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Preface
This book is about NLTK and how NLTK can be used in conjunction with other 
Python libraries. NLTK is one of the most popular and widely used libraries in  
the natural language processing (NLP) community. The beauty of NLTK lies in  
its simplicity, where most of the complex NLP tasks can be implemented by using  
a few lines of code.

The first half of this book starts with an introduction to Python and NLP. In this 
book, you'll learn a few generic preprocessing techniques, such as tokenization, 
stemming, and stop word removal, and some NLP-specific preprocessing, such 
as POS tagging and NER that are involved in most text-related NLP tasks. We 
gradually move on to more complex NLP tasks, such as parsing and other NLP 
applications.

The second half of this book focuses more on how some of the NLP applications,  
such as text classification, can be deployed using NLTK and scikit-learn. We talk  
about some other Python libraries that you should know about for text-mining-related 
or NLP-related tasks. We also look at data gathering from the Web and social media 
and how NLTK can be used on a large scale in this chapter.

What this book covers
Chapter 1, Introduction to Natural Language Processing, talks about some of the basic 
concepts in NLP and introduces you to NLTK and Python. This chapter focuses on 
getting you up to speed with NLTK and how to start with the installation of the 
required libraries to build one very basic word cloud example.

Chapter 2, Text Wrangling and Cleansing, talks about all the preprocessing steps 
required in any text mining/NLP task. In this chapter, we discuss tokenization, 
stemming, stop word removal, and other text cleansing processes in detail and how 
easy it is to implement these in NLTK.
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Chapter 3, Part of Speech Tagging, focuses on giving you an overview of POS tagging.  
In this chapter, you will also see how to apply some of these taggers using NLTK  
and we will talk about the different NLP taggers available in NLTK.

Chapter 4, Parsing Structure in Text, moves deep in NLP. It talks about different 
parsing methods and how it can be implemented using NLTK. It talks about the 
importance of parsing in the context of NLP and some of the common information 
extraction techniques, such as entity extraction.

Chapter 5, NLP Applications, talks about different NLP applications. This chapter will 
help you build one simple NLP application using some of the knowledge you've 
assimilated so far.

Chapter 6, Text Classification, describes some of the common classification techniques 
in machine learning. This chapter mainly focuses on a text corpus and how to build a 
pipeline to implement a text classifier using NLTK and scikit. We also talk about text 
clustering and topic modeling.

Chapter 7, Web Crawling, deals with the other aspects of NLP, data science, and data 
gathering and talks about how to get the data from one of the biggest sources of 
text data, which is the Web. We will learn to build a good crawler using the Python 
library, Scrapy.

Chapter 8, Using NLTK with Other Python Libraries, talks about some of the backbone 
Python libraries, such as NumPy and SciPy. It also gives you a brief introduction to 
pandas for data processing and matplotlib for visualization.

Chapter 9, Social Media Mining in Python, is dedicated to data collection. Here, we talk 
about social media and other problems related to social media. We also discuss the 
aspects of how to gather, analyze, and visualize data from social media.

Chapter 10, Text Mining at Scale, talks about how we can scale NLTK and some other 
Python libraries to perform at scale in the era of big data. We give a brief over view 
of how NLTK and scikit can be used with Hadoop.
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What you need for this book
We need the following software for this book:

Chapter 
number

Software 
required 
(with 
version)

Free/
Proprietary

Download links 
to the software

Hardware 
specifications

OS 
required

1-5 Python/
Anaconda
NLTK

Free https://www.
python.org/

http://
continuum.io/
downloads

http://www.
nltk.org/

Common Unix 
Printing System

any

6 scikit-learn 
and gensim

Free http://
scikit-learn.
org/stable/

https://
radimrehurek.
com/gensim/

Common Unix 
Printing System

any

7 Scrapy Free http://
scrapy.org/

Common Unix 
Printing System

any

8 NumPy, 
SciPy, 
pandas, and 
matplotlib

Free http://www.
numpy.org/

http://www.
scipy.org/

http://
pandas.
pydata.org/

http://
matplotlib.
org/

Common Unix 
Printing System

any

9 Twitter 
Python 
APIs and 
Facebook 
Python 
APIs

Free https://dev.
twitter.com/
overview/
api/twitter-
libraries

https://
developers.
facebook.com

Common Unix 
Printing System

any

https://www.python.org/
https://www.python.org/
http://continuum.io/downloads
http://continuum.io/downloads
http://continuum.io/downloads
http://www.nltk.org/
http://www.nltk.org/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
http://scrapy.org/
http://scrapy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.scipy.org/
http://www.scipy.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
https://dev.twitter.com/overview/api/twitter-libraries
https://dev.twitter.com/overview/api/twitter-libraries
https://dev.twitter.com/overview/api/twitter-libraries
https://dev.twitter.com/overview/api/twitter-libraries
https://dev.twitter.com/overview/api/twitter-libraries
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
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Who this book is for
If you are an NLP or machine learning enthusiast with some or no experience in 
text processing, then this book is for you. This book is also ideal for expert Python 
programmers who want to learn NLTK quickly.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We need to create a file named NewsSpider.py and put it in the path /tutorial/
spiders."

A Python block of code is set as follows:

>>>import nltk

>>>import numpy

A Hive block of code is set as follows:

add FILE vectorizer.pkl;

add FILE classifier.pkl;

In chapter 7, Web Crawling, we have used a IPython notation for Scrapy shell

In [1] : sel.xpath('//title/text()')

Out[1]: [<Selector xpath='//title/text()' data=u' Google News'>]

Any command-line input or output is written as follows:

# cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

     /etc/asterisk/cdr_mysql.conf

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Introduction to Natural 
Language Processing

I will start with the introduction to Natural Language Processing (NLP). Language 
is a central part of our day to day life, and it's so interesting to work on any problem 
related to languages. I hope this book will give you a flavor of NLP, will motivate 
you to learn some amazing concepts of NLP, and will inspire you to work on some of 
the challenging NLP applications.

In my own language, the study of language processing is called NLP. People  
who are deeply involved in the study of language are linguists, while the term 
'computational linguist' applies to the study of processing languages with 
the application of computation. Essentially, a computational linguist will be a 
computer scientist who has enough understanding of languages, and can apply his 
computational skills to model different aspects of the language. While computational 
linguists address the theoretical aspect of language, NLP is nothing but the 
application of computational linguistics.

NLP is more about the application of computers on different language nuances,  
and building real-world applications using NLP techniques. In a practical context, 
NLP is analogous to teaching a language to a child. Some of the most common 
tasks like understanding words, sentences, and forming grammatically and 
structurally correct sentences, are very natural to humans. In NLP, some of these 
tasks translate to tokenization, chunking, part of speech tagging, parsing, machine 
translation, speech recognition, and most of them are still the toughest challenges 
for computers. I will be talking more on the practical side of NLP, assuming that we 
all have some background in NLP. The expectation for the reader is to have minimal 
understanding of any programming language and an interest in NLP and Language.

By end of the chapter we want readers 

•	 A brief introduction to NLP and related concepts.
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•	 Install Python, NLTK and other libraries.
•	 Write some very basic Python and NLTK code snippets.

If you have never heard the term NLP, then please take some time to read any of the 
books mentioned here—just for an initial few chapters. A quick reading of at least 
the Wikipedia page relating to NLP is a must:

•	 Speech and Language Processing by Daniel Jurafsky and James H. Martin
•	 Statistical Natural Language Processing by Christopher D. Manning and 

Hinrich Schütze

Why learn NLP?
I start my discussion with the Gartner's new hype cycle and you can clearly see NLP 
on top of the cycle. Currently, NLP is one of the rarest skill sets that is required in 
the industry. After the advent of big data, the major challenge is that we need more 
people who are good with not just structured, but also with semi or unstructured 
data. We are generating petabytes of Weblogs, tweets, Facebook feeds, chats, 
e-mails, and reviews. Companies are collecting all these different kind of data for 
better customer targeting and meaningful insights. To process all these unstructured 
data source we need people who understand NLP.

We are in the age of information; we can't even imagine our life without Google.  
We use Siri for the most of basic stuff. We use spam filters for filtering spam emails. 
We need spell checker on our Word document. There are many examples of real 
world NLP applications around us.

Image is taken from http://www.gartner.com/newsroom/id/2819918

http://www.gartner.com/newsroom/id/2819918 
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Let me also give you some examples of the amazing NLP applications that you can 
use, but are not aware that they are built on NLP:

•	 Spell correction (MS Word/ any other editor)
•	 Search engines (Google, Bing, Yahoo, wolframalpha)
•	 Speech engines (Siri, Google Voice)
•	 Spam classifiers (All e-mail services)
•	 News feeds (Google, Yahoo!, and so on)
•	 Machine translation (Google Translate, and so on)
•	 IBM Watson

Building these applications requires a very specific skill set with a great 
understanding of language and tools to process the language efficiently. So it's not 
just hype that makes NLP one of the most niche areas, but it's the kind of application 
that can be created using NLP that makes it one of the most unique skills to have.

To achieve some of the above applications and other basic NLP preprocessing, there 
are many open source tools available. Some of them are developed by organizations 
to build their own NLP applications, while some of them are open-sourced. Here is a 
small list of available NLP tools:

•	 GATE
•	 Mallet
•	 Open NLP
•	 UIMA
•	 Stanford toolkit
•	 Genism
•	 Natural Language Tool Kit (NLTK)

Most of the tools are written in Java and have similar functionalities. Some of them 
are robust and have a different variety of NLP tools available. However, when it 
comes to the ease of use and explanation of the concepts, NLTK scores really high. 
NLTK is also a very good learning kit because the learning curve of Python (on 
which NLTK is written) is very fast. NLTK has incorporated most of the NLP tasks, 
it's very elegant and easy to work with. For all these reasons, NLTK has become one 
of the most popular libraries in the NLP community:

www.allitebooks.com

http://www.allitebooks.org
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I am assuming all you guys know Python. If not, I urge you to learn Python. There 
are many basic tutorials on Python available online. There are lots of books also 
available that give you a quick overview of the language. We will also look into some 
of the features of Python, while going through the different topics. But for now, even 
if you only know the basics of Python, such as lists, strings, regular expressions, and 
basic I/O, you should be good to go.

Python can be installed from the following website:
https://www.python.org/downloads/

http://continuum.io/downloads 

https://store.enthought.com/downloads/

I would recommend using Anaconda or Canopy Python distributions. The reason 
being that these distributions come with bundled libraries, such as scipy, numpy, 
scikit, and so on, which are used for data analysis and other applications related  
to NLP and related fields. Even NLTK is part of this distribution.

Please follow the instructions and install NLTK and NLTK data:
http://www.nltk.org/install.html

Let's test everything.

Open the terminal on your respective operating systems. Then run:

$ python

This should open the Python interpreter:

Python 2.6.6 (r266:84292, Oct 15 2013, 07:32:41)

[GCC 4.4.7 20120313 (Red Hat 4.4.7-4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

I hope you got a similar looking output here. There is a chance that you will have 
received a different looking output, but ideally you will get the latest version of Python 
(I recommend that to be 2.7), the compiler GCC, and the operating system details. I 
know the latest version of Python will be in 3.0+ range, but as with any other open 
source systems, we should tries to hold back to a more stable version as opposed to 
jumping on to the latest version. If you have moved to Python 3.0+, please have a look 
at the link below to gain an understanding about what new features have been added:

https://docs.python.org/3/whatsnew/3.4.html.

https://www.python.org/downloads/ http://continuum.io/downloads  https://store.enthought.com/downloads/
https://www.python.org/downloads/ http://continuum.io/downloads  https://store.enthought.com/downloads/
https://www.python.org/downloads/ http://continuum.io/downloads  https://store.enthought.com/downloads/
http://www.nltk.org/install.html
https://docs.python.org/3/whatsnew/3.4.html
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UNIX based systems will have Python as a default program. Windows users can 
set the path to get Python working. Let's check whether we have installed NLTK 
correctly:

>>>import nltk

>>>print "Python and NLTK installed successfully"

Python and NLTK installed successfully

Hey, we are good to go!

Let's start playing with Python!
We'll not be diving too deep into Python; however, we'll give you a quick tour of 
Python essentials. Still, I think for the benefit of the audience, we should have a quick 
five minute tour. We'll talk about the basics of data structures, some frequently used 
functions, and the general construct of Python in the next few sections.

I highly recommend the two hour Google Python class. https://
developers.google.com/edu/python should be good enough 
to start. Please go through the Python website https://www.
python.org/ for more tutorials and other resources.

Lists
Lists are one of the most commonly used data structures in Python. They are pretty 
much comparable to arrays in other programming languages. Let's start with some 
of the most important functions that a Python list provide.

Try the following in the Python console:

>>> lst=[1,2,3,4]

>>> # mostly like arrays in typical languages

>>>print lst

[1, 2, 3, 4]

Python lists can be accessed using much more flexible indexing. Here are some 
examples:

>>>print 'First element' +lst[0]

You will get an error message like this:

TypeError: cannot concatenate 'str' and 'int' objects

https://developers.google.com/edu/python
https://developers.google.com/edu/python
https://www.python.org/ for more tutorials and other resources
https://www.python.org/ for more tutorials and other resources
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The reason being that Python is an interpreted language, and checks for the type  
of the variables at the time it evaluates the expression. We need not initialize  
and declare the type of variable at the time of declaration. Our list has integer object 
and cannot be concatenated as a print function. It will only accept a string object. For 
this reason, we need to convert list elements to string. The process is also known as 
type casting.

>>>print 'First element :' +str(lst[0])

>>>print 'last element :' +str(lst[-1])

>>>print 'first three elements :' +str(lst[0:2])

>>>print 'last three elements :'+str(lst[-3:])

First element :1

last element :4

first three elements :[1, 2,3]

last three elements :[2, 3, 4]

Helping yourself
The best way to learn more about different data types and functions is to use help 
functions like help() and dir(lst).

The dir(python object) command is used to list all the given attributes of the 
given Python object. Like if you pass a list object, it will list all the cool things you 
can do with lists:

>>>dir(lst)

>>>' , '.join(dir(lst))

'__add__ , __class__ , __contains__ , __delattr__ , __delitem__ , __
delslice__ , __doc__ , __eq__ , __format__ , __ge__ , __getattribute__ 
, __getitem__ , __getslice__ , __gt__ , __hash__ , __iadd__ , __imul__ 
, __init__ , __iter__ , __le__ , __len__ , __lt__ , __mul__ , __ne__ , 
__new__ , __reduce__ , __reduce_ex__ , __repr__ , __reversed__ , __rmul__ 
, __setattr__ , __setitem__ , __setslice__ , __sizeof__ , __str__ , __
subclasshook__ , append , count , extend , index , insert , pop , remove 
, reverse , sort'

With the help(python object) command, we can get detailed documentation 
for the given Python object, and also give a few examples of how to use the Python 
object:

>>>help(lst.index)

Help on built-in function index:
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index(...)

    L.index(value, [start, [stop]]) -> integer -- return first index of 
value.

This function raises a ValueError if the value is not present.

So help and dir can be used on any Python data type, and are a very nice way to 
learn about the function and other details of that object. It also provides you with 
some basic examples to work with, which I found useful in most cases.

Strings in Python are very similar to other languages, but the manipulation of strings 
is one of the main features of Python. It's immensely easy to work with strings in 
Python. Even something very simple, like splitting a string, takes effort in Java / C, 
while you will see how easy it is in Python.

Using the help function that we used previously, you can get help for any Python 
object and any function. Let's have some more examples with the other most 
commonly used data type strings:

•	 Split: This is a method to split the string based on some delimiters.  
If no argument is provided it assumes whitespace as delimiter.
>>> mystring="Monty Python !  And the holy Grail ! \n"

>>> print mystring.split()

['Monty', 'Python', '!', 'and', 'the', 'holy', 'Grail', '!']

•	 Strip: This is a method that can remove trailing whitespace, like '\n', '\n\r' 
from the string:
>>> print mystring.strip()

>>>Monty Python !  and the holy Grail !

If you notice the '\n' character is stripped off. There are also methods like 
rstrip() and lstrip() to strip trailing whitespaces to the right and left  
of the string.

•	 Upper/Lower: We can change the case of the string using these methods:
>>> print (mystring.upper()

>>>MONTY PYTHON !AND THE HOLY GRAIL !



Introduction to Natural Language Processing

[ 8 ]

•	 Replace: This will help you substitute a substring from the string:

>>> print mystring.replace('!','''''')

>>> Monty Python   and the holy Grail

There are tons of string functions. I have just talked about some of the most 
frequently used.

Please look the following link for more functions and examples:
https://docs.python.org/2/library/string.html.

Regular expressions
One other important skill for an NLP enthusiast is working with regular expression. 
Regular expression is effectively pattern matching on strings. We heavily use pattern 
extrication to get meaningful information from large amounts of messy text data. 
The following are all the regular expressions you need. I haven't used any regular 
expressions beyond these in my entire life:

•	 (a period): This expression matches any single character except newline \n.
•	 \w: This expression will match a character or a digit equivalent to [a-z A-Z 

0-9]
•	 \W (upper case W) matches any non-word character.
•	 \s: This expression (lowercase s) matches a single whitespace character - 

space, newline, return, tab, form [\n\r\t\f].
•	 \S: This expression matches any non-whitespace character.
•	 \t: This expression performs a tab operation.
•	 \n: This expression is used for a newline character.
•	 \r: This expression is used for a return character.
•	 \d: Decimal digit [0-9].
•	 ^: This expression is used at the start of the string.
•	 $: This expression is used at the end of the string.
•	 \: This expression is used to nullify the specialness of the special character. 

For example, you want to match the $ symbol, then add \ in front of it.

https://docs.python.org/2/library/string.html
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Let's search for something in the running example, where mystring is the same 
string object, and we will try to look for some patterns in that. A substring search is 
one of the common use-cases of the re module. Let's implement this:

>>># We have to import re module to use regular expression

>>>import re

>>>if re.search('Python',mystring):

>>>    print "We found python "

>>>else:

>>>    print "NO "

Once this is executed, we get the message as follows:

We found python

We can do more pattern finding using regular expressions. One of the common 
functions that is used in finding all the patterns in a string is findall. It will look for 
the given patterns in the string, and will give you a list of all the matched objects:

>>>import re

>>>print re.findall('!',mystring)

['!', '!']

As we can see there were two instances of the "!" in the mystring and findall 
return both object as a list.

Dictionaries
The other most commonly used data structure is dictionaries, also known as 
associative arrays/memories in other programming languages. Dictionaries are  
data structures that are indexed by keys, which can be any immutable type; such as 
strings and numbers can always be keys.

Dictionaries are handy data structure that used widely across programming 
languages to implement many algorithms. Python dictionaries are one of the most 
elegant implementations of hash tables in any programming language. It's so easy to 
work around dictionary, and the great thing is that with few nuggets of code you can 
build a very complex data structure, while the same task can take so much time and 
coding effort in other languages. This gives the programmer more time to focus on 
algorithms rather than the data structure itself.
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I am using one of the very common use cases of dictionaries to get the frequency 
distribution of words in a given text. With just few lines of the following code, you 
can get the frequency of words. Just try the same task in any other language and you 
will understand how amazing Python is:

>>># declare a dictionary

>>>word_freq={}

>>>for tok in string.split():

>>>    if tok in word_freq:

>>>        word_freq [tok]+=1

>>>    else:

>>>        word_freq [tok]=1

>>>print word_freq

{'!': 2, 'and': 1, 'holy': 1, 'Python': 1, 'Grail': 1, 'the': 1, 'Monty': 
1}

Writing functions
As any other programming langauge Python also has its way of writing functions. 
Function in Python start with keyword def followed by the function name and 
parentheses (). Similar to any other programming language any arguments and the 
type of the argument should be placed within these parentheses. The actual code 
starts with (:) colon symbol. The initial lines of the code are typically doc string 
(comments), then we have code body and function ends with a return statement. For 
example in the given example the function wordfreq start with def keyword, there 
is no argument to this function and the function ends with a return statement.

>>>import sys

>>>def wordfreq (mystring):

>>>	 '''

>>>	 Function to generated the frequency distribution of the given text

>>>	 '''

>>>	 print mystring

>>>	 word_freq={}

>>>	 for tok in mystring.split():

>>>		  if tok in word_freq:

>>>			   word_freq [tok]+=1

>>>		  else:

>>>			   word_freq [tok]=1
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>>>	 print word_freq

>>>def main():

>>>	 str="This is my fist python program"

>>>	 wordfreq(str)

>>>if __name__ == '__main__':

>>>	 main()

This was the same code that we wrote in the previous section the idea of writing in a 
form of function is to make the code re-usable and readable. The interpreter style of 
writing Python is also very common but for writing big programes it will be a good 
practice to use function/classes and one of the programming paradigm. We also 
wanted the user to write and run first Python program. You need to follow  
these steps to achive this. 

1.	 Open an empty python file mywordfreq.py in your prefered text editor.
2.	 Write/Copy the code above in the code snippet to the file.
3.	 Open the command prompt in your Operating system. 
4.	 Run following command prompt:

$ python mywordfreq,py "This is my fist python program !!" 

5.	 Output should be:
{'This': 1, 'is': 1, 'python': 1, 'fist': 1, 'program': 1, 'my': 
1}

Now you have a very basic understanding about some common data-structures that 
python provides. You can write a full Python program and able to run that. I think 
this is good enough I think with this much of an introduction to Python you can 
manage for the initial chapters.

Please have a look at some Python tutorials on the following 
website to learn more commands on Python:
https://wiki.python.org/moin/BeginnersGuide

Diving into NLTK
Instead of going further into the theoretical aspects of natural language processing, 
let's start with a quick dive into NLTK. I am going to start with some basic example 
use cases of NLTK. There is a good chance that you have already done something 
similar. First, I will give a typical Python programmer approach, and then move on 
to NLTK for a much more efficient, robust, and clean solution.

https://wiki.python.org/moin/BeginnersGuide
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We will start analyzing with some example text content. For the current example, I 
have taken the content from Python's home page.

>>>import urllib2

>>># urllib2 is use to download the html content of the web link

>>>response = urllib2.urlopen('http://python.org/')

>>># You can read the entire content of a file using read() method

>>>html = response.read()

>>>print len(html)

47020

We don't have any clue about the kind of topics that are discussed in this URL, so 
let's start with an exploratory data analysis (EDA). Typically in a text domain, EDA 
can have many meanings, but will go with a simple case of what kinds of terms 
dominate the document. What are the topics? How frequent they are? The process 
will involve some level of preprocessing steps. We will try to do this first in a pure 
Python way, and then we will do it using NLTK.

Let's start with cleaning the html tags. One ways to do this is to select just the 
tokens, including numbers and character. Anybody who has worked with regular 
expression should be able to convert html string into list of tokens:

>>># Regular expression based split the string

>>>tokens = [tok for tok in html.split()]

>>>print "Total no of tokens :"+ str(len(tokens))

>>># First 100 tokens

>>>print tokens[0:100]

Total no of tokens :2860

['<!doctype', 'html>', '<!--[if', 'lt', 'IE', '7]>', '<html', 'class="no-
js', 'ie6', 'lt-ie7', 'lt-ie8', 'lt-ie9">', '<![endif]-->', '<!--[if', 
'IE', '7]>', '<html', 'class="no-js', 'ie7', 'lt-ie8', 'lt-ie9">', 
'<![endif]-->', ''type="text/css"', 'media="not', 'print,', 'braille,' 
...]

As you can see, there is an excess of html tags and other unwanted characters when 
we use the preceding method. A cleaner version of the same task will look something 
like this:

>>>import re

>>># using the split function

>>>#https://docs.python.org/2/library/re.html

>>>tokens = re.split('\W+',html)



Chapter 1

[ 13 ]

>>>print len(tokens)

>>>print tokens[0:100]

5787

['', 'doctype', 'html', 'if', 'lt', 'IE', '7', 'html', 'class', 'no', 
'js', 'ie6', 'lt', 'ie7', 'lt', 'ie8', 'lt', 'ie9', 'endif', 'if', 
'IE', '7', 'html', 'class', 'no', 'js', 'ie7', 'lt', 'ie8', 'lt', 'ie9', 
'endif', 'if', 'IE', '8', 'msapplication', 'tooltip', 'content', 'The', 
'official', 'home', 'of', 'the', 'Python', 'Programming', 'Language', 
'meta', 'name', 'apple' ...]

This looks much cleaner now. But still you can do more; I leave it to you to try  
to remove as much noise as you can. You can clean some HTML tags that are  
still popping up, You probably also want to look for word length as a criteria and 
remove words that have a length one—it will remove elements like 7, 8, and so on, 
which are just noise in this case. Now instead writing some of these preprocessing 
steps from scratch let's move to NLTK for the same task. There is a function called 
clean_html() that can do all the cleaning that we were looking for:

>>>import nltk

>>># http://www.nltk.org/api/nltk.html#nltk.util.clean_html

>>>clean = nltk.clean_html(html)

>>># clean will have entire string removing all the html noise

>>>tokens = [tok for tok in clean.split()]

>>>print tokens[:100]

['Welcome', 'to', 'Python.org', 'Skip', 'to', 'content', '&#9660;', 
'Close', 'Python', 'PSF', 'Docs', 'PyPI', 'Jobs', 'Community', '&#9650;', 
'The', 'Python', 'Network', '&equiv;', 'Menu', 'Arts', 'Business' ...]

Cool, right? This definitely is much cleaner and easier to do.

Let's try to get the frequency distribution of these terms. First, let's do it the Pure 
Python way, then I will tell you the NLTK recipe.

>>>import operator

>>>freq_dis={}

>>>for tok in tokens:

>>>    if tok in freq_dis:

>>>        freq_dis[tok]+=1

>>>    else:

>>>        freq_dis[tok]=1

>>># We want to sort this dictionary on values ( freq in this case )

www.allitebooks.com

http://www.allitebooks.org
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>>>sorted_freq_dist= sorted(freq_dis.items(), key=operator.itemgetter(1), 
reverse=True)

>>> print sorted_freq_dist[:25]

[('Python', 55), ('>>>', 23), ('and', 21), ('to', 18), (',', 18), ('the', 
14), ('of', 13), ('for', 12), ('a', 11), ('Events', 11), ('News', 11), 
('is', 10), ('2014-', 10), ('More', 9), ('#', 9), ('3', 9), ('=', 8), 
('in', 8), ('with', 8), ('Community', 7), ('The', 7), ('Docs', 6), 
('Software', 6), (':', 6), ('3:', 5), ('that', 5), ('sum', 5)]

Naturally, as this is Python's home page, Python and the (>>>) interpreter symbol 
are the most common terms, also giving a sense of the website.

A better and more efficient approach is to use NLTK's FreqDist() function. For this, 
we will take a look at the same code we developed before:

>>>import nltk

>>>Freq_dist_nltk=nltk.FreqDist(tokens)

>>>print Freq_dist_nltk

>>>for k,v in Freq_dist_nltk.items():

>>>    print str(k)+':'+str(v)

<FreqDist: 'Python': 55, '>>>': 23, 'and': 21, ',': 18, 'to': 18, 'the': 
14, 'of': 13, 'for': 12, 'Events': 11, 'News': 11, ...>

Python:55

>>>:23

and:21

,:18

to:18

the:14

of:13

for:12

Events:11

News:11

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books you 
have purchased. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files 
e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
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Let's now do some more funky things. Let's plot this:

>>>Freq_dist_nltk.plot(50, cumulative=False)

>>># below is the plot for the frequency distributions

We can see that the cumulative frequency is growing, and at some point the curve is 
going into long tail. Still, there is some noise, there are words like the, of, for, and =. 
These are useless words, and there is a terminology for them. These words are stop 
words; words like the, a, an, and so on. Article pronouns are generally present in 
most of the documents, hence they are not discriminative enough to be informative. 
In most of the NLP and information retrieval tasks, people generally remove stop 
words. Let's go back again to our running example:

>>>stopwords=[word.strip().lower() for word in open("PATH/english.stop.
txt")]

>>>clean_tokens=[tok for tok in tokens if len(tok.lower())>1 and (tok.
lower() not in stopwords)]
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>>>Freq_dist_nltk=nltk.FreqDist(clean_tokens)

>>>Freq_dist_nltk.plot(50, cumulative=False)

Please go to http://www.wordle.net/advanced for more 
word clouds.

Looks much cleaner now! After finishing this much, you can go to wordle and put 
the distribution in a form of a CSV and you should be able to get something like this 
word cloud:

http://www.wordle.net/advanced
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Your turn
•	 Please try the same exercise for different URLs.
•	 Try to reach the word cloud.

Summary
To summarize, this chapter was intended to give you a brief introduction to 
Natural Language Processing. The book does assume some background in NLP and 
programming in Python, but we have tried to give a very quick head start to Python 
and NLP. We have installed all the related packages that are require for us to work 
with NLTK. We wanted to give you, with a few simple lines of code, an idea of how 
to use NLTK. We were able to deliver an amazing word cloud, which is a great way 
of visualizing the topics in a large amount of unstructured text, and is quite popular 
in the industry for text analytics. I think the goal was to set up everything around 
NLTK, and to get Python working smoothly on your system. You should also be 
able to write and run basic Python programs. I wanted the reader to feel the power 
of the NLTK library, and build a small running example that will involve a basic 
application around word cloud. If the reader is able to generate the word cloud,  
I think we were successful.

