
[1]

www.allitebooks.com

http://www.allitebooks.org

Neo4j Graph Data Modeling

Design efficient and flexible databases by optimizing
the power of Neo4j

Mahesh Lal

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Neo4j Graph Data Modeling

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1230715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-344-1

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Mahesh Lal

Reviewers
Patrick Baumgartner

Sonal Raj

Daniel Vaughan

Acquisition Editor
Shaon Basu

Content Development Editor
Kirti Patil

Technical Editor
Mrunmayee Patil

Copy Editor
Pranjali Chury

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Mahesh Lal is a developer who has experience with various technologies. In
2011, while working on a social network for a client, he discovered the power of
graphs, specifically Neo4j. Since then, he has been working with multiple clients
across various domains for modeling their data as a graph. Currently working for
ThoughtWorks, India, he is trying to help his clients look at their search problems
in the form of a graph.

I would like to thank my reviewers, Daniel Vaughan, Sonal Raj,
and Patrick Baumgartner, for giving me valuable feedback. I am
grateful to Jim Webber and Pramod Sadalge for guiding me through
this journey. I am indebted to my colleagues at ThoughtWorks for
believing in me. Finally, I'd like to thank my family, who always
inspire me to improve.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Patrick Baumgartner works as a passionate software craftsman at 42talents and
builds software with Java/JEE, Spring Framework, OSGi, NoSQL databases, and
other open source technologies. Since he began working with Neo4j in 2010, he sees
the whole world as one big connected graph.

He is the host of the Neo4j Zurich and the Software Craftsmanship Zurich Meetup
group and is actively involved in the agile community in Switzerland.

As a Spring trainer and Neo4j master instructor, he conducts various training and
workshops on the topic, is an active speaker at conferences and events, and lectures
at technical colleges. In his free time, he likes to explore Rik's Beer Graph or his own
Single Malt Whisky Graph and tries to find routes to beautiful places.

Patrick has coauthored the German book, OSGi für Praktiker, with Bernd Weber and
Oliver Braun and reviewed Scala - Objektfunktionale Programmierung by Oliver Braun.

I would like to thank my dearest girlfriend, Carmen, for supporting
me in all my adventures.

www.allitebooks.com

http://www.allitebooks.org

Sonal Raj is a hacker, Pythonista, big data believer, and a technology dreamer. He
has a passion for design and is an artist at heart. He blogs about technology, design,
and gadgets at http://www.sonalraj.com/. When not working on projects, he can
be found travelling, stargazing, or reading.

He has pursued engineering in computer science and loves to work on community
projects. He has been a research fellow at IISc Bangalore and has taken up projects on
graph computations using Neo4j and Storm. Sonal has been a speaker at PyCon India
and local meetups about Neo4j, and has also published articles and research papers
for leading magazines and international journals. He has contributed to several open
source projects. Presently, Sonal works at Goldman Sachs.

He is the author of Neo4j High Performance and has reviewed titles on Storm
and Neo4j.

I am grateful to the author for patiently listening to my critiques,
and I'd like to thank the open source community for keeping their
passions alive and contributing to such remarkable projects. A
special thank you to my parents, without whom I never would have
grown to love learning as much as I do.

Daniel Vaughan has worked as a software developer for over 15 years and is still
learning every day. He first started using Neo4j in 2010, and currently works for
the European Bioinformatics Institute, Hinxton, Cambridge, UK. He is married to
Michelle and lives in the quaint market town of Saffron Walden.

Daniel has previously authored Ext GWT 2.0, Beginner's Guide and worked on the
Spring Web Services 2, Cookbook, both by Packt Publishing.

His website is http://www.danielvaughan.com and you can find him on Twitter
at @DanielVaughan.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

To my family, who inspire me to shed fear, reach high, and be sure.

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Graphs Are Everywhere	 1

Graphs in mathematics	 2
The property graph model	 3
Storage – native graph storage versus non-native graph storage	 4
Reasons to use graph databases	 5
What to use a graph database for	 7
Choosing Neo4j for exploring graph databases	 8
The structure of the book	 9
Summary	 9

Chapter 2: Modeling Flights and Cities	 11
Graphs are more than social	 11
Designing a system to get a travel itinerary	 12

Introduction to modeling flights and cities	 12
Identifying the entities	 13

Introduction to modeling nodes and relationships	 14
Using Cypher to operate on Neo4j	 17
Creating cities in Neo4j	 18
Indices	 22
Adding flights to Neo4j	 23
Traversing relationships	 26
Summary	 26

Chapter 3: Formulating an Itinerary	 27
Creating an itinerary from flights and cities	 27

Information and paths	 28
Using Cypher to find a path	 28

Business logic should lie in code	 31
Summary	 32

Table of Contents

[ii]

Chapter 4: Modeling Bookings and Users	 33
Building a data model for booking flights	 34
A simple model of the bookings ecosystem	 34
Modeling bookings in an RDBMS	 35
Creating bookings and users in Neo4j	 39

Creating users	 40
Creating bookings in Neo4j	 41

Queries to find journeys and bookings	 44
Finding all journeys of a user	 44

Queries to find the booking history of a user	 45
Upcoming journeys of a user	 46

Summary	 46
Chapter 5: Refactoring the Data Model	 47

Capturing information about hotels at airports	 47
Modeling airports and hotels	 48
Extracting airport information from flights	 50

Breaking airports out as a node	 50
Connecting flights to airports	 52
Delinking flights and cities	 54
Querying the refactored data model	 54

Reasons for not migrating using a single query	 56
Adding hotels to airports	 56
Fetching hotels	 58
Summary	 58

Chapter 6: Modeling Communication Chains	 59
Capturing traveler reviews for hotels	 59
A model for reviews and comments	 60
Adding reviews to Neo4j	 63

Listing reviews for a hotel	 64
Using reviews to find the average rating of a hotel	 65

Adding comments to Neo4j	 66
Considerations for modeling temporal data as chains	 70

Summary	 71
Chapter 7: Modeling Access Control	 73

Controlling access for content change	 73
Modeling hierarchies	 74

Modeling geographical regions	 74
Adding countries and regions to Neo4j	 76

Modeling hotel chains	 79
Adding hotel chains to Neo4j	 81

Table of Contents

[iii]

Modeling access control groups and employees	 83
Adding access groups to Neo4j	 85
Adding employees to Neo4j	 88

Querying the data model to find what is accessible to an employee	 90
Summary	 92

Chapter 8: Recommendations and Analysis of Historical Data	 93
Recommending cities to travelers	 93

Modeling categories	 94
Creating categories in Neo4j	 95
Cities and categories	 95

Recommending cities based on previous travels	 96
Recommending cities on the basis of other travelers	 98

Recommending hotels to travelers	 100
Recommending hotels from the same chains	 100
Recommending hotels visited by similar travelers	 101
Recommending hotels that match a price range	 102
Improving recommendations	 103

Analysis of the historical data	 103
Querying to discover patterns	 103

Summary	 106
Chapter 9: Wrapping Up	 107

There is no correct model	 107
Further reading and exploration	 108
What to watch out for while using Neo4j	 108

Index	 111

[v]

Preface
Graph databases have been gaining traction for a long time now and companies have
adopted them for various use cases. Neo4j, the world's leading graph database, has
been at the forefront of this trend and is widely used in production by companies
that are world leaders in their respective domains. Advice on the usage of Neo4j
using Cypher (the Neo4j query language), performance tuning of Neo4j, and general
information can be sourced from various sources, including, but not limited to,
blogs, the Neo4j website, the Neo4j mailing list, as well as books written by authors
on these subjects. However, there is limited information regarding modeling
information in Neo4j. This book aims to address this gap by giving examples of how
various scenarios can be modeled in Neo4j. By sticking to a nonsocial graph example,
this book steers clear of the stereotypical use case of graph databases. While we use
Neo4j as an example to discuss graph database modeling, the concepts discussed can
be applied to any graph database. We believe this book to be a useful tool for anyone
wishing to understand graph database modeling.

What this book covers
Chapter 1, Graphs Are Everywhere, introduces you to the logical data representation
of a property graph model, the various use cases of graph databases, and the
advantages of using graph databases in general and Neo4j in particular.

Chapter 2, Modeling Flights and Cities, introduces you to basic modeling in Neo4j by
discussing how flights and cities can be modeled in a graph database. We then create
cities and flights in Neo4j using Cypher.

Chapter 3, Formulating an Itinerary, discusses some basic querying using Cypher for
the purpose of creating a light itinerary from the existing data in Neo4j.

Chapter 4, Modeling Bookings and Users, discusses how to represent, in a graph
database, a data model that is traditionally implemented in a RDBMS by modeling
bookings in Neo4j.

Preface

[vi]

Chapter 5, Refactoring the Data Model, covers refactoring the data model to
accommodate changes in the business using Cypher. We do this as a multistep
process and demonstrate how simple it is in Neo4j to change the data model.

Chapter 6, Modeling Communication Chains, discusses how communication chains can
be modeled in Neo4j. This also covers how we can represent temporal relationships
using this modeling technique, which allows for efficient retrieval of data while
maintaining the integrity of the relationships between various pieces of information.

Chapter 7, Modeling Access Control, focuses on how access control lists can be modeled
in Neo4j. This also discusses how hierarchies and groups can be modeled in Neo4j.

Chapter 8, Recommendations and Analysis of Historical Data, demonstrates the
construction of queries to recommend cities and hotels to travelers using the data
that we have in the database. This also analyzes some historical data to discover
patterns in the database. This chapter demonstrates queries that would normally
require some heavy lifting in an RDBMS.

Chapter 9, Wrapping Up, is the final chapter and talks about potential issues that you
might run into while using Neo4j or a graph database, and also how modeling for a
current problem isn't future-proof.

What you need for this book
To be able to learn from this book effectively, you must have Neo4j 2.2.3 (or higher)
installed on your machine. Neo4j runs on Windows, Linux, and Mac OS X machines.
The queries in this book have also been tested with Neo4j 2.3.0-M02.

Who this book is for
If you are a developer who wants to understand the fundamentals of modelling data
in Neo4j and how it can be used to model full-fledged applications, then this book is
for you. Some understanding of domain modelling may be advantageous, but is not
essential.

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The MATCH clause is used to match a path having the specified node and relationship
types."

A block of code is set as follows:

neo4j-sh (?)$ CREATE CONSTRAINT ON (user:User) ASSERT
 user.email IS UNIQUE;

New terms and important words are shown in bold like this: "A city can have
multiple categories and will be connected to all categories that it has by a :KNOWN_
FOR relationship."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Preface

[viii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/3441OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.allitebooks.org

[1]

Graphs Are Everywhere
Graphs are all around us. Each time we access the Internet, the data packets
travel across a network of routers, switches, and cables and deliver what we have
requested. While representing key concepts/objects in a problem and defining
relationships or interactions between the concepts/objects involved, we generally
draw bubbles or boxes to denote the objects, and arrows between those objects to
represent the interactions or relationships. We use a similar notation while drawing
a map to explain routes to others. The beauty of these notations, such as bubbles and
arrows, is their expressiveness, a property that is usually lost when we obfuscate the
model into records and tables. Graphs allow us to discover information and ease the
modeling pain, which eventually makes our life smoother. To be able to use graphs
better, we will need to understand a few basic concepts related to a graph database.
In this chapter, we will explore the following:

•	 Graphs in mathematics
•	 The property graph model
•	 Reasons for using a graph database
•	 Usage of graphs—some obvious and some not-so-obvious graph problems
•	 Advantages of using Neo4j

We chose Neo4j to explain graph data modeling in this book. However, the
modeling concepts discussed here will apply to any graph database.

A few readers might be experienced Neo4j users and if you fall into this category,
you might want to skip this chapter. However, if you are new to Neo4j or want a
brief refresher, please carry on.

Graphs Are Everywhere

[2]

Graphs in mathematics
A graph is a mathematical structure of objects in which some pairs of objects are
connected by links. The objects are denoted by abstractions called nodes (also known
as vertices) and their links are represented by relationships (also known as edges).
The relationships might be directed where it makes semantic sense in one particular
direction. In cases where the semantics work in both directions, we can safely use
undirected relationships to denote the link.

Figure 1.1: Edges, vertices, directionality

In Figure 1.1, we have three actors or entities, Alice, Bob, and London, which are
represented as nodes. The links between them are denoted by relationships. Alice is
married to Bob and Bob is married to Alice. Both true, hence we represent Is Married
To as an undirected relationship. However, Alice lives in London is represented by
a directed relationship, Lives In, from Alice to London. This is because London lives
in Alice cannot be true.

Chapter 1

[3]

The property graph model
In Neo4j, we use a property graph model to represent information. The property
graph model is an extension of the graphs from mathematics. The following figure
gives an example of how data from Figure 1.1 can be represented in Neo4j:

Figure 1.2: Nodes, relationships and properties

The preceding figure introduces the following concepts that we use to model a
property graph:

•	 Nodes: Entities are modelled as nodes. In Figure 1.2, London, Bob, Alice are
all entities.

•	 Labels: These are used to represent the role of the node in our domain. A
node can have multiple labels at the same time. Apart from adding more
meaning to nodes, labels are also used to add constraints and indices that are
local to the particular label. In the preceding figure, :Person and :Location
are the two labels that we used. We can add an index or constraint on name
for each of these labels, which will result in two separate indices—one for
:Location and the other for :Person.

Graphs Are Everywhere

[4]

•	 Relationships: These depict directed, semantically relevant connections
between two nodes. A relationship in Neo4j will always have a start node,
an end node, and a single type. While relationships need to be created with a
direction, we can ignore the direction while traversing them. :LIVES_IN and
:IS_MARRIED_TO in Figure 1.2 are relationship types.

•	 Properties: These are key-value pairs that contain information about the
node or relationship. In the previous figure, name and since are both
properties that divulge more information about the node or relationship they
are associated with. Neo4j can accept any Java Virtual Machine (JVM) type
as a property, including but not limited to, date, string, double, and arrays.

This property graph model allows us to model data as close to the real world as
possible.

The resultant model is simpler and more expressive. It also explicitly calls
out relationships. In contrast to an RDBMS, which uses foreign keys to imply
relationships, having them explicitly defined allows us to retrieve data by traversing
relationships to find the information we need. This is a deliberate, practical
algorithmic approach that uses the connectedness of data, rather than relying on
some index lookups or joins to find the related data. Explicit relationships also
make the property graph model a natural fit for most problem domains, as they are
interconnected.

Storage – native graph storage versus
non-native graph storage
As with all database management systems, graph databases have the concept
of storage and query engines, which deal with persistence and queries over
connected data. The query engine of the database is responsible for running the
queries and retrieving or modifying data. The query engine exposes the graph data
model through Create, Read, Update, and Delete operations (commonly referred
to as CRUD). Storage deals with how the data is stored physically and how it is
represented logically when retrieved. Its knowledge can help in choosing a graph
database.

Chapter 1

[5]

Relationships are an important part of any domain model and need to be traversed
frequently. In a graph database, the relationships are explicit rather than inferred.
Making relationships explicit is achieved either via the query engine working on a
non-native graph storage (such as RDBMS, column stores, document stores) or using
a native graph storage.

In a graph database relying on non-native graph storage, relationships need to be
inferred at runtime. For example, if we want to model a graph in an RDBMS, our
processing engine will have to infer the relationships using foreign keys and reify the
relationships at runtime. This problem is computationally expensive and is infeasible
for traversing multiple relationships because of the recursive joins involved. There
are other graph databases in which NoSQL stores such as HDFS, column stores such
as Cassandra, or documents are used to store data and expose a Graph API. Though
there are no joins in a graph database using NoSQL stores, the database still has to
use index lookups. In cases where non-native storage is used, the query engines have
to make more computational effort.

Neo4j uses a native graph storage. Each node has a handle to all the outgoing
relationships it has and each relationship, in turn, knows its terminal nodes. At
runtime, to find neighboring nodes, Neo4j doesn't have to do an index lookup.
Instead, neighboring nodes can be identified by looking at the relationships of the
current node. This feature is called index-free adjacency. Index-free adjacency is
mechanically sympathetic and allows the Neo4j query engine to have a significant
performance boost while traversing the graph.

