
www.allitebooks.com

http://www.allitebooks.org


ONLINE ACCESS
Thank you for purchasing a new copy of Objects First with Java™: A Practical 
Introduction Using BlueJ, Fifth Edition. Your textbook includes six months of prepaid 
access to the book’s VideoNotes. This prepaid subscription provides you with full access to 
the following student support areas:

oNotes are Pearson’s new visual tool designed to teach students key programming 
concepts and techniques. These short step-by-step videos demonstrate how to solve 
problems from design through coding. VideoNotes allows for self-paced instruction with 
easy navigation including the ability to select, play, rewind, fast-forward, and stop within 
each VideoNote exercise.

Use a coin to scratch off the coating and reveal your student access code.
Do not use a knife or other sharp object as it may damage the code.

To access the VideoNotes for Objects First with Java™: A Practical Introduction Using 
BlueJ, Fifth Edition, for the first time, you will need to register online using a computer 
with an Internet connection and a web browser. The process takes just a couple of minutes 
and only needs to be completed once.

1. Go to http://www.pearsonhighered.com/barnes_kolling/

2. Click on VideoNotes.

3. Click on the Register button.

4. On the registration page, enter your student access code* found beneath the scratch-off 
panel. Do not type the dashes. You can use lower- or uppercase.

5. Follow the on-screen instructions. If you need help at any time during the online registration 
process, simply click the Need Help? icon.

6. Once your personal Login Name and Password are confirmed, you can begin using the 
VideoNotes for Objects First with Java™: A Practical Introduction Using BlueJ.

To log in after you have registered:

You only need to register for VideoNotes once. After that, you can log in any time at http://
www.pearsonhighered.com/barnes_kolling/ by providing your Login Name and Password 
when prompted.

*Important: The access code can only be used once. This subscription is valid for six months 
upon activation and is not transferable. If this access code has already been revealed, it may 
no longer be valid. If this is the case, you can purchase a subscription by going to http://
www.pearsonhighered.com/barnes_kolling/ and following the on-screen instructions.

www.allitebooks.com

http://www.pearsonhighered.com/barnes_kolling/
http://www.pearsonhighered.com/barnes_kolling/
http://www.pearsonhighered.com/barnes_kolling/
http://www.pearsonhighered.com/barnes_kolling/
http://www.pearsonhighered.com/barnes_kolling/
http://www.allitebooks.org


   Objects First with Java™ 

 A Practical Introduction Using BlueJ 

   David   J.   Barnes   and   Michael   Kölling 

  University of Kent    

 Fifth Edition 

  Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo   

www.allitebooks.com

http://www.allitebooks.org


Editorial Director: Marcia Horton
Editor in Chief: Michael Hirsch
Acquisitions Editor: Tracy Dunkelberger
Editorial Assistant: Chelsea Bell
Director of Marketing: Patrice Jones
Marketing Manager: Yez Alayan
Marketing Coordinator: Kathryn Ferranti
Marketing Assistant: Emma Snider
Director of Production: Vince O’Brien
Managing Editor: Jeff Holcomb
Senior Production Project Manager: Marilyn Lloyd
Manufacturing Buyer: Lisa McDowell
Art Director/Cover Designer: Anthony Gemmellaro
Cover Art: © Photoshot Holdings Ltd / Alamy
Media Project Manager: John Cassar
Full-Service Project Management, Composition, and Art: Integra
Printer/Bindery: Von Hoffman dba R.R. Donnelley/ Jefferson City
Cover printer: Lehigh-Phoenix Color/Hagerstown

 Copyright © 2012, 2009, 2006, 2005, 2003 by Pearson Education, Inc publishing as Prentice Hall. All rights 
reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permis-
sion should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or 
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or  likewise. To obtain 
permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions 
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290. 

 Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. 
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations 
have been printed in initial caps or all caps. 