In the next few chapters, we will learn more about Python as a language, and its 
features related to process natural language. We will explore some of the basic  
NLP preprocessing steps and learn about some of basic concepts related to NLP.
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Text Wrangling and 
Cleansing

The previous chapter was all about you getting a head start on Python as well as 
NLTK. We learned about how we can start some meaningful EDA with any corpus 
of text. We did all the pre-processing part in a very crude and simple manner. 
In this chapter, will go over preprocessing steps like tokenization, stemming, 
lemmatization, and stop word removal in more detail. We will explore all the tools 
in NLTK for text wrangling. We will talk about all the pre-processing steps used in 
modern NLP applications, the different ways to achieve some of these tasks, as well 
as the general do's and don'ts. The idea is to give you enough information about 
these tools so that you can decide what kind of pre-processing tool you need for  
your application. By the end of this chapter, readers should know :

•	 About all the data wrangling, and to perform it using NLTK
•	 What is the importance of text cleansing and what are the common tasks that 

can be achieved using NLTK

What is text wrangling?
It's really hard to define the term text/data wrangling. I will define it as all the  
pre-processing and all the heavy lifting you do before you have a machine readable 
and formatted text from raw data. The process involves data munging, text 
cleansing, specific preprocessing, tokenization, stemming or lemmatization  
and stop word removal. Let's start with a basic example of parsing a csv file:

>>>import csv

>>>with open('example.csv','rb')  as f:

>>>    reader = csv.reader(f,delimiter=',',quotechar='"')

>>>    for line in reader :

>>>        print line[1]    # assuming the second field is the raw sting
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Here we are trying to parse a csv, in above code line will be a list of all the column 
elements of the csv. We can customize this to work on any delimiter and quoting 
character. Now once we have the raw string, we can apply different kinds of text 
wrangling that we learned in the last chapter. The point here is to equip you with 
enough detail to deal with any day to day csv files.

A clear process flow for some of the most commonly accepted document types is 
shown in the following block diagram:

Data Sources

Python parsers

CSV HTML XML Databases

import csv

Import
HTMLparser
SAX Parser
DOM Parser

import
XMLParser

Json PDF NoSQL

import json
PDFminer
https://pypi.python.
org/pypi/pdfminer/

PY0DBC

https://code.google.
com/p/pyodbc/wiki/
GettingStarted

http:
//stackoverflow.
comquestions/5832
531/nasql-db-for-
python

Raw text

Tokenization

Stop word removal

Stemming / Lemmatization

Text cleansing

I have listed most common data sources in the first stack of the diagram. In most 
cases, the data will be residing in one of these data formats. In the next step, I have 
listed the most commonly used Python wrappers around those data formats. For 
example, in the case of a csv file, Python's csv module is the most robust way of 
handling the csv file. It allows you to play with different splitters, different quote 
characters, and so on.

The other most commonly used files are json.
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For example, json looks like:

{
  "array": [1,2,3,4],
 "boolean": True,
  "object": {
    "a": "b"
  },
  "string": "Hello World"
}

Let's say we want to process the string. The parsing code will be:

>>>import json

>>>jsonfile = open('example.json')

>>>data = json.load(jsonfile)

>>>print data['string']

"Hello World"

We are just loading a json file using the json module. Python allows you to choose 
and process it to a raw string form. Please have a look at the diagram to get more 
details about all the data sources, and their parsing packages in Python. I have only 
given pointers here; please feel free to search the web for more details about these 
packages.

So before you write your own parser to parse these different document formats, 
please have a look at the second row for available parsers in Python. Once you reach 
a raw string, all the pre-processing steps can be applied as a pipeline, or you might 
choose to ignore some of them. We will talk about tokenization, stemmers, and 
lemmatizers in the next section in detail. We will also talk about the variants, and 
when to use one case over the other.

Now that you have an idea of what text wrangling is, try to 
connect to any one of the databases using one of the Python 
modules described in the preceding image.
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Text cleansing
Once we have parsed the text from a variety of data sources, the challenge is to 
make sense of this raw data. Text cleansing is loosely used for most of the cleaning 
to be done on text, depending on the data source, parsing performance, external 
noise and so on. In that sense, what we did in Chapter 1, Introduction to Natural 
Language Processing for cleaning the html using html_clean, can be labeled as text 
cleansing. In another case, where we are parsing a PDF, there could be unwanted 
noisy characters, non ASCII characters to be removed, and so on. Before going on to 
next steps we want to remove these to get a clean text to process further. With a data 
source like xml, we might only be interested in some specific elements of the tree, 
with databases we may have to manipulate splitters, and sometimes we are only 
interested in specific columns. In summary, any process that is done with the aim to 
make the text cleaner and to remove all the noise surrounding the text can be termed 
as text cleansing. There are no clear boundaries between the terms data munging, 
text cleansing, and data wrangling they can be used interchangeably in a similar 
context. In the next few sections, we will talk about some of the most common pre-
processing steps while doing any NLP task.

Sentence splitter
Some of the NLP applications require splitting a large raw text into sentences to 
get more meaningful information out. Intuitively, a sentence is an acceptable unit 
of conversation. When it comes to computers, it is a harder task than it looks. A 
typical sentence splitter can be something as simple as splitting the string on (.), to 
something as complex as a predictive classifier to identify sentence boundaries:

>>>inputstring = ' This is an example sent. The sentence splitter will 
split on sent markers. Ohh really !!'

>>>from nltk.tokenize import sent_tokenize

>>>all_sent = sent_tokenize(inputstring)

>>>print all_sent

[' This is an example sent', 'The sentence splitter will split on 
markers.','Ohh really !!']

We are trying to split the raw text string into a list of sentences. The preceding 
function, sent_tokenize, internally uses a sentence boundary detection algorithm 
that comes pre-built into NLTK. If your application requires a custom sentence 
splitter, there are ways that we can train a sentence splitter of our own:

>>>import nltk.tokenize.punkt

>>>tokenizer = nltk.tokenize.punkt.PunktSentenceTokenizer()
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The preceding sentence splitter is available in all the 17 languages. You just need to 
specify the respective pickle object. In my experience, this is good enough to deal 
with a variety of the text corpus, and there is a lesser chance that you will have to 
build your own.

Tokenization
A word (Token) is the minimal unit that a machine can understand and process. So 
any text string cannot be further processed without going through tokenization. 
Tokenization is the process of splitting the raw string into meaningful tokens. The 
complexity of tokenization varies according to the need of the NLP application, and 
the complexity of the language itself. For example, in English it can be as simple as 
choosing only words and numbers through a regular expression. But for Chinese and 
Japanese, it will be a very complex task.

>>>s = "Hi Everyone !    hola gr8" # simplest tokenizer

>>>print s.split()

['Hi', 'Everyone', '!', 'hola', 'gr8']

>>>from nltk.tokenize import word_tokenize

>>>word_tokenize(s)

['Hi', 'Everyone', '!', 'hola', 'gr8']

>>>from nltk.tokenize import regexp_tokenize, wordpunct_tokenize, 
blankline_tokenize

>>>regexp_tokenize(s, pattern='\w+')

['Hi', 'Everyone', 'hola', 'gr8']

>>>regexp_tokenize(s, pattern='\d+')

['8']

>>>wordpunct_tokenize(s)

['Hi', ',', 'Everyone', '!!', 'hola', 'gr8']

>>>blankline_tokenize(s)

['Hi, Everyone !!  hola gr8']

In the preceding code we have used various tokenizers. To start with we used the 
simplest: the split() method of Python strings. This is the most basic tokenizer, that 
uses white space as delimiter. But the split() method itself can be configured for 
some more complex tokenization. In the preceding example, you will find hardly a 
difference between the s.split() and word_tokenize methods. 

www.allitebooks.com

http://www.allitebooks.org
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The word_tokenize method is a generic and more robust method of tokenization for 
any kind of text corpus. The word_tokenize method comes pre-built with NLTK. If 
you are not able to access it, you made some mistakes in installing NLTK data. Please 
refer to Chapter 1, Introduction to Natural Language Processing for installation.

There are two most commonly used tokenizers. The first is word_tokenize, which is 
the default one, and will work in most cases. The other is regex_tokenize, which is 
more of a customized tokenizer for the specific needs of the user. Most of the other 
tokenizers can be derived from regex tokenizers. You can also build a very specific 
tokenizer using a different pattern. In line 8 of the preceding code, we split the same 
string with the regex tokenizer. We use \w+ as a regular expression, which means 
we need all the words and digits from the string, and other symbols can be used as a 
splitter, same as what we do in line 10 where we specify \d+ as regex. The result will 
produce only digits from the string.

Can you build a regex tokenizer that will only select words that are either small, 
capitals, numbers, or money symbols?

Hint: Just look for the regular expression for the preceding query and use a  
regex_tokenize.

You can also have a look at some of the demos available online: 
http://text-processing.com/demo.

Stemming
Stemming, in literal terms, is the process of cutting down the branches of a tree to 
its stem. So effectively, with the use of some basic rules, any token can be cut down 
to its stem. Stemming is more of a crude rule-based process by which we want to 
club together different variations of the token. For example, the word eat will have 
variations like eating, eaten, eats, and so on. In some applications, as it does not 
make sense to differentiate between eat and eaten, we typically use stemming to club 
both grammatical variances to the root of the word. While stemming is used most of 
the time for its simplicity, there are cases of complex language or complex NLP tasks 
where it's necessary to use lemmatization instead. Lemmatization is a more robust 
and methodical way of combining grammatical variations to the root of a word.

http://text-processing.com/demo
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In the following snippet, we show a few stemmers:

>>>from nltk.stem import PorterStemmer # import Porter stemmer

>>>from nltk.stem.lancaster import LancasterStemmer

>>>from nltk.stem.Snowball import SnowballStemmer

>>>pst = PorterStemmer()   # create obj of the PorterStemmer

>>>lst = LancasterStemmer() # create obj of LancasterStemmer

>>>lst.stem("eating")

eat

>>>pst.stem("shopping")

shop

A basic rule-based stemmer, like removing –s/es or -ing or -ed can give you a 
precision of more than 70 percent, while Porter stemmer also uses more rules and 
can achieve very good accuracies.

We are creating different stemmer objects, and applying a stem() method on the 
string. As you can see, there is not much of a difference when you look at a simple 
example, however there are many stemming algorithms around, and the precision 
and performance of them differ. You may want to have a look at http://www.nltk.
org/api/nltk.stem.html for more details. I have used Porter Stemmer most often, 
and if you are working with English, it's good enough. There is a family of Snowball 
stemmers that can be used for Dutch, English, French, German, Italian, Portuguese, 
Romanian, Russian, and so on. I also came across a light weight stemmer for Hindi 
on http://research.variancia.com/hindi_stemmer.

I would suggest a study of all the stemmers for those who want to 
explore more about stemmers on http://en.wikipedia.org/wiki/
Stemming.
But most users can live with Porter and Snowball stemmer for a large 
number of use cases. In modern NLP applications, sometimes people 
even ignore stemming as a pre-processing step, so it typically depends 
on your domain and application. I would also like to tell you the fact 
that if you want to use some NLP taggers, like Part of Speech tagger 
(POS), NER or dependency parser, you should avoid stemming, because 
stemming will modify the token and this can result in a different result. 
We will go into this further when we talk about taggers in general.

http://www.nltk.org/api/nltk.stem.html
http://www.nltk.org/api/nltk.stem.html
http://research.variancia.com/hindi_stemmer
http://en.wikipedia.org/wiki/Stemming
http://en.wikipedia.org/wiki/Stemming
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Lemmatization
Lemmatization is a more methodical way of converting all the grammatical/inflected 
forms of the root of the word. Lemmatization uses context and part of speech to 
determine the inflected form of the word and applies different normalization rules 
for each part of speech to get the root word (lemma):

>>>from nltk.stem import WordNetLemmatizer

>>>wlem = WordNetLemmatizer()

>>>wlem.lemmatize("ate")

eat

Here, WordNetLemmatizer is using wordnet, which takes a word and searches 
wordnet, a semantic dictionary. It also uses a morph analysis to cut to the root and 
search for the specific lemma (variation of the word). Hence, in our example it is 
possible to get eat for the given variation ate, which was never possible with stemming.

•	 Can you explain what the difference is between Stemming and 
lemmatization?

•	 Can you come up with a Porter stemmer (Rule-based) for your  
native language?

•	 Why would it be harder to implement a stemmer for languages like Chinese?

Stop word removal
Stop word removal is one of the most commonly used preprocessing steps across 
different NLP applications. The idea is simply removing the words that occur 
commonly across all the documents in the corpus. Typically, articles and pronouns 
are generally classified as stop words. These words have no significance in some 
of the NLP tasks like information retrieval and classification, which means these 
words are not very discriminative. On the contrary, in some NLP applications stop 
word removal will have very little impact. Most of the time, the stop word list for 
the given language is a well hand-curated list of words that occur most commonly 
across corpuses. While the stop word lists for most languages are available online, 
these are also ways to automatically generate the stop word list for the given corpus. 
A very simple way to build a stop word list is based on word's document frequency 
(Number of documents the word presents), where the words present across the 
corpus can be treated as stop words. Enough research has been done to get the 
optimum list of stop words for some specific corpus. NLTK comes with a pre-built 
list of stop words for around 22 languages.
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To implement the process of stop word removal, below is code that uses NLTK stop 
word. You can also create a dictionary on a lookup based approach like we did in 
Chapter 1, Introduction to Natural Language Processing.

>>>from nltk.corpus import stopwords

>>>stoplist = stopwords.words('english') # config the language name

# NLTK supports 22 languages for removing the stop words

>>>text = "This is just a test"

>>>cleanwordlist = [word for word in text.split() if word not in 
stoplist]

# apart from just and test others are stopwords

['test']

In the preceding code snippet, we have deployed a cleaner version of the same 
stop word removal we did in Chapter 1, Introduction to Natural Language Processing. 
Previously, we were using a lookup based approach. Even in this case, NLTK 
internally did a very similar approach. I would recommend using the NLTK list 
of stop words, because this is more of a standardized list, and this is robust when 
compared to any other implementation. We also have a way to use similar methods 
for other languages by just passing the language name as a parameter  
to the stop words constructor.

•	 What's the math behind removing stop words?
•	 Can we perform other NLP operations after stop word removal?

Rare word removal
This is very intuitive, as some of the words that are very unique in nature like names, 
brands, product names, and some of the noise characters, such as html leftouts, also 
need to be removed for different NLP tasks. For example, it would be really bad  
to use names as a predictor for a text classification problem, even if they come out  
as a significant predictor. We will talk about this further in subsequent chapters.  
We definitely don't want all these noisy tokens to be present. We also use length  
of the words as a criteria for removing words with very a short length or a very  
long length:

>>># tokens is a list of all tokens in corpus

>>>freq_dist = nltk.FreqDist(token)

>>>rarewords = freq_dist.keys()[-50:]

>>>after_rare_words = [ word for word in token not in rarewords]
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We are using the FreqDist() function to get the distribution of the terms in the 
corpus, selecting the rarest one into a list, and then filtering our original corpus.  
We can also do it for individual documents, as well.

Spell correction
It is not a necessary to use a spellchecker for all NLP applications, but some use 
cases require you to use a basic spellcheck. We can create a very basic spellchecker 
by just using a dictionary lookup. There are some enhanced string algorithms that 
have been developed for fuzzy string matching. One of the most commonly used is 
edit-distance. NLTK also provides you with a variety of metrics module that has 
edit_distance.

>>>from nltk.metrics import edit_distance

>>>edit_distance("rain","shine")

3 

We will cover this module in more detail in advanced chapters. We also have one  
of the most elegant codes for spellchecker from Peter Norvig, which is quite easy  
to understand and written in pure Python.

I would recommend that anyone who works with natural  
language processing visit the following link for spellcheck: 
http://norvig.com/spell-correct.html

Your turn
Here are the answers to the open-ended questions:

•	 Try to connect any of the data base using pyodbc.
https://code.google.com/p/pyodbc/wiki/GettingStarted

•	 Can you build a regex tokenizer that will only select words that are either 
small, capitals, numbers or money symbols?
[\w+] selects all the words and numbers [a-z A-Z 0-9] and [\$] will match 
money symbol.

•	 What's the difference between Stemming and lemmatization?
Stemming is more of a rule-based approach to get the root of the word's 
grammatical forms, while lemmatization also considers context and the POS of 
the given word, then applies rules specific to grammatical variants. Stemmers 
are easier to implement and the processing time is faster than lemmatizer.

http://norvig.com/spell-correct.html
https://code.google.com/p/pyodbc/wiki/GettingStarted
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• Can you come up with a Porter stemmer (Rule-based) for your native
language?
Hint: http://tartarus.org/martin/PorterStemmer/python.txt 
http://Snowball.tartarus.org/algorithms/english/stemmer.html

• Can we perform other NLP operations after stop word removal?
No; never. All the typical NLP applications like POS tagging, chunking,
and so on will need context to generate the tags for the given text. Once we
remove the stop word, we lose the context.

• Why would it be harder to implement a stemmer for languages like Hindi or
Chinese?

Indian languages are morphologically rich and it's hard to token the
Chinese; there are challenges with the normalization of the symbols, so it's
even harder to implement steamer. We will talk about these challenges in
advanced chapters.

Summary
In this chapter we talked about all the data wrangling/munging in the context of 
text. We went through some of the most common data sources, and how to parse 
them with Python packages. We talked about tokenization in depth, from a very 
basic string method to a custom regular expression based tokenizer.

We talked about stemming and lemmatization, and the various types of stemmers 
that can be used, as well as the pros and cons of each of them. We also discussed 
the stop word removal process, why it's important, when to remove stop words, 
and when it's not needed. We also briefly touched upon removing rare words and 
why it's important in text cleansing—both stop word and rare word removal are 
essentially removing outliers from the frequency distribution. We also referred to 
spell correction. There is no limit to what you can do with text wrangling and text 
cleansing. Every text corpus has new challenges, and a new kind of noise that needs 
to be removed. You will get to learn over time what kind of pre-processing works 
best for your corpus, and what can be ignored.

In the next chapter will see some of the NLP related pre-processing, like POS 
tagging, chunking, and NER. I am leaving answers or hints for some of the open 
questions that we asked in the chapter.

http://Snowball.tartarus.org/algorithms/english/stemmer.html
http://tartarus.org/martin/PorterStemmer/python.txt
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Part of Speech Tagging
In previous chapters, we talked about all the preprocessing steps we need, in order 
to work with any text corpus. You should now be comfortable about parsing any 
kind of text and should be able to clean it. You should be able to perform all text 
preprocessing, such as Tokenization, Stemming, and Stop Word removal on any text. 
You can perform and customize all the preprocessing tools to fit your needs. So far, 
we have mainly discussed generic preprocessing to be done with text documents. 
Now let's move on to more intense NLP preprocessing steps.

In this chapter, we will discuss what part of speech tagging is, and what the 
significance of POS is in the context of NLP applications. We will also learn how to 
use NLTK to extract meaningful information using tagging and various taggers used 
for NLP intense applications. Lastly, we will learn how NLTK can be used to tag a 
named entity. We will discuss in detail the various NLP taggers and also give a small 
snippet to help you get going. We will also see the best practices, and where to use 
what kind of tagger. By the end of this chapter, readers will learn:

•	 What is Part of speech tagging and how important it is in context of NLP
•	 What are the different ways of doing POS tagging using NLTK
•	 How to build a custom POS tagger using NLTK

What is Part of speech tagging
In your childhood, you may have heard the term Part of Speech (POS). It can really 
take good amount of time to get the hang of what adjectives and adverbs actually 
are. What exactly is the difference? Think about building a system where we can 
encode all this knowledge. It may look very easy, but for many decades, coding this 
knowledge into a machine learning model was a very hard NLP problem. I think 
current state of the art POS tagging algorithms can predict the POS of the given word 
with a higher degree of precision (that is approximately 97 percent). But still lots of 
research going on in the area of POS tagging. 
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Languages like English have many tagged corpuses available in the news and other 
domains. This has resulted in many state of the art algorithms. Some of these taggers 
are generic enough to be used across different domains and varieties of text. But in 
specific use cases, the POS might not perform as expected. For these use cases, we 
might need to build a POS tagger from scratch. To understand the internals of a POS, 
we need to have a basic understanding of some of the machine learning techniques. 
We will talk about some of these in Chapter 6, Text Classification, but we have to 
discuss the basics in order to build a custom POS tagger to fit our needs.

First, we will learn some of the pertained POS taggers available, along with a set of 
tokens. You can get the POS of individual words as a tuple. We will then move on to 
the internal workings of some of these taggers, and we will also talk about building a 
custom tagger from scratch.

When we talk about POS, the most frequent POS notification used is Penn Treebank:

Tag Description

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Pre determiner

POS Possessive ending

PRP Personal pronoun

PRP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol (mathematical or scientific)

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense
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Tag Description

VBG Verb, gerund/present participle

VBN Verb, past

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb

# Pound sign

$ Dollar sign

. Sentence-final punctuation

, Comma

: Colon, semi-colon

( Left bracket character

) Right bracket character

" Straight double quote

' Left open single quote

" Left open double quote

' Right close single quote

" Right open double quote

Looks pretty much like what we learned in primary school English class, right? 
Now once we have an understanding about what these tags mean, we can run an 
experiment:

>>>import nltk

>>>from nltk import word_tokenize

>>>s = "I was watching TV"

>>>print nltk.pos_tag(word_tokenize(s))

[('I', 'PRP'), ('was', 'VBD'), ('watching', 'VBG'), ('TV', 'NN')]

www.allitebooks.com

http://www.allitebooks.org
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If you just want to use POS for a corpus like news or something similar, you just 
need to know the preceding three lines of code. In this code, we are tokenizing a 
piece of text and using NLTK's pos_tag method to get a tuple of (word, pos-tag). 
This is one of the pre-trained POS taggers that comes with NLTK.

It's internally using the maxent classifier (will discuss these classifiers 
in advanced chapters) trained model to predict to which class of tag a 
particular word belongs.
To get more details you can use the following link:
https://github.com/nltk/nltk/blob/develop/nltk/
tag/__init__.py

NLTK has used python's powerful data structures efficiently, so we have a lot more 
flexibility in terms of use of the results of NLTK outputs.

You must be wondering what could be a typical use of POS in a real application. 
In a typical preprocessing, we might want to look for all the nouns. Now this code 
snippet will give us all the nouns in the given sentence:

>>>tagged = nltk.pos_tag(word_tokenize(s))

>>>allnoun = [word for word,pos in tagged if pos in ['NN','NNP'] ]

Try to answer the following questions:

•	 Can we remove stop words before POS tagging?
•	 How can we get all the verbs in the sentence?

Stanford tagger
Another awesome feature of NLTK is that it also has many wrappers around other 
pre-trained taggers, such as Stanford tools. A common example of a POS tagger is 
shown here:

>>>from nltk.tag.stanford import POSTagger

>>>import nltk

>>>stan_tagger = POSTagger('models/english-bidirectional-distdim.
tagger','standford-postagger.jar')

>>>tokens = nltk.word_tokenize(s)

>>>stan_tagger.tag(tokens)

https://github.com/nltk/nltk/blob/develop/nltk/tag/__init__.py
https://github.com/nltk/nltk/blob/develop/nltk/tag/__init__.py
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To use the above code, you need to download the Stanford tagger from 
http://nlp.stanford.edu/software/stanford-postagger-
full-2014-08-27.zip. Extract both the jar and model into a folder, 
and give an absolute path in argument for the POSTagger.

Summarizing this, there are mainly two ways to achieve any tagging task in NLTK:

1.	 Using NLTK's or another lib's pre-trained tagger, and applying it on the 
test data. Both preceding taggers should be sufficient to deal with any POS 
tagging task that deals with plain English text, and the corpus is not very 
domain specific.

2.	 Building or Training a tagger to be used on test data. This is to deal with a 
very specific use case and to develop a customized tagger.

Let's dig deeper into what goes on inside a typical POS tagger.

Diving deep into a tagger
A typical tagger uses a lot of trained data, with sentences tagged for each word that 
will be the POS tag attached to it. Tagging is purely manual and looks like this:

Well/UH what/WP do/VBP you/PRP think/VB about/IN the/DT idea/NN of/IN ,/, 
uh/UH ,/, kids/NNS having/VBG to/TO do/VB public/JJ service/NN work/NN 
for/IN a/DT year/NN ?/.Do/VBP you/PRP think/VBP it/PRP 's/BES a/DT ,/,

The preceding sample is taken from the Penn Treebank switchboard corpus. People 
have done lot of manual work tagging large corpuses. There is a Linguistic Data 
Consortium (LDC) where people have dedicated so much time to tagging for 
different languages, different kinds of text and different kinds of tagging like POS, 
dependency parsing, and discourse (will talk about these later).

You can get all these resources and more information about them at 
https://www.ldc.upenn.edu/. (LDC provides a fraction of data 
for free but you can also purchase the entire tagged corpus. NLTK 
has approximately 10 percent of the PTB.)

If we also want to train our own POS tagger, we have to do the tagging exercise for 
our specific domain. This kind of tagging will require domain experts.

Typically, tagging problems like POS tagging are seen as sequence labeling problems 
or a classification problem where people have tried generative and discriminative 
models to predict the right tag for the given token.

http://nlp.stanford.edu/software/stanford-postagger-full-2014-08-27.zip
http://nlp.stanford.edu/software/stanford-postagger-full-2014-08-27.zip
https://www.ldc.upenn.edu/
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Instead of jumping directly in to more sophisticated examples, let's start with some 
simple approaches for tagging.

The following snippet gives us the frequency distribution of POS tags in the  
Brown corpus:

>>>from nltk.corpus import brown

>>>import nltk

>>>tags = [tag for (word, tag) in brown.tagged_words(categories='news')]

>>>print nltk.FreqDist(tags)

<FreqDist: 'NN': 13162, 'IN': 10616, 'AT': 8893, 'NP': 6866, ',': 5133, 
'NNS': 5066, '.': 4452, 'JJ': 4392 >

We can see NN comes as the most frequent tag, so let's start building a very naïve POS 
tagger, by assigning NN as a tag to all the test words. NLTK has a DefaultTagger 
function that can be used for this. DefaultTagger function is part of the Sequence 
tagger, which will be discussed next. There is a function called evaluate() that 
gives the accuracy of the correctly predicted POS of the words. This is used to 
benchmark the tagger against the brown corpus. In the default_tagger case, we 
are getting approximately 13 percent of the predictions correct. We will use the same 
benchmark for all the taggers moving forward.

>>>brown_tagged_sents = brown.tagged_sents(categories='news')

>>>default_tagger = nltk.DefaultTagger('NN')

>>>print default_tagger.evaluate(brown_tagged_sents)

0.130894842572

Sequential tagger
Not surprisingly, the above tagger performed poorly. The DefaultTagger is part 
of a base class SequentialBackoffTagger that serves tags based on the Sequence. 
Tagger tries to model the tags based on the context, and if it is not able to predict the 
tag correctly, it consults a BackoffTagger. Typically, the DefaultTagger parameter 
could be used as a BackoffTagger.

Let's move on to more sophisticated sequential taggers.
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N-gram tagger
N-gram tagger is a subclass of SequentialTagger, where the tagger takes previous n 
words in the context, to predict the POS tag for the given token. There are variations 
of these taggers where people have tried it with UnigramsTagger, BigramsTagger, 
and TrigramTagger:

>>>from nltk.tag import UnigramTagger

>>>from nltk.tag import DefaultTagger

>>>from nltk.tag import BigramTagger

>>>from nltk.tag import TrigramTagger

# we are dividing the data into a test and train to evaluate our taggers.

>>>train_data = brown_tagged_sents[:int(len(brown_tagged_sents) * 0.9)]

>>>test_data = brown_tagged_sents[int(len(brown_tagged_sents) * 0.9):]

>>>unigram_tagger = UnigramTagger(train_data,backoff=default_tagger)

>>>print unigram_tagger.evaluate(test_data)

0.826195866853

>>>bigram_tagger = BigramTagger(train_data, backoff=unigram_tagger)

>>>print bigram_tagger.evaluate(test_data)

0.835300351655

>>>trigram_tagger = TrigramTagger(train_data,backoff=bigram_tagger)

>>>print trigram_tagger.evaluate(test_data)

0.83327713281

Unigram just considers the conditional frequency of tags and predicts the most 
frequent tag for the every given token. The bigram_tagger parameter will consider 
the tags of the given word and the previous word, and tag as tuple to get the given 
tag for the test word. The TrigramTagger parameter looks for the previous two 
words with a similar process.

It's very evident that coverage of the TrigramTagger parameter will be less and the 
accuracy of that instance will be high. On the other hand, UnigramTagger will have 
better coverage. To deal with this tradeoff between precision/recall, we combine 
the three taggers in the preceding snippet. First it will look for the trigram of the 
given word sequence for predicting the tag; if not found it Backoff to BigramTagger 
parameter and  to a UnigramTagger parameter and in end to a NN tag.
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Regex tagger
There is one more class of sequential tagger that is a regular expression based 
taggers. Here, instead of looking for the exact word, we can define a regular 
expression, and at the same time we can define the corresponding tag for the given 
expressions. For example, in the following code we have provided some of the most 
common regex patterns to get the different parts of speech. We know some of the 
patterns related to each POS category, for example we know the articles in English 
and we know that anything that ends with ness will be an adjective. Instead, we 
will write a bunch of regex and a pure python code, and the NLTK RegexpTagger 
parameter will provide an elegant way of building a pattern based POS. This can also 
be used to induce domain related POS patterns.

>>>from nltk.tag.sequential import RegexpTagger

>>>regexp_tagger = RegexpTagger(

         [( r'^-?[0-9]+(.[0-9]+)?$', 'CD'),   # cardinal numbers

          ( r'(The|the|A|a|An|an)$', 'AT'),   # articles

          ( r'.*able$', 'JJ'),                # adjectives

          ( r'.*ness$', 'NN'),         # nouns formed from adj

          ( r'.*ly$', 'RB'),           # adverbs

          ( r'.*s$', 'NNS'),           # plural nouns

          ( r'.*ing$', 'VBG'),         # gerunds

          (r'.*ed$', 'VBD'),           # past tense verbs

          (r'.*', 'NN')                # nouns (default)

          ])

>>>print regexp_tagger.evaluate(test_data)

0.303627342358

We can see that by just using some of the obvious patterns for POS we are able to 
reach approximately 30 percent in terms of accuracy. If we combine regex taggers, 
such as the BackoffTagger, we might improve the performance. The other use case 
for regex tagger is in the preprocessing step, where instead of using a raw Python 
function string.sub(), we can use this tagger to tag date patterns, money patterns, 
location patterns and so on.

