
www.allitebooks.com

http://www.allitebooks.org

Node.js Blueprints

Develop stunning web and desktop applications with
the definitive Node.js

Krasimir Tsonev

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Node.js Blueprints

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production Reference: 1060614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-733-8

www.packtpub.com

Cover Image by Svetlana Mircheva-Tsoneva (sv_mircheva@abv.bg)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Krasimir Tsonev

Reviewers
Ben Sammons

Glenn Antoine

Bojan Bižić

Andrey Kovalenko

Miguel A. Madero

Abhijeet S. Sutar

Leo Hsieh

Commissioning Editor
Julian Ursell

Acquisition Editors
Antony Lowe

Greg Wild

Content Development Editor
Sankalp Pawar

Technical Editors
Miloni Dutia

Kapil Hemnani

Mukul Pawar

Siddhi Rane

Copy Editors
Alisha Aranha

Mradula Hegde

Adithi Shetty

Project Coordinator
Sanghamitra Deb

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Hemangini Bari

Tejal Soni

Production Coordinators
Manu Joseph

Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

Krasimir Tsonev is a coder with over 10 years of experience in web development.
With a strong focus on quality and usability, his interests lie in delivering cutting-
edge applications. He enjoys working in the industry and has a passion for creating
and discovering new and effective digital experiences. Currently, Krasimir works
with technologies such as HTML5 or CSS3, JavaScript, PHP, and Node.js, although he
started off as a graphic designer. Later, he spent several years as a flash developer using
ActionScript3 and frameworks such as RobotLegs. After that, he continued delivering,
as a freelancer, full-stack web services for his clients' graphic design as well as frontend
and backend programming. With the present surge in mobile development, Krasimir
is enthusiastic to work on responsive applications targeted at various devices. Having
lived and worked in Bulgaria, he graduated from The Technical University of Varna
with a Bachelor's and Master's degree in Computer Science.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ben Sammons is an enthusiastic programmer who, with a background in other
sciences matter, has found his passion in programming, particularly asynchronous
programming. He enjoys exploring complex problems and new technologies. In his
spare time, he enjoys reading fiction novels and programming goofy side projects.

I would like to thank Sanghamitra Deb for managing the project,
the author for the delightful content, and all the Node.js-core
contributors for starting such a fun technology, which allows
books like this to be written.

Glenn Antoine is a software engineer with over 20 years of experience. By
day, much of his time is spent working with C#, .NET, and MVC enterprise-level
applications. By night, he devotes his time to writing Node.js- and AngularJS-based
responsive web applications. As a lifelong learner, he enjoys sharing his experiences
on his blog at http://glennantoine.com.

www.allitebooks.com

http://glennantoine.com
http://www.allitebooks.org

Bojan Bižić started programming at the age of 14, when he got his first
Commodore 64. Since then, he has come a long way developing a wide range of
solutions using VB6, Delphi, C, C++, LAMP, Node.js, Objective-C, DirectX, OpenGL,
OpenCL, NVidia Cuda, Python, AngularJS, and .NET. He is a Microsoft Certified
Solutions Developer, database administrator, professional web developer, as well as
a Certified Technology Specialist who develops SharePoint solutions. Currently, he
holds a Bachelor's degree in IT Management from The University of Novi Sad, Serbia.

Bojan currently lives in Germany and works for GMG GmbH & Co. KG, developing
a wide range of cross-platform color management and printing solutions, using both
Microsoft and open-source technologies. In his spare time, he actively participates in
open source projects.

I would like to dedicate this work to my beautiful wife Olivera. She
has always been the greatest support and inspiration for my work
and has made me the man I am today.

www.allitebooks.com

http://www.allitebooks.org

Andrey Kovalenko is a software developer, team leader, and blogger. He is a
member of Jaybird Marketing Group LLC, a web and mobile development firm
in the United States and Ukraine. He has been working there since the inception
of the company and holds a team leader position. His work includes overseeing
and implementing projects on a wide variety of technologies, with emphases
on JavaScript, Node.js, HTML5, and Cordova (PhoneGap). He leads several
development groups, which produce products for call centers, marketing companies,
real-estate agencies, telecommunication companies, and healthcare, among others.
Lately, he has been focusing on learning mobile development in details. As a result,
he started the BodyMotivator project, a mobile application for fitness. He is a believer
in the future of JavaScript as a generic development language. When he isn't coding,
Andrey likes to hang out with his family, skydive, and exercise at the local cross-fit
gym. He is a healthcare enthusiast and is trying to put all his software development
efforts into making life healthier.

He is also the author of the book KineticJS Starter, Packt Publishing.

I would like to express my gratitude to the many people who
saw me through this book. First and foremost, I would like to
thank my girlfriend Lena for her understanding, endless patience,
and encouragement when it was most required. I also thank the
Jaybirdians—the amazing people to whom I now dedicate much of
my life. It is through their teachings, encouragement, and support
that I have gained and grown. It is an incredible feeling to know
that I have worked for five years already, wrote my first book here,
reviewed several books, and also created my first mobile application.

www.allitebooks.com

http://www.allitebooks.org

Miguel A. Madero is a developer, entrepreneur, speaker, author, and open source
contributor. He has been programming for fun for almost 20 years. He founded
a magazine, video production, a few web companies, and a development shop in
Mexico. He has worked as a software consultant for Readify, Australia, developing
some of the coolest projects in the country. He moved last year to San Francisco,
where he works at Practice Fusion to connect doctors, patients, and data to drive
better health and save lives. On a personal note, Miguel is married and likes rock
climbing, good food, and trying exploring new things.

He also has worked on the book Professional Visual Studio 2008, Wrox.

To Carina, my wife.

Abhijeet S. Sutar is a self-taught, full-stack software developer based in Mumbai,
India. He is a technology and open-source enthusiast and a blogger. Having worked
with enterprise middleware applications with a Java platform, he is now building
real-time applications with the Node.js platform and Meteor, along with NoSQL
databases MongoDB and Redis.

He finds more interest in exploring, experimenting, reading, and writing in new
languages and with new technologies.

You can reach him on his blog at http://blog.ajduke.in, on GitHub at
http://github.com/ajduke, or on Twitter via @_ajduke.

Leo Hsieh graduated from USF with a Master's degree in Web Science in 2011.
He has been working as a software engineer for over two and a half years. He is
an open-source JavaScript developer, interested in frontend development and
Node.js. Although he is more focused on frontend development, he is able to
work on backend development with Java and Python as well.

He is also a software engineer on a platform service team at PayPal, working on a
developer portal for https://developer.paypal.com/.

www.allitebooks.com

http://blog.ajduke.in
http://github.com/ajduke
@_ajduke
https://developer.paypal.com/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
service@packtpub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Common Programming Paradigms 7

Node.js fundamentals 8
Organizing your code logic in modules 10

Building a car construction application 11
Using the car's engine 12

Understanding inter-module communication 14
Asynchronous programming 16
Exploring middleware architecture 20
Composition versus inheritance 21
Managing dependencies 23
Summary 24

Chapter 2: Developing a Basic Site with Node.js and Express 25
Getting acquainted with Express 25
Installing Express 26

Using package.json 26
Using a command-line tool 28

Managing routes 32
Handling dynamic URLs and the HTML forms 34
Returning a response 35
The example-logging system 37
Summary 40

Chapter 3: Writing a Blog Application with Node.js and AngularJS 41
Exploring AngularJS 41

Bootstrapping AngularJS applications 42
Using directives and controllers 42
Data binding 43

Table of Contents

[ii]

Encapsulating logic with modules 44
Preparing data with filters 45
Dependency injection 45
The model in the context of AngularJS 46
Final words on AngularJS 46

Selecting and initializing the database 47
Using NoSQL with MongoDB 47
Using MySQL 50

Developing the client side with AngularJS 53
Implementing a control panel 58
Summary 66

Chapter 4: Developing a Chat with Socket.IO 67
Exploring WebSockets and Socket.IO 67
Understanding the basic application structure 68
Running the server 69
Adding Socket.IO 70
Writing the client side of the chat 71

Preparing the HTML markup 71
Writing the chat logic 73

Implementing user-to-user communication 75
Changing the server-side code 75
Making changes to the frontend of the chat 77

Summary 79
Chapter 5: Creating a To-do Application with Backbone.js 81

Exploring the Backbone.js framework 82
Recognizing the framework dependency 82
Extending the functionality 82
Understanding Backbone.js as an event-driven framework 83
Using models 83
Using collections 84
Implementing views 85
Using the router 85
Talking to the backend 86

Writing the backend of the application 87
Running the Node.js server 87
Managing the to-do lists 89

Writing the frontend 92
Looking into the base of the application 92

Table of Contents

[iii]

Listing the to-do activities 96
Adding, deleting, and editing the to-do lists 98

Summary 102
Chapter 6: Using Node.js as a Command-line Tool 103

Exploring the required modules 103
Planning the application 105
Obtaining images from a folder 106
Authorizing the Flickr protocol 108

Obtaining your application's Key and Secret 109
Writing into the Flickr.js module 111
Running our application tool 113

Uploading the images 115
Summary 116

Chapter 7: Showing a Social Feed with Ember.js 117
Preparing the application 117
Running the server and delivering the assets 118
Getting tweets based on a user handle 121
Discovering Ember.js 125

Knowing the dependencies of Ember.js 125
Understanding Ember.js 126

Exploring classes and objects in Ember.js 126
Computed properties 126
Router 127
Views and templates 129
Models 130
Controllers 131

Writing Ember.js 132
Defining the templates 132

Defining the routes 134
Handling the user input and moving to the second screen 135
Displaying the tweets 136
Summary 137

Chapter 8: Developing Web App Workflow with Grunt and Gulp 139
Introducing the task runners 139
Exploring Grunt 140

Concatenating files 141
Minifying your code 143
Watching files for changes 144
Ignoring files 146

Table of Contents

[iv]

Creating our own task 146
Generating a cache manifest file 148
Documenting our code 152

Discovering Gulp 153
Installing Gulp and fetching plugins 154
Concatenating and minifying with Gulp 154
Creating your own Gulp plugin 156

Summary 157
Chapter 9: Automate Your Testing with Node.js 159

Understanding the importance of writing tests 159
Choosing a testing methodology 160

Test-driven development 160
Behavior-driven development 161

Classifying tests 162
Using Jasmine 164

Installing Jasmine 164
Defining the module for testing 164
Following the test-driven development concept 165
Testing the file-reading process 165
Finding strings in the file content 168
Writing an integration test 169

Testing with Mocha 170
Installation 170
Translating our example using Mocha 171
Selecting a reporter 172

Testing with a headless browser 173
Writing the subject of our test 173
Testing with PhantomJS 175

Developing the micro testing framework 175
Understanding how PhantomJS works 176
Writing the actual test 177

Testing with DalekJS 180
Summary 183

Chapter 10: Writing Flexible and Modular CSS 185
Writing modular CSS 185

BEM (block, element, modifier) 186
Using the Object Oriented CSS approach 187

Separate structure and skin 187
Separate container and content 188

Scalable and modular architecture for CSS 188

Table of Contents

[v]

Atomic design 188
Exploring CSS preprocessors 189

Using Less 190
Defining variables 190
Using mixins 190
Structuring the styles into nested definitions 192

Using Sass 193
Using Stylus 194
Working with AbsurdJS 195

Styling a simple login form 197
Summary 202

Chapter 11: Writing a REST API 203
Discovering REST and API 203
Developing an online library – a REST API 204

Defining the API parts 204
Writing the base 204
Implementing the API router 205
Writing the responder 209

Working with the database 211
Creating a new record 212
Editing a record 213
Deleting a record 213
Displaying all the books 214
Adding a default route 214

Testing the API 215
Summary 217

Chapter 12: Developing Desktop Apps with Node.js 219
Using node-webkit 219
Writing the base of the application 222

Writing the package.json file 222
Preparing the HTML layout 222
Designing the JavaScript base 223

Displaying and using the working directory 225
Displaying the current working directory 225
Showing the files and folders 226
Changing the current directory 229
Copying, moving, and deleting files 230

Extending the application 234
Tweaking the updateFileArea function 234
Loading a new page for the selected image 235

Table of Contents

[vi]

Showing the image and its dimensions 236
Removing the toolbar 238

Summary 240
Index 241

Preface
As you probably know, the big things in our sphere are those that are moved by the
community. Node.js is a technology that has become really popular. Its ecosystem
is well-designed and brings with it the flexibility we need. With the rise of mobile
development, JavaScript occupies a big part of the technology stack nowadays.
The ability to use JavaScript on the server side is really interesting. It's good to know
how Node.js works and where and when to use it, but it is more important to see
some examples. This book will show you how this wonderful technology handles
real use cases.

What this book covers
Chapter 1, Common Programming Paradigms, introduces us to the fact that Node.js is a
JavaScript-driven technology, and we can apply common design patterns known in
JavaScript in Node.js as well.

Chapter 2, Developing a Basic Site with Node.js and Express, discusses how ExpressJS
is one of the top frameworks on the market. ExpressJS was included because of its
fundamental importance in the Node.js world. At the end of the chapter, you will
be able to create applications using the built-in Express modules and also add your
own modules.

Chapter 3, Writing a Blog Application with Node.js and AngularJS, teaches you how to
use frontend frameworks such as AngularJS with Node.js. The chapter's example is
actually a dynamic application that works with real databases.

Chapter 4, Developing a Chat with Socket.IO, explains that nowadays, every big web
app uses real-time data. It's important to show instant results to the users. This
chapter covers the creation of a simple real-time chat. The same concept can be used
to create an automatically updatable HTML component.

Preface

[2]

Chapter 5, Creating a To-do Application with Backbone.js, illustrates that Backbone.js was
one of the first frameworks that introduced data binding at the frontend of applications.
This chapter will show you how the library works. The to-do app is a simple example,
but perfectly illustrates how powerful the framework is.

Chapter 6, Using Node.js as a Command-line Tool, covers the creation of a simple CLI
program. There are a bunch of command-line tools written in Node.js, and the
ability to create your own tool is quite satisfying. This part of the book will present
a simple application which grabs all the images in a directory and uploads them
to Flickr.

Chapter 7, Showing a Social Feed with Ember.js, describes an Ember.js example that will
read a Twitter feed and display the latest posts. That's actually a common task of
every developer because a lot of applications need to visualize social activity.

Chapter 8, Developing Web App Workflow with Grunt and Gulp, shows that there are
a bunch of things to do before you can deliver the application to the users, such as
concatenation, minification, templating, and so on. Grunt is the de facto standard
for such tasks. The described module optimizes and speeds up your workflow. The
chapter presents a simple application setup, including managing JavaScript, CSS,
HTML, and cache manifests.

Chapter 9, Automate Your Testing with Node.js, signifies that tests are really important
for every application nowadays. Node.js has some really great modules for this. If
you are a fan of test-driven development, this chapter is for you.

Chapter 10, Writing Flexible and Modular CSS, introduces the fact that two of the
most popular CSS preprocessors are written in Node.js. This chapter is like a little
presentation on them and, of course, describes styling a simple web page.

Chapter 11, Writing a REST API, states that Node.js is a fast-working technology, and
it is the perfect candidate for building a REST API. You will learn how to create a
simple API to store and retrieve data for books, that is, an online library.

Chapter 12, Developing Desktop Apps with Node.js, shows that Node.js is not just a web
technology—you can also create desktop apps with it. It's really interesting to know
that you can use HTML, CSS, and JavaScript to create desktop programs. Creating a
simple file browser may not be such a challenging task, but it will give you enough
knowledge to build your own applications.

What you need for this book
You need Node.js installed, a browser, and your favorite code editor. That's all you
will use. There are a lot of additional modules to be used, but Node.js comes with a
wonderful package manager which handles the installation process.

Preface

[3]

Who this book is for
The book is for intermediate developers. It teaches you how to use popular Node.js
libraries and frameworks. So, good JavaScript knowledge is required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The http module, which we initialize on the first line, is needed for running the
web server."

A block of code is set as follows:

var http = require('http');
var getTime = function() {
var d = new Date();
return d.getHours() + ':' + d.getMinutes() + ':' +
d.getSeconds() + ':' + d.getMilliseconds();
}

Any command-line input or output is written as follows:

express --css less myapp

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
the blue button with the text OK, I'LL AUTHORIZE IT."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Downloading the color images of
this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/7338OS_ColoredImages.pdf

www.packtpub.com/authors
http://www.PacktPub.com
http://www.PacktPub.com/support
https://www.packtpub.com/sites/default/files/downloads/7338OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/7338OS_ColoredImages.pdf

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com

Common Programming
Paradigms

Node.js is a JavaScript-driven technology. The language has been in development for
more than 15 years, and it was first used in Netscape. Over the years, they've found
interesting and useful design patterns, which will be of use to us in this book. All this
knowledge is now available to Node.js coders. Of course, there are some differences
because we are running the code in different environments, but we are still able
to apply all these good practices, techniques, and paradigms. I always say that it
is important to have a good basis to your applications. No matter how big your
application is, it should rely on flexible and well-tested code. The chapter contains
proven solutions that guarantee you a good starting point. Knowing design patterns
doesn't make you a better developer because in some cases, applying the principles
strictly won't work. What you actually get is ideas, which will help you in thinking
out of the box. Sometimes, programming is all about managing complexity. We all
meet problems, and the key to a well-written application is to find the best suitable
solutions. The more paradigms we know, the easier our work is because we have
proven concepts that are ready to be applied. That's why this book starts with an
introduction to the most common programming paradigms.

Common Programming Paradigms

[8]

Node.js fundamentals
Node.js is a single-threaded technology. This means that every request is processed
in only one thread. In other languages, for example, Java, the web server instantiates
a new thread for every request. However, Node.js is meant to use asynchronous
processing, and there is a theory that doing this in a single thread could bring good
performance. The problem of the single-threaded applications is the blocking I/O
operations; for example, when we need to read a file from the hard disk to respond to
the client. Once a new request lands on our server, we open the file and start reading
from it. The problem occurs when another request is generated, and the application is
still processing the first one. Let's elucidate the issue with the following example:

var http = require('http');
var getTime = function() {
 var d = new Date();
 return d.getHours() + ':' + d.getMinutes() + ':' +
 d.getSeconds() + ':' + d.getMilliseconds();
}
var respond = function(res, str) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end(str + '\n');
 console.log(str + ' ' + getTime());
}
var handleRequest = function (req, res) {
 console.log('new request: ' + req.url + ' - ' + getTime());
 if(req.url == '/immediately') {
 respond(res, 'A');
 } else {
 var now = new Date().getTime();
 while(new Date().getTime() < now + 5000) {
 // synchronous reading of the file
 }
 respond(res, 'B');
 }
}
http.createServer(handleRequest).listen(9000, '127.0.0.1');

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Chapter 1

[9]

The http module, which we initialize on the first line, is needed for running the web
server. The getTime function returns the current time as a string, and the respond
function sends a simple text to the browser of the client and reports that the incoming
request is processed. The most interesting function is handleRequest, which is the
entry point of our logic. To simulate the reading of a large file, we will create a while
cycle for 5 seconds. Once we run the server, we will be able to make an HTTP request
to http://localhost:9000. In order to demonstrate the single-thread behavior we
will send two requests at the same time. These requests are as follows:

• One request will be sent to http://localhost:9000, where the server will
perform a synchronous operation that takes 5 seconds

• The other request will be sent to http://localhost:9000/immediately,
where the server should respond immediately

The following screenshot is the output printed from the server, after pinging both
the URLs:

As we can see, the first request came at 16:58:30:434, and its response was sent
at 16:58:35:440, that is, 5 seconds later. However, the problem is that the second
request is registered when the first one finishes. That's because the thread belonging
to Node.js was busy processing the while loop.

Of course, Node.js has a solution for the blocking I/O operations. They are
transformed to asynchronous functions that accept callback. Once the operation
finishes, Node.js fires the callback, notifying that the job is done. A huge benefit of
this approach is that while it waits to get the result of the I/O, the server can process
another request. The entity that handles the external events and converts them into
callback invocations is called the event loop. The event loop acts as a really good
manager and delegates tasks to various workers. It never blocks and just waits for
something to happen; for example, a notification that the file is written successfully.

Now, instead of reading a file synchronously, we will transform our brief example to
use asynchronous code. The modified example looks like the following code:

var handleRequest = function (req, res) {
 console.log('new request: ' + req.url + ' - ' + getTime());
 if(req.url == '/immediately') {
 respond(res, 'A');

Common Programming Paradigms

[10]

 } else {
 setTimeout(function() {
 // reading the file
 respond(res, 'B');
 }, 5000);
 }
}

The while loop is replaced with the setTimeout invocation. The result of this change
is clearly visible in the server's output, which can be seen in the following screenshot:

The first request still gets its response after 5 seconds. However, the second one is
processed immediately.

Organizing your code logic in modules
If we write a lot of code, sooner or later, we will start realizing that our logic should
be split into different modules. In most languages, this is done through classes,
packages, or some other language-specific syntax. However, in JavaScript, we don't
have classes natively. Everything is an object, and in practice, objects inherit other
objects. There are several ways to achieve object-oriented programming within
JavaScript. You can use prototype inheritance, object literals, or play with function
calls. Thankfully, Node.js has a standardized way of defining modules. This is
approached by implementing CommonJS, which is a project that specifies an
ecosystem for JavaScript.

So, you have some logic, and you want to encapsulate it by providing useful
API methods. If you reach that moment, you are definitely in the right direction.
This is really important, and maybe it is one of the most challenging aspects of
programming nowadays. The ability to split our applications into different parts
and delegate functions to them is not always an easy task. Very often, this is
undervalued, but it's the key to good architecture. If a module contains a lot of
dependencies, operates with different data storages, or has several responsibilities,
then we are doing something wrong. Such code cannot be tested and is difficult to
maintain. Even if we take care about these two things, it is still difficult to extend the
code and continue working with it. That's why it's good to define different modules
for different functionalities. In the context of Node.js, this is done via the exports
keyword, which is a reference to module.exports.

Chapter 1

[11]

Building a car construction application
Let's elucidate the process with a simple example. Assume that we are building an
application that constructs a car. We need one main module (car) and a few other
modules, which are responsible for the different parts of the car (wheels, windows,
doors, and so on). Let's start with the definition of a module representing the wheels
of the car, with the following code:

// wheels.js
var typeOfTires;
exports.init = function(type) {
 typeOfTires = type;
}
exports.info = function() {
 console.log("The car uses " + typeOfTires + " tires.");
}

The preceding code could be the content of wheels.js. It contains two methods. The
first method, init, should be called first and accepts one setting, that is, the type
of the wheels' tires. The second method simply outputs some information. In our
main file, car.js, we have to get an instance of the wheels and use the provided API
methods. This can be done as follows:

// cars.js
 var wheels = require("./wheels.js");
 wheels.init("winter");
 wheels.info();

When you run the application with node car.js, you will get the following output:

The car uses winter tires.

So, everything that you want to expose to the outside world should be attached to
the export object. Note that typeOfTires is a local variable for the module. It is
available only in wheels.js and not in car.js. It's also a common practice to apply
an object or a function to the exports object directly, as shown in the following code
for example:

// engine.js
var Class = function() {
 // ...
}
Class.prototype = {
 forward: function() {
 console.log("The car is moving forward.");
 },

Common Programming Paradigms

[12]

 backward: function() {
 console.log("The car is moving backward.");
 }
}
module.exports = Class;

In JavaScript, everything is an object and that object has a prototype property.
It's like a storage that keeps the available variables and methods. The prototype
property is heavily used during inheritance in JavaScript, because it provides a
mechanism for transferring logic.

We will also clear the difference between module.exports and exports. As you
can see, in wheels.js, we assigned two functions, init and info, directly to the
exports global object. In fact, that object is a reference to module.exports, and
every function or variable attached to it is available to the outside world. However,
if we assign a new object or function directly to the export object, we should not
expect to get an access to it after requiring the file. This should be done with
module.exports. Let's take the following code as an example:

// file.js
module.exports.a = 10;
exports.b = 20;

// app.js
var file = require('./file');
console.log(file.a, file.b);

Let's say that both the files, app.js and file.js, are in the same directory. If we
run node app.js, we will get 10 20 as the result. However, consider what would
happen if we changed the code of file.js to the following code:

module.exports = { a: 10 };
exports.b = 20;

Then, in this case, we would get 10 undefined as the result. That's because
module.exports has a new object assigned and exports still points to the old one.

Using the car's engine
Let's say that the module in engine.js controls the car. It has methods for moving
the car forward and backward. It is a little different because the logic is defined in
a separate class and that class is directly passed as a value of module.exports. In
addition, as we are exporting a function, and not just an object, our instance should
be created with the new keyword. We will see how the car's engine works with the
new keyword as shown in the following code:

Chapter 1

[13]

var Engine = require("./engine.js");
var e = new Engine();
e.forward();

There is a significant difference between using JavaScript functions as constructors
and calling them directly. When we call the function as a constructor, we get a new
object with its own prototype. If we miss the new keyword, the value which we get at
the end is the result of the function's invocation.

Node.js caches the modules returned by the require method. It's done to prevent
the blocking of the event loop and increase the performance. It's a synchronous
operation, and if there is no cache, Node.js will have to do the same job repeatedly.
It's also good to know that we can call the method with just a folder name, but
there should be a package.json or an index.js file inside the directory. All these
mechanisms are described well in the official documentation of Node.js at
http://nodejs.org/. What is important to note here is that the environment
encourages modular programming. All we need is native implementation into the
system, and we don't have to use a third-party solution that provides modularity.

Like in the client-side code, every Node.js module can be extended. Again, as we
are writing the code in plain JavaScript, we can use the well-known approaches for
inheritance. For example, take a look at the following code:

var Class = function() { }
Class.prototype = new require('./engine.js')();
Class.prototype.constructor = Class;

Node.js even offers a helper method for this purpose. Let's say that we want to
extend our engine.js class and add API methods to move the car in the left and
right directions. We can do this with the following piece of code:

// control.js
var util = require("util");
var Engine = require("./engine.js");
var Class = function() { }
util.inherits(Class, Engine);
Class.prototype.left = function() {
 console.log("The car is moving to left.");
};
Class.prototype.right = function() {
 console.log("The car is moving to right.");
}
module.exports = Class;

www.allitebooks.com

http://nodejs.org/
http://www.allitebooks.org

Common Programming Paradigms

[14]

The first line gets a reference to the Node.js native utils module. It's full of useful
functions. The fourth line is where the magic happens. By calling the inherits
method, we have actually set a new prototype of our Class object. Keep in mind that
every new method should use the already applied prototype. That's why the left
and right methods are defined after the inheritance. At the end, our car will move in
four directions, as shown in the following code snippet:

var Control = require("./control.js");
var c = new Control();
c.forward();
c.right();

Understanding inter-module
communication
We've found out how to put our code logic into modules. Now, we need to know
how to make them communicate with each other. Very often, people describe
Node.js as an event-driven system. It's also called non-blocking because as we have
seen earlier in the chapter, it can accept a new request even before the previous
request is fully complete. That's very efficient and highly scalable. The events are
very powerful and are good means to inform the other modules of what is going on.
They bring about encapsulation, which is very important in modular programming.
Let's add some events to the car example we discussed earlier. Let's say that we
have air conditioning, and we need to know when it is started. The implementation
of such logic consists of two parts. The first one is the air conditioning module. It
should dispatch an event that indicates the start of the action. The second part is
the other code that listens for that event. We will create a new file called air.js
containing the logic responsible for the air conditioning, as follows:

// air.js
var util = require("util");
var EventEmitter = require('events').EventEmitter;
var Class = function() { }
util.inherits(Class, EventEmitter);
Class.prototype.start = function() {
 this.emit("started");
};
module.exports = Class;

Chapter 1

[15]

Our class extends a Node.js module called EventEmitter. It contains methods such
as emit or on, which help us to establish event-based communication. There
is only one custom method defined: start. It simply dispatches an event that
indicates that the air conditioning is turned on. The following code shows how we
can attach a listener:

// car.js
var AirConditioning = require("./air.js");
var air = new AirConditioning();
air.on("started", function() {
 console.log("Air conditioning started");
});
air.start();

A new instance of the AirConditioning class is created. We attached an event
listener and fired the start method. The handler is called, and the message is
printed to the console. The example is a simple one but shows how two modules
communicate. It's a really powerful approach because it offers encapsulation. The
module knows its responsibilities and is not interested in the operations in the other
parts of the system. It simply does its job and dispatches notifications (events). For
example, in the previous code, the AirConditioning class doesn't know that we will
output a message when it is started. It only knows that one particular event should
be dispatched.

Very often, we need to send data during the emitting of an event. This is really easy.
We just have to pass another parameter along with the name of the event. Here is
how we send a status property:

Class.prototype.start = function() {
 this.emit("started", { status: "cold" });
};

The object attached to the event contains some information about the air conditioning
module. The same object will be available in the listener of the event. The following
code shows us how to get the value of the status variable mentioned previously:

air.on("started", function(data) {
 console.log("Status: " + data.status);
});

There is a design pattern that illustrates the preceding process. It's called the
Observer. In the context of that pattern, our air conditioning module is called
subject, and the car module is called the observer. The subject broadcasts messages
or events to its observers, notifying them that something has changed.

Common Programming Paradigms

[16]

If we need to remove a listener, Node.js has a method for that called
removeListener. We can even allow a specific number of observers using
setMaxListeners. Overall, the events are one of the best ways to wire your
logical parts. The main benefit is that you isolate the module, but it is still highly
communicative with the rest of your application.

Asynchronous programming
As we already learned, in nonblocking environments, such as Node.js, most of the
processes are asynchronous. A request comes to our code, and our server starts
processing it but at the same time continues to accept new requests. For example,
the following is a simple file reading:

fs.readFile('page.html', function (err, content) {
 if (err) throw err;
 console.log(content);
});

The readFile method accepts two parameters. The first one is a path to the file we
want to read, and the second one is a function that will be called when the operation
finishes. The callback is fired even if the reading fails. Additionally, as everything
can be done via that asynchronous matter, we may end up with a very long callback
chain. There is a term for that—callback hell. To elucidate the problem, we will
extend the previous example and do some operations with the file's content. In the
following code, we are nesting several asynchronous operations:

fs.readFile('page.html', function (err, content) {
 if(err) throw err;
 getData(function(data) {
 applyDataToTheTemplate(content, data, function(resultedHTML) {
 renderPage(resultedHTML, function() {
 showPage(function() {
 // finally, we are done
 });
 });
 });
 });
});

Chapter 1

[17]

As you can see, our code looks bad. It's difficult to read and follow. There are a
dozen instruments that can help us to avoid such situations. However, we can fix
the problem ourselves. The very first step to do is to spot the issue. If we have more
than four or five nested callbacks, then we definitely should refactor our code. There
is something very simple, which normally helps, that makes the code shallow.
The previous code could be translated to a more friendly and readable format. For
example, see the following code:

var onFileRead = function(content) {
 getData(function(data) {
 applyDataToTheTemplate(content, data, dataApplied);
 });
}
var dataApplied = function(resultedHTML) {
 renderPage(resultedHTML, function() {
 showPage(weAreDone);
 });
}
var weAreDone = function() {
 // finally, we are done
}
fs.readFile('page.html', function (err, content) {
 if (err) throw err;
 onFileRead(content);
});

Most of the callbacks are just defined separately. It is clear what is going on because
the functions have descriptive names. However, in more complex situations, this
technique may not work because you will need to define a lot of methods. If that's
the case, then it is good to combine the functions in an external module. The previous
example can be transformed to a module that accepts the name of a file and the
callback function. The module is as follows:

var renderTemplate = require("./renderTemplate.js");
renderTemplate('page.html', function() {
 // we are done
});

You still have a callback, but it looks like the helper methods are hidden and only the
main functionality is visible.

Common Programming Paradigms

[18]

Another popular instrument for dealing with asynchronous code is the promises
paradigm. We already talked about events in JavaScript, and the promises are
something similar to them. We are still waiting for something to happen and pass
a callback. We can say that the promises represent a value that is not available at
the moment but will be available in the future. The syntax of promises makes the
asynchronous code look synchronous. Let's see an example where we have a simple
module that loads a Twitter feed. The example is as follows:

var TwitterFeed = require('TwitterFeed');
TwitterFeed.on('loaded', function(err, data) {
 if(err) {
 // ...
 } else {
 // ...
 }
});
TwitterFeed.getData();

We attached a listener for the loaded event and called the getData method, which
connects to Twitter and fetches the information. The following code is what the same
example will look like if the TwitterFeed class supports promises:

var TwitterFeed = require('TwitterFeed');
var promise = TwitterFeed.getData();
promise.then(function(data) {
 // ...
}, function(err) {
 // ...
});

The promise object represents our data. The first function, which is sent to the then
method, is called when the promise object succeeds. Note that the callbacks are
registered after calling the getData method. This means that we are not rigid to
actual process of getting the data. We are not interested in when the action occurs.
We only care when it finishes and what its result is. We can spot a few differences
from the event-based implementation. They are as follows:

• There is a separate function for error handling.
• The getData method can be called before calling the then method. However,

the same thing is not possible with events. We need to attach the listeners
before running the logic. Otherwise, if our task is synchronous, the event
may be dispatched before our listener attachment.

• The promise method can only succeed or fail once, while one specific event
may be fired multiple times and its handlers can be called multiple times.

Chapter 1

[19]

The promises get really handy when we chain them. To elucidate this, we will use
the same example and save the tweets to a database with the following code:

var TwitterFeed = require('TwitterFeed');
var Database = require('Database');
var promise = TwitterFeed.getData();
promise.then(function(data) {
 var promise = Database.save(data);
 return promise;
}).then(function() {
 // the data is saved
 // into the database
}).catch(function(err) {
 // ...
});

So, if our successful callback returns a new promise, we can use then for the second
time. Also, we have the possibility to set only one error handler. The catch method
at the end is fired if some of the promises are rejected.

There are four states of every promise, and we should mention them here
because it's a terminology that is widely used. A promise could be in any of the
following states:

• Fulfilled: A promise is in the fulfilled state when the action related to the
promise succeeds

• Rejected: A promise is in the rejected state when the action related to the
promise fails

• Pending: A promise is in the pending state if it hasn't been fulfilled or
rejected yet

• Settled: A promise is in a settled state when it has been fulfilled or rejected

The asynchronous nature of JavaScript makes our coding really interesting.
However, it could sometimes lead to a lot of problems. Here is a wrap up of the
discussed ideas to deal with the issues:

• Try to use more functions instead of closures
• Avoid the pyramid-looking code by removing the closures and defining top-

level functions
• Use events
• Use promises

Common Programming Paradigms

[20]

Exploring middleware architecture
The Node.js framework is based on the middleware architecture. That's because this
architecture brings modularity. It's really easy to add or remove functionalities from
the system without breaking the application because the different modules do not
depend on each other. Imagine that we have several modules that are all stored in
an array, and our application starts using them one by one. We are controlling the
whole process, that is, the execution continues only if we want it to. The concept is
demonstrated in the following diagram:

Connect (https://github.com/senchalabs/connect) is one of the first
frameworks that implements this pattern. In the context of Node.js, the middleware
is a function that accepts the request, response, and the next callbacks. The first two
parameters represent the input and output of the middleware. The last one is a way
to pass the flow to the next middleware in the list. The following is a short example
of this:

var connect = require('connect'),
 http = require('http');

var app = connect()
 .use(function(req, res, next) {
 console.log("That's my first middleware");
 next();
 })
 .use(function(req, res, next) {
 console.log("That's my second middleware");
 next();
 })
 .use(function(req, res, next) {
 console.log("end");
 res.end("hello world");
 });

http.createServer(app).listen(3000);

https://github.com/senchalabs/connect

Chapter 1

[21]

The use method of connect accepts middleware. In general, the middleware is just a
simple JavaScript function. We can write whatever we want in it. What is important
to do at the end is to call the next method. It passes the flow to the next middleware.
Often, we will need to transfer data between the middleware. It's a common practice
to modify the request or the response objects because they are the input and output
of the module. We can attach new properties or functions, and they will be available
for the next middleware in the list. As in the following code snippet, we are attaching
an object to a data property.

.use(function(req, res, next) {
 req.data = { value: "middleware"};
 next();
})
.use(function(req, res, next) {
 console.log(req.data.value);
})

The request and response objects are identical in every function. Thus, the
middleware share the same scope. At the same time, they are completely
independent. This pattern provides a really flexible development environment. We
can combine modules that do different tasks written by different developers.

Composition versus inheritance
In the previous section, we learned how to create modules, how to make them
communicate, and how to use them. Let's talk a bit about how to architect modules.
There are dozens of ways to build a good application. There are also some great
books written only on this subject, but we will focus on two of the most commonly
used techniques: composition and inheritance. It's really important to understand the
difference between the two. They both have pros and cons. In most of the cases, their
usage depends on the current project.

The car class from the previous sections is a perfect example of composition.
The functionalities of the car object are built by other small objects. So, the main
module actually delegates its jobs to other classes. For example, the wheels or the air
conditioning of the car are controlled by externally defined modules:

var wheels = require("./wheels.js")();
var control = require("./control.js")();
var airConditioning = require("./air.js")();
module.export = {
 run: function() {
 wheels.init();

Common Programming Paradigms

[22]

 control.forward();
 airConditioning.start();
 }
}

For the outside world, the car has only one method: run. However, what happens is
that we perform three different operations, and they are defined in other modules.
Often, the composition is preferred over the inheritance because while using this
approach, we can easily add as many modules as we want. It's also interesting that
we cannot only include modules but also other compositions.

On the other side is the inheritance. The following code is a typical example of
inheritance:

var util = require("util");
var EventEmitter = require('events').EventEmitter;
var Class = function() { }
util.inherits(Class, EventEmitter);

This code implies that our class needs to be an event emitter, so it simply inherits
that functionality from another class. Of course, in this case, we can still use
composition and create an instance of the EventEmitter class, define methods such
as on and dispatch, and delegate the real work. However, here it is much better to
use inheritance.

The truth is somewhere in between—the composition and the inheritance should
play together. They are really great tools, but each of them has its own place. It's not
only black and white, and sometimes it is difficult to find the right direction. There
are three ways to add behavior to our objects. They are as follows:

• Writing the functionality into the objects directly
• Inheriting the functionality from a class that already has the desired behavior
• Creating a local instance of an object that does the job

The second one is related to inheritance and the last one is actually a composition. By
using composition, we are adding a few more abstraction layers, which is not a bad
thing, but it could lead to unnecessary complexity.

Chapter 1

[23]

Managing dependencies
Dependency management is one of the biggest problems in complex software. Often,
we build our applications around third-party libraries or custom-made modules
written for other projects. We do this because we don't want to reinvent the wheel
every time.