   Library of Congress Cataloging-in-Publication Data on file  

 10 9 8 7 6 5 4 3 2 1 

 ISBN 10:  0-13-249266-0 
 ISBN 13: 978-0-13-249266-9  

www.allitebooks.com

http://www.allitebooks.org


  To my wife Helen, 

thirty years and counting 

   djb  

 To Monica, for everything 

   mk   

www.allitebooks.com

http://www.allitebooks.org


This page intentionally left blank 

www.allitebooks.com

http://www.allitebooks.org


   Foreword     xiii   

   Preface     xiv   

   List of projects discussed in detail 
in this book     xxiii   

   Acknowledgments     xxv    

      Part 1    Foundations of object 
orientation     1  

    Chapter 1   Objects and classes     3  

    1.1   Objects and classes     3   

    1.2   Creating objects     4   

    1.3   Calling methods     5   

    1.4   Parameters     6   

    1.5   Data types     7   

    1.6   Multiple instances     8   

    1.7   State     8   

    1.8   What is in an object?     9   

    1.9   Java code     10   

    1.10   Object interaction     12   

    1.11   Source code     12   

    1.12   Another example     14   

    1.13   Return values     14   

    1.14   Objects as parameters     14   

    1.15   Summary     16    

   Chapter 2    Understanding class 
definitions     18  

    2.1   Ticket machines     18  

   2.1.1    Exploring the behavior 
of a naïve ticket machine     19    

    2.2   Examining a class definition     20   

    2.3   The class header     22  

   2.3.1   Keywords     23    

    2.4    Fields, constructors, and 
methods     23  

   2.4.1   Fields     24   

   2.4.2   Constructors     27    

    2.5   Parameters: receiving data     28  

   2.5.1   Choosing variable names     30    

    2.6   Assignment     30   

    2.7   Methods     31   

    2.8    Accessor and mutator 
methods     33   

    2.9   Printing from methods     36   

    2.10   Method summary     38   

    2.11    Summary of the naïve ticket 
machine     38   

    2.12    Reflecting on the design of the 
ticket machine     39   

    2.13    Making choices: the conditional 
statement     42   

    2.14    A further conditional-statement 
example     44   

    2.15   Scope highlighting     45   

    2.16   Local variables     46   

    2.17    Fields, parameters, and local 
variables     48   

    2.18    Summary of the better ticket 
machine     49   

    2.19   Self-review exercises     50   

    2.20   Reviewing a familiar example     51   

    2.21   Calling methods     54   

  Contents  

www.allitebooks.com

http://www.allitebooks.org


vi      |       Contents

    2.22    Experimenting with expressions: 
the Code Pad     55   

    2.23   Summary     58    

   Chapter 3   Object interaction   62  

    3.1   The clock example     62   

    3.2   Abstraction and modularization     63   

    3.3   Abstraction in software     64   

    3.4    Modularization in the clock 
example     64   

    3.5   Implementing the clock display     65   

    3.6    Class diagrams versus object 
diagrams     66   

    3.7    Primitive types and object 
types     67   

    3.8    The ClockDisplay source 
code     67  

   3.8.1   Class NumberDisplay     68   

   3.8.2   String concatenation     72   

   3.8.3   The modulo operator     73   

   3.8.4   Class ClockDisplay     73    

    3.9   Objects creating objects     77   

    3.10   Multiple constructors     78   

    3.11   Method calls     79  

   3.11.1   Internal method calls     79   

   3.11.2   External method calls     79   

   3.11.3   Summary of the 
clock display     81    

    3.12    Another example of object 
interaction     81  

   3.12.1    The mail-system 
example     82   

   3.12.2   The this keyword     83    

    3.13   Using a debugger     85  

   3.13.1   Setting breakpoints     85   

   3.13.2   Single stepping     87   

   3.13.3   Stepping into methods     88    

    3.14   Method calling revisited     88   

    3.15   Summary     89    

   Chapter 4   Grouping objects     92  

    4.1    Building on themes from 
Chapter 3     92   

    4.2   The collection abstraction     93   

    4.3   An organizer for music files     94   

    4.4   Using a library class     95  

   4.4.1   Importing a library class     97   

   4.4.2   Diamond notation     98   

   4.4.3    Key methods of 
ArrayList     98    

    4.5    Object structures with 
collections     98   

    4.6   Generic classes     100   

    4.7    Numbering within 
collections     101  

   4.7.1    The effect of removal on 
numbering     102   

   4.7.2    The general utility of 
numbering with 
collections     103    

    4.8   Playing the music files     104  

   4.8.1    Summary of the music 
organizer     106    

    4.9    Processing a whole 
collection     106  

   4.9.1   The for-each loop     107   

   4.9.2    Selective processing 
of a collection     109   

   4.9.3    A limitation of using 
strings     111   

   4.9.4    Summary of the 
for-each loop     111    

    4.10   Indefinite iteration     112  

   4.10.1   The while loop     112   

   4.10.2    Iterating with an index 
variable     114   

   4.10.3   Searching a collection     115   

   4.10.4    Some non-collection 
examples     118    

    4.11    Improving structure—the 
Track class     119   

    4.12   The Iterator type     122  

   4.12.1    Index access versus 
iterators     124   

   4.12.2   Removing elements     125    

    4.13    Summary of the music-organizer 
project     126   

www.allitebooks.com

http://www.allitebooks.org


Contents      |       vii   

    4.14    Another example: An auction 
system     128  

   4.14.1    Getting started with the 
project     129   

   4.14.2   The null keyword     130   

   4.14.3   The Lot class     130   

   4.14.4   The Auction class     131   

   4.14.5   Anonymous objects     134   

   4.14.6   Chaining method calls     135   

   4.14.7   Using collections     136    

    4.15   Flexible-collection summary     138   

    4.16   Fixed-size collections     139  

   4.16.1   A log-file analyzer     139   

   4.16.2    Declaring array 
variables     142   

   4.16.3   Creating array objects     142   

   4.16.4   Using array objects     144   

   4.16.5   Analyzing the log file     144   

   4.16.6   The for loop     145   

   4.16.7    Arrays and the for-each 
loop     147   

   4.16.8    The for loop and 
iterators     148    

    4.17   Summary     150    

   Chapter 5    More-sophisticated 
behavior     153  

    5.1    Documentation for library 
classes     154   

    5.2   The TechSupport system     155  

   5.2.1    Exploring the 
TechSupport system     155   

   5.2.2   Reading the code     157    

    5.3   Reading class documentation     160  

   5.3.1    Interfaces versus 
implementation     162   

   5.3.2    Using library-class 
methods     163   

   5.3.3   Checking string equality     165    

    5.4   Adding random behavior     166  

   5.4.1   The Random class     166   

   5.4.2    Random numbers with 
limited range     167   

   5.4.3    Generating random 
responses     168   

   5.4.4    Reading documentation 
for parameterized 
classes     171    

    5.5   Packages and import     171   

    5.6   Using maps for associations     172  

   5.6.1   The concept of a map     173   

   5.6.2   Using a HashMap     173   

   5.6.3    Using a map for the 
TechSupport system     175    

    5.7   Using sets     177   

    5.8   Dividing strings     178   

    5.9    Finishing the TechSupport 
system     179   

    5.10   Writing class documentation     181  

   5.10.1    Using javadoc in 
BlueJ     182   

   5.10.2    Elements of class 
documentation     182    

    5.11   Public versus private     183  

   5.11.1   Information hiding     184   

   5.11.2    Private methods and 
public fields     185    

    5.12    Learning about classes from 
their interfaces     186  

   5.12.1   The scribble demo     186   

   5.12.2   Code completion     189   

   5.12.3    The bouncing-balls 
demo     190    

    5.13    Class variables and 
constants     190  

   5.13.1   The static keyword     191   

   5.13.2   Constants     192    

    5.14   Summary     193    

   Chapter 6   Designing classes     196  

    6.1   Introduction     197   

    6.2    The world-of-zuul game 
example     198   

    6.3    Introduction to coupling and 
cohesion     200   

    6.4   Code duplication     201   

www.allitebooks.com

http://www.allitebooks.org


viii      |       Contents

    6.5   Making extensions     204  

   6.5.1   The task     205   

   6.5.2    Finding the relevant 
source code     205    

    6.6   Coupling     207  

   6.6.1    Using encapsulation to 
reduce coupling     207    

    6.7    Responsibility-driven 
design     212  

   6.7.1    Responsibilities and 
coupling     212    

    6.8   Localizing change     214   

    6.9   Implicit coupling     215   

    6.10   Thinking ahead     218   

    6.11   Cohesion     219  

   6.11.1   Cohesion of methods     219   

   6.11.2   Cohesion of classes     220   

   6.11.3    Cohesion for 
readability     221   

   6.11.4   Cohesion for reuse     221    

    6.12   Refactoring     222  

   6.12.1    Refactoring and 
testing     223   

   6.12.2    An example of 
refactoring     223    

    6.13    Refactoring for language 
independence     226  

   6.13.1   Enumerated types     227   

   6.13.2    Further decoupling 
of the command 
interface     229    

    6.14   Design guidelines     231   

    6.15   Executing without BlueJ     232  

   6.15.1   Class methods     232   

   6.15.2   The main method     233   

   6.15.3    Limitations in class 
methods     234    

    6.16   Summary     234    

   Chapter 7   Well-behaved objects     236  

    7.1   Introduction     236   

    7.2   Testing and debugging     237   

    7.3   Unit testing within BlueJ     237  

   7.3.1   Using inspectors     243   

   7.3.2    Positive versus negative 
testing     245    

    7.4   Test automation     245  

   7.4.1   Regression testing     245   

   7.4.2    Automated testing using 
JUnit     246   

   7.4.3   Recording a test     248   

   7.4.4   Fixtures     251    

    7.5   Debugging     252   

    7.6   Commenting and style     254   

    7.7   Manual walkthroughs     255  

   7.7.1    A high-level 
walkthrough     255   

   7.7.2    Checking state with a 
walkthrough     257   

   7.7.3   Verbal walkthroughs     260    

    7.8   Print statements     260  

   7.8.1    Turning debugging 
information on or off     262    

    7.9   Debuggers     263   

    7.10    Choosing a debugging 
strategy     265   

    7.11    Putting the techniques 
into practice     265   

    7.12   Summary     265     

     Part 2   Application structures     267  

   Chapter 8    Improving structure with 
inheritance     269  

    8.1   The network example     269  

   8.1.1    The network project: 
classes and objects     270   

   8.1.2    Network source 
code     273   

   8.1.3   Discussion of the 
network application     282    

    8.2   Using inheritance     282   

    8.3   Inheritance hierarchies     284   

www.allitebooks.com

http://www.allitebooks.org


Contents      |       ix   

    8.4   Inheritance in Java     285  

   8.4.1    Inheritance and access 
rights     286   

   8.4.2    Inheritance and 
initialization     286    

    8.5    Network: adding other post 
types     288   

    8.6    Advantages of inheritance 
(so far)     290   

    8.7   Subtyping     291  

   8.7.1    Subclasses and 
subtypes     293   

   8.7.2    Subtyping and 
assignment     293   

   8.7.3    Subtyping and 
parameter passing     295   

   8.7.4   Polymorphic variables     295   

   8.7.5   Casting     296    

    8.8   The Object class     297   

    8.9    Autoboxing and wrapper 
classes     298   

    8.10   The collection hierarchy     299   

    8.11   Summary     299    

   Chapter 9   More about inheritance     302  

    9.1    The problem: network’s display 
method     302   

    9.2   Static type and dynamic type     304  

   9.2.1    Calling display from 
NewsFeed     305    

    9.3   Overriding     307   

    9.4   Dynamic method lookup     309   

    9.5   Super call in methods     311   

    9.6   Method polymorphism     313   

    9.7   Object methods: toString     313   

    9.8    Object equality: equals 
and hashCode     316   

    9.9   Protected access     318   

    9.10   The instanceof operator     320   

    9.11    Another example of 
inheritance with overriding     321   

    9.12   Summary     323    

   Chapter 10    Further abstraction 
techniques     326  

    10.1   Simulations     326   

    10.2    The foxes-and-rabbits 
simulation     327  

   10.2.1    The foxes-and-rabbits 
project     328   

   10.2.2   The Rabbit class     331   

   10.2.3   The Fox class     334   

   10.2.4    The Simulator class: 
setup     337   

   10.2.5    The Simulator class: 
a simulation step     341   

   10.2.6    Taking steps to 
improve the 
simulation     342    

    10.3   Abstract classes     342  

   10.3.1    The Animal 
superclass     343   

   10.3.2   Abstract methods     344   

   10.3.3   Abstract classes     346    

    10.4   More abstract methods     348   

    10.5   Multiple inheritance     351  

   10.5.1   An Actor class     351   

   10.5.2    Flexibility through 
abstraction     353   

   10.5.3   Selective drawing     353   

   10.5.4    Drawable actors: 
multiple inheritance     354    

    10.6   Interfaces     354  

   10.6.1   An Actor interface     355   

   10.6.2    Multiple inheritance of 
interfaces     356   

   10.6.3   Interfaces as types     357   

   10.6.4    Interfaces as 
specifications     358   

   10.6.5    Library support 
through abstract 
classes and 
interfaces     359    

    10.7    A further example of 
interfaces     359   

    10.8   The Class class     361   



x      |       Contents

    10.9   Abstract class or interface?     362   

    10.10   Event-driven simulations     362   

    10.11   Summary of inheritance     363   

    10.12   Summary     364    

   Chapter 11    Building graphical user 
interfaces     367  

    11.1   Introduction     367   

    11.2    Components, layout, and 
event handling     368   

    11.3   AWT and Swing     368   

    11.4   The ImageViewer example     369  

   11.4.1    First experiments: 
creating a frame     369   

   11.4.2    Adding simple 
components     372   

   11.4.3    An alternative structure     373   

   11.4.4   Adding menus     374   

   11.4.5   Event handling     375   

   11.4.6    Centralized receipt of 
events     376   

   11.4.7   Inner classes     378   

   11.4.8    Anonymous inner 
classes     380   

   11.4.9    Summary of key 
GUI elements     382    

    11.5    ImageViewer 1.0: the first 
complete version     383  

   11.5.1    Image-processing 
classes     383   

   11.5.2   Adding the image     384   

   11.5.3   Layout     386   

   11.5.4   Nested containers     389   

   11.5.5   Image filters     391   

   11.5.6   Dialogs     394   

   11.5.7    Summary of layout 
management     396    

    11.6    ImageViewer 2.0: improving 
program structure     396   

    11.7    ImageViewer 3.0: more 
interface components     402  

   11.7.1   Buttons     402   

   11.7.2   Borders     405    

    11.8   Further extensions     406   

    11.9    Another example: 
MusicPlayer     408   

    11.10   Summary     411    

   Chapter 12   Handling errors     413  

    12.1   The address-book project     414   

    12.2   Defensive programming     418  

   12.2.1    Client–server 
interaction     418   

   12.2.2   Parameter checking     420    

    12.3   Server-error reporting     421  

   12.3.1   Notifying the user     422   

   12.3.2    Notifying the client 
object     422    

    12.4    Exception-throwing 
principles     425  

   12.4.1    Throwing an 
exception     426   

   12.4.2    Checked and 
unchecked exceptions     426   

   12.4.3    The effect of an 
exception     428   

   12.4.4    Using unchecked 
exceptions     429   

   12.4.5    Preventing object 
creation     430    

    12.5   Exception handling     431  

   12.5.1    Checked exceptions: 
the throws clause     432   

   12.5.2    Anticipating exceptions: 
the try statement     432   

   12.5.3    Throwing and 
catching multiple 
exceptions     434   

   12.5.4   Multi-catch Java 7     436   

   12.5.5    Propagating an 
exception     436   

   12.5.6   The finally clause     437    

    12.6    Defining new exception 
classes     438   

    12.7   Using assertions     440  

   12.7.1    Internal consistency 
checks     440   



Contents      |       xi   

   12.7.2   The assert statement     440   

   12.7.3    Guidelines for using 
assertions     442   

   12.7.4    Assertions and the 
BlueJ unit testing 
framework     443    

    12.8   Error recovery and avoidance     443  

   12.8.1   Error recovery     443   

   12.8.2   Error avoidance     445    

    12.9   File-based input/output     446  

   12.9.1    Readers, writers, and 
streams     447   

   12.9.2    The File class and 
Path interface     447   

   12.9.3   File output     448   

   12.9.4    The try-with-resource 
statement     450   

   12.9.5   Text input     452   

   12.9.6    Scanner: parsing 
input     455   

   12.9.7   Object serialization     457    

    12.10   Summary     458    

   Chapter 13   Designing applications     460  

    13.1   Analysis and design     460  

   13.1.1    The verb/noun 
method     461   

   13.1.2    The cinema booking 
example     461   

   13.1.3   Discovering classes     461   

   13.1.4   Using CRC cards     463   

   13.1.5   Scenarios     463    

    13.2   Class design     467  

   13.2.1    Designing class 
interfaces     467   

   13.2.2   User interface design     468    

    13.3   Documentation     469   

    13.4   Cooperation     469   

    13.5   Prototyping     470   

    13.6   Software growth     470  

   13.6.1   Waterfall model     471   

   13.6.2    Iterative 
development     471    

    13.7   Using design patterns     472  

   13.7.1   Structure of a pattern     473   

   13.7.2   Decorator     474   

   13.7.3   Singleton     474   

   13.7.4   Factory method     475   

   13.7.5   Observer     476   

   13.7.6   Pattern summary     477    

    13.8   Summary     478    

   Chapter 14   A case study     480  

    14.1   The case study     480  

   14.1.1    The problem 
description     480    

    14.2   Analysis and design     481  

   14.2.1   Discovering classes     481   

   14.2.2   Using CRC cards     482   

   14.2.3   Scenarios     483    

    14.3   Class design     485  

   14.3.1    Designing class 
interfaces     485   

   14.3.2   Collaborators     485   

   14.3.3    The outline 
implementation     486   

   14.3.4   Testing     490   

   14.3.5    Some remaining 
issues     490    

    14.4   Iterative development     491  

   14.4.1   Development steps     491   

   14.4.2   A first stage     492   

   14.4.3   Testing the first stage     496   

   14.4.4    A later stage of 
development     496   

   14.4.5    Further ideas for 
development     498   

   14.4.6   Reuse     499    

    14.5   Another example     499   

    14.6   Taking things further     499       

    Appendices    

    A   Working with a BlueJ project     500   

    B   Java data types     503   



xii      |       Contents

    C   Operators     507   

    D   Java control structures     510   

    E    Running Java without 
BlueJ     517   

    F   Using the debugger     520   

    G   Unit unit-testing tools     524   

    H   Teamwork tools     526   

    I   Javadoc     528   

    J   Program style guide     531   

    K   Important library classes     535    

   Index     539     



 Watching my daughter Kate, and her middle school classmates, struggle through a Java course 
using a commercial IDE was a painful experience. The sophistication of the tool added signifi-
cant complexity to the task of learning. I wish that I had understood earlier what was happening. 
As it was, I wasn’t able to talk to the instructor about the problem until it was too late. This is 
exactly the sort of situation for which BlueJ is a perfect fit. 

 BlueJ is an interactive development environment with a mission: it is designed to be used by 
students who are learning how to program. It was designed by instructors who have been in the 
classroom facing this problem every day. It’s been refreshing to talk to the folks who developed 
BlueJ: they have a very clear idea of what their target is. Discussions tended to focus more on 
what to leave out, than what to throw in. BlueJ is very clean and very targeting. 

 Nonetheless, this book isn’t about BlueJ. It is about programming. 

 In Java. 

 Over the past several years Java has become widely used in the teaching of programming. This 
is for a number of reasons. One is that Java has many characteristics that make it easy to teach: 
it has a relatively clean definition; extensive static analysis by the compiler informs students of 
problems early on; and it has a very robust memory model that eliminates most “mysterious” 
 errors that arise when object boundaries or the type system are compromised. Another is that 
Java has become commercially very important. 

 This book confronts head-on the hardest concept to teach: objects. It takes students from their 
very first steps all the way through to some very sophisticated concepts. 

 It manages to solve one of the stickiest questions in writing a book about programming: how 
to deal with the mechanics of actually typing in and running a program. Most books silently 
skip over the issue, or touch it lightly, leaving it up to the instructor to figure out how to solve 
the problem and leaving the instructor with the burden of relating the material being taught to 
the steps that students have to go through to work on the exercises. Instead, it assumes the use 
of BlueJ and is able to integrate the tasks of understanding the concepts with the mechanics of 
how students can explore them. 

 I wish it had been around for my daughter last year. Maybe next year…  

  Foreword 
   by   James   Gosling ,  creator of Java   



  Preface 

  New to the fifth edition 

 This is the fifth edition of this book and we have taken the opportunity to incorporate 
several significant changes from previous editions. 

■   Java 7 features have been incorporated where appropriate 
● The “diamond notation” (generic type inference) is covered when introducing  generics.  
● Coverage of appropriate new classes from the nio package for I/O.  
● Strings are shown in switch statements.  
● The new exception handling syntax is covered, including multi-catch and try- 

with-resources.    

■   New engaging projects using music files and social media have been added throughout 
the book. Many other examples have been changed, updated and improved.  

■   Unit testing is now based on JUnit 4.  
■   BlueJ version is 3.0.5 is available on the accompanying DVD. This version includes 

scope coloring, JUnit 4, and Java 7 support.  
■   Includes VideoNotes—short video tutorials to reinforce key concepts throughout the book.  
■   Expanded coverage of collections and iteration in  Chapter   4   .  
■   Access to the Blueroom, a BlueJ instructor community and forum designed for 

 resource sharing and collaboration with the authors and other instructors teaching 
 using BlueJ.   

 Some of these changes are the result of the introduction of language changes in Java 7. 
We discuss diamond notation, use of strings in switch statements, changes to exception 
handlers, and some of the nio classes, for instance. But the examples can still be used by 
those who have not upgraded to Java 7, yet. 

 The majority of the changes in this edition, however, are the result of the nearly ten years 
of experience we have now developed from using this material with our students, along 
with feedback from our fellow instructors and readers. A particular example is the expan-
sion of the coverage of collections and iteration in  Chapter   4   , but there are many other 
smaller expansions where we have sought to clarify topics needing a little more explana-
tion. We have also changed the order of  Chapters   6    and    7    to give a flow of topics that fits 
more comfortably into a single semester for the first half of the book. 



Preface      |       xv   

 We have introduced several new projects to freshen up our coverage of existing topics. 
These include a music-file organizer in  Chapter   4   , an online shop in  Chapter   7   , and a so-
cial network in  Chapters   8    and    9   . 

 Nevertheless, the distinctive concept and style of this book, that have been there from the 
beginning, remain unchanged because, overall, the book seems to be “working”. 

 Feedback we received from readers of prior editions was overwhelmingly positive, and 
many people have helped in making this book better by sending in comments and sug-
gestions, finding errors and telling us about them, contributing material to the book’s web 
site, contributing to the discussion forum, or translating the book into foreign languages.  

 This book is an introduction to object-oriented programming for beginners. The main focus of 
the book is general object-oriented and programming concepts from a software engineering 
perspective.

 While the first chapters are written for students with no programming experience, later chapters 
are suitable for more advanced or professional programmers as well. In particular, programmers 
with experience in a non-object-oriented language who wish to migrate their skills into object 
orientation should also be able to benefit from the book. 

 We use two tools throughout the book to enable the concepts introduced to be put into practice: 
the Java programming language and the Java development environment BlueJ. 

  Java 

 Java was chosen because of a combination of two aspects: the language design and its popular-
ity. The Java programming language itself provides a very clean implementation of most of the 
important object-oriented concepts, and serves well as an introductory teaching language. Its 
popularity ensures an immense pool of support resources. 

 In any subject area, having a variety of sources of information available is very helpful, for 
teachers and students alike. For Java in particular, countless books, tutorials, exercises, com-
pilers, environments, and quizzes already exist, in many different kinds and styles. Many of 
them are online and many are available free of charge. The large amount and good quality 
of support material makes Java an excellent choice as an introduction to object-oriented 
 programming. 

 With so much Java material already available, is there still room for more to be said about it? 
We think there is, and the second tool we use is one of the reasons…  

  BlueJ 

 The second tool, BlueJ, deserves more comment. This book is unique in its completely inte-
grated use of the BlueJ environment. 



xvi      |       Preface

 BlueJ is a Java development environment that is being developed and maintained by the 
Computing Education Research Group at the University of Kent in Canterbury, UK, explicitly 
as an environment for teaching introductory object-oriented programming. It is better suited to 
introductory teaching than other environments for a variety of reasons: 

■   The user interface is much simpler. Beginning students can typically use the BlueJ environ-
ment in a competent manner after 20 minutes of introduction. From then on, instruction can 
concentrate on the important concepts at hand—object orientation and Java—and no time 
needs to be wasted talking about environments, file systems, class paths, or DLL  conflicts.  

■   The environment supports important teaching tools not available in other environments. One 
of them is visualization of class structure. BlueJ automatically displays a UML-like diagram 
representing the classes and relationships in a project. Visualizing these important concepts 
is a great help to both teachers and students. It is hard to grasp the concept of an object when 
all you ever see on the screen is lines of code! The diagram notation is a simple subset of 
UML, again tailored to the needs of beginning students. This makes it easy to understand, 
but also allows migration to full UML in later courses.  

■   One of the most important strengths of the BlueJ environment is the user’s ability to 
 directly create objects of any class, and then to interact with their methods. This creates the 
 opportunity for direct experimentation with objects, with little overhead in the environment. 
Students can almost “feel” what it means to create an object, call a method, pass a parameter, 
or receive a return value. They can try out a method immediately after it has been written, 
without the need to write test drivers. This facility is an invaluable aid in understanding the 
underlying concepts and language details.  

■   BlueJ includes numerous other tools and characteristics that are specifically designed for 
learners of software development. Some are aimed at helping with understanding fundamen-
tal concepts (such as the scope highlighting in the editor), some are designed to introduce 
additional tools and techniques, such as integrated testing using JUnit, or teamwork using 
a version control system, such as Subversion, once the students are ready. Several of these 
features are unique to the BlueJ environment.   

 BlueJ is a full Java environment. It is not a cut-down, simplified version of Java for teaching. 
It runs on top of Oracle’s Java Development Kit, and makes use of the standard compiler and 
virtual machine. This ensures that it always conforms to the official and most up-to-date Java 
specification.

 The authors of this book have many years of teaching experience with the BlueJ environment 
(and many more years without it before that). We both have experienced how the use of BlueJ 
has increased the involvement, understanding, and activity of students in our courses. One of 
the authors is also a developer of the BlueJ system.  

