots. This works as a canvas, where we can
add not just one plot but multiple plots. In this example, we have tried to put four
plots with the parameters numrow, numcol which will define the canvas and the
next argument in the plot number.

>>>plt.subplot(2, 2, 1)

>>>plt.plot(stockAA.index.weekofyear, stockAA.open, 'r--')

>>>plt.subplot(2, 2, 2)

>>>plt.plot(stockCSCO.index.weekofyear, stockCSCO.open, 'g-*')

>>>plt.subplot(2, 2, 3)

>>>plt.plot(stockAA.index.weekofyear, stockAA.open, 'g--')

>>>plt.subplot(2, 2, 4)

>>>plt.plot(stockCSCO.index.weekofyear, stockCSCO.open, 'r-*')

>>>plt.subplot(2, 2, 3)

Using NLTK with Other Python Libraries

[132]

>>>plt.plot(x, y, 'g--')

>>>plt.subplot(2, 2, 4)

>>>plt.plot(x, y, 'r-*')

>>>fig.savefig("matplot2.png")

We can do something more elegant for plotting many plots at one go!

>>>fig, axes = plt.subplots(nrows=1, ncols=2)

>>>for ax in axes:

>>> ax.plot(x, y, 'r')

>>> ax.set_xlabel('x')

>>> ax.set_ylabel('y')

>>> ax.set_title('title');

As you case see, there are ways to code a lot more like in typical Python to handle
different aspects of the plots you want to achieve.

Chapter 8

[133]

Adding an axis
We can add an axis to the figure by using addaxis(). By adding an axis to the figure,
we can define our own drawing area. addaxis() takes the following arguments:

rect [*left*, *bottom*, *width*, *height*]

>>>fig = plt.figure()

>>>axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width,
height (range 0 to 1)

>>>axes.plot(x, y, 'r')

Let' plot some of the most commonly used type of plots. The great thing is that most
of the parameters, such as title and label, still work in the same way. Only the kind of
plot will change.

If you want to add an x label, a y label, and a title with the axis; the commands are as
follows:

>>>fig = plt.figure()

>>>ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])

>>>ax.plot(stockAA.index.weekofyear,stockAA.open,label="AA")

>>>ax.plot(stockAA.index.weekofyear,stockCSCO.open,label="CSCO")

>>>ax.set_xlabel('weekofyear')

>>>ax.set_ylabel('stock value')

>>>ax.set_title('Weekly change in stock price')

>>>ax.legend(loc=2); # upper left corner

>>>plt.savefig("matplot3.jpg")

Try writing the preceding code and observe the output!

Using NLTK with Other Python Libraries

[134]

A scatter plot
One of the simplest forms of plotting is to plot the y-axis point for different x-axis
values. In the following example, we have tried to capture the variation of the stock
price weekly in a scatter plot:

>>>import matplotlib.pyplot as plt

>>>plt.scatter(stockAA.index.weekofyear,stockAA.open)

>>>plt.savefig("matplot4.jpg")

>>>plt.close()

A bar plot
Intuitively, the distribution of the y axis is shown against the x axis in the following
bar chart. In the following example, we have used a bar plot to display data on a
graph.

>>>n = 12

>>>X = np.arange(n)

>>>Y1 = np.random.uniform(0.5, 1.0, n)

>>>Y2 = np.random.uniform(0.5, 1.0, n)

>>>plt.bar(X, +Y1, facecolor='#9999ff', edgecolor='white')

>>>plt.bar(X, -Y2, facecolor='#ff9999', edgecolor='white')

3D plots
We can also build some spectacular 3D visualizations in matplotlib. The following
example shows how one can create a 3D plot using matplotlib:

>>>from mpl_toolkits.mplot3d import Axes3D

>>>fig = plt.figure()

>>>ax = Axes3D(fig)

>>>X = np.arange(-4, 4, 0.25)

>>>Y = np.arange(-4, 4, 0.25)

>>>X, Y = np.meshgrid(X, Y)

>>>R = np.sqrt(X**2+ + Y**2)

>>>Z = np.sin(R)

>>>ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')

Chapter 8

[135]

External references
I like to encourage readers to go over some of the following links for more details
about the individual libraries, and for more resources:

•	 http://www.NumPy.org/

•	 http://www.Scipy.org/

•	 http://pandas.pydata.org/

•	 http://matplotlib.org/

Summary
This chapter was a brief summary of some of the most fundamental libraries of
Python that do a lot of heavy lifting for us when we deal with text and other data.
NumPy helps us in dealing with numeric operations and the kind of data structure
required for some of these. SciPy has many scientific operations that are used in
various Python libraries. We learned how to use these functions and data structures.

We have also touched upon pandas, which is a very efficient library for data
manipulation, and has been getting a lot of mileage in recent times. Finally, we gave
you a quick view of one of Python's most commonly used visualization libraries,
matplotlib.

In the next chapter, we will focus on social media. We will see how to capture data
from some of the common social networks and produce meaningful insights around
social media.

http://www.Scipy.org/
http://pandas.pydata.org/
http://matplotlib.org/

[137]

Social Media Mining
in Python

This chapter is all about social media. Though it's not directly related to NLTK /
NLP, social data is also a very rich source of unstructured text data. So, as NLP
enthusiasts, we should have the skill to play with social data. We will try to explore
how to gather relevant data from some of the most popular social media platforms.
We will cover how to gather data from Twitter, Facebook, and so on using Python
APIs. We will explore some of the most common use cases in the context of social
media mining, such as trending topics, sentiment analysis, and so on.

You already learned a lot of topics under the concepts of natural language processing
and machine learning in the last few chapters. We will try to build some of the
applications around social data in this chapter. We will also provide you with some
of the best practices to deal with social data, and look at social data from the context
of graph visualization.

There is a graph that underlies social media and most of the graph-based problems
can be formulated as information flow problems and finding out the busiest node
in the graph. Some of the problems such as trending topics, influencer detection,
and sentiment analysis are examples of these. Let's take some of these use cases, and
build some cool applications around these social networks.

By the end of this chapter,:

•	 You should be able to collect data from any social media using APIs.
•	 You will also learn to formulate the data in a structured format and how to

build some amazing applications.
•	 Lastly, we will be able to visualize and gain meaningful insight out of social

media.

Social Media Mining in Python

[138]

Data collection
The most important objective of this chapter is to gather data across some of the
most common social networks. We will look mainly at Twitter and Facebook and
try to give you enough details about the API and how to effectively use them to get
relevant data. We will also talk about the data dictionary for scrapped data, and how
we can build some cool apps using some of the stuff we learned so far.

Twitter
We will start with one of the most popular and open social media that is completely
public. This means that practically, you can gather entire Twitter stream, which is
payable, while you can capture one percent of the stream for free. In the context of
business, Twitter is a very rich resource of information such as public sentiments and
emerging topics.

Let's get directly to face the main challenge of getting the tweets relevant to your use
case.

The following is the repository of many Twitter libraries. These libraries
are not verified by Twitter, but run on the Twitter API.
https://dev.twitter.com/overview/api/twitter-
libraries

There are more than 10 Python libraries there. So pick and choose the one you like. I
generally use Tweepy and we will use it to run the examples in this book. Most of the
libraries are wrappers around the Twitter API, and the parameters and signatures of
all these are roughly the same.

