
www.allitebooks.com

http://www.allitebooks.org

NetBeans IDE 8
Cookbook

Over 75 practical recipes to maximize your productivity
with NetBeans

David Salter

Rhawi Dantas

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

NetBeans IDE 8 Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2011

Second edition: October 2014

Production reference: 1201014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-776-1

www.packtpub.com

Cover image by Faiz Fattohi (faizfattohi@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
David Salter

Rhawi Dantas

Reviewers
Ritwik Ghoshal

Petr Hejl

Tushar Joshi

Jonathan Lermitage

Hrushikesh Zadgaonkar

Commissioning Editor
Mary Jasmine Nadar

Acquisition Editor
Nikhil Karkal

Content Development Editor
Govindan K

Technical Editors
Tanvi Bhatt

Siddhi Rane

Copy Editors
Roshni Banerjee

Janbal Dharmaraj

Alfida Paiva

Laxmi Subramanian

Project Coordinator
Shipra Chawhan

Proofreaders
Paul Hindle

Chris Smith

Indexers
Monica Ajmera Mehta

Priya Sane

Production Coordinators
Manu Joseph

Komal Ramchandani

Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Authors

David Salter is an enterprise software developer and architect who has been developing
software professionally since 1991. His relationship with Java goes right back to the
beginning, using Java 1.0 for writing desktop applications and applets for interactive websites.
He has been developing enterprise Java applications using both Java EE (and J2EE) and
open source solutions since 2001. He wrote the book, Seam 2.x Web Development, Packt
Publishing, and co-authored the book, Building SOA-Based Composite Application Using
NetBeans IDE 6, Packt Publishing.

First and foremost, I would like to thank my wife and family for putting up
with my many hours at the computer while writing this book. Special thanks
and love to my wife for all her encouragement and support.

I'd also like to say thanks to all the people at Packt Publishing for helping
me with this book. Thank you Nikhil for your encouragement from the
beginning. Thanks also to Kinjal and Govindan for your hard work helping
me to complete the book.

Finally, thanks to everyone who has worked on NetBeans to make it the
product it is today. Without you, this book would not exist.

Rhawi Dantas is a software engineer from Recife, Brazil, with several years of Java
development expertise, focused mainly on server-side development. He has a Bachelor's
degree in Information Systems and is currently doing his Masters in Software Systems from
Tampere University of Technology. He is also certified as SCJP, SCWCD, and SCSNI.

This is a small thank you to the three most important women in my life:
Sônia Dantas, Paula Mäkinen-Dantas, and Maria Dantas. I would also like to
thank the work of my editors, specially Jovita Pinto and Roger D'Souza, and
all of the reviewers for their valuable contribution.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ritwik Ghoshal is a senior security analyst at Oracle Corporation, responsible for Oracle
Software and Hardware Security Assurance. His primary work areas are operating systems
and desktop virtualization, along with developing vulnerability management and tracking
tools. Before coming to Oracle in 2010, when the company acquired Sun Microsystems, he
had worked at Sun as a part of Sun security engineering team and Solaris team since 2008.
At Oracle, he continues to be responsible for all Sun Microsystems products and Oracle
Linux and virtualization products. He earned a Bachelor's degree in Computer Science
and Engineering in 2008 from Heritage Institute of Technology in Kolkata, India.

I'm heavily indebted to my parents and Sara E Taverner for their continuous
help and support.

Petr Hejl works as a software developer at Oracle Corporation. He is an experienced Java
developer contributing to the NetBeans IDE in various areas, such as Java EE, JavaScript,
and the core infrastructure.

His professional interests center on multithreading, API design, and code quality. In his free
time, he created and still maintains the open source Checkstyle Beans plugin, integrating the
Checkstyle tool into the NetBeans IDE.

He holds a Master's degree in Computer Science from the Czech Technical University
in Prague.

I'd like to thank my family, Tereza and Matěj, for all their love, help,
and support.

www.allitebooks.com

http://www.allitebooks.org

Jonathan Lermitage is a 30-year-old programmer from France. He has worked for 5 years
with the Java SOA and BPM ecosystem for a medium-sized company. Now, he is working for
one of the European e-business leaders in order to modernize their Java EE products. Also,
he is continuing his education in order to become an engineer in scientific computing, his
first passion.

He wrote the book, Instant JRebel, Packt Publishing. He also worked as a technical reviewer
on Instant NetBeans IDE How-to, Packt Publishing, a book written by Atul Palandurkar.

Living with a computing fanatic is not easy every day, so I thank my
marvelous girlfriend for all her patience and encouragement.

Hrushikesh Zadgaonkar is a senior software engineer at Persistent Systems. He has
completed BE from RCOEM, Nagpur, and MS from Birla Institute of Technology and Science,
Pilani, in Computer Science. He is a NetBeans Certified Associate and has worked on the
NetBeans platform. He was a Microsoft Student Partner and has been constantly working
on distinct domains such as .NET, Android, iOS, and automation in Robotium extensively.

He is an author of the book, Robotium Automated Testing by Android, Packt Publishing.
He is also a semifinalist of the Touch and Tablet Accessibility Award organized as part of
Imagine Cup 2010.

He has several papers published in various international journals. His leisure activities
include blogging, reading articles, playing tabla, guitar, and sports such as Cricket,
Football, and Snooker.

You can contact him at hzadgaonkar@gmail.com and you can follow him on Twitter at
@MsWizKid.

I would like to thank my mother, Bharati Zadgaonkar, and wife,
Arti Zadgaonkar, for their continuous help and encouragement.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Using NetBeans Projects	 7

Introduction	 7
Creating a Java application	 8
Creating a Maven application	 11
Using Maven projects	 18
Creating a Free-Form application	 19
Creating a library	 23
Importing an Eclipse project	 25

Chapter 2: Java Development with NetBeans	 29
Introduction	 29
Creating a package	 30
Creating a class	 32
Creating an interface	 34
Running a file	 36
Debugging a class	 39
Formatting the code	 45
Collapsing and expanding code folds	 46
Toggling comments	 49
Fixing and organizing imports	 50
Creating file headers	 53
Changing the look and feel of NetBeans	 54

Chapter 3: NetBeans Productivity	 57
Introduction	 57
Creating a constructor	 58
Creating a logger	 60
Creating a toString() method	 61
Creating a property	 63

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Overriding a method	 65
Rename refactoring	 68
Move refactoring	 71
Copy refactoring	 74
Delete refactoring	 75
Change parameters refactoring	 78
Pull up / push down refactoring	 81
Extract interface refactoring	 83
Encapsulate fields refactoring	 86
Replacing a constructor with the Factory pattern	 89

Chapter 4: Developing Desktop Applications with NetBeans	 93
Introduction	 93
Creating a Swing application	 95
Adding components to a form	 101
Creating menus	 108
Creating dialogs	 111
Creating toolbars	 113
Responding to events	 115
Building a distributable application from NetBeans	 123

Chapter 5: NetBeans Enterprise Application Development	 127
Introduction	 128
Adding WildFly support to NetBeans	 129
Adding TomEE support to NetBeans	 136
Creating a web application	 140
Creating a web application with JSF support	 144
Adding JSF support to a web application	 153
Creating a JSF composite component	 158
Creating an EJB	 165
Creating a Message Driven EJB	 173
Creating a timer	 180
Creating a REST web service	 183
Using the Chrome Connector	 191

Chapter 6: Managing Databases with NetBeans	 197
Introduction	 197
Connecting to Java DB	 198
Registering and managing a MySQL Server	 200
Connecting to Microsoft SQL Server and Oracle	 204
Connecting to PostgreSQL	 210
Managing a SQL database	 213
Connecting to MongoDB	 218

iii

Table of Contents

Chapter 7: NetBeans JavaFX	 225
Introduction	 225
Creating a JavaFX application	 226
Graphical editing of FXML files	 233
Styling a JavaFX application with CSS	 235
Creating and using a JavaFX custom control	 239
Deploying a self-contained application	 245

Chapter 8: NetBeans Mobile Development	 251
Introduction	 251
Adding mobile support to NetBeans	 252
Creating an MIDP application	 256
Adding Android support to NetBeans	 260
Creating an Android application	 263

Chapter 9: Version Control	 267
Introduction	 267
Initializing a Git repository	 268
Cloning a Git repository	 271
Checking out from a Subversion repository	 276
Getting the history of a file	 281
Committing and pushing code changes	 285
Creating a Diff patch	 288
Branching a repository	 290

Chapter 10: NetBeans Testing and Profiling	 293
Introduction	 293
Installing JUnit support into NetBeans	 294
Creating a JUnit test for an existing class	 295
Creating a JUnit test	 301
Creating a JUnit test suite	 304
Running tests	 306
Creating a TestNG unit test	 310
Profiling an application	 312

Chapter 11: Using External Web Services	 317
Introduction	 317
Getting a list of Delicious bookmarks	 318
Adding a Delicious bookmark	 322
Getting a list of recent photos on Flickr	 325
Geocoding with Google Maps	 329
Verifying an e-mail address with StrikeIron	 335
Adding an additional web service into NetBeans	 341

iv

Table of Contents

Chapter 12: Extending NetBeans	 345
Introduction	 345
Creating a NetBeans module	 346
Packaging a NetBeans module for deployment	 356

Index	 363

Preface
NetBeans IDE is the only IDE that can be downloaded alongside Java itself. It supports all of
the latest standards such as Java SE 8, Java EE 7, and Java ME 8, providing a comprehensive
set of development tools for the modern-day Java developer.

This book provides a wide-ranging set of recipes that can help you to develop better
applications and become more productive in your work. From the start to the end of a Java
project's development lifecycle, this book shows how to perform many different tasks with the
NetBeans IDE, discovering mobile, desktop, and enterprise Java along the way.

The book is packed with over 75 practical recipes specifically designed to maximize developer
productivity with NetBeans. Each recipe is fully explained, providing clear steps and examples
throughout. In addition to the recipes, there are many different techniques and tips included,
all of which will allow you to progress to becoming an effective NetBeans IDE user.

What this book covers
Chapter 1, Using NetBeans Projects, takes you through the process of creating Java projects.
In this chapter, you will learn how to use Apache ANT, Maven, and NetBeans itself for creating
projects, along with details on how to import projects from Eclipse.

Chapter 2, Java Development with NetBeans, teaches you how to use NetBeans effectively.
Having created Java projects in the previous chapter, you will learn how to create classes,
packages, and interfaces. You will learn how to run and debug the code and how to efficiently
manage the Java code.

Chapter 3, NetBeans Productivity, explains the different techniques that NetBeans offers for
code editing and refactoring. You will see how to use the many different refactoring tools in
NetBeans along with shortcuts to quickly implement standard code.

Chapter 4, Developing Desktop Applications with NetBeans, shows you how to develop
desktop Swing applications and deploy them outside of NetBeans.

Preface

2

Chapter 5, NetBeans Enterprise Application Development, teaches you how to integrate
different Java EE applications servers into NetBeans and how to create Java EE web and
EJB applications.

Chapter 6, Managing Databases with NetBeans, describes how to connect to different
databases such as Oracle and MySQL. You will also see how to manage databases from
within NetBeans and how to run ad hoc SQL queries against them.

Chapter 7, NetBeans JavaFX, teaches you how to create and deploy JavaFX applications.
You'll also learn how to integrate Oracle's Scene Builder into NetBeans allowing you to style
JavaFX applications.

Chapter 8, NetBeans Mobile Development, explains how to add Java ME support into
NetBeans and how to develop MIDP and Android applications.

Chapter 9, Version Control, explains the procedures necessary for working with revision
control systems such as Git and Subversion. You will learn many different techniques
required such as cloning repositories, checking in files, and reviewing project changes—all
from within NetBeans.

Chapter 10, NetBeans Testing and Profiling, describes how to test Java applications within
NetBeans using JUnit and TestNG. After learning how to write tests for applications, you will
learn how to profile their CPU and memory usage.

Chapter 11, Using External Web Services, shows how to invoke external third-party web
services such as Flickr and the Google Geocoding API directly from within NetBeans.
You'll learn how consuming a web service is as simple as dragging-and-dropping it into
an application.

Chapter 12, Extending NetBeans, describes what to do in the rare situation when NetBeans
doesn't provide all of the functionality you need. You will learn how to write a NetBeans plugin
and how to distribute it to other NetBeans users.

What you need for this book
To complete the recipes within this book, you will need to download and install NetBeans
IDE 8. NetBeans is provided in three different download bundles: Java SE, Java EE, and the
All bundle. Some of the recipes in this book require specific versions of NetBeans due to the
technologies used. For example, the Java EE or All version of NetBeans is required for the
recipes explaining Java EE concepts and techniques. For each recipe, the version of
NetBeans that is required is specified.

Each of the different download bundles of NetBeans can be downloaded from
https://netbeans.org/downloads.

https://netbeans.org/downloads

Preface

3

Who this book is for
This book is intended for Java developers of any level who are using NetBeans and want to
learn how to get the most out of the IDE. Learning NetBeans effectively will help to provide
a firm foundation for your application development activities.

This book assumes some knowledge of Java development and does not try to teach
Java programming.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Ensure that the BookMarks.java file is open for editing."

A block of code is set as follows:

public static void main(String[] args) {
 List<String> l = new ArrayList<String>();
 l.add("Hello");
 l.add("World");
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core">

Any command-line input or output is written as follows:

netbeans --laf com.sun.java.swing.plaf.motif.MotifLookAndFeel

Preface

4

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Expanding the project within
the Projects explorer displays a list of Source Packages within the project and Libraries used
by the project."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/7761OS_ColoredImages.pdf.

www.packtpub.com/authors
http://www.PacktPub.com
http://www.PacktPub.com/support
https://www.packtpub.com/sites/default/files/downloads/7761OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/7761OS_ColoredImages.pdf

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com

1
Using NetBeans

Projects

In this chapter, we will cover the following recipes:

ff Creating a Java application

ff Creating a Maven application

ff Using Maven projects

ff Creating a Free-Form application

ff Creating a library

ff Importing an Eclipse project

Introduction
The NetBeans IDE is a free, open source, Java-based Integrated Development Environment
(IDE) that is used the world over to develop Java, PHP, C/C++, HTML, and other applications.

One of the first tasks when using NetBeans is to create projects or libraries or import projects
from Eclipse. In this chapter, we will discuss how to create different types of projects based
on different build tools (NetBeans, Maven, and Ant), how to create class libraries, and how to
import both existing Eclipse and Maven projects.

To follow the recipes in this chapter, you can use any of the Java NetBeans download
bundles (Java SE, Java EE, and All). All of these NetBeans versions can be downloaded
from https://netbeans.org/downloads/.

www.allitebooks.com

https://netbeans.org/downloads/
http://www.allitebooks.org

Using NetBeans Projects

8

Creating a Java application
Creating a Java application using the NetBeans standard project format is the simplest way to
start developing Java applications with NetBeans.

This recipe shows how to create a Java application using the NetBeans project format. The
NetBeans 8, Java SE version was used for this recipe. If you are using a different version of
NetBeans, you may have more project types available for selection while creating a project.

Getting ready
To get started, ensure that one of the Java bundles of NetBeans (Java SE, Java EE, or the
All bundle) is running. You need not have any projects created to start this recipe.

 How to do it…
1.	 Click on File and then click on New Project....

2.	 On the resultant dialog, select the Java category and the Java Application project,
as shown in the following screenshot:

Chapter 1

9

3.	 Click on Next.

4.	 On the resultant dialog, enter MyFirstApp in the Project Name field and ensure
that a sensible project location is specified in the Project Location field.

5.	 Ensure that Create Main Class is selected and enter com.davidsalter.
cookbook.myfirstapp.Main as the Create Main Class name.

NetBeans will automatically suggest a Create Main Class name
myfirstapp.MyFirstApp using the project name for both the package
and class names. The best practice for Java package naming is to use your
companies' reversed Internet domain name followed by some identification for
your application. Hence, the com.davidsalter.cookbook.myfirstapp
package name is a good choice of a package name. Without using reverse
domain names for packages, it's easy to see how different people could create
packages all with the same name, leading to name collisions.

The New Java Application wizard is shown in the following screenshot:

Using NetBeans Projects

10

How it works…
Creating a Java application using the New Java Application wizard creates a new NetBeans
project that is visible within the Projects explorer within the main NetBeans window,
as shown in the following screenshot:

Expanding the project within the Projects explorer displays a list of Source Packages
within the project and Libraries used by the project. For a freshly created project, the Source
Packages node will display only <default package> if the user did not select the Create Main
Class option at the time of project creation. If the Create Main Class option was selected,
as we did in this recipe, then the package structure used for the main class will be displayed
within the hierarchy.

There's more...
While creating a new project, NetBeans provides the Create Main Class option. If this
option is selected, then the name of a class can be specified into which NetBeans will
create a main method.

Within the New Java Application wizard, the user has the Use Dedicated Folder for Storing
Libraries option. When this option is selected, NetBeans will create a lib folder (usually
within the project's structure) in which all libraries used by the project are placed. This option
is useful when the developer wishes to share the project with other parties or wants to build
the project outside of NetBeans, for example, within a Continuous Integration environment.
As all of the libraries used by the project are stored within the same location, additional
(often complex) configuration is not required to access any project dependencies.

Chapter 1

11

When projects are created using the New Java Application wizard, Ant is used as the build
tool for the project and a standard build file (build.xml) is created at the root of the project,
with a build implementation Ant file (build-impl.xml) created within the nbproject folder
of the project. It's not recommended that you edit the contents of the build-impl.xml file
directly; it is not usually required for a developer to modify any of these build scripts. If you
wish to override any of the targets within the build-impl.xml file, they should be defined
within the build.xml file. Any properties that you want to change from within the build-
impl.xml file should be defined within the project.properties file.

Opening the Files explorer shows all of the files within the project. The project build files
can be seen and selected for editing (if required) from within this window, as shown in the
following screenshot:

Many of the properties defined within the project.properties file can also be edited
within the IDE by right-clicking on the project in either the Projects or Files explorer and
selecting the Properties option.

Creating a Maven application
Many Java developers find that Maven provides superior build and project management tools
that IDEs do not offer. The NetBeans IDE therefore offers the ability to create and manage
Maven projects directly from within the IDE, thus offering the best combination of tools.
This recipe shows how to create a Maven project from within the NetBeans IDE.

Using NetBeans Projects

12

Getting ready
To get started, ensure that one of the Java bundles of NetBeans (Java SE, Java EE, or the
All bundle) is running. You do not have to have any projects created to start this recipe.

How to do it…
1.	 Click on File and then click on New Project....

2.	 On the resultant dialog, select the Maven category and the Project from Archetype
project, as shown in the following screenshot:

3.	 Click on Next.

4.	 In the Search field, enter maven-archetype-quickstart and then select it in the
Known Archetypes field, as shown in the following screenshot:

Chapter 1

13

5.	 Click on Next.

6.	 On the resultant dialog, enter a project name, group ID, version, and package,
as shown in the following screenshot:

7.	 Click on the Finish button to create the project.

Using NetBeans Projects

14

How it works…
NetBeans comes bundled with a copy of Maven that is used to create and manage projects.
The current version of Maven bundled with NetBeans 8 is version 3.0.5. This version number
can be checked by navigating to Tools | Options from the NetBeans main menu. (On the Mac,
this screen is accessed by navigating to NetBeans | Preferences.) On the resulting dialog
(shown in the following screenshot), click on Java and then select the Maven tab to see the
version of Maven bundled with NetBeans:

Chapter 1

15

As when creating a Java project using the New Project wizard, when a Maven project has
been created, it is automatically opened within the Projects explorer. The list of nodes
available within the project, however, depends upon the type of Maven project created.
For most Maven project types (in Maven terms, these are called archetypes), the Source
Packages, Test Packages, Dependencies, Test Dependencies, Java Dependencies,
and Project Files nodes will be created as shown in the following screenshot:

Within the Project Files node, we have the pom.xml file that was created by the New Project
wizard. The pom.xml file can be opened by double-clicking on it within the project hierarchy,
or by right-clicking on the project and selecting the Open POM menu option. In addition to
editing, the NetBeans pom.xml editor windows allow us to display a graph of all the artefacts
used by the Maven project. This can be very useful when trying to identify what dependencies
exist within a project. NetBeans also provides an Effective tab on the pom.xml editor. This
window shows the inherited information and provides a complete view of what the pom.xml
file looks like, including listing any plugins used by Maven.

If we look in the Output window after the project has been created, we can see that the
bundled copy of Maven has been used to create a Maven project.

There's more...
Maven uses a set of executable goals to manage the lifecycle of a project. These goals can be
chained to each other to perform a set of project management tasks.

For example, the install goal is typically used to build a project, whereas the clean goal
is typically used to clean a project. If a developer wanted to clean and then build a project,
he/she would typically execute these goals sequentially on the command line by running the
Maven clean install goals together.

Using NetBeans Projects

16

The command line is not so user friendly, so fortunately NetBeans allows us to manage these
goals in a much nicer fashion. Right-click on a Maven project within the Projects explorer and
select Properties. On the resultant dialog, select the Actions node to see and edit the Maven
goals that are executed for different NetBeans actions (Build project, Clean project, Test
project, and so on), as shown in the following screenshot:

These goals are mapped to the standard NetBeans IDE project build options. So, for example,
right-clicking on a project and selecting Build will execute the Maven install goal.

For the most common project-related tasks (build, clean, test, and so on), developers can
therefore use the standard NetBeans button and keyboard shortcuts.

Invoking Maven goals
Within the Navigator explorer, a list of commonly used goals is displayed. Double-clicking
on any of these goals will execute it against the current project. Toggling Show help goals
and Show lifecycle bound goals determines the set of goals that are shown in the
Navigator explorer:

Chapter 1

17

Invoking custom Maven goals
Sometimes, when using Maven, a developer will want to run additional goals outside the
normal build/test/deploy goals. These would include, for example, running code analysis
against a project. NetBeans allows both global and custom goals to be defined, which can
easily be executed against a project.

To define a global goal, select Tools and then select the Options menu item. On the Options
dialog box, select Java and then select the Maven tab. On the resultant dialog, click on the
Edit Global Custom Goal Definitions... button.

On the Global Maven Goal definitions dialog, actions can be added and removed. For each
action, a specific Maven goal (or goals) can be defined.

To execute any of these global goals against a project, right-click on the project in the Projects
explorer and select the Custom menu option. All of the global goals that have been defined
will be available here for execution against the project.

Custom goals can be defined on a per project basis. To define custom goals, right-click on the
project and select Custom and then select the Goals... menu option. Custom goals can be
stored within a project by selecting the Remember as checkbox. Unlike global goals, custom
goals are stored within a project and are therefore distributed with the project when it is
supplied to other people.

Using a different installation of Maven
If you wish to use a different version of Maven than the one bundled with NetBeans, you can
select the version to use from the Maven properties. You may wish to use a different version
of Maven if you already have a different version of Maven installed outside of NetBeans, or
you have a local copy of Maven that is differently configured especially for your environment.

www.allitebooks.com

http://www.allitebooks.org

Using NetBeans Projects

18

Select Tools and then select the Options menu item from the main NetBeans menu.
On the Options dialog, select Java and then click on the Maven tab. Under the Maven
Home drop-down list, select the Browse... option and choose the installation of Maven
that you wish to use.

Using Maven projects
Given the open nature of the Java platform, it is quite common for Java developers to work
on projects that were not created within NetBeans, or that do not employ the NetBeans
project structure.

One of the most common Java build and management tool is Maven (see the Creating a
Maven application recipe for more information on Maven), and as such a growing number
of projects are created using it. These include both single module projects (where a single
.jar file is generated) and complex multimodule projects (which may include .war, .ear,
.jar, and more!).

This recipe shows how a Maven project can be loaded within NetBeans and subsequently
managed via the NetBeans user interface.

Getting ready
To complete this recipe, you need a Maven project on your local machine. It does not matter
whether the project is a single or multimodule Maven project.

How to do it…
1.	 Click on File and then on New Project....

2.	 On the resultant dialog, select the Maven category and select the Project with
Existing POM project.

3.	 Click on Next.

4.	 Click on the Finish button.

5.	 Using the Open Project window, browse to the top-level pom.xml file for the project
and click on Open Project.

6.	 The Maven project will now be loaded and will be shown in the Projects explorer.

How it works…
Loading and using a Maven project in NetBeans is an easy way to utilize the power of Maven
with the convenience of NetBeans.

Chapter 1

19

After loading a Maven project into NetBeans in this way, the project still
remains intact as a Maven project. You can still use the project outside of
NetBeans as a standard Maven project.

When a Maven project is loaded into NetBeans, the project's icon in the Projects explorer
indicates that this is a Maven project. Opening up the project node for a multimodule Maven
project will show all the child Maven modules. Right-clicking on a child module and selecting
the Open POM option opens the child module as a top-level project that can then be managed
(build, test, debug, and so on) as a standard Maven project.

There's more...
In addition to using the New Project wizard, Maven projects can also be opened simply by
going to File | Open Project from the NetBeans main menu.

Creating a Free-Form application
For many projects, Apache Ant is used as the build tool (Ant is used as the internal build tool
for NetBeans projects). It is not uncommon for these projects to have custom Ant build scripts
that are used to build, test, and deploy the projects.

Rather than having to amend the structure of existing projects, NetBeans provides the facility
to create a Free-Form project. In a Free-Form project, NetBeans invokes Ant targets to perform
build options.

The Ant script used in these types of projects must be managed independently of NetBeans,
and any changes required to the build procedure must be directly defined within the projects'
build script.

Free-Form projects are only recommended when an existing Ant project
has a fixed structure, but the developer wants to use NetBeans for further
development of the project. For smaller projects, creating a new NetBeans
project or a Maven project may be a better option.

This recipe shows how to create a Free-Form project from within the NetBeans IDE by
importing an existing Ant project.

Using NetBeans Projects

20

Getting ready
This recipe assumes that you have an existing Java project that uses Ant as the build tool and
shows you how to import the project into a NetBeans Free-Form project.

How to do it…
1.	 Click on File and then click on New Project....

2.	 On the resultant dialog, select the Java category and select the Java Free-Form
Project project, as shown in the following screenshot:

3.	 Click on Next.

4.	 Browse for the Ant project's location. NetBeans should then parse the build.xml
file for the project and populate the Build Script, Project Name, and Project
Folder options.

5.	 Click on Next.

6.	 Five NetBeans actions are now shown (Build Project, Clean Project, Generate
Javadoc, Run Project, and Test Project). Select the Ant targets for these project
actions. If there is no Ant build target for a specific action (for example, the Ant
build script has no ability to generate Javadoc), then leave the action blank.

7.	 Click on Next.

Chapter 1

21

8.	 Enter Source Package Folders and Test Package Folders for the project.
As with the previous stage, NetBeans will attempt to work out these values
from the build.xml file.

9.	 Click on Next.

10.	 If there are any additional classpath entries required, specify them as
Java Sources Classpath.

11.	 Click on Next.

12.	 From the Output JARs of Folders Containing Compiled Classes field, select the
folders that contain the compiled classes or .jar files.

13.	 If any Javadoc is generated during the build process, enter the location in the
Javadoc Output field.

14.	 Click on Finish for NetBeans to create the Free-Form project.

How it works…
When a Free-Form project is created, NetBeans creates a special type of project that uses
a custom Ant script to build the project. This project can have the source code stored
wherever it is defined by the Ant script and does not have to follow the code layout
guidelines of NetBeans.

As with other types of projects created within NetBeans, once the project is created, it is
opened and shown in the Projects explorer, as shown in the following screenshot:

As long as the relevant mappings were defined correctly between NetBeans actions and the
Ant targets, the developer can build, clean, run, test, and generate Javadoc from within the
IDE using the standard menu items and keyboard shortcuts.

Selecting the build.xml file within the Projects explorer shows all of the Ant targets that
have been defined within the file. Double-clicking on any of these will run the target.

Using NetBeans Projects

22

It is important to note that any changes made to the project settings via
NetBeans, for example, adding extra dependencies to the project or additional
source roots, will not affect the way the project is build. The project is built
exactly as defined within the build.xml file. This can sometimes lead
to confusion; for example, NetBeans may show that there are no missing
dependencies for a project, but the project itself will not build due to missing
dependencies. It is important to remember that it is the Ant file itself (not
NetBeans) that defines how the project is built.

There's more...
As stated in the previous section, it's important to remember that, with Free-Form projects,
the project is built by Ant as defined within the build.xml file. Any changes to the project's
metadata within NetBeans will not affect how the project is built.

To add extra source nodes to a project or to add additional dependencies, it is important that
these are first defined within the build.xml file and then added at the NetBeans project
level. This is achieved within NetBeans by right-clicking on a Free-Form project and selecting
Properties. The resulting dialog box allows all of the configuration options defined at the
project creation to be modified.

Using a different version of Ant
NetBeans is bundled with a version of Ant. This enables developers to use Ant from within
NetBeans without having to install a separate copy.

If you wish to use a different version of Ant within Free-Form projects, this can be configured
by selecting Tools and then clicking on Options from the main NetBeans menu. On the
Options dialog box, select Java and then select the Ant tab.

Within this Options dialog box, a different version of Ant can be specified together with any
classpath or properties required to build your projects.

To quickly change back to the default version of Ant supplied with NetBeans,
click on the Ant Home Default button within the Java section of the Options
dialog box.

Chapter 1

23

Creating a library
When developing large applications, it's often necessary to utilize third-party libraries.
Sometimes, third-party libraries can be distributed as source code that can be dropped
into an application, but more often, they are distributed as a set of .jar files.

NetBeans comes bundled with several class libraries (such as Hibernate, Spring, and TestNG),
but it also allows developers to create their own sets of class libraries that can be easily
added to projects.

This recipe shows how to create a new library within NetBeans that can then be subsequently
used by NetBeans projects. This recipe does not involve writing any Java code, but describes
the procedure of creating a library from existing code that other NetBeans projects can
then reference.

Getting ready
This recipe assumes that you have a third-party library which is provided as a set of one or
more .jar files that you wish to use within a NetBeans project.

If you do not have a suitable third-party library, a sample library is provided as a part of the
download bundle for this book.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Using NetBeans Projects

24

How to do it…
1.	 Click on Tools and then click on Libraries on the NetBeans main menu. The Ant

Library Manager dialog is displayed as shown in the following screenshot:

2.	 Click on the New Library... button.

3.	 Enter the name of the library to be created into the Library Name field as shown in
the following screenshot:

4.	 Click on the OK button to create the library.

Chapter 1

25

5.	 The library has now been created and given a name as specified in step 3.
This name is displayed in the Library Name field. Now, we need to add some
content to the library.

6.	 Click on the Add JAR/Folder button.

7.	 Using the Browse JAR/Folder dialog box, select a .jar file or folder containing the
third-party library content that you wish to add to the NetBeans library.

8.	 Repeat step 7 for any additional .jar files or folders that you wish to add to
the library.

9.	 Click on the OK button to complete creation of the library.

How it works…
A class library in NetBeans is an easy way to add a set of .jar files or folders to the
classpath. When a class library has been defined as detailed in this recipe, it can be added
to a project by right-clicking on the project's Libraries node within the Projects explorer and
selecting Add Library.... NetBeans will then append the .jar files and folders from the library
into the project's classpath at both compile time and runtime (if the project is runnable).

There's more...
In addition to adding class libraries to a project to extend the classpath, it is also possible to
reference projects from a NetBeans project. If for example, you have a NetBeans project that
creates a .jar file, this can be added into the classpath of a different NetBeans project by
right-clicking on the Libraries node in the Projects explorer and selecting Add Project....
The build artifacts from this selected project will then be added to the classpath of the
original project.

Importing an Eclipse project
If you wish to work alongside Eclipse, NetBeans lets you use the Project Import functionality.

This functionality will import one or more projects created by the Eclipse IDE simply by
specifying the workspace in which they are housed.

Getting ready
A valid Eclipse project with sources and dependencies must be used in order to continue with
this recipe.

Using NetBeans Projects

26

How to do it…
1.	 Click on File and then click on Import Project and Eclipse Project....

2.	 In the Import Eclipse Project window, select Import Projects from Workspace.

3.	 Click on the Browse... button. An Open dialog box will pop up from where you can
select the workspace.

4.	 After selecting a valid workspace project, click on the Next button.

5.	 In the Projects to Import section, select the projects you want to import.

6.	 Select Store NetBeans project data inside Eclipse project folders.

7.	 Click on the Finish button.

How it works…
By selecting the workspace location, NetBeans will then analyze and convert the metadata
created by Eclipse. The following screenshot shows the Import Eclipse Project window:

The project structure, along with the dependencies, will be available for NetBeans usage.
It is important to notice that NetBeans will not change the way the Eclipse project behaves.

On selecting the Store NetBeans project data inside Eclipse project folders option,
NetBeans will create its own structure inside the Eclipse folder structure. Select this
option if you want to distribute the NetBeans project directory in a version control system.
This ensures that the libraries and configuration files used by Eclipse and NetBeans are
the same.

Chapter 1

27

The following screenshot shows the Projects to Import section:

It is also possible to use NetBeans without placing its configuration files inside Eclipse's
workspace. If this is the desired outcome, then select Create imported NetBeans projects
in a separate location and then click on Browse to select the folder where NetBeans
configurations will exist.

The imported Eclipse projects will then be placed on the Projects tab on the left-hand side.

In the There's more… section, there is a list of some errors that might occur while importing
an Eclipse project.

There's more…
Now, let's talk about some other options as well as some pieces of general information that
are relevant to this task.

Synchronizing Eclipse
With multiple developers working on a project, it is common that changes to a project happen
from time to time. When this happens, NetBeans can resynchronize the projects by selecting
Import Project and then Resynchronize Eclipse Projects from the main File menu.

After following these steps, the classpaths of all the projects imported into Eclipse will be
in sync. However, changes to your local project will not be synchronized back. This way,
NetBeans ensures that the local configurations will not damage the parent project.

www.allitebooks.com

http://www.allitebooks.org

Using NetBeans Projects

28

Errors when importing Eclipse projects
When importing Eclipse projects, some importing errors might come up. Many of these errors
are not specific to our recipe, but the following notes might come in handy while developing
future projects. Some of the errors are as follows:

ff Resolve Missing Server Problem

This error is solved by just right-clicking on the project node and browsing to the
folder where the server is installed.

ff Resolve Reference Problems

This error occurs when libraries are missing from the project classpath. Solving this is
very similar to solving the missing server problem. Right-click on the project node and
select Resolve Reference Problem, and then select the folder where the library is.
Sometimes, you may have to create libraries to add to the project. If you are unsure
on how to create libraries, check out the Creating a library recipe discussed earlier in
this chapter.

ff Eclipse platform for Project Name cannot be used. It is a JRE and the NetBeans
project requires a JDK. NetBeans will use the default platform.

This error occurs when the Eclipse project is configured with a JRE instead of JDK.
To solve this, click on Tools and select Java Platforms. The Java Platform Manager
dialog will be shown. Click on Add Platform... and from the options, select the correct
Java platform on which the application is being developed.

2
Java Development

with NetBeans

In this chapter, we will cover the following recipes:

ff Creating a package

ff Creating a class

ff Creating an interface

ff Running a file

ff Debugging a class

ff Formatting the code

ff Collapsing and expanding code folds

ff Toggling comments

ff Fixing and organizing imports

ff Creating file headers

ff Changing the look and feel of NetBeans

Introduction
In this chapter, we will look at using the NetBeans IDE for Java development and see what
options are available to assist in a Java developer's daily routine.

We will start by looking at how to create classes, packages, and interfaces. We will look at how
to run individual files and projects and also how to debug them.

Java Development with NetBeans

30

We will then look at code management and see how we can organize the code more
effectively using code folds and how we can toggle comments, fix imports, and define
file headers.

Finally, we'll take a look at how we can customize the look and feel of NetBeans in order
to help us be more comfortable with the IDE. The more comfortable we are with the IDE,
the more productive we'll be.

Creating a package
Everything is better when organized. With this in mind, we will check how to create packages
using the IDE.

Besides being more organized, it is a bad coding practice to leave all classes in the same
package or in the root package.

How to do it…
First, we will need to create a new project, so please refer to the recipes in Chapter 1,
Using NetBeans Projects, for creating Java projects. When naming the project, enter
CreatingPackages. When the Projects explorer shows the CreatingPackages project,
expand the CreatingPackages node if not yet expanded. When creating the project,
it is not necessary to create a main class.

Now, we will create a package for our source code with the following steps:

1.	 Within the Projects explorer, expand the CreatingPackages node (if not yet
expanded) and the Source Packages node within it.

2.	 Right-click on the <default package> node.

3.	 Select New and then click on Java Package….

4.	 In the Package Name text field, enter com.davidsalter.cookbook.
creatingpackages.gui.

5.	 Leave the Location set as Source Packages.

6.	 Click on Finish.

A new empty package will be shown right under the Source Packages node.

Finally, add a package for our unit test source code with the following steps:

Chapter 2

31

7.	 Expand the Test Packages node (if not yet expanded).

If the Test Packages node is not shown, right-click on the
CreatingPackages node within the Projects explorer and
create a new folder called Test. The Test Packages node within
the project will then be displayed correctly.

8.	 Right-click on Test Packages.

9.	 Select New and then click on Java Package….

10.	 In the Package Name text field, type com.davidsalter.cookbook.
creatingpackages.gui.

11.	 Leave the Location set as Test Packages.

12.	 Click on Finish.

A new empty test package named com.davidsalter.cookbook.creatingpackages.
gui is shown beneath the Test Packages node.

The final setup should look like the following screenshot:

How it works…
This recipe shows two ways of creating a package: one, by clicking on the desired folder
destination where the package will reside, and the other, by clicking where the root node
of the package will be.

By right-clicking on <default package>, NetBeans will understand that we wish to create a
package under the current one and will automatically append the full path of the packages
in the Package Name field. The developer then needs to only type the rest of the path.
This saves a lot of time when the project grows and nested packages start to spread.

Java Development with NetBeans

32

The second option is to right-click directly on the desired node in the Packages explorer. In
our example, we are creating a package under the Test Packages node. Right-clicking on the
Test Packages node will trigger a clean package name and it is up to the developer to decide
what the full path is going to be.

There's more...
It is also possible to create packages in the Files explorer with a new class creation wizard.

The Files explorer
By navigating to the Files explorer, it is possible to see how the project structure is organized,
similar to the Projects explorer. It is also possible to create a package using this view by
following the same steps described previously.

The Files explorer differs from the Projects explorer in the sense that the files are presented
as they exist in the filesystem. The Projects view, on the other hand, presents the files as they
are organized from the project perspective.

Automatic creation of packages
It is also possible to create packages when a new Java source file is created by the IDE.

When creating new source files and new test classes, NetBeans will automatically create the
relevant package for the file in the project if it does not already exist. If the file being created
is a test class, NetBeans will create the package underneath the Test Packages node.
Otherwise, the package will be created underneath the Source Packages node.

Creating a class
One of the most repetitive tasks in software development is creating classes. Once again,
with NetBeans wizards, creation of classes is very easy and straightforward.

Getting ready
It is necessary to have a project in order to create a class; so, if you are unsure on how to
do this, please check the recipes in Chapter 1, Using NetBeans Projects. To help follow
this recipe, when creating a project, enter CreatingClasses as the project name.
When creating the project, ensure the Create Main Class option is not selected.

Chapter 2

33

How to do it…
When the Projects explorer shows the CreatingClasses project, expand the
CreatingClasses node if not yet expanded and perform the following steps:

1.	 Right-click on the CreatingClasses project, and select New and Java Class….

2.	 On the New Java Class window, type Recipe under the Class Name field.

3.	 On the Package selection, enter com.davidsalter.cookbook.
creatingclasses.

4.	 Click on Finish.

We can see the New Java Class window in the following screenshot:

How it works…
The class is created relative to the path of the item we right-click on. Having said that,
this example shows that it is also possible to create packages during class creation.

The class created by NetBeans is a very basic one. NetBeans has added comments and
package name, along with the class declaration.

Java Development with NetBeans

34

Creating an interface
A good development practice is to use interfaces to group together related functions. Coding
to an interface allows a developer to easily switch the implementation to another defined by
an interface and helps to keep the contract between code modules.

An interface defines a set of related methods that have no bodies that a Java class can then
implement. NetBeans allows us to create an empty interface in a similar fashion to creating
an empty class as described in the Creating a class recipe earlier in this chapter.

Getting ready
It is necessary to have a project in order to create an interface; so, if you are unsure on how
to do this, please check the recipes in Chapter 1, Using NetBeans Projects. To help follow this
recipe, when creating a project, enter CreatingInterfaces as the project name.

How to do it…
When the Projects explorer shows the CreatingInterfaces project, expand the
CreatingInterfaces node if not yet expanded.

Let's now create an interface:

1.	 Right-click on the CreatingInterfaces project, and select New and
Java Interface….

2.	 On the New Java Interface window, type Book under the Class Name field
(NetBeans displays the title of the field as Class Name even though we are
actually creating an interface).

In some programming languages, the best practice is to prefix interfaces
with a capital I to indicate that a file is indeed an interface. In Java,
this practice is not as common as in other languages and generally
interfaces are named after nouns such as Car or User. Implementing
classes usually use specific instances of the interface name such
as SportsCar or Manager. It's a personal preference on whether
you prefix classes with an I; however, in this book, I do not preface
interfaces with an I.

Chapter 2

35

3.	 In the Package section, enter com.davidsalter.cookbook.
creatinginterfaces, as shown in the following screenshot:

4.	 Click on Finish.

We have now created a blank interface called Book. Edit the Book.java file by
double-clicking on it in the Projects explorer and add the following two method
signatures to the interface:

int getNumberPages();
void read();

The interface now has two methods defined within it. An interface, however, is not much
use without a class that implements it, so let's implement the Book interface with the
following steps:

1.	 Click on the line defining the interface so that a light bulb is displayed in the left-hand
side margin.

2.	 Click on the light bulb so that the Implement Interface hint is displayed, as shown in
the following screenshot:

Java Development with NetBeans

36

3.	 Click on the Implement Interface hint to display the Implement Interface dialog.

4.	 Enter the Class Name field as Paperback and leave the Package Name field as it is.

5.	 Click on OK.

How it works…
A new Java class called Paperback will now be created that implements the Book interface.

A method is created within the class for each of the methods defined within the interface.
Each of the methods in the class throws an UnsupportedOperationException to indicate
that no code has been written for the method yet—it is up to the developer to fully implement
the method bodies.

There's more...
After implementing an interface, a gray I in a circle is displayed next to all of the methods in
the interface that have an implementation. Clicking on this will open up the implementation of
the interface in the Java editor. Similarly, when looking at an implementation of an interface,
a green I in a circle is displayed next to the method name. Clicking on this will open up the
interface file within the Java editor, as shown in the following screenshot:

Running a file
Once we have created some code as a part of our application, the next stage is to run the
code. NetBeans allows developers to run either a file (with a main method) or a project.
In this recipe, we'll see how this can be achieved.

Getting ready
It is necessary to have a project in order to run a file. If you are unsure on how to create a
project, please check the recipes in Chapter 1, Using NetBeans Projects. To help follow this
recipe, when creating a project, enter RunningFiles as the project name and ensure that
the Create Main Class option called com.davidsalter.cookbook.runningfiles.
RunningFiles is selected.

Chapter 2

37

How to do it…
1.	 Right-click on the RunningFiles project, and select New and Java Class….

2.	 On the New Java Class window, type Application under the Class Name field.

3.	 On the package selection, enter com.davidsalter.cookbook.runningfiles.

4.	 Edit the Application.java file and add a main method:
public static void main(String[] args) {
 System.out.println("This is called from Application");
}

There should now be two files within the project that have a main method within
them, Application.java and RunningFiles.java.

5.	 Right-click on the Application.java file in the Projects explorer and select
Run File.

Notice that the Application.java file is executed with the println statement we
added in step 4 being displayed in the Output window.

6.	 Edit the RunningFiles.java file and change the main method to:
public static void main(String[] args) {
 System.out.println("This is called from RunningFiles");
}

7.	 Run the project by clicking on the Run menu option and then the Run Project menu
option or by pressing F6.

Notice that the RunningFiles.java file is executed with the println statement
we added in step 6 being displayed in the Output window.

How it works…
In this recipe, we've shown how you can either run a file or a run a project. When running a
file, the Java class that is selected to be run is executed as long as it has a main method in it.

www.allitebooks.com

http://www.allitebooks.org

Java Development with NetBeans

38

When we choose to run a project, NetBeans executes the file that is specified as Main
Class on the Project Properties dialog under the Run node. Right-click on the project
in the Projects explorer and select Properties to see the following dialog:

In this Properties dialog, we can also specify any arguments that need to be passed to the
main method of our application. These arguments are specified within the Arguments field.

When the project was created, the Main Class field was set to com.davidsalter.
cookbook.runningfiles.RunningFiles and not to any subsequent main classes
that we may have added. This explains why running a class and running the project do not
necessarily perform the same operation.

There's more...
If we have a project with more than one Main Class within it, we can use the Project
Properties dialog to select the class that will be executed when F6 or the Run Project option
is selected. Click the Browse… button next to the Main Class input on the Project Properties
dialog. On the resultant dialog, a list of all the main classes within a project is shown. Select
the one that you wish to use as Main Class for the project. We can see the Browse Main
Classes window in the following screenshot:

Chapter 2

39

In addition to creating a blank Java class and then adding a main method into it manually,
NetBeans provides a wizard to automatically create a new class with a main method in it.
This is achieved by right-clicking on a project and selecting New and then Other and then
selecting Java from the list of categories and New Main Class as the file type.

In this recipe, we've seen how a main class can be executed from within NetBeans. Later on in
this book, we'll see how a web project and a mobile project can be executed.

Debugging a class
It is possible to set breakpoints and watches in NetBeans and, on execution, check what the
value of a given variable or object is.

The NetBeans debugger also lets the developer follow method calls and execute code one line
at a time giving a fine-grained visualization on how the code is running.

This is one of the features where NetBeans shines in comparison to other IDEs; so, without
further ado, let's dive in. NetBeans has already included many of the plugins, performance
tools, and servers that are used for easing the process of setup and debugging.

Getting ready
We will be using a Java Application project for this example. Since we are just showcasing
the capabilities of the debugger, we won't be using anything complicated; so, a normal Java
Application project will suffice. If you're unsure on how to create one, please check the
Creating a Java application recipe of Chapter 1, Using NetBeans Projects.

Java Development with NetBeans

40

We are also going to need a Java class. If the Creating a Java application recipe was used,
then a main class is already generated and that one can be used for our example. If a project
already exists, then it is possible to follow the Creating a class recipe in order to get a clean
class for the work to proceed. The automatically generated class will be our main class,
so the class name to use for the clean class is HowToDebug.java.

If the Creating a Java application recipe is followed, the project name should be HowToDebug
with the main class being called com.davidsalter.cookbook.howtodebug.
HowToDebug.java. All of the other default setting present on the wizards should
be left untouched.

How to do it…
We will need another class to demonstrate how to set up breakpoints in other objects.
For this, perform the following steps:

1.	 Right-click on Source Packages, under the HowToDebug project, select New and
Java Class….

2.	 On the New Java Class window, type Person under the Class Name field.
3.	 On package selection, click on the dropdown and select com.davidsalter.

cookbook.howtodebug.
4.	 Click on Finish.

The Person.java file will show up on the Java editor.

Inside the Person class declaration, write:

int age;
String name;

Now, let's refactor our class by encapsulating the fields:

1.	 Right-click on the Person class inside the Java editor.

2.	 Select Refactor and then click on Encapsulate Fields….

3.	 Then click on Select All and Refactor. Getters and setters for the age and name
instance variables will be added to Person.java and the variables will have the
visibility modifiers set to private.

4.	 Open HowToDebug.java. Inside the main method, enter the following lines of code:
Person person1 = new Person();
Person person2 = new Person();

person1.setName("David");
person1.setAge(21);
person2.setName(null);
person2.setAge(32);

Chapter 2

41

It is not a good practice to set variables with null values, but for the purpose of this example,
we will do it this one time.

We will now use a watch to observe a specific variable's value. A watch is exactly what the
name says, it "watches" a specific variable for the entire lifetime of the application and
displays its value in the Variables view.

To add a watch, simply:

1.	 Select the person1 variable.

2.	 There are two ways to add a watch: On the top bar, click on Debug and then select
New Watch… or press Ctrl + Shift + F7 (Command + Shift + F7 on a Mac) and click
on OK, as shown in the following screenshot. The person1 variable will be added to
the Variables view.

For our first breakpoint, click on the left-hand side bar, where the line numbers are placed,
specifically on the following line:

person2.setName(null);

Java Development with NetBeans

42

A breakpoint will be added to the side bar and a long pink line will specify the breakpoint
location, as shown in the following screenshot:

Then, add another breakpoint, but this time to Person.java. Add the breakpoint to the line:

this.age = age;

This line is highlighted in the following screenshot:

Finally, let's debug our example. Open HowToDebug.java and press Ctrl + Shift + F5
(Command + Shift + F5 on a Mac).

Instead of using keyboard shortcuts, a file can be debugged by selecting the
Debug option and then Debug File menu option, or by clicking on the Debug
Project button ()in the toolbar.

Chapter 2

43

How it works…
Upon the debug mode execution, NetBeans stops the execution at the first breakpoint.

The breakpoint tells NetBeans to temporarily halt the program and let the developer examine
the contents of variables and watches at that point.

In our example, NetBeans will look like the following screenshot:

It is possible to see our watch, shown with a blue diamond icon, and also the normal
variables, shown with a green lozenge. It is possible to expand the watch or variables
to check the contents of an object at runtime.

The execution point is highlighted in green. To jump one line of code in the execution,
press F8. To continue, press F5; NetBeans will resume the debugging process until another
breakpoint is found, at which point the execution will once again stop so that the developer
can have another chance to examine the execution. In our example, the execution will
continue until the Person class's set method for age is reached. To continue with the
execution, just press F5 one more time and the program execution will continue until
the end, since we do not have any other breakpoints.

To remove a breakpoint, simply click on it and it will disappear.

Java Development with NetBeans

44

There's more...
What if I want a breakpoint when my variable reaches a certain value? Watches are too
complicated, is there something easier? Does NetBeans debug other types of applications?
Can I debug applications rather than main classes?

Conditional breakpoints
It is possible to create breakpoints with conditions.

Just right-click on the breakpoint, select Breakpoint, and then Properties. A Breakpoint
Properties window will show up, with a section where the conditions can be specified.
We can see the Breakpoint Properties window in the following screenshot:

Other ways to check variable content
It is also possible to check the contents of a variable without needing to watch the Variables
view. When the execution stops, just place the mouse cursor over the variable. A tooltip will be
shown with the variable result.

This is very fast and useful especially when you first start debugging, and don't know what
watches are needed yet.

Chapter 2

45

Different kinds of debuggable applications
In this recipe, we used a Java Desktop application as a base for our example. However,
debugging can also be used with different applications, such as web and mobile applications.

Debugging the application rather than a class
In the earlier discussion, we showed how to debug a file by pressing Ctrl + Shift + F5. This is
an excellent way for debugging classes with a main method in them. For other application
types, such as web applications, there is no main method and so a class cannot be debugged
on its own. In this case, the application can be debugged rather than a class.

To start debugging an application rather than a class, press Ctrl + F5 instead of
Ctrl + Shift + F5.

When debugging an application with a single main method, the option to debug a class and
the option to debug the application will both operate identically.

Formatting the code
Once we've written and run/debugged some of our code, it's generally a good idea to check
that the code follows some layout guidelines.

In this recipe, we'll see how we can quickly and easily format the code so that all of our code
has a standard layout making it easier for us and others to read.

Getting ready
It is necessary to have a project in order to format the code within it. If you are unsure on
how to create a project, please check the recipes in Chapter 1, Using NetBeans Projects. To
help follow this recipe, when creating a project, enter FormattingCode as the project name
and ensure that the option to create a main class called com.davidsalter.cookbook.
formattingcode.FormattingCode is selected.

How to do it…
1.	 Expand the Source Packages node within the FormattingCode project and select

the FormattingCode.java class to be edited in the Java code editor.