  Real objects first 

 One of the reasons for choosing BlueJ was that it allows an approach where teachers truly 
deal with the important concepts first. “Objects first” has been a battle cry for many textbook 
authors and teachers for some time. Unfortunately, the Java language does not make this noble 
goal very easy. Numerous hurdles of syntax and detail have to be overcome before the first 



Preface      |       xvii   

experience with a living object arises. The minimal Java program to create and call an object 
typically includes 

■   writing a class;  

■   writing a main method, including concepts such as static methods, parameters, and arrays in 
the signature;  

■   a statement to create the object (“new”);  

■   an assignment to a variable;  

■   the variable declaration, including variable type;  

■   a method call, using dot notation;  

■   possibly a parameter list.   

 As a result, textbooks typically either 

■   have to work their way through this forbidding list, and only reach objects somewhere 
around  Chapter   4   ; or  

■   use a “Hello, world”-style program with a single static main method as the first example, 
thus not creating any objects at all.   

 With BlueJ, this is not a problem. A student can create an object and call its methods as the 
very first activity! Because users can create and interact with objects directly, concepts such as 
classes, objects, methods, and parameters can easily be discussed in a concrete manner before 
looking at the first line of Java syntax. Instead of explaining more about this here, we suggest 
that the curious reader dip into  Chapter   1   —things will quickly become clear then.  

  An iterative approach 

 Another important aspect of this book is that it follows an iterative style. In the computing 
education community, a well-known educational design pattern exists that states that important 
concepts should be taught early and often. 1   It is very tempting for textbook authors to try and 
say everything about a topic at the point where it is introduced. For example, it is common, 
when introducing types, to give a full list of built-in data types, or to discuss all available kinds 
of loop when introducing the concept of a loop.  

 These two approaches conflict: we cannot concentrate on discussing important concepts first, 
and at the same time provide complete coverage of all topics encountered. Our experience with 
textbooks is that much of the detail is initially distracting, and has the effect of drowning the 
important points, thus making them harder to grasp. 

 In this book we touch on all of the important topics several times, both within the same chapter 
and across different chapters. Concepts are usually introduced at a level of detail necessary for 

1   The “Early Bird” pattern, in J. Bergin: “Fourteen pedagogical patterns for teaching computer science”, 
Proceedings of the Fifth European Conference on Pattern Languages of Programs  (EuroPLop 2000), 
Irsee, Germany, July 2000. 



xviii      |       Preface

understanding and applying the task at hand. They are revisited later in a different context, and 
understanding deepens as the reader continues through the chapters. This approach also helps to 
deal with the frequent occurrence of mutual dependencies between concepts. 

 Some teachers may not be familiar with an iterative approach. Looking at the first few chapters, 
teachers used to a more sequential introduction will be surprised about the number of concepts 
touched on this early. It may seem like a steep learning curve. 

 It is important to understand that this is not the end of the story. Students are not expected 
to understand everything about these concepts immediately. Instead, these fundamental con-
cepts will be revisited again and again throughout the book, allowing students to get a deeper 
and deeper understanding over time. Since their knowledge level changes as they work their 
way forward, revisiting important topics later allows them to gain a deeper understanding 
overall. 

 We have tried this approach with students many times. It seems that students have fewer prob-
lems dealing with it than some long-time teachers. And remember: a steep learning curve is not 
a problem as long as you ensure that your students can climb it!  

  No complete language coverage 

 Related to our iterative approach is the decision not to try to provide complete coverage of the 
Java language within the book. 

 The main focus of this book is to convey object-oriented programming principles in general, 
not Java language details in particular. Students studying with this book may be working as 
software professionals for the next 30 or 40 years of their life—it is a fairly safe bet that the 
majority of their work will not be in Java. Every serious textbook must of course attempt to pre-
pare them for something more fundamental than the language flavor of the day. 

 On the other hand, many Java details are important for actually doing the practical work. In 
this book we cover Java constructs in as much detail as is necessary to illustrate the concepts at 
hand and implement the practical work. Some constructs specific to Java have been deliberately 
left out of the discussion. 

 We are aware that some instructors will choose to cover some topics that we do not discuss 
in detail. That is expected and necessary. However, instead of trying to cover every possible 
topic ourselves (and thus blowing the size of this book out to 1500 pages), we deal with it 
using hooks . Hooks are pointers, often in the form of questions that raise the topic and give 
references to an appendix or outside material. These hooks ensure that a relevant topic is 
brought up at an appropriate time, and leave it up to the reader or the teacher to decide to 
what level of detail that topic should be covered. Thus, hooks serve as a reminder of the 
existence of the topic, and as a placeholder indicating a point in the sequence where discus-
sion can be inserted. 

 Individual teachers can decide to use the book as it is, following our suggested sequence, or to 
branch out into sidetracks suggested by the hooks in the text. 

 Chapters also often include several questions suggesting discussion material related to the 
topic, but not discussed in this book. We fully expect teachers to discuss some of these ques-
tions in class, or students to research the answers as homework exercises.  

www.allitebooks.com

http://www.allitebooks.org


Preface      |       xix   

  Project-driven approach 

 The introduction of material in the book is project driven. The book discusses numerous 
 programming projects and provides many exercises. Instead of introducing a new construct 
and then providing an exercise to apply this construct to solve a task, we first provide a goal 
and a problem. Analyzing the problem at hand determines what kinds of solutions we need. As 
a  consequence, language constructs are introduced as they are needed to solve the problems 
before us. 

 Early chapters provide at least two discussion examples. These are projects that are discussed 
in detail to illustrate the important concepts of each chapter. Using two very different exam-
ples supports the iterative approach: each concept is revisited in a different context after it is 
introduced.

 In designing this book we have tried to use a large number and wide variety of different 
 example projects. This will hopefully serve to capture the reader’s interest, but it also helps to 
illustrate the variety of different contexts in which the concepts can be applied. Finding good 
example projects is hard. We hope that our projects serve to give teachers good starting points 
and many ideas for a wide variety of interesting assignments. 

 The implementation for all our projects is written very carefully, so that many peripheral  issues 
may be studied by reading the projects’ source code. We are strong believers in the  benefit of 
learning by reading and imitating good examples. For this to work, however, one must make 
sure that the examples students read are well written and worth imitating. We have tried 
to do this. 

 All projects are designed as open-ended problems. While one or more versions of each prob-
lem are discussed in detail in the book, the projects are designed so that further extensions 
and  improvements can be done as student projects. Complete source code for all projects is 
included. A list of projects discussed in this book is provided on page xxvii.  

  Concept sequence rather than language constructs 

 One other aspect that distinguishes this book from many others is that it is structured along 
fundamental software development tasks and not necessarily according to the particular Java 
language constructs. One indicator of this is the chapter headings. In this book you will not find 
many of the traditional chapter titles, such as “Primitive data types” or “Control structures”. 
Structuring by fundamental development tasks allows us to give a much more general intro-
duction that is not driven by intricacies of the particular programming language utilized. We 
also believe that it is easier for students to follow the motivation of the introduction, and that it 
makes much more interesting reading. 

 As a result of this approach, it is less straightforward to use the book as a reference book. 
Introductory textbooks and reference books have different, partly competing, goals. To a certain 
extent a book can try to be both, but compromises have to be made at certain points. Our book 
is clearly designed as a textbook, and wherever a conflict occurred, the textbook style took 
precedence over its use as a reference book. 

 We have, however, provided support for use as a reference book by listing the Java constructs 
introduced in each chapter in the chapter introduction.  



xx      |       Preface

  Chapter sequence 

  Chapter   1    deals with the most fundamental concepts of object orientation: objects, classes, 
and methods. It gives a solid, hands-on introduction to these concepts without going into the 
details of Java syntax. We briefly introduce the concept of abstraction for the first time. This 
will necessarily be a thread that runs through many chapters.  Chapter   1    also gives a first look at 
some source code. We do this by using an example of graphical shapes that can be interactively 
drawn, and a second example of a simple laboratory class enrollment system. 

  Chapter   2    opens up class definitions and investigates how Java source code is written to create 
behavior of objects. We discuss how to define fields and implement methods, and point out the 
crucial role of the constructor in setting up an object’s state as embodied in its fields. Here, we 
also introduce the first types of statement. The main example is an implementation of a ticket 
machine. We also look back to the laboratory class example from  Chapter   1    to investigate that 
a bit further. 

  Chapter   3    then enlarges the picture to discuss interaction of multiple objects. We see how 
 objects can collaborate by invoking each other’s methods to perform a common task. We also 
discuss how one object can create other objects. A digital alarm clock display is discussed 
that uses two number display objects to show hours and minutes. A version of the project that 
 includes a GUI picks up on a running theme of the book—that we often provide additional code 
for the interested and able student to explore, without covering it in detail in the text. As a sec-
ond major example, we examine a simulation of an email system in which messages can be sent 
between mail clients. 

 In  Chapter   4    we continue by building more extensive structures of objects and pick up again 
on the themes of abstraction and object interaction from the preceding chapters. Most impor-
tantly, we start using collections of objects. We implement an organizer for music files and an 
auction system to introduce collections. At the same time, we discuss iteration over collec-
tions, and have a first look at the for-each and while loops. The first collection being used is an 
ArrayList. In the second half of the chapter we introduce arrays as a special form of a col-
lection, and the for  loop as another form of a loop. We discuss an implementation of a web-log 
analyzer as an example for array use. 

  Chapter   5    deals with libraries and interfaces. We introduce the Java library and discuss some 
important library classes. More importantly, we explain how to read and understand the library 
documentation. The importance of writing documentation in software development projects is 
discussed, and we end by practicing how to write suitable documentation for our own classes. 
Random, Set, and Map are examples of classes that we encounter in this chapter. We implement 
an Eliza -like dialog system and a graphical simulation of a bouncing ball to apply these classes. 

 In  Chapter   6    we discuss more formally the issues of dividing a problem domain into classes 
for implementation. We introduce issues of designing classes well, including concepts such as 
responsibility-driven design, coupling, cohesion, and refactoring. An interactive, text-based 
adventure game ( World of Zuul ) is used for this discussion. We go through several iterations of 
improving the internal class structure of the game and extending its functionality, and end with 
a long list of proposals for extensions that may be done as student projects. 

  Chapter   7   , titled “Well-Behaved Objects,” deals with a whole group of issues connected to pro-
ducing correct, understandable, and maintainable classes. It covers issues ranging from writing 



Preface      |       xxi   

clear, understandable code—including style and commenting—to testing and debugging. Test 
strategies are introduced, including formalized regression testing using JUnit, and a number of 
debugging methods are discussed in detail. We use an example of an online shop and an imple-
mentation of an electronic calculator to discuss these topics. 

  Chapters   8    and    9    introduce inheritance and polymorphism, with many of the related detailed 
 issues. We discuss a part of a social network to illustrate the concepts. Issues of code inherit-
ance, subtyping, polymorphic method calls, and overriding are discussed in detail. 

 In  Chapter   10    we implement a predator/prey simulation. This serves to discuss additional 
 abstraction mechanisms based on inheritance, namely interfaces and abstract classes. 

  Chapter   11    develops an image viewer and a graphical user interface for the music organizer 
( Chapter   4   ). Both examples serve to discuss how to build graphical user interfaces (GUIs). 

  Chapter   12    then picks up the difficult issue of how to deal with errors. Several possible prob-
lems and solutions are discussed, and Java’s exception-handling mechanism is discussed in 
 detail. We extend and improve an address book application to illustrate the concepts. Input/
output is used as a case study where error-handling is an essential requirement. 

  Chapter   13    steps back to discuss in more detail the next level of abstraction: How to structure 
a vaguely described problem into classes and methods. In previous chapters we have assumed 
that large parts of the application structure already exist, and we have made improvements. 
Now it is time to discuss how we can get started from a clean slate. This involves detailed dis-
cussion of what the classes should be that implement our application, how they interact, and 
how responsibilities should be distributed. We use class–responsibilities–collaborators (CRC) 
cards to approach this problem, while designing a cinema booking system. 

 In  Chapter   14    we try to bring everything together and integrate many topics from the previ-
ous chapters of the book. It is a complete case study, starting with the application design, 
through design of the class interfaces, down to discussing many important functional and 
non-functional characteristics and implementation details. Topics discussed in earlier chap-
ters (such as reliability, data structures, class design, testing, and extendibility) are applied 
again in a new context.  

  Supplements 

 VideoNotes: VideoNotes are Pearson’s new visual tool designed to teach students key pro-
gramming concepts and techniques. These short step-by-step videos demonstrate how to solve 
problems from design through coding. VideoNotes allow for self-paced instruction with easy 
navigation including the ability to select, play, rewind, fast-forward, and stop within each 
VideoNote exercise.  

  VideoNotes are located at http://www.pearsonhighered.com/barnes_kolling. Six months of pre-
paid access are included with the purchase of a new textbook. If the access code has already been 
revealed, it may no longer be valid. If this is the case, you can purchase a subscription by going 
to http://www.pearsonhighered.com/barnes_kolling/  and following the on-screen instructions. 

 Student Resource CD: This book includes all projects used as discussion examples and exer-
cises on a CD. The CD also includes the Java development environment (JDK) and BlueJ for 
various operating systems. 

VideoNote

http://www.pearsonhighered.com/barnes_kolling
http://www.pearsonhighered.com/barnes_kolling/


xxii      |       Preface

 Companion website for students: The following resources are available to all readers of this 
book at its Companion Website, located at  http://www.pearsonhighered.com/barnes_kolling : 

■   Program style guide for all examples in the book  

■   Links to further material of interest  

■   Complete source code for all projects    

  Discussion group for students: Students who want to ask questions or discuss issues either 
concerning material covered in this book, or BlueJ in general, can do so at  http://groups.google.
com/group/bluej-discuss on the bluej-discuss  group.  

 Instructor Resources: The following supplements are available to qualified instructors only:  

■   Solutions to end-of-chapter exercises  

■   PowerPoint slides   

Visit the Pearson Instructor Resource Center at  www.pearsonhighered.com/irc  to register for 
access or contact your local Pearson representative.

 Authors’ website: In addition to the publisher’s Companion website for this book, we maintain 
a website at  http://www.bluej.org/objects-first . On this web site, updates to the examples can be 
found, and additional material is provided. For instance, the style guide used for all  examples in 
this book is available on the web site in electronic form so that instructors can modify it to meet 
their own requirements. This web site is not supported by the publisher.  

  The Blueroom 

 Perhaps more important than the static web site resources is a very active community forum 
that exists for instructors who teach with BlueJ and this book. It is called the Blueroom  and can 
be found at 

   http://blueroom.bluej.org   

 The Blueroom contains a resource collection with many teaching resources shared by other 
teachers, as well as a discussion forum where instructors can ask questions, discuss issues, and 
stay up-to-date with latest developments. Many other teachers, as well as developers of BlueJ 
and the authors of this book can be contacted in the Blueroom.   

http://www.pearsonhighered.com/barnes_kolling
http://groups.google.com/group/bluej-discuss
http://groups.google.com/group/bluej-discuss
http://www.bluej.org/objects-first
http://blueroom.bluej.org
www.pearsonhighered.com/irc


   figures  Chapter   1    

 Simple drawing with some geometrical shapes; illustrates creation of objects, method calling, 
and parameters.  

  house  Chapter   1    

 An example using shape objects to draw a picture; introduces source code, Java syntax, and 
compilation.

  lab-classes  Chapter   1   ,  Chapter   2   ,  Chapter   8    

 A simple example with classes of students; illustrates objects, fields, and methods. Used again 
in  Chapter   8    to add inheritance.  

  ticket-machine  Chapter   2    

 A simulation of a ticket vending machine for train tickets; introduces more about fields, con-
structors, accessor and mutator methods, parameters, and some simple statements.  

  book-exercise  Chapter   2    

 Storing details of a book. Reinforcing the constructs used in the ticket-machine example.  

  clock-display  Chapter   3    

 An implementation of a display for a digital clock; illustrates the concepts of abstraction, mod-
ularization, and object interaction. Includes a version with an animated GUI.  

  mail system  Chapter   3    

 A simple simulation of an email system. Used to demonstrate object creation and interaction.  

  music-organizer  Chapter   4   ,  Chapter   11    

 An implementation of an organizer for music tracks; used to introduce collections and loops. 
Includes the ability to play MP3 files. A GUI is added in  Chapter   11   .  

  auction  Chapter   4    

 An auction system. More about collections and loops, this time with iterators.  

  weblog-analyzer  Chapter   4    

 A program to analyze web access log files; introduces arrays and for loops.  

  tech-support  Chapter   5    

 An implementation of an  Eliza -like dialog program used to provide “technical support” to 
 customers; introduces use of library classes in general and some specific classes in particular; 
reading and writing of documentation.  