The simplest way to install Tweepy is to install it using pip:

$ pip install tweepy

The hard way is to build it from source. The GitHub link to Tweepy is:
https://github.com/tweepy/tweepy.

To get Tweepy to work, you have to create a developer account with Twitter and
get the access tokens for your application. Once you complete this, you will get your
credentials and below these, the keys. Go through https://apps.twitter.com/
app/new for registration and access tokens. The following snapshot shows the access
tokens:

https://dev.twitter.com/overview/api/twitter-libraries
https://dev.twitter.com/overview/api/twitter-libraries
https://github.com/tweepy/tweepy
https://apps.twitter.com/app/new
https://apps.twitter.com/app/new

Chapter 9

[139]

We will start with a very simple example to gather data using Twitter's streaming
API. We are using Tweepy to capture the Twitter stream to gather all the tweets
related to the given keywords:

tweetdump.py

>>>from tweepy.streaming import StreamListener

>>>from tweepy import OAuthHandler

>>>from tweepy import Stream

>>>import sys

>>>consumer_key = 'ABCD012XXXXXXXXx'

>>>consumer_secret = 'xyz123xxxxxxxxxxxxx'

>>>access_token = '000000-ABCDXXXXXXXXXXX'

>>>access_token_secret ='XXXXXXXXXgaw2KYz0VcqCO0F3U4'

>>>class StdOutListener(StreamListener):

>>> def on_data(self, data):

>>> with open(sys.argv[1],'a') as tf:

>>> tf.write(data)

>>> return

Social Media Mining in Python

[140]

>>> def on_error(self, status):

>>> print(status)

>>>if __name__ == '__main__':

>>> l = StdOutListener()

>>> auth = OAuthHandler(consumer_key, consumer_secret)

>>> auth.set_access_token(access_token, access_token_secret)

>>> stream = Stream(auth, l)

>>> stream.filter(track=['Apple watch'])

In the preceding code, we used the same code given in the example of Tweepy, with
a little modification. This is an example where we use the streaming API of Twitter,
where we track Apple Watch. Twitter's streaming API provides you the facility of
conducting a search on the actual Twitter stream and you can consume a maximum
of one percent of the stream using this API.

In the preceding code, the main parts that you need to understand are the first and
last four lines. In the initial lines, we are specifying the access tokens and other keys
that we generated in the previous section. In the last four lines, we create a listener
to consume the stream. In the last line, we use stream.filter to filter Twitter for
keywords that we have put in the track. We can specify multiple keywords here.
This will result in all the tweets that contain the term Apple Watch for our running
example.

In the following example, we will load the tweets we have collected, and have a look
at the tweet structure and how to extract meaningful information from it. A typical
tweet JSON structure looks similar to:

{

"created_at":"Wed May 13 04:51:24 +0000 2015",

"id":598349803924369408,

"id_str":"598349803924369408",

"text":"Google launches its first Apple Watch app with News & Weather
http:\/\/t.co\/o1XMBmhnH2",

"source":"\u003ca href=\"http:\/\/ifttt.com\" rel=\"nofollow\"\
u003eIFTTT\u003c\/a\u003e",

"truncated":false,

"in_reply_to_status_id":null,

"user":{

"id":1461337266,

"id_str":"1461337266",

Chapter 9

[141]

"name":"vestihitech \u0430\u0432\u0442\u043e\u043c\u0430\u0442",

"screen_name":"vestihitecha",

"location":"",

"followers_count":20,

"friends_count":1,

"listed_count":4,

""statuses_count":7442,

"created_at":"Mon May 27 05:51:27 +0000 2013",

"utc_offset":14400,

},

,

"geo":{ "latitude" : 51.4514285, "longitude"=-0.99

}

"place":"Reading, UK",

"contributors":null,

"retweet_count":0,

"favorite_count":0,

"entities":{

"hashtags":["apple watch", "google"

],

"trends":[

],

"urls":[

{

"url":"http:\/\/t.co\/o1XMBmhnH2",

"expanded_url":"http:\/\/ift.tt\/1HfqhCe",

"display_url":"ift.tt\/1HfqhCe",

"indices":[

66,

88

]

}

],

"user_mentions":[

],

"symbols":[

Social Media Mining in Python

[142]

]

},

"favorited":false,

"retweeted":false,

"possibly_sensitive":false,

"filter_level":"low",

"lang":"en",

"timestamp_ms":"1431492684714"

}

]

Data extraction
Some of the most commonly used fields of interest in data extraction are:

•	 text: This is the content of the tweet provided by the user
•	 user: These are some of the main attributes about the user, such as

username, location, and photos
•	 Place: This is where the tweets are posted, and also the geo coordinates
•	 Entities: Effectively, these are the hashtags and topics that a user attaches

to his / her tweets

Every attribute in the previous figure can be a good use case for some of the social
mining exercises done in practice. Let's jump onto the topic of how we can get to
these attributes and convert them to a more readable form, or how we can process
some of these:

Source: tweetinfo.py

>>>import json

>>>import sys

>>>tweets = json.loads(open(sys.argv[1]).read())

>>>tweet_texts = [tweet['text']\

 for tweet in tweets]

>>>tweet_source = [tweet ['source'] for tweet in tweets]

>>>tweet_geo = [tweet['geo'] for tweet in tweets]

Chapter 9

[143]

>>>tweet_locations = [tweet['place'] for tweet in tweets]

>>>hashtags = [hashtag['text'] for tweet in tweets for hashtag in
tweet['entities']['hashtags']]

>>>print tweet_texts

>>>print tweet_locations

>>>print tweet_geo

>>>print hashtags

The output of the preceding code will give you, as expected, four lists in which all
the tweet content is in tweet_texts and the location of the tweets and hashtags.

In the code, we are just loading a JSON output generated using json.
loads(). I would recommend you to use an online tool such as Json
Parser (http://json.parser.online.fr/) to get an idea of what
your JSON looks like and what are its attributes (key and value).

Next, if you look, there are different levels in the JSON, where some of the attributes
such as text have a direct value, while some of them have more nested information.
This is the reason you see, where when we are looking at hashtags, we have to iterate
one more level, while in case of text, we just fetch the values. Since our file actually
has a list of tweets, we have to iterate that list to get all the tweets, while each tweet
object will look like the example tweet structure.

Trending topics
Now, if we look for trending topics in this kind of a setup. One of the simplest ways
to find them could be to look for frequency distribution of words across tweets. We
already have a list of tweet_text that contains the tweets:

>>>import nltk

>>>from nltk import word_tokenize,sent_tokenize

>>>from nltk import FreqDist

>>>tweets_tokens = []

>>>for tweet in tweet_text:

>>> tweets_tokens.append(word_tokenize(tweet))

http://json.parser.online.fr/

Social Media Mining in Python

[144]

>>>Topic_distribution = nltk.FreqDist(tweets_tokens)

>>>Freq_dist_nltk.plot(50, cumulative=False)

One other more complex way of doing this could be the use of the part of speech
tagger that you learned in Chapter 3, Part of Speech Tagging. The theory is that most of
the time, topics will be nouns or entities. So, the same exercise can be done like this.
In the preceding code, we read every tweet and tokenize it, and then use POS as a
filter to only select nouns as topics:

>>>import nltk

>>>Topics = []

>>>for tweet in tweet_text:

>>> tagged = nltk.pos_tag(word_tokenize(tweet))

>>> Topics_token = [word for word,pos in] in tagged if pos in
['NN','NNP']

>>> print Topics_token

If we want to see a much cooler example, we can gather tweets across time and then
generate plots. This will give us a very clear idea of the trending topics. For example,
the data we are looking for is "Apple Watch". This word should peak on the day
when Apple launched Apple Watch and the day they started selling it. However,
it will be interesting to see what kind of topics emerged apart from those, and how
they trended over time.