Reasons to use graph databases
Every morning when we check our Facebook feed, we are welcomed by a stream of
updates from friends and news. Using information about how data is connected and
matching it with our individual preferences, Facebook builds a stream of activities
from our network that are relevant and interest us. LinkedIn does something similar
while suggesting jobs within our network. When we fire up Google Maps or some
application such as TomTom or Sygic maps and start navigating to a destination, we
use the data that represents connections of various intersections within the city, and
work out how best to traverse it. While shopping online, products are recommended
to us based on how closely they are connected to what we have already bought or
similar products that others have bought. We leverage connected data more and
more every day without realizing it.

Graphs Are Everywhere

[6]

When dealing with connected data, a graph database gives us the following
advantages:

•	 The query performance of a graph database is a few orders of magnitude
better than RDBMS or other NoSQL alternatives. As the dataset grows,
RDBMS join performance deteriorates because of the ever-increasing size of
the join tables. On the other hand, graph traversals are localized to a portion
of the graph. So query execution time is proportional to the number of nodes
visited, rather than being proportional to the overall amount of data stored.
This makes the query performance fairly constant over time even though the
data might increase exponentially.

•	 Flexibility and agility are major considerations in today's world where
business needs are constantly evolving. Developers need to have a tool
that allows them to incrementally think of the model rather than locking
down the data model before they start coding. Graph databases allow for
addition of relationships, node types, and properties without making any
changes to the existing queries. We can connect the model incrementally,
thereby allowing for more sophisticated querying. This flexibility also means
fewer migrations. Even in case of changes to the data model, migrations are
relatively pain free and can be done without taking the database offline for a
long time, thus helping teams deliver software faster while concentrating on
the domain rather than managing infrastructure and communication.

•	 Lesser ambiguity leads to better models. Since graph databases are
schema-less, the schema is dictated by the application and hence is better
validated. It allows for better design thinking by developers since there is
no ambiguity of the domain model compared to how it is stored in tables.

•	 The design to delivery time is reduced. From a developer's standpoint, one
of the best features of a graph database is that it is whiteboard friendly.
We can make a data model on a whiteboard and not worry about trying to
translate it to a set of tables, which don't necessarily represent the data model
as is. This allows the developers to concentrate on development rather than
translation, thereby saving time.

While all that has been said might seem like jargon, it boils down to economics.
Graph databases make more economic sense when the data is highly connected.

Chapter 1

[7]

What to use a graph database for
Let's start by citing a few problem statements that are more suited to graph
databases.

Routing is a graph problem and much research has been done in that respect. One
of the leading delivery services in the world uses a Neo4j-based solution to route
packages in real time based on information being collected worldwide.

Social networks are problems suited for graphs since they leverage the connections
of users to fetch data and decide on what is accessible and what isn't. Facebook,
in particular, uses its graph search and has exposed it to the users to enable them
to make better searches. Facebook relies heavily on the graph of people and their
friends to curate the feed.

Recommendation is again a graph problem that can be solved using graph databases.
While companies such as eBay originally relied on MySQL, they eventually turned to
Neo4j.

While routing, social networks and recommendations are all obvious graph
problems, companies have solved a host of problems by fitting the data into graphs
in the recent past.

Search, for example, doesn't come across as a graph problem and is not a very
intuitive one. However, Google uses its Knowledge Graph to give you search results
based on how well connected a piece of content is to the term being searched. More
recently, Facebook has leveraged its social graph to help search become better.

Medical research is another domain where graphs are being used. Medical data is
highly interconnected and hence can benefit greatly from the use of graph databases.
Companies are now using graph databases for drug discovery and storing medical
information.

Storage of ontologies is increasingly being solved using graph databases, which are
rapidly finding applications in machine learning and analytics. Companies are also
using graph databases in domains such as energy supply and transportation.

Graphs Are Everywhere

[8]

Choosing Neo4j for exploring graph
databases
Neo4j is a fast, native graph database that satisfies Atomicity, Consistency,
Isolation, Durability (ACID) properties. Through usage of transactions, developers
can ensure that the failure of a transaction leaves the database's state unchanged
ensuring atomicity. Any change to the database doesn't destroy data, ensuring
consistency. Data modified by a transaction is isolated from other transactions till it
is committed. Since Neo4j is a persistent graph database, the results of a committed
transaction can always be retrieved, thus making it durable.

It started off supporting the TinkerPop stack. More information about the TinkerPop
stack can be found at http://www.tinkerpop.com.

Neo4j provides numerous modeling and technical affordances, which are valuable
when building real-world systems such as:

•	 Neo4j is the most mature graph database and has been in production round
the clock since 2003. Neo4j is open source with an enormous community.
The Neo4j development team is highly engaged with that community so that
the features and bugs are rapidly addressed. Neo4j provides native graph
storage that enables its engine to perform native graph processing. From
the query language to disks, everything is mechanically sympathetic to the
transactional storage and rapid retrieval of graph data.

•	 Cypher is a very expressive query language used to retrieve data from
Neo4j. While it is superficially similar to SQL in some respect, Cypher is
the only declarative query language that is built ground-up for humane
yet performant graph queries and writes. The Neo4j Java API can be used
on JVM-based languages as a more imperative and performant method of
querying. This gives the best of both worlds by supporting imperative and
declarative querying. (Neo4j plans to move away from supporting Gremlin
in the long run, and currently Gremlin is supported through a plugin). Neo4j
is open source and allows plugins to enhance or add functionalities, and
there is a vibrant ecosystem of tooling around the core database.

•	 Any Cypher statement that updates the graph is run within a transaction.
If a transaction exists, the newly fired Cypher query will be run in it. If no
transaction exists, then the statement will itself be transactional.

•	 The community being fostered is incredible. This is also partly made possible
by the project being open source. Neo4j is currently being used in production
by companies such as UBS, Cisco, Walmart, eBay, Telenor, HP, Pitney Bowes,
Accenture, Lockheed Martin, Glassdoor, and many others.

Chapter 1

[9]

The structure of the book
This book is divided into two sections:

•	 Section 1 (Chapter 2, Modeling Flights and Cities, to Chapter 5, Refactoring the
Data Model) is essential to understand graph modeling concepts that you will
use in your daily routine. We cover how to model a graph, how to query it,
how to evolve a graph database to accommodate changes in the domain,
and how to translate a RDBMS data model into a graph design.

•	 Section 2 (Chapter 6, Modeling Communication Chains, to Chapter 8,
Recommendations and Analysis of Historical Data) are more reference oriented
with models that you might need for optimization or for specialized cases.
Topics covered are modeling chains and advantages of modeling chains,
modeling access control, and designing recommendation systems based on
the data present.

Summary
In this chapter, we discussed that graph databases are structures that help represent
data as nodes, relationships, and properties; relationships explicitly specify and
qualify the connection between two entities; labels add semantic meaning to nodes
and allow for addition of indices and constraints; properties add more information
to the nodes and relationships. We saw a few use cases in which graphs are used
currently.

From the next chapter onward, we will delve into designing a data model and
use actual Cypher queries to feed it into Neo4j. The queries used in this book are
compatible with Neo4j 2.2.3. They have also been tested with Neo4j 2.3.0-M02.

www.allitebooks.com

http://www.allitebooks.org

[11]

Modeling Flights and Cities
We looked at what graphs are and what domains they might be suited for. Now, it is
time to dive deeper into concepts that are related to graph databases and how we can
go ahead and create our data in a graph. In this chapter, we will look at:

•	 How graphs can be used outside the social context modeling flights and
cities for creating an itinerary

•	 Adding nodes, labels, properties, relationships, uniqueness constraints, and
indices

Before we dive deep into modeling, we recommend that you download the code
samples that you will need to run the examples in this chapter. The code can be
downloaded from https://github.com/maheshlal2910/neo4j_graph_data_
modelling.

Graphs are more than social
Often, when we talk about graph databases and their most suited use cases, people
point out that social networks are a good use case for graphs. While this is true, in a
way, it pigeonholes graph databases. Graph databases are versatile tools that can be
used to model various domains and problems. In this book, we pick up a nonsocial
example—travel, and explain how we can model data for various subsystems that
would be used in a travel website using Neo4j.

Modeling Flights and Cities

[12]

Designing a system to get a travel
itinerary
The travel domain is interesting in terms of data modeling challenges. Throughout
this book, we will be modeling systems that work together in a website that can be
used for planning flight travel. Travelers would like to look at the options for an
itinerary before booking any particular set of flights, especially if there is no direct
flight from the traveler's current city to the destination city. Normally, an itinerary
includes total duration, layover duration, and the number of hops it takes to reach
the destination. We cannot, however, derive the itinerary without modeling cities
and flights, which brings us to our first data modeling problem.

Introduction to modeling flights and cities
If we were to explain the problem of cities and the number of flights between
them, we could start with drawing cities as nodes. In case two cities have two or
more direct flights between them, we connect those two cities with an undirected
relationship, as shown in the following figure:

Figure 2.1: Cities and flight routes

Chapter 2

[13]

In the situation depicted by Figure 2.1, there is a direct route between New York and
the following cities: Chicago, Los Angeles, Washington, and Las Vegas, for instance.
However, if a traveler has to fly to New York from Istanbul, they have to choose
from among the following routes:

•	 Istanbul—London—New York
•	 Istanbul—Athens—Paris—New York

In Figure 2.1, an undirected relationship between cities that are connected by flights
is an abstraction stating that there are at least two direct flights between those two
cities. For example, between New York and Los Angeles, there should be one flight
from New York to Los Angeles and vice versa. In reality, there might be multiple
flights, operated by different operators, travelling to and fro between two cities that
are directly connected in Figure 2.1. This complicates the problem of presenting the
traveler with a good itinerary.

Identifying the entities
Before we jump to modeling, we need to identify the interacting entities involved
in this problem. For the problem of creating an itinerary, we need cities and flights
connecting them. Cities form hubs, which one can travel to or transit through. Flights
fly from one city to another.

Figure 2.2: Cities and flights

Modeling Flights and Cities

[14]

The preceding figure represents the information that is needed and applicable to
both the entities. While city names aren't unique in the real world, we could use city
names to uniquely identify the city in our domain. In addition to the name, a city will
also have the name of the country it belongs to.

A flight can be uniquely identified by its code. Other parameters include duration
of the flight (in minutes), departure and arrival time (in minutes within the day
where 0000 hrs will be 0 minutes and 2359 hrs will be 1439 minutes). We capture
information about the airports between which the flight operates in source_airport_
code and destination_airport_code.

In the RDBMS world, an attribute that uniquely identifies a record is called a
primary key. More often than not, this primary key attribute is denoted by prefixing
pk_ to its name. Also, primary keys are mostly some sort of long integer. In this
book, we will use UUIDs as primary keys wherever other attributes can't be used as
primary keys. However, in cases where we can use any property as a key, we will
(for convenience) use that field as a key. Please note that in production systems, the
key should be a distinct property serving a single purpose—uniquely identifying the
node/relationship. Also, having either long integers or UUIDs as IDs allows us to
use them in URLs where other properties might not be usable.

Introduction to modeling nodes and
relationships
We looked at the data models in Figure 2.2. Without delving into technical details,
we can say that "A person can fly from New York to London on carrier X". With this
statement, we can start exploring possibilities in which this data can be modelled. A
preliminary approach would be to mark cities as nodes and flights as relationships,
as shown in the following figure:

Chapter 2

[15]

Figure 2.3: A preliminary model with flights and cities—the property graph

Modeling Flights and Cities

[16]

This might seem to be a fair model, however, there are a few problems with the
approach. Relationships, in graphs, are used to model how the entities' nodes are related
to each other. As discussed earlier, flights are one of the two core entities in our model.
Flights don't relate cities to each other, instead, they are a means to get from one city
to another. Modeling flights as relationships, can work out in presenting a flight plan,
but if we have to allow flight bookings in the future, then we need to change flights to
nodes. In general, it's always a good practice to model any entity in the domain as a
node. Figure 2.4 shows us an alternative approach to model flights and cities.

Modeling entities as relationships must be avoided. Relationships in
Neo4j can't have other relationships linked to them. Relationships
should depict semantically relevant connections between two entities,
not entities themselves.

Figure 2.4: A model for flights and cities

Chapter 2

[17]

The preceding data model has :Flight and :City as labels for the nodes for flights and
cities, respectively. :HAS_FLIGHT and :FLYING_TO are relationships that link a
flight to its origin city and destination city, respectively.

When we represent a part of a graph that contains all possible nodes and
relationships, we lay down a specification for how data is connected and structured.
Thus, we can describe graphs using specification by example.

This graph seems to be a good starting point for us to begin feeding the data into
Neo4j.

Before we move forward, it would be a good idea to install Neo4j so
that we can work on the Cypher queries. Neo4j can be downloaded
from http://neo4j.com/download/.
Once installed, we will use the neo4j-shell, a console tool for Neo4j to
create nodes and relationships. Further in this book, we will make use
of the Neo4j Browser tool, when we start dealing with traversal and
exploring our graph. Before trying out any of the queries, ensure that
the Neo4j server is started.

Using Cypher to operate on Neo4j
Operations on Neo4j are generally performed using a query language called Cypher.
Cypher is a simple, expressive, SQL-like language that allows us to create, read,
update, and delete nodes and relationships in Neo4j. To retrieve data from a Neo4j
store, we write Cypher queries, which specify which nodes and which relationships
to traverse.

Cypher is a declarative graph query language. Each query is built of clauses and
each clause pipes/feeds the next clause with data. Cypher is designed to be a
humane query language suitable for developers and operations professionals,
and hence, elegantly combines simplicity, expressiveness. and efficiency.

There are ways in which you can, and should influence efficiency from
a user perspective, particularly by writing queries that utilize and are
sympathetic to the graph structure. However, each query is planned,
costed, and executed by the query engine that tries to optimize queries.
This allows users to focus on better modeling rather than worrying
about the optimization of the queries being written.

Modeling Flights and Cities

[18]

To start with, we will need the following clauses:

•	 CREATE: This clause is used to create nodes and relationships.
•	 MATCH: This clause matches a certain set of nodes and relationships following

the patterns specified.
•	 RETURN: This decides which part of the created data should be returned. It

can be used to return nodes, relationships, or even individual properties.

Before we move forward, we need to ensure that we have a working Neo4j
installation.

There are other tools such as Gremlin and the Java API that can
be used to query and operate on Neo4j. We feel that Cypher is the
most expressive among all of these options. Cypher, however, has
limitations to processing which Gremlin addresses better. Gremlin,
is not officially supported as of 2.2.0, and Neo4j requires a plugin
to execute Cypher queries

Creating cities in Neo4j
We will model cities as nodes, as shown in Figure 2.4, with the city's name and
country as properties. Cities should have unique names. For this, we can add a
constraint before we start creating cities in our graph.

The query is as follows:

neo4j-sh (?)$ CREATE CONSTRAINT ON (city: City) ASSERT
 city.name IS UNIQUE;

The output of the preceding query is as shown:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

This adds a constraint on all nodes that will henceforth be created with the label
City to have a unique name property. The city in (city: City) is a placeholder,
like a variable, for any node with label City. Note that the addition of a uniqueness
constraint is idempotent—it can be repeated multiple times without throwing an
error or changing the constraint after it first gets added.

Chapter 2

[19]

It's a good practice to add a uniqueness constraint, like we did, before we start
adding nodes that have a particular label. While a uniqueness constraint can be
added anytime, creating one beforehand ensures that no two nodes with the same
label will have the same identifier. Currently, there is no way to specify a uniqueness
constraint that combines multiple fields. However, we can have multiple uniqueness
constraints on the label. To emulate a uniqueness constraint that spans multiple
properties, we can create a property that combines the values of two properties and
creates a new constraint on this property with joint values. For example, if cities have
unique names within the context of a country, we can create a property with the city
name and country name appended and create a uniqueness constraint on that.