•	 Can you modify the code of a hybrid tagger in the N-gram tagger section to 
work with Regex tagger? Does that improve performance?

•	 Can you write a tagger that tags Date and Money expressions?
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Brill tagger
Brill tagger is a transformation based tagger, where the idea is to start with a guess 
for the given tag and, in next iteration, go back and fix the errors based on the next 
set of rules the tagger learned. It's also a supervised way of tagging, but unlike 
N-gram tagging where we count the N-gram patterns in training data, we look for 
transformation rules.

If the tagger starts with a Unigram / Bigram tagger with an acceptable accuracy, then 
brill tagger, instead looking for a trigram tuple, will be looking for rules based on 
tags, position and the word itself.

An example rule could be:

Replace NN with VB when the previous word is TO.

After we already have some tags based on UnigramTagger, we can refine if with just 
one simple rule. This is an interactive process. With a few iterations and some more 
optimized rules, the brill tagger can outperform some of the N-gram taggers. The 
only piece of advice is to look out for over-fitting of the tagger for the training set.

You can also look at the work here for more example rules.
http://stp.lingfil.uu.se/~bea/publ/megyesi-
BrillsPoSTagger.pdf

•	 Can you try to write more rules based on your observation?
•	 Try to combine brill tagger with UnigramTagger.

Machine learning based tagger
Until now we have just used some of the pre-trained taggers from NLTK or Stanford. 
While we have used them in the examples in previous section, the internals of the 
taggers are still a black box to us. For example, pos_tag internally uses a Maximum 
Entropy Classifier (MEC). While StanfordTagger also uses a modified version of 
Maximum Entropy. These are discriminatory models. While there are many Hidden 
Markov Model (HMM) and Conditional Random Field (CRF) based taggers, these 
are generative models.

Covering all of these topics is beyond the scope of the book. I would highly 
recommend the NLP class for a great understanding of these concepts. We will cover 
some of the classification techniques in Chapter 6, Text Classification, but some of these 
are very advanced topics in NLP, and will need more attention.

http://stp.lingfil.uu.se/~bea/publ/megyesi-BrillsPoSTagger.pdf
http://stp.lingfil.uu.se/~bea/publ/megyesi-BrillsPoSTagger.pdf


Part of Speech Tagging

[ 40 ]

If I have to explain in short, the way to categorize POS tagging problem is either as 
a classification problem where given a word and the features like previous word, 
context, morphological variation, and so on. We classify the given word into a POS 
category, while the others try to model it as a generative model using the similar 
features. It's for the reader's reference to go over some of these topics using links  
in the tips.

NLP CLASS: https://www.coursera.org/course/nlp
HMM: http://mlg.eng.cam.ac.uk/zoubin/papers/
ijprai.pdf

MEC: https://web.stanford.edu/class/cs124/lec/
Maximum_Entropy_Classifiers.pdf

http://nlp.stanford.edu/software/tagger.shtml

Named Entity Recognition (NER)
Aside from POS, one of the most common labeling problems is finding entities in the 
text. Typically NER constitutes name, location, and organizations. There are NER 
systems that tag more entities than just three of these. The problem can be seen as 
a sequence, labeling the Named entities using the context and other features. There 
is a lot more research going on in this area of NLP where people are trying to tag 
Biomedical entities, product entities in retail, and so on. Again, there are two ways  
of tagging the NER using NLTK. One is by using the pre-trained NER model that  
just scores the test data, the other is to build a Machine learning based model.  
NLTK provides the ne_chunk() method and a wrapper around Stanford NER  
tagger for Named Entity Recognition.

NER tagger
NLTK provides a method for Named Entity Extraction: ne_chunk. We have  
shown a small snippet to demonstrate how to use it for tagging any sentence.  
This method will require you to preprocess the text to tokenize for sentences,  
tokens, and POS tags in the same order to be able to tag for Named entities. NLTK 
used ne_chunking, where chunking is nothing but tagging multiple tokens to a call 
it a meaningful entity. 

https://www.coursera.org/course/nlp
http://mlg.eng.cam.ac.uk/zoubin/papers/ijprai.pdf
http://mlg.eng.cam.ac.uk/zoubin/papers/ijprai.pdf
https://web.stanford.edu/class/cs124/lec/Maximum_Entropy_Classifiers.pdf
https://web.stanford.edu/class/cs124/lec/Maximum_Entropy_Classifiers.pdf
http://nlp.stanford.edu/software/tagger.shtml
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NE chunking is loosely used in the same way as Named entity:

>>>import nltk

>>>from nltk import ne_chunk

>>>Sent = "Mark is studying at Stanford University in California"

>>>print(ne_chunk(nltk.pos_tag(word_tokenize(sent)), binary=False))

(S

  (PERSON Mark/NNP)

  is/VBZ

  studying/VBG

  at/IN

  (ORGANIZATION Stanford/NNP University/NNP)

  in/IN

  NY(GPE California/NNP)))

The ne_chunking method recognizes people (names), places (location), and 
organizations. If binary is set to True then it provides the output for the entire 
sentence tree and tags everything. Setting it to False will give us detailed person, 
location and organizations information, as with the preceding example using the 
Stanford NER Tagger.

Similar to the POS tagger, NLTK also has a wrapper around Stanford NER. This NER 
tagger has better accuracy. The code following snippet will let you use the tagger. 
You can see in the given example that we are able to tag all the entities with just 
three lines of code:

>>>from nltk.tag.stanford import NERTagger

>>>st = NERTagger('<PATH>/stanford-ner/classifiers/all.3class.distsim.
crf.ser.gz',...               '<PATH>/stanford-ner/stanford-ner.jar')

>>>st.tag('Rami Eid is studying at Stony Brook University in NY'.split()) 
[('Rami', 'PERSON'), ('Eid', 'PERSON'), ('is', 'O'), ('studying', 'O'), 
('at', 'O'), ('Stony', 'ORGANIZATION'), ('Brook', 'ORGANIZATION'), 
('University', 'ORGANIZATION'), ('in', 'O'), ('NY', 'LOCATION')]

If you observe closely, even with a very small test sentence, we can say Stanford 
Tagger outperformed the NLTK ne_chunk tagger.

Now, these kinds of NER taggers are a nice solution for a generic kind of entity 
tagging, but we have to train our own tagger, when it comes, to tag domain specific 
entities like biomedical and product names, so we have to build our own NER system. 
I would also recommend an NER Calais. It has ways of tagging not just typical NER, 
but also some more entities. The performance of this tagger is also very good:

https://code.google.com/p/python-calais/
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Your Turn
Here are the answers to the questions posed in the above sections:

•	 Can we remove stop words before POS tagging?
No; If we remove the stop words, we will lose the context, and some of the 
POS taggers (Pre-Trained model) use word context as features to give the 
POS of the given word.

•	 How can we get all the verbs in the sentence?
We can get all the verbs in the sentence by using pos_tag
>>>tagged = nltk.pos_tag(word_tokenize(s))

>>>allverbs = [word for word,pos in tagged if pos in 
['VB','VBD','VBG'] ]

•	 Can you modify the code of the hybrid tagger in the N-gram tagger section to 
work with Regex tagger? Does that improve performance?
Yes. We can modify the code of the hybrid tagger in the N-gram tagger 
section to work with the Regex tagger:
>>>print unigram_tagger.evaluate(test_data,backoff= regexp_tagger)

>>>bigram_tagger = BigramTagger(train_data, backoff=unigram_
tagger)

>>>print bigram_tagger.evaluate(test_data)

>>>trigram_tagger=TrigramTagger(train_data,backoff=bigram_tagger)

>>>print trigram_tagger.evaluate(test_data)

0.857122212053

0.866708415627

0.863914446746

The performance improves as we add some basic pattern-based rules, instead 
of predicting the most frequent tag.

•	 Can you write a tagger that tags Date and Money expressions?

Yes, we can write a tagger that tags Date and Money expressions. Following 
is the code:

>>>date_regex = RegexpTagger([(r'(\d{2})[/.-](\d{2})[/.-](\d{4})$'
,'DATE'),(r'\$','MONEY')])

>>>test_tokens = "I will be flying on sat 10-02-2014 with around 
10M $ ".split()

>>>print date_regex.tag(test_tokens)
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The last two questions haven't been answered.
There can be many rules according to the reader's observation, 
so there is no Right / Wrong answer here.

Can you try a similar word cloud to what we did in Chapter 1, Introduction to Natural 
Language Processing with only nouns and verbs now?

References:

https://github.com/japerk/nltk-trainer

http://en.wikipedia.org/wiki/Part-of-speech_tagging

http://en.wikipedia.org/wiki/Named-entity_recognition

http://www.inf.ed.ac.uk/teaching/courses/icl/nltk/tagging.pdf

http://www.nltk.org/api/nltk.tag.html

Summary
This chapter was intended to expose the reader to some of the most useful NLP  
pre-processing steps of tagging. We have talked about the Part of Speech problem in 
general, including the significance of POS in the context of NLP. We also discussed 
the different ways we can use a pre-trained POS tagger in NLTK, how simple it 
is to use, and how to create wonderful applications. We then talked about all the 
available POS tagging options, like N-gram tagging, Regex based tagging, etc. We 
have developed a mix of these taggers that can be built for domain specific corpuses. 
We briefly talked about how a typical pre-trained tagger is built. We discussed 
the possible approaches to address tagging problems. We also talked about NER 
taggers, and how it works with NLTK. I think if, by the end of this chapter, the user 
understands the importance of POS and NER in general in the context of NLP, as 
well as how to run the snippet of codes using NLTK, I will consider this chapter 
successful. But the journey does not end here. We know some of the shallow NLP 
preprocessing steps now, and in most of the practical application POS, the NER 
predominantly used. In more complex NLP applications such as the Q/A system, 
Summarization, and Speech we need deeper NLP techniques like Chunking, Parsing, 
Semantics. We will talk about these in the next chapter.

www.allitebooks.com

https://github.com/japerk/nltk-trainer
http://en.wikipedia.org/wiki/Part-of-speech_tagging
http://en.wikipedia.org/wiki/Named-entity_recognition
http://www.inf.ed.ac.uk/teaching/courses/icl/nltk/tagging.pdf
http://www.nltk.org/api/nltk.tag.html
http://www.allitebooks.org
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Parsing Structure in Text
This chapter involves a better understanding of deep structure in text and also how 
to deep parse text and use it in various NLP applications. Now, we are equipped 
with various NLP preprocessing steps. Let's move to some deeper aspect of the text. 
The structure of language is so complex that we can describe it by various layers of 
structural processing. In this chapter we will touch upon all these structures in text, 
differentiate between them, and provide you with enough details about the usage 
of one of these. We will talk about context-free grammar (CFG) and how it can be 
implemented with NLTK. We will also look at the various parsers and how we can 
use some of the existing parsing methods in NLTK. We will write a shallow parser 
in NLTK and will again talk about NER in the context of chunking. We will also 
provide details about some options that exist in NLTK to do deep structural analysis. 
We will also try to give you some real-world use cases of information extraction and 
how it can be achieved by using some of the topics that you will learn in this chapter. 
We want you to have an understanding of these topics by the end of this chapter.

In this chapter:

•	 We will also see what parsing is and what is the relevance of parsing in NLP. 
•	 We will then explore different parsers and see how we can use NLTK for 

parsing. 
•	 Finally, we will see how parsing can be used for information extraction.
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Shallow versus deep parsing
In deep or full parsing, typically, grammar concepts such as CFG, and probabilistic 
context-free grammar (PCFG), and a search strategy is used to give a complete 
syntactic structure to a sentence. Shallow parsing is the task of parsing a limited 
part of the syntactic information from the given text. While deep parsing is required 
for more complex NLP applications, such as dialogue systems and summarization, 
shallow parsing is more suited for information extraction and text mining varieties of 
applications. I will talk about these in the next few sections with more details about 
their pros and cons and how we can use them for our NLP application.

The two approaches in parsing
There are mainly two views/approaches used to deal with parsing, which are as 
follows:

The rule-based approach The probabilistic approach
This approach is based on rules/grammar In this approach, you learn rules/grammar 

by using probabilistic models
Manual grammatical rules are coded down 
in CFG, and so on, in this approach

This uses observed probabilities of linguistic 
features

This has a top-down approach This has a bottom-up approach
This approach includes CFG and Regex- 
based parser

This approach includes PCFG and the 
Stanford parser

Why we need parsing
I again want to take you guys back to school, where we learned grammar. Now tell 
me why you learnt grammar Do you really need to learn grammar? The answer 
is definitely yes! When we grow, we learn our native languages. Now, when we 
typically learn languages, we learn a small set of vocabulary. We learn to combine 
small chunks of phrases and then small sentences. By learning each example 
sentence, we learn the structure of the language. Your mom might have corrected 
you many times when you uttered an incorrect sentence. We apply a similar process 
when we try to understand the sentence, but the process is so common that we never 
actually pay attention to it or think about it in detail. Maybe the next time you correct 
someone's grammar, you will understand.
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When it comes to writing a parser, we try to replicate the same process here. If we 
come up with a set of rules that can be used as a template to write the sentences in a 
proper order. We also need the words that can fit into these categories. We already 
talked about this process. Remember POS tagging, where we knew the category of 
the given word?

Now, if you've understood this, you have learned the rules of the game and what 
moves are valid and can be taken for a specific step. We essentially follow a very 
natural phenomenon of the human brain and try to emulate it. One of the simplest 
grammar concepts to start with is CFG, where we just need a set of rules and a set of 
terminal tokens.

Let's write our first grammar with very limited vocabulary and very generic rules:

# toy CFG 

>>>from nltk import CFG

>>>toy_grammar = 

nltk.CFG.fromstring(

"""

  S -> NP VP              # S indicate the entire sentence   

  VP -> V NP              # VP is verb phrase the 

  V -> "eats" | "drinks"  # V is verb

  NP -> Det N   # NP is noun phrase (chunk that has noun in it)

  Det -> "a" | "an" | "the" # Det is determiner used in the sentences 

  N -> "president" |"Obama" |"apple"| "coke"  # N some example nouns 

    """)

>>>toy_grammar.productions()

Now, this grammar concept can generate a finite amount of sentences. Think of a 
situation where you just know how to combine a noun with a verb and the only 
verbs and nouns you knew were the ones we used in the preceding code. Some of 
the example sentences we can form from these are:

•	 President eats apple
•	 Obama drinks coke

Now, understand what's happening here. Our mind has created a grammar concept 
to parse based on the preceding rules and substitutes whatever vocabulary we have. 
If we are able to parse correctly, we understand the meaning.
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So, effectively, the grammar we learnt at school constituted the useful rules of 
English. We still use those and also keep enhancing them and these are the same 
rules we use to understand all English sentences. However, today's rules do not 
apply to William Shakespeare's body of work.

On the other hand, the same grammar can construct meaningless sentences such as:

•	 Apple eats coke
•	 President drinks Obama

When it comes to a syntactic parser, there is a chance that a syntactically formed 
sentence could be meaningless. To get to the semantics, we need a deeper 
understanding of semantics structure of the sentence. I encourage you to look for  
a semantic parser in case you are interested in these aspects of language.

Different types of parsers
A parser processes an input string by using a set of grammatical rules and builds 
one or more rules that construct a grammar concept. Grammar is a declarative 
specification of a well-formed sentence. A parser is a procedural interpretation of 
grammar. It searches through the space of a variety of trees and finds an optimal tree 
for the given sentence. We will go through some of the parsers available and briefly 
touch upon their workings in detail for awareness, as well as for practical purposes.

A recursive descent parser
One of the most straightforward forms of parsing is recursive descent parsing. This 
is a top-down process in which the parser attempts to verify that the syntax of the 
input stream is correct, as it is read from left to right. A basic operation necessary 
for this involves reading characters from the input stream and matching them with 
the terminals from the grammar that describes the syntax of the input. Our recursive 
descent parser will look ahead one character and advance the input stream reading 
pointer when it gets a proper match.

A shift-reduce parser
The shift-reduce parser is a simple kind of bottom-up parser. As is common with 
all bottom-up parsers, a shift-reduce parser tries to find a sequence of words and 
phrases that correspond to the right-hand side of a grammar production and replaces 
them with the left-hand side of the production, until the whole sentence is reduced.
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A chart parser
We will apply the algorithm design technique of dynamic programming to the 
parsing problem. Dynamic programming stores intermediate results and reuses 
them when appropriate, achieving significant efficiency gains. This technique can be 
applied to syntactic parsing. This allows us to store partial solutions to the parsing 
task and then allows us to look them up when necessary in order to efficiently arrive 
at a complete solution. This approach to parsing is known as chart parsing.

For a better understanding of the parsers, you can go through an 
example at
http://www.nltk.org/howto/parse.html.

A regex parser
A regex parser uses a regular expression defined in the form of grammar on top of a 
POS-tagged string. The parser will use these regular expressions to parse the given 
sentences and generate a parse tree out of this. A working example of the regex 
parser is given here:

# Regex parser

>>>chunk_rules=ChunkRule("<.*>+","chunk everything")

>>>import nltk

>>>from nltk.chunk.regexp import *

>>>reg_parser = RegexpParser('''

        NP: {<DT>? <JJ>* <NN>*}     # NP

         P: {<IN>}                  # Preposition

         V: {<V.*>}                 # Verb

        PP: {<P> <NP>}              # PP -> P NP

        VP: {<V> <NP|PP>*}          # VP -> V (NP|PP)*

  ''')

>>>test_sent="Mr. Obama played a big role in the Health insurance bill" 

>>>test_sent_pos=nltk.pos_tag(nltk.word_tokenize(test_sent))

>>>paresed_out=reg_parser.parse(test_sent_pos)

>>> print paresed_out

Tree('S', [('Mr.', 'NNP'), ('Obama', 'NNP'), Tree('VP', [Tree('V', 
[('played', 'VBD')]), Tree('NP', [('a', 'DT'), ('big', 'JJ'), ('role', 
'NN')])]), Tree('P', [('in', 'IN')]), ('Health', 'NNP'), Tree('NP', 
[('insurance', 'NN'), ('bill', 'NN')])])

http://www.nltk.org/howto/parse.html
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The following is a graphical representation of the tree for the preceding code:

Root

Mr. Obama played DT

VBDNNP

NP

NP

NP

DT

NN

NNNN

IN

PP

in

insurance

rolebig

JJ

VP

s

a

NNP

NNP

Healththe bill

In the current example, we define the kind of patterns (a regular expression of 
the POS) we think will make a phrase, for example, anything that {<DT>? <JJ>* 
<NN>*} has a starting determiner followed by an adjective and then a noun is mostly 
a noun phrase. Now, this is more of a linguistic rule that we have defined to get the  
rule-based parse tree.

Dependency parsing
Dependency parsing (DP) is a modern parsing mechanism. The main concept of DP 
is that each linguistic unit (words) is connected with each other by a directed link. 
These links are called dependencies in linguistics. There is a lot of work going on in 
the current parsing community. While phrase structure parsing is still widely used 
for free word order languages (Czech and Turkish), dependency parsing has turned 
out to be more efficient.

A very clear distinction can be made by looking at the parse tree generated by phrase 
structure grammar and dependency grammar for a given example, as the sentence 
"The big dog chased the cat". The parse tree for the preceding sentence is:
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Phrase Structure tree Dependency Tree

The big dog chased the cat

S

NP VP

Art Adj N V NP

Art N

the big dog chased the cat

If we look at both parse trees, the phrase structures try to capture the relationship 
between words and phrases and then eventually between phrases. While a 
dependency tree just looks for a dependency between words, for example, big is 
totally dependent on dog.

NLTK provides a couple of ways to do dependency parsing. One of them is to use 
a probabilistic, projective dependency parser, but it has the restriction of training 
with a limited set of training data. One of the state of the art dependency parsers is 
a Stanford parser. Fortunately, NLTK has a wrapper around it and in the following 
example, I will talk about how to use a Stanford parser with NLTK:

# Stanford Parser [Very useful]

>>>from nltk.parse.stanford import StanfordParser

>>>english_parser = StanfordParser('stanford-parser.jar', 'stanford-
parser-3.4-models.jar')

>>>english_parser.raw_parse_sents(("this is the english parser test")

Parse

(ROOT

  (S

    (NP (DT this))

    (VP (VBZ is)

      (NP (DT the) (JJ english) (NN parser) (NN test)))))

Universal dependencies

nsubj(test-6, this-1)

cop(test-6, is-2)

det(test-6, the-3)

amod(test-6, english-4)

compound(test-6, parser-5)

root(ROOT-0, test-6)
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Universal dependencies, enhanced

nsubj(test-6, this-1)

cop(test-6, is-2)

det(test-6, the-3)

amod(test-6, english-4)

compound(test-6, parser-5)

root(ROOT-0, test-6)

The output looks quite complex but, in reality, it's not. The output is a list of three 
major outcomes, where the first is just the POS tags and the parsed tree of the 
given sentences. The same is plotted in a more elegant way in the following figure. 
The second is the dependency and positions of the given words. The third is the 
enhanced version of dependency:

Root

is

NP

s

VBZ

VP

this

DT NP

DT NNNN

parser

JJ

englishthe test

For a better understanding of how to use a Stanford parser, refer to
http://nlpviz.bpodgursky.com/home and
http://nlp.stanford.edu:8080/parser/index.jsp.

Chunking
Chunking is shallow parsing where instead of reaching out to the deep structure 
of the sentence, we try to club some chunks of the sentences that constitute some 
meaning.

http://nlpviz.bpodgursky.com/home
http://nlp.stanford.edu:8080/parser/index.jsp
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A chunk can be defined as the minimal unit that can be processed. So, for example, the 
sentence "the President speaks about the health care reforms" can be broken into two 
chunks, one is "the President", which is noun dominated, and hence is called a noun 
phrase (NP). The remaining part of the sentence is dominated by a verb, hence it is 
called a verb phrase (VP). If you see, there is one more sub-chunk in the part "speaks 
about the health care reforms". Here, one more NP exists that can be broken down 
again in "speaks about" and "health care reforms", as shown in the following figure:

The President speaks about The Health Care Reforms

VP

NPNP

This is how we broke the sentence into parts and that's what we call chunking. 
Formally, chunking can also be described as a processing interface to identify  
non-overlapping groups in unrestricted text.

Now, we understand the difference between shallow and deep parsing. When we 
reach the syntactic structure of the sentences with the help of CFG and understand 
the syntactic structure of the sentence. Some cases we need to go for semantic  
parsing to understand the meaning of the sentence. On the other hand, there are 
cases where, we don't need analysis this deep. Let's say, from a large portion 
of unstructured text, we just want to extract the key phrases, named entities, or 
specific patterns of the entities. For this, we will go for shallow parsing instead of 
deep parsing because deep parsing involves processing the sentence against all the 
grammar rules and also the generation of a variety of syntactic tree till the parser 
generates the best tree by using the process of backtracking and reiterating. This 
entire process is time consuming and cumbersome and, even after all the processing, 
you might not get the right parse tree. Shallow parsing guarantees the shallow parse 
structure in terms of chunks which is relatively faster.

So, let's write some code snippets to do some basic chunking:

# Chunking 

>>>from nltk.chunk.regexp import *

>>>test_sent="The prime minister announced he had asked the chief 
government whip, Philip Ruddock, to call a special party room meeting for 
9am on Monday to consider the spill motion."

>>>test_sent_pos=nltk.pos_tag(nltk.word_tokenize(test_sent))

>>>rule_vp = ChunkRule(r'(<VB.*>)?(<VB.*>)+(<PRP>)?', 'Chunk VPs')

www.allitebooks.com

http://www.allitebooks.org
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>>>parser_vp = RegexpChunkParser([rule_vp],chunk_label='VP')

>>>print parser_vp.parse(test_sent_pos)    

>>>rule_np = ChunkRule(r'(<DT>?<RB>?)?<JJ|CD>*(<JJ|CD><,>)*(<NN.*>)+', 
'Chunk NPs')

>>>parser_np = RegexpChunkParser([rule_np],chunk_label="NP")

>>>print parser_np.parse(test_sent_pos)

(S

  The/DT

  prime/JJ

  minister/NN

  (VP announced/VBD he/PRP)

  (VP had/VBD asked/VBN)

  the/DT

  chief/NN

  government/NN 
  whip/NN

….

….

….

(VP consider/VB)

  the/DT

  spill/NN

  motion/NN

  ./.)

(S

  (NP The/DT prime/JJ minister/NN)                      # 1st noun phrase

  announced/VBD

  he/PRP

  had/VBD

  asked/VBN

  (NP the/DT chief/NN government/NN whip/NN)               # 2nd noun 
phrase

  ,/,

  (NP Philip/NNP Ruddock/NNP)

  ,/,
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  to/TO

  call/VB

  (NP a/DT special/JJ party/NN room/NN meeting/NN)       # 3rd noun 
phrase 

  for/IN

  9am/CD

  on/IN

  (NP Monday/NNP)                         # 4th noun phrase

  to/TO

  consider/VB

  (NP the/DT spill/NN motion/NN)                     # 5th noun phrase

  ./.)

The preceding code is good enough to do some basic chunking of verb and noun 
phrases. A conventional pipeline in chunking is to tokenize the POS tag and the 
input string before they are ed to any chunker. Here, we use a regular chunker, 
as rule NP / VP defines different POS patterns that can be called a verb/noun 
phrase. For example, the NP rule defines anything that starts with the determiner 
and then there is a combination of an adverb, adjective, or cardinals that can be 
chunked in to a noun phrase. Regular expression-based chunkers rely on chunk rules 
defined manually to chunk the string. So, if we are able to write a universal rule 
that can incorporate most of the noun phrase patterns, we can use regex chunkers. 
Unfortunately, it's hard to come up with those kind of generic rules; the other 
approach is to use a machine learning way of doing chunking. We briefly touched 
upon ne_chunk() and the Stanford NER tagger that both use a pre-trained model to 
tag noun phrases.

Information extraction
We learnt about taggers and parsers that we can use to build a basic information 
extraction engine. Let's jump directly to a very basic IE engine and how a typical IE 
engine can be developed using NLTK.

Any sort of meaningful information can be drawn only if the given input stream 
goes to each of the following NLP steps. We already have enough understanding of 
sentence tokenization, word tokenization, and POS tagging. Let's discuss NER and 
relation extraction as well.
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A typical information extraction pipeline looks very similar to that shown in the 
following figure:
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Some of the other preprocessing steps, such as stop word removal and 
stemming, are generally ignored and do not add any value to an IE 
engine.

Named-entity recognition (NER)
We already briefly discussed NER generally in the last chapter. Essentially, NER is a 
way of extracting some of the most common entities, such as names, organizations, 
and locations. However, some of the modified NER can be used to extract entities 
such as product names, biomedical entities, author names, brand names, and so on.

Let's start with a very generic example where we are given a text file of the content 
and we need to extract some of the most insightful named entities from it:

# NP chunking (NER)

>>>f=open(# absolute path for the file of text for which we want NER)

>>>text=f.read()

>>>sentences = nltk.sent_tokenize(text)

>>>tokenized_sentences = [nltk.word_tokenize(sentence) for sentence in 
sentences]

>>>tagged_sentences = [nltk.pos_tag(sentence) for sentence in tokenized_
sentences]

>>>for sent in tagged_sentences:

>>>print nltk.ne_chunk(sent)

In the preceding code, we just followed the same pipeline provided in the preceding 
figure. We took all the preprocessing steps, such as sentence tokenization, 
tokenization, POS tagging, and NLTK. NER (pre-trained models) can be used to 
extract all NERs.
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Relation extraction
Relation extraction is another commonly used information extraction operation. 
Relation extraction as it sound is the process of extracting the different relationships 
between different entities. There are variety of the relationship that exist between the 
entities. We have seen relationship like inheritance/synonymous/analogous. The 
definition of the relation can be dependent on the Information need. For example 
in the case where we want to look from unstructured text data who is the writer of 
which book then authorship could be a relation between the author name and book 
name. With NLTK the idea is to use the same IE pipeline that we used till NER and 
extend it with a relation pattern based on the NER tags.

So, in the following code, we used an inbuilt corpus of ieer, where the sentences 
are tagged till NER and the only thing we need to specify is the relation pattern we 
want and the kind of NER we want the relation to define. In the following code, a 
relationship between an organization and a location has been defined and we want 
to extract all the combinations of these patterns. This can be applied in various ways, 
for example, in a large corpus of unstructured text, we will be able to identify some 
of the organizations of our interest with their corresponding location:

>>>import re

>>>IN = re.compile(r'.*\bin\b(?!\b.+ing)')

>>>for doc in nltk.corpus.ieer.parsed_docs('NYT_19980315'):

>>> for rel in nltk.sem.extract_rels('ORG', 'LOC', doc, corpus='ieer', 
pattern = IN):

>>>print(nltk.sem.rtuple(rel))

[ORG: u'WHYY'] u'in' [LOC: u'Philadelphia']

[ORG: u'McGlashan &AMP; Sarrail'] u'firm in' [LOC: u'San Mateo']

[ORG: u'Freedom Forum'] u'in' [LOC: u'Arlington']

[ORG: u'Brookings Institution'] u', the research group in' [LOC: 
u'Washington']

[ORG: u'Idealab'] u', a self-described business incubator based in' [LOC: 
u'Los Angeles']

..
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Summary
We moved beyond the basic preprocessing steps in this chapter. We looked deeper  
at NLP techniques, such as parsing and information extraction. We discussed 
parsing in detail, which parsers are available, and how to use NLTK to do any NLP 
parsing. You understood the concept of CFG and PCFG and how to learn from a tree 
bank and build a parser. We talked about shallow and deep parsing and what the 
difference is between them.