Geovisualization
One of the other common application of social media is geo-based visualization. In
the tweet structure, we saw attributes named geo, longitude, and latitude. Once you
have access to these values, it is very easy to use some of the common visualization
libraries, such as D3, to come up with something like this:

Chapter 9

[145]

This is just an example of what we can achieve with these kind of visualizations; this
was the visualization of a tweet in the U.S. We can clearly see the areas of increased
intensity in eastern places such as New York. Now, a similar analysis done by a
company on the customers can give a clear insight about which are some of the
most popular places liked by our customer base. We can text mine these tweets for
sentiment, and then we can infer insights about customers as to in which states they
are not happy with the company and so on.

Influencers detection
Detection of important nodes in the social graph that has a lot of importance is
another great problem in the context of social graphs. So, if we have millions of
tweets streaming about our company, then one important use case would be to
gather the most influential customers in the social media, and then target them for
branding, marketing, or improving customer engagement.

Social Media Mining in Python

[146]

In the case of Twitter, this goes back to the graph theory and concept of PageRank,
where in a given node, if the ratio of outdegree and indegree is high, then that node
is an influencer. This is very intuitive since people who have more followers than
the number of people they follow are typically, influencers. One company, KLOUT,
(https://klout.com/) has been focusing on a similar problem. Let's write a very
basic and intuitive algorithm to calculate Klout's score:

>>>klout_scores = [(tweet['user']['followers_count]/ tweet['user']
['friends_count'],tweet['user']) for tweet in tweets]

Some of the examples where we worked on Twitter will hold exactly the same
modification of content field. We can build a trending topic example with Facebook
posts. We can also visualize Facebook users and post on the geomap and influencer
kind of use cases. In fact, in the next section, we will see a variation of this in the
context of Facebook.

Facebook
Facebook is a bit more personal, and somewhat private social network. Facebook
does not allow you to gather the feeds/posts of the user simply for security and
privacy reasons. So, Facebook's graph API has a limited way of accessing the feeds of
the given page. I would recommend you to go to https://developers.facebook.
com/docs/graph-api/using-graph-api/v2.3 for better understanding.

The next question is how to access the Graph API using Python and how to get
started with it. There are many wrappers written over Facebook's API, and we will
use one the most common Facebook SDK:

$ pip install facebook-sdk

You can also install it through:
https://github.com/Pythonforfacebook/facebook-sdk.

The next step is to get the access token for the application while Facebook treats
every API call as an application. Even for this data collection step, we will pretend to
be an application.

To get your token, go to:
https://developers.facebook.com/tools/explorer.

https://klout.com/
https://developers.facebook.com/docs/graph-api/using-graph-api/v2.3
https://developers.facebook.com/docs/graph-api/using-graph-api/v2.3
https://github.com/Pythonforfacebook/facebook-sdk
https://developers.facebook.com/tools/explorer

Chapter 9

[147]

We are all set now! Let's start with one of the most widely used Facebook graph
APIs. In this API, Facebook provides a graph-based search for pages, users, events,
places, and so on. So, the process of getting to the post becomes a two-stage process,
where we have to look for a specific pageid / userid related to our topic of interest,
and then we will be able to access the feeds of that page. One simple use case for
this kind of an exercise could be to use the official page of a company and look for
customer complaints. The way to go about this is:

>>>import facebook

>>>import json

>>>fo = open("fdump.txt",'w')

>>>ACCESS_TOKEN = 'XXXXXXXXXXX' # https://developers.facebook.com/tools/
explorer

>>>fb = facebook.GraphAPI(ACCESS_TOKEN)

>>>company_page = "326249424068240"

>>>content = fb.get_object(company_page)

>>>fo.write(json.dumps(content))

The code will attach the token to the Facebook Graph API and then we will make a
REST call to Facebook. The problem with this is that we have to have the ID of the
given page with us beforehand. The code which will attach the token is as follows:

"website":"www.dimennachildrenshistorymuseum.org",

"can_post":true,

"category_list":[

{

"id":"244600818962350",

"name":"History Museum"

},

{

"id":"187751327923426",

"name":"Educational Organization"

}

],

"likes":1793,

},

Social Media Mining in Python

[148]

"id":"326249424068240",

"category":"Museum/art gallery",

"has_added_app":false,

"talking_about_count":8,

"location":{

"city":"New York",

"zip":"10024",

"country":"United States",

"longitude":-73.974413,

"state":"NY",

"street":"170 Central Park W",

"latitude":40.779236

},

"is_community_page":false,

"username":"nyhistorykids",

"description":"The first-ever museum bringing American history to life
through the eyes of children, where kids plus history equals serious
fun! Kids of all ages can practice their History Detective skills at
the DiMenna Children's History Museum and:\n\n\u2022 discover the past
through six historic figure pavilions\n\n\u2022!",

"hours":{

""thu_1_close":"18:00"

},

"phone":"(212) 873-3400",

"link":"https://www.facebook.com/nyhistorykids",

"price_range":"$ (0-10)",

"checkins":1011,

"about":"The DiMenna Children' History Museum is the first-ever museum
bringing American history to life through the eyes of children. Visit it
inside the New-York Historical Society!",

"name":"New-York Historical Society DiMenna Children's History Museum",

"cover":{

"source":"https://scontent.xx.fbcdn.net/hphotos-xpf1/t31.0-8/s720x720/104
9166_672951706064675_339973295_o.jpg",

"cover_id":"672951706064675",

Chapter 9

[149]

"offset_x":0,

"offset_y":54,

"id":"672951706064675"

},

"were_here_count":1011,

"is_published":true

},

Here, we showed a similar schema for the Facebook data as we did for Twitter, and
now we can see what kind of information is required for our use case. In most of
the cases, the user post, category, name, about, and likes are some of the important
fields. In this example, we are showing a page of a museum, but in a more business-
driven use case, a company page has a long list of posts and other useful information
that can give some great insights about it.

Let's say I have a Facebook page for my organization xyz.org and I want to know
about the users who complained about me on the page; this is good for a use case
such as complaint classification. The way to achieve the application now is simple
enough. You need to look for a set of keywords in fdump.txt, and it can be as
complex as scoring using a text classification algorithm we learned in Chapter 6, Text
Classification.

The other use case could be to look for a topic of interest, and then to look for the
resulting pages for open posts and comments. This is exactly analogous to searching
using the graph search bar on your Facebook home page. However, the power of
doing this programmatically is that we can conduct these searches and then each
page can be recursively parsed for use comments. The code for searching user data is
as follows:

User search

>>>fb.request("search", {'q' : 'nitin', 'type' : 'user'})

Place based on the nearest location.

>>>fb.request("search", {'q' : 'starbucks', 'type' : 'place'})

Look for open pages.