  List of projects discussed in detail 
in this book 



xxiv      |       List of projects discussed in detail in this book 

  scribble  Chapter   5    

 A shape-drawing program to support learning about classes from their interfaces.  

  bouncing-balls  Chapter   5    

 A graphical animation of bouncing balls; demonstrates interface/implementation separation and 
simple graphics.  

  world-of-zuul  Chapter   6   ,  Chapter   9    

 A text-based, interactive adventure game. Highly extendable, makes a great open-ended student 
project. Used here to discuss good class design, coupling, and cohesion. Used again in  Chapter   9    
as an example for use of inheritance. 

  online-shop  Chapter   7    

 The early stages of an implementation of a part of an online shopping website, dealing with 
user comments; used to discuss testing and debugging strategies.  

  calculator  Chapter   7    

 An implementation of a desk calculator. This example reinforces concepts introduced earlier, 
and is used to discuss testing and debugging.  

  bricks  Chapter   7    

 A simple debugging exercise; models filling pallets with bricks for simple computations.  

  network  Chapter   8   ,  Chapter   9    

 Part of a social network application. This project is discussed and then extended in great detail 
to introduce the foundations of inheritance and polymorphism.  

  foxes-and-rabbits  Chapter   10    

 A classic predator–prey simulation; reinforces inheritance concepts and adds abstract classes 
and interfaces.  

  image-viewer  Chapter   11    

 A simple image view and manipulation application. We concentrate mainly on building the GUI.  

  music-player  Chapter   11    

 A GUI is added to the  music-organizer  project of  Chapter   4    as another example of building GUIs.  

  address-book  Chapter   12    

 An implementation of an address book with an optional GUI interface. Lookup is flexible: 
entries can be searched by partial definition of name or phone number. This project makes 
 extensive use of exceptions.  

  cinema-booking-system  Chapter   13    

 A system to manage advance seat bookings in a cinema. This example is used in a discussion 
of class discovery and application design. No code is provided, as the example represents the 
development of an application from a blank sheet of paper.  

  taxi-company  Chapter   14    

 The taxi example is a combination of a booking system, management system, and simulation. 
It is used as a case study to bring together many of the concepts and techniques discussed 
throughout the book.    



  Acknowledgments 

 Many people have contributed in many different ways to this book and made its creation 
 possible. 

 First, and most importantly, John Rosenberg must be mentioned. John is now a Deputy 
Vice-Chancellor at La Trobe University, Australia. It is by mere coincidence of circumstance 
that John is not one of the authors of this book. He was one of the driving forces in the 
 development of BlueJ and the ideas and pedagogy behind it from the very beginning, and we 
talked about the writing of this book for several years. Much of the material in this book was 
 developed in discussions with John. Simply the fact that there are only twenty-four hours in a 
day, too many of which were already taken up with too much other work, prevented him from 
actually writing this book. John contributed significantly to the original version of this text 
and helped improve it in many ways. We have appreciated his friendship and collaboration 
immensely. 

 Several other people have helped making BlueJ what it is: Bruce Quig, Davin McCall, and 
Andrew Patterson in Australia, and Ian Utting, Poul Henriksen, Neil Brown and Philip Stevens 
in England. All have worked on BlueJ for many years, improving and extending the design and 
implementation in addition to their other work commitments. Without their work, BlueJ would 
never have reached the quality and popularity it has today, and this book might never have been 
written.

 Another important contribution that made the creation of BlueJ and this book possible was very 
generous support first from Sun Microsystems and now from Oracle. Sun has very generously 
supported BlueJ for many years, and when Oracle acquired Sun this support has continued. We 
are very grateful for this crucial contribution. 

 We’d also like to thank the reviewers for this edition: Daniel Rocco, University of West Georgia; 
Jeanette Allen, University of West Georgia; Katherine Herbert, Montclair State University; 
Craig A. Piercy. University of Georgia; and Xuemin Chen, Texas Southern University. 

 The Pearson team also have done a terrific job in making this book happen, managing to 
bring it into the world and avert every author’s worst fear—that his book might go unnoticed. 
Particular thanks are due to our editor, Tracy Dunkelberger, and editorial assistants Chelsea Bell 
and Stephanie Sellinger, who supported us through the writing and production process. 

 David would like to add his personal thanks to both staff and students of the Computer Science 
Department at the University of Kent. The students who have taken the introductory OO 
course have always been a privilege to teach. They also provide the essential stimulus and 



xxvi      |       Acknowledgments

motivation that makes teaching so much fun. Without the valuable assistance of knowledge-
able and supportive postgraduate supervisors, running classes would be impossible. Outside 
university life, various people have supplied a wonderful recreational and social outlet to 
prevent writing from taking over completely. In particular I would like to thank Tim Hopkins 
and Maggie Bowman—as sources of good company and limitless amusement—and my fellow 
members of The River Band: Ian Lithgow, Mick Budd, Olly Jeffery, and Pete Langridge. 

 Finally, I would like to thank my wife Helen, whose love is so special; and my children, whose 
lives are so precious. 

 Michael would like to thank Davin, Neil and Phil who have done such excellent work in build-
ing and maintaining BlueJ, Greenfoot, and our community web sites. Without such a great team 
none of this could work. 

 I must mention my two little girls, Sophie and Feena, who—admittedly—are not (yet?) terri-
bly interested in this book, but who keep me going. And finally, and most importantly, there is 
Monica, the love of my life. I don’t know where I would be without her.        



Part 1
Foundations of object 
orientation



This page intentionally left blank 

www.allitebooks.com

http://www.allitebooks.org


It’s time to jump in and get started with our discussion of object-oriented programming. 
Learning to program requires a mix of some theory and a lot of practice. In this book, we will 
present both, so that the two reinforce each other.

At the heart of object orientation are two concepts that we have to understand first: objects and 
classes. These form the basis of all programming in object-oriented languages. So let us start 
with a brief discussion of these two foundations.

1.1 Objects and classes
If you write a computer program in an object-oriented language, you are creating, in your com-
puter, a model of some part of the world. The parts that the model is built up from are the objects
that appear in the problem domain. These objects must be represented in the computer model be-
ing created. The objects from the problem domain vary with the program you are writing. They 
may be words and paragraphs if you are programming a word processor, users and messages if 
you are working on a social-network system, or monsters if you are writing a computer game.

Objects may be categorized as—and a class describes, in an abstract way—all objects of a par-
ticular kind.

We can make these abstract notions clearer by looking at an example. Assume you want to 
model a traffic simulation. One kind of entity you then have to deal with is cars. What is a car in 
our context: Is it a class or an object? A few questions may help us to make a decision.

What color is a car? How fast can it go? Where is it right now?

You will notice that we cannot answer these questions until we talk about one specific car. The 
reason is that the word “car” in this context refers to the class car; we are talking about cars in 
general, not about one particular car.

Main concepts discussed in this chapter:

Objects and classes

CHAPTER

1

■  objects

■ methods

■ classes

■ parameters

Concept:

Java objects

model objects from 

a problem domain.

Concept:

Objects are created 

from classes. The

class describes the 

kind of object; the 

objects represent 

individual instantia-

tions of the class.



4 |       Chapter 1 ■ Objects and classes

If I speak of “My old car that is parked at home in my garage,” we can answer the questions 
above. That car is red, it doesn’t go very fast, and it is in my garage. Now I am talking about an 
object—about one particular example of a car.

We usually refer to a particular object as an instance. We shall use the term “instance” quite 
regularly from now on. “Instance” is roughly synonymous with “object”; we refer to objects as 
instances when we want to emphasize that they are of a particular class (such as “this object is 
an instance of class car”).

Before we continue this rather theoretical discussion, let us look at an example.

1.2 Creating objects
Start BlueJ and open the example named figures.1 You should see a window similar to that 
shown in Figure 1.1.

Figure 1.1
The figures project 

in BlueJ

1 We regularly expect you to undertake some activities and exercises while reading this book. At this 
point, we assume that you already know how to start BlueJ and open the example projects. If not, read 
Appendix A first.

In this window, a diagram should become visible. Every one of the colored rectangles in the dia-
gram represents a class in our project. In this project, we have classes named Circle, Square,
Triangle, and Canvas.

Right-click on the Circle class and choose

new Circle()

from the pop-up menu. The system asks you for a “name of the instance”; click OK—the de-
fault name supplied is good enough for now. You will see a red rectangle toward the bottom of 
the screen labeled “circle1” (Figure 1.2).



1.3 Calling methods | 5

You have just created your first object! “Circle,” the rectangular icon in Figure 1.1, represents 
the class Circle; circle1 is an object created from this class. The area at the bottom of the 
screen where the object is shown is called the object bench.

1.3 Calling methods
Right-click on one of the circle objects (not the class!), and you will see a pop-up menu with 
several operations (Figure 1.3). Choose makeVisible from the menu—this will draw a rep-
resentation of this circle in a separate window (Figure 1.4).

Figure 1.2
An object on the 

object bench

Convention We start names of classes with capital letters (such as Circle) and names of objects 

with lowercase letters (such as circle1). This helps to distinguish what we are talking about.

Exercise 1.1 Create another circle. Then create a square.

Figure 1.3
An object’s pop-up 

menu, listing its 

operations

You will notice several other operations in the circle’s menu. Try invoking moveRight and 
moveDown a few times to move the circle closer to the center of the screen. You may also like 
to try makeInvisible and makeVisible to hide and show the circle.



6 |       Chapter 1 ■ Objects and classes

The entries in the circle’s menu represent operations that you can use to manipulate the circle. 
These are called methods in Java. Using common terminology, we say that these methods are 
called or invoked. We shall use this proper terminology from now on. We might ask you to “in-
voke the moveRight method of circle1.”

1.4 Parameters
Now invoke the moveHorizontal method. You will see a dialog appear that prompts you 
for some input (Figure 1.5). Type in 50 and click OK. You will see the circle move 50 pixels 
to the right.2

The moveHorizontal method that was just called is written in such a way that it requires 
some more information to execute. In this case, the information required is the distance—how 
far the circle should be moved. Thus, the moveHorizontal method is more flexible than 
the moveRight and moveLeft methods. The latter always move the circle a fixed distance, 
whereas moveHorizontal lets you specify how far you want to move the circle.

Concept:

We can com-

municate with 

objects by invoking 

methods on them. 

Objects usually do 

something if we in-

voke a method.

Exercise 1.2 What happens if you call moveDown twice? Or three times? What happens if 

you call makeInvisible twice?

Figure 1.5
A method-call dialog

2 A pixel is a single dot on your screen. Your whole screen is made up of a grid of single pixels.

Concept:

Methods can have 

parameters to 

provide additional 

information for a 

task.

Figure 1.4
A drawing of a circle



1.5 Data types      | 7

The additional values that some methods require are called parameters. A method indicates 
what kinds of parameters it requires. When calling, for example, the moveHorizontal method 
as shown in Figure 1.4, the dialog displays the line near the top.

void moveHorizontal(int distance)

This is called the signature of the method. The signature provides some information about the 
method in question. The part enclosed by parentheses (int distance) is the information 
about the required parameter. For each parameter, it defines a type and a name. The signature 
above states that the method requires one parameter of type int named distance. The name 
gives a hint about the meaning of the data expected.

1.5 Data types
A type specifies what kind of data can be passed to a parameter. The type int signifies 
whole numbers (also called “integer” numbers, hence the abbreviation “int”).

In the example above, the signature of the moveHorizontal method states that, before the 
method can execute, we need to supply a whole number specifying the distance to move. The 
data entry field shown in Figure 1.5 then lets you enter that number.

In the examples so far, the only data type we have seen has been int. The parameters of the 
move methods and the changeSize method are all of that type.

Closer inspection of the object’s pop-up menu shows that the method entries in the menu in-
clude the parameter types. If a method has no parameter, the method name is followed by an 
empty set of parentheses. If it has a parameter, the type and name of that parameter is displayed. 
In the list of methods for a circle, you will see one method with a different parameter type: the 
changeColor method has a parameter of type String.

The String type indicates that a section of text (for example, a word or a sentence) is expected. 
Strings are always enclosed within double quotes. For example, to enter the word red as a string, type

"red"

The method-call dialog also includes a section of text called a comment above the method signature. 
Comments are included to provide information to the (human) reader and are described in Chapter 2. 
The comment of the changeColor method describes what color names the system knows about.

Exercise 1.3 Try invoking the moveVertical, slowMoveVertical, and changeSize
methods before you read on. Find out how you can use moveHorizontal to move the circle 

70 pixels to the left.

Concept:

The header of a 

method is called its 

signature. It pro-

vides information 

needed to invoke 

that method.

Concept:

Parameters have 

types. The type 

defines what kinds 

of values a param-

eter can take.

Exercise 1.4 Invoke the changeColor method on one of your circle objects and enter the 

string "red". This should change the color of the circle. Try other colors.

Exercise 1.5 This is a very simple example, and not many colors are supported. See what 

happens when you specify a color that is not known.



8 |       Chapter 1 ■ Objects and classes

Java supports several other data types, including decimal numbers and characters. We shall not 
discuss all of them right now, but rather come back to this issue later. If you want to find out 
about them now, look at Appendix B.

1.6 Multiple instances

Exercise 1.7 Create several circle objects on the object bench. You can do so by select-

ing new Circle() from the pop-up menu of the Circle class. Make them visible, then 

move them around on the screen using the “move” methods. Make one big and yellow; make 

another one small and green. Try the other shapes too: create a few triangles, squares, and 

persons. Change their positions, sizes, and colors.

Concept:

Multiple

instances. Many 

similar objects can 

be created from a 

single class.

Once you have a class, you can create as many objects (or instances) of that class as you 
like. From the class Circle, you can create many circles. From Square, you can create 
many squares.

Every one of those objects has its own position, color, and size. You change an attribute of an 
object (such as its size) by calling a method on that object. This will affect this particular object, 
but not others.

You may also notice an additional detail about parameters. Have a look at the changeSize
method of the triangle. Its signature is

void changeSize(int newHeight, int newWidth)

Here is an example of a method with more than one parameter. This method has two, and a 
comma separates them in the signature. Methods can, in fact, have any number of parameters.

1.7 State
The set of values of all attributes defining an object (such as x-position, y-position, color, 
diameter, and visibility status for a circle) is also referred to as the object’s state. This is 
another example of common terminology that we shall use from now on.