We also talked about some of the information extraction essentials, such as entity 
extraction and relation extraction. We talked about a typical information extraction 
engine pipeline. We saw a very small and simple IE engine that can be built in 
less than 100 lines of code. Think about this kind of system running on an entire 
Wikipedia dump or an entire web content related to an organization. Cool, isn't it?

We will use some of the topics we've learnt in this chapter in further chapters to 
build some useful NLP applications.
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NLP Applications
This chapter discusses NLP applications. Here, we will put all the learning from the 
previous chapters into action and will see what kind of application can be developed 
using the concepts we have learned. This will be a complete hands-on chapter. In the 
last few chapters we have learned most of the preprocessing steps that are required 
for any NLP application. We know how to use tokenizer, POS tag, and NER and how 
to perform parsing. This chapter will give you an idea how we can developed some 
of the complex NLP application using the concepts we have learned.

There are so many applications of NLP in the real world. Some of the most exciting 
and common examples you can observe are Google Search, Siri, machine translation, 
Google News, Jeopardy, and spell check. Some of these took many years for 
researchers to reach this level and bring these applications to their current state.  
NLP is complicated too; we have seen in the previous chapters that most of the 
processing steps, such as POS and NER, are still research problems. But with the  
use of NLTK, we have solved many of these problems with reasonable accuracy.  
We will not cover the more sophisticated applications such as machine translation 
or speech recognition in this book. But at this point in time, you should have 
enough background knowledge to understand some of the basic blocks of these 
applications. As a NLP enthusiast we should have a basic understanding of these 
NLP applications. I urge you to try and look for some of these NLP applications on 
the web and try to understand them.

By the end of this chapter :

•	 We will introduce reader to few common NLP applications.
•	 We will develop a NLP application (News summarizer) using what  

we have learnt so far.
•	 The importance of different NLP applications and essential details  

about each of them. 
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Building your first NLP application
Let's start with one of the very complex NLP applications, which is summarization. 
The concept of summarization is quite simple. We are given an article/passage/
story and you will have to generate a summary of the content automatically. 
Summarization actually requires deep knowledge of NLP because we need to 
understand not just the structure of the sentence but also the structure of the entire 
text. We also need to know about genre of the text and the theme of the content.

Since it all looks very complex to us, let's try a very intuitive approach. We will 
assume that summarization is nothing but ranking of the sentences based on 
their importance and significance to you. We will create a few rules based on the 
understanding and the preprocessing tools we have learned so far and will try to 
come up with an acceptable summary of the news article.

I have scraped an article from the New York Times in a text file nyt.txt, in the 
following example. The idea here is to summarize this news article for us. Let's  
build a version of Google News for our personal use.

To start off, we need to keep in mind that, typically, a sentence that has more entities 
and nouns has greater importance than other sentences. We will try to normalize the 
same logic while calculating an importance score, using the following code. To get 
the top-n sentence, we can choose a threshold for the importance score.

Let's read the content of the news article. You can choose any news article with only 
contents of the news dumped into a text file. The content will look like this:

>>>import sys

>>>f=open('nyt.txt','r')

>>>news_content=f.read()

""" President Obama on Monday will ban the federal provision of some 
types of military-style equipment to local police departments and sharply 
restrict the availability of others, administration officials said.

The ban is part of Mr. Obama's push to ease tensions between law 
enforcement and minority communities in reaction to the crises in 
Baltimore; Ferguson, Mo.; and other cities.

- - -

blic." It contains dozens of recommendations for agencies throughout the 
country."""
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Once we parse the contents of the news we will need to split the entire news article 
into a list of sentences. We will go back to our old sentence tokenizer to break the 
entire news snippet into sentences. Let's also provide some form of sentence number 
so that we can identify and rank a sentence. Once we have the sentence, we will pass 
it through a word tokenizer and eventually through the NER tagger and POS tagger.

>>>import nltk

>>>results=[]

>>>for sent_no,sentence in enumerate(nltk.sent_tokenize(news_content)):

>>>    no_of_tokens=len(nltk.word_tokenize(sentence))

>>>    #print no_of_toekns

>>>    # Let's do POS tagging

>>>    tagged=nltk.pos_tag(nltk.word_tokenize(sentence))

>>>    # Count the no of Nouns in the sentence

>>>    no_of_nouns=len([word for word,pos in tagged if pos in 
["NN","NNP"] ])

>>>    #Use NER to tag the named entities.

>>>    ners=nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(sentence)), 
binary=False)

>>>    no_of_ners= len([chunk for chunk in ners if hasattr(chunk, 
'node')])

>>>    score=(no_of_ners+no_of_nouns)/float(no_of_toekns)

>>>    

>>>    results.append((sent_no,no_of_tokens,no_of_ners,\

no_of_nouns,score,sentence))

In the preceding code, we are iterating over a list of sentences calculating a score 
based on a formula that is nothing but the fraction of tokens being entities as 
compared to a normal token. We are creating a tuple of all these as the results.

Now, the result is a tuple with all the scores, such as the number of nouns, entities, 
and so on. We can sort it based on the score in descending order, as shown in the 
following example:

>>>for sent in sorted(results,key=lambda x: x[4],reverse=True):

>>>    print sent[5]

Now, the result of this will be sorted by the rank of the sentence. You will be amazed 
by the kind of results we get for the news article.

Once we have a list of no_of_nouns and no_of_ners scores, we can actually create 
some more complex rules around this. For example, a typical news article will start 
with very important details about the topic, and the last sentence will be a conclusion 
to the story.
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Can we modify the same snippet to incorporate this logic?

The other theory of this kind of summarization is that the important sentences 
generally contain important words and that most of the the discriminatory words 
across the corpus will be important. The sentences that has very discriminatory 
words are important. A very simple measure of that is to calculate the TF-IDF (term 
frequency–inverse document frequency) score of each and every word and then 
look for an average score normalized by the words that are important; this can then 
be used as the criteria to choose sentences for our summary.

For explaining the concepts instead of the entire article, just take the first three 
sentences of the article. Let's see how you can implement something this complex 
using very few lines of code:

This code require installing scikit. If you have installed anaconda or 
canopy you should be fine otherwise install scikit using this link. 
http://scikit-learn.org/stable/install.html

>>>import nltk

>>>from sklearn.feature_extraction.text import TfidfVectorizer

>>>results=[]

>>>news_content="Mr. Obama planned to promote the effort on Monday during 
a visit to Camden, N.J. The ban is part of Mr. Obama's push to ease 
tensions between law enforcement and minority \communities in reaction to 
the crises in Baltimore; Ferguson, Mo. We are, without a doubt, sitting 
at a defining moment in American policing, Ronald L. Davis, the director 
of the Office of Community Oriented Policing Services at the Department 
of Justice, told reporters in a conference call organized by the White 
House"

>>>sentences=nltk.sent_tokenize(news_content)

>>>vectorizer = TfidfVectorizer(norm='l2',min_df=0, use_idf=True, smooth_
idf=False, sublinear_tf=True)

>>>sklearn_binary=vectorizer.fit_transform(sentences)

>>>print countvectorizer.get_feature_names()

>>>print sklearn_binary.toarray()

>>>for i in sklearn_binary.toarray():

>>>	 results.append(i.sum()/float(len(i.nonzero()[0]))

http://scikit-learn.org/stable/install.html
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In the preceding code, I am using some unknown methods, such as 
TfidfVectorizer, which is a scoring method that will calculate a vector of TF-IDF 
scores for each sentence in a given list of sentences. Don't worry, we will talk about 
this in more detail. For this chapter, consider it as a black-box function that, for a 
given list of sentences/documents, will give you the score corresponding to each 
sentence and will also provide the ability to build a term-doc matrix that will look 
just like our output.

We got a dictionary of all the words present across all the sentences and then we 
have a list of lists where each element assigns each word its individual TF-IDF score. 
If you got that right, then you can see some of the stop words will get a near-zero 
score while some discriminatory words like ban and Obama will get a very high score. 
Now once we have this in the code, I will look for the average TF-IDF score by using 
only non-zero TF-IDF words. This will give us a similar kind of score as we got in 
our first approach.

You will be amazed by the kind of results a simple algorithm can give. I think now 
you are all set to write your own news summarizer that summarizes any given news 
article with the two preceding algorithms and the summary will look quite decent. 
While this kind of approach will give you a decent summarization, it's actually very 
poor when you compare it with the current state of summarization research. I would 
recommend looking for some literature relating to summarization. I would also like 
you to try and combine both the approaches for summarization.

Other NLP applications
Some of the other NLP applications are text classification, machine translation, 
speech recognition, information retrieval, information extraction, topic segmentation, 
and discourse analysis. Some of these problems are actually very difficult NLP 
tasks and a lot of research is still going on in these areas. We will discuss some of 
these in depth in the next chapter, but as NLP students, we should have a basic 
understanding of these applications.

Machine translation
The easiest way to understand machine translation is to know how we translate 
from one language to other. Our mind parses the sentence structure and tries to 
understand the sentence. Once we understand the sentence, we will try to substitute 
the words from the original language with those from the target language. While 
substituting, we use the grammar rules of the target sentence and finally achieve the 
correct translation.
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Loosely, the process can be translated to something like the pyramid in the preceding 
figure. If we start from the source language text, we have to tokenize the sentences 
that we will parse the tree (for syntactic structure in easy words) to make sure the 
sentences are correctly formulated. Semantic structure holds the meaning of the 
sentences, and at the next level, we reach the state of Interlingua, which is an abstract 
state that is independent from any language. There are multiple ways in which 
people have developed methods of translation. The more you go on towards the root 
of the pyramid, the more intense is the NLP processing required. So, based on these 
levels of transfer, there are a variety of methods that are available. I have listed two 
of them here:

•	 Direct translation: This will be more of a dictionary-based machine 
translation while you have huge corpora of source and target language 
words. This kind of transfer is possible for applications where we have a 
large corpus of languages available. It's popular because of its simplicity.

•	 Syntactic transfer: Here you will try to build a parser of the source language. 
There are varieties of ways in which people have approached the problem 
of parsing. There are deep parsers that actually take care of some parts of 
semantics too. Once you have a parser, target word substitution happens and 
the target parser can generate the final sentence in the target language.
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Statistical machine translation
Statistical machine translation (SMT) is one of the latest approach of machine 
translation, where people have come up with a variety of ways to apply statistical 
methods to almost all the aspects of machine translation. The idea behind this kind 
of algorithm is that we have a huge volume of corpora, parallel text, and language 
models that can help us predict the language translation in the target language. 
Google Translate is a great example of SMT, where it learns from the corpora of 
different language pairs and builds an SMT around it.

Information retrieval
Information retrieval (IR) is also one of the most popular and widely used 
applications. The best exmple of IR is Google Search, where—given an input 
query from the user—the information retrieval algorithm will try to retrieve the 
information which is relevant to the user's query.

In simple words, IR is the process of obtaining the most relevant information that is 
needed by the user. There are a variety of ways in which the information needs can 
be addressed to the system, but the system eventually retrieves the most relevant 
infromation.

The way a typical IR system works is that it generates an indexing mechanism, also 
known as inverted index. This is very similar to the indexing schemes used in books, 
where you will have an index of the words present throughout the book on the last 
pages of the book. Similarly, an IR system will create an inverted index poslist. A 
typical posting list will look like this:

< Term , DocFreq, [DocId1,DocId2] >

{"the",2 --->[1,2] }

{"US",1 --->[2] }

{"president",2 --->[1,2] }

So if any word occurs in both document 1 and document 2, the posting list will be a 
list of documents pointing to terms. Once you have this kind of data structure, there 
are different retrieval models that can been introduced. There are different retrieval 
models that work on different types of data. A few are listed in the following 
sections.
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Boolean retrieval
In the Boolean model, we just need to run a Boolean operation on the poslist. For 
example, if we are looking for a search query like "US president", the system should 
look for an intersection of the postlist of "US" and "president".

{US}{president}=> [2]

Here, the second document turns out to be the relevant document.

Vector space model
The concept of vector space model (VSM) derives from geometry. The way to 
visualize the documents in the high dimension space of vocabulary is to represent 
it as a vector. So each and every document is represented as a vector in that space. 
We can represent the vector in various ways, but one of the most useful and efficient 
ways is using TF-IDF.

Given a term and a corpus, we can calculate the term frequency (TF) and inverse 
document frequency (IDF) using the following formula:
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The TF is nothing but the frequency in the document. While the IDF is the inverse  
of document frequency, which is the count of documents in the corpus where the 
term occurs:
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There are various normalization variants of these, but we can incorporate both of 
these to create a more robust scoring mechanism to get the scoring of each term in the 
document. To get to a TF-IDF score, we need to multiply these two scores as follows:
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In TF-IDF, we are scoring a term for how much it is present in the current document 
and how much it is spread across the corpus. This gives us an idea of the terms 
that are not common across corpora and where ever they are present have a high 
frequency. It becomes discriminatory to retrieve these documents. We have also used 
TF-IDF in the previous section, where we describe our summarizer.The same scoring 
can be used to represent the document as a vector. Once we have all the documents 
represented in a vectorized form, the vector space model can be formulated.
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In VSM, the search query of the user is also considered as a document and 
represented as a vector. Intuitively, a dot product between these two vectors can be 
used to get the cosine similarity between the document and the user query.

D1

President

D2

US

The

Querv=Obama

In the preceding diagram, we see that these same documents can be represented 
using each term as an axis and the query Obama will have as much relevance to D1 as 
compared to D2. The scoring of the query for relevant documents can be formulated 
as follows:
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The probabilistic model
The probabilistic model tries to estimate the probability of the user's need for the 
document. This model assumes that the probability of the relevance depends on the 
user query and document representation.The main idea is that a document that is 
in the relevant set will not be present in the non-relevant set. We denote dj as the 
document and q as user query; R represents the relevant set of documents, while P 
represents the non-relevant set. The scoring can be done like this:

( ) ( )
( )
|

sim ,
|

j
j

j

P R d
d q

P R d
=

r

r

For more topics on IR, I would recommend that you read from the 
following link:
http://nlp.stanford.edu/IR-book/html/htmledition/
irbook.html

http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html 
http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html 
http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html 
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Speech recognition
Speech recognition is a very old NLP problem. People have been trying to address 
this since the era of World War I, and it still is one of the hottest topics in the area of 
computing. The idea here is really intuitive. Given the speech uttered by a human 
can we convert it to text? The problem with speech is that we produce a sequence 
of sounds, called phonemes, that are hard to process, so speech segmentation itself 
is a big problem. Once the speech is processable, the next step is to go through 
some of the constraints (models) that are built using training data available. This 
involves heavy machine learning. If you see the figure representing the modeling as 
one box of applying constraints, it's actually one of the most complex components 
of the entire system. While acoustic modeling involves building modes based on 
phonemes, lexical models will try to address the modeling on smaller segments of 
sentences, associating a meaning to each segment. Separately language models are 
built on unigrams and bigrams of words.

Once we build these models, an utterence of the sentences is passed through the 
process. Once processed for initial preprocessing, the sentence is passed through 
these acoustic, lexical, and language models for generating the token as output.

Applying Constraints

Acoustic
Models

Lexical
Models

Language
Models

Representation Search

Recognized
Words

Speech
Signal

Training Data

Text classification
Text classification is a very interesting and common application of NLP. In your 
daily work, you interact with many text classifiers. We use a spam filter, a priority 
inbox, news aggregators, and so on. All of these are in fact applications built using 
text classification.
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Text classification is a well-defined and somewhat solved problem, and it has been 
applied across many domains. Typically, any text classification is the process of 
classifying text documents using words and the combination of words. While it's 
a typical machine learning problem, many of the preprocessing steps used in text 
classification are from NLP.

An abstract diagram of text classification is shown here:
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Here we have a bunch of documents for a set of classes. For simplicity, we will use 
just binary 1/0 as the class. Now let's assume it's a spam detection problem where 1 
represents spam and 0 represents normal text which is not to be considered as spam.

The process involves some of the preprocessing steps we learned in previous 
chapters. While some of these are essential, it depends on the kind of text 
classification problem we are trying to solve. So in few cases, it's more a case of 
feature engineering while we drop some of the preprocessing steps. The final 
goal of feature engineering is to generate a Term doc matrix (TDM), which holds 
the vocabulary of the entire corpus: columns and rows are the documents, while 
the matrix represents a scoring mechanism to show the Bag of word (BOW) 
representation. The weighting scheme can be varied to TF, TF-IDF, Bernoulli, and 
other variations of term frequency.

There are also ways to induce features such as the POS of a given feature, 
contextual POS, and others, to make our feature space more NLP intense. Once the 
TDM is generated, the text classification problem becomes a typical supervised/
unsupervised classification problem, where given a set of samples, we need to 
predict what sample belongs to what class. The next chapter is dedicated entirely 
to this topic. This is definitely a splendid application of NLP/ML and is used quite 
often for commercial purposes.

Some of the most common use cases in day-to-day scenarios are sentiment analysis, 
spam classification, e-mail categorization, news categorization, patent classification, 
and so on. We will talk about text classification in more detail in the next chapter.
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Information extraction
Information extraction (IE) is a process of extracting meaningful information 
from unstructured text. IE is yet another widely popular and highly important 
application. In general, an information extraction engine harnesses huge numbers 
of unstructured documents and generates some sort of structured/semi-structured 
knowledge base (KB) that can be deployed to build an application around it. A 
simple example is that of generating a very good ontology using a huge set of 
unstructured text documents. A similar project in this line is DBpedia, where all the 
Wikipedia articles are used to generate the ontology of artifacts that are interrelated 
or have some other relationship.

There are mainly two ways of extracting information:

•	 Rule-based extraction: This method is where one uses a template filling 
mechanism. The idea is to look for some kind predefined use cases for 
expected outcomes and try to mine the unstructured text for that specific 
template. For example, building a knowledge base of football will involve 
getting information on all the players and their profiles, the statistics, some 
personal information, and so on. All that can be well defined and extracted 
using either pattern-based rules or POS tags, NERs and relation extraction.

•	 Machine learning based: The other approach involves deeper NLP-based 
methods such as building a parser specific to the need of our knowledge 
base. Some of the KBs will require mining the entities that can't be extracted 
using a pre-trained NER, so we have to build a custom NER. We might want 
to develop a relation extraction algorithm specific to the KB we are trying to 
build. This is a more NLP-intensive approach, where we are developing a 
NLP-based parser or tagger to use for heavy machine learning.

Question answering systems
Question answering (QA) systems are intelligent systems that can address any 
question based on their knowledge base. One of the major examples of this is IBM 
Watson, which took part in the TV show Jeopardy and won over human opponents. 
A QA system can be broken down to building components from speech recognition 
for querying the knowledge base while the knowledge base is generated using 
information retrieval and extraction.

Once you have a question for the system, one big problem is to classify/categorize 
the question in different ways. The other aspect is to search the knowledge base 
effectively and retrieve the most precise document. Even after that, we have to 
generate the answer in a natural way using some of the other applications, such as 
summarization and parsing.
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Dialog systems
Dialog systems are considered the dream application, where given a speech in source 
language, the system will perform speech recognition and transcribe it to text. This 
text will then go to a machine translation system that can translate the speech into 
the target language and then a text-to-speech system will convert it into speech in 
the target language. This is one of the most desirable applications of NLP, where 
we can talk to a computer in any language and the computer will reply in the same 
language. This kind of application can actually destroy the language barrier that 
exists in the world.

Apple Siri and Google Voice are examples of some of the commercial applications in 
the line of dialog systems intelligent enough to understand our information needs, 
try to address them in a set of actions or information, and respond in a human-like 
manner.

Word sense disambiguation
Word sense disambiguation (WSD) is also one of the difficult challenges not solved 
even after years of research and one of the major causes of application problems, 
such as question answering, summarization, search, and so on. A simple way to 
understand the concept is that many words have different meanings when used in 
different contexts. For example, "cold" in the following example:

•	 The ice-cream is really cold
•	 That was cold blooded!

Here the word "cold "has two different senses, and it's really hard for computers 
to understand this concept. Some of the other NLP processing options, such as POS 
tagging and NER, are used to resolve some of these problems.

Topic modeling
Topic modeling, in the context of a large amount of unstructured text content, is 
really an amazing application, where the primary task is to identify the emerging 
topics in the corpus and then categorize the documents in the corpus as per these 
topics. We will discuss this briefly in the next chapter.

Topic modeling uses the same NLP preprocessing, for example, sentence split, 
tokenization, stemming, and so on. The beauty of the algorithms is that we have an 
unsupervised way of categorizing the document; also, topics are generated without 
explicitly mentioning anything prior to the process. I encourage you to look at topic 
modeling in more detail. Try reading about latent dirichlet allocation (LDA) and 
latent semantics indexing (LSI) for more detail.



NLP Applications

[ 72 ]

Language detection
Given a snippet of text, the detection of language is also a problem. The application 
of language detection is very important for some of the other NLP applications, such 
as search, machine translation, speech, and so on. The main concept is learning from 
the text as features what the language is. A variety of machine learning and NLP 
techniques are used for feature engineering in the process.

Optical character recognition
Optical character recognition (OCR) is an application of NLP and computer 
vision, where given a handwritten document/ non-digital document, the system 
can recognize the text and extract it into digital format. This has also been widely 
researched in the area of machine learning for many years. Some of the big OCR 
projects are Google Books, where they use OCR to convert non-digital books into a 
centralized library.

Summary
In conclusion, there are many NLP applications around us that we interact with in 
our day-to-day routines. NLP is difficult and complex, and some of these problems 
are still unsolved or do not yet have perfect solutions. So anybody who is looking 
for problems in NLP, try exploring the literature around that. It's a great time to be 
an NLP researcher. In the era of Big Data, NLP applications are very popular. Many 
research labs and organizations are currently working on NLP applications such as 
speech recognition, search, and text classification.

I believe we have learned a lot up until this chapter. For the next couple of chapters, 
we will delve deeply into some of the applications described here. We have reached 
a point where we know enough NLP related preprocessing tools and also have a 
basic understanding about some of the most popular NLP applications. I hope you 
leverage some of this learning to build a version of an NLP application.

In the next chapter, we will start with some of the important NLP applications, such 
as text classification, text clustering, and topic modeling. We will move slightly away 
from the pure NLTK applications on to how NLTK can be used in conjunction with 
other libraries.
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Text Classification
We were talking about some of the most common NLP tools and preprocessing 
steps in the last chapter. This is the chapter where we will get to use most of the 
stuff we learnt in the previous chapters, and build one of the most sophisticated 
NLP applications. We will give you a generic approach about text classification and 
how you can build a text classifier from scratch with very few lines of code. We 
will give you a cheat sheet of all the classification algorithms in the context of text 
classification.

While we will talk about some of the most common text classification algorithms, this 
is just a brief introduction and to get to a detailed understanding and mathematical 
background, there are many online resources and books available that you can refer 
to. We will try to give you all you need to know to get you started with some working 
code snippets. Text classification is a great use case of NLP, but in this chapter, instead 
of using NLTK, we will use scikit-learn that has a wider range of classification 
algorithms and its library is much more memory efficient for text mining.

By the end of this chapter:

•	 You will learn and understand all text classification algorithms
•	 You will learn end-to-end pipeline to build a text classifier and how to 

implement it with scikit-learn and NLTK
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The following is the scikit-learn cheat sheet for machine learning:

credit : scikit-learn

Now, as you travel along the process shown in the cheat sheet. We have a clear 
guideline about what kind of algorithm is required for which problem? When we 
should move from one classifier to another depending on the size of the tagged 
sample? It's a good place to start following this for building practical application, and 
in most cases this will work. We will focus mostly on text data while the scikit-learn 
can work with other types of data as well. We will explore text classification, text 
clustering, and topic detection in text (dimensionality reduction) with examples in this 
chapter and build some cool NLP applications. I will not go in to more detail about the 
concepts of machine learning, classification, and clustering in this chapter, as there are 
enough resources available on the Web for you. We will provide you with more details 
of all these concepts in the context of a text corpus. Still, let me give you a refresher.

Machine learning
There are two types of machine learning techniques—supervised learning and 
Unsupervised learning:

•	 Supervised learning: Based on some historic prelabeled samples, machines 
learn how to predict the future test sample, based on the following 
categories:
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°° Classification: This is used when we need to predict whether a test 
sample belongs to one of the classes. If there are only two classes, 
it's a binary classification problem; otherwise, it's a multiclass 
classification.

°° Regression: This is used when we need to predict a continuous 
variable, such as a house price and stock index.

•	 Unsupervised learning: When we don't have any labeled data and we still 
need to predict the class label, this kind of learning is called unsupervised 
learning. When we need to group items based on similarity between items, 
this is called a clustering problem. While if we need to represent high-
dimensional data in lower dimensions, this is more of a dimensionality 
reduction problem.

•	 Semi-supervised learning: This is a class of supervised learning tasks and 
techniques that also make use of unlabeled data for training. As the name 
suggests, it's more of a middle ground for supervised and unsupervised 
learning, where we use small amount of labeled data and large amount of 
unlabeled data to build a predictive machine learning model.

•	 Reinforcement learning: This is a form of machine learning where an agent 
can be programmed by a reward and punishment, without specifying how 
the task is to be achieved.

If you understood the different machine learning algorithms, I want you to guess 
what kind of machine learning problems the following are:

•	 You need to predict the values of weather for the next month
•	 Detection of a fraud in millions of transactions
•	 Google's priority inbox
•	 Amazon's recommendations
•	 Google news
•	 Self-driving cars

Text classification
The simplest definition of text classification is that it is a classification of text based 
on the content of that text. Now, in general, all the machine learning methods and 
algorithms are written for numeric features/variables. One of the most important 
problems with text corpus is how to represent text as numeric features. There are 
different transformations prescribed in the literature. Let's start with one  
of the simplest and most widely used transformations.
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Now, to understand the processes of text classification, let's take a real word problem 
of spams. In the world of WhatsApp and SMS, you get many spam messages. 
Let's start by solving this real problem of spam detection with the help of text 
classification. We will be using this running example across the chapter.

Here are a few real examples of SMS's that we asked people to manually tag for us:

SMS001 ['spam', 'Had your mobile 11 months or more? U R entitled to 
Update to the latest colour mobiles with camera for Free! Call The Mobile 
Update Co FREE on 08002986030']

SMS002 ['ham', "I'm gonna be home soon and i don't want to talk about 
this stuff anymore tonight, k? I've cried enough today."]

A similar tagged dataset can be downloaded from link here. Make sure 
you create a CSV like the one show in the example. 'SMSSpamCollection' 
in the following code which will correspond to this file.
https://archive.ics.uci.edu/ml/datasets/
SMS+Spam+Collection

The first thing you want to do here is what we learnt in the last few chapters about 
data cleaning, tokenization, and stemming to get much cleaner content out of the 
SMS. I wrote a basic function to clean the text. Let's go over the following code:

>>>import nltk

>>>from nltk.corpus import stopwords

>>>from nltk.stem import WordNetLemmatizer

>>>import csv

>>>def preprocessing(text):

>>>    text = text.decode("utf8")

>>>    # tokenize into words

>>>    tokens = [word for sent in nltk.sent_tokenize(text) for word in 
nltk.word_tokenize(sent)]

>>>    # remove stopwords

>>>    stop = stopwords.words('english')

>>>    tokens = [token for token in tokens if token not in stop]

>>>    # remove words less than three letters

>>>    tokens = [word for word in tokens if len(word) >= 3]

https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
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>>>    # lower capitalization

>>>    tokens = [word.lower() for word in tokens]

>>>    # lemmatize

>>>    lmtzr = WordNetLemmatizer()

>>>    tokens = [lmtzr.lemmatize(word) for word in tokens]

>>>    preprocessed_text= ' '.join(tokens)

>>>    return preprocessed_text

We have talked about tokenization, lemmatization, and stop words in Chapter 3, Part 
of Speech Tagging. In the following code, I am just parsing the SMS file and cleaning 
the content to get cleaner text of the SMS. In the next few lines, I created two lists 
to get all the cleaned content of the SMS and class label. In ML (Machine learning) 
terms all the X and Y:

>>>smsdata = open('SMSSpamCollection') # check the structure of this 
file!

>>>smsdata_data = []

>>>sms_labels = []

>>>csv_reader = csv.reader(sms,delimiter='\t')

>>>for line in csv_reader:

>>>     # adding the sms_id 

>>>    sms_labels.append( line[0])

>>>    # adding the cleaned text We are calling preprocessing method 

>>>    sms_data.append(preprocessing(line[1]))

>>>sms.close()

Before moving any further we need to make sure we have scikit-learn installed on 
the system. 

>>>import sklearn

If there is an error you made some error installing scikit. Please go to 
below link and install scikit:
http://scikit-learn.org/stable/install.html

Sampling
Once we have the entire corpus in the form of lists, we need to perform some form of 
sampling. Typically, the way to sample the entire corpus in development train sets, 
dev-test sets, and test sets is similar to the sampling shown in the following figure.

http://scikit-learn.org/stable/install.html
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The idea behind the whole exercise is to avoid overfitting. If we feed all the data points 
to the model, then the algorithm will learn from the entire corpus, but the real test of 
these algorithms is to perform on unseen data. In very simplistic terms, if we are using 
the entire data in the model learning process the classifier will perform very good on 
this data, but it will not be robust. The reason being, we have to tune it to perform the 
best on the given data, but it doesn't learn how to deal with unknown data.