>>>fb.request("search", {'q' : 'Stanford university', 'type' : page})

Look for event matching to the key word.

>>>fb.request("search", {'q' : 'beach party', 'type' : 'event'})

Social Media Mining in Python

[150]

Once we have dumped all the relevant data into a structured format, we can apply
some of the concepts we learned when we went through the topics of NLP and
machine learning. Let's pick the same use case of finding posts, that will mostly be
complaints on a Facebook page.

I assume that we now have the data in the following format:

Userid FB Post
XXXX0001 The product was pathetic and I tried reaching out to your

customer care, but nobody responded
XXXX002 Great work guys
XXXX003 Where can I call to get my account activated ??? Really bad

service

We will go back to the same example we had in Chapter 6, Text Classification, where
we built a text classifier to detect whether the SMS (text message) was spam.
Similarly, we can create training data using this kind of data, where from the given
set of posts, we will ask manual taggers to tag the comments that are complaints and
the ones that are not. Once we have significant training data, we can build the same
text classifier:

fb_classification.py

>>>from sklearn.feature_extraction.text import TfidfVectorizer

>>>vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 2), stop_
words='english', strip_accents='unicode', norm='l2')

>>>X_train = vectorizer.fit_transform(x_train)

>>>X_test = vectorizer.transform(x_test)

>>>from sklearn.linear_model import SGDClassifier

>>>clf = SGDClassifier(alpha=.0001, n_iter=50).fit(X_train, y_train)

>>>y_pred = clf.predict(X_test)

Chapter 9

[151]

Let's assume that these three are the only samples. We can tag 1st and 3rd to be
classified as complaints, while 2nd will not be a complaint. Although we will build a
vectorizer of unigram and bigram in the same way, we can actually build a classifier
using the same process. I ignored some of the preprocessing steps here. You can use
the same process as discussed in Chapter 6, Text Classification. In some of the cases, it
will be hard/expensive to get training data like this. In some of these cases, we can
apply either an unsupervised algorithm, such as text clustering or topic modeling.
The other way is to use some different dataset that is openly available and build
model on that and apply it here. For example, in the same use case, we can crawl
some of the customer complaints available on the Web and use that as training data
for our model. This can work as a good proxy for labeled data.

Influencer friends
One other use case of social media could be finding out the most influencer in your
social graph. In our case, it could be finding out a clear node that has a vast amount
of inlinks and outlinks will be the influencer in the graph.

The same problem in the context of business can be finding out the most influential
customers, and targeting them to market our products.

The code for the Influencer friends is as follows:

>>>friends = fb.get_connections("me", "friends")["data"]

>>>print friends

>>>for frd in friends:

>>> print fb.get_connections(frd["id"],"friends")

Once you have a list of all your friends and mutual friends, you can create a data
structure like this:

source node destination node link_exist
Friend 1 Friend 2 1
Friend 1 Friend 3 1
Friend 2 Friend 3 0
Friend 1 Friend 4 1

Social Media Mining in Python

[152]

This a kind of data structure that can be used to generate a network, and is a very
good way of visualizing the social graph. I used D3 here, but python also has
a library called NetworkX (https://networkx.github.io/) that can be used
to generate graph visualization, as shown in the following graph. To generate a
visualization, you need to arrive at a adjacency matrix that can be created based on
the bases of the preceding information about who is the friend of whom.

Visualization of a sample network in D3

https://networkx.github.io/

Chapter 9

[153]

Summary
In this chapter, we touched upon some of the most popular social networks. You
learned how to get data using Python. You understood the structure and kind of
attributes data has. We explored different options provided by the API.

We explored some of the most common use cases in the context of social media
mining. We touched upon the use cases about trending topics, influencer detection,
information flow, and so on. We visualized some of these use cases. We also applied
some of the learnings from the previous chapter, where we used NLTK to get some
of the topic and entity extraction, while in scikit-learn we classified some of the
complaints.

In conclusion, I would suggest that you look for some of the same use cases in
context of some other social networks and try to explore them. The great part of
these social networks is that all of them have a data API, and most of them are
open enough to do some interesting analysis. If you apply the same learning you
did in this chapter, you need to understand the API, how to get the data, and then
how to apply some of the concepts we learned in the previous chapters. I hope that
after learning all this, you will come up with more use cases, and some interesting
analysis of social media.

[155]

Text Mining at Scale
In this chapter, we will go back to some of the libraries we learned about in the
previous chapters, but this time, we want to learn to learn how these libraries will
scale up with bigdata. We assume that you have a fair bit of an idea about big data,
Hadoop and Hive. We will explore how some of the Python libraries, such as NLTK,
scikit-learn, and pandas can be used on a Hadoop cluster with a large amount of
unstructured data.

We will cover some of the most common use cases in the context of NLP and text
mining, and we will also provide a code snippet that will be helpful for you to
get your job done. We will look at three major examples that can capture the vast
majority of your text mining problems. We will tell you how to run NLTK at scale
to perform some of the NLP tasks that we completed in the initial chapters. We will
give you a few examples of some of the text classification tasks that can be done on
Big Data.

One other aspect of doing machine learning and NLP at a very high scale is to
understand whether the problem is parallelizable or not. We will talk in brief about
some of the problems discussed in the previous chapter, and whether these problems
are big data problems or not. Or in some case is it even possible to solve this using
Big Data.

Since most of the libraries we learned so far are written in Python, let's deal with one
of the main questions of how to get Python on Big Data (Hadoop).

By end of the chapter we like reader to have :

•	 Good understanding about big data related technologies such as Hadoop,
Hive and how it can be done using python.

•	 Step by step tutorial to work with NLTK, Scikit & PySpark on Big Data.

Text Mining at Scale

[156]

Different ways of using Python on
Hadoop
There are many ways to run a Python process on Hadoop. We will talk about
some of the most popular ways through which we can run Python on Hadoop as
a streaming MapReduce job, Python UDF in Hive, and Python hadoop wrappers.

Python streaming
Typically a Hadoop job has to be written in form of a map and reduce function.
User has to write an implementation of map and reduce function for the given task.
Commonly these mappers and reducers are implemented in JAVA. At the same
time Hadoop provide streaming, you where a user can write a Python mapper and
reducer function similar to Java in any other language. I am assuming that you have
run a word count example using Python. We will also use the same example using
NLTK later in this chapter.

In case you have not, have a look at
http://www.michael-noll.com/tutorials/writing-
an-hadoop-mapreduce-program-in-python/ to know more
about MapReduce in Python.

Hive/Pig UDF
Other way to use Python is by writing a UDF (User Defined Function) in Hive/Pig.
The idea here is that most of the operations we are performing in NLTK are highly
parallelizable. For example, POS tagging, Tokenization, Lemmatization, Stop Word
removal, and NER can be highly distributable. The reason being the content of each
row is independent from the other row, and we don't need any context while doing
some of these operations.