The primary function of a label is to provide semantic context for nodes.
As discussed earlier, a node can have multiple labels, because a node
can represent multiple things to the same system. As a corollary, a node
can have multiple uniqueness constraints applied to it in context of the
different labels applied to it. Labels can be added or removed from a node.
While allowing for uniqueness constraints isn't the primary role of labels,
it is important to note that without labels, adding uniqueness constraints
isn't possible.

We can add our first city—New York as shown here:

neo4j-sh (?)$ CREATE (city:City{name:"New York",
 country:"United States of America"}) RETURN n;

The output is as follows:

+---+
| n |
+---+
| Node[1]{name:"New York",country:"United States of America"} |
+---+
1 row
Nodes created: 1
Properties set: 2
Labels added: 1

In the query, city is a variable name just like n or x. While it can be anything, we
recommend usage of readable and meaningful variable names in the query. We use
variable names to ensure that we are referring to the same set of nodes, to use them
in multiple parts of the query.

www.allitebooks.com

http://www.allitebooks.org

Modeling Flights and Cities

[20]

The output of each query on the Neo4j console can be divided into three parts:

•	 Variable name: This is the name of the value that is returned by the query.
•	 Variable values: These are the values that are returned by the query.
•	 Modification summary: This includes how much data is returned,

everything that was (or not) modified, and the time taken to run the query.

The ID of the node created, is a part of the output, but should never be
used to identify the node uniquely. Neo4j recycles IDs of any nodes that
have been deleted. For example, if we delete the node we just created,
the ID (1) of the node will be added to the free pool, and next time the
server restarts, it might be reassigned to some other node we might
create. Thus, using the generated Neo4j ID to identify a node is risky.

We can also create multiple cities in the same query with the following code:

neo4j-sh (?)$ CREATE
 (:City{name:"Mumbai", country:"India"}),
 (:City{name:"Chicago",
 country:"United States of America"}),
 (:City{name:"Las Vegas", country:"United States
 of America"}),(:City{name:"Los Angeles",
 country:"United States of America"}),
 (:City{name:"Toronto", country:"Canada"}),
 (:City{name:"London", country:"United Kingdom"}),
 (:City{name:"Madrid", country:"Spain"}),
 (:City{name:"Paris", country:"France"}),
 (:City{name:"Athens", country:"Greece"}),
 (:City{name:"Rome", country:"Italy"}),
 (:City{name:"Istanbul", country:"Turkey"}),
 (:City{name:"Singapore", country:"Singapore"}),
 (:City{name:"Sydney", country:"Australia"}),
 (:City{name:"Melbourne", country:"Australia"});

The output of the previous query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 14
Properties set: 28
Labels added: 14

Chapter 2

[21]

We can retrieve the cities we just created by using the following query:

neo4j-sh (?)$ MATCH (city:City{name:"New York"}) RETURN city;

The output of this query is as follows:

+---+
| city |
+---+
| Node[1]{country:"United States of America",name:"New York"} |
+---+
1 row

We can also retrieve multiple cities in the same query as shown here:

neo4j-sh (?)$ MATCH (c1:City{name:"Athens"}),
 (c2:City{name:"Mumbai"}) RETURN c1, c2;

The output is as follows:

+---+
| c1 | c2 |
+---+
| Node[7]{name:"Athens",country:"Greece"} |
 Node[9]{name:"Mumbai",country:"India"} |
+------------------------------ ----------------------------+
1 row

While we can return whole nodes as our result, it's generally advised to return
only the data that is needed. It's also possible to alias the data that is returned. The
following query returns the names of two cities as shown:

neo4j-sh (?)$ MATCH (c1:City{name:"Athens"}),
 (c2:City{name:"Mumbai"}) RETURN c1.name as
 first_city, c2.name as second_city;

The output is as follows:

+--------------------------+
| first_city | second_city |
+--------------------------+
| "Athens" | "Mumbai" |
+--------------------------+
1 row

Modeling Flights and Cities

[22]

Indices
We have added a property country to every node labeled as City. We can search
for cities belonging to a country as well. Searching without indexes is inefficient, and
hence, it's a good practice to add an index for properties which we anticipate the
nodes will be searched by. Let's see how this is done using an example as shown:

neo4j-sh (?)$ CREATE INDEX ON :City(country);

The output is as follows:

+-------------------+
| No data returned. |
+-------------------+
Indexes added: 1

Creating an index returns Indexes added: 1. However, at this point, an index may
not have been added—but will be created. In our database, an index would already
have been created. In larger datasets, the indexing will take time.

The index we have just created is called schema index.

Whenever we send Neo4j a Cypher query for execution, Neo4j will try
reducing the queried graph to a small subgraph, and then try comparing
which nodes have properties:value queried. In larger databases,
the subgraph itself might have millions of nodes, and checking each
node within the subgraph for the presence of the property:value pair
would be time consuming. To avoid store scans, and to improve discrete
lookup performance, we can declare an index on properties for a given
label. It is also a good practice to restrict the subgraph using the label of
the nodes we want the query to operate on. Since labels are indexed by
default, finding nodes using labels is fast for Neo4j.

We can now search for cities in a country without worrying about performance.
For example, to search all cities in the United States of America we will use the
following query:

neo4j-sh (?)$ MATCH (c:City{country:"United States
 of America"}) RETURN c.name as City;

Chapter 2

[23]

The output is as follows:

+---------------+
| City |
+---------------+
| "Las Vegas" |
| "New York" |
| "Los Angeles" |
| "Chicago" |
+---------------+
4 rows

Adding flights to Neo4j
Since we have identified flights as entities, we will create them as nodes. To begin
with, we should create a uniqueness constraint on the property code for the label
:Flight as shown:

neo4j-sh (?)$ CREATE CONSTRAINT ON (flight:Flight)
 ASSERT flight.code IS UNIQUE;

The output is as follows:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

We can create a flight with its information as a standalone entity:

neo4j-sh (?)$ CREATE (flight:Flight {code:"AA9",
 carrier:"American Airlines", duration:314,
 source_airport_code:"JFK", departure:1300,
 destination_airport_code:"LAX", arrival:114})
 RETURN flight.code as flight_code,
 flight.carrier as carrier, flight.source_airport_code
 as from, flight.destination_airport_code as to;

Modeling Flights and Cities

[24]

The output is as follows:

+---+
| flight_code | carrier | from | to |
+---+
| "AA9" | "American Airlines" | "JFK" | "LAX" |
+---+
1 row
Nodes created: 1
Properties set: 5
Labels added: 1

This flight can now be connected to the source and destination cities by means of
relationships. Relationships in Neo4j must have a direction while being created. In
the absence of a specified direction while creation, the query will throw an error.
Here's an example:

neo4j-sh (?)$ MATCH (source:City {name:"New York"}),

 (destination:City {name:"Los Angeles"}),

 (flight:Flight{code:"AA9"})

 CREATE (source)-[:HAS_FLIGHT]->(flight)-[:FLYING_TO]-(destination);

The output of this query is as follows:

WARNING: Only directed relationships are supported

 in CREATE (line 1, column 164 (offset: 163))

"MATCH (source:City {name:"New York"}),

 (destination:City {name:"Los Angeles"}),

 (flight:Flight{code:"AA9"})CREATE (source)-[:HAS_FLIGHT]

 ->(flight)-[:FLYING_TO]-(destination)"

In the preceding example, we don't have a direction specified on the [:FLYING_TO]
relationship.

If we provide a direction to the relationship in the Cypher query, Neo4j will create
the relationship in the database.

Input the following query:

neo4j-sh (?)$ MATCH (source:City {name:"New York"}),

 (destination:City {name:"Los Angeles"}),

 (flight:Flight{code:"AA9"})CREATE (source)-[:HAS_FLIGHT]

 ->(flight)-[:FLYING_TO]->(destination);

Chapter 2

[25]

The output obtained is as follows:

+-------------------+
| No data returned. |
+-------------------+
Relationships created: 2
Properties set: 2

The structure of the query is simple. We select the nodes that need to be linked
and then create a relationship between them. In the preceding example, source,
destination and flight represent variables that are temporarily used to hold
the nodes between which the relationships have to be formed. :HAS_FLIGHT and
:FLYING_TO are both relationship types. As discussed earlier, relationships can have
properties.

The type of a relationship is tied to the relationship. They are like
labels in the semantic sense, but once a relationship is created with a
type, it cannot be changed, nor can more types be added.
The direction of the relationship is denoted by the direction in which
the arrow (->) points. Both the direction and type are intrinsic to
the relationship, and to change any of these, we need to delete the
relationship and recreate it with the desired type and direction.

These two steps of creating the flight and then connecting them to the cities can be
condensed into one by writing a slightly longer query, as shown here:

neo4j-sh (?)$ CREATE (flight:Flight {code:"AA920",
 carrier:"American Airlines", duration:305,
 source_airport_code:"LAX", departure:505,
 destination_airport_code:"JFK", arrival:990})
WITH flight
MATCH (source:City {name:"Los Angeles"}),
 (destination:City {name:"New York"})
CREATE (source)-[:HAS_FLIGHT]->
 (flight)-[:FLYING_TO]->(destination);

The output of this query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 1
Relationships created: 2
Properties set: 7
Labels added: 1

Modeling Flights and Cities

[26]

In the preceding query, we used WITH to pipe the result of the first part of the query
to the second.

Let's create a few more flights using the queries in flights.cqy, which we
downloaded at the beginning of this chapter.

Traversing relationships
Traversing relationships in Neo4j is done by specifying the path that we want to
be matched. Queries can be open ended, like the one here, in which we haven't
highlighted the direction in which we want the relationship to be traversed. Other
open-ended queries might refrain from specifying the relationship type to be
traversed or the node labels that would identify the subgraph that needs to be
traversed.

Input the following query:

neo4j-sh (?)$ MATCH (source:City {name:"Los Angeles"})
 ->[:HAS_FLIGHT]-(f:Flight)-[:FLYING_TO]->
 (destination:City {name:"New York"})
 RETURN f.code as flight_code, f.carrier as carrier;

The output of this query is as follows:

+-----------------------------------+
| flight_code | carrier |
+-----------------------------------+
| "UA1262" | "United" |
| "AA920" | "American Airlines" |
+-----------------------------------+
2 rows

Summary
In this chapter, you learned that graphs can be described by describing a subgraph that
contains all possible relationships, nodes, and properties; this is called specification by
example. You also learned that entities should be modeled as nodes, and relationships
must be used to denote semantic correlation between two entities. Nodes can have
multiple labels, while relationships can have only one type. We also discussed the
advantages of using labels apart from the semantic context they provide.

[27]

Formulating an Itinerary
In the previous chapter, you learned to visualize a domain as a graph and how to
feed it into Neo4j using Cypher. This chapter will revolve around using that data to
get the desired information. This can be done using Cypher to query the graph and
return the desired data. You will learn the following:

•	 Querying using Cypher for variable length relationships
•	 Using functions to extract data from a collection of nodes
•	 What operations are suited for Cypher

Creating an itinerary from flights and
cities
We modelled cities and flights in the previous chapter. In this chapter, our primary
focus will be on creating an itinerary from the graph we have. A few considerations
while we are fetching the itinerary are as follows:

•	 Even if there is no direct flight from city A to city B, most people are
comfortable with two or less stopovers/changes of flights

•	 If there is a change of flights or stopover involved, the stopover should be
at least for two hours so that the travelers can change flights in spite of any
unforeseen delays

Formulating an Itinerary

[28]

Information and paths
In a graph, we discover information by traversing the nodes and relationships
from some starting node or nodes. Collectively, the start node, the end node, the
relationships, and intermediate nodes together consist of a path. We define the path
using the node labels and relationship types. Writing queries with node labels and
relationship types allows the query to be expressive.

Using Cypher to find a path
In order to find flights, we can use the clauses that we used in the previous chapter.
In addition to the MATCH and RETURN clause, we will use the WITH clause and
collection functions. A short description of each of these is as follows:

•	 The MATCH clause is used to match a path having the specified node and
relationship types.

•	 The RETURN clause is used to return the matched path, a few nodes/
relationships, or properties from nodes/relationships in the path.

•	 Collection functions are used to extract data from a collection of nodes that
the MATCH clause or other collection functions return.

•	 The WITH clause is used to pipe the results from one logical part of the query
to another logical part. It can be combined with usage of.

We already wrote a query to find flights between two cities.

The query to find a flight path is a simple extension of the query to find
one flight.
To visualize paths, we are going to use the Neo4j browser. It is a better
tool compared to the neo4j-shell to visualize connected data. For
queries where we return a couple of properties, the neo4j-shell is still a
tool of choice.

Chapter 3

[29]

The query to be written is:

MATCH path = (london:City{name:'London'})-[:HAS_FLIGHT|FLYING_
TO*0..6]->(melbourne:City{name:'Melbourne'}) RETURN path;

The following screenshot shows you the output of the preceding query:

Figure. 3.1: Flights from London to Melbourne

If we compare this with the query to find a flight between New York and London,
you will notice that we have eliminated the mention of the flight node, and instead
specified a pattern of relationships to match. The pipe symbol (|) separating the
relationship types is used to specify multiple relationships that might be matched by
the query. The asterisk (*) and the range after it specify the relationship-node hops
the query should be traversing.

www.allitebooks.com

http://www.allitebooks.org

Formulating an Itinerary

[30]

In cases where the graph has cycles, usage of * along with the
specification of the depth should be carefully thought out. A carefully
thought out query with both lower bound and upper bound of the
traversal will return useful data, while a query that has been hacked
together without much thought might not return any data. In some
cases, if the query runs into a cycle and has no upper bound for the
query depth, the JVM might crash.

We have specified six as the maximum number of hops to be taken. This number
is the result of an assumption made earlier in this chapter; most people would be
comfortable with at the most two stopovers. This translates to at most three flight
changes. Considering each flight has two relationships connecting it to a source and
destination city, we have to traverse at the most six hops in order to get our itinerary.

It is good practice to just return the information needed for further processing rather
than returning the whole path from Neo4j.

The input query is as shown here:

MATCH path = (london:City{name:'London'})-[:HAS_FLIGHT|FLYING_
TO*0..6]->(melbourne:City{name:'Melbourne'})
WITH
FILTER(f in nodes(path) WHERE "Flight" IN labels(f)) as flights,
FILTER(city in nodes(path) WHERE "City" IN labels(city)) as cities
RETURN
EXTRACT(city IN cities| city.name) as city,
EXTRACT (flight IN flights| flight.code) as code,
EXTRACT (flight IN flights| flight.carrier) as carrier,
EXTRACT (flight IN flights| flight.departure) as departure,
EXTRACT (flight IN flights| flight.arrival) as arrival,
EXTRACT (flight IN flights| flight.duration) as duration,
EXTRACT (flight IN flights| flight.source_airport_code) as from_
airport,
EXTRACT (flight IN flights| flight.destination_airport_code) as to_
airport

Chapter 3

[31]

The output for the preceding code is as follows:

Figure. 3.2: Information of flights from London to Melbourne

Business logic should lie in code
We returned data from Neo4j without any processing such as ordering flights by
their duration or only choosing those connecting flights that are flying out at least
two hours after the arrival of the incoming flight. There are multiple reasons for this:

•	 Returning flights or itineraries sorted by flight duration doesn't solve
anything for us since the total journey time will be a sum of all the flight
durations and all the layovers.

•	 Eager aggregation is generally an expensive process and, in case the client
consuming data from Neo4j has processing power, it's better to delegate the
processing to the client rather than do it in Neo4j.

•	 In our case specifically, the aggregation for layover times is a complex
calculation, more suited to programming languages rather than a query
language such as Cypher.

•	 The minimum layover time of two hours is more of a business logic and
needs to be tackled in code and not on the database. In general, it's better
to keep queries and business logic separate.

Formulating an Itinerary

[32]

Summary
In this chapter, you learned how to query multiple hop paths and set limits of hops
that we have to traverse. You also learned to use functions to extract data from a set
of collections. In the next chapter, you will learn how to redesign the existing data.