 

To solve this kind of a problem, the best way is to divide the entire corpus into two 
major sets. The development set and test set are kept away for the modeling exercise. 
We just use the dev set to build and tune the model. Once we are done with the 
entire modeling exercise, the results are projected based on the test set that we put 
aside. Now, if the model performs well on this set, we are sure that it's accurate and 
robust for any new data sample.

Sampling itself is a very complicated and well-researched stream in the machine 
learning community, and it's a remedy for many data skewness and overfitting 
issues. For simplicity, will use the basic sampling, where we just divide the corpus 
into a split of 70:30:

>>>trainset_size = int(round(len(sms_data)*0.70))

>>># i chose this threshold for 70:30 train and test split.

>>>print 'The training set size for this classifier is ' + str(trainset_
size) + '\n'

>>>x_train = np.array([''.join(el) for el in sms_data[0:trainset_size]])

>>>y_train = np.array([el for el in sms_labels[0:trainset_size]])

>>>x_test = np.array([''.join(el) for el in sms_data[trainset_
size+1:len(sms_data)]])

>>>y_test = np.array([el for el in sms_labels[trainset_size+1:len(sms_
labels)]])or el in sms_labels[trainset_size+1:len(sms_labels)]])

>>>print x_train

>>>print y_train
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•	 So what do you think will happen if we use the entire data as training data?
•	 What will happen when we have a very unbalanced sample?

To understand more about the available sampling techniques, go through
http://scikit-learn.org/stable/modules/classes.
html#module-sklearn.cross_validation.

Let's jump to one of the most important things, where we transform the entire text 
into a vector form. The form is referred to as the term-document matrix. If we have to 
create a term-document matrix for the given example, it will look somewhat like this:

TDM anymore call camera color cried enough entitled free gon had latest mobile

SMS1 0 1 1 1 0 0 1 2 0 1 0 3

SMS2 1 0 0 0 1 1 0 0 1 0 0 0

The representation here of the text document is also known as the BOW (Bag of 
Word) representation. This is one of the most commonly used representation in 
text mining and other applications. Essentially, we are not considering any context 
between the words to generate this kind of representation.

To generate a similar term-document matrix in Python, we use scikit vectorizers:
>>>from sklearn.feature_extraction.text import CountVectorizer

>>>sms_exp=[ ]

>>>for line in sms_list:

>>>	 sms_exp.append(preprocessing(line[1]))

>>>vectorizer = CountVectorizer(min_df=1)

>>>X_exp = vectorizer.fit_transform(sms_exp)

>>>print "||".join(vectorizer.get_feature_names())

>>>print X_exp.toarray()

array([[    1,    0,    1,    1,    1,    0,    0,    1,    2,    0,    
1,    0,    1,    3,    1,    0,    0,    0,    1,    0,    0,    2,    
0,    0], [    0,    1,    0,    0,    0,    1,    1,    0,    0,    1,    
0,    1,    0,    0,    0,    1,    1,    1,    0,    1,    1,    0,    
1,    1,    ]])

The count vectorizer is a good start, but there is an issue that you will face while 
using it: longer documents will have higher average count values than shorter 
documents, even though they might talk about the same topics.

To avoid these potential discrepancies, it suffices to divide the number of 
occurrences of each word in a document by the total number of words in 
the document. This new feature is called tf (Term frequencies).

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_validation
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_validation
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Another refinement on top of tf is to downscale weights for words that occur in 
many documents in the corpus, and are therefore less informative than those that 
occur only in a smaller portion of the corpus.

This downscaling is called tf–idf (term frequency–inverse document frequency). 
Fortunately, scikit also provides a way to achieve the following:

>>>from sklearn.feature_extraction.text import TfidfVectorizer

>>>vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 2),  stop_

words='english',  strip_accents='unicode',  norm='l2')

>>>X_train = vectorizer.fit_transform(x_train)

>>>X_test = vectorizer.transform(x_test)

We now have the text in a matrix format the same as we have in any machine 
learning exercise. Now, X_train and X_test can be used for classification using 
any machine learning algorithm. Let's talk about some of the most commonly used 
machine learning algorithms in context of text classification.

Naive Bayes
Let's build your first text classifier. Let's start with a Naive Bayes classifier. Naive Bayes 
relies on the Bayes algorithm and essentially, is a model of assigning a class label to the 
sample based on the conditional probability class given by features/attributes. Here 
we deal with frequencies/bernoulli to estimate prior and posterior probabilities.

The naive assumption here is that all features are independent of each other, which 
looks counter intuitive in the case of text. However, surprisingly, Naive Bayes 
performs quite well in most of the real-world use cases.

Another great thing about NB is that it's too simple and very easy to implement and 
score. We need to store the frequencies and calculate the probabilities. It's really fast 
in case of training as well as test (scoring). For all these reasons, in most of the cases 
of text classification, it serves as a benchmark.

Let's write some code to achieve this classifier:

>>>from sklearn.naive_bayes import MultinomialNB

>>>clf = MultinomialNB().fit(X_train, y_train)

>>>y_nb_predicted = clf.predict(X_test)

>>>print y_nb_predicted
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>>>print ' \n confusion_matrix \n '

>>>cm = confusion_matrix(y_test, y_pred)

>>>print cm

>>>print '\n Here is the classification report:'

>>>print classification_report(y_test, y_nb_predicted)

confusion_matrix [[1205 5] 
                  [26 156]]

Classified

True Positive

False Positive

False Negarive

True Negarive

A
c
t
u
a
l
s

The way to read the confusion matrix is that from all the 1,392 samples in the 
test set, there were 1205 true positives and 156 true negative cases. However, we 
also predicted 5 false negatives and 26 false positives. There are different ways of 
measuring a typical binary classification.

We have given definitions of some of the most common measures used in 
classification measures:

Accuracy

Precision

Recall

precision recall2
precision recall

tp tn
tp tn fp fn
tp

tp fp
tp

tp fn

F

+
=

+ + +

=
+

=
+

⋅
= ⋅

+

Here is the classification report:

              Precision      recall      f1-score     support

ham           0.97           1.00        0.98         1210

spam          1.00           0.77        0.87         182

avg / total   0.97           0.97        0.97         1392
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With the preceding definition, we can now understand the results clearly. So, 
effectively, all the preceding metrics look good, which means that our classifier is 
performing accurately, and is robust. I would highly recommend that you look into 
the module metrics for more options to analyze the results of the classifier. The most 
important and balanced metric is the f1 measure (which is nothing but the harmonic 
mean of precision and recall), which is used widely because it gives a better picture 
of the coverage and the quality of the classification algorithms. Accuracy intuitively 
tells us how many true samples have been covered from all the samples. Precision 
and recall both have significance, while precision talks about how many true 
positives it got and what else got covered, hand recall gives us details about how 
accurate we are from the pool of true positives and false negatives.

For more information on various scikit classes visit the following link:
http://scikit-learn.org/stable/modules/classes.
html#module-sklearn.metrics

The other more important process we follow to understand our model is to really 
look deep into the model by looking at the actual features that contribute to the 
positive and negative classes. I just wrote a very small snippet to generate the top n 
features and print them. Let's have a look at them:

>>>feature_names = vectorizer.get_feature_names()

>>>coefs = clf.coef_

>>>intercept = clf.intercept_

>>>coefs_with_fns = sorted(zip(clf.coef_[0], feature_names))

>>>n = 10

>>>top = zip(coefs_with_fns[:n], coefs_with_fns[:-(n + 1):-1])

>>>for (coef_1, fn_1), (coef_2, fn_2) in top:

>>>    print('\t%.4f\t%-15s\t\t%.4f\t%-15s' % (coef_1, fn_1, coef_2, 
fn_2))

-9.1602    10 den                 -6.0396    free                
-9.1602    15                     -6.3487    txt                 
-9.1602    1hr                    -6.5067    text                
-9.1602    1st ur                 -6.5393    claim               
-9.1602    2go                    -6.5681    reply               
-9.1602    2marrow                -6.5808    mobile              
-9.1602    2morrow                -6.5858    stop                
-9.1602    2mrw                   -6.6124    ur                  
-9.1602    2nd innings            -6.6245    prize               
-9.1602    2nd ur                 -6.7856    www

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
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In the preceding code, I just read all the feature names from the vectorizer, got the 
coefficients related to the given feature, and then printed the first-10 features. If you 
want more features, just modify the value of n. If we look closely just at the features, 
we get a lot of information about the model as well as more suggestions about our 
feature selection and other parameters, such as preprocessing, unigrams/bigrams, 
stemming, tokenizations, and so on. For example, if you look at the top features of 
ham you can see that 2morrow, 2nd innings, and some of the digits are coming very 
significantly. We can see on the positive class (spam ) term "free" comes out a very 
significant term which is intuitive while many spam messages will be about some 
free offers and deal. Some of the other terms to note are prize, www, claim.

For more details, refer to http://scikitlearn.org/stable/
modules/naive_bayes.html.

Decision trees
Decision trees are one of the oldest predictive modeling techniques, where for the 
given features and target, the algorithm tries to build a logic tree. There are multiple 
algorithms that exist for decision trees. One of the most famous and widely used 
algorithm is CART.

CART constructs binary trees using this feature, and constructs a threshold that 
yields the large amount of information from each node. Let's write the code to get a 
CART classifier:

>>>from sklearn import tree

>>>clf = tree.DecisionTreeClassifier().fit(X_train.toarray(), y_train)

>>>y_tree_predicted = clf.predict(X_test.toarray())

>>>print y_tree_predicted

>>>print ' \n Here is the classification report:'

>>>print classification_report(y_test, y_tree_predicted)

The only difference is in the input format of the training set. We need to modify the 
sparse matrix format to a NumPy array because the scikit tree module takes only a 
NumPy array.

Generally, trees are good when the number of features are very less. So, although 
our results look good here, people hardly use trees in text classification. On the 
other hand, trees have some really positive sides to them. It is still one the most 
intuitive algorithms and is very easy to explain and implement. There are many 
implementations of tree-based algorithms, such as ID3, C4.5, and C5. scikit-learn 
uses an optimized version of the CART algorithm.

http://scikitlearn.org/stable/modules/naive_bayes.html
http://scikitlearn.org/stable/modules/naive_bayes.html
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Stochastic gradient descent
Stochastic gradient descent (SGD) is a simple, yet very efficient approach that fits 
linear models. It is particularly useful when the number of samples (and the number 
of features) is very large. If you follow the cheat sheet, you will find SGD to be the 
one-stop solution for many text classification problems. Since it also takes care of 
regularization and provides different losses, it turns out to be a great choice when 
experimenting with linear models.

SGD, also known as Maximum entropy (MaxEnt), provides functionality to fit linear 
models for classification and regression using different (convex) loss functions and 
penalties. For example, with loss = log, fits a logistic regression model, while with 
loss = hinge, it fits a linear support vector machine (SVM).

An example of SGD is as follows:

>>>from sklearn.linear_model import SGDClassifier

>>>from sklearn.metrics import confusion_matrix

>>>clf = SGDClassifier(alpha=.0001, n_iter=50).fit(X_train, y_train)

>>>y_pred = clf.predict(X_test)

>>>print '\n Here is the classification report:'

>>>print classification_report(y_test, y_pred)

>>>print ' \n confusion_matrix \n '

>>>cm = confusion_matrix(y_test, y_pred)

>>>print cm

Here is the classification report:

             precision    recall    f1-score   support

ham          0.99         1.00      0.99       1210

spam         0.96         0.91      0.93       182

avg / total  0.98         0.98      0.98       1392

Most informative features:

    -1.0002    sir                    2.3815    ringtoneking   

    -0.5239    bed                    2.0481    filthy         

    -0.4763    said                   1.8576    service        

    -0.4763    happy                  1.7623    story          

    -0.4763    might                  1.6671    txt            

    -0.4287    added                  1.5242    new            

    -0.4287    list                   1.4765    ringtone       

    -0.4287    morning                1.3813    reply          
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    -0.4287    always                 1.3337    message        

    -0.4287    and                    1.2860    call           

    -0.4287    plz                    1.2384    chat           

    -0.3810    people                 1.1908    text           

    -0.3810    actually               1.1908    real           

    -0.3810    urgnt                  1.1431    video

Logistic regression
Logistic regression is a linear model for classification. It's also known in the literature 
as logit regression, maximum-entropy classification (MaxEnt), or the log-linear 
classifier. In this model, the probabilities describing the possible outcomes of a single 
trial are modeled using a logit function.

As an optimization problem, the L2 binary class' penalized logistic regression 
minimizes the following cost function:

( )( )( ), 1
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=

+ − + +∑

Similarly, L1 the binary class' regularized logistic regression solves the following 
optimization problem:
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Support vector machines
Support vector machines (SVM) is currently the-state-of-art algorithm in the field of 
machine learning.

SVM is a non-probabilistic classifier. SVM constructs a set of hyperplanes in an 
infinite-dimensional space, which can be used for classification, regression, or other 
tasks. Intuitively, a good separation is achieved by a hyperplane that has the largest 
distance to the nearest training data point of any class (the so-called functional 
margin), since in general, the larger the margin, the lower the size of classifier.
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Let's build one of the most sophisticated supervised learning algorithms with scikit:

>>>from sklearn.svm import LinearSVC

>>>svm_classifier = LinearSVC().fit(X_train, y_train)

>>>y_svm_predicted = svm_classifier.predict(X_test)

>>>print '\n Here is the classification report:'

>>>print classification_report(y_test, y_svm_predicted)

>>>cm = confusion_matrix(y_test, y_pred)

>>>print cm

Here is the classification report for the same:

             precision    recall  f1-score   support

        ham       0.99      1.00      0.99      1210

       spam       0.97      0.90      0.93       182

avg / total       0.98      0.98      0.98      1392

confusion_matrix  [[1204    6] [  17  165]]

The most informative features:

    -0.9657    road                   2.3724    txt            

    -0.7493    mail                   2.0720    claim          

    -0.6701    morning                2.0451    service        

    -0.6691    home                   2.0008    uk             

    -0.6191    executive              1.7909    150p           

    -0.5984    said                   1.7374    www            

    -0.5978    lol                    1.6997    mobile         

    -0.5876    kate                   1.6736    50             

    -0.5754    got                    1.5882    ringtone       

    -0.5642    darlin                 1.5629    video          

    -0.5613    fullonsms              1.4816    tone           

    -0.5613    fullonsms com          1.4237    prize

These are definitely the best results so far from all the supervised algorithms we 
have tried. Now with this, I will stop with supervised classifiers. There are millions 
of books available related to the different machine learning algorithms; even for 
individual algorithms, there are many books that are available for you. I would 
highly recommend you to have a deep understanding of any of the preceding 
algorithms before you use them for any of the real-world applications.
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The Random forest algorithm
A random forest is an ensemble classifier that estimates based on the combination 
of different decision trees. Effectively, it fits a number of decision tree classifiers on 
various subsamples of the dataset. Also, each tree in the forest built on a random best 
subset of features. Finally, the act of enabling these trees gives us the best subset of 
features among all the random subsets of features. Random forest is currently one of 
best performing algorithms for many classification problems.

An example of Random forest is as follows:

>>>from sklearn.ensemble import RandomForestClassifier

>>>RF_clf = RandomForestClassifier(n_estimators=10)

>>>predicted = RF_clf.predict(X_test)

>>>print '\n Here is the classification report:'

>>>print classification_report(y_test, predicted)

>>>cm = confusion_matrix(y_test, y_pred)

>>>print cm

People who still want to work with NLTK for text classification. Please 
go through the following link:
http://www.nltk.org/howto/classify.html

Text clustering
The other family of problems that can come with text is unsupervised classification. 
One of the most common problem statements you can get is "I have these millions 
of documents (unstructured data). Is there a way I can group them into some 
meaningful categories?". Now, once you have some samples of tagged data, we 
could build a supervised algorithm that we talked about, but here, we need to use an 
unsupervised way of grouping text documents.

Text clustering is one of the most common ways of unsupervised grouping, also 
known as, clustering. There are a variety of algorithms available using clustering. I 
mostly used k-means or hierarchical clustering. I will talk about both of them and 
how to use them with a text corpus.

http://www.nltk.org/howto/classify.html
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K-means
Very intuitively, as the name suggest, we are trying to find k groups around the 
mean of the data points. So, the algorithm starts with picking up some random data 
points as the centroid of all the data points. Then, the algorithm assigns all the data 
points to it's nearest centroid. Once this iteration is done, recalculation of the centroid 
happens and these iterations continue until we reach a state where the centroids 
don't change (algorithm saturate).

There is a variant of the algorithm that uses mini batches to reduce the computation 
time, while still attempting to optimize the same objective function.

Mini batches are subsets of the input data randomly sampled in each 
training iteration. These options should always be tried once your 
dataset is really huge and you want less training time.

An example of K-means is as follows:

>>>from sklearn.cluster import KMeans, MiniBatchKMeans

>>>true_k=5

>>>km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_
init=1)

>>>kmini = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1, 
init_size=1000, batch_size=1000, verbose=opts.verbose)

>>># we are using the same test,train data in TFIDF form as we did in 
text classification

>>>km_model=km.fit(X_train)

>>>kmini_model=kmini.fit(X_train)

>>>print "For K-mean clustering "

>>>clustering = collections.defaultdict(list)

>>>for idx, label in enumerate(km_model.labels_):

>>>        clustering[label].append(idx)

>>>print "For K-mean Mini batch clustering "

>>>clustering = collections.defaultdict(list)

>>>for idx, label in enumerate(kmini_model.labels_):

>>>        clustering[label].append(idx)

In the preceding code, we just imported scikit-learn's kmeans / minibatchkmeans 
and fitted the same training data that we were using in the running examples. We 
can also print a cluster for each sample using the last three lines of the code.
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Topic modeling in text
The other famous problem in the context of the text corpus is finding the topics of the 
given document. The concept of topic modeling can be addressed in many different 
ways. We typically use LDA (Latent Dirichlet allocation) and LSI (Latent semantic 
indexing) to apply topic modeling text documents.

Typically, in most of the industries, we have huge volumes of unlabeled text 
documents. In case of an unlabeled corpus to get the initial insights of the corpus, 
a topic model is a great option, as it not only gives us topics of relevance, but also 
categorizes the entire corpus into number of topics given to the algorithm.

We will use a new Python library "gensim" that implements these algorithms for 
us. So, let's jump to the implementation of LDA and LSI for the same running SMS 
dataset. Now, the only change to the problem is that we want to model different 
topics in the SMS data and also want to know which document belongs to which 
topic. A better and more realistic use case could be to run topic modeling on the 
entire Wikipedia dump to find different kinds of topics that have been discussed 
there, or to run topic modeling on billions of reviews/complaints from customers  
to get an insight of the topics that people discuss.

Installing gensim
One of the easiest ways to install gensim is using a package manager:

>>>easy_install -U gensim

Otherwise, you can install it using:

>>>pip install gensim

Once you're done with the installation, run the following command:

>>>import gensim

If there is any error, go to
https://radimrehurek.com/gensim/install.html.

Now, let's look at the following code:

>>>from gensim import corpora, models, similarities

>>>from itertools import chain

>>>import nltk

https://radimrehurek.com/gensim/install.html
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>>>from nltk.corpus import stopwords

>>>from operator import itemgetter

>>>import re

>>>documents = [document for document in sms_data]

>>>stoplist = stopwords.words('english')

>>>texts = [[word for word in document.lower().split() if word not in 
stoplist] \ for document in documents]

We are just reading the document in our SMS data and removing the stop words. We 
could use the same method that we did in the previous chapters to do this. Here, we 
are using a library-specific way of doing things.

Gensim has all the typical NLP features as well provides some great way 
to create different corpus formats, such as TFIDF, libsvm, market matrix. 
It also provides conversion of one to another.

In the following code, we are converting the list of documents to a BOW model and 
then, to a typical TF-IDF corpus:

>>>dictionary = corpora.Dictionary(texts)

>>>corpus = [dictionary.doc2bow(text) for text in texts]

>>>tfidf = models.TfidfModel(corpus)

>>>corpus_tfidf = tfidf[corpus]

Once you have a corpus in the required format, we have the following two methods, 
where given the number of topics, the model tries to take all the documents from the 
corpus to build a LDA/LSI model:

>>>si = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=100)

>>>#lsi.print_topics(20)

>>>n_topics = 5

>>>lda = models.LdaModel(corpus_tfidf, id2word=dictionary, num_topics=n_
topics)
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Once the model is built, we need to understand the different topics, what kind of 
terms represent that topic, and we need to print some top terms related to that topic:

>>>for i in range(0, n_topics):

>>>        temp = lda.show_topic(i, 10)

>>>        terms = []

>>>        for term in temp:

>>>            terms.append(term[1])

>>>            print "Top 10 terms for topic #" + str(i) + ": "+ ", 
".join(terms)

Top 10 terms for topic #0: week, coming, get, great, call, good, day, 
txt, like, wish

Top 10 terms for topic #1: call, ..., later, sorry, 'll, lor, home, min, 
free, meeting

Top 10 terms for topic #2: ..., n't, time, got, come, want, get, wat, 
need, anything

Top 10 terms for topic #3: get, tomorrow, way, call, pls, 're, send, 
pick, ..., text

Top 10 terms for topic #4: ..., good, going, day, know, love, call, yup, 
get, make

Now, if you look at the output, we have five different topics with clearly different 
intent. Think about the same exercise for Wikipedia or a huge corpus of web pages, 
and you will get some meaningful topics that represent the corpus.

References 
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Summary
The idea behind this chapter was to introduce you to the world of text mining. 
We want to give you a basic introduction to some of the most common algorithms 
available with text classification and clustering .We know how some of these concept 
will help you to build really great NLP applications, such as spam filters, domain 
centric news feeds, web page taxonomy, and so on. Though we have not used NLTK 
to classify the module in our code snippets, we used NLTK for all the preprocessing 
steps. We highly recommend you to use scikit-learn over NLTK for any classification 
problem. In this chapter, we started with machine learning and the types of problems 
that it can address. We discussed some of the specifics of ML problems in the context 
of text. We talked about some of the most common classification algorithms that are 
used for text classification, clustering, and topic modeling. We also give you enough 
implementation details to get the job done. I still think you need to read a lot about 
each and every algorithm separately to understand the theory and to gain in-depth 
understanding of them.

We also provided you an entire pipeline of the process that you need to follow 
in case of any text mining problem. We covered most of the practical aspects of 
machine learning, such as sampling, preprocessing, model building, and model 
evaluation.

The next chapter will also not be directly related to NLTK/NLP, but it will be a great 
tool for a data scientist/NLP enthusiast. In most of NLP problems, we deal with 
unstructured text data, and the Web is one of the richest and biggest data sources 
available for this. Let's learn how to gather data from the Web and how to efficiently 
use it to build some amazing NLP applications.
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Web Crawling
The largest repository of unstructured text is the Web, and if you know how to crawl 
it, then you have all the data you need readily available for your experiments. Hence, 
web crawling is something worth learning for people who are interested in NLTK. 
This chapter is all about gathering data from the Web.

In this chapter we will use an amazing Python library called Scrapy to write our web 
crawlers. We will provide you all the details to configure different settings that are 
required. We will write some of the most common spider strategies and many use 
cases. Scrapy also requires some understanding about XPath, crawling, scraping, 
and some concepts related to the Web in general. We will touch upon these topics 
and make sure you understand their practical aspects, before really getting in to their 
implementation. By the end of this chapter, you will have a better understand of web 
crawler.

•	 How we can write our own crawler using Scrapy
•	 Understanding about all the major Scrapy functionality

Web crawlers
One of the biggest web crawler is Google that crawls the entire World Wide Web 
(WWW). Google has to traverse every page that exists on the Web and scrape/crawl 
the entire content.

A web crawler is a computer program that systematically browses the web page by 
page and also scrapes/crawls the content of the pages. A web crawler can also parse 
the next set of URLs to be visited from the crawled content. So, if these processes 
run indefinitely over the entire Web, we can crawl through all the web pages. Web 
crawlers are interchangeably also called spiders, bots, and scrapers. They all mean 
the same.
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There are a few main points we need to think about before writing our first crawler. 
Now, every time a web crawler traverses a page, we must decide what kind of 
content we want to select and what content we want to ignore. For applications such 
as a search engine, we should ignore all the images, js files, css files, and other files 
and should concentrate only on HTML content that can be indexed and exposed to 
the search. In some information extraction engines, we select specific tags or parts 
of a web page. We also need to extract the URLs if we want to do the crawling 
recursively. This brings us to the topic of crawling strategy. Here, we need to decide 
whether we want to go recursively in depth first manner or breadth first manner. 
We want to follow all the URLs on the next page and then go in depth first manner 
till we get the URLs, or we should go to all the URLs in the next page and do this 
recursively.

We also need to make sure that we are not going in the self loop stage because 
essentially, we traverse a graph in most of the cases. We need to make sure we have 
a clear revisit strategy for a page. One of the most talked about crawled policies is 
focused crawling, where we know what kind of domains/topics we are looking for, 
and the ones that need to be crawled. Some of these issues will be discussed in more 
detail in the spider section.

Take a look at the video on Udacity at https://www.youtube.com/
watch?v=CDXOcvUNBaA.

Writing your first crawler
Let's start with a very basic crawler that will crawl the entire content of a web 
page. To write the crawlers, we will use Scrapy. Scrapy is a one of the best crawling 
solutions using Python. We will explore all the different features of Scrapy in this 
chapter. First, we need to install Scrapy for this exercise.

To do this, type in the following command:

$ pip install scrapy

This is the easiest way of installing Scrapy using a package manager. Let's now  
test whether we got everything right or not. (Ideally, Scrapy should now be part  
of sys.path):

>>>import scrapy

https://www.youtube.com/watch?v=CDXOcvUNBaA
https://www.youtube.com/watch?v=CDXOcvUNBaA
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If there is any error, then take a look at http://doc.scrapy.org/
en/latest/intro/install.html.

At this point, we have Scrapy working for you. Let's start with an example spider 
app with Scrapy:

$ scrapy startproject tutorial

Once you write the preceding command, the directory structure should look like the 
following:

tutorial/

    scrapy.cfg   #the project configuration file

    tutorial/       #the project's python module, you'll later import 
your code from here.

        __init__.py

        items.py         #the project's items file.

        pipelines.py    #the project's pipelines file.

        settings.py      # the project's settings file.

        spiders/   #a directory where you'll later put your spiders.

              __init__.py

The top folder will be given the name of the example tutorial in this case. Then, there 
is the project configuration file (scrapy.cfg) that will define the kind of setting file 
that should be used for the project. It also provides the deploy URLs for the project.

Another important part of tutorial setting.py is where we can decide what kind 
of item pipeline and spider will be used. The item.py and pipline.py are the files 
that define the data and kind of preprocessing we need to do on the parsed item. The 
spider folder will contain the different spiders you wrote for the specific URLs.

For our first test spider, we will dump the contents of a news in a local file. We need 
to create a file named NewsSpider.py, and put it in the path /tutorial/spiders. 
Let's write the first spider:

>>>from scrapy.spider import BaseSpider

>>>class NewsSpider(BaseSpider):

>>>    name = "news"

>>>    allowed_domains = ["nytimes.com"]

>>>    start_URLss = [

http://doc.scrapy.org/en/latest/intro/install.html
http://doc.scrapy.org/en/latest/intro/install.html
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>>>        'http://www.nytimes.com/'

>>>     ]

>>>def parse(self, response):

>>>        filename = response.URLs.split("/")[-2]

>>>        open(filename, 'wb').write(response.body)

Once we have this spider ready, we can start crawling using the following command:

$ scrapy crawl news

After you enter the preceding command, you should see some logs like this:

[scrapy] INFO: Scrapy 0.24.5 started (bot: tutorial)

[scrapy] INFO: Optional features available: ssl, http11, boto

[scrapy] INFO: Overridden settings: {'NEWSPIDER_MODULE': 'tutorial.
spiders', 'SPIDER_MODULES': ['tutorial.spiders'], 'BOT_NAME': 'tutorial'}

[scrapy] INFO: Enabled extensions: LogStats, TelnetConsole, CloseSpider, 
WebService, CoreStats, SpiderState

If you don't see logs like the ones shown in the preceding snippet, you have missed 
something. Check the location of the spider and other Scrapy-related settings, such 
as the name of the spider matching to the crawl command, and whether setting.py 
is configured for the same spider and item pipeline or not.

Now, if you are successful, there should be a file in your local folder with the name 
www.nytimes.com that has the entire web content of the www.nytimes.com page.

Let's see some of the terms that we used in the spider code in more detail:

•	 name: This is the name of the spider that works as an identifier for Scrapy to 
look for the spider class. So, the crawl command argument and this name 
should always match. Also make sure that it's unique and case sensitive.

•	 start_urls: This is a list of URLs where the spider will begin to crawl. The 
crawler with start from a seed URL and using the parse() method, it will 
parse and look for the next URL to crawl. Instead of just a single seed URL, 
we can provide a list of URLs that can start the crawl.

•	 parse(): This method is called to parse the data from start URLs. The logic 
of what kind of element is to be selected for specific attributes of item. This 
could be as simple as dumping the entire content of HTML to as complex 
as many parse methods callable from parse, and different selectors for 
individual item attributes.

www.nytimes.com
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So, the code does nothing but starts with the given URLs (in this case, www.nytimes.
com) and crawls the entire content of the page. Typically, a crawler is more complex 
and will do much more than this; now, let's take a step back and understand what 
happened behind the scenes. For this, take a look at the following figure:

credit :Scrapy

Data flow in Scrapy
The data flow in Scrapy is controlled by the execution engine and goes like this:

1.	 The process starts with locating the chosen spider and opening the first URL 
from the list of start_urls.

2.	 The first URL is then scheduled as a request in a scheduler. This is more of an 
internal to Scrapy.

3.	 The Scrapy engine then looks for the next set of URLs to crawl.
4.	 The scheduler then sends the next URLs to the engine and the engine then 

forwards it to the downloader using the downloaded middleware. These 
middlewares are where we place different proxies and user-agent settings.