In the previous sections of this chapter, we used the require global function. That's
how Node.js adds dependencies to the current module. A functionality written
in one JavaScript file is included in another file. The good thing is that the logic in
the imported file lives in its own scope, and only the publicly exported functions
and variables are visible to the host. With this behavior, we are able to separate
our logic modules into Node.js packages. There is an instrument that controls such
packages. It's called Node Package Manager (npm) and is available as a command-
line instrument. Node.js has become so popular mainly because of the existence of its
package manager. Every developer can publish their own package and share it with
the community. The good versioning helps us to bind our applications to specific
versions of the dependencies, which means that we can use a module that depends
on other modules. The main rule to make this work is to add a package.json file to
our project. We will add this file with the following code:

{
 "name": "my-awesome-module",
 "version": "0.1.10",
 "dependencies": {
 "optimist": "0.6.1",
 "colors": "0.6.2"
 }
}

The content of the file should be valid JSON and should contain at least the name
and version fields. The name property should also be unique, and there should not
be any other module with the same name. The dependencies property contains all
the modules and versions that we depend on. To the same file, we can add a lot of
other properties. For example, information about the author, a description of the
package, the license of the project, or even keywords. Once the module is registered
in the registry, we can use it as a dependency. We just need to add it in our package.
json file, and after we run npm install, we will be able to use it as a dependency.
Since Node.js adopts the module pattern, we don't need instruments such as the
dependency injection container or service locater.

www.allitebooks.com

http://www.allitebooks.org

Common Programming Paradigms

[24]

Let's write a package.json file for the car example used in the previous sections,
as follows:

{
 "name": "my-awesome-car",
 "version": "0.0.1",
 "dependencies": {
 "wheels": "2.0.1",
 "control": "0.1.2",
 "air": "0.2.4"
 }
}

Summary
In this chapter, we went through the most common programming paradigms in
Node.js. We learned how Node.js handles parallel requests. We understood how
to write modules and make them communicative. We saw the problems of the
asynchronous code and their most popular solutions. At the end of the chapter, we
talked about how to construct our application. With all this as a basis, we can start
thinking about better programs. Software writing is not an easy task and requires
strong knowledge and experience. The experience usually comes after years of
coding; however, knowledge is something that we can get instantly. Node.js is a
young technology; nonetheless, we are able to apply paradigms and concepts from
client-side JavaScript and even other languages.

In the next chapter, we will see how to use one of the most popular frameworks for
Node.js, that is, Express.js, and we will build a simple website.

Developing a Basic Site with
Node.js and Express

In the previous chapter, we learned about common programming paradigms and
how they apply to Node.js. In this chapter, we will continue with the Express
framework. It's one of the most popular frameworks available and is certainly
a pioneering one. Express is still widely used and several developers use it as a
starting point.

Getting acquainted with Express
Express (http://expressjs.com/) is a web application framework for Node.js. It is
built on top of Connect (http://www.senchalabs.org/connect/), which means
that it implements middleware architecture. In the previous chapter, when exploring
Node.js, we discovered the benefit of such a design decision: the framework acts as a
plugin system. Thus, we can say that Express is suitable for not only simple but also
complex applications because of its architecture. We may use only some of the popular
types of middleware or add a lot of features and still keep the application modular.

In general, most projects in Node.js perform two functions: run a server that listens
on a specific port, and process incoming requests. Express is a wrapper for these two
functionalities. The following is basic code that runs the server:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(1337, '127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

http://expressjs.com/
http://www.senchalabs.org/connect/

Developing a Basic Site with Node.js and Express

[26]

This is an example extracted from the official documentation of Node.js. As shown,
we use the native module http and run a server on the port 1337. There is also
a request handler function, which simply sends the Hello world string to the
browser. Now, let's implement the same thing but with the Express framework,
using the following code:

var express = require('express');
var app = express();
app.get("/", function(req, res, next) {
 res.send("Hello world");
}).listen(1337);
console.log('Server running at http://127.0.0.1:1337/');

It's pretty much the same thing. However, we don't need to specify the response
headers or add a new line at the end of the string because the framework does it for us.
In addition, we have a bunch of middleware available, which will help us process the
requests easily. Express is like a toolbox. We have a lot of tools to do the boring stuff,
allowing us to focus on the application's logic and content. That's what Express is built
for: saving time for the developer by providing ready-to-use functionalities.

Installing Express
There are two ways to install Express. We'll will start with the simple one and
then proceed to the more advanced technique. The simpler approach generates a
template, which we may use to start writing the business logic directly. In some
cases, this can save us time. From another viewpoint, if we are developing a custom
application, we need to use custom settings. We can also use the boilerplate, which
we get with the advanced technique; however, it may not work for us.

Using package.json
Express is like every other module. It has its own place in the packages register.
If we want to use it, we need to add the framework in the package.json file. The
ecosystem of Node.js is built on top of the Node Package Manager. It uses the JSON
file to find out what we need and installs it in the current directory. So, the content of
our package.json file looks like the following code:

{
 "name": "projectname",
 "description": "description",
 "version": "0.0.1",
 "dependencies": {

Chapter 2

[27]

 "express": "3.x"
 }
}

These are the required fields that we have to add. To be more accurate, we have to
say that the mandatory fields are name and version. However, it is always good
to add descriptions to our modules, particularly if we want to publish our work in
the registry, where such information is extremely important. Otherwise, the other
developers will not know what our library is doing. Of course, there are a bunch of
other fields, such as contributors, keywords, or development dependencies, but we
will stick to limited options so that we can focus on Express.

Once we have our package.json file placed in the project's folder, we have to
call npm install in the console. By doing so, the package manager will create a
node_modules folder and will store Express and its dependencies there. At the end
of the command's execution, we will see something like the following screenshot:

The first line shows us the installed version, and the proceeding lines are actually
modules that Express depends on. Now, we are ready to use Express. If we type
require('express'), Node.js will start looking for that library inside the local
node_modules directory. Since we are not using absolute paths, this is normal
behavior. If we miss running the npm install command, we will be prompted with
Error: Cannot find module 'express'.

Developing a Basic Site with Node.js and Express

[28]

Using a command-line tool
There is a command-line instrument called express-generator. Once we run npm
install -g express-generator, we will install and use it as every other command
in our terminal.

If you use the framework in several projects, you will notice that some things are
repeated. We can even copy and paste them from one application to another, and
this is perfectly fine. We may even end up with our own boilerplate and can always
start from there. The command-line version of Express does the same thing. It
accepts few arguments and based on them, creates a skeleton for use. This can be
very handy in some cases and will definitely save some time. Let's have a look at the
available arguments:

• -h, --help: This signifies output usage information.
• -V, --version: This shows the version of Express.
• -e, --ejs: This argument adds the EJS template engine support. Normally,

we need a library to deal with our templates. Writing pure HTML is not very
practical. The default engine is set to JADE.

• -H, --hogan: This argument is Hogan-enabled (another template engine).
• -c, --css: If we want to use the CSS preprocessors, this option lets us use

LESS (short for Leaner CSS) or Stylus. The default is plain CSS.
• -f, --force: This forces Express to operate on a nonempty directory.

Let's try to generate an Express application skeleton with LESS as a CSS
preprocessor. We use the following line of command:

express --css less myapp

A new myapp folder is created with the file structure, as seen in the
following screenshot:

Chapter 2

[29]

We still need to install the dependencies, so cd myapp && npm install is
required. We will skip the explanation of the generated directories for now and will
move to the created app.js file. It starts with initializing the module dependencies,
as follows:

var express = require('express');
var path = require('path');
var favicon = require('static-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');

var routes = require('./routes/index');
var users = require('./routes/users');

var app = express();

Developing a Basic Site with Node.js and Express

[30]

Our framework is express, and path is a native Node.js module. The middleware
are favicon, logger, cookieParser, and bodyParser. The routes and users are
custom-made modules, placed in local for the project folders. Similarly, as in the
Model-View-Controller (MVC) pattern, these are the controllers for our application.
Immediately after, an app variable is created; this represents the Express library. We
use this variable to configure our application. The script continues by setting some
key-value pairs. The next code snippet defines the path to our views and the default
template engine:

app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

The framework uses the methods set and get to define the internal properties.
In fact, we may use these methods to define our own variables. If the value is a
Boolean, we can replace set and get with enable and disable. For example, see the
following code:

app.set('color', 'red');
app.get('color'); // red
app.enable('isAvailable');

The next code adds middleware to the framework. We can see the code as follows:

app.use(favicon());
app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded());
app.use(cookieParser());
app.use(require('less-middleware')({ src: path.join(__dirname,
'public') }));
app.use(express.static(path.join(__dirname, 'public')));

The first middleware serves as the favicon of our application. The second is
responsible for the output in the console. If we remove it, we will not get information
about the incoming requests to our server. The following is a simple output
produced by logger:

GET / 200 554ms - 170b
GET /stylesheets/style.css 200 18ms - 110b

Chapter 2

[31]

The json and urlencoded middleware are related to the data sent along with the
request. We need them because they convert the information in an easy-to-use
format. There is also a middleware for the cookies. It populates the request object,
so we later have access to the required data. The generated app uses LESS as a CSS
preprocessor, and we need to configure it by setting the directory containing the
.less files. We will talk about LESS in Chapter 10, Writing Flexible and Modular CSS,
where will cover this in detail. Eventually, we define our static resources, which
should be delivered by the server. These are just few lines, but we've configured the
whole application. We may remove or replace some of the modules, and the others
will continue working. The next code in the file maps two defined routes to two
different handlers, as follows:

app.use('/', routes);
app.use('/users', users);

If the user tries to open a missing page, Express still processes the request by
forwarding it to the error handler, as follows:

app.use(function(req, res, next) {
 var err = new Error('Not Found');
 err.status = 404;
 next(err);
});

The framework suggests two types of error handling: one for the development
environment and another for the production server. The difference is that the second
one hides the stack trace of the error, which should be visible only for the developers
of the application. As we can see in the following code, we are checking the value of
the env property and handling the error differently:

// development error handler
if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}
// production error handler
app.use(function(err, req, res, next) {
 res.status(err.status || 500);

Developing a Basic Site with Node.js and Express

[32]

 res.render('error', {
 message: err.message,
 error: {}
 });
});

At the end, the app.js file exports the created Express instance, as follows:

module.exports = app;

To run the application, we need to execute node ./bin/www. The code requires
app.js and starts the server, which by default listens on port 3000.

#!/usr/bin/env node
var debug = require('debug')('my-application');
var app = require('../app');

app.set('port', process.env.PORT || 3000);

var server = app.listen(app.get('port'), function() {
 debug('Express server listening on port ' + server.address().port);
});

The process.env declaration provides an access to variables defined in the current
development environment. If there is no PORT setting, Express uses 3000 as the value.
The required debug module uses a similar approach to find out whether it has to
show messages to the console.

Managing routes
The input of our application is the routes. The user visits our page at a specific URL
and we have to map this URL to a specific logic. In the context of Express, this can be
done easily, as follows:

var controller = function(req, res, next) {
 res.send("response");
}
app.get('/example/url', controller);

We even have control over the HTTP's method, that is, we are able to catch POST,
PUT, or DELETE requests. This is very handy if we want to retain the address path
but apply a different logic. For example, see the following code:

var getUsers = function(req, res, next) {
 // ...
}

Chapter 2

[33]

var createUser = function(req, res, next) {
 // ...
}
app.get('/users', getUsers);
app.post('/users', createUser);

The path is still the same, /users, but if we make a POST request to that URL, the
application will try to create a new user. Otherwise, if the method is GET, it will
return a list of all the registered members. There is also a method, app.all, which
we can use to handle all the method types at once. We can see this method in the
following code snippet:

app.all('/', serverHomePage);

There is something interesting about the routing in Express. We may pass not just
one but many handlers. This means that we can create a chain of functions that
correspond to one URL. For example, it we need to know if the user is logged in,
there is a module for that. We can add another method that validates the current user
and attaches a variable to the request object, as follows:

var isUserLogged = function(req, res, next) {
 req.userLogged = Validator.isCurrentUserLogged();
 next();
}
var getUser = function(req, res, next) {
 if(req.userLogged) {
 res.send("You are logged in. Hello!");
 } else {
 res.send("Please log in first.");
 }
}
app.get('/user', isUserLogged, getUser);

The Validator class is a class that checks the current user's session. The idea is
simple: we add another handler, which acts as an additional middleware. After
performing the necessary actions, we call the next function, which passes the flow
to the next handler, getUser. Because the request and response objects are the same
for all the middlewares, we have access to the userLogged variable. This is what
makes Express really flexible. There are a lot of great features available, but they are
optional. At the end of this chapter, we will make a simple website that implements
the same logic.

www.allitebooks.com

http://www.allitebooks.org

Developing a Basic Site with Node.js and Express

[34]

Handling dynamic URLs and the HTML
forms
The Express framework also supports dynamic URLs. Let's say we have a separate
page for every user in our system. The address to those pages looks like the
following code:

/user/45/profile

Here, 45 is the unique number of the user in our database. It's of course normal to
use one route handler for this functionality. We can't really define different functions
for every user. The problem can be solved by using the following syntax:

var getUser = function(req, res, next) {
 res.send("Show user with id = " + req.params.id);
}
app.get('/user/:id/profile', getUser);

The route is actually like a regular expression with variables inside. Later, that
variable is accessible in the req.params object. We can have more than one variable.
Here is a slightly more complex example:

var getUser = function(req, res, next) {
 var userId = req.params.id;
 var actionToPerform = req.params.action;
 res.send("User (" + userId + "): " + actionToPerform)
}
app.get('/user/:id/profile/:action', getUser);

If we open http://localhost:3000/user/451/profile/edit, we see User
(451): edit as a response. This is how we can get a nice looking,
SEO-friendly URL.

Of course, sometimes we need to pass data via the GET or POST parameters. We
may have a request like http://localhost:3000/user?action=edit. To parse
it easily, we need to use the native url module, which has few helper functions to
parse URLs:

var getUser = function(req, res, next) {
 var url = require('url');
 var url_parts = url.parse(req.url, true);
 var query = url_parts.query;
 res.send("User: " + query.action);
}
app.get('/user', getUser);

Chapter 2

[35]

Once the module parses the given URL, our GET parameters are stored in the
.query object. The POST variables are a bit different. We need a new middleware to
handle that. Thankfully, Express has one, which is as follows:

app.use(express.bodyParser());
var getUser = function(req, res, next) {
 res.send("User: " + req.body.action);
}
app.post('/user', getUser);

The express.bodyParser() middleware populates the req.body object with
the POST data. Of course, we have to change the HTTP method from .get to
.post or .all.

If we want to read cookies in Express, we may use the cookieParser middleware.
Similar to the body parser, it should also be installed and added to the package.
json file. The following example sets the middleware and demonstrates its usage:

var cookieParser = require('cookie-parser');
app.use(cookieParser('optional secret string'));
app.get('/', function(req, res, next){
 var prop = req.cookies.propName
});

Returning a response
Our server accepts requests, does some stuff, and finally, sends the response to the
client's browser. This can be HTML, JSON, XML, or binary data, among others. As
we know, by default, every middleware in Express accepts two objects, request and
response. The response object has methods that we can use to send an answer to the
client. Every response should have a proper content type or length. Express simplifies
the process by providing functions to set HTTP headers and sending content to the
browser. In most cases, we will use the .send method, as follows:

res.send("simple text");

When we pass a string, the framework sets the Content-Type header to text/html.
It's great to know that if we pass an object or array, the content type is application/
json. If we develop an API, the response status code is probably going to be important
for us. With Express, we are able to set it like in the following code snippet:

res.send(404, 'Sorry, we cannot find that!');

Developing a Basic Site with Node.js and Express

[36]

It's even possible to respond with a file from our hard disk. If we don't use the
framework, we will need to read the file, set the correct HTTP headers, and send
the content. However, Express offers the .sendfile method, which wraps all these
operations as follows:

res.sendfile(__dirname + "/images/photo.jpg");

Again, the content type is set automatically; this time it is based on the
filename's extension.

When building websites or applications with a user interface, we normally need to
serve an HTML. Sure, we can write it manually in JavaScript, but it's good practice
to use a template engine. This means we save everything in external files and the
engine reads the markup from there. It populates them with some data and, at the
end, provides ready-to-show content. In Express, the whole process is summarized
in one method, .render. However, to work properly, we have to instruct the
framework regarding which template engine to use. We already talked about this
in the beginning of this chapter. The following two lines of code, set the path to our
views and the template engine:

app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

Let's say we have the following template (/views/index.jade):

h1= title
p Welcome to #{title}

Express provides a method to serve templates. It accepts the path to the template, the
data to be applied, and a callback. To render the previous template, we should use
the following code:

res.render("index", {title: "Page title here"});

The HTML produced looks as follows:

<h1>Page title here</h1><p>Welcome to Page title here</p>

If we pass a third parameter, function, we will have access to the generated HTML.
However, it will not be sent as a response to the browser.

Chapter 2

[37]

The example-logging system
We've seen the main features of Express. Now let's build something real. The next
few pages present a simple website where users can read only if they are logged in.
Let's start and set up the application. We are going to use Express' command-line
instrument. It should be installed using npm install -g express-generator.
We create a new folder for the example, navigate to it via the terminal, and execute
express --css less site. A new directory, site, will be created. If we go there
and run npm install, Express will download all the required dependencies. As
we saw earlier, by default, we have two routes and two controllers. To simplify the
example, we will use only the first one: app.use('/', routes). Let's change the
views/index.jade file content to the following HTML code:

doctype html
html
 head
 title= title
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 h1= title
 hr
 p That's a simple application using Express.

Now, if we run node ./bin/www and open http://127.0.0.1:3000, we will see the
page. Jade uses indentation to parse our template. So, we should not mix tabs and
spaces. Otherwise, we will get an error.

Next, we need to protect our content. We check whether the current user has a session
created; if not, a login form is shown. It's the perfect time to create a new middleware.

To use sessions in Express, install an additional module: express-session. We need
to open our package.json file and add the following line of code:

"express-session": "~1.0.0"

Once we do that, a quick run of npm install will bring the module to our
application. All we have to do is use it. The following code goes to app.js:

var session = require('express-session');
app.use(session({ secret: 'app', cookie: { maxAge: 60000 }}));
var verifyUser = function(req, res, next) {
 if(req.session.loggedIn) {

Developing a Basic Site with Node.js and Express

[38]

 next();
 } else {
 res.send("show login form");
 }
}
app.use('/', verifyUser, routes);

Note that we changed the original app.use('/', routes) line. The session
middleware is initialized and added to Express. The verifyUser function is called
before the page rendering. It uses the req.session object, and checks whether there
is a loggedIn variable defined and if its value is true. If we run the script again,
we will see that the show login form text is shown for every request. It's like this
because no code sets the session exactly the way we want it. We need a form where
users can type their username and password. We will process the result of the form
and if the credentials are correct, the loggedIn variable will be set to true. Let's
create a new Jade template, /views/login.jade:

doctype html
html
 head
 title= title
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 h1= title
 hr
 form(method='post')
 label Username:
 br
 input(type='text', name='username')
 br
 label Password:
 br
 input(type='password', name='password')
 br
 input(type='submit')

Instead of sending just a text with res.send("show login form"); we should
render the new template, as follows:

res.render("login", {title: "Please log in."});

We choose POST as the method for the form. So, we need to add the middleware that
populates the req.body object with the user's data, as follows:

app.use(bodyParser());

Chapter 2

[39]

Process the submitted username and password as follows:

var verifyUser = function(req, res, next) {
 if(req.session.loggedIn) {
 next();
 } else {
 var username = "admin", password = "admin";
 if(req.body.username === username &&
 req.body.password === password) {
 req.session.loggedIn = true;
 res.redirect('/');
 } else {
 res.render("login", {title: "Please log in."});
 }
 }
}

The valid credentials are set to admin/admin. In a real application, we may need
to access a database or get this information from another place. It's not really a
good idea to place the username and password in the code; however, for our little
experiment, it is fine. The previous code checks whether the passed data matches our
predefined values. If everything is correct, it sets the session, after which the user is
forwarded to the home page.

Once you log in, you should be able to log out. Let's add a link for that just after the
content on the index page (views/index.jade):

a(href='/logout') logout

Once users clicks on this link, they will be forward to a new page. We just need to
create a handler for the new route, remove the session, and forward them to the
index page where the login form is reflected. Here is what our logging out handler
looks like:

// in app.js
var logout = function(req, res, next) {
 req.session.loggedIn = false;
 res.redirect('/');
}
app.all('/logout', logout);

Setting loggedIn to false is enough to make the session invalid. The redirect sends
users to the same content page they came from. However, this time, the content is
hidden and the login form pops up.

Developing a Basic Site with Node.js and Express

[40]

Summary
In this chapter, we learned about one of most widely used Node.js frameworks,
Express. We discussed its fundamentals, how to set it up, and its main characteristics.
The middleware architecture, which we mentioned in the previous chapter, is the
base of the library and gives us the power to write complex but, at the same time,
flexible applications. The example we used was a simple one. We required a valid
session to provide page access. However, it illustrates the usage of the body parser
middleware and the process of registering the new routes. We also updated the Jade
templates and saw the results in the browser.

The next chapter will show us how Node.js collaborated with AngularJS, a popular
framework made by Google for client-side JavaScript applications.

Writing a Blog Application
with Node.js and AngularJS

In this chapter, we are going to build a blog application by using Node.js and
AngularJS. Our system will support adding, editing, and removing articles, so there
will be a control panel. The MongoDB or MySQL database will handle the storing
of the information and the Express framework will be used as the site base. It will
deliver the JavaScript, CSS, and the HTML to the end user, and will provide an API
to access the database. We will use AngularJS to build the user interface and control
the client-side logic in the administration page.

This chapter will cover the following topics:

• AngularJS fundamentals
• Choosing and initializing a database
• Implementing the client-side part of an application with AngularJS

Exploring AngularJS
AngularJS is an open source, client-side JavaScript framework developed by Google.
It's full of features and is really well documented. It has almost become a standard
framework in the development of single-page applications. The official site of
AngularJS, http://angularjs.org, provides a well-structured documentation. As
the framework is widely used, there is a lot of material in the form of articles and
video tutorials. As a JavaScript library, it collaborates pretty well with Node.js. In
this chapter, we will build a simple blog with a control panel.

http://angularjs.org

Writing a Blog Application with Node.js and AngularJS

[42]

Before we start developing our application, let's first take a look at the framework.
AngularJS gives us very good control over the data on our page. We don't have
to think about selecting elements from the DOM and filling them with values.
Thankfully, due to the available data-binding, we may update the data in the
JavaScript part and see the change in the HTML part. This is also true for the
reverse. Once we change something in the HTML part, we get the new values in
the JavaScript part. The framework has a powerful dependency injector. There are
predefined classes in order to perform AJAX requests and manage routes.

You could also read Mastering Web Development with AngularJS by Peter Bacon
Darwin and Pawel Kozlowski, published by Packt Publishing.

Bootstrapping AngularJS applications
To bootstrap an AngularJS application, we need to add the ng-app attribute to
some of our HTML tags. It is important that we pick the right one. Having ng-app
somewhere means that all the child nodes will be processed by the framework. It's
common practice to put that attribute on the <html> tag. In the following code, we
have a simple HTML page containing ng-app:

<html ng-app>
 <head>
 <script src="angular.min.js"></script>
 </head>
 <body>
 ...
 </body>
</html>

Very often, we will apply a value to the attribute. This will be a module name. We
will do this while developing the control panel of our blog application. Having the
freedom to place ng-app wherever we want means that we can decide which part of
our markup will be controlled by AngularJS. That's good, because if we have a giant
HTML file, we really don't want to spend resources parsing the whole document. Of
course, we may bootstrap our logic manually, and this is needed when we have more
than one AngularJS application on the page.

Using directives and controllers
In AngularJS, we can implement the Model-View-Controller pattern. The controller
acts as glue between the data (model) and the user interface (view). In the context of
the framework, the controller is just a simple function. For example, the following
HTML code illustrates that a controller is just a simple function:

<html ng-app>
 <head>

Chapter 3

[43]

 <script src="angular.min.js"></script>
 <script src="HeaderController.js"></script>
 </head>
 <body>
 <header ng-controller="HeaderController">
 <h1>{{title}}</h1>
 </header>
 </body>
</html>

In <head> of the page, we are adding the minified version of the library and
HeaderController.js; a file that will host the code of our controller. We also set
an ng-controller attribute in the HTML markup. The definition of the controller is
as follows:

function HeaderController($scope) {
 $scope.title = "Hello world";
}

Every controller has its own area of influence. That area is called the scope. In
our case, HeaderController defines the {{title}} variable. AngularJS has a
wonderful dependency-injection system. Thankfully, due to this mechanism, the
$scope argument is automatically initialized and passed to our function. The ng-
controller attribute is called the directive, that is, an attribute, which has meaning
to AngularJS. There are a lot of directives that we can use. That's maybe one of the
strongest points of the framework. We can implement complex logic directly inside
our templates, for example, data binding, filtering, or modularity.

Data binding
Data binding is a process of automatically updating the view once the model is
changed. As we mentioned earlier, we can change a variable in the JavaScript part of
the application and the HTML part will be automatically updated. We don't have to
create a reference to a DOM element or attach event listeners. Everything is handled
by the framework. Let's continue and elaborate on the previous example, as follows:

<header ng-controller="HeaderController">
 <h1>{{title}}</h1>
 change title
</header>

A link is added and it contains the ng-click directive. The updateTitle function is
a function defined in the controller, as seen in the following code snippet:

function HeaderController($scope) {
 $scope.title = "Hello world";

www.allitebooks.com

http://www.allitebooks.org

Writing a Blog Application with Node.js and AngularJS

[44]

 $scope.updateTitle = function() {
 $scope.title = "That's a new title.";
 }
}

We don't care about the DOM element and where the {{title}} variable is. We just
change a property of $scope and everything works. There are, of course, situations
where we will have the <input> fields and we want to bind their values. If that's the
case, then the ng-model directive can be used. We can see this as follows:

<header ng-controller="HeaderController">
 <h1>{{title}}</h1>
 change title
 <input type="text" ng-model="title" />
</header>

The data in the input field is bound to the same title variable. This time, we don't
have to edit the controller. AngularJS automatically changes the content of the h1 tag.

Encapsulating logic with modules
It's great that we have controllers. However, it's not a good practice to place
everything into globally defined functions. That's why it is good to use the module
system. The following code shows how a module is defined:

angular.module('HeaderModule', []);

The first parameter is the name of the module and the second one is an array with
the module's dependencies. By dependencies, we mean other modules, services, or
something custom that we can use inside the module. It should also be set as a
value of the ng-app directive. The code so far could be translated to the following
code snippet:

angular.module('HeaderModule', [])
.controller('HeaderController', function($scope) {
 $scope.title = "Hello world";
 $scope.updateTitle = function() {
 $scope.title = "That's a new title.";
 }
});

So, the first line defines a module. We can chain the different methods of the module
and one of them is the controller method. Following this approach, that is, putting
our code inside a module, we will be encapsulating logic. This is a sign of good
architecture. And of course, with a module, we have access to different features such
as filters, custom directives, and custom services.

Chapter 3

[45]

Preparing data with filters
The filters are very handy when we want to prepare our data, prior to be displayed
to the user. Let's say, for example, that we need to mention our title in uppercase
once it reaches a length of more than 20 characters:

angular.module('HeaderModule', [])
.filter('customuppercase', function() {
 return function(input) {
 if(input.length > 20) {
 return input.toUpperCase();
 } else {
 return input;
 }
 };
})
.controller('HeaderController', function($scope) {
 $scope.title = "Hello world";
 $scope.updateTitle = function() {
 $scope.title = "That's a new title.";
 }
});

That's the definition of the custom filter called customuppercase. It receives the
input and performs a simple check. What it returns, is what the user sees at the end.
Here is how this filter could be used in HTML:

<h1>{{title | customuppercase}}</h1>

Of course, we may add more than one filter per variable. There are some predefined
filters to limit the length, such as the JavaScript to JSON conversion or, for example,
date formatting.

Dependency injection
Dependency management can be very tough sometimes. We may split everything
into different modules/components. They have nicely written APIs and they are
very well documented. However, very soon, we may realize that we need to create
a lot of objects. Dependency injection solves this problem by providing what we
need, on the fly. We already saw this in action. The $scope parameter passed to our
controller, is actually created by the injector of AngularJS. To get something as a
dependency, we need to define it somewhere and let the framework know about it.
We do this as follows:

angular.module('HeaderModule', [])
.factory("Data", function() {

Writing a Blog Application with Node.js and AngularJS

[46]

 return {
 getTitle: function() {
 return "A better title.";
 }
 }
})
.controller('HeaderController', function($scope, Data) {
 $scope.title = Data.getTitle();
 $scope.updateTitle = function() {
 $scope.title = "That's a new title.";
 }
});

The Module class has a method called factory. It registers a new service that
could later be used as a dependency. The function returns an object with only one
method, getTitle. Of course, the name of the service should match the name
of the controller's parameter. Otherwise, AngularJS will not be able to find the
dependency's source.

The model in the context of AngularJS
In the well known Model-View-Controller pattern, the model is the part that stores
the data in the application. AngularJS doesn't have a specific workflow to define
models. The $scope variable could be considered a model. We keep the data in
properties attached to the current scope. Later, we can use the ng-model directive
and bind a property to the DOM element. We already saw how this works in the
previous sections. The framework may not provide the usual form of a model,
but it's made like that so that we can write our own implementation. The fact that
AngularJS works with plain JavaScript objects, makes this task easily doable.

Final words on AngularJS
AngularJS is one of the leading frameworks, not only because it is made by Google,
but also because it's really flexible. We could use just a small piece of it or build a
solid architecture using the giant collection of features.

Chapter 3

[47]

Selecting and initializing the database
To build a blog application, we need a database that will store the published articles.
In most cases, the choice of the database depends on the current project. There are
factors such as performance and scalability and we should keep them in mind. In
order to have a better look at the possible solutions, we will have a look at the two of
the most popular databases: MongoDB and MySQL. The first one is a NoSQL type
of database. According to the Wikipedia entry (http://en.wikipedia.org/wiki/
NoSQL) on NoSQL databases:

"A NoSQL or Not Only SQL database provides a mechanism for storage and
retrieval of data that is modeled in means other than the tabular relations used in
relational databases."

In other words, it's simpler than a SQL database, and very often stores information in
the key value type. Usually, such solutions are used when handling and storing large
amounts of data. It is also a very popular approach when we need flexible schema
or when we want to use JSON. It really depends on what kind of system we are
building. In some cases, MySQL could be a better choice, while in some other cases,
MongoDB. In our example blog, we're going to use both.

In order to do this, we will need a layer that connects to the database server and
accepts queries. To make things a bit more interesting, we will create a module that
has only one API, but can switch between the two database models.

Using NoSQL with MongoDB
Let's start with MongoDB. Before we start storing information, we need a MongoDB
server running. It can be downloaded from the official page of the database
https://www.mongodb.org/downloads.

We are not going to handle the communication with the database manually. There
is a driver specifically developed for Node.js. It's called mongodb and we should
include it in our package.json file. After successful installation via npm install,
the driver will be available in our scripts. We can check this as follows:

"dependencies": {
 "mongodb": "1.3.20"
}

http://en.wikipedia.org/wiki/NoSQL
http://en.wikipedia.org/wiki/NoSQL
https://www.mongodb.org/downloads

Writing a Blog Application with Node.js and AngularJS

[48]

We will stick to the Model-View-Controller architecture and the database-related
operations in a model called Articles. We can see this as follows:

var crypto = require("crypto"),
 type = "mongodb",
 client = require('mongodb').MongoClient,
 mongodb_host = "127.0.0.1",
 mongodb_port = "27017",
 collection;

module.exports = function() {
 if(type == "mongodb") {
 return {
 add: function(data, callback) { ... },
 update: function(data, callback) { ... },
 get: function(callback) { ... },
 remove: function(id, callback) { ... }
 }
 } else {
 return {
 add: function(data, callback) { ... },
 update: function(data, callback) { ... },
 get: function(callback) { ... },
 remove: function(id, callback) { ... }
 }
 }
}

It starts with defining a few dependencies and settings for the MongoDB connection.
Line number one requires the crypto module. We will use it to generate unique IDs
for every article. The type variable defines which database is currently accessed.
The third line initializes the MongoDB driver. We will use it to communicate with
the database server. After that, we set the host and port for the connection and at the
end a global collection variable, which will keep a reference to the collection with
the articles. In MongoDB, the collections are similar to the tables in MySQL. The next
logical step is to establish a database connection and perform the needed operations,
as follows:

connection = 'mongodb://';
connection += mongodb_host + ':' + mongodb_port;
connection += '/blog-application';
client.connect(connection, function(err, database) {
 if(err) {
 throw new Error("Can't connect");

Chapter 3

[49]

 } else {
 console.log("Connection to MongoDB server successful.");
 collection = database.collection('articles');
 }
});

We pass the host and the port, and the driver is doing everything else. Of course, it is
a good practice to handle the error (if any) and throw an exception. In our case, this
is especially needed because without the information in the database, the frontend
has nothing to show. The rest of the module contains methods to add, edit, retrieve,
and delete records:

return {
 add: function(data, callback) {
 var date = new Date();
 data.id = crypto.randomBytes(20).toString('hex');
 data.date = date.getFullYear() + "-" + date.getMonth() + "-" +
date.getDate();
 collection.insert(data, {}, callback || function() {});
 },
 update: function(data, callback) {
 collection.update(
 {ID: data.id},
 data,
 {},
 callback || function(){ }
);
 },
 get: function(callback) {
 collection.find({}).toArray(callback);
 },
 remove: function(id, callback) {
 collection.findAndModify(
 {ID: id},
 [],
 {},
 {remove: true},
 callback
);
 }
}

Writing a Blog Application with Node.js and AngularJS

[50]

The add and update methods accept the data parameter. That's a simple JavaScript
object. For example, see the following code:

{
 title: "Blog post title",
 text: "Article's text here ..."
}

The records are identified by an automatically generated unique id. The update
method needs it in order to find out which record to edit. All the methods also have
a callback. That's important, because the module is meant to be used as a black box,
that is, we should be able to create an instance of it, operate with the data, and at the
end continue with the rest of the application's logic.

Using MySQL
We're going to use an SQL type of database with MySQL. We will add a few more
lines of code to the already working Articles.js model. The idea is to have a class
that supports the two databases like two different options. At the end, we should
be able to switch from one to the other, by simply changing the value of a variable.
Similar to MongoDB, we need to first install the database to be able use it. The official
download page is http://www.mysql.com/downloads.

MySQL requires another Node.js module. It should be added again to the package.
json file. We can see the module as follows:

"dependencies": {
 "mongodb": "1.3.20",
 "mysql": "2.0.0"
}

Similar to the MongoDB solution, we need to firstly connect to the server. To
do so, we need to know the values of the host, username, and password fields.
And because the data is organized in databases, a name of the database. In
MySQL, we put our data into different databases. So, the following code defines
the needed variables:

var mysql = require('mysql'),
 mysql_host = "127.0.0.1",
 mysql_user = "root",
 mysql_password = "",
 mysql_database = "blog_application",
 connection;

http://www.mysql.com/downloads

Chapter 3

[51]

The previous example leaves the password field empty but we should set the proper
value of our system. The MySQL database requires us to define a table and its fields
before we start saving data. So, the following code is a short dump of the table used
in this chapter:

CREATE TABLE IF NOT EXISTS `articles` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `title` longtext NOT NULL,
 `text` longtext NOT NULL,
 `date` varchar(100) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;

Once we have a database and its table set, we can continue with the database
connection, as follows:

connection = mysql.createConnection({
 host: mysql_host,
 user: mysql_user,
 password: mysql_password
});
connection.connect(function(err) {
 if(err) {
 throw new Error("Can't connect to MySQL.");
 } else {
 connection.query("USE " + mysql_database, function(err, rows,
fields) {
 if(err) {
 throw new Error("Missing database.");
 } else {
 console.log("Successfully selected database.");
 }
 })
 }
});

The driver provides a method to connect to the server and execute queries. The
first executed query selects the database. If everything is ok, you should see
Successfully selected database as an output in your console. Half of the job is done.
What we should do now is replicate the methods returned in the first MongoDB
implementation. We need to do this because when we switch to the MySQL usage,
the code using the class will not work. And by replicating them we mean that they
should have the same names and should accept the same arguments.

Writing a Blog Application with Node.js and AngularJS

[52]

If we do everything correctly, at the end our application will support two types of
databases. And all we have to do is change the value of the type variable:

return {
 add: function(data, callback) {
 var date = new Date();
 var query = "";
 query += "INSERT INTO articles (title, text, date) VALUES (";
 query += connection.escape(data.title) + ", ";
 query += connection.escape(data.text) + ", ";
 query += "'" + date.getFullYear() + "-" + date.getMonth() +
"-" + date.getDate() + "'";
 query += ")";
 connection.query(query, callback);
 },
 update: function(data, callback) {
 var query = "UPDATE articles SET ";
 query += "title=" + connection.escape(data.title) + ", ";
 query += "text=" + connection.escape(data.text) + " ";
 query += "WHERE id='" + data.id + "'";
 connection.query(query, callback);
 },
 get: function(callback) {
 var query = "SELECT * FROM articles ORDER BY id DESC";
 connection.query(query, function(err, rows, fields) {
 if(err) {
 throw new Error("Error getting.");
 } else {
 callback(rows);
 }
 });
 },
 remove: function(id, callback) {
 var query = "DELETE FROM articles WHERE id='" + id + "'";
 connection.query(query, callback);
 }
}

Chapter 3

[53]

The code is a little longer than the one generated in the first MongoDB variant. That's
because we needed to construct MySQL queries from the passed data. Keep in mind
that we have to escape the information, which comes to the module. That's why we
use connection.escape(). With these lines of code, our model is completed. Now
we can add, edit, remove, or get data. Let's continue with the part that shows the
articles to our users.

Developing the client side with AngularJS
Let's assume that there is some data in the database and we are ready to present it
to the users. So far, we have only developed the model, which is the class that takes
care of the access to the information. In the previous chapter of this book, we learned
about Express. To simplify the process, we will use it again here. We need to first
update the package.json file and include that in the framework, as follows:

"dependencies": {
 "express": "3.4.6",
 "jade": "0.35.0",
 "mongodb": "1.3.20",
 "mysql": "2.0.0"
}

We are also adding Jade, because we are going to use it as a template language.
The writing of markup in plain HTML is not very efficient nowadays. By using the
template engine, we can split the data and the HTML markup, which makes our
application much better structured. Jade's syntax is kind of similar to HTML. We can
write tags without the need to close them:

body
 p(class="paragraph", data-id="12").
 Sample text here
 footer
 a(href="#").
 my site

The preceding code snippet is transformed to the following code snippet:

<body>
 <p data-id="12" class="paragraph">Sample text here</p>
 <footer>my site</footer>
</body>

www.allitebooks.com

http://www.allitebooks.org

Writing a Blog Application with Node.js and AngularJS

[54]

Jade relies on the indentation in the content to distinguish the tags.