So, if we have NLTK and other Python libraries on each node of the cluster, we can
write a user defined function (UDF) in Python, using libraries such as NLTK and
scikit. This is one of the easiest way of doing NLTK, especially for scikit on a large
scale. We will give you a glimpse of both of these in this chapter.

http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/
http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/

Chapter 10

[157]

Streaming wrappers
There is a long list of wrappers that different organizations have implemented to get
Python running on the cluster. Some of them are actually quite easy to use, but all
of them suffer from performance bias. I have listed some of them as follows, but you
can go through the project page in case you want to know more about them:

•	 Hadoopy
•	 Pydoop
•	 Dumbo
•	 mrjob

For the exhaustive list of options available for the usage of Python on
Hadoop, go through the article at
http://blog.cloudera.com/blog/2013/01/a-guide-to-
python-frameworks-for-hadoop/.

NLTK on Hadoop
We talked enough about NLTK as a library, and what are some of the most-used
functions it gives us. Now, NLTK can solve many NLP problems from which many
are highly parallelizable. This is the reason why we will try to use NLTK on Hadoop.

The best way of running NLTK on Hadoop is to get it installed on all the nodes of
the cluster. This is probably not that difficult to achieve. There are ways in which you
can do this, such as sending the resource files as a streaming argument. However, we
will rather prefer the first option.

A UDF
There are a variety of ways in which we can make NLTK run on Hadoop. Let's talk
about one example of using NLTK by doing tokenization in parallel using a Hive UDF.

http://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/
http://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/

Text Mining at Scale

[158]

For this use case, we have to follow these steps:

1.	 We have chosen a small dataset where only two columns exist. We have to
create the same schema in Hive:

ID Content
UA0001 "I tried calling you. The service was not up to the mark"
UA0002 "Can you please update my phone no"
UA0003 "Really bad experience"
UA0004 "I am looking for an iPhone"

2.	 Create the same schema in Hive. The following Hive script will do this for you:
Hive script
CREATE TABLE $InputTableName (

ID String,

Content String

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t';

3.	 Once we have the schema, essentially, we want to get something like tokens
of the content in a separate column. So, we just want another column in the
$outTable with the same schema, and the added column of tokens:
Hive script
CREATE TABLE $OutTableName (

ID String,

Content String,

Tokens String

)

4.	 Now, we have the schemas ready. We have to write the UDF in Python to read
the table line by line and then apply a tokenize method. This is very similar
to what we did in Chapter 3, Part of Speech Tagging. This is the piece of function
that is analogous to all the examples in Chapter 3, Part of Speech Tagging. Now, if
you want to get POS tags, Lemmatization, and HTML, you just need to modify
this UDF. Let's see how the UDF will look for our tokenizer:
>>>import sys

>>>import datetime

>>>import pickle

Chapter 10

[159]

>>>import nltk

>>>nltk.download('punkt')

>>>for line in sys.stdin:

>>> line = line.strip()

>>> print>>sys.stderr, line

>>> id, content= line.split('\t')

>>> print>>sys.stderr,tok.tokenize(content)

>>> tokens =nltk.word_tokenize(concat_all_text)

>>> print '\t'.join([id,content,tokens])

5.	 Just name this UDF something like: nltk_scoring.py.
6.	 Now, we have to run the insert hive query with the TRANSFORM function to

apply the UDF on the given content and to do tokenization and dump the
tokens in the new column:
Hive script
add FILE nltk_scoring.py;

add FILE english.pickle; #Adding file to DistributedCache

INSERT OVERWRITE TABLE $OutTableName

SELECT

 TRANSFORM (id, content)

 USING 'PYTHONPATH nltk_scoring.py'

 AS (id string, content string, tokens string)

FROM $InputTablename;

7.	 If you are getting an error like this, you have not installed the NLTK and
NLTK data correctly:
raiseLookupError(resource_not_found)

LookupError:

**

 Resource u'tokenizers/punkt/english.pickle' not found. Please

 use the NLTK Downloader to obtain the resource: >>>

 nltk.download()

 Searched in:

 - '/home/nltk_data'

 - '/usr/share/nltk_data'

 - '/usr/local/share/nltk_data'

 - '/usr/lib/nltk_data'

 - '/usr/local/lib/nltk_data'

Text Mining at Scale

[160]

8.	 If you are able to run this Hive job successfully, you will get a table named
OutTableName, that will look something like this:

ID Content

UA0001 "I tried calling you, The service
was not up to the mark"

[" I", " tried", "calling", "you", "The",
"service" "was", "not", "up", "to", "the",
"mark"]

UA0002 "Can you please update my
phone no"

["Can", "you", "please" "update", " my",
"phone" "no"]

UA0003 "Really bad experience" ["Really"," bad" "experience"]

UA0004 "I am looking for an iphone" ["I", "am", "looking", "for", "an", "iPhone"]

Python streaming
Let's try the second option of Python streaming. We have Hadoop streaming, where
we can write our own mapper and reducer functions, and then use Python streaming
with mapper.py, as it looks quite similar to our Hive UDF. Here we are using the same
example with map-reduce python streaming this will give us a option of choosing a
Hive table or using a HDFS file directly. We will just go over the content of the file and
tokenize it. We will not perform any reduce operation here, but for learning, I included
a dummy reducer, which just dumps it. So now, we can ignore the reducer from the
execution command completely.

Here is the code for the Mapper.py:

Mapper.py

>>>import sys

>>>import pickle

>>>import nltk

>>>for line in sys.stdin:

>>> line = line.strip()

>>> id, content = line.split('\t')

>>> tokens =nltk.word_tokenize(concat_all_text)

>>> print '\t'.join([id,content,topics])

Chapter 10

[161]

Here is the code for the Reducer.py:

Reducer.py

>>>import sys

>>>import pickle

>>>import nltk

>>>for line in sys.stdin:

>>> line = line.strip()

>>> id, content,tokens = line.split('\t')

>>> print '\t'.join([id,content,tokens])

The following is the Hadoop command to execute a Python stream:Hive script

hadoop jar <path>/hadoop-streaming.jar \

-D mapred.reduce.tasks=1 -file <path>/mapper.py \

-mapper <path>/mapper.py \

-file <path>/reducer.py \

-reducer <path>/reducer.py \

-input /hdfspath/infile \

-output outfile

Scikit-learn on Hadoop
The other important use case for big data is machine learning. Specially with
Hadoop, scikit-learn is more important, as this is one of the best options we have
to score a machine learning model on big data. Large-scale machine learning is
currently one of the hottest topics, and doing this in a big data environment such as
Hadoop is all the more important. Now, the two aspects of machine learning models
are building a model on big data and to build model on a significantly large amount
of data and scoring a significantly large amount of data.

Text Mining at Scale

[162]

To understand more, let's take the same example data we used in the previous
table, where we have some customer comments. Now, we can build, let's say, a
text classification mode using a significant training sample, and use some of the
learnings from Chapter 6, Text Classification to build a Naive Bayes, SVM, or a logistic
regression model on the data. While scoring, we might need to score a huge amount
of data, such as customer comments. On the other hand building the model itself
on big data is not possible with scikit-learn, we will require tool like spark/Mahot
for that. We will take the same step-by-step approach of scoring using a pre-trained
model as we did with NLTK. While building the mode on big data will be covered
in the next section. For scoring using a pre-trained model specifically when we are
working on a text mining kind of problem. We need two main objects (a vectorizer
and modelclassifier) to be stored as a serialized pickle object.