5.	 The downloader downloads the response from the page and passes it to the 
spider, where the parse method selects specific elements from the response.

6.	 Then, the spider sends the processed item to the engine.
7.	 The engine sends the processed response to the item pipeline, where we can 

add some post processing.
8.	 The same process continues for each URL until there are no remaining 

requests.

www.nytimes.com
www.nytimes.com
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The Scrapy shell
The best way to understand Scrapy is to use it through a shell and to get your hands 
dirty with some of the initial commands and tools provided by Scrapy. It allows you 
to experiment and develop your XPath expressions that you can put into your spider 
code.

To experiment with the Scrapy shell, I would recommend you to 
install one of the developer tools (Chrome) and Firebug (Mozilla 
Firefox) as a plugin. This tool will help us dig down to the very 
specific part that we want from the web page.

Now, let's start with a very interesting use case where we want to capture the 
trending topics from Google news (https://news.google.com/).

The steps to follow here are:

1.	 Open https://news.google.com/ in your favorite browser.
2.	 Go to the trending topic section on Google news. Then, right-click on 

and select Inspect Element for the first topic, as shown in the following 
screenshot:

https://news.google.com/
https://news.google.com/
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3.	 The moment you open this, there will be a side window that will pop up  
and you will get a view.

4.	 Search and select the div tag. For this example, we are interested in  
<div class="topic">.

5.	 Once this is done, you will come to know that we have actually parsed  
the specific part of the web page, as shown in the following screenshot:

Now, what we actually did manually in the preceding steps can be done in an 
automated way. Scrapy uses an XML path language called XPath. XPath can be used 
to achieve this kind of functionality. So, let's see how we can implement the same 
example using Scrapy.

To use Scrapy, put the following command in you cmd:

$scrapy shell https://news.google.com/

The moment you hit enter, the response of the Google news page is loaded in the 
Scrapy shell. Now, let's move to the most important aspect of Scrapy where we want 
to understand how to look for a specific HTML element of the page. Let's start and 
run the example of getting topics from Google news that are shown in the preceding 
image:

In [1]: sel.xpath('//div[@class="topic"]').extract()
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The output to this will be as follows:

Out[1]:

[<Selector xpath='//div[@class="topic"]' data=u'<div class="topic"><a 
href="/news/sectio'>,

<Selector xpath='//div[@class="topic"]' data=u'<div class="topic"><a 
href="/news/sectio'>,

<Selector xpath='//div[@class="topic"]' data=u'<div class="topic"><a 
href="/news/sectio'>]

Now, we need to understand some of the functions that Scrapy and XPath provide 
to experiment with the shell and then, we need to update our spider to do more 
sophisticated stuff. Scrapy selectors are built with the help of the lxml library, which 
means that they're very similar in terms of speed and parsing accuracy.

Let's have a look at some of the most frequently used methods provided for selectors:

•	 xpath(): This returns a list of selectors, where each of the selectors 
represents the nodes selected by the XPath expression given as an argument.

•	 css(): This returns a list of selectors. Here, each of the selectors represent the 
nodes selected by the CSS expression given as an argument.

•	 extract():This returns content as a string with the selected data.
•	 re(): This returns a list of unicode strings extracted by applying the regular 

expression given as an argument.

I am giving you a cheat sheet of these top 10 selector patterns that can cover most of 
your work for you. For a more complex selector, if you search the Web, there should 
be an easy solution that you can use. Let's start with extracting the title of the web 
page that is very generic for all web pages:

In [2] :sel.xpath('//title/text()')

Out[2]: [<Selector xpath='//title/text()' data=u' Google News'>]

Now, once you have selected any element, you also want to extract for more 
processing. Let's extract the selected content. This is a generic method that works 
with any selector:

In [3]: sel.xpath('//title/text()').extract()

Out[3]: [u' Google News']
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The other very generic requirement is to look for all the elements in the given page. 
Let's achieve this with this selector:

In [4]: sel.xpath('//ul/li')

Out [4] : list of elements (divs and all)

We can extract all the titles in the page with this selector:

In [5]: sel.xpath('//ul/li/a/text()').extract()

Out [5]: [ u'India',

u'World',

u'Business',

u'Technology',

u'Entertainment',

u'More Top Stories']

With this selector, you can extract all the hyperlinks in the web page:

In [6]:sel.xpath('//ul/li/a/@href').extract()

Out [6] : List of urls

Let's select all the <td> and div elements:

In [7]:sel.xpath('td'')

In [8]:divs=sel.xpath("//div")

This will select all the divs elements and then, you can loop it:

In [9]: for d in divs:

    printd.extract()

This will print the entire content of each div in the entire page. So, in case you are not 
able to get the exact div name, you can also look at the regex-based search.

Now, let's select all div elements that contain the attribute class="topic":

In [10]:sel.xpath('/div[@class="topic"]').extract()

In [11]:  sel.xpath("//h1").extract()         # this includes the h1 tag

This will select all the <p> elements in the page and get the class of those elements:

In [12 ] for node in sel.xpath("//p"):

print node.xpath("@class").extract()

Out[12] print all the <p>
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In [13]: sel.xpath("//li[contains(@class, 'topic')]")

Out[13]:

[<Selector xpath="//li[contains(@class, 'topic')]" data=u'<li class="nav-
item nv-FRONTPAGE selecte'>,

<Selector xpath="//li[contains(@class, 'topic')]" data=u'<li class="nav-
item nv-FRONTPAGE selecte'>]

Let's write some selector nuggets to get the data from a css file. If we just want to 
extract the title from the css file, typically, everything works the same, except you 
need to modify the syntax:

In [14] :sel.css('title::text').extract()

Out[14]: [u'Google News']

Use the following command to list the names of all the images used in the page:

In[15]: sel.xpath('//a[contains(@href, "image")]/img/@src').extract()

Out [15] : Will list all the images if the web developer has put the 
images in /img/src

Let's see a regex-based selector:

In [16 ]sel.xpath('//title').re('(\w+)')

Out[16]: [u'title', u'Google', u'News', u'title']

In some cases, removing the namespaces can help us get the right pattern. A selector 
has an inbuilt remove_namespaces() function to make sure that the entire document 
is scanned and all the namespaces are removed. Make sure before using it whether 
we want some of these namespaces to be part of the pattern or not. The following is 
example of remove_namespaces() function:

In [17] sel.remove_namespaces()

sel.xpath("//link")

Now that we have more understanding about the selectors, let's modify the same old 
news spider that we built previously:

>>>from scrapy.spider import BaseSpider

>>>class NewsSpider(BaseSpider):

>>>    name = "news"

>>>    allowed_domains = ["nytimes.com"]

>>>    start_URLss = [

>>>        'http://www.nytimes.com/'

>>>    ]



Chapter 7

[ 103 ]

>>>def parse(self, response):

>>>    sel = Selector(response)

>>>        sites = sel.xpath('//ul/li')

>>>        for site in sites:

>>>            title = site.xpath('a/text()').extract()

>>>            link = site.xpath('a/@href').extract()

>>>            desc = site.xpath('text()').extract()

>>>            print title, link, desc

Here, we mainly modified the parse method, which is one of the core of our spider. 
This spider can now crawl through the entire page, but we do a more structured 
parsing of the title, description, and URLs.

Now, let's write a more robust crawler using all the capabilities of Scrapy.

Items
Until now, we were just printing the crawled content on stdout or dumping it in a 
file. A better way to do this is to define items.py every time we write a crawler. The 
advantage of doing this is that we can consume these items in our parse method,  
and this can also give us output in any data format, such as XML, JSON, or CSV.  
So, if you go back to your old crawler, the items class will have a function like this:

>>>fromscrapy.item import Item, Field

>>>class NewsItem(scrapy.Item):

>>>    # define the fields for your item here like:

>>>    # name = scrapy.Field()

>>>    pass

Now, let's make it like the following by adding different fields:

>>>from scrapy.item import Item, Field

>>>class NewsItem(Item):

>>>    title = Field()

>>>    link = Field()

>>>    desc = Field()

Here, we added field() to title, link, and desc. Once we have a field in place, 
our spider parse method can be modified to parse_news_item, where instead 
dumping the parsed fields to a file now it can be consumed by an item object.
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A Rule method is a way of specifying what kind of URL needs to be crawled after 
the current one. A Rule method provides SgmlLinkExtractor, which is a way of 
defining the URL pattern that needs to be extracted from the crawled page. A Rule 
method also provides a callback method, which is typically a pointer for a spider to 
look for the parsing method, which in this case is parse_news_item. In case we have 
a different way to parse, then we can have multiple rules and parse methods. A Rule 
method also has a Boolean parameter to follow, which specifies whether links should 
be followed by each response extracted with this rule. If the callback is None, follow 
defaults to True: otherwise, it default to False.

One important point to note is that the Rule method does not use parse. This is because 
the name of the default callback method is parse() and if we use it, we are actually 
overriding it, and that can stop the functionality of the crawl spider. Now, let's jump 
on to the following code to understand the preceding methods and parameters:

>>>from scrapy.contrib.spiders import CrawlSpider, Rule

>>>from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor

>>>from scrapy.selector import Selector

>>>from scrapy.item import NewsItem

>>>class NewsSpider(CrawlSpider):

>>>    name = 'news'

>>>    allowed_domains = ['news.google.com']

>>>    start_urls = ['https://news.google.com']

>>>    rules = (

>>>        # Extract links matching cnn.com

>>>        Rule(SgmlLinkExtractor(allow=('cnn.com', ), deny=(http://
edition.cnn.com/', ))),

>>>       # Extract links matching 'news.google.com'

>>>       Rule(SgmlLinkExtractor(allow=('news.google.com', )), 
callback='parse_news_item'),

>>>    )

>>>    def parse_news_item(self, response):

>>>        sel = Selector(response)

>>>        item = NewsItem()

>>>        item['title'] = sel.xpath('//title/text()').extract()

>>>        item[topic] = sel.xpath('/div[@class="topic"]').extract()

>>>        item['desc'] = sel.xpath('//td//text()').extract()

>>>        return item
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The Sitemap spider
If the site provides sitemap.xml, then a better way to crawl the site is to use 
SiteMapSpider instead.

Here, given sitemap.xml, the spider parses the URLs provided by the site itself.  
This is a more polite way of crawling and good practice:

>>>from scrapy.contrib.spiders import SitemapSpider

>>>class MySpider(SitemapSpider):

>>>    sitemap_URLss = ['http://www.example.com/sitemap.xml']

>>>    sitemap_rules = [('/electronics/', 'parse_electronics'), ('/
apparel/', 'parse_apparel'),] 

>>>    def 'parse_electronics'(self, response):

>>>        # you need to create an item for electronics,

>>>        return 

>>>    def 'parse_apparel'(self, response):

>>>        #you need to create an item for apparel

>>>        return

In the preceding code, we wrote one parse method for each product category. It's a 
great use case if you want to build a price aggregator/comparator. You might want 
to parse different attributes for different products, for example, for electronics, you 
might want to scrape the tech specification, accessory, and price; while for apparels, 
you are more concerned about the size and color of the item. Try your hand at using 
one of the retailer sites and use shell to get the patterns to scrape the size, color, and 
price of different items. If you do this, you should be in a good shape to write your 
first industry standard spider.

In some cases, you want to crawl a website that needs you to log in before you  
can enter some parts of the website. Now, Scrapy has a workaround that too.  
They implemented FormRequest, which is more of a POST call to the HTTP server 
and gets the response. Let's have a deeper look into the following spider code:

>>>class LoginSpider(BaseSpider):

>>>    name = 'example.com'

>>>    start_URLss = ['http://www.example.com/users/login.php']

>>>    def parse(self, response):

>>>        return [FormRequest.from_response(response, 
formdata={'username': 'john', 'password': 'secret'}, callback=self.after_
login)]

>>>    def after_login(self, response):

>>>        # check login succeed before going on
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>>>       if "authentication failed" in response.body:

>>>            self.log("Login failed", level=log.ERROR)

>>>          return

For a website that requires just the username and password without any captcha, the 
preceding code should work just by adding the specific login details. This is the part 
of the parse method since you need to log in the first page in the most of the cases. 
Once you log in, you can write your own after_login callback method with items 
and other details.

The item pipeline
Let's talk about some more item postprocessing. Scrapy provides a way to define a 
pipeline for items as well, where you can define the kind of post processing an item 
has to go through. This is a very methodical and good program design.

We need to build our own item pipeline if we want to post process scraped items, 
such as removing noise and case conversion, and in other cases, where we want to 
derive some values from the object, for example, to calculate the age from DOB or 
to calculate the discount price from the original price. In the end, we might want to 
dump the item separately into a file.

The way to achieve this will be as follows:

1.	 We need to define an item pipeline in setting.py:
ITEM_PIPELINES = {

    'myproject.pipeline.CleanPipeline': 300,

    'myproject.pipeline.AgePipeline': 500,

    'myproject.pipeline.DuplicatesPipeline: 700,

    'myproject.pipeline.JsonWriterPipeline': 800,

}

2.	 Let's write a class to clean the items:
>>>from scrapy.exceptions import Item

>>>import datetime

>>>import datetime

>>>class AgePipeline(object):

>>>    def process_item(self, item, spider):

>>>        if item['DOB']:

>>>            item['Age'] = (datetime.datetime.
strptime(item['DOB'], '%d-%m-%y').date()-datetime.datetime.
strptime('currentdate, '%d-%m-%y').date()).days/365

>>>            return item
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3.	 We need to derive the age from DOB. We used Python's date functions to 
achieve this:
>>>from scrapy import signals

>>>from scrapy.exceptions import Item

>>>class DuplicatesPipeline(object):

>>>    def __init__(self):

>>>        self.ids_seen = set()

>>>    def process_item(self, item, spider):

>>>        if item['id'] in self.ids_seen:

>>>            raise DropItem("Duplicate item found: %s" % item)

>>>        else:

>>>            self.ids_seen.add(item['id'])

>>>            return item

4.	 We also need to remove the duplicates. Python has the set() data 
structure that only contains unique values, we can create a pipline 
DuplicatesPipeline.py like below using Scrapy :
>>>from scrapy import signals

>>>from scrapy.exceptions import Item

>>>class DuplicatesPipeline(object):

>>>    def __init__(self):

>>>        self.ids_seen = set()

>>>    def process_item(self, item, spider):

>>>        if item['id'] in self.ids_seen:

>>>            raise DropItem("Duplicate item found: %s" % item)

>>>        else:

>>>            self.ids_seen.add(item['id'])

>>>            return item

5.	 Let's finally write the item in the JSON file using JsonWriterPipeline.py 
pipeline:

>>>import json

>>>class JsonWriterPipeline(object):

>>>    def __init__(self):

>>>        self.file = open('items.txt', 'wb')

>>>    def process_item(self, item, spider):

>>>        line = json.dumps(dict(item)) + "\n"

>>>        self.file.write(line)

>>>        return item
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External references
I encourage you to follow some simple spiders and try building some cool 
applications using these spiders. I would also like you to look at the following links 
for reference:

•	 http://doc.scrapy.org/en/latest/intro/tutorial.html

•	 http://doc.scrapy.org/en/latest/intro/overview.html

Summary
In this chapter, you learned about another great Python library and now, you don't 
need help from anybody for your data needs. You learned how you can write a very 
sophisticated crawling system, and now you know how to write a focused spider. In 
this chapter, we saw how to abstract the item logic from the main system and how 
to write some specific spider for the most common use cases. We know some of the 
most common settings that need to be taken care of in order to implement our own 
spider and we wrote some complex parse methods that can be reused. We understand 
selectors very well and know a hands-on way of figuring out what kind of elements 
we want for specific item attributes, and we also went through Firebug to get more of 
a practical understanding of selectors. Last but not least, very importantly, make sure 
that you follow the security guidelines of the websites you crawl.

In the next chapter, we will explore some essential Python libraries that can be used 
for natural language processing and machine learning.

http://doc.scrapy.org/en/latest/intro/tutorial.html
http://doc.scrapy.org/en/latest/intro/overview.html
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Using NLTK with Other 
Python Libraries

In this chapter, we will explore some of the backbone libraries of Python for machine 
learning and natural language processing. Until now, we have used NLTK, Scikit, 
and genism, which had very abstract functions, and were very specific to the task in 
hand. Most of statistical NLP is heavily based on the vector space model, which in 
turn depends on basic linear algebra covered by NumPy. Also many NLP tasks, such 
as POS or NER tagging, are really classifiers in disguise. Some of the libraries we will 
discuss are heavily used in all these tasks.

The idea behind this chapter is to give you a quick overview of some the most 
fundamental Python libraries. This will help us understand more than just the data 
structure, design, and math behind some of the coolest libraries, such as NLTK and 
Scikit, which we have discussed in the previous chapters.

We will look at the following four libraries. I have tried to keep it short, but I highly 
encourage you to read in more detail about these libraries if you want Python to be a 
one-stop solution to most of your data science needs.

•	 NumPy (Numeric Python)
•	 SciPy (Scientific Python)
•	 Pandas (Data manipulation)
•	 Matplotlib (Visualization)
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NumPy
NumPy is a Python library for dealing with numerical operations, and it's really fast. 
NumPy provides some of the highly optimized data structures, such as ndarrays. 
NumPy has many functions specially designed and optimized to perform some 
of the most common numeric operations. This is one of the reasons NLTK, scikit-
learn, pandas, and other libraries use NumPy as a base to implement some of the 
algorithms. This section will give you a brief summary with running examples 
of NumPy. This will not just help us understand the fundamental data structures 
beneath NLTK and other libraries, but also give us the ability to customize some of 
these functionalities to our needs.

Let's start with discussion on ndarrays, how they can be used as matrices, and how 
easy and efficient it is to deal with matrices in NumPy.

ndarray
An ndarray is an array object that represents a multidimensional, homogeneous 
array of fixed-size items.

We will start with building an ndarray using an ordinary Python list:

>>>x=[1,2,5,7,3,11,14,25]

>>>import numpy as np

>>>np_arr=np.array(x)

>>>np_arr

As you can see, this is a linear 1D array. The real power of Numpy comes with 2D 
arrays. Let's move to 2D arrays. We will create one using a Python list of lists.

>>>arr=[[1,2],[13,4],[33,78]]

>>>np_2darr= np.array(arr)

>>>type(np_2darr)

numpy.ndarray
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Indexing
The ndarray is indexed more like Python containers. NumPy provides a slicing 
method to get different views of the ndarray.

>>>np_2darr.tolist()

[[1, 2], [13, 4], [33, 78]]

>>>np_2darr[:]

array([[1, 2], [13,  4], [33, 78]])

>>>np_2darr[:2]

array([[1, 2], [13, 4]])

>>>np_2darr[:1]

array([[1, 2]])

>>>np_2darr[2]

array([33, 78])

>>>    np_2darr[2][0]

>>>33

>>>    np_2darr[:-1]

array([[1, 2], [13, 4]])

Basic operations
NumPy also has some other operations that can be used in various numeric 
processing. In this example, we want to get an array with values ranging from 0 to 10 
with a step size of 0.1. This is typically required for any optimization routine. Some 
of the most common libraries, such as Scikit and NLTK, actually use these NumPy 
functions.

>>>>import numpy as np

>>>>np.arange(0.0, 1.0, 0.1)

array([ 0. ,  0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9,  1]
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We can do something like this, and generate a array with all ones and all zeros:

>>>np.ones([2, 4])

array([[1., 1., 1., 1.], [1., 1., 1., 1.]])

>>>np.zeros([3,4])

array([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]])

Wow!

If you have done higher school math, you know that we need all these matrixes to 
perform many algebraic operations. And guess what, most of the Python machine 
learning libraries also do that!

>>>np.linspace(0, 2, 10)

array([    0.,    0.22222222,    0.44444444,    0.66666667,    
0.88888889,    1.11111111,    1.33333333,    1.55555556,    1.77777778,    
2,    ])

The linespace function returns number samples which are evenly spaced, 
calculated over the interval from the start and end values. In the given example we 
were trying to get 10 sample in the range of 0 to 2.

Similarly, we can do this at the log scale. The function here is:

>>>np.logspace(0,1)

array([    1.,    1.04811313,    1.09854114,    1.1513954,    7.90604321,    
8.28642773,    8.68511374,    9.10298178,    9.54095476,    10.,    ])

You can still execute Python's help function to get more details about the parameter 
and the return values.

>>>help(np.logspace)

Help on function logspace in module NumPy.core.function_base:

logspace(start, stop, num=50, endpoint=True, base=10.0)

    Return numbers spaced evenly on a log scale.

    

    In linear space, the sequence starts at ``base ** start``

    (`base` to the power of `start`) and ends with ``base ** stop``
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    (see `endpoint` below).

    

    Parameters

    ----------

    start : float

So we have to provide the start and end and the number of samples we want on the 
scale; in this case, we also have to provide a base.

Extracting data from an array
We can do all sorts of manipulation and filtering on the ndarrays. Let's start with a 
new Ndarray, A:

>>>A = array([[0, 0, 0], [0, 1, 2], [0, 2, 4], [0, 3, 6]])

>>>B = np.array([n for n in range n for n in range(4)])

>>>B

array([0, 1, 2, 3])

We can do this kind of conditional operation, and it's very elegant. We can observe 
this in the following example:

>>>less_than_3 = B<3 # we are filtering the items that are less than 3.

>>>less_than_3

array([ True,  True,  True, False], dtype=bool)

>>>B[less_than_3]

array([0, 1, 2])

We can also assign a value to all these values, as follows:

>>>B[less_than_3] = 0

>>>: B

array([0, 0, 0, 3])
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There is a way to get the diagonal of the given matrix. Let's get the diagonal for our 
matrix A:

>>>np.diag(A)

array([0, 1, 4])

Complex matrix operations
One of the common matrix operations is element-wise multiplication, where we will 
multiply one element of a matrix by an element of another matrix. The shape of the 
resultant matrix will be same as the input matrix, for example:

>>>A = np.array([[1,2],[3,4]])

>>>A * A

array([[ 1,  4], [ 9, 16]])

However, we can't perform the following operation, which will throw an 
error when executed:
>>>A * B

----------------------------------------------------------
-----------------

ValueError Traceback (most recent call last)

<ipython-input-53-e2f71f566704> in <module>()

----> 1 A*B

ValueError: Operands could not be broadcast together with shapes (2,2) (4,).
Simply, the numbers of columns of the first operand have to match the 
number of rows in the second operand for matrix multiplication to work.

Let's do the dot product, which is the backbone of many optimization and algebraic 
operations. I still feel doing this in a traditional environment was not very efficient. 
Let's see how easy it is in NumPy, and how super-efficient it is in terms of memory.

>>>np.dot(A, A)

array([[ 7, 10], [15, 22]])
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We can do operations like add, subtract, and transpose, as shown in the following 
example:

>>>A - A

array([[0, 0], [0, 0]])

>>>A + A

array([[2, 4], [6, 8]])

>>>np.transpose(A)

array([[1, 3], [2, 4]])

>>>>A

array([[1, 2], [2, 3]])

The same transpose operations can be performed using an alternative operation, 
such as this:

>>>A.T

array([[1, 3], [2, 4]])

We can also cast these ndarrays into a matrix and perform matrix operations,  
as shown in the following example:

>>>M = np.matrix(A)

>>>M

matrix([[1, 2], [3, 4]])

>>> np.conjugate(M)

matrix([[1, 2], [3, 4]])

>>> np.invert(M)

matrix([[-2, -3], [-4, -5]])

We can perform all sorts of complex matrix operations with NumPy, and they are 
pretty simple to use too! Please have a look at documentation for more information 
on NumPy.
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Let's switch back to some of the common mathematics operations, such as min, max, 
mean, and standard deviation, for the given array elements. We have generated the 
normal distributed random numbers. Let's see how these things can be applied there:

>>>N = np.random.randn(1,10)

>>>N

array([[    0.59238571,    -0.22224549,    0.6753678,    0.48092087,    
-0.37402105,    -0.54067842,    0.11445297,    -0.02483442,    
-0.83847935,    0.03480181,    ]])

>>>N.mean()

-0.010232957191371551

>>>N.std()

0.47295594072935421

This was an example demonstrating how NumPy can be used to perform simple 
mathematic and algebraic operations of finding out the mean and standard deviation 
of a set of numbers.

Reshaping and stacking
In case of some of the numeric, algebraic operations we do need to change the shape 
of resultant matrix based on the input matrices. NumPy has some of the easiest ways 
of reshaping and stacking the matrix in whichever way you want.

>>>A

array([[1, 2], [3, 4]])

If we want a flat matrix, we just need to reshape it using NumPy's reshape() 
function:

>>>>(r, c) = A.shape  # r is rows and c is columns

>>>>r,c

(2L, 2L)

>>>>A.reshape((1, r * c))

array([[1, 2, 3, 4]])

This kind of reshaping is required in many algebraic operations. To flatten the 
ndarray, we can use the flatten() function:

>>>A.flatten()

array([1, 2, 3, 4])
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There is a function to repeat the same elements of the given array. We need to just 
specify the number of times we want the element to repeat. To repeat the ndarray, 
we can use the repeat() function:

>>>np.repeat(A, 2)

array([1, 1, 2, 2, 3, 3, 4, 4])

>>>>A

array([[1, 2],[3, 4]])

In the preceding example, each element is repeated twice in sequence. A similar 
function known as tile() is used for for repeating the matrix, and is shown here:

>>>np.tile(A, 4)

array([[1, 2, 1, 2, 1, 2, 1, 2], [3, 4, 3, 4, 3, 4, 3, 4]])

There are also ways to add a row or a column to the matrix. If we want to add a row, 
we use the concatenate() function shown here:

>>>B = np.array([[5, 6]])

>>>np.concatenate((A, B), axis=0)

array([[1, 2], [3, 4], [5, 6]])

This can also be achieved using the Vstack() function shown here:

>>>np.vstack((A, B))

array([[1, 2], [3, 4], [5, 6]])

Also, if you want to add a column, you can use the concatenate() function in the 
following manner:

>>>np.concatenate((A, B.T), axis=1)

array([[1, 2, 5], [3, 4, 6]])

Alternatively, the hstack() function can be used to add columns. This 
is used very similarly to the vstack() function in the example shown 
above.
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Random numbers
Random number generation is also used across many tasks involving NLP and 
machine learning tasks. Let's see how easy it is to get a random sample:

>>>from numpy import random

>>>#uniform random number from [0,1]

>>>random.rand(2, 5)

array([[ 0.82787406, 0.21619509, 0.24551583, 0.91357419, 0.39644969], [ 
0.91684427, 0.34859763, 0.87096617, 0.31916835, 0.09999382]])

There is one more function called random.randn(), which generates normally 
distributed random numbers in the given range. So, in the following example, we 
want random numbers between 2 and 5.

>>>>random.randn(2, 5)

array([[-0.59998393, -0.98022613, -0.52050449, 0.73075943, -0.62518516], 
[ 1.00288355, -0.89613323,  0.59240039, -0.89803825, 0.11106479]])

This is achieved by using the function random.randn(2,5).

SciPy
Scientific Python or SciPy is a framework built on top of NumPy and ndarray and 
was essentially developed for advanced scientific operations such as optimization, 
integration, algebraic operations, and Fourier transforms.

The concept was to efficiently use ndarrays to provide some of these common 
scientific algorithms in a memory-efficient manner. Because of NumPy and SciPy, we 
are in a state where we can focus on writing libraries such as scikit-learn and NLTK, 
which focus on domain-specific problems, while NumPy / SciPy do the heavy 
lifting for us. We will give you a brief overview of the data structures and common 
operations provided in SciPy. We get the details of some of the black-box libraries, 
such as scikit-learn and understand what goes on behind the scenes.

>>>import scipy as sp

This is how you import SciPy. I am using sp as an alias but you can import 
everything.
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Let's start with something we are more familiar with. Let's see how integration can 
be achieved here, using the quad() function.

>>>from scipy.integrate import quad, dblquad, tplquad

>>>def f(x):

>>>     return x

>>>x_lower == 0 # the lower limit of x

>>>x_upper == 1 # the upper limit of x

>>>val, abserr = = quad(f, x_lower, x_upper)

>>>print val,abserr

>>> 0.5 , 5.55111512313e-15

If we integrate the x, it will be x2/2, which is 0.5. There are other scientific functions, 
such as these:

•	 Interpolation (scipy.interpolate)
•	 Fourier transforms (scipy.fftpack)
•	 Signal processing (scipy.signal)

But we will focus on only linear algebra and optimization because these are more 
relevant in the context of machine learning and NLP.

Linear algebra
The linear algebra module contains a lot of matrix-related functions. Probably the 
best contribution of SciPy is sparse matrix (CSR matrix), which is used heavily in 
other packages for manipulation of matrices.

SciPy provides one of the best ways of storing sparse matrices and doing data 
manipulation on them. It also provides some of the common operations, such as 
linear equation solving. It has a great way of solving eigenvalues and eigenvectors, 
matrix functions (for example, matrix exponentiation), and more complex operations 
such as decompositions (SVD). Some of these are the behind-the-scenes optimization 
in our ML routines. For example, SVD is the simplest form of LDA (topic modeling) 
that we used in Chapter 6, Text Classification.
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The following is an example showing how the linear algebra module can be used:

>>>A = = sp.rand(2, 2)

>>>B = = sp.rand(2, 2)

>>>import Scipy

>>>X = = solve(A, B)

>>>from Scipy import linalg as LA

>>>X = = LA.solve(A, B)

>>>LA.dot(A, B)

Detailed documentation is available at http://
docs.scipy.org/doc/scipy/reference/linalg.html.

eigenvalues and eigenvectors
In some of the NLP and machine learning applications, we represent the documents 
as term document matrices. Eigenvalues and eigenvectors are typically calculated 
for many different mathematical formulations. Say A is our matrix, and there exists a 
vector v such that Av=λv.