Let's start with the project structure, as seen in the following screenshot:

We placed our already written class, Articles.js, inside the models directory. The
public directory will contain CSS styles, and all the necessary client-side JavaScript:
the AngularJS library, the AngularJS router module, and our custom code.

We will skip some of the explanations about the following code, because we already
covered that in the previous chapter. Our index.js file looks as follows:

var express = require('express');
var app = express();
var articles = require("./models/Articles")();

app.set('views', __dirname + '/views');
app.set('view engine', 'jade');
app.use(express.static(__dirname + '/public'));

app.use(function(req, res, next) {
 req.articles = articles;
 next();
});

app.get('/api/get', require("./controllers/api/get"));
app.get('/', require("./controllers/index"));

app.listen(3000);
console.log('Listening on port 3000');

Chapter 3

[55]

At the beginning, we require the Express framework and our model. Maybe
it's better to initialize the model inside the controller, but in our case this is not
necessary. Just after that, we set up some basic options for Express and define our
own middleware. It has only one job to do and that is to attach the model to the
request object. We are doing this because the request object is passed to all the route
handlers. In our case, these handlers are actually the controllers. So, Articles.js
becomes accessible everywhere via the req.articles property. At the end of the
script, we placed two routes. The second one catches the usual requests that come
from the users. The first one, /api/get, is a bit more interesting. We want to build
our frontend on top of AngularJS. So, the data that is stored in the database should
not enter the Node.js part but on the client side where we use Google's framework.
To make this possible, we will create routes/controllers to get, add, edit, and delete
records. Everything will be controlled by HTTP requests performed by AngularJS. In
other words, we need an API.

Before we start using AngularJS, let's take a look at the /controllers/api/get.js
controller:

module.exports = function(req, res, next) {
 req.articles.get(function(rows) {
 res.send(rows);
 });
}

The main job is done by our model and the response is handled by Express. It's nice
because if we pass a JavaScript object, as we did, (rows is actually an array of objects)
the framework sets the response headers automatically. To test the result, we could
run the application with node index.js and open http://localhost:3000/api/
get. If we don't have any records in the database, we will get an empty array. If not,
the stored articles will be returned. So, that's the URL, which we should hit from
within the AngularJS controller in order to get the information.

The code of the /controller/index.js controller is also just a few lines. We can see
the code as follows:

module.exports = function(req, res, next) {
 res.render("list", { app: "" });
}

Writing a Blog Application with Node.js and AngularJS

[56]

It simply renders the list view, which is stored in the list.jade file. That file should
be saved in the /views directory. But before we see its code, we will check another
file, which acts as a base for all the pages. Jade has a nice feature called blocks. We
may define different partials and combine them into one template. The following is
our layout.jade file:

doctype html
html(ng-app="#{app}")
 head
 title Blog
 link(rel='stylesheet', href='/style.css')
 script(src='/angular.min.js')
 script(src='/angular-route.min.js')
 body
 block content

There is only one variable passed to this template, which is #{app}. We will need it
later to initialize the administration's module. The angular.min.js and angular-
route.min.js files should be downloaded from the official AngularJS site, and
placed in the /public directory. The body of the page contains a block placeholder
called content, which we will later fill with the list of the articles. The following is
the list.jade file:

extends layout
block content
 .container(ng-controller="BlogCtrl")
 section.articles
 article(ng-repeat="article in articles")
 h2
 {{article.title}}
 br
 small published on {{article.date}}
 p {{article.text}}
 script(src='/blog.js')

The two lines in the beginning combine both the templates into one page. The Express
framework transforms the Jade template into HTML and serves it to the browser of
the user. From there, the client-side JavaScript takes control. We are using the ng-
controller directive saying that the div element will be controlled by an AngularJS
controller called BlogCtrl. The same class should have variable, articles, filled
with the information from the database. ng-repeat goes through the array and
displays the content to the users. The blog.js class holds the code of the controller:

function BlogCtrl($scope, $http) {
 $scope.articles = [

Chapter 3

[57]

 { title: "", text: "Loading ..."}
];
 $http({method: 'GET', url: '/api/get'})
 .success(function(data, status, headers, config) {
 $scope.articles = data;
 })
 .error(function(data, status, headers, config) {
 console.error("Error getting articles.");
 });
}

The controller has two dependencies. The first one, $scope, points to the
current view. Whatever we assign as a property there is available as a variable in
our HTML markup. Initially, we add only one element, which doesn't have a title,
but has text. It is shown to indicate that we are still loading the articles from the
database. The second dependency, $http, provides an API in order to make HTTP
requests. So, all we have to do is query /api/get, fetch the data, and pass it to the
$scope dependency. The rest is done by AngularJS and its magical two-way data
binding. To make the application a little more interesting, we will add a search field,
as follows:

// views/list.jade
header
 .search
 input(type="text", placeholder="type a filter here", ng-
model="filterText")
 h1 Blog
 hr

The ng-model directive, binds the value of the input field to a variable inside our
$scope dependency. However, this time, we don't have to edit our controller and
can simply apply the same variable as a filter to the ng-repeat:

article(ng-repeat="article in articles | filter:filterText")

As a result, the articles shown will be filtered based on the user's input. Two simple
additions, but something really valuable is on the page. The filters of AngularJS can
be very powerful.

Writing a Blog Application with Node.js and AngularJS

[58]

Implementing a control panel
The control panel is the place where we will manage the articles of the blog. Several
things should be made in the backend before continuing with the user interface.
They are as follows:

app.set("username", "admin");
app.set("password", "pass");
app.use(express.cookieParser('blog-application'));
app.use(express.session());

The previous lines of code should be added to /index.js. Our administration
should be protected, so the first two lines define our credentials. We are using
Express as data storage, simply creating key-value pairs. Later, if we need the
username we can get it with app.get("username"). The next two lines enable
session support. We need that because of the login process.

We added a middleware, which attaches the articles to the request object. We will
do the same with the current user's status, as follows:

app.use(function(req, res, next) {
 if((
 req.session &&
 req.session.admin === true
) || (
 req.body &&
 req.body.username === app.get("username") &&
 req.body.password === app.get("password")
)) {
 req.logged = true;
 req.session.admin = true;
 };
 next();
});

Our if statement is a little long, but it tells us whether the user is logged in or not.
The first part checks whether there is a session created and the second one checks
whether the user submitted a form with the correct username and password. If these
expressions are true, then we attach a variable, logged, to the request object and
create a session that will be valid during the following requests.

Chapter 3

[59]

There is only one thing that we need in the main application's file. A few routes that
will handle the control panel operations. In the following code, we are defining them
along with the needed route handler:

var protect = function(req, res, next) {
 if(req.logged) {
 next();
 } else {
 res.send(401, 'No Access.');
 }
}
app.post('/api/add', protect, require("./controllers/api/add"));
app.post('/api/edit', protect, require("./controllers/api/edit"));
app.post('/api/delete', protect , require("./controllers/api/
delete"));
app.all('/admin', require("./controllers/admin"));

The three routes, which start with /api, will use the model Articles.js to add,
edit, and remove articles from the database. These operations should be protected.
We will add a middleware function that takes care of this. If the req.logged variable
is not available, it simply responds with a 401 - Unauthorized status code. The
last route, /admin, is a little different because it shows a login form instead. The
following is the controller to create new articles:

module.exports = function(req, res, next) {
 req.articles.add(req.body, function() {
 res.send({success: true});
 });
}

We transfer most of the logic to the frontend, so again, there are just a few lines.
What is interesting here is that we pass req.body directly to the model. It
actually contains the data submitted by the user. The following code, is how the
req.articles.add method looks for the MongoDB implementation:

add: function(data, callback) {
 data.ID = crypto.randomBytes(20).toString('hex');
 collection.insert(data, {}, callback || function() {});
}

And the MySQL implementation is as follows:

add: function(data, callback) {
 var date = new Date();
 var query = "";

Writing a Blog Application with Node.js and AngularJS

[60]

 query += "INSERT INTO articles (title, text, date) VALUES (";
 query += connection.escape(data.title) + ", ";
 query += connection.escape(data.text) + ", ";
 query += "'" + date.getFullYear() + "-" + date.getMonth() + "-" +
date.getDate() + "'";
 query += ")";
 connection.query(query, callback);
}

In both the cases, we need title and text in the passed data object. Thankfully, due
to Express' bodyParser middleware, this is what we have in the req.body object. We
can directly forward it to the model. The other route handlers are almost the same:

// api/edit.js
module.exports = function(req, res, next) {
 req.articles.update(req.body, function() {
 res.send({success: true});
 });
}

What we changed is the method of the Articles.js class. It is not add but update.
The same technique is applied in the route to delete an article. We can see it as follows:

// api/delete.js
module.exports = function(req, res, next) {
 req.articles.remove(req.body.id, function() {
 res.send({success: true});
 });
}

What we need for deletion is not the whole body of the request but only the unique
ID of the record. Every API method sends {success: true} as a response. While
we are dealing with API requests, we should always return a response. Even if
something goes wrong.

The last thing in the Node.js part, which we have to cover, is the controller
responsible for the user interface of the administration panel, that is, the. /
controllers/admin.js file:

module.exports = function(req, res, next) {
 if(req.logged) {
 res.render("admin", { app: "admin" });
 } else {
 res.render("login", { app: "" });
 }
}

Chapter 3

[61]

There are two templates that are rendered: /views/admin.jade and /views/login.
jade. Based on the variable, which we set in /index.js, the script decides which
one to show. If the user is not logged in, then a login form is sent to the browser,
as follows:

extends layout
block content
 .container
 header
 h1 Administration
 hr
 section.articles
 article
 form(method="post", action="/admin")
 span Username:
 br
 input(type="text", name="username")
 br
 span Password:
 br
 input(type="password", name="password")
 br
 br
 input(type="submit", value="login")

There is no AngularJS code here. All we have is the good old HTML form,
which submits its data via POST to the same URL—/admin. If the username and
password are correct, the .logged variable is set to true and the controller renders
the other template:

extends layout
block content
 .container
 header
 h1 Administration
 hr
 a(href="/") Public
 span |
 a(href="#/") List
 span |
 a(href="#/add") Add
 section(ng-view)
 script(src='/admin.js')

Writing a Blog Application with Node.js and AngularJS

[62]

The control panel needs several views to handle all the operations. AngularJS has a
great router module, which works with hashtags-type URLs, that is, URLs such as /
admin#/add. The same module requires a placeholder for the different partials. In
our case, this is a section tag. The ng-view attribute tells the framework that this
is the element prepared for that logic. At the end of the template, we are adding an
external file, which keeps the whole client-side JavaScript code that is needed by the
control panel.

While the client-side part of the applications needs only loading of the articles, the
control panel requires a lot more functionalities. It is good to use the modular system
of AngularJS. We need the routes and views to change, so the ngRoute module is
needed as a dependency. This module is not added in the main angular.min.js
build. It is placed in the angular-route.min.js file. The following code shows how
our module starts:

var admin = angular.module('admin', ['ngRoute']);
admin.config(['$routeProvider',
 function($routeProvider) {
 $routeProvider
 .when('/', {})
 .when('/add', {})
 .when('/edit/:id', {})
 .when('/delete/:id', {})
 .otherwise({
 redirectTo: '/'
 });
 }
]);

We configured the router by mapping URLs to specific routes. At the moment, the
routes are just empty objects, but we will fix that shortly. Every controller will need
to make HTTP requests to the Node.js part of the application. It will be nice if we
have such a service and use it all over our code. We can see an example as follows:

admin.factory('API', function($http) {
 var request = function(method, url) {
 return function(callback, data) {
 $http({method: method, url: url, data: data})
 .success(callback)
 .error(function(data, status, headers, config) {
 console.error("Error requesting '" + url + "'.");
 });
 }
 }

Chapter 3

[63]

 return {
 get: request('GET', '/api/get'),
 add: request('POST', '/api/add'),
 edit: request('POST', '/api/edit'),
 remove: request('POST', '/api/delete')
 }
});

One of the best things about AngularJS is that it works with plain JavaScript objects.
There are no unnecessary abstractions and no extending or inheriting special classes.
We are using the .factory method to create a simple JavaScript object. It has four
methods that can be called: get, add, edit, and remove. Each one of them calls a
function, which is defined in the helper method request. The service has only one
dependency, $http. We already know this module; it handles HTTP requests nicely.
The URLs that we are going to query are the same ones that we defined in the
Node.js part.

Now, let's create a controller that will show the articles currently stored in the
database. First, we should replace the empty route object .when('/', {}) with the
following object:

.when('/', {
 controller: 'ListCtrl',
 template: '\
 <article ng-repeat="article in articles">\
 <hr />\
 {{article.title}}
\
 (edit)\
 (remove)\
 </article>\
 '
})

The object has to contain a controller and a template. The template is nothing more
than a few lines of HTML markup. It looks a bit like the template used to show the
articles on the client side. The difference is the links used to edit and delete. JavaScript
doesn't allow new lines in the string definitions. The backward slashes at the end of
the lines prevent syntax errors, which will eventually be thrown by the browser. The
following is the code for the controller. It is defined, again, in the module:

admin.controller('ListCtrl', function($scope, API) {
 API.get(function(articles) {
 $scope.articles = articles;
 });
});

Writing a Blog Application with Node.js and AngularJS

[64]

And here is the beauty of the AngularJS dependency injection. Our custom-defined
service API is automatically initialized and passed to the controller. The .get method
fetches the articles from the database. Later, we send the information to the current
$scope dependency and the two-way data binding does the rest. The articles are
shown on the page.

The work with AngularJS is so easy that we could combine the controller to add and
edit in one place. Let's store the route object in an external variable, as follows:

var AddEditRoute = {
 controller: 'AddEditCtrl',
 template: '\
 <hr />\
 <article>\
 <form>\
 Title</spna>
\
 <input type="text" ng-model="article.title"/>
\
 Text</spna>
\
 <textarea rows="7" ng-model="article.text"></textarea>\

\
 <button ng-click="save()">save</button>\
 </form>\
 </article>\
 '
};

And later, assign it to the both the routes, as follows:

.when('/add', AddEditRoute)

.when('/edit/:id', AddEditRoute)

The template is just a form with the necessary fields and a button, which calls the
save method in the controller. Notice that we bound the input field and the text area
to variables inside the $scope dependency. This comes in handy because we don't
need to access the DOM to get the values. We can see this as follows:

admin.controller(
 'AddEditCtrl',
 function($scope, API, $location, $routeParams) {
 var editMode = $routeParams.id ? true : false;
 if(editMode) {
 API.get(function(articles) {
 articles.forEach(function(article) {
 if(article.id == $routeParams.id) {
 $scope.article = article;

Chapter 3

[65]

 }
 });
 });
 }
 $scope.save = function() {
 API[editMode ? 'edit' : 'add'](function() {
 $location.path('/');
 }, $scope.article);
 }
})

The controller receives four dependencies. We already know about $scope and API.
The $location dependency is used when we want to change the current route, or,
in other words, to forward the user to another view. The $routeParams dependency
is needed to fetch parameters from the URL. In our case, /edit/:id is a route with a
variable inside. Inside the code, the id is available in $routeParams.id. The adding
and editing of articles uses the same form. So, with a simple check, we know what
the user is currently doing. If the user is in the edit mode, then we fetch the article
based on the provided id and fill the form. Otherwise, the fields are empty and new
records will be created.

The deletion of an article can be done by using a similar approach, which is adding a
route object and defining a new controller. We can see the deletion as follows:

.when('/delete/:id', {
 controller: 'RemoveCtrl',
 template: ' '
})

We don't need a template in this case. Once the article is deleted from the database,
we will forward the user to the list page. We have to call the remove method of the
API. Here is how the RemoveCtrl controller looks like:

admin.controller(
 'RemoveCtrl',
 function($scope, $location, $routeParams, API) {
 API.remove(function() {
 $location.path('/');
 }, $routeParams);
 }
);

The preceding code depicts same dependencies like in the previous controller. This
time, we simply forward the $routeParams dependency to the API. And because it
is a plain JavaScript object, everything works as expected.

Writing a Blog Application with Node.js and AngularJS

[66]

Summary
In this chapter, we built a simple blog by writing the backend of the application in
Node.js. The module for database communication, which we wrote, can work with
the MongoDB or MySQL database and store articles. The client-side part and the
control panel of the blog were developed with AngularJS. We then defined a custom
service using the built-in HTTP and routing mechanisms.

Node.js works well with AngularJS, mainly because both are written in JavaScript.
We found out that AngularJS is built to support the developer. It removes all those
boring tasks such as DOM element referencing, attaching event listeners, and so on.
It's a great choice for the modern client-side coding stack.

In the next chapter, we will see how to program a real-time chat with Socket.IO, one
of the popular solutions covering the WebSockets communication.

Developing a Chat with
Socket.IO

As we learned in the previous chapter, Node.js collaborates really well with frontend
frameworks such as AngularJS. It's great that we can transfer data from the browser
to Node.js and vice-versa. It's even better if we can do in this real time. Nowadays,
real-time communication is heavily integrated in almost every web product. It gives a
nice user experience and brings a lot of benefits to the application's owners. Usually,
when we talk about real-time web components, we mean WebSockets. WebSocket is
a protocol that allows us to establish a two-way (bidirectional) conversation between
the browser and the server. This opens a whole new world and gives us the power to
implement fast and robust apps. Node.js supports WebSockets, and we will see how
to build a real-time chat with WebSockets. The application will use Socket.IO. It is a
library that is built on top of WebSockets and provides mechanisms to cover the same
functionalities if they are not available. We will have an input field, and every user
who opens the page will be able to send messages to every other user who is available.

In this chapter, we will learn how to set up Socket.IO and how to use it in a browser
and start a Node.js server, making real-time chat possible.

Exploring WebSockets and Socket.IO
Let's say that we want to build a chat feature. The first thing that we should do is
to develop the part that shows the messages on the screen. In a typical scenario, we
want these messages to be delivered fast, that is, almost immediately after they were
sent. However, if we don't use sockets to receive the data from the server, we need to
make an HTTP request. Also, the server should keep the information till we request
it to do so. So, imagine what would happen if we had 10 users and each one of them
starts sending data.

Developing a Chat with Socket.IO

[68]

We need to maintain a user session in order to identify the user's requests. These
problems are easily solved if we use sockets. Once the socket is opened, we have a
long live channel, and we can send messages back and forth. This means that you
can start receiving information without requesting it. The architecture is analogous
to a big net of bridges. The bridge is always open, and if we need to go somewhere,
we are free to do so. At the center of the net, we have a hub that connects every side
with each other. In the context of the web, the hub is our server. Every time we need
to reach some of the users attached to the net, we just need to send a message via the
socket. The server receives it and bypasses it to the right person. This is one of
the most effective ways to implement real-time communication. It saves time
and resources.

As it happens with most of the cool technologies, we don't need to start from scratch
and write low-level stuff, such as handshake requests for example. There are two
types of developers: those who work really hard and abstract the complex things
into simpler APIs and tools, and those who know how to use them. Developers in
the second group can make use of libraries such as Socket.IO. This chapter deals
extensively with the Socket.IO module. It acts as an abstraction over WebSockets and
simplifies the process to a great extent.

Before we continue, Socket.IO is actually more than a layer over WebSockets. In
practice, it does a lot more, as mentioned on the website at http://socket.io/:

"Socket.IO aims to make realtime apps possible in every browser and mobile device,
blurring the differences between the different transport mechanisms. It's care-free
realtime 100% in JavaScript."

There are some common situations that we usually encounter with the protocol, for
example, heartbeats, timeouts, and disconnection support. All these events are not
natively supported by the WebSocket API. Thankfully, Socket.IO is here to solve
these issues. The library also eliminates some cross-browser problems and makes
sure that your app works everywhere.

Understanding the basic application
structure
In the previous chapter, we used Express and Jade to write the delivery of the
assets (HTML, CSS, and JavaScript) of the application. Here, we will stick to pure
JavaScript code and will avoid the usage of additional dependencies. The only thing
that we need to add to our package.json file is Socket.IO:

{
 "name": "projectname",

http://socket.io/

Chapter 4

[69]

 "description": "description",
 "version": "0.0.1",
 "dependencies": {
 "socket.io": "latest"
 }
}

After we call npm install in our project's folder, Socket.IO is placed in a newly
created node_modules directory. Let's create two new directories. The following
screenshot shows what the application file structure should look like:

The file structure

The application will read the styles.css file and deliver its content to the browser.
The same thing will happen with /html/page.html, which is the file that contains
the HTML markup of the project. The Node.js code goes to /index.js.

Running the server
Before we start using Socket.IO, let's first write a simple Node.js server code, which
responds with the chat's page. We can see the server code as follows:

var http = require('http'),
 fs = require('fs'),
 port = 3000,
 html = fs.readFileSync(__dirname + '/html/page.html', {encoding:
'utf8'}),
 css = fs.readFileSync(__dirname + '/css/styles.css', {encoding:
'utf8'});

var app = http.createServer(function (req, res) {
 if(req.url === '/styles.css') {
 res.writeHead(200, {'Content-Type': 'text/css'});
 res.end(css);

Developing a Chat with Socket.IO

[70]

 } else {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(html);
 }
}).listen(port, '127.0.0.1');

The preceding code should be placed in /index.js. The script starts with the
definition of several global variables. The http module is used to create the server,
and the fs module is used to read the CSS and HTML files from the disk. The html
and css variables contain the actual code that will be sent to the browser. In our
case, this data is static. That's why we are reading the files only once, that is, when
the script is run. We are also doing this synchronously by using fs.readFileSync
and not fs.readFile. Just after this, our server is initialized and run. The req.url
variable contains the currently requested file. According to its value, we respond to it
with proper content. Once the server is run, the HTML and CSS code stays the same.
If we change something, we need to stop and start the script again. That's because
we are reading the file's content before we start the server. This could be considered
as a good practice if there are no changes in /css/styles.css or /html/page.html.
Inserting the fs.readFileSync operations in the server's handler will make our chat
a bit slow because we will read from the disk during every request.

Adding Socket.IO
The implementation of the chat requires the code to be written in both places: at the
server side and the client side. We will continue with the Node.js part by extending
the previous code, as follows:

var io = require('socket.io').listen(app);
io.sockets.on('connection', function (socket) {
 socket.emit('welcome', { message: 'Welcome!' });
 socket.on('send', function (data) {
 io.sockets.emit('receive', data);
 });
});

The http.createServer method returns a new web server object. We have to pass
this object to Socket.IO. Once everything is done, we have access to the wonderful
and simple API. We may listen for incoming events and send messages to the
users who are attached to the server. The io.sockets property refers to all the
sockets created in the system, while the socket object, passed as an argument to the
connection handler, represents only one individual user.

Chapter 4

[71]

For example, in the preceding code, we are listening for the connection event, that
is, for a new user to connect to the server. When this happens, the server sends a
personal message to that user that reads Welcome!

The next thing that may happen is we receive a new type of message from the
user, our script should distribute this information to all the available sockets. That's
what io.sockets.emit does. Keep in mind that the emit method may receive our
own custom event names and data. It is not necessary to strictly follow the format
used here.

Writing the client side of the chat
Having completed writing the code for the server side, we can now continue
writing for the frontend, that is, write the necessary HTML and JavaScript that
will communicate with the chat server.

Preparing the HTML markup
With the development done so far, our chat feature would look like the
following screenshot:

Developing a Chat with Socket.IO

[72]

We have a container that acts as a holder for the incoming messages. There are two
input boxes. The first one is for the name of the user and the second one accepts the
message that we have to send. Every user has a random color applied to his/her
texts. There is no button to send the data to the server; we can do this by pressing
the Enter key. Let's continue to read the HTML markup saved in /html/page.html
shown as follows:

<!doctype html>
<html>
 <head>
 <link rel="stylesheet" type="text/css" href="styles.css">
 </head>
 <body>
 <section>
 <div id="chat"></div>
 <input type="text" id="name" placeholder="your name" />
 <input type="text" id="input" disabled="disabled" />
 </section>
 <script src="/socket.io/socket.io.js"></script>
 <script>
 window.onload = function() {
 var Chat = (function() {
 // ...
 })();
 }
 </script>
 </body>
</html>

The CSS styles are added at the top of the page and to the scripts at the bottom. There
are just three elements that represent the controls mentioned in the previous code.
The bootstrap of the logic is placed in a window.onload handler. We are doing this
just to be sure that all the assets are fully loaded. Note that the input field, which will
accept the message, is disabled by default. Once the socket connection is established,
we will enable it. There is one last thing that we should clarify—the location/source
where the /socket.io/socket.io.js file is coming from. It is not downloaded and
saved in the project directories from an external source; it is delivered at that location
by Socket.IO. That's one of the reasons behind passing the web server object to
Socket.IO at the backend.

Chapter 4

[73]

Writing the chat logic
The HTML markup itself is useless. The next step in our development process will
be writing the JavaScript code that will communicate with the backend. We will
need to catch the user's input and send it to the server. The messages displayed on
the screen will be painted in different colors. We will start by defining two helper
methods as follows:

var addEventListener = function(obj, evt, fnc) {
 if (obj.addEventListener) { // W3C model
 obj.addEventListener(evt, fnc, false);
 return true;
 } else if (obj.attachEvent) { // Microsoft model
 return obj.attachEvent('on' + evt, fnc);
 }
}
var getRandomColor = function() {
 var letters = '0123456789ABCDEF'.split('');
 var color = '#';
 for (var i = 0; i < 6; i++) {
 color += letters[Math.round(Math.random() * 15)];
 }
 return color;
}

The first one, addEventListener function, will add an event listener to a DOM
element. To make our chat work in Internet Explorer, we need to use attachEvent
instead of addEventListener. The second, getRandomColor function, delivers
a different color every time. We will use this to distinguish messages from the
different users.

Our client-side logic starts with the defining of a few variables:

var socket = io.connect('http://localhost:3000'),
 chat = document.querySelector("#chat"),
 input = document.querySelector("#input"),
 name = document.querySelector("#name"),
 color = getRandomColor();

We will use the socket variable to communicate with the server. The next three
variables are shortcuts to the previously used DOM elements. It is recommended to
create such shortcuts because referencing elements all the time with document.
getElementById or document.querySelector may cause of performance issues.

Developing a Chat with Socket.IO

[74]

The chat does two things: it sends messages to the Node.js part and receives
messages from there. Let's wrap everything into two simple functions, as follows:

var send = function(message) {
 var username = name.value === '' ? '' : '' +
 name.value + ': ';
 socket.emit('send', {
 message: '' +
 username + message + ''
 });
}

var display = function(message) {
 chat.innerHTML = chat.innerHTML + message + '
';
 chat.scrollTop = chat.scrollHeight;
}

Here, we are sending the message via the socket.emit method and wrapping the
text in a colored span element. Of course, if the user types in something in the name
input field, we use the value and send it along with the rest of the data. The display
function is pretty simple. It just changes the innerHTML property of the chat
element. What is interesting is the second line. If we use the chat feature a bit, we
will notice that div will be filled out very soon, and what we actually see are only the
first messages. By setting the scrollTop property to scrollHeight, we make sure
that the holder will be always scrolled downwards.

The next step in our small application is handling the user's input. This can be done
using the following code:

addEventListener(input, "keydown", function(e) {
 if(e.keyCode === 13) {
 send(input.value);
 input.value = "";
 }
});

The only one key that is interesting for us at the moment is the Enter key. Its key
code is 13. If the key is pressed, the value of the field is emitted to the server. We are
flushing the input field to allow the user to type in a new message.

The last thing that we should do is write the code to receive the messages:

socket.on('welcome', function (data) {
 display(data.message);
 input.removeAttribute("disabled");

Chapter 4

[75]

 input.focus();
}).on('receive', function(data) {
 display(data.message);
});

There are two types of events that we are listening to. They are welcome and
receive. The welcome event is sent when the connection is established. The receive
event is an incoming event, when some of the users send a message (including
ourselves). We may ask why we need to send our own message to the server and
receive it after that. Isn't it easier to place the text directly onto the holder? The
answer to this is that we need consistency of the data, that is, we should provide the
same message in absolutely the same order to all the users. This can be guaranteed
by only one piece of the app and that's the server.

With this last code snippet, we have finished building our chat feature. In the last
part of this chapter, we will improve user-to-user communication.

Implementing user-to-user
communication
Our chat is now functioning, but it would be nice if we could send a message to one
specific user. Such a feature requires changes in both places: at the frontend and
backend. Let's first change the Node.js script.

Changing the server-side code
So far, the users were anonymous in our system. We just passed the received
message to all the sockets available. However, to implement a user-to-user
conversation, we need to set unique ID for every user. Along with that, we have to
keep references to all the created sockets so that we can emit messages to them. This
can be done as follows:

var crypto = require('crypto');
var users = [];

We can make use of the crypto module, which is available by default in Node.js to
generate the random unique IDs, as follows:

var id = crypto.randomBytes(20).toString('hex');

Developing a Chat with Socket.IO

[76]

We should also notify the people in the chat about the available users. Otherwise,
they will not be able to pick an appropriate user to chat with. The notification is
done as follows:

var sendUsers = function() {
 io.sockets.emit('users', users.map(function(user) {
 return { id: user.id, name: user.username };
 }));
}

The user's name was actually passed along with the message. It was a part of the
message, and the backend doesn't use it at all. However, in the new scenario, we
need it with the ID. The previous code sends the users array to the browser, but
before that, it filters it and passes only the ID and the name. As we will see in the
following code, we also have a socket property for every element. The following is
the updated connection handler:

io.sockets.on('connection', function (socket) {
 var id = crypto.randomBytes(20).toString('hex');
 users.push({ socket: socket, id: id, name: null });
 socket.emit('welcome', { message: 'Welcome!', id: id });
 sendUsers();
 socket.on('send', function (data) {
 if(data.username !== '') {
 setUsername(id, data.username);
 }
 if(data.toUser !== '') {
 users.forEach(function(user) {
 if(user.id === data.toUser || user.id === data.fromUser) {
 user.socket.emit('receive', data);
 }
 })
 } else {
 io.sockets.emit('receive', data);
 }
 });
});

Chapter 4

[77]

So, a new user connection is received at the server. We generate a new ID and create
a new element inside the users array. We keep the socket, the ID, and the name of
the user. After that, we emit the good old welcome message, but this time we send
the ID as well. Now, the frontend can identify itself into the system, and because the
users variable is updated, we should notify the rest of the world about this via the
sendUsers function. We start listening for the send message, and once it comes, we
update the user's name in the array with the setUsername method, as follows:

var setUsername = function(id, name) {
 users.forEach(function(user) {
 if(user.id === id) {
 user.username = name;
 sendUsers();
 }
 });
}

The subsequent lines check whether there is a toUser property. If there is one, we
know that it contains IDs of some of the other users. So, we simply find the user
ID and pass the message to the exact socket. If there is no toUser property, then
the data is again sent to everyone using io.sockets.emit('receive', data).
Together with toUser, the frontend should also send fromUser. That's because
normally the guy who sends the text doesn't see its message on the screen until the
server sends it back. We will use fromUser to achieve this.

Making changes to the frontend of the chat
The first thing we have to do is to show the available users on the screen so that we
can choose one of them to chat with. Just below the input fields, we will add a
drop-down menu, as follows:

<select id="users">
 <option value="">all</option>
</select>

We will need a few new variables defined. A new shortcut to the select element, the
currently selected user from the list, and a variable that will hold the current user's
ID. This is done as follows:

var users = document.querySelector("#users"),
 selectedUser = null,
 id = null;

Developing a Chat with Socket.IO

[78]

The send method has changed a bit. We can see it as follows:

var send = function(message) {
 var username = name.value == '' ? '' : '' +
 name.value + ': ';
 socket.emit('send', {
 message: '' + username +
 message + '',
 username: name.value,
 toUser: users.value,
 fromUser: id
 });
}

The difference is that we are sending the user's name in a separate property,
that is, the ID of the user and the ID of the user we want to chat with. If there is no
such user, then the value is just an empty string. The display method can stay the
same. We need one more event listener for the drop-down menu changes. We will
add it as follows:

addEventListener(users, "change", function(e) {
 selectedUser = users.value;
});

Most of the work is done in the listeners of the socket object:

socket.on('welcome', function (data) {
 id = data.id;
 display(data.message);
 input.removeAttribute("disabled");
 input.focus();
}).on('receive', function(data) {
 display(data.message);
}).on('users', function(data) {
 var html = '<option value="">all</option>';
 for(var i=0; i<data.length; i++) {
 var user = data[i];
 if(id != user.id) {
 var username = user.name ? user.name : 'user' + (i+1);
 var selected = user.id === selectedUser ? '
selected="selected"': '';
 html += '<option value="' + user.id + '"' + selected + '>' +
username + '</option>';

Chapter 4

[79]

 }
 }
 users.innerHTML = html;
});

First, the welcome message is received. It comes with the ID, so we will store it in
our local variable. We show the welcome message, enable the input, and bring the
focus there. No changes here. What is new is the last message listener. That's the
place where we populate the drop-down menu with data. We compose an HTML
string and set it as a value of the innerHTML property at the end. There are two
checks. The first one prevents the current user from showing in the select element.
The second condition automatically selects a user from the list. This is actually quite
important because the user's message can be sent many times and the menu should
maintain its selection.

Summary
In this chapter, we've learned how to create a real-time chat by using Socket.IO. It's a
great Node.js module that simplifies work with WebSockets. It is a technology that is
widely used today and is part of the future's applications.

In the next chapter, we will learn how to use Backbone.js to create a simple to-do
application. Again, we will manage the data with the help of Node.js.

Creating a To-do Application
with Backbone.js

In the previous chapters, we learned how to create real-time chat with Socket.IO. We
made a blog application with AngularJS and used Express to create a simple website.
This chapter is dedicated to another popular framework—Backbone.js. Backbone.js is
one of the first JavaScript frameworks that gained popularity. There are models that
deal with the data, views that control the logic and the user interface, and the built-in
router that handles the changes in the browser's address. The framework plays really
well with jQuery, which makes it attractive to almost every JavaScript developer. In
this chapter, we are going to build a simple application for storing short tasks. At the
end, we will be able to create, edit, delete tasks, and mark them
as finished.

In this chapter, we will cover the following topics:

• The basics of Backbone.js
• Writing the Node.js code that manages the to-do lists
• Coding the frontend using Backbone.js

Creating a To-do Application with Backbone.js

[82]

Exploring the Backbone.js framework
Before starting with the example's application, we should check out the main
features of the framework. Sometimes, it's good to know what is going on under
the hood. So, let's dive in.

Recognizing the framework dependency
Most of the software that we use nowadays is built on top of other libraries or tools.
Normally, they are called dependencies. Backbone.js has only one hard dependency—
that's Underscore.js, which is a library full of utility functions. There are functions such
as forEach, map, or union for arrays. We can extend an object and retrieve its keys or
values. All these are functionalities we need sometimes, but they are missing in the
built-in JavaScript objects. So, we should include the library in our page. Otherwise,
Backbone.js will throw an error because of the missing functionalities.

Backbone.js works really well with jQuery. It checks whether the library is available
and starts using it right away. It's a nice collaboration because we can speed up our
work with the various jQuery methods. It's not a must-have dependency and the
framework still works without it, but it simplifies the DOM manipulations.

Extending the functionality
The framework has a few independent components that we will use. So, the
idea is that we will create new classes that inherit the functionality of the base
implementations. These components have the extend method, which accepts
an object—our custom logic. At the end, our properties will overwrite the
original code. The following is a new view class that we will create:

var ListView = Backbone.View.extend({
 render: function() {
 // ...
 }
});
var list = new ListView();

There are no mandatory modules. There is no strictly defined central entry point of
our application. Everything is up to us, which is good. All the parts are so decoupled,
which makes Backbone.js easy to work with.

Chapter 5

[83]

Understanding Backbone.js as an
event-driven framework
By event driven, we mean that the application flow is determined by events, that is,
every class/object in the framework dispatches messages that notify the rest of the
components about some action. In other words, every object we create can accept
listeners and can trigger events. This makes our application extremely flexible and
communicative. This approach encourages modular programming, and it really
helps in building solid architectures. The Backbone.Events module is a module
that delivers this functionality. The following example code explains how we can
extend the Backbone.Events module:

var object = {};
_.extend(object, Backbone.Events);
object.on("event", function(msg) {
 console.log(msg);
});
object.trigger("event", "an event");

Underscore.js extend method merges the passed objects into one. In our case, we
will produce an object that has the observer pattern implemented. This leads us to
conclude that every view, model, or collection produced by Backbone.js has the
on and trigger methods available.

Using models
The model is an important part of every Backbone.js project. Its primary function is
to hold our data. The model keeps, validates, and synchronizes data with the server.
Together with this, the model can notify the outside world of the events that happen
inside the module. The following example code explains how we can extend the
Backbone.Model module:

var User = Backbone.Model.extend({
 defaults: {
 name: '',
 password: '',
 isAdmin: false
 }
});
var user = new User({
 name: 'John',
 password: '1234'
});
console.log(user.get('name'));

Creating a To-do Application with Backbone.js

[84]

The information in the model is kept in a hash table. There are properties and values.
We have the set and get methods to access the data. Once something is changed,
the model triggers an event. You may wonder why we need to wrap the data into
a class. In the beginning, Backbone.Model looks like an unnecessary abstraction.
However, very soon you will realize that such a concept is really powerful. First,
we can attach as many views as we want to the same model, and by attach we mean
listening to a change event. We can update the model and change the user interface
as well. The second thing is that we can connect the model to a server-side API and
immediately synchronize the information via an Ajax request. We will do this in an
example application later.

Using collections
Very often, we will need to store the models in an array. The collections are made for
such cases. The Backbone.Collection module has methods such as add, remove,
and forEach for interaction with the stored items. It can also fetch multiple models
from an external source and that's what it is used mostly for. Of course, the collection
needs to know what is the type of the model. The following example code explains
how we can extend the Backbone.Collection module:

var User = Backbone.Model.extend({
 defaults: {
 name: '',
 password: '',
 isAdmin: false
 }
});
var Accounts = Backbone.Collection.extend({
 model: User
});
var accounts = new Accounts();
accounts.add({name: 'John'});
accounts.add({name: 'Steve'});
accounts.add({name: 'David'});
accounts.forEach(function(model) {
 console.log(model.get('name'));
});

The example shows the same User model class, but this is placed inside a collection.
We can easily add new users and retrieve their names. Similar to the Backbone.
Model module, every collection can sync our data with an external
server via HTTP requests.

Chapter 5

[85]

Implementing views
The views in Backbone.js take care of the user interface and its business logic, that is,
when compared to the usual Model-View-Controller (MVC) pattern, here, the view
and the controller are merged in one place. Again, there is a base class that we have
to extend. An interesting thing is that a DOM element is automatically created for
us. We can control its type, class, or ID, and it is always there. This is really handy
because we can build our interface dynamically behind the scenes and add it to the
page only once, avoiding the multiple reflows and repaints of the browser. This can
increase the performance of our application.