[33]

Modeling Bookings
and Users

In the previous chapters, you learned how to model flights, reviews, comments,
and users. We used a graph to find routes between two cities. However, we limited
ourselves to problems that naturally fit into a graph, that is, routing. In this chapter,
we will explore how graphs can be used to solve problems that are dominantly
solved using RDBMS, for example, bookings.

We will discuss the following topics in this chapter:

•	 Modeling bookings in an RDBMS
•	 Modeling bookings in a graph
•	 Adding bookings to graphs
•	 Using Cypher to find bookings and journeys

Modeling Bookings and Users

[34]

Building a data model for booking flights
We have a graph that allows people to search flights. At this point, a logical
extension to the problem statement could be to allow users to book flights online
after they decide the route on which they wish to travel. We were only concerned
with flights and the cities. However, we need to tweak the model to include users,
bookings, dates, and capacity of the flight in order to make bookings. Most teams
choose to use an RDBMS for sensitive data such as user information and bookings.
Let's understand how we can translate a model from an RDBMS to a graph.

A flight booking generally has many moving parts. While it would be great to
model all of the parts of a flight booking, a smaller subset would be more feasible,
to demonstrate how to model data that is normally stored in a RDBMS.

A flight booking will contain information about the user who booked it along
with the date of booking. It's not uncommon to change multiple flights to get from
one city to another. We can call these journey legs or journeys, and model them
separately from the booking that has these journeys. It is also possible that the person
booking the flight might be booking for some other people. Because of this, it is
advisable to model passengers with their basic details separately from the user.

We have intentionally skipped details such as payment and costs in
order to keep the model simple.

A simple model of the bookings
ecosystem
A booking generally contains information such as the date of booking, the user who
booked it, and a date of commencement of the travel. A journey contains information
about the flight code. Other information about the journey such as the departure and
arrival time, and the source and destination cities can be evaluated on the basis of
the flight which the journey is being undertaken. Both booking and journey will have
their own specific IDs to identify them uniquely. Passenger information related to the
booking must have the name of the passengers at the very least, but more commonly
will have more information such as the age, gender, and e-mail.

Chapter 4

[35]

A rough model of the Booking, Journey, Passenger, and User looks like this:

Figure 4.1: Bookings ecosystem

Modeling bookings in an RDBMS
To model data shown in Figure 4.1 in an RDBMS, we will have to create tables
for bookings, journeys, passengers, and users. In the previous model, we have
intentionally added booking_id to Journeys and user_id to Bookings. In an
RDBMS, these will be used as foreign keys.

We also need an additional table Bookings_Passengers_Relationships so that we
can depict the many relationships between Bookings and Passengers. The multiple
relationships between Bookings and Passengers help us to ensure that we capture
passenger details for two purposes. The first is that a user can have a master list
of travelers they have travelled with and the second use is to ensure that all the
journeys taken by a person can be fetched when the passenger logs into their account
or creates an account in the future.

Modeling Bookings and Users

[36]

We are naming the foreign key references with a prefix fk_ in adherence
to the popular convention.

Figure 4.2: Modeling bookings in an RDBMS

Chapter 4

[37]

In an RDBMS, every record is a representation of an entity (or a relationship in case
of relationship tables). In our case, we tried to represent a single booking record as
a single block. This applies to all other entities in the system, such as the journeys,
passengers, users, and flights. Each of the records has its own ID by which it can be
uniquely identified. The properties starting with fk_ are foreign keys, which should
be present in the tables to which the key points.

In our model, passengers may or may not be the users of our application. Hence,
we don't add a foreign key constraint to the Passengers table. To infer whether the
passenger is one of the users or not, we will have to use other means of inferences,
for example, the e-mail ID. Given the relationships of the data, which are inferred
using the foreign key relationships and other indirect means, we can draw the logical
graph of bookings as shown in the following diagram:

Figure 4.3: Visualizing related entities in an RDBMS

Modeling Bookings and Users

[38]

Figure 4.3 shows us the logical graph of how entities are connected in our domain.
We can translate this into a Bookings subgraph. In Chapter 2, Modeling Flights and
Cities, we briefly touched upon specification by example. From the related entities
of Figure 4.3, we can create a specification of the Bookings subgraph, which is
as follows:

Figure 4.4: Specification of subgraph of bookings

Comparing Figure 5.3 and Figure 5.4, we observe that all the fk_ properties
are removed from the nodes that represent the entities. Since we have explicit
relationships that can now be used to traverse the graph, we don't need implicit
relationships that rely on foreign keys to be enforced. We put the date of booking
on the booking itself rather than on the relationship between User and Bookings.

Chapter 4

[39]

The date of booking can be captured either in the booking node or in
the :MADE_BOOKING relationship. The advantage of capturing it in the
booking node is that we can further run queries efficiently on it rather
than relying on crude filtering methods to extract information from the
subgraph.

An important addition to the Bookings object is adding the properties year, month,
and day. Since date is not a datatype supported by Neo4j, range queries become
difficult. Timestamps solve this problem to some extent, for example, if we want to
find all bookings made between June 01, 2015 and July 01, 2015, we can convert them
into timestamps and search for all bookings that have timestamps between these two
timestamps. This, however, is a very expensive process, and would need a store scan
of bookings. To alleviate these problems, we can capture the year, day, and month on
the booking.

While adapting to the changing needs of the system, remodeling the data
model is encouraged. It is also important that we build a data model
with enough data captured for our needs—both current and future. It is a
judgment-based decision, without any correct answer. As long as the data
might be easily derived from existing data in the node, we recommend not to
add it until needed. In this case, converting a timestamp to its corresponding
date with its components might require additional programming effort. To
avoid that, we can begin capturing the data right away. There might be other
cases, for example, we want to introduce a property Name on a node with
First name and Last name as properties. The derivation of Name from
First name and Last name is straightforward. In this case, we advise not
to capture the data till the need arises.

Creating bookings and users in Neo4j
For bookings to exist, we should create users in our data model.

As with earlier chapters, please download the queries from the
downloadable code bundle available with this book. Alternatively,
the queries can also be downloaded from https://github.com/
maheshlal2910/neo4j_graph_data_modelling.

www.allitebooks.com

http://www.allitebooks.org

Modeling Bookings and Users

[40]

Creating users
To create users, we create a constraint on the e-mail of the user, which we will use as
an unique identifier as shown in the following query:

neo4j-sh (?)$ CREATE CONSTRAINT ON (user:User)
 ASSERT user.email IS UNIQUE;

The output of the preceding query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

With the constraint added, let's create a few users in our system:

neo4j-sh (?)$ CREATE (:User{name:"Mahesh Lal",
 email:"mahesh.lal@gmail.com"}),
 (:User{name:"John Doe", email:"john.doe@gmail.com"}),
 (:User{name:"Vishal P", email:"vishal.p@gmail.com"}),
 (:User{name:"Dave Coeburg", email:"dave.coeburg@gmail.com"}),
 (:User{name:"Brian Heritage",
 email:"brian.heritage@hotmail.com"}),
 (:User{name:"Amit Kumar", email:"amit.kumar@hotmail.com"}),
 (:User{name:"Pramod Bansal",
 email:"pramod.bansal@hotmail.com"}),
 (:User{name:"Deepali T", email:"deepali.t@gmail.com"}),
 (:User{name:"Hari Seldon", email:"hari.seldon@gmail.com"}),
 (:User{name:"Elijah", email:"elijah.b@gmail.com"});

The output of the preceding query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 10
Properties set: 20

Labels added: 10

Please add more users from users.cqy.

Chapter 4

[41]

Creating bookings in Neo4j
As discussed earlier, a booking has multiple journey legs, and a booking is only
complete when all its journey legs are booked.

Bookings in our application aren't a single standalone entity. They involve multiple
journeys and passengers. To create a booking, we need to ensure that journeys are
created and information about passengers is captured. This results in a multistep
process.

To ensure that booking IDs remain unique and no two nodes have the same ID, we
should add a constraint on the id property of booking:

neo4j-sh (?)$ CREATE CONSTRAINT ON (b:Booking)
 ASSERT b.id IS UNIQUE;

The output will be as follows:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

We will create similar constraints for Journey as shown here:

neo4j-sh (?)$ CREATE CONSTRAINT ON (journey:Journey)
 ASSERT journey._id IS UNIQUE;

The output is as follows:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

Add a constraint for the e-mail of passengers to be unique, as shown here:

neo4j-sh (?)$ CREATE CONSTRAINT ON (p:Passenger)
 ASSERT p.email IS UNIQUE;

The output is as shown:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

Modeling Bookings and Users

[42]

With constraint creation, we can now focus on how bookings can be created. We will
be running this query in the Neo4j browser, as shown:

//Get all flights and users
MATCH (user:User{email:"john.doe@gmail.com"})
MATCH (f1:Flight{code:"VS9"}), (f2:Flight{code:"AA9"})
//Create a booking for a date
MERGE (user)-[m:MADE_BOOKING]->(booking:Booking
 {_id:"0f64711c-7e22-11e4-a1af-14109fda6b71", booking_
date:1417790677.274862, year: 2014, month: 12, day: 5})
//Create or get passengers
MERGE (p1:Passenger{email:"vishal.p@gmail.com"}) ON CREATE SET p1.name
= "Vishal Punyani", p1.age= 30
MERGE (p2:Passenger{email:"john.doe@gmail.com"}) ON CREATE SET p2.name
= "John Doe", p2.age= 25
//Create journeys to be taken by flights
MERGE (j1:Journey{_id: "712785b8-1aff-11e5-abd4-6c40089a9424", date_
of_journey:1422210600.0, year:2015, month: 1, day: 26})-[:BY_FLIGHT]->
(f1)
MERGE (j2:Journey{_id:"843de08c-1aff-11e5-8643-6c40089a9424", date_
of_journey:1422210600.0, year:2015, month: 1, day: 26})-[:BY_FLIGHT]->
(f2)
WITH user, booking, j1, j2, f1, f2, p1, p2
//Merge journeys and booking, Create and Merge passengers with
bookings, and return data
MERGE (booking)-[:HAS_PASSENGER]->(p1)
MERGE (booking)-[:HAS_PASSENGER]->(p2)
MERGE (booking)-[:HAS_JOURNEY]->(j1)
MERGE (booking)-[:HAS_JOURNEY]->(j2)
RETURN user, p1, p2, j1, j2, f1, f2, booking

The output is as shown in the following screenshot:

Chapter 4

[43]

Figure 4.5: Booking that was just created

We have added comments to the query to explain the different parts of the query.
The query can be divided into the following parts:

•	 Finding flights and user
•	 Creating bookings
•	 Creating journeys
•	 Creating passengers and link to booking
•	 Linking journey to booking

Modeling Bookings and Users

[44]

We have the same start date for both journeys, but in general, the start dates of
journeys in the same booking will differ if:

•	 The traveler is flying across time zones. For example, if a traveler is flying
from New York to Istanbul, the journeys from New York to London and
from London to Istanbul will be on different dates.

•	 The traveler is booking multiple journeys in which they will be spending
some time at a destination.

Let's use bookings.cqy to add a few more bookings to the graph. We will use them
to run further queries.

Queries to find journeys and bookings
With the data on bookings added in, we can now explore some interesting queries
that can help us.

Finding all journeys of a user
All journeys that a user has undertaken will be all journeys that they have been a
passenger on. We can use the user's e-mail to search for journeys on which the user
has been a passenger.

To find all the journeys that the user has been a passenger on, we should find the
journeys via the bookings, and then using the bookings, we can find the journeys,
flights, and cities as shown:

neo4j-sh (?)$ MATCH (b:Booking)-[:HAS_PASSENGER]-
>(p:Passenger{email:"vishal.p@gmail.com"})
WITH b
MATCH (b)-[:HAS_JOURNEY]->(j:Journey)-[:BY_FLIGHT]->(f:Flight)
WITH b._id as booking_id, j.date_of_journey as date_of_journey,
COLLECT(f) as flights ORDER BY date_of_journey DESC
MATCH (source:City)-[:HAS_FLIGHT]->(f)-[:FLYING_TO]-
>(destination:City)
WHERE f in flights
RETURN booking_id, date_of_journey, source.name as from, f.code as by_
flight, destination.name as to;

Chapter 4

[45]

The output of this query is as follows:

While this query is useful to get all the journeys of the user, it can also be used to
map all the locations the user has travelled to.

Queries to find the booking history
of a user
The query for finding all bookings by a user is straightforward, as shown here:

neo4j-sh (?)$ MATCH (user:User{email:"mahesh.lal@gmail.com"})-[:MADE_
BOOKING]->(b:Booking) RETURN b._id as booking_id;

The output of the preceding query is as follows:

+--+
| booking_id |
+--+
| "251679be-1b3f-11e5-820e-6c40089a9424" |
| "ff3dd694-7e7f-11e4-bb93-14109fda6b71" |
| "7c63cc35-7e7f-11e4-8ffe-14109fda6b71" |
| "f5f15252-1b62-11e5-8252-6c40089a9424" |
| "d45de0c2-1b62-11e5-98a2-6c40089a9424" |
| "fef04c30-7e2d-11e4-8842-14109fda6b71" |
| "f87a515e-7e2d-11e4-b170-14109fda6b71" |
| "75b3e78c-7e2b-11e4-a162-14109fda6b71" |
+--+
8 rows

Modeling Bookings and Users

[46]

Upcoming journeys of a user
Upcoming journeys of a user is straightforward. We can construct it by simply
comparing today's date to the journey date as shown:

neo4j-sh (?)$ MATCH (user:User{email:"mahesh.lal@gmail.com"})-[:MADE_
BOOKING]->(:Booking)-[:HAS_JOURNEY]-(j:Journey)
WHERE j.date_of_journey >=1418055307
WITH COLLECT(j) as journeys
MATCH (j:Journey)-[:BY_FLIGHT]->(f:Flight)
WHERE j in journeys
WITH j.date_of_journey as date_of_journey, COLLECT(f) as flights
MATCH (source:City)-[:HAS_FLIGHT]->(f)-[:FLYING_TO]-
>(destination:City)
WHERE f in flights
RETURN date_of_journey, source.name as from, f.code as by_flight,
destination.name as to;

The output of the preceding query is as follows:

+---+
| date_of_journey | from | by_flight | to |
+---+
1.4226426E9	"New York"	"VS8"	"London"
1.4212602E9	"Los Angeles"	"UA1262"	"New York"
1.4212602E9	"Melbourne"	"QF94"	"Los Angeles"
1.4304186E9	"New York"	"UA1507"	"Los Angeles"
1.4311962E9	"Los Angeles"	"AA920"	"New York"
+---+
5 rows

Summary
In this chapter, you learned how you can model a domain that has traditionally
been implemented using RDBMS. We saw how tables can be changed to nodes
and relationships, and we explored what happened to relationship tables. You also
learned about transactions in Cypher and wrote Cypher to manipulate the database.
In the next chapter, you will learn about refactoring the data models.

[47]

Refactoring the Data Model
We explored how to model cities and flights in a graph database, and are now able to
run queries that return flights and routes for a journey. We also added the capability
to book flights to our data model. In this chapter, we will explore how to change the
data model to fit new requirements. As we go along, we will explore the following
concepts:

•	 Modifying data model to accommodate business requirements
•	 Migrating the data from the old model to the new one

Capturing information about hotels at
airports
While travelling, if a layover is more than six hours, travelers generally like to
rest. Since the travelers might not be possessing a visa for the country that they
are transiting through, most dormitories or hotels are located within the airport.
As a logical next step, we can capture information about hotels at airports, so that
travelers can use the information to plan their journey better. Considering there are
multiple airports in a city, it is imperative to show only those hotels that are located
at the airport through which the traveler is transiting.

Refactoring the Data Model

[48]

Modeling airports and hotels
To be able to show only those hotels that are located at the airport through which the
traveler is transiting, we need to model airports. Currently, airports are a part of the
flight information, and this needs to change. We will extract airport information (that
is, airport_code) into a separate node labeled :Airport, as shown in Figure 5.1. The
property code will act as a unique identifier for an airport.