In this case, λ will be our eigenvalue and v will be our eigenvector. One of the most 
commonly used operation, the singular value decomposition (SVD)will require 
some calculus functionality. It's quite simple to achieve this in SciPy.

>>>evals = LA.eigvals(A)

>>>evals

array([-0.32153198+0.j, 1.40510412+0.j])

And eigen vectors are as follows:

>>>evals, evect = LA.eig(A)

We can perform other matrix operations, such as inverse, transpose, 
and determinant:

>>>LA.inv(A)

array([[-1.24454719, 1.97474827], [ 1.84807676, -1.15387236]])

>>>LA.det(A)

-0.4517859060209965

http://docs.scipy.org/doc/scipy/reference/linalg.html
http://docs.scipy.org/doc/scipy/reference/linalg.html
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The sparse matrix
In a real-world scenario, when we use a typical matrix, most of the elements of this 
matrix are zeroes. It is highly inefficient to go over all these non-zero elements for 
any matrix operation. As a solution to this kind of problem, a sparse matrix format 
has been introduced, with the simple idea of storing only non-zero items.

A matrix in which most of the elements are non-zeroes is called a dense matrix,  
and the matrix in which most of the elements are zeroes is called a sparse matrix.

A matrix is typically a 2D array with an index of row and column will provide 
the value of the element. Now there are different ways in which we can store  
sparse matrices:

• DOK (Dictionary of keys): Here, we store the dictionary with keys in the
format (row, col) and the values are stored as dictionary values.

• LOL (list of list): Here, we provide one list per row, with only an index of
the non-zero elements.

• COL (Coordinate list): Here, a list (row, col, value) is stored as a list.
• CRS/CSR (Compressed row Storage): A CSR matrix reads values first by

column; a row index is stored for each value, and column pointers are stored
(val, row_ind, col_ptr). Here, val is an array of the non-zero values of the
matrix, row_ind represents the row indices corresponding to the values, and
col_ptr is the list of val indexes where each column starts. The name is based
on the fact that column index information is compressed relative to the COO
format. This format is efficient for arithmetic operations, column slicing, and
matrix-vector products.

See http://docs.scipy.org/doc/scipy-0.15.1/
reference/generated/scipy.sparse.csr_matrix.html 
for more information.

• CSC (sparse column): This is similar to CSR, except that the values are read
first by column; a row index is stored for each value, and column pointers are
stored. In otherwords, CSC is (val, row_ind, col_ptr).

Have a look at the documentation at:
http://docs.scipy.org/doc/scipy-0.15.1/reference/
generated/scipy.sparse.csc_matrix.html

http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csr_matrix.html
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csr_matrix.html
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csc_matrix.html
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csc_matrix.html
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Let's have some hands-on experience with CSR matrix manipulation. We have a 
sparse matrix A:

>>>from scipy import sparse as s

>>>A = array([[1,0,0],[0,2,0],[0,0,3]])

>>>A

array([[1, 0, 0], [0, 2, 0], [0, 0, 3]])

>>>from scipy import sparse as sp

>>>C = = sp.csr_matrix(A);

>>>C

<3x3 sparse matrix of type '<type 'NumPy.int32'>'

    with 3 stored elements in Compressed Sparse Row format>

If you read very carefully, the CSR matrix stored just three elements. Let's see what it 
stored:

>>>C.toarray()

array([[1, 0, 0], [0, 2, 0], [0, 0, 3]])

>>>C * C.todense()

matrix([[1, 0, 0], [0, 4, 0], [0, 0, 9]])

This is exactly what we are looking for. Without going over all the zeroes, we still got 
the same results with the CSR matrix.

>>>dot(C, C).todense()

Optimization
I hope you understand that every time we have built a classifier or a tagger in the 
background, all these are some sort of optimization routine. Let's have some basic 
understanding about the function provided in SciPy. We will start with getting a 
minima of the given polynomial. Let's jump to one of the example snippets of the 
optimization routine provided by SciPy.

>>>def f(x):

>>>    returnx         return x**2-4

>>>optimize.fmin_bfgs(f,0)

Optimization terminated successfully.

         Current function value: -4.000000

         Iterations: 0
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         Function evaluations: 3

         Gradient evaluations: 1

array([0])

Here, the first argument is the function you want the minima of, and the second is 
the initial guess for the minima. In this example, we already knew that zero will be 
the minima. To get more details, use the function help(), as shown here:

>>>help(optimize.fmin_bfgs)

Help on function fmin_bfgs in module Scipy.optimize.optimize:

fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-05, norm=inf, 
epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1, 
retall=0, callback=None)

    Minimize a function using the BFGS algorithm.

    

    Parameters

    ----------

    f : callable f(x,*args)

        Objective function to be minimized.

    x0 : ndarray

        Initial guess.

>>>from scipy import optimize

             optimize.fsolve(f, 0.2)

array([ 0.46943096])

>>>def f1 def f1(x,y):

>>>    return x ** 2+  y ** 2 - 4

>>>optimize.fsolve(f1, 0, 0)

array([ 0.])

To summarize, we now have enough knowledge about SciPy's most basic data 
structures, and some of the most common optimization techniques. The intention 
was to motivate you to not just run black-box machine learning or natural language 
processing, but to go beyond that and get the mathematical context about the 
ML algorithms you are using and also have a look at the source code and try to 
understand it.

Implementing this will not just help your understanding about the algorithm, but 
also allow you to optimize/customize the implementation to your need.
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pandas
Let's talk about pandas, which is one of the most exciting Python libraries, especially 
for people who love R and want to play around with the data in a more vectorized 
manner. We will devote this part of the chapter only to pandas; we will discuss some 
basic data manipulation and handling in pandas frames.

Reading data
Let's start with one of the most important tasks in any data analysis to parse the data 
from a CSV/other file.

I am using https://archive.ics.uci.edu/ml/machine-
learning-databases/adult/adult.data

https://archive.ics.uci.edu/ml/machine-learning-
databases/iris/iris.names

Feel free to use any other CSV file.

To begin, please download the data to your local storage from the preceding links, 
and load it into a pandas data-frame, as shown here:

>>>import pandas as pd

>>># Please provide the absolute path of the input file

>>>data = pd.read_csv("PATH\\iris.data.txt",header=0")

>>>data.head()

4.9 3.0 1.4 0.2 Iris-setosa
0 4.7 3.2 1.3 0.2 Iris-setosa
1 4.6 3.1 1.5 0.2 Iris-setosa
2 5.0 3.6 1.4 0.2 Iris-setosa

This will read a CSV file and store it in a DataFrame. Now, there are many options 
you have while reading a CSV file. One of the problems is that we read the first line 
of the data in this DataFrame as a header; to use the actual header, we need to set 
the option header to None, and pass a list of names as column names. If we already 
have the header in perfect form in the CSV, we don't need to worry about the header 
as pandas, by default, assumes the first line to be the header. The header 0 in the 
preceding code is actually the row number that will be treated as the header.

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.names
https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data
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So let's use the same data, and add the header into the frame:

>>>data = pd.read_csv("PATH\\iris.data.txt", names=["sepal length", 
"sepal width", "petal length", "petal width", "Cat"], header=None)

>>>data.head()

sepal length sepal width petal length petal width Cat
0 4.9 3.0 1.4 0.2 Iris-setosa
1 4.7 3.2 1.3 0.2 Iris-setosa
2 4.6 3.1 1.5 0.2 Iris-setosa

This has created temporary column names for the frame so that, in case you have 
headers in the file as a first row, you can drop the header option, and pandas will 
detect the first row of the file as the header. The other common options are Sep/
Delimiter, where you want to specify the delimiter used to separate the columns. 
There are at least 20 different options available, which can be used to optimize the 
way we read and cleanse our data, for example removing Na's, removing blank lines, 
and indexing based on the specific column. Please have a look at the different type of 
files:

•	 read_csv: reading a CSV file.
•	 read_excel: reading a XLS file.
•	 read_hdf: reading a HDFS file.
•	 read_sql: reading a SQL file.
•	 read_json: reading a JSON file.

These can be the substitutes for all the different parsing methods we discussed in 
Chapter 2, Text Wrangling and Cleansing. The same numbers of options are available to 
write files too.

Now let's see the power of pandas frames. If you are an R programmer, you would 
love to see the summary and header option we have in R.

>>>data.describe()
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The describe() function will give you a brief summary of each column and the 
unique values.

>>>sepal_len_cnt=data['sepal length'].value_counts()

>>>sepal_len_cnt

5.0    10

6.3     9

6.7     8

5.7     8

5.1     8

dtype: int64

>>>data['Iris-setosa'].value_counts()

Iris-versicolor    50

Iris-virginica     50

Iris-setosa        48

dtype: int64

Again for R lovers, we are now dealing with vectors, so that we can look for each 
value of the column by using something like this:

>>>data['Iris-setosa'] == 'Iris-setosa'

0     True

1     True

147    False

148    False

Name: Iris-setosa, Length: 149, dtype: bool

Now we can filter the DataFrame in place. Here the setosa will have only entries 
related to Iris-setosa.

>>>sntsosa=data[data['Cat'] == 'Iris-setosa']

>>>sntsosa[:5]

This is our typical SQL Group By function. We have all kinds of aggregate functions 
as well.
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You can browse through the following link to look at Dow Jones data:
https://archive.ics.uci.edu/ml/machine-learning-
databases/00312/

Series data
Pandas also have a neat way of indexing by date, and then using the frame for all 
sorts of time series kind of analysis. The best part is that once we have indexed the 
data by date some of the most painful operations on the dates will be a command 
away from us. Let's take a look at series data, such as stock price data for a few 
stocks, and how the values of the opening and closing stock change weekly.

>>>import pandas as pd

>>>stockdata = pd.read_csv("dow_jones_index.data",parse_dates=['date'], 
index_col=['date'], nrows=100)

>>>>stockdata.head()

date quarter stock open high low close volume percent_
change_
price

01/07/2011 1 AA $15.82 $16.72 $15.78 $16.42 239655616 3.79267
01/14/2011 1 AA $16.71 $16.71 $15.64 $15.97 242963398 -4.42849
01/21/2011 1 AA $16.19 $16.38 $15.60 $15.79 138428495 -2.47066

>>>max(stockdata['volume'])

   1453438639

>>>max(stockdata['percent_change_price'])

   7.6217399999999991

>>>stockdata.index

<class 'pandas.tseries.index.DatetimeIndex'>

[2011-01-07, ..., 2011-01-28]

Length: 100, Freq: None, Timezone: None

>>>stockdata.index.day

array([ 7, 14, 21, 28, 4, 11, 18, 25, 4, 11, 18, 25, 7, 14, 21, 28, 4,11, 
18, 25, 4, 11, 18, 25, 7, 14, 21, 28, 4])

The preceding command gives the day of the week for each date.

>>>stockdata.index.month

https://archive.ics.uci.edu/ml/machine-learning-databases/00312/
https://archive.ics.uci.edu/ml/machine-learning-databases/00312/
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The preceding command lists different values by month.

>>>stockdata.index.year

The preceding command lists different values by year.

You can aggregate the data using a resample with whatever aggregation you want.  
It could be sum, mean, median, min, or max.

>>>import numpy as np

>>>stockdata.resample('M', how=np.sum)

Column transformation
Say we want to filter out columns or to add a column. We can achieve this by just 
by providing a list of columns as an argument to axis 1. We can drop the columns 
from a data frame like this:

>>>stockdata.drop(["percent_change_volume_over_last_wk"],axis=1)

Let's filter out some of the unwanted columns, and work with a limited set of 
columns. We can create a new DataFrame like this:

>>>stockdata_new = pd.DataFrame(stockdata, columns=["stock","open","high"
,"low","close","volume"])

>>>stockdata_new.head()

We can also run R-like operations on the columns. Say I want to rename the columns. 
I can do something like this:

>>>stockdata["previous_weeks_volume"] = 0

This will change all the values in the column to 0. We can do it conditionally and 
create derived variables in place.

Noisy data
A typical day in the life of a data scientist starts with data cleaning. Removing noise, 
cleaning unwanted files, making sure that date formats are correct, ignoring noisy 
records, and dealing with missing values. Typically, the biggest chunk of time is 
spent on data cleansing rather than on any other activity.
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In a real-world scenario, the data is messy in most cases, and we have to deal with 
missing values, null values, Na's, and other formatting issues. So one of the major 
features of any data library is to deal with all these problems and address them in 
an efficient way. pandas provide some amazing features to deal with some of these 
problems.

>>>stockdata.head()

>>>stockdata.dropna().head(2)

Using the preceding command we get rid of all the Na's from our data.

date quarter Stock open high low close volume percent_
change_
price

01/14/2011 1 AA $16.71 $16.71 $15.64 $15.97 242963398 -4.42849
01/21/2011 1 AA $16.19 $16.38 $15.60 $15.79 138428495 -2.47066
01/28/2011 1 AA $15.87 $16.63 $15.82 $16.13 151379173 1.63831

You also noticed that we have a $ symbol in front of the value, which makes the 
numeric operation hard. Let's get rid of that, as it will give us noisy results otherwise 
(for example. $43.86 is not among the top values here).

>>>import numpy

>>>stockdata_new.open.describe()

count        100

unique        99

top        $43.86

freq        2

Name: open, dtype: object

We can perform some operations on two columns, and derive a new variable out of 
this:

>>>stockdata_new.open = stockdata_new.open.str.replace('$', '').convert_
objects(convert_numeric=True)

>>>stockdata_new.close = stockdata_new.close.str.replace('$', '').
convert_objects(convert_numeric=True)

>>>(stockdata_new.close - stockdata_new.open).convert_objects(convert_
numeric=True)
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>>>stockdata_new.open.describe()

count    100.000000

mean      51.286800

std       32.154889

min       13.710000

25%       17.705000

50%       46.040000

75%       72.527500

max      106.900000

Name: open, dtype: float64

We can also perform some arithmetic operations, and create new variables out of it.

>>>stockdata_new['newopen'] = stockdata_new.open.apply(lambda x: 0.8 * x)

>>>stockdata_new.newopen.head(5)

We can filter the data on the value of a column in this way too. For example, let's 
filter out a dataset for one of the companies among all those that we have the stock 
values for.

>>>stockAA = stockdata_new.query('stock=="AA"')

>>>stockAA.head()

To summarize, we have seen some useful functions related to data reading, cleaning, 
manipulation, and aggregation in this section of pandas. In the next section, will try 
to use some of these data frames to generate visualization out of this data.

matplotlib
matplotlib is a very popular visualization library written in Python. We will cover 
some of the most commonly used visualizations. Let's start by importing the library:

>>>import matplotlib

>>>import matplotlib.pyplot as plt

>>>import numpy
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We will use the same running data set from the Dow Jones index for some of the 
visualizations now. We already have stock data for company "AA". Let's make one 
more frame for a new company CSCO, and plot some of these:

>>>stockCSCO = stockdata_new.query('stock=="CSCO"')

>>>stockCSCO.head()

>>>from matplotlib import figure

>>>plt.figure()

>>>plt.scatter(stockdata_new.index.date,stockdata_new.volume)

>>>plt.xlabel('day') # added the name of the x axis

>>>plt.ylabel('stock close value') # add label to y-axis

>>>plt.title('title') # add the title to your graph

>>>plt.savefig("matplot1.jpg")  # savefig in local

You can also save the figure as a JPEG/PNG file. This can be done using the 
savefig() function shown here:

>>>plt.savefig("matplot1.jpg")

Subplot
Subplot is the best way to layout your plots. This works as a canvas, where we can 
add not just one plot but multiple plots. In this example, we have tried to put four 
plots with the parameters numrow, numcol which will define the canvas and the 
next argument in the plot number.

>>>plt.subplot(2, 2, 1)

>>>plt.plot(stockAA.index.weekofyear, stockAA.open, 'r--')

>>>plt.subplot(2, 2, 2)

>>>plt.plot(stockCSCO.index.weekofyear, stockCSCO.open, 'g-*')

>>>plt.subplot(2, 2, 3)

>>>plt.plot(stockAA.index.weekofyear, stockAA.open, 'g--')

>>>plt.subplot(2, 2, 4)

>>>plt.plot(stockCSCO.index.weekofyear, stockCSCO.open, 'r-*')

>>>plt.subplot(2, 2, 3)
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>>>plt.plot(x, y, 'g--')

>>>plt.subplot(2, 2, 4)

>>>plt.plot(x, y, 'r-*')

>>>fig.savefig("matplot2.png")

We can do something more elegant for plotting many plots at one go!

>>>fig, axes = plt.subplots(nrows=1, ncols=2)

>>>for ax in axes:

>>>     ax.plot(x, y, 'r')

>>>     ax.set_xlabel('x')

>>>     ax.set_ylabel('y')

>>>     ax.set_title('title');

As you case see, there are ways to code a lot more like in typical Python to handle 
different aspects of the plots you want to achieve.
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Adding an axis
We can add an axis to the figure by using addaxis(). By adding an axis to the figure, 
we can define our own drawing area. addaxis() takes the following arguments:

*rect* [*left*, *bottom*, *width*, *height*]

>>>fig = plt.figure()

>>>axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, 
height (range 0 to 1)

>>>axes.plot(x, y, 'r')

Let' plot some of the most commonly used type of plots. The great thing is that most 
of the parameters, such as title and label, still work in the same way. Only the kind of 
plot will change.

If you want to add an x label, a y label, and a title with the axis; the commands are as 
follows:

>>>fig = plt.figure()

>>>ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])

>>>ax.plot(stockAA.index.weekofyear,stockAA.open,label="AA")

>>>ax.plot(stockAA.index.weekofyear,stockCSCO.open,label="CSCO")

>>>ax.set_xlabel('weekofyear')

>>>ax.set_ylabel('stock value')

>>>ax.set_title('Weekly change in stock price')

>>>ax.legend(loc=2); # upper left corner

>>>plt.savefig("matplot3.jpg")

Try writing the preceding code and observe the output!
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A scatter plot
One of the simplest forms of plotting is to plot the y-axis point for different x-axis 
values. In the following example, we have tried to capture the variation of the stock 
price weekly in a scatter plot:

>>>import matplotlib.pyplot as plt

>>>plt.scatter(stockAA.index.weekofyear,stockAA.open)

>>>plt.savefig("matplot4.jpg")

>>>plt.close()

A bar plot
Intuitively, the distribution of the y axis is shown against the x axis in the following 
bar chart. In the following example, we have used a bar plot to display data on a 
graph.

>>>n = 12

>>>X = np.arange(n)

>>>Y1 = np.random.uniform(0.5, 1.0, n)

>>>Y2 = np.random.uniform(0.5, 1.0, n)

>>>plt.bar(X, +Y1, facecolor='#9999ff', edgecolor='white')

>>>plt.bar(X, -Y2, facecolor='#ff9999', edgecolor='white')

3D plots
We can also build some spectacular 3D visualizations in matplotlib. The following 
example shows how one can create a 3D plot using matplotlib:

>>>from mpl_toolkits.mplot3d import Axes3D

>>>fig = plt.figure()

>>>ax = Axes3D(fig)

>>>X = np.arange(-4, 4, 0.25)

>>>Y = np.arange(-4, 4, 0.25)

>>>X, Y = np.meshgrid(X, Y)

>>>R = np.sqrt(X**2+ + Y**2)

>>>Z = np.sin(R)

>>>ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')
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External references
I like to encourage readers to go over some of the following links for more details 
about the individual libraries, and for more resources:

•	 http://www.NumPy.org/

•	 http://www.Scipy.org/

•	 http://pandas.pydata.org/

•	 http://matplotlib.org/

Summary
This chapter was a brief summary of some of the most fundamental libraries of 
Python that do a lot of heavy lifting for us when we deal with text and other data. 
NumPy helps us in dealing with numeric operations and the kind of data structure 
required for some of these. SciPy has many scientific operations that are used in 
various Python libraries. We learned how to use these functions and data structures.

We have also touched upon pandas, which is a very efficient library for data 
manipulation, and has been getting a lot of mileage in recent times. Finally, we gave 
you a quick view of one of Python's most commonly used visualization libraries, 
matplotlib.

In the next chapter, we will focus on social media. We will see how to capture data 
from some of the common social networks and produce meaningful insights around 
social media.

http://www.Scipy.org/
http://pandas.pydata.org/
http://matplotlib.org/
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Social Media Mining  
in Python

This chapter is all about social media. Though it's not directly related to NLTK / 
NLP, social data is also a very rich source of unstructured text data. So, as NLP 
enthusiasts, we should have the skill to play with social data. We will try to explore 
how to gather relevant data from some of the most popular social media platforms. 
We will cover how to gather data from Twitter, Facebook, and so on using Python 
APIs. We will explore some of the most common use cases in the context of social 
media mining, such as trending topics, sentiment analysis, and so on.

You already learned a lot of topics under the concepts of natural language processing 
and machine learning in the last few chapters. We will try to build some of the 
applications around social data in this chapter. We will also provide you with some 
of the best practices to deal with social data, and look at social data from the context 
of graph visualization.

There is a graph that underlies social media and most of the graph-based problems 
can be formulated as information flow problems and finding out the busiest node 
in the graph. Some of the problems such as trending topics, influencer detection, 
and sentiment analysis are examples of these. Let's take some of these use cases, and 
build some cool applications around these social networks.

By the end of this chapter,:

•	 You should be able to collect data from any social media using APIs. 
•	 You will also learn to formulate the data in a structured format and how to 

build some amazing applications. 
•	 Lastly, we will be able to visualize and gain meaningful insight out of social 

media.
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Data collection
The most important objective of this chapter is to gather data across some of the 
most common social networks. We will look mainly at Twitter and Facebook and 
try to give you enough details about the API and how to effectively use them to get 
relevant data. We will also talk about the data dictionary for scrapped data, and how 
we can build some cool apps using some of the stuff we learned so far.

Twitter
We will start with one of the most popular and open social media that is completely 
public. This means that practically, you can gather entire Twitter stream, which is 
payable, while you can capture one percent of the stream for free. In the context of 
business, Twitter is a very rich resource of information such as public sentiments and 
emerging topics.

Let's get directly to face the main challenge of getting the tweets relevant to your use 
case.

The following is the repository of many Twitter libraries. These libraries 
are not verified by Twitter, but run on the Twitter API.
https://dev.twitter.com/overview/api/twitter-
libraries

There are more than 10 Python libraries there. So pick and choose the one you like. I 
generally use Tweepy and we will use it to run the examples in this book. Most of the 
libraries are wrappers around the Twitter API, and the parameters and signatures of 
all these are roughly the same.

The simplest way to install Tweepy is to install it using pip:

$ pip install tweepy

The hard way is to build it from source. The GitHub link to Tweepy is:
https://github.com/tweepy/tweepy.

To get Tweepy to work, you have to create a developer account with Twitter and 
get the access tokens for your application. Once you complete this, you will get your 
credentials and below these, the keys. Go through https://apps.twitter.com/
app/new for registration and access tokens. The following snapshot shows the access 
tokens:

https://dev.twitter.com/overview/api/twitter-libraries
https://dev.twitter.com/overview/api/twitter-libraries
https://github.com/tweepy/tweepy
https://apps.twitter.com/app/new
https://apps.twitter.com/app/new
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We will start with a very simple example to gather data using Twitter's streaming 
API. We are using Tweepy to capture the Twitter stream to gather all the tweets 
related to the given keywords:

tweetdump.py

>>>from tweepy.streaming import StreamListener

>>>from tweepy import OAuthHandler

>>>from tweepy import Stream

>>>import sys

>>>consumer_key = 'ABCD012XXXXXXXXx'

>>>consumer_secret = 'xyz123xxxxxxxxxxxxx'

>>>access_token = '000000-ABCDXXXXXXXXXXX'

>>>access_token_secret ='XXXXXXXXXgaw2KYz0VcqCO0F3U4'

>>>class StdOutListener(StreamListener):

>>>    def on_data(self, data):

>>>        with open(sys.argv[1],'a') as tf:

>>>            tf.write(data)

>>>        return
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>>>    def on_error(self, status):

>>>        print(status)

>>>if __name__ == '__main__':

>>>    l = StdOutListener()

>>>    auth = OAuthHandler(consumer_key, consumer_secret)

>>>    auth.set_access_token(access_token, access_token_secret)

>>>    stream = Stream(auth, l)

>>>    stream.filter(track=['Apple watch'])

In the preceding code, we used the same code given in the example of Tweepy, with 
a little modification. This is an example where we use the streaming API of Twitter, 
where we track Apple Watch. Twitter's streaming API provides you the facility of 
conducting a search on the actual Twitter stream and you can consume a maximum 
of one percent of the stream using this API.

In the preceding code, the main parts that you need to understand are the first and 
last four lines. In the initial lines, we are specifying the access tokens and other keys 
that we generated in the previous section. In the last four lines, we create a listener 
to consume the stream. In the last line, we use stream.filter to filter Twitter for 
keywords that we have put in the track. We can specify multiple keywords here. 
This will result in all the tweets that contain the term Apple Watch for our running 
example.

In the following example, we will load the tweets we have collected, and have a look 
at the tweet structure and how to extract meaningful information from it. A typical 
tweet JSON structure looks similar to:

{

"created_at":"Wed May 13 04:51:24 +0000 2015",

"id":598349803924369408,

"id_str":"598349803924369408",

"text":"Google launches its first Apple Watch app with News & Weather 
http:\/\/t.co\/o1XMBmhnH2",

"source":"\u003ca href=\"http:\/\/ifttt.com\" rel=\"nofollow\"\
u003eIFTTT\u003c\/a\u003e",

"truncated":false,

"in_reply_to_status_id":null,

"user":{

"id":1461337266,

"id_str":"1461337266",
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"name":"vestihitech \u0430\u0432\u0442\u043e\u043c\u0430\u0442",

"screen_name":"vestihitecha",

"location":"",

"followers_count":20,

"friends_count":1,

"listed_count":4,

""statuses_count":7442,

"created_at":"Mon May 27 05:51:27 +0000 2013",

"utc_offset":14400,

},

,

"geo":{ "latitude" : 51.4514285, "longitude"=-0.99

}

"place":"Reading, UK",

"contributors":null,

"retweet_count":0,

"favorite_count":0,

"entities":{

"hashtags":["apple watch", "google"

],

"trends":[

],

"urls":[

{

"url":"http:\/\/t.co\/o1XMBmhnH2",

"expanded_url":"http:\/\/ift.tt\/1HfqhCe",

"display_url":"ift.tt\/1HfqhCe",

"indices":[

66,

88

]

}

],

"user_mentions":[

],

"symbols":[
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]

},

"favorited":false,

"retweeted":false,

"possibly_sensitive":false,

"filter_level":"low",

"lang":"en",

"timestamp_ms":"1431492684714"

}

]

Data extraction
Some of the most commonly used fields of interest in data extraction are:

•	 text: This is the content of the tweet provided by the user
•	 user: These are some of the main attributes about the user, such as 

username, location, and photos
•	 Place: This is where the tweets are posted, and also the geo coordinates
•	 Entities: Effectively, these are the hashtags and topics that a user attaches 

to his / her tweets

Every attribute in the previous figure can be a good use case for some of the social 
mining exercises done in practice. Let's jump onto the topic of how we can get to 
these attributes and convert them to a more readable form, or how we can process 
some of these:

Source: tweetinfo.py

>>>import json

>>>import sys

>>>tweets = json.loads(open(sys.argv[1]).read())

>>>tweet_texts = [ tweet['text']\

                               for tweet in tweets ]

>>>tweet_source = [tweet ['source'] for tweet in tweets]

>>>tweet_geo = [tweet['geo'] for tweet in tweets]
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>>>tweet_locations = [tweet['place'] for tweet in tweets]

>>>hashtags = [ hashtag['text'] for tweet in tweets for hashtag in 
tweet['entities']['hashtags'] ]

>>>print tweet_texts

>>>print tweet_locations

>>>print tweet_geo

>>>print hashtags

The output of the preceding code will give you, as expected, four lists in which all 
the tweet content is in tweet_texts and the location of the tweets and hashtags.

In the code, we are just loading a JSON output generated using json.
loads(). I would recommend you to use an online tool such as Json 
Parser (http://json.parser.online.fr/) to get an idea of what 
your JSON looks like and what are its attributes (key and value).

Next, if you look, there are different levels in the JSON, where some of the attributes 
such as text have a direct value, while some of them have more nested information. 
This is the reason you see, where when we are looking at hashtags, we have to iterate 
one more level, while in case of text, we just fetch the values. Since our file actually 
has a list of tweets, we have to iterate that list to get all the tweets, while each tweet 
object will look like the example tweet structure.

Trending topics
Now, if we look for trending topics in this kind of a setup. One of the simplest ways 
to find them could be to look for frequency distribution of words across tweets. We 
already have a list of tweet_text that contains the tweets:

>>>import nltk

>>>from nltk import word_tokenize,sent_tokenize

>>>from nltk import FreqDist

>>>tweets_tokens = []

>>>for tweet in tweet_text:

>>>    tweets_tokens.append(word_tokenize(tweet))

http://json.parser.online.fr/
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>>>Topic_distribution = nltk.FreqDist(tweets_tokens)

>>>Freq_dist_nltk.plot(50, cumulative=False)

One other more complex way of doing this could be the use of the part of speech 
tagger that you learned in Chapter 3, Part of Speech Tagging. The theory is that most of 
the time, topics will be nouns or entities. So, the same exercise can be done like this. 
In the preceding code, we read every tweet and tokenize it, and then use POS as a 
filter to only select nouns as topics:

>>>import nltk

>>>Topics = []

>>>for tweet in tweet_text:

>>>    tagged = nltk.pos_tag(word_tokenize(tweet))

>>>    Topics_token = [word for word,pos in ] in tagged if pos in 
['NN','NNP']

>>>    print Topics_token

If we want to see a much cooler example, we can gather tweets across time and then 
generate plots. This will give us a very clear idea of the trending topics. For example, 
the data we are looking for is "Apple Watch". This word should peak on the day 
when Apple launched Apple Watch and the day they started selling it. However, 
it will be interesting to see what kind of topics emerged apart from those, and how 
they trended over time.