Java Development with NetBeans

46

2.	 Edit the empty main method in the class to have the following contents (note that the
layout of the code here is deliberately bad with each line starting in the first column
of the editor):
public static void main(String[] args)
{
for (int i = 0; i < 10; i++)
{
System.out.println("i="+i);
}
}

3.	 Right-click in the code editor and select Format.

4.	 The code in the editor window will now be formatted according to the Java code
guidelines. For example, you can see that each line is now indented correctly and the
opening brace symbols, {, have been placed at the end of the first line of the block
they belong to rather than being on lines on their own.

How it works…
NetBeans maintains a list of code formatting rules that can be applied to different file types.
When the Format action is invoked, these formatting rules are applied to the currently
open file.

The formatting rules include options such as where to place braces, how to align code and the
order of members in a class. All of these formatting rules can be customized if the default is
not to your liking. To customize the formatting rules, select Tools and then Options from the
main menu. On the Options dialog, select the Editor option and the Formatting tab.

Project-specific formatting rules can be defined by right-clicking on a project and selecting
Properties. On the Formatting section of the Properties dialog, the user can select to use
Global options, or to Use project specific options.

A shortcut for formatting a file is pressing Alt + Shift + F rather than right-clicking on the file
and selecting Format.

Collapsing and expanding code folds
When you've written a lot of code, it's useful to be able to group sections of code together that
can be collapsed and expanded at will. Code folds allow you to hide sections of code to make
the code that you are looking at easier to understand. NetBeans allows any amount of code to
be defined within a code fold, and indeed automatically generates code folds for comments,
classes, and methods as will be seen in this recipe.

Chapter 2

47

Getting ready
It is necessary to have a project with some Java code within it in order to see code folds
in action. If you are unsure on how to create a project, please check the recipes in
Chapter 1, Using NetBeans Projects. To help follow this recipe, when creating a project,
enter CodeFolds as the project name and ensure that the option to create a main class
called com.davidsalter.cookbook.codefolds.CodeFolds is selected.

How to do it…
1.	 Expand the Source Packages node within the CodeFolds project and select the

CodeFolds.java class to be edited in the Java code editor.

2.	 Edit the empty main method in the class to have the following content:
public static void main(String[] args) {

 int total = 0;
 int maximumCount = 10;

 for (int i = 0; i < maximumCount; i++) {
 total += i;
 }

 System.out.println("Total: "+total);
}

3.	 Examine the code in the Java editor and you will see that there is a minus sign, -,
in the left-hand side margin at the start of the main method indicating the start
of a code fold. The code fold continues to the end of the method.

4.	 Edit the code, and enclose the for statement block within a code fold as shown in
the following code:
// <editor-fold desc="Basic summing algorithm.">
for (int i = 0; i < maximumCount; i++) {
 total += i;
}
// </editor-fold>

www.allitebooks.com

http://www.allitebooks.org

Java Development with NetBeans

48

5.	 The main method should now look like the following screenshot:

6.	 Click on – in the border to collapse the code fold as shown in the following screenshot:

How it works…
Adding an <editor-fold> element around a section of code within the NetBeans editor
allows the code to be collapsed and expanded using the + and – buttons in the left-hand
side margin.

If a description for a code fold is required, then the desc attribute of the <editor-fold>
element can be used to hold that description. When the code is collapsed, the description
is displayed within the editor. If no description is specified, then the first line of the code fold
together with the number of lines collapsed is displayed instead of a description.

Chapter 2

49

By default, when a file is opened up within the Java editor, all of the code folds are displayed
in an expanded fashion. If you have some code that you wish to be collapsed when the file is
opened up (perhaps this could be some variable declarations or initialization code), then this
can be achieved by adding the defaultstate="collapsed" attribute onto a <editor-
fold> element. NetBeans allows you to define both a description and a default collapsed
state on a piece of code.

There's more...
Clicking on View and the Code Folds menu item displays a menu showing all of the
operations that can be performed against code folds within the currently open file.
This menu shows options for collapsing the current fold, collapsing all folds, collapsing
only Javadoc folds, and so on.

Toggling comments
When writing code, it is sometimes useful to comment out code to see what effect it will have
on a running application while still keeping the original code. NetBeans provides an easy way
to comment out and remove comments from multiple lines of code as seen in this recipe.

Getting ready
To complete this recipe, you need to have a NetBeans project with some Java code in it that
can be commented out. If you do not have a suitable project, you can create one using any of
the recipes in Chapter 1, Using NetBeans Projects, of this book.

How to do it…
1.	 Using the mouse, click on a single line of code within a Java source file.

2.	 Press Ctrl + Shift + C.

3.	 Note that the commenting state of the line you have selected is toggled. That is, if you
selected an uncommented line of code it will now be commented out. If you selected
a commented out line of code, it will now not be commented.

4.	 Using the mouse, highlight several lines of code within a Java source file.

5.	 Press Ctrl + Shift + C.

6.	 Note that the commenting state of the lines that you have selected is again toggled
just like in step 3.

Java Development with NetBeans

50

How it works…
Pressing Ctrl + Shift + C on a line, or a set of lines will comment out/remove comments from
the selected line(s).

Be careful when commenting out sections of lines that include both commented and
uncommented lines within them. In these instances, toggling of comments may not
necessarily occur on a line-by-line basis as the first press of Ctrl + Shift + C will comment out
all of the lines that are selected even if they are already commented out. You will see that
some lines are therefore commented out twice. Subsequently, pressing Ctrl + Shift + C will
undo the commenting that has just been performed.

An alternative key combination to Ctrl + Shift + C is Ctrl + /. Both of these key combinations
perform the same action.

Fixing and organizing imports
With anything more than a very basic application, a developer needs to import other packages
into their classes for them to function correctly. This quickly leads to a number of import
statements at the top of a class file. NetBeans offers facilities to automatically add import
statements (fix imports), in order to save developer time, and the ability to tidy up the import
statements (organize imports).

Getting ready
It is necessary to have a project with valid Java source code in order to fix and organize
imports. If you are unsure on how to create a project, please check the recipes in
Chapter 1, Using NetBeans Projects. To help follow this recipe, when creating a project,
enter UsingImports as the project name and ensure that the option to create a main
class called com.davidsalter.cookbook.usingimports.UsingImports is selected.

How to do it…
1.	 Expand the UsingImports project, and open the UsingImports.java

class for editing.

2.	 Edit the main method in UsingImports.java to be as follows:
public static void main(String[] args) {
 List<String> l = new ArrayList<String>();
 l.add("Hello");
 l.add("World");
}

Chapter 2

51

3.	 Note that the Java types List and ArrayList are underlined in red to indicate that
an error has occurred here in the source code. The reason for the error here is that
the classes have not been defined by their respective packages being imported.

4.	 Press Ctrl + Shift + I (or click on Source from the main menu and then click on
Fix Imports) to open up the Fix All Imports dialog:

5.	 Ensure that the import for ArrayList is java.util.ArrayList and the import
for List is java.util.List (these are the default options, but notice that there
is also a java.awt.List class—this is not what we intend in this instance).

6.	 Click on the OK button.

At this point, the Fix All Imports dialog will close and you will see that the import statements
for ArrayList and List have been added to the top of the UsingImports class.

In addition to fixing the import statements in a class file, NetBeans can also organize the
imports with the following steps:

1.	 Edit the UsingImports.java file and swap the order of the imports so that the
import for java.util.List is the first import statement.

2.	 Click on the Source menu and then the Organize Imports option.

You will now see in the source code window that NetBeans has organized the import
statements into alphabetical order again with the import statement for java.util.
ArrayList being first.

Java Development with NetBeans

52

How it works…
When selecting to Organize Imports, NetBeans will order the imports into alphabetical order
and perform any other organization as defined by the code formatting rules. For example, if
more than three imports are made from the same package, NetBeans can be configured to
replace all imports from that package with a star import (import package.*). The import
organization rules can be defined within the NetBeans options. To access these options,
select Tools and then Options menu item. Select the Editor option and then the Formatting
tab choosing Imports as the category on this tab.

Performing a Fix Imports option will not only add any missing imports, it will also organize the
imports as if the Organize Imports action had been performed,

There's more...
Imports can automatically be organized when a file is saved. To enable this option, click Tools
and then Options from the main NetBeans menu. Select the Editor option and then the On
Save tab. Ensure that the Organize Imports checkbox is checked to organize the imports in
a file and that the Remove Unused Imports checkbox is checked to remove any unnecessary
import statements, as shown in the following screenshot:

Chapter 2

53

When a line of code is typed into a Java class file, NetBeans parses the line to determine if
any additional classes need to be imported into the current class. These additional classes
determine which imports are added to a class using the Fix Imports action. In addition to
fixing all of the imports in one operation, each source line that requires an import has a light
bulb displayed in the left-hand side margin. Clicking on the light bulb with the left mouse
button will display a list of hints on how to fix any errors on the current line. Included in
this list of fixes is the ability to individually add missing import statements.

Creating file headers
When writing open source software, or closed source software that belongs to a specific
company or person, it is very useful to add a header to a file that consists, at a minimum,
of the license terms for the file. NetBeans comes preconfigured with the major license terms
that can be automatically applied to the beginning of files, but also allows custom headers to
be defined.

Getting ready
It is necessary to have a project with valid Java source code in order to define file headers as
they are defined on a per-project basis. If you are unsure on how to create a project, please
check the recipes in Chapter 1, Using NetBeans Projects. To help follow this recipe, when
creating a project, enter UsingHeaders as the project name and ensure that a main class
is not created.

How to do it…
1.	 Right-click on the UsingHeaders project in the Projects explorer and select

Properties. The Project Properties dialog will be displayed.

2.	 Select the License Headers category.

3.	 To apply one of the in-build open source headers to all new files created within
NetBeans, select a license from the Use global license dropdown and then
click on the OK button.

Java Development with NetBeans

54

NetBeans comes preconfigured with the following license headers for open
source software:

�� Apache License 2.0

�� BSD 2-Clause License

�� NetBeans CDDL/GPL

�� Eclipse Public License 1.0

�� General Public License 2.0

�� General Public License 3.0

�� Lesser GPL 2.1

�� MIT License

4.	 Right-click on the UsingHeaders project, and select New and then Java Class.

5.	 Enter the Class Name field as WithHeaders and the Package field as com.
davidsalter.cookbook.withheaders.

6.	 The class will now be created and opened within the Java editor. You will see that the
license header selected in step 3 is automatically applied to the file.

There's more...
In addition to using the standard open source license headers, custom file headers can be
used. On the Project Properties dialog, selecting the Edit global licenses button allows the
developer to edit and add to the collection of predefined license headers.

If a license file is stored alongside the project as a file, then this can be used as the default
file header by selecting the Use project location option within the Project Properties dialog.

Changing the look and feel of NetBeans
Java provides a set of different Look and Feel styles that can be applied to applications.
These Look and Feel styles change the way that user interface components are displayed
within the application (the look) and how they behave (the feel). Java provides native Look
and Feel components (for example, on Windows or on Mac OS X) as well as custom-styled
components. Additional Look and Feel styles can be designed in addition to the ones
provided by default with Java.

Getting ready
To change the look and feel of NetBeans, no specific projects are required to be loaded.
All that is required is a running copy of NetBeans.

Chapter 2

55

How to do it…
1.	 Click on Tools and then Options within the main NetBeans menu.

2.	 On the Options dialog, select the Appearance option.

3.	 Select the Look and Feel tab, which is displayed in the following screenshot:

4.	 Select the required option from the Preferred look and feel drop-down box.

5.	 Restart NetBeans for the changes to take effect.

How it works…
Specifying the look and feel within the NetBeans options changes the default look and
feel that is used when NetBeans starts up. This is the reason that a restart of NetBeans is
required after changing the look and feel. At startup time, NetBeans invokes the standard
Java UIManager class to set the application look and feel.

There's more...
When selecting the Look and Feel tab via the Options dialog, selecting Maximize use of
native look and feel ensures that NetBeans uses the maximum number of native controls
available to the Java runtime.

In addition to changing the look and feel of NetBeans via the application's user interface as
described by this recipe, it is also possible to change the look and feel via the command line
or via the NetBeans startup options. When the look and feel is changed via the command line,
it is not possible to override this within the application as described by this recipe.

Java Development with NetBeans

56

To change look and feel via the command line, start NetBeans with the –laf parameter
specifying the full class name to the look and feel required. For example, to start NetBeans
using the Motif look and feel, start NetBeans as:

netbeans --laf com.sun.java.swing.plaf.motif.MotifLookAndFeel

Notice the double - sign required here to specify the Look and Feel
parameter is being passed to NetBeans. If a single – sign is used,
the look and feel will not be changed.

To change the look and feel via the NetBeans configuration options, edit the
netbeans.conf file located within the NetBeans installation and add the –laf
option into the netbeans_default_options parameter as:

netbeans_default_options="--laf
javax.swing.plaf.metal.MetalLookAndFeel
 -J-client -J-Xss2m -J-Xms32m -J-XX:PermSize=32m -J-
Dnetbeans.logger.console=true -J-ea -J-
Dapple.laf.useScreenMenuBar=true -J-
Dapple.awt.graphics.UseQuartz=true -J-Dsun.java2d.noddraw=true -J-
Dsun.java2d.dpiaware=true -J-Dsun.zip.disableMemoryMapping=true -
J-Dnetbeans.extbrowser.manual_chrome_plugin_install=yes"

For details on the different Look and Feel classes that are
available, check out http://docs.oracle.com/javase/
tutorial/uiswing/lookandfeel/plaf.html.

http://docs.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html
http://docs.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html

3
NetBeans Productivity

In this chapter, we will cover the following recipes:

ff Creating a constructor
ff Creating a logger
ff Creating a toString() method
ff Creating a property
ff Overriding a method
ff Rename refactoring
ff Move refactoring
ff Copy refactoring
ff Delete refactoring
ff Change parameters refactoring
ff Pull up / push down refactoring
ff Extract interface refactoring
ff Encapsulate fields refactoring
ff Replacing a constructor with the Factory pattern

Introduction
In the first two chapters, we looked at how to create projects and how to create Java artifacts
(classes, packages, and so on).

In this chapter, we'll move on and show how NetBeans can improve developer productivity by
describing some different shortcuts for generating code. We'll generate constructors, loggers,
toString() methods, and properties.

www.allitebooks.com

http://www.allitebooks.org

NetBeans Productivity

58

After looking at these shortcuts, we'll see some of the different types of code refactoring that
can be achieved with NetBeans.

Creating a constructor
When creating a class that maintains any state (that is almost any class that has
class members), it can be very useful to create a constructor that can perform any
required initialization.

Creating constructors is not tricky; however, NetBeans provides a handy shortcut to save time
and increase developer productivity.

Getting ready
First we will need to create a new project, so please refer to the recipes in Chapter 1,
Using NetBeans Projects, for creating Java projects. To help follow this recipe,
when creating a project, enter CreatingConstructors as the project name.

How to do it…
When the Projects explorer shows the CreatingConstructors project, expand the
CreatingConstructors node if it is not already expanded.

We will now create an empty class and show how constructors can be added to it with the
following steps:

1.	 Right-click on the CreatingConstructors project, and select New and
Java Class….

2.	 On the New Java Class dialog, type Shape under the Class Name field.

3.	 On the Package selection, enter com.davidsalter.cookbook.refactor.
creatingconstructors.

4.	 Click on Finish and the new class will be created and opened in the editor.

5.	 Right-click within the body of the class and select Insert Code….

6.	 On the pop-up Generate window, click on Constructor….

At this stage, the pop-up Generate window will close and you will see that a blank
constructor has been added to the Shape class. Since NetBeans has no knowledge
of what we want to do with the constructor, it has left its implementation empty.

Let's now add some member variables to the class and show how NetBeans can
make a constructor that will allow us to set these variables.

Chapter 3

59

7.	 Within the Shape class, add the following code immediately before the
Shape() constructor:
int numberOfSides;
float area;

8.	 Right-click within the body of the class and select Insert Code….

9.	 On the pop-up Generate window, click on Constructor….

Unlike the first time we chose to insert a constructor, this time NetBeans has
displayed the Generate Constructor dialog:

10.	 On the Generate Constructor dialog, check the numberOfSides : int field, leaving the
area : float field unchecked.

11.	 Click on Generate.

12.	 The Generate Constructor dialog will now close and a new constructor will be added
to the Shape.java class. The new constructor will look like the following code:
public Shape(int numberOfSides) {
 this.numberOfSides = numberOfSides;
}

How it works…
When creating a constructor, NetBeans first checks to see if there are any member variables
within the class. If there are none, then a blank default constructor will be created for the
class. If, however, there are member variables within the class, NetBeans provides the
developer with the option of choosing which member variables can be initialized as part
of the constructor.

NetBeans Productivity

60

Creating a constructor in this way can be performed multiple times if you wish to initialize
different variables with different constructors. If you find yourself creating multiple
different constructors, it may, however, be an indication that you need to rethink
your design of the class.

There's more...
Instead of right-clicking within the body of a class and selecting Insert Code…, the shortcut
key Alt + Insert can be used.

Creating a logger
When developing code, it can be useful to output log information either to the terminal,
or more usefully in the case of web applications, to a logfile. NetBeans allows developers
to easily make use of loggers within classes by creating a logger member within a class.

Getting ready
First we will need to create a new project, so please refer to the recipes in Chapter 1, Using
NetBeans Projects, for creating Java projects. To help follow this recipe, when creating a
project, enter CreatingLoggers as the project name and ensure that a main class called
com.davidsalter.cookbook.creatingloggers.CreatingLoggers is created.

How to do it…
When the Projects explorer shows the CreatingLoggers project, expand the
CreatingLoggers node if not yet expanded and perform the following steps:

1.	 Double-click on the CreatingLoggers.java class file within the Projects explorer
to open it for editing.

2.	 Right-click within the body of the class and select Insert Code….

3.	 On the pop-up Generate window, click on Logger….

At this stage, the pop-up Generate window will close and a logger will be added to the
end of the class together with the relevant import statement at the beginning of the
class. The following statement will be added:
private static final Logger LOG =
 Logger.getLogger(CreatingLoggers.class.getName());

For more information of Java logging, check out Oracle's Java Logging
Technology page at http://docs.oracle.com/javase/7/
docs/technotes/guides/logging/.

http://docs.oracle.com/javase/7/docs/technotes/guides/logging/
http://docs.oracle.com/javase/7/docs/technotes/guides/logging/

Chapter 3

61

Now that we have created a logger within a class, information can be sent to
the logger.

4.	 Change the body of the main method within the CreatingLoggers.java file to be:
LOG.warning("This is a warning");
LOG.info("This is information");

5.	 Run the main class by pressing Shift + F6 and notice that the log information is
output to the Output window.

Creating a toString() method
A useful technique to aid debugging Java applications is to add a toString() method
onto a class so that useful information can be output to help describe the class. Typically,
a toString() implementation would output any ID that an object has together with the
description of the object. NetBeans provides facilities to allow developers to easily add and
customize toString() methods within classes.

Getting ready
First we will need to create a new project, so please refer to the recipes in Chapter 1, Using
NetBeans Projects, for creating Java projects. To help follow this recipe, when creating a
project, enter CreatingToString as the project name and ensure that a main class called
com.davidsalter.cookbook.creatingtostring.CreatingToString is created.

How to do it…
To show how to create a toString() method within NetBeans and how to define the
implementation of the method, let's first add a Person class that could represent a
person in a database table with the following steps:

1.	 Right-click on the CreatingToString project, and select New and Java Class….

2.	 On the New Java Class dialog, type Person as the Class Name field.

3.	 In the Package section, select com.davidsalter.cookbook.
creatingtostring.

4.	 Click on Finish.

NetBeans Productivity

62

5.	 Add the following as the body of the Person class:
private int id;
private String firstName;
private String lastName;

public Person(int id, String firstName, String lastName) {
 this.id = id;
 this.firstName = firstName;
 this.lastName = lastName;
}

6.	 Right-click within the body of the class and select Insert Code….

7.	 On the pop-up Generate window, select toString…. NetBeans will now display the
Generate toString() dialog:

8.	 Check the id, firstName, and lastName fields to be included in the
toString() implementation.

9.	 Click on Generate.

Upon clicking the Generate button, the Generate toString() dialog will close and the
Person.java class will be updated with a new toString() method that outputs
the selected fields—in this case, id, firstName, and lastName.

Let's now write some code that shows this method in operation.

10.	 Double-click on the CreatingToString.java file within the Projects explorer to
open it up for editing.

11.	 Add the following as the body of the main method:
Person person = new Person(1, "David", "Salter");
System.out.println(person.toString());

Chapter 3

63

12.	 Press Shift + F6 to run the main class and notice the toString() method's output
in the Output window, which will display the following output:
run:

Person{id=1, firstName=David, lastName=Salter}

BUILD SUCCESSFUL (total time: 1 second)

There's more...
This recipe shows how a toString() method can easily be added to a class. It should
be noted, however, that only one toString() method can be added to a class using this
technique. If you attempt to add a toString() method to a class that already implements
the method, then the pop-up Generate window will not show the toString() option.

Creating a property
In this recipe, we'll see how we can create properties directly within a class without having to
first add fields to the class and then add accessors for the fields.

Getting ready
First we will need to create a new project, so please refer to the recipes in Chapter 1, Using
NetBeans Projects, for creating Java projects. To help follow this recipe, when creating a
project, enter CreatingProperties as the project name and ensure that a main class
called com.davidsalter.cookbook.creatingproperties.CreatingProperties
is created.

How to do it…
To show how to create properties within a class, let's first create a class to represent a
customer and then add some properties to the Customer class:

1.	 Right-click on the CreatingProperties project, and select New and Java Class….

2.	 On the New Java Class dialog, type Customer as the Class Name field.

3.	 On the Package selection, click on the dropdown and select com.davidsalter.
cookbook.creatingproperties.

4.	 Click on Finish.

5.	 A blank Customer class will now be created and opened in the NetBeans Java
editor for editing.

6.	 Right-click on the body of the Customer class and click on Insert Code….

NetBeans Productivity

64

7.	 On the pop-up Generate window, click on Add Property…. The Add Property dialog
will now be displayed:

8.	 Enter id in the Name field and long in the Type field.

9.	 Ensure Generate getter is selected.

10.	 Click on OK.

The Add Property dialog will now close. Examine the generated code and you will see that an
id property has been created with a public getter. The id field is marked as private.

Let's add a customer's name field to the class with the following steps:

1.	 Right-click on the body of the Customer class and click on Insert Code….

2.	 On the pop-up Generate window, click on Add Property…. The Add Property dialog
will now be displayed.

3.	 Enter name in the Name field and String in the Type field.

4.	 Ensure Generate getter and setter is selected.

5.	 Click on OK.

Chapter 3

65

The Add Property dialog will now close. Examine the generated code again and you will see
that a name property has been added with a public getter and setter. The name field is,
again, marked as private.

How it works…
When specifying the details of the new property to be created, the Add Property dialog shows
what the generated code will look like in a Preview section in the lower half of the dialog.

There's more...
When generating properties, the visibility can be set to either private, package, protected,
or public. The default option is private.

The Type dropdown selection shows the basic Java types that properties may take
(String, int, float, and so on). If you wish to create a property of any other type, click
on the Browse... button and use the Find Type dialog to find the appropriate type.

The default value of any property can be set by specifying the value in the field to the right
of = at the top of the dialog. If the property is intended to be an array, ensure the Indexed
field is checked.

If you are creating a JavaBean property, you can use the Bound and Generate Property
Change Support checkboxes as appropriate.

Overriding a method
Object-oriented development has been shown to be a good development practice. One of
the principal aspects of object-oriented development is the ability to override classes. This is
defining a method in a subclass that has the same signature as that in a superclass. In Java,
all classes are derived from java.lang.Object.

In this recipe, we'll show how NetBeans provides tools to allow developers to easily override
superclass methods within a subclass.

Getting ready
First we will need to create a new project, so please refer to the recipes in Chapter 1, Using
NetBeans Projects, for creating Java projects. To help follow this recipe, when creating a
project, enter OverridingMethods as the project name and ensure that a main class called
com.davidsalter.cookbook.overridigmethods.OverridingMethods is created.

NetBeans Productivity

66

How to do it…
When the Projects explorer shows the OverridingMethods project, expand the
OverridingMethods node of not yet expanded.

To show how NetBeans makes it easier to override methods, let's create a simple class that
represents a book and then check if we have duplicate books with the following steps:

1.	 Right-click on the OverridingMethods project, and select New and Java Class….

2.	 On the New Java Class dialog, type Book under the Class Name field.

3.	 On the Package selection, click on the dropdown and select com.davidsalter.
cookbook.overridingmethods.

4.	 Click on Finish.

5.	 Change the implementation of the Book.java class as follows:
public class Book {
 public enum format {HARDBACK, PAPERBACK, EBOOK};
 private String title;
 private format bookFormat;

 public Book(String title, format bookFormat) {
 this.title = title;
 this.bookFormat = bookFormat;
 }
}

This class models a simple book, which has a title and a format (hardback,
paperback, or e-book).

Now that we've modelled a book, let's create instances of some books and see if they
are the same.

6.	 Double-click on the OverridingMethods.java file within the Projects explorer to
open the file for editing.

7.	 Change the implementation of the main method to be as follows:
public static void main(String[] args) {
 Book book1 = new Book("NetBeans Cookbook",
 Book.format.PAPERBACK);
 Book book2 = new Book("Seam 2 Development",
 Book.format.EBOOK);
 Book book3 = new Book("Seam 2 Development",
 Book.format.PAPERBACK);

 System.out.println(
 "Book1 == book2 " + book1.equals(book2));

Chapter 3

67

 System.out.println(
 "Book2 == book3 " + book2.equals(book3));
 System.out.println(
 "Book3 == book1 " + book3.equals(book1));
}

8.	 Press Shift + F6 to run the code.

When the code is executed, we can see that the output of all three comparisons between the
books returns false telling us that we've got three different books. Is that what we'd expect?
Well, it's probably not what we'd expect, but it's what we've written so far.

As we're comparing our books with the default equals method, Java is using the equals
implementation from the java.lang.Object base class. This implementation basically
says that if the two objects compared are the same, then return true, otherwise return
false. In our example here, we have three distinct objects, so the base equals()
comparison will always return false.

Fortunately, it's easy to fix our code and make it behave as expected. All we need to do is
override the default equals() method with the following steps:

1.	 Double-click on the Book.java class within the Projects explorer to open the class
for editing.

2.	 Right-click within the body of the class and select Insert Code….

3.	 On the pop-up Generate window, select Override Method…. NetBeans will now
display the Generate Override Methods dialog, as shown in the following screenshot:

4.	 Ensure that the equals(Object obj) : boolean method is selected and all the other
methods are unselected.

NetBeans Productivity

68

5.	 Click on Generate.

The Generate Override Methods dialog will now close and a blank implementation
for the equals() method will be added to the class.

6.	 Double-click on the OverridingMethods.java class within the Projects explorer
to open it for editing.

7.	 Change the implementation of the generated equals() method to be as follows:
@Override
public boolean equals(Object obj) {
 if (obj instanceof Book) {
 return title.equalsIgnoreCase(((Book)obj).title);
 } else {
 return false;
 }
}

8.	 Press Shift + F6 to run the application.

Running the application now shows that we have two distinct books made up from two
paperbacks and one e-book.

How it works…
When using the wizard to override methods, NetBeans displays a list of all the methods within
the class that can be overridden. If the class is not explicitly derived from any other class,
then only the base methods on java.lang.Object that can be overridden are displayed.
If the class, however, extends another class in your project, then any methods in your class
hierarchy that can be overridden are also shown within the wizard.

Rename refactoring
Sometimes, when developing applications, a developer's first choice of a name for a package,
class, or member, and so on, isn't the best choice. NetBeans allows developers to easily
change the name of these objects using the Rename refactoring wizard. This wizard is clever
enough to change both the name of the selected object and any references to it throughout
the project's code base.

Chapter 3

69

Getting ready
First we will need to create a new project, so please refer to the recipes in Chapter 1,
Using NetBeans Projects, for creating Java projects. We will use the same project for all the
refactoring recipes in this chapter. When naming the project, enter Refactoring in the
Project Name field and ensure that a main class called refactoring.Refactoring
is created. When the Projects explorer shows the Refactoring project, expand the
Refactoring node if not yet expanded.

How to do it…
First off, we will rename the initial package that was created with the project using the
following steps:

1.	 Expand the Source Packages node (if not yet expanded).

2.	 Right-click on refactoring.

3.	 Select Refactor and then Rename….

4.	 In the Rename refactoring dialog, enter com.davidsalter.cookbook.refactor
in the New Name field.

5.	 Click on Refactor.

A progress bar will briefly be shown on the Rename refactoring dialog showing the progress
of the refactoring and then the dialog will automatically close when the refactoring has
completed. When the refactoring has been completed, you will note that the Source
Packages node in the Projects explorer now shows that the package name has been
changed to com.davidsalter.cookbook.refactor as specified in step 4. If you
edit the Refactoring.java file within this project, you can see that the package name
of this class has also been modified accordingly.

Now, let's add some code to the Refactoring class and then show how we can rename it
with the following steps:

1.	 Open the Refactoring.java file for editing by double-clicking on it within the
Projects explorer (if the file is not already open).

2.	 We are going to use this class for printing out environment variables, so
Refactoring probably isn't the best name for the class. Right-click on the class
name Refactoring on the line where the class is defined (that is, on the line that
starts public class Refactoring).

NetBeans Productivity

70

3.	 Select Refactor and then Rename….

4.	 On the Rename Class Refactoring dialog, enter EnvironmentPrinter in the
New Name field.

5.	 Click on Refactor.

6.	 Notice how both the filename and the class name have been updated with this
new name.

7.	 Edit the EnvironmentPrinter.java class so that it looks like this:
public class EnvironmentPrinter {
 public static void main(String[] args) {
 EnvironmentPrinter ep = new EnvironmentPrinter();
 ep.print("JAVA_HOME");
 }

 public void print(String env) {
 String envVariableValue = System.getenv(env);
 System.out.println(envVariableValue);
 }
}

8.	 Press Shift + F6 to run the file and note that the value of the JAVA_HOME
environment variable is displayed within the Output window.

The code we have written works as expected and prints out the environment variable
JAVA_HOME in the Output window. We're still not entirely happy with the code, however,
as the name of the parameter to the print() method should probably be a bit more
descriptive. Let's change it to environmentVariableName with the following steps:

1.	 Right-click on the parameter name env within the line public void
print(String env).

2.	 Select Refactor and then Rename….

3.	 On the Rename env dialog, enter environmentVariableName in the
New Name field.

4.	 Click on Refactor.

The parameter name is now refactored to environmentVariableName. You can see
that the use of this variable within the method has also been updated to use the new
name. The new print() method should look like the following code:

public void print(String environmentVariableName) {
 String envVariableValue =
 System.getenv(environmentVariableName);
 System.out.println(envVariableValue);
}

Chapter 3

71

How it works…
When refactoring, NetBeans has the ability to change variable, class, interface, and package
names using a simple wizard. The power of refactoring, however, comes with the ability to
change references to refactored objects as well as the original object. We saw that in the
previous example, where we changed the name of a parameter in a method and saw that
the references to the parameter within the method also changed.

NetBeans can not only perform Rename refactoring at a class level, but throughout an entire
project. So for example, if you rename a class, every reference to the class throughout the
project is also changed.

There's more...
To shortcut Rename refactoring, simply click on the object to rename (class, variable,
package, and so on) within the editor window and press Ctrl + R. If the scope of the
object being renamed is local and cannot affect any other object in the project (for example,
renaming a local variable), then an in-place editor will be displayed on the screen rather than
the Rename refactor wizard. All the local instances of the object will be renamed as the new
name is typed in.

If the scope of an object being renamed can possibly affect other parts of a project, then
the Rename refactor wizard is displayed. As renaming an object of this type can have
repercussions across the whole of a project, the Preview button allows the developer
to see a preview of all the files that would be changed if the refactoring was performed.
This can be particularly useful when renaming affects large parts of a project.

In general, when refactoring a file (using any type of refactoring,
not just Rename refactoring), it's a good practice to ensure that
the entire project can be compiled before proceeding with the
refactoring. If the project cannot be compiled, then unexpected
results may occur when refactoring.

If a file has been modified and you start to refactor some of the contents of the file, then the
file will be saved before the Rename refactoring dialog is displayed.

Move refactoring
In the previous recipe, we saw how it's possible to rename various artifacts of a Java project.
Sometimes, however, we've named our objects correctly, but we've put them in the wrong
place! NetBeans allows developers to perform a Move refactor where class members can be
moved to different classes or classes can be moved to different projects and/or packages.

NetBeans Productivity

72

Getting ready
First we will need a Java project to perform some Move refactoring. We will use the same
project from the preceding recipe, Rename refactoring, and so ensure that you have the
project open from the end of that recipe. If you have not followed that recipe, the project is
available from the code download bundle under the MoveRefactor folder in Chapter 3.
When the Projects explorer shows the Refactoring project, expand the Refactoring
node if not yet expanded.

How to do it…
1.	 Open the EnvironmentPrinter.java file for editing from the Projects explorer

by double-clicking on the filename.

2.	 When we look at this file, we can see that there is a main() method in the class.
This probably should be placed in its own file, so let's create a file for the main
method and then move it in there.

3.	 Right-click on the com.davidsalter.cookbook.refactor package in the
Refactoring project, and select New and Java Class….

4.	 On the New Java Class window, type Main under the Class Name field.

5.	 On the Package selection, ensure that com.davidsalter.cookbook.refactor
is chosen as the new Package name.

6.	 Click on Finish.

A new class called Main.java has now been created within the com.davidsalter.
cookbook.refactor package. We will now use the Move refactoring to move the public
static void main() method into the new class created with the following steps:

1.	 Open the EnvironmentPrinter.java file from the Projects explorer by
double-clicking on the Java source file.

2.	 Right-click within the main keyword that declares the main() method on the class
and select Refactor and then select Move….

3.	 The Move Members window is now displayed as shown in the following screenshot:

Chapter 3

73

4.	 In the To Class section, select Main as the class we are going to move members to.

5.	 In the Members to be moved section, ensure that only the main(String[] args)
method is selected.

6.	 Click on the Refactor button.

7.	 The Move Members refactor window will now close and the refactoring will
be completed.

After the refactoring has been completed, you can see that the Main.java file has the
main() method in it and the EnvironmentPrinter.java file only has a print()
method within it.

There's more...
When moving members, the visibility of the moved members can be altered by specifying the
Visibility section on the Move Members dialog. This allows, for example, public methods to
be moved to a different class and automatically made private.

Javadoc can be modified to reference new class names when moving members to a different
class. This is achieved by ensuring the Update option is selected under the JavaDoc section
on the Move Members dialog.

NetBeans Productivity

74

If required, the original implementation of a method can be left, delegating functionality to a
new class method. In this case, the new method is called from the old method, with both the
new and old methods existing. Here, the method has been moved, but the original method
still exists to call the new one. This technique is accomplished by selecting the Keep original
method(s) and delegate to the moved method option. With this option, the original method
can be marked as deprecated by checking the Deprecate the old method(s) option.

When performing a Move refactor on classes from one package to another, a shortcut is
to simply drag the class from its source package in the Projects explorer to the destination
package. Upon dropping the class in the destination package, the Move Class refactoring
dialog will be displayed allowing the refactor to be completed.

Copy refactoring
Occasionally when writing code, you may want to copy a class from one package to another.
The NetBeans Copy refactoring wizard allows this to be easily achieved.

Getting ready
First we will need a Java project to perform some Copy refactoring. We will use the same
project from the earlier recipe, Rename refactoring, and so ensure that you have the project
open from the end of that recipe. If you have not followed that recipe, the project is available
from the code download bundle under the MoveRefactor folder in Chapter 3. When the
Projects explorer shows the Refactoring project, expand the Refactoring node if not
yet expanded.

How to do it…
To perform a Copy refactor, we need to have a destination package into which we can copy a
class. First we will create an empty package and then we will make a copy of a class into this
package. To create an empty package, perform the following steps:

1.	 Right-click on the com.davidsalter.cookbook.refactor package in the
Projects explorer and select New and then Java Package….

2.	 Enter com.davidsalter.cookbook.refactor.copiedclasses in the Package
Name field.

3.	 Click on Finish.

We have now created a blank package, so let's use the NetBeans Copy refactoring tool to copy
the Main.java class into this package with the following steps:

1.	 Double-click on the Main.java file in the Projects explorer to open the file
for editing.

2.	 Right-click within the body of the class and select Refactor and then Copy….

Chapter 3

75

3.	 The Copy Class refactoring dialog is now shown. Enter CopyOfMain in the
New Name field.

4.	 From the To Package section, select com.davidsalter.cookbook.refactor.
copiedclasses.

5.	 Click on Refactor.

6.	 The Copy Class refactor dialog will now close and the Copy refactoring will
be completed.

After the Copy Class refactoring dialog has closed, notice that the new CopyOfMain class
has been created inside the com.davidsalter.cookbook.refactor.copiedclasses
package. The original class (com.davidsalter.cookbook.refactor.Main) has not
been modified.

There's more...
Apart from copying classes to different packages, the Copy Class refactor also allows classes
to be copied to different projects. This is achieved by selecting a different project in the Copy
Class dialog. The current project is always selected as the default destination project in
this dialog.

Classes can also be copied to different locations within a project. For example, a class could
be copied from the Source Packages node of a project into the Test Packages location.

When performing a Copy refactor on classes from one package to another, a shortcut is to
simply drag the class from its source package in the Projects explorer to the destination
package while holding down the Ctrl key. Upon dropping the class in the destination package,
the Copy Class refactoring dialog will be displayed allowing the refactor to be completed.

One final shortcut for Copy refactoring is to right-click on a class within the Projects explorer
and select the Copy menu option. Right-clicking on a subsequent package provides the Paste
and Refactor Copy... menu items.

Delete refactoring
After writing code for a while, it's a common practice to review what you've written. At that
point, you may decide that you want to delete some of the code as it's no longer needed.
Deleting code, however, can be dangerous, especially on larger projects, as you don't always
know how many references you have to the code to delete and where they are.

Fortunately, NetBeans provides a Safely Delete refactor.

NetBeans Productivity

76

Getting ready
First we will need a Java project to perform some safe delete refactoring. We will use the same
project from the earlier recipe, Rename refactoring, and so ensure that you have the project
open from the end of that recipe. If you have not followed that recipe, the project is available
from the code download bundle under the MoveRefactor folder in Chapter 3. When the
Projects explorer shows the Refactoring project, expand the Refactoring node if not
yet expanded.

How to do it…
To show an example of safely deleting, we're going to create an interface and then implement
the interface. When we subsequently attempt to delete the interface, NetBeans will warn us
that the interface is still in use. We will perform the following steps:

1.	 Right-click on the com.davidsalter.cookbook.refactoring package in the
Projects explorer and select New and then Java Package….

2.	 Enter com.davidsalter.cookbook.refactor.safedelete in the Package
Name field.

3.	 Click on Finish.

4.	 Right-click on the com.davidsalter.cookbook.refactor.
safedelete package and select New and then Java Interface….

5.	 Enter Vehicle in the Class Name field.

6.	 From the Package section, select com.davidsalter.cookbook.
refactor.safedelete.

7.	 The Vehicle.java file will now be opened for editing. Change the definition
of the interface to be:
public interface Vehicle {
 void drive();
}

8.	 A hint (displayed as a light bulb,) will now be displayed in the margin next to the
definition of the Vehicle interface. Click on the light bulb and from the pop-up hint,
select Implement Interface.

9.	 On the Implement Interface dialog, enter Car in the Class Name field
and leave the Package Name field as the default setting of com.davidsalter.
cookbook.refactor.safedelete.

10.	 Click on OK.

Chapter 3

77

We've now created an interface and a class that implements the interface. Let's see how
NetBeans will warn us when we try to delete something that's in use elsewhere with the
following steps:

1.	 Right-click on the Vehicle.java file within the com.davidsalter.cookbook.
refactor.safedelete package and select Refactor and then Safely Delete….

2.	 The Safely Delete dialog will be displayed. Click on the Refactor button.

3.	 After a few moments, a list of errors will be shown in the Safely Delete dialog
showing that there are references to the selected element elsewhere in the project.

4.	 Click on the Show Usages button to see a list of all places within the project where
the Vehicle interface is used.

How it works…
When performing the Safely Delete refactor, NetBeans checks through all the source files
within the project to see if the selected element exists. If it does not exist, then the delete
refactoring can continue and the selected element will be deleted.

NetBeans Productivity

78

If references to the selected element are found, they are shown within the Usages window
where the developer is given the opportunity to rerun the Safely Delete refactor if they are
happy that none of the uses are important. We can see the Rerun Safely Delete option in
the following screenshot:

There's more...
The Safely Delete refactor can also be made to search through comments in the code by
selecting Search In Comments on the first page of the Safely Delete dialog.

The keyboard shortcut for performing a safe delete is Alt + Delete.

Change parameters refactoring
Suppose we've written a method and we want to change the signature of it. Perhaps, we
didn't originally envision what parameters we would need to pass into a method, or perhaps
we're passing too many parameters and want to change the method signature to take a class
that will represent all our parameters instead. The NetBeans Change Method Parameters…
refactor helps us in these situations.

Getting ready
First we will need a Java project so that we can change the parameters of a method. We
will use the same project from the earlier recipe, Rename refactoring, and so ensure that
you have the project open from the end of that recipe. If you have not followed that recipe,
the project is available from the code download bundle under the MoveRefactor folder
in Chapter 3. When the Projects explorer shows the Refactoring project, expand the
Refactoring node if not yet expanded.

Chapter 3

79

How to do it…
To show an example of changing the parameters of a method, we're going to create a method
with a specified signature and then use the NetBeans refactoring tools to change the method
signature with the following steps:

1.	 Right-click on the com.davidsalter.cookbook.refactor package in the
Projects explorer and select New and then Java Package….

2.	 Enter com.davidsalter.cookbook.refactor.parameters in the Package
Name field.

3.	 Click on Finish.

4.	 Right-click on the com.davidsalter.cookbook.refactor.parameters
package and select New and then Java Class….

5.	 Enter Audit in the Class Name field.

6.	 From the Package dropdown, select com.davidsalter.cookbook.
refactor.parameters.

7.	 Click on Finish.

8.	 Edit the contents of the Audit.java file, changing the class to be defined
as follows:
public class Audit {
 private void auditLogin(String loginName) {
 // Audit a login to the database.
 }
}

We've now created a class that could form the basics of auditing user logins to a system.
What if we decide we want to audit the IP address that a user logs in from? We've also
noticed that the auditing method is private so external classes can't call it—we really
need the method to be public. Let's now use the method parameters refactoring to fix
these issues with the following steps:

1.	 Right-click on the auditLogin method and click on Refactor and the Change
Method Parameters….

NetBeans Productivity

80

2.	 The Change Method Parameters dialog will now be shown:

3.	 Click on the Add button to add a new parameter to the method.

4.	 Enter String as the new Type parameter.

5.	 Enter ipAddress as the new Name parameter.

6.	 Enter null as the new Default Value parameter.

7.	 On the Access selection, change the value from private to public.

8.	 Click on Refactor.

The Change Method Parameters dialog will now close. Inspecting the Audit.java class
shows that the method signature has been changed so that the auditLogin() method is
now public and takes two parameters, loginName and ipAddress.

The Change Method Parameters refactoring is useful when your code is more complex and
the method being changed is called from multiple places within your code base. When you
change method parameters, they are changed wherever the method is called within your
code, with any new parameters taking a default value as specified within the Change
Method Parameters dialog.

Chapter 3

81

There's more
In addition to changing method parameters, the Return Type and Name fields of the method
can also be changed.

Selecting the Generate Javadoc for This Method option will cause basic Javadoc information
to be added to the method showing the parameters and return types for the method. If
Javadoc already exists for the method, then the Update Existing Javadoc of This Method
option is offered.

This refactoring also offers the ability to leave the existing method as it is and create a new
method that is called from the original. To achieve this, ensure that the Create New Method
and Delegate from Existing Method option is checked.

Pull up / push down refactoring
Pull up and push down refactoring relates to the ability to move methods and members of a
class up into a superclass, or down into a subclass.

Getting ready
First we will need a Java project so that we can perform some pull up / push down refactoring.
We will use the same project from the earlier recipe, Rename refactoring, and so ensure that
you have the project open from the end of that recipe. If you have not followed that recipe,
the project is available from the code download bundle under the MoveRefactor folder
in Chapter 3. When the Projects explorer shows the Refactoring project, expand the
Refactoring node if not yet expanded.

How to do it…
Let's consider we have a class to represent a Vehicle and a derived class that represents a
sports car. We'll model those two classes in Java and show how to move properties between
the two classes with the following steps:

1.	 Right-click on the com.davidsalter.cookbook.refactor package in the
Projects explorer and select New and then Java Class….

2.	 Enter Vehicle in the Class Name field.

3.	 From the Package selection, ensure com.davidsalter.cookbook.refactor.
pullup is selected.

NetBeans Productivity

82

4.	 The Vehicle class will now be created and opened for editing. Change the contents
of the class to be as follows:
public class Vehicle {
 protected float milesPerGallon;
 protected Boolean sportsMode;
}

5.	 Right-click on the com.davidsalter.cookbook.refactor.pullup package in
the Projects explorer and select New and then Java Class….

6.	 Enter SportsCar in the Class Name field.

7.	 From the Package selection, ensure com.davidsalter.cookbook.
refactor.pullup is selected.

8.	 The SportsCar class will now be created and opened for editing. Change
the SportsCar implementation so that it extends the Vehicle class.

We have now written an outline for a SportsCar class that extends the Vehicle class
with the extends keyword. The Vehicle base class has a sportsMode field within it.
This doesn't really make sense as SportsMode should be a property of the SportsCar
class and not of a generic Vehicle class. Let's fix that now with the following steps:

1.	 Double-click on the Vehicle.java file within the Projects explorer to open it up
for editing.

2.	 Right-click on the sportsMode field and select Refactor and then Push Down….
3.	 The Push Down dialog will now be shown, which lists all the members in the current

class that can be pushed down to any subclasses.
4.	 Ensure that the sportsMode : Boolean option is checked.
5.	 Click on Refactor.
6.	 The Push Down refactoring dialog will now close and the refactoring will be completed.

How it works…
After pushing down the sportsMode field, we can examine the source code for the Vehicle
and SportsCar classes. We can see that sportsMode has been pushed down into the
SportsCar class where it belongs, and has been removed from the base Vehicle class.

There's more...
If we have more than one subclass when we are pushing members, clicking on the Refactor
button will move the selected members into all of the subclasses. If we only want to move
the member into certain subclasses, click on the Preview button before clicking on Refactor.
This will then show a hierarchy of all the subclasses that the members will be pushed to from
which you can choose to only push to certain subclasses and not all.

Chapter 3

83

Pull up refactoring
Pull up refactoring follows the same procedure as push down refactoring except that members
are pulled up from subclasses into the superclass. To perform pull up refactoring, right-click
on the member to pull up and click on Refactor and then Pull Up…. The Pull Up refactoring
dialog allows a choice of members to be pulled up together with a Destination Supertype
field—the destination that the members are pulled to.

Extract interface refactoring
Extracting an interface from a class is a useful technique when you have many objects that
have similar behavior and you want to impose a contract on your objects stating that they
must all implement the same set of methods.

If you have a class and wish to extract an interface from it, NetBeans Extract Interface
refactoring allows this to be easily achieved.

Getting ready
First we will need a Java project so that we can extract an interface from a class. We will use
the same project from the earlier recipe, Rename refactoring, and so ensure that you have
the project open from the end of that recipe. If you have not followed that recipe, the project
is available from the code download bundle under the MoveRefactor folder in Chapter 3.
When the Projects explorer shows the Refactoring project, expand the Refactoring
node if not yet expanded.

How to do it…
Let's assume that we have a set of classes for loading and drawing different types of raster
images: .png, .bmp, .jpg, and so on. Each of our classes has the ability to load/save the file
and draw the file. Looking at these methods, it would seem that the ability to load and save
images would be required for all file types and would make a good candidate for an interface.
Drawing different file types would also be a good candidate for a different interface.

Let's create the outline of the PngImage class and extract some interfaces from it with the
following steps:

1.	 Right-click on the com.davidsalter.cookbook.refactor package and select
New and then Java Class….

2.	 Enter PngImage in the Class Name field.

3.	 Enter com.davidsalter.cookbook.refactor.extractinterface in the
Package field.

NetBeans Productivity

84

4.	 The PngImage class will now be created and opened for editing. Change the
contents of the class to be as follows:
public class PngImage {

 public boolean load(String file) {
 return true;
 }

 public boolean save(String file) {
 return true;
 }

 public boolean draw(int width, int height) {
 return true;
 }
}

We've now created a class, so let's proceed and extract both Persistable and Drawable
interfaces from it with the following steps:

1.	 Right-click on the body of the PngImage.java class and select Refactor and then
Extract Interface….

2.	 The Extract Interface dialog will now be shown:

Chapter 3

85

3.	 Enter Persistable in the Interface Name field.
4.	 Check the load(String file) : boolean method.
5.	 Check the save(String file) : boolean method.
6.	 Click on Refactor.

A new com.davidsalter.cookbook.refactor.extractinterface.Persistable
interface will now be created, which the PngImage class will implement. Let's now complete
the refactoring and create a Drawable interface. To do this, perform the following steps:

1.	 Double-click on the PngImage.java file in the Projects explorer to open the file
for editing.

2.	 Right-click on the body of the PngImage.java class and select Refactor and then
Extract Interface….

3.	 The Extract Interface dialog will now be shown again.

4.	 Enter Drawable in the Interface Name field.

5.	 Check the draw(int width, int height) : boolean method.

6.	 Click on Refactor.

A new com.davidsalter.cookbook.refactor.extractinterface.Drawable
interface will now be created. The PngImage class will now implement both of the interfaces
we've just created.

There's more...
When extracting interfaces from classes, NetBeans offers the ability to preview the changes
that will be made to our source code before the refactoring is completed. To perform this,
click on the Preview button instead of the Refactor button.

Extracting superclasses
In addition to extracting interfaces from classes, NetBeans provides the ability to extract
superclasses from the existing classes. This refactoring is achieved by right-clicking within
the body of a class and selecting Refactor and then Extract Superclass….

Extracting a superclass operates in a similar fashion to extracting an interface. The difference
with this refactoring is that when extracting a superclass, the original class will be changed to
extend the superclass using the extends keyword. When extracting an interface, the original
class will be changed to implement the interface by using the implements keyword.

NetBeans Productivity

86

When defining a superclass, the refactoring wizard gives us the ability to define classes as
abstract or not, giving full control over the methods that are created in the superclass.
We can see the Extract Superclass dialog in the following screenshot:

Encapsulate fields refactoring
Encapsulation provides a way of hiding members of a class, and restricting their access,
so that potentially an object's members can only be manipulated by the object itself.
Encapsulation is one of the keystones of object-oriented development.

Getting ready
First we will need a Java project so that we can encapsulate some fields within a class. We
will use the same project from the earlier recipe, Rename refactoring, and so ensure that
you have the project open from the end of that recipe. If you have not followed that recipe,
the project is available from the code download bundle under the MoveRefactor folder
in Chapter 3. When the Projects explorer shows the Refactoring project, expand the
Refactoring node if not yet expanded.

Chapter 3

87

How to do it…
Let's assume we're modelling an application in a mobile application store. We might want
to model an application that would have name, author, and cost properties. Our application
object may also have a list of reviews. First, let's create a Java class that implements all of
these fields with the following steps:

1.	 Right-click on the com.davidsalter.cookbook.refactor package and select
New and then Java Class….

2.	 Enter Application in the Class Name field.

3.	 Enter com.davidsalter.cookbook.refactor.encapsulation in the
Package field.

4.	 Click on Finish.

5.	 The Java class, Application.java, is now created and is opened within
NetBeans for editing. Change the contents of this class to read:
package com.davidsalter.cookbook.refactor.encapsulation;

import java.util.ArrayList;
import java.util.List;

public class Application {

 public String name;
 public String author;
 public List<String> reviews = new ArrayList<String>();
 public float cost;
}

This basic class fulfils all our requirements described earlier, but isn't a very good
implementation. Any other class within the system can change the Application
class's properties—clearly we don't want this.