Figure 5.1: Airports and hotels

Hotels will be modeled with their name and the price. Since prices should be
comparable, storing them as a number would be beneficial. Considering hotel chains
have similar or same names for each class of hotel that that they own, it would be
good to have an ID on the hotels.

The currency in which the price is expressed should be a application
concern and should not be spread across data and application. Ideally, a
standard currency (for example, USD or EUR) would be used to express
the price, and the conversion to local currency of the buyer/visitor
should be applied in real time depending on the daily market rates.

Chapter 5

[49]

The following figure shows a subgraph, which specifies the structure of hotels,
airports, and cities:

Figure 5.2: Airports and hotels subgraph

www.allitebooks.com

http://www.allitebooks.org

Refactoring the Data Model

[50]

Extracting airport information from
flights
There are multiple steps involved in making the successful transition from airports
being properties of flights to airports being an entity connected to the city they are
located in.

To start with, let's create a constraint so that an airport can be uniquely identified
by its code. The query is as follows:

neo4j-sh (?)$ CREATE CONSTRAINT ON (airport:Airport)
 ASSERT airport.code IS UNIQUE;

The output of the preceding query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

Breaking airports out as a node
The next step is to break out the source_airport_code and destination_airport_
code properties into nodes. After this change, the :HAS_FLIGHT and :FLYING_TO
relationships will connect :Flight and :Airport rather than :Flight and :City,
as shown:

Chapter 5

[51]

Figure 5.3: Airports and flights—current and future models

In Figure 5.3, the relationships depicted with the dotted line exist currently.
Relationships shown with a solid line don't exist. Since we haven't started refactoring
our graph, airports don't exist. We will have to create airports and then connect the
flights to the airports.

Refactoring the Data Model

[52]

We can use the following query to create airports from existing flights:

MATCH (source:City)-[:HAS_FLIGHT]->(f:Flight)-[:FLYING_TO]-
>(destination:City)
WITH source, f, destination
MERGE (source_airport:Airport{code: f.source_airport_code})
MERGE (destination_airport:Airport{code: f.destination_airport_code})
WITH source, destination, source_airport, destination_airport
MERGE (source)-[:HAS_AIRPORT]->(source_airport)
MERGE (destination)-[:HAS_AIRPORT]->(destination_airport)
RETURN source, destination, source_airport, destination_airport

The output of the preceding query is as shown in the following figure:

Figure 5.4: Newly created airport nodes

Connecting flights to airports
With the airport nodes separated, we can now connect flights to the airports, using
the following code:

MATCH (f:Flight)
WITH f
MATCH (source_airport:Airport{code:f.source_airport_code}),
(destination_airport:Airport{code:f.destination_airport_code})

Chapter 5

[53]

WITH source_airport, destination_airport, f
MERGE (source_airport)-[:HAS_FLIGHT]->(f)-[:FLYING_TO]->(destination_
airport)
RETURN source_airport, f, destination_airport

The output of the preceding code is as shown here:

Figure 5.5: Fights connected to airports

Refactoring the Data Model

[54]

Delinking flights and cities
We have now connected flights to airports, and can delink flights and cities. The
following query cleans up the relationships between flights and cities, and sets the
source and destination codes to null:

neo4j-sh (?)$ MATCH (f:Flight)-[r]-(:City)
DELETE r
SET f.source_airport_code = null, f.destination_airport_code = null;

The output of the preceding query is as follows:

+--+
| No data returned |
+--+
Set 360 properties
Deleted 180 relationships

Querying the refactored data model
Our data model has evolved as shown in the following diagram:

Figure 5.6: Flights and airports after refactoring the data model

Chapter 5

[55]

With the changes in our data model, we need to change our queries to reflect the
addition of airports, as shown here:

MATCH path = (london:City{name:'London'})-[:HAS_AIRPORT]->(:Airport)-
[:HAS_FLIGHT|FLYING_TO*0..6]->(:Airport)
<-[:HAS_AIRPORT]-(melbourne:City{name:'Melbourne'})
WITH
FILTER(f in nodes(path) WHERE "Flight" IN labels(f)) as flights,
FILTER(city in nodes(path) WHERE "City" IN labels(city)) as cities,
FILTER(airport in nodes(path) WHERE "Airport" IN labels(airport)) as
airports
RETURN
EXTRACT(city IN cities| city.name) as city,
EXTRACT (flight IN flights| flight.code) as code,
EXTRACT (flight IN flights| flight.carrier) as carrier,
EXTRACT (flight IN flights| flight.departure) as departure,
EXTRACT (flight IN flights| flight.arrival) as arrival,
EXTRACT (flight IN flights| flight.duration) as duration,
EXTRACT (airport IN airports| airport.code) as airport

The output of the preceding code is as follows:

Figure 5.7: Flight itinerary

Given our new model, the output format differs slightly. However, the data returned
is the same as our last itinerary query in Chapter 3, Formulating an Itinerary.

Refactoring the Data Model

[56]

Reasons for not migrating using a
single query
Evolution is a constant in the software industry. Most of the times migrations are
done, the database and code changes are simultaneous and all of this is deployed
in a big bang release. An example of a big bang release in our case would be to
make the constraint, make data changes, and delete the relationships in one go. This
change will need the code to be deployed along with the changes to the database so
that the applications keep running. There are multiple downsides to this approach:

•	 If something goes wrong at the database end, there might be an outage. A
rollback of code will be required along with restoring the database to an
earlier state.

•	 This is more time consuming since it will require a lot more testing and
preparation than smaller increments, which can be leak proofed.

If we separate the migration into two steps—constraint and path creation, and
relationship removal—we gain the following advantages:

•	 Since constraint and path creation is done in the first step, we need not
deploy the code that has been changed to use the new path at the same
time. We can wait and test it further, buying us enough time. Once we are
confident about code changes we have made and have released the code to
production, we can run the script to remove the relationships that previously
represented flights.

•	 Given that there are no deletions in the first script, anything going wrong
won't affect the stability of the application. The cause can be investigated
without any downtime.

•	 Since the deletions in the second script won't affect the subgraph that will be
in use by the application, any unfortunate errors won't result in application
downtime.

Adding hotels to airports
Now that we have airports as nodes, we can add hotels to our data model. As
discussed earlier, hotels have an ID, name, and average price.

Let's start by adding a constraint on the ID of the hotel, which is the _id property, as
shown:

neo4j-sh (?)$ CREATE CONSTRAINT ON (hotel:Hotel) ASSERT hotel._id IS
UNIQUE;

Chapter 5

[57]

The output of the preceding query is as shown:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

We can add a hotel and connect it to the JFK airport using the following query:

neo4j-sh (?)$ CREATE (hotel:Hotel {_id:"6ad8ce6e-1c0e-11e5-8db1-
6c40089a9424", name:"Hilton", price: 180})
WITH hotel
MATCH (airport:Airport{code:"JFK"})
WITH airport, hotel
MERGE (airport)-[:HAS_HOTEL]->(hotel)
RETURN airport, hotel;

The output of the preceding query is as follows:

Figure 5.8: Airport hotels

We can add more hotels from the hotels.cqy file that can
be downloaded along with the code for this chapter.

Refactoring the Data Model

[58]

Fetching hotels
Hotels can be found on the basis of which airport are they connected to, as shown in
the following query:

neo4j-sh (?)$ MATCH (airport:Airport)-[:HAS_HOTEL]->(hotel:Hotel)
WHERE airport.code IN ["JFK", "LAX"]
RETURN airport.code, hotel.name, hotel.price;

The output of the preceding query is as follows:

+---+
| airport.code | hotel.name | hotel.price |
+---+
"JFK"	"Hampton Inn"	70
"JFK"	"Fairfield Inn"	80
"LAX"	"LAX South Travelodge"	93
"LAX"	"Sheraton"	170
"LAX"	"Concourse"	100
+---+
5 rows

Although we can find hotels while searching for flights, it is not necessary. Once
the flights have been selected, this is an additional step that gives the travelers
some information.

Summary
In this chapter, we explored how we can evolve a graph database in two ways:
changing design wherever necessary and adding more varied data.

Adding more varied data should always be for business reasons. Re-design
of data might be done for optimizations or could be driven by business reasons.
Either of the evolutions are simple to carry out in graph databases like Neo4j,
and if planned properly, there is no outage required.

In the next chapter, we will learn about modeling communication chains.

[59]

Modeling Communication
Chains

In the previous chapters, we explored designing a graph that allows a traveler to
choose a route of travel, book flights, and also view information about the hotels
they might stay at in case they have a long layover. In this chapter, we will explore
how can we model reviews for the airport hotels that we introduced in Chapter 5,
Refactoring the Data Model.

In this chapter, we will explore the following modeling reviews:

•	 Modeling comments on reviews as chains
•	 Considerations for modeling temporal data as chains

Capturing traveler reviews for hotels
Currently, among the multiple hotels at any airport, the only parameters that can
help a traveler decide on a hotel are the price and the parent chain of the hotel. To
compliment these parameters, we can add reviews to help travelers choose a hotel.
This gives them multiple parameters to compare hotels and can thus help them
choose one based on the parameters important to them. We can choose the following
parameters to rate the hotels:

•	 Food
•	 Comfort
•	 Service
•	 Value for money

To add more context to the rating, we can add a review comment to the review.

Modeling Communication Chains

[60]

There may also be scenarios where other travelers might want to ask the reviewer
more questions. For these, we can add comments as separate entities on the review.

A model for reviews and comments
The following figure gives an example of the information that reviews and comments
will contain:

Figure 6.1: Reviews and comments

Every review has to be uniquely identified for which we use the _id property. Value
for money, comfort, food, and service are all the parameters that have been discussed
earlier. The rating has been given on a scale of 1 to 5, assuming 1 to be lowest and 5
to be the highest. In addition to these, we have created_on, which is the timestamp
of the creation of the review. Similarly, stayed_on is a timestamp of the day that the
reviewer stayed at the hotel. We also capture additional information such as stay_
year, stay_month, and stay_day. This will help us with range queries on the time
of the year that the review was written.

Comments have _id, which uniquely identifies a comment. The created_on
property is the timestamp of when the comment was created. The text is the
actual communication that the traveler wants to send across to the reviewer.

Chapter 6

[61]

In the larger ecosystem of cities, airports, hotels, and users, the reviews and
comments can be modeled as follows:

Figure 6.2: Reviews and comments subgraph

Modeling Communication Chains

[62]

Reviews are modeled as nodes and have a :FOR_HOTEL relationship with the hotel
being reviewed. People comment on a review or on other comments. This can be
represented by using an :ON relationship between comments and the comment/
review that is being commented on. Users have a :WROTE relationship with both
reviews and comments.

In our example, comments are used as communication channels between the
reviewers and potential travelers. A comment may be a question seeking additional
clarification or may be a response. The model doesn't consider the fact that comments
might have a temporal relationship between them, for example, a comment might be
a reply to another comment. The following figure is a revised design that addresses
the relationship between comments:

Figure 6.3: Reviews and comments subgraph in which comments are chained

Chapter 6

[63]

The preceding subgraph suggests that comments should be chained with a :IN_
REPLY_TO relationship. Modeling comments as chains, allows to explicitly maintain
an ordering between them. This way, multiple comments and responses to those
comments can be maintained as separate chains. The first comment in a chain will
always be :IN_REPLY_TO a review. If comments aren't chained, then there is no
way to maintain separate questions and responses to them, and it is difficult to find
relevant information.

While reviews also have chronological ordering, they are better modeled
as individual reviews related to hotels rather than chaining all reviews
of a hotel in some particular order. Reviews are subject to a variety
of sorting options, for example, reviews might be sorted by the latest
written reviews or by the time of stay. There might be another possible
ordering of how the reviews are displayed. Chaining them in reverse
chronological order of the time created or the date of stay satisfies one
use case, but makes the query for other use cases complicated.

Adding reviews to Neo4j
To add reviews to Neo4j, we should first create an uniqueness constraint on reviews,
as shown:

neo4j-sh (?)$ CREATE CONSTRAINT ON (review:Review)
 ASSERT review._id IS UNIQUE;

The output of the preceding query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

To add a review, we can use the following query:

neo4j-sh (?)$ CREATE (review:Review{ _id:
 "d11f1d66-2331-11e5-ab8f-6c40089a9424",
 value_for_money: 2, comfort: 3, food: 4,
 service: 3, stayed_on: 1388670309.210871,
 created_on: 1391157765.857148, stay_year:
 2014, stay_month: 1, stay_day: 2,
 description:"Was a comfortable stay.
 Could improve a lot though"})
WITH review

Modeling Communication Chains

[64]

MATCH (hotel:Hotel{_id: "19397f48-1c6f-11e5
 -8014-6c40089a9424"}), (user:User {email:
 "mahesh.lal@gmail.com"})
WITH review, user, hotel MERGE (user)-
 [:WROTE]->(review)-[:FOR_HOTEL]->(hotel);

The output of the preceding query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Nodes created: 1
Relationships created: 2
Properties set: 11
Labels added: 1

Please add more reviews from the reviews.cqy file that can be found
with the code for this chapter. The code can be downloaded from the
publisher's website or from https://github.com/maheshlal2910/
neo4j_graph_data_modelling. The reviews.cqy file was
generated using a script with randomized values, and hence doesn't
have a description in each review.

Listing reviews for a hotel
The following query can be used to fetch all reviews for a hotel arranged in reverse
chronological order of the reviewer's stay:

MATCH (hotel:Hotel{_id:'19397f48-1c6f-11e5-8014
 -6c40089a9424'})<-[:FOR_HOTEL]-(review:Review)
 <-[:WROTE]-(user:User)
WITH review, user, review.stayed_on as
 stayed ORDER BY stayed DESC
RETURN review.value_for_money as value_for_money,
 review.comfort as comfort, review.food as food,
 review.service as service, review.stay_year as year,
 review.stay_month as month, review.stay_day as day,
 user.name as name;

Chapter 6

[65]

The output of the preceding query is as follows:

Figure 6.4: Reviews for a hotel in reverse chronological order of stay date

Using reviews to find the average rating
of a hotel
Now that we have reviews for each hotel, we can get the average rating for each
hotel. The following query lists all the hotels in the airports of New York in reverse
order of their overall rating:

MATCH (city:City{name:"New York"})-[:HAS_AIRPORT]-
 >(airport:Airport)-[:HAS_HOTEL]->(hotel:Hotel)
 <-[:FOR_HOTEL]-(review:Review)
WITH DISTINCT hotel.name AS hotel_name,
COLLECT(review.comfort) AS comfort_ratings,
COLLECT(review.food) AS food_ratings,
COLLECT(review.service) AS service_ratings,
COLLECT(review.value_for_money) as vfm_ratings,
airport.code AS airport,
COUNT(review) as total_reviews

WITH
hotel_name,
tofloat(REDUCE(total = 0, rating in comfort_ratings |
 total + rating))/ total_reviews as comfort_rating,
tofloat(REDUCE(total = 0, rating in food_ratings |
 total + rating))/ total_reviews as food_rating,
tofloat(REDUCE(total = 0, rating in service_ratings |
 total + rating))/ total_reviews as service_rating,
tofloat(REDUCE(total = 0, rating in vfm_ratings |
 total + rating))/ total_reviews as vfm_rating,
airport,
total_reviews

Modeling Communication Chains

[66]

RETURN airport,
hotel_name,
comfort_rating,
service_rating,
food_rating,
vfm_rating,
(comfort_rating + service_rating + food_rating +
 vfm_rating)/4 as overall_rating
ORDER BY overall_rating DESC

The output of the preceding query is as follows:

Figure 6.5: Hotels ranked by their overall ratings

The preceding query does all of the following:

•	 Gets all reviews grouped by hotels
•	 Adds up the individual review parameters for each hotel
•	 Gets the average individual review parameters by dividing the sum by the

total number of reviews
•	 Calculates the overall rating as the average of all the review parameters

Adding comments to Neo4j
As discussed earlier, comments can be used by users to ask more questions or clarify
something to other users. Since chronology is important, we will create a chain for
the comments. The assumption here is that for a new question or clarification, a new
comment chain will be started with the first comment in the chain being in response
to the review being commented on.