Geovisualization
One of the other common application of social media is geo-based visualization. In 
the tweet structure, we saw attributes named geo, longitude, and latitude. Once you 
have access to these values, it is very easy to use some of the common visualization 
libraries, such as D3, to come up with something like this:
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This is just an example of what we can achieve with these kind of visualizations; this 
was the visualization of a tweet in the U.S. We can clearly see the areas of increased 
intensity in eastern places such as New York. Now, a similar analysis done by a 
company on the customers can give a clear insight about which are some of the 
most popular places liked by our customer base. We can text mine these tweets for 
sentiment, and then we can infer insights about customers as to in which states they 
are not happy with the company and so on.

Influencers detection
Detection of important nodes in the social graph that has a lot of importance is 
another great problem in the context of social graphs. So, if we have millions of 
tweets streaming about our company, then one important use case would be to 
gather the most influential customers in the social media, and then target them for 
branding, marketing, or improving customer engagement.
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In the case of Twitter, this goes back to the graph theory and concept of PageRank, 
where in a given node, if the ratio of outdegree and indegree is high, then that node 
is an influencer. This is very intuitive since people who have more followers than 
the number of people they follow are typically, influencers. One company, KLOUT, 
(https://klout.com/) has been focusing on a similar problem. Let's write a very 
basic and intuitive algorithm to calculate Klout's score:

>>>klout_scores = [ (tweet['user']['followers_count]/ tweet['user']
['friends_count'],tweet['user']) for tweet in tweets ]

Some of the examples where we worked on Twitter will hold exactly the same 
modification of content field. We can build a trending topic example with Facebook 
posts. We can also visualize Facebook users and post on the geomap and influencer 
kind of use cases. In fact, in the next section, we will see a variation of this in the 
context of Facebook.

Facebook
Facebook is a bit more personal, and somewhat private social network. Facebook 
does not allow you to gather the feeds/posts of the user simply for security and 
privacy reasons. So, Facebook's graph API has a limited way of accessing the feeds of 
the given page. I would recommend you to go to https://developers.facebook.
com/docs/graph-api/using-graph-api/v2.3 for better understanding.

The next question is how to access the Graph API using Python and how to get 
started with it. There are many wrappers written over Facebook's API, and we will 
use one the most common Facebook SDK:

$ pip install facebook-sdk

You can also install it through:
https://github.com/Pythonforfacebook/facebook-sdk.

The next step is to get the access token for the application while Facebook treats 
every API call as an application. Even for this data collection step, we will pretend to 
be an application.

To get your token, go to:
https://developers.facebook.com/tools/explorer.

https://klout.com/
https://developers.facebook.com/docs/graph-api/using-graph-api/v2.3
https://developers.facebook.com/docs/graph-api/using-graph-api/v2.3
https://github.com/Pythonforfacebook/facebook-sdk
https://developers.facebook.com/tools/explorer
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We are all set now! Let's start with one of the most widely used Facebook graph 
APIs. In this API, Facebook provides a graph-based search for pages, users, events, 
places, and so on. So, the process of getting to the post becomes a two-stage process, 
where we have to look for a specific pageid / userid related to our topic of interest, 
and then we will be able to access the feeds of that page. One simple use case for 
this kind of an exercise could be to use the official page of a company and look for 
customer complaints. The way to go about this is:

>>>import facebook

>>>import json

>>>fo = open("fdump.txt",'w')

>>>ACCESS_TOKEN = 'XXXXXXXXXXX' # https://developers.facebook.com/tools/
explorer

>>>fb = facebook.GraphAPI(ACCESS_TOKEN)

>>>company_page = "326249424068240"

>>>content = fb.get_object(company_page)

>>>fo.write(json.dumps(content))

The code will attach the token to the Facebook Graph API and then we will make a 
REST call to Facebook. The problem with this is that we have to have the ID of the 
given page with us beforehand. The code which will attach the token is as follows:

"website":"www.dimennachildrenshistorymuseum.org",

"can_post":true,

"category_list":[

{

"id":"244600818962350",

"name":"History Museum"

},

{

"id":"187751327923426",

"name":"Educational Organization"

}

],

"likes":1793,

},
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"id":"326249424068240",

"category":"Museum/art gallery",

"has_added_app":false,

"talking_about_count":8,

"location":{

"city":"New York",

"zip":"10024",

"country":"United States",

"longitude":-73.974413,

"state":"NY",

"street":"170 Central Park W",

"latitude":40.779236

},

"is_community_page":false,

"username":"nyhistorykids",

"description":"The first-ever museum bringing American history to life 
through the eyes of children, where kids plus history equals serious 
fun! Kids of all ages can practice their History Detective skills at 
the DiMenna Children's History Museum and:\n\n\u2022 discover the past 
through six historic figure pavilions\n\n\u2022!",

"hours":{

""thu_1_close":"18:00"

},

"phone":"(212) 873-3400",

"link":"https://www.facebook.com/nyhistorykids",

"price_range":"$ (0-10)",

"checkins":1011,

"about":"The DiMenna Children' History Museum is the first-ever museum 
bringing American history to life through the eyes of children. Visit it 
inside the New-York Historical Society!",

"name":"New-York Historical Society DiMenna Children's History Museum",

"cover":{

"source":"https://scontent.xx.fbcdn.net/hphotos-xpf1/t31.0-8/s720x720/104
9166_672951706064675_339973295_o.jpg",

"cover_id":"672951706064675",



Chapter 9

[ 149 ]

"offset_x":0,

"offset_y":54,

"id":"672951706064675"

},

"were_here_count":1011,

"is_published":true

},

Here, we showed a similar schema for the Facebook data as we did for Twitter, and 
now we can see what kind of information is required for our use case. In most of 
the cases, the user post, category, name, about, and likes are some of the important 
fields. In this example, we are showing a page of a museum, but in a more business-
driven use case, a company page has a long list of posts and other useful information 
that can give some great insights about it.

Let's say I have a Facebook page for my organization xyz.org and I want to know 
about the users who complained about me on the page; this is good for a use case 
such as complaint classification. The way to achieve the application now is simple 
enough. You need to look for a set of keywords in fdump.txt, and it can be as 
complex as scoring using a text classification algorithm we learned in Chapter 6, Text 
Classification.

The other use case could be to look for a topic of interest, and then to look for the 
resulting pages for open posts and comments. This is exactly analogous to searching 
using the graph search bar on your Facebook home page. However, the power of 
doing this programmatically is that we can conduct these searches and then each 
page can be recursively parsed for use comments. The code for searching user data is 
as follows:

User search

>>>fb.request("search", {'q' : 'nitin', 'type' : 'user'})

Place based on the nearest location.

>>>fb.request("search", {'q' : 'starbucks', 'type' : 'place'})

Look for open pages.

>>>fb.request("search", {'q' : 'Stanford university', 'type' : page})

Look for event matching to the key word.

>>>fb.request("search", {'q' : 'beach party', 'type' : 'event'})
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Once we have dumped all the relevant data into a structured format, we can apply 
some of the concepts we learned when we went through the topics of NLP and 
machine learning. Let's pick the same use case of finding posts, that will mostly be 
complaints on a Facebook page.

I assume that we now have the data in the following format:

Userid FB Post
XXXX0001 The product was pathetic and I tried reaching out to your 

customer care, but nobody responded
XXXX002 Great work guys
XXXX003 Where can I call to get my account activated ??? Really bad 

service

We will go back to the same example we had in Chapter 6, Text Classification, where 
we built a text classifier to detect whether the SMS (text message) was spam. 
Similarly, we can create training data using this kind of data, where from the given 
set of posts, we will ask manual taggers to tag the comments that are complaints and 
the ones that are not. Once we have significant training data, we can build the same 
text classifier:

fb_classification.py

>>>from sklearn.feature_extraction.text import TfidfVectorizer

>>>vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 2),  stop_
words='english',  strip_accents='unicode',  norm='l2')

>>>X_train = vectorizer.fit_transform(x_train)

>>>X_test = vectorizer.transform(x_test)

>>>from sklearn.linear_model import SGDClassifier

>>>clf = SGDClassifier(alpha=.0001, n_iter=50).fit(X_train, y_train)

>>>y_pred = clf.predict(X_test)
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Let's assume that these three are the only samples. We can tag 1st and 3rd to be 
classified as complaints, while 2nd will not be a complaint. Although we will build a 
vectorizer of unigram and bigram in the same way, we can actually build a classifier 
using the same process. I ignored some of the preprocessing steps here. You can use 
the same process as discussed in Chapter 6, Text Classification. In some of the cases, it 
will be hard/expensive to get training data like this. In some of these cases, we can 
apply either an unsupervised algorithm, such as text clustering or topic modeling. 
The other way is to use some different dataset that is openly available and build 
model on that and apply it here. For example, in the same use case, we can crawl 
some of the customer complaints available on the Web and use that as training data 
for our model. This can work as a good proxy for labeled data.

Influencer friends
One other use case of social media could be finding out the most influencer in your 
social graph. In our case, it could be finding out a clear node that has a vast amount 
of inlinks and outlinks will be the influencer in the graph.

The same problem in the context of business can be finding out the most influential 
customers, and targeting them to market our products.

The code for the Influencer friends is as follows:

>>>friends = fb.get_connections("me", "friends")["data"]

>>>print friends

>>>for frd in friends:

>>>    print fb.get_connections(frd["id"],"friends")

Once you have a list of all your friends and mutual friends, you can create a data 
structure like this:

source node destination  node  link_exist
Friend 1 Friend 2 1
Friend 1 Friend 3 1
Friend 2 Friend 3 0
Friend 1 Friend 4 1
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This a kind of data structure that can be used to generate a network, and is a very 
good way of visualizing the social graph. I used D3 here, but python also has 
a library called NetworkX (https://networkx.github.io/) that can be used 
to generate graph visualization, as shown in the following graph. To generate a 
visualization, you need to arrive at a adjacency matrix that can be created based on 
the bases of the preceding information about who is the friend of whom.

Visualization of a sample network in D3

https://networkx.github.io/
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Summary
In this chapter, we touched upon some of the most popular social networks. You 
learned how to get data using Python. You understood the structure and kind of 
attributes data has. We explored different options provided by the API.

We explored some of the most common use cases in the context of social media 
mining. We touched upon the use cases about trending topics, influencer detection, 
information flow, and so on. We visualized some of these use cases. We also applied 
some of the learnings from the previous chapter, where we used NLTK to get some 
of the topic and entity extraction, while in scikit-learn we classified some of the 
complaints.

In conclusion, I would suggest that you look for some of the same use cases in 
context of some other social networks and try to explore them. The great part of 
these social networks is that all of them have a data API, and most of them are 
open enough to do some interesting analysis. If you apply the same learning you 
did in this chapter, you need to understand the API, how to get the data, and then 
how to apply some of the concepts we learned in the previous chapters. I hope that 
after learning all this, you will come up with more use cases, and some interesting 
analysis of social media.
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Text Mining at Scale
In this chapter, we will go back to some of the libraries we learned about in the 
previous chapters, but this time, we want to learn to learn how these libraries will 
scale up with bigdata. We assume that you have a fair bit of an idea about big data, 
Hadoop and Hive. We will explore how some of the Python libraries, such as NLTK, 
scikit-learn, and pandas can be used on a Hadoop cluster with a large amount of 
unstructured data.

We will cover some of the most common use cases in the context of NLP and text 
mining, and we will also provide a code snippet that will be helpful for you to 
get your job done. We will look at three major examples that can capture the vast 
majority of your text mining problems. We will tell you how to run NLTK at scale 
to perform some of the NLP tasks that we completed in the initial chapters. We will 
give you a few examples of some of the text classification tasks that can be done on 
Big Data.

One other aspect of doing machine learning and NLP at a very high scale is to 
understand whether the problem is parallelizable or not. We will talk in brief about 
some of the problems discussed in the previous chapter, and whether these problems 
are big data problems or not. Or in some case  is it even possible to solve this using 
Big Data.

Since most of the libraries we learned so far are written in Python, let's deal with one 
of the main questions of how to get Python on Big Data (Hadoop).

By end of the chapter we like reader to have :

•	 Good understanding about big data related technologies such as Hadoop, 
Hive  and how it can be done using python.

•	 Step by step tutorial to work with NLTK, Scikit & PySpark on Big Data.
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Different ways of using Python on 
Hadoop
There are many ways to run a Python process on Hadoop. We will talk about  
some of the most popular ways through which we can run Python on Hadoop as  
a streaming MapReduce job, Python UDF in Hive, and Python hadoop wrappers.

Python streaming
Typically a Hadoop job has to be written in form of a map and reduce function. 
User has to write an implementation of map and reduce function for the given task. 
Commonly these mappers and reducers are implemented in JAVA. At the same 
time Hadoop provide streaming, you where a user can write a Python mapper and 
reducer function similar to Java in any other language. I am assuming that you have 
run a word count example using Python. We will also use the same example using 
NLTK later in this chapter.

In case you have not, have a look at
http://www.michael-noll.com/tutorials/writing-
an-hadoop-mapreduce-program-in-python/ to know more 
about MapReduce in Python.

Hive/Pig UDF
Other way to use Python is by writing a UDF (User Defined Function) in Hive/Pig. 
The idea here is that most of the operations we are performing in NLTK are highly 
parallelizable. For example, POS tagging, Tokenization, Lemmatization, Stop Word 
removal, and NER can be highly distributable. The reason being the content of each 
row is independent from the other row, and we don't need any context while doing 
some of these operations.

So, if we have NLTK and other Python libraries on each node of the cluster, we can 
write a user defined function (UDF) in Python, using libraries such as NLTK and 
scikit. This is one of the easiest way of doing NLTK, especially for scikit on a large 
scale. We will give you a glimpse of both of these in this chapter.

http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/
http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/
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Streaming wrappers
There is a long list of wrappers that different organizations have implemented to get 
Python running on the cluster. Some of them are actually quite easy to use, but all 
of them suffer from performance bias. I have listed some of them as follows, but you 
can go through the project page in case you want to know more about them:

•	 Hadoopy
•	 Pydoop
•	 Dumbo
•	 mrjob

For the exhaustive list of options available for the usage of Python on 
Hadoop, go through the article at
http://blog.cloudera.com/blog/2013/01/a-guide-to-
python-frameworks-for-hadoop/.

NLTK on Hadoop
We talked enough about NLTK as a library, and what are some of the most-used 
functions it gives us. Now, NLTK can solve many NLP problems from which many 
are highly parallelizable. This is the reason why we will try to use NLTK on Hadoop.

The best way of running NLTK on Hadoop is to get it installed on all the nodes of 
the cluster. This is probably not that difficult to achieve. There are ways in which you 
can do this, such as sending the resource files as a streaming argument. However, we 
will rather prefer the first option.

A UDF
There are a variety of ways in which we can make NLTK run on Hadoop. Let's talk 
about one example of using NLTK by doing tokenization in parallel using a Hive UDF.

http://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/
http://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/
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For this use case, we have to follow these steps:

1.	 We have chosen a small dataset where only two columns exist. We have to 
create the same schema in Hive:

ID Content
UA0001 "I tried calling you. The service was not up to the mark"
UA0002 "Can you please update my phone no"
UA0003 "Really bad experience"
UA0004 "I am looking for an iPhone"

2.	 Create the same schema in Hive. The following Hive script will do this for you:
Hive script
CREATE TABLE $InputTableName (

ID String,

Content String

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t';

3.	 Once we have the schema, essentially, we want to get something like tokens 
of the content in a separate column. So, we just want another column in the 
$outTable with the same schema, and the added column of tokens:
Hive script
CREATE TABLE $OutTableName (

ID String,

Content String,

Tokens String

)

4.	 Now, we have the schemas ready. We have to write the UDF in Python to read 
the table line by line and then apply a tokenize method. This is very similar 
to what we did in Chapter 3, Part of Speech Tagging. This is the piece of function 
that is analogous to all the examples in Chapter 3, Part of Speech Tagging. Now, if 
you want to get POS tags, Lemmatization, and HTML, you just need to modify 
this UDF. Let's see how the UDF will look for our tokenizer:
>>>import sys

>>>import datetime

>>>import pickle
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>>>import nltk

>>>nltk.download('punkt')

>>>for line in sys.stdin:

>>>    line = line.strip()

>>>    print>>sys.stderr, line

>>>    id, content= line.split('\t')

>>>    print>>sys.stderr,tok.tokenize(content)

>>>    tokens =nltk.word_tokenize(concat_all_text)

>>>    print '\t'.join([id,content,tokens])

5.	 Just name this UDF something like: nltk_scoring.py.
6.	 Now, we have to run the insert hive query with the TRANSFORM function to 

apply the UDF on the given content and to do tokenization and dump the 
tokens in the new column:
Hive script
add FILE nltk_scoring.py;

add FILE english.pickle; #Adding file to DistributedCache

INSERT OVERWRITE TABLE $OutTableName

SELECT

        TRANSFORM (id, content)

    USING 'PYTHONPATH nltk_scoring.py'

    AS (id string, content string, tokens string )

FROM $InputTablename;

7.	 If you are getting an error like this, you have not installed the NLTK and 
NLTK data correctly:
raiseLookupError(resource_not_found)

LookupError:

******************************************************************
****

  Resource u'tokenizers/punkt/english.pickle' not found.  Please

  use the NLTK Downloader to obtain the resource:  >>>

  nltk.download()

  Searched in:

    - '/home/nltk_data'

    - '/usr/share/nltk_data'

    - '/usr/local/share/nltk_data'

    - '/usr/lib/nltk_data'

    - '/usr/local/lib/nltk_data'
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8.	 If you are able to run this Hive job successfully, you will get a table named 
OutTableName, that will look something like this:

ID Content

UA0001 "I tried calling you, The service 
was not up to the mark"

[" I", " tried", "calling", "you", "The", 
"service" "was", "not", "up", "to", "the", 
"mark"]

UA0002 "Can you please update my 
phone no"

["Can", "you", "please" "update", " my", 
"phone" "no"]

UA0003 "Really bad experience" ["Really"," bad" "experience"]

UA0004 "I am looking for an iphone" ["I", "am", "looking", "for", "an", "iPhone"]

Python streaming
Let's try the second option of Python streaming. We have Hadoop streaming, where 
we can write our own mapper and reducer functions, and then use Python streaming 
with mapper.py, as it looks quite similar to our Hive UDF. Here we are using the same 
example with map-reduce python streaming this will give us a option of choosing a 
Hive table or using a HDFS file directly. We will just go over the content of the file and 
tokenize it. We will not perform any reduce operation here, but for learning, I included 
a dummy reducer, which just dumps it. So now, we can ignore the reducer from the 
execution command completely.

Here is the code for the Mapper.py:

Mapper.py

>>>import sys

>>>import pickle

>>>import nltk

>>>for line in sys.stdin:

>>>    line = line.strip()

>>>    id, content = line.split('\t')

>>>    tokens =nltk.word_tokenize(concat_all_text)

>>>    print '\t'.join([id,content,topics])
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Here is the code for the Reducer.py:

Reducer.py

>>>import sys

>>>import pickle

>>>import nltk

>>>for line in sys.stdin:

>>>    line = line.strip()

>>>    id, content,tokens = line.split('\t')

>>>    print '\t'.join([id,content,tokens])

The following is the Hadoop command to execute a Python stream:Hive script

hadoop jar <path>/hadoop-streaming.jar \

-D mapred.reduce.tasks=1 -file <path>/mapper.py \

-mapper <path>/mapper.py \

-file <path>/reducer.py \

-reducer <path>/reducer.py \

-input /hdfspath/infile \

-output outfile

Scikit-learn on Hadoop
The other important use case for big data is machine learning. Specially with 
Hadoop, scikit-learn is more important, as this is one of the best options we have 
to score a machine learning model on big data. Large-scale machine learning is 
currently one of the hottest topics, and doing this in a big data environment such as 
Hadoop is all the more important. Now, the two aspects of machine learning models 
are building a model on big data and to build model on a significantly large amount 
of data and scoring a significantly large amount of data.
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To understand more, let's take the same example data we used in the previous 
table, where we have some customer comments. Now, we can build, let's say, a 
text classification mode using a significant training sample, and use some of the 
learnings from Chapter 6, Text Classification to build a Naive Bayes, SVM, or a logistic 
regression model on the data. While scoring, we might need to score a huge amount 
of data, such as customer comments. On the other hand building the model itself 
on big data is not possible with scikit-learn, we will require tool like spark/Mahot 
for that. We will take the same step-by-step approach of scoring using a pre-trained 
model as we did with NLTK. While building the mode on big data will be covered 
in the next section. For scoring using a pre-trained model specifically when we are 
working on a text mining kind of problem. We need two main objects (a vectorizer 
and modelclassifier) to be stored as a serialized pickle object.

Here, pickle is a Python module to achieve serialization by which the 
object will be saved in a binary state on the disk and can be consumed 
by loading again.
https://docs.python.org/2/library/pickle.html

Build an offline model using scikit on your local machine and make sure you  
pickle objects. For example, if I use the Naive Bayes example from Chapter 6,  
Text Classification, we need to store vectorizer and clf as pickle objects:

>>>vectorizer = TfidfVectorizer(sublinear_tf=True, min_df=in_min_df, 
stop_words='english', ngram_range=(1,2), max_df=in_max_df)

>>>joblib.dump(vectorizer, "vectorizer.pkl", compress=3)

>>>clf = GaussianNB().fit(X_train,y_train)

>>>joblib.dump(clf, "classifier.pkl")

The following are the steps for creating a output table which will have all the 
customer comments for the entire history:

1.	 Create the same schema in Hive as we did in the previous example. The 
following Hive script will do this for you. This table can be huge; in our case, 
let's assume that it contains all the customer comments about the company in 
the past:
Hive script
CREATE TABLE $InputTableName (

ID String,

Content String

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t';

https://docs.python.org/2/library/pickle.html
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2.	 Build an output table with the output column like the predict and  
probability score:
Hive script
CREATE TABLE $OutTableName (

ID String,

Content String,

predict String,

predict_score double

)

3.	 Now, we have to load these pickle objects to the distributed cache using the 
addFILE command in Hive:
add FILE vectorizer.pkl;

add FILE classifier.pkl;

4.	 The next step is to write the Hive UDF, where we are loading these pickle 
objects. Now, they start behaving the same as they were on the local. Once 
we have the classifier and vectorizer object, we can use our test sample, 
which is nothing but a string, and generate the TFIDF vector out of this. 
The vectorizer object can be used now to predict the class as well as the 
probability of the class:
Classification.py
>>>import sys

>>>import pickle

>>>import sklearn

>>>from sklearn.externals import joblib

>>>clf = joblib.load('classifier.pkl')

>>>vectorizer = joblib.load('vectorizer.pkl')

>>>for line in sys.stdin:

>>>    line = line.strip()

>>>    id, content= line.split('\t')

>>>    X_test = vectorizer.transform([str(content)])

  

>>>    prob = clf.predict_proba(X_test)

>>>    pred = clf.predict(X_test)

>>>    prob_score =prob[:,1]

>>>    print '\t'.join([id, content,pred,prob_score])
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5.	 Once we have written the classification.py UDF, we have to also add 
this UDF to the distributed cache and then effectively, run this UDF as a 
TRANSFORM function on each and every row of the table. The Hive script for 
this will look like this:

Hive script
add FILE classification.py;

INSERT OVERWRITE TABLE $OutTableName

SELECT

    TRANSFORM (id, content)

    USING 'python2.7 classification.py'

    AS (id string, scorestringscore string )

FROM $Tablename;

6.	 If everything goes well, then we will have the output table with the output 
schema as:

ID Content Predict Prob_score

UA0001 "I tried calling you, The service was 
not up to the mark"

Complaint  0.98

UA0002 "Can you please update my phone 
no "

No 0.23

UA0003 "Really bad experience" Complaint 0..97

UA0004 "I am looking for an iPhone " No 0.01

So, our output table will have all the customer comments for the entire history, 
scores for whether they were complaints or not, and also a confidence score. We have 
choosen a Hive UDF for our example, but the similar process can be done through 
the Pig and Python steaming in a similar way as we did in NLTK.

This example was to give you a hands-on experience of how to score a machine 
learning model on Hive. In the next example, we will talk about how to build a 
machine learning/NLP model on big data.
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PySpark
Let's go back to the same discussion we had of building a machine learning/NLP 
model on Hadoop and the other where we score a ML model on Hadoop. We 
discussed second option of scoring in depth in the last section. Instead sampling 
a smaller data-set and scoring let’s use a larger data-set and build a large-scale 
machine learning model step-by-step using PySpark. I am again using the same 
running data with the same schema:

ID Comment Class
UA0001 I tried calling you, The service was not up to the mark 1
UA0002 Can you please update my phone no 0
UA0003 Really bad experience 1
UA0004 I am looking for an iPhone 0
UA0005 Can somebody help me with my password 1
UA0006 Thanks for considering my request for 0

Consider the schema for last 10 years worth of comments of the organization. Now, 
instead of using a small sample to build a classification model, and then using a 
pretrained model to score all the comments, let me give you a step-by-step example 
of how to build a text classification model using PySpark.

The first thing that we need to do is we need to import some of the modules.  
Starting with SparkContext, which is more of a configuration, you can provide  
more parameters, such as app names and others for this.

>>>from pyspark import SparkContext

>>>sc = SparkContext(appName="comment_classifcation")

For more information, go through the article at
http://spark.apache.org/docs/0.7.3/api/pyspark/
pyspark.context.SparkContext-class.html.

The next thing is reading a tab delimited text file. Reading the file should be on 
HDFS. This file could be huge (~Tb/Pb):

>>>lines = sc.textFile("testcomments.txt")

http://spark.apache.org/docs/0.7.3/api/pyspark/pyspark.context.SparkContext-class.html
http://spark.apache.org/docs/0.7.3/api/pyspark/pyspark.context.SparkContext-class.html
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The lines are now a list of all the rows in the corpus:

>>>parts = lines.map(lambda l: l.split("\t"))

>>>corpus = parts.map(lambda row: Row(id=row[0], comment=row[1], 
class=row[2]))

The part is a list of fields as we have each field in the line delimited on "\t".

Let's break the corpus that has [ID, comment, class (0,1)] in the different RDD objects:

>>>comment = corpus.map(lambda row: " " + row.comment)

>>>class_var = corpus.map(lambda row:row.class)

Once we have the comments, we need to do a process very similar to what we did in 
Chapter 6, Text Classification, where we used scikit to do tokenization, hash vectorizer 
and calculate TF, IDF, and tf-idf using a vectorizer.

The following is the snippet of how to create tokenization, term frequency, and 
inverse document frequency:

>>>from pyspark.mllib.feature import HashingTF

>>>from pyspark.mllib.feature import IDF

# https://spark.apache.org/docs/1.2.0/mllib-feature-extraction.html

>>>comment_tokenized = comment.map(lambda line: line.strip().split(" "))

>>>hashingTF = HashingTF(1000) # to select only 1000 features 

>>>comment_tf = hashingTF.transform(comment_tokenized)

>>>comment_idf = IDF().fit(comment_tf)

>>>comment_tfidf = comment_idf.transform(comment_tf)

We will merge the class  with the tfidf RDD like this:

>>>finaldata = class_var.zip(comment_tfidf)

We will do a typical test, and train sampling:

>>>train, test = finaldata.randomSplit([0.8, 0.2], seed=0)

Let's perform the main classification commands, which are quite similar to scikit. We 
are using a logistic regression, which is widely used classifier. The pyspark.mllib 
provides you with a variety of algorithms.
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For more information on pyspark.mllib visit https://spark.
apache.org/docs/latest/api/python/pyspark.mllib.html

The following is an example of Naive bayes classifier:

>>>from pyspark.mllib.regression import LabeledPoint

>>>from pyspark.mllib.classification import NaiveBayes

>>>train_rdd = train.map(lambda t: LabeledPoint(t[0], t[1]))

>>>test_rdd = test.map(lambda t: LabeledPoint(t[0], t[1]))

>>>nb = NaiveBayes.train(train_rdd,lambda = 1.0)

>>>nb_output = test_rdd.map(lambda point: (NB.predict(point.features), 
point.label))

>>>print nb_output

The nb_output command contains the final predictions for the test sample. The great 
thing to understand is that with just less than 50 lines, we built a snippet code for an 
industry-standard text classification with even petabytes of the training sample.

Summary
To summarize this chapter, our objective was to apply the concepts that we learned 
so far in the context of big data. In this chapter, you learned how to use some Python 
libraries, such as NLTK and scikit with Hadoop. We talked about scoring a machine 
learning model, or an NLP-based operation.

We also saw three major examples of the most-common use cases. On understanding 
these examples, you can apply most of the NLTK, scikit and PySpark functions.

This chapter was a quick and brief introduction to NLP and text mining on big data. 
This is one of the hottest topics, and each term and tool which I talked about in the 
example snippet could be a book in itself. I tried to give you a hacker's approach,  
to give you an introduction to big data and text mining on a large scale. I encourage 
you to read more about some of these big data technologies such as Hadoop, Hive, 
Pig, and Spark and try to explore some of the examples we gave in this chapter.

https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html
https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html
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