NetBeans Productivity

88

6.	 Right-click on the body of the Application.java file and select Refactor and then
Encapsulate Fields…. The Encapsulate Fields dialog will be displayed:

7.	 Check the Create Getter options, getName, getAuthor, getReviews, and getCost.

8.	 Do not check any of the Create Setter options as these will be set by the
class's constructor.

9.	 Click on Refactor.

10.	 Right-click on the body of the class, select Insert Code..., and on the pop-up
Generate dialog, click on Constructor....

11.	 On the Create Constructor dialog, check name : String, author : String,
and cost : float.

12.	 Click on Generate.

Our class is nearly complete now. It allows the name, author, and cost properties to be set
only during the constructor (arguably, we should add methods to allow the name and cost to
be changed, but we will ignore that for this example). We've also implemented getters for all of
the class's properties. All we need to do now is add a method to add a review.

Chapter 3

89

Adding a review is a different process from setting other properties such as name or
cost because the reviews are stored in an array. If we allowed callers to set the reviews
property directly, they could add or remove the reviews list and we wouldn't have any good
encapsulation for the reviews themselves. To overcome this problem, we need to add a single
method that adds a review into the reviews list. We can achieve this with the following step:

1.	 Modify the Application.java class and add the following method to the bottom of
the class:
public void addReview(String review) {
 this.reviews.add(review);
}

How it works…
The NetBeans Encapsulate Fields refactoring allows the developer to add getters and setters
to any or all of the properties within a class. As has been seen in this recipe, encapsulating a
field allows developers to write more robust code; however, care must be taken. Encapsulating
arrays or objects within a class must be considered carefully before being implemented.
Remember to ensure that the array or object itself can't be modified, but what it represents
can be.

There's more...
When creating accessors, the Insert Point dropdown specifies where in the code the
accessors are added. This can be as First Method or Last Method or after/before any other
accessors. Accessors can be sorted in pairs, in alphabetic order, or with getters before setters.
Check out the Sort By field to perform this.

The visibility of fields can be changed by setting the Fields' Visibility dropdown to private,
protected, or public. Similarly, the accessors' visibility can be set by modifying the Accessors'
Visibility dropdown.

The field encapsulation refactoring can also generate Javadoc for the accessors. Default
comments can be generated or the Javadoc from the fields themselves can be copied over
into the accessors.

Replacing a constructor with the Factory
pattern

A good development practice can be to use factory methods instead of class constructors.
Factory methods can be more descriptive than constructors and can perform additional
functionality over constructors such as returning immutable objects or objects that
implement a certain interface.

NetBeans Productivity

90

Getting ready
First we will need a Java project so that we can replace a class constructor with a factory
method. We will use the same project from the earlier recipe, Rename refactoring, and so
ensure that you have the project open from the end of that recipe. If you have not followed
that recipe, the project is available from the code download bundle under the MoveRefactor
folder in Chapter 3. When the Projects explorer shows the Refactoring project, expand
the Refactoring node if not yet expanded.

How to do it…
Suppose we are writing a game and want to implement different levels. Increasing levels of
the game could be more complex than the previous levels but each level offers a constant
set of challenges and objectives. We could easily represent this with a basic model of a
GameLevel class, which takes an integer difficulty as a constructor parameter. We could
then refactor to replace the constructor with a factory to make the code more robust. In fact,
let's do just that!

1.	 Right-click on the com.davidsalter.cookbook.refactor package and select
New and then Java Class….

2.	 Enter GameLevel in the Class Name field.

3.	 In the Package selection, enter com.davidsalter.cookbook.
refactor.factory.

4.	 Click on Finish.

5.	 The GameLevel class will now be created and opened for editing. Change the
contents of the class to be as follows:
public class GameLevel {
 private int difficulty;

 public GameLevel(int difficulty) {
 this.difficulty = difficulty;
 }
}

This simple class now represents a game level that has differing degrees of difficulty.
Let's now change the constructor to use the Factory pattern with the following steps:

1.	 Right-click on the body of the constructor in the GameLevel.java class and select
Refactor and then Replace Constructor with Factory….

2.	 The Replace Constructor With Factory dialog will now be displayed:

Chapter 3

91

3.	 Enter levelWithDifficulty in the Factory Method Name field.

4.	 Click on Refactor.

5.	 The Replace Constructor With Factory dialog will now close and the refactoring will
be applied to the GameLevel.java class.

How it works…
Upon refactoring a constructor into a factory, the new factory method is created that
instantiates the GameLevel class and returns it to the caller. The original constructor for
the class is marked as private to stop callers directly instantiating the GameLevel class.
The updated code of the GameLevel class is:

public class GameLevel {

 public static GameLevel levelWithDifficulty(int difficulty) {
 return new GameLevel(difficulty);
 }
 private int difficulty;

 private GameLevel(int difficulty) {
 this.difficulty = difficulty;
 }
}

Looking at this code, we can immediately see that the name of the factory method is a lot
more meaningful than the name of the constructor with its single parameter.

You can also imagine how it would be easy to create a cached lookup of all the levels
available within the game and return a level from cache within the factory method rather
than instantiating a new GameLevel each time the factory method is called. In a real game,
it would be easy to believe that constructing GameLevel could be an expensive task in terms
of CPU performance and time. Since GameLevel is essentially immutable, there's no need to
instantiate a new one each time it is requested. Returning GameLevel from cache would be a
much more optimized task.

NetBeans Productivity

92

There's more...
Sometimes the Factory pattern is not the best way to instantiate an object—we may wish to
user the Builder pattern instead.

Replacing constructors with the Builder pattern
If a constructor becomes more complex than a few parameters, or multiple operations are
required to create an object, then the Builder pattern can be used to create objects instead
of the Factory pattern.

NetBeans can apply the Builder pattern to classes enabling constructors to be replaced with a
Builder pattern implementation. To replace a constructor with a Builder pattern, right-click on
the body of a constructor and select Refactor and then Replace Constructor with Builder….
The Replace Constructor With Builder dialog will be displayed:

4
Developing Desktop

Applications with
NetBeans

In this chapter, we will cover the following recipes:

ff Creating a Swing application

ff Adding components to a form

ff Creating menus

ff Creating dialogs

ff Creating toolbars

ff Responding to events

ff Building a distributable application from NetBeans

Introduction
The Java Swing API is a complete GUI toolkit that provides many different classes that allow
developers to build complex user interfaces. Swing is based on the Model-View-Controller
(MVC) pattern, which allows data to be decoupled from GUI controls and therefore encourages
developers to write more maintainable code.

This may all sound very complicated to developers who are new to Swing, but fortunately,
one of the greatest strengths of NetBeans is the powerful Swing GUI builder, also known as
Matisse. Matisse hides a lot of the complexity of Swing development as it writes a lot of the
Swing plumbing code for you.

Developing Desktop Applications with NetBeans

94

For a comprehensive overview of Swing, check out the article, A Swing
Architecture Overview, at http://www.oracle.com/technetwork/
java/architecture-142923.html.

NetBeans uses Java's Swing as the default framework and with it, it's possible to:

ff Create and design complex GUI applications

ff Drag-and-drop components from a Palette component

ff Design beautiful-looking applications

ff Preview the changes before compiling

ff Bind data straight from the database to your component

And it's possible to do much more.

Besides being totally free, the Swing GUI builder lets the developer concentrate on coding.

In the previous chapters, we learned how to create projects and how to become productive
in developing Java applications with NetBeans. In this chapter, we'll start with the basics by
creating a simple Java Swing desktop application. We'll then build on that by adding controls
and toolbars and other GUI components.

If you have used previous versions of NetBeans, you may have seen references to the Swing
Application Framework (a simple Swing framework that defined common infrastructure for
desktop applications). As of NetBeans 7.1, support for the Swing Application Framework was
dropped from the NetBeans IDE as the framework was withdrawn by the JCP. In this chapter,
we will be concentrating purely on developing Swing applications with NetBeans.

Instead of the Swing Application Framework, developers can now use the
NetBeans Platform (https://netbeans.org/features/platform)
to develop Rich Client Platform (RCP) applications. To learn more about RCP
development using the NetBeans Platform, check out the book at https://
www.packtpub.com/application-development/netbeans-
platform-69-developers-guide.

http://www.oracle.com/technetwork/java/architecture-142923.html
http://www.oracle.com/technetwork/java/architecture-142923.html
https://netbeans.org/features/platform
https://www.packtpub.com/application-development/netbeans-platform-69-developers-guide
https://www.packtpub.com/application-development/netbeans-platform-69-developers-guide
https://www.packtpub.com/application-development/netbeans-platform-69-developers-guide

Chapter 4

95

Within this chapter, we'll see how to develop a simple desktop GUI application to view the
contents of .jar files. The final product will look like the following screenshot:

Creating a Swing application
With NetBeans 8.0, creating a desktop application is very similar to creating a standard
console application as shown in Chapter 1, Using NetBeans Projects. To create a Swing
application, we need to first create a blank Java application and then add a JFrame
derived class to the application that will act as the main frame for the application.
Once we've created a frame, we can set its title and give it an icon and we will get
a basic Java desktop application.

Let's see how that can be achieved.

For more information about JFrames and how to use top-level containers,
check out http://docs.oracle.com/javase/tutorial/uiswing/
components/toplevel.html.

Getting ready
To complete this recipe, we'll be using the Java SE NetBeans IDE download bundle.
The Java EE or All bundles could also be used, but we will not be using any of their
features in this recipe.

You need not have any projects open to start this recipe.

http://docs.oracle.com/javase/tutorial/uiswing/components/toplevel.html
http://docs.oracle.com/javase/tutorial/uiswing/components/toplevel.html

Developing Desktop Applications with NetBeans

96

How to do it…
First off, we'll create a blank Java application that we can add our frame into with the
following steps:

1.	 Click on File and then New Project….

2.	 On the resultant dialog, select the Java category and Java Application as the project.

3.	 Click on Next.

4.	 Enter the Project Name field as JarViewer.

5.	 Enter the Project Location field. (The default location will most likely be correct.)

6.	 Ensure Create Main Class is checked and enter com.davidsalter.cookbook.
jarviewer.Main as the Main Class name, as shown in the following screenshot:

7.	 Click on Finish.

NetBeans has now created a blank application with a single main class in it.

Let's create a GUI frame for our application and open it when the application is launched with
the following steps:

1.	 Right-click on the Source Packages node in the Projects explorer and select New
and then JFrame Form….

2.	 Enter the Class Name field as MainFrame.

Chapter 4

97

3.	 Enter the Package f﻿ield as com.davidsalter.cookbook.jarviewer.gui,
as shown in the following screenshot:

4.	 Click on Finish.

NetBeans will now create a MainFrame class for us and open it for GUI editing as shown in
the following screenshot:

Developing Desktop Applications with NetBeans

98

In the center of the screen, we can see that a blank form has been created with no
components on it. To design GUIs, we drag components from the Palette section at the
right-hand side of the main window onto the form, laying them out in the design we want.

We'll look at adding controls to a form in a later recipe. For now, let's set our application's
title and give it an icon so that it starts to look like a proper GUI application, using the
following steps:

1.	 Click on the MainFrame.java design surface in the center of the NetBeans IDE
window. The [JFrame] - Properties explorer should now be displayed.

2.	 Locate the title property and enter Jar File Viewer, as shown in the
following screenshot:

3.	 From the assets folder of the code download bundle for this chapter, locate the
folder_explore.png file and drag it onto the com.davidsalter.cookbook.
jarviewer.gui package in the Projects explorer. This will add the file into the
NetBeans project so that we can reference it from within our application. The
Projects explorer for our project is shown in the following screenshot:

Chapter 4

99

4.	 Click on the design surface for the MainFrame.java class again and locate the
iconImage property.

5.	 Click on the … button () for the iconImage property to open up the property
editor window.

6.	 Select the Set Form's iconImage property using field as Custom code.

7.	 Enter the custom code within the Form.setIconImage edit as:
new javax.swing.ImageIcon(getClass().getResource
("/com/davidsalter/cookbook/jarviewer/gui/
folder_explore.png")).getImage()

The [JFrame] - iconImage window is shown in the following screenshot:

8.	 Click on the OK button to set the iconImage property.

We've now created the basics for our desktop application. The final step is to wire up
the Main class to instantiate the frame when the application is executed.

9.	 Double-click on Main.java within the Projects explorer to open it for editing.

10.	 Change the main method within Main.java to read:
public static void main(String[] args) {
 java.awt.EventQueue.invokeLater(new Runnable() {
 public void run() {
 new MainFrame().setVisible(true);
 }
 });
}

11.	 Press F6 to run the application.

Developing Desktop Applications with NetBeans

100

When creating a JFrame class, NetBeans actually creates a main method
within the JFrame class; so, there is no need to create a separate Java class
to implement the main method. We have created a separate Main class
within this recipe to show how to display a JFrame within an application.

How it works…
In this recipe, we've created the first of our Swing components—a MainFrame.java class
that extends JFrame.

When this file is opened within NetBeans, it has three views:

ff Source

ff Design

ff History

These three views are displayed in the following screenshot:

The Source view allows us to see the Java source code that the class is composed of.
This code is a mixture of automatically generated code and custom code that has been
added by the developer.

The NetBeans GUI designer creates all the code for us to instantiate a form and initialize all
the components on it, including their layout, size, and other properties. Code to use the basic
properties that we entered within the Properties window (such as the frame's title) is also
automatically generated for us. Any custom code that we enter for properties (such as the
frame's iconImage property) is automatically added into the generated code.

When we look at the code for a GUI component, we can see that sections of the code are
in editor folds that have a grey background. These sections of code are the ones that are
automatically generated by NetBeans and cannot be edited within the Java editor. It's very
important not to try to edit these sections of code in an editor external to NetBeans as
this will almost always stop NetBeans from subsequently being able to edit the GUI
component graphically.

Chapter 4

101

If you want to edit the custom code that you have added as a component's
property, then you need to select the custom code editor from the Properties
window rather than attempting to edit the source code directly. NetBeans will
not allow the custom code to be directly edited within the Java editor.

The Design view shows the layout of all the components on the frame. We will see more of
this in the next recipe. For now, we'll just note that this is the area where we drag controls to
build up our GUI.

The History view shows all the changes that we have made to the component, similar to the
history we may see when viewing the history of a file within a source code control system such
as Git or Subversion. Using the History view, we can revert to the earlier changes we made to
the design of a form.

There's more...
When creating a JFrame form within a project, NetBeans automatically adds a main method
into the new class. If your application only has one JFrame within it and you're not likely
to do any other processing at application startup, then this can be a convenient way to
automatically create a main() method for your application.

For each Java GUI class created by NetBeans, a corresponding XML file will be created that
has the .form extension. In this recipe, we created a Java class called MainFrame.java.
NetBeans automatically created a file called MainFrame.form in the same directory on
disk to go along with this file. NetBeans stores all of its internal data within this .form file;
so, it's very important not to delete or edit these files manually. Don't worry though, when you
distribute an application, these .form files do not need to be distributed with the application.
They are only required while developing within NetBeans.

Adding components to a form
In the previous recipe, we saw how to make a desktop GUI application. In this recipe,
we'll see how we can add components onto a form and how we can preview the form
at the design time.

For more information on using different Swing components, check out
http://docs.oracle.com/javase/tutorial/uiswing/
components/index.html.

http://docs.oracle.com/javase/tutorial/uiswing/components/index.html
http://docs.oracle.com/javase/tutorial/uiswing/components/index.html

Developing Desktop Applications with NetBeans

102

Getting ready
To complete this recipe, we need to have the JarViewer project that was created in the
Creating a Swing application recipe. If you have not completed this recipe, the source code
is available with the code download bundle for this chapter.

How to do it…
1.	 Ensure that the JarViewer project is open in NetBeans and double-click on the

MainFrame.java class to open it for editing.

2.	 From the Palette section, drag a Label component onto the form's design
surface snapping it to the top-left side of the form. When dragging the label onto
the form, you will see a horizontal and vertical dotted line when the label is at the
preferred distance from the top corner. Drop the label at this point as shown in the
following screenshot:

3.	 Right-click on the dropped label on the design surface and select Change
Variable Name….

4.	 Enter the New Name field as jarLabel.

Chapter 4

103

Some developers like to use Hungarian notation for control names in GUIs
to help distinguish the types of components that are being added to a form,
for example, lblJarLabel. Throughout this book however, I've not used
Hungarian notation to distinguish variable types as the compiler can do
this for me. For more information, about Hungarian notation, check out
http://en.wikipedia.org/wiki/Hungarian_notation.

5.	 Locate the text property within the jarLabel [JLabel] – Properties window.
Set the property value to be Jar File.

6.	 The text displayed for the label on the form will now change to read Jar File.

7.	 From the Palette section, drop a Button component onto the form at the top right.
Just like when dropping the Label component in step 2, the guidelines will be
displayed on the form indicating that the button has been snapped to the top-right
side of the form.

8.	 Right-click on the dropped button on the design surface and select Change
Variable Name….

9.	 Enter the New Name field as viewButton.

10.	 Right-click on the button once more and select Edit Text.

11.	 The text displayed on the button will become editable. Enter the text View and
press the Return key.

12.	 From the Palette section, drag a Panel component onto the form, snapping it to the
left and bottom of the form. Drag the panel to the right to additionally snap it to the
right-hand side of the form as well.

13.	 Drag the height of the panel to be 16.

14.	 Right-click on the panel and select Change Variable Name….

15.	 Enter the New Name field as statusPanel.

16.	 Locate the border property for the panel within the statusPanel [JPanel] –
Properties window.

17.	 Click on the … button () to open the border property window.

18.	 Select Bevel Border from the Available Borders section.

http://en.wikipedia.org/wiki/Hungarian_notation

Developing Desktop Applications with NetBeans

104

19.	 Select Lowered as the Type field, as shown in the following screenshot:

20.	 Click on OK.

21.	 From the Palette section, drag a Label component onto statusPanel aligning it
with the bottom-left side of the panel.

22.	 Right-click on the label and select Change Variable Name….

23.	 Enter the New Name field as statusLabel.

24.	 Locate the text property within the statusLabel [JLabel] – Properties window and
delete the property value so that no value is set.

25.	 From the Palette section, drag a Text Field component onto the form's design
surface. Snap the Text Field component to the top of the form and the right-hand
side of the jarLabel label.

26.	 Drag the Text Field component to the right and snap it to the left-hand side of the
viewButton component.

27.	 Right-click on the text field and select Change Variable Name….

Chapter 4

105

28.	 Enter the New Name field as jarName.

29.	 Locate the text property within the jarName [JTextField] – Properties window and
delete the property value so that no value is set.

30.	 From the Palette section, drag a List control onto the form, snapping it to the
left-hand side of the form and to the bottom of the jarLabel component.

31.	 Drag the List control to the right and snap it to the right-hand size of the form.

32.	 Drag the List control to the bottom and snap it to the top of the
statusPanel component.

33.	 Right-click on the List control and select Change Variable Name….

34.	 Enter the New Name field as jarEntries.

We have now completed the design of our form. The completed form should look like
the following screenshot:

We could now run our application to see what it looks like; however, NetBeans
provides an excellent design-time tool that allows us to preview the form without
running the application.

On a small application, there isn't much benefit in previewing
forms at design time, but as your application grows, this ability
can rapidly increase your productivity.

Developing Desktop Applications with NetBeans

106

35.	 Click on the Preview Design button at the top of the design surface. NetBeans will
open a preview version of the form. Resize the form and note that all of the controls
on the form correctly resize with the form, as shown in the following screenshot:

How it works…
When designing forms within NetBeans, there is a vast array of components that are available
within the Palette section that can be simply dragged-and-dropped onto the design surface.

We can add controls (such as labels, buttons and lists, and so on), Swing fillers, Swing menus,
or even other Swing windows (file choosers and color choosers, and so on). We can even add
AWT components or our own custom-defined Beans. We can see the Palette window in the
following screenshot:

Chapter 4

107

With each control we add, we can choose to either add it at a given size on the form, or snap
it to other controls/edges of the form thus providing the ability for controls to properly resize
when the form is resized.

Not only can we add controls onto a form, but we can also add controls into other controls. We
saw how to add JPanel and then drop JLabel inside it to make a more complicated control.

For each control that we add to the form, there's a corresponding set of properties that can be
set for the control. As we've seen previously, these properties can be set at the design time as
simple values, or can be implemented as custom code snippets.

There's more...
We can also write custom code that can be triggered at different times during a component's
lifecycle. On the Code tab of a component's Properties window, we can specify a lifecycle
event (such as Pre-Creation Code or Post-Creation Code) together with the custom code to
run. This can be very useful if we wish, for example, to initialize components on a form when
they are created.

Using the Binding tab, we can also bind component properties with other JavaBeans
components, so, for example, we could automatically update a progress bar based
upon some external action.

If you look at many desktop applications, you'll see that many components such as buttons
have a shortcut assigned—these are generally referred to as a mnemonic. For example, a
button labelled Close will invariably be displayed as Close (note the underlined C) indicating
that pressing Alt + C will have the same effect as clicking on the button. We can easily define
these keyboard mnemonics in NetBeans by setting the mnemonic property of a component.

In this recipe, we created a JLabel that described another component (we created the
JLabel with the text Jar File, which described JTextField next to it). To aid accessibility,
it's a good practice to set the labelFor property on a JLabel to describe which component
it is the label for. This can greatly enhance the performance of screen readers and other
accessibility software.

Wait, what if we want to add more complex components such as toolbars or menus to
our application?

Fortunately, this is a simple procedure when using NetBeans.

In the next recipe, we'll take a look at adding menus into our application. In subsequent
recipes, we'll show how to add toolbars and then see how to use events to wire up all of
these components.

Developing Desktop Applications with NetBeans

108

If you want to see some more examples of GUI forms within
NetBeans, check out the provided sample applications. When
creating a new project, select Samples and then Java from the
Categories list. The three sample projects, Anagram Game, GUI
Form Examples, and Client Editor, provide further examples of
using the NetBeans GUI editor.

Creating menus
Now that we've created a basic GUI for our application, let's add a menu structure so that we
can close the application easily and view the application's About box.

Getting ready
To complete this recipe, we need to have the JarViewer project that was created in the
Adding components to a form recipe. If you have not completed this recipe, the source
code is available with the code download bundle for this chapter.

How to do it…
To add a menu to an application, we need to have the main form of the application open
for editing in the design view. We then drag-and-drop a menu bar and menu items from the
Palette section onto the form. Let's see how that can be achieved with the following steps:

1.	 Double-click on the MainFrame.java file within the Projects explorer to open it for
editing. Ensure the Design tab is selected for editing the design surface of the class.

2.	 From the Palette section, drag a Menu Bar control anywhere onto the dialog's
surface, as shown in the following screenshot:

Chapter 4

109

Note that the File and Edit menus have been added to the dialog now, but they have no
menu items in them. In our application, we want a File menu and a Help menu so that we
can add the options, File | Exit and Help | About. Let's now delete the Edit menu and add
the required menu items with the following steps:

1.	 Right-click on the Edit menu in the MainFrame.java class and select Delete.

2.	 Right-click on the File menu and select Change Variable Name….

3.	 Enter the New Name field as fileMenu.

4.	 From the Palette section, drag a Menu control onto the existing Menu Bar
component. The new menu will initially have the name jMenu1.

5.	 Right-click on the jMenu1 menu and select Edit Text.

6.	 In the in-place editor, type the new menu name as Help and press the Return key.

7.	 Right-click on the Help menu and select Change Variable Name….

8.	 Enter the New Name field as helpMenu.

9.	 From the Palette section, drag a Menu Item control and drop it onto the File menu.
The new menu item will initially have the name jMenuItem1.

10.	 Right-click on the menu item jMenuItem1 and select Edit Text.

11.	 In the in-place editor, type the new menu name as Exit and press the Return key.

12.	 Right-click on the Exit menu item and select Change Variable Name….

13.	 Enter the New Name field as exitMenuItem.

14.	 From the Palette section, drag a Menu Item control and drop it onto the Help menu.
The new menu item will initially have the name jMenuItem1.

15.	 Right-click on the menu item jMenuItem1 and select Edit Text.

16.	 In the in-place editor, type the new menu name as About and press the Return key.

17.	 Right-click on the About menu item and select Change Variable Name….

18.	 Enter the New Name field as aboutMenuItem.

Now that we've added all of the menu items onto our form, we just need to set the accelerator
key for the Exit menu. The accelerator key is the keyboard combination that will act as a
shortcut for the menu item. Typically, in Windows, Alt + F4 is use to close an application.
On a Macintosh, the keyboard shortcut is usually cmd + Q. Let's perform the following steps:

1.	 Click on the Exit menu item.

2.	 In the exitMenuItem [JMenuItem] – Properties window, click on the … button next to
the accelerator property.

3.	 In the exitMenuItem [JMenuItem] – accelerator dialog, click in the Key Stroke
textbox and then press F4.

Developing Desktop Applications with NetBeans

110

4.	 Select the Alt button.

If you're using a Mac, make sure that you select cmd + Q as your
accelerator key instead of Alt + F4.

The accelerator definition dialog is shown in the following screenshot:

5.	 Click on OK to set the accelerator key and close the dialog.

6.	 Click on the Preview Design button to see how the menu will look when the
application is executed.

There's more...
Using the NetBeans GUI editor, we've seen how we can easily create menu structures by
dragging the appropriate entries from the Palette section onto a form.

In addition to setting menu item accelerator keys, we can also set graphics for menu items
that will appear to the left of the menu text. This can be achieved by setting the icon property.

We can also set tooltips for menu items by setting the toolTipText property. Menu item tool
tips are then displayed when the mouse is hovered over a menu item.

If you run the application now, you may spot that clicking on the menus does nothing at
the moment. In the recipe, Responding to events, we'll see how to make the menu items
work fully.

Chapter 4

111

Creating dialogs
In the previous recipe, we saw how to add menus to a form. We added a menu that will allow
us to display an About box for our application. So far, we've not created any dialogs though.

In this recipe, we'll see how to create dialogs.

Getting ready
To complete this recipe, we need to have the JarViewer project that was created in the
Creating menus recipe. If you have not completed this recipe, the source code is available
with the code download bundle for this chapter.

How to do it…
1.	 Right-click on the com.davidsalter.cookbook.jarviewer.gui package in the

Projects explorer and select New and then Other….

2.	 In the New File dialog, select Swing GUI Forms under Categories and OK / Cancel
Dialog Sample Form from the File Types section.

3.	 Click on Next.

4.	 Enter the Class Name field as AboutDialog and ensure the Package section is set
to com.davidsalter.cookbook.jarviewer.gui.

5.	 Click on Finish.

A new blank dialog will now be created with OK and Cancel buttons on it as shown in the
following screenshot:

Developing Desktop Applications with NetBeans

112

We don't want the OK button, so let's delete that and then add some information to the dialog
with the following steps:

1.	 Right-click on the OK button and select Delete.

2.	 Locate the text property for the Cancel button and set it to read Close.

3.	 Using the techniques we learned in the Adding components to a form recipe,
change the design of the form to look like the following screenshot:

To create an image and text on the dialog, simply drop a Label control
and set its icon and text properties.

4.	 Since we're creating a dialog, we want to give it a fixed size. Click on the dialog's
background and then ensure the resizable attribute is not checked on the
[JDialog] – Properties window.

5.	 Preview the design of the dialog by clicking on the Preview Design button.

How it works…
When creating the dialog with the New File wizard, we selected to create simple JDialog
with OK and Cancel buttons on it. Doing this, NetBeans automatically wired up the OK
and Cancel buttons to close the dialog (although, we later deleted the OK button because
we didn't want it).

We could have just created a JDialog form, but then we wouldn't
have automatically got OK and Cancel buttons added; so, we would
have needed to do some extra work to add the required buttons.

When creating dialogs, NetBeans provides the opportunity to create different types of dialogs.
These are all based upon the JDialog form, but with additional controls and layouts added
onto them to save additional time. I recommend you to experiment with these different types
of dialog so that you will know which one best suits your needs in the future.

Adding components onto a dialog is exactly the same procedure as adding components onto
a main form. Check out the recipe, Adding components to a form, earlier in this chapter for
more details.

Chapter 4

113

There's more...
If you want to try out a dialog from a running executable code instead of previewing it from
within NetBeans, you can simply right-click on the class within the Projects explorer and click
on Run File. NetBeans adds a main() method into each JDialog class that it creates so
that you can run the dialog independently from your application to get a good indication of
how it will look when running.

We've now created a dialog, in the recipe, Responding to events, we'll see how we can invoke
the dialog and display it on the screen.

Creating toolbars
The final stage of designing the GUI for our application is to add a toolbar with a button on
it. Clicking on the button on the toolbar will cause the contents of selected .jar files to
be displayed.

Getting ready
To complete this recipe, we need to have the JarViewer project that was created in the
Creating dialogs recipe. If you have not completed this recipe, the source code is available
with the code download bundle for this chapter.

How to do it…
Since we are adding a toolbar to the main form of our application, we need to make sure that
the form is open and ready for designing. Double-click on the MainFrame.java file in the
Projects explorer and ensure the Design surface is visible, and perform the following steps:

1.	 From the Palette section, drag a Tool Bar control onto the form and align it with the
top-left side of the form just underneath the menu.

The Tool Bar control is located in the Swing Containers
section of the Palette window and as such allows us to drop
other controls on top of it.

2.	 Right-click on the dropped toolbar and select Change Variable Name....

3.	 Enter the New Name field as toolBar.

4.	 Click on OK.

5.	 From the Palette window, drag a Button control onto the toolBar control.
The button will initially be called jButton1.

Developing Desktop Applications with NetBeans

114

6.	 Right-click on jButton1 and click on Change Variable Name....

7.	 Enter the New Name field as viewToolBarButton.

8.	 Click on OK.

The layout of the toolbar doesn't look very good at the moment; so, let's remove the text from
the button and add an image instead with the following steps:

1.	 Click on the viewToolBarButton component and locate the text property in the
viewToolBarButton [JButton] - Properties window. Ensure the text property is not
set to anything.

2.	 Within the viewToolBarButton [JButton] - Properties window, click on the Code
button to enable custom code generation for the button.

3.	 Locate the Custom Creation Code option and click on the … button () to open the
custom code creation dialog, as shown in the following screenshot:

4.	 Enter the Custom Creation Code dialog as:
new javax.swing.JButton(new javax.swing.ImageIcon(new
javax.swing.ImageIcon(getClass().getResource("/com/davidsal
ter/cookbook/jarviewer/gui/folder_explore.png")).getImage()
.getScaledInstance(16, 16, java.awt.Image.SCALE_SMOOTH)))

5.	 Click on OK.

6.	 Run the application by pressing F6 to see the toolbar with its button,
as shown in the following screenshot:

Chapter 4

115

This is a good example of where clicking on the Preview Dialog button does
not show an accurate representation of the form. Since we added the custom
code to create the toolbar button, NetBeans does not know how to generate a
preview of the button and so no toolbar button is displayed.

How it works…
A toolbar is simply a container (much like the main application frame) that can have additional
components placed inside it. To create a toolbar, we added a button inside the container.

Typically, toolbars have no text but are represented by images. Since we had an image within
out project, it made sense to use that.

The image that we have used previously however is too big to be used as a standard image for
a toolbar button hence the custom creation code for the button.

This custom creation code loads the image file from the application's classpath and resizes it
to a 16 x 16 image, which is then set into the button.

In the next recipe, Responding to events, we'll see how to make the button respond to
click events.

Responding to events
So far, we've designed a Swing desktop application. We've added some controls onto a form,
added a menu system, and added a toolbar. At the moment, there's no functionality behind
the controls and menu items.

The next step after designing a Swing desktop application is to add behaviors to it.

In Swing, this is done by implementing event listeners. Firstly, we must register specific
objects, the event listeners, onto Swing components in order to perform a determined task.
When an event is triggered, the Swing component passes this to the listeners to handle the
action according to what was implemented.

There are multiple kinds of events in Swing that include mouse, focus, key, and window events.

For a more detailed view of event listeners, visit
http://download.oracle.com/javase/tutorial/uiswing/events/intro.html.

http://download.oracle.com/javase/tutorial/uiswing/events/intro.html

Developing Desktop Applications with NetBeans

116

Getting ready
To complete this recipe, we need to have the JarViewer project that was created in the
Creating toolbars recipe. If you have not completed this recipe, the source code is available
with the code download bundle for this chapter.

How to do it…
The first behavior that we'll add to our application is to make the controls on the form work
correctly. That is, if we type in a valid .jar filename and click on the View button, we should
see what the contents of the .jar file are. Perform the following steps to check this:

1.	 Double-click on the MainFrame.java class within the Projects explorer to open
it up for editing. Ensure the Design tab is selected for editing the design surface
of the class.

2.	 Click on the View button within the MainFrame.java designer. This will allow us to
edit the events for the button.

3.	 Locate the viewButton [JButton] – Properties window and click on the Events
button, as shown in the following screenshot:

4.	 Click on the down arrow () to the right of the actionPerformed event listener.

5.	 A pop-up tooltip will be displayed showing the default name for this event
listener as viewButtonActionPerformed. Click on this tooltip to create
the event handler, as shown in the following screenshot:

Chapter 4

117

6.	 The design window for the form will now close and the Java source code window for
MainFram.java will be opened at the newly created event handler, as shown in the
following screenshot:

7.	 Replace the body of the viewButtonActionPerformed() method with the
following code:

statusLabel.setText("Parsing JAR file");
try {
 DefaultListModel model = new DefaultListModel();
 ZipInputStream zip = new ZipInputStream(
 new FileInputStream(jarName.getText()));
 for (ZipEntry entry = zip.getNextEntry();
 entry != null;
 entry = zip.getNextEntry()) {
 model.addElement(entry.getName());
 }
 jarEntries.setModel(model);
 statusLabel.setText("Entries found: " + model.size());
} catch (IOException ioe) {
 statusLabel.setText("Entries found: 0");
 JOptionPane.showMessageDialog(this,
 ioe.getLocalizedMessage(),
 "Oops - an error occurred",
 JOptionPane.ERROR_MESSAGE);
}

We should really be closing the ZipInputStream class properly here if an
exception occurs to avoid any .jar locking problems. For brevity, this has
been omitted from this code.

Developing Desktop Applications with NetBeans

118

This code takes the name of the .jar file we wish to view and opens a ZipInputStream
instance for the file. A Swing DefaultTableModel instance is created and an entry is
added to it for each ZipEntry instance within ZipInputStream.

The table model is then set on the jarEntries component.

If any errors occur during parsing the file, an error message box is displayed.

For more information about Swing List and ListModel, check out The Java
Tutorial, How to Use Lists, at http://docs.oracle.com/javase/
tutorial/uiswing/components/list.html.

The next stage in adding behaviors to our application is to respond to the menu options. In the
Creating menus recipe, we added the menu options, File | Exit and Help | About. For adding
behaviors to our application, perform the following steps:

1.	 In the Navigator window, click on the exitMenuItem node, which is shown in the
following screenshot:

When working with a user interface that has a lot of controls on it, the
Navigator window can be invaluable in helping you to select individual
controls for editing their properties. Sometimes, locating a control via the
Navigator window can be a lot easier than clicking on the control within
the main design surface, especially when a control has no text!

http://docs.oracle.com/javase/tutorial/uiswing/components/list.html
http://docs.oracle.com/javase/tutorial/uiswing/components/list.html

Chapter 4

119

2.	 Click on the down arrow to the right of the actionPerformed event handler.

3.	 A pop-up tooltip will be displayed showing the default name for this event
handler as exitMenuItemActionPerformed. Click on this tooltip to create
the event handler.

4.	 Replace the body of the exitMenuItemActionPerformed method with
the following line:
System.exit(0);

5.	 Click on the Design button to go back to the design surface for the class.

6.	 In the Navigator window, click on the aboutMenuItem node.

7.	 Click on the down arrow to the right of the actionPerformed event handler.

8.	 A pop-up tooltip will be displayed showing the default name for this event
handler as aboutMenuActionPerformed. Click on this tooltip to create
the event handler.

9.	 Replace the body of the aboutMenuItemActionPerformed method with
the following lines:

AboutDialog dialog = new AboutDialog(this, true);
dialog.setVisible(true);

Finally, we need to add behavior to the toolbar button so that it performs the same action as
the View button. To do this, perform the following steps:

1.	 Click on the Design button to go back to the design surface for the class.

2.	 In the Navigator window, click on the viewToolBarButton node.

3.	 Click on the down arrow to the right of the actionPerformed event handler in
the viewToolBarButton [JButton] – Properties window.

4.	 A pop-up tooltip will be displayed showing the default name for this event
handler as viewToolBarButtonActionPerformed. Click on the tooltip
to create the event handler.

At this point, we've got a decision to make because both the toolbar button and the View
button perform the same functionality. We obviously don't want to type the same code into
both action handlers, so what should we do?

Developing Desktop Applications with NetBeans

120

Let's refactor the code we added in the viewButtonActionPerformed handler out into
a separate method called parseJarFile() and then call this method from both action
handlers with the following steps:

1.	 Using the mouse, select all of the text inside the viewButtonActionPerformed
method.

Don't select the line with the method signature or the last line
containing only } as these line are automatically generated by
NetBeans and we won't be allowed to refactor these!

2.	 Right-click on the code and select Refactor, and then Introduce and then Method….

3.	 In the Introduce Method dialog, enter the Name field as parseJarFile, as shown
in the following screenshot:

4.	 Click on Finish.

5.	 Locate the viewToolBarButtonActionPerformed method and replace
the body of the method with:

parseJarFile();

We've now added the functionality to our application to allow it to read .jar files and show us
their contents. You can now run the application by pressing F6. Enter a valid .jar file into the
Jar File field and click on the View button to see the contents of the .jar file, as shown in the
following screenshot:

Chapter 4

121

How it works…
When we clicked on the actionPerformed event within the Properties window for the View
button, NetBeans created us an empty method called viewButtonActionPerformed()
in which we placed our event handler.

What we didn't see is that NetBeans also automatically added an action listener to the
viewButton component so that this method would be invoked at the correct time.

If we look at the source code for the MainFrame.java class, we can see that there is
a method called initComponents() that is collapsed by default. NetBeans adds all
component initialization within this method. This is an automatically generated method
and cannot be edited directly within the Java editor; rather its contents are created based
upon the properties, bindings, and events that we define at design time.

Digging into the initComponents() method, we can find the code that adds the action
listener, as shown in the following screenshot:

When looking through the automatically generated code, we can see why it's
a good idea to use a naming mechanism for controls and not just use the
default names of jList1, jButton1, and so on.

Developing Desktop Applications with NetBeans

122

NetBeans added similar code for the other event handlers that we added. If you expand the
autogenerated code for the class, you will see action listeners have been created for all the
events we've added in this recipe.

In larger projects with more complex GUI forms and dialogs, it's a good
practice to try to keep the amount of the custom code added into a form or a
dialog to a minimum. By keeping the implementation of a form and the logic
behind it separate, we can easily refactor, and change the forms appearance,
without affecting major parts of our application.

There's more...
When we added the event handler for the actionPerformed event, we chose the default name
for the handler as viewButtonActionPerformed. What if we don't want to choose the
default name, but instead prefer something shorter like viewButtonPressed?

Clicking the … button to the right of each event opens up the Handlers window for the specific
event. From within this window, we can create new handlers giving them the names that we
want, we can remove the existing handlers, or we can rename the existing handlers. We can
see the Handlers window in the following screenshot:

Chapter 4

123

If you want to quickly access the code for an event handler, then click on
the handler's name within the Events section of the Properties window.
NetBeans will then open up the code editor for you at the correct place.

In addition to editing and creating events via the Properties window for a component, you can
quickly create/edit event handlers by right-clicking on a component and selecting Events and
then the event handler you wish to create/edit, as shown in the following screenshot:

Building a distributable application from
NetBeans

When we've developed our application, we want to get it out of the IDE and into our
customer's hands as soon as possible. Fortunately, NetBeans makes it very easy to
create an executable .jar file that we can distribute to our customers.

Getting started
To complete this recipe, we need to have the JarViewer project that was created in the
Responding to events recipe. If you have not completed this recipe, the source code is
available with the code download bundle for this chapter.

Developing Desktop Applications with NetBeans

124

How to do it…
When NetBeans builds an executable .jar file for a desktop GUI application, it adds all the
necessary references to any external libraries that are required and bundles those with the
application. Since our JarViewer application doesn't use any third-party dependencies,
let's add one on the assumption that our application does use it. We'll add the Java DB driver
to our project, as it's possible to see that at some point in the future we may want to add
database functionality to the application, with the following steps:

1.	 Right-click on the Libraries node for the project within the Projects explorer and click
on Add Library…. The Add Library window is shown in the following screenshot:

2.	 From the list of Available Libraries, click on Java DB Driver.

3.	 Click on Add Library.

The library has now been added to the JarViewer project and will be included in the
project's distribution.

Chapter 4

125

Let's now create that distribution with the following steps:

1.	 Right-click on the project's root node (JarViewer) in the Projects explorer and
select Clean and Build.

2.	 The project will now get built. Examine the Output window and notice that NetBeans
tells us how to run the application from the command line:
To run this application from the command line without Ant, try:

java -jar "C:\NetBeansProjects\JarViewer\dist\JarViewer.jar"

3.	 Open up the Files explorer and expand the dist node, as shown in the
following screenshot:

4.	 Note that the .jar file for our project is located underneath the dist folder.

5.	 Note also the dist/lib folder that includes all third-party libraries that we
have referenced.

6.	 To distribute our application, we now only need to take a copy of everything
underneath the dist folder and provide it to our customers.

Developing Desktop Applications with NetBeans

126

How it works…
When building the application, NetBeans creates a MANIFEST.MF file within the META-INF
folder of the archive. The MANIFEST.MF file for the application created in this recipe is shown
in the following screenshot:

This file contains all of the information required to run the .jar file from the command line.
All of this information is automatically generated from the project properties:

ff Class-Path: This references all of the third-party libraries that we need to use so that
they can be located at runtime

ff Main-Class: This specifies the main class to run when the archive is executed

There's more...
When creating a .jar archive, it's important to note that only .jar files are copied to the
dist/lib folder. If you have other types of files on the classpath that are used by your
application, for example, image files, these will not be copied into the dist folder and
will not be available for deployed applications.

Does that mean the custom icon we specified for our application will not be available in
the distribution?

Fortunately, our custom icon will be available within the distribution as we added the image
file directly into the source folder of the application. You may remember that when we loaded
the image, we loaded it from the classpath not from the filesystem.

If you want to make a .exe file for your application rather than distributing it
as a .jar file, consider third-party products such as Launch4j. Launch4j
is an open source product that wraps a .jar file with a .exe file giving
control over the JRE settings used when launching the application. Check
out http://launch4j.sourceforge.net for further details.

http://launch4j.sourceforge.net

5
NetBeans Enterprise

Application
Development

In this chapter, we will cover the following recipes:

ff Adding WildFly support to NetBeans

ff Adding TomEE support to NetBeans

ff Creating a web application

ff Creating a web application with JSF support

ff Adding JSF support to a web application

ff Creating a JSF composite component

ff Creating an EJB

ff Creating a Message Driven EJB

ff Creating a timer

ff Creating a REST web service

ff Using the Chrome Connector

NetBeans Enterprise Application Development

128

Introduction
Java EE is a remarkable technology for all that it can accomplish, but in earlier versions,
it was criticized for being overly complicated and verbose.

Much of this criticism was justified for the fact that Java EE relied heavily on XML-based
configuration, requiring many interfaces and exceptions, and presenting developers with
many hurdles to face when using it. Technologies such as Hibernate and Spring emerged,
and gained much attraction simply because they sought to address those complexities.

With the introduction of Java EE 5, the core platform once again gained the upper hand, tying
together the same formula that helped catapult Hibernate and Spring into developers' favor.
Annotations were brought in to tone down the verbosity of code, along with the reduction of
checked exceptions, POJO programming, introduction of JSF, enhancements in EJB QL and
Application Container, and simplification of Session Beans.

Session Beans are Java objects that perform a multitude of operations but are mainly used for
managing transactional data. With Java EE 7, Session Beans can be either Stateless, Stateful,
or Singleton beans:

ff Stateful Session Beans maintain a conversational state for the entire client session.

ff Stateless Session Beans do not maintain a conversational state. These beans are
maintained in memory for as long as the client request takes and after that, the
state is no longer kept in memory.

ff Singleton Session Beans are guaranteed to only have one instance within an
application and exist for the entire life of the application.

The idea of simplifying development continues in Java EE 7. Java EE 7 has three main aims,
as follows:

ff Increase developer productivity by requiring less boilerplate code and using more
annotations / less XML

ff Provide better HTML 5 support with the likes of JSON processing, REST and
Web Sockets

ff Meet enterprise demands with the new batch, concurrency and simplified JMS APIs

In Java EE 7, some of the heavyweight, outdated technologies and APIs such as JAXR, EJB 2.x
Entity Beans, and Java EE Application Deployment, have been marked as pruned, either for
low usage by developers, or for not being entirely implemented by the vendors that chose to
create the application containers. On top of that, performance enhancements for deployment
and resources used, such as Java EE web profiles, were added so that developers who do not
utilize the entire Java EE stack can deploy applications based only on what they use, enabling
a much more lightweight application.

Chapter 5

129

Adding WildFly support to NetBeans
Many years ago, JBoss released its first application server, the JBoss application server. The
JBoss application server was developed as an open source software up until version 7, when
it was redeveloped and renamed WildFly 8. WildFly 8 is one of the most used open source
Java EE application servers available. Version 8 fully supports both the Java EE 7 full and web
profiles making it one of the select few application servers that fully supports the Java EE 7
full platform.

WildFly is built on top of many open source projects such as Hibernate for persistence,
Weld for contexts and dependency injection, and Mojarra for Java Server Faces.

WildFly provides both web-based and command-line-based management tools together with
full Maven support for managing project deployments. These tools allow NetBeans to provide
full control over WildFly when developing Java EE applications.

A standalone and a domain mode of WildFly are provided with the distribution. The standalone
mode is most likely what developers will use during application development as it provides a
single application server instance running within a single JVM. The domain mode allows WildFly
to run across multiple JVMs while providing synchronization of applications and settings across
different JVMs. In this recipe, we'll discuss the standalone mode of WildFly.

Before we see how to install WildFly support within NetBeans, let's first take a look at how to
install WildFly and take a quick look around WildFly's application structure.

Installing WildFly is a very straightforward process. Simply download the distribution from
the project's download site (http://wildfly.org/downloads) and unzip/untar it into
a local directory.

For each release of WildFly, the full EE 7-certified application server, a minimalistic core
distribution and the application server source code can be downloaded. Ensure that you
download the full Java EE 7-certified server:

http://wildfly.org/downloads

NetBeans Enterprise Application Development

130

WildFly is provided under the LGPL v2.1 license, so please ensure that
you have read the license (http://www.gnu.org/licenses/lgpl-
2.1.html) before using the software.

Once unzipped/untarred, the WildFly directory structure will look like the following screenshot:

Let's take a look at what these different directories mean in WildFly:

Directory Description
appclient Configuration files used by the application client container
bin Management scripts including those to start up the

application server
docs Example configuration files together with XML

schema definitions
domain Configuration files and deployments for the domain

mode configuration
modules Modules (additional .jar files) required by the application

server, for example, database drivers or JSON providers
standalone Configuration files and deployments for the standalone

mode configuration
welcome-content Contents for the default homepage for the application server

http://www.gnu.org/licenses/lgpl-2.1.html
http://www.gnu.org/licenses/lgpl-2.1.html

Chapter 5

131

Once you've installed WildFly, you need to learn how to start the application server. To start
WildFly, open a command prompt (or a terminal if running on Linux/Mac OS X), change the
directory to the root installation of WildFly, and execute one of the following commands:

ff If running on Windows, use this command: bin\standalone.bat

ff If running on Linux/Mac OS X, use this command: ./bin/standalone.sh

The following screenshot shows WildFly starting up in a Windows command shell:

To stop WildFly, press Ctrl + C within the command/terminal window. Now that we've had a
brief overview of WildFly, let's see how to integrate it into NetBeans.

Getting ready
To add WildFly as an application server within NetBeans, it's preferable to be running the Java
EE download bundle of NetBeans so that additional plugins other than WildFly do not need to
be installed.

It's recommended to use the latest version of either Java 7 or Java 8 for both NetBeans and
WildFly, so if you haven't got one of those installed yet, you can install either of them from

http://www.oracle.com/technetwork/java/index.html

http://www.oracle.com/technetwork/java/index.html

NetBeans Enterprise Application Development

132

How to do it …
Perform the following steps:

1.	 Ensure that NetBeans is running, and then click on Tools and then Plugins from
the main menu.

2.	 Click on the Available Plugins tab. Notice that the number in brackets at the
end of the tab name shows the number of available plugins as shown in the
following screenshot:

3.	 Locate the WildFly Application Server plugin and check the Install checkbox
next to it.

4.	 Click on the Install button.

5.	 The NetBeans IDE plugin installer will now be displayed showing that the WildFly
application server plugin is to be installed.

Chapter 5

133

6.	 Click on Next, accept the license agreement, and then click on Install.

7.	 When prompted, select Restart the IDE Now to complete the installation of
the plugin.

NetBeans will now restart with the WildFly plugin successfully installed. The final stage is to
add a WildFly server instance into NetBeans so that we can start developing applications
against it. Perform the following steps:

1.	 Click on Tools and then click on Servers from the main menu. The NetBeans Servers
definition dialog will now be displayed:

2.	 Click on the Add Server button.

NetBeans Enterprise Application Development

134

3.	 On the Add Server Instance dialog, select WildFly Application Server as shown in
the following screenshot:

4.	 Click on Next.

5.	 Enter the Server Location field as the home directory where you previously
installed WildFly.

I always install my development software into a c:\DevTools
folder, so for me, the Server Location field would be set to
c:\DevTools\WildFly-8.0.0.Final.

6.	 Upon specifying Server Location, the Server Configuration field will be automatically
set to the configuration file of the standalone WildFly instance within your distribution.

7.	 Click on Next.

8.	 The Instance Properties page will now be shown. Verify that the default Host value is
localhost and Port is 8080, and change them to the values for your environment
if not.

9.	 Click on Finish.

10.	 You have now added an instance of the WildFly application server within NetBeans.
Click on Close to exit the Servers dialog.

Chapter 5

135

How it works…
We've now successfully added an instance of WildFly into NetBeans, but how do we
control the server? If we locate the Services explorer, the Servers node displays a list of
all application servers registered within NetBeans including our newly registered WildFly
instance. Right-clicking on the server displays a context menu that allows the server to be
started (in standard, debug or profiling modes), stopped, or restarted. We can view the server
log, which displays the running WildFly console output into the NetBeans Output window.
This can be especially useful for examining debug messages and WildFly log messages while
debugging applications.

NetBeans Enterprise Application Development

136

Located within the WildFly application server node on the Services explorer, we can also see
what Enterprise Applications, EJBs, and web modules are deployed. From here, we can also
stop and undeploy them.

We can also see what resources are deployed to the application server, whether they are data
sources, JMS resources, or mail sessions. The current version of the NetBeans plugin allows
us to view these resources, but not edit them.

Viewing the application server properties allows us to specify the configuration file that defines
the application server instance (although, you'll probably never need to change that). We can
also change the VM options that are used to start the application server. The default JVM
settings (-Xms128m -Xmx512m -XX:MaxPermSize=256m) are probably sufficient for most
small applications, but may need modifying for larger applications. JVM settings such as these
will only take effect upon restarting the server.

Adding TomEE support to NetBeans
TomEE is a Java EE 6 web profile compatible application server based upon the Apache
Tomcat servlet container.

TomEE started out being an integration between OpenEJB (a lightweight EJB container) and
Tomcat, and has now grown to include all of the Java EE 6 web profile features such as CDI,
EJB, and Bean validation. All of these features are provided within TomEE via different Apache
products. For example, Apache OpenWebBeans provides the implementation of CDI, Apache
OpenEJB provides the implementation for EJB, and Apache BVal provides the implementation
of Bean validation.