In BlueJ, the state of an object can be inspected by selecting the Inspect function from the ob-
ject’s pop-up menu. When an object is inspected, an object inspector is displayed. The object 
inspector is an enlarged view of the object that shows the attributes stored inside it (Figure 1.6).

Concept:

Objects have state. 

The state is repre-

sented by storing 

values in fields.

Exercise 1.6 Invoke the changeColor method, and write the color into the parameter field 

without the quotes. What happens?

Pitfall A common error for beginners is to forget the double quotes when typing in a data value 

of type String. If you type green instead of "green", you will get an error message saying 

something like “Error: cannot find symbol - variable green.”



1.8 What is in an object?      | 9

Some methods, when called, change the state of an object. For example, moveLeft changes the 
xPosition attribute. Java refers to these object attributes as fields.

1.8 What is in an object?
On inspecting different objects, you will notice that objects of the same class all have the 
same fields. That is, the number, type, and names of the fields are the same, while the actual 
value of a particular field in each object may be different. In contrast, objects of a different
class may have different fields. A circle, for example, has a “diameter” field, while a trian-
gle has fields for “width” and “height.”

The reason is that the number, types, and names of fields are defined in a class, not in an object. 
So the class Circle defines that each circle object will have five fields, named diameter,
xPosition, yPosition, color, and isVisible. It also defines the types for these fields. 
That is, it specifies that the first three are of type int, while the color is of type String and the 
isVisible flag is of type boolean. (Boolean is a type that can represent two values: true
and false. We shall discuss it in more detail later.)

When an object of class Circle is created, the object will automatically have these fields. 
The values of the fields are stored in the object. That ensures that each circle has a color, for 
instance, and each can have a different color (Figure 1.7).

The story is similar for methods. Methods are defined in the class of the object. As a result, all 
objects of a given class have the same methods. However, the methods are invoked on objects. 
This makes it clear which object to change when, for example, a moveRight method is invoked.

Figure 1.6
An object inspector, 

showing details of an 

object

Exercise 1.8 Make sure you have several objects on the object bench, and then inspect each 

of them in turn. Try changing the state of an object (for example, by calling the moveLeft method) 

while the object inspector is open. You should see the values in the object inspector change.

Exercise 1.9 Figure 1.8 shows two different images. Choose one of these images and rec-

reate it using the shapes from the figures project. While you are doing this, write down what 

you have to do to achieve this. Could it be done in different ways?



10 |       Chapter 1 ■ Objects and classes

1.9 Java code
When we program in Java, we essentially write down instructions to invoke methods on 
objects, just as we have done with our figure objects above. However, we do not do this 
interactively by choosing methods from a menu with the mouse, but instead write the com-
mands down in textual form. We can see what those commands look like in text form by 
using the BlueJ Terminal.

Circle
Figure 1.7
A class and its 

objects with fields 

and values

Figure 1.8
Two images created 

from a set of shape 

objects



1.9 Java code      | 11

Using the terminal’s Record method calls function, we can see that the sequence of creating a per-
son object and calling its makeVisible and moveRight methods looks like this in Java text form:

Person person1 = new Person();

person1.makeVisible();

person1.moveRight();

Here, we can observe several things:

■ We can see what creating an object and giving it a name looks like. Technically, what we are 
doing here is storing the Person object into a variable; we will discuss this in detail in the 
next chapter.

■ We see that, to call a method on an object, we write the name of the object, followed by 
a dot, followed by the name of the method. The command ends with a parameter list—an 
empty pair of parentheses if there are no parameters.

■ All Java statements end with a semicolon.

Instead of just looking at Java statements, we can also write them. To do this, we use the Code
Pad. (You can switch off the Record method calls function now and close the terminal.)

Exercise 1.10 Select Show Terminal from the View menu. This shows another window that 

BlueJ uses for text output. Then select Record method calls from the terminal’s Options menu. 

This function will cause all our method calls (in their textual form) to be written to the terminal. 

Now create a few objects, call some of their methods, and observe the output in the terminal 

window.

Exercise 1.11 Select Show Code Pad from the View menu. This should display a new pane 

next to the object bench in your main BlueJ window. This pane is the Code Pad. You can type 

Java code here.

Exercise 1.12 In the Code Pad, type the code shown above to create a person object and 

call its makeVisible and moveRight methods. Then go on to create some other objects 

and call their methods.

In the Code Pad, we can write Java code that does the same things we did interactively before. 
The Java code we need to type is exactly like that shown above.

Typing these commands should have the same effect as invoking the same command from 
the object’s menu. If instead you see an error message, then you have mistyped the command. 
Check your spelling. You will note that getting even a single character wrong will make the 
command fail.

Tip You can recall previously used commands in the Code Pad by using the up arrow.



12 |       Chapter 1 ■ Objects and classes

1.10 Object interaction
For the next section, we shall work with a different example project. Close the figures pro-
ject if you still have it open, and open the project called house.

Exercise 1.13 Open the house project. Create an instance of class Picture and invoke its 

draw method. Also, try out the setBlackAndWhite and setColor methods.

Exercise 1.14 How do you think the Picture class draws the picture?

Concept:

The source code

of a class deter-

mines the structure 

and behavior (the 

fields and methods) 

of each of the ob-

jects of that class.

Exercise 1.15 Look at the pop-up menu of class Picture again. You will see an option la-

beled Open Editor. Select it. This will open a text editor displaying the source code of the class.

The source code is text written in the Java programming language. It defines what fields and 
methods a class has, and precisely what happens when a method is invoked. In the next chapter, 
we shall discuss exactly what the source code of a class contains and how it is structured.

A large part of learning the art of programming is learning how to write these class definitions. 
To do this, we shall learn to use the Java language (although there are many other programming 
languages that could be used to write code).

When you make a change to the source code and close the editor,3 the icon for that class 
appears striped in the diagram. The stripes indicate that the source has been changed. The class 

3 In BlueJ, there is no need to explicitly save the text in the editor before closing. If you close the editor, 
the source code will automatically be saved.

Five of the classes in the house project are identical to the classes in the figures project. But we 
now have an additional class: Picture. This class is programmed to do exactly what we have 
done by hand in Exercise 1.9.

In reality, if we want a sequence of tasks done in Java, we would not normally do it by hand as 
in Exercise 1.9. Instead, we create a class that does it for us. This is the Picture class.

The Picture class is written so that, when you create an instance, the instance creates two square 
objects (one for the wall, one for the window), a triangle, and a circle; moves them around; and 
changes their color and size, until the canvas looks like the picture we see in Figure 1.8.

The important point here is that objects can create other objects, and they can call each other’s 
methods. In a normal Java program, you may well have hundreds or thousands of objects. The 
user of a program just starts the program (which typically creates a first object), and all other 
objects are created—directly or indirectly—by that object.

The big question now is this: How do we write the class for such an object?

1.11 Source code
Each class has some source code associated with it. The source code is text that defines the 
details of the class. In BlueJ, the source code of a class can be viewed by selecting the Open 
Editor function from the class’s pop-up menu or by double-clicking the class icon.

Concept:

Method calling.

Objects can com-

municate by call-

ing each other’s 

methods.

www.allitebooks.com

http://www.allitebooks.org


1.11 Source code      |       13

now needs to be compiled by clicking the Compile button. (You may like to read the “About 
compilation” note for more information on what is happening when you compile a class.) Once 
a class has been compiled, objects can be created again and you can try out your change.

About compilation

When people write computer programs, they typically use a “higher-level” programming language 

such as Java. A problem with that is that a computer cannot execute Java source code directly. 

Java was designed to be reasonably easy to read for humans, not for computers. Computers, in-

ternally, work with a binary representation of a machine code, which looks quite different from Java. 

The problem for us is that it looks so complex that we do not want to write it directly. We prefer to 

write Java. What can we do about this?

The solution is a program called the compiler. The compiler translates the Java code into machine 

code. We can write Java and run the compiler—which generates the machine code—and the 

computer can then read the machine code. As a result, every time we change the source code, we 

must first run the compiler before we can use the class again to create an object. Otherwise, the 

machine code version that the computer needs will not exist.

Exercise 1.16 In the source code of class Picture, find the part that actually draws the 

picture. Change it so that the sun will be blue rather than yellow.

Exercise 1.17 Add a second sun to the picture. To do this, pay attention to the field defini-

tions close to the top of the class. You will find this code:

private Square wall;
private Square window;
private Triangle roof;
private Circle sun;

You need to add a line here for the second sun. For example:

private Circle sun2;

Then write the appropriate code for creating the second sun.

Exercise 1.18 Challenge exercise (This means that this exercise might not be solved 

quickly. We do not expect everyone to be able to solve this at the moment. If you do, great. 

If you don’t, then don’t worry. Things will become clearer as you read on. Come back to this 

exercise later.) Add a sunset to the single-sun version of Picture. That is, make the sun go 

down slowly. Remember: The circle has a method slowMoveVertical that you can use to 

do this.

Exercise 1.19 Challenge exercise If you added your sunset to the end of the draw method 

(so that the sun goes down automatically when the picture is drawn), change this now. We 

now want the sunset in a separate method, so that we can call draw and see the picture with 

the sun up, and then call sunset (a separate method!) to make the sun go down.

Exercise 1.20 Challenge exercise Make a person walk up to the house after the sunset.



14 |       Chapter 1 ■ Objects and classes

1.12 Another example
In this chapter, we have already discussed a large number of new concepts. To help in un-
derstanding these concepts, we shall now revisit them in a different context. For this, we use 
another example. Close the house project if you still have it open, and open the lab-classes
project.

This project is a simplified part of a student database designed to keep track of students in labo-
ratory classes and to print class lists.

Exercise 1.21 Create an object of class Student. You will notice that this time you are 

prompted not only for a name of the instance, but also for some other parameters. Fill them in 

before clicking OK. (Remember that parameters of type String must be written within double 

quotes.)

1.13 Return values
As before, you can create multiple objects. And again, as before, the objects have methods 
that you can call from their pop-up menu.

Concept:

Result. Methods 

may return infor-

mation about an 

object via a return

value.

Exercise 1.22 Create some student objects. Call the getName method on each object. 

Explain what is happening.

When calling the getName method of the Student class, we notice something new: methods 
may return a result value. In fact, the signature of each method tells us whether or not it returns 
a result and what the type of the result is. The signature of getName (as shown in the object’s 
pop-up menu) is defined as

String getName()

The word String before the method name specifies the return type. In this case, it states that 
calling this method will return a result of type String. The signature of changeName states:

void changeName(String replacementName)

The word void indicates that this method does not return any result.

Methods with return values enable us to get information from an object via a method call. This 
means that we can use methods either to change an object’s state or to find out about its state.

1.14 Objects as parameters

Exercise 1.23 Create an object of class LabClass. As the signature indicates, you need to 

specify the maximum number of students in that class (an integer).



1.14 Objects as parameters      | 15

As the exercises show, objects can be passed as parameters to methods of other objects. In 
the case where a method expects an object as a parameter, the expected object’s class name 
is specified as the parameter type in the method signature.

Explore this project a bit more. Try to identify the concepts discussed in the figures example in 
this context.

Exercise 1.24 Call the numberOfStudents method of that class. What does it do?

Exercise 1.25 Look at the signature of the enrollStudent method. You will notice that 

the type of the expected parameter is Student. Make sure you have two or three students 

and a LabClass object on the object bench, then call the enrollStudent method of the 

LabClass object. With the input cursor in the dialog entry field, click on one of the student 

objects; this enters the name of the student object into the parameter field of the enroll-
Student method (Figure 1.9). Click OK and you have added the student to the LabClass.

Add one or more other students as well.

Exercise 1.26 Call the printList method of the LabClass object. You will see a list of 

all the students in that class printed to the BlueJ terminal window (Figure 1.10).

Figure 1.9
Adding a student 

to a LabClass

Figure 1.10
Output of the 

LabClass class 

listing



16 |       Chapter 1 ■ Objects and classes

1.15 Summary
In this chapter, we have explored the basics of classes and objects. We have discussed the 
fact that objects are specified by classes. Classes represent the general concept of things, 
while objects represent concrete instances of a class. We can have many objects of any class.

Objects have methods that we use to communicate with them. We can use a method to make a 
change to the object or to get information from the object. Methods can have parameters, and 
parameters have types. Methods have return types, which specify what type of data they return. 
If the return type is void, they do not return anything.

Objects store data in fields (which also have types). All the data values of an object together are 
referred to as the object’s state.

Objects are created from class definitions that have been written in a particular programming lan-
guage. Much of programming in Java is about learning to write class definitions. A large Java pro-
gram will have many classes, each with many methods that call each other in many different ways.

To learn to develop Java programs, we need to learn how to write class definitions, including fields 
and methods, and how to put these classes together well. The rest of this book deals with these issues.

Terms introduced in this chapter

object, class, instance, method, signature, parameter, type, state, source code, 

return value, compiler

Exercise 1.27 Create three students with the following details:

Snow White, student ID: A00234, credits: 24

Lisa Simpson, student ID: C22044, credits: 56

Charlie Brown, student ID: A12003, credits: 6

Then enter all three into a lab and print a list to the screen.

Exercise 1.28 Use the inspector on a LabClass object to discover what fields it has.

Exercise 1.29 Set the instructor, room, and time for a lab, and print the list to the terminal 

window to check that these new details appear.

Concept summary

■ object Java objects model objects from a problem domain.

■ class Objects are created from classes. The class describes the kind of object; the objects 

represent individual instantiations of the class.



1.15 Summary      | 17

■ method We can communicate with objects by invoking methods on them. Objects usually do 

something if we invoke a method.

■ parameter Methods can have parameters to provide additional information for a task.

■ signature The header of a method is called its signature. It provides information needed to 

invoke that method.

■ type Parameters have types. The type defines what kinds of values a parameter can take.

■ multiple instances Many similar objects can be created from a single class.

■ state Objects have state. The state is represented by storing values in fields.

■ method calling Objects can communicate by calling each other’s methods.

■ source code The source code of a class determines the structure and behavior (the fields 

and methods) of each of the objects of that class.

■ result Methods may return information about an object via a return value.

Exercise 1.30 In this chapter we have mentioned the data types int and String. Java 

has more predefined data types. Find out what they are and what they are used for. To do this, 

you can check Appendix B, or look it up in another Java book or in an online Java language 

manual. One such manual is at

http://download.oracle.com/javase/tutorial/java/nutsandbolts/
datatypes.html

Exercise 1.31 What are the types of the following values?

0
"hello"
101
-1
true
"33"
3.1415

Exercise 1.32 What would you have to do to add a new field, for example one called name,

to a circle object?

Exercise 1.33 Write the signature for a method named send that has one parameter of 

type String, and does not return a value.

Exercise 1.34 Write the signature for a method named average that has two parameters, 

both of type int, and returns an int value.

Exercise 1.35 Look at the book you are reading right now. Is it an object or a class? If it is a 

class, name some objects. If it is an object, name its class.

Exercise 1.36 Can an object have several different classes? Discuss.

http://download.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://download.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html


In this chapter, we take our first proper look at the source code of a class. We will discuss the ba-
sic elements of class definitions: fields, constructors, and methods. Methods contain statements, 
and initially we look at methods containing only simple arithmetic and printing statements. 
Later, we introduce conditional statements that allow choices between different actions to be 
made within methods.