There is a certain popular wrong implementation of Backbone.js views. I myself
made a lot of mistakes till I understood how everything is supposed to work. The
idea is to bind the view's render method to a change in the model. By doing this,
the interface will be automatically updated. It is also important to find the balance
and keep the classes short. Sometimes, we may end up with a really long view,
which controls a big portion of our page. A good practice is to divide the parts
into smaller pieces. It's just a lot easier for maintenance and testing. The following
example code explains how we can extend the Backbone.View module:

var LabelView = Backbone.View.extend({
 tagName: 'span'
});
var label = new LabelView();
console.log(label.el);

The tagName property determines the type of the generated DOM element. It's a
good practice to operate only with that created element. It's not a good idea to attach
it to another view or somewhere in the DOM tree. This should happen outside the
class. There are some tricky sections we must watch out for when we need to attach
event listeners, for example, click. However, the framework has a solution for such
cases. We will see it later in this chapter.

Using the router
So far, we learned about models, collections, and views. There is one more thing
that is widely used, especially when we need to build a single-page application like
ours—the router. It's a module that maps a function to a specific URL. It supports
the new history API so that it can handle addresses such as /page/action/32. The
HTML5 history API is a standardized way to manipulate the browser history via
a script. If the browser doesn't support this API, then it works with the good old
fragment version, that is, #page/action/32.

Creating a To-do Application with Backbone.js

[86]

The following example code explains how we can extend the
Backbone.Router module:

var Workspace = Backbone.Router.extend({
 routes: {
 "help": "help",
 "search/:query": "search",
 "search/:query/p:page": "search"
 },
 help: function() {
 // ...
 },
 search: function(query, page) {
 // ...
 }
});

We just have to define our routes and the module is responsible for the rest. Keep
in mind that we may use dynamic URLs, that is, URLs that contain dynamic parts,
like with the search route in the preceding code.

The router itself collaborates with another module called Backbone.history. This
is the class that listens to hashchange events or pushState events triggered by the
browser. So, once the routes are initialized, we should run Backbone.history.
start() in order to fire the matched route handler. We will see this in action
while writing the client-side part of the application.

Talking to the backend
As we mentioned, Backbone.js offers automatic synchronization with the server-
side data. This, of course, needs some efforts from our side, and they are more like
the things we need to do at the backend part of the application. The client-side
JavaScript makes CRUD (create, read, update, and delete) HTTP requests and the
server will process them. Every model and collection should have a url property
(or method) set, and we will send the information to this address. It's only one
URL, so the different operations are using different request methods—GET, POST,
PUT, and DELETE. In our example, the key moment is to wire Backbone.js's objects
to the Node.js server. Once this is done, we will be able to manage the to-do lists
easily directly from the browser.

Chapter 5

[87]

Writing the backend of the application
The backend is the Node.js part, which will take care of the data delivery and will
serve the necessary HTML, CSS, and JavaScript functionalities. In order to learn
something new in every chapter, we will use different approaches for the common
tasks. For sure, there are things that we need to do every time, for example, running
a server that listens on a particular port. JavaScript is a really interesting language,
and in most cases, we can solve the same problems in completely different ways. In
the previous chapters, we used Express to send assets to the users. In addition, there
were examples where we did this directly by reading the files with the filesystem
API. However, this time, we will combine the ideas of the two methods, that is, the
code that we will use will read the resources from the hard disk and we will work
with dynamic paths.

Running the Node.js server
We will start the project in an empty directory. In the beginning, we need an empty
index.js file that will host the Node.js server. Let's put the following content in the
index.js file:

var http = require('http'),
 fs = require('fs'),
 files = {},
 debug = true,
 port = 3000;
var respond = function(file, res) {
 var contentType;
 switch(file.ext) {
 case "css": contentType = "text/css"; break;
 case "html": contentType = "text/html"; break;
 case "js": contentType = "application/javascript"; break;
 case "ico": contentType = "image/ico"; break;
 default: contentType = "text/plain";
 }
 res.writeHead(200, {'Content-Type': contentType});
 res.end(file.content);
}
var serveAssets = function(req, res) {
 var file = req.url === '/' ? 'html/page.html' : req.url;
 if(!files[file] || debug) {

Creating a To-do Application with Backbone.js

[88]

 try {
 files[file] = {
 content: fs.readFileSync(__dirname + "/" + file),
 ext: file.split(".").pop().toLowerCase()
 }
 } catch(err) {
 res.writeHead(404, {'Content-Type': 'plain/text'});
 res.end('Missing resource: ' + file);
 return;
 }
 }
 respond(files[file], res);
}
var app = http.createServer(function (req, res) {
 serveAssets(req, res);
}).listen(port, '127.0.0.1');
console.log("Listening on 127.0.0.1:" + port);

The script starts with the definition of some global variables. The http module is
used to run the Node.js server and fs is run to access the files. The files object acts
as a cache for already requested files. Reading the files from the hard disk can be a
very expensive operation, so there is really no need to do this in every single request.
It's a good practice to cache the content whenever possible. The debug variable is set
to true while we are developing the application. This actually turns off our caching
mechanisms because otherwise, we need to restart the server every time we make
changes to some of the HTML, CSS, or JavaScript files. There is a short respond
method, which accepts an object with the following format:

{
 content: '...',
 ext: '...'
}

The content property is the actual file's content and the ext property represents
the file's extension. The same method also needs the response object, so it can send
information to the browser. Based on the file's type, we set the proper Content-Type
header. This is important because if we skip this, the browser may not process the
resource correctly. Next, the serveAssets method gets the current requested path
and tries to read the actual file from the system. It also checks whether the file is not
in the cache or whether we are in the debug mode. If the file is missing, it sends a 404
error page to the browser. The last lines simply run the server and pass the request
and response objects to serveAssets. With this code, we are able to request files
with URLs that match their actual directory path.

Chapter 5

[89]

Managing the to-do lists
We have set up the server, so we can now continue writing the business logic, that is,
the logic that will manage the tasks from our to-do list. Let's define the following two
new variables at the top of the file:

var todos = [],
 ids = 0;

The todos array will keep our tasks. Every task will be a simple JavaScript object,
as shown in the following code:

{
 id: <number>,
 text: <string>,
 done: <true | false>
}

We will increment the ids variable every time we need to add a new to-do activity.
So, every object in the array will have a unique ID attached to it. Of course, normally,
we will not rely on a single number to identify the different tasks, but the ids
variable will work for our little experiment. The following is the function that will
add a new element to the todos array:

var addToDo = function(data) {
 data.id = ++ids;
 todos.push(data);
 return data;
}

We should have two other methods for deleting and editing a to-do list. They are
as follows:

var deleteToDo = function(id) {
 var arr = [];
 for(var i=0; i<todos.length; i++) {
 if(todos[i].id !== parseInt(id)) {
 arr.push(todos[i]);
 }
 }
 todos = arr;
 return id;
}
var editToDo = function(id, data) {
 for(var i=0; i<todos.length; i++) {

Creating a To-do Application with Backbone.js

[90]

 if(todos[i].id === parseInt(id)) {
 todos[i].text = data.text;
 todos[i].done = data.done;
 return todos[i];
 }
 }
}

The deleteToDo function loops through the elements and skips the one that matches
the passed ID. The editToDo function is almost the same, except that it updates the
properties of the stored object.

We have methods to manage the data; now, we have to write the part that will use
them. In general, our server has two roles. The first one is to deliver the usual HTML,
CSS, and JavaScript functionalities to the browser. The other one is to act as a REST
service, that is, accept the CRUD type of requests and respond to them. Backbone.
js will send JSON objects and will expect to receive resources in the same format.
So, we have the respond function and the following code defines the respondJSON
function, which will send the data to the browser:

var respondJSON = function(json, res) {
 res.writeHead(200, {'Content-Type': 'application/json'});
 res.end(JSON.stringify(json));
}

The entry point of our server is the handler of the http.createServer method. This
is where we need to divide the application's flow, as shown in the following code:

var app = http.createServer(function (req, res) {
 if(req.url.indexOf('/api') === 0) {
 serveToDos(req, res);
 } else {
 serveAssets(req, res);
 }
}).listen(port, '127.0.0.1');

We will check whether the current URL starts with /api. If not, then we serve the
assets. Otherwise, the request is considered as a CRUD operation, as shown in the
following code:

var serveToDos = function(req, res) {
 if(req.url.indexOf('/api/all') === 0) {
 respondJSON(todos, res);
 } else if(req.url.indexOf('/api/todo') === 0) {
 if(req.method == 'POST') {

Chapter 5

[91]

 processPOSTRequest(req, function(data) {
 respondJSON(addToDo(data), res);
 });
 } else if(req.method == 'DELETE') {
 deleteToDo(req.url.split("/").pop());
 respondJSON(todos, res);
 } else if(req.method == 'PUT') {
 processPOSTRequest(req, function(data) {
 respondJSON(editToDo(req.url.split("/").pop(), data),
 res);
 });
 }
 } else {
 respondJSON({error: 'Missing method'}, res);
 }
}

There are two paths that control everything. The /api/all path responds with
a JSON code that contains all the to-do lists available. The next /api/todo path
is responsible for creating, editing, and deleting a task. The actual address that is
used is http://localhost:3000/api/todo/4, where the number at the end is the
ID of an element in the todos array. That's why we need req.url.split("/").
pop(), which extracts the number from the URL. There is one additional function
called processPOSTRequest. It's a helper that gets the data sent via the POST or
PUT methods. In Express, the same functionality is provided by the bodyParser
middleware. The processPOSTRequest function is given in the following code:

var processPOSTRequest = function(req, callback) {
 var body = '';
 req.on('data', function (data) {
 body += data;
 });
 req.on('end', function () {
 callback(JSON.parse(body));
 });
}

At the end, maybe it's a good idea to fill the todos array with some tasks. Add the
following methods just to have something to display once we build the frontend:

addToDo({text: "Learn JavaScript", done: false});
addToDo({text: "Learn Node.js", done: false});
addToDo({text: "Learn BackboneJS", done: false});

Creating a To-do Application with Backbone.js

[92]

Writing the frontend
In this section, we will develop the client-side logic—the code that will run in
the browser of the users. This includes the listing and managing of the to-do lists
delivered by the Node.js part.

Looking into the base of the application
Before we start coding, let's have a look at the file structure. The following figure
shows how our project should look:

The index.js file contains the Node.js code that we already wrote. The .css and
.html directories hold the styles and the HTML markup of the page. In the .js
folder, we will put the collection, model, and views of Backbone.js. Along with that,
there are the framework's dependencies and the main application's app.js file. Let's
start with the page.html file:

<!doctype html>
<html>
 <head>

Chapter 5

[93]

 <link rel="stylesheet" type="text/css" href="css/styles.css">
 </head>
 <body>

 <div id="menu">
 Add new ToDo
 Show all ToDos
 </div>
 <div id="content"></div>

 <script src="js/vendors/jquery-1.10.2.min.js"></script>
 <script src="js/vendors/underscore-min.js"></script>
 <script src="js/vendors/backbone.js"></script>
 <script src="js/app.js"></script>
 <script src="js/models/ToDo.js"></script>
 <script src="js/collections/ToDos.js"></script>
 <script src="js/views/list.js"></script>
 <script src="js/views/add.js"></script>
 <script src="js/views/edit.js"></script>
 <script>
 window.onload = app.init;
 </script>
 </body>
</html>

The styles are added to the head tag of the page. The scripts are put at the end, just
before closing the body tag. We do this because the JavaScript files usually block the
rendering of the page. Adding them at the top of the page means that the browser
will not get the necessary styles and HTML markup and will not display anything to
the user.

We have a menu with two buttons. The first one will show a form where the user
can add a new to-do list. The second one shows the home page, that is, a list with all
the tasks. The content div element will be the host container where we will render
Backbone.js's views. The bootstrapping of the application is done in the init method
of the app object as follows:

var app = (function() {
 var init = function() { }
 return {
 models: {},
 collections: {},
 views: {},
 init: init
 }
})();

Creating a To-do Application with Backbone.js

[94]

We will use the Revealing Module pattern. The app object has its own private scope.
Its public API consists of namespaces for the models, collections, and views. The last
thing is the init method. It's a good practice to use namespaces. They encapsulate
our application and prevent collisions.

The first thing we want to do is to display the current available tasks. Let's write a
few things in advance. It is clear that we will put the user interface in the content div
element. So, it is a good idea to cache a reference to that element because we will use
it multiple times. We can define a variable and assign a jQuery object to it as follows:

var content;
var init = function() {
 content = $("#content");
}

Next, we need a view class that will list the data. However, the view itself should not
make requests to the backend. That's the job of the model—/js/models/ToDo.js; its
code is given as follows:

app.models.ToDo = Backbone.Model.extend({
 defaults: {
 text: '',
 done: false
 },
 url: function() {
 return '/api/todo/' + this.get("id");
 }
});

We are using the namespace created in /js/app.js. Backbone.js offers the defaults
property, which we may use to define the initial values. Here, the url method is very
important. Without it, the framework can't send requests to the server. The logic
that manages the to-do lists at the backend requires an ID. That's why we need to
construct the URL dynamically.

And, of course, we may have a lot of tasks, so we need a/js/collections/ToDos.
js collection, and its code is given as follows:

app.collections.ToDos = Backbone.Collection.extend({
 model: app.models.ToDo,
 url: '/api/all'
});

Chapter 5

[95]

We set up the URL directly as a string. The collection should also know what kind of
models are stored in it and we pass the model's class. Keep in mind that we actually
extended the classes here. In the following code, we will create an instance of the
collection class and call the fetch method, which gets the to-do lists stored in the
Node.js part:

var content,
 todos;
var init = function() {
 content = $("#content");
 todos = new app.collections.ToDos();
 todos.fetch({ success: function() {

 }});
}

Our application is useless without the data. We will use the success callback and
will render the list view once the information arrives.

Before we proceed with the code of the /js/views/list.js file, we will clarify a
few things about the Backbone.js's views. We mentioned in the beginning of the
chapter that there is a DOM element that is automatically created for us. It's available
as a .el property of the view. There are a few common tasks that we will probably
do. The first one is binding DOM events to functions inside the view class. This can
happen by applying a value to the events property, as shown in the following code:

events: {
 'click #delete': 'deleteToDo',
 'click #edit': 'editToDo',
 'click #change-status': 'changeStatus'
}

We start with the type of the event followed by an element selector. The value is a
function of the view. A big advantage of this technique for event handling is that the
this keyword in the handler points to the right place, that is, the view. We may need
to call delegateEvents to reassign the listeners. This is needed when we update the
HTML code of the view's DOM element.

Creating a To-do Application with Backbone.js

[96]

The other interesting thing regarding Backbone.js's views is the render method.
What we normally do there is update the content of the .el object. We can use any
code we like, but it is good practice to avoid placing HTML tags. That's the function
where most developers use a template engine. In our example, we will use the
Underscore.js template. It accepts a string and an object with data. As we don't want
to place the HTML as a string inside the view, we will add it to the page.html file.
The markup will be placed inside a script tag, so it doesn't mess up the rest of the
valid HTML code. The good news is that we could still get it via jQuery by simply
querying the tag. For example, the following is the template used in /js/views/
list.js:

<script type="text/template" id="tpl-list-item">
 <li data-index="<%= index %>" class="<%= done %>">
 <%= index+1 %>. <%= text %>
 <a href="#edit/<%= index %>" id="edit">edit
 <%=
 statusLabel %>
 delete

</script>

There are data placeholders for the item's index, text, and status. We will replace
them with actual values during the rendering.

Listing the to-do activities
Let's continue with the code of the list view. The one that will show the current
added to-do activity is as follows:

app.views.list = Backbone.View.extend({
 events: {
 'click #delete': 'deleteToDo',
 'click #change-status': 'changeStatus'
 },
 getIndex: function(e) {
 return parseInt(e.target.parentNode.getAttribute("data-
 index"));
 },
 deleteToDo: function(e) {
 this.model.at(this.getIndex(e)).destroy();
 this.render();
 },
 changeStatus: function(e) {
 var self = this;

Chapter 5

[97]

 var model = this.model.at(this.getIndex(e));
 model.save({ done: !model.get("done") }, {
 wait: true,
 success: function() {
 self.render()
 }
 });
 },
 render: function() {
 var html = '<ul class="list">',
 self = this;
 this.model.each(function(todo, index) {
 var template = _.template($("#tpl-list-item").html());
 html += template({
 text: todo.get("text"),
 index: index,
 done: todo.get("done") ? "done" : "not-done",
 statusLabel: todo.get("done") ? "mark as not done" : "mark
 as done"
 });
 });
 html += '';
 this.$el.html(html);
 this.delegateEvents();
 return this;
 }
});

We define the view class in the correct namespace. We will pass the collection of
to-do activities as a model, so the this.model statement will give us an access to
all the tasks. In the render method, we loop through every model and construct
an unordered list, which is at the end and appended to the DOM element. We are
using $el instead of el because our project has jQuery included, and Backbone.js
automatically starts working with it. Note that we are sending different values of
done and statusLabel based on the status of the task. If we check the preceding
template, we will see that done is actually a CSS class. Applying a different class
will allow us to distinguish the items in the list. We should not forget to run the
delegateEvents method at the end. We are updating the children elements of
$el, so every event listener that is attached is removed.

Creating a To-do Application with Backbone.js

[98]

In the beginning of the class, we define two events. The first one deletes a to-do
activity from the system. Backbone.js has a destroy method for such cases. However,
to reach the exact model from the collection, we need its index (ID). If we check the
HTML template, will see that every li tag has a data-index attribute that contains
exactly what we need. That's what the getIndex helper does—it gets the value
of that attribute. Similarly, changeStatus updates the done field of the to-do lists.
After every modification, we call the render method. This is quite important for the
users because they have to see that the change is done.

Now, let's change the app.js file a bit and render the view, as shown in the
following code:

var content,
 todos;
var showList = function() {
 content.empty().append(list.render().$el);
}
var init = function() {
 content = $("#content");
 todos = new app.collections.ToDos();
 list = new app.views.list({model: todos});
 todos.fetch({ success: function() {
 showList();
 }});
}

There is one new method, showList, which triggers the rendering of the view
and appends its DOM element to the content div element. Now, if we run the
application by typing node ./index.js in our console, we will see the three
to-do activities, which we added, being displayed on the screen.

Adding, deleting, and editing the to-do lists
The next logical step is to develop the code for the adding, editing, and deleting of
tasks. So, we need two new pages, additional logic to show the two new views, and
a few lines that will remove tasks. We will also need a router that will handle the
new content. To simplify the process, let's directly see how the final /js/app.js
file looks:

var app = (function() {
 var todos, content, list, add, edit, router;
 var showList = function() {
 content.empty().append(list.render().$el);
 }

Chapter 5

[99]

 var showNewToDoForm = function() {
 content.empty().append(add.$el);
 add.delegateEvents();
 }
 var showEditToDoForm = function(data) {
 content.empty().append(edit.render(data).$el);
 }
 var home = function() {
 router.navigate("", {trigger: true});
 }
 var RouterClass = Backbone.Router.extend({
 routes: {
 "new": "newToDo",
 "edit/:index": "editToDo",
 "": "list"
 },
 list: showList,
 newToDo: showNewToDoForm,
 editToDo: function(index) {
 showEditToDoForm({ index: index });
 }
 });
 var init = function() {
 todos = new app.collections.ToDos();
 list = new app.views.list({model: todos});
 edit = (new app.views.edit({model: todos}));
 add = (new app.views.add({model: todos})).render();
 content = $("#content");
 todos.fetch({ success: function() {
 router = new RouterClass();
 Backbone.history.start();
 }});
 add.on("saved", home);
 edit.on("edited", home);
 }
 return {
 models: {},
 collections: {},
 views: {},
 init: init
 }
})();

Creating a To-do Application with Backbone.js

[100]

We have put a few new variables at the top. The add and edit variables represent
the two new views. There are two new functions that change the content div
element. Note that we are not calling the render method of the add view. This is
because there is nothing dynamic in it, which means that there is no need to render
it repeatedly. It's just a form that submits data. The showEditToDoForm function
is almost the same as the showList function, except that we expect one additional
parameter—data. This should be an object with a format {index: <number>}. Once
we have the index of the to-do list, we can easily get its fields. We will need these
fields because we have to fill the form for editing.

Next, the home method simply uses the navigate method of the router and returns
the user to the list view. The next thing in the script is the definition of the router.
The described paths call the functions that we just went through. It's the mapping of
URL addresses to JavaScript functions.

There are quite a few new things inside the init method, so let's have a closer
look. The two new views, add and edit, are initialized, and again they accept the
collection's to-do activities. We will also start listening for two events. The views
dispatch the saved event when a new to-do activity is added and the edited event
when some of the tasks are updated.

The view for adding new tasks is as follows:

app.views.add = Backbone.View.extend({
 events: {
 "click button": "save"
 },
 save: function() {
 var textarea = this.$el.find("textarea");
 var value = textarea.val();
 if(value != "") {
 var self = this;
 this.model.create({ text: value }, {
 wait: true,
 success: function() {
 textarea.val("");
 self.trigger("saved");
 }
 });
 } else {
 alert("Please, type something.");
 }
 },
 render: function() {

Chapter 5

[101]

 var template = _.template($("#tpl-todo").html());
 this.$el.html(template());
 this.delegateEvents();
 return this;
 }
});

There is validation of the user's input. If there is text entered in the textarea
element, we call the create method of the collection that initializes a new model. It
also sends a POST request to the server. Once the operation finishes, we empty the
textbox and trigger the saved event so that the code in /js/app.js can forward the
user to the home page. The views for adding and editing need a separate template.
The following is the code of that template:

<script type="text/template" id="tpl-todo">
 <div class="form">
 <textarea></textarea>
 <button>save</button>
 </div>
</script>

The /js/views/edit.js file has almost the same code, which is given as follows:

app.views.edit = Backbone.View.extend({
 events: {
 'click button': 'save'
 },
 save: function() {
 var textarea = this.$el.find('textarea');
 var value = textarea.val();
 if(value != '') {
 var self = this;
 this.selectedModel.save({text: value}, {
 wait: true,
 success: function() {
 self.trigger('edited');
 }
 });
 } else {
 alert('Please, type something.');
 }
 },
 render: function(data) {
 this.selectedModel = this.model.at(data.index);

Creating a To-do Application with Backbone.js

[102]

 var template = _.template($('#tpl-todo').html());
 this.$el.html(template());
 this.$el.find('textarea').val(this.selectedModel.get('text'));
 this.delegateEvents();
 return this;
 }
});

The difference is that it puts a value in the textarea element and calls the save
method of the edited model instead of the create function of the whole collection.

Summary
In this chapter, we learned how to work with Backbone.js. We used a model, collection,
router, and several views to implement a simple to-do application. Thankfully, due to
the event-driven nature of the framework, we bound everything together. Node.js took
an interesting and important part in this small project. It handled the requests from the
client-side's JavaScript and acted as a REST service.

The next chapter is dedicated to command-line programming. We will see how to
use Node.js from the command line and will develop a script that uploads our
photos to Flickr.

Using Node.js as a
Command-line Tool

In the previous chapters, we learned how to use Node.js with client-side frameworks,
such as AngularJS and Backbone.js. Each time, we ran the backend from the command
line. Node.js is suitable not only for web applications, but also for developing
command-line tools. The access to the filesystem, the various built-in modules, and the
great community makes Node.js an attractive environment for such kind of programs.

In this chapter, we will detail the process of developing a command-line tool to
upload pictures on Flickr. By the end of this chapter, we will have created a program
that finds images in a particular directory and uploads them on Internet portals.

Exploring the required modules
We will use several modules to make our life easier, which are listed as follows:

• fs: This gives us access to the filesystem, and is a built-in feature of the
Node.js module.

• optimist: This is a module that parses the parameters passed to our
Node.js script.

• readline: This allows the reading of a stream (such as process.stdin) on
a line-by-line basis. We will use it for getting input from the user while our
application is still running. The module is added in Node.js by default.

• glob: This module reads a directory and returns all the existing files that
match a predefined specific pattern.

Using Node.js as a Command-line Tool

[104]

• open: At some point, we will need to open a page in the user's default
browser. Node.js runs on different operating systems that have different
commands to open the default browser. This module helps us by providing
one API.

• flapi: This is the Flickr API wrapper used to communicate with
Flickr's services.

Based on the preceding list, we can write and use the following package.json file:

{
 "name": "FlickrUploader",
 "description": "Command line tool",
 "version": "0.0.1",
 "dependencies": {
 "flapi": "*",
 "open": "*",
 "optimist": "*",
 "glob": "*"
 },
 "main": "index.js",
 "bin": {
 "flickruploader": "./index.js"
 }
}

The entry point of our script is the index.js file. Thus, we set it as a value of the
main property. There is another feature which we haven't used so far—the bin
property. This is the key/pair mapping of the binary script names and the Node.js
script paths. In other words, when our module is published in the Node.js package
manager's register and later installed, our console will automatically have the
flickruploader command available. During the installation, the npm command
checks whether we have passed something to the bin property. If yes, then it creates
our script's symlink. It is also important that we add the #!/usr/bin/env node at
the top of our index.js file. This is how the system will know that the script should
be processed with Node.js. At the end, if we type the command and press Enter, our
script will be run.

Chapter 6

[105]

Planning the application
We can split the command-line tool into two parts: the first one reads a directory and
returns all the files in it and the second one sends the images to Flickr. It's a good
idea to form these two functionalities in different modules. The following diagram
shows how our project will appear:

The images directory will be used as a test folder, that is, our script will do its job
in that directory. Of course, we can have another one if we want. The two modules
mentioned previously are saved in the lib directory. So, we should first get the files
(Files.js) and then upload them (Flickr.js) to the portal. The two operations are
asynchronous, so both the modules should accept callbacks. The following is the
content of the index.js file:

var flickr = require('./lib/Flickr');
var files = require('./lib/Files');
var flickrOptions = {};

files(function(images) {
 flickr(flickrOptions, images, function() {
 console.log("All the images uploaded.");
 process.exit(1);
 })
});

Using Node.js as a Command-line Tool

[106]

The Files module will look into the specified folder and scan it for subfolders and
images. All the files that are pictures are returned as a parameter of the passed
callback. These pictures are sent to the Flickr module. Along with the files, we will
also pass few settings needed to access Flickr's services. Eventually, once everything
goes well, we will call process.exit(1) to terminate the program and return the
user to the terminal.

Obtaining images from a folder
The Files.js file starts with the definition of the required modules:

var fs = require('fs');
var argv = require('optimist').argv;
var readline = require('readline');
var glob = require('glob');

Immediately after, we need to define two variables. The currentDirectory
variable stores the path to the current working directory and rl is an instance of the
readline module.

var currentDirectory = process.cwd() + '/';
var rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});

The createInterface function accepts an object. The two required fields are input
and output. The input field will point to the incoming readable stream and output
to the writable stream. In our case, the user will type data directly into the terminal/
console, so we will pass process.stdin.

At the beginning of the chapter, we mentioned the optimist module. We will use
it to get the parameter from the command line. In our case, this will be the directory
used to parse. It's always good to provide an alternative way to apply settings, that
is, in addition to asking the user, accept a command-line argument. Every Node.js
script has a global object, process, which has the argv property. This property is an
array of arguments passed from the terminal. The optimist module simplifies the
parsing and provides an effective API to access these arguments.

Chapter 6

[107]

Let's add the following code immediately after the definition of the rl variable:

module.exports = function(callback) {
 if(argv.s) {
 readDirectory(currentDirectory + argv.s, callback);
 } else {
 getPath(function(path) {
 readDirectory(path, callback);
 });
 }
};

When navigating to the project's directory to run our Node.js program, type node ./
index.js. This will run the script without arguments and will ask the user for the
folder that contains the pictures. However, we can also pass this information at an
early stage directly from the terminal by running node ./index.js -s images.
In the previous code snippet, argv.s will be equal to images. So, we should check
whether such a parameter is passed, and if yes, we continue with searching the
image files. If not, ask the user via the readline module, the getPath function, as in
the following code:

var getPath = function(callback) {
 rl.question('Please type a path to directory: ', function(answer) {
 callback(currentDirectory + answer);
 });
}

The callback of the question method returns the text typed by the user. All we have
to do is pass it to the readDirectory function, as follows:

var readDirectory = function(path, callback) {
 if(fs.existsSync(path)) {
 glob(path + "/**/*.+(jpg|jpeg|gif|png)", function(err, files)
 {
 if(err) {
 throw new Error('Can\'t read the directory.');
 }
 console.log("Found images:");
 files.forEach(function(file) {
 console.log(file.replace(/\//g, '\\').replace(process.cwd(),
''));
 });

Using Node.js as a Command-line Tool

[108]

 rl.question('Are you sure (y/n)? ', function(answer) {
 if(answer == 'y') {
 callback(files);
 }
 rl.close();
 });
 });
 } else {
 getPath(function(path) {
 readDirectory(path, callback);
 });
 }
}

Of course, we should check whether the path is valid. For this, we will use the
fs.existsSync method. If the directory exists, we get the files that match the
following pattern:

/**/*.+(jpg|jpeg|gif|png)

This means parse the directory and all its subdirectories and search for the files
ending with jpg, jpeg, gif, or png. The glob module helps a lot in such cases.

Before sending the files back to index.js, we display them and ask the user for
a confirmation. This is again done with the readline module included at the
beginning. It is important to use rl.close(). This method relinquishes the control
over the input and output streams.

Authorizing the Flickr protocol
We will use the flapi module to communicate with Flickr. It provides access to
the API methods. Most large-scale companies implement some level of authorization.
In other words, we can't just make a request and upload/retrieve data. We need to
sign in our requests with access tokens or provide credentials during the process.
Flickr uses OAuth (1.0 specification), a type of standard for such operations. OAuth
is an open standard for authorization and defines a method for clients to access
server resources. Let's check the following diagram and see how Flickr's OAuth
mechanism works:

Chapter 6

[109]

Almost the entire process is wrapped in the flapi module. What we should
remember here is that we need a Key and Secret to retrieve an access token. The
same token will be used later when uploading the images.

Obtaining your application's Key and Secret
To create our own application's Key and Secret, we must have a valid Flickr account
first. Next, log in and navigate to http://www.flickr.com/services/apps/
create/apply/. On this page, click on APPLY FOR A NON-COMMERCIAL KEY,
which is the blue button.

http://www.flickr.com/services/apps/create/apply/
http://www.flickr.com/services/apps/create/apply/

Using Node.js as a Command-line Tool

[110]

We are building a non-commercial application; however, if you plan to use the key
for commercial purposes, go with the second option on the right. After that, you will
see a form with few fields. Fill them and click on the SUBMIT button, as shown in
the following screenshot:

The next screen, which will be shown, contains our Key and Secret. It should look
like the following screenshot:

Chapter 6

[111]

Writing into the Flickr.js module
Once we get the Key and Secret values, we can continue and start writing our lib/
Flickr.js module. Here is the initial code of the file:

var open = require('open');
var http = require('http');
var url = require('url');
var Flapi = require('flapi');

var flapiClient;
var filesToOpen;
var done;
var options;

module.exports = function(opts, files, callback) {
 options = opts;
 filesToOpen = files;
 done = callback;
 createFlapiClient();
}

The required dependencies are at the beginning of the previous code. We mentioned
the open module; here, http is used to run a Node.js HTTP server and url is used
to parse parameters from an incoming request. The module exports a function that
accepts three arguments. The first one contains the Flickr's API settings such as Key
and Secret. The second argument is an array of the files that need to be uploaded. At
the end, we accept a callback function, which will be called once the uploading is
complete. We save everything in a few global variables and call createFlapiClient,
which will initialize the flapi object. Before we see what exactly happens in
createFlapiClient, let's edit index.js and pass the needed options, as follows:

var flickr = require('./lib/Flickr');
var files = require('./lib/Files');
var flickrOptions = {
 oauth_consumer_key: "ebce9c7a68eb009f8db5bcc41d139320",
 oauth_consumer_secret: "a9277a76c947c0b3",
 // oauth_token: '',
 // oauth_token_secret: '',
 perms: 'write'
};

Using Node.js as a Command-line Tool

[112]

We left flickrOptions empty, but now is the time to fill it. Set Key as the value
of oauth_consumer_key and Secret as the value of oauth_consumer_secret. The
tokens oauth_token and oauth_token_secret are commented by default, but
once we perform the initial authorizing, we will set their values. At the end, there is
also a permissions property, which should be set to write because we will upload
the photos.

When the right options are configured in Flickr.js, we can create our flapi client
and start querying Flickr's servers, as shown in the following code:

var createFlapiClient = function(){
 flapiClient = new Flapi(options);
 if(!options.oauth_token) {
 flapiClient.authApp('http://127.0.0.1:3000',
function(oauthResults){
 runServer(function() {
 open(flapiClient.getUserAuthURL());
 })
 });
 } else {
 uploadPhotos();
 }
};

We pass the settings, currently oauth_consumer_key, oauth_consumer_secret,
and perms. Note that oauth_token is undefined and we need to authorize our
application. This happens in the browser. The mechanism defined by Flickr requires
the opening of a specific URL and the passing of a callback address, where the
user will be redirected to after being granted the permissions. We are developing a
command-line tool, so we can't really provide that address because our script is in
the terminal. Therefore, we run our own HTTP server, which will accept requests
from Flickr. Of course, this server will be available only on our machine and during
the script execution. But that should be enough because we need it only during the
first time. If everything goes well, we will get the oauth_token and oauth_token_
secret values, as shown in the following code. We will set them in flickrOptions
and the HTTP server will not be run next time. When the server is started, we open
a new page in the user's default browser, passing the correct URL returned by
flapiClient.getUserAuthURL.

The code underlying runServer is as follows:

var runServer = function(callback) {
 http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/html'});

Chapter 6

[113]

 var urlParts = url.parse(req.url, true);
 var query = urlParts.query;
 if(query.oauth_token) {
 flapiClient.getUserAccessToken(query.oauth_verifier,
function(result) {
 options.oauth_token = result.oauth_token;
 options.oauth_token_secret = result.oauth_token_secret;
 var message = '';
 for(var prop in result) {
 message += prop + ' = ' + result[prop] + '
';
 }
 res.end(message);
 uploadPhotos();
 });
 } else {
 res.end('Missing oauth_token parameter.');
 }
 }).listen(3000, '127.0.0.1');
 console.log('Server running at http://127.0.0.1:3000/');
 callback();
}

The server listens on port 3000, and it has only one handler. The request we are
waiting for contains the GET parameter oauth_verifier. We will get access to it by
using the url module and its parse method. It's also important that we send true
as the second parameter so that Node.js parses the query string of the request. By
passing oauth_verifier to flapi, the client's getUserAccessToken method, we
will get the needed token and secret. There is an uploadPhotos function called at the
end, but we will leave its body empty for now. This will be filled in the next section
of the chapter.

Running our application tool
Now, let's run our tool. Type node ./index.js into your terminal and you will see
what is shown in the following screenshot:

Using Node.js as a Command-line Tool

[114]

Our test directory is images, so we type this string and click on Enter. The code in
Files.js will scan the directory for images and will ask us for a confirmation, as
shown in the following screenshot:

Type y and press Enter. A message will be displayed that the server is running and
a new page will open in our default browser. It will ask us to grant the application
permission to perform several actions, as shown in the following screenshot:

Click on the blue button with text OK, I'LL AUTHORIZE IT. There are two
things happening at the moment. The browser sends a request with the oauth_
verifier parameter to our Node.js server. We use the value, pass it to the
getUserAccessToken method, and fetch the needed oauth_token and oauth_
token_secret values. At the same time, the browser gets a response, and we see
something similar to the following screenshot:

Chapter 6

[115]

We will get the information from the second and third lines and put it in the
flickrOptions object, which is initialized in the index.js file. By doing this, we
will avoid the steps performed with the Node.js server next time. The script will be
able to upload the photos directly without asking for the token and secret.

Uploading the images
The last function that we will write is the uploadPhotos method for the Flickr.js
module. It will use the global filesToOpen array and upload the files one by one.
Since the operation is asynchronous, we will continuously execute the function till
the array is empty. We can see the code for this as follows:

var uploadPhotos = function() {
 if(filesToOpen.length === 0) {
 done();
 } else {
 var file = filesToOpen.shift();
 console.log("Uploading " + file.replace(/\//g, '\\').
replace(process.cwd(), ''));
 flapiClient.api({
 method: 'upload',
 params: { photo : file },
 accessToken : {
 oauth_token: options.oauth_token,
 oauth_token_secret: options.oauth_token_secret
 },
 next: function(data){
 uploadPhotos();
 }
 });
 }
}

Using Node.js as a Command-line Tool

[116]

The done callback returns the application flow to index.js, where the script is
terminated. The result of the entire process will look like the following screenshot:

Summary
In this chapter, we learned how to use Node.js as a command-line tool. We
successfully got arguments from the terminal, searched directories for image files,
and uploaded them to Flickr. Most of the raw operations such as access to the
filesystem or the Flickr OAuth implementation were delegated to different modules,
which we added as dependencies to the project. More and more instruments are
emerging everyday which transform Node.js into an attractive environment to
develop not only web-based applications, but also command-line scripts.

In the next chapter, we will learn how to use Node.js and Ember.js together. We will
get a Twitter social feed and display it on the browser.

Showing a Social Feed
with Ember.js

In the previous chapter, we learned how to create a command-line tool that uploads
photos to Flickr. In this chapter, we will communicate with one of the most popular
social networks: Twitter. We will create an application that gets the latest tweets
based on a user handle and shows them on the screen. Node.js will be responsible
for the communication with the Twitter API, and Ember.js will take care of the
user interface. The following is a short list of the topics that we will cover in
this chapter:

• Introduction to the Ember.js framework
• Communicating with Twitter's API
• Wiring Node.js with Ember.js to obtain tweets

Preparing the application
We have worked on applications in the previous chapters. For this application, we
need a Node.js server, which will deliver the necessary HTML, CSS, and JavaScript
code. The following is the package.json file, which we are starting from:

{
 "name": "TwitterFeedShower",
 "description": "Show Twitter feed",
 "version": "0.0.1",
 "dependencies": {
 "twit": "*"
 },
 "main": "index.js"
}

Showing a Social Feed with Ember.js

[118]

There is only one dependency and that's the module that will connect to Twitter.
After you run npm install in the same folder as the package.json file, the module
will appear in the newly created node_modules directory.

The next step is to create the folders for the HTML, CSS, and JavaScript and put the
necessary files inside these folders. In addition, create the main index.js file that
will contain the code of our Node.js server. At the end, our project directory should
look like the following diagram:

The CSS styles of the project will go to css/styles.css. The templates will be
placed in the html/page. html file and the custom JavaScript code will be written
to js/scripts.js. The other .js files are Ember.js itself and its two dependencies:
jQuery and Handlebars.

Running the server and delivering
the assets
In Chapter 5, Creating a To-Do Application with Backbone.js, we built an application
with Backbone.js, and we used two helper functions: serveAssets and respond. The
purpose of these functions was to read our HTML, CSS, and JavaScript files and send
them as a response to the browser. We will use them again here.