NetBeans 8 provides native support for TomEE without the need for installing additional
plugins. This functionality was not available with NetBeans 7.4 and earlier. Installing TomEE
support into NetBeans, therefore, is a matter of registering a new server instance. Before we
look at that, let's take a quick look at how to install a TomEE server.

Installing TomEE is very similar to installing WildFly as seen in the previous recipe,
Adding WildFly support to NetBeans.

To install TomEE, download a distribution from http://tomee.apache.org/downloads.
html, and unzip/untar it into your preferred location.

http://tomee.apache.org/downloads.html
http://tomee.apache.org/downloads.html

Chapter 5

137

Once unzipped, the TomEE directory structure will look like the following screenshot:

If you've ever used Apache Tomcat, you'll instantly recognize this as the same directory
structure that Tomcat uses—TomEE is based upon Tomcat after all!

We'll not go over the installation/directory structure of TomEE any further here,
as it's very similar to Tomcat. For further details, check out the TomEE documentation
at http://tomee.apache.org/documentation.html.

http://tomee.apache.org/documentation.html

NetBeans Enterprise Application Development

138

Getting ready
To create a TomEE instance within NetBeans, it's preferable to be running the Java EE
download bundle of NetBeans so that additional plugins do not need to be installed.

It's recommended to use the latest version of either Java 7 or Java 8 for both NetBeans and
TomEE, so if you haven't got one of those installed yet, you can install either of them from:

http://www.oracle.com/technetwork/java/index.html

How to do it …
Perform the following steps:

1.	 Click on the Services explorer and expand the Servers node:

2.	 Right-click on the Servers node and select Add Server from the pop-up context menu.
3.	 On the Add Server Instance dialog, select Server as Apache Tomcat or TomEE:

http://www.oracle.com/technetwork/java/index.html

Chapter 5

139

4.	 Click on Next.
5.	 On the Add Server Instance page, specify Server Location as the directory into which

you unzipped/untarred the TomEE distribution.

I always install my development software into a c:\DevTools
folder, so for me, the Server Location field would be set to
c:\DevTools\Apache-TomEE-WebProfile-1.7.0.

6.	 Enter Username as admin. This user will be created, if they do not exist, to perform
management tasks against the TomEE server.

7.	 Enter a value for Password.
8.	 Click on Finish.

How it works …
We've now successfully created a TomEE instance within NetBeans. Now, we can manage the
server in a fashion similar to how we managed WildFly application servers as detailed in the
previous recipe, Adding WildFly support to NetBeans.

Right-clicking on an Apache TomEE server within the Services explorer lets us manage the
server properties.

NetBeans Enterprise Application Development

140

From here, we can change the management user credentials or change the ports that are
used by the server. On the Startup tab, we can define Debugger Transport detailing how
we can connect to the server to debug our applications.

We can define JVM options and deployment timeouts, which can be useful to change when
deploying larger applications.

Creating a web application
In the previous recipes, Adding WildFly support to NetBeans and Adding TomEE support to
NetBeans, we saw how to create and manage instances of WildFly and TomEE, respectively.

In this recipe, we'll see how to create web applications and deploy them against our chosen
application server. For this recipe, we'll use TomEE.

NetBeans supports both Ant and Maven for creating web applications. In this
recipe, we'll create a project using NetBeans built-in Ant project support.

Getting ready
To complete this recipe, you need to have a valid installation of TomEE configured within
NetBeans. If you do not have this, follow the earlier recipe, Adding TomEE support
to NetBeans.

How to do it…
Perform the following steps:

1.	 Click on the File menu and select New Project.

2.	 On the New Project dialog, select Java Web from the Categories list and then
Web Application from the Projects list.

3.	 Click on Next.

4.	 Enter the Project Name field as FirstWebApp.

5.	 Click on Next.

6.	 On the Server and Settings page of the New Web Application wizard, select your
TomEE instance as Server.

Chapter 5

141

7.	 Click on the Finish button.

NetBeans has now created a blank web application with a single index.jsp file within it.
Let's see how we can deploy and run the application, and then make changes to it:

1.	 Right-click on the FirstWebApp project within the Projects explorer and click on Run.

2.	 The application will now be deployed to TomEE with the application server being
automatically started if it is not already running. The default system browser will be
opened and the application will be run within it:

NetBeans Enterprise Application Development

142

As seen in the previous step, NetBeans automatically deploys web applications when they are
executed from within the IDE. In order to increase developer productivity, NetBeans will also
automatically deploy the web application when we make changes to the files:

1.	 Ensure that the index.jsp file is open for editing.
2.	 Locate the <h1> tag and change its contents from Hello World! to Hello from

our first Web Application!.
3.	 Press Ctrl + S (Cmd + S on Mac OS X) to save the file.
4.	 Refresh the browser and notice that the web page has been updated.

How it works …
When deploying an application on TomEE, NetBeans creates a configuration descriptor file
with the same name as the application and deploys it to TomEE.

INFO: Deploying configuration descriptor C:\DevTools\apache-tomee-
webprofile-1.7.0\conf\Catalina\localhost\FirstWebApp.xml

From this configuration descriptor, TomEE is able to deploy the web application as an exploded
.war archive, which saves deployment time, especially for larger projects.

There's more
What if we want to see exactly what requests we've made to TomEE so that we can perform
debugging or check out load performance? TomEE allows us to view all the HTTP requests
made to the application server. This is disabled by default, but can be easily enabled by
viewing the server properties and checking the Enable HTTP Monitor checkbox.

Chapter 5

143

Once you've changed the server properties to enable the HTTP monitor, you'll need to restart
TomEE for the changes to take effect. This can easily be achieved by right-clicking on the
TomEE instance within the Services explorer and selecting the Restart option.

NetBeans Enterprise Application Development

144

When running an application, NetBeans can be configured to open a specific browser. The
default option is to open the operating system's default browser, which in many cases, will
be the most suitable option. It is possible, however, to change the browser that is opened.
This is achieved by editing the project properties and changing the Browser option under
the Run category. Options are available to view using any browsers that you have installed on
your computer or by using the NetBeans-embedded Webkit browser. For those doing mobile
development, the choice is available to use an Android emulator or an Android device.

In addition to the HTTP Server Monitor that is provided with the Tomcat/TomEE support,
NetBeans provides a Network Monitor that can be used in conjunction with the embedded
Webkit browser.

The Network Monitor logs any failed web requests, including failed REST requests, and can
therefore be useful when diagnosing AJAX applications to examine when requests fail.

Creating a web application with JSF support
In the Creating a web application recipe, we saw how to create a basic JSP web application
and introduced the concepts behind creating, deploying, and running a web application.

In this recipe, we'll take things a little further and show how to create a Java Server Faces
(JSF) web application and run it on the WildFly application server. This recipe isn't intended
to be a thorough tutorial on JSF, although we will go through the basics.

We'll create a JSF application that asks for our name and then welcomes us to the application.
We'll see how NetBeans helps us make the development easier.

Getting ready
To complete this recipe, we need to have a running instance of the NetBeans Java EE bundle,
together with a local installation of the WildFly 8 application server. We need to have the
WildFly 8 plugin installed into NetBeans. See the Adding WildFly support to NetBeans recipe
for further details.

How to do it…
Perform the following steps:

1.	 Click on the File menu, select New, and then New Project….
2.	 On the New Project dialog, select Java Web from the Categories list, and then

Web Application from the Projects list.
3.	 Click on Next.
4.	 Enter the Project Name field as HelloJSF.
5.	 Click on Next.

Chapter 5

145

6.	 On the Server and Settings page of the New Web Application wizard, select your
WildFly instance as Server and ensure that Java EE Version is set to Java EE 7 Web.

7.	 Click on the Next button.

8.	 On the Frameworks selection page, check JavaServer Faces as a selected framework.

9.	 Click on Finish.

NetBeans Enterprise Application Development

146

10.	 Double-click on the index.xhtml file within the Projects explorer to open it up
within the HTML editing window.

11.	 Delete the default text, Hello from Facelets.

12.	 Right-click between the <h:body> and <h:/body> tags and select Insert Code…
from the context menu.

13.	 On the Generate pop-up window, click on JSF Form. The contents of the <h:body>
tag will now be updated to include a <f:view> tag containing a <h:form> tag
as shown:
<h:body>
 <f:view>
 <h:form>
 </h:form>
 </f:view>
</h:body>

14.	 Insert the following markup between the <h:form> and </h:form> tags:
<h:panelGrid columns="3">
 <h:outputText value="Hello. What is your name?"/>
 <h:inputText id="name" value="#{helloBean.name}"/>
 <h:commandButton action="#{helloBean.sayHello}"
 value="Hello"/>
</h:panelGrid>

We've now created a simple input JSF page that displays some output text, asks for some
input, and then has a button that can be clicked to submit the input.

Let's now create an output page that can echo the input that the user types, as follows:

1.	 Right-click on the Web Pages node in the Projects explorer, click on New, and then
click on Other.

2.	 In the New File dialog, select JavaServer Faces from the Categories list, and JSF
Page from the list of File Types.

3.	 Click on Next.

4.	 Enter the File Name value as hello.

It's tempting here to enter File Name as hello.xhtml instead
of just hello. You must, however, omit adding the suffix to the
filename as this is automatically added by NetBeans. Otherwise,
NetBeans will create a file called hello.xhtml.xhtml.

Chapter 5

147

5.	 Ensure that the option specifies Facelets instead of JSP File.

6.	 Click on Finish.

7.	 The new hello.xhtml file will now be opened for editing. Replace the default body
of Hello from Facelets with:
Hi, <h:outputText value="#{helloBean.name}"/>

We've now created all of the views for our JSF application, all we need to do now is create a
JSF backing bean that can take our input and forward it on to the output page. Perform the
following steps:

1.	 Right-click on the Source Packages node of the HelloJSF application and click on
New, and then click on Other.

2.	 In the New File dialog, select JavaServer Faces from the Categories list and JSF
Managed Bean from the list of File Types.

3.	 Click on Next.

4.	 Enter the Class Name value as HelloBean and the Package value as
com.davidsalter.hellojsf.

NetBeans Enterprise Application Development

148

Notice that the bean is created with a default Name, the
same as Class Name (capitalized as camelCase however),
and the default Scope of the bean is set to request.

5.	 Click on Finish.

6.	 The HelloBean.java file will now be opened for editing. Replace the body of the
class with the following code:
private String name;

public HelloBean() {
}

public String sayHello() {
 return "hello.xhtml";
}
public String getName() {
 return name;
}
public void setName(String name) {
 this.name = name;
}

The HelloBean.java class has one property, name, with corresponding getters and setters.
There is one method, sayHello(), which is invoked when the button is clicked on our form.
This method tells JSF to render the hello.xhtml view when it is called.

Let's now deploy and run our application and see how it runs. Right-click on the Hello JSF
project within the Projects explorer and then click on Run.

When the application is first run, WildFly is started up if it is not already running.
The application's .war file is then deployed to the running server. The initial page
of the application is as shown in the following screenshot:

Chapter 5

149

After entering your name and clicking on the Hello button, JSF says "Hi":

Now that the application is running, making any changes to the view files (the
.xhtml files) or the JSF managed beans will automatically be hot deployed
to WildFly when they are saved. The application does not need to be run
again, all that is needed is a browser refresh to utilize the new content.

How it works…
When we created a JSF application, there were two aspects that we developed. We developed
a couple of view pages (index.xhtml and hello.xhtml) and a managed JSF bean
(HelloBean).

For the view pages, we used the Facelets technology. Facelets is the default view technology
used with Java Server Faces 2 and has taken over from the use of JSP within Java Server
Faces 1.x applications. JSP is now considered a legacy technology.

NetBeans Enterprise Application Development

150

Facelets is a powerful templating system that allows developers to use any of the JSF
components and create template-based web pages. Template-based web pages allow, for
example, a layout page to be developed that has a header and a footer and a piece of content
in between the two. With templating, we can use a layout page that defines all of the layout
outside of the main content so that we can concentrate only on the main content. If we later
decide that we wish to change the layout to add a sidebar, for example, we just need to
change the template and not all of the pages we have developed.

Facelets allows the use of different component libraries. These libraries must be registered
via a tag library in the <html> definition of a file. The two standard libraries for HTML and
forms are provided with the JSF runtime. When we created a JSF page in this recipe, we
told Facelets about these two libraries by defining the h and f tag libraries in the <HTML>
definition, as follows:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core">

By referencing these tag libraries, we were able to reference any of the components within the
h and f tag libraries (such as <h:outputText /> and <f:view />).

For more information regarding Facelets, check out the Oracle documentation at:

http://docs.oracle.com/javaee/7/tutorial/doc/jsf-facelets.htm

To perform some processing, we created a JSF managed bean. This is simply a POJO with the
@ManagedBean annotation applied to it. We also applied the @RequestScoped annotation
to the bean so that the lifecycle of the bean is tied to an HTTP request. The bean is therefore
initialized every time an HTTP request is made. Within the managed bean, we created a single
member to hold the name entered by the user and a single method (sayHello) that returned
the address of the Facelets page to render when the button was pressed on the form.

To link the view and the managed bean, we used expression language. Here we link the input
box to the name property of the managed bean as follows:

<h:inputText id="name" value="#{helloBean.name}"/>

We also link the button action to the sayHello method in the bean as follows:

<h:commandButton action="#{helloBean.sayHello}" value="Hello"/>

There's more
How did JSF know what page to display first, and how did it know to use .xhtml as the file
extension for Facelets views?

When we created the project, we used the NetBeans defaults and allowed NetBeans to create
some default configuration within the web.xml file for the project.

http://docs.oracle.com/javaee/7/tutorial/doc/jsf-facelets.htm

Chapter 5

151

The Faces servlet was defined with a URL pattern set to /faces/*:

<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
</servlet-mapping>

All JSF requests go through the Faces servlet as this is what enables the lifecycle of Facelets
components. Without this mapping, Facelets would just not work! This mapping states that
any request to /faces/* will be executed via the Faces servlet. So for example, /faces/
index.xhtml would cause the index.xhtml file to be processed as a JSF Facelets file.

NetBeans also configured the default page of the application to be faces/index.xhtml:

<welcome-file-list>
 <welcome-file>faces/index.xhtml</welcome-file>
</welcome-file-list>

This specifies the default page that will be opened when the root URL of the application
is accessed.

What if I wanted to use a CDI bean or an EJB instead of the JSF managed bean. Could I
do that?

Yes, it's entirely possible to use a different type of a managed bean as the backing bean for
JSF pages. With Java EE 7, CDI beans are very common and can be used interchangeably with
JSF managed beans. EJBs can also be used as backing beans if required, but they provide
a greater overhead as they are considered more heavyweight (even though they are still
essentially POJOs) than JSF backing beans or CDI beans.

A good rule of thumb it to use the lightest bean possible for a required situation and only
move to the next higher level of bean when required.

So, for a simple application, a JSF Managed bean is sufficient. It allows us to receive data
from the web page and then update the web page with some results. We don't really need
anything more complex.

If we find that we need to start injecting beans into other resources, then a CDI managed
bean makes sense. We can inject EJBs into CDI beans if we need to perform any processing
within the bean.

If we find that we need to make our backing beans transactional (one of the key aspects of
EJBs), then we could consider using an EJB as a backing bean.

NetBeans Enterprise Application Development

152

Start with the simplest possible type of bean and only increase
complexity when needed.

What if I want to perform validation on input fields? Does JSF allow that? It certainly does.
We can either use the Bean Validation API to perform validation within our model, or we can
perform JSF validation within the view.

To output error messages to the view, we can use the <h:message /> tag to output a
message for a single element, or the <h:messages /> tag to output a list of all the error
messages within the form:

<h:inputText value="#{cc.attrs.editValue}" id="inputText" />
<h:message for="inputText" />

Using the Bean Validation API, we can add annotations onto fields that will be validated before
being accepted by the JSF runtime. Bean Validation provides many annotations to perform
validation, and even allows custom validators to be written. Some of the more common
validations are as follows:

ff @NotNull: The specified field value must not be null

ff @Min: The specified field value must be at least that specified by the constraint

ff @Max: The specified field value must be at most that specified by the constraint

ff @Past: The specified field value date must be a date in the past

ff @Pattern: The specified field value must match that specified by a
regular expression

ff @Size: The size of the field value must be between the specified limits

For more information on Bean Validation, check out the website
http://beanvalidation.org.

With JSF validation, we can perform a similar task to Bean Validation, but instead using JSF
tags. Validation is performed within the Validation phase of a JSF component's lifecycle. As
with bean validation, JSF allows custom validators to be written. Some of the standard JSF
validators are:

ff <f:validateLength />: The size of the field value must be between the
specified limits

ff <f:validateLongRange />: The range of a long integer must be between the
specified limits

ff <f:validateDoubleRange />: The range of a double must be between the
specified limits

http://beanvalidation.org

Chapter 5

153

Adding JSF support to a web application
If you've created a web application and later decide that you wish to add JSF support to it,
NetBeans provides the facility to easily add JSF support together with support for popular
JSF component libraries.

In this recipe, we'll show how to add JSF support to a basic web application and how to add
support for the PrimeFaces component library.

Getting ready
To complete this recipe, we will need to have a Java EE web application that has not previously
been configured with JSF support. That is to say, we've not referenced any JSF support in the
application's web.xml, and the default view technology for the application is something other
than Facelets.

If you are unsure on how to create such an application, follow the Creating a web application
recipe earlier in this chapter. When creating the application, ensure that the project name is
AddingJSF and that WildFly is selected as Server.

How to do it…
Perform the following steps:

1.	 Right-click on the AddingJSF project node within the Projects explorer and click
on Properties.

2.	 Click on Frameworks from within the Categories list to show all the frameworks used
by the application. At present, this list is empty.

3.	 Click on the Add… button to display the Add a Framework dialog as shown in the
following screenshot:

NetBeans Enterprise Application Development

154

4.	 Click on JavaServer Faces to select it as the framework to add and then click on the
OK button.

5.	 The Add a Framework dialog will now close and JavaServer Faces will be listed
within Used Frameworks.

The default JSF URL mapping with NetBeans generated projects is to render the .xhtml
files at the URL of /faces/*.xhtml. If you don't like this mapping, it can be easily changed.
Another popular mapping URL, for example, is *.jsf.

Let's now change the configuration so that JSF pages are served via the *.jsf URL
mapping and then add the PrimeFaces component library to our application. Perform
the following steps:

1.	 Click on the Configuration tab within JavaServer Faces Configuration.

2.	 Change JSF Servlet URL Pattern from /faces/* to *.jsf.

If you enter an invalid URL pattern here, such as *, then
NetBeans will warn you that the pattern is invalid.

Chapter 5

155

3.	 Click on the Components tab to show the list of JSF component libraries that can be
added to the project:

4.	 Check the PrimeFaces component entry.

If this is the first time that you have used PrimeFaces within NetBeans,
you may encounter an error message stating JSF library PrimeFaces not
set up properly: Searching valid PrimeFaces library. Please wait…. This
error message indicates that a NetBeans library for PrimeFaces has not
yet been created. PrimeFaces is, however, distributed with NetBeans, so
NetBeans is clever enough to know this and will create the library for you.
You just need to wait a few seconds for the library to be created before
this error message disappears.

5.	 Click on the OK button to complete adding JSF support, together with the PrimeFaces
component library, into the application.

6.	 Right-click on the AddingJSF project within the Projects explorer and select Run to
deploy and execute the application.

NetBeans Enterprise Application Development

156

The application will now launch in your default browser. Notice the link on the page to
PrimeFaces—click on it to see a demonstration of what PrimeFaces can do.

How it works …
When we add JSF support to the application, NetBeans will automatically add some XML
configuration to the project's web.xml file.

The Faces servlet was added and configured to serve JSF pages via the *.jsf pattern,
as follows:

<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.jsf</url-pattern>
</servlet-mapping>

Additionally, JSF was configured into the development mode in order to help us
while developing:

<context-param>
 <param-name>javax.faces.PROJECT_STAGE</param-name>
 <param-value>Development</param-value>
</context-param>

Finally, the welcome file for the application was configured to be index.jsf:

<welcome-file-list>
 <welcome-file>index.jsf</welcome-file>
</welcome-file-list>

To demonstrate PrimeFaces, NetBeans added a new page, welcomePrimefaces.xhtml
to the project. This page shows how to reference the PrimeFaces namespace within the
Facelets file and shows some of the different layout features available within PrimeFaces
along with links to PrimeFaces demonstration and documentation.

Chapter 5

157

There's more
When adding JSF component libraries, we had the option of adding PrimeFaces, ICEfaces,
or RichFaces. NetBeans only distributes the PrimeFaces library, so if you wish to use either
ICEfaces or RichFaces, you will need to download the relevant distribution for the library. Once
downloaded, click on the More… button on the components configuration screen, next to your
selected library, to create the library and configure it within your projects.

What if I want to use a different JSF component library? Well, that can be achieved in
NetBeans also. Simply download the component library you wish to use, create a NetBeans
library for it and then add the library to the project. See the Creating a library recipe in
Chapter 1, Using NetBeans Projects, for further details on how to achieve this.

NetBeans Enterprise Application Development

158

What if I want to use a different version of JSF than is supplied with my application server,
or my application server doesn't bundle JSF with it? On the Libraries tab within the JSF
configuration, we can select to use a version of JSF that is shipped with the application
server, use one of the NetBeans registered JSF libraries, or we can create a new JSF
library and use that.

When adding JSF support to a web application, you need to think
carefully about what version of JSF to use. Most often, unless there
are specific reasons, the version provided with the application server
will be the best choice. Some application servers allow you to choose
the version of JSF to use, whereas others force you to use the provided
version. Once you've specified a version of JSF to use, you can't change
it without removing the JSF support and then adding it again.

Creating a JSF composite component
JSF is a rich component-based framework, which provides many components that developers
can use to enrich their applications. We saw in a previous recipe how different vendors
provide additional JSF toolkits such as PrimeFaces, RichFaces, and Icefaces that all provide
additional components above those that are provided with the base JSF components.

JSF 2 also allows composite components to be easily created, which can then be inserted into
other JSF pages in a similar way to any other JSF components such as buttons and labels.

In this recipe, we'll see how to create a custom component that displays an input label and
asks for corresponding input. If the input is not validated by the JSF runtime, we'll show an
error message. The component is going to look like this:

Chapter 5

159

The custom component is built up from three different standard JSF components. On the
left, we have a <h:outputText/> component that displays the label. Next, we have a
<h:inputText /> component. Finally, we have a <h:message /> component. Putting
these three components together like this is a very useful pattern when designing input
forms within JSF.

Getting ready
To complete this recipe, you will need to have a working installation of WildFly that has been
configured within NetBeans. If you are unsure how to achieve this, check the Adding WildFly
support to NetBeans recipe earlier in this chapter.

We will be using the Enterprise download bundle of NetBeans as this includes all of the tools
we need to complete the recipe without having to download any additional plugins.

How to do it …
First of all, we need to create a web application and then create a JSF composite component
within it. Perform the following steps:

1.	 Click on File and then New Project….

2.	 Select Java Web from the list of Categories and Web Application form the list
of Projects.

3.	 Click on Next.

4.	 Enter the Project Name value as CompositeComp.

5.	 Click on Next.

6.	 Ensure that Add to Enterprise Application is set to <None>, Server is set to WildFly
Application Server, Java EE Version is set to Java EE 7 Web, and Context Path is set
to /CompositeComp.

7.	 Click on Next.

8.	 Click on the checkbox next to JavaServer Faces as we are using this framework for
this recipe.

9.	 All of the default JSF configurations are correct, so click on the Finish button to
create the project.

10.	 Right-click on the CompositeComp project within the Projects explorer and click on
New and then Other….

11.	 In the New File dialog, select JavaServer Faces from the list of Categories and JSF
Composite Component from the list of File Types.

12.	 Click on Next.

NetBeans Enterprise Application Development

160

13.	 On the New JSF Composite Component dialog, enter the File Name value as
inputWithLabel and change the folder to resources\cookbook.

14.	 Click on Finish to create the custom component.

In JSF, custom components are created as Facelets files that are stored within the
resources folder of the web application. Within the resources folder, multiple subfolders
can exist, each representing a namespace of a custom component. Within each namespace
folder, individual custom components are stored with filenames that match the composite
component names.

We have just created a composite component within the cookbook namespace called
inputWithLabel.

Within each composite component file, there are two sections: an interface and an
implementation. The interface lists all of the attributes that are required by the composite
component and the implementation provides the XHTML code to represent the component.

Chapter 5

161

Let's now define our component by specifying the interface and the implementation. Perform
the following steps:

1.	 The inputWithLabel.xhtml file should be open for editing. If not, double–click on
it within the Projects explorer to open it.

2.	 For our composite component, we need two attributes to be passed into the
component. We need the text for the label and the expression language to
bind the input box to. Change the interface section of the file to read:
<cc:interface>
 <cc:attribute name="labelValue" />
 <cc:attribute name="editValue" />
</cc:interface>

3.	 To render the component, we need to instantiate a <h:outputText /> tag to
display the label, a <h:inputText /> tag to receive the input from the user, and a
<h:message /> tag to display any errors that are entered for the input field. Change
the implementation section of the file to read:
<cc:implementation>
 <style>
 .outputText{width: 100px; }
 .inputText{width: 100px; }
 .errorText{width: 200px; color: red; }
 </style>
 <h:panelGrid id="panel" columns="3" columnClasses="outputText,
inputText, errorText">
 <h:outputText value="#{cc.attrs.labelValue}" />
 <h:inputText value="#{cc.attrs.editValue}" id="inputText"
/>
 <h:message for="inputText" />
 </h:panelGrid>
</cc:implementation>

4.	 Click on the lightbulb on the left-hand side of the editor window and accept the fix to
add the h=http://xmlns.jcp.org/jsf/html namespace.

We've now successfully created a composite component. Let's now create an input page that
uses this component to ask for some information from the user. Perform the following steps:

1.	 Double-click on the index.xhtml page within the Projects explorer to open the
application's home page for editing.

2.	 We need to add a reference to the composite component's name space within the
<html /> section of the file so that the JSF components can be used correctly.
Change the <html> definition to read:
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:cookbook ="http://xmlns.jcp.org/jsf/composite/cookbook">

NetBeans Enterprise Application Development

162

3.	 We can now reference the composite component from within the Facelets page.
Add the following code inside the <h:body> code on the page:

<h:form id="inputForm">
 <cookbook:inputWithLabel labelValue="Forename"
editValue="#{personController.person.foreName}"/>
 <cookbook:inputWithLabel labelValue="Last Name"
editValue="#{personController.person.lastName}"/>
 <h:commandButton type="submit" value="Submit"
action="#{personController.submit}"/>
</h:form>

This code instantiates two instances of our inputWithLabel composite control and binds
them to personController. We haven't got one of those yet, so let's create one and a class
to represent a person. Perform the following steps:

1.	 Create a new Java class within the project. Enter Class Name as Person and
Package as com.davidsalter.cookbook.compositecomp.

2.	 Click on Finish.

3.	 Add members to the class to represent foreName and lastName:
private String foreName;
private String lastName;

4.	 Use the Encapsulate Fields refactoring to generate getters and setters for
these members.

5.	 To allow error messages to be displayed if the foreName and lastName values are
inputted incorrectly, we will add some Bean Validation annotations to the attributes of
the class. Annotate the foreName member of the class as follows:
@NotNull
@Size(min=1, max=25)
private String foreName;

6.	 Annotate the lastName member of the class as follows:
@NotNull
@Size(min=1, max=50)
private String lastName;

7.	 Use the Fix Imports tool to add the required imports for the Bean
Validation annotations.

8.	 Create a new Java class within the project. Enter Class Name as
PersonController and Package as com.davidsalter.cookbook.
compositecomp.

9.	 Click on Finish.

Chapter 5

163

10.	 We need to make the PersonController class an @Named bean so that it can be
referenced via expression language from within JSF pages.

11.	 Annotate the PersonController class as follows:
@Named
@RequestScoped
public class PersonController {

12.	 We need to add a Person instance into PersonController that will be used
to transfer data from the JSF page to the named bean. We will also need to add
a method onto the bean that will redirect JSF to an output page after the names
have been entered.

13.	 Add the following to the PersonController class:
private Person person = new Person();

public Person getPerson() {
 return person;
}

public void setPerson(Person person) {
 this.person = person;
}

public String submit() {
 return "results.xhtml";
}

14.	 The final task before completing our application is to add a results page so we can
see what input the user entered. This output page will simply display the values of
foreName and lastName that have been entered.

15.	 Create a new JSF page called results that uses the Facelets syntax.

16.	 Change the <h:body> tag of this page to read:
<h:body>
 You Entered:
 <h:outputText value="#{personController.person.foreName}"
/>
 <h:outputText value="#{personController.person.lastName}" />
</h:body>

The application is now complete. Deploy and run the application by right-clicking on the
project within the Projects explorer and selecting Run.

NetBeans Enterprise Application Development

164

Note that two instances of the composite component have been created and displayed within
the browser.

Click on the Submit button without entering any information and note how the error messages
are displayed:

Enter some valid information and click on Submit, and note how the information entered is
echoed back on a second page.

How it works…
Creating composite components was a new feature added to JSF 2. Creating JSF components
was a very tedious job in JSF 1.x, and the designers of JSF 2 thought that the majority of
custom components created in JSF could probably be built by adding different existing
components together. As it is seen in this recipe, we've added together three different
existing JSF components and made a very useful composite component.

It's useful to distinguish between custom components and composite
components. Custom components are entirely new components that did not
exist before. They are created entirely in Java code and build into frameworks
such as PrimeFaces and RichFaces. Composite components are built from
existing components and their graphical view is designed in the .xhtml files.

Chapter 5

165

There's more
When creating composite components, it may be necessary to specify attributes. The default
option is that the attributes are not mandatory when creating a custom component. They can,
however, be made mandatory by adding the required="true" attribute to their definition,
as follows:

<cc:attribute name="labelValue" required="true" />

If an attribute is specified as required, but is not present, a JSF error will be produced,
as follows:

/index.xhtml @11,88 <cookbook:inputWithLabel> The following
attribute(s) are required, but no values have been supplied for them:
labelValue.

Sometimes, it can be useful to specify a default value for an attribute. This is achieved by
adding the default="…" attribute to their definition:

<cc:attribute name="labelValue" default="Please enter a value" />

Creating an EJB
Enterprise Java Beans (EJBs) are server-side managed classes intended to provide business
functionality to applications. Since Java EE 5, EJBs have been made much simpler and more
lightweight.

EJBs no longer have to be defined by XML descriptors, but are defined using Java annotations
instead. This allows EJBs to be developed more quickly and probably more importantly, to be
fully testable outside of the application server.

In Java EE 7, there are four types of EJB. They are Stateless, Stateful, Singleton, and
Message Driven EJBs. J2EE also had Entity beans used for modeling data, but these
have been deprecated since Java EE 5 to be replaced with POJOs and JPA.

Stateless EJBs, as their name suggest, maintain no state. When a request is made from a
client to obtain an EJB, the application server returns one from a pool of EJBs. The client
may or may not get the same EJB on subsequent requests.

A Stateful EJB on the other hand, maintains its state, so every time a request is made for an
EJB of a particular type, the same EJB is supplied to the client. Stateful EJBs are therefore
useful when a client needs to remember information between invocations. The classic
example of using Stateful EJBs is to implement a shopping cart. In a web application, the
HTTP protocol maintains no state so Stateful EJBs can be used to maintain information
within the application server between HTTP requests.

NetBeans Enterprise Application Development

166

A Singleton EJB has global state shared across the entire JVM. The application server
guarantees that there is only one instance of a Singleton bean within the JVM and can
provide a thread safe access to its data.

Message Driven Beans are built on top of the Java Message Service (JMS) API and listen for
events to occur before being triggered. They are typically used for processing long-running
asynchronous events or for sending data to multiple clients where each client can be listening
to a JMS queue or topic.

For more information on Java EE 7 EJBs, check out the Oracle Java EE 7 Enterprise Beans
Tutorial at http://docs.oracle.com/javaee/7/tutorial/doc/ejb-intro.htm.

In this recipe, we're going to show how to create Stateless and Stateful EJBs and show how
to invoke them. In the next recipe, Creating a Message Driven EJB, we'll see how to create
Message Driven EJBs.

Getting ready
For this recipe, we will use the WildFly application server together with the Enterprise download
bundle of NetBeans. Ensure that you have a working installation of WildFly configured within
NetBeans before starting this recipe. If you need to configure WildFly within NetBeans, check
out the Adding WildFly support to NetBeans recipe earlier in this chapter.

How to do it…
To deploy EJBs to the application server, we need to create a NetBeans project that will host
the EJBs. EJBs can be deployed either within an Enterprise Archive (EAR) file, or within a
Web application Archive (WAR) file. For this recipe, we'll be deploying our EJBs in a .war
file together with a Servlet, which will act as the client by invoking the EJB.

For a lot of application types, the .war archive is a good choice for
deployment as any included EJBs are co-located with web resources such
as Servlets or JSF pages. For more flexibility, EJBs can be separated from
the web application code and deployed as a Java archive within an .ear
file. The .ear files can contain multiple standard Java archives as well as
multiple .war files. This therefore enables greater flexibility for deployment,
but comes at the cost of greater complexity.

Perform the following steps:

1.	 Click on File and then New Project…

2.	 Select Java Web from the list of Categories and Web Application from the list
of Projects.

3.	 Click on Next.

http://docs.oracle.com/javaee/7/tutorial/doc/ejb-intro.htm

Chapter 5

167

4.	 Enter Project Name as EJBQuote.

5.	 Click on Next.

6.	 Ensure Add to Enterprise Application is unselected, Server is set to WildFly
Application Server, Java EE Version is set to Java EE 7 Web, and Context Path
is set to /EJBQuote.

7.	 Click on Finish.

We've now created an empty web project. Let's add an EJB to the project that will provide us
with random quotes. Perform the following steps:

1.	 Right-click on the Source Packages node for the EJBQuote project within the
Projects explorer and click on New, and then click on Other….

2.	 In the New File dialog, select Enterprise JavaBeans from the list of Categories and
Session Bean from the list of File Types.

3.	 Click on Next.

4.	 Enter EJB Name as QuoteBean.

5.	 Enter the Package name as com.davidsalter.cookbook.quote.

6.	 Select Session Type as Singleton.

7.	 Check the Local tick-box as shown in the following screenshot:

8.	 Click on Finish.

NetBeans Enterprise Application Development

168

The New Session Bean dialog will now close and NetBeans will create a new Singleton
Session Bean along with a local interface for the bean.

We now need to add business logic to our bean to return a quote to callers. Perform the
following steps:

1.	 Ensure that the QuoteBean.java file is open for editing and right-click within the
body of the class and select Insert Code….

2.	 On the Generate pop-up window, click on Add Business Method….

3.	 The Add Business Method dialog will now open, where we can define method
signatures for business methods within EJBs.

4.	 Enter Name as getQuote and Return Type as java.lang.String.

5.	 Since we're using a local interface to implement our EJB, ensure that the
Use in Interface option is set to Local as shown in the following screenshot:

6.	 Click on OK.

Chapter 5

169

The getQuote business method is now created within the QuoteBean.java class.
Let's now implement the method. Perform the following steps:

1.	 Ensure that the QuoteBean.java file is open for editing.

2.	 Our QuoteBean class is going to maintain a list of quotes and return a random one
to callers. We therefore need to initialize the list of quotes within the bean. Add the
@Startup annotation to the class definition so that the EJB will be started up as
soon as it is deployed. The class definition should now look like:
@Startup
@Singleton
public class QuoteBean implements QuoteBeanLocal {

3.	 We now need to add a private member to the class to maintain a list of
quotes, and initialize it after the bean is constructed. Add the following
code into the QuoteBean.java class:
 private List<String> quotes;

 @PostConstruct
 void initialize() {
 quotes = new ArrayList<String>();
 quotes.add("Always catch exceptions.");
 quotes.add("Did you make that field final?");
 quotes.add("Remember to implement a toString() method.");
 }

4.	 Finally, we need to implement the getQuote() method that returns a random quote
to the caller. Change the getQuote() method to read:
 @Override
 public String getQuote() {
 Random rand = new Random();
 return quotes.get(rand.nextInt(quotes.size()));
 }

5.	 Add the required imports to the class so that the entire class reads
as follows:
package com.davidsalter.cookbook.quote;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import javax.annotation.PostConstruct;
import javax.ejb.Singleton;
import javax.ejb.Startup;

NetBeans Enterprise Application Development

170

@Startup
@Singleton
public class QuoteBean implements QuoteBeanLocal {

 private List<String> quotes;

 @PostConstruct
 void initialize() {
 quotes = new ArrayList<String>();
 quotes.add("Always catch exceptions.");
 quotes.add("Did you make that field final?");
 quotes.add("Remember to implement a toString() method.");
 }

 @Override
 public String getQuote() {
 Random rand = new Random();
 return quotes.get(rand.nextInt(quotes.size()));
 }
}

Now that we've created an EJB, let's create a servlet that can invoke the EJB and return
random quotes to us. Perform the following steps:

1.	 Right-click on the EJBQuote node within the Projects explorer and select New and
then Other….

2.	 In the New File dialog, select Web from the Categories list and Servlet from the list
of File Types.

3.	 Click on Next.

4.	 Enter Class Name as QuoteServlet and Package as com.davidsalter.
cookbook.quote.

5.	 Click on Next.

6.	 Ensure that Add information to deployment descriptor (web.xml) is checked and
click on Finish.

7.	 The servlet class will now be created and opened for editing. Add a reference to the
EJB's local interface at the top of the class:
 @EJB
 private QuoteBeanLocal quoteBean;

Chapter 5

171

8.	 Locate the line within the class that begins with out.println("<h1>Servlet
QuoteServlet… and replace it with:
 out.println(quoteBean.getQuote());

9.	 Fix any imports with the class so that the javax.ejb.EJB package
is included.

We've now completed the application, so deploy and run the application by right clicking on
the QuoteServlet.java file in the Source Packages node of the Projects explorer and
selecting the Run option. NetBeans will ask for confirmation of any query parameters.
Since there are none, click on OK to launch your default browser and run the servlet.

Refresh your browser a few times to get some good advice.

How it works…
In this recipe, we first created an EJB that implemented a local interface. We don't have to
implement interfaces to define EJBs, but its good practice to do so.

To define a Singleton EJB, we annotated a POJO class with the @Singleton annotation. We
also added the @Startup annotation to cause the EJB to start as soon as it was deployed.

Since we're using a local interface for the bean, the bean class must implement the local
interface. The basic definition of our Singleton bean was therefore:

@Startup
@Singleton
public class QuoteBean implements QuoteBeanLocal {

NetBeans Enterprise Application Development

172

In EJB 3, a local interface is just a plain old interface, but it must be annotated with the
@Local annotation. This is what differentiates a local interface from a remote interface
(which is annotated with @Remote):

@Local
public interface QuoteBeanLocal {

To add business logic to the EJB, we used the insert code option within the NetBeans editor
window. When adding business logic to an EJB, this wizard creates both the new method that
we are creating and its interface definition. That is to say, both the interface and the EJB class
are updated. Even though we're using interfaces, we don't need to edit two files as this is all
taken care of for us by NetBeans.

To allow us to perform some initialization on the EJB, we annotated a method with the
@PostConstruct annotation. This method is called after the EJB is injected into clients,
so is used as a place to perform initialization.

Since we created an EJB with only a local interface, it's only possible to access it from within
the local JVM, hence making a call to it from within a servlet that is also running inside the
same JVM. If we'd created the EJB to implement a @Remote interface, then we would have
been able to access the EJB from outside of the application server, from a standalone client,
or from a different application server.

In the servlet, we referenced the local interface for the EJB using the @EJB annotation.
This injects the EJB into the servlet class and allows us to use it without having to create
a new instance of the class when we want to use it.

When we created the servlet, we allowed NetBeans to add information to the deployment
descriptor file so that we could see the type of information added to this file. This is old-school
servlet creation as the servlet is registered with the application server via XML instead of
via annotations:

<servlet>
 <servlet-name>QuoteServlet</servlet-name>
 <servlet-class>com.davidsalter.cookbook.quote.QuoteServlet</
servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>QuoteServlet</servlet-name>
 <url-pattern>/QuoteServlet</url-pattern>
</servlet-mapping>

In the next recipe, Creating a Message Driven EJB, we'll see how to define a servlet using
annotations instead of XML.

Chapter 5

173

There's more
In this recipe, we saw how to create a Singleton session bean. What if we wanted to create
a Stateful session bean, or a Stateless session bean? Well, the procedure for creating those
is exactly the same as that outlined within this recipe except that on the New Session Bean
dialog, we need to choose either Stateless or Stateful instead of Singleton.

What EJBs are deployed?
After EJBs are deployed to WildFly, we can get a list of what has been deployed via the Servers
node within the Services explorer.

This view lists all of the EJB modules that are deployed and all of the EJBs that are deployed
within each module.

Creating a Message Driven EJB
A Message Driven EJB is a special type of EJB that is responsible for listening to messages
sent to JMS queues and acting upon them. Message Driven EJBs provide an easy way of
interfacing with JMS queues and make full use of Java annotations to define queue settings.

In this recipe, we'll see how we can send a message to a JMS queue hosted on WildFly,
and then how a Message Driven Bean will respond to the message.

Getting ready
In order to complete this recipe, we need to have an instance of WildFly installed locally and
configured within NetBeans. We will be using the Enterprise download bundle of NetBeans as
this provides all of the necessary plugins required to work with EJBs.

To send messages to a JMS queue, we first need to create the queue within WildFly.

NetBeans Enterprise Application Development

174

Since the WildFly plugin for NetBeans can't currently create message queues, we'll need to
create a message queue using the WildFly command-line interface.

Start WildFly from NetBeans within the Services explorer.

The WildFly CLI is located within the WildFly\bin folder, so open a command prompt (or
terminal), change to the WildFly\bin folder of your local distribution and start the CLI:
jboss-cli.bat (for Windows users) or ./jboss-cli.sh (for Mac OS X and Linux users).

Once the CLI has started, you need to connect to the running instance of WildFly. This is
achieved with the connect command with the CLI:

[disconnected /] connect

Now that we're connected to WildFly, execute the following command to create a message
queue called cookbookQueue:

[standalone@localhost:9990 /] jms-queue add –queue-address=cookbookQueue
–entries=java:/jms/queue/cookbookQueue

Once the queue has been added via the CLI, we can verify that it has been deployed correctly
by opening up the JMS Destinations node within the WildFly Application Server node in the
Services explorer:

How to do it…
Perform the following steps:

1.	 Click on File and then New Project….

2.	 In the New Project dialog, select Java Web from the list of Categories,
and Web Application from the list of Projects.

Chapter 5

175

3.	 Click on Next.

4.	 Enter Project Name as MessageBeans.

5.	 Click on Next.

6.	 Ensure that Add to Enterprise Application is not set, and that the Server is set
to WildFly Application Server, Java EE Version is set to Java EE 7 Web,
and the Context Path is set to /MessageBeans.

7.	 Click on Finish.

8.	 Right-click on the MessageBeans project within the Projects explorer and click on
New and then Other….

9.	 In the New File dialog, select Enterprise JavaBeans from the list of Categories and
Message-Driven Bean from the list of File Types.

10.	 Click on Next.

11.	 In the New Message-Driven Bean dialog, specify EJB Name as
CookbookQueueListenerBean and the Package name as com.davidsalter.
cookbook.messagebeans.

12.	 Select the cookbookQueue queue from the dropdown by the Server Destinations
radio button.

13.	 Click on the Next button.

NetBeans Enterprise Application Development

176

14.	 The Activation Config Properties dialog will now be shown. Since we don't need to
change any of the defaults here, click on Finish.

A basic Message Driven Bean has now been created by NetBeans. Let's add some
basic logging to the bean so that we can see what messages are sent to it. Perform
the following steps:

Ensure that the CookbookQueueListenerBean.java file is open for editing, and change
the onMessage() method to the following:

@Override
public void onMessage(Message message) {
 try {
 if (message instanceof TextMessage) {
 TextMessage txtMessage = (TextMessage) message;
 System.out.println("I've got a message:" + txtMessage.
getText());
 }
 } catch (JMSException e) {
 throw new RuntimeException(e);
 }
}

Chapter 5

177

This is a very simplistic implementation of what to do when a Message Driven
Bean receives a message, but it does show how to get the text contents out
of TextMessage and that we need to be catching JMSExceptions just in
case of any runtime errors.

That's all we need to do to define a Message Driven Bean. Let's now create a servlet that will
post messages to the bean. Perform the following steps:

1.	 Right-click on the MessageBeans project within the Projects explorer and select New
and then Other….

2.	 In the New File dialog, select Web from the Categories list and Servlet from the list
of File Types.

3.	 Click on Next.

4.	 In Class Name, enter SendMessageServlet and in the Package name, enter com.
davidsalter.cookbook.messagebeans.

5.	 Click on Next.

6.	 In this recipe, we are not going to define the servlet via the web.xml file, so click on
Finish. NetBeans will register the servlet via annotations instead of XML.

A servlet called SendMessageServlet has now been created and opened within NetBeans
for editing. Let's change the servlet so that it sends a message to our message queue when
the servlet is invoked. Perform the following steps:

1.	 Inject a reference to JMSContext and the message queue into the servlet by adding
the following code to the beginning of the SendMessageServlet class:
@Inject
private JMSContext context;

@Resource(mappedName="java:/jms/queue/cookbookQueue")
private Queue queue;

2.	 Send a message to the message queue by changing the processRequest()
method body to read:

response.setContentType("text/html;charset=UTF-8");

String message = "Message sent at: " + new Date();
context.createProducer().send(queue, message);

try (PrintWriter out = response.getWriter()) {
 out.println("<!DOCTYPE html>");
 out.println("<html>");
 out.println("<head>");

NetBeans Enterprise Application Development

178

 out.println("<title>Servlet SendMessageServlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<p>" + message + "</p>");
 out.println("</body>");
 out.println("</html>");
}

As we are using Contexts and Dependency Injection (CDI), we need to add a beans.xml file
into our project; otherwise, @Inject will not resolve correctly and the context variable will be
set to null. Perform the following steps:

1.	 Right-click on the MessageBeans project within the Projects explorer and click on
New and then Other….

2.	 Select Contexts and Dependency Injection from the list of Categories and beans.
xml (CDI Configuration File) from the list of File Types.

3.	 Click on Next.

4.	 Click on Finish to create the file.

The application is now complete, so we can run it and test it out. Right-click on the
SendMessageServlet.java file in the Projects explorer and then select Run File.
As we have no request parameters to add to the URL, click on OK to launch your default
browser and invoke the servlet.

The default browser will now open. Open the http://localhost:8080/MessageBeans/
SendMessageServlet URL to access the servlet and send a message to the message
queue.

The date and time of the message will be displayed in the browser, as shown in the
following screenshot:

Chapter 5

179

The date and time of the message will also be shown in the WildFly Application Server Output
window, as shown in the following screenshot:

How it works…
The first task in this recipe was to create a Message Driven Bean. In Java EE 7, a Message
Driven Bean is simply a POJO that is annotated with the @MessageDriven annotation.
Our Message Driven Bean was annotated as follows:

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationLookup",
 propertyValue = "cookbookQueue"),
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue")
})

These annotations declare the Message Driven Bean as well as stating that the bean will listen
to a javax.jms.Queue and that the cookbookQueue queue will be called.

If we'd wanted to listen to a topic instead, we would simply have specified destinationType
as javax.jms.Topic.

A message sent to a JMS queue will be received by only one listener. Only one
Message Driven Bean can receive a message sent to a queue. A topic, on the
other hand, works more like a publish/subscribe model where a message
sent to a topic can be received by zero or more listeners.

Within Message Driven Beans, messages are delivered to the onMessage() method.
In our implementation, we checked to see if the message was of the type TextMessage
(we had foreknowledge that it would always be of this type!) and if it was, we cast the received
message into TextMessage and then extracted the message using the .getText() method.

To send a message to the Message Driven Bean, we used CDI to make things a lot easier. We
injected a JMSContext into a servlet. We injected a reference to our queue into the servlet as
well using the @Resource annotation to specify the queue we wanted to use. Finally, we sent
a text message by calling the context.createProoducer().send() method.

NetBeans Enterprise Application Development

180

There's more
What if we wanted to send more than a simple text to a message queue? Is that possible?
It certainly is. The send() method of the JMSProducer class allows us to send a Map, a
Message, a Serializable, or a byte[] as well as sending a String. If we are to send
objects of these types to the Message Driven Bean, then we must remember that the type of
message received by the OnMessage() method will be either BytesMessage, MapMessage,
ObjectMessage, or StreamMessage. For further information about sending different types
of messages, check out the Oracle Message documentation at http://docs.oracle.
com/javaee/7/api/javax/jms/Message.html.

Manually injecting JMSContext and Queue involved too much typing! Can NetBeans make
this any easier? It certainly can. Right-clicking within the body of a class (for example in a
session bean) and selecting the Insert code… menu item provides the option to Send JMS
Message…. From this dialog, we can specify queues and topics to send messages to and
then automatically generate the required code.

Creating a timer
When developing Enterprise applications, it can be useful to perform operations at specific
times of the day, or at specific regular intervals, for example, every 12 hours, or the last day
of every month.

http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

Chapter 5

181

In the Unix world, this is analogous to the cron concept where system administrators can
define tasks that run under a given schedule.

In Java EE 7, we have the concept of timers that can run Java code at predefined intervals.

Getting ready
To complete this recipe, we need to have a valid instance of WildFly installed and configured
within NetBeans. We will be using the Enterprise download bundle of NetBeans as this
provides all the features we need to complete this recipe without having to download any
additional plugins.

How to do it…
Perform the following steps:

1.	 Click on File and then New Project.

2.	 In the New Project dialog, select Java Web from the list of Categories and
Web Application from the list of Projects.

3.	 Click on Next.

4.	 Enter Project Name as Timers.

5.	 Click on Next.

6.	 Ensure that Add to Enterprise Application is set to <None>, Server is set
to WildFly Application Server, Java EE Version is set to Java EE 7 Web,
and Context Path is set to /Timers.

7.	 Click on Finish.

8.	 Right-click on the Timers project in the Projects explorer and click on New and then
click on Other….

9.	 On the New File dialog, select Enterprise Java Beans from the list of Categories and
Timer Session Bean from the list of File Types.

10.	 Click on Next.

11.	 Enter EJB Name as TimerBean and the Package name as com.davidsalter.
cookbook.timers.

12.	 Change Method schedule to the following:
dayOfWeek = "*", month = "*", hour = "*", dayOfMonth = "*", year =
"*", minute = "*", second = "*/10", persistent = false

13.	 Click on Finish.

NetBeans Enterprise Application Development

182

That's all is there for creating a timer. Right-click on the Timers project within the Projects
explorer and select Deploy. Watch in the WildFly Application Server Output Window and note
that a timer message is executed every 10 seconds as defined within our timer schedule.

How it works…
Creating a timer is as simple as creating a session bean and adding an @Schedule annotation
to a method in the bean:

@Schedule(dayOfWeek = "*", month = "*", hour = "*", dayOfMonth = "*",
year = "*", minute = "*", second = "*/10", persistent = false)

A timer can be created as a session bean or a singleton bean, but as a singleton bean has
only one instance within the JVM, it may be a better choice for a timer as it's guaranteed to
only run one instance of the timer at the given schedule.

The schedule for a timer takes several parameters to define the schedule as seen in the
TimerBean.java class:

second The number of seconds in the range 0 through 59
minute The number of minutes in the range 0 through 59
hour The number of hours in the range 0 through 23
dayOfWeek The day of the week in the range 0 through 7, or the values Sun,

Mon, Tue, Wed, Thu, Fri, Sat
dayOfMonth The day of the month in the range 1 through 31 and -1 through

-31. The special case Last means the last day of the month and
negative numbers mean days before the end of the month.

month The month in the range 1 through 12, or the values Jan, Feb, Mar,
Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

year The year in the format yyyy
info Any custom information to be sent to the schedule, for example a

schedule name

Chapter 5

183

There's more
What if I want to execute a method at multiple schedules? Do I need to create multiple
timers? No, not at all.