Before we add comments, we should set up a constraint on comments to ensure that
we don't create comments with the same ID, as shown in the following query:

neo4j-sh (?)$ CREATE CONSTRAINT ON (comment:Comment)
 ASSERT comment._id IS UNIQUE;

Chapter 6

[67]

The output of the preceding query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

To add a comment to the review, we can use the following query:

CREATE (comment:Comment{_id:"df23c188-2349-11e5-8966-
 6c40089a9424", text:"What was wrong with the service?",
 created_on: 1391550607.342643}))
WITH comment
MATCH (review:Review{_id:"d120a06e-2331-11e5-
 bf11-6c40089a9424"}), (user:User{email:
 "mahesh.lal@gmail.com"})
WITH review, user, comment
MERGE (review)<-[:IN_REPLY_TO]-(comment)
 <-[:WROTE]-(user)
RETURN review, comment, user

The output of the preceding query is as follows:

Figure 6.6: Adding comments to a review

Modeling Communication Chains

[68]

To add a reply to an already existing comment, we can use the following query:

CREATE (new_comment:Comment{_id:"a3da3c5c-2350-11e5
 -9006-6c40089a9424", text: "Some issues with the
 air conditioner which led to a sleepless night",
 created_on: 1391723407.342643})
WITH new_comment
MATCH (comment:Comment{_id:"df23c188-2349-11e5-8966-
 6c40089a9424"}), (user:User{email:
 "hale.orison@gmail.com"})
MERGE (user)-[:WROTE]->(new_comment)-[:IN_REPLY_TO]->(comment)
RETURN user, new_comment, comment

The output of the preceding query is as follows:

Figure 6.7: Adding a reply to a comment

We can add more comments to the review in the same way as we added the first one:

CREATE (comment:Comment{_id:"1e0a80de-2353-11e5-86b5-
 6c40089a942", text:"Thanks for updating this.",
 created_on:1390686607.342643})
WITH comment
MATCH (review:Review{_id:"d120a06e-2331-11e5-
 bf11-6c40089a9424"}), (user:User{email:
 "elijah.b@gmail.com"})
WITH review, user, comment

Chapter 6

[69]

MERGE (review)<-[:IN_REPLY_TO]-(comment)
 <-[:WROTE]-(user)
RETURN review, comment, user

The output of the preceding query is as follows:

Figure 6.8: Adding additional comment to the review

To fetch the review along with its comments, we can use the following query:

MATCH p = (review:Review{_id:"d120a06e-2331-
 11e5-bf11-6c40089a9424"})<-[:IN_REPLY_TO*1..]-
 (comment:Comment)<-[:WROTE]-(user:User)
RETURN p

Modeling Communication Chains

[70]

The output of the preceding query is as follows:

Figure 6.9: Review with all comments and replies

Considerations for modeling temporal data as
chains
There are advantages to modeling temporal data as chains. The following points
should be considered before modeling any data as a chain:

•	 Data should be modeled as a chain when the temporal relationship between
them is important from a semantic perspective. Any communication with a
request-response structure (for example, comments and e-mails) is suited to
be modeled as a chain. Modeling the communication as a chain maintains
the order in which the communication enters the system.

Chapter 6

[71]

•	 In certain cases, there might be an implicit order in the data. For example, a
visa application might go through multiple stages, which are in a particular
order. Modeling these stages as chains would make sense.

•	 In certain cases, there might be a preferred order in which to present data.
For example, most recent reviews make more sense, and hence the default
for fetching reviews might be in reverse chronological order of the date of the
stay. To optimize for the default scenario, we can model the data as a chain
so that data can be fetched faster.

If the data doesn't fit into any of the categories mentioned in the previous bullets,
then the data might not be suited to be modeled as a chain.

However, modeling data in chains has some downsides:

•	 Modeling the data as a chain will make it efficient for retrieval in a particular
order, but might have performance penalties if the retrieval pattern needs to
change

•	 Writing data to a chain that is ordered in reverse chronological order requires
a complex query

Summary
In this chapter, we discussed modeling reviews and comments. We modeled
comments as chains in order to maintain the semantic relationship between
comments and replies. We discussed various queries that can be used to retrieve
reviews and aggregation based on ratings. We also discussed the factors to be
considered when deciding on modeling data as a chain.

In the next chapter, we will look at how we can model access control and construct
queries that take into consideration the access control settings.

[73]

Modeling Access Control
In the previous chapters, we designed the database for an application that allows
travelers to search for routes, view flights and hotels, check reviews for hotels,
comment on reviews, and book flights. When multiple hotel chains operate using the
same application (such as the one we are building), it helps if the hotel chains have
access to modify the content that they wish to expose to the outside world.

In this chapter, we will explore:

•	 Creating access control structures in a graph
•	 Using access control structures to query and get selected data

Controlling access for content change
A hotel chain can have multiple hotels in different locations across cities or even
countries, and each of these needs to edit its content. Employees of a hotel chain can
be associated with particular hotels or regions. Assuming each hotel has autonomy
in deciding and modifying their own content, we have the following scenarios to be
addressed:

•	 Employees of a hotel chain should have access to modify the content for the
hotels they have access to, depending on the access groups they are in

•	 Employees of a hotel shouldn't have access to modify any other hotel's
content irrespective of the fact that there might be other hotels belonging to
the same parent hotel chain

•	 Employees of a hotel chain shouldn't be able to access content of other hotel
chains

Modeling Access Control

[74]

Modeling hierarchies
To model employees and access control groups, we need to first modify our existing
data to account for hierarchies in regions, countries, and cities. We also need to add
hotel chains and their hierarchies. We can then apply the same practices used in
modeling hierarchies to model access groups.

Modeling geographical regions
We already have airports and cities, which are geographical entities. We can add a
couple of other entities such as country and region.

Figure 7.1: Country and region

A country or a region is uniquely identified by its name.

We can represent the relationship between airports, cities, countries, and regions in
the following way:

Chapter 7

[75]

Figure 7.2: Regions, countries, cities, and airports

The previous diagram representing Regions, countries, cities, and airports
can be generalized to represent a hierarchy in Neo4j.

Modeling Access Control

[76]

Adding countries and regions to Neo4j
We can add a constraint to ensure the uniqueness of a name across countries, shown
as follows:

neo4j-sh (?)$ CREATE CONSTRAINT ON (country:Country)
 ASSERT country.name IS UNIQUE;

The output of the preceding query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

To extract countries from cities, and connect cities to their respective countries, we
can use the following query:

MATCH (city:City)
WITH city
MERGE (country:Country{name: city.country})
WITH country, city
MERGE (country)-[:SUB_REGION]->(city)
RETURN city, country

The output of the preceding query is as follows:

Figure 7.3: Extracting countries and connecting them to cities

Chapter 7

[77]

We should also add a constraint on region names being unique as shown:

neo4j-sh (?)$ CREATE CONSTRAINT ON (region:Region)
 ASSERT region.name IS UNIQUE;

The output of the preceding query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

Now, we can add regions to our data model and connect them to the countries by
creating a region hierarchy. The following query creates a region with the name
North America and adds Canada and United States of America to the region as
:SUB_REGION:

MATCH (city:City)
WITH city
MERGE (country:Country{name: city.country})
WITH country, city
MERGE (country)-[:SUB_REGION]->(city)
RETURN city, country

The output of the preceding query is as shown:

Figure 7.4: Creating North America as a region

Modeling Access Control

[78]

We can add other regions to our data model using similar queries.

Add more regions using the regions.cqy file, which can be found
with the code for this chapter.
The code can be downloaded from the publisher's website or from
https://github.com/maheshlal2910/neo4j_graph_data_
modelling.

The following query returns the whole region hierarchy along with the airports:

MATCH path = (region:Region)-[:SUB_REGION*1..]->
 (city:City)-[:HAS_AIRPORT]->(airport:Airport)
RETURN path

The output of the preceding query is as follows:

Figure 7.5: Region hierarchy with airports

Chapter 7

[79]

In a more general sense, cities and countries can also be considered to be regions. We
can add a label :Region to city and country nodes. The following query can be used
for it:

neo4j-sh (?)$ MATCH (city:City), (country:Country)
 SET city :Region, country :Region;

The output of the preceding query is as shown:

+-------------------+
| No data returned. |
+-------------------+
Labels added: 26

We can now proceed to the problem of modeling hotel chains, employees, and access
control groups.

Modeling hotel chains
Hotel chains can be modeled as entities while hotels belong to chains.

Figure 7.6: Hotel chain

Modeling Access Control

[80]

Hotel chains can be uniquely identified by their name. The relationship between
hotels and chains can be depicted as shown in the following figure:

Figure 7.7: Hotel chains and hotels

Chapter 7

[81]

Adding hotel chains to Neo4j
The following query adds a uniqueness constraint on the name of the hotel chain:

neo4j-sh (?)$ CREATE CONSTRAINT ON (chain:HotelChain)
 ASSERT chain.name IS UNIQUE;

The output of the preceding query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

We can create a hotel chain and add hotels to that chain using the following query:

CREATE (chain:HotelChain{name:"Hilton Hotels"})
WITH chain
MATCH (hotel:Hotel) WHERE hotel.name IN ["Hilton", "Double Tree"]
MERGE (hotel)-[:BELONGS_TO]->(chain)
RETURN hotel, chain;

The output of the preceding query is as follows:

Figure 7.8: Creating hotel chains

Modeling Access Control

[82]

Add more regions using hotel_chains.cqy, which can be found with
the code for this chapter.
The code can be downloaded from the publisher's website or from
https://github.com/maheshlal2910/neo4j_graph_data_
modelling.

The following query can be used to get the hierarchies of hotel chains, hotels,
and regions:

MATCH p = (region:Region)-[:SUB_REGION*1..]->
 (city:City)-[:HAS_AIRPORT]->(airport:Airport)-
 [:HAS_HOTEL]->(hotel:Hotel)
WITH p, hotel
OPTIONAL MATCH (hotel:Hotel)-[:BELONGS_TO]-
 >(hotelChain:HotelChain)
RETURN
EXTRACT(node in FILTER(n in NODES(p)
 WHERE "Region" IN LABELS(n))| node.name) as region,
EXTRACT(node in FILTER(n in NODES(p) WHERE
 "Country" IN LABELS(n))| node.name) as country,
EXTRACT(node in FILTER(n in NODES(p) WHERE
 "City" IN LABELS(n))| node.name) as city,
EXTRACT(node in FILTER(n in NODES(p)
 WHERE "Airport" IN LABELS(n))| node.code) as airport,
EXTRACT(node in FILTER(n in NODES(p) WHERE
 "Hotel" IN LABELS(n))| node.name) as hotel,
hotelChain.name as chain;

The output of the preceding query is as follows:

Figure 7.9: Regions, countries, cities, airports, hotels, and chains

Chapter 7

[83]

In a few cases such as Sofitel, Mercure, Novotel, and Ibis, there is a parent chain
of each hotel chain.

Since region hierarchies and hotel chains have been added to the model, we can now
add employees and permissions.

Modeling access control groups and
employees
Access control requires that we define access groups and employees.

Figure 7.10: Employees and access groups

Access groups and employees can be identified uniquely by their _id properties.
Both of these also have a property name.

Access groups are linked to a hotel chain and will define what region or location the
access group has permission to access for writes. Access groups' levels and names
will be different for different hotel chains.

Modeling Access Control

[84]

Employees belong to a hotel chain and are associated with access groups. This
association defines what they all have access to. The following diagram illustrates the
relationship between hotels, hotel chains, access groups, and employees:

Figure 7.11: Hotels, chains, employees, access groups

Chapter 7

[85]

Access groups can be named differently and have a different granularity for different
chains. For example, Ibis hotels have an access group named Europe, which is
applicable for all the countries in Europe, and thus, members of this group can access
all hotels in Europe. Sofitel hotels, on the other hand, have a finer grained access
group called United Kingdom, which allows access to hotels in the United Kingdom.
The parent chain Accor Hotels has an access group named European Union, which
has access to Europe and United Kingdom.

For all further examples, we will add access groups to Accor hotels.

Adding access groups to Neo4j
We can create a uniqueness constraint on the access group _id using the following
query:

neo4j-sh (?)$ CREATE CONSTRAINT ON
 (accessGroup:AccessGroup) ASSERT accessGroup._id IS UNIQUE;

The output of the preceding query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

To add an access group to a hotel chain for a particular region, we can use the
following query:

MATCH (region:Region{name:"European Union"})-
 [:SUB_REGION*0..]->(:City)-[:HAS_AIRPORT]->
 (airport:Airport)-[:HAS_HOTEL]->(hotel:Hotel)-
 [:BELONGS_TO]->(chain:HotelChain{name:"Ibis Hotels"})
WITH hotel, chain
MERGE (accessGroup:AccessGroup{_id:"089cd024-
 249c-11e5-b902-6c40089a9424"}) ON CREATE SET
 accessGroup.name = "European Union"
WITH chain, hotel, accessGroup
CREATE UNIQUE (chain)-[:HAS_ACCESS_GROUP]->
 (accessGroup)-[:CAN_ACCESS]->(hotel)
RETURN chain, accessGroup, hotel

Modeling Access Control

[86]

The output of the preceding query is as follows:

Figure 7.12: Adding access group to a region for a hotel chain

Add more regions using accor_subsidiary_hotels_access_
groups.cqy that can be found with the code for this chapter. The code
can be downloaded from the publisher's website or from https://
github.com/maheshlal2910/neo4j_graph_data_modelling.

Chapter 7

[87]

To add an access group that can access other access groups, we can use the following
query:

MATCH (subsidiaryAccessGroup:AccessGroup),
 (chain:HotelChain{name:"Accor Hotels"})
WHERE subsidiaryAccessGroup._id IN ["7506082e-24a2-
 11e5-b62b-6c40089a9424","539487e2-24a2-11e5-bb1b-
 6c40089a9424","cef89d02-24a1-11e5-821c-6c40089a9424",
 "089cd024-249c-11e5-b902-6c40089a9424"]
WITH subsidiaryAccessGroup, chain
MERGE (accessGroup:AccessGroup{_id:"57096838-24a3-
 11e5-87db-6c40089a9424"}) ON CREATE SET
 accessGroup.name = "European Union"
WITH subsidiaryAccessGroup, accessGroup, chain
CREATE UNIQUE (chain)-[:HAS_ACCESS_GROUP]->
 (accessGroup)-[:CAN_ACCESS]->(subsidiaryAccessGroup)
WITH chain, accessGroup
MATCH path = (chain)-[:HAS_ACCESS_GROUP]->
 (accessGroup)-[:CAN_ACCESS*1..]->(:Hotel)-
 [:BELONGS_TO]->(:HotelChain)
RETURN path

The output of the preceding query is as follows:

Figure 7.13: Adding access groups that can access other access groups

Modeling Access Control

[88]

Add more regions using accor_access_groups.cqy, which can
be found with the code for this chapter. The code can be downloaded
from the publisher's website or from https://github.com/
maheshlal2910/neo4j_graph_data_modelling.

Adding employees to Neo4j
We can add a constraint on the employee _id using the following query:

neo4j-sh (?)$ CREATE CONSTRAINT ON (emp:Employee)
 ASSERT emp._id IS UNIQUE;

The output of the preceding query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

The following query adds an employee to a hotel chain and assigns the employee to
an access group:

MATCH (chain:HotelChain{name:"Accor Hotels"}),
 (euAccess:AccessGroup{_id:"57096838-24a3-
 11e5-87db-6c40089a9424"})
WITH chain, euAccess
MERGE (employee:Employee{_id:17812}) ON CREATE
 SET employee.name = "Jeoffery Fraser"
WITH employee, chain, euAccess
CREATE UNIQUE (chain)<-[:EMPLOYED_BY]-(employee)
 -[:MEMBER_OF]->(euAccess)
RETURN employee, euAccess, chain

Chapter 7

[89]

The output of the preceding query is as follows:

Figure 7.14: Adding an employee to a hotel chain and assigning the employee to a group

Add more regions using employees.cqy that can be found with the
code for this chapter. The code can be downloaded from the publisher's
website or from https://github.com/maheshlal2910/neo4j_
graph_data_modelling.