Here, pickle is a Python module to achieve serialization by which the
object will be saved in a binary state on the disk and can be consumed
by loading again.
https://docs.python.org/2/library/pickle.html

Build an offline model using scikit on your local machine and make sure you
pickle objects. For example, if I use the Naive Bayes example from Chapter 6,
Text Classification, we need to store vectorizer and clf as pickle objects:

>>>vectorizer = TfidfVectorizer(sublinear_tf=True, min_df=in_min_df,
stop_words='english', ngram_range=(1,2), max_df=in_max_df)

>>>joblib.dump(vectorizer, "vectorizer.pkl", compress=3)

>>>clf = GaussianNB().fit(X_train,y_train)

>>>joblib.dump(clf, "classifier.pkl")

The following are the steps for creating a output table which will have all the
customer comments for the entire history:

1.	 Create the same schema in Hive as we did in the previous example. The
following Hive script will do this for you. This table can be huge; in our case,
let's assume that it contains all the customer comments about the company in
the past:
Hive script
CREATE TABLE $InputTableName (

ID String,

Content String

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t';

https://docs.python.org/2/library/pickle.html

Chapter 10

[163]

2.	 Build an output table with the output column like the predict and
probability score:
Hive script
CREATE TABLE $OutTableName (

ID String,

Content String,

predict String,

predict_score double

)

3.	 Now, we have to load these pickle objects to the distributed cache using the
addFILE command in Hive:
add FILE vectorizer.pkl;

add FILE classifier.pkl;

4.	 The next step is to write the Hive UDF, where we are loading these pickle
objects. Now, they start behaving the same as they were on the local. Once
we have the classifier and vectorizer object, we can use our test sample,
which is nothing but a string, and generate the TFIDF vector out of this.
The vectorizer object can be used now to predict the class as well as the
probability of the class:
Classification.py
>>>import sys

>>>import pickle

>>>import sklearn

>>>from sklearn.externals import joblib

>>>clf = joblib.load('classifier.pkl')

>>>vectorizer = joblib.load('vectorizer.pkl')

>>>for line in sys.stdin:

>>> line = line.strip()

>>> id, content= line.split('\t')

>>> X_test = vectorizer.transform([str(content)])

>>> prob = clf.predict_proba(X_test)

>>> pred = clf.predict(X_test)

>>> prob_score =prob[:,1]

>>> print '\t'.join([id, content,pred,prob_score])

Text Mining at Scale

[164]

5.	 Once we have written the classification.py UDF, we have to also add
this UDF to the distributed cache and then effectively, run this UDF as a
TRANSFORM function on each and every row of the table. The Hive script for
this will look like this:

Hive script
add FILE classification.py;

INSERT OVERWRITE TABLE $OutTableName

SELECT

 TRANSFORM (id, content)

 USING 'python2.7 classification.py'

 AS (id string, scorestringscore string)

FROM $Tablename;

6.	 If everything goes well, then we will have the output table with the output
schema as:

ID Content Predict Prob_score

UA0001 "I tried calling you, The service was
not up to the mark"

Complaint 0.98

UA0002 "Can you please update my phone
no "

No 0.23

UA0003 "Really bad experience" Complaint 0..97

UA0004 "I am looking for an iPhone " No 0.01

So, our output table will have all the customer comments for the entire history,
scores for whether they were complaints or not, and also a confidence score. We have
choosen a Hive UDF for our example, but the similar process can be done through
the Pig and Python steaming in a similar way as we did in NLTK.

This example was to give you a hands-on experience of how to score a machine
learning model on Hive. In the next example, we will talk about how to build a
machine learning/NLP model on big data.

Chapter 10

[165]

PySpark
Let's go back to the same discussion we had of building a machine learning/NLP
model on Hadoop and the other where we score a ML model on Hadoop. We
discussed second option of scoring in depth in the last section. Instead sampling
a smaller data-set and scoring let’s use a larger data-set and build a large-scale
machine learning model step-by-step using PySpark. I am again using the same
running data with the same schema:

ID Comment Class
UA0001 I tried calling you, The service was not up to the mark 1
UA0002 Can you please update my phone no 0
UA0003 Really bad experience 1
UA0004 I am looking for an iPhone 0
UA0005 Can somebody help me with my password 1
UA0006 Thanks for considering my request for 0

Consider the schema for last 10 years worth of comments of the organization. Now,
instead of using a small sample to build a classification model, and then using a
pretrained model to score all the comments, let me give you a step-by-step example
of how to build a text classification model using PySpark.

The first thing that we need to do is we need to import some of the modules.
Starting with SparkContext, which is more of a configuration, you can provide
more parameters, such as app names and others for this.

>>>from pyspark import SparkContext

>>>sc = SparkContext(appName="comment_classifcation")

For more information, go through the article at
http://spark.apache.org/docs/0.7.3/api/pyspark/
pyspark.context.SparkContext-class.html.

The next thing is reading a tab delimited text file. Reading the file should be on
HDFS. This file could be huge (~Tb/Pb):

>>>lines = sc.textFile("testcomments.txt")

http://spark.apache.org/docs/0.7.3/api/pyspark/pyspark.context.SparkContext-class.html
http://spark.apache.org/docs/0.7.3/api/pyspark/pyspark.context.SparkContext-class.html

Text Mining at Scale

[166]

The lines are now a list of all the rows in the corpus:

>>>parts = lines.map(lambda l: l.split("\t"))

>>>corpus = parts.map(lambda row: Row(id=row[0], comment=row[1],
class=row[2]))

The part is a list of fields as we have each field in the line delimited on "\t".

Let's break the corpus that has [ID, comment, class (0,1)] in the different RDD objects:

>>>comment = corpus.map(lambda row: " " + row.comment)

>>>class_var = corpus.map(lambda row:row.class)

Once we have the comments, we need to do a process very similar to what we did in
Chapter 6, Text Classification, where we used scikit to do tokenization, hash vectorizer
and calculate TF, IDF, and tf-idf using a vectorizer.

The following is the snippet of how to create tokenization, term frequency, and
inverse document frequency:

>>>from pyspark.mllib.feature import HashingTF

>>>from pyspark.mllib.feature import IDF

https://spark.apache.org/docs/1.2.0/mllib-feature-extraction.html

>>>comment_tokenized = comment.map(lambda line: line.strip().split(" "))

>>>hashingTF = HashingTF(1000) # to select only 1000 features

>>>comment_tf = hashingTF.transform(comment_tokenized)

>>>comment_idf = IDF().fit(comment_tf)

>>>comment_tfidf = comment_idf.transform(comment_tf)

We will merge the class with the tfidf RDD like this:

>>>finaldata = class_var.zip(comment_tfidf)

We will do a typical test, and train sampling:

>>>train, test = finaldata.randomSplit([0.8, 0.2], seed=0)

Let's perform the main classification commands, which are quite similar to scikit. We
are using a logistic regression, which is widely used classifier. The pyspark.mllib
provides you with a variety of algorithms.

Chapter 10

[167]

For more information on pyspark.mllib visit https://spark.
apache.org/docs/latest/api/python/pyspark.mllib.html

The following is an example of Naive bayes classifier:

>>>from pyspark.mllib.regression import LabeledPoint

>>>from pyspark.mllib.classification import NaiveBayes

>>>train_rdd = train.map(lambda t: LabeledPoint(t[0], t[1]))

>>>test_rdd = test.map(lambda t: LabeledPoint(t[0], t[1]))

>>>nb = NaiveBayes.train(train_rdd,lambda = 1.0)

>>>nb_output = test_rdd.map(lambda point: (NB.predict(point.features),
point.label))

>>>print nb_output

The nb_output command contains the final predictions for the test sample. The great
thing to understand is that with just less than 50 lines, we built a snippet code for an
industry-standard text classification with even petabytes of the training sample.