To run a method at multiple schedules, annotate the method with the @Schedules
annotation instead of the @Schedule annotation. Then, simply define multiple
@Schedule annotations within, for example:

@Schedules({
 @Schedule(…),
 @Schedule(…) })

What if I want my timer to be persistent across reboots of the application server? This can be
achieved by setting the persistent parameter of the @Schedule annotation to be true.

Be careful when setting a timer to be persistent. As the timer
state is persisted when the server is offline, it is mandated to
run any missed iterations of the schedule when the application
is brought back on line. If this is not what you require, don't set
your timers to be persistent.

Creating a REST web service
With the advent of modern web application development, REST-based web services have
become a popular method of sending data from application servers to clients. Many
JavaScript frameworks, such as AngularJS, have been developed that make calling
REST-web services a simple and convenient way of getting data.

REST web services use different HTTP methods (GET, PUT, DELETE for example) to perform
different operations. GET is typically used for retrieving data, whereas PUT is used for
storing data.

Well-designed REST web services are modeled such that "reading the URL" explains what
the request is for. For example, a GET request to the http://localhost/Travel/
busroute/1 URL would return information about bus route number 1, whereas a PUT
request to the same URL would indicate that bus route 1 is to be stored within the
application server via the data uploaded to the server with the request.

To retrieve information about all of the bus routes, a GET request would be made to the
http://localhost/Travel/busroute/all URL.

In this recipe, we'll see how NetBeans can help us to develop REST-based web services
like these.

NetBeans Enterprise Application Development

184

Getting ready
To complete this recipe, you will need to have a valid installation of WildFly correctly
configured within NetBeans. If you are unsure how to achieve this, please refer to the
Adding WildFly support to NetBeans recipe earlier in this chapter.

We will be using the Enterprise download bundle of NetBeans as this includes all of the
necessary tools to complete the recipe without having to download any additional plugins.

In this recipe, we will create a web service that returns information about books. We will
implement a web service to get information about a single book and another web service
to get information about all the books.

How to do it…
Perform the following steps:

1.	 Click on File and then click on New Project….

2.	 In the New Project dialog, select Java Web from the Categories list and Web
Application from the list of Projects.

3.	 Click on Next.

4.	 Enter Project Name as BookService.

5.	 Click on Next.

6.	 Ensure that the AddTo Enterprise Application option is set to <None>, Server is
set to WildFly Application Server, Java EE Version is set to Java EE 7 Web, and
Context Path is set to /BookService.

7.	 Click on Finish.

8.	 Right-click on the BookService node within the Projects explorer and click on
New and then click on Other….

9.	 Select Web Services from the list of Categories and RESTful Web Service from
Patterns in the list of File Types.

10.	 Click on Next.

11.	 Ensure that Simple Root Resource is selected as RESTful web service
design pattern.

Chapter 5

185

12.	 Click on Next.

13.	 On the Specify Resource Classes page, enter Resource Packages as
com.davidsalter.cookbook.bookservice.

14.	 Enter Path as book.

15.	 Enter Class Name as BookResource.

16.	 Select application/json as MIME Type.

17.	 Click on Finish.

We've now created the basic structure for our web service; let's now create a class to
represent a book and implement the web service so that it can return details about
the book to clients. Perform the following steps:

1.	 Right-click on the Source Packages node within the BookService project and click
on New and then click on Other….

2.	 On the New File dialog, select Java from the Categories list and Java Class from the
list of File Types.

3.	 Click on Next.

4.	 Enter Book as Class Name.

5.	 Enter com.davidsalter.cookbook.bookservice as the Package name.

6.	 Click on Finish.

NetBeans Enterprise Application Development

186

7.	 In our representation of a book, a book has attributes ISBN, name, and
author, all of which are strings. Add the following code to the Book.java
class to define these attributes:
private String name;
private String author;
private String isbn;

8.	 Use the Encapsulate Fields refactoring to create getters and setters for both the
attributes. If you are unsure on how to perform this refactoring, check out the
Encapsulate fields refactoring recipe in Chapter 3, NetBeans Productivity.

9.	 Use the generate constructor code generation to create a constructor that takes
a name, an author, and an ISBN number as parameters. If you are unsure how to
perform this refactoring, check out the Creating a constructor recipe in Chapter 3,
NetBeans Productivity.

10.	 Once complete, the Book.java class should look like:
public class Book {

 private String name;
 private String author;
 private String isbn;

 public Book(String name, String author, String isbn) {
 this.name = name;
 this.author = author;
 this.isbn = isbn;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getAuthor() {
 return author;
 }

 public void setAuthor(String author) {
 this.author = author;
 }
 public String getIsbn() {

Chapter 5

187

 return isbn;
 }

 public void setIsbn(String isbn) {
 this.isbn = isbn;
 }

}

11.	 Double-click on the BookResource.java file from within the Projects explorer to
open it up for editing.

12.	 Define a list in the BookResource.java class that will hold a list of all our
books (normally, we would get our list of books form a database, but in this
instance, we're holding a list of books in memory). Add the following to the
BookResource class:
 private List<Book> books;

13.	 Change the constructor of the BookResource class to initialize the list of books by
amending the constructor to the following:
 public BookResource() {
 books = new ArrayList<Book>();
 books.add(new Book("Moby Dick", "Herman Melville", "1"));
 books.add(new Book("A Princess of Mars", "Edgar Rice
Burroughs", "2"));
 }

14.	 Add a method to return a book based upon its ISBN number, as follows:
 @GET
 @Path("{isbn}")
 @Produces("application/json")
 public Book getBook(@PathParam("isbn") String isbn) {
 for (Book book : books) {
 if (book.getIsbn().equals(isbn))
 return book;
 }
 throw new WebApplicationException(404);
 }

15.	 Add a method to return all of the books in the catalog, as follows:
 @GET
 @Produces("application/json")
 @Path("all")
 public List<Book> getBooks() {
 return books;
 }

NetBeans Enterprise Application Development

188

Finally, we want to change the URL of our web service so it is mapped to /BookService/
Catalog/book. The default implementation generated by NetBeans is at /BookService/
webresources/book. Perform the following steps:

1.	 Double–click on the ApplicationConfig.java class within the
BookService project.

2.	 Amend the @javax.ws.rs.ApplicationPath annotation to read:

@javax.ws.rs.ApplicationPath("Catalog")

The application is now complete. Deploy and run the application by right-clicking on the
BookService project within the Projects explorer, and then clicking on Run.

Browse http://localhost:8080/BookService/Catalog/book/all and you will see
all of the books that we defined earlier listed in the JSON format.

Browse http://localhost:8080/BookService/Calalog/book/1 and you will see
"Moby Dick" listed in the JSON format.

Finally, browse an invalid ISBN reference at http://localhost:8080/BookService/
Catalog/book/3 and you will see the HTTP 404 error page indicating that the book was
not found.

Chapter 5

189

For developers on Windows, I'd recommend using a browser other than
Internet Explorer for debugging JSON returned from web services as
Internet Explorer doesn't display JSON correctly. I recommend using
Google Chrome with the JSONView plugin installed, as this allows JSON
to be viewed in a readable format with the ability to expand and close
nodes within a JSON document.

How it works…
When we created our BookResource class for serving information about books,
NetBeans automatically annotated the class with the @Path("book") annotation:

@Path("book")
public class BookResource {

This annotation declared the last part of the URL for our book service as /BookService/
Catalog/book. Any attempts to access this URL are then passed to the BookResource
class for handling.

We annotated the getBook() method with an @Path annotation and also annotated one
of the parameters of the method with the @PathParam("isbn") annotation, as follows:

@GET
@Path("{isbn}")
@Produces("application/json")
public Book getBook(@PathParam("isbn") String isbn) {

The @Path annotation identifies the class as being able to handle URLs with an additional
parameter at the end called isbn. Therefore, when we access a URL of the /BookService/
Catalog/book/isbn pattern, the isbn parameter is mapped to any parameters within the
getBook() method that has a matching @PathParam annotation. Given our code, this last
parameter in the URL is mapped to the isbn parameter of the getBook() method.

In a similar fashion, we annotated the getBooks() method with the @Path("all")
annotation, as follows:

@GET
@Produces("application/json")
@Path("all")
public List<Book> getBooks() {

This annotation has no parameters (there is nothing inside {} brackets) so all requests to
/BookService/Catalog/book/all will be handled by this method.

NetBeans Enterprise Application Development

190

When we searched for a book and did not find it, we returned
WebApplicationException(404) to the client. This returns a HTTP 404—Not Found error
message. This is the standard error message that is returned to browsers when a resource is
not found. Typically, it is returned to browsers when a page cannot be found, but is also used
within RESTful web services to indicate that an entity could not be found.

There's more
What if I want to return something other than JSON from my web services? When we
created the RESTful web service, NetBeans gave us an option to specify the MIME Type
of the response. We chose application/json as that is what is commonly used when
developing websites.

If, however, you're developing RESTful web services that perhaps aren't going to be consumed
by a website or the website technology you're using requires a different format, then NetBeans
can be configured to send replies in a different format.

When creating the web service, 4 different MIME types are available; they are as follows:

ff application/xml

ff application/json

ff text/plain

ff text/html

Individual methods within a REST class can be configured to respond with different MIME
types by adding the @Produces annotation to a method and specifying the MIME Type to
return. For example:

@GET
@Produces("application/xml")
@Path("all")
public List<Book> getBooks() {

What if I want to create a RESTful web service for existing entities that I have? Is there a way to
achieve this? Certainly! When creating a RESTful web service, select the option RESTful Web
Services from entity classes. This provides you with a list of entities within your application
(classes annotated with @Entity) from which NetBeans can create web services.

Can I easily see what RESTful web services I've created? Within NetBeans, projects that have
RESTful web services within them have an additional node, RESTful Web Services within the
Projects explorer. Expanding this node give a preview of all the RESTful services available
within the project.

Chapter 5

191

Using the Chrome Connector
The Chrome Connector allows an additional level of integration between NetBeans and the
Google Chrome browser.

Two way DOM querying is provided such that if a DOM element is clicked within the browser,
it is shown within NetBeans and in the same way if the user clicks on a DOM element in
NetBeans, that element is selected within the browser.

The Chrome Connector can change the size of the browser window to help developers when
writing applications for multiple platforms. For example, the browser can be set to the size
of a tablet or a smartphone so that the layout of a web application can be examined for
different devices.

For HTML 5 projects, the Chrome Connector allows changes to be automatically updated
within the browser so whenever changes are made and saved within NetBeans, they are
automatically updated in the browser. Unfortunately, this functionality is not present for
JSF pages.

Getting ready
To complete this recipe, we need to have a valid installation of WildFly configured within
NetBeans. We will be using the Java EE download bundle of NetBeans as this provides
all of the tools necessary to complete this recipe.

Finally, since we're going to be investigating the Chrome Connector, we will use a sample
application that is provided with the download bundle for this book. This will allow us to
see some of the features of the Connector.

NetBeans Enterprise Application Development

192

How to do it…
Perform the following steps:

1.	 From the download bundle for this book, locate the project Chapter 5\Todo.
Click on File and then click on Open Project. Browse the Chapter 5 folder of
the download bundle and open the Todo project.

The Todo project is a simple Todo list that shows many of the
features of a Java EE 7 application. We're not too worried about
the features here, but about how the project will interact with
the Chrome Connector. The Todo application uses JSF as its
view technology with Twitter Bootstrap providing the styling for
the application.

2.	 To run the application using the Chrome Connector, click on the down arrow next to
the globe () within the toolbar.

3.	 From the Browser selection window, click on Chrome within the With NetBeans
Connector category.

4.	 NetBeans is now configured to run the application using the Chrome Connector.
Right-click on the Todo application within the Projects explorer and click on Run….

Chapter 5

193

5.	 Since we have yet to install the Chrome Connector, NetBeans will show a warning
dialog stating that we need to go to the Chrome store and install the plugin into the
Chrome browser.

6.	 Click on the Go to Chrome Web Store button to launch the store:

7.	 In Chrome, click on the add button () to install the Chrome Connector.

8.	 In the Confirm New Extension dialog, click on the Add button to allow the extension
to be added to Chrome.

NetBeans Enterprise Application Development

194

9.	 Go back to NetBeans and click on the Re-Run Project button to launch the project
with the Chrome Connector enabled:

10.	 The Todo application will now be opened within Chrome. A notification message
indicates that "NetBeans Connector" is debugging this tab. At the top-right of the
address bar, the NetBeans logo is displayed indicating that integration with NetBeans
is enabled. Do not close this tab during debugging, or the NetBeans Connector will
shut down and you will need to start the debugging procedure again.

Chapter 5

195

Now that we've got the connector installed, let's see how we can change the size of the
browser window to mimic that of different devices. Perform the following steps:

1.	 Click on the NetBeans logo at the top right of the browser window. In the pop-up
dialog, click on Smartphone Portrait. Note how the browser window changes the
size to 320 x 480 pixels:

2.	 Not only can the Chrome Connector change the browser window size to match
that of different devices, it also provides two-way DOM querying.

3.	 Click on the NetBeans logo within the browser address bar.

4.	 On the resulting dialog, click on Inspect in NetBeans Mode.

5.	 Hover the mouse over the Create New Task button and note how the DOM
information for the object is displayed:

NetBeans Enterprise Application Development

196

6.	 Click on the Create New Task button within Chrome and note how the button is
selected within the Browser DOM within NetBeans:

7.	 Hover the mouse cursor over the div.jumbotron element within the Browser DOM
explorer in NetBeans and note how the corresponding element is highlighted
within Chrome.

There's more
When running an HTML 5 project, changes made to HTML pages are automatically updated
within the browser when the page is saved. The browser does not need to be refreshed to
display updated content, all that is required is for the page to be saved within NetBeans.
The Chrome Connector then automatically forces the browser to refresh the page.

In addition to the Chrome Connector, the Chrome Developer
Tools provided within Chrome itself provide excellent debugging
and diagnostic tools. This allows the DOM to be queried, custom
JavaScript to be executed, and can show all network traffic that is
performed while allowing the developer to investigate what is sent
and received on each request. The Chrome Developer Tools can
also be used for performance monitoring showing the time taken for
resources to download. The combination of the Chrome Connector
and the Chrome Developer Tools is an excellent tool for enterprise
and web developers.

6
Managing Databases

with NetBeans

In this chapter, we will cover the following recipes:

ff Connecting to Java DB

ff Registering and managing a MySQL Server

ff Connecting to Microsoft SQL Server and Oracle

ff Connecting to PostgreSQL

ff Managing a SQL database

ff Connecting to MongoDB

Introduction
Databases can be one of the most fundamental parts of applications, whether they are large
or small. They can also, unfortunately, be forgotten and thought of as unimportant parts
of systems.

Fortunately, NetBeans provides excellent tooling for connecting to databases allowing
developers to create tables and views and run SQL statements against a wide variety
of databases.

In this chapter, we'll take a look at how to connect to some open source databases and even
some proprietary ones.

Managing Databases with NetBeans

198

We'll look at making connections to Java DB (also known as Apache DB) as well as MySQL
and PostgreSQL. From the commercial world, we'll look at how to make connections to
Microsoft SQL Server and Oracle—two of the main heavyweight contenders in enterprise
data technologies.

When we've seen how to connect to these databases, we'll see how NetBeans can help a Java
developer to write and execute SQL.

Finally, we'll take a look at the world of NoSQL databases. We'll see how we can connect to
MongoDB from within NetBeans.

Connecting to Java DB
Java DB is a distribution of the Apache Derby database provided by Oracle Corporation.
It provides a fully ANSI-compliant SQL database that can be run as either an embedded
database or a network server.

Java DB has a small footprint (approximately 2.6 MB) yet provides advanced features such as
transactions, stored procedures, and XA (two-phase commit) transactions.

Due to the fact that Java DB is small, it is provided with the JDK and that it can be executed
as an embedded database, it is ideal for use within an application that does not need the
power of larger databases such as Oracle or Microsoft SQL Server. It is also ideal to use
as a database for integration testing of code modules.

From Java 7 onwards, Java DB has been supplied as standard with the JDK; so, no additional
downloads are required.

For further information about Java DB, visit the Oracle site at:

http://www.oracle.com/technetwork/java/javadb/overview/index.html

For further information on Apache Derby, visit the Apache DB site at:

http://db.apache.org/derby/

Getting ready
If you are using Java 7 onwards, Java DB is supplied with your installation of the JDK.

If you have installed GlassFish within NetBeans, or are using the Enterprise download
bundle of NetBeans, then Java DB will already be configured to run as a network server.
If not, then everything that is required to connect NetBeans to Java DB is included with
your JDK installation.

http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://db.apache.org/derby/

Chapter 6

199

How to do it…
1.	 Right-click on the Java DB node within the Databases node in the Services explorer

and select Properties.

2.	 In the Java DB Properties window, enter the location of the Java DB executable
files under the Java DB Installation field. Unless you have downloaded Apache DB
separately, the Java DB installation folder will be the db folder underneath your JDK's
home folder.

3.	 In the Database Location field, enter the path to a location where the database files
and settings will be held, as shown in the following screenshot:

4.	 Click on OK to complete the configuration.

How it works…
Specifying the location of the Java DB installation and the location in which to store database
configuration files provides NetBeans with all the information required to run the Java DB
as a network server. To start the server, right-click on the Java DB node within the Services
explorer and select Start Server. NetBeans will start the server and provide the following
confirmation to the Output window that the server has started:

Tue Apr 22 20:41:05 BST 2014 : Apache Derby Network Server - 10.10.1.2 -
(1495037) started and ready to accept connections on port 1527

To stop the server, right-click on the Java DB node within the Services explorer and select
Stop Server.

Managing Databases with NetBeans

200

There's more…
In addition to registering a Java DB server within NetBeans, we can also create new databases
that can then be connected to via JDBC.

To create a database, right-click on the Java DB node within the Services explorer and select
the Create Database… option. Enter a database name, along with a username and password,
to create a new database, as shown in the following screenshot:

Once a database has been created, NetBeans connects to it and fetches the schema
from the server. A new database connection is placed within the Databases node of the
Services explorer.

Registering and managing a MySQL Server
MySQL is an Oracle Corporation product, which was previously a Sun Microsystems product,
and a MySQL Abs product before that. It is one of the most famous open source relational
database management systems, RDBMS, in the world. The code is available under the
GPL license.

It is used by many companies, such as Nokia, Facebook, and Google, for its robustness and
for being free for use.

Chapter 6

201

Getting ready
For this recipe, we will use MySQL version 5.6.17 and MySQL GUI Tools.

Installation and configuration of MySQL Server and components onto the operating system
is beyond the scope of this recipe. What we will learn here is how to configure MySQL with
NetBeans so that the integration between database and IDE can be achieved.

In this recipe, we will assume that the database is installed locally and the password is
chosen by the user.

For more information and downloads, visit the following link for the database:
http://dev.mysql.com/downloads/

And for MySQL Workbench, visit http://dev.mysql.com/downloads/
tools/workbench/.

How to do it…
With the IDE open, perform the following steps:

1.	 Navigate to the Services explorer window and expand the Databases section.

2.	 Right-click on Databases and select Register MySQL Server…, as shown in the
following screenshot:

3.	 Under Basic Properties, NetBeans, by default, enters localhost as the Server
Host Name field and 3306 as the Server Port Number field. If your MySQL instance
is not running with these defaults, change them here.

4.	 Ensure that the Administration User Name and Administration Password fields that
you configured for your MySQL instance are entered correctly.

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/tools/workbench/
http://dev.mysql.com/downloads/tools/workbench/

Managing Databases with NetBeans

202

The MySQL Server Properties window should look more or less like the
following screenshot:

5.	 Click on the Admin Properties tab.

6.	 Enter the path to the MySQL administration tool (to manage MySQL graphically,
enter the path to the MySQL Workbench) under the Path/URL to admin tool field.

7.	 Enter the paths to the MySQL start and stop commands under the Path to start
command and Path to stop command fields, as shown in the following screenshot:

8.	 Click on OK.

9.	 A MySQL Server node is added underneath the Databases node within the
Services explorer.

Chapter 6

203

How it works…
The Basic Properties tab contains the minimum information required to connect to a MySQL
Server. This is all that is needed for the connection to work. The information required to better
control the MySQL Server is on the Admin Properties tab. The Start and Stop commands and
path for the MySQL-related tools are also included in the submenu, which can be accessed by
right-clicking on the MySQL Server node.

Upon registration, there are two ways of checking whether the MySQL Server is connected
or not:

ff If the MySQL Server node cannot be expanded, it means that it is not connected

ff If the MySQL Server node displays (disconnected), it means that it is not connected

Once the MySQL Server node is expanded, NetBeans will show a list of all databases created
within the server. Right-clicking on a database and selecting Connect… adds a database
connection within the Databases node that allows database tables, views, and so on to
be managed.

There's more...
Want to create databases and run the administration tool from within NetBeans? You've come
to the right place.

Creating databases
To create databases on a registered MySQL Server instance, simply:

1.	 Right-click on the MySQL Server node and select Create Database….

2.	 A Create MySQL Database window will ask for New Database Name and provides
the Grant Full Access To option to grant full access to a specified user. Enter the
appropriate name for a new database and click on OK.

3.	 A new database will be created and a new JDBC connection will be added to the
Databases node, as shown in the following screenshot:

Managing Databases with NetBeans

204

Running the administration tool
To run the MySQL administration tool, it is necessary to configure NetBeans with the correct
path. If unsure how to do this, refer to the beginning of this recipe, under MySQL Server
Properties, in the Admin Properties tab.

For graphical management of MySQL, the MySQL Workbench can be
configured here as the MySQL administration tool. MySQL Workbench is
included with downloads for MySQL Server, or can be downloaded as an
additional option.

With the configuration in place, perform the following steps:

1.	 Navigate to the Services explorer and expand the Databases node.

2.	 Right-click on the MySQL Server node.

3.	 Click on Run Administration Tool.

The techniques described in this recipe apply equally to MariaDB, which is a
drop-in replacement for MySQL. More information on MariaDB can be found
at https://mariadb.org.

Connecting to Microsoft SQL Server
and Oracle

Now that we've looked at some open source databases, let's take a look at some of the
commercial databases that we can connect to and manage from within NetBeans.

First, let's look at Microsoft SQL Server.

It may seem strange talking about Microsoft products when we're integrating with NetBeans;
however, Microsoft SQL Server is one of the more popular databases available and provides
excellent tools for developers, allowing them to define, debug, and profile their SQL.

Getting ready
Microsoft SQL Server is available in many different versions, ranging from the simple Local
DB, through SQL Server Express up to SQL Server Enterprise. SQL Server is renowned for its
power, yet the friendliness of the tools that are supplied with it.

https://mariadb.org

Chapter 6

205

SQL Server originally started out as Sybase, but the latest version is SQL Server 2014. In this
recipe, we will be interfacing with SQL Server 2014 Express.

For more information on SQL Server, visit http://www.microsoft.com/
en-us/server-cloud/products/sql-server/.

Installing SQL Server is outside of the scope of this recipe; we will, however, concentrate on
showing how to connect to SQL Server from within NetBeans.

To connect to SQL Server from within NetBeans, we need to use a JDBC driver. SQL Server
JDBC drivers are not supplied with NetBeans—they need to be downloaded from Microsoft.
You can download the JDBC drivers from http://msdn.microsoft.com/en-US/
sqlserver/aa937724/.

The latest JDBC drivers provide support for SQL Server 2012. However, these are the latest
drivers and depending upon your needs, will work with SQL Server 2014.

Many other companies provide JDBC drivers for SQL Server; however, I
recommend using the official Microsoft drivers as I find they work better in
production environments. One of the downsides of the Microsoft JDBC drivers
is that they cannot connect to the Local DB edition of SQL Server as Local DB
requires clients to connect via named pipes. The Microsoft SQL Server drivers
require client connections to be via TCP/IP and therefore any version of SQL
Server from Express upwards is compatible with the official drivers.

Once you've installed SQL Server Express and downloaded and installed the Microsoft JDBC
drivers for SQL Server, we can begin with our project.

How to do it…
Navigate to the Services explorer and perform the following steps:

1.	 Right-click on the Databases node and select New Connection….

2.	 Since there are no SQL Server drivers supplied with NetBeans, we need to create a
new driver. From the Driver drop-down menu, select New Driver….

http://www.microsoft.com/en-us/server-cloud/products/sql-server/
http://www.microsoft.com/en-us/server-cloud/products/sql-server/
http://msdn.microsoft.com/en-US/sqlserver/aa937724/
http://msdn.microsoft.com/en-US/sqlserver/aa937724/

Managing Databases with NetBeans

206

3.	 On the New JDBC Driver dialog, click on the Add… button and locate the sqljdbc4.
jar file that you downloaded with the SQL Server JDBC driver download. The Driver
Class and Name fields will be automatically populated by NetBeans querying the
driver file, as shown in the following screenshot:

4.	 Click on the OK button to create the new driver.

5.	 You will now be returned to the New Connection Wizard dialog where the Driver field
is set to Microsoft SQL Server 2005.

Don't worry that the driver refers to Microsoft SQL
Server 2005—it's just a name!

6.	 Click on the Next button.

The next step is to enter basic database connection information.

Note that the following information is not set in stone and you might have changed it when
installing and configuring the database. However, if all the defaults were used, it is likely that
the information is the same as presented here:

1.	 Enter the following connection information:

�� Driver Name: Microsoft SQL Server 2005

�� Host: localhost

�� Port: 1433

�� Database: Leave this blank

Chapter 6

207

�� Instance Name: \SQLEXPRESS

�� User Name: sa

�� Password: The password that was entered during installation

2.	 Now that everything looks more or less like the following screenshot, notice the
pattern of JDBC URL. The JDBC URL field follows the standard naming scheme of
commencing with jdbc: followed by the database type. The URL then contains
details about the host, the instance name, and the port number to connect
to the database on. The New Connection Wizard dialog is shown in the
following screenshot:

3.	 Click on the Next button.

4.	 In the Select Schema dropdown, select dbo.

5.	 Click on the Finish button to create the new connection to SQL Server.

Managing Databases with NetBeans

208

How it works…
Unlike previous databases we have connected to, this is the first database connection that
we have defined within this cookbook that requires an external .jar file to connect properly.

This is because NetBeans does not provide the SQL Server JDBC .jar (sqljdbc4.jar) file
by default. You will not find this .jar file within NetBeans, or within a Maven repository, as it
is proprietary to Microsoft Corporation.

As shown in the registration procedure, after entering the required information, the JDBC URL
is of the format:

jdbc:sqlserver://localhost\\SQLEXPRESS:1433

This connection string shows that we are connecting to an SQL Server instance called
SQLEXPRESS running on port 1433. This is the default port for a SQL Server database.

When registering the database, NetBeans validates the entered information to ensure access
to the database is available. This ensures that no misconfigured database is going to be used
and prevents the user from using a misconfigured connection. The connection can also be
tested while inputting connection details by pressing the Test Connection button.

When the Finish button is clicked, NetBeans connects to the SQL Server database and
fetches existing schemas from the server. A new database connection is placed within the
Databases node of the Services explorer.

There's more…
What if we wanted to connect to Oracle instead of MS SQL Server? Can we do that
with NetBeans?

Connecting to an Oracle database
With NetBeans, it's straightforward to connect to an Oracle database. The procedure for
connecting to Oracle is almost identical to that for connecting to Microsoft SQL Server.
For Oracle, it's necessary to use the JDBC driver named ojdbc7.jar. This driver
is provided with Oracle installations, but can also be downloaded from http://www.
oracle.com/technetwork/database/features/jdbc/index.html.

http://www.oracle.com/technetwork/database/features/jdbc/index.html
http://www.oracle.com/technetwork/database/features/jdbc/index.html

Chapter 6

209

When choosing an Oracle JDBC driver, it can be useful to know the naming
scheme Oracle uses for its drivers. Oracle drivers are generally named
ojdbc<jdk_version>.jar, so for example, ojdbc7.jar is the driver
file to use with Java 7. Oracle also produces driver files that contain debug
information. These all have the suffix, _g, so for example, ojdbc6_g.jar is
the debug driver file to use with Java 6.

To configure Oracle, when selecting the driver on the New Connection Wizard dialog,
select Oracle Thin as the driver and then add the ojdbc7.jar driver, as shown in the
following screenshot:

On the Customize Connection page of the New Connection dialog, the following information
should be used to connect to Oracle:

ff Driver Name: Oracle Thin (Service Name)

ff Host: localhost

ff Port: 1521

ff Service: orcl

ff User Name: system

ff Password: The password that was entered during installation

After entering all of this information, the JDBC URL for Oracle is of the following format:

jdbc:oracle:thin:@//localhost:1521/orcl

Managing Databases with NetBeans

210

What if my Oracle database connection requires me to use TNS? Can I use this to connect
from NetBeans? Certainly! When configuring a new connection, specify Oracle Thin (TNS
Name(v10.2.0.1.0 or later)) as Driver Name. The option is then presented to enter the
TNS Name field for configuration rather than the Service field.

Connecting to PostgreSQL
PostgreSQL is a cross-platform object-relational database system that, like MySQL,
is also open source and free. It is supported and used by a consortium of companies such
as Red Hat, Skype, and HP. As with MySQL, PostgreSQL features a GUI for management
activities—pgAdmin.

Setting up PostgreSQL with NetBeans is not as straightforward as with MySQL, but NetBeans
still comes with the appropriate JDBC driver, so don't worry, it's still not rocket science.

Getting ready
For this recipe, we will be using PostgreSQL version 9.3.2 and pgAdmin III.

Installation and configuration of PostgreSQL and components onto the operating system is
beyond the scope of this recipe. What will be learned here is how to configure PostgreSQL
with NetBeans so that integration between the database and NetBeans can be achieved.

In this recipe, we will assume that the database is installed locally and that the password has
been chosen by the user.

It is necessary to have an existing database in PostgreSQL for this recipe to work; we will
assume that the name of the database is cookbook.

How to do it…
With NetBeans open and PostgreSQL running, perform the following steps:

1.	 Navigate to the Services explorer, right-click on the Databases node, and select
New Connection….

2.	 In the New Connection Wizard dialog, select PostgreSQL from the Driver dropdown
and click on Next.

3.	 Enter the following information to define the PostgreSQL connection:

�� Host: 127.0.0.1
�� Port: 5432
�� Database: cookbook
�� User Name: postgres
�� Password: Enter the postgres user's password

Chapter 6

211

The New Connection Wizard dialog for the PostgreSQL connection is displayed in the
following screenshot:

4.	 Click on the Next button.

5.	 On the Choose Database Schema tab, click on the Select Schema dropdown and
choose public.

6.	 Click on Finish.

7.	 A PostgreSQL JDBC connection node is added to the Databases node as shown in
the following screenshot:

Managing Databases with NetBeans

212

How it works…
NetBeans validates the entered information to access the database. This ensures that no
misconfigured database is going to be used and prevents the user from using a misconfigured
connection. The connection can also be tested while inputting connection details by clicking
on the Test Connection button.

When the Finish button is clicked, NetBeans connects to the PostgreSQL database and
fetches existing databases from the server. A new database connection is placed within
the Databases node of the Services explorer.

There's more…
How can a user connect and disconnect from a PostgreSQL database from within NetBeans?

Connecting and disconnecting
It is possible to connect and disconnect from a database using the Services explorer.

Simply right-click on the desired connection and select Connect…, in the case of the
database being disconnected; select Disconnect if it is connected, as shown in the
following screenshot:

Chapter 6

213

Managing a SQL database
In the previous recipes, we've seen how to connect to a variety of both open source and
commercial relational databases. Connecting to a database is all well and good (after all,
it's what we do in our applications), but we need to be able to easily create tables and views,
and easily run SQL queries against our databases to see what data we have in them.

In this recipe, we'll see how we can perform these types of actions.

Getting ready
We'll be managing a Java DB instance in this recipe as Java DB is one of the easiest
databases to configure and connect to from within NetBeans.

If you've not got a Java DB connected and configured within NetBeans, then please refer to
the earlier recipe, Connecting to Java DB, to see how to connect. When creating a new Java
DB database, name it cookbook and specify the username to connect to the database
as APP.

How to do it...
Navigate to the Databases node within the Services explorer and perform the following steps:

1.	 Right-click on the cookbook database underneath the Java DB node and select
Connect…. If the Java DB network server is not running, it will be started.

2.	 A connection will be made to the Java DB database called cookbook. This is
accessed from within the Databases node, as shown in the following screenshot:

Note that when a database is not connected, the disconnected
icon () is displayed next to the connection name instead of the
connected icon ().

Managing Databases with NetBeans

214

3.	 Before we can insert any data into the database, we must first make a table. Expand
the Java DB connection node and the APP node within it to see sub nodes, Tables,
Views, and Procedures, as shown in the following screenshot:

4.	 Right-click on the Tables node and select Create Table….

5.	 The Create Table dialog will be displayed. Enter the Table name field as TASKS.

6.	 Click on the Add column button and create the following columns one by one:

Name Type Size Default Constraints
TASK_ID INTEGER Primary key, Unique, Index
TASK_NAME VARCHAR 25

TASK_COMPLETED BOOLEAN false

TASK_DUE DATE Null

7.	 Once completed, the Create Table dialog should look like the following screenshot:

8.	 Click on the OK button to create the table.

9.	 The table will now be created and will be shown within the Tables node in the
Services explorer.

10.	 Expand the TASKS node and notice how the columns and indexes for the table
are available.

Chapter 6

215

The primary key for this table has been declared as an autoincrementing
identity field that can store integer values. At present, NetBeans does not
allow columns to be created as identity columns within Java DB, so if this
is required, then the table must be created via SQL and not via the Create
Table dialog.

Now that we've created a table, let's insert some data into it with the following steps:

1.	 Right-click on the TASKS node and select Execute Command….

2.	 A new SQL window will be opened into which we can type SQL commands.

3.	 Enter the following code into the SQL window:
insert into TASKS(TASK_ID, TASK_NAME) values (1, 'Read
Cookbook');
insert into TASKS(TASK_ID, TASK_NAME) values (2, 'Eat
sandwich');
insert into TASKS(TASK_ID, TASK_NAME, TASK_DUE) values (3,
'Do some programming', '2015-03-01');

It's a good point to note that SQL files can be saved within a project
so that if you've got some SQL that you regularly need to run, you can
quickly and easily access it at a later date.

4.	 Click to place the mouse cursor anywhere within the first insert statement as shown
in the following screenshot:

5.	 Click the Run Statement button (). This will execute the statement that is currently
selected and not the entire contents of the SQL window.

6.	 Right-click on the TASKS table within the Services explorer and select View Data….

7.	 A new SQL window will open where the SQL is already entered as select * from
APP.TASKS;.

8.	 The SQL statement will be executed automatically showing the data beneath the
query window.

9.	 Navigate back to the original SQL window.

Managing Databases with NetBeans

216

10.	 Comment out the original SQL statement that we have already executed by
appending – to the beginning of the line. The first SQL statement should now read:
--insert into TASKS(TASK_ID, TASK_NAME) values (1, 'Read
Cookbook');

11.	 Click on the Run SQL button (). This will execute all of the SQL code that is currently
within the SQL window. In this instance, this will be the final two SQL statements that
we have defined.

12.	 Navigate back to the SQL window that contains the select * from APP.TASKS;
SQL statement and click on the Run SQL button.

13.	 Note how there are now three rows stored in the database as shown in the
following screenshot:

How it works…
In this recipe, we've seen how we can connect to a database within NetBeans via
JDBC. In this instance, the database was Java DB; however, the procedure is the same
for any database.

Once connected to the database, we use the Create Table dialog to allow us to graphically
define the schema for a simple table. We noted that there are some restrictions within
NetBeans with regards to creating tables in Java DB (namely that we can't create identity
fields via the GUI).

Executing SQL statements is easily accomplished using either the Run Statement or
Run SQL commands. When more than one SQL command is specified, each command needs
to be separated by a semicolon, ;, so that NetBeans knows where one command ends and
another begins.

Chapter 6

217

Finally, we saw that, not only can we execute SQL statements that don't return results,
we can also execute SQL statements that return results. Not only that, but we can easily
see the results in a nicely formatted paged table.

There's more…
NetBeans provides even more features than we've seen for manipulating data within
a database.

Viewing data
What if we've got a table with a lot of columns in it and we only wish to view some of those
columns? Right-clicking on a table and selecting View Data… returns all of the columns for
the table. Is it possible to view only a few columns?

It certainly is! Instead of right-clicking on the table and selecting View Data…, simply select
the columns to view (press Ctrl while clicking on a column name for multiselect) and then
choose View Data….

Creating indexes
Creating a table with no indexes is probably going to give us performance headaches when we
start getting larger datasets. Fortunately, NetBeans allows us to easily create custom indexes
on a table. Simply right-click on the Indexes node and select Add Index…. The Add Index
dialog allows an index name to be specified along with the columns to be part of the index and
whether the index in unique or not. The following screenshot displays the Add Index dialog:

Inserting, deleting, and amending data graphically
We saw in this recipe how we can use SQL to insert data into tables. Sometimes, however, it
can be useful to easily insert or delete data from a table, or even edit existing data. How can
NetBeans help us here?

Managing Databases with NetBeans

218

When viewing a dataset, some additional options are available for editing data. Clicking on
the Insert Record button () displays a form allowing all of the fields for one or more rows to
be defined graphically. These new rows can then be inserted directly into the database or the
SQL can be selected and manually executed against the database.

If we don't need some data in the database, then clicking on the Delete Selected Records
button () will do as the name says, and delete the rows that are selected in the dataset
viewer.

We can also edit data within a dataset viewer by double-clicking on the cell we wish to edit
and then simply specifying the new value of the data.

All of these operations are under transactional control, so to keep (commit) any changes we
make graphically, we need to click on the Commit Record(s) button (). Conversely, to throw
away (rollback) any edits we make, we need to click on the Cancel Edits Selected Record(s)
button ().

Finally, if we simply wish to delete all of the rows within a table, we can click on the Truncate
Table button ().

Exporting schemas
So, we've finally written an application, and we want to take a copy of the database schema,
perhaps so that we can deploy it to another server, or pass it to a colleague for them to look
at. How can we achieve that?

Right-clicking on a table within the Tables node in the Services explorer provides a Grab
Structure option. This saves the structure of a table away into a binary file that can later be
loaded into NetBeans using the Recreate Table option—again on the right-click menu from
a table.

Connecting to MongoDB
MongoDB is a NoSQL database that allows JSON-style documents to be stored within it, rather
than the traditional tables and rows that a relational database uses. The name MongoDB
comes from the word humongous, giving an indication of the size of data that can be stored
within MongoDB, as it is not uncommon to store billions of documents within MongoDB.

MongoDB is used by large corporations such as LinkedIn, SalesForce, and EA.

For further information about MongoDB, visit the project site at http://www.mongodb.com.

Getting ready
To complete this recipe, it is necessary to have an instance of MongoDB to connect to,
however, installation of MongoDB is outside the scope of this recipe.

http://www.mongodb.com

Chapter 6

219

In this recipe, we will assume that MongoDB is installed locally, although by changing
connection details, this recipe will work equally well for remote MongoDB servers.

How to do it…
MongoDB support is not included within NetBeans by default; so, first, we must add it with the
following steps:

1.	 Click on Tools and then Plugins form the NetBeans main menu to open the NetBeans
Plugins dialog.

2.	 Select the Available Plugins tab and check the Install checkbox for the NBMongo
plugin, as shown in the following screenshot:

3.	 Click on the Install button to commence installation of the plugin.

4.	 NetBeans will confirm installation of the NBMongo plugin. Click on Next.

5.	 Read and accept the license agreement and then click on the Install button to
complete installation of the plugin.

6.	 The plugin will now be installed. Click on Finish when installation is complete and
then click on Close to exit the Plugins dialog.

7.	 A new option within the Services explorer is now available for connecting to
MongoDB. Click on the Services explorer to see the Mongo DB option,
as shown in the following screenshot:

Managing Databases with NetBeans

220

Now that we've added MongoDB support into NetBeans, let's create a connection to a
MongoDB server with the following steps:

1.	 Right-click on the Mongo DB node within the Services explorer and select the
New Connection option.

2.	 The New MongoDB Connection dialog will be displayed.

3.	 Enter the Name field as Mongo Cookbook and the Mongo URI field as
mongodb://localhost/cookbook.

4.	 Click on OK to add the new connection.

5.	 A new option is added into the Services explorer for the specified MongoDB; however,
NetBeans is not yet connected to MongoDB. Right-click on the Mongo Cookbook
node underneath MongoDB within the Services explorer and select Connect.

6.	 The connection to MongoDB is established and the cookbook database created
is shown:

Let's now create a collection within MongoDB and add some data to it with the
following steps:

1.	 Right-click on the cookbook node within the Services explorer and select
Add Collection.

2.	 In the Add Collection dialog, enter the Collection name field as Books and click on
OK, as shown in the following screenshot:

3.	 A Books collection is now displayed within the Services explorer underneath the
cookbook database.

Chapter 6

221

4.	 Right-click on the Books collection and select the Open menu option. The Books
collection will now be opened within a new window titled cookbook.Books,
as shown in the following screenshot:

5.	 Click on the Add Document () button to invoke the Add new document dialog.

6.	 On the Add new document dialog, enter the document as:
{
 Name:"NetBeans Cookbook",
 Author: "David Salter"
}

We will have the Add new document dialog as shown in the following screenshot:

7.	 Click on the OK button to store the document.

Managing Databases with NetBeans

222

8.	 The list of Documents stored within the collection is updated to reflect the newly
added document, as shown in the following screenshot:

How it works…
In this recipe, we saw how to install MongoDB support into NetBeans via a third-party
plugin called NBMongo. For more information about this plugin, visit http://plugins.
netbeans.org/plugin/52638/nbmongo.

When connecting to the database, we specified a database name within the MongoDB
connection URI. This database was then lazily created when we added a collection to it. If we
need to customize the MongoDB connection URI, we can click on the Browse button on the
New MongoDB Connection dialog. This allows us to specify items such as host name, port,
credentials, and database options.

After connecting to MongoDB, we added a simple document to the database. The document
was a simple JSON document containing two fields, name and author. Of course, adding only
two fields like this does not show off the benefits of a NoSQL database, but shows how easy it
is to store documents from within NetBeans.

Finally, we saw how NetBeans will easily list out the documents in a collection for us.
NetBeans pages these documents for us instead of producing one long list of all the
documents within a collection.

There's more…
In addition to adding and selecting documents, the MongoDB plugin allows us to edit and
delete documents within a collection—just as we'd expect to do with a traditional relational
database. We can import and even export collections as JSON files so that they can be used
outside of MongoDB.

http://plugins.netbeans.org/plugin/52638/nbmongo
http://plugins.netbeans.org/plugin/52638/nbmongo

Chapter 6

223

When viewing lists of documents, we can modify the criteria, projection, and sort ordering
of the resultset directly from within the results window. If you're not familiar with MongoDB,
please consult the MongoDB manual at http://docs.mongodb.org/manual/ for more
information on these operations.

The MongoDB shell
What if I want to perform some advanced operation that's only available from within the
MongoDB shell? Can I do that from within NetBeans? You certainly can!

Right-clicking on a database within a MongoDB connection in the Services explorer provides
the option to open Mongo Shell. To enable this option, the path to the MongoDB shell
executable first needs to be specified. This path is specified within the Miscellaneous
section of the NetBeans Options dialog, as shown in the following screenshot:

http://docs.mongodb.org/manual/

7
NetBeans JavaFX

In this chapter, we will cover the following recipes:

ff Creating a JavaFX application

ff Graphical editing of FXML files

ff Styling a JavaFX application with CSS

ff Creating and using a JavaFX custom control

ff Deploying a self-contained application

Introduction
JavaFX is a software toolkit geared around developing rich GUI-based applications. It was first
introduced at JavaOne in 2007 and has most recently been released as JavaFX Version 8 as
part of the Java 8 release.

JavaFX used to be a separate installation from Java, but as of JDK 7u6, JavaFX has been
bundled with both the Java JDK and JRE.

The long term strategy for JavaFX is surely to replace Swing as the dominant GUI development
environment for Java developers as it provides a wealth of GUI components and provides
developers the facility to easily create new components. JavaFX promotes the separation of
user interface and application code by employing FXML files for developing the user interface.
FXML files allow user interfaces to be developed with an XML format structure outside of Java
code that can be styled by designers using standard CSS.

JavaFX applications can be executed as standalone native applications (for example, .exe
files on Windows or .app files on Mac OS X), or can be launched via Java Web Start or by
embedding within a web page.

NetBeans JavaFX

226

These deployment strategies, along with the advanced design and layout tools for GUIs,
make JavaFX an excellent choice for developing modern GUI-based applications.

For more information on JavaFX, check out Oracle's information page at http://www.
oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.
html.

Creating a JavaFX application
In this recipe, we'll see how we can use NetBeans to create a JavaFX application. We'll create
two windows; one of these will be developed in Java code and the second will be developed
using FXML.

Getting ready
To complete this recipe, you can use either the Java SE or Java EE version of NetBeans.

You must have JDK 7u6 or higher installed to be able to develop and run JavaFX applications.

How to do it…
1.	 Click on File and then New Project....

2.	 Select JavaFX from the Categories list and JavaFX Application from the list
of Projects.

3.	 Click on Next.

4.	 Enter the Project Name field as WelcomeToFX. Ensure a valid project location
is specified. Ensure Create Application Class is selected as com.davidsalter.
cookbook.welcometofx.WelcomeToFX.

5.	 Click on Finish.

A blank JavaFX application will now be created for you. To check that everything is installed
correctly, run the application. You should see a window with a Say 'Hello World' button within
it, as shown in the following screenshot:

http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html

Chapter 7

227

Now that we have validated that we can run JavaFX applications, let's change the application
to ask for our name. We'll then display an FXML-designed window and see how we can develop
JavaFX applications using both Java code and FXML. To do this, perform the following steps:

1.	 Double-click on the WelcomeToFX.java file from the Projects explorer to open it
up for editing.

2.	 Change the start(Stage primaryStage) method to read:
@Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("Hello World!");

 GridPane gridPane = new GridPane();
 gridPane.setAlignment(Pos.CENTER);
 gridPane.setHgap(15);
 gridPane.setVgap(15);
 gridPane.setPadding(new Insets(20));
 Label helloLabel = new Label("Hello");
 gridPane.add(helloLabel, 0, 0);

 Label nameLabel = new Label("What's your name?");
 gridPane.add(nameLabel, 0, 1);

 TextField nameTextField = new TextField();
 gridPane.add(nameTextField, 1, 1);

 Button helloButton = new Button("Say Hello");
 HBox horizontalBox = new HBox(10);
 horizontalBox.setAlignment(Pos.BOTTOM_RIGHT);
 horizontalBox.getChildren().add(helloButton);
 gridPane.add(horizontalBox, 1, 2);

 Scene scene = new Scene(gridPane, 350, 150);
 primaryStage.setScene(scene);
 primaryStage.show();
}

3.	 Right-click within the editor pane and select Fix Imports to add all of the import
statements required for the class.

Ensure that all the imports belong to the javafx packages and
not java.awt packages. Some of the classes used by this code,
for example, Insets exist both as javafx.geometry.Insets
and java.awt.Insets. In this chapter, we always want to use the
javafx.* versions.

NetBeans JavaFX

228

This code generates a simple user interface that welcomes the user and asks them for their
name. As of yet, there is no functionality behind the Say Hello button on the form. As we saw,
the user interface was designed completely within Java code. The resultant window should
look something like the following screenshot:

Let's now create another window that will echo the name that we will enter into this form
welcoming us to JavaFX. We'll create this window as FXML with the following steps:

1.	 Right-click on the WelcomeToFX project within the Projects explorer and select
New and then Other….

2.	 In the New File dialog, select JavaFX from the list of Categories and Empty
FXML from the list of File Types.

3.	 Click on Next.

4.	 Enter the FXML Name field as Greetings.

Remember, when creating a new file of a known type, we don't need
to enter the file extension (.fxml in this case) as NetBeans will
automatically add it for us.

5.	 Enter the Package field as com.davidsalter.cookbook.welcometofx.

6.	 Click on Next.

7.	 On the New Empty FXML page, check the Use Java Controller option.

8.	 Ensure the default option of the Create New controller is selected with the Controller
Name field named GreetingsController and the Package field named com.
davidsalter.cookbook.welcometofx, as shown in the following screenshot:

Chapter 7

229

9.	 Click on Next.

10.	 On the Cascading Style Sheet Name and Location page, ensure that the Use
Cascading Style Sheets option is not selected. We will see in a later recipe how
to style JavaFX using CSS.

11.	 Click on the Finish button to create the FXML page.

12.	 Double-click on the Greetings.fxml file within the Projects explorer to open it
up for editing.

13.	 Change the contents of the file to read:
<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<AnchorPane id="AnchorPane" prefHeight="150.0"
prefWidth="350.0"
 xmlns:fx="http://javafx.com/fxml/1"
 xmlns="http://javafx.com/javafx/2.2"
 fx:controller=
 "com.davidsalter.cookbook.welcometofx.
 GreetingsController">
 <children>

NetBeans JavaFX

230

 <GridPane layoutX="75.0" layoutY="35.0">
 <children>
 <Label text="Hi" GridPane.columnIndex="0"
 GridPane.rowIndex="0" />
 <Label fx:id="name" text="..your name here.."
 GridPane.columnIndex="0" GridPane.rowIndex="1" />
 </children>
 <columnConstraints>
 <ColumnConstraints hgrow="SOMETIMES"
 minWidth="10.0" prefWidth="100.0" />
 <ColumnConstraints hgrow="SOMETIMES"
 minWidth="10.0" prefWidth="100.0" />
 </columnConstraints>
 <rowConstraints>
 <RowConstraints minHeight="10.0" prefHeight="30.0"
 vgrow="SOMETIMES" />
 <RowConstraints minHeight="10.0" prefHeight="30.0"
 vgrow="SOMETIMES" />
 <RowConstraints minHeight="10.0" prefHeight="30.0"
 vgrow="SOMETIMES" />
 </rowConstraints>
 </GridPane>
 </children>
</AnchorPane>

14.	 This FXML file simply creates a grid and then adds two labels into the grid. The first
label says Hi and the second will show the name entered within the window we
created earlier.

Since we want to dynamically change what's shown in this window (we want to display
the user's name in the Label tag identified as fx:id="name"), we need to add
some code to the controller class to manage this.

15.	 Double-click on the GreetingsController.java file within the Projects explorer
to open the file for editing.

16.	 Add a private member to store the inputted name as follows:
@FXML
private Label name;

17.	 Add a public method to store the name:
 public void setName(String name) {
 this.name.setText(name);
 }

18.	 Fix any imports using the Fix Imports tool.

Chapter 7

231

When fixing imports, remember that some of the JavaFX classes have
the same names as classes in the java.awt packages. Ensure
you import the correct javafx packages rather than java.awt
packages.

Now that we've created a screen to get some input from the user, and a screen to show the
input back to the user, we need to wire the two screens together so that the greetings page
is shown when the user clicks on the button on the first window with the following steps:

1.	 Double-click on the WelcomeToFX.java file within the Projects explorer to open
up the file for editing.

2.	 Immediately before instantiating the Scene class (three lines from the bottom of
the start method), insert the following code:
helloButton.setOnAction(new EventHandler<ActionEvent>() {

 @Override
 public void handle(ActionEvent event) {
 try {
 FXMLLoader loader = new
 FXMLLoader(getClass().getResource("Greetings.fxml"));
 Stage stage = new Stage(StageStyle.DECORATED);
 stage.setScene(new Scene((Pane) loader.load()));
 GreetingsController controller =
 loader.<GreetingsController>getController();
 controller.setName(nameTextField.getText());
 stage.show();
 } catch (IOException ex) {
 Logger.getLogger(WelcomeToFX.class.getName())
 .log(Level.SEVERE, null, ex);
 }
 }
});

This code adds an event handler onto helloButton, which when clicked, loads the
window that is defined by Greetings.fxml and shows it.

3.	 Again, right-click within the code editing window and select the Fix Imports menu
option to fix the file's import statements.

4.	 Press F6 to run the application. Enter a name in response to the question What is
your name? and click on the Say Hello button to be greeted.