Modeling Access Control

[90]

Querying the data model to find what is
accessible to an employee
To find which hotels are accessible to an employee, we can traverse the :CAN_ACCESS
relationships. The following query gets all the hotels accessible to an employee via all
the groups the employee has access to, and also returns all the airports and locations
of the hotels to which the employee has access:

MATCH p = (chain:HotelChain)<-[:EMPLOYED_BY]-
 (employee:Employee{_id:17812})-[:MEMBER_OF]->
 (:AccessGroup)-[:CAN_ACCESS*0..]->(hotel:Hotel)-
 [:BELONGS_TO]->(hotelChain:HotelChain)
WITH p, hotel
MATCH (hotel)<-[:HAS_HOTEL]-(airport:Airport)<-
 [:HAS_AIRPORT]-(city:City)
RETURN p, hotel, airport, city

The output of the preceding query is as follows:

Figure 7.15: Hotels accessible to members of the European Union access group of Accor hotels

Chapter 7

[91]

For an employee of a subsidiary of Accor hotels, the accessible hotels will be a
smaller subset. The following query tries finding all hotels accessible to a different
employee in a different hotel chain:

MATCH p = (chain:HotelChain)<-[:EMPLOYED_BY]-
 (employee:Employee{_id:78641})-[:MEMBER_OF]->
 (:AccessGroup)-[:CAN_ACCESS*0..]->(hotel:Hotel)-
 [:BELONGS_TO]->(hotelChain:HotelChain)
WITH p, hotel
MATCH (hotel)<-[:HAS_HOTEL]-(airport:Airport)<-
 [:HAS_AIRPORT]-(city:City)
RETURN p, hotel, airport, city

The output of the preceding query is as follows:

Figure 7.16: Hotels accessible to an employee of Sofitel who is member of the Greek access group

Modeling Access Control

[92]

Summary
In this chapter, we explored how we can model access control in graphs. While
we have created access groups according to the region, there might be different
parameters on which we can create access groups. We also explored how to use
the groups and accessible hotels to find which hotels are accessible to a particular
employee.

In the next chapter, you will learn how to recommend hotels to travelers and
analyzing data using Cypher.

[93]

Recommendations and
Analysis of Historical Data

In the previous chapters, you learned how to use model flights and cities as a graph
and have written queries to return flight routes. We also added airports, hotels,
reviews for hotels, and access groups that we could use to decide which access rights
an employee has.

In this chapter, we will explore how we can run recommendations using the data we
have, and also see if we can uncover some patterns using historical data.

Recommending cities to travelers
We know which cities the travelers have traveled to on the basis of the journeys
they have been a part of. This allows us to make recommendations to a traveler as
to where they could travel next. Using information about where a user has traveled,
and some information about the city, we can recommend better. There are multiple
pieces of information of the place can be added, one of them being the category or
the type of city.

We can consider cities as belonging to one or more of the following categories:

•	 Streets: This includes cities where there is rich street art, street food, and so on
•	 Cosmopolitan hotspots: This includes cities that are cosmopolitan
•	 Romantic: This includes cities which couples consider for a romantic holiday
•	 Historical importance: This includes cities with historical importance
•	 Architecture: This includes cities with beautiful architecture, both modern

and classical
•	 Business: This includes cities that are business centers

Recommendations and Analysis of Historical Data

[94]

These categories don't exist in our data and we will need to model them and
associate them with cities.

Modeling categories
Categories can be modeled as nodes or labels. Modeling categories as labels is a
simple approach. However, modeling categories as nodes is more flexible. A category
modeled as a node allows us to represent hierarchies among categories, facilitates
aggregation with ease, and also allows us to find the most relevant category using
counts. While labels allow us to do aggregation, the resultant query will be difficult
to understand. Modeling categories as nodes also allows us to add metadata to the
category. The following figure suggests the model of a category node:

Figure 8.1: Category node

Categories have names and descriptions. They can be uniquely identified by their
name. The following figure represents how a category will be related to a city:

Figure 8.2: Cities and categories

Chapter 8

[95]

A city can have multiple categories and will be connected to all categories that it has
by a :KNOWN_FOR relationship.

Creating categories in Neo4j
We can create a constraint on the category name using the following query:

neo4j-sh (?)$ CREATE CONSTRAINT ON (c:Category)
 ASSERT c.name IS UNIQUE;

The output of the preceding query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Constraints added: 1

Cities and categories
We can create a category using the following query:

CREATE (c:Category{name:"Streets", description:
 "Cities where there is a rich street art
 , street food etc."}) RETURN c;

The output of the preceding query is as follows:

Figure 8.3: Adding a category

Recommendations and Analysis of Historical Data

[96]

You can add more categories using the categories.cqy files,
which can be found with the code for this chapter. The code can be
downloaded from the publisher's website or from https://github.
com/maheshlal2910/neo4j_graph_data_modelling.

Cities can have multiple categories associated with them, for example, Mumbai
is known for business as well as historical importance. We can connect a city to a
category using the following query:

neo4j-sh (?)$ MATCH (n:City{name:"Mumbai"}),
 (c:Category{name:"Cosmopolitan Hotspot"})
 CREATE UNIQUE (n)-[:KNOWN_FOR]->(c);

The output of the preceding query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Relationships created: 1

You can connect more cities to categories using the add_categories_
to_cities.cqy file that can be found with the code for this chapter. The
code can be downloaded from the publisher's website or from https://
github.com/maheshlal2910/neo4j_graph_data_modelling.

Recommending cities based on previous
travels
A traveler might pass through multiple cities while travelling, however, we can't
count each city as a "traveled" city. The traveler might just be transiting through
some of the cities. The following query gives us information about all the cities
the traveler has travelled to:

neo4j-sh (?)$ MATCH (passenger:Passenger
 {email:"vishal.p@gmail.com"})<-
 [:HAS_PASSENGER]-(b:Booking)-[:HAS_JOURNEY]->
 (:Journey)-[:BY_FLIGHT]->(:Flight)-[r]-
 (airport:Airport)
WITH DISTINCT b AS original_booking,
 COLLECT(airport) AS airports, passenger

Chapter 8

[97]

WITH original_booking, FILTER(airport IN
 airports WHERE 1=LENGTH(FILTER
 (a IN airports WHERE a=airport)))
 AS distinct_airports, passenger
MATCH (airport:Airport)<-[:HAS_AIRPORT]-(city:City)
WHERE airport IN distinct_airports
RETURN DISTINCT city.name;

The output of the preceding query is as follows:

+---------------+
| city.name |
+---------------+
| "Los Angeles" |
| "London" |
| "New York" |
| "Mumbai" |
+---------------+
4 rows

Using this information, we can now find out the categories that the traveler might
be most interested in, and on the basis of the most common categories, we can
recommend other cities satisfying those categories to travel to next. There might be
categories that are of higher interest to a traveler, and we can use this information
to find cities that the traveler might find more interesting. The following query
calculates a travelers' category preferences and recommends cities that cover most of
the categories:

MATCH (passenger:Passenger{email:
 "vishal.p@gmail.com"})<-[:HAS_PASSENGER]-
 (b:Booking)-[:HAS_JOURNEY]->(:Journey)-
 [:BY_FLIGHT]->(:Flight)-[r]-(airport:Airport)
WITH DISTINCT b AS original_booking, COLLECT(airport)
 AS airports, passenger
WITH original_booking, FILTER(airport IN airports WHERE
 1=LENGTH(FILTER(a IN airports WHERE a=airport)))
 AS distinct_airports, passenger
MATCH (airport:Airport)<-[:HAS_AIRPORT]-(city:City)
WHERE airport IN distinct_airports
WITH DISTINCT city
MATCH (city)-[:KNOWN_FOR]->(category:Category)
WITH DISTINCT category, COUNT(category) as relevance,
 COLLECT(city) as cities ORDER BY relevance DESC
MATCH (other_city:City)-[:KNOWN_FOR]->(category)
WHERE NOT other_city IN cities

Recommendations and Analysis of Historical Data

[98]

RETURN DISTINCT other_city.name,
 COLLECT(category.name), COUNT(category.name)
 as relevance ORDER BY relevance DESC

The output of the preceding query is as follows:

Figure 8.4: Cities that might interest the traveler most

Recommending cities on the basis of other
travelers
We can recommend cities to visit on the basis of other travelers as well. One of the
simplest scenarios to consider is, if Alice and Bob have visited the same city, we can
recommend other cities visited by Bob to Alice. The query is as follows:

neo4j-sh (?)$
//get all cities the traveller has been to
MATCH (passenger:Passenger{email:"vishal.p@gmail.com"})
 <-[:HAS_PASSENGER]-(b:Booking)-[:HAS_JOURNEY]->
 (:Journey)-[:BY_FLIGHT]->(:Flight)-[r]-(airport:Airport)
WITH DISTINCT b AS original_booking,
 COLLECT(airport) AS airports, passenger
WITH original_booking, FILTER(airport IN airports
 WHERE 1=LENGTH(FILTER(a IN airports WHERE
 a=airport))) AS distinct_airports, passenger
MATCH (airport:Airport)<-[:HAS_AIRPORT]-(city:City)
WHERE airport IN distinct_airports
WITH city, passenger
//fetch other passengers who have travelled to this city
MATCH (city)-[:HAS_AIRPORT]->(a:Airport)-[rel]-
 (:Flight)<-[:BY_FLIGHT]-(:Journey)<-[:HAS_JOURNEY]-
 (booking:Booking)-[:HAS_PASSENGER]->
 (other_passenger:Passenger)

Chapter 8

[99]

WHERE other_passenger <> passenger
WITH DISTINCT other_passenger, city
//find all bookings of other passengers who have
 travelled to same city
MATCH (other_passenger)<-[:HAS_PASSENGER]-
 (other_booking:Booking)
WITH DISTINCT other_booking, city
//find all cities that the other traveller has
 visited and filter out the cities that have been already visited
MATCH (other_booking)-[:HAS_JOURNEY]->(j:Journey)-[:BY_FLIGHT]-
 >(:Flight)-[r]-(other_airport:Airport)
WITH DISTINCT other_booking._id as booking, COLLECT(DISTINCT
 j._id) as journey, COLLECT(other_airport)
 as other_airports, city
WITH FILTER(unique_airport IN other_airports WHERE
 1=LENGTH(FILTER(x IN other_airports
 WHERE x=unique_airport))) AS destination_airports,
 COLLECT(city) as visited
UNWIND destination_airports as airport
MATCH (airport:Airport)<-[:HAS_AIRPORT]-(other_city:City)
WHERE NOT other_city IN visited
RETURN DISTINCT other_city.name as recommended_cities;

The output of the preceding query is as follows:

+--------------------+
| recommended_cities |
+--------------------+
| "Singapore" |
| "Melbourne" |
+--------------------+
2 rows

There can be other variants of this recommendation where we recommend cities that
Bob has visited and belong to categories that Alice is interested in. The possibilities
for recommendations are bound by the data and how we can derive connections
between them.

Recommendations and Analysis of Historical Data

[100]

Recommending hotels to travelers
Reviews and ratings help travelers to decide on a hotel to stay at when travelling to
or transiting through a particular place. However, reviews are dependent on people's
personal tastes. A few other inputs that can help travelers make a better decision are:

•	 Hotels which are from the same chain
•	 Hotels which other similar travelers have stayed at
•	 Hotels in a particular price range

These parameters aren't well defined, and we will define each of these better when
we explore each scenario. Also, these aren't the only parameters that necessarily need
to be considered, as recommendations can be made around any set of parameters.

It's easier to start with recommending hotels from the same chain that the
traveler has visited earlier. We will assume that a traveler has visited a hotel
if he has written a review for it. In all the queries for the recommendation of a hotel,
we have constrained the search to an airport since they are mostly transit hotels.

Recommending hotels from the same chains
In the following query, we search hotels at the Melbourne airport that belong to the
same chain of hotels that the traveler has stayed at earlier:

neo4j-sh (?)$ MATCH (user:User{email:"mahesh.
 lal@gmail.com"})-[:WROTE]->(:Review)-[:FOR_HOTEL]-
 >(stayed:Hotel)-[:BELONGS_TO*1..]->(
chain:HotelChain)
WITH chain, stayed
MATCH (airport:Airport{code:"MEL"})-[:HAS_HOTEL]->
 (hotel:Hotel)-[:BELONGS_TO*1..]->(chain)
RETURN DISTINCT hotel.name as Hotel, COLLECT
 (DISTINCT chain.name) as Hotel_Groups,
 COLLECT(DISTINCT stayed.name) AS Previous_Stays ;

The output of the preceding query is as follows:

+--+
| Hotel | Hotel_Groups | Previous_Stays |
+--+
| "Ibis" | ["Ibis Hotels","Accor Hotels"] | ["Ibis","Sofitel"] |
+--+
1 row

Chapter 8

[101]

Recommending hotels visited by similar
travelers
The similarity of one traveler to another depends on multiple factors. We can say that
the travelers who have stayed in the same hotels are similar. The following query
recommends hotels in descending order of the number of similar travelers who have
stayed at the hotel:

MATCH (user:User{email:"mahesh.lal@gmail.com"})-[:WROTE]-
 >(:Review)-[:FOR_HOTEL]->(stayed:Hotel)<-[:FOR_HOTEL]-
 (:Review)<-[:WROTE]-(other_traveller:User)
WHERE NOT other_traveller = user
WITH other_traveller
MATCH (other_traveller)-[:WROTE]->(:Review)-[:FOR_HOTEL]-
 >(hotel:Hotel)<-[:HAS_HOTEL]-(airport:Airport{code:"IST"})
RETURN
DISTINCT hotel.name as Hotel,
COLLECT(DISTINCT other_traveller.name) AS Similar_travellers,
COUNT (DISTINCT other_traveller) AS
 number_of_similar_travellers_who_stayed_here
ORDER BY number_of_similar_travellers_who_stayed_here DESC

The output of the preceding query is as follows:

Figure 8.5: Recommended hotels based on similar people

We can also tweak the same query to recommend hotels based on an average rating
given to them by similar travelers. Before we try the query, we should add overall_
rating to each review, which is an average of ratings on all parameters within a
review, as shown:

neo4j-sh (?)$ MATCH (review:Review)
SET review.overall_rating = toFloat
 (review.value_for_money + review.food +
 review.comfort + review.service)/4;

Recommendations and Analysis of Historical Data

[102]

The output of the preceding query is as follows:

+-------------------+
| No data returned. |
+-------------------+
Properties set: 159

We can now write a query to recommend hotels based on average ratings by similar
travelers:

MATCH (user:User{email:"mahesh.lal@gmail.com"})-
 [:WROTE]->(:Review)-[:FOR_HOTEL]->(stayed:Hotel)
 <-[:FOR_HOTEL]-(:Review)<-[:WROTE]-(other_traveller:User)
WHERE NOT other_traveller = user
WITH other_traveller
MATCH (other_traveller)-[:WROTE]->
 (r:Review)-[:FOR_HOTEL]->(hotel:Hotel)
 <-[:HAS_HOTEL]-(airport:Airport{code:"IST"})
RETURN
DISTINCT hotel.name as Hotel,
COLLECT(DISTINCT other_traveller.name)
 AS Similar_travellers,
SUM(r.overall_rating)/COUNT (DISTINCT
 other_traveller) AS avg_rating_by_similar_travellers
ORDER BY avg_rating_by_similar_travelers DESC

The output of the preceding query is as follows:

Figure 8.6: Recommending hotels based on average rating by similar travelers

Recommending hotels that match a price
range
Considering that a traveler has stayed at multiple places, we can find the max price
of the hotels visited. Based on this price, we can even suggest cheaper hotels at a
particular location, as shown:

MATCH (user:User{email:"brian.heritage@hotmail.com"})
 -[:WROTE]->(:Review)-[:FOR_HOTEL]->(hotel:Hotel)
WITH MAX(hotel.price) AS max_price
MATCH (airport:Airport{code:"ORD"})-[:HAS_HOTEL]
 ->(hotel:Hotel)

Chapter 8

[103]

WHERE hotel.price <= max_price
RETURN hotel.name, hotel.price

The output of the preceding query is as follows:

Figure 8.7: Recommending hotels based maximum price paid for a hotel historically

Improving recommendations
Though we have relied on the data already present to recommend hotels, there are
several other parameters that can be used to recommend hotels. Recommendations
can be improved by capturing more data for the user and increasing the data
captured about hotels, for example, age of the user, the star rating of a hotel,
assigned categories to hotels, and so on.