Chapter 7

[119]

Let's first start by defining the global variables, as follows:

var http = require('http'),
 fs = require('fs'),
 port = 3000,
 files = [],
 debug = true;

The http module provides methods to create and run the Node.js server, and the fs
module is responsible for reading the files from the filesystem. We are going to listen
on port 3000 and the files variable will cache the content of the read files. When
debug is set to true, the assets will be read on every request. If it is false, their
content will be fetched only the first time, but every future response will contain the
same code. We are doing this because while we are developing the application, we
don't want to stop and run our server just to see the changes in the HTML script.
Reading the file on every request guarantees that we are seeing the latest version.
However, this is considered as a bad practice when we run the application in a
production environment.

Let's continue and run the server using the following code:

var app = http.createServer(function (req, res) {
 if(req.url.indexOf("/tweets/") === 0) {
 // ... getting tweets
 } else {
 serveAssets(req, res);
 }
}).listen(port, '127.0.0.1');
console.log("Server listening on port " + port);

The callback function, which we passed to http.createServer, accepts two
arguments: the request and response objects. The Node.js part of our application
will be responsible for two things. The first one is to provide the necessary HTML,
CSS, and JavaScript, and the second one is to fetch tweets from Twitter. So, we are
checking whether the URL starts with /tweets and if it does, then we will process
the request differently. Otherwise, serveAssets will be called as follows:

var serveAssets = function(req, res) {
 var file = req.url === '/' ? 'html/page.html' : req.url;
 if(!files[file] || debug) {
 try {
 files[file] = {
 content: fs.readFileSync(__dirname + "/" + file),

Showing a Social Feed with Ember.js

[120]

 ext: file.split(".").pop().toLowerCase()
 }
 } catch(err) {
 res.writeHead(404, {'Content-Type': 'plain/text'});
 res.end('Missing resource: ' + file);
 return;
 }
 }
 respond(files[file], res);
}

In this function, we are getting the requested file path, and we will read the file from
the filesystem. Along with the content of the file, we will also get its extension, which
is needed to set the response header properly. This is done in the respond method,
as follows:

var respond = function(file, res) {
 var contentType;
 switch(file.ext) {
 case "css": contentType = "text/css"; break;
 case "html": contentType = "text/html"; break;
 case "js": contentType = "application/javascript"; break;
 case "ico": contentType = "image/ico"; break;
 default: contentType = "text/plain";
 }
 res.writeHead(200, {'Content-Type': contentType});
 res.end(file.content);
}

This is important because if we don't provide Content-Type, the browser may not
interpret the response correctly.

And that's everything about the serving of the assets. Let's continue and get
information from Twitter.

Chapter 7

[121]

Getting tweets based on a user handle
Before we write the code that requests data from the Twitter's API, we need to
register a new Twitter application. First, we should open https://dev.twitter.
com/ and log in with our Twitter Name and Password. After that, we need to load
https://dev.twitter.com/apps/new and fill in the form. It should look like the
following screenshot:

https://dev.twitter.com/apps/new

Showing a Social Feed with Ember.js

[122]

We can leave the Callback URL field empty. The Website field can have the address
of our personal or company site. We should accept the terms and conditions present
below the form, and click on Create your Twitter application. The next page, which
we will see, should be similar to the following screenshot:

The information that we need is located in the third tab: API Keys. Once we click
on it, Twitter will show us the API key and API secret fields, as shown in the
following screenshot:

Chapter 7

[123]

Additionally, we will generate an access token and access secret by clicking on the
Create my access token button. Normally, the data doesn't show up immediately.
So, we should wait a bit and refresh the page, if necessary. The resulted document
should look like on the following screenshot:

Showing a Social Feed with Ember.js

[124]

We will copy the Access token and Access token secret values. It's a good practice
to keep such sensitive information out of the application's code because our program
may be transferred from one place to another. Placing the data in an externally
configured file will do the job in most cases.

Once we have these four strings, we are able to communicate with Twitter's API. The
following variables go at the top of our index.js file:

var Twit = require('twit');
var T = new Twit({
 consumer_key: '...',
 consumer_secret: '...',
 access_token: '...',
 access_token_secret: '...'
});
var numOfTweets = 10;

The T variable is actually a Twitter client, which we will use to request the data. We
left a place in our server to query the Twitter's API. Let's now put the necessary code
in the index.js file, which can be seen as follows:

var app = http.createServer(function (req, res) {
 if(req.url.indexOf("/tweets/") === 0) {
 var handle = req.url.replace("/tweets/", "");
 T.get("statuses/user_timeline", { screen_name: handle, count:
numOfTweets }, function(err, reply) {
 res.writeHead(200, {'Content-Type': 'application/json'});
 res.end(JSON.stringify(reply));
 });
 } else {
 serveAssets(req, res);
 }
}).listen(port, '127.0.0.1');

The request that we need to perform is http://localhost:3000/tweets/
KrasimirTsonev. The last part of the URL is the Twitter handle of the user. So, the
if statement becomes true because the address starts with /tweets/. We extract
the username in a variable called handle. After that, this variable is sent to the
statuses/user_timeline resource of the Twitter's API. The result of the request is
directly sent to the browser via a stringified JSON.

On a concluding note, the Node.js part of our project provides all the HTML, CSS,
and JavaScript code. Along with that, it accepts a Twitter handle and returns the
most recent tweets of the user.

Chapter 7

[125]

Discovering Ember.js
Ember.js is one of the most popular client-side JavaScript frameworks today. It
has a great community and its features are well-documented. Ember.js gathers an
increasing number of fans because of its architecture. The library uses the Model-
View-Controller design pattern, which makes it easy to understand because that
pattern is widely used in almost every programming language. It also collaborates
well with the REST APIs (we are going to build such an API in Chapter 11, Writing a
REST API) and eliminates the task of writing the boilerplate code.

Knowing the dependencies of Ember.js
The Ember.js framework has the following two dependencies:

• jQuery
• Handlebars

The first one is the most used JavaScript tool on the Web today. It provides methods
to select and manipulate the DOM elements and a lot of helper functions such as
forEach or map, which help us to work faster. The library also solves some cross-
browser issues by providing only one API. Like, for example, if we want to attach
an event listener to an element, we need to use attachEvent in Internet Explorer
but addEventListener in the other browsers. The simple .on method is provided
by jQuery, which wraps this functionality. It checks for the current browser and calls
the correct function. Along with all these things, we are able to use the .get or .post
functions, which perform AJAX requests.

Handlebars is a template engine library. It extends the HTML syntax by adding
expressions and custom tags. It's similar to Jade, another template language
which we used in Chapter 2, Developing a Basic Site with Node.js and Express. The
difference is that this time we will use templates at the client-side part of the
application. For example:

<script type="text/x-handlebars" data-template-name="say-hello">
 <div class="content">{{name}}</div>
</script>

This a template definition that Handlebar uses. It's defined in a <script> tag because
the content inside is ignored by the browser, and it is not rendered as a part of the DOM
tree. There is one expression: {{name}}. Normally, the template is populated with
information and such parts of the markup are replaced with the actual data. What a
handlebar does is that it gets the value of the script tag. Then, it will parse it. The
expressions found are executed and the result is returned to the developer.

Showing a Social Feed with Ember.js

[126]

Understanding Ember.js
Before we continue with the actual coding of our small application, we will go
through the most important components of Ember.js.

Exploring classes and objects in Ember.js
Like every framework, Ember.js has predefined objects and classes, which are at
our disposal. In most cases, we will extend them and write only the custom logic,
which is a part of your application. All the ready-to-use classes are under the Ember
namespace. This means that whenever we want to use some part of the framework,
we need to go through the Ember. notation. For example, in the class extending
shown in the following code:

App.Person = Ember.Object.extend({
 firstname: '',
 lastname: '',
 hi: function() {
 var name = this.get("firstname") + " " + this.get("lastname");
 alert("Hello, my name is " + name);
 }
});
var person = App.Person.create();
person.set("firstname", "John");
person.set("lastname", "Black");
person.hi();

We defined a class called Person. It has two properties and only one function,
which shows a message on the screen. Just after that, we created an instance of that
class and called the method. The properties of a class in Ember.js are accessed via
.get and .set methods. In the previous example, we were still able to use this.
firstname instead of this.get("firstname"), but this is not exactly right. In the
.set and .get methods, Ember.js does some calculations, which are necessary to
implement features such as data binding and computed properties. If we access the
variable directly, the library may not have the chance to do its job.

Computed properties
By definition, the computed properties are properties, which derive their value
by executing a function. Let's continue and use the previous example. Instead
of concatenating both firstname and lastname every time, we will create a
computed property name, which will return the needed string. We can see this
in the following code:

Chapter 7

[127]

App.Person = Ember.Object.extend({
 firstname: '',
 lastname: '',
 hi: function() {
 alert("Hello, my name is " + this.get("name"));
 },
 name: function() {
 return this.get("firstname") + " " + this.get("lastname");
 }.property("firstname", "lastname")
});
var person = App.Person.create();
person.set("firstname", "John");
person.set("lastname", "Black");
person.hi();

We will still access a property with the .get method, but this time its value is
calculated by a function. This can be extremely helpful if we need to format our
data before displaying it. It's good to know that we can use computed properties to
set a value. By default, they are read only, but we can transform them to accept and
process data, as follows:

name: function(key, value) {
 if (arguments.length > 1) {
 var nameParts = value.split(/\s+/);
 this.set('firstname', nameParts[0]);
 this.set('lastname', nameParts[1]);
 }
 return this.get("firstname") + " " + this.get("lastname");
}.property("firstname", "lastname")

Router
The routing processes are more like extensions for the other client-side frameworks.
However, in Ember.js, everything is built around them. The Router is a class, which
translates the page's URL to a series of nested templates. Each of these templates is
connected to a model that delivers the data.

App = Ember.Application.create();
App.Router.map(function() {
 this.resource('post', { path: '/post/:post_id' }, function() {
 this.route('edit', { path: '/edit' });
 this.resource('comments', function() {

Showing a Social Feed with Ember.js

[128]

 this.route('new');
 });
 });
});

The routes are grouped into resources. Let's say that we have a blog application.
The previous example defines a route to every post, which has an option to edit and
comment. We can nest resources if necessary. Every route has a path parameter,
which can be skipped if it matches the name of the route. In the previous snippet,
we can skip the options for the edit route. That's because the name of the path is the
same as the route name.

We can think about the Router as a starting point of our logic. Every route and
resource has its own class and controller linked to it. The good news is that we don't
really need to define them because the framework does this for us. Very often, we
will need to modify their implementation by setting some properties; however, in
general, we are free to leave the default suggested versions. Once we start working
with Ember.js, we will find out that there are a lot of classes that are automatically
created. Sometimes, it is a bit difficult to follow them. There is a Google Chrome
extension called Ember Inspector. It's actually a new tab in the Developer Tools
panel. The inspector can show us what is going on in our application. For example,
the previous code produces the following result:

As we can see, there are several routes and controllers available. There is a default
route for the application and for the main post resource. The extension is really
helpful because it shows us the exact names of the classes. Ember.js has strict naming
conventions, and we should be able to figure out the names by ourselves, but it is
still a handy extension.

Chapter 7

[129]

If we want to put some logic in the controller of the comments section, then we
should use the following code:

App.CommentsController = Ember.ObjectController.extend({
 // ...
});

We should remember that we are actually modifying the definition of the class. The
instances of it are automatically created by the framework.

Views and templates
We already mentioned that Ember.js uses Handlebars for its templating purposes. A
simple definition of a template looks like the following code:

<script type="text/x-handlebars" data-template-name="post/index">
 <section>
 <h1>{{title}}</h1>
 <p>{{text}}</p>
 </section>
</script>

It's a script tag along with the HTML markup. Every template has a view class
associated with itself. Usually, the developers don't extend the view class. It is used
in cases where we need to heavily handle user events or create custom components.
Under the hood, the view class translates the primitive browser events into events
that mean something in the context of our application. For example, we may have
the following template:

<script type="text/x-handlebars" data-template-name="say-hello">
 Hello, {{view.name}}
</script>

Its corresponding View instance is seen as follows:

var view = Ember.View.create({
 templateName: "say-hello",
 name: "user",
 click: function(evt) {
 alert("Clicked.");
 }
});
view.append();

Showing a Social Feed with Ember.js

[130]

We are handling the clicking of the text. By using the .append method, the view is
added to the <body> element, but there is .appendTo, which can add our custom
HTML to whichever DOM element we need.

Models
Every route in Ember.js has an associated model, which is an object that stores
the persistent state. We set our models in the route's class. There is a hook called
model, which should return our data. Very often, we will get the application's data
asynchronously. For such cases, we can return a JavaScript promise.

App.PostRoute = Ember.Route.extend({
 model: function() {
 return Ember.$.getJSON("/posts.json");
 }
});

The template linked to a specific route renders its HTML based on the model. So, we
are able to use expressions that represent properties from the result of that .model
method. For example, see the following code:

<script type="text/x-handlebars" data-template-name="post/index">
 <section>
 <h1>{{title}}</h1>
 <p>{{text}}</p>
 </section>
</script>

App.PostIndexRoute = Ember.Route.extend({
 model: function() {
 return {
 title: "Title of the post",
 text: "Text of the post"
 }
 }
})

Chapter 7

[131]

Controllers
In the context of Ember.js, the controllers are classes that decorate your models with
the display logic. Ideally, they will store the data that doesn't need to be stored in a
database. It's only needed when the information needs to be displayed. As with the
models, the framework defines a different controller class for every route. Let's say
that we are developing an online book store. We could have a route like the one in
the following code:

App.Router.map(function() {
 this.route("books");
});

We have only one route, but three controllers are defined. We are able to see them by
using the Google Chrome's extension. Check out the following screenshot:

In the BooksRoute class, we will define our model, and in BooksController, we
will create computed properties to display the books in a better way. The controllers
are also the place where we could process any events that come from the browser.
Initially, such events are caught by the views, but if there is no defined View or there
is no handler for the event, then that is passed to the controller.

These are the most important components of every Ember.js application. Now,
let's continue to build our small project—a single-page app for getting messages
from Twitter.

Showing a Social Feed with Ember.js

[132]

Writing Ember.js
The client side of the project contains two screens. The first one displays an input
field and a button where the user should type the Twitter handle. The second one
shows the tweets. We can see this in the following screenshot:

The left part of the image shows the first page and the right one shows the tweets of the user.

Defining the templates
The html/page.html file is our main file and is the base of our application and will be
the first page that the user sees. It contains the following code:

<!doctype html>
<html>

Chapter 7

[133]

 <head>
 <title>Get Twitter Feed</title>
 <link rel="stylesheet" type="text/css" href="css/styles.css">
 </head>
 <body>

 <script src="js/jquery-1.10.2.js"></script>
 <script src="js/handlebars-1.1.2.js"></script>
 <script src="js/ember-1.3.1.js"></script>
 <script src="js/scripts.js"></script>
 </body>
</html>

That's the basic HTML markup that we are starting from. The dependencies of
Ember.js are included along with the js/scripts.js file, which will contain our
custom logic. The templates, which we will define afterwards, will be placed inside
the <body> tag. The following template is the first one. It's the main template of the
application:

<script type="text/x-handlebars" data-template-name="social-feed">
 <div class="wrapper">
 <h1>Social feed</h1>
 <section>
 {{outlet}}
 </section>
 </div>
</script>

We have only one expression: {{outlet}}. That's an Ember.js-specific expression
and shows the framework where we want our subviews to be rendered. Note
the name of the template: social-feed. We will use the same name during the
definition of the routes.

The HTML code that we will use for the first screen, the one with the input field,
looks as follows:

<script type="text/x-handlebars" data-template-name="social-feed/
index">
 {{input
 type="text"
 value=handle
 placeholder="type a Twitter handle"
 }}
 <a href="javascript:void(0);" class="get-tweets-button" {{action
getTweets}}>Get Tweets
</script>

Showing a Social Feed with Ember.js

[134]

The name of the template is social-feed/index. With /index, we are saying that
this is the default template of the route with the name social-feed. The {{input}}
tag is an Ember.js helper, which is later transformed to an <input> element. The
type and placeholder attributes have the same meaning as in the regular HTML.
However, value here plays another role. Note that value is not wrapped in double
quotes. That's because the handle keyword is actually a property of the Route's
controller, and we have two-way data binding. There is another expression used:
{{action}}, which accepts the name of a method, which is again part of the
controller. It will respond to a user's click event.

The latest template that we will define is the one that shows the tweets. We can see
that template as follows:

<script type="text/x-handlebars" data-template-name="social-feed/
tweets">
 <h3>Tweets of {{{formattedHandle}}}:</h3>
 <hr />

 {{#each}}
 {{formatTweet text}}
 {{/each}}

 {{#link-to 'social-feed.index'}}back{{/link-to}}
</script>

The{{{formattedHandle}}} helper will be replaced with a link to the user's profile
on Twitter. There are three brackets because the value of formatedHandle will be in
HTML. If we use only double brackets, handlebars will display the data as string and
not as HTML markup. There is an{{#each}} helper used. That's how we will loop
through the fetched tweets and display their content. And at the end, we will use the
{{#link-to}} helper to generate a link to the first screen.

Defining the routes
Normally, the Ember.js applications start with creating a global namespace followed
by defining the routes. js/scripts.js starts with the following code:

App = Ember.Application.create();
App.Router.map(function() {
 this.resource('social-feed', { path: '/' }, function() {
 this.route("tweets", { path: '/tweets/:handle' });
 });
});

Chapter 7

[135]

There is one resource and one route created. The route responds on a URL that contains
a dynamic segment. Let's check the names of the controllers and templates in Ember.js
Chrome extension. The following screenshot displays the exact created classes:

Ember.js defines several routes by default: application, loading, and error.
The first one is the main project route. LoadingRoute and ErrorRoute can be used
if we have asynchronous transition between two routes. These substates are very
useful if we load the model data from an external resource and want to indicate the
process somehow.

Handling the user input and moving to
the second screen
We need to define a controller for the social-feed/index template. It will transfer
the user to the second screen if the button on the screen is clicked. Along with that,
we will get the Twitter handle that is entered in the input element. We define a
controller as follows:

App.SocialFeedIndexController = Ember.Controller.extend({
 handle: '',
 actions: {
 getTweets: function() {
 if(this.get('handle') !== '') {
 window.location.href = "#/tweets/" + this.get('handle');
 this.set('handle', '');
 } else {
 alert("Please type a Twitter handle.");
 }
 }
 }
});

Showing a Social Feed with Ember.js

[136]

Note that we are clearing the value of the handle property—this.set('handle',
''). We are doing this because the user will later return to that view and will want
to enter a new username. As an addition, we can extend the view that is responsible
for that template, and we can bring the browser's focus to the field once the template
is added to the DOM tree.

App.SocialFeedIndexView = Ember.View.extend({
 didInsertElement: function() {
 this.$('input').focus();
 }
});

Displaying the tweets
We have a URL address that responds with a JSON-formatted list of tweets. There
are corresponding controllers and route classes, which are defined by default from
Ember.js. However, we need to set a model and get the handle from the browser's
address, so we will create our own classes. This can be seen as follows:

App.SocialFeedTweetsRoute = Ember.Route.extend({
 model: function(params) {
 this.set('handle', params.handle);
 return Ember.$.getJSON('/tweets/' + params.handle);
 },
 setupController: function(controller, model) {
 controller.set("model", model);
 controller.set("handle", this.get('handle'));
 }
});

App.SocialFeedTweetsController = Ember.ArrayController.extend({
 handle: '',
 formattedHandle: function() {
 return "@" +
this.handle + '';
 }.property('handle')
});

Chapter 7

[137]

The dynamic segment from the URL comes to the Route's model function in the
params argument. We will get the string and set it as a property of the class. Later,
when we set up the controller, we are able to pass it along with the model. The
setupController function is a hook, which is run during the route's initialization.
As we said in the beginning of the chapter, the main role of the controller is to
decorate the model. Ours does only one thing—it defines a computed property that
prints the Twitter handle of the user in a <a> tag. The controller also extends Ember.
ArrayController, which provides a way to publish a collection of objects.

If we go back a few pages and check out the social-feed/tweets template, we will
see that we can show the tweets with the following code:

{{#each}}
 {{formatTweet text}}
{{/each}}

Normally, we will use only {{text}} and not {{formatTweet text}}. What we did
is used a custom-defined helper, which will format the text of the tweet. We need
that because the tweet can contain URLs, and we want to transform them to valid
HTML links. We can do that as part of the controller and define another computed
property, but we will do it as a Handlebars helper. We can see it as follows:

 Ember.Handlebars.registerBoundHelper('formatTweet', function(value) {
 var exp = /(\b(https?|ftp|file):\/\/[-A-Z0-9+&@#\/%?=~_|!:,.;]*[-
A-Z0-9+&@#\/%=~_|])/ig;
 return new Handlebars.SafeString(value.replace(exp, "$1"));
});

We are using a regular expression to transform the URLs to the <a> tags.

With the latest lines of the code, our js/script.js file is finished, and we can use
the application to fetch the latest tweets of any Twitter user.

Summary
In this chapter, we learned how to use Node.js with Ember.js. We successfully
created a fully working application, which shows the messages posted on Twitter.
Essential work was done by external modules, which again proves that the Node.js
ecosystem is really flexible and provides everything we need to develop top-notch
web applications. The modern client-side frameworks such as Ember.js, AngularJS,
or Backbone.js are expected to receive JSON and Node.js is capable of delivering it.

In the next chapter, we will find out how to use Node.js to optimize our project tasks
and boost our coding performance.

Developing
Web App Workflow

with Grunt and Gulp
In the last few chapters, we learned how to use Node.js together with the most
popular client-side JavaScript frameworks such as AngularJS and Ember.js. We
learned how to run a fully functional web server and build a command-line tool.

In this chapter, we will explore the world of the task runners. Grunt and Gulp are
two modules widely used and they have a solid collection of plugins.

Introducing the task runners
Applications are agreeably complex in nature. More and more logic is put into the
browser and it is written with many lines of JavaScript code. The new CSS3 features
and the improved performance of native browser animations lead to a lot of CSS
code. Of course, at the end, we still want to keep the things separated. Make sure that
everything is well-placed in different folders and files. Otherwise, our code will be
difficult to maintain. We may need to generate manifest.json, use a preprocessor,
or simply copy files from one location to another. Thankfully, there are instruments
that make our life easier. The task runner accepts instructions and performs certain
actions. It enables us to set a watcher and monitor files for changes. This is extremely
helpful if we have a complex setup and a lot of aspects to handle.

At the moment, there are two popular task runners for Node.js: Grunt and Gulp.
They are widely used because of the plugins written specifically for them; the
modules themselves don't have many features; however, if we combine them with
external plugins, they become our best friends. Even companies such as Twitter or
Adobe elaborate on them.

Developing Web App Workflow with Grunt and Gulp

[140]

Exploring Grunt
Grunt is a Node.js module, which means it is installed via the Node.js package
manager. To get started, we need to install Grunt's command-line tool.

npm install -g grunt-cli

The -g flag sets the module as a global command so that we can run it in every
directory. Once the installation finishes, we are able to run grunt, which is
executable. The instructions to the task runner are stored in the Gruntfile.js file.
Place this file in the root project's directory and place our tasks inside. Once we have
filled the Grunt file, open the terminal, navigate to the directory, and type grunt.

The Grunt's configuration file is like a rules list. Describe step by step what
exactly needs to be done. The following code snippet is the simplest format of the
Gruntfile.js file:

module.exports = function(grunt) {
 grunt.initConfig({
 concat:{
 }
 });
 grunt.registerTask('default', ['concat']);
}

The tasks are set up in the object passed to the initConfig function. In the preceding
example, we have only one task, concat. The same task is added to the default set
of rules. These rules will be run when we start Grunt.

As mentioned, these task runners are so powerful because of the huge collection
of plugins made by the developers. To add a plugin to our Grunt setup, include
it in our package.json file. This is because the plugin is again a Node.js module.
In the next section of this chapter, we will use the grunt-contrib-concat plugin
and merge several JavaScript files into one. The following code snippet is how the
package.json file should look like:

{
 "name": "GruntjsTest",
 "version": "0.0.1",
 "description": "GruntjsTest",
 "dependencies": {},
 "devDependencies": {
 "grunt-contrib-concat": "0.3.0"
 }
}

Chapter 8

[141]

After running npm install, we will be able to request the plugin by calling grunt.
loadNpmTasks (grunt-contrib-concat). There is also a grunt.loadTasks method
for custom-defined tasks. Now, let's continue and run our first Grunt script.

Concatenating files
Concatenation is one of the most common operations. It is the same with the CSS
styles. Having many files means more server requests, which could decrease the
performance of your application. The grunt-contrib-concat plugin is here to help.
It accepts a glob pattern of source files and a destination path. It goes through all the
folders, finds the files that match the pattern, and merges them. Let's prepare a folder
for our small experiment.

The build/scripts.js file will be generated by Grunt. So, we don't have to create
it. Add some content to the files in the src folder. Our Gruntfile.js file should
contain the following code:

module.exports = function(grunt) {
 grunt.initConfig({
 concat: {
 javascript: {
 src: 'src/**/*.js',
 dest: 'build/scripts.js'
 }
 }
 });
 grunt.loadNpmTasks('grunt-contrib-concat');
 grunt.registerTask('default', ['concat']);
}

Developing Web App Workflow with Grunt and Gulp

[142]

The concat task contains a javascript object that holds the configuration for
the concatenation. The source value is actually a glob pattern that matches all the
JavaScript files inside the src folder and its subfolders. We have used the glob
module in Chapter 6, Using Node.js as a Command-line Tool. With the preceding code,
we can run the grunt command in our terminal. We will get a result similar to what
is shown in the following screenshot:

The scripts.js file should be generated in the build directory and contain all the
files from the src folder.

Very often, we end up debugging the compiled file. This is mainly because it's the
file that we use in the browser and everything is saved together, so we can't really
see where the error is initiated. In such cases, it is good to add some text before the
content in every file. This will allow us to see the original destination of the code. The
new content of the Gruntfile.js file is as follows:

module.exports = function(grunt) {
 grunt.initConfig({
 concat: {
 javascript: {
 options: {
 process: function(src, filepath) {
 return '// Source: ' + filepath + '\n' + src;
 }
 },
 src: 'src/**/*.js',
 dest: 'build/scripts.js'
 }
 }
 });
 grunt.loadNpmTasks('grunt-contrib-concat');
 grunt.registerTask('default', ['concat']);
}

Thus, we pass a custom process function. It accepts the content of the file and its
path. It should return the code we want to be concatenated. In our case, we just add a
short comment at the top.

Chapter 8

[143]

Minifying your code
Minification is a process that makes our code smaller. It uses smart algorithms that
replace the names of our variables and functions. It also removes the unnecessary
spaces and tabs. That's pretty important for optimization because it normally
decreases the file size by half. Grunt's plugin, grunt-contrib-uglify, provides this
functionality. Let's use the example code from the previous pages and modify our
Gruntfile.js file as follows:

module.exports = function(grunt) {
 grunt.initConfig({
 concat: {
 javascript: {
 options: {
 process: function(src, filepath) {
 return '// Source: ' + filepath + '\n' + src;
 }
 },
 src: 'src/**/*.js',
 dest: 'build/scripts.js'
 }
 },
 uglify: {
 javascript: {
 files: {
 'build/scripts.min.js': '<%= concat.javascript.dest %>'
 }
 }
 }
 });
 grunt.loadNpmTasks('grunt-contrib-concat');
 grunt.loadNpmTasks('grunt-contrib-uglify');
 grunt.registerTask('default', ['concat', 'uglify']);
}

In the preceding code, we do the following important tasks:

• We add grunt-contrib-uglify to our package.json file
• We run npm install to get the module in the node_modules directory
• At the end, we define the minification's options

Developing Web App Workflow with Grunt and Gulp

[144]

In the preceding code, we set up a new task called uglify. Its property, files,
contains a hash of the conversions we want to perform. The key is the destination
path and the value is the source file. In our case, the source file is the output of
another task so that we can directly use the <% %> delimiters. We are able to set the
exact path, but doing it using the delimiters is much more flexible. This is because
we may end up with a very long Grunt file and it is always good to keep the code
maintainable. If we have the destination in one place only, we are able to correct it
without repeating the same change in other places.

Note that the tasks we defined depend on each other, that is, they should be run in
a specific order. Otherwise, we will receive unexpected results. Like in our example,
the concat task is performed before uglify. That's because the second one needs the
result from the first.

Watching files for changes
Grunt is really great at doing some stuff for us. However, it is a bit annoying if we have
to run it every time we change some of our files. Let's take the situation in the previous
section. We have a bunch of JavaScript scripts and want to merge them into one file. If
we work with the compiled version, then we have to run the concatenation every time
we make corrections to the source files. For such cases, the best thing to do is set up
a watcher—a task that monitors our filesystems and triggers a specific task. A plugin
called grunt-contrib-watch does exactly this for us. Add this to our package.json
file and run npm install again to install it locally. Our file needs only one entry in the
configuration. The following code shows the new watch property:

module.exports = function(grunt) {
 grunt.initConfig({
 concat: {
 javascript: {
 options: {
 process: function(src, filepath) {
 return '// Source: ' + filepath + '\n' + src;
 }
 },
 src: 'src/**/*.js',
 dest: 'build/scripts.js'
 }
 },
 uglify: {
 javascript: {
 files: {
 'build/scripts.min.js': '<%= concat.javascript.dest %>'

Chapter 8

[145]

 }
 }
 },
 watch: {
 javascript: {
 files: ['<%= concat.javascript.src %>'],
 tasks: ['concat:javascript', 'uglify']
 }
 }
 });
 grunt.loadNpmTasks('grunt-contrib-concat');
 grunt.loadNpmTasks('grunt-contrib-uglify');
 grunt.loadNpmTasks('grunt-contrib-watch');
 grunt.registerTask('default', ['concat', 'uglify', 'watch']);
}

There is a watch task added after concat and uglify. Note that the plugin requires
two options. The first one, files, contains the files we want to monitor and the second
one, tasks, defines the processes that will be run. We are also executing a specific part
of the concat task. At the moment, we have only one thing to concatenate, but if we
work on a big project, we may have several types of files or even different JavaScript
sources. So, it is always good to specify our definitions, especially for the watching
glob patterns. We really don't want to run unnecessary tasks. For example, we
normally don't concatenate JavaScript if some of the CSS files are changed.

If we use the setup shown in the preceding code and run Grunt, we will see the
output as shown in the following screenshot:

Developing Web App Workflow with Grunt and Gulp

[146]

There is pretty good logging that shows what exactly happened. All the tasks are
run and the src\A.js file is changed. Immediately, the concat and uglify plugins
are launched.

Ignoring files
Sometimes, we will have files that should not occupy a part in the whole process, for
example, having a CSS file should not be concatenated with the others. Grunt offers
a solution for such cases. Let's say we want to skip the JavaScript in src/lib/D.js.
We should update our GruntFile.js file and change the src property of the task:

concat: {
 javascript: {
 options: {
 process: function(src, filepath) {
 return '// Source: ' + filepath + '\n' + src;
 }
 },
 src: ['src/**/*.js', '!src/lib/D.js'],
 dest: 'build/scripts.js'
 }
}

All we have to do is to use an array instead of a single string. The exclamation mark
in front of the value tells Grunt that we want this file to be ignored.

Creating our own task
Grunt has an enormous collection of plugins and we will probably find what we
want. However, there are situations where we need something custom for our
projects. In such cases, we will need a custom task. Let's say we need to save the file
size of the compiled JavaScript. We should access build/scripts.js, check its size,
and write it to a file on the hard disk.

Chapter 8

[147]

The first thing we need is a new directory that will host our tasks as shown in the
following screenshots:

Note the custom folder and the jssize.js file. Its name may not match that of the
new task, but it is a good practice to keep them in sync. Before writing the actual
code that does the job, we will change our configuration to fire the task. So far, we
used grunt.loadNpmTasks to indicate modules we will use during the processing.
However, our script is not part of the Node.js' package management and we have to
use grunt.loadTasks. The method accepts a path to the folder containing our file as
shown in the following lines of code:

grunt.loadNpmTasks('grunt-contrib-concat');
grunt.loadNpmTasks('grunt-contrib-uglify');
grunt.loadNpmTasks('grunt-contrib-watch');
grunt.loadTasks('custom');

All the files in the custom directory will be fetched and registered as valid, ready-to-
use plugins. Now we can add our jssize task to the default tasks list so that it runs
along with the others as follows:

grunt.registerTask('default', ['concat', 'uglify', 'jssize',
'watch']);

Developing Web App Workflow with Grunt and Gulp

[148]

At the end, we will add a new entry in the object passed to the grunt.initConfig
function as follows:

jssize: {
 javascript: {
 check: 'build/scripts.js',
 dest: 'build/size.log'
 }
}

As this is our own task, we can pass whatever we think is necessary. In our case, this
is the file we will get the size of and the path we will save the result in.

A Grunt task is actually a Node.js module that exports a function by accepting the
Grunt's API object. The following is the content of the custom/jssize.js file:

var fs = require('fs');
module.exports = function(grunt) {
 grunt.registerMultiTask('jssize',
 'Checks the JavaScript file size', function() {
 var fileToCheck = this.data.check;
 var destination = this.data.dest;
 var stat = fs.statSync(fileToCheck);
 var result = 'Filesize of ' + fileToCheck + ': ';
 result += stat.size + 'bytes';
 grunt.file.write(destination, result);
 });
};

The key moment is the grunt.registerMultiTask method. The first argument
is the name of the task. This is quite important because the same string is used in
the Gruntfile.js file. Immediately after, we pass a description and anonymous
function. The body of that function contains the real logic to accomplish the task. The
configurations we defined are available in the this.data object. The file-size check is
done and the result is saved via the grunt.file API.

Generating a cache manifest file
We found out how to create our own Grunt task. Let's write something interesting.
Let's generate a cache manifest file for the project.

The Cache manifest file is a declarative file we use to indicate the static resources
of our web application. This could be our CSS files, images, HTML templates, video
files, or something that remains consistent. This is a huge optimization trick because
the browser will load these resources not from the web, but from the user's device. If
we need to update an already cached file, we should change the manifest.

Chapter 8

[149]

At the moment, we have only JavaScript files. Let's add a few images and one
CSS file. Make the necessary changes so that our project folder looks like the
following figure:

The content of styles.css is not important. The images in the img folder are also
not important. We just need different files to test with. The next thing we have to
do is add our task to Gruntfile.js. We will use generate-manifest as a name as
shown in the following code snippet:

'generate-manifest': {
 manifest: {
 dest: 'cache.manifest',
 files: [
 'build/*.js',
 'css/styles.css',
 'img/*.*'
]
 }
}

Developing Web App Workflow with Grunt and Gulp

[150]

Of course, we should not forget to add the task to the default list as shown in the
following code snippet:

grunt.registerTask('default', ['concat', 'uglify',
 'jssize', 'generate-manifest', 'watch']);

Note that we are passing several glob patterns; these are the files we want to add.
Describing every single file in the configuration will take too much time and we
could forget something. Grunt has a really effective API method, grunt.file.
expand, that accepts glob patterns and returns the matched files. The rest of our
task is to compose the content of the manifest file and save it to the disc. We will
register the new task and fill the content variable, which is later written to the file,
as follows:

module.exports = function(grunt) {
 grunt.registerMultiTask('generate-manifest',
 'Generate manifest file', function() {

 var content = '',
 self = this,
 d = new Date();

 content += 'CACHE MANIFEST\n';
 content += '# created on: ' + d.toString() + '\n';
 content += '# id: '
 + Math.floor((Math.random()*1000000000)+1) + '\n';

 var files = grunt.file.expand(this.data.files);
 for(var i=0; i<files.length; i++) {
 content += '/' + files[i] + '\n';
 }
 grunt.file.write(this.data.dest, content, {});

 });
};

It's a good practice to rely on the Grunt API in our custom tasks. It keeps the
consistency of our application because we depend only on one module—Grunt.
In the preceding code, we used grunt.file.expand, which we already discussed
before the code, and grunt.file.write that saves the manifest's content to the disk.

Chapter 8

[151]

To provide a workable manifest, the cache file should start with CACHE MANIFEST.
That's why we add it at the beginning. It's also a good practice to include the date on
which the generation happened. The randomly generated id simplifies the process of
an application's development.

As mentioned, the browser will serve the cached version of the files until the cache
manifest file is changed. Setting a different id each time forces the browser to fetch
the latest version of the files. However, in the production environment, this should
be removed. To use the cache manifest file, add a special attribute in our HTML page
as follows:

<html manifest="cache.appcache">

If everything goes well, we should see a result similar to that shown in the
following screenshot:

Hence, the content of the cache manifest will be as follows:

CACHE MANIFEST
created on: Fri Feb 14 2014 23:40:46 GMT+0200
 (FLE Standard Time)
id: 585038007
/build/scripts.js
/build/scripts.min.js
/css/styles.css
/img/A.png
/img/B.png
/img/C.png

Developing Web App Workflow with Grunt and Gulp

[152]

Documenting our code
We know that the code should have documentation. But very often, this is too time
consuming and mundane. There are some good practices out there that we could
use. One of them is to write comments into the code and generate the documentation
using these comments. Following this approach, we should make our code more
understandable for our colleagues. The Grunt plugin, grunt-contrib-yuidoc, will
help us create the .doc files. Add it to our package.json and run npm install.
Again, all we have to do is to update our Gruntfile.js file.

yuidoc: {
 compile: {
 name: 'Project',
 description: 'Description',
 options: {
 paths: 'src/',
 outdir: 'docs/'
 }
 }
}
...
grunt.registerTask('default', ['concat', 'uglify',
 'jssize', 'generate-manifest', 'yuidoc', 'watch']);

There is a paths property that shows the source code and the outdir property that
shows where the documentation will be saved. If we run Grunt and navigate to the
directory with our favorite browser, we will see that there is nothing listed. That's
because we didn't add any comment to the code. Open src/A.js and place the
following code:

/**
* This is the description for my class.
*
* @class A
*/
var A = {
 /**
 * My method description.
 Like other pieces of your comment blocks,
 * this can span multiple lines.
 *
 * @method method
 */
 method: function() {

 }
};

Chapter 8

[153]

After relaunching the tasks, we will see the A Class in the documentation as shown
in the following screenshot:

Discovering Gulp
Gulp is a build system that has become quite popular. It's almost the same
concept as Grunt. We are able to create tasks that do something for us. Of course,
there are a lot of plugins. In fact, most of the main Grunt plugins have equivalent
plugins in Gulp. However, there are some differences, which are mentioned in the
following points:

• There is a configuration file, but it is called gulpfile.js
• Gulp uses streams to process the files, which means that it doesn't create

any temporary file or folder. This may lead to the better performance of the
task runner.

• Gulp follows the code-over-configuration principle, that is, while we
set up the Gulp tasks, the process is like coding rather than writing the
configurations. This makes Gulp friendly for the developers.