NetBeans JavaFX

232

How it works…
In this recipe, we saw how to create a JavaFX application and how to create user interfaces
both using Java code and using FXML.

We coded a JavaFX window using pure Java and then we created a window using FXML.
Neither of these windows had much styling on them. We'll see in a later recipe, Styling
a JavaFX application with CSS, how we can style JavaFX applications using CSS.

When dynamically loading FXML files using the FXMLLoader class, it's
a good practice to catch java.lang.IllegalStateExceptions
as these will be thrown with a Location is not set message if the
FXML file cannot be found and loaded.

One of the main benefits of designing user interfaces in FXML is that it completely separates
the user interface from the application code thus allowing designers more control over the
UI and UX of an application. We saw, however, that the NetBeans editor for FXML files is just
the plain old NetBeans text editor. Unless you can remember all of the syntax to FXML, you
probably won't be too productive writing FXML this way. In the next recipe, Graphical editing
of FXML files, we'll see how we can enhance the FXML editing abilities within NetBeans and
bring them up to par, or even to better than those provided for Swing applications.

There's more…
What if I only want to create applications using FXML? Is it possible to create a JavaFX
Application class without coding any user interface in Java?

Creating all user interfaces in FXML
It certainly is! When creating a project from the New Project wizard, select JavaFX from the
list of Categories and JavaFX FXML Application from the list of Projects.

If you prefer to use Maven as your build tool, you'll be pleased to know you can also create
JavaFX applications using Maven. Simply select Maven from the Categories list on the New
Project wizard and then JavaFX Application from the list of Projects. This will create an
application ready for developing user interfaces in FXML by default.

Manually creating controllers
When creating FXML files, we saw in this recipe how to create Java controller classes. What
happens if I forgot to create a controller? Do I have to manually create a controller and then
wire it up to the FXML file?

Chapter 7

233

Fortunately, NetBeans helps in this regard. To create a controller and link it up to the FXML
file, simply right-click on an FXML file within the Projects explorer and select the Make
Controller option. NetBeans will then create a blank controller class and will also add the
fx:controller attribute into the FXML file automatically wiring the two together.

Graphical editing of FXML files
In the previous recipe, Creating a JavaFX application, we saw how to create JavaFX
applications using both Java code and the more designer friendly FXML.

We saw that the basic editing facility for FXML files within NetBeans is not much more than a
text editor. In this recipe, we'll see how to use the JavaFX Scene Builder to provide a first-rate
design tool for JavaFX applications.

Scene Builder is Oracle's JavaFX visual layout tool and is available as a separate download
from Java for Windows, Mac OS X, and Linux.

Getting ready
To complete this recipe, you'll need to have either the Java SE, or the Java EE version
of NetBeans 8 installed together with a minimum of JDK 7u6 installed.

You will also need the application we developed in the previous recipe, Creating a JavaFX
application. If you have not completed this recipe, the complete application is available
within the code download bundle for this chapter.

How to do it…
Before starting, ensure that NetBeans is closed down so that integration with Scene Builder
can be completed with the following steps:

1.	 To enable graphical editing of FXML files, we need to install Oracle's Scene Builder
application. Scene Builder integrates seamlessly with NetBeans by allowing FXML
files to be edited automatically when they are opened within NetBeans.

For more information about Scene Builder, including early
access to the next release, check out http://www.oracle.
com/technetwork/java/javase/downloads/
javafxscenebuilder-info-2157684.html.

2.	 Download JavaFX Scene Builder Version 2.0 from http://www.oracle.com/
technetwork/java/javase/downloads/sb2download-2177776.html.

http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html
http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html
http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html
http://www.oracle.com/technetwork/java/javase/downloads/sb2download-2177776.html
http://www.oracle.com/technetwork/java/javase/downloads/sb2download-2177776.html

NetBeans JavaFX

234

3.	 Run the installer to install the product. The installer should run through very quickly
and install the product without asking for any user input.

4.	 Launch NetBeans and open the WelcomeToFX project.

5.	 Expand the Source Packages node and double-click on the Greetings.fxml file.

6.	 The file will now be opened automatically within Scene Builder instead of within
NetBeans' text editor, as shown in the following screenshot:

7.	 The FXML file can now be edited graphically in a similar fashion to editing Swing files
within NetBeans. Since Scene Builder is working on the same file as NetBeans, when
the file is saved in Scene Builder, it is automatically used when the application is
executed in NetBeans.

How it works…
The standard installation of NetBeans allows FXML files to be edited within a text editor. When
Oracle's Scene Builder product is installed, it sets up a reference to the installation location
within NetBeans so that double-clicking on an FXML file opens the file within Scene Builder.

The location of Scene Builder is configured within NetBeans within the Java section of
the Options window. Select Tools and then Options from the main menu to access the
options window. From there, select the Java category and the JavaFX tab, as shown in
the following screenshot:

Chapter 7

235

There's more…
When Scene Builder is installed and configured within NetBeans, it is still possible to edit
FXML files directly within a text editor if required.

To edit a file directly within NetBeans, right-click on an FXML file and select the Edit option.
Right-clicking on a file and selecting Open will perform the same action as double-clicking
the file, that is, it will open the file within Scene Builder.

Styling a JavaFX application with CSS
One of the benefits of JavaFX applications is that their user interfaces can be designed rather
than developed. This is typically a job done by a designer rather than a developer. As such, it's
a good practice to place all of the application styling outside of Java code within a CSS file.

It's possible to style a JavaFX application within Java code by setting fonts and colors and
layout padding (we saw an example of setting padding on elements within the Creating a
JavaFX application recipe) within the Java code, but obviously, this makes it more difficult
to make style changes to an application.

In this recipe, we'll see how we can apply CSS changes primarily to FXML files. We'll also
show how CSS can be applied to Java files for those that are curious about how to do this.

NetBeans JavaFX

236

Getting ready
To complete this recipe, you'll need to have either the Java SE, or the Java EE version of
NetBeans 8 installed together with a minimum of JDK 7u6 installed.

You will also need the application we developed in the previous recipe, Creating a JavaFX
application. If you have not completed this recipe, the complete application is available
within the code download bundle for this chapter.

How to do it…
Ensure that NetBeans is open and that the WelcomeToFX project is loaded.

The first stage in styling an FXML file is to reference a style sheet that will contain all of the
styling information with the following steps:

1.	 Right-click on the Greetings.fxml file and select Edit to open the file for editing
within NetBeans rather than in Scene Builder (see the Graphical editing of FXML
files recipe, for more details on installing Scene Builder).

2.	 To use CSS styling within an FXML file, we must reference the CSS file that we wish to
use directly within the FXML file itself. Immediately before the </AnchorPane> tag,
add the following code:
<stylesheets>
 <URL value="@style.css" />
</stylesheets>

3.	 This tells the runtime that the style.css file has got all the styling information for
this FXML file. The @ prefix in front of the filename indicates that the style.css file
is stored in the same location as the FXML file.

4.	 In order to use the URL tag, we need to add a reference to the appropriate Java
library, namely java.net.*, as an import statement for the file.

5.	 Add the following import statement with the existing import statements at the top
of the file:

<?import java.net.*?>

Now that we've referenced a style sheet, we need to define the style sheet and any associated
styles within using the following steps:

1.	 Right-click on the com.davidsalter.cookbook.welcometofx package within
the Projects explorer and select New and then Other….

2.	 On the New File dialog, select Other from the list of Categories and Cascading Style
Sheet from the list of File Types.

3.	 Click on Next.

Chapter 7

237

4.	 Enter the File Name field as style and click on the Finish button to create the file.

5.	 The style.css file should be automatically opened within NetBeans for editing.

6.	 The first styling we are going to add is a background color to the window. Add the
following into the CSS file:
.root {
 -fx-background-color: linear-gradient(blue, gray);
}

7.	 This style sets the background color to be a linear gradient between the colors blue
and gray. You can see that the selector is prefixed with . indicating that the style is
for the root class rather than for an object with an ID of root.

The .root style, as its name suggests, is applied to the root node of
the Scene class's instance. As all the controls within a Scene class
are stored in a hierarchy underneath the root node, any styles applied
to the .root class are automatically applied to all controls within
the form. The .root class is therefore a good place to add any styles
that are consistent across all objects on a form.

8.	 Let's now add a style to all labels on the form. Add the following code to the end of
the style.css file:
.label {
 -fx-font-size: 20px;
 -fx-text-fill: yellow;
}

9.	 As with the previous style, the style is prefixed with . indicating, in this case, that
all elements of the label class are to have a font size of 20 pixels and are to be
displayed in yellow.

10.	 Let's now override that rule for the name field that we have on the form. Add the
following style to the end of the style.css file:
#name {
 -fx-font-size: 30px;
}

11.	 You can see that this selector is different from the previous selectors that we defined,
as it begins with a # prefix instead of a . prefix. This indicates that the style should
be applied only to objects that have fx:id of name. In our case, this is the label that
displays the user's name.

NetBeans JavaFX

238

At this point, you may be wondering how you can find out the names of all
the CSS styles that can be applied to nodes within JavaFX. Well, you can
get a full CSS reference guide from Oracle at http://docs.oracle.
com/javafx/2/api/javafx/scene/doc-files/cssref.html.

12.	 Now that we've made some changes to CSS, let's run the application and see how it's
been styled. Press F6 to run the application. Enter a name and click on the Say Hello
button. The resultant window should look something like the following screenshot:

So far we've seen how to style FXML files using CSS. Remember that we said we'd take a look
at how to style Java-coded windows as well? We'll do it with the following steps:

1.	 Double-click on the WelcomeToFX.java file within the Projects explorer to open it
for editing.

2.	 Within the start() method, add the following code immediately before the call
to primaryStage.show():
scene.getStylesheets().add(WelcomeToFX.class.
getResource("style.css").toExternalForm());

3.	 This line loads the style sheet file from the classpath and registers it for use against
the Scene class.

When using Java code instead of FXML to define user interfaces, you
can still use all the same CSS selectors for style definition. A Label tag
is a Label tag irrespective of whether it's defined in FXML or Java code.
When using Java code, however, we use the .setId() method to set a
node's ID (in FXML, we use the fx:id attribute).
So, to set the ID of nameLabel, we would code this as:

nameLabel.setId("name");

http://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
http://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

Chapter 7

239

4.	 Save the file and press F6 to run the application. The first window should look
something like the following screenshot:

How it works…
Cascading style sheets are the standard way of defining web page and web application styling
on the Internet. CSS is also the way to style JavaFX applications. Each scene can have one or
more style sheets associated with it, which can then be referenced from FXML or from within
the Java code.

Creating and using a JavaFX custom control
Like any good component-based framework, JavaFX allows developers to create custom
components that can be used within the developer tools just like any of the built-in components.

In this recipe, we'll see how to create a custom JavaFX component and then see how it can
be used from within Java code and also from within FXML. The custom component will be
a text string and an input box that can be repeatedly used for asking for a single piece of
information. The custom component will look like the following screenshot:

Getting ready
To complete this recipe, you'll need to have either the Java SE, or the Java EE version
of NetBeans 8 installed together with a minimum of JDK 7u6 installed.

NetBeans JavaFX

240

How to do it…
Before creating a custom component, let's create a basic JavaFX application so that we can
host the component we are going to create with the following steps:

1.	 Create a new empty JavaFX Application with the following details:

�� Project Name: FXCustomComponent

�� Create Application Class: com.davidsalter.cookbook.fxcomponent.
FXCustomComponent

If you're having trouble creating a JavaFX application, see the
Creating a JavaFX application recipe earlier in this chapter.

2.	 Custom components are typically written in FXML; so, let's now create an FXML
page with a controller that can represent the custom control. Right-click on the
Source Packages node of the FXCustomComponent project and select New
and then Other….

3.	 On the New File dialog, select JavaFX from the list of Categories and Empty FXML
from the list of File Types.

4.	 Click on Next.
5.	 Enter the FXML Name field as CustomInput and the Package field as com.

davidsalter.cookbook.fxcomponent.custom.
6.	 Click on Next.
7.	 Check the Use Java Controller checkbox and change the Controller Name field

to be CustomInput.

We've changed the name of the controller from the default naming
scheme of <fxml>Controller to CustomInput (without the
appended word Controller) as CustomInput will now be the name
of our custom control. We don't have to do this, but CustomInput is a
better name for a custom control than CustomInputController.

8.	 Click on Finish to create the FXML file and its controller.
9.	 We now want to edit the FXML file textually in NetBeans, so right-click on the

CustomInput.fxml file and select Edit.

If you don't have Scene Builder installed, you can simply double-click on
the file to open it up in NetBeans. See the recipe, Graphical editing of
FXML files, for further information about Scene Builder.

Chapter 7

241

10.	 Change the contents of the CustomInput.fxml file to read:
<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.geometry.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<fx:root type="javafx.scene.layout.HBox" alignment="CENTER"
xmlns:fx="http://javafx.com/fxml/1"
xmlns="http://javafx.com/javafx/2.2" >
 <children>
 <Label fx:id="label" text="Label" HBox.hgrow="ALWAYS">
 <HBox.margin>
 <Insets right="8.0" />
 </HBox.margin>
 </Label>
 <TextField fx:id="text" prefWidth="100.0" />
 </children>
 <padding>
 <Insets bottom="8.0" left="8.0" right="8.0"
 top="8.0" />
 </padding>
</fx:root>

11.	 This FXML file is very similar to those that we've seen before. We can see that there
is a Label and TextField tags each of which have an fx:id attribute of label
and text respectively. There is also a small amount of padding applied to the control
to space the individual components out and make them more readable. What's new,
however, is that the root node of the FXML file is now <fx:root> instead of a layout
type. The <fx:root> tag is used when creating custom controls to set the root
component of the control hierarchy directly via code. This allows us to explicitly set
the controller of the component.

12.	 You'll also notice that we aren't setting the controller within the FXML file. This is
because we're going to set the controller for the custom component within the
Java code in the next step.

If we set the controller within the FXML file, bad things happen! Try it
for yourself and see by adding an fx:controller attribute to the
fx:root element.
When loading the FXML file, JavaFX would detect the presence of a
controller class and try to instantiate it. This would then cause the FXML
file to be loaded, at which point JavaFX would detect the presence of a
controller class and try to instantiate it repeatedly.

NetBeans JavaFX

242

13.	 Double-click on the CustomInput.java file to open it up for editing and change the
body of the class to be:
public class CustomInput extends HBox {

 @FXML private Label label;
 @FXML private TextField text;

 public CustomInput() {
 FXMLLoader loader = new FXMLLoader(
 getClass().getResource("CustomInput.fxml"));
 loader.setRoot(this);
 loader.setController(this);

 try {
 loader.load();
 } catch (IOException ex) {
 Logger.getLogger(CustomInput.class.getName()).
 log(Level.SEVERE, null, ex);
 throw new RuntimeException(ex);
 }
 }

 public String getLabel() {
 return labelProperty().get();
 }
 public void setLabel(String value) {
 labelProperty().set(value);
 }

 public StringProperty labelProperty() {
 return label.textProperty();
 }

 public String getText() {
 return textProperty().get();
 }
 public void setText(String value) {
 textProperty().set(value);
 }

 public StringProperty textProperty() {
 return text.textProperty();
 }
}

Chapter 7

243

14.	 Looking at this code, we can again see a lot of similarities with the code that
we've written before. We've created two private instance members of Label and
TextField tags and annotated them with the @FXML annotation. This provides the
link between the objects declared within the FXML file and the Java code that backs
them. We've also created a constructor for the class that loads the FXML file and
then sets the class as the controller and the root of the custom component. This is
essential for creating custom components.

15.	 Each of the members that we've created on the form has an associated
StringProperty property defined for it. These use the JavaBean technique for
creating properties so that the custom component can be queried by reflection and a
list of its properties obtained. This allows code completion and Javadoc tooltips to be
displayed when using the custom control at a later date.

16.	 The final thing to note about this class is that it extends the HBox class as the default
layout for the control. This ties in with the default layout that we defined within the
root component of the CustomInput.fxml file:
<fx:root type="javafx.scene.layout.HBox"

Now that we've done everything necessary to create a custom control, let's see
how we can access it from within the Java code.

If you want to learn more about JavaFX programming, check out the
Oracle JavaFX tutorials at http://docs.oracle.com/javase/8/
javase-clienttechnologies.htm.

17.	 Double-click on the FXCustomComponent.java file from within the Projects
explorer to open the file for editing.

18.	 At the top of the start() method, create an instance of the CustomInput control
we have just defined:
CustomInput input = new CustomInput();
input.setLabel("What is your name?");

19.	 Change the root component to be VBox instead of StackPanel and add the new
input component into it:
VBox root = new VBox();
root.setAlignment(Pos.CENTER);
root.getChildren().add(input);
root.getChildren().add(btn);

20.	 Finally, change the button event handler to print out the contents of the textbox in
the custom control. Change the event handler to read:
@Override
public void handle(ActionEvent event) {
 System.out.println(input.getText());
}

http://docs.oracle.com/javase/8/javase-clienttechnologies.htm
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm

NetBeans JavaFX

244

21.	 Fix the imports on the FXCustomComponent.java class and then press F6 to run
the application. The application should look something like the following screenshot:

22.	 Enter a name and then click on the Say 'Hello World' button and note that the
inputted name is displayed in the NetBeans output window.

There's more…
In the previous section, we saw how to instantiate a custom component within the Java code,
but what if we want to instantiate it via FXML?

To instantiate a custom control within FXML, we just need to create a tag with the name of the
custom control and then set properties on it just like any other control. For example, the code
we wrote in step 19 of the preceding list would be like the following code within FXML:

<VBox>
 <children>
 <CustomInput label="What is your name"></CustomLabel>
 <Button …> </Button>
 </children>
</VBox>

What if we wanted to style a custom control? Can we do that? We certainly can! We can use
exactly the same techniques that we used in the recipe, Styling a JavaFX application with CSS,
to style custom components. This is where multiple style sheets would come in particularly
useful as we could use one style sheet for the basic, stock custom component styling,
and then have a separate one for each application or scene within our application.

Chapter 7

245

Deploying a self-contained application
As we've seen in the previous recipes in this chapter, NetBeans, in conjunction with Scene
Builder provides first-rate tools for developing JavaFX applications. Developing applications is
only one stage in the development cycle, and we need to be able to deploy our applications to
customers after they have been developed.

NetBeans provides tools to allow JavaFX applications to be packaged as self-contained
applications that include any libraries used by the application as well as a complete copy
of the JRE used for development. Self-contained applications can be packaged with native
installers and easily distributed to customers.

In this recipe, we'll see how we can create a self-contained application and package it up
for installation using Inno Setup from JR Software.

This recipe is primarily aimed at developers using Windows as their operating system;
however, NetBeans provides tools for Mac OS X and Linux developers as discussed at
the end of the recipe.

Getting ready
To complete this recipe, you'll need to have either the Java SE, or the Java EE version of
NetBeans 8 installed together with a minimum of JDK 7u6 installed.

You will also need the application we developed in the previous recipe, Styling a JavaFX
application with CSS. If you have not completed this recipe, the complete application is
available within the code download bundle for this chapter.

How to do it…
Ensure that NetBeans is not loaded as we need to make changes to the system's path
environment variable. If we make changes to this while NetBeans is running, the changes
will not take effect within NetBeans.

1.	 Download the Inno Setup installer from http://www.jrsoftware.org and install
it onto your development PC. Inno Setup is a free installer for Windows applications
that can be used in both open source and commercial applications. We'll not go into
details about how to use Inno Setup here as that could take a entire book on its own.
Fortunately, NetBeans takes care of all of the interaction with Inno Setup for us.

http://www.jrsoftware.org

NetBeans JavaFX

246

2.	 Once Inno Setup has been installed, we need to add the path to the Inno Setup
installation folder to our path. Access the environment variables for your system,
as shown in the following screenshot:

3.	 Once you have accessed the environment variables, amend the Path system variable
and append the installation directory of Inno Setup to it. This is usually C:\Program
Files (x86)\Inno Setup 5, as shown in the following screenshot:

Chapter 7

247

4.	 Once we've amended the Path environment variable, we can start NetBeans and
open the WelcomeToFX project.

5.	 The first step to creating a self-contained application is to enable native packaging.
Right-click on the WelcomeToFX project within the Projects explorer and
select Properties.

6.	 On the Project Properties window, select Deployment from the list of Categories and
check the Enable Native Packaging option, as shown in the following screenshot:

7.	 Before creating a self-contained application, let's first give the application a name
and an author.

8.	 Within the Project Properties window, select Application from the list of Categories.

9.	 Change the Title field to be Welcome To JavaFx and the Vendor field to be David
Salter. These fields will now be used as the application name and start screen
group name within Windows.

10.	 Click on OK to enable NetBeans to create native packages for the application.

NetBeans JavaFX

248

11.	 Right-click on the WelcomeToFX project within the Projects explorer and note that a
new menu item Package as is now available, as shown in the following screenshot:

12.	 Within this menu, there are several different options:

�� All Artifacts: Create all installation packages as well as the application
distributable files

�� All Installers: Create both an MSI installer package and a .exe
installer package

�� Image Only: Create the distributable files, but do not create any installers

�� EXE Installer: Create a .exe installer only using Inno Setup

�� MSI Installer: Create a .msi installer only using Wix

13.	 First, let's create an Image Only package. From the Package as menu, select the
Image Only option.

14.	 NetBeans will now create an image only package, which is one without any installers.
When the package is created, a BUILD SUCCESSFUL message will be shown within
the Output window, as shown in the following screenshot:

Chapter 7

249

15.	 Click on the Files explorer to show all the files within the project and expand the
bundles node under the dist folder, as shown in the following screenshot:

16.	 Within the bundles folder under the dist folder, you can see there is a folder for
the application called Welcome to JavaFx. Inside that folder, there is a folder
called app that contains the compiled version of our application as a .jar file. The
runtime folder contains a complete JRE copied from our development machine—this
is the same JRE that we used when running the application during development so
it's guaranteed to be the correct version. You can also see that a native .exe file has
been created along with an icon for the file.

17.	 Browse to this folder yourself in Windows Explorer and launch the .exe file to verify
that the application will now run as a native .exe file.

Now that we've seen that NetBeans is capable of creating a self-contained
application from a JavaFX project, let's create an installer for the application.

18.	 Right-click on the WelcomeToFX project within the Projects explorer and select
Package as and EXE Installer.

19.	 This time, the build process will take a little longer as it's building an installation
package using Inno Setup.

20.	 When the build is completed, expand the bundles node under the dist
folder for the WelcomeToFX project within the Files explorer, as shown in
the following screenshot:

NetBeans JavaFX

250

21.	 This time, we can see that there is only a single file within the bundles folder. This
time, it's a .exe installer for the application. Locate the Welcome To JavaFx-
1.0.exe file within Windows Explorer and double-click on it to install a copy of the
application. Verify again that it's the application we developed earlier and that a link
to the application has been added to the Windows Start screen, as shown in the
following screenshot:

There's more…
What if I want to create a .msi installer instead of a .exe installer? Can I do that?

NetBeans allows .msi installers to be created via the Wix installer package. To create
.msi packages, therefore, we need to follow a similar procedure to that above. We need
to download and install Wix and then set the system's Path environment variable to have
an entry for Wix in it. Typically, Wix is installed into the C:\Program Files (x86)\Wix
Toolset v3.8\bin directory.

For more information about Wix, check out the http://wixtoolset.org site.

Once installed, the application uses the default Java logo as its icon. Can I apply my own
branding to the installer? The application's icon can easily be changed via Deployment in the
Project Properties window. Here, you can change the application's icon and splash screen
image to those more suitable for your application. The following screenshot displays the Icon
and Splash Image dialog:

I don't use Windows for developing JavaFX applications. I use Mac OS X and/or Linux. Does
NetBeans provide any tools for me?

On Mac OS X, NetBeans provides the facility to create .dmg packages instead of .exe/.msi
packages. On Linux, the ability to create .deb packages is available.

http://wixtoolset.org

8
NetBeans Mobile

Development

In this chapter, we will cover the following recipes:

ff Adding mobile support to NetBeans

ff Creating an MIDP application

ff Adding Android support to NetBeans

ff Creating an Android application

Introduction
With the advent of smartphones and tablets, mobile development has had a renaissance.
You just need to look at the number of mobile applications that are available for the major
smartphones and feature phones to see how popular mobile development is.

It's not only on mobile phones and tablets that Java ME is used. It's also one of the major
players in embedded technology (running on devices such as Raspberry Pi), in Blu-ray
players, TVs, and smart cards.

In this chapter, we'll see how we can add mobile support to NetBeans so that we can develop
applications for these types of devices. In particular, we'll look at creating applications for
Mobile Information Device Profile (MIDP) and Android devices.

NetBeans Mobile Development

252

Adding mobile support to NetBeans
NetBeans 8 is not provided in a downloadable configuration that is explicitly available for the
mobile application developer. The nearest preconfigured download is the All bundle, which
includes all of the NetBeans tools ranging from those for the mobile developer to all of the
tools required for an enterprise developer. Clearly, there's a need for the mobile developer
to be able to install only the plugins they require without the need for additional
unnecessary plugins.

Fortunately, it's a straightforward task to add mobile development support to the smallest
NetBeans distribution—the Java SE download, as shown in this recipe.

Getting ready
To complete this recipe, you need to have downloaded and installed either the Java SE or Java
EE download bundles of NetBeans.

How to do it…
The first step in adding mobile development support into NetBeans is to download a suitable
Java ME SDK. Let's now download the Java ME 3.4 SDK and configure it within NetBeans
using the following steps:

1.	 Browse to the Java ME download page and download the Java ME SDK 3.4.

The Java ME download page can be found at http://
www.oracle.com/technetwork/java/javame/
javamobile/download/sdk/index.html.

2.	 Once the Java ME SDK has been downloaded, execute the setup application and
install it in a location of your choice. The only option during installation is to choose
the location in which you want to install the SDK. Take a note of this directory as we
will need it later on.

3.	 After installing the Java ME SDK, launch NetBeans so that we can configure mobile
development support.

4.	 Click on Tools and then Plugins from the main NetBeans menu.

5.	 Within the Plugins dialog, click on the Available Plugins tab.

6.	 Within this tab, locate the Mobility and Visual Mobile Designer plugins and select
them for installation, as shown in the following screenshot:

http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk/index.html
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk/index.html
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk/index.html

Chapter 8

253

7.	 Click on the Install button to begin the installation process for the plugins. NetBeans
will now identify the plugin dependencies and mark them also for installation.

8.	 Click on Next to display the license agreement for the new plugins.

9.	 Read and accept the license agreement, and then click on Install to add the Mobility
plugins into NetBeans.

10.	 NetBeans will now need to restart to complete the installation. Click on Finish to
restart NetBeans.

NetBeans will now restart with the Mobility plugins installed. We now need to add a
reference to the Java ME SDK in NetBeans so that we can create Java ME applications,
with the following steps:

1.	 Click on Tools and then Java Platforms from the main NetBeans menu.

2.	 The Java Platform Manager dialog will be displayed, showing that only the Java SE
platform is installed.

3.	 Click on the Add Platform... button to allow a Java ME platform to be added.

4.	 In the Add Java Platform dialog, select the platform type as Java ME CLDC Platform
Emulator, as shown in the following screenshot:

NetBeans Mobile Development

254

5.	 Click on Next.

6.	 NetBeans will now display the Choose directory to search for platforms dialog.
Select the directory in which you installed the Java ME SDK in step 2 and click on
the Open button.

7.	 NetBeans will confirm the folder selection. Click on Next to begin searching for
Java ME platforms in the specified directory.

8.	 NetBeans will now take a few seconds to search within the specified folder for
Java ME SDK installations. When a platform is detected, it will be displayed,
providing details of the platform, as shown in the following screenshot:

9.	 Click on Finish to add the Java ME platform.

Chapter 8

255

10.	 The Java Platform Manager dialog will now show the newly added Java ME platform:

11.	 Click on the Close button to complete the procedure.

How it works…
Adding support for Java ME development in NetBeans was a three-stage process. First,
we had to download an appropriate Java ME SDK. For this recipe, we downloaded the Java
ME 3.4 SDK. We then added support for mobile development into NetBeans by adding the
Mobility plugin. This plugin is hosted on the standard NetBeans update centers, so it could
be easily installed without any additional configuration.

When the Mobility plugins were installed, they provided the ability within NetBeans to add
a Java ME CLDC Platform Emulator. Without these plugins, we would only have been able
to define Java SE 8 platforms within NetBeans. These plugins also provide us with all of the
wizards necessary to create Java ME applications. We'll see more of those in the next recipe.

NetBeans Mobile Development

256

There's more…
What if we want to develop applications for a different mobile platform, for example,
Nokia's Asha range of phones?

Developing for a different mobile SDK requires many of the same steps as shown in this
recipe. Crucially though, we would need to download the appropriate mobile SDK (for the
Asha, for example) and install that locally on our PC. After installing the SDK, we would need
to add it as a platform within NetBeans, as shown in this recipe. After this, we could start
developing mobile applications for the platform.

Creating an MIDP application
In this recipe, we will use the MIDP as the profile for a mobile application.

MIDP is the best-known Java ME profile, and provides core functionality that will run across
many devices, giving applications more portability.

Getting ready
To complete this recipe, you will need to run NetBeans 8 with added mobile support.
If you have not added mobile support in NetBeans, check out the previous recipe.

How to do it…
First, we must create a new Java ME project with the following steps:

1.	 Click on File and then New Project... from the main application menu.

2.	 In the New Project dialog, select Java ME from the list of Categories and Mobile
Application from the list of Projects.

3.	 Enter in the Project Name field MyMIDPApp. Leave the other options with their
default values and click on Next.

4.	 Select Oracle Java(TM) Platform Micro Edition SDK 3.4 as Emulator Platform.
The Device, Device Configuration, and Device Profile fields can be changed here,
but the defaults are suitable in this instance, as shown in the following screenshot:

Chapter 8

257

5.	 Click on Finish to create the application.

How it works…
The folder structure created by NetBeans for a Java ME project is rather extensive.
The project is created with an Ant build file, which already includes several targets.
On top of that, the .properties files are created for the convenience of the developer.

To have access to all of the files shown in the following screenshot, it is necessary to build the
project. To do this, right-click on the project and select Build.

NetBeans Mobile Development

258

NetBeans then creates the Midlet.java file, which is our main class for developing
with Java ME.

It is possible to edit the code in a MIDlet Java file in different ways.

If a MIDlet is created as a plain Java class, it can only be edited in the Source view. However,
if a Visual MIDlet class is created, it can be edited in the Source, Screen, Flow, and Analyzer
views. A Visual MIDlet is created by selecting Visual MIDlet from the File Types list when
creating a file. A plain Java MIDlet is created by default when a Java ME project is created.
Visual MIDlet editing is provided by the Visual MIDlet designer plugin. The different views for
editing a Visual MIDlet are as follows:

ff Source: This is where the developer can write the code. By clicking on it, the view
changes to the Java code editor, where it is possible to see the code generated by
NetBeans (the grayed-out and commented parts) and the user-editable code. This is
very similar to editing Swing-generated code.

ff Screen: This allows the developer to build the UI graphically by dragging-and-dropping
components from the Palette window—much like creating a Swing or JavaFX
user interface.

ff Flow: This lets the developer create and build the flow between windows and add
behaviors, in the form of commands, to the components from the Palette window.
This is shown in a very user-friendly and graphical way to the developer, and is very
similar to UML diagrams.

ff Analyzer: Since every bit of memory counts in mobile applications, this view is
responsible for analyzing the code for unused components, screens, or resources
that might be left on our mobile device.

To run a mobile application, simply right-click on the project and select Run. The appropriate
mobile emulator will launch with the application running within it.

There's more…
On project creation, we can select the device we are designing our application for and will be
deploying it on.

The device can be selected at project creation time on the Default Platform Selection page
within the New Mobile Application wizard.

Chapter 8

259

On an existing project, the target device can be changed within the project's properties
window with the following steps:

1.	 Right-click on the project within the Projects explorer and select Properties.

2.	 Click on Platform from within the Category list, and the list of available devices is
shown under the Device dropdown, as shown in the following screenshot:

The function of Optional Packages selected in the preceding screenshot is to enable
features in the Java ME application that would otherwise not be supported. For example,
the ContentHandler API lets applications execute other registered applications by a URL.

To learn more about the available APIs within Java ME, please refer to
http://docs.oracle.com/javame.

http://docs.oracle.com/javame

NetBeans Mobile Development

260

Alternatively, when testing, it is possible to select the device prior to running the application.
Right-click on the project node and select Run With…, and you will be presented with the
Quick Project Run dialog:

Adding Android support to NetBeans
The Android platform is one of the most popular smartphone and tablet platforms to develop
for at the moment.

Developed by Google, the Android platform contains many different APIs, both inside and
outside of the Google ecosphere. For example, Android provides location services and can
also be integrated with Google Maps.

Fortunately (for the Java developer), Android applications are written in Java, which is then
compiled into Android's proprietary bytecode to run on the Dalvik virtual machine (instead
of the usual Java Virtual Machine that Java developers are used to).

For more information about Android and Android development, check out
http://www.android.com and http://developer.android.com.

Since Android applications are essentially written in Java, we can install a plugin called
NBAndroid to allow us to develop and test Android applications, all from within NetBeans. For
more information about NBAndroid, check out the website at http://www.nbandroid.org.

Getting ready
To complete this recipe and enable Android support within NetBeans, we need to have either
the Java SE, Java EE, or All bundle of NetBeans 8 installed. We also need to have downloaded
and installed the Android SDK.

The Android SDK can be downloaded from
http://developer.android.com/sdk/index.html.

http://www.android.com
http://developer.android.com
http://www.nbandroid.org
http://developer.android.com/sdk/index.html

Chapter 8

261

How to do it…
1.	 The NBAndroid project is not distributed via the standard NetBeans Update Centers,

so we need to add the NBAndroid Update Center into NetBeans. Click on Tools and
then Plugins from the main NetBeans menu.

2.	 Click on the Settings tab, and then click on the Add button to add a new
Update Center.

3.	 Enter the Name field as NBAndroid and the URL field as http://nbandroid.
org/updates/updates.xml, as shown in the following screenshot:

4.	 Click on OK to add the Update Center.
5.	 Click on the Available Plugins tab and select Android from the list of available

plugins, as shown in the following screenshot:

6.	 Click on Install to install the NBAndroid plugin.
7.	 The NetBeans IDE Installer dialog will now be shown, confirming that the Android

plugin is being installed. Click on Next.
8.	 Read the license agreement, and if you agree to it, click on the I accept the terms in

all of the license agreements checkbox and then click on Install to continue.
9.	 Click on Close on the Plugins dialog to complete the installation process for the

NBAndroid plugin.

NetBeans Mobile Development

262

Now that we've installed the NBAndroid plugin into NetBeans, we need to configure it so that
we can develop Android applications. We can achieve this with the following steps:

1.	 Click on Tools and then Options from the main NetBeans menu.

2.	 On the Options dialog, click on the Miscellaneous option and then on the
Android tab.

3.	 Enter the location for your Android SDK under the SDK Location field, as shown in
the following screenshot:

4.	 Click on OK to complete the configuration of the Android SDK.

How it works…
In this recipe, we added a custom Update Center in NetBeans, allowing us to install the
NBAndroid plugin and, therefore, Android developer support in NetBeans.

The NBAndroid plugin allows us to specify an Android SDK to use when developing
applications. The plugin provides wizards that can be used for creating Android applications
(we'll see those in the next recipe) and enhances the XML text editors when editing Android
XML files.

When developing for Android, different versions of the Android SDK can be configured using
the Android SDK Manager (SDK Manager.exe) application. These can then be selected via
the project's properties dialog in NetBeans as the target SDK for applications, as shown in the
following screenshot:

Chapter 8

263

There's more…
The NBAndroid plugin that we've seen so far is provided free of charge and provides facilities
for creating Android applications within NetBeans.

An additional plugin called NBAndroid Extensions is also available from the NBAndroid
project. This plugin is available on a subscription basis, but provides additional facilities for
NetBeans developers, the most important being the ability to provide a GUI layout preview.

For more information on this additional plugin, check out
http://nbandroid.org/wiki/index.php/NBAndroid-ext.

Creating an Android application
In this recipe, we'll see how we can use the NBAndroid plugin to create a basic
Android application.

Getting ready
To complete this recipe, you'll need to use any version of NetBeans 8. You'll need to have
downloaded and configured the Android SDK on your machine. Finally, you'll need to have
installed the NBAndroid plugin as described in the previous recipe.

http://nbandroid.org/wiki/index.php/NBAndroid-ext

NetBeans Mobile Development

264

How to do it…
To create an Android application, perform the following steps:

1.	 Click on File and then on New Project... from the main NetBeans menu.

2.	 Select Android from the list of Categories and Android Project from the list
of Projects.

3.	 Click on Next.

4.	 On the New Android Application dialog, enter the Project Name field as
HelloAndroid, and the Package Name field as com.davidsalter.cookbook.
android.

5.	 Select the latest Android platform within the list of platforms (Android 4.2.2,
as shown in the following screenshot).

6.	 Click on Finish to create the application.

7.	 Double-click on the main.xml file located under HelloAndroid\res\layout
to open it up for editing. This file contains the definition of the screen layout of
the application.

Chapter 8

265

8.	 Change the TextView node to the following code:
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="NetBeans Rocks !!"
/>

9.	 Right-click on the HelloAndroid project and select Run to start the Android
emulator and launch the application within it. The resultant dialog will look like
the following screenshot:

How it works…
In this recipe, we saw how the NBAndroid provides Android application support within
NetBeans, allowing Android applications to be created.

For more information on how to develop for the Android platform, check out
http://developer.android.com.

http://developer.android.com

9
Version Control

In this chapter, we will cover the following recipes:

ff Initializing a Git repository

ff Cloning a Git repository

ff Checking out from a Subversion repository

ff Getting the history of a file

ff Committing and pushing code changes

ff Creating a Diff patch

ff Branching a repository

Introduction
With all but the smallest projects, good source code management is essential. Source code
management allows multiple developers to work together on projects whether they are
working on the same piece of functionality or completely disparate parts of the system.

Probably, the most common source code control system at present is Git. Within this chapter,
we'll see how we can manage Git repositories from within NetBeans allowing us to perform all
of the common version control actions such as branching, committing, and merging.

Don't worry, though, if you don't use Git—this chapter includes recipes for Mercurial,
Subversion, and CVS as well. To aid developers switch between different version control
systems, NetBeans has been developed so that all the included version control functionality
is very similar, if not the same across systems. So, for example, if you know how to check a file
into Subversion within NetBeans, you know how to check it into Git.

Version Control

268

Initializing a Git repository
Initializing a Git repository is often one of the first tasks that is performed when starting a new
project. Initializing a repository creates the local repository and allows local source control
actions to be performed such as checking in code and viewing a file's history.

In this recipe, we'll see how NetBeans allows us to initialize a Git repository for a specific
project and how this gives us benefits over using the Git command-line tools.

Getting ready
You can use any of the Java download bundles of NetBeans (Java SE, Java EE, or the
All bundle) to complete this recipe as they all have Git support built into NetBeans.

We will be initializing the JarViewer project that we created in Chapter 4, Developing
Desktop Applications with NetBeans, so if you did not complete the recipes in that chapter,
you will need to locate the JarViewer project from the code download bundle for this book.

How to do it…
To initialize a Git repository, perform the following steps:

1.	 Right-click on the JarViewer project within the Projects explorer and click on
Versioning and Initialize Git Repository….

2.	 The Initialize a Git Repository dialog will now be shown confirming the root path that
the repository will be created in, as shown in the following screenshot:

3.	 Click on the OK button to initialize the repository.

Chapter 9

269

How it works…
Initializing a Git repository within NetBeans performs two tasks:

ff Initializing the repository

ff Adding the initial project files to the newly created repository

Initializing the repository is the same as executing the git init command from a command
line within the root folder of the project. This command creates a local Git repository within
the project files and creates a hidden folder called .git in which all of the repository files
are stored. This folder is not visible from within NetBeans. If, however, we open up Windows
Explorer (or Finder on the Mac), we can see that this folder has been created, as shown in the
following screenshot:

The second stage of initializing the repository within NetBeans is to add all of the project files
into the repository. This is the equivalent of using the git add command.

When adding a project into a new Git repository through the Initialize Git Repository option,
NetBeans only adds source files into the project. Any private files, or build-related files are
not added for inclusion into the repository. This is one of the major benefits of initializing a
repository this way over initializing and adding files manually using the git command.

After a project has been initialized within Git, different color codes and icons are displayed
within the Projects explorer to show the status of files.

Version Control

270

Newly added folders that have not been committed have a cylindrical icon () next to them to
indicate that they contain newly added files. Newly added files themselves are displayed in
green. Files that have been excluded from the repository, for example, build files are displayed
in gray, as shown in the following screenshot:

We'll make changes to the files within this project in the subsequent recipes in this chapter
and see how the icons change when we delete or modify files.

There's more…
In many respects, Mercurial and Git are similar source code control systems, although in
recent years, Git has become the more popular of the two. NetBeans, however, provides
tools to allow Mercurial repositories to be initialized in a similar fashion to Git repositories.

Initializing a Mercurial repository
To initialize a Mercurial repository, however, the Mercurial tools need to be first installed onto
your computer. If you've not got the Mercurial tools installed, you can download them from
http://mercurial.selenic.com.

A quick way to check if you have the Mercurial tools installed correctly
is to open a command prompt or terminal session and execute the hg
command. If you have Mercurial installed correctly, you should see a list
of commands that Mercurial supports. If it's not installed correctly, you'll
see an error indicating that the hg command could not be found. In this
case, you either need to install Mercurial or add it to your system path.

http://mercurial.selenic.com

Chapter 9

271

Once you've got Mercurial installed, you can initialize a Mercurial repository using the same
steps mentioned in this recipe for Git repositories except that, in the initial step, you would
right-click on the project and select Versioning and then Initialize Mercurial Repository…
instead of Initialize Git Repository….

Cloning a Git repository
In the previous recipe, Initializing a Git repository, we saw how to create a new local Git
repository. This is a useful technique when starting new projects; however, most of the
time we aren't starting new projects, but are instead working on existing projects.

In this recipe, we'll see how to clone a Git repository so that we can work on a project that is
already stored in the source control.

Getting ready
You can use any of the Java download bundles of NetBeans (Java SE, Java EE, or the
All bundle) to complete this recipe as they all have Git support built into NetBeans.

To complete this recipe, you will need to create a fork of the JarViewer repository on GitHub.
A fork is essentially your own copy of a repository that you can make changes to without
affecting the original product.

With Git, it is possible to clone both remote repositories (such as on GitHub)
and repositories that are stored on the local filesystem. A local Git repository
functions exactly the same as a remote Git repository.

The process of forking repositories is integral to how many open source projects work. To
make a fix to a project, a fork is first made, which creates your own copy of the Git repository.
The code can then be fixed and committed on the forked repository before issuing a pull
request. A pull request indicates to the owner of the original repository that some new
changes have been made in a forked repository that we'd like committing to the main
repository. Using Git and GitHub, this process is very straightforward.

In this recipe, we will be cloning your personal fork of the cookbook-jarviewer project
created in Chapter 4, Developing Desktop Applications with NetBeans. We'll see how to
create the fork on GitHub and then how to clone it into NetBeans.

To complete this recipe, you will need an account with GitHub. For more information about
GitHub and to create an account there, visit http://www.github.com.

http://www.github.com

Version Control

272

How to do it…
The first step in completing this recipe is to create a fork of the cookbook-jarviewer
project on GitHub. We can achieve this with the following steps:

1.	 Navigate to http://github.com and log in to your account.
2.	 Navigate to the cookbook-jarviewer project by browsing to

http://github.com/doobrie/cookbook-jarviewer.
3.	 At the top right of the page, you will see the Fork button (shown in the following

screenshot). Click on this button to create your own copy of the repository on
your account.

4.	 It will now take GitHub a few moments to fork the repository. The forked repository
will have a URL of https://github.com/<your-username>/cookbook-
jarviewer.jar.

Now that we've forked the cookbook-jarviewer project, let's see how we can clone it into
NetBeans with the following steps:

1.	 Click on the main NetBeans Team menu, then click on Git, and finally on Clone….
2.	 The Clone Repository dialog will be shown. Enter the Repository URL field as

https://github.com/<your-username>/cookbook-jarviewer.jar
remembering to change <your-username> to your GitHub username.

3.	 Enter your GitHub username and password into the User and Password fields,
as shown in the following screenshot:

http://github.com
http://github.com/doobrie/cookbook-jarviewer

Chapter 9

273

If you are using a proxy server to connect to the Internet, you may
need to configure that within NetBeans before continuing. Clicking
on the Proxy Configuration... button on the Clone Repository page
allows a proxy server to be configured.

4.	 Click on the Next button.

5.	 A list of remote branches to clone will be displayed. This repository only has one
branch, called master. Ensure the branch is checked and click on Next.

6.	 The Destination Directory page will now be shown confirming the information we
have entered so far in the wizard, as shown in the following screenshot:

7.	 Ensure the Scan for NetBeans Projects after Clone checkbox is selected. When this
checkbox is selected, NetBeans will look for NetBeans projects in a cloned repository
and will provide the user with an easy option to open any that are found. Click on
Finish to clone the repository.

Version Control

274

8.	 A confirmation dialog will be shown when the cloning process has completed showing
that NetBeans has found a NetBeans project within the repository. Click on the Open
Project button to open the project, as shown in the following screenshot:

How it works…
Cloning a Git repository is a very useful technique for taking a copy of a remote repository onto
your local development machine.

Cloning a repository from within NetBeans is similar to performing the git clone command
from a command line; however, NetBeans has the facility to scan the cloned repository for
NetBeans projects, which can then be easily opened.

In this recipe, we cloned a GitHub repository; however, we don't have to clone repositories
on GitHub. The same procedure works for cloning repositories on BitBucket or any other
Git-hosted repository.

There's more…
In the previous recipe, Initializing a Git repository, we saw that when a project is integrated
with a Source Code Control System (SCCS) such as Git, different colors and icons are used
to visually show the status of files.

Since we've just cloned a repository and not made any changes to it, we shouldn't expect to
see the icon on the project () indicating that files have been changed.

If we look at the project, however, we can see that the icon is present next to the project name
indicating that something has changed. Expanding all of the project nodes, we can see that no
files have been changed though, as shown in the following screenshot. So why then do we see
this icon?

Chapter 9

275

If we open up the Files explorer, we can see that NetBeans has added a file called
.gitigore. Opening up this file, we can see that it contains a single line:

/nbproject/private/

This file tells Git to ignore the contents of the private folder located in the nbproject
folder within the project and not to commit anything within this folder into source control.
This is a very useful feature to stop private files from being committed and therefore visible
to other users.

This file is displayed in green within the Files explorer as it's a new file that hasn't yet been
added into the repository.

Cloning a Mercurial repository
In this recipe, we looked at cloning a Git repository. What happens if we want to clone a
Mercurial repository instead? Both Git and Mercurial support distributed (offline) repositories,
so can NetBeans help us here?

NetBeans can certainly help us when using Mercurial instead of Git. To use Mercurial,
however, requires an extra step that is not required for using Git. Before we can use Mercurial
from within NetBeans, we need to ensure that we have installed the Mercurial tools from
http://mercurial.selenic.com and added them to the systems path, as NetBeans
executes these commands to provide Mercurial functionality.

http://mercurial.selenic.com

Version Control

276

Once we've installed Mercurial support, we can click on the Team menu item from within
the main NetBeans menu. We then choose Mercurial and then Clone Other… to access the
Clone External Repository dialog. From there on, we can specify connection details to a
remote Mercurial repository and check projects out and then open them within NetBeans.

Updating to a specific revision
Sometimes when working with a repository, we don't want to get the latest files (the last
commit performed on the repository). NetBeans allows us to get a specific revision from a
repository once we have cloned it.

To check out a specific revision, right-click on the project within the Projects explorer and
click on Git, then on Checkout, and finally on Checkout Revision.... NetBeans will then
display the Checkout Selected Revision dialog from which we can choose a specific
revision to check out.

Checking out from a Subversion repository
In the previous recipe, Cloning a Git repository, we saw how to clone a remote Git repository
so that we could make changes to it. In this recipe, we'll show how to check out a Subversion
repository. Subversion works differently from Git, in that when files are checked out from
Subversion, they are stored locally with the repository being stored somewhere on a server.
In Subversion, there is no local repository like there is in Git. This means that with Git, you
can perform SCCS operations offline. With Subversion, these operations must be performed
online. These differences therefore explain why we don't clone a Subversion repository,
instead, we check out files from a Subversion repository.

Getting ready
You can use any of the Java download bundles of NetBeans (Java SE, Java EE, or the All
bundle) to complete this recipe as they all have Subversion support built into NetBeans.

To complete this recipe, we will be checking out a copy of the JarViewer application from
Chapter 4, Developing Desktop Applications with NetBeans, from a Subversion repository
hosted on Google Code. For more information about Google Code and how to create hosted
projects there, check out https://code.google.com/hosting.

https://code.google.com/hosting

Chapter 9

277

How to do it…
1.	 Click on Team, then on Subversion, and finally on Checkout… from the main

NetBeans menu.

2.	 The Checkout dialog will be displayed. Enter the Repository URL field as
https://cookbook-jarviewer-svn.googlecode.com/svn/trunk.

3.	 Since public commit access has not been granted to this repository, leave the User
and Password fields blank. If you were to check out a repository to which you had
commit access (or one that simply requires authentication to check out code),
you would enter the username and password here. The Checkout dialog is shown
in the following screenshot:

4.	 Click on Next.

Version Control

278

5.	 On the Folders to Checkout page, NetBeans provides confirmation about the
repository that is being checked out. The Repository Folder(s) field defaults to trunk
indicating that the main trunk branch from the repository is to be checked out. The
Repository Revision field is set to HEAD meaning that the latest version of trunk will
be checked out. Ensure the Scan for NetBeans Projects after Checkout checkbox is
checked, as shown in the following screenshot:

6.	 Click on the Finish button to check out the project.

7.	 After a few moments, NetBeans will indicate that the checkout was completed
successfully. Click on the Open Project button to open the checked out project.

How it works…
Checking out a project from within NetBeans is a similar process to performing the svn co
command from the command line. NetBeans connects to the remote Subversion repository
and checks out the required folder and revision using the supplied credentials.

If we now right-click on the project or any files within the project from the Projects explorer,
we can see that a Subversion menu item has been added. We can access all of the
Subversion functionality from this menu.

Chapter 9

279

There's more…
When interacting with Subversion, it can sometimes matter what version of the Subversion
client is used for communicating with the server. By default, NetBeans uses the JavaHL
bindings. This is a Java API built on top of the native Subversion client files and generally
provides the best experience for communicating with Subversion.

If a different version of the Subversion client is required, however, this can be configured
within the Team section of the NetBeans Options menu. Within this page, Preferred Client
for Subversion can be configured as CLI. Selecting this option allows a specific version of the
Subversion client to be specified and used for all communication between NetBeans and the
Subversion server.

The final option is to use SvnKit. This is a pure Java implementation of the Subversion
client libraries and will give better performance than the CLI option, but not as good as
the JavaHL option.

If you do not have to specify a certain version of the Subversion client to communicate with
your Subversion server, it is best to leave the Preferred Client option at its default setting of
JavaHL, as shown in the following screenshot:

Importing files into a Subversion repository
In this recipe, we saw how to check out files from a Subversion repository, but is there any way
that NetBeans can help us to store the initial files within a Subversion repository? Fortunately,
there is.

From an open project (that is not stored in Subversion), simply right-click on the project in
the Projects explorer and select the Versioning and then select the Import into Subversion
Repository… menu options.

Version Control

280

On the Import dialog, enter values in the Repository URL, User, and Password fields.
Complete the wizard by entering the initial commit message and the NetBeans project
will be stored within a Subversion repository. We can see the Import dialog in the
following screenshot:

In many respects, Subversion is a natural replacement for the CVS source code control
system. Both Subversion and CVS require online access to repositories as neither of them
has the concept of local distributed repositories like Git and Mercurial. Subversion provides
benefits over CVS though, mainly in terms of atomic commits, which CVS does not support.
One of the major downsides of CVS is that commits are not atomic, so if something goes
wrong in the middle of a commit, the repository can be left in an unstable state. Subversion
overcomes this problem by ensuring that all commits are atomic, that is either everything is
committed in one step, or nothing is committed at all.