We shall start by examining a new project in a fair amount of detail. This project represents a 
naïve implementation of an automated ticket machine. As we start by introducing the most basic 
features of classes, we shall quickly find that this implementation is deficient in a number of 
ways. So we shall then proceed to describe a more sophisticated version of the ticket machine that 
represents a significant improvement. Finally, in order to reinforce the concepts introduced in this 
chapter, we take a look at the internals of the lab-classes example encountered in Chapter 1.

2.1 Ticket machines
Train stations often provide ticket machines that print a ticket when a customer inserts the 
correct money for their fare. In this chapter, we shall define a class that models something 
like these ticket machines. As we shall be looking inside our first Java example classes, we 
shall keep our simulation fairly simple to start with. That will give us the opportunity to ask 
some questions about how these models differ from the real-world versions and how we 
might change our classes to make the objects they create more like the real thing.

Understanding class definitions

CHAPTER

2
Main concepts discussed in this chapter:

■ fields

■ constructors

■ parameters

■ methods (accessor, mutator)

■ assignment and conditional statement

Java constructs discussed in this chapter:

field, constructor, comment, parameter, assignment (=), block, return statement, 

void, compound assignment operators (+=, −=), if statement



2.1 Ticket machines | 19

Our ticket machines work by customers “inserting” money into them and then requesting a 
ticket to be printed. Each machine keeps a running total of the amount of money it has collected 
throughout its operation. In real life, it is often the case that a ticket machine offers a selection 
of different types of ticket from which customers choose the one they want. Our simplified 
machines print tickets of only a single price. It turns out to be significantly more complicated to 
program a class to be able to issue tickets of different values than it does to have a single price. 
On the other hand, with object-oriented programming it is very easy to create multiple instances 
of the class, each with its own price setting, to fulfill a need for different types of tickets.

2.1.1 Exploring the behavior of a naïve ticket machine

Open the naive-ticket-machine project in BlueJ. This project contains only one class – 
TicketMachine – which you will be able to explore in a similar way to the examples we 
discussed in Chapter 1. When you create a TicketMachine instance, you will be asked to 
supply a number that corresponds to the price of tickets that will be issued by that particular 
machine. The price is taken to be a number of cents, so a positive whole number such as 500 
would be appropriate as a value to work with.

Exercise 2.1 Create a TicketMachine object on the object bench and take a look at 

its methods. You should see the following: getBalance, getPrice, insertMoney, and 

printTicket. Try out the getPrice method. You should see a return value containing 

the price of the tickets that was set when this object was created. Use the insertMoney
method to simulate inserting an amount of money into the machine. The machine stores as 

a balance the amount of money inserted. Use getBalance to check that the machine has 

kept an accurate record of the amount just inserted. You can insert several separate amounts 

of money into the machine, just like you might insert multiple coins or bills into a real machine. 

Try inserting the exact amount required for a ticket, and use getBalance to ensure that the 

balance is increased correctly. As this is a simple machine, a ticket will not be issued automati-

cally, so once you have inserted enough money, call the printTicket method. A facsimile 

ticket should be printed in the BlueJ terminal window.

Exercise 2.2 What value is returned if you get the machine’s balance after it has printed a 

ticket?

Exercise 2.3 Experiment with inserting different amounts of money before printing tickets. 

Do you notice anything strange about the machine’s behavior? What happens if you insert too 

much money into the machine – do you receive any refund? What happens if you do not insert 

enough and then try to print a ticket?

Exercise 2.4 Try to obtain a good understanding of a ticket machine’s behavior by 

interacting with it on the object bench before we start looking, in the next section, at how the 

TicketMachine class is implemented.

Exercise 2.5 Create another ticket machine for tickets of a different price; remember that you 

have to supply this value when you create the machine object. Buy a ticket from that machine. 

Does the printed ticket look any different from those printed by the first machine?

Concept:

Object creation:

Some objects 

cannot be con-

structed unless 

extra information 

is provided.



20 |       Chapter 2 ■ Understanding class definitions

2.2 Examining a class definition
The exercises at the end of the previous section reveal that TicketMachine objects only 
really behave in the way we expect them to if we insert exactly the correct amount of money 
to match the price of a ticket. As we explore the internal details of the class in this section, 
we shall see why this is so.

Take a look at the source code of the TicketMachine class by double-clicking its icon in the 
class diagram within BlueJ. It should look something like Figure 2.1.

Figure 2.1
The BlueJ editor 

window

The complete text of the class is shown in Code 2.1. By looking at the text of the class defini-
tion piece by piece, we can flesh out some of the object-oriented concepts that we talked about 
in Chapter 1. This class definition contains many of the features of Java that we will see over 
and over again, so it will pay greatly to study it carefully.

/**
 * TicketMachine models a naive ticket machine that issues
 * flat-fare tickets.
 * The price of a ticket is specified via the constructor.
 * It is a naive machine in the sense that it trusts its users
 * to insert enough money before trying to print a ticket.
 * It also assumes that users enter sensible amounts.
 *

Code 2.1
The TicketMachine
class



2.2 Examining a class definition | 21

 * @author David J. Barnes and Michael Kölling
 * @version 2011.07.31
 */
public class TicketMachine
{
    // The price of a ticket from this machine.

private int price;
    // The amount of money entered by a customer so far.

private int balance;
    // The total amount of money collected by this machine.

private int total;

    /**
     * Create a machine that issues tickets of the given price.
     * Note that the price must be greater than zero, and there
     * are no checks to ensure this.
     */

public TicketMachine(int cost)
{

price = cost;
balance = 0;
total = 0;

}

     /**
      * Return the price of a ticket.
      */

public int getPrice()
{

return price;
}

     /**
      * Return the amount of money already inserted for the
      * next ticket.
      */

public int getBalance()
{

return balance;
}

     /**
      * Receive an amount of money from a customer.
      */

public void insertMoney(int amount)
{

balance = balance + amount;
}

Code 2.1
continued
The TicketMachine
class



22 |       Chapter 2 ■ Understanding class definitions

2.3 The class header
The text of a class can be broken down into two main parts: a small outer wrapping that 
simply names the class and a much larger inner part that does all the work. In this case, the 
outer wrapping appears as follows:

public class TicketMachine
{

Inner part of the class omitted.
}

The outer wrappings of different classes all look pretty much the same. The outer wrapping 
contains the class header, whose main purpose is to provide a name for the class. By a widely 

    /**
     * Print a ticket
     * Update the total collected and
     * reduce the balance to zero.
     */

public void printTicket()
{

        // Simulate the printing of a ticket.
System.out.println("##################");
System.out.println("# The BlueJ Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");
System.out.println("##################");
System.out.println();

        // Update the total collected with the balance.
total = total + balance;

        // Clear the balance.
balance = 0;

}
}

Code 2.1
continued
The TicketMachine
class

Exercise 2.6 Write out what you think the outer wrappers of the Student and LabClass
classes might look like; do not worry about the inner part.

Exercise 2.7 Does it matter whether we write

public class TicketMachine

or

class public TicketMachine

www.allitebooks.com

http://www.allitebooks.org


2.4 Fields, constructors, and methods | 23

followed convention, we always start class names with an uppercase letter. As long as it is used 
consistently, this convention allows class names to be easily distinguished from other sorts of 
names, such as variable names and method names, which will be described shortly.

2.3.1 Keywords

The words “public” and “class” are part of the Java language, whereas the word 
“TicketMachine” is not—the person writing the class has chosen that particular name. We 
call words like “public” and “class” keywords or reserved words – the terms are used fre-
quently and interchangeably. There are around 50 of these in Java, and you will soon get to 
recognize most of them. A point worth remembering is that Java keywords never contain 
uppercase letters, whereas the words we get to choose (like “TicketMachine”) are often a 
mix of upper- and lowercase letters.

2.4 Fields, constructors, and methods
The inner part of the class is where we define the fields, constructors, and methods that give 
the objects of that class their own particular characteristics and behavior. We can summarize 
the essential features of those three components of a class as follows:

■ The fields store data persistently within an object.

■ The constructors are responsible for ensuring that an object is set up properly when it is first 
created.

■ The methods implement the behavior of an object; they provide its functionality.

In Java there are very few rules about the order in which you choose to define the fields, con-
structors, and methods within a class. In the TicketMachine class, we have chosen to list the 
fields first, the constructors second, and finally the methods (Code 2.2). This is the order that 
we shall follow in all of our examples. Other authors choose to adopt different styles, and this 

in the outer wrapper of a class? Edit the source of the TicketMachine class to make the 

change, and then close the editor window. Do you notice a change in the class diagram?

What error message do you get when you now press the Compile button? Do you think this 

message clearly explains what is wrong?

Change the class back to how it was, and make sure that this clears the error when you com-

pile it.

Exercise 2.8 Check whether or not it is possible to leave out the word public from the 

outer wrapper of the TicketMachine class.

Exercise 2.9 Put back the word public, and then check whether it is possible to leave out 

the word class by trying to compile again. Make sure that both words are put back as they 

were originally before continuing.



24 |       Chapter 2 ■ Understanding class definitions

is mostly a question of preference. Our style is not necessarily better than all others. However, 
it is important to choose one style and then use it consistently, because then your classes will be 
easier to read and understand.

public class ClassName
{

Fields
Constructors
Methods

}

Code 2.2
Our ordering of fields, 

constructors, and 

methods

Exercise 2.10 From your earlier experimentation with the ticket machine objects within BlueJ, 

you can probably remember the names of some of the methods–printTicket, for instance. 

Look at the class definition in Code 2.1 and use this knowledge, along with the additional infor-

mation about ordering we have given you, to make a list of the names of the fields, constructors, 

and methods in the TicketMachine class. Hint: There is only one constructor in the class.

Exercise 2.11 What are the two features of the constructor that make it look significantly 

different from the methods of the class?

2.4.1 Fields

Fields store data persistently within an object. The TicketMachine class has three fields: 
price, balance, and total. Fields are also known as instance variables, because the word 
variable is used as a general term for things that store data in a program. We have defined 
the fields right at the start of the class definition (Code 2.3). All of these variables are asso-
ciated with monetary items that a ticket-machine object has to deal with:

■ price stores the fixed price of a ticket;

■ balance stores the amount of money inserted into the machine by a user prior to asking for 
a ticket to be printed;

■ total stores the total amount of money inserted into the machine by all users since the ma-
chine object was constructed (excluding any current balance). The idea is that, when a ticket 
is printed, any money in the balance is transferred to the total.

Concept:

Fields store data 

for an object to 

use. Fields are also 

known as instance 

variables.

public class TicketMachine
{

private int price;
private int balance;
private int total;

Constructor and methods omitted.
}

Code 2.3
The fields of the 

TicketMachine
class



2.4 Fields, constructors, and methods | 25

Each field has its own declaration in the source code. On the line above each in the full class 
definition, we have added a single line of text—a comment—for the benefit of human readers 
of the class definition:

// The price of a ticket from this machine.
private int price;

A single-line comment is introduced by the two characters “//”, which are written with no 
spaces between them. More-detailed comments, often spanning several lines, are usually writ-
ten in the form of multiline comments. These start with the character pair “/*” and end with the 
pair “*/”. There is a good example preceding the header of the class in Code 2.1.

Fields are small amounts of space inside an object that can be used to store data persis-
tently. Every object will have space for each field declared in its class. Figure 2.2 shows a 
diagrammatic representation of a ticket-machine object with its three fields. The fields have 
not yet been assigned any values; once they have, we can write each value into the box rep-
resenting the field. The notation is similar to that used in BlueJ to show objects on the object 
bench, except that we show a bit more detail here. In BlueJ, for space reasons, the fields 
are not displayed on the object icon. We can, however, see them by opening an inspector 
window (Section 1.5).

Figure 2.2
An object of class 

TicketMachine

Concept:

Comments are 

inserted into the 

source code of a 

class to provide 

explanations to 

human readers. 

They have no effect 

on the functionality 

of the class.

The definitions of the three fields are quite similar:

■ All definitions indicate that they are private fields of the object; we shall have more to say 
about what this means in Chapter 5, but for the time being we will simply say that we always 
define fields to be private.

■ All three fields are of type int – int is another keyword and represents the data type in-
teger. This indicates that each can store a single whole-number value, which is reasonable 
given that we wish them to store numbers that represent amounts of money in cents.

It is because fields can store values that can vary over time that they are also known as vari-
ables. The value stored in a field can be changed from its initial value if required. For instance, 
as more money is inserted into a ticket machine, we shall want to change the value stored in 



26 |       Chapter 2 ■ Understanding class definitions

From the definitions of fields we have seen so far, we can begin to put a pattern together that 
will apply whenever we define a field variable in a class:

■ They usually start with the reserved word private.

■ They include a type name (such as int, String, Person, etc.)

the balance field. It is common to have fields whose values change often, such as balance
and total, and others that change rarely or not at all, such as price. The fact that the value of 
price doesn’t vary once set doesn’t alter the fact that it is still called a variable. In the follow-
ing sections, we shall also meet other kinds of variables in addition to fields, but they will all 
share the same fundamental purpose of storing data.

The price, balance, and total fields are all the data items that a ticket-machine object needs 
to fulfill its role of receiving money from a customer, printing tickets, and keeping a running 
total of all the money that has been put into it. In the following sections, we shall see how the 
constructor and methods use those fields to implement the behavior of naïve ticket machines.

Exercise 2.12 What do you think is the type of each of the following fields?

private int count;
private Student representative;
private Server host;

Exercise 2.13 What are the names of the following fields?

private boolean alive;
private Person tutor;
private Game game;

Exercise 2.14 From what you know about the naming conventions for classes, which of the 

type names in Exercises 2.12 and 2.13 would you say are class names?

Exercise 2.15 In the following field declaration from the TicketMachine class

private int price;

does it matter which order the three words appear in? Edit the TicketMachine class to 

try different orderings. After each change, close the editor. Does the appearance of the class 

diagram after each change give you a clue as to whether or not other orderings are possible? 

Check by pressing the Compile button to see if there is an error message.

Make sure that you reinstate the original version after your experiments!

Exercise 2.16 Is it always necessary to have a semicolon at the end of a field declaration? 

Once again, experiment via the editor. The rule you will learn here is an important one, so be 

sure to remember it.

Exercise 2.17 Write in full the declaration for a field of type int whose name is status.



2.4 Fields, constructors, and methods | 27

■ They include a user-chosen name for the field variable.
■ They end with a semicolon.
Remembering this pattern will help you when you write your own classes.
Indeed, as we look closely at the source code of different classes, you will see patterns such 
as this one emerging over and over again. Part of the process of learning to program involves 
looking out for such patterns and then using them in your own programs. That is one reason 
why studying source code in detail is so useful at this stage.

2.4.2 Constructors

Constructors have a special role to fulfill. They are responsible for ensuring that an object is 
set up properly when it is first created; in other words, for ensuring that an object is ready to be 
used immediately following its creation. This construction process is also called initialization.

In some respects, a constructor can be likened to a midwife: it is responsible for ensuring that 
the new object comes into existence properly. Once an object has been created, the constructor 
plays no further role in that object’s life and cannot be called on it. Code 2.4 shows the con-
structor of the TicketMachine class.

One of the distinguishing features of constructors is that they have the same name as the class 
in which they are defined—TicketMachine in this case. The constructor’s name immediately 
follows the word public, with nothing in between.1

We should expect a close connection between what happens in the body of a constructor and in 
the fields of the class. This is because one of the main roles of the constructor is to initialize the 

Concept:

Constructors

allow each object 

to be set up prop-

erly when it is first 

created.

public class TicketMachine
{

Fields omitted.