Summary
To summarize this chapter, our objective was to apply the concepts that we learned
so far in the context of big data. In this chapter, you learned how to use some Python
libraries, such as NLTK and scikit with Hadoop. We talked about scoring a machine
learning model, or an NLP-based operation.

We also saw three major examples of the most-common use cases. On understanding
these examples, you can apply most of the NLTK, scikit and PySpark functions.

This chapter was a quick and brief introduction to NLP and text mining on big data.
This is one of the hottest topics, and each term and tool which I talked about in the
example snippet could be a book in itself. I tried to give you a hacker's approach,
to give you an introduction to big data and text mining on a large scale. I encourage
you to read more about some of these big data technologies such as Hadoop, Hive,
Pig, and Spark and try to explore some of the examples we gave in this chapter.

https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html
https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html

[169]

Index
Symbol
3D plot 134

A
access token, Facebook

URL 146
associative arrays/memories 9

B
Bag of word (BOW) representation 69, 79
bar plot 134
Boolean retrieval 66
Brill tagger 39

C
CART 83
chart parser 49
Chrome 98
chunking 52-55
classification 75
complex matrix operations, NumPy

performing 114, 115
random numbers, generating 118
reshaping 116, 117
stacking 116, 117

Conditional Random Field (CRF) 39
context-free grammar (CFG) 45
css() method 100

D
D3 144

data collection
about 138
Twitter 138

data extraction
about 142, 143
trending topics, searching in Twitter 143

data flow, Scrapy
about 97
items 103, 104
Scrapy shell 98-102

data munging 19
data skewness 78
decision trees 83
deep parsing

versus shallow parsing 46
dependencies 50
dependency parsing (DP) 50-52
dialog systems 71
dictionaries 9
dimensionality reduction 74
direct translation 64
dir() function 6, 7

E
eigenvalues 120
eigenvectors 120
exploratory data analysis (EDA) 12
extract() method 100

F
Facebook

about 146
geo visualization 146-151
URL, for graph API 146

[170]

Facebook SDK
installing 146
URL 146

Firebug 98

G
gensim

installing 89-91
URL 89

geomap 146
geo visualization

about 144
Facebook 146-151
influencer friends, searching in social

media 151, 152
influencers detection, in Twitter 145, 146

Google news
URL 98

H
Hadoop

scikit-learn 161-164
help() function 6, 7
Hidden Markov Model (HMM) 39
Hindi stemmer

reference link 25
Hive UDF

about 156
used, for running NLTK on

Hadoop 158-160

I
IE engine 55
iMovie. See Windows Live Movie Maker
importance score

calculating 60
information extraction (IE)

about 55, 70
machine learning based 70
named entity recognition (NER) 56
rule-based extraction 70

information retrieval (IR)
about 65
Boolean retrieval 66
probabilistic model 67

reference link 67
vector space model (VSM) 66, 67

inverse document frequency (IDF) 66
inverted index 65
items

about 103
pipeline, building 106, 107
rule method 104

J
Json Parser

URL 143

K
KLOUT

URL 146
K-means clustering 88

L
language detection 72
latent dirichlet allocation (LDA) 71, 89
latent semantics indexing (LSI) 71
lemmatization 19, 26
linear algebra

about 119
reference link 120

Linguistic Data Consortium (LDC)
about 35
URL 35

lists 5
logistic regression 85

M
machine learning

about 74
reinforcement learning 75
semi-supervised learning 75
supervised learning 74
taggers 39
unsupervised learning 75

machine translation
about 63
direct translation 64
syntactic transfer 64

[171]

MapReduce
reference link 156

matplotlib
3D plot 134
about 130
axis, adding 133
bar plot 134
scatter plot 134
subplot 131, 132
URL 135

Maximum Entropy Classifier (MEC) 39
maximum entropy (MaxEnt) 84

N
Naive Bayes

about 80-83
reference link 83

named entity recognition (NER) 25, 40, 56
Natural Language Processing. See NLP
Natural Language Tool Kit. See NLTK
ndarray

about 110
data, extracting 113, 114
indexing 111

NER tagger
about 40, 41
reference link 41

NetworkX
about 152
URL 152

N-gram tagger 37
NLP

about 1, 2
need for 2-4
tools 3

NLP application
building 60-63
dialog systems 71
information extraction (IE) 70
information retrieval (IR) 65
language detection 72
machine translation 63, 64
optical character recognition (OCR) 72
other applications 63
question answering (QA) systems 70

speech recognition 68
statistical machine translation (SMT) 65
text classification 68, 69
topic modeling 71
word sense disambiguation (WSD) 71

NLTK
about 3, 11
example 12-16
URL 4

NLTK, on Hadoop
Hive UDF, using 157-160
Python, streaming 160
using 157

noun phrase (NP) 53
NumPy

about 110
basic operations 111-113
complex matrix operations 114, 115
ndarray 110
URL 135

NumPy array 83

O
optical character recognition (OCR) 72

P
pandas

about 124
column transformation 128
data, reading 124-126
noisy data 128-130
series data 127, 128
URL 135

parsers
about 48
chart parser 49
recursive descent parser 48
regex parser 49, 50
shift-reduce parser 48

parsing
dependency parsing (DP) 50-52
need for 46-48
probabilistic approach 46
rule-based approach 46

[172]

part of speech (POS) tagging
about 31-36
Brill tagger 39
machine learning based tagger 39
reference link 34, 40
sequential tagger 36
Stanford tagger 34, 35

petabytes 2
phonemes 68
phrase structure parsing 50
Pig UDF 156
Porter stemmer 25
probabilistic approach, parsing 46
probabilistic context-free grammar

(PCFG) 46
probabilistic dependency parser 51
probabilistic model 67
projective dependency parser 51
PySpark

about 165, 166
example 167
reference link 165

Python
dictionaries 9
dir() function 6, 7
help() function 6, 7
lists 5
regular expression 8, 9
streaming, for running NLTK

on Hadoop 160
URL 4
using 5

Python, on Hadoop
Hive/Pig UDF 156
Python, streaming 156
reference link 157
using 156
wrappers, streaming 157

Q
question answering (QA) systems 70

R
random forest 87

rare word
removing 27, 28

recursive descent parser 48
regex parser 49, 50
regex tagger 38
regression 75
regular expression 8, 9
reinforcement learning 75
re() method 100
rule-based approach, parsing 46

S
sampling

about 77, 78
decision trees 83
example 79, 80
logistic regression 85
Naive Bayes 80-83
reference link 79
stochastic gradient descent (SGD) 84
support vector machines (SVM) 85, 86

scatter plot 134
scikit-learn

about 73
cheat sheet 73, 74
on Hadoop 161-164
URL, for scikit classes 82

SciPy
about 118, 119
eigenvalues 120
eigenvectors 120
linear algebra 119, 120
optimization 122, 123
sparse matrix 121, 122
URL 135