Using CVS from within NetBeans
CVS is a relatively old source code control system, and as such, support from it has been
removed from the base NetBeans product. CVS support can, however, be easily added via a
NetBeans plugins. Click on Tools and then Plugins to open the Plugins dialog. On the list of
Available Plugins, the CVS plugin provides support for CVS. Select the plugin and click on the
Install button to add CVS support to NetBeans.

Chapter 9

281

Once CVS support has been added into NetBeans, it can be accessed in a similar fashion to
how we used Subversion earlier in this recipe.

We can import a project into CVS by right-clicking on the project and selecting Versioning and
then the Import into CVS Repository… menu option. The procedure is almost identical to that
of importing into a Subversion repository.

Similarly, we can check out from a CVS repository by selecting the Team option and then
CVS and finally the Checkout... menu option from the main NetBeans menu. Again,
the procedure is almost identical to that of checking out from a Subversion repository.

Getting the history of a file
So far we've seen how to initialize source code repositories and how we can get a working
copy for us to develop against.

In this recipe, we'll use NetBeans to query a Git repository so that we can view the history
of files within it. We'll concentrate on Git within this recipe as it is probably one of the most
widely used source code control systems at the moment. You can apply the principles for
other types of repository as the general procedures are the same.

Getting ready
To complete this recipe, we'll need to have cloned the cookbook-jarviewer repository from
GitHub as described in the earlier recipe, Cloning a Git repository.

Ensure that this project is open within NetBeans before starting this recipe.

How to do it…
We can view the history of files with the following steps:

1.	 Expand the JarViewer project within the Projects explorer so that the Source
Packages node of com.davidsalter.cookbook.jarviewer is opened.

2.	 Right-click on the Main.java file and select Git and then Show History.

Version Control

282

3.	 The history for the file is now displayed. Looking at the history view, you can see that
two commits have been made to the file. Each commit is listed along with its identifier
(430c537 and 3098371), a description for the commit, the author, and the date the
commit was performed, as shown in the following screenshot:

If there are a lot of commits, and we wish to search for a specific one, we can use
the fields at the bottom of the history window to narrow the search down by commit
description, author, branch, and date span.

4.	 Enter the text file header into the Message edit box and click on the
Search button.

5.	 Note how the history has been filtered to only display entries matching the
input criteria.

Chapter 9

283

Once we've viewed the history of a file, we can also see what changes were made to the file
during a specific commit. We can also perform several actions on a previous commit such as
tagging or reverting the commit with the following steps:

1.	 Click on the plus button () at the left of the file history with an ID of 430c537.

2.	 The history line will expand showing several options: Diff to Previous, Checkout
430c537, Tag Commit, Export Commit…, and Revert Commit…. They are described
as follows:

�� Diff to Previous: This option compares the specified version of the file with
the previous version

�� Checkout: This option checks out the specified version of the repository into
the local working copy

�� Tag Commit: This option adds a source control tag to the specified version

�� Export Commit: This option creates a Diff file of the commit and saves it to
the disk

�� Revert Commit: This option reverts the changes made in the specified
commit to that state which the file was in before the commit was made

All these options are displayed in the following screenshot:

Version Control

284

3.	 Click on the Diff to Previous link to view the differences of the file to the previous
version of the file. The resultant dialog is displayed in the following screenshot:

4.	 Any additions to a file are displayed with a blue background, while any modifications
to a file are shown with a green background.

So far we've seen how we can view the differences between files that have been committed to
the repository. NetBeans also allows us to see the changes that have been made to a project
since it was last committed with the following steps:

1.	 Double-click on the Main.java file to open it for editing.

2.	 Use the Insert Code… refactoring to insert a logger into the file and then log a start
message immediately after the definition of the main() method:
LOG.info("Starting application: "+args.length+"
arguments.");

3.	 Note that wherever we've changed the file, NetBeans has added a green band
in the left margin to indicate the lines that have changed, as shown in the
following screenshot:

Chapter 9

285

4.	 Right-click on the JarViewer node within the Project explorer and click on Git and
then on Show Changes.

5.	 The output window is opened showing that the Main.java file has been modified.

6.	 Click on the Open Diff button () to show what changes have been made to the file.
A file differences window similar to the one shown previously is displayed showing
what changes have been made to the file.

There's more…
In this recipe, we showed you how to view the history for a file by right-clicking on it within
the Projects explorer and selecting the History option. A shortcut to this operation is to
click on the History button at the top of a file when it is open within the editor. Upon selecting
the History tab, we are presented with the option of filtering the history to show either
local changes, or changes that have been committed to Git. Using both of these options
provides a powerful tool for managing the history of files. We can see the History tab in the
following screenshot:

In this recipe, we saw how to view the history for a file and how to show what changes were
made to the file over the previous version. What if we wanted to show all the changes in a
commit though, and not just the changes made to a single file?

NetBeans allows the history for the entire project to be shown by right-clicking on the root
node of the project in the Projects explorer and selecting Git and then Show History.
NetBeans then shows the history search screen as shown previously, but does not perform
the search until some criteria have been entered and the Search button has been clicked.

Committing and pushing code changes
In the previous recipe, Getting the history of a file, we made a change to a file under source
control so that we could see how NetBeans could show us the differences that we'd made to
our local code.

In this recipe, we'll see how we can commit these changes back to source control on our local
Git repository and then how we can push the changes back to the remote repository.

Version Control

286

Getting ready
To complete this recipe, you will need to have completed the previous recipe, Getting the
history of a file, so that there are local changes to the repository. It's possible to complete this
recipe by making your own changes to the local code; however, the descriptions in this recipe
may not then match exactly with your code base.

How to do it…
1.	 Right-click on the root node of the JarViewer project within the Projects explorer

and click on Git and then on Commit….

2.	 The Commit dialog will now be displayed. Enter Added startup logging in the
Commit Message field. Ensure your GitHub e-mail address is specified in the Author
and Committer fields, as shown in the following screenshot:

3.	 Click on the Commit button to commit the changes to the repository.

Chapter 9

287

NetBeans will now commit any changed files to the local Git repository. If you wish to verify
this, check out the history for the project. If you need help with this, check out the preceding
recipe, Getting the history of a file. Note how any of the files that were changed locally are no
longer displayed in blue within the Projects explorer, and any blue or green marking in the
gutter when editing a file have also been removed as the local file is now the same as the file
in the local Git repository.

With Git, when we've made changes to a local repository, we can push the changes to the
remote repository so that they are available for everyone to clone with the following steps:

1.	 Right-click on the JarViewer root node within the Projects explorer and select Git,
then Remote, and then Push….

2.	 The Push to Remote Repository dialog will be displayed:

3.	 Since we originally cloned a remote repository, NetBeans knows where to push the
local repository to. The Select Configured Git Repository Location option should be
automatically selected. If you wish to push to a different remote repository, or you
have initialized a local repository without cloning a remote repository, then enter the
details under the Specify Git Repository Location option.

4.	 Click on Next.

5.	 NetBeans will show a list of Local Branches that are to be pushed. On this page,
NetBeans will indicate that we are updating the master branch (as we have not
created any other branches). Click on Next.

6.	 NetBeans will now show a list of Remote Branches that will be updated. Again, as
there is only one branch on the remote repository, this is all that will be displayed.

7.	 Click on Finish to push the local repository to the remote repository.

Version Control

288

There's more…
When we are about to commit files to a repository, it's good practice to first perform an update
procedure, so that we know that we are working on the very latest code and we will minimize
chances of code conflicts when committing code. Performing an update gets the latest code
base from the repository and merges it into our code base flagging up any conflicts that we
will need to resolve. When we're in a situation where we are happy with our code, it's also
good practice to run any tests that we may have before committing to the repository (we'll
discuss testing in Chapter 10, NetBeans Testing and Profiling). When we've updated to the
latest code and run our tests, we should be confident that committing our code will not break
any other code within the project.

Managing new files
When we commit files to a repository, how does NetBeans handle new files that we've added
to the project? Do we need to manually add them to Git?

When we add new files into a project via the NetBeans New File wizard, the files are
automatically flagged within Git to be added to the local repository next time a commit is
performed. If we have added files outside of NetBeans into the project structure, however, we
need to manually flag them to be added to Git. This is achieved by right-clicking on the file in
question and choosing Git and then the Add option.

Creating a Diff patch
When working on projects that are hosted in Subversion or CVS, it's often necessary to create
a Diff patch and submit this to project owners. A Diff patch details all of the changes made
between two code bases, with all of the information being held within a single file.

Creating a Diff patch is particularly common in open source projects where a user does not
have commit rights, but wishes to submit a patch or a piece of new functionality to a project.

In this recipe, we'll show how to use NetBeans to create a Diff patch for changes made to a
locally checked out Subversion repository.

Getting ready
To complete this recipe, you will need to have completed the previous recipe, Checking out
from a Subversion repository, so that we have a local repository to make changes to and so
that we can create a Diff file for these changes.

Ensure that the JarViewer project checked out from Subversion is open within NetBeans
before proceeding with this recipe.

Chapter 9

289

How to do it…
In order to create a Diff patch, we first need to make some changes to the project so that it is
different to the remote repository with the following steps:

1.	 Double-click on the Main.java file to open it for editing.
2.	 Use the Insert Code… refactoring to insert a logger into the file and then log a start

message immediately after the definition of the main() method:
LOG.info("Starting application: "+args.length+"
arguments.");

3.	 Now that we've made some changes so that our local copy of the repository is
different from the remote repository, we can create a Diff file.

4.	 Right-click on the JarViewer root node within the Projects explorer and select
Subversion, then Patches, and then Export.

5.	 On the Export Diff Patch dialog, select a filename to save the Diff patch and then
click on the OK button to create the Diff patch.

Although you can use any file extension when creating Diff patches,
the standard file extension is either .diff or .patch.

6.	 The Diff patch will be created and opened within NetBeans showing all the changes
made to the project.

There's more…
If you only want to create a Diff patch for a single file within NetBeans, you can select the Team
menu and then Diff and the Diff Files menu option. This Diff Files option will cause a list of files
that have changed from the remote repository to be displayed. Clicking on any of the files shows
a graphical representation of what has changed in that file. This is very easy to follow and makes
viewing the changes to a particular file very easy. Clicking on the Textual tab will show the
changes for the specified file in the Diff format, as shown in the following screenshot:

Version Control

290

Right-clicking on any changed file and selecting Export Diff Patch will create a Diff patch for
the specified file only and not for all the files that have changed.

Applying a Diff patch
The opposite of creating a Diff patch is applying a Diff patch to a project. If you receive a Diff
patch, and wish to apply it to a project, this can easily be performed with NetBeans.

Right-click on the root node of the project from within the Projects explorer and click on
Subversion, then Patches, and then Apply Diff Patch…. NetBeans will then ask for a Diff
patch file to be selected. Upon selecting the file, NetBeans will attempt to apply it to the
current project. The Output window will show the status of applying the patch and whether it
has succeeded or failed (most likely because NetBeans cannot correctly perform a complex
merge). NetBeans will also show both a Graphical and Textual result of a merge so that you
can see exactly what parts of the Diff patch have been applied and to what files.

Branching a repository
When multiple people are working on a project, there is usually more than one piece of
development being performed at a single time. It's a good practice to only commit production-
ready code to the trunk or master branches of a repository, so we need somewhere else to
commit code that we've not finished with. This is where branching and branches comes in.

A branch is a separate development stream that has been taken from the master/trunk
branch at a certain point of time, usually with the intention of completing a specific piece
of functionality, whether it's a bug fix or a new feature.

Within this recipe, we'll show how to create a branch within a Git repository, although the
procedure is the same for other types of repositories.

Getting ready
To complete this recipe, we'll need to have cloned the cookbook-jarviewer repository from
GitHub as described in the earlier recipe, Cloning a Git repository.

Ensure that this project is open within NetBeans before starting this recipe.

How to do it…
1.	 Right-click on the JarViewer node within the Projects explorer and select Git,

then Branch/Tag, and then Create Branch....

2.	 The Create Branch dialog will be displayed. Enter Bug911 in the Branch Name field.

3.	 Click on the Checkout Created Branch checkbox so that it is checked, as shown in
the following screenshot:

Chapter 9

291

4.	 Click on the Create button.

The new branch will be created and checked out. Any commits to code will now be applied to
this new branch and not committed to the master/trunk branch.

Once we've made changes to a branch, and completed a piece of development, we usually
want to merge the branch back into the master/trunk so that it is available for others.
Let's make a change to the project now and then merge this back into the master with
the following steps:

1.	 Change the Main.java file so that the LOG statement uses a message template
rather than concatenating strings:
LOG.log(Level.INFO, "Starting application: {0} arguments.",
args.length);

2.	 Commit this change to the branch using the Commit option within NetBeans
(remember, we're still on a bug branch at the moment and not on the master branch).

3.	 Right-click on the JarViewer node within the Projects explorer and select Git,
then Branch/Tag, and then switch to the master branch. Note how the changes
we've just made to the file have now disappeared because we've switched to the
master branch and haven't merged the changes into it yet.

4.	 Right-click on the JarViewer node within the Projects explorer and select Git,
then Branch/Tag, and then Merge Revision….

5.	 The Merge Revision dialog will now be displayed. Click on the Select button to select
a revision to merge into master.

Version Control

292

6.	 From the list of branches, select the Local branch Bug911. Click on the Select button
to select the branch for merging, as shown in the following screenshot:

7.	 Click on the Merge button to merge the changes into master.

There's more…
Instead of creating branches, we can also make tags within a repository. A tag is essentially a
label whose purpose is to identify a specific location within a repository, for example, a specific
release. Common names for tags could be names such as Release_1_0_0 or Beta_1.
Creating a tag within a repository is a similar process to creating a branch (a tag is essentially
an uneditable branch so tags and branches share a lot in common). To create a tag, select the
Branch/Tag menu option and then Create Tag…. Tags can be managed (deleted) from the
Manage Tags dialog that is accessible by selecting the Branch/Tag menu option and then by
selecting Manage Tags....

10
NetBeans Testing

and Profiling

In this chapter, we will cover the following recipes:

ff Installing JUnit support into NetBeans

ff Creating a JUnit test for an existing class

ff Creating a JUnit test

ff Creating a JUnit test suite

ff Running tests

ff Creating a TestNG test and test suite

ff Profiling an application

Introduction
In recent years, writing tests for applications has become a much more widely used practice.
In many ways, this is due to the rise of open source software and the need to prove that
software will function as expected.

In software development, there are now many different unit testing frameworks, many of
which are based upon the xUnit architecture. This architecture, originally defined by Kent
Beck in the late 1990s, defines a basic set of components to run tests.

xUnit specifies that tests are executed by a test runner, which is responsible for running all
of the necessary tests and generating results indicating either the success or failure of each
test. Each test is defined as a separate test case. For each test case, we define a number of
assertions that must equate to true for the test to be successful.

NetBeans Testing and Profiling

294

To run a test, any number of preconditions need to be defined. In xUnit, these are called test
fixtures. When there are multiple test cases that require the same test fixtures, these are
grouped together into a test suite.

In the world of Java software development, JUnit and TestNG are the two most common
testing frameworks, both of which follow the xUnit architecture. In this chapter,
we'll discuss how to use both JUnit and TestNG within NetBeans.

In addition to looking at unit testing, we'll take a look at profiling and performance testing.
We'll see how NetBeans' internal profiler can be used to monitor application performance.

Installing JUnit support into NetBeans
Since Version 7 of NetBeans, JUnit has not been included with the standard installation
of NetBeans. JUnit uses the Common Public License, and as such, cannot be installed by
default with fresh installs of NetBeans.

You may have noticed when installing NetBeans that you are asked partway through the
installation if you wish to install JUnit support. To install JUnit support during installation,
you must agree to the JUnit license agreement.

If you did not install JUnit during NetBeans installation, this recipe will show you how to
install JUnit support. The JUnit License Agreement page of NetBeans IDE Installer is
shown in the following screenshot:

Chapter 10

295

Getting ready
To complete this recipe, you must use either the Java SE, Java EE, or All NetBeans download
bundle. Additionally, this recipe assumes that JUnit was not installed with NetBeans.

How to do it…
To install JUnit support, perform the following steps:

1.	 Click on Tools and then Plugins from the main NetBeans menu bar.

2.	 On the Plugins dialog, select the Available Plugins tab.

3.	 Locate the JUnit plugin and check the Install checkbox, as shown in the
following screenshot:

4.	 Click on the Install button.

5.	 The NetBeans IDE Installer dialog will be displayed confirming that the JUnit plugin
is to be installed. Click on the Next button.

6.	 Read and accept the license agreement, then click on the Install button to continue
the installation.

7.	 Click on the Finish button to complete installation.

How it works…
With NetBeans 8, JUnit support is available as a NetBeans plugin that can be downloaded and
installed via the NetBeans Plugins option. Installing the plugin does not require a restart of
NetBeans, but does install and activate all of the functionality required to write and run JUnit
tests. In the next recipe, Creating a JUnit test for an existing class, we'll see how to write JUnit
tests within NetBeans.

Creating a JUnit test for an existing class
NetBeans provides facilities to easily create JUnit tests. In this recipe, we'll see how we can
create tests for an existing class. We'll initially create a new library project within NetBeans
and create a very simple class to do some basic math. We'll then see how to use NetBeans
to create tests for the library.

NetBeans Testing and Profiling

296

Getting ready
To complete this recipe, you need to ensure that you have installed the JUnit support into
NetBeans as described in the previous recipe, Installing JUnit support into NetBeans.

How to do it…
To create a JUnit test for an existing class, perform the following steps:

1.	 Click on File and then New Project.... Create a new Java Class Library project called
Calculator. If you are unsure of the steps necessary to create this project, check
out the Creating a library recipe in Chapter 1, Using NetBeans Projects, of this book.

2.	 Create a new class called Calculator in the com.davidsalter.cookbook.
testing package. Change the body of the class to read:
public class Calculator {

 public int add(int x, int y) {
 return x + y;
 }

 public double divide(double x, double y) {
 return x / y;
 }
}

3.	 Now that we've created a very simple class, we can create a test for it. Note that
we have no main method in our class library, so we can't simply run the class to
see how it behaves.

4.	 Right-click on the Calculator node within the Projects explorer and click on
New and then Other....

5.	 In the New File dialog, select Unit Tests from the list of Categories and Test For
Existing Class from the list of File Types.

6.	 Click on Next.

7.	 On the New Test for Existing Class dialog, click on the Browse... button and select
the Class To Test field as Calculator.java, as shown in the following screenshot:

Chapter 10

297

8.	 Leave all the default settings as they are and click on Finish to create the test class.

How it works…
Creating a new test for an existing class is a simple way to automatically create stub test
methods for an existing class. This is useful for writing tests after the class has been written.

If you're a fan of test-driven development (TDD), you may be wondering
if it's possible to create tests before classes are created as that is
the working practice for TDD. Don't worry, NetBeans provides a way
for creating "blank" tests. We'll see this in the next recipe, Creating
a JUnit test. For more information on TDD, check out http://
en.wikipedia.org/wiki/Test-driven_development.

When creating a test for an existing class, NetBeans asked us which class we'd like to write
tests for. A list of all the classes within the project was displayed for us to choose from.

http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development

NetBeans Testing and Profiling

298

After choosing a class, we can see that NetBeans generated a test class with the same
name as the class under test, but with the suffix Test. In our example, we created a test
class called CalculatorTest from the application Calculator class.

It's useful to maintain this naming scheme when creating
additional classes as NetBeans uses this pattern for test
class discovery and execution.

NetBeans automatically specified the location of the test class as within the Test Packages
node of the project. This node is clearly shown within the Projects explorer, as shown in the
following screenshot:

The idea behind storing test classes separately within a project is twofold:

ff Test classes can be kept entirely separate from application classes making it
easier to find and distinguish test and application code

ff Test classes can be compiled separately from application classes and do not
need to be distributed with release code

The next information required for creating a class was to specify Method Access Levels.
We left these at the default values (all checked). These levels dictate whether tests are
created for the different access level methods in the source class. For example, we can
decide to generate tests only for public methods within a class and not generate tests
for protected or package or private methods. The default option is to create test
methods for all methods found in the source class.

Next to this, we can specify what code is to be generated (again, we chose the default option
of having all options selected). We can choose to generate code for the following options:

ff Test Initializer: This creates a method that is called before each instance of the test
class is created. In JUnit terms, this method is annotated with @BeforeClass.

ff Test Finalizer: This creates a method that is called after each instance of the test class
has been executed. In JUnit terms, this method is annotated with @AfterClass.

Chapter 10

299

ff Test Class Initializer: This creates a setup method that is invoked before each
test within the test class. In JUnit terms, this method is annotated with @Before.

ff Test Class Finalizer: This creates a teardown method that is invoked after each
test within the test class. In JUnit terms, this method is annotated with @After.

ff Default Method Bodies: This tells NetBeans to create a test method for each method
defined within the source class (taking into account the method access level). In our
CalculatorTest.java class that we created in this recipe, we can see that two
methods, testAdd() and testDivide(), were created corresponding to the
add() and divide() methods in the Calculator class.

The final options provided by NetBeans were to generate Javadoc Comments and Source
Code Hints. Generating Javadoc adds standard comments before each method in the test
class, whereas, the source code hints option adds to-do comments into the code indicating
where the test needs filling out.

If we look at the test that was generated for the add() method, we can see how NetBeans
has tried to write a test for the add functionality with the following code:

@Test
public void testAdd() {
 System.out.println("add");
 int x = 0;
 int y = 0;
 Calculator instance = new Calculator();
 int expResult = 0;
 int result = instance.add(x, y);
 assertEquals(expResult, result);
 // TODO review the generated test code and remove the default
 call to fail.
 fail("The test case is a prototype.");
}

Within the code, we can see that the test creates a new instance of the Calculator class
(sometimes, referred to as the System Under Test (SUT)). The add() method is invoked and
the assertion, assertEquals, is called to check that the result from invoking the add()
method is the same as the expected result. Clearly, NetBeans doesn't know what the add()
method is supposed to do; so, a comment is added indicating that we need to review the
assertion. The test is then configured to fail irrespective of the results.

To make this into a useful test requires very few changes as can be seen in the working of the
following code:

@Test
public void testAdd() {
 int x = 4;
 int y = 5;

NetBeans Testing and Profiling

300

 Calculator instance = new Calculator();
 int expResult = 9;
 int result = instance.add(x, y);
 assertEquals(expResult, result);
}

All that's needed in this instance to make the test useful is to set up some inputs to the SUT
and define the expected results. In this case, validating that adding 4 and 5 gives 9.

There's more…
In addition to creating tests for classes using the New File wizard, it is also possible to create
tests for a class directly from within the Projects explorer. To create or update a set of tests
for a class in this way, locate the class to be tested within the Projects explorer and right-click
on it. On the pop-up menu, select Tools and then the Create/Update Tests option. And then
select the Code Generation options as required, as shown in the following screenshot:

Chapter 10

301

Creating a JUnit test
For some types of development, for example, TDD, the best practice for testing is to write
the test before writing the functionality for the application. This allows the developer to think
carefully about the architecture of the application, and helps to ensure better test coverage.

NetBeans helps in this area by allowing developers to create test classes that are not based
upon existing application code (this is the opposite of what we saw in the previous recipe,
Creating a JUnit test for an existing class, where the application code already existed).

In this recipe, we'll see how to create a basic JUnit test class.

Getting ready
To complete this recipe, you need to ensure that you have installed the JUnit support into
NetBeans as described in the earlier recipe, Installing JUnit support into NetBeans.

You'll also need the sample project we created in the previous recipe, Creating a JUnit test
for an existing class. If you have not completed that recipe, the project is available as part
of the code download bundle for the book.

How to do it…
Perform the following steps to create a JUnit test:

1.	 Right-click on the Test Packages node of the Calculator project within the
Projects explorer and click on New and then Other….

2.	 In the New File dialog, select Unit Tests from the list of Categories and JUnit
Test from the list of File Types.

3.	 Click on Next.

4.	 In the Class Name field, enter CalculatorUnitTest.

5.	 Ensure the Location dropdown is set to Test Packages and enter the Package
field as com.davidsalter.cookbook.testing.

NetBeans Testing and Profiling

302

6.	 Uncheck all options under Generated Code and Generated Comments so that
a blank JUnit test class is created, as shown in the following screenshot:

7.	 Click on Finish to create the test class.

Now that we've created the skeleton for a test case, let's add a test method into it
to test the Calculator class we defined earlier.

8.	 Ensure the CalculatorUnitTest.java class is open for editing and add the
following method to the class:

@Test
public void testAddNumbers() {
 Calculator calc = new Calculator();
 assertEquals("Invalid addition", 10, calc.add(2, 8));
}

Chapter 10

303

This code uses the @Test annotation to declare that the testAddNumbers() method
is a JUnit test method. The method creates an instance of the SUT and then uses JUnit's
assertEquals method to check that the calc.add(2,8) method returns the value 10.
If this value is not returned, the error message Invalid addition will be logged to the
test output.

JUnit supports many different assertions, including assertArrayEquals,
assertEquals, assertFalse, assertNotNull, assertNotSame,
assertNull, assertSame, assertThat, and assertTrue. The
general format of each of these methods is assert(String message,
Object expected, Object results); however, the message
parameter is optional. Although this parameter can be missed out, it's
recommended to add it so that test failures can be more easily recognized.

How it works…
In this recipe, we created a JUnit test case without any foreknowledge of the SUT. This is a
useful pattern when performing TDD.

We used the NetBeans wizard to create a blank test case for us. A blank test case is
essentially a public class with no methods in it; however, it's located within the Test
Packages section of the project rather than within the Source Packages section.

To create a test, we created a method and annotated it with the @Test annotation.
We then used a JUnit assert* method to check that our SUT was generating the
correct results.

Looking at the CalculatorUnitTest.java class, you'll notice that the JUnit assertions
are all static imports. This allows unqualified access to the assert methods so we can call:

assert(…);

Instead of:

org.junit.assert.assert(…);

There's more…
In this recipe, we identified a test method with the @Test annotation. JUnit allows a couple of
parameters to be specified with this annotation to change the expected behavior of the test.

NetBeans Testing and Profiling

304

If we are expecting that a test method must complete within a certain amount of time, we can
add the timeout parameter to the annotation. For example:

@Test(timeout=5000)

This would declare that the test must complete within 5000 milliseconds; otherwise, it will
have deemed to have failed.

Similarly, if we expect that a test method will throw an exception, we can add the expected
parameter to the annotation. For example:

@Test(expected=java.io.IOException.class)

Creating a JUnit test suite
A JUnit test suite is a convenient way of specifying a set of test cases and the order in which
they should run.

Within JUnit, the @Suite annotation is used to specify which test cases are within the suite.
JUnit uses the Suite test runner to run the classes.

Getting ready
To complete this recipe, you need to ensure that you have installed the JUnit support into
NetBeans as described in the earlier recipe, Installing JUnit support into NetBeans.

You'll also need the sample project we created in the previous recipe, Creating a JUnit test.
If you have not completed that recipe, the project is available as part of the code download
bundle for the book.

How to do it…
Perform the following steps to create a JUnit test suite:

1.	 Right-click on the Test Packages node within the Calculator project in the
Projects explorer and click on New and then Other….

2.	 In the New File dialog, select Unit Tests from the list of Categories and Test Suite
from the list of File Types.

3.	 Click on Next.

4.	 Enter the Class Name field as CalculatorTestSuite. Ensure the Location
field is set to Test Packages and enter the Package field as com.davidsalter.
cookbook.testing.

Chapter 10

305

5.	 Uncheck the options under Generated Code and Generated Comments, as shown
in the following screenshot:

6.	 Click on Finish to create the test suite.

How it works…
In this recipe, we created a test suite called CalculatorTestSuite and added it to the
com.davidsalter.cookbook.testing package. The body of the generated test suite
class is as shown in the following code:

@RunWith(Suite.class)
@Suite.SuiteClasses(
 {com.davidsalter.cookbook.testing.CalculatorUnitTest.class,
 com.davidsalter.cookbook.testing.CalculatorTest.class
})
public class CalculatorTestSuite {
}

NetBeans Testing and Profiling

306

Looking at the code, we can see that NetBeans has created a public class called
CalculatorTestSuite and annotated it with the @RunWith(Suite.class)
annotation. This is the JUnit way of declaring a test suite.

The class is also annotated with the @Suite.SuiteClasses({…, …}) annotation.
This annotation defines which classes are part of the test suite. In this case, NetBeans took
a list of all the test classes within the package we created the suite in and added them to the
suite. As we had two test classes, both these were added to the suite.

When running the suite, JUnit will run the classes in the order that they are specified within
the @Suite.SuiteClasses annotation.

You will note that the CalculatorTestSuite class has no body as it is essentially a
placeholder telling JUnit how to construct the test suite. Within the New Test Suite wizard,
however, there is the option to add test initializers and finalizers into the test suite defining
code that can be run outside of the individual test fixtures themselves.

There's more…
If, at a later date, we create more test classes, we can add these manually to the
@Suite.SuiteClasses annotation to add the classes to the test suite. This is,
however, a manual process.

Running tests
In the previous few recipes, we've seen how to create JUnit tests from scratch and based
upon existing classes. We've also seen how to create a test suite that defines a set of tests
and the order in which they can be executed.

In this recipe, we'll see how we can run all of those tests within NetBeans and see the
reporting of the tests we've run.

NetBeans provides several ways to run tests and test suites. We'll look at all of these
techniques within this recipe.

Getting ready
To complete this recipe, you need to ensure that you have installed the JUnit support into
NetBeans as described in the earlier recipe, Installing JUnit support into NetBeans.

You'll also need the sample project we created in the previous recipe, Creating a JUnit test
suite. If you have not completed that recipe, the project is available as part of the code
download bundle for the book.

Chapter 10

307

How to do it…
Ensure that the Calculator project is open within NetBeans. To run tests and test suites,
perform the following steps:

1.	 Right-click on the CalculatorUnitTest.java class within the Test Packages
node and click on Test File.

2.	 NetBeans will find all of the tests located within the CalculatorUnitTest.java
class and run them. The results of the tests (in this case, there is only one test) will
be shown in the Test Results window, as shown in the following screenshot:

3.	 NetBeans shows a 100.00% green bar indicating that 100 percent of the tests
have passed. Great going so far!

4.	 Right-click on the CalculatorTest.java class within the Test Packages node
and click on Test File.

5.	 As before, NetBeans will find all of the tests located within the specified class and
run them. In this case, there are two tests, one of which passes and the other of
which fails, as shown in the following screenshot:

6.	 NetBeans now shows a 50.00% green bar and a 50.00% red bar indicating that half
of the tests in the test run have failed. We can also see any test output (such as that
generated by calls to System.out.println) displayed within the right-hand side
window of the test results.

NetBeans Testing and Profiling

308

7.	 Expand the com.davidsalter.cookbook.testing.CalculatorTest node
within the Test Results window, as shown in the following screenshot:

8.	 In the Test Results window, we can see that the testDivide method has failed.
It was expecting a result of 0.0, but found a result of NaN (Not a Number).

9.	 Double-click on the line beginning testDivide Failed within the Test Results explorer
and NetBeans will open the appropriate test class for us and take us to the assertion
that failed.

10.	 We can see that the testDivide method has failed because it was just a stub
method generated for us by the New Test for Existing Class wizard. Let's fix the
testDivide() method by changing it to read:
@Test
public void testDivide() {
 System.out.println("divide");
 double x = 10.0;
 double y = 2.0;
 double delta = 0.0001;
 Calculator instance = new Calculator();
 double expResult = 5.0;
 double result = instance.divide(x, y);
 assertEquals("Division not correct",
 expResult,
 result,
 delta);
}

Chapter 10

309

Note that the assertEquals method that we are using in this
example has an additional delta parameter at the end. This is
required due to the inaccuracies that may occur when performing
floating point arithmetic. This parameter says that if the expected
result and the actual result are different by an amount smaller than
delta, then they are considered to be the same.

11.	 Since we've only fixed one test within the class, we don't necessarily need to run
all of the tests within it. Let's just run the testDivide() method test again.
Right-click within the body of the testDivide() method and select Run
Focussed Test Method.

12.	 NetBeans will run only the testDivide() method and a 100.00% green bar will be
displayed within the Test Results window indicating that we wrote the test correctly!

How it works…
Running JUnit tests within NetBeans is a straightforward process. We can run all of the tests
within a class by right-clicking on the class within the Test Packages node and selecting the
Test File option.

Pressing Ctrl + F6 or selecting the Run File option will also run tests
on the selected file.

Running a test suite follows the same procedure—right-click on the test suite class and select
the Test File option.

Within the Test Results window, several options are available to help us to navigate and
manage test runs. They are explained in the following table:

Option Description
Rerun all the tests from the last test run

Rerun all the failed tests from the last test run

Show all passed tests in the Test Results window

Show all failed tests in the Test Results window

Show errors in the Test Results window

NetBeans Testing and Profiling

310

Option Description
Show aborted tests in the Test Results window

Show skipped tests in the Test Results window

Move to the previous failure

Move to the next failure

Always open the Test Results window

Always open a new tab in the Test Results window

There's more...
NetBeans also provides the option to run all tests within a package. To perform this
operation, right-click on a package within the Test Packages node and select Test Package.

To run all the tests for a project, simply select Run from the main menu and then the Test
Project menu item.

If your tests/code aren't running as expected, NetBeans provides the option to debug tests.
Instead of selecting Test File or Run Focused Test Method, select the debug variant, Debug
File or Debug Focused Test Method. You can then use all of the NetBeans debugging
functionality to help fix your code/tests.

Creating a TestNG unit test
TestNG is another popular Java testing framework that was inspired by early versions of JUnit
that did not use annotations. TestNG is described as more powerful and easier to use than
JUnit. For more details about this, check out the project's home page at http://testng.org.

Getting ready
To complete this recipe, you'll need the sample project we created in the earlier recipe, Creating
a JUnit test suite. If you have not completed that recipe, the project is available as part of the
code download bundle for the book.

http://testng.org

Chapter 10

311

How to do it…
Ensure the Calculator project is open within NetBeans. Perform the following steps
to complete this recipe:

1.	 Right-click on the Test Packages node within the Projects explorer and select
New and then Other….

2.	 In the New File dialog, select Unit Tests from the list of Categories and TestNG
Test Case from the list of File Types.

3.	 Click on Next.

4.	 Enter the Class Name field as CalculatorTestNGTest. Ensure the Location
field is set to Test Packages and enter the Package field as com.davidsalter.
cookbook.testing.

5.	 Check all of the Generated Code options and the Generated Comments option.

6.	 Click on Finish to create the test case.

7.	 Add the following test to the CalculatorTestNGTest.java class:
@Test
public void testAdd() {
 int x = 4;
 int y = 5;
 Calculator instance = new Calculator();
 int expResult = 9;
 int result = instance.add(x, y);
 assertEquals(expResult, result);
}

8.	 Fix the imports on the class using the Fix Imports refactoring (note, use the org.
testng packages instead of the org.junit packages).

9.	 Right-click on the CalculatorTestNGTest.java class and select Test File.
Note how the test is executed and shows results in a similar fashion to when
running the JUnit tests.

How it works…
Creating and running a TestNG test and test suite works exactly the same way as creating
and running a JUnit test suite.

When testing a package or running all the tests for a project, NetBeans will run all tests
irrespective of whether they are JUnit or TestNG tests. You can try this out by running all of
the tests in the com.davidsalter.cookbook.testing package or by selecting Run
and then the Test Project menu item.

NetBeans Testing and Profiling

312

Profiling an application
NetBeans provides the facilities to profile both local and remote applications. Profiling allows
you to get a view of the threads, CPU, and memory usage of your application. This can be
very useful when tracking down memory leaks or application bottlenecks that are causing
applications to run slowly.

In this recipe, we'll add an extra method to the Calculator class we defined earlier in this
chapter and see how it fares when profiled.

Getting ready
To complete this recipe, you'll need the sample project we created in the earlier recipe,
Creating a JUnit test suite. If you have not completed that recipe, the project is available
as part of the download bundle for the book.

How to do it…
To profile our application, perform the following steps:

1.	 Double-click on the Calculator.java file and add the following method to it;
this will calculate the factorial of a number recursively:
public long factorial(int x) {
 if (x <= 1) {
 return 1;
 } else {
 Calculator calc = new Calculator();
 return (x * calc.factorial(x-1));
 }
}

2.	 Since we're profiling an application, we need to add a main method to our project
so that we have something to profile. Use the New File wizard to create a new Java
Main Class (this is located within the Java category). Create the main class Main
and place it in the com.davidsalter.cookbook.testing package.

3.	 Change the contents of the main method in Main.java to read:
public static void main(String[] args) {
 Calculator calculator = new Calculator();

 long x = calculator.factorial(20);

Chapter 10

313

 System.out.println("x! = "+ x);
}

Now that we've created a simple application that performs some math, let's profile
the memory of the application.

4.	 Click on Profile on the main NetBeans menu and then click on Profile Project.
The Profile Calculator dialog will be displayed:

5.	 Click on the Memory profiler button at the left of the dialog and check the Advanced
(instrumented) radio button. This will allow us to see memory usage for all code that
is called by our application.

6.	 Click on the Run button.

7.	 The application will now run while NetBeans profiles execution of the code.

8.	 When the application has completed, a dialog will be displayed stating the application
has finished execution and asking Do you want to take a snapshot of the collected
results?. Click on Yes.

NetBeans Testing and Profiling

314

9.	 A memory snapshot window will now be displayed showing what classes are allocated
to objects during the application's execution. The percentage of bytes allocated
along with the number of bytes allocated and the objects allocated is shown in the
following screenshot:

10.	 At the bottom of the memory snapshot window, there is a filter that allows the
memory snapshot list to be filtered down. Enter the name Calculator into the
filter box and press Enter.

11.	 The memory snapshot window will be contain only one entry—for our calculator
class, as shown in the following screenshot:

12.	 Click on the close button to close the memory snapshot window, and when prompted,
save the results snapshot. This is now shown within the Profiler explorer. We can
double-click on the snapshot at any time to view it again. The Saved Snapshots
section is shown in the following screenshot:

Chapter 10

315

13.	 Looking at this entry, we can see that we allocated 20 objects during the execution of
our code. This seems a bit excessive, so double-click on the line within the memory
snapshot to open up the Calculator class. Looking at the class, we can see that
we instantiate a Calculator object every time we call the factorial() method.
This isn't necessary. Change the else clause within the factorial() method
to read:
return (x * factorial(x-1));

14.	 Profile the application again, and filter to show only the Calculator class again.
Note this time, how only one object is allocated—a potentially significant saving over
the previous execution.

15.	 Click on the last button on the snapshot window (). This button allows us to
compare the current memory with a saved memory snapshot.

16.	 The Select Snapshot to Compare dialog will be displayed. Select the previous
snapshot and click on the OK button to compare the memory snapshots.

17.	 As before, filter the view to contain only the Calculator class. Note this time
that the report tells us that initially we allocated 19 more objects than in our
subsequent run.

There's more…
In addition to profiling memory, we can also profile the CPU usage and monitor the
application's performance.

Monitoring the application is useful when we have multiple threads running as it
shows us how many threads were allocated and how long they ran for, as shown in
the following screenshot:

NetBeans Testing and Profiling

316

Monitoring CPU usage shows us how much CPU time is spent within each method of our
application. When starting up monitoring CPU usage we can specify which classes we are
interested in looking at, so for example, when running within an application server, we
only look at the CPU overhead of our own classes and not that of the application server.
The following screenshot shows an example of profiling the CPU usage time in the
example application we created earlier:

Profiling the CPU usage also gives us an indication of the hot spots, that is, the CPU intensive
areas of our application. This can be invaluable when tracking down performance bottlenecks
in an application.

11
Using External

Web Services

In this chapter, we will cover the following recipes:

ff Getting a list of Delicious bookmarks

ff Adding a Delicious bookmark

ff Getting a list of recent photos on Flickr

ff Geocoding with Google Maps

ff Verifying an e-mail address with StrikeIron

ff Adding an additional web service into NetBeans

Introduction
With the ubiquitous nature of the Internet in the modern world, software developers are
having to build connected applications more and more frequently. It's not enough to have
standalone applications nowadays. Customers are demanding applications that can talk
to other systems and that can mine data from multiple sources, bringing data together as
valuable information.

Not long ago, XML was considered the answer to any integration problem with SOAP web
services being hailed as the preferred integration mechanism. Despite SOAP's claims to be
"simple", REST-based APIs have become increasingly common, with them generally offering
an easier integration solution than SOAP-based web services. One of the major advantages of
REST-based web services is their ability to return JSON data that can be consumed directly by
JavaScript-based APIs.

Using External Web Services

318

Fortunately, NetBeans provides developers with an abstraction above all of these technologies
and a Java-centric approach to invoking web services. Whether it's something comparatively
simple such as validating an e-mail address or searching for online purchases on Amazon,
NetBeans provides rapid access to many different web services.

Getting a list of Delicious bookmarks
Delicious (http://delicious.com) is a free online service allowing users to maintain
collections of bookmarks that can be tagged and shared with other members of the
community. Not only can bookmarks be tagged and shared, but Delicious provides
facilities to discover new bookmarks based upon an individual user's interests.

NetBeans integrates with the Delicious web services, providing rapid access to manage both
Delicious posts and their associated tags.

In this recipe, we'll see how we can get a list of all the bookmarks that we've stored in
Delicious based on querying for a specific tag.

Getting ready
To complete this recipe, you'll need a Delicious account. Creating a Delicious account is free
and easy. Head on over to http://www.delicious.com and create an account if you
haven't got one already.

Once you've created a Delicious account, let's continue and create a standalone console
application to display our bookmarks.

You can use either the Java EE or All download bundle of NetBeans to complete this recipe.

How to do it…
Perform the following steps to get a list of Delicious bookmarks:

1.	 Click on File and then on New Project... to create a new NetBeans project. Create
a Java application called DeliciousBookMarks ensuring that a main class called
com.davidsalter.cookbook.delicious.BookMarks is created.

If you are having trouble creating a new project, check
out the Creating a Java application recipe in Chapter 1,
Using NetBeans Projects, of this book.

http://delicious.com
http://www.delicious.com

Chapter 11

319

2.	 Ensure that the BookMarks.java file is open for editing.

3.	 Click on the Services explorer and expand the Web Services node. Locate
the Delicious node and expand this to show the Bookmarking Service node.
Expand this node and then the [posts] node within it:

4.	 Expand the [get] node and note the getPosts web service inside it:

5.	 Drag the getPosts method from the Services explorer into the body of the main()
method within the BookMarks.java class that is open within the editor window.

6.	 A dialog will briefly appear entitled Generating Code for GET Saas Service and then
the Customize GET Saas Service dialog will be displayed.

Using External Web Services

320

7.	 Enter Java as the Default Value field for the tag parameter:

8.	 Click on OK.

9.	 NetBeans will now add the relevant files to the project allowing the Delicious web
service to be invoked.

10.	 Edit the BookMarks.java class and add the following code as the last statement
within the if {} statement:
for (Post post : resultObj.getPost()) {
 System.out.println(post.getDescription());
 System.out.println(post.getHref());
}

11.	 Press F6 to run the application.

12.	 NetBeans will display a User Authentication dialog for the Delicious web services.
Enter your Delicious username and password and click on Submit.

13.	 Any bookmarks that you have tagged with Java will now be listed within the Output
window of NetBeans:

Chapter 11

321

How it works…
When using NetBeans to create connections to the Delicious web services, several
helper classes are created within the project that allow the web services to be called:

General purpose REST connection and response handler classes are created within the
org.netbeans.saas packages. Classes designed specifically to invoke the Delicious
bookmarking service are created within the org.netbeans.saas.delicious package.

To query for a list of bookmarks, the DeliciousBookmarkingService.getPosts method
is invoked taking parameters that define the types of bookmarks returned. In our example,
we queried for all posts that were tagged with the word Java.

To access the documentation for the Delicious web services, right-click on the Bookmarking
Service node within the Delicious group in the Services explorer and select View API
Documentation. This will open the default system browser and display the Delicious API
help pages.

There's more…
When querying the Delicious web services, an authentication dialog is shown every
time asking for username and password credentials. Instead of entering these
credentials each time the application is executed, they can be stored within the
deliciousbookmarkingserviceauthenticator.properties file that is stored
within the org.netbeans.saas.delicious package. This is a simple properties file
that uses the username and password keys to store login credentials.

Using External Web Services

322

You must remember to exclude this file from source control if
you enter Delicious credentials into it. This file is not encrypted
and allows anyone with access to the file to see your Delicious
username and password.

Adding a Delicious bookmark
In this recipe, we'll see how we can store a bookmark within the Delicious social bookmark
sharing system. If you are not familiar with Delicious, you should read the previous recipe,
Getting a list of Delicious bookmarks.

Getting ready
To complete this recipe, you'll need a Delicious account. Creating a Delicious account is free
and easy. Head on over to http://www.delicious.com and create an account if you
haven't got one already.

Once you've created a Delicious account, let's continue and use NetBeans to store links within
the service.

This recipe builds upon the application created in the previous recipe, Getting a list of
Delicious bookmarks. If you have not completed this recipe, you can get the source code
from the code download bundle for this chapter.

You can use either the Java EE or All download bundle of NetBeans to complete this recipe.

How to do it…
Perform the following steps to add a Delicious bookmark:

1.	 Create a new Java Main Class called StoreBookMark.java within the
com.davidsalter.cookbook.delicious package.

2.	 Open the Services explorer and navigate to Web Services | Delicious |
Bookmarking Service | [posts] | [add].

http://www.delicious.com

Chapter 11

323

3.	 Locate the addPosts web service and drag it into the body of the StoreBookMark.
main method within the Java text editing window. The addPosts web service is
shown in the following screenshot:

4.	 The Customize GET Saas Service dialog will be displayed.

5.	 Specify the following default values for Input Parameters:

�� url: http://www.packtpub.com/netbeans-ide-8-cookbook/book

�� description: NetBeans 8 CookBook

�� tags: Java, NetBeans

We can see the Customize GET Saas Service dialog in the following screenshot:

6.	 Click on the OK button.

7.	 NetBeans will now add the code to add a bookmark into the StoreBookMark.java
class.

8.	 Right-click on the StoreBookMark.java class within the Projects explorer and
select Run File.

http://www.packtpub.com/netbeans-ide-8-cookbook/book
http://www.packtpub.com/netbeans-ide-8-cookbook/book

Using External Web Services

324

9.	 Enter your Delicious credentials when requested.

10.	 The new bookmark will now be added to Delicious.

11.	 Open your browser and log in to your Delicious account to see the new bookmark
you have stored, as shown in the following screenshot:

How it works…
When we dragged-and-dropped the addPosts web service onto our class, NetBeans correctly
established that the helper classes required to invoke the Delicious web services were already
added to our project. You'll remember that these helper classes were added to the project
automatically in the previous recipe, Getting a list of Delicious bookmarks, when we initially
dragged the getPosts web service into our code.

To store a bookmark within Delicious, NetBeans invoked the
DeliciousBookmarkingService.addPosts() method passing in
the information specified on the Customize GET Saas Service dialog.

To access the documentation for the Delicious web services, right-click on the Bookmarking
Service node within the Delicious group in the Services explorer and select View API
Documentation. This will open the default system browser and display the Delicious
API help pages.

There's more…
If we want to check the response code of a call to any of the Delicious web services
(and why wouldn't we!), we can query the returned object from the call.

In this example, the addPosts() method returns a RestResponse object, which has a
getResponseCode() method. This method should return an HTTP 200 status code if
everything is successful. Any other code would be an indication that something has not
gone as expected.

Chapter 11

325

For a discussion on the available HTTP status codes, check out the URL
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

In addition to storing bookmarks on Delicious, and querying them (as shown in the previous
recipe, Getting a list of Delicious bookmarks), we can also delete and update bookmarks by
dragging the appropriate web service into our code and customizing the input parameters.
We can also manage the tags that we use to classify bookmarks by dragging the equivalent
tag management web service into our code.

Getting a list of recent photos on Flickr
Flickr (http://flickr.com) is an online photo sharing site that allows members to store
and share photos online.

With Flickr, you can search or browse photo collections. You can tag photos based upon
location, title, camera type (and more) allowing easy retrieval at a later date.

NetBeans integrates with the Flickr web services, providing rapid access to manage both
photos and their associated tagged data.

In this recipe, we'll see how we can get a list of the most recent photos uploaded to Flickr.

Getting ready
To complete this recipe, you'll need a Flickr account. Creating a Flickr account is free and
easy. Head on over to http://www.flickr.com and create an account if you haven't got
one already. You'll need a Flickr account to access the Flickr web services.

Once you've created a Flickr account, let's continue and create a standalone console
application to query the latest photos uploaded to Flickr.

You can use either the Java EE or All download bundle of NetBeans to complete this recipe.

How to do it…
To get a list of recent photos on Flickr, perform the following steps:

1.	 Click on File and then on New Project... to create a new NetBeans project. Create a
Java Application called FlickrRecentPhotos ensuring that a main class called
com.davidsalter.cookbook.flickr.FlickrRecentPhotos is created.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://flickr.com
http://flickr.com
http://www.flickr.com

Using External Web Services

326

If you are having trouble creating a new project, check out the
Creating a Java application recipe in Chapter 1, Using NetBeans
Projects, of this book.

2.	 Ensure that the FlickrRecentPhotos.java file is open for editing.

3.	 Click on the Services explorer and expand the Web Services node. Locate the Flickr
node and expand this to show the Photo Service node. Expand this node and then
the [services] and [rest] nodes within it, as shown in the following screenshot:

4.	 Locate the photos_recentlyUpdated web service underneath the Flickr web services
and drag it into the main method of the FlickrRecentPhotos.java class.

5.	 The Customize GET Saas Service dialog will be displayed. Enter the following
information into the dialog:

�� min_date: 1388534400

�� extras: Rain

�� per_page: 10

�� page: 1

6.	 Click on the OK button.

7.	 NetBeans will now add the code to the FlickrRecentPhotos.java class to obtain
a list of photos updated since January 1, 2014 (that is the equivalent to the UNIX
timestamp 1388534400) that are tagged with the keyword Rain. A single page of
results will be returned with a maximum of 10 photos.

8.	 Now, let's change the FlickrRecentPhotos.java class so that it prints out the
titles of all the photos returned from the web service. Modify the body of the if {}
statement to read:
flickr.photoservice.flickrresponse.Rsp resultObj =
 result.getDataAsObject(
 flickr.photoservice.flickrresponse.Rsp.class);

for (Rsp.Photos.Photo photo :

Chapter 11

327

 resultObj.getPhotos().getPhoto()) {
 System.out.println(photo.getTitle());
}

9.	 This code loops through the returned photos from the Flickr web service call and
prints out the title of each post.

10.	 To invoke the Flickr web services, we need to specify our application key and secret
key. Log in to your Flickr account and browse to https://www.flickr.com/
services/apps/create/. From there, you can request an API key. Follow the
onscreen instructions to request a key. You will then be provided with a Key and the
corresponding Secret.

11.	 Back in NetBeans, edit the org.netbeans.saas.flickr.
flickrphotoserviceauthenticator.properties file, entering the
API Key and Secret values you have just got from Flickr, as shown in the
following screenshot:

12.	 That should be enough to run our application and query Flickr for our recently added
photos. Unfortunately (or is it fortunately), the Flickr API requires SSL access to any
of its services. This obviously helps prevent security issues when passing keys across
the Internet. The NetBeans code to access Flickr, however, uses HTTP instead of
HTTPS, so we need to make a small modification to the NetBeans generated files to
allow them to use HTTPS instead of HTTP.

13.	 Edit the FlickrPhotoServiceAuthenticator.java class. Search and replace
all instances of http with https. There should be three instances to change.

14.	 Now, edit the FlickrPhotoService.java class. Search and replace all instances
of http with https. There should be only one instance to replace.