Developing Web App Workflow with Grunt and Gulp

[154]

Installing Gulp and fetching plugins
Like Grunt, Gulp is available in the Node.js' package manager.

npm install -g gulp

The preceding command line will set up the task runner globally. Once the
installation is complete, we will be able to run the gulp command. Of course, we
should do that in the directory containing the gulpfile.js file.

The plugins for Gulp are also Node.js modules. For example, gulp-concat is the
same as grunt-contrib-concat and gulp-uglify is the alternative for grunt-
contrib-uglify. It is a good practice to describe them in a package.json file. There
is no function such as grunt.loadNpmTasks. We could directly require the module.

Concatenating and minifying with Gulp
Let's use the code we already have. There are a bunch of JavaScript files in the src
folder and we want them concatenated. The task runner should also generate a
minified version and watch the files for changes. We will need several modules, and
here is how our package.json file looks like:

{
 "name": "GulpTest",
 "version": "0.0.1",
 "description": "GulpTest",
 "dependencies": {},
 "devDependencies": {
 "gulp": "3.5.2",
 "gulp-concat": "2.1.7",
 "gulp-uglify": "0.2.0",
 "gulp-rename": "1.0.0"
 }
}

The gulp command is needed because we need access to Gulp's API. The gulp-
concat plugin will concatenate the files and gulp-uglify will minify the result. The
gulp-rename plugin is used because we have to deliver two files—one suitable for
reading and one minified, that is, build/scripts.js and build/scripts.min.js.

The following code is the content of the gulpfile.js file:

var gulp = require('gulp');
var concat = require('gulp-concat');
var uglify = require('gulp-uglify');
var rename = require('gulp-rename');

Chapter 8

[155]

gulp.task('js', function() {
 gulp.src('./src/**/*.js')
 .pipe(concat('scripts.js'))
 .pipe(gulp.dest('./build/'))
 .pipe(rename({suffix: '.min'}))
 .pipe(uglify())
 .pipe(gulp.dest('./build/'))
});

gulp.task('watchers', function() {
 gulp.watch('src/**/*.js', ['js']);
});

gulp.task('default', ['js', 'watchers']);

With Grunt, we need a little more knowledge about the task runner and its
configuration structure. With Gulp, it's slightly different. We have the usual Node.js
modules and the usage of their public APIs. The script starts with the definition of
the plugins and the gulp object. A task is defined by using the gulp.task method.
The first parameter is the name of the task and the second is a function. Also, instead
of the function, we may pass an array of strings representing other tasks.

Similarly, like in Grunt, we have a default entry. This time, we split the tasks into
two parts: JavaScript operations and watchers. Almost every Gulp task starts with
gulp.src and ends with gulp.dest. The first method accepts the glob pattern,
showing the files that need to be transformed. The gulp.dest plugin saves the
result to the desired location. All the actions between them are actually modules that
receive and output the streams. In our case, the js task fetches all the files from the
src directory and its subfolders, concatenates them, and saves the result to the build
folder. We continue by renaming the file, minifying it, and saving it in the same
place. The output of our terminal after running gulp in the project's folder should be
as shown in the following screenshot:

Of course, we should see the scripts.js and scripts.min.js files in the
build directory.

Developing Web App Workflow with Grunt and Gulp

[156]

Creating your own Gulp plugin
The development of the Gulp plugin looks almost the same as creating a Grunt one.
We need a new Node.js module with a proper API. The difference is that we receive
a stream and we should then output the stream. This can be a little difficult to code
because we need to understand how the streams work. Thankfully, there is a helper
package that simplifies the process. We are going to use through2—a tiny wrapper
around the Node.js' streams API. So, our package.json file grows a bit with the
following content:

{
 "name": "GulpTest",
 "version": "0.0.1",
 "description": "GulpTest",
 "dependencies": {},
 "devDependencies": {
 "gulp": "3.5.2",
 "gulp-concat": "2.1.7",
 "gulp-uglify": "0.2.0",
 "gulp-rename": "1.0.0",
 "through2": "0.4.1"
 }
}

Let's create the same jssize task. It needs to do only one job: measure the file size
of the concatenated file. We could recreate the custom directory and place an empty
jssize.js file there. Our Gulp file also needs a quick correction. At the top, we
require the newly created module as follows:

var jssize = require('./custom/jssize');

We have to pipe the output of the first gulp.dest('./build/') command to the
jssize plugin. The following snippet shows the finished task:

gulp.task('js', function() {
 gulp.src('./src/**/*.js')
 .pipe(concat('scripts.js'))
 .pipe(gulp.dest('./build/'))
 .pipe(jssize())
 .pipe(rename({suffix: '.min'}))
 .pipe(uglify())
 .pipe(gulp.dest('./build/'));
});

Chapter 8

[157]

Now, let's see how our plugin looks using the following code:

var through2 = require('through2');
var path = require('path');
var fs = require("fs");
module.exports = function () {
 function transform (file, enc, next) {
 var stat = fs.statSync(file.path);
 var result = 'Filesize of ' + path.basename
 (file.path) + ': ';
 result += stat.size + 'bytes';
 fs.writeFileSync
 (__dirname + '/../build/size.log', result);
 this.push(file);
 next();
 }
 return through2.obj(transform);
};

The through2.obj object returns a stream used in the Gulp's pipeline. Working with
streams is like working with chunks. In other words, we do not receive the entire
file, but parts of it again and again till we get the whole data. The through2 object
simplifies the process and gives us direct access to the entire file. So, the transform
method accepts the file, its encoding, and a function that we need to call once we
finish our job. Otherwise, the chain will be stopped and the next plugins will not be
able to finish their tasks. The actual code that generates the size.log file is the same
as that used in the Grunt version.

Summary
In this chapter, we learned how to use the task runners. These are tools that make
our life easier by simplifying the common tasks. As web developers, we might want
to concatenate and minify our production code, and such trivial operations are
well-handled by modules such as Grunt and Gulp. The wide range of plugins and
the great Node.js community encourage the usage of task runners and change our
workflow completely.

In the next chapter, we will dive into test-driven development and see how Node.js
handles such processes.

Automate Your Testing
with Node.js

In the previous chapter, we learned how to work with Grunt and Gulp to automate
our development process. These two Node.js modules have a huge collection of
plugins, which we can use in almost every case. In this chapter, we will talk about
testing, its importance, and how to integrate it in our workflow. The following is a
list of topics that we will cover:

• Popular testing methodologies
• The Jasmine framework
• The Mocha framework
• Testing with PhantomJS and DalekJS

Understanding the importance of
writing tests
When developing software, the code we write can be put in the browser, run as a
desktop program, or started as a Node.js script. In all these cases, we expect specific
results. Every line of code has some significance, and we need to know whether the
final product will do the job. Normally, we debug our applications, that is, we write
part of the program and run it. By monitoring the output or its behavior, we assess
whether everything is okay or whether there is a problem. However, this approach
is time-consuming, especially if the project is big. Iterations through every single
feature of the application costs a lot of time and money. Automated testing helps in
such cases. From an architectural viewpoint, testing is very important. That's because
when the system is complex and we have numerous relationships between the
modules, it is difficult to add new features or introduce major changes.

Automate Your Testing with Node.js

[160]

We can't really guarantee that everything will work as it worked before the
modifications. So, instead of relying on manual testing, it is much better to create
scripts that can do this for us. Writing tests has several major benefits, as follows:

• This proves that our software is stable and works as expected.
• This saves a lot of time because we don't have to repeatedly perform

manual testing.
• A badly written code with a lot of dependencies cannot be tested easily.

Writing tests in most of these cases leads to better code.
• If we have a solid test suite, we can extend the system without worrying

about damaging something.
• If the tests cover all the application's features, then they can be used as the

application's documentation.

Choosing a testing methodology
There are few popular ways of writing tests. Let's see which are they and the
differences between them.

Test-driven development
Test-driven development (TDD) is a process that relies on the repetition of
short development cycles. In other words, we write our test while writing the
implementation. The shorter the cycles, the better. The following diagram shows
the TDD flow:

Chapter 9

[161]

Before we write the actual code that does the job for us, we need to prepare a test. Of
course, after the first run, the test will fail because nothing has been implemented.
So, we need to ensure that the test passes all the cycles. Once this happens, we may
spend some time refactoring what has been done so far and continue with the next
method, class, or feature. Note that everything spins around the test, which is a
really good thing because this is where we define what our code should do. With
this as a basis, we avoid delivering unnecessary code. We can also be sure that the
implementation meets the requirements.

Behavior-driven development
Behavior-driven development (BDD) is similar to TDD. In fact, if the project is a
small one, we can't really spot the differences. The idea of this approach is to focus
more on the specification and the application's processes, rather than the actual code.
For example, if we test a module that posts messages on Twitter with TDD, we will
probably ask the following questions:

• Is the message empty?
• Is the message length less than 140 symbols?
• Is the Ajax request made properly?
• Does the returned JSON contain certain fields?

However with BDD, we ask only the following question:

• Is the message sent to Twitter?

Both processes are interrelated and, as we said, sometimes there is no difference at
all. What we should remember is that BDD focuses on what the code is doing and
TDD on how the code is doing it.

Automate Your Testing with Node.js

[162]

Classifying tests
There are several types of tests that you may write, which evaluate our system
by giving an input and expecting a specific output. However, they also perform
this evaluation on different parts. It is good to know their names, which are listed
as follows:

• Unit testing: Unit testing performs checks on a single part of the application;
it focuses on one unit. Often, we face difficulties in writing such tests because
we can't split our code into units; this is usually a bad sign. If there is no
clearly defined module, we can't proceed with such tests. Distributing the
logic to different units not only helps in testing but also contributes to
the overall stability of the program. Let's illustrate the problem with the
following diagram:

Let's assume we have an e-commerce site that sells products to our users.
In the preceding diagram, processes such as log in, ordering, and logout
are handled by one class, defined in the App.js file. Yes, it works. We may
achieve the goal and successfully close the circle, but this is absolutely not
unit testable because there are no units. It is much better if we split the
responsibilities into different classes, as shown in the following diagram:

We continue to use App.js and it still controls everything. However, the
different parts of the whole flow are divided between three classes: Router,
Users, and Payments. Now, we are able to write unit tests.

Chapter 9

[163]

• Integration testing: Integration tests output a result for several units or
components. If we look at the preceding example, the integration test will
simulate the whole process of ordering a product, that is, logging in, buying,
and logging out. Normally, integration tests use several modules of the
system and ensure that the modules work properly together.

• Functional testing: The functional tests are closely related to integration tests
and focus on a specific functionality in the system. It may involve several
modules or components.

• System testing: The system tests test our program in different environments.
In the context of Node.js, this could be when running our scripts on
different operating systems and monitoring the output. Sometimes there are
differences and if we want to globally distribute our work, we need to ensure
that our program is compatible with the most popular systems.

• Stress or performance testing: These tests evaluate our application beyond
the defined specifications and show how our code reacts to heavy traffic or
complex queries. They are really helpful when making a decision about the
program's architecture or choosing a framework.

There are some other types of testing, but the previously mentioned testing methods
are the most popular. There is no strict policy on what tests to write. Of course, there
are good practices, but what we should focus on is writing a testable code. There is
nothing better than an application fully covered with tests.

As testing is a really important part of the development process, there are
frameworks specifically oriented toward writing tests. In general, when we use a
framework, we need the following two tools:

• Test runner: This is the part of the framework that runs our tests and
displays messages whether they pass or fail.

• Assertions: These methods are used for the actual checks, that is, if we need
to see whether an variable is true, then we can write expect(active).
toBe(true) instead of just if(active === true). It's better for the reader
and also prevents some strange situations; for example, if we want to see
whether a variable is defined or not, the if statement in the following code
returns true because the status variable has a value and this value is null.
In fact, we are asking whether the status variable initialized, and if we leave
the test in this manner, we will get wrong results. That's why we need an
assertion library that has proper methods for testing. The following code is
the example that shows that the status variable is actually defined and its
type is object:

var status = null;
if(typeof status != "undefined") {

Automate Your Testing with Node.js

[164]

 console.log("status is defined");
} else {
 console.log("status is not defined");
}

Using Jasmine
Jasmine is a framework to test the JavaScript code. It is available as a Node.js
module and also as a library, which we can use in the browser. It comes with its
own assertion methods.

Installing Jasmine
We are going to use the Node.js version of the framework. It's a module, so it can
be installed via the Node.js package manager, npm, as shown in the following
code line:

npm install jasmine-node -g

The preceding command will set up Jasmine globally, so we can run jasmine-
node in every directory of our choice. The tests could be organized into different
files placed in one folder or in subfolders. The only requirement is to end the
filenames with spec.js, for example, testing-payments.spec.js or testing-
authorization.spec.js.

Defining the module for testing
Before we write the actual test, let's define the application we want to build. Let's
say we need a Node.js module that reads a file and finds specific words inside it. The
following is the basic file structure that we are starting from:

The code that tests the application will be placed in tests/test.spec.js, the
implementation of the logic will be in app.js, and the file that we will read from will
be file.txt. Let's open the file.txt file and add the following text inside:

The quick brown fox jumps over the lazy dog.

Chapter 9

[165]

That's a phrase used to test typewriter's keys. It contains all the letters from the
English alphabet and is perfect for our small project.

Following the test-driven development
concept
The task is simple and we can probably solve it in around 20 lines of code. For
sure, we can wrap all the code in one function and perform everything there. The
downside is that if something goes wrong, we can't detect where the problem occurs.
That's why we will split the logic into two parts and test them separately in the
following ways:

• Reading the file's content
• Searching for a certain word inside the file's content

As we explained in the beginning of this chapter, we will write the test first, we will
see it fail, and then will write the code for app.js.

Testing the file-reading process
Writing tests, just like any other task, can be challenging. Sometimes, we can't
determine what to test and what to exclude. There is a certain unsaid rule that
advices users to avoid working on features that are tested by other developers—in
our example, we need not test whether the file is read successfully. If we do that, it
will look like we are testing the filesystem API of Node.js, which is not necessary.

Every test written with Jasmine starts with the describe clause. Add the following
code to tests/test.spec.js:

describe("Testing the reading of the file's content.", function() {
 // ...
});

The describe method accepts a description and a function. In the body of this
function, we will add our assertions. Keep in mind that the text that we add needs to
be informative because it will be displayed if the test fails. Similar to the describe
block, we have to add the it blocks. These blocks contain the actual commands for
testing, as shown in the following code snippet:

describe("Testing the reading of the file's content.", function() {
 it("should create an instance of app.js", function(done) {
 var app = require("../app.js");

Automate Your Testing with Node.js

[166]

 expect(app).toBeDefined();
 done();
 });
});

We are adding meaningful information that tells what exactly we are going to test.
The second argument of it is again a function. The difference is that it accepts an
argument, which is another function. We need to call it once we are done with the
checks. Many scripts in JavaScript are asynchronous, and the done callback helps us
in handling such operations.

The preceding code block includes the app.js module and verifies the result. The
expect method accepts a subject of the assertion, and the following chained methods
perform the actual check.

We have a test ready, so we can execute it. Run jasmine-node ./tests and you
will see the following result:

The test case passes. The app.js file is empty, but even then Node.js doesn't fail.
The value of the app variable is actually an empty object. Let's continue and try to
imagine the methods that we will need. In the following code we are adding one
more block testing a read API method of the module:

describe("Testing the reading of the file's content.", function() {
 it("should create an instance of app.js", function(done) {
 var app = require("../app.js");
 expect(app).toBeDefined();
 done();
 });
 it("should read the file", function(done) {
 var app = require("../app.js");
 var content = app.read("./file.txt");
 expect(content).toBe("The quick brown fox jumps over the lazy
 dog.");
 done();
 });
});

Chapter 9

[167]

The first it runs well but the second one raises an error. That's because there is
nothing in app.js. We don't have a read method there. The error is shown in the
following screenshot:

Note that we can clearly see what went wrong. If someone, for some reason, deletes
or renames the used method, this test will fail. Even if the function exists, we expect
to see a specific result that validates the job of the module.

Now, we have to start writing the actual code of the application. We should make the
test passing. Place the following code in app.js:

module.exports = {
 read: function(filePath) {

 }
}

If we run the test, it will fail but for another reason, and that's because there is no
logic inside the read method. The following screenshot is the result in the console:

This time the read method is defined, but it doesn't return anything and
expect(content).toBe("The quick brown fox jumps over the lazy dog.")
fails. Let's read file.txt with the Node.js file API and return its content:

var fs = require('fs');
module.exports = {
 read: function(filePath) {
 return fs.readFileSync(filePath).toString();
 }
}

Automate Your Testing with Node.js

[168]

Now, the color of the test is in green, which indicates that the module has the
method we used and that method returns what we expect, as shown in the
following screenshot:

Finding strings in the file content
By using the same methodology, we will implement the second part of our
application: finding words inside the file. The following is the new describe block,
which we will start with the following code:

describe("Testing if the file contains certain words", function() {
 it("should contains 'brown'", function(done) {
 var app = require("../app.js");
 var found = app.check("brown", "The quick brown fox jumps over
 the lazy dog.");
 expect(found).toBe(true);
 done();
 });
});

We require a check method that accepts two arguments. The first one is the word we
want to find, and the second one is the string that will contain it. Note that we are not
using the read method. The idea is to test the function separately and guarantee that
it works properly. This is a very important step because it makes our check method
universal. It is not bound to the idea of matching the text inside a file; however, it
does match the text inside a string. If we don't use the test-driven workflow, we may
end up with one function that does both the operations: reading the file and scanning
its content. However, in our case, we can use the same module with the text fetched
from a database or via an HTTP request. And, if we find that our module doesn't find
a particular word, we will know that the problem lies in the check function because
it is tested as separate unit.

The following is the code of the new method:

var fs = require('fs');
module.exports = {
 read: function(filePath) {
 return fs.readFileSync(filePath).toString();
 },
 check: function(word, content) {

Chapter 9

[169]

 return content.indexOf(word) >= 0 ? true : false;
 }
}

The test is now passed with three assertions as shown in the following screenshot:

Writing an integration test
The tests we have written so far were unit tests, that is, they tested the two units of
our application. Now, let's add an integration test. Again, we need a failing test that
uses the module. So, we are starting with the following code:

describe("Testing the whole module", function() {
 it("read the file and search for 'lazy'", function(done) {
 var app = require("../app.js");
 app.read("./file.txt")
 expect(app.check("lazy")).toBe(true);
 done();
 });
});

Note that we are not keeping the content of the file in a temporary variable, and we
are not passing it to the check method. In fact, we are not interested in the actual
content of the file. We are interested only if it contains a specific string. So, our
module should handle this and keep the text in it. The preceding test fails and the
following message is displayed:

The following are the changes needed to make app.js work as we want it to:

var fs = require('fs');
module.exports = {
 fileContent: '',
 read: function(filePath) {

Automate Your Testing with Node.js

[170]

 var content = fs.readFileSync(filePath).toString();
 this.fileContent = content;
 return content;
 },
 check: function(word, content) {
 content = content || this.fileContent;
 return content.indexOf(word) >= 0 ? true : false;
 }
}

We will simply store the text in a local variable named fileContent. Note that we
are making changes carefully and keeping the return logic of the read method. This
is needed because there is a test that requires this functionality. This shows one more
benefit of TDD. We ensure that the code, before including our modifications, works
in its original form. In complex systems or applications, this is extremely important,
and without tests, this will be really difficult to achieve. The final result is again a
screenshot with a green message:

Testing with Mocha
Mocha is a little more advanced testing framework than Jasmine. It is more
configurable, supports TDD or BDD testing, and even has several types of reporters.
It is also quite popular and portable for client-side usage in the browser, which
makes it a good candidate for our testing.

Installation
Similar to Jasmine, we need the Node.js's package manager to install Mocha. By
running the following command, the framework will be set up globally:

npm install -g mocha

Once the installation finishes, we can run mocha ./tests. By default, the tool
searches for JavaScript files and tries to run them. Here, let's use the same example
used with Jasmine and pass it through Mocha. It actually uses the same syntax of the
describe and it blocks. However, it doesn't come with its own assertion library.
In fact, there is a built-in Node.js module for such purposes named assert. There
are also libraries developed by other developers, for example, should.js, chai, or
expect.js.

Chapter 9

[171]

They differ in certain aspects but do the same job: checking actual and expected
values and raising an error if they don't match. After that, the framework catches the
error and displays the results.

Translating our example using Mocha
If we run the same tests with mocha ./tests, we will get the following result:

The tests fail because there is no assertion library, that is, the expect function is not
available. Let's use the default assert module of Node.js as shown in the following
code snippet:

var assert = require("assert");
describe("Testing the reading of the file's content.", function() {
 it("should create an instance of app.js", function(done) {
 var app = require("../app.js");
 if(typeof app == "undefined") {
 assert.fail('undefined', 'object');
 }
 done();
 });
 it("should read the file", function(done) {
 var app = require("../app.js");
 var content = app.read("./file.txt");
 assert.equal(content, "The quick brown fox jumps over the lazy
 dog.");
 done();
 });
});

Everything is the same but the expect module calls are replaced with assert.
equal. We used assert.fail to notify the framework that there is something
wrong. The following are the other describe blocks:

describe("Testing if the file contains certain words", function() {
 it("should contains 'brown'", function(done) {
 var app = require("../app.js");

Automate Your Testing with Node.js

[172]

 var found = app.check("brown", "The quick brown fox jumps over
 the lazy dog.");
 assert.equal(found, true);
 done();
 });
});
describe("Testing the whole module", function() {
 it("read the file and search for 'lazy'", function(done) {
 var app = require("../app.js");
 app.read("./file.txt")
 assert.equal(app.check("lazy"), true);
 done();
 });
});

With the latest changes, the tests should pass and we should see the
following screenshot:

Selecting a reporter
Mocha is quite flexible when we talk about reporters. The reporter is the part of the
framework that displays the results on the screen. There are a dozen of options we
can choose from. To set the type of the reporter, we should use the -R option in the
command line, for example, the closest thing to Jasmine's reporter is the dot type, as
shown in the following screenshot:

To see more detailed information about the passed or failed tests, we can use the
spec reporter as shown in the following screenshot:

Chapter 9

[173]

There is also a reporter that looks like a landing plane (the landing type) as shown
in the following screenshot:

Testing with a headless browser
So far we learned how to test our code. We can write a module, class, or library, and if
it has an API, we can test it. However, if we need to test a user interface, it gets a little
bit complex. Frameworks such as Jasmine and Mocha can run the code we write but
can't visit a page, click a button, or send a form; at least, not alone. For such testing,
we need to use a headless browser. A headless browser is a web browser without a
user interface. There is a way to control it programmatically and perform actions such
as accessing DOM elements, clicking on links, and filling forms. We are able to do the
same things as we use a real browser. This gives us a really nice instrument to test the
user interface. In the next few pages, we will see how to use a headless browser.

Writing the subject of our test
In order to explore the possibilities of such testing, we need a simple site. Let's create
two pages. The first one will contain an input field and a button. The second page
will be visited when the button on the first one is clicked. The page's h1 tag title will
change depending on the text written in the field. Create a new directory and insert
the following code in the app.js file:

var http = require('http');
var url = require('url');

Automate Your Testing with Node.js

[174]

var port = 3000;
var pageA = '\
 <h1>First page</h1>\
 <form>\
 <input type="text" name="title" />\
 <input type="submit" />\
 </form>\
';
var pageB = '\
 <h1>{title}</h1>\
 back\
';
http.createServer(function (req, res) {
 var urlParts = url.parse(req.url, true);
 var query = urlParts.query;
 res.writeHead(200, {'Content-Type': 'text/html'});
 if(query.title) {
 res.end(pageB.replace('{title}', query.title));
 } else {
 res.end(pageA);
 }
}).listen(port, '127.0.0.1');
console.log('Server running at http://127.0.0.1:' + port);

We need only two of the Node.js native modules to launch our server. The http
module runs the server, and the url module gets the GET parameters from the URL.
The markup of the pages is stored in simple variables. There is a check in the handler
of the HTTP request, which serves pageB if the form on pageA is submitted. If we
run the server with node app.js, we will see how the pages look, as shown in the
following screenshot:

Note that the text entered in the text field is set as the title of the second page. There
is also a back button we can use to return to the home page. We have a subject to run
our tests on. We'll define the actions we need to verify as follows:

• Is the page properly rendered? We should check whether the tags of pageA
are actually on the page.

Chapter 9

[175]

• We should add some string to the text field and submit the form.
• The title of the newly loaded page should match the text that we entered.
• We should be able to click on the back button and return to the home page.

Testing with PhantomJS
We know how our application is suppose to work, so let's write the tests. The
headless browser we will use is PhantomJS. Visit http://phantomjs.org and
download the package suitable for your operating system. Like we did for
Node.js, we will write our test in a JavaScript file and run it at the command line.
Let's say that our file structure looks like the following diagram:

Keep in mind that PhantomJS is not a Node.js module. The JavaScript code we
write for PhantomJS is not exactly a valid Node.js code. We can't directly use native
modules such as assert. Also, there isn't a test runner or test framework integrated.
It's a browser based on Webkit but controlled from the command line or via the
code. It comes across as binary, and once it is installed, we will be able to run the
phantom ./tests/phantom.js command in our terminal. The test code will open
http://127.0.0.1:3000 and will interact with the pages there. Of course, the
JavaScript community developed tools to combine testing frameworks such as
Jasmine or Mocha with PhantomJS, but we are not going to use them in this chapter.
We will write our own small utility—that's what the framework.js file is for.

Developing the micro testing framework
The final result should be a simple function ready to use, such as describe or it, in
Jasmine. It should also have something similar to the assertion library so we don't
have to use the usual if-else statements or report the failing test manually. In the
following code, we can see the proper implementation:

var test = function(description, callback) {
 console.log(description);
 callback(function(subject) {
 return {
 toBe: function(value) {

http://phantomjs.org

Automate Your Testing with Node.js

[176]

 if(subject !== value) {
 console.log("! Expect '" + subject + "' to be '" + value
 + "'.")
 }
 },
 toBeDefined: function() {
 if(typeof subject === 'undefined') {
 console.log("! Expect '" + subject + "' to be defined")
 }
 }
 }
 });
}

The function accepts description and function. The first argument is just printed out
to the console, which indicates what we are going to test. Just after that, we call the
passed callback function with another function as the parameter, which plays the
role of an assertion library. It accepts the subject of testing and executes two methods
against it: toBe and toBeDefined. The following is a simple usage:

test("make a simple test", function(expect) {
 var variable = { property: 'value' };
 expect(true).toBe(true);
 expect(1).toBe(0);
 expect(variable.property).toBeDefined()
 expect(variable.missing).toBeDefined()
});

If we run the preceding code, the result will be as shown in the following screenshot:

Understanding how PhantomJS works
PhantomJS accepts instructions written in JavaScript. We can save them to a file and
execute them via the command line by using the phantom command. Let's look at the
following code snippet:

var page = require('webpage').create();
var url = 'http://127.0.0.1:3000';
page.onConsoleMessage = function(msg) {
 // ...
};

Chapter 9

[177]

page.onLoadFinished = function(status) {
 // ...
};
page.open(url);

The page variable is an access to the PhantomJS API. There is a method, open,
which loads a new page. We are mostly interested in two events dispatched from
the headless browser. The first one, onConsoleMessage, is fired when the loaded
page uses the console command, for example, console.log or console.error.
The second event, onLoadFinished, is also quite important. We have a function that
is called when the page is loaded. That's the place where we should place our tests.
Along with listening for events, we are going to use the following two other methods
of PhantomJS:

• injectJs: This method requires path to a file on our hard disk. The passed
file is included on the page. We may also use includeJs that does the same
thing, but it loads the file from an external source.

• Evaluate: This method accepts a function that is executed in the context
of the currently loaded page. This is important because we need to check
whether certain elements are in the DOM tree. We need to interact with them
by filling in the text field and clicking on a button.

Writing the actual test
Before we start using PhantomJS, we need to run our application with node ./app.
js. By doing this, we are running a server that listens on a particular port. PhantomJS
will make requests to that server. Now, let's start filling in the tests/phantom.js
file as follows:

var page = require('webpage').create();
var url = 'http://127.0.0.1:3000';
page.onConsoleMessage = function(msg) {
 console.log("\t" + msg);
};
page.onLoadFinished = function(status) {
 console.log("phantom: load finished");
 page.injectJs('./framework.js');
 phantom.exit();
};
page.open(url);

Automate Your Testing with Node.js

[178]

As we have already discussed, we are able to create a page variable and open a
particular URL. In our case, we are using the address of the test application. The
onConsoleMessage listener just prints out the message to our terminal. When the
page loads, we inject our micro unit testing framework. This means that we are able
to call the test function in the context of the page. If we run the script with phantom
./tests/phantom.js, we will get the following result:

The preceding screenshot shows exactly what should happen. The browser goes
to the page and fires onLoadFinished. It's important to call phantom.exit();
otherwise, PhantomJS's process will stay active.

The framework.js file is injected to the page and we can write the first test, that is, to
check whether the title contains First page, fill in the test field, and submit the form:

page.onLoadFinished = function(status) {
 console.log("phantom: load finished");
 page.injectJs('./framework.js');
 page.evaluate(function() {
 test("should open the first page", function(expect) {
 expect(document).toBeDefined();
 expect(document.querySelector('h1').innerHTML).toBe('First
 page');
 document.querySelector('input[type="text"]').value =
 'Phantom test';
 document.querySelector('form').submit();
 });
 });
 phantom.exit();
};

The function that is executed by the evaluate method is run in the context of
the page, so it gets an access to the usual document object. We are able to use the
getElementById, querySelector, or submit methods. The script's result obtained
now is as shown in the following screenshot:

Chapter 9

[179]

Now it gets interesting. Indeed, the form is submitted, but we immediately called
phantom.exit(), which terminates our script. If we remove it, the browser will
stay active and the onLoadFinished event will be fired again because a new page is
successfully loaded. However, the script fails because there is no text field or a form
element on the next page. We need to evaluate another function. The following is one
of the possible solutions:

var steps = [
 function() {
 test("should open the first page", function(expect) {
 expect(document).toBeDefined();
 expect(document.querySelector('h1').innerHTML).toBe('First
 page');
 document.querySelector('input[type="text"]').value =
 'Phantom test';
 document.querySelector('form').submit();
 });
 },
 function() {
 test("should land on the second page", function(expect) {
 expect(document).toBeDefined();
 expect(document.querySelector('h1').innerHTML).toBe('Phantom
 test');
 var link = document.querySelector('a');
 var event = document.createEvent('MouseEvents');
 event.initMouseEvent('click', true, true, window, 1, 0,
 0);
 link.dispatchEvent(event);
 });
 },
 function() {
 test("should return to the home page", function(expect) {
 expect(document.querySelector('h1').innerHTML).toBe('First
 page');
 });
 }
];
page.onLoadFinished = function(status) {
 console.log("phantom: load finished");
 page.injectJs('./framework.js');
 page.evaluate(steps.shift());
 if(steps.length == 0) {
 console.log("phantom: browser terminated");
 phantom.exit();
 }
};

Automate Your Testing with Node.js

[180]

The steps array is a global variable that contains a series of functions that need to be
evaluated. On every onLoadFinished event, we are fetching one of those functions
until the steps array is empty. This is where we call phantom.exit() as shown in
the following screenshot:

PhantomJS opens the home page. It enters Phantom test in the text field and submits
the form. Then, on the next page, it checks whether the title contains the valid value,
and when you click on the back link button, it loads the previous page again.

Testing with DalekJS
So far we learned how to test our JavaScript code. After that, we found out how to
write user interface tests with Phantom.js. All these are really helpful, but it will be
even better if we are able to run a real browser and control it. With DalekJS, this is
possible. It's a really nice Node.js module that comes with a command-line interface
tool and submodules for major browsers such as Google Chrome, Firefox, and
Internet Explorer.

Let's see how everything works and install the command-line tool of DalekJS using
the following command:

npm install -g dalek-cli

After running the preceding command, we will have the dalek command set up in
our terminal. Let's copy the files used in the PhantomJS test and replace framework.
js with a package.json file. We will also rename tests/phantom.js to tests/
dalek.js. So, the following is the new file structure:

Chapter 9

[181]

The application we will use will be the same. DalekJS supports several browsers,
including Google Chrome, so we will use it. Of course, we should have it installed on
our system. The following code snippet shows how the package.json file looks:

{
 "name": "project",
 "description": "description",
 "version": "0.0.1",
 "devDependencies": {
 "dalekjs": "*",
 "dalek-browser-chrome": "*"
 }
}

A quick npm install command will create the node_modules directory with both
dependencies included in it. DalekJS has a detailed documentation published on
http://dalekjs.com. It states that we can load pages, fill forms, and click on
different DOM elements. It also comes with its own testing API, so we don't have to
think about this. The test we have to write is actually pretty short. The following is
the content of tests/dalek.js:

var url = 'http://127.0.0.1:3000';
var title = 'DalekJS test';
module.exports = {
 'should interact with the application': function (test) {
 test
 .open(url)
 .assert.text('h1', 'First page', 'The title is "First page"')
 .type('input[type="text"]', title)
 .submit('form')
 .assert.text('h1', title, 'The title is "' + title + '"')
 .click('a')
 .assert.text('h1', 'First page', 'We are again on the home
 page')
 .done()
 }
};

Again, we will make a request to http://127.0.0.1:3000 and expect to see certain
elements on the page. We will also enter some text inside the text field (the type
method) and submit the form (the submit method). To run the test, we need to type
in the following command:

dalek .\tests\dalek.js -b chrome

http://dalekjs.com

Automate Your Testing with Node.js

[182]

If we skip the -b parameter, DalekJS will use Phantom.js. That's the default browser
type of the library. When the preceding command is launched at the terminal, a new
instance of the Google Chrome browser is opened. It executes what we defined in
the test and closes the browser. In order to get the example working, we need to run
the application by executing node ./app.js. The result is reported to the console as
shown in the following screenshot:

We can even make screenshots of the current browser's screenshot. It's simply calling
the screenshot API method as shown in the following code snippet:

test
.open(url)
.assert.text('h1', 'First page', 'The title is "First page"')
.type('input[type="text"]', title)
.submit('form')
.assert.text('h1', title, 'The title is "' + title + '"')
.screenshot('./screen.jpg')
.click('a')
.assert.text('h1', 'First page', 'We are again on the home page')
.done()

In the preceding code, we are making a screenshot of the second page, the one that is
loaded after the form is submitted.

Chapter 9

[183]

Summary
In this chapter, we saw how important testing is. Thankfully, there are great tools
available in the Node.js ecosystem. Frameworks such as Jasmine and Mocha make
our life easier. Instruments such as Phantom.js save a lot of time by automating the
testing and putting our code in a browser context. With DalekJS, we can even run
tests directly in Firefox, Google Chrome, or Internet Explorer.

In the next chapter, we will see how to write flexible and modular CSS. Node.js has
few great modules oriented for the frontend developers who write a lot of CSS.

Writing Flexible and
Modular CSS

In the previous chapter, we learned about the most popular testing instruments
under Node.js. We saw the importance of writing tests and learned about TDD and
BDD. This chapter will be about CSS (Cascading Style Sheets) and the usage of
preprocessors. The Web is built on the basis of three languages—HTML, CSS, and
JavaScript. As part of modern technology, Node.js provides really helpful instruments
to write CSS; in this chapter, we will have a look at these instruments and how they
can improve our style sheets. This chapter will cover the following topics:

• Popular techniques to write modular CSS
• The Less preprocessor
• The Stylus preprocessor
• The Sass preprocessor
• The AbsurdJS preprocessor

Writing modular CSS
CSS has changed a lot in the last few years. Developers used CSS2 as a declarative
language to decorate the page. Today's CSS3 gives us many more capabilities.
Nowadays, CSS is used widely to implement design ideas animating elements on
the page or even applying logic such as hiding and showing content blocks. A lot of
CSS code requires better architecture, file structuring, and proper CSS selectors. Let's
explore a few concepts that could help with this.

Writing Flexible and Modular CSS

[186]

BEM (block, element, modifier)
BEM (http://bem.info/method/definitions) is a naming convention introduced
by Yandex back in 2007. It became a popular concept to develop frontend
applications. In fact, it is not only applicable for CSS but also for any other language
because it has very few rules that work well.

Let's say we have the following HTML markup:

<header class="site-header">
 <div class="logo"></div>
 <div class="navigation"></div>
</header>

The instant CSS which we can come up with is as follows:

.site-header { ... }

.logo { ... }

.navigation { ... }

However, it will probably not work really well because we may have another logo in
the sidebar of the page. Of course, we could use descendant selectors such as .site-
header { ... } and .logo { ... }, but these come with a new problem. It is not
really a good practice to connect selectors in a tree because we can't extract a part
of it and use it somewhere else. BEM solves this problem by defining rules which
we can follow. A block in the context of BEM is an independent entity. It can be a
simple one or a compound one (containing other blocks). In the previous example,
the <header> tag precedes the CSS block. The elements are placed inside the block
and they are context-dependent, that is, they mean something only if they are placed
inside the block which they belong to. The .logo and .navigation selectors in the
block are the elements. There is one more type of selector called modifiers. To better
understand them, we will use an example. Let's say that Christmas will arrive soon
and we need to make a holiday version of the logo. At the same time, we need to
keep the old styles because after a few months we need to revert it to its previous
version. This is what modifiers are made for. We apply them on already existing
elements to set a new look or style. The same can be said for a button, which has a
normal, pressed, or disabled state. To separate the different types of selectors, BEM
introduces the following syntax:

.site-header { ... } /* block */

.site-header__logo { ... } /* element */

.site-header__logo--xmas { ... } /* modifier */

.site-header__navigation { ... } /* element */

The name of the elements is added with double underscores and modifiers with
double dashes.

http://bem.info/method/definitions

Chapter 10

[187]

Using the Object Oriented CSS approach
Object Oriented CSS (OOCSS) (https://github.com/stubbornella/oocss/
wiki) is another concept which helps us write better CSS. It was originally
introduced by Nicole Sullivan and defines the following two principles.

Separate structure and skin
Consider the following CSS:

.header {
 background: #BADA55;
 color: #000;
 width: 960px;
 margin: 0 auto;
}
.footer {
 background: #BADA55;
 text-align: center;
 color: #000;
 padding-top: 20px;
}

There are styles that describe the look and skin of the elements. The duplication is a
good reason to extract them in a separate definition. Continue the preceding code
as follows:

.colors-skin {
 background: #BADA55;
 color: #000;
}
.header {
 width: 960px;
 margin: 0 auto;
}
.footer {
 text-align: center;
 padding-top: 20px;
}

It's nice that we can use the same .colors-skin class against other elements or even
better, we can change the whole theme of the page with just one little modification in
that particular class.

https://github.com/stubbornella/oocss/wiki
https://github.com/stubbornella/oocss/wiki

Writing Flexible and Modular CSS

[188]

Separate container and content
The idea is that every element should have its styles applied no matter what context
it is put in. Let's use the following code as an example:

.header .login-form {
 margin-top: 20px;
 background: #FF0033;
}

At some point, we may need to put the same form in the footer of the site. The 20px
value and the #FF0033 color, which we applied, will be lost because the form does
not live in the header anymore. So, avoiding such selectors will help us to prevent
such situations. Of course, we can't follow this principle for every element, but it is a
really good practice overall.