Scrapy
about 93
data flow 97
external references 108
installing 94
URL 95

Scrapy shell
about 98, 99
using 99-102

semi-supervised learning 75

[173]

sentence splitter 22
sequential taggers

about 36
N-grams tagger 37
regex tagger 38

shallow parsing
versus deep parsing 46

shift-reduce parser 48
singular value decomposition (SVD) 120
Sitemap spider 105, 106
Snowball stemmers 25
social media

mining 137
sparse matrix

about 121, 122
COL (Coordinate list) 121
CRS/CSR (Compressed row Storage) 121
CSC (sparse column) 121
DOK (Dictionary of keys) 121
LOL (list of list) 121
URL 121

specific preprocessing 19
speech recognition 68
spell correction

with spellchecker 28
Stanford parser

URL 52
Stanford tagger 34
Stanford tools

about 34, 35
reference link 35

statistical machine translation (SMT) 65
stemming

about 19, 24, 25
reference link 25

stochastic gradient descent (SGD) 84
stop word removal

about 19, 26
implementing 27

string functions
reference link 8
replace 8
split 7
strip 7
upper/lower 7

subplot 131, 132
summarization 60
supervised learning

about 74
classification 75
regression 75

support vector machines (SVM) 85, 86
syntactic parser 48
syntactic transfer 64

T
term doc matrix (TDM) 69
term-document matrix 79
term frequencies (tf) 79
term frequency-inverse document

frequency (tf-idf) 62, 80
text classification 68, 69, 75-77
text cleansing 19, 22
text clustering

about 87
hierarchical clustering 87
K-means clustering 87, 88

text-processing
reference link 24

text wrangling 19-21
tokenization 19, 23
topic modeling

about 71, 89
gensim, installing 89, 90

tuple 32
Tweepy

installing 138
URL 138

Twitter
about 138
data, gathering 138-140
influencers, detecting 145, 146
trending topics, searching 143
URL, for libraries 138

U
Udacity

URL 94
unsupervised learning 75
user defined function (UDF) 156

[174]

V
vector space model (VSM) 66, 67
verb phrase (VP) 53

W
web crawler

about 93, 94
writing 94-96

word sense disambiguation (WSD) 71
World Wide Web (WWW) 93
wrappers

streaming 157

X
XPath 93, 99
xpath() method 100

Thank you for buying
NLTK Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Machine Learning with Spark
ISBN: 978-1-78328-851-9 Paperback: 338 pages

Create scalable machine learning applications to
power a modern data-driven business using Spark

1.	 A practical tutorial with real-world use cases
allowing you to develop your own machine
learning systems with Spark.

2.	 Combine various techniques and models into
an intelligent machine learning system.

3.	 Use Spark's powerful tools to load, analyze,
clean, and transform your data.

NumPy Cookbook
Second Edition
ISBN: 978-1-78439-094-5 Paperback: 258 pages

Over 90 fascinating recipes to learn and perform
mathematical, scientific, and engineering Python
computations with NumPy

1.	 Perform high-performance calculations with
clean and efficient NumPy code.

2.	 Simplify large data sets by analysing them
with statistical functions.

3.	 A solution-based guide packed with engaging
recipes to execute complex linear algebra and
mathematical computations.

Please check www.PacktPub.com for information on our titles

Hadoop MapReduce v2 Cookbook
Second Edition
ISBN: 978-1-78328-547-1 Paperback: 322 pages

Explore the Hadoop MapReduce v2 ecosystem to gain
insights from very large datasets

1.	 Process large and complex datasets using next
generation Hadoop.

2.	 Install, configure, and administer MapReduce
programs and learn what's new in MapReduce
v2.

3.	 More than 90 Hadoop MapReduce recipes
presented in a simple and straightforward
manner, with step-by-step instructions and
real-world examples.

Learning SciPy for Numerical
and Scientific Computing
Second Edition
ISBN: 978-1-78398-770-2 Paperback: 188 pages

Quick solutions to complex numerical problems in
physics, applied mathematics, and science with SciPy

1.	 Use different modules and routines from the
SciPy library quickly and efficiently.

2.	 Create vectors and matrices and learn how to
perform standard mathematical operations
between them or on the respective array in a
functional form.

3.	 A step-by-step tutorial that will help users
solve research-based problems from various
areas of science using Scipy.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Natural Language Processing
	Why learn NLP?
	Let's start playing with Python!
	Lists
	Helping yourself
	Regular expression
	Dictionaries
	Writing Function

	Diving into NLTK
	Your turn
	Summary

	Chapter 2: Text Wrangling and Cleansing
	What is text wrangling?
	Text cleansing
	Sentence splitter
	Tokenization
	Stemming
	Lemmatization
	Stop word removal
	Rare word removal
	Spell correction
	Your turn
	Summary

	Chapter 3: Part of Speech Tagging
	Part of speech tagging
	Stanford tagger
	Deep dive into a tagger
	Sequential tagger
	N-grams tagger
	Regex tagger

	Brill tagger
	Machine learning based tagger

	Named Entity Recognition (NER)
	NER tagger

	Your Turn
	Summary

	Chapter 4: Parsing Structure in Text
	Shallow versus deep parsing
	The two approaches in parsing
	Why we need parsing
	Different types of parsers
	A recursive descent parser
	A shift-reduce parser
	A chart parser
	A regex parser

	Dependency parsing
	Chunking
	Information extraction
	Named-entity recognition (NER)
	Relation extraction

	Summary

	Chapter 5: NLP Applications
	Building your first NLP application
	Other NLP applications
	Machine translation
	Statistical machine translation
	Information retrieval
	Boolean retrieval
	Vector space model
	The probabilistic model

	Speech recognition
	Text classification
	Information extraction
	Question answering systems
	Dialog systems
	Word sense disambiguation
	Topic modeling
	Language detection
	Optical character recognition

	Summary

	Chapter 6: Text Classification
	Machine learning
	Text classification
	Sampling
	Naive Bayes
	Decision trees
	Stochastic gradient descent
	Logistic regression
	Support vector machines

	The Random forest algorithm
	Text clustering
	K-means

	Topic modeling in text
	Installing gensim

	References
	Summary

	Chapter 7: Web Crawling
	Web crawlers
	Writing your first crawler
	Data flow in Scrapy
	The Scrapy shell
	Items

	The Sitemap spider
	The item pipeline
	External references
	Summary

	Chapter 8: Using NLTK with other Python Libraries
	NumPy
	ndarray
	Indexing

	Basic operations
	Extracting data from an array
	Complex matrix operations
	Reshaping and stacking
	Random numbers

	SciPy
	Linear algebra
	eigenvalues and eigenvectors
	The sparse matrix
	Optimization

	pandas
	Reading data
	Series data
	Column transformation
	Noisy data

	matplotlib
	Subplot
	Adding an axis
	A scatter plot
	A bar plot
	3D plots

	External references
	Summary

	Chapter 9: Social Media Mining
in Python
	Data collection
	Twitter

	Data extraction
	Trending topics

	Geo visualization
	Influencers detection
	Facebook
	Influencer friends

	Summary

	Chapter 10: Text Mining at Scale
	Different ways of using Python on Hadoop
	Python streaming
	Hive/Pig UDF
	Streaming wrappers

	NLTK on Hadoop
	A UDF
	Python streaming

	Scikit-learn on Hadoop
	PySpark
	Summary

	Index