15.	 We've now made all the changes necessary to run the application. Press F6 to run
the application.

https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/

Using External Web Services

328

16.	 A Flickr Authorization Dialog will be displayed showing a URL that must be accessed
to allow your application to access Flickr. Copy this URL and paste it into your browser
to authorize. When you've authorized in the browser, click on the OK button, as shown
in the following screenshot:

17.	 The titles of the 10 most recent images you have uploaded to Flickr matching our
search criteria will now be displayed within the NetBeans console.

How it works…
When we added the Flickr web services to our NetBeans project, NetBeans automatically
created the necessary classes to interact with the web services, doing much of the hard
work for us.

The org.netbeans.saas.RestConnection and org.netbeans.saas.RestResponse
classes are the standard classes that NetBeans creates for consuming any REST-based
web service.

Specifically, the org.netbeans.saas.flickr.FlickrPhotoService and org.
netbeans.saas.flickr.FlickrPhotoServiceAuthenticator classes were
generated for interacting with Flickr. Within the FlickrPhotoService class, we can
see that there is a single photosRecentlyUpdated method that queries a user's Flickr
account and returns a list of recently updated photos. If we were to invoke more Flickr web
services, then additional methods would be added into this class. As the name suggests, the
FlickrPhotoServiceAuthenticator class deals with user authentication against Flickr.

One final point of note is that, when querying Flickr, we had to use a UNIX timestamp instead
of a more traditional date format. This is simply due to the requirements of the Flickr API.

For more information about UNIX timestamps, check out this article on
Wikipedia at http://en.wikipedia.org/wiki/Unix_time.

http://en.wikipedia.org/wiki/Unix_time

Chapter 11

329

There's more…
You must have noticed that when authorizing your application at Flickr, the default method
of operation is to grant full access to your Flickr account. This includes the ability to edit
and delete photos from your account. The following screenshot shows these Flickr
authorization options:

If you're writing an application that requires read-only access to your account, you can edit the
FlickrPhotoServiceAuthenticator.java class and change the readOnly member to
be equal to true, as shown in the following screenshot:

Now, whenever your application requires authentication with Flickr, it will only be able to
read information and will not be able to perform any actions that may result in editing or
deletion of data.

Geocoding with Google Maps
Geocoding is the process of converting place names or addresses into positional coordinates,
returning any other salient information along the way. Once coordinates for a place or
landmark are known, the location can be easily represented on a map providing
easy-to-use information to consumers.

Google, as one of the premiere mapping service providers, supplies a Geocoding API that
can be invoked directly from within NetBeans by simply dragging-and-dropping the web
service into an appropriate Java class.

Using External Web Services

330

More information on Google Geocoding, including license terms, data formats, and general
information about the API can be found at https://developers.google.com/maps/
documentation/geocoding/.

In this recipe, we'll see how we can convert a location name into more useful information
including positional latitude and longitude.

Getting ready
To complete this recipe, you'll need a Google account and a Google API key that allows
geocoding. All these are free to obtain, but check out the Google licensing conditions
before creating an account and API key.

To obtain an API key, navigate to https://code.google.com/apis/console and create
a new project (this is simply so that an API key can be created—your application is not stored
on Google's servers anywhere). For the application, ensure you activate the Geocoding API so
that a key is generated, as shown in the following screenshot:

Clicking on the Credentials tab for your application will then give you access to your public
API key. The resultant window will look like the following screenshot:

https://developers.google.com/maps/documentation/geocoding/
https://developers.google.com/maps/documentation/geocoding/
https://code.google.com/apis/console

Chapter 11

331

Once you've created a Google account and a project that has access to the Geocoding API,
let's continue and create a standalone console application that can geocode a place name
and provide useful information (including location) about the place.

You can use either the Java EE or All download bundle of NetBeans to complete this recipe.

How to do it…
To convert a location name into more useful information, perform the following steps:

1.	 Click on File and then on New Project... to create a new NetBeans project. Create
a Java application called Geocoding ensuring that a main class called com.
davidsalter.cookbook.geocoding.Geocoding is created.

If you are having trouble creating a new project, check out the
Creating a Java application recipe in Chapter 1, Using NetBeans
Projects, of this book.

2.	 Ensure that the Geocoding.java file is open for editing.

3.	 Click on the Services explorer and expand the Web Services node. Locate the
Google node and expand this to show the Geocoding Service node. Expand this
node and then the [geo] node within it, as shown in the following screenshot:

4.	 Locate the geocode web service underneath the Geocoding Service web services
and drag it into the main method of the Geocoding.java class.

Using External Web Services

332

5.	 The Customize GET Saas Service dialog will be displayed. Enter the following
information into the dialog:

�� q: trafalgar square, london
�� output: json

We can see the Customize GET Saas Service dialog in the following screenshot:

6.	 Click on the OK button.
7.	 NetBeans will now add the code to the Geocoding.java class to query the Google

Geocoding service and to retrieve information about Trafalgar Square in London in a
JSON format.

8.	 We need to change the generated code within the main() method within the
Geocoding.java class in order to see the results of the API call. Since we're
not retrieving XML, we can simply check the return response code and print out
the response as a string if Success is returned. Modify the Geocoding.main()
method to read as follows:
public static void main(String[] args) {
 try {
 String q = "trafalgar square, london";
 String output = "json";

 RestResponse result =
 GoogleGeocodingService.geocode(
 q,
 output);
 if (result.getResponseCode()==200) {
 System.out.println(
 "The SaasService returned: "
 +result.getDataAsString());
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 }
}

Chapter 11

333

9.	 As when calling most API methods, we need to specify the API key that we obtained
from Google allowing access to the Geocoding API. Edit the org.netbeans.saas.
google.googlegeocodingauthenticator.properties file and enter your
Google API key, as shown in the following screenshot:

If we were to run the application now, we'd expect to see lots of information, including latitude
and longitude, about Trafalgar Square in London. Unfortunately, if we run the application,
we get an HTML error result stating that Google can't process the request, as shown in the
following screenshot:

This error occurs because Google has slightly changed the API endpoint for its geocoding
web services. As a result, we need to modify the org.netbeans.saas.google.
GoogleGeocodingService.java class that was automatically generated for us by
NetBeans with the following steps:

1.	 Open the org.netbeans.saas.google.GoogleGeocodingService.java
class for editing by double-clicking on it within the Projects explorer.

2.	 Change the geocode method to read as follows:
public static RestResponse geocode(String q, String output)
throws IOException {
 String apiKey = GoogleGeocodingServiceAuthenticator.
 getApiKey();
 String[][] pathParams = new String[][]{};
 String[][] queryParams = new String[][]
 {{"address", q},
 {"key", "" + apiKey + ""},

Using External Web Services

334

 {"output", output}};
 RestConnection conn = new RestConnection(
 "https://maps.googleapis.com/maps/api/geocode/json",
 pathParams,
 queryParams);
 sleep(1000);
 return conn.get(null);
}

3.	 Now that we've written some code to query the Google geocoding web service and
output the results to the Output window, we can run the application and check out
the results. Press F6 to run the application. We will get the output as shown in the
following screenshot:

4.	 If we scroll towards the bottom of the Output window, we can see that the information
for latitude and longitude is retrieved for our chosen location.

How it works…
When we added the Google Geocoding web services to our NetBeans project, NetBeans
automatically created the necessary classes to interact with the web services doing much
of the hard work for us.

Chapter 11

335

The org.netbeans.saas.RestConnection and org.netbeans.saas.RestResponse
classes are the standard classes that NetBeans creates for consuming any REST-based
web service.

Specifically, the org.netbeans.saas.google.GoogleGeocodingService and org.
netbeans.saas.google.GoogleGeocodingServiceAuthenticator classes were
generated for interacting with Google's Geocoding API.

Within the org.netbeans.saas.google.GoogleGeocodingService class, there is
a single geocode() method. Since Google has slightly modified the REST endpoint for its
geocoding web service, we had to modify the NetBeans autogenerated code to take this
into account. The underlying REST endpoint for Google Geocoding is https://maps.
googleapis.com/maps/api/geocode/json.

The org.netbeans.saas.google.googlegeocodingserviceauthenticator.
properties file is where we stored our private API key that provides access to the
Google Geocoding API.

For more information about Geocoding and its uses and issues, check out the
article on Wikipedia at http://en.wikipedia.org/wiki/Geocoding.

Verifying an e-mail address with StrikeIron
StrikeIron is a Data-as-a-Service (DaaS) provider that offers many solutions for data
validation. For example, it offers services to validate e-mail addresses, postal addresses,
and telephone numbers.

StrikeIron is a paid-for service; however, it offers free trials of all of its APIs so you can
evaluate them before deciding whether to proceed.

More information on StrikeIron and on its DaaS offering can be found at http://www.
strikeiron.com. Information about the StrikeIron Email Verification service can be found
at http://www.strikeiron.com/product-list/email/email-verification.

In this recipe, we'll see how we can validate an e-mail address using StrikeIron.

Getting ready
To complete this recipe, you'll need a StrikeIron account. Creating a StrikeIron account is
free of charge and provides you free trial access to all of StrikeIron's services. You can
create a StrikeIron account to access a free trial of its e-mail validation web services
at http://offers.strikeiron.com/email-verification-hygiene-1.

https://maps.googleapis.com/maps/api/geocode/json
https://maps.googleapis.com/maps/api/geocode/json
http://en.wikipedia.org/wiki/Geocoding
http://www.strikeiron.com
http://www.strikeiron.com
http://www.strikeiron.com/product-list/email/email-verification
http://www.strikeiron.com/product-list/email/email-verification
http://offers.strikeiron.com/email-verification-hygiene-1
http://offers.strikeiron.com/email-verification-hygiene-1

Using External Web Services

336

Once you've created a StrikeIron account and have a username and password, let's continue
and create a standalone console application that can validate an e-mail address.

You can use either the Java EE or All download bundle of NetBeans to complete this recipe.

How to do it…
To validate an e-mail address using StrikeIron, perform the following steps:

1.	 Click on File and then on New Project... to create a new NetBeans project. Create a
Java application called EmailValidator ensuring that a main class called com.
davidsalter.cookbook.email.EmailValidator is created.

If you are having trouble creating a new project, check out the
Creating a Java application recipe in Chapter 1, Using NetBeans
Projects, of this book.

2.	 Ensure that the EmailValidator.java file is open for editing.

3.	 Click on the Services explorer and expand the Web Services node. Locate the
StrikeIron node and expand this to show the Email Verification v5 service.
Expand this node and the EmailVerificationSoap node within it, as shown
in the following screenshot:

4.	 Locate the Verify Email web service underneath the Email Verification v5 web
services and drag it into the main method of the EmailValidator.java class.

Chapter 11

337

5.	 The Customize VerifyEmail Saas Service dialog will be displayed. Enter the following
information into the dialog:

�� userID: Your StrikeIron user ID

�� password: Your StrikeIron password

�� email: iaminvalid@nowhere

�� timeout: 15

We can see the Customize VerifyEmail Saas Service dialog in the
following screenshot:

6.	 Click on the OK button.

7.	 NetBeans will now add the code to the EmailValidator.java class to query the
e-mail address we entered (iaminvalid@nowhere).

8.	 We need to change the generated code within the main() method within the
EmailValidator.java class in order to see the results of the API call.
Immediately after the call to port.verifyEmail(…), add the following code:
System.out.println(verifyEmailResult.value.
getServiceStatus().getStatusDescription());

9.	 We've now entered all of the information we need, so press F6 to run the application
and validate the e-mail address.

Using External Web Services

338

10.	 The application will launch, and a message will be displayed in the Output window
indicating that the e-mail address has an invalid domain name (shown in the
following screenshot)—StrikeIron is telling us that the e-mail address is invalid:

Now, let's change the code so we can see what happens when we try to validate a valid e-mail
address with the following steps:

1.	 Edit the EmailValidator.java class and change the email variable to contain
your e-mail address. So, for example, if your e-mail address is cookbookreader@
gmail.com, change the email variable to read:

2.	 Press F6 to run the application again, and note that this time StrikeIron has
successfully validated the e-mail address:

How it works…
When validating e-mail addresses with the StrikeIron tools, NetBeans creates five variables to
hold the input parameters to StrikeIron:

ff unregisteredUserEmail: This variable is a hangover from when StrikeIron used
to allow unregistered users access to its API by specifying an e-mail address.
This field is best left empty.

mailto:cookbookreader@gmail.com

Chapter 11

339

ff userID: This is your user ID provided by StrikeIron. Most probably, this will be the
e-mail address that you registered with at StrikeIron.

ff password: This is your API password that was generated for you by StrikeIron when
you created an account.

ff email: This is the e-mail address that you wish to validate.

ff timeout: This is the timeout period in seconds for querying the StrikeIron web
services. This has to be within the range of 15 to 120 for the API call to succeed.

Unlike the previous recipes where NetBeans created specific classes for interacting with REST
endpoints, NetBeans has used JAX-WS in this recipe to query the SOAP web services we have
called. Classes representing the entities used by the web services are defined within the
EmailVerification.jar library that NetBeans has automatically created and added to
our project.

For more information on JAX-WS, check out the documentation at
https://jax-ws.java.net/.

NetBeans automatically generated code to instantiate the web service (com.
strikeiron.EmailVerification service) and the port (com.strikeiron.
EmailVerificationSoap port) for us to invoke web service operations.

We then invoked the web service operation to verify the provided e-mail address
(port.verifyEmail(..)).

Finally, we checked the result of the web service call to establish whether the e-mail
address was valid or not. We did this by checking the statusDescription field of
the web service result.

There's more…
So far, we've written code to query the StrikeIron services to validate e-mail addresses.
What if we just want to quickly test a web service without writing any code? Can this be done?

https://jax-ws.java.net/

Using External Web Services

340

It certainly can. If we expand the node under the Email Verification v5 web service in the
Services explorer and then right-click on the Verify Email web service (rather than dragging
it into a class), we get the Test Method option. Selecting this option causes the Test Web
Service Method dialog to be displayed where we can enter different data for the different
web service parameters and get rapid feedback on how the web service works. The Test Web
Service Method dialog is shown in the following screenshot:

In addition to verifying e-mails, StrikeIron provides many other data and validation services,
all of which can be invoked and tested in a similar fashion to the Email Validation v5 web
service described earlier. This is shown in the following screenshot:

Chapter 11

341

Adding an additional web service into
NetBeans

In this chapter, we've looked at recipes that show how to consume different web services
easily, all from within NetBeans by simply dragging-and-dropping the web service into an
appropriate Java class. NetBeans is supplied with easy access to a wide variety of different
web services from Amazon, Delicious, Flickr, Google, StrikeIron, WeatherBug, Zillow,
and Zvents.

Although this is a huge number of web services, there are numerous others that aren't
included by default within the Services explorer within NetBeans.

In this recipe, we'll see how we can add new web services into the Services explorer so that
we can then drag-and-drop these into NetBeans classes, thereby easily consuming the web
services from the client code.

Getting ready
To complete this recipe, we'll be accessing the web services defined at
http://webservicex.net. Specifically, we'll be adding the Stock Quote web
service into NetBeans and then testing that it works correctly.

WebserviceX.NET is a free collection of web services covering a wide range of topics such as
stock quotes, global weather, and address verification. A full list of services can be found at
http://www.webservicex.net/WS/wscatlist.aspx.

You don't need to create an account to use the WebserviceX.NET.

You can use either the Java EE or All download bundle of NetBeans to complete this recipe.

How to do it…
Perform the following steps to add a new web service:

1.	 Ensure the Services explorer is selected and then right-click on the Web Services
node. A pop-up menu will be displayed with the Add Web Service… and Create Group
options, as shown in the following screenshot:

http://webservicex.net
http://webservicex.net
http://www.webservicex.net/WS/wscatlist.aspx
http://www.webservicex.net/WS/wscatlist.aspx

Using External Web Services

342

2.	 Click on Add Web Service…. The Add Web Service dialog will be displayed. On this
dialog, we must enter the WSDL for the web service that we are adding to NetBeans.

3.	 In the URL field, enter the value http://www.webservicex.net/stockquote.
asmx?WSDL, as shown in the following screenshot:

4.	 Click on OK.

5.	 After a few seconds, the new web service will be displayed as the last entry
underneath the Web Services node within the Services explorer:

Now that we've added the web service into NetBeans, let's quickly test that it's working
correctly with the following steps:

1.	 Expand the stockquote-asmx node underneath Web Services in the
Services explorer.

http://www.webservicex.net/stockquote.asmx?WSDL
http://www.webservicex.net/stockquote.asmx?WSDL

Chapter 11

343

If you have the Output window open while expanding the
stockquote.asmx node, you will see a lot of output generated from
NetBeans as it loads the WSDL for the web service and generates
the necessary artifacts to invoke the web service. Reading this
output gives a good indication of what NetBeans has to do to
enable us to easily invoke the web service.

2.	 Expand the StockQuoteSoap web service and right-click on the GetQuote operation
within. From the pop-up menu, select the Test Method option.

3.	 The Test Web Service Method dialog will be displayed, so let's find out the value of
Oracle stock.

4.	 Enter the Value field as ORCL. This is the stock market symbol for Oracle Corporation.

5.	 Click on the Submit button.

6.	 After a few seconds, the Results field will be populated with the results of the web
service call, as shown in the following screenshot:

7.	 Click on the XML code displayed within the Value field to display a dialog box that
shows all of the XML code. Reading the XML code, we can see that at the time
of this writing the Oracle stock was worth $40.33 a share, as shown in the
following screenshot:

Using External Web Services

344

How it works…
When we add a web service reference into NetBeans, we must specify either the REST
resource for the service, or the service's description file (WSDL or WADL). In this recipe,
we specified a WSDL for a SOAP-based web service.

NetBeans gave us the option of specifying a Package Name field when defining the WSDL;
however, we deliberately left this blank so that the default package name would be used. The
package name is that of the Java classes that NetBeans automatically creates (using JAX-WS
in this example) for invoking the web service. If no package name is specified, then NetBeans
calculates one based on the URL of the WSDL file. So, the package name for WebserviceX.
NET's Stock Quote web service is net.webservicex.

If we are planning on using more than one web service from the same
provider, it would be useful to specify the package; thus, for example, we
could have net.webservice.stock for the stock service and perhaps
net.webservicex.weather for the weather service.

There's more…
If at any time, the WSDL for the web service changes, we can right-click on the web service
(stockquote-asmx in this recipe) and select the Refresh option. This will cause NetBeans to
re-read the WSDL and regenerate the client classes for invoking the web service.

We can also view the WSDL for a web service by right-clicking on the web service and
selecting the View WSDL option.

Finally, if we no longer wish to use the web service, we can delete it from the Services
explorer by right-clicking on the web service and selecting the Delete option.

If we have added a lot of web services into the Services explorer, it can be useful to group
them so that they can easily be found when required. This can be achieved by right-clicking
on the Web Services node and selecting the Create Group menu option. After selecting
this option, NetBeans allows us to specify a new name for a group (basically, an empty node
underneath the Web Services node). Upon creating the group, we can drag any existing web
services into the group, allowing us to categorize them further. For further classification,
NetBeans allows us to create groups within groups so that a hierarchy of web services
can be specified.

12
Extending NetBeans

In this chapter, we will cover the following recipes:

ff Creating a NetBeans module

ff Packaging a NetBeans module for deployment

Introduction
NetBeans is a fully fledged IDE that provides many features to aid in a developer's day-to-day
activities when developing applications.

We take some of the features available within NetBeans for granted, such as the ability to
load and save Java source files. The majority of these features are provided, by default, with a
standard installation of NetBeans. We don't need to install any extra plugins or components to
get the desired functionality. This all adds up to NetBeans being an excellent feature-rich IDE.

Some features that we, as developers, use daily are not provided as standard with NetBeans
and have to be installed separately via the NetBeans plugin center. Some of these plugins are
developed by the NetBeans team, whereas others are contributed via third-party developers.
For example, the WildFly plugin that allows Java EE developers to manage and deploy to
the WildFly application server was not developed by NetBeans, but was contributed to the
NetBeans plugin center and helps to advance the functionality provided by the IDE.

The WildFly plugin was not provided as standard with NetBeans 8, but
due to its popularity, has been included with NetBeans 8.0.1 and higher.

Extending NetBeans

346

In addition to being a comprehensive IDE for multiple language development, NetBeans is also
a platform that can act as a basis for developing complex Swing-based applications. When using
NetBeans as a platform, many basic plumbing tasks are taken care of automatically, such as
window management and connecting application logic to menu options and toolbar buttons.

In this final chapter, we'll take a look at how we can develop additional plugins for NetBeans
and how we can package them up for deployment by other users. Extending NetBeans is
a massive topic that warrants an entire book, so we'll just be scratching the surface of it,
showing the sort of things that can be done to extend NetBeans.

For more information on the NetBeans platform, and the types of
modules that can be developed, check out the platform documentation at
https://netbeans.org/features/platform/all-docs.html.

Creating a NetBeans module
The NetBeans IDE has been developed in a fashion that allows third-party developers to write
additional plugins (sometimes called modules), which can provide additional functionality for
the NetBeans IDE. Once written, these plugins are usually published at the NetBeans Plugin
Center, where they can be discovered by other NetBeans users.

In this recipe, we'll show how to write a NetBeans Code Generator plugin that will allow us
to easily add the basics of a JUnit test into a Java class. The plugin will be invoked by pressing
Alt + Insert for the code generation option within NetBeans.

Getting ready
No special steps are required before completing this recipe.

Any version of NetBeans (Java SE, Java EE, or the All bundle) can be used to perform this recipe.

How to do it…
To create a NetBeans module, perform the following steps:

1.	 Click on File and then New Project... to open the New Project dialog.

2.	 Select NetBeans Modules from the list of Categories and Module from the list
of Projects. Click on Next.

https://netbeans.org/features/platform/all-docs.html

Chapter 12

347

3.	 Enter the Project Name field as AddUnitTest. Ensure that the Standalone
Module option is selected with Development IDE as the NetBeans Platform,
as shown in the following screenshot:

4.	 Click on Next.

5.	 On the Basic Module Configuration page of the New Module dialog, enter the
Code Name Base field as com.davidsalter.cookbook.codegenerator.
Change the Module Display Name field to Add Unit Test (we are just adding
spaces here to make it more readable). Ensure that the Localizing Bundle field
is automatically updated to com/davidsalter/cookbook/codegenerator/
Bundle.properties after we have made these changes, as shown in the
following screenshot:

Extending NetBeans

348

6.	 Click on Finish.

7.	 A new module project will now be created by NetBeans. Note how this project has a
different icon from other projects we have created so far within this book. This new
icon represents a NetBeans module project rather than a Java project or a Java web
project, as shown in the following screenshot:

Now that we've created an empty module project, we need to add some functionality into it so
that we can quickly add a test into our Java code. Let's do that now with the following steps:

1.	 Right-click on the Add Unit Test project within the Projects explorer and select
New and then Other….

2.	 Select Module Development from the list of Categories and Code Generator from
the list of File Types, as shown in the following screenshot:

Chapter 12

349

3.	 Click on Next.

4.	 The New Code Generator dialog will be displayed. Enter the following information
into this dialog:

�� Class Name: AddUnitTest

�� Package: com.davidsalter.cookbook.codegenerator

�� MimeType: text/x-java

5.	 Click on Finish.

6.	 The New Code Generator dialog will now close.

In order to modify a class via our plugin (so that we can insert a new test method), we need
to specify that we will be referencing the NetBeans Java Source, Javac API Wrapper,
and Utilities API modules. Let's do that now with the following steps:

1.	 Right-click on the Add Unit Test project within the Projects explorer and select
Properties. The Project Properties dialog will be displayed.

2.	 Select Libraries from the list of Categories, as shown in the following screenshot:

3.	 Click on the Add button within the Module Dependencies section to open the
Add Module Dependency dialog.

Extending NetBeans

350

4.	 Select the Java Source, Javac API Wrapper, and Utilities API modules and click on
the OK button, as shown in the following screenshot:

5.	 The list of Module Dependencies used by the project will now be updated to include
the Java Source, Javac API Wrapper, and Utilities API modules, Javac API Wrapper,
and Utilities API modules, as shown in the following screenshot:

6.	 Click on the OK button to close the properties dialog.

Chapter 12

351

We've now created an empty code generation module within our NetBeans module.
Let's now define the name that is displayed for our module in the Alt + Insert Generate
pop-up menu and then write the code that will add an empty JUnit test into our code with
the following steps:

1.	 Ensure that the AddUnitTest.java file is open for editing within NetBeans.

2.	 Locate the method name getDisplayName() (at or around line 39). Modify the
returned string to read JUnit Test…, as shown in the following screenshot:

3.	 Locate the invoke() method (at or around line 47). Change the contents of this
method to read:
public void invoke() {
 try {
 CancellableTask task = new
 CancellableTask<WorkingCopy>() {

 @Override
 public void cancel() {
 }

 @Override
 public void run(WorkingCopy workingCopy) throws
 Exception {
 workingCopy.toPhase(Phase.RESOLVED);
 CompilationUnitTree compilationUnitTree =
 workingCopy.getCompilationUnit();
 TreeMaker treeMaker = workingCopy.getTreeMaker();
 for (Tree typeDecl :
 compilationUnitTree.getTypeDecls()) {
 if (Tree.Kind.CLASS == typeDecl.getKind()) {
 ClassTree clazz = (ClassTree) typeDecl;
 ModifiersTree methodModifiers = treeMaker.
 Modifiers(Collections.<Modifier>
 singleton(Modifier.PUBLIC),
 Arrays.asList(treeMaker.Annotation
 (treeMaker.Identifier("Test"),
 Collections.EMPTY_LIST)));
 String methodName = "testAbc";

Extending NetBeans

352

 String methodBody = "{ fail(\"Test not written
 yet\"); }";

 TypeElement typeElement = workingCopy.
 getElements().getTypeElement
 ("java.lang.Exception");
 ExpressionTree throwsClause = treeMaker.
 QualIdent(typeElement);
 MethodTree newMethod = treeMaker.
 Method(methodModifiers, methodName,
 treeMaker.PrimitiveType(TypeKind.VOID),
 Collections.<TypeParameterTree>emptyList(),
 Collections.EMPTY_LIST,
 Collections.<ExpressionTree>
 singletonList(throwsClause),
 methodBody,null);
 ClassTree modifiedClazz =
 treeMaker.addClassMember(clazz, newMethod);
 workingCopy.rewrite(clazz, modifiedClazz);
 }
 }
 }
 };
 Document doc = textComp.getDocument();
 JavaSource javaSource = JavaSource.forDocument(doc);
 ModificationResult result =
 javaSource.runModificationTask(task);
 result.commit();
 } catch (Exception e) {
 Exceptions.printStackTrace(e);
 }
}

We've now added all the code necessary to modify any open Java source file and insert a test
method into it. Let's run the code and see how it works with the following steps:

1.	 Right-click on the Add Unit Test project within the Projects explorer and
select Run.

2.	 NetBeans will build the module and a new instance of NetBeans will be started up.

3.	 Within this new instance of NetBeans, create a simple Java project with a main
method class in it. The name of the project and class are unimportant as this is just
a test project to see how our plugin works.

Chapter 12

353

4.	 Right-click within the source for a Java file and select Insert Code.... The Generate
pop up is displayed with our new JUnit Test… option within it, as shown in the
following screenshot:

5.	 Select the JUnit Test… option and note how a blank JUnit test is added into the
class methods, as shown in the following screenshot:

How it works…
In this recipe, we created a NetBeans module that plugs in to the Insert Code… menu option
allowing us to quickly add the basics of a JUnit test into a Java class.

We started off by creating a NetBeans module and targeting it at the development IDE. This
means that the module is compiled against the artefacts provided by the IDE that the plugin
is currently being developed in. In my case, this is the All distribution of NetBeans 8.0. For the
module, we defined a display name and a base package. A localization bundle was created
for us automatically, although we didn't use this specifically in this recipe in order to keep a
complex example more understandable.

We then used the New File wizard to add a Code Generator class into the module. A Code
Generator class is a standard Java class that implements the org.netbeans.spi.editor.
codegen.CodeGenerator interface. It's the fact that we implement this interface and
define the methods within it that allows NetBeans to dynamically locate our plugin at
runtime and add it's functionality into NetBeans as though it's part of the default product.

The CodeGenerator interface is defined as shown in the following code:

public interface CodeGenerator {
 @MimeLocation(subFolderName="CodeGenerators")
 public static interface Factory {

Extending NetBeans

354

 public List<? Extends CodeGenerator> create(Lookup lkp);
 }

 public String getDisplayName();

 public void invoke();
}

Let's take a look at how we implemented these methods.

When creating the Code Generator, we were asked to specify a MIME type. A MIME
(Multipurpose Internet Email Extension) type simply represents the type of a file just as it
does with e-mail attachments. There are many different MIME types such as text/plain for
a textual file or image/png for a .png graphics file. We chose text/x-java as this is the
MIME type for a Java source code file. NetBeans took this information and added it into the
Factory class it created for us.

For more information on MIME types, check out
http://en.wikipedia.org/wiki/MIME.

The following is a screenshot of the Factory class:

This MIME type specifies that the Code Generator that we are creating works on all Java
source files. We could have used different MIME types, for example, text/html had we
wanted to make our Code Generator work on HTML files.

The next method in the CodeGenerator interface is getDisplayName(). This method
determines the text that will be displayed within the pop-up menu when the Insert Code...
option is selected. The following is a screenshot of the getDisplayName() method:

http://en.wikipedia.org/wiki/MIME

Chapter 12

355

Finally, we implemented the invoke() method of the CodeGenerator interface. It is this
method that gets called whenever the code generation options is invoked. The following is
a screenshot of the invoke() method:

Within this method, we instantiated a CancellableTask class to perform the modification
of the Java source code.

Inside the CancellableTask class, we used several of the NetBeans APIs to ensure that
we were attempting to modify a class. We then created a new method, and added a @Test
annotation to it and a default body. We added the new method into the class tree and rewrote
the source for the class so that NetBeans was aware of our changes.

Finally, we grabbed a reference to JavaSource from the currently open document and then
executed the task, committing it when completed. If any errors occurred during processing,
we simply displayed the stack trace.

For more information on the NetBeans Platform APIs, check out the
documentation at http://bits.netbeans.org/dev/javadoc/.

http://bits.netbeans.org/dev/javadoc/

Extending NetBeans

356

Packaging a NetBeans module for
deployment

As we've seen in the previous recipe, NetBeans provides us with the ability to extend the
functionality of the IDE by creating new modules. NetBeans modules are stored as .nbm files
(which are essentially zipped archives), which can then be uploaded directly to the NetBeans
plugin portal, or can be distributed via other techniques to other developers.

In this recipe, we'll show what we need to do to a module project to allow us to create a
distributable NetBeans module.

Getting ready
To complete this recipe, you'll need the Add JUnit Test project created earlier in this
chapter in the Creating a NetBeans module recipe. If you have not completed that recipe,
the source code is available as part of the code download bundle for this book.

How to do it…
To create a distributable NetBeans module, perform the following steps:

1.	 The first stage when getting a NetBeans module ready for deployment is to specify
the license that the module will be deployed under. We need to store the license
within a text file in the project so that anyone who gets a copy of our module can
see the license conditions. Right-click on the Source Packages node of the Add
Unit Test project within the Projects explorer and create a new blank file called
license.txt. Since this module is available under the Apache 2 license, enter that
into the license.txt file.

The Apache 2 license boiler plate text is available as part of the code
download bundle for this chapter. The Apache 2 license can be found
online at http://www.apache.org/licenses/LICENSE-2.0.
Information about the Apache Software Foundation can be found at
http://www.apache.org.

2.	 Now that we've added a license file to the project, we can configure the project
properties ready for building the module. Right-click on the Add Unit Test
project within the Projects explorer and select Properties.

3.	 On the Project Properties dialog, select the Display category and enter the
following information:

�� Display Name: Add Unit Test

http://www.apache.org/licenses/LICENSE-2.0.
http://www.apache.org.

Chapter 12

357

�� Display Category: Testing Tools

�� Short Description: Quickly add an empty JUnit test into
your code

�� Long Description: Add JUnit Tests allows the developer to
quickly add a JUnit test into their code via the Insert
Code option within the NetBeans code editor window.

�� Show in Plugin Manager: Ensure this option is checked

We can see our Project Properties dialog in the following screenshot:

Always ensure that the Show in Plugin Manager option is checked
during development; otherwise, you'll find it very difficult to uninstall
a module once you've installed it!

4.	 Select the API Versioning category and ensure the Specification Version field is
set to 1.0.

5.	 Select the Build category and then Packaging and enter the following information:

�� License: Click on Browse... and select the src/license.txt file

�� Home Page: http://www.packtpub.com/netbeans-ide-8-
cookbook/book

�� Author: David Salter

http://www.packtpub.com/netbeans-ide-8-cookbook/book
http://www.packtpub.com/netbeans-ide-8-cookbook/book

Extending NetBeans

358

We can see our Project Properties dialog in the following screenshot:

6.	 Click on OK to store the project properties.

7.	 We've now defined all of the metadata needed to package our plugin, so let's
generate the .nbm file.

8.	 Right-click on the Add Unit Test project within the Projects explorer and click
on Create NBM.

9.	 NetBeans will now take a few seconds to compile and package the module.

10.	 Click on the Files explorer and expand the Add Unit Test and build nodes.
The com-davidsalter-cookbook-codegenerator.nbm module file has been
generated within the build folder of the project, as shown in the following screenshot:

Chapter 12

359

How it works…
When generating a packaged module, NetBeans creates a .nbm file. This file is a .zip
archive like many other Java deployment files (.jar and .war files for example).
The .nbm file has the following folders/files within it:

ff Info/info.xml: This contains metadata about the module such as its license,
the project's home page, and author.

ff META-INF/MAINFEST.MF: This contains information about the tools that created
the module file.

ff netbeans.config.Modules: This contains information about whether the module
is enabled and whether it needs a restart upon loading. The path to the module's
.jar file is supplied within here.

ff netbeans.modules: This contains compressed versions of the compiled module's
.jar files.

There's more…
Using the NetBeans plugin mechanism (selecting Tools and the Plugins option from the main
menu), we can add the .nbm file into a running instance of NetBeans to test it out. Note that
all of the information we entered about the plugin (author name, URL, version, and plugin
description) are all shown within the plugin manager, as shown in the following screenshot:

Extending NetBeans

360

It's best to test your plugins thoroughly using the techniques shown in the
Creating a NetBeans module recipe rather than creating a .nbm file and
loading it into your development IDE. If your plugin crashes, for example,
or even worse, temporarily breaks NetBeans, its best if this is done to a
standalone instance rather than your development instance.

So what's next? I've created a plugin, how can I let other users know about it? When you've
completed development and testing of your own plugins, you can deploy them to the NetBeans
Plugin Portal at http://plugins.netbeans.org. The following screenshot displays the
welcome screen of the NetBeans Plugin Portal:

By logging in to the NetBeans Plugin Portal, you can upload your plugin and categorize it
so that other developers can easily find it.

Submitting your plugin to the NetBeans Plugin Portal is the first step to increasing
awareness of your plugin and allowing other developers to use it. To provide the optimal
experience to users, and allow your plugins to be discoverable directly within NetBeans
itself, you need to sign your plugins and ensure that they pass the plugin quality criteria.

Signing a plugin is a relatively straightforward task, but must be completed from the
command prompt rather than inside NetBeans itself. The procedure is:

1.	 Open a command prompt or terminal and change directory to the NetBeans project.

2.	 Execute the following command to create a keystore, answering all the questions
asked during execution:
keytool -genkey -storepass <password> -alias <your name> -keystore
nbproject/private/keystore

3.	 Edit the project.properties file located in the nbproject folder to reference
the keystore:
keystore=nbproject/private/keystore
nbm_alias=<your name>

http://plugins.netbeans.org

Chapter 12

361

4.	 Edit the platform-private.properties file located at nbproject/private
to contain:
storepass=<password>

5.	 Rebuild the module and it will be signed.

Once your plugins have been signed and passed the quality criteria, they then become
discoverable directly within NetBeans itself, so you no longer have to distribute .nbm
files manually.

Full details of the quality criteria required for plugins can be found at http://wiki.
netbeans.org/PluginPortalQualityCriteria.

http://wiki.netbeans.org/PluginPortalQualityCriteria
http://wiki.netbeans.org/PluginPortalQualityCriteria

Index
Symbols
<f:validateDoubleRange /> 152
<f:validateLength /> 152
<f:validateLongRange /> 152
.getText() method 179
.nbm file

Info/info.xml 359
META-INF/MAINFEST.MF 359
netbeans.config.Modules 359
netbeans.modules 359

@Path annotation 189
.root style 237
@Suite annotation 304
@Test annotation 303

A
add() method 299
addPosts() method 324
administration tool

running 204
Analyzer, Visual MIDlet 258
Android

URL 260
Android application

creating 263-265
Android development

URL 260
Android platform

URL 265
Android SDK

URL 260
Android support

adding, to NetBeans 260-263
AngularJS 183

Ant build file 257
Apache 2 license

URL 356
Apache Derby

URL 198
API key

URL 330
APIs

URL 259
application

debugging 45
profiling 312-316

archetypes 15
assertions 293

B
Bean Validation

URL 152
breakpoints

creating, with conditions 44
Builder pattern

constructors, replacing with 92

C
camelCase 148
Change Method Parameters refactoring 80
Chrome Connector

using 191-196
class

creating 32, 33
debugging 39-43

Class-Path 126
code

formatting 45

364

formatting, rules 46
code changes

committing 285-288
new files, managing 288
pushing 285-288

code folds
collapsing 46-49
expanding 46-49

CodeGenerator interface 353
comments

toggling 49, 50
components

adding, to form 101-107
conditional breakpoints 44
constructors

creating 58-60
replacing, with Builder pattern 92
replacing, with Factory pattern 89-92

Contexts and Dependency Injection (CDI) 178
controllers

creating 232
cookbook-jarviewer project

URL 272
cron 181
CSS

JavaFX application, styling with 235-239
CSS reference guide

URL 238
custom Maven goals

invoking 17
CVS

used, from NetBeans 280, 281

D
data

amending 217
deleting 217
inserting 217
viewing 217

Data-as-a-Service (DaaS) 335
databases

about 197
creating 203

debuggable applications
types 45

Delicious
URL 318

Delicious bookmark
adding 322-324
list, obtaining 318-322

delta parameter 309
deployment

NetBeans module, packaging for 356-360
Design view 101
dialogs

creating 111, 112
different version, Ant

using 22
Diff Files option 289
Diff patch

applying 290
creating 288-290

distributable application
building, from NetBeans 123-126

E
Eclipse

synchronizing 27
Eclipse project

Eclipse, synchronizing 27
error dialogs 28
importing 25, 26

EJB
creating 165-172
deploying 173
Message Driven Beans 165
Singleton EJB 165
Stateful EJB 165
Stateless EJB 165

e-mail address
verifying, with StrikeIron 335-340

email variable 339
EmailVerification.jar library 339
Enterprise Archive (EAR) 166
Enterprise Java Beans. See EJB
errors, importing Eclipse projects

JRE configuration, instead of JDK 28
Resolve Missing Server Problem 28
Resolve Reference Problems 28

365

event listeners
about 115
URL 115

events
responding to 115-123

existing class
JUnit test, creating for 295-299

extract interface refactoring 83-85

F
Facelets 149
Factory pattern

constructors, replacing with 89-92
fields refactoring

encapsulating 86-89
file headers

creating 53, 54
files

importing, into Subversion
repository 279, 280

running 36-39
Files explorer 32
Flickr

URL 325
FlickrPhotoServiceAuthenticator class 328
Flickr web services

URL 327
Flow, Visual MIDlet 258
fork, cookbook-jarviewer project

creating 272
form

components, adding to 101-107
Free-Form application

creating 19-21
different version of Ant, using 22

FXML
user interfaces, creating 232

FXML files
graphical editing 233, 234

G
geocoding 329
getBook() method 189
getDisplayName() method 354
getQuote() method 169
GET request 183

getResponseCode() method 324
git command 269
GitHub

URL 271
Git repository

cloning 271-275
initializing 268-270
Mercurial repository, cloning 275
Mercurial repository, initializing 270, 271
specific revision, updating 276

Google Geocoding
URL 330

Google Maps
geocoding with 329-335

H
hg command 270
history, file

obtaining 281-285
history line, options

Checkout 283
Diff to Previous 283
Export Commit 283
Revert Commit 283
Tag Commit 283

History view 101
hosted projects, creating

URL 276
HTTP status codes

URL 325
Hungarian notation

URL 103

I
imports

fixing 50, 51
organizing 52, 53

indexes
creating 217

Inno Setup 245
Inno Setup installer

URL 245
installation, Maven

using 17
Integrated Development Environment (IDE) 7

366

interface
creating 34
methods 35, 36

isbn parameter 189

J
Java application

creating 8-11
Java DB

about 198
connecting to 198-200
URL 198

Java EE 128
Java EE 7 EJBs

URL 166
JavaFX

about 225
URL 226

JavaFX application
controllers, creating 232
creating 226-232
styling, with CSS 235-239
user interfaces, creating in FXML 232

JavaFX custom control
creating 239-244
using 239-244

JavaFX programming
URL 243

JavaFX Scene Builder Version 2.0
URL 233

Java logging
URL 60

Java ME download page
URL 252

Java ME project
creating 256

Java Message Service (JMS) 166
JavaScript 183
Java Server Faces (JSF) 144
JAX-WS

URL 339
JBoss 129
JDBC drivers

URL 205
JFrames

URL 95

JMS queues 173
JSF backing bean 147
JSF composite component

creating 158-164
JSF support

adding, to web application 153-158
web application, creating with 144-152

JSONView plugin 189
JUnit support

installing, into NetBeans 294, 295
JUnit test

creating 301-303
creating, for existing class 295-299

JUnit test suite
creating 304-306

L
library

creating 23-25
list of recent photos, Flickr

obtaining 325-329
logger

creating 60, 61
look and feel style, NetBeans

changing 54-56

M
Main-Class 126
MariaDB

URL 204
Matisse 93
Maven application

creating 11-16
custom Maven goals, invoking 17
different installation using, of Maven 17
Maven goals, invoking 16

Maven goals
invoking 16

Maven projects
using 18

menus
creating 108-110

Mercurial repository
cloning 275
initializing 270, 271

367

Mercurial tools
URL 270, 275

Message Driven Beans 166
Message Driven EJB

about 173
creating 173-180

method
overriding 65-68

Microsoft SQL Server
connecting to 204-208

MIDP application
creating 256-259

MIME (Multipurpose Internet
Email Extension) 354

MIME types
URL 354

Mobile Information Device Profile (MIDP) 251
mobile support

adding, to NetBeans 252-255
Model-View-Controller (MVC) pattern 93
modules 346
MongoDB

connecting to 218-222
shell 223
URL 218

MongoDB manual
URL 223

MongoDB shell 223
MySQL Server

administration tool, running 204
databases, creating 203
registering 200-203

N
named pipes 205
NBAndroid 260
NBAndroid Extensions

about 263
URL 263

NBMongo
URL 222

NetBeans
about 318, 345
Android support, adding to 260-263
CVS, using from 280, 281

distributable application,
building from 123-126

JUnit support, installing into 294, 295
look and feel, changing 54-56
mobile support, adding to 252-255
TomEE support, adding to 136-140
URL 7
web service, adding into 341-344
WildFly support, adding to 129-136

NetBeans IDE 7
NetBeans module

creating 346-355
packaging, for deployment 356-360

NetBeans Platform
URL 94

NetBeans Platform APIs
URL 355

NetBeans Plugin Portal
URL 360

Network Monitor 144
new files

managing 288

O
options, code generation

Default Method Bodies 299
Test Class Finalizer 299
Test Class Initializer 299
Test Finalizer 298
Test Initializer 298

options, Test Results window
used, for managing test runs 309, 310

Oracle
connecting to 204-210
URL 208

Oracle documentation
URL 150

Oracle Message documentation
URL 180

P
package

adding, for unit test source code 31
automatic creation 32
creating 30-32

368

Files explorer 32
parameters

refactoring 78-81
password variable 339
pgAdmin 210
Platform documentation

URL 346
PostgreSQL

connecting to 210-212
disconnecting 212

PrimeFaces 153
property

creating 63-65
pruned 128
pull up refactoring 83
push down refactoring 81, 82
PUT 183

Q
quality criteria, plugins

URL 361

R
refactoring

copying 74, 75
deleting 75-78
extract interface refactoring 83-85
fields refactoring, encapsulating 86-89
moving 71-74
parameters refactoring, changing 78-81
pull up refactoring 83
push down refactoring 81, 82
renaming 68-71

repository
branching 290-292

REST-based web services
advantages 317

REST endpoint, Google Geocoding
URL 335

REST web service
creating 183-190
MIME types 190

Rich Client Platform (RCP) 94

S
Scene Builder

URL 233
schemas

exporting 218
Screen, Visual MIDlet 258
self-contained application

deploying 245-250
send() method 180
Session Beans

about 128
Singleton Session Beans 128
Stateful Session Beans 128
Stateless Session Beans 128

Singleton EJB 166
Singleton Session Beans 128
Source Code Control System (SCCS) 274
source code management 267
Source view 100
Source, Visual MIDlet 258
specific revision

updating to 276
SQL database

data, amending 217
data, deleting 217
data, inserting 217
data, viewing 217
indexes, creating 217
managing 213-217
schemas, exporting 218

SQL Server
URL 205

Stateful EJB 165
Stateful Session Beans 128
Stateless EJB 165
Stateless Session Beans 128
StrikeIron

about 335
e-mail address, verifying with 335-340
URL 335

Subversion repository
checking out 276-279
CVS, using within NetBeans 280, 281
files, importing into 279, 280

369

Suite test runner 304
superclasses

extracting 85
Swing 93
Swing application

creating 95-101
Swing Application Framework 94
Swing components

URL 101
System Under Test (SUT) 299

T
tags 292
test case 293
test classes

storing 298
test-driven development (TDD)

about 297
URL 297

test fixtures 294
TestNG

about 310
URL 310

TestNG unit test
creating 310, 311

test runner 293
tests

running 306-310
test suite 294
timeout variable 339
timer

creating 180-183
TimerBean.java class

dayOfMonth 182
dayOfWeek 182
hour 182
info 182
minute 182
month 182
second 182
year 182

TomEE
installing 136
URL 136

TomEE documentation
URL 137

TomEE support
adding, to NetBeans 136-140

toolbars
creating 113-115

toString() method
creating 61-63

U
UNIX timestamps

URL 328
unregisteredUserEmail variable 338
userID variable 339
user interfaces

creating, in FXML 232

V
validations

@Max 152
@Min 152
@NotNull 152
@Past 152
@Pattern 152
@Size 152

variable content
checking 44

Visual MIDlet
Analyzer 258
editing 258
Flow 258
Screen 258
Source 258

W
watch

adding 41, 42
web application

creating 140-144
creating, with JSF support 144-152
JSF support, adding to 153-158

Web application Archive (WAR) 166
web service

adding, into NetBeans 341344
URL 341

WebserviceX.NET
about 341

370

URL 341
WildFly

about 129
installing 129
URL 129

WildFly 8 129
WildFly directories

appclient 130
bin 130
docs 130
domain 130
modules 130
standalone 130
welcome-content 130

WildFly license
URL 130

WildFly plugin 345
WildFly support

adding, to NetBeans 129-136
Wix

URL 250
workbench

URL 201

X
xUnit 293

Thank you for buying

NetBeans IDE 8 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Getting Started with
Lazarus IDE
ISBN: 978-1-78216-340-4 Paperback: 116 pages

Get to grips with the basics of programming, debugging,
creating components, and documenting projects with
the Lazarus IDE

1.	 Create new projects.

2.	 Create components for use in Lazarus.

3.	 Document Lazarus projects.

Java EE 7 with GlassFish 4
Application Server
ISBN: 978-1-78217-688-6 Paperback: 348 pages

A practical guide to install and configure the GlassFish 4
application server and develop Java EE 7 applications to
be deployed to this server

1.	 Install and configure GlassFish 4.

2.	 Covers all major Java EE 7 APIs and includes new
additions such as JSON Processing.

3.	 Packed with clear, step-by-step instructions,
practical examples, and straightforward
explanations.

Please check www.PacktPub.com for information on our titles

Instant JRebel
ISBN: 978-1-84969-880-1 Paperback: 46 pages

Accelerate your code development dramatically with this
practical guide

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Use your favorite tools without spending much
time on compilation and deployment.

3.	 Enable JRebel on Tomcat and Glassfish.

4.	 Utilize JRebel to greatly improve your Java SE and
Java EE projects.

Instant NetBeans IDE How-to
ISBN: 978-1-78216-344-2 Paperback: 70 pages

Develop different Java applications such as desktop,
web, enterprise, and mobile applications using
NetBeans IDE

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Explore the drag-and-drop features of
NetBeans IDE to write bug-free code
without writing anything.

3.	 Generate different code snippets and files with
only a few clicks.

4.	 Easy to use images and various controls
within projects.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Using NetBeans Projects
	Introduction
	Creating a Java application
	Creating a Maven application
	Using Maven projects
	Creating a Free-Form application
	Creating a library
	Importing an Eclipse project

	Chapter 2: Java Development with NetBeans
	Introduction
	Creating a package
	Creating a class
	Creating an interface
	Running a file
	Debugging a class
	Formatting the code
	Collapsing and expanding code folds
	Toggling comments
	Fixing and organizing imports
	Creating file headers
	Changing the look and feel of NetBeans

	Chapter 3: NetBeans Productivity
	Introduction
	Creating a constructor
	Creating a logger
	Creating a toString() method
	Creating a property
	Overriding a method
	Rename refactoring
	Move refactoring
	Copy refactoring
	Delete refactoring
	Change parameters refactoring
	Pull up / push down refactoring
	Extract interface refactoring
	Encapsulate fields refactoring
	Replacing a constructor with the Factory pattern

	Chapter 4: Developing Desktop Applications with NetBeans
	Introduction
	Creating a Swing application
	Adding components to a form
	Creating menus
	Creating dialogs
	Creating toolbars
	Responding to events
	Building a distributable application from NetBeans

	Chapter 5: NetBeans Enterprise Application Development
	Introduction
	Adding WildFly support to NetBeans
	Adding TomEE support to NetBeans
	Creating a web application
	Creating a web application with JSF support
	Adding JSF support to a web application
	Creating a JSF composite component
	Creating an EJB
	Creating a Message Driven EJB
	Creating a timer
	Creating a REST web service
	Using the Chrome Connector

	Chapter 6: Managing Databases with NetBeans
	Introduction
	Connecting to Java DB
	Registering and managing a MySQL Server
	Connecting to Microsoft SQL Server and Oracle
	Connecting to PostgreSQL
	Managing a SQL database
	Connecting to MongoDB

	Chapter 7: NetBeans JavaFX
	Introduction
	Creating a JavaFX application
	Graphical editing of FXML files
	Styling a JavaFX application with CSS
	Creating and using a JavaFX custom control
	Deploying a self-contained application

	Chapter 8: NetBeans Mobile Development
	Introduction
	Adding mobile support to NetBeans
	Creating an MIDP application
	Adding Android support to NetBeans
	Creating an Android application

	Chapter 9: Version Control
	Introduction
	Initializing a Git repository
	Cloning a Git repository
	Checking out from a Subversion repository
	Getting the history of a file
	Committing and pushing code changes
	Creating a Diff patch
	Branching a repository

	Chapter 10: NetBeans Testing and Profiling
	Introduction
	Installing JUnit support into NetBeans
	Creating a JUnit test for an existing class
	Creating a JUnit test
	Creating a JUnit test suite
	Running tests
	Creating a TestNG unit test
	Profiling an application

	Chapter 11: Using External Web Services
	Introduction
	Getting a list of Delicious bookmarks
	Adding a Delicious bookmark
	Getting a list of recent photos on Flickr
	Geocoding with Google Maps
	Verifying an e-mail address with StrikeIron
	Adding an additional web service into NetBeans

	Chapter 12: Extending NetBeans
	Introduction
	Creating a NetBeans module
	Packaging a NetBeans module for deployment

	Index