Scalable and modular architecture for CSS
Jonathan Snook introduced another interesting approach called Scalable and
modular architecture for CSS (SMACSS) (http://smacss.com/). His idea was to
categorize the styles of the application into different categories as follows:

• Basic selectors: Basic selectors such as those for float clearing or the base
font sizes

• Layout: The CSS styles defining the grid of the page
• Modules: These are similar to the BEM block, that is, a group of elements

that form a meaningful block
• State: CSS styles that define the state of the elements, for example, pressed,

expanded, visible, hidden, and so on
• Theme: Theme rules are similar to the state rules in which they describe how

modules or layouts might look

Constructing the style sheet in this manner organizes the selectors very well. We can
create different directories or files for the different categories, and in the end we will
have everything properly set up.

Atomic design
Atomic design (http://bradfrostweb.com/blog/post/atomic-web-design), a
concept presented by Brad Frost, is a simple but really powerful approach. We know
that the basic unit of matter is an atom. Applying this to CSS, we can define the atom
as a simple HTML tag:

<label>Search the site</label>

http://smacss.com/
http://bradfrostweb.com/blog/post/atomic-web-design

Chapter 10

[189]

The atom contains some basic styling such as color, font size, or line height. Later, we
can combine the atoms into molecules. The following example shows how a form tag
is made of few atoms:

<form>
 <label>Search the site</label>
 <input type="text" placeholder="enter keyword" />
 <input type="submit" value="search" />
</form>

Properly styling and combining little blocks brings flexibility. If we follow this
concept, we can reuse the same atoms again and again or put any molecule in
a different context. Brad Frost didn't stop here. He continued by saying that the
molecules can be merged into organisms and the organisms into templates. For
example, the login form and the main-menu molecules define an organism header.

All the concepts mentioned in this section are not ideal for every project. However,
all of them have something valuable to use. We should try not to follow them strictly
but get the rules which fit best in our current application.

Exploring CSS preprocessors
Preprocessors are tools that accept code and compile it. In our context, such
instruments output CSS. There are few big benefits of using preprocessors.

• Concatenation: Writing everything in one single .css file is not an option
anymore. We all need to split our styles logically and this normally happens
by creating a bunch of different files. CSS has a mechanism to import one file
from another—the @import directive. However, by using it, we are forcing
the browser to create another HTTP request to the server, which can decrease
the performance of our application. CSS preprocessors normally deliver only
one file by replacing the functionality of @import and simply concatenating
all the used files.

• Extending: We don't like to write things over and over again and with pure
CSS coding, this happens all the time. The good news is that preprocessors
provide a feature that solves this problem. It's called a mixin. We can think of
it as a function which is executed and all the styles defined in it are applied
to the selector which calls it. We will see how this works in practice further in
this chapter.

• Configuration: Normally, we need to repeat colors, widths, and font sizes all
over the CSS file. By using the CSS preprocessor, we can put these values in
variables and define them in only one place. Switching to a new color scheme
or typography can happen really fast.

Writing Flexible and Modular CSS

[190]

The syntax used in most preprocessors is similar to the normal CSS. This allows
developers to start using them almost immediately. Let's check out the available
CSS preprocessors.

Using Less
Less is a CSS preprocessor based on Node.js. It is distributed as a Node.js module
and can be installed using the following command line:

npm install -g less

After the successful installation, we should be able to call the lessc command in
the terminal. Create a new styles.less file somewhere and put the following
code inside it:

body {
 width: 100%;
 height: 100%;
}

If we run lessc ./styles.less, we will see the same CSS shown as a result. The
approach, which is taken by Less, is to use a syntax close to the one used in the
normal CSS. So, in practice, every existing CSS code could be compiled by Less,
which comes in handy, because we can start using it without doing any preparation.

Defining variables
The variables in Less are defined as we write the CSS properties. We just have to put
the @ sign in front of the property's name, as shown in the following code snippet:

@textColor: #990;
body {
 width: 100%;
 height: 100%;
 color: @textColor;
}

Using mixins
Mixins are very useful when we want to transfer specific styles from one place to
another or even several places. Let's say, for example, that we have constant borders
that need to be set for different elements on our page. We will then use the following
code snippet:

.my-border() {
 border-top: solid 1px #000;

Chapter 10

[191]

 border-left: dotted 1px #999;
}
.login-box {
 .my-border();
}
.sidebar {
 .my-border();
}

We can skip the brackets of .my-border but then we will have the same class in the
resulted file. The code, as it is now, is compiled as follows:

.login-box {
 border-top: solid 1px #000;
 border-left: dotted 1px #999;
}
.sidebar {
 border-top: solid 1px #000;
 border-left: dotted 1px #999;
}

The mixins can accept parameters, which makes them one of the most important
features in Less.

.my-border(@size: 2px) {
 border-top: solid @size #000;
 border-left: dotted @size #999;
}
.login-box {
 .my-border(4px);
}
.sidebar {
 .my-border();
}

In the example, the size of the border is passed as a parameter. It also has a default
value of two pixels. The result after the compilation is as follows:

.login-box {
 border-top: solid 4px #000000;
 border-left: dotted 4px #999999;
}
.sidebar {
 border-top: solid 2px #000000;
 border-left: dotted 2px #999999;
}

Writing Flexible and Modular CSS

[192]

Structuring the styles into nested definitions
Very often, when we use descendent selectors, we end up with a really long style
definition. This is annoying because we have to type more and it is difficult to read.
CSS preprocessors solve that problem by allowing us to write nested styles. The next
code shows how we may nest selectors:

.content {
 margin-top: 10px;
 p {
 font-size: 24px;
 line-height: 30px;
 a {
 text-decoration: none;
 }
 small {
 color: #999;
 font-size: 20px;
 }
 }
}
.footer {
 p {
 font-size: 20px;
 }
}

This is much easier to understand and follow. We don't have to worry about
collisions either. For example, the paragraph in the .content element will have a
24-pixel font size and will not be mixed with the styles of the footer. That's because at
the end, we have properly generated selectors:

.content {
 margin-top: 10px;
}
.content p {
 font-size: 24px;
 line-height: 30px;
}
.content p a {
 text-decoration: none;
}
.content p small {
 color: #999;
 font-size: 20px;
}

Chapter 10

[193]

.footer p {
 font-size: 20px;
}

Less has a dozen other features such as math calculation, function definitions,
conditional mixins, and even loops. We can write a whole new book on this topic. A
full list of all the functionalities can be seen at http://lesscss.org/, which is the
official site of Less and contains its documentation.

Using Sass
There is another popular CSS preprocessor called Sass. It's actually not based on
Node.js but on Ruby. So, we need to install Ruby first. You can also find detail
information about how to install Ruby on the official download page: https://www.
ruby-lang.org/en/downloads. Once we have it properly set up, we need to run the
following command to get Sass:

gem install sass

After the execution, we have a command-line instrument installed, that is, sass, and
we can run it against a .sass or .scss file. The syntax used in the .sass files looks
like the one used in Stylus (we will learn about this in the Using Stylus section), and
the syntax used in the .scss file is similar to the Less variant. At first, Less and Sass
look pretty similar. Sass uses the $ sign in front of the variables, while Less uses the
@ sign. Sass has the same features as Less—conditional statements, nesting, mixins,
extending. The following code is a short example:

$brandColor: #993f99;

@mixin paragraph-border($size, $side: '-top') {
 @if $size > 2px {
 border#{$side}: dotted $size #999;
 } @else {
 border#{$side}: solid $size #999;
 }
}

body {
 font-size: 20px;
 p {
 color: $brandColor;
 @include paragraph-border(3px, '-left')
 }
}

http://lesscss.org/
https://www.ruby-lang.org/en/downloads
https://www.ruby-lang.org/en/downloads

Writing Flexible and Modular CSS

[194]

The preceding code produces the following CSS code:

body {
 font-size: 20px;
}
body p {
 color: #993f99;
 border-top: dotted 3px #999;
}

There are two keywords: @mixin and @include. The first one defines the mixin and
the second one is needed during its usage.

Using Stylus
Stylus is another popular CSS preprocessor written in Node.js. Similar to Less, Stylus
also accepts the usual CSS syntax. However, it introduces another type of writing—
without braces, colons, and semicolons. The following code is a short example:

body {
 font: 12px Helvetica, Arial, sans-serif;
}
a.button {
 -webkit-border-radius: 5px;
 -moz-border-radius: 5px;
 border-radius: 5px;
}

In Stylus, the CSS code produced may look like the following code snippet:

body
 font 12px Helvetica, Arial, sans-serif

a.button
 -webkit-border-radius 5px
 -moz-border-radius 5px
 border-radius 5px

The language uses the indentation to recognize the definitions. Stylus is distributed
as a Node.js module and can be installed using the npm install -g stylus
command line. Once the process is completed, we can compile with the
following command:

stylus ./styles.styl

Chapter 10

[195]

This is the command line where styles.styl contains the necessary CSS. As a
result, we will get the styles.css file in the same directory.

Stylus is a little bit more advanced than Less. It still supports the same features but has
more logical operators. Let's see an example that demonstrates most of its features:

brandColor = #FF993D
borderSettings = { size: 3px, side: '-top' }

paragraph-border(size, side = '')
 if size > 2px
 border{side}: dotted size #999
 else
 border{side}: solid size #999

body
 font-size: 20px
 p
 color: brandColor
 paragraph-border(borderSettings.size, borderSettings.side)

The first line defines a variable called brandColor. Later, this variable is used to set
the color of the paragraph. Stylus supports hash objects as a value of the variables.
It's really nice because we can define a set of options. In the preceding example,
borderSettings holds the size and the position of the paragraph's border. The
paragraph-border mixin accepts two arguments. The second one is not mandatory
and has a default value. There is an if-else statement that defines the type of the
applied border. Similar to Less, we have the ability to nest selectors. The paragraph's
styles are nested inside the body selector. After the compilation, the resulted CSS is
as follows:

body {
 font-size: 20px;
}
body p {
 color: #ff993d;
 border-top: dotted 3px #999;
}

Working with AbsurdJS
AbsurdJS is another CSS preprocessor available in Node.js that takes a slightly
different direction. Instead of inventing a new syntax, it uses the already existing
language—JavaScript. So, features such as variables, mixins, or logical operators
came naturally without any additional effort.

Writing Flexible and Modular CSS

[196]

Similar to the other preprocessors, AbsurdJS is distributed via the package manager
of Node.js. The following command line installs the library on your machine:

npm install -g absurd

The CSS styles are written in the .js files. In fact, the library accepts the .css, .json,
and .yaml files and successfully processes them, but in this book we will stick to the
JavaScript format because it is the most interesting one. Every file which is passed to
AbsurdJS starts with the following code:

module.exports = function(api) {
 // ...
}

The function that is exported accepts the API of the module. All the operations
work through the API object. Because everything is in JavaScript, the CSS styles are
represented in the JSON format. The following is an example code:

module.exports = function(api) {
 api.add({
 body: {
 fontSize: '20px',
 margin: '0 12px'
 }
 })
}

The code is compiled to the following CSS:

body {
 font-size: 20px;
 margin: 0 12px;
}

AbsurdJS could work as a command-line tool. To process a styles.js file
containing the preceding code snippet, we should execute the following code:

absurd -s ./styles.js -o ./styles.css

The -s flag comes from the source and -o from the output. The module can be used
in code as well as to integrate AbsurdJS into every Node.js application. All we have
to do is add the library in our package.json file and require it as shown in the
following code:

var absurd = require('absurd')();
absurd.add({
 body: {

Chapter 10

[197]

 fontSize: '20px',
 marginTop: '10px'
 }
}).compile(function(err, css) {
 // ...
});

Actually, the same thing is valid for the Less preprocessor. It could be used in a
Node.js script too.

While discussing Sass and Stylus, we used an example: a few lines of code that put a
border on the page's paragraph tag. The following code elaborates how this can be
achieved using AbsurdJS:

module.exports = function(api) {
 var brandColor = '#993f99';
 var paragraphBorder = function(size, side) {
 var side = side ? side : '-top';
 var result = {};
 result['border' + side] = (size > 2 ? 'dotted ' : 'solid ') + size
+ 'px #999';
 return result;
 }
 api.add({
 body: {
 fontSize: '20px',
 p: [
 { color: brandColor },
 paragraphBorder(3, '-left')
]
 }
 });
}

It's all about constructing JavaScript objects and passing them to the add method.
There is still nesting, defining variables, and using a mixin (paragraphBorder).

Styling a simple login form
We will now write the CSS styles for a simple login form. The HTML markup is
pretty simple. It has two labels, two input fields, and two buttons, as shown in the
following code:

<form method="post" id="login">
 <label>Your username</label>

Writing Flexible and Modular CSS

[198]

 <input type="text" name="u" />
 <label>Your password</label>
 <input type="password" name="p" />
 <input type="submit" value="login" />
 <input type="button" value="forgot" />
</form>

The result that we want to achieve at the end looks like the following screenshot:

As a preprocessor, we are going to use AbsurdJS and write our styles in the
JavaScript format. Let's create an empty style.js file and enter the following code:

module.exports = function(api) {
 var textColor = '#9E9E9E';
 var textColorLight = api.lighten('#9E9E9E', 50);
 var textColorDark = api.darken('#9E9E9E', 50);
 var brandColor = '#8DB7CD';
 var brandColorLight = api.lighten('#8DB7CD', 50);
 var brandColorDark = api.darken('#8DB7CD', 30);
 var warning = '#F00';
}

We defined the settings of the page. They are only colors in our case, but it could
be anything else, for example, font size, margin, or the space between the lines.
The api.lighten and api.darken functions are used to produce variants of
colors. They change the passed values by making them lighter or darker
depending on the percentages.

Chapter 10

[199]

We have our configurations set up and we can continue with the following
basic CSS:

api.add({
 body: {
 width: '100%', height: '100%',
 margin: 0, padding: 0,
 color: textColor,
 fontFamily: 'Arial'
 }
});

These styles are applied to the body tag of our page. If we open the page now, we
will see the following result:

This is because we have still not worked on the form. Let's continue and define the
basic rules for it, using the following code:

api.add({
 body: {
 width: '100%', height: '100%',
 margin: 0, padding: 0,
 color: textColor,
 fontFamily: 'Arial',
 '#login': [
 {
 width: '400px',
 margin: '0 auto',
 padding: '30px 0 0 30px',
 label: {
 display: 'block',
 margin: '0 0 10px 0',
 color: textColorDark
 }
 }
]
 }
});

Writing Flexible and Modular CSS

[200]

The #login selector matches the form. We position it in the middle of the page and
set padding from the top and bottom sides. We are also making the label tag a block
element. Now the example looks much better, as shown in the following screenshot:

If we check the HTML markup, which we started from, we will see that the rest of
the elements are the input tags, that is, two fields and two buttons. Let's create a
function (mixin), which will generate CSS for these elements:

var input = function(selector, addons) {
 var result = {};
 result[selector] = {
 '-wm-border-radius': '4px',
 '-wm-box-sizing': 'border-box',
 marginBottom: '20px',
 border: 'solid 3px ' + brandColor,
 width: '100%',
 padding: '8px',
 '&:focus': {
 outline: 0,
 background: textColorLight
 }
 }
 if(addons) {
 for(var prop in addons) {
 result[selector][prop] = addons[prop];
 }
 }
 return result;
}

The input method accepts a selector and an object. Because we will use the function
to style fields and at the same buttons, we need a mechanism to add custom rules.
The addons object (if defined) holds those styles which need to be set in addition.
There are two properties that may look strange: -wm-border-radius and -wm-box-
sizing. The -wm- property, at the beginning, adds browser prefixes to the end CSS.
For example, -wm-box-sizing: border-box produces the following output:

Chapter 10

[201]

box-sizing: border-box;
-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;

The &:focus property is also a special property. The ampersand represents the
selector in which the style is written. At the end of the function, we added the
custom CSS. Now, let's see the use case:

'#login': [
 {
 width: '400px',
 margin: '0 auto',
 padding: '30px 0 0 30px',
 label: {
 display: 'block',
 margin: '0 0 10px 0',
 color: textColorDark
 }
 },
 input('input[type="text"]'),
 input('input[type="password"]', {
 marginBottom: '40px'
 }),
 input('input[type="submit"]', {
 gradient: brandColorLight + '/' + brandColor,
 width: '80px'
 }),
 input('input[type="button"]', {
 gradient: brandColorLight + '/' + brandColor,
 width: '80px',
 transparent: 0.6,
 '&:hover': {
 transparent: 1
 }
 })
]

For the input fields, we call the input method with only a selector. However, for
the buttons, we need more styles and they are passed as a JavaScript object.
AbsurdJS has built-in mixins that allow us to generate cross-browser CSS, for
example, the gradient and transparent properties. The result of the execution
of the gradient property is:

/* gradient: brandColorLight + '/' + brandColor */

background: -webkit-linear-gradient(0deg, #d4ffff 0%, #8DB7CD 100%);

Writing Flexible and Modular CSS

[202]

background: -moz-linear-gradient(0deg, #d4ffff 0%, #8DB7CD 100%);

background: -ms-linear-gradient(0deg, #d4ffff 0%, #8DB7CD 100%);

background: -o-linear-gradient(0deg, #d4ffff 0%, #8DB7CD 100%);

background: linear-gradient(0deg, #d4ffff 0%, #8DB7CD 100%);

-ms-filter: progid:DXImageTransform.Microsoft.gradient
(startColorstr='#FF8DB7CD',endColorstr='#FFD4FFFF',
GradientType=0);

Also, the result of the execution of the transparent property is as follows:

/* transparent: 0.6 */

filter: alpha(opacity=60);

-ms-filter: progid:DXImageTransform.Microsoft.Alpha(Opacity=60);

opacity: 0.6;

-moz-opacity: 0.6;

-khtml-opacity: 0.6;

Using a mixin is much easier than writing all these things by ourselves. Once we
add the input invocations, we are done. AbsurdJS produces the desired result.

Summary
CSS is and will always be an important part of the Web. Making it simple, well-
structured, and with a flexible markup leads to a good architecture. In this chapter, we
learned about the most popular concept to write modular CSS. Along with that, we
checked the latest trends in CSS preprocessing, the available tools, and their features.

Node.js is fast and is very often used as a REST API. In the next chapter, we will see
how to write a REST API and what the best practices in this direction are.

Writing a REST API
In the previous chapter, we learned how to optimize our CSS writing. We learned
about the most popular architectural concepts and checked out the available CSS
preprocessors. This chapter is about building a REST API with Node.js. We are
going to:

• Run a web server
• Implement routing mechanisms
• Process the incoming requests
• Send a proper response

Discovering REST and API
REST stands for Representational State Transfer and it is an architectural principle
of the Web. In most of the cases, we have resources on the server that need to
be created, fetched, updated, or deleted. The REST APIs provide mechanisms to
perform all these operations. Every resource has its own URI and based on the
request method, a different action occurs. For example, let's say that we need to
manage the users in our social network. To retrieve information about a specific user,
we will perform the GET request to the /user/23 address, where the number, 23,
is the ID of the user. To update the data, we will send the PUT request to the same
URL, and to delete the record, we'll send the DELETE request. The POST requests are
reserved to create new resources. In other words, the resources' management on the
server happens via HTTP requests sent to carefully selected addresses by using the
GET, POST, PUT, and DELETE methods, which are very often called HTTP verbs. A lot
of companies adopt this architecture because it is simple, works through the HTTP
protocol, and is highly scalable. There are, of course, different approaches such as
SOAP or CORBA but we have many more rules to follow and the communication
between the machines is very often complicated.

Writing a REST API

[204]

According to Wikipedia, an Application Programming Interface (API) specifies how
some software components should interact with each other. The API is usually the
part of our program that is visible to the outside world.

In this chapter, we will build one. It's an API of a simple online books library. The
resources are the books and they will be accessed through the REST API.

Developing an online library – a REST API
The development of a REST API is the same as the development of every other
Node.js application. We need to plan it and carefully implement the different
components one by one.

Defining the API parts
It's always good to have a plan before starting a new project. So, let's define the main
parts of the API server as follows:

• Router: We know that Node.js starts listening on a port and accepts an HTTP
requests. So, we need a class that will handle them and pass the request to
the right logic.

• Handler: This is the place where our logic will be put in. It will process the
request and prepare the response.

• Responder: We also need a class that will send the result to the browser.
Very often the API has to respond in different formats. For example, XML
and, at the same time, JSON.

Writing the base
Node.js is very often used to build REST APIs. Also, because it is a common task,
we have several possible approaches. There are even ready-to-use modules such as
rest.js or restify. However, we are going to build our REST API from scratch
because it will be much more interesting and challenging. We will start by running
a Node.js server. Let's create an empty directory and put the following code into the
index.js file:

var http = require('http');
var router = function(req, res) {
 res.end('API response');
}
http.createServer(router).listen('9000', '127.0.0.1');
console.log('API listening');

Chapter 11

[205]

If we run the script with node ./index.js, we will be able to open
http://127.0.0.1:9000 and see API response on the screen. All the incoming
requests are going through a function. That's the place for our router.

Implementing the API router
In almost every web-based Node.js application, the router plays one of the main
roles. That's because it is the entry point of the program. That's the place where the
URL is mapped to logic and the request is processed. The router for the REST API
should be a little bit more advanced, because it should handle not only the usual
GET and POST requests but also PUT and DELETE. Along with our index.js, we need
another file called router.js. So, add the following code to the router.js file:

var routes = [];
module.exports = {
 register: function(method, route, handler) {
 routes.push({ method: method, route: route, handler:
 handler });
 },
 process: function(req, res, next) {
 // ...
 }
}

The module exports an object with two methods. The first one (register) stores
records in the routes variable. The second method (process) will be used as a
handler of the createServer method in index.js. The following code demonstrates
how our router is used:

var http = require('http');
var router = require('./router');
http.createServer(router.process).listen('9000', '127.0.0.1');
console.log('API listening');

The first parameter of the register method will be the HTTP verbs as a string: GET,
POST, PUT, or DELETE. The route parameter will be a regular expression and, the last
one, a function will be called if the expression matches the current URL.

The process method will do several things. It will run the defined regular expression
against the current request. It will also do few more things, which are as follows:

• Fetching the GET parameters from the URL
• Fetching the POST/PUT parameters passed with the request
• Supporting dynamic URLs

Writing a REST API

[206]

All these mentioned things could be implemented outside the router variable but
because they are common tasks and we will probably have them in several places,
we will add them in the following code. The following code is the full code of the
router's process method:

process: function(req, res, next) {
 var urlInfo = url.parse(req.url, true);
 var info = {
 get: urlInfo.query,
 post: {},
 path: urlInfo.pathname,
 method: req.method
 }
 for(var i=0; i<routes.length; i++) {
 var r = routes[i];
 var match = info.path.match(r.route);
 if((info.method === r.method || '' === r.method) && match) {
 info.match = match;
 if(info.method === 'POST' || info.method === 'PUT') {
 processRequest(req, function(body) {
 info.post = body;
 r.handler(req, res, info);
 });
 } else {
 r.handler(req, res, info);
 }
 return;
 }
 }
 res.end('');
}

There is an info object holding the data which we talked about. We cycled over all
the routes and tried to find one which has method and regular expression matching.
We also checked if the request method is POST or PUT and got the sent information.
At the end, if there is no matching route, we send an empty string. To get the
preceding code working, we need to define two variables and one function, which
are done in the following code:

var url = require('url');
var qs = require('querystring');
var processRequest = function(req, callback) {
 var body = '';
 req.on('data', function (data) {

Chapter 11

[207]

 body += data;
 });
 req.on('end', function () {
 callback(qs.parse(body));
 });
}

The entities, url and querystring, are native Node.js modules. The
processRequest variable is needed because Node.js handles the POST/PUT
parameters differently.

By using the preceding code, we are able to add routes and check if they work
properly. For example, see the following code in the index.js file:

router.register('GET', /\/books(.+)?/, function(req, res, info) {
 console.log(info);
 res.end('Getting all the books')
});

Here, we run the server with node ./index.js and fire a request to
http://127.0.0.1:9000/books. The result is a text Getting all the books on
the screen, as shown in the following screenshot:

You will also see the following output in our terminal:

There is no sent data so the get and post properties are empty. Now, let's use the
following route:

router.register('POST', /\/book(.+)?/, function(req, res, info) {
 console.log(info);
 res.end('New book created')
});

Writing a REST API

[208]

We should make sure that our API accepts the POST and GET requests properly; we
can do that by using this route. If we send a POST request with the data name=Node.
js blueprints&author=Krasimir Tsonev to the http://127.0.0.1:9000/
book?notification=no URL, we will get the following result:

There is one more thing that our router does. It handles dynamic URLs. By dynamic,
we mean URLs such as /book/523/edit, where 523 is the unique ID of the book and
it can be something different and we want to process all requests of this type in one
specific handler as follows:

router.register('GET', /\/book\/(.+)\/(.+)?/,
 function(req, res, info) {
 console.log(info);
 res.end('Getting specific book')
});

The key moment here is the regular expression. There are two capturing parentheses.
The first one represents the ID of the book and the second one, the action that we
want to perform. For example, edit or delete. The response of 127.0.0.1:9000/
book/523/edit is as shown in the following screenshot:

As we can see, 523 and edit are a part of the match property and we can get them
easily. We can improve our router by adding a few additional helper methods. It's a
good practice to provide methods for every different type of request. The following
code shows how these methods look like:

get: function(route, handler) {
 this.register('GET', route, handler);
},
post: function(route, handler) {

Chapter 11

[209]

 this.register('POST', route, handler);
},
put: function(route, handler) {
 this.register('PUT', route, handler);
},
del: function(route, handler) {
 this.register('DELETE', route, handler);
},
all: function(route, handler) {
 this.register('', route, handler);
}

Instead of router.register('GET', /\/book\/(.+)\/(.+)?/..., we can now
write router.get(/\/book\/(.+)\/(.+)?/..., which is a little bit better. The all
function could be used if we need to handle a specific URL but don't care about the
request method. The same approach is used in the Express framework, where we
have the get, post, put, delete, and all methods.

Writing the responder
Before writing the logic of our little REST API library, we need a proper responder,
that is, a class which we will use to send the result to the browser. There is something
really important that we need to take care of while we are talking about a server
which works as an API. Along with the data, we have to send a proper status code.
For example, 200 if everything is fine or 404 if the resource is missing.

Our responder will be saved in the responder.js file located in the same directory
as index.js and router.js. The module starts with the following code:

module.exports = function(res) {
 return {
 c: 200,
 code: function(c) {
 this.c = c;
 return this;
 },
 send: function(content) {
 res.end(content.toString('utf8'));
 this.c = 200;
 return this;
 }
 }
}

Writing a REST API

[210]

The module requires the response object in order to send the result to the browser.
The code method sets the status code. We can get the latest used route and transform
it to the following code:

var responder = require('./responder');
router.get(/\/book\/(.+)\/(.+)?/, function(req, res, info) {
 console.log(info);
 responder(res).code(200).send('Getting specific book');
});

At the beginning of this chapter, we said that the API should be able to respond in
different formats. We have to add a few methods in the responder to make
this possible:

json: function(o) {
 res.writeHead(this.c, {'Content-Type':
 'application/json; charset=utf-8'});
 return this.send(JSON.stringify(o));
},
html: function(content) {
 res.writeHead(this.c, {'Content-Type': 'text/html;
 charset=utf-8'});
 return this.send(content);
},
css: function(content) {
 res.writeHead(this.c, {'Content-Type': 'text/css;
 charset=utf-8'});
 return this.send(content);
},
js: function(content) {
 res.writeHead(this.c, {'Content-Type': '
 application/javascript; charset=utf-8'});
 return this.send(content);
},
text: function(content) {
 res.writeHead(this.c, {'Content-Type':
 'text/plain; charset=utf-8'});
 return this.send(content);
}

By adding these functions, we are actually able to serve JSON, HTML, CSS,
JavaScript, and plain text. The class sends a header to the browser specifying the
status code, Content-Type and charset. All the methods of the responder return
the class itself, so we can chain them.

Chapter 11

[211]

Working with the database
In Chapter 3, Writing a Blog Application with Node.js and AngularJS, we used MongoDB
and MySQL. We learned how to read, write, edit, and delete records from these
databases. Let's use MongoDB in this chapter, too. We will store our data in a
collection named books. To use the database driver, we need to create a package.
json file and put the following content in it:

{
 "name": "projectname",
 "description": "description",
 "version": "0.0.1",
 "dependencies": {
 "mongodb": "1.3.20"
 "request": "2.34.0"

 }
}

After running npm install, we will be able to connect to the MongoDB server by
using the driver installed in the node_modules directory. The code that we need to
interact with the database is the same as the one used in Chapter 3, Writing a Blog
Application with Node.js and AngularJS, which is as follows:

var crypto = require("crypto"),
 client = require('mongodb').MongoClient,
 mongodb_host = "127.0.0.1",
 mongodb_port = "27017",
 collection;

var connection = 'mongodb://';
connection += mongodb_host + ':' + mongodb_port;
connection += '/library';
client.connect(connection, function(err, database) {
 if(err) {
 throw new Error("Can't connect.");
 } else {
 console.log("Connection to MongoDB server successful.");
 collection = database.collection('books');
 }
});

The crypto module will be used to generate a unique ID for the newly created
records. There is a MongoDB client initialized. It is connected to the server and
makes the collection variable point to the books collection. That's all we need. We
can now manage records of our books.

Writing a REST API

[212]

Creating a new record
The adding of a new book into the database should happen via the POST request. The
following code is the route that will handle this task:

router.post(/\/book/, function(req, res, info) {
 var book = info.post;
 book.ID = crypto.randomBytes(20).toString('hex');
 if(typeof book.name == 'undefined') {
 responder(res).code(400).json({error: 'Missing name.'});
 } else if(typeof book.author == 'undefined') {
 responder(res).code(400).json({error: 'Missing author.'});
 } else {
 collection.insert(book, {}, function() {
 responder(res).code(201.json({message:
 'Record created successful.'});
 });
 }
});

The URL to add a new book is /book. It can be accessed via the POST method. The
expected parameters are name and author. Notice that we are setting the status code
as 400 if any of these are missing. 400 means Bad request. If the user forgets to pass
them, we should notify him or her of what exactly is wrong. This is really important
while designing an API. The developers who use our services should know why they
didn't get the proper response. Very often, the well designed APIs could be used
without documentation. That's because their methods provide
enough information.

The book's data is written in the JSON format and the answer to the browser is also
sent in the JSON format. The following screenshot is a preview of the record saved in
the database:

Chapter 11

[213]

Editing a record
To implement editing, we will use the PUT method. We will also need to define a
dynamic route. The following code creates the route and the proper handler:

router.put(/\/book\/(.+)?/, function(req, res, info) {
 var book = info.post;
 if(typeof book.name === 'undefined') {
 responder(res).code(400).json({error: 'Missing name.'});
 } else if(typeof book.author === 'undefined') {
 responder(res).code(400).json({error: 'Missing author.'});
 } else {
 var ID = info.match[1];
 collection.find({ID: ID}).toArray(function(err, records) {
 if(records && records.length > 0) {
 book.ID = ID;
 collection.update({ID: ID}, book, {}, function() {
 responder(res).code(200).json({message:
 'Record updated successful.'});
 });
 } else {
 responder(res).code(400).json({error: 'Missing record.'});
 }
 });
 }
});

Along with the checks for missing name and author, we need to make sure that
the ID that is used in the URL exists in our database. If not, a proper error message
should be sent.

Deleting a record
The deletion of records is really similar to the editing. We will again need a dynamic
route. When we have the ID of the book, we can check if it really exists and if yes,
simply remove it from the database. Checkout the following implementation that
does the actions that we just described:

router.del(/\/book\/(.+)?/, function(req, res, info) {
 var ID = info.match[1];
 collection.find({ID: ID}).toArray(function(err, records) {
 if(records && records.length > 0) {
 collection.findAndModify({ID: ID}, [], {},
 {remove: true}, function() {

Writing a REST API

[214]

 responder(res).code(200).json({message:
 'Record removed successfully.'});
 });
 } else {
 responder(res).code(400).json({error: 'Missing record.'});
 }
 });
});

Displaying all the books
This is maybe the simplest API method, which we will have to implement. There
is a query to the database and the result is directly passed to the responder. The
following code defines a route books that fetches all the records from the database:

router.get(/\/books/, function(req, res, info) {
 collection.find({}).toArray(function(err, records) {
 if(!err) {
 responder(res).code(200).json(records);
 } else {
 responder(res).code(200).json([]);
 }
 });
});

Adding a default route
We should have a default route, that is, a page that will be sent if the user types in a
wrong URL or just visits the root address of the API. In order to catch every type of
request, we use the all method of the router:

router.all('', function(req, res, info) {
 var html = '';
 html += 'Available methods:
';
 html += '';
 html += 'GET /books';
 html += 'POST /book';
 html += 'PUT /book/[id]';
 html += 'DELETE /book/[id]';
 html += '';
 responder(res).code(200).html(html);
});

Chapter 11

[215]

We constructed a simple HTML markup and sent it to the user. The route's regular
expression is just an empty string, which matches everything. We are also using the
.all function, which handles any type of request. Notice that we need to add this
route after all the others; otherwise, if it is at the start, all the requests will go there.

Testing the API
To make sure that everything works, we will write a few tests covering all the
methods mentioned in the previous sections. In Chapter 9, Automate Your Testing with
Node.js, we learned about Jasmine and Mocha test frameworks. The following test
suite uses Jasmine. We will also need one additional module to make HTTP requests.
The module is called request and we can get it using npm install request or by
adding it to our package.json file. The following are the steps along with the code
to test the API:

1. Let's first test the creation of a new database record:
var request = require('request');
var endpoint = 'http://127.0.0.1:9000/';
var bookID = '';
describe("Testing API", function() {
 it("should create a new book record", function(done) {
 request.post({
 url: endpoint + '/book',
 form: {
 name: 'Test Book',
 author: 'Test Author'
 }
 }, function (e, r, body) {
 expect(body).toBeDefined();
 expect(JSON.parse(body).message).toBeDefined();
 expect(JSON.parse(body).message).toBe
 ('Record created successfully.');
 done();
 });
 });
});

We are using the .post method of the module. The needed data is attached
to a form property. Also, we expect to receive the JSON object containing a
specific message.

Writing a REST API

[216]

2. To get all the books in the database, we need to perform a request to
http://127.0.0.1:9000/books:
it("should get all the books", function(done) {
 request.get({
 url: endpoint + '/books'
 }, function (e, r, body) {
 var books = JSON.parse(body);
 expect(body).toBeDefined();
 expect(books.length > 0).toBeDefined();
 bookID = books[0].ID;
 expect(bookID).toBeDefined();
 done();
 });
});

3. The editing and removing operations are similar to the POST and GET
requests except for the fact that we are passing an ID. Also, we got it from the
last test where we fetched all the records in the collection:

it("should edit", function(done) {
 request.put({
 url: endpoint + '/book/' + bookID,
 form: {
 name: 'New name',
 author: 'New author'
 }
 }, function (e, r, body) {
 expect(body).toBeDefined();
 expect(JSON.parse(body).message).toBeDefined();
 expect(JSON.parse(body).message).toBe
 ('Record updated successfully.');
 done();
 });
});
it("should delete a book", function(done) {
 request.del({
 url: endpoint + '/book/' + bookID
 }, function (e, r, body) {
 expect(body).toBeDefined();
 expect(JSON.parse(body).message).toBeDefined();
 expect(JSON.parse(body).message).toBe
 ('Record removed successfully.');
 done();
 });
});

Chapter 11

[217]

Summary
In this chapter, we built a REST API to store information about books. Node.js
handles such tasks well because it has easy-to-work native modules. We successfully
covered the GET, POST, PUT, and DELETE requests that created an interface to manage
a simple online library.

In the next and last chapter of this book, we will build a desktop application. We will
learn how Node.js can be used not only for web projects, but for desktop programs
too. By the end of the next chapter, we should have a working file browser written
with Node.js.

Developing Desktop Apps
with Node.js

In the previous chapter, we implemented a REST API and built a server that
processes various requests. Most of the chapters in this book present web
technologies, applications that work in a browser with the HTTP protocol. It's
interesting that Node.js can be used to produce desktop programs, and we don't
have to learn a new language or use a new tool. We can continue using HTML, CSS,
and JavaScript. This is a great benefit because these technologies are easy to learn
and develop. Node.js is also really fast: We save a lot of time when dealing with large
amounts of written modules because we don't have to deal with trivial problems. In
this chapter, we will write a file browser. Our application will perform the following:

• Run as a desktop program
• Read the files from our hard drive and display them on the screen
• Display images

Using node-webkit
There are several tools available to write desktop apps. We will use node-webkit
(https://github.com/rogerwang/node-webkit). It's an app runtime based on
Chromium and Node.js. It's distributed as a binary program we run to see the result
of our code. It is available for all the major operating systems—Linux, Windows,
and Mac. So during the development, we will use the nw executable file, which is
the same as using the node executable to run Node.js scripts. The nw file can be
downloaded from the official repository of the tool in GitHub.

https://github.com/rogerwang/node-webkit

Developing Desktop Apps with Node.js

[220]

Every desktop application written with node-webkit must contain at least two files:
package.json and the main HTML file. Similar to the modules we wrote so far,
the package.json file holds the configuration of our application. The following is a
simple example:

{
 "name": "nw-demo",
 "main": "index.html"
}

It's important that we set a value for the main property. It should point to the main
HTML file of our file browser. The path is relative to the location of the package.
json file. The content of index.html will be something like the following:

<!DOCTYPE html>
<html>
 <head>
 <title>Hello World!</title>
 </head>
 <body>
 <h1>Hello World!</h1>
 We are using node.js
 <script>document.write(process.version)</script>.
 </body>
</html>

This is just a regular HTML page, except for the code placed between the script
tags. The document.write method is available in every modern browser. However,
process is a Node.js global object. The example is a simple one, but we can see
the power of node-webkit. In practice, we can mix the client-side JavaScript with a
server-side JavaScript, which is run in the context of our machine. We can code like
we do in the Node.js environment while still having access to the DOM of the page.

The following are two ways to run the app:

• We can navigate to the directory that contains the files and run nw ./
• We can zip the two files to myapp.zip for example, rename the archive to

myapp.nw, and run nw myapp.nw

Once we are done programming, we can pack it along with the node-webkit
executable. For end-users, this means not having to install additional software or
download node-webkit separately. This makes the distribution much easier. There
are some rules that we as developers should follow, for example, ship few .dll file
(under Windows OS) and license files. However, it's good to know that it is possible
to pack the project and run it on other machines without installing dependencies.