    /**
     * Create a machine that issues tickets of the given price.
     * Note that the price must be greater than zero, and there
     * are no checks to ensure this.
     */

public TicketMachine(int cost)
{

price = cost;
balance = 0;
total = 0;

}

    Methods omitted.
}

Code 2.4
The constructor of the 

TicketMachine
class

1 While this description is a slight simplification of the full Java rule, it fits the general rule we will use in 
the majority of code in this book.



28 |       Chapter 2 ■ Understanding class definitions

In the next section, we discuss how values are received by an object from outside.

fields. It will be possible with some fields, such as balance and total, to set sensible initial 
values by assigning a constant number – zero in this case. With others, such as the ticket price, 
it is not that simple, as we do not know the price that tickets from a particular machine will have 
until that machine is constructed. Recall that we might wish to create multiple machine objects to 
sell tickets with different prices, so no one initial price will always be right. You will know from 
experimenting with creating TicketMachine objects within BlueJ that you had to supply the cost 
of the tickets whenever you created a new ticket machine. An important point to note here is that 
the price of a ticket is initially determined externally and then has to be passed into the constructor. 
Within BlueJ you decide the value and enter it into a dialog box. Part of the task of the constructor 
is to receive that value and store it in the price field of the newly created ticket machine so that the 
machine can remember what that value was without you having to keep reminding it.

We can see from this that one of the most important roles of a field is to remember external in-
formation passed into the object so that that information is available to an object throughout its 
lifetime. Fields, therefore, provide a place to store long-lasting (i.e., persistent) data.

Figure 2.3 shows a ticket-machine object after the constructor has executed. Values have now 
been assigned to the fields. From this diagram, we can tell that the ticket machine was created 
by passing in 500 as the value for the ticket price.

Figure 2.3
A TicketMachine
object after initialization 

(created for 500-cent 

tickets)

Note In Java, all fields are automatically initialized to a default value if they are not explicitly initialized. 

For integer fields, this default value is zero. So, strictly speaking, we could have done without setting 

balance and total to zero, relying on the default value to give us the same result. However, we prefer to 

write the explicit assignments anyway. There is no disadvantage to it, and it serves well to document 

what is actually happening. We do not rely on a reader of the class knowing what the default value is, 

and we document that we really want this value to be zero and have not just forgotten to initialize it.

2.5 Parameters: receiving data
Constructors and methods play quite different roles in the life of an object, but the way in 
which both receive values from outside is the same: via parameters. You may recall that we 
briefly encountered parameters in Chapter 1 (Section 1.4). Parameters are another sort of 



2.5 Parameters: receiving data | 29

variable, just as fields are, so they are also used to hold data. Parameters are variables that 
are defined in the header of a constructor or method:

public TicketMachine(int cost)

This constructor has a single parameter, cost, which is of type int—the same type as the 
price field it will be used to set. A parameter is used as a sort of temporary messenger, car-
rying data originating from outside the constructor or method and making it available inside it.

Figure 2.4 illustrates how values are passed via parameters. In this case, a BlueJ user enters 
the external value into the dialog box when creating a new ticket machine (shown on the left), 
and that value is then copied into the cost parameter of the new machine’s constructor. This 
is illustrated with the arrow labeled (A). The box in the TicketMachine object in Figure 2.4, 
labeled “TicketMachine (constructor),” represents additional space for the object that is cre-
ated only when the constructor executes. We shall call it the constructor space of the object (or 
method space when we talk about methods instead of constructors, as the situation there is the 
same). The constructor space is used to provide space to store the values for the constructor’s 
parameters. In our diagrams, all variables are represented by white boxes.

We distinguish between the parameter names inside a constructor or method and the parameter 
values outside by referring to the names as formal parameters and the values as actual parame-
ters. So cost is a formal parameter, and a user-supplied value such as 500 is an actual parameter.

A formal parameter is available to an object only within the body of a constructor or method 
that declares it. We say that the scope of a parameter is restricted to the body of the construc-
tor or method in which it is declared. In contrast, the scope of a field is the whole of the class 
definition – it can be accessed from anywhere in the same class. This is a very important dif-
ference between these two sorts of variables.

A concept related to variable scope is variable lifetime. The lifetime of a parameter is limited to 
a single call of a constructor or method. When a constructor or method is called, the extra space 

Figure 2.4
Parameter passing (A)

and assignment (B)

Concept:

The scope of a 

variable defines the 

section of source 

code from which 

the variable can be 

accessed.

Concept:

The lifetime of a 

variable describes 

how long the vari-

able continues to 

exist before it is 

destroyed.



30 |       Chapter 2 ■ Understanding class definitions

2.5.1 Choosing variable names

One of the things you might have noticed is that the variable names we use for fields and 
parameters have a close connection with the purpose of the variable. Names such as price,
cost, title, and alive all tell you something useful about the information being stored 
in that variable. This, then, makes it easier to understand what is going on in the program. 
Given that we have a large degree of freedom in our choice of variable names, it is worth 
following this principle of choosing names that communicate a sense of purpose rather than 
arbitrary and meaningless combinations of letters and numbers.

2.6 Assignment
In the previous section, we noted the need to store the short-lived value stored in a param-
eter variable into somewhere more permanent—a field variable. In order to do this, the body 
of the constructor contains the following assignment statement:

price = cost;

Assignment statements are used a lot in programming, as a means to store a value into a 
variable. They can be recognized by the presence of an assignment operator, such as “=” in the 
example above. Assignment statements work by taking the value of what appears on the right-
hand side of the operator and copying that value into the variable on the left-hand side. This is 

for the parameter variables is created and the external values copied into that space. Once that 
call has completed its task, the formal parameters disappear and the values they held are lost. 
In other words, when the constructor has finished executing, the whole constructor space (see 
Figure 2.4) is removed, along with the parameter variables held within it.

In contrast, the lifetime of a field is the same as the lifetime of the object to which it belongs. 
When an object is created, so are the fields, and they persist for the lifetime of the object. It fol-
lows that if we want to remember the cost of tickets held in the cost parameter, we must store 
the value somewhere persistent—that is, in the price field.

Just as we expect to see a close link between a constructor and the fields of its class, we expect 
to see a close link between the constructor’s parameters and the fields, because external values 
will often be needed to set the initial values of one or more of those fields. Where this is the 
case, the parameter types will closely match the types of the corresponding fields.

Exercise 2.18 To what class does the following constructor belong?

public Student(String name)

Exercise 2.19 How many parameters does the following constructor have, and what are 

their types?

public Book(String title, double price)

Exercise 2.20 Can you guess what types some of the Book class’s fields might be, from 

the parameters in its constructor? Can you assume anything about the names of its fields?

Concept:

Assignment state-

ments store the 

value represented 

by the right-hand 

side of the state-

ment in the variable 

named on the left.



2.7 Methods | 31

illustrated in Figure 2.4 by the arrow labeled (B). The right-hand side is called an expression. In 
their most general form, expressions are things that compute value, but in this case, the expres-
sion consists of just a single variable, whose value is copied into the price variable. We shall 
see examples of more-complicated expressions later in this chapter.

One rule about assignment statements is that the type of the expression on the right-hand side 
must match the type of the variable to which it is assigned. We have already met three differ-
ent, commonly used types: int, String, and (very briefly) boolean. This rule means that we 
are not allowed to store an int-type expression in a String-type variable, for instance. This 
same rule also applies between formal parameters and actual parameters: the type of an actual-
parameter expression must match the type of the formal-parameter variable. For now, we can 
say that the types of both must be the same, although we shall see in later chapters that this is 
not the whole truth.

Exercise 2.21 Suppose that the class Pet has a field called name that is of type String.

Write an assignment statement in the body of the following constructor so that the name field 

will be initialized with the value of the constructor’s parameter.

public Pet(String petsName)
{
}

Exercise 2.22 Challenge exercise The following object creation will result in the constructor 

of the Date class being called. Can you write the constructor’s header?

  new Date("March", 23, 1861)

Try to give meaningful names to the parameters.

2.7 Methods
The TicketMachine class has four methods: getPrice, getBalance, insertMoney, and 
printTicket. We shall start our look at the source code of methods by considering getPrice
(Code 2.5).

Methods have two parts: a header and a body. Here is the method header for getPrice, pre-
ceded by a descriptive comment:

/**
 * Return the price of a ticket.
 */
public int getPrice()

It is important to distinguish between method headers and field declarations, because they 
can look quite similar. We can tell that getPrice is a method and not a field because method 
headers always include a pair of parentheses – “(” and “)” – and no semicolon at the end of the 
header.

Concept:

Methods consist 

of two parts: a 

header and a body.



32 |       Chapter 2 ■ Understanding class definitions

The method body is the remainder of the method after the header. It is always enclosed by 
a matching pair of curly brackets: “{“ and “}”. Method bodies contain the declarations and 
statements that define what an object does when that method is called. Declarations are used 
to create additional, temporary variable space, while statements describe the actions of the 
method. In getPrice, the method body contains a single statement, but we shall see examples 
very soon where the method body consists of many lines of both declarations and statements.

Any set of declarations and statements between a pair of matching curly brackets is known as a 
block. So the body of the TicketMachine class and the bodies of the constructor and all of the 
methods within the class are blocks.

There are at least two significant differences between the headers of the TicketMachine con-
structor and the getPrice method:

public TicketMachine(int cost)
public int getPrice()

■ The method has a return type of int, but the constructor has no return type. A return type is 
written just before the method name. This is a difference that applies in all cases.

■ The constructor has a single formal parameter, cost, but the method has none—just a pair of 
empty parentheses. This is a difference that applies in this particular case.

It is an absolute rule in Java that a constructor may not have a return type. On the other hand, 
both constructors and methods may have any number of formal parameters, including none.

Within the body of getPrice there is a single statement:

return price;

This is a called a return statement. It is responsible for returning an integer value to match 
the int return type in the method’s header. Where a method contains a return statement, it is 
always the final statement of that method, because no further statements in the method will be 
executed once the return statement is executed.

public class TicketMachine
{

Fields omitted.

Constructor omitted.

    /**
     * Return the price of a ticket.
     */

public int getPrice()
{

return price;
}

Remaining methods omitted.
}

Code 2.5
The getPrice method

www.allitebooks.com

http://www.allitebooks.org


2.8 Accessor and mutator methods | 33

Return types and return statements work together. The int return type of getPrice is a form 
of promise that the body of the method will do something that ultimately results in an integer 
value being calculated and returned as the method’s result. You might like to think of a method 
call as being a form of question to an object and the return value from the method being the 
object’s answer to that question. In this case, when the getPrice method is called on a ticket 
machine, the question is, What do tickets cost? A ticket machine does not need to perform any 
calculations to be able to answer that, because it keeps the answer in its price field. So the 
method answers by just returning the value of that variable. As we gradually develop more-
complex classes, we shall inevitably encounter more-complex questions that require more work 
to supply their answers.

2.8 Accessor and mutator methods
We often describe methods such as the two “get” methods of TicketMachine (getPrice
and getBalance) as accessor methods (or just accessors). This is because they return in-
formation to the caller about the state of an object; they provide access to information about 
the object’s state. An accessor usually contains a return statement in order to pass back that 
information.

There is often confusion about what “returning a value” actually means in practice. People 
often think it means that something is printed by the program. This is not the case at all— 
we shall see how printing is done when we look at the printTicket method. Rather, 
returning a value means that some information is passed internally between two different 
parts of the program. One part of the program has requested information from an object via 
a method call, and the return value is the way the object has of passing that information 
back to the caller.

Concept:

Accessor meth-

ods return informa-

tion about the state 

of an object.

Exercise 2.23 Compare the header and body of the getBalance method with the header 

and body of the getPrice method. What are the differences between them?

Exercise 2.24 If a call to getPrice can be characterized as “What do tickets cost?” how 

would you characterize a call to getBalance?

Exercise 2.25 If the name of getBalance is changed to getAmount, does the return 

statement in the body of the method also need to be changed for the code to compile? Try it 

out within BlueJ. What does this tell you about the name of an accessor method and the name 

of the field associated with it?

Exercise 2.26 Write an accessor method getTotal in the TicketMachine class. The

new method should return the value of the total field.

Exercise 2.27 Try removing the return statement from the body of getPrice. What error 

message do you see now when you try compiling the class?



34 |       Chapter 2 ■ Understanding class definitions

The header of insertMoney has a void return type and a single formal parameter, 
amount, of type int. A void return type means that the method does not return any value 
to its caller. This is significantly different from all other return types. Within BlueJ, the dif-
ference is most noticeable in that no return-value dialog is shown following a call to a void

The get methods of a ticket machine perform similar tasks: returning the value of one of their 
object’s fields. The remaining methods—insertMoney and printTicket—have a much 
more significant role, primarily because they change the value of one or more fields of a ticket-
machine object each time they are called. We call methods that change the state of their object 
mutator methods (or just mutators).

In the same way as we think of a call to an accessor as a request for information (a question), we 
can think of a call to a mutator as a request for an object to change its state. The most basic form 
of mutator is one that takes a single parameter whose value is used to directly overwrite what 
is stored in one of an object’s fields. In a direct complement to “get” methods, these are often 
called “set” methods, although the TicketMachine does not have any of those, at this stage.

One distinguishing effect of a mutator is that an object will often exhibit slightly different 
behavior before and after it is called. We can illustrate this with the following exercise.

Exercise 2.28 Compare the method headers of getPrice and printTicket in 

Code 2.1. Apart from their names, what is the main difference between them?

Exercise 2.29 Do the insertMoney and printTicket methods have return state-

ments? Why do you think this might be? Do you notice anything about their headers that might 

suggest why they do not require return statements?

Concept:

Mutator methods

change the state of 

an object.

Exercise 2.30 Create a ticket machine with a ticket price of your choosing. Before doing 

anything else, call the getBalance method on it. Now call the insertMoney method 

(Code 2.6) and give a non-zero positive amount of money as the actual parameter. Now 

call getBalance again. The two calls to getBalance should show different outputs, 

because the call to insertMoney had the effect of changing the machine’s state via its 

balance field.

/**
 * Receive an amount of money in cents from a customer.
 */
public void insertMoney(int amount)
{

balance = balance + amount;
}

Code 2.6
The insertMoney
method



2.8 Accessor and mutator methods | 35

method. Within the body of a void method, this difference is reflected in the fact that there 
is no return statement.2

In the body of insertMoney, there is a single statement that is another form of assignment state-
ment. We always consider assignment statements by first examining the calculation on the right-hand 
side of the assignment symbol. Here, its effect is to calculate a value that is the sum of the number in 
the amount parameter and the number in the balance field. This combined value is then assigned 
to the balance field. So the effect is to increase the value in balance by the value in amount.3

2 In fact, Java does allow void methods to contain a special form of return statement in which there is no 
return value. This takes the form 

return;

and simply causes the method to exit without executing any further code.
3 Adding an amount to the value in a variable is so common that there is a special compound assignment 

operator to do this: +=. For instance:

balance += amount;

Exercise 2.31 How can we tell from just its header that setPrice is a method and not a 

constructor?

public void setPrice(int cost)

Exercise 2.32 Complete the body of the setPrice method so that it assigns the value of 

its parameter to the price field.

Exercise 2.33 Complete the body of the following method, whose purpose is to add the 

value of its parameter to a field named score.