Analysis of the historical data
We have explored how to use the data model to enable a traveler to find what they
need. With this data and some clever querying, we can also discover some trends
that can help the businesses. Given we have the year, month, and day of bookings
and hotel stays, we can venture into analyzing data and behavior patterns of
individuals, and how it affects the businesses (hotels and airlines).

Querying to discover patterns
Bookings are not spread across the year evenly. There will always be months when
the number of bookings made far exceeds the number of bookings during other
months. The following query gives the number of bookings made for each month:

neo4j-sh (?)$ MATCH (booking:Booking)
WITH COLLECT(booking) AS bookings, booking
RETURN DISTINCT booking.month AS month, COUNT(bookings)
 AS num_of_bookings
ORDER BY num_of_bookings DESC;

Recommendations and Analysis of Historical Data

[104]

The output of the preceding query is as follows:

+-------------------------+
| month | num_of_bookings |
+-------------------------+
12	7
10	3
1	3
3	1
+-------------------------+
4 rows

Bookings are generally made in advance, and journey dates are different from
the booking dates. As a corollary, peak journey months might be different as
compared to peak booking months. Information about this can help in planning
out promotional offer schedules to attract more sales. The following query gives us
insight into when people travel the most:

neo4j-sh (?)$ MATCH (journey:Journey)
WITH COLLECT(journey) AS journeys, journey
RETURN DISTINCT journey.month AS month, COUNT(journeys)
 AS num_of_journeys
ORDER BY num_of_journeys DESC;

The output of the preceding query is as follows:

+-------------------------+
| month | num_of_journeys |
+-------------------------+
1	7
3	3
11	2
5	2
4	1
+-------------------------+
5 rows

Certain travelers travel in a particular season- or month-defined range of days.
Having access to information about when a person is likely to travel can help
in designing offers and personalized promotions. The following query fetches
information about when a particular traveler travels:

neo4j-sh (?)$ MATCH (p1:Passenger{email:"mahesh.lal@gmail.com"})
 <-[:HAS_PASSENGER]-(:Booking)-[:HAS_JOURNEY]->
 (journey:Journey)
WITH COLLECT(journey) AS journeys, journey, p1

Chapter 8

[105]

RETURN DISTINCT journey.month AS month, COUNT(journeys)
 AS count_journeys, p1.name as traveller_name
ORDER BY count_journeys DESC;

The output of the preceding query is as follows:

+---+
| month | count_journeys | traveller_name |
+---+
1	4	"Mahesh Lal"
11	2	"Mahesh Lal"
5	1	"Mahesh Lal"
4	1	"Mahesh Lal"
+---+
4 rows

Hotels get reviews throughout the year, and there are times when we might want to
see how the average ratings of a hotel change in a year. The following query gives us
an insight into how a hotel chain has been rated over the past three years:

MATCH (chain:HotelChain{name:"Hilton Hotels"})<-
 [:BELONGS_TO]-(hotel:Hotel)<-[:FOR_HOTEL]-(review:Review)
WITH review.stay_year as year, SUM(review.overall_rating) AS
 total_rating, COUNT(review) AS total_reviews,
 chain.name as group
RETURN DISTINCT year, SUM(total_rating/total_reviews)
 as avg_rating, total_rating, total_reviews, group
ORDER BY avg_rating DESC

The output of the preceding query is as follows:

Figure 8.8: Average ratings of Hilton hotels over past 3 years

These are examples of a much larger set of analysis queries that can be run on the
existing data.

Recommendations and Analysis of Historical Data

[106]

Summary
In this chapter, you learned how to recommend hotels and cities to travel to using
data that has been stored in Neo4j. We also explored a few queries that analyzed
historical data and gave us some useful statistics. The next chapter guides you on
where to go from here.

[107]

Wrapping Up
In the previous chapters, we saw examples of how to model various types of
systems by taking examples of subsystems of a travel booking application. Taking
a relatively straightforward graph problem, we expanded the problem statement
and plotted more information on the graph. We explored the details of how to
model certain systems and discussed design decisions. While we have covered a
wide variety of designs decisions that can be adopted for different scenarios, the
examples covered are by no means exhaustive. For example, we can enhance the
user experience by adding location-based features for the travelers, and we can build
more information into the Bookings subgraph by allowing for sequencing among the
journeys of a booking.

There is no correct model
Modeling is a balancing act between the present and the future. It is important to
understand that a data model is never perfect for all the problems that we might try
to solve. We make compromises on certain parameters, while optimizing for others.
Given more information and insight into the future of the business, the current
model might feel inadequate. This is not an exception, and should be expected.
Redesigning and data remodeling is a process that repeats itself multiple times over
a product's life cycle.

Wrapping Up

[108]

Further reading and exploration
Graphs are being widely used in multiple domains, including, but not limited to,
medical research, transportation, auditing, and financial risk analysis. For finding
out more about modeling, the Neo4j mailing list on Google Groups is a good place.
Occasionally, there are interesting modeling problems that people get down to
solving. Alternately, a showcase of which problems people are solving using graphs
in general and Neo4j in particular can be found at http://gist.neo4j.org/. For
more use cases where Neo4j has been used, http://neo4j.com/use-cases/ is
a good resource. Following @neo4j on Twitter is a good way to keep up with the
happenings in the Neo4j world.

What to watch out for while using Neo4j
While Neo4j is a really handy tool and graphs are a good way to represent data, they
are not suited for every single problem that is out there. There are definitely good
cases where we can use an RDBMS more effectively. For example, if the application's
main task is to aggregate and crunch on data that fits into a single table, then RDBMS
is a better option. For other cases such as profiles and user preferences, it makes
more sense to store them in a DocStore. Also, large documents are not meant to be
stored in Neo4j. For full-text querying apart from querying based on field/label,
Neo4j might only be a part of the solution; something such as Solr or Elasticsearch
should be used along with Neo4j to get the full-text search working at scale. Caching
is best left to solutions such as memcached. While graphs are a great tool, overusing
them and trying to fit a non-graph use case into a graph will more often than not
result in failure or at least the cost of maintenance will be prohibitively high.

Another limitation of Neo4j (more of a limitation of graphs than Neo4j), as with all
native graph stores, is that it can't be sharded across machines. If we discover that
the graph is going to increase beyond a certain size on the disk, or exceed the limits
on numbers of nodes and relationships (32 billion nodes and 65 billion relationships),
we should think of ways of restructuring the data in the graph so that it helps in
sharding. A few practices that can help when we have to eventually partition the
database are:

•	 Identifying relationships that can be turned to properties. If done well and
indexed, the properties can act as implicit relationships. This reduces the
interconnectedness of a graph, allowing us to partition it. Supernodes are
candidates for conversion to properties. They are nodes to which hundreds,
thousands or millions of other nodes are linked by relationships.

Chapter 9

[109]

•	 If the problem domain is a large and complex interaction of multiple
subdomains and is difficult to fit into one graph, modeling each of these
domains in a separate graph might be beneficial. Relationships across
subdomains can be represented by properties.

If we keep these caveats in mind while designing our graph data models, we can go
a long way before hitting performance and other engineering issues.

[111]

Index
A
access control

access groups, adding 85-87
data model, querying for employee

access 90, 91
employees, adding 88, 89
employees, defining 83-85
groups, defining 83-85
modeling, for content change 73

airport, data model
breaking out, as node 50-52
cities, delinking 54
flights, connecting 52, 53
flights, delinking 54
information, extracting 50
refactored data model, querying 54, 55

Atomicity, Consistency, Isolation,
Durability (ACID) properties 8

B
bookings

historical data, analyzing 103
patterns, discovering 103-105

business logic 31

C
categories, city recommendations

creating 95
modeling 94, 95
multiple categories, creating 95, 96

Cypher
about 17, 27
used, for searching path 28-30
using 17, 18

D
data model

airport information, extracting 50
airports, modeling 48
building, for flight bookings 34
hotels, adding 56, 57
hotels, fetching 58
hotels information, capturing at airports 47
hotels, modeling 48
limitations 107
migration, avoiding with single query 56

E
edges. See relationships
entities

identifying 13, 14

F
flight bookings

booking history, searching 45
creating 39-44
data model, building 34
ecosystem model 34
modeling, in RDBMS 35-39
upcoming journeys, searching 46
user journeys, searching 44, 45

[112]

G
geographical regions, hierarchies

countries, adding 76-79
modeling 74, 75
regions, adding 76-79

graph database
about 5
advantages 6
exploring, with Neo4j 8
use cases 7
using 11

graphs
about 1
in mathematics 2

H
hierarchies

geographical regions, modeling 74, 75
hotel chains, adding 81-83
hotel chains, modeling 79, 80
modeling 74

I
index-free adjacency 5
indices

about 22
adding 22

information
discovering 28

itinerary
business logic 31
creating 27
information 28
path 28
path, searching with Cypher 28-30

L
labels 3

M
MATCH clause 28

N
native graph storage

versus non-native graph storage 4, 5
Neo4j

about 8
limitation 108
modeling and technical affordances 8
references 108
URL 17
used, for exploring graph database 8

neo4j_graph_data_modelling
URL 11

neo4j-shell 17
nodes

about 2, 3
modeling 14-16

non-native graph storage
versus native graph storage 4, 5

P
path

discovering 28
searching, Cypher used 28-30

primary key 14
properties 4
property graph model

about 3
concepts 3, 4

Q
query output

modification summary 20
variable name 20
variable values 20

R
RDBMS

used, for modeling flight bookings 35-39
recommendations, cities

based on other travelers 98, 99
based on previous travels 96, 97
categories, modeling 94, 95
to travelers 93, 94

[113]

recommendations, hotels
based on price range 102
based on similar travelers visit 101, 102
from same chains 100
improving 103
to travelers 100

refactored data model
querying 54, 55

relationships
about 2-4
modeling 14-17
traversing 26

RETURN clause 28

S
schema index 22
storage

about 4, 5
native graph storage 4, 5
non-native graph storage 4, 5

T
temporal data

modeling, as chains 70, 71
TinkerPop stack

about 8
URL 8

traveler reviews
adding 63, 64
capturing, for hotels 59
comments, adding 66-69
listing, for hotel 64
model, creating for comments 60-63
model, creating for reviews 60-63
temporal data, modeling as chains 70, 71
used, for rating hotel 65, 66

travel itinerary
cities, creating 18-21
cities, modeling 12, 13
entities, identifying 13, 14
flights, adding 23-25
flights, modeling 12, 13
system, designing 12

U
users

creating 39, 40

V
vertices. See nodes

W
WITH clause 28

Thank you for buying
Neo4j Graph Data Modeling

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Neo4j
ISBN: 978-1-84951-716-4 Paperback: 222 pages

Run blazingly fast queries on complex graph datasets
with the power of the Neo4j graph database

1.	 Get acquainted with graph database systems
and apply them in real-world use cases.

2.	 Get started with Neo4j, a unique NOSQL
database system that focuses on tackling data
complexity.

3.	 A practical guide filled with sample queries,
installation procedures, and useful pointers to
other information sources.

Neo4j Essentials
ISBN: 978-1-78355-517-8 Paperback: 200 pages

Leverage the power of Neo4j to design, implement,
and deliver top-notch projects

1.	 Understand, in detail, the Pattern matching
theory, and cypher optimization.

2.	 Use Neo4j models combined with the power of
Cypher to sketch and start working quickly.

3.	 A fast-paced, example-oriented guide to
help you integrate Neo4j in standard Java
applications.

Please check www.PacktPub.com for information on our titles

Network Graph Analysis and
Visualization with Gephi
ISBN: 978-1-78328-013-1 Paperback: 116 pages

Visualize and analyze your data swiftly using dynamic
network graphs built with Gephi

1.	 Use your own data to create network graphs
displaying complex relationships between
several types of data elements.

2.	 Learn about nodes and edges, and customize
your graphs using size, color, and weight
attributes.

3.	 Filter your graphs to focus on the key
information you need to see and publish
your network graphs to the Web.

Data Visualization: a successful
design process
ISBN: 978-1-84969-346-2 Paperback: 206 pages

A structured design approach to equip you with the
knowledge of how to successfully accomplish any
data visualization challenge efficiently and effectively

1.	 A portable, versatile and flexible data
visualization design approach that will help
you navigate the complex path towards
success.

2.	 Explains the many different reasons for creating
visualizations and identifies the key parameters
which lead to very different design options.

3.	 Thorough explanation of the many visual
variables and visualization taxonomy to
provide you with a menu of creative options.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Graphs are Everywhere
	Graphs in mathematics
	The property graph model
	Storage – native graph storage versus non-native graph storage
	Reasons to use graph databases
	What to use a graph database for
	Choosing Neo4j for exploring graph databases
	The structure of the book
	Summary

	Chapter 2: Modeling Flights and Cities
	Graphs are more than social
	Designing a system to get a travel itinerary
	Modeling flights and cities
	Identifying the entities

	Modeling nodes and relationships
	Using Cypher to operate on Neo4j
	Creating cities in Neo4j
	Indices
	Adding flights to Neo4j
	Traversing relationships
	Summary

	Chapter 3: Formulating an Itinerary
	Creating an itinerary from flights and cities
	Information and paths
	Using Cypher to find a path

	Business logic should lie in code
	Summary

	Chapter 4: Modeling Bookings
and Users
	Building a data model for booking flights
	A simple model of the bookings ecosystem
	Modeling bookings in an RDBMS
	Creating bookings and users in Neo4j
	Creating users
	Creating bookings in Neo4j

	Queries to find journeys and bookings
	Finding all journeys of a user

	Queries for finding the booking history
of a user
	Upcoming journeys of a user

	Summary

	Chapter 5: Refactoring the Data Model
	Capturing information about hotels at airports
	Modeling airports and hotels
	Extracting airport information from flights
	Breaking airport out as a node
	Connecting flights to airports
	Delinking flights and cities
	￼Querying the refactored data model

	Reasons for not migrating using a
single query
	Adding hotels to airports
	Fetching hotels
	Summary

	Chapter 6: Modeling Communication Chains
	Capturing traveler reviews for hotels
	A model for reviews and comments
	Adding reviews to Neo4j
	Listing reviews for a hotel
	Using reviews to find the average rating
of a hotel

	Adding comments to Neo4j
	Considerations for modeling temporal data as chains

	Summary

	Chapter 7: Modeling Access Control
	Controlling access for content change
	Modeling hierarchies
	Modeling geographical regions
	Adding countries and regions to Neo4j

	Modeling hotel chains
	Adding hotel chains to Neo4j

	Modeling access control groups and employees
	Adding access groups to Neo4j
	Adding employees to Neo4j

	Querying the data model to find what is accessible to an employee
	Summary

	Chapter 8: Recommendations and Analysis of Historical Data
	Recommending cities to travelers
	Modeling categories
	Creating categories in Neo4j
	Cities and categories

	Recommending cities based on previous travels
	Recommending cities on the basis of other travelers

	Recommending hotels to travelers
	Recommending hotels from the same chains
	Recommending hotels visited by similar travelers
	Recommending hotels that match a price range
	Improving recommendations

	Analysis of the historical data
	Querying to discover patterns

	Summary

	Chapter 9: Wrapping Up
	There is no correct model
	Further reading and exploration
	What to watch out for while using Neo4j

	Index