Chapter 12

[221]

The steps to do this depend on the operating system and are well-defined in the
official documentation (https://github.com/rogerwang/node-webkit). As
mentioned, node-webkit is based on Chromium. Generally, when we write a client-
side JavaScript or CSS, we deal with a lot of problems because there are differences
between the browsers. However, here we have only one browser and don't have
to think about tricky workarounds. All we have to do is write code that works
under Webkit. We can also use almost the same developer tools panel that we
have in Google Chrome. After launching our application, we will see the following
window— that is, a window produced by node-webkit:

There is a small button in the upper-right corner, which gives us access to the
Elements, Network, Sources, Timeline, Profiles, Resources, Audits, and
Console panels. When we click the button we will see a window like the one in
the following screenshot:

Having the same instruments simplifies the debugging and testing processes. As we
pointed out at the beginning of this chapter, we don't have to learn a new language
or use different technologies. We can stick to the usual HTML, CSS, and JavaScript.

https://github.com/rogerwang/node-webkit

Developing Desktop Apps with Node.js

[222]

Writing the base of the application
Before starting the actual implementation of our file browser, we must prepare the
HTML layout, the base of the JavaScript part, and the package.json file.

Writing the package.json file
The package.json file should be placed in the main path of the project. It's a file
with content similar to the following code:

{
 "name": "FileBrowser",
 "main": "index.html",
 "window": {
 "toolbar": true,
 "width": 1024,
 "height": 800
 }
}

We already discussed the name and main properties. The window object is a desktop-
specific setting; it tells node-webkit how the main application's window should
look. In the preceding code, we set only three properties. The width and height
properties defines the window size and toolbar hides or shows the uppermost
panel, the one that makes our program look like a browser. Usually, we don't need
it and at the end of the development cycle, we set toolbar to false. There are few
other options we can apply, for example, title or icon. We can even hide the close,
maximize, and minimize buttons.

Preparing the HTML layout
The HTML code we start with preparing the layout is as follows:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>FileBrowser</title>
 <link rel="stylesheet" href="css/styles.css">
 <link rel="stylesheet"
 href="css/font-awesome-4.0.3/css/font-awesome.min.css">
 <script src="js/scripts.js"></script>
 </head>
 <body>

Chapter 12

[223]

 <section class="tree-area">
 <div class="current-location"></div>
 <div class="tree"></div>
 </section>
 <section class="file-info"></section>
 </body>
</html>

There are two CSS files. The first one, styles.css, contains the styles written
specifically for our application and the second one, uses the cool font icons from
font-awesome, icons that are represented by a font and not an image. The exact
content of this resource is not included in this chapter, but you can find it in the
additional material provided with the book.

Also, a scripts.js file will host the JavaScript logic of the file browser.

The application has the following two parts:

• tree: This is where we will show the current directory's name and its content
(files and folders)

• file info: If a file is selected, this area will show some of its characteristics and
the buttons to copy, move, and delete

If we run node-webkit with the preceding code, the result will be as follows:

Designing the JavaScript base
Let's open the scripts.js file and see how to structure the JavaScript code.
At the beginning of the file, we define the required Node.js modules and a global
variable, root:

var fs = require('fs');
var path = require('path');
var root = path.normalize(process.cwd());

Developing Desktop Apps with Node.js

[224]

We use the fs module for all filesystem-related operations. The path module
contains utility methods used to work with file paths. There are some differences
between the operating systems for example, in Windows, the paths are written with
a backslash, whereas in Linux, it uses a forward slash. The path.normalize method
takes care of this by correcting the string to it proper format depending on the OS.

The first folder we are going to read will be the directory the application is started in.
Thus, we are use process.cwd() to get the current working directory.

It's not a good practice to work in the global scope, so we will create a JavaScript
class called Tree using the following code:

var Tree = function() {

 var api = {},
 el,
 currentLocationArea,
 treeArea,
 fileArea

 api.cwd = root;
 api.csf = null;

 api.init = function(selector) {
 el = document.querySelector(selector);
 currentLocationArea = el.querySelector('.current-location');
 treeArea = el.querySelector('.tree');
 fileArea = document.querySelector('.file-info');
 return api;
 }

 return api;
}

The definition in the preceding code uses the revealing module pattern, which is a
great pattern to encapsulate the JavaScript logic. The api object is the public interface
of the class and is returned at the end. The variables el, currentLocationArea,
treeArea, and fileArea are private variables and represent the DOM elements on
the page. They are initialized in the init method. It's a good practice to cache the
queries to the DOM. By storing the elements' references in local variables, we avoid
the additional querySelector calls.

There are two public properties: cwd (current working directory) and csf (current
selected file). We make them public because we may need them outside the module.
In the beginning, there is no selected file and the value of csf is null.

Chapter 12

[225]

Similar to the development in the browser, we need an entry point. Our code is run
in Chromium, so using window.onload looks like a good choice. We will put our
initializing code inside the onload handler as follows:

var FileBrowser;
window.onload = function() {
 FileBrowser = Tree().init('.tree-area');
}

We simply create an instance of our class and call the init method. We are
passing the .tree-area parameter, the selector of the <section> tag, which
will display the files.

Displaying and using the working
directory
In this section, we will cover the main features of our file browser. At the end, our
application will read the current working directory. It will show its content and the
user will be able to navigate between the shown folders.

Displaying the current working directory
We put the value of api.cwd in the div with the currentLocation class. It is
represented by the currentLocationArea private variable. We only need a function
that sets the innerHTML property of the element:

var updateCurrentLocation = function() {
 currentLocationArea.innerHTML = api.cwd;
}

This is probably the simplest function of our class. We will call it every time we change
the directory, which can happen pretty often. It's a good idea to delegate this calling
to another method. Along with updating the current location area, we will refresh
the files area too. So, it makes sense to write a render function. At the moment, the
method calls only updateCurrentLocation, but we will add more functions later:

var render = function() {
 updateCurrentLocation();
}
api.init = function(selector) {
 ...
 render();
 return api;
}

Developing Desktop Apps with Node.js

[226]

Of course, we should call this render function inside the init method, which gives
us the result as follows:

Note that now our file browser shows the directory where the process starts from.

Showing the files and folders
In this part of the chapter, we will create a function that shows all the files and
folders placed inside the current working directory. This may sound like an excellent
feature, but it comes with its own problems. The major one is if we go to the root
of our filesystem, we have to show a large number of the items on the screen. So,
instead of building a giant tree, we will stop at the third level of nesting. Let's add
two new private variables:

var html = '';
var maxLevels = 3;

The html variable will keep the string we apply to the innerHTML property of the
treeArea element.

Our browser will process the files and the directories differently. If the user selects a
file, then it should display information about it such as when was the file created, its
size, and so on. Along with that our program will provide few buttons for operations
such as copying, moving, or deleting the file. If a folder is clicked, then the api.
cwd variable should be changed and the render method should be fired. The visual
representation should also be different. The following function will add a new item
to the tree:

var addItem = function(itemPath, fullPath, isFile, indent) {
 itemPath = path.normalize(itemPath).replace(root, '');
 var calculateIndent = function() {
 var tab = ' ', str = '';
 for(var i=0; i<indent; i++) {
 str += tab;
 }

Chapter 12

[227]

 return str;
 }
 if(isFile) {
 html += '<a href="#" class="file"
 data-path="' + fullPath + '">';
 html += calculateIndent(indent) +
 '<i class="fa fa-file-o"></i> ' + itemPath + '';
 } else {
 html += '<a href="#" class="dir"
 data-path="' + fullPath + '">';
 html += calculateIndent(indent) +
 '<i class="fa fa-folder-o"></i> ' + itemPath + '';
 }
}

The itemPath argument contains only the name of the file or directory, while
fullPath shows the absolute path to the item. Based on the isFile parameter, the
icon of the appended link is properly chosen. The latest indent argument is needed
to define the visual look of the tree. Without this, all the links will start from the
left-hand side of the window. Note that we add the full path to the file or folder in a
data-path attribute. We do this because later any link can be clicked and we need to
know what is selected.

Now, we need a function that uses the addItem function, which accepts a path and
goes through all the files and subdirectories. We also need some kind of recursive
calling of the method so that we can produce a tree. As we can see in the following
code, there is a check if we are reading directory and if yes then again the walk
function is executed:

var walk = function(dir, level, done) {
 if(level === maxLevels) {
 done();
 return;
 }
 fs.readdir(dir, function(err, list) {
 if (err) return done(err);
 var i = 0;
 (function next() {
 var file = list[i++];
 if(!file) return done();
 var filePath = dir + '/' + file;
 fs.stat(filePath, function(err, stat) {
 if (stat && stat.isDirectory()) {
 addItem(file, filePath, false, level);
 walk(filePath, level + 1, function() {
 next();
 });

Developing Desktop Apps with Node.js

[228]

 } else {
 if(level === 0) {
 addItem(file, filePath, true, level);
 }
 next();
 }
 });
 })();
 });
};

Because the walk function will be called repeatedly, we need to check whether
it reaches the maximum level of nesting (which in our case is set to 3); this is the
purpose of the first few lines. Immediately after, the fs.readdir function is called.
This is an asynchronous Node.js native function that returns the content in a passed
directory. In the closure, which receives the data, we will go through every result
and check whether the item is a file or folder. If it is a folder, then the walk function
is called again. Note that we are passing the level and it is incremented on every call.

At the end, we just need to run the walk method and populate the html variable with
an initial value as it is done in the following code:

var updateFiles = function() {
 html = '<a href="#" class="dir" data-path="' +
 path.normalize(api.cwd + '/../') + '">
 <i class="fa fa-level-up"></i> ..';
 walk(api.cwd, 0, function() {
 treeArea.innerHTML = html;
 });
}

At the top of the file's tree, we added a link that points to the parent directory. This is
how the user can move upward in the filesystem.

The updated render method is as follows:

var render = function() {
 updateCurrentLocation();
 updateFiles();
}

As we can see, the updateFiles method is called pretty often. It's kind of an
expensive process because it runs the walk function. This is also one of the reasons
behind limiting the folder's nesting. If we launch the application now, we should see
the current directory at the top of the screen and its content in the treeArea element.
The following screenshot is how this looks on the screen:

Chapter 12

[229]

Changing the current directory
Our file browser successfully shows the files located on our hard disk. The next
thing we want to do is to jump from one folder to another. Because we carefully
designed our class, it is easy to implement this feature. The following two steps will
change the directory:

• Update the api.cwd variable
• Call the render method

These two actions should be executed when the user clicks on some of the items in
the tree. The very popular approach is to attach a click handler on every link and
listen for user interaction. However, this will lead to some problems. We have to
reassign the listeners every time the tree is updated; this is because the elements
that the listeners are attached to have been replaced and are no longer in the DOM.
A much better approach is to add only one handler on the treeArea element.
When its children produce the click event, by default, it is bubbled upwards
over the DOM. Moreover, because we do not catch it, it reaches the handler of the
treeArea element. So the following setEvents function listens for the click events
triggered in the treeArea object:

var setEvents = function() {
 treeArea.addEventListener('click', function(e) {
 e.preventDefault();

Developing Desktop Apps with Node.js

[230]

 if(e.target.nodeName !== 'A' && e.target.nodeName !== 'I')
 return;
 var link = e.target.nodeName === 'A' ? e.target :
 e.target.parentNode;
 var itemPath = path.normalize(link.getAttribute('data-path'));
 var isFile = link.getAttribute('class') === 'file';
 if(isFile) {
 updateFileArea(itemPath);
 } else {
 api.cwd = itemPath;
 render();
 }
 });
}

The calling of e.preventDefault is needed because we don't want the default
link behavior. The href attribute of all the <a> tags is set to #. Normally, this will
scroll the page up to the top. However, we don't want this to happen, so we call
e.preventDefault. The next check guarantees that the click event comes from the
right element. This is actually really important because the user may click on some
other element, which is still the child of treeArea. We expect to get the <a> or <i>
(the icon inside the link) tag. The path to the file or folder is from the data-path
attribute. To determine whether the currently selected item is a file, we check the
value of its class attribute. On the other hand, if the user clicks on a folder, we simple
trigger the render method; otherwise, a new function, updateFileArea, is called.

The function we just discussed (setEvents) is fired only once, and a proper place to
do this is the init method:

api.init = function(selector) {
 ...
 setEvents();
 return api;
}

Copying, moving, and deleting files
We implemented the folder switching, and the last thing to do is file processing.
We already mentioned calling the updateFileArea function. It should accept the
file path. The following code is the body of the function:

var updateFileArea = function(itemPath) {
 var html = '';
 api.csf = itemPath;

Chapter 12

[231]

 if(itemPath) {
 fs.stat(itemPath, function(err, stat) {
 html += '<h3>' + path.basename(itemPath) + '</h3>';
 html += '<p>path: ' + path.dirname(itemPath) + '</p>';
 html += '<p class="small">size: ' + stat.size +
 ' bytes</p>';
 html += '<p class="small">last modified: ' +
 stat.mtime + '</p>';
 html += '<p class="small">created: ' + stat.ctime + '</p>';
 html += '
 <i class="fa fa-copy"></i> Copy';
 html += '
 <i class="fa fa-share"></i> Move';
 html += '
 <i class="fa fa-times"></i> Delete';
 fileArea.innerHTML = html;
 });
 } else {
 fileArea.innerHTML = '';
 }
}

The function of the method is to fill the fileArea element with information about
the file. We will use the same function to clear the fileArea element when the
user clicks on a folder. So, if updateFileArea is called without any parameter,
the information block becomes empty. The file size and created and modified
time are available because of the native Node.js function fs.stat. Below the file's
characteristics, we place three buttons. Every button calls a method of the global
FileBrowser object, which is an instance of our Tree class. Note that we do not pass
the path to the file. The copy, move, and del functions will get this information from
the api.csf variable that we filled earlier. The following method will be used to
copy a file from one place to another:

api.copy = function() {
 if(!api.csf) return;
 getFolder(function(dir) {
 var file = path.basename(api.csf);
 fs.createReadStream(api.csf).pipe
 (fs.createWriteStream(dir + '/' + file));
 api.csf = null;
 updateFileArea();
 alert('File: ' + file + ' copied.');
 });
}

Developing Desktop Apps with Node.js

[232]

So, we know the file we want to copy, move, or delete and its absolute path. It is
stored in api.csf. To copy and move, we need a destination path. The user should
be able to pick a directory on the hard disk, and because this process occurs in two
locations, it is a good idea to wrap it in a function—getFolder. Once this method
returns the destination, we simply get the content as a stream and save it to another
place. The following is the body of the getFolder helper:

var getFolder = function(callback) {
 var event = new MouseEvent('click', {
 'view': window,
 'bubbles': true,
 'cancelable': true
 });
 var input = document.createElement('INPUT');
 input.setAttribute('type', 'file');
 input.setAttribute('webkitdirectory', 'webkitdirectory');
 input.addEventListener('change', function (e) {
 callback(this.value);
 });
 input.dispatchEvent(event);
}

Normally, the dialog to select a directory cannot be opened without user interaction.
However, in node-webkit this is possible. As we can see in the preceding code, we
create a new MouseEvent event and a new <input> element to dispatch this event. The
key factor here is the webkitdirectory attribute, which is node-webkit specific, and it
transforms the element from a file selector to a folder selector. The getFolder function
accepts a callback function, which is called once the user selects a directory.

The function that deletes a file looks like following code snippet:

api.del = function() {
 if(!api.csf) return;
 fs.unlink(api.csf, function() {
 alert('File: ' + path.basename(api.csf) + ' deleted.');
 render();
 api.csf = null;
 });
}

The function that deletes the file is almost the same, except that it uses fs.unlink
to remove the file from the OS. At the end, the method that moves the file, combines
both the copy and del functions.

api.move = function() {
 if(!api.csf) return;
 getFolder(function(dir) {

Chapter 12

[233]

 var file = path.basename(api.csf);
 fs.createReadStream(api.csf).pipe(fs.createWriteStream(dir + '/'
+ file));
 fs.unlink(api.csf, function() {
 alert('File: ' + file + ' moved.');
 render();
 api.csf = null;
 });
 });
}

We need to copy the file and then delete it from the original location. With this last
addition, our file browser is finished. The following screenshot shows how it looks
when a file is selected:

Developing Desktop Apps with Node.js

[234]

Extending the application
Our file browser looks good so far. We can see the folders and files on our machine
and can copy, move, or delete them. Also, we did all this with only HTML, CSS,
and JavaScript. Let's continue and add a new feature. The application we wrote is
run by Chromium. In other words, our HTML and CSS are rendered by the browser,
so we can easily show images in it. In the next few pages, we will create a program
picture viewer.

Tweaking the updateFileArea function
The first thing to do is find out whether the currently selected file is an image. We
will display the JPEG and PNG files, so we should check whether the file matches
one of these extensions. Before populating the html variable with the markup, we
will extract the file's extension as it is done in the code below:

var updateFileArea = function(itemPath) {
 var html = '';
 api.csf = itemPath;
 if(itemPath) {
 fs.stat(itemPath, function(err, stat) {
 var ext = path.extname(itemPath).toLowerCase();
 var isImage = ext === '.jpg' || ext ===
 '.jpeg' || ext === '.png';
 html += '<h3>' + path.basename(itemPath) + '</h3>';
 html += '<p>path: ' + path.dirname(itemPath) + '</p>';
 html += '<p class="small">size: ' + stat.size +
 ' bytes</p>';
 html += '<p class="small">last modified: ' +
 stat.mtime + '</p>';
 html += '<p class="small">created: ' + stat.ctime + '</p>';
 if(isImage) {
 html += '
 <i class="fa fa-picture-o"></i> View image';
 }
 html += '
 <i class="fa fa-copy"></i> Copy';
 html += '
 <i class="fa fa-share"></i> Move';
 html += '
 <i class="fa fa-times"></i> Delete';
 fileArea.innerHTML = html;

Chapter 12

[235]

 });
 } else {
 fileArea.innerHTML = '';
 }
}

The next addition to the function is a button that is shown only if a picture is
selected. At this point (when we have four buttons), it is good to make some
changes in the layout to get all the buttons in one line. So far, the links were the
block elements and making them inline-block solves the problem. The following
screenshot shows the result:

Loading a new page for the selected image
Similar to the other three links, the new one calls a function of the global
FileBrowser object—FileBrowser.viewImage:

api.viewImage = function() {
 window.open('image.html?file=' + api.csf,
 '_blank', 'width=600,height=400');
}

Preferably, open the image in a new window. To do this, use the window.open
method. This function is available in every browser. It simply loads a specific file/
URL in a newly created pop up. As shown in the preceding code, the page that will
be shown is stored in file called image.html. Also the picture's path is sent as a GET
parameter and we will read it later. The following is the code in the new file:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>FileBrowser</title>

Developing Desktop Apps with Node.js

[236]

 <link rel="stylesheet" href="css/styles.css">
 <script src="js/imageviewer.js"></script>
 </head>
 <body>
 <div class="image-viewer">

 <div class="dimension"></div>
 </div>
 </body>
</html>

There are only two things on the page. An empty tag and an empty <div>
tag, which will display the dimensions of the picture. We should mention that this
new page has nothing to do with the index.html file and the Tree class, which we
used so far. It's a completely new section controlled by another JavaScript file—
imageviewer.js.

Showing the image and its dimensions
There are two difficulties we have to solve. They are as follows:

• The picture's path is sent via the page's URL, so we should get it from there.
• The picture's dimensions can be read from a client-side JavaScript, but only if

the image is fully loaded. So, we will use Node.js.

The imageviewer.js file will contain a class similar to the scripts.js file.

var sizeOf = require('image-size'),
 fs = require('fs'),
 path = require('path');

var ImageViewer = function() {
 var api = {};
 // ...
 return api;
}

var Viewer;
window.onload = function() {
 Viewer = ImageViewer();
}

Chapter 12

[237]

At the start of the file, we defined the Node.js modules we are going to use, fs and
path, which have been discussed throughout this chapter. However, image-size is
a new module. It accepts an image path and returns its width and height. It's not a
native Node.js module, so we have to include it in our package.json file.

{
 "name": "FileBrowser",
 "main": "index.html",
 "window": {
 "toolbar": true,
 "width": 690,
 "height": 900
 },
 "dependencies": {
 "image-size": "0.2.3"
 }
}

The node-webkit app runtime uses the same dependency format, and we have to call
npm install to get the module installed in a local node_modules directory. Also,
keep in mind that the application's packing at the end should include the node_
modules folder. Once everything is set up, we are ready to show the selected picture.
That's achieved with the following code:

var filePath = decodeURI(location.search.split('file=')[1]);
if(fs.existsSync(path.normalize(filePath))) {
 var img = document.querySelector('.image-viewer img');
 img.setAttribute('src', 'file://' + filePath);
 var dimensions = sizeOf(filePath);
 document.querySelector('.dimension').innerHTML = 'Dimension: ' +
dimensions.width + 'x' + dimensions.height;
}

The location.search function returns the current URL of the page. We know that
there is only one parameter called file, so we can split the string and use only the
second element of the array, the parameter we are interested in. We have to use
decodeURI because the path is URL encoded and we could receive a wrong value.
For example, the interval is normally replaced by %20.

Developing Desktop Apps with Node.js

[238]

We check whether the file actually exists and determine its dimensions. The rest
involves showing the image and displaying the size as a text below the tag.
The following screenshot shows how the window may look like:

Removing the toolbar
The final thing we to do is hide the node-webkit toolbar. The user should not be able
to see the currently opened file. We can do that by changing the package.json file
using the following code:

{
 "name": "FileBrowser",
 "main": "index.html",
 "window": {
 "toolbar": false,
 "width": 690,
 "height": 900
 },
 "dependencies": {

Chapter 12

[239]

 "image-size": "0.2.3"
 }
}

Setting the toolbar property to false changes our application and now it looks
more like a desktop program, as shown in the following screenshot:

Developing Desktop Apps with Node.js

[240]

Summary
In this last chapter of the book, you learned how to build a desktop file browser
with Node.js. The most interesting aspect is that we used only HTML, CSS, and
JavaScript. This is because, more often than not, Node.js is used in backend
development. We explored a realm of possibilities that this wonderful technology
offers. It works as a command-line tool, task runner, or even wrapper for desktop
applications. The big open-source community and the well-made package manager
make Node.js a powerful instrument for developers around the world.

Index
Symbols
@include keyword 194
@mixin keyword 194

A
AbsurdJS

about 195
working with 196, 197

actual test
writing 177-180

Adobe 139
AngularJS

used, for developing client side 53-57
AngularJS

about 41, 42, 46, 67, 139
controllers, using 42, 43
data binding process 43, 44
data, preparing with filters 45
dependency injection 45
directives, using 42, 43
logic, encapsulating with modules 44
model 46
URL 41

AngularJS applications
bootstrapping 42

API
about 204
testing 215

API router
implementing 205-209

application
about 139
base, writing 222

HTML layout, preparing 222, 223
JavaScript base, designing 223-225
Key, creating for 109, 110
package.json file, writing 222
planning 105
preparing 117, 118
running, ways 220
Secret, creating for 109, 110

application, extending
about 234
image dimensions, displaying 236, 237
image, displaying 236, 237
new page, loading for selected

image 235, 236
toolbar, removing 238
updateFileArea function, tweaking 234, 235

Application Programming
Interface. See API

application tool
running 113-115

arguments, express-generator
command-line tool

-c, --css 28
-e, --ejs 28
-h, --help 28
-H, --hogan 28
-V, --version 28

assertions 163
assets

delivering 118-120
asynchronous programming 16-19
atomic design

about 188
URL 188

[242]

B
Backbone.Collection module 84
Backbone.Events module 83
Backbone.js framework

backend 86
collections, using 84
event-driven framework 83
exploring 82
framework dependency, recognizing 82
functionality, extending 82
models, using 83
routers, using 85, 86
views, implementing 85

Backbone.View module 85
backend part, to-do application

Node.js server, running 87, 88
to-do lists, managing 89-91
writing 87

basic application structure 68, 69
behavior-driven development (BDD) 161
BEM

about 186
URL 186

benefits, CSS preprocessors
concatenation 189
configuration 189
extending 189

block, element, modifier. See BEM
blocks 56

C
cache manifest file

about 148
generating 149-151

callbacks 105
Cascading Style Sheets. See CSS
categories, for application styles

basic selectors 188
layout 188
modules 188
state 188
theme 188

chat
client side, writing 71

chat logic
writing 73-75

classes, Ember.js
exploring 126

client side
developing, with AngularJS 53-57

client side, of chat
HTML markup, preparing 71, 72
logic, writing 73-75

code
documenting 152
minifying 143, 144, 154, 155

code logic, organizing in modules
car construction application,

building 11, 12
car's engine, using 12, 13

code-over-configuration principle 153
code shallow 17
command-line tool

used, for installing Express 28-32
CommonJS 10
composition

versus, inheritance 21, 22
computed properties, Ember.js 126, 127
concatenation 141
concepts, modular CSS

atomic design 188
BEM 186
OOCSS approach 187
SMACSS 188

Connect
about 20, 25
URL 20

controllers, Ember.js 131
control panel

about 58
implementing 58-65

CORBA 203
cross-browser issues 125
CRUD 86
crypto module 211
CSS 185
CSS2 185
CSS3 185
CSS preprocessors

AbsurdJS 195-197

[243]

benefits 189
exploring 189
Less 190
Sass 193, 194
Stylus 194, 195

current directory
modifying 229, 230

current working directory
displaying 225, 226

D
DalekJS

testing with 180-182
database

books, displaying 214
default route, adding 214
initializing 47
record, creating 212
record, deleting 213
record, editing 213
selecting 47
working with 211

data binding 43, 44
DELETE request 203
deleteToDo function 90
dependencies 82
dependencies, Ember.js

Handlebars 125
jQuery 125

dependency injection 45
dependency management 23
describe method 165
dynamic URLs

handling 34, 35

E
Ember Inspector 128
Ember.js

about 125, 126, 139
classes, exploring 126
computed properties 126, 127
controllers 131
models 130
objects, exploring 126
router 127, 128

Ember.js part
templates, defining 133, 134
writing 132

Evaluate method 177
EventEmitter 15
example-logging system 37-39
Express

about 25, 26
installing 26
installing, command-line tool used 28-32
installing, package.json file used 26, 27
URL 25

express-generator command-line tool 28

F
files

concatenating 141, 142, 154, 155
copying 230-233
deleting 230-233
displaying 226-228
ignoring 146
moving 230-233
viewing, for changes 144-146

flapi module 104
Flickr 103
Flickr.js module

writing into 111-113
Flickr protocol

authorizing 108
folder

displaying 226-228
images, obtaining from 106-108

frontend part, to-do application
files structure 92-96
to-do activities, listing 96-98
to-do lists, adding 98-101
to-do lists, deleting 100-102
to-do lists, editing 100-102
writing 92

fs module 103
functional testing 163

G
GET request 203
glob module 103

[244]

Google 41
Grunt

about 139, 140
cache manifest file, generating 148-151
code, documenting 152
code, minifying 143, 144
files, concatenating 141, 142
files, ignoring 146
files, viewing for changes 144-146
task, creating 146-148

grunt-contrib-concat plugin 140, 141
grunt-contrib-uglify plugin 143
grunt-contrib-watch plugin 144
Gruntfile.js file 140
Gulp

about 139, 153
code, minifying 154, 155
files, concatenating 154, 155
installing 154
plugins, fetching 154

gulp command 154
gulp-concat plugin 154
gulpfile.js file 153
Gulp plugin

creating 156, 157
gulp-rename plugin 154
gulp-uglify plugin 154

H
Handlebars 125
handler 204
headless browser

testing with 173
HTML forms 34, 35
HTML layout

preparing, for application 222, 223
http module 9
HTTP verbs 203

I
images

obtaining, from folder 106-108
uploading 115

installation, Express
about 26

command-line tool used 28-32
package.json file used 26, 27

installation, Gulp 154
installation, Jasmine 164
installation, Mocha 170
integration test

writing 169, 170
integration testing 163
inter-module communication 14, 15

J
Jade 125
Jasmine

about 164, 215
installing 164
integration test, writing 169, 170
module, defining for testing 164
reading of file content, testing 165-167
strings, finding in file content 168
test-driven development concept,

following 165
JavaScript base

designing, for application 223-225
jQuery 125

K
Key

about 109
creating, for application 109, 110

L
Leaner CSS. See LESS
Less

about 190
mixins, using 190, 191
styles, structuring into nested

definitions 192, 193
URL, for documentation 193
using 190
variables, defining 190

LESS 28
logic

encapsulating, with modules 44
login form

styling 197-202

[245]

M
manifest.json 139
micro testing framework

developing 175
middleware architecture

exploring 20, 21
minification 143
mixins, Less

using 190, 191
Mocha

about 170
example, translating 171, 172
installing 170
reporter, selecting 172, 173

models, Ember.js 130
Model-View-Controller (MVC)

pattern 30, 85
modifiers 186
modular CSS

writing 185
modules

exploring 103
logic, encapsulating with 44

MongoDB
about 47, 211
NoSQL, using with 47-50
URL, for downloading 47

MySQL
about 47, 211
URL, for downloading 50
using 50-53

N
nested definitions

style, structuring into 192, 193
Node.js

about 7, 25, 67, 204
code logic, organizing in modules 10
fundamentals 8-10
server code, writing 69, 70
URL 13

Node.js, task runners
Grunt 140
Gulp 153

Node Package Manager(npm) 23

node-webkit
URL 219
URL, for documentation 221
using 219-221

NoSQL
using, with MongoDB 47-50

O
OAuth 108
Object Oriented CSS approach. See

OOCSS approach
objects, Ember.js

exploring 126
Observer 15
online library

developing 204
OOCSS approach

about 187
separate container, and content 188
separate structure, and skin 187

open module 104
optimist module 103

P
package.json file

used, for installing Express 26, 27
using 104
writing 104, 222

parts, API server
handler 204
responder 204
router 204

performance tests 163
PhantomJS

about 175
actual test, writing 177-180
micro testing framework, developing 175
testing with 175
URL 175
working 176

POST requests 203
preprocessors 189
promise

fulfilled state 19
pending state 19

[246]

rejected state 19
settled state 19

promise method 18
promises paradigm 18
PUT request 203

R
readline module 103
record

creating, in database 212
deleting, from database 213
editing, in database 213

removeListener method 16
reporter

selecting 172, 173
Representational State Transfer. See REST
responder

about 204
writing 209, 210

response
returning 35, 36

response object 35
REST 203
REST API

about 203, 204
base, writing 204, 205
parts, defining 204
responder, writing 209, 210
router, implementing 205-209

Revealing Module pattern 94
router 204
router, Ember.js 127, 128
routes

defining 134, 135
managing 32, 33

S
Sass

about 193
using 193, 194

Scalable and modular architecture for CSS.
See SMACSS

Secret
about 109
creating, for application 109, 110

server
running 118-120

SMACSS
about 188
URL 188

SOAP 203
Socket.IO

exploring 67, 68
setting up 70, 71
URL 68

stress tests 163
strings

finding, in file content 168
styles

structuring, into nested definitions 192, 193
Stylus

about 28, 194
using 194, 195

subject
about 15
writing, of test 173, 174

system testing 163

T
task

creating 146-148
task runner 139
templates, Ember.js 129
templates, Ember.js part

defining 133
test-driven development (TDD) 160
testing methodologies

behavior-driven development (BDD) 161
selecting 160
test-driven development (TDD) 160

test runner 163
tests

classifying 162
functional tests 163
integration tests 163
performance 163
stress tests 163
subject, writing of 173, 174
system tests 163
unit tests 162
writing, benefits 160

[247]

writing, significance 159
to-do application

backend part 87
creating, with Backbone.js 81
frontend part 92

tweets
displaying 136, 137
obtaining, based on user handle 121-124

Twitter 117, 139

U
unit testing 162
updateFileArea function

tweaking 234, 235
user

transferring, to second screen 135, 136
user handle

tweets, obtaining based on 121-124
user input

handling 135, 136
user-to-user communication

frontend, modifying of chat 77-79
implementing 75
server part, modifying 75-77

V
variables, Less

defining 190
views, Ember.js 129

W
Webkit 175
WebSockets

about 67
exploring 67, 68

working directory
current directory, modifying 229, 230
current working directory,

displaying 225, 226
displaying 225
files, copying 230-233
files, deleting 230-233
files, displaying 226-228
files, moving 230-233
folders, displaying 226-228
using 225

Thank you for buying
Node.js Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Instant Node Package Manager
ISBN: 978-1-78328-333-0 Paperback: 56 pages

Create your own node modules and publish them on
npm registry, automating repetitive tasks in between

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Create and distribute node modules.

3. Learn how to publish executables.

4. Automate the installation of dependencies.

Getting Started with Grunt:
The JavaScript Task Runner
ISBN: 978-1-78398-062-8 Paperback: 132 pages

A hands-on approach to mastering the fundamentals
of Grunt

1. Gain insight on the core concepts of Grunt,
Node.js, and npm to get started with Grunt.

2. Learn how to install, configure, run, and
customize Grunt.

3. Example-driven and filled with tips to help you
create custom Grunt tasks.

Please check www.PacktPub.com for information on our titles

Node Web Development
Second Edition
ISBN: 978-1-78216-330-5 Paperback: 248 pages

A practical introduction to Node.js, an exciting
server-side JavaScript web development stack

1. Learn about server-side JavaScript with Node.js
and Node modules.

2. Website development both with and without
the Connect/Express web application
framework.

3. Developing both HTTP server and client
applications.

Using Node.js for UI Testing
ISBN: 978-1-78216-052-6 Paperback: 146 pages

Learn how to easily automate testing of your web
apps using Node.js, Zombie.js and Mocha

1. Use automated tests to keep your web app rock
solid and bug-free while you code.

2. Use a headless browser to quickly test your
web application every time you make a small
change to it.

3. Use Mocha to describe and test the capabilities
of your web app.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Common Programming Paradigms
	Node.js fundamentals
	Organizing your code logic in modules
	Building a car construction application
	Using the car's engine

	Understanding inter-module communication
	Asynchronous programming
	Exploring middleware architecture
	Composition versus inheritance
	Managing dependencies
	Summary

	Chapter 2: Developing a Basic Site with Node.js and Express
	Getting acquainted with Express
	Installing Express
	Using package.json
	Using a command-line tool

	Managing routes
	Handling dynamic URLs and the HTML forms
	Returning a response
	The example-logging system
	Summary

	Chapter 3: Writing a Blog Application with Node.js and AngularJS
	Exploring AngularJS
	Bootstrapping AngularJS applications
	Using directives and controllers
	Data binding
	Encapsulating logic with modules
	Preparing data with filters
	Dependency injection
	The model in the context of AngularJS
	Final words on AngularJS

	Selecting and initializing the database
	Using NoSQL with MongoDB
	Using MySQL

	Developing the client side with Angular
	Implementing a control panel
	Summary

	Chapter 4: Developing a Chat with
Socket.IO
	Exploring WebSockets and Socket.IO
	Understanding the basic application structure
	Running the server
	Adding Socket.IO
	Writing the client side of the chat
	Preparing the HTML markup
	Writing the chat logic

	Implementing user-to-user communication
	Changing the server part
	Making changes in the frontend of the chat

	Summary

	Chapter 5: Creating a To-do Application with Backbone.js
	Exploring the Backbone.js framework
	Recognizing the framework dependency
	Extending the functionality
	Understanding Backbone.js as an
event-driven framework
	Using models
	Using collections
	Implementing views
	Using the router
	Talking with the backend

	Writing the backend part of the application
	Running the Node.js server
	Managing the to-do lists

	Writing the frontend part
	Looking into the base of the application
	Listing the to-do activities
	Adding, deleting, and editing the to-do lists

	Summary

	Chapter 6: Using Node.js as a Command-line Tool
	Exploring the required modules
	Planning the application
	Obtaining images from a folder
	Authorizing the Flickr protocol
	Obtaining your application's Key and Secret
	Writing into the Flickr.js module
	Running our application tool

	Uploading the images
	Summary

	Chapter 7: Showing a Social Feed
with Ember.js
	Preparing the application
	Running the server and delivering
the assets
	Getting tweets based on a user handle
	Discovering Ember.js
	Knowing the dependencies of Ember.js

	Understanding Ember.js
	Exploring classes and objects in Ember.js
	Computed properties
	Router
	Views and templates
	Models
	Controllers

	Writing the Ember.js part
	Defining the templates

	Defining the routes
	Handling the user input and moving to the second screen
	Displaying the tweets
	Summary

	Chapter 8: Developing
Web App Workflow
with Grunt and Gulp
	Introducing the task runners
	Exploring Grunt
	Concatenating files
	Minifying your code
	Watching files for changes
	Ignoring files
	Creating our own task
	Generating a cache manifest file
	Documenting our code

	Discovering Gulp
	Installing Gulp and fetching plugins
	Concatenating and minifying with Gulp
	Creating your own Gulp plugin

	Summary

	Chapter 9: Automate Your Testing
with Node.Js
	Understanding the importance of
writing tests
	Choosing a testing methodology
	Test-driven development
	Behavior-driven development

	Classifying tests
	Using Jasmine
	Installing Jasmine
	Defining the module for testing
	Following the test-driven development concept
	Testing the file reading process
	Finding strings in the file content
	Writing an integration test

	Testing with Mocha
	Installation
	Translating our example using Mocha
	Selecting a reporter

	Testing with a headless browser
	Writing the subject of our test
	Testing with PhantomJS
	Developing the micro testing framework
	Understanding how PhantomJS works
	Writing the actual test

	Testing with DalekJS
	Summary

	Chapter 10: Writing Flexible and
Modular CSS
	Writing modular CSS
	BEM (block, element, modifier)
	Using the Object Oriented CSS approach
	Separate structure and skin
	Separate container and content

	Scalable and modular architecture for CSS
	Atomic design

	Exploring CSS preprocessors
	Using Less
	Defining variables
	Using mixins
	Structuring the styles into nested definitions

	Using Sass
	Using Stylus
	Working with AbsurdJS

	Styling a simple login form
	Summary

	Chapter 11: Writing a REST API
	Discovering REST and API
	Developing an online library – a REST API
	Defining the API parts
	Writing the base
	Implementing the API router
	Writing the responder

	Working with the database
	Creating a new record
	Editing a record
	Deleting a record
	Displaying all the books
	Adding a default route

	Testing the API
	Summary

	Chapter 12: Developing Desktop Apps with Node.js
	Using node-webkit
	Writing the base of the application
	Writing the package.json file
	Preparing the HTML layout
	Designing the JavaScript base

	Displaying and using the working directory
	Displaying the current working directory
	Showing the files and folders
	Changing the current directory
	Copying, moving, and deleting files

	Extending the application
	Tweaking the updateFileArea function
	Loading a new page for the selected image
	Showing the image and its dimensions
	Removing the toolbar

	Summary

	Index