/**
 * Increase score by the given number of points.
 */
public void increase(int points)
{
   ...
}

Exercise 2.34 Is the increase method a mutator? If so, how could you demonstrate this?

Exercise 2.35 Complete the following method, whose purpose is to subtract the value of its 

parameter from a field named price.

/**
 * Reduce price by the given amount.
 */
public void discount(int amount)
{
   ...
}



36 |       Chapter 2 ■ Understanding class definitions

/**
 * Print a ticket and reduce the
 * current balance to zero.
 */
public void printTicket()
{
    // Simulate the printing of a ticket.

System.out.println("##################");
System.out.println("# The BlueJ Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");
System.out.println("##################");
System.out.println();

    // Update the total collected with the balance.
total = total + balance;

    // Clear the balance.
balance = 0;

}

Code 2.7
The printTicket
method

2.9 Printing from methods
Code 2.7 shows the most complex method of the class: printTicket. To help your understand-
ing of the following discussion, make sure that you have called this method on a ticket machine. 
You should have seen something like the following printed in the BlueJ terminal window:

##################
# The BlueJ Line
# Ticket
# 500 cents.
##################

This is the longest method we have seen so far, so we shall break it down into more manageable 
pieces:

■ The header indicates that the method has a void return type and that it takes no parameters.

■ The body comprises eight statements plus associated comments.

■ The first six statements are responsible for printing what you see in the BlueJ terminal win-
dow: five lines of text and a sixth, blank line.

■ The seventh statement adds the balance inserted by the customer (through previous calls to 
insertMoney) to the running total of all money collected so far by the machine.

■ The eighth statement resets the balance to zero with a basic assignment statement, ready for 
the next customer.



2.9 Printing from methods | 37

By comparing the output that appears with the statements that produced it, it is easy to see that 
a statement such as

System.out.println("# The BlueJ Line");

literally prints the string that appears between the matching pair of double-quote characters. 
The basic form of a call to println is

System.out.println(something-we-want-to-print);

where something-we-want-to-print can be replaced by any arbitrary string, enclosed between a 
pair of double-quote characters. For instance, there is nothing significant in the “#” character 
that is in the string—it is simply one of the characters we wish to be printed.

All of the printing statements in the printTicket method are calls to the println method 
of the System.out object that is built into the Java language, and what appears between the 
round brackets is the parameter to each method call, as you might expect. However, in the 
fourth statement, the actual parameter to println is a little more complicated and requires 
some more explanation:

System.out.println("# " + price + " cents.");

What it does is print out the price of the ticket, with some extra characters on either side of the 
amount. The two “+” operators are being used to construct a single actual parameter, in the 
form of a string, from three separate components:

■ the string literal: "# " (note the space character after the hash);

■ the value of the price field (note that there are no quotes around the field name because we 
want the field’s value, not its name);

■ the string literal: " cents." (note the space character before the word "cents").

When used between a string and anything else, “+” is a string-concatenation operator (i.e., it concat-
enates or joins strings together to create a new string) rather than an arithmetic-addition operator. So 
the numeric value of price is converted into a string and joined to its two surrounding strings.

Note that the final call to println contains no string parameter. This is allowed, and the result 
of calling it will be to leave a blank line between this output and any that follows after. You will 
easily see the blank line if you print a second ticket.

Concept:

The method 

System.out.

println prints its 

parameter to the 

text terminal.

Exercise 2.36 Write down exactly what will be printed by the following statement:

System.out.println("My cat has green eyes.");

Exercise 2.37 Add a method called prompt to the TicketMachine class. This should 

have a void return type and take no parameters. The body of the method should print the 

following single line of output:

Please insert the correct amount of money.

Exercise 2.38 What do you think would be printed if you altered the fourth statement of 

printTicket so that price also has quotes around it, as follows?

System.out.println("# " + "price" + " cents.");



38 |       Chapter 2 ■ Understanding class definitions

2.10 Method summary
It is worth summarizing a few features of methods at this point, because methods are funda-
mental to the programs we will be writing and exploring in this book. They implement the 
core actions of every object.

A method with parameters will receive data passed to it from the method’s caller and will then 
use that data to help it perform a particular task. However, not all methods take parameters; 
many simply use the data stored in the object’s fields to carry out their task.

If a method has a non-void return type, it will return some data to the place it was called from— 
and that data will almost certainly be used in the caller for further calculations or program 
manipulations. Many methods, though, have a void return type and return nothing, but they 
still perform a useful task within the context of their object.

Accessor methods have non-void return types and return information about the object’s state. 
Mutator methods modify an object’s state. Mutators often take parameters whose values are used in 
the modification, although it is still possible to write a mutating method that does not take parameters.

2.11 Summary of the naïve ticket machine
We have now examined the internal structure of the naïve ticket machine class in some de-
tail. We have seen that the class has a small outer layer that gives a name to the class, and a 
more substantial inner body containing fields, a constructor, and several methods. Fields are 
used to store data that enable objects to maintain a state that persists between method calls. 
Constructors are used to set up an initial state when an object is created. Having a proper ini-
tial state will enable an object to respond appropriately to method calls immediately following 
its creation. Methods implement the defined behavior of the class’s objects. Accessor methods 
provide information about an object’s state, and mutator methods change an object’s state.

We have seen that constructors are distinguished from methods by having the same name as 
the class in which they are defined. Both constructors and methods may take parameters, but 

Exercise 2.39 What about the following version?

System.out.println("# price cents.");

Exercise 2.40 Could either of the previous two versions be used to show the price of tick-

ets in different ticket machines? Explain your answer.

Exercise 2.41 Add a showPrice method to the TicketMachine class. This should have 

a void return type and take no parameters. The body of the method should print:

The price of a ticket is xyz cents.

where xyz should be replaced by the value held in the price field when the method is called.

Exercise 2.42 Create two ticket machines with differently priced tickets. Do calls to their 

showPrice methods show the same output, or different? How do you explain this effect?



2.12 Reflecting on the design of the ticket machine | 39

2.12 Reflecting on the design of the ticket machine
From our study of the internals of the TicketMachine class, you should have come to ap-
preciate how inadequate it would be in the real world. It is deficient in several ways:

■ It contains no check that the customer has entered enough money to pay for a ticket.

■ It does not refund any money if the customer pays too much for a ticket.

■ It does not check to ensure that the customer inserts sensible amounts of money: experiment 
with what happens if a negative amount is entered, for instance.

■ It does not check that the ticket price passed to its constructor is sensible.

If we could remedy these problems, then we would have a much more functional piece of soft-
ware that might serve as the basis for operating a real-world ticket machine.

In the next few sections, we shall examine the implementation of an improved ticket machine class 
that attempts to deal with some of the inadequacies of the naïve implementation. Open the better-
ticket-machine project. As before, this project contains a single class: TicketMachine. Before 
looking at the internal details of the class, experiment with it by creating some instances and see 
whether you notice any differences in behavior between this version and the previous naïve version.

One specific difference is that the new version has an additional method, refundBalance.
Take a look at what happens when you call it.

only methods may have a return type. Non-void return types allow us to pass a value out of 
a method to the place where the method was called from. A method with a non-void return 
type must have at least one return statement in its body; this will often be the final statement. 
Constructors never have a return type of any sort—not even void.

Before attempting these exercises, be sure that you have a good understanding of how ticket 

machines behave and how that behavior is implemented through the fields, constructor, and 

methods of the class.

Exercise 2.43 Modify the constructor of TicketMachine so that it no longer has a pa-

rameter. Instead, the price of tickets should be fixed at 1,000 cents. What effect does this have 

when you construct ticket-machine objects within BlueJ?

Exercise 2.44 Give the class two constructors. One should take a single parameter that speci-

fies the price, and the other should take no parameter and set the price to be a default value of 

your choosing. Test your implementation by creating machines via the two different constructors.

Exercise 2.45 Implement a method, empty, that simulates the effect of removing all money 

from the machine. This method should have a void return type, and its body should simply 

set the total field to zero. Does this method need to take any parameters? Test your method 

by creating a machine, inserting some money, printing some tickets, checking the total, and 

then emptying the machine. Is the empty method a mutator or an accessor?



40 |       Chapter 2 ■ Understanding class definitions

/**
 * TicketMachine models a ticket machine that issues
 * flat-fare tickets.
 * The price of a ticket is specified via the constructor.
 * Instances will check to ensure that a user only enters
 * sensible amounts of money, and will only print a ticket
 * if enough money has been input.
 * @author David J. Barnes and Michael Kölling
 * @version 2011.07.31
 */
public class TicketMachine
{
    // The price of a ticket from this machine.

private int price;
    // The amount of money entered by a customer so far.

private int balance;
    // The total amount of money collected by this machine.

private int total;

    /**
     * Create a machine that issues tickets of the given price.
     */

public TicketMachine(int cost)
{

price = cost;
balance = 0;
total = 0;

}

    /**
     * Return the price of a ticket.
     */

public int getPrice()
{

return price;
}

    /**
     * Return the amount of money already inserted for the
     * next ticket.
     */

public int getBalance()
{

return balance;
}

Code 2.8
A more sophisticated 

TicketMachine



2.12 Reflecting on the design of the ticket machine | 41

    /**
     * Receive an amount of money in cents from a customer.
     * Check that the amount is sensible.
     */

public void insertMoney(int amount)
{

if(amount > 0) {
balance = balance + amount;

}
else {

System.out.println("Use a positive amount rather than: " +
amount);

}
}

    /**
     * Print a ticket if enough money has been inserted, and
     * reduce the current balance by the ticket price. Print
     * an error message if more money is required.
     */

public void printTicket()
{

if(balance >= price) {
            // Simulate the printing of a ticket.

System.out.println("##################");
System.out.println("# The BlueJ Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");
System.out.println("##################");
System.out.println();

            // Update the total collected with the price.
total = total + price;

            // Reduce the balance by the price.
balance = balance – price;

}
else {

System.out.println("You must insert at least: " +
(price – balance) + " cents.");

}
}

    /**
     * Return the money in the balance.
     * The balance is cleared.
     */

Code 2.8
continued
A more sophisticated 

TicketMachine



42 |       Chapter 2 ■ Understanding class definitions

2.13 Making choices: the conditional statement
Code 2.8 shows the internal details of the better ticket machine’s class definition. Much of this defi-
nition will already be familiar to you from our discussion of the naïve ticket machine. For instance, 
the outer wrapping that names the class is the same, because we have chosen to give this class the 
same name. In addition, it contains the same three fields to maintain object state, and these have been 
declared in the same way. The constructor and the two get methods are also the same as before.

The first significant change can be seen in the insertMoney method. We recognized that the 
main problem with the naïve ticket machine was its failure to check certain conditions. One of 
those missing checks was on the amount of money inserted by a customer, as it was possible for 
a negative amount of money to be inserted. We have remedied that failing by making use of a 
conditional statement to check that the amount inserted has a value greater than zero:

if(amount > 0) {

    balance = balance + amount;

}

else {

    System.out.println("Use a positive amount rather than: " +

                         amount);

}

Conditional statements are also known as if statements, from the keyword used in most pro-
gramming languages to introduce them. A conditional statement allows us to take one of two 
possible actions based upon the result of a check or test. If the test is true, then we do one thing; 
otherwise, we do something different. This kind of either/or decision should be familiar from 
situations in everyday life: for instance, if I have enough money left, then I shall go out for a 
meal; otherwise, I shall stay home and watch a movie. A conditional statement has the general 
form described in the following pseudo-code:

if(perform some test that gives a true or false result) {

Do the statements here if the test gave a true result

}

else {

Do the statements here if the test gave a false result

}

public int refundBalance()
{

int amountToRefund;
amountToRefund = balance;
balance = 0;
return amountToRefund;

}}

public int refundBalance()
{

int amountToRefund;
amountToRefund = balance;
balance = 0;
return amountToRefund;

}
}

Code 2.8
continued
A more sophisticated 

TicketMachine

Concept:

A conditional

statement takes 

one of two possible 

actions based upon 

the result of a test.

www.allitebooks.com

http://www.allitebooks.org


2.13 Making choices: the conditional statement | 43

Certain parts of this pseudo-code are proper bits of Java, and those will appear in almost all 
conditional statements – the keywords if and else, the round brackets around the test, and the 
curly brackets marking the two blocks – while the other three italicized parts will be fleshed out 
differently for each particular situation being coded.

It is important to appreciate that only one of the two blocks of statements following the test 
will ever be performed following the evaluation of the test. So, in the example from the 
insertMoney method, following the test of an inserted amount we shall only either add the 
amount to the balance or print the error message. The test uses the greater-than operator,
“>”, to compare the value in amount against zero. If the value is greater than zero, then it 
is added to the balance. If it is not greater than zero, then an error message is printed. By 
using a conditional statement, we have, in effect, protected the change to balance in the 
case where the parameter does not represent a valid amount. Details of other Java operators 
can be found in Appendix C. The obvious ones to mention at this point are “<” (less-than), 
“<=” (less-than or equal-to), and “>=” (greater-than or equal-to). All are used to compare 
two numeric values, as in the printTicket method.

The test used in a conditional statement is an example of a boolean expression. Earlier in this 
chapter, we introduced arithmetic expressions that produced numerical results. A boolean ex-
pression has only two possible values (true or false): the value of amount is either greater 
than zero (true) or it is not greater (false). A conditional statement makes use of those two 
possible values to choose between two different actions.

Concept:

Boolean expres-

sions have only 

two possible val-

ues: true and false. 

They are commonly 

found controlling 

the choice between 

the two paths 

through a condi-

tional statement.

Exercise 2.46 Check that the behavior we have discussed here is accurate by creating 

a TicketMachine instance and calling insertMoney with various actual parameter val-

ues. Check the balance both before and after calling insertMoney. Does the balance ever 

change in the cases when an error message is printed? Try to predict what will happen if you 

enter the value zero as the parameter, and then see if you are right.

Exercise 2.47 Predict what you think will happen if you change the test in insertMoney
to use the greater-than or equal-to operator:

if(amount >= 0)

Check your predictions by running some tests. What difference does it make to the behavior 

of the method?

Exercise 2.48 Rewrite the if-else statement so that the error message is printed if the 

boolean expression is true but the balance is increased if the expression is false. You will obvi-

ously have to rewrite the condition to make things happen this way around.

Exercise 2.49 In the figures project we looked at in Chapter 1 we used a boolean field to 

control a feature of the circle objects. What was that feature? Was it well suited to being con-

trolled by a type with only two different values?



44 |       Chapter 2 ■ Understanding class definitions

2.14 A further conditional-statement example
The printTicket method contains a further example of a conditional statement. Here it is 
in outline:

if(balance >= price) {

Printing details omitted.

    // Update the total collected with the price.
    total = total + price;
    // Reduce the balance by the price.
    balance = balance – price;

}
else {
    System.out.println("You must insert at least: " +
                       (price – balance) + " more cents.");
}

We wish to remedy the fact that the naïve version makes no check that a customer has inserted 
enough money to be issued a ticket. This version checks that the value in the balance field is 
at least as large as the value in the price field. If it is, then it is okay to print a ticket. If it is not, 
then we print an error message instead.

The printing of the error message follows exactly the same pattern as we saw for printing the 
price of tickets in the printTicket method; it is just a little more verbose.

System.out.println("You must insert at least: " +
                   (price – balance) + " more cents.");

The single actual parameter to the println method consists of a concatenation of three ele-
ments: two string literals on either side of a numeric value. In this case, the numeric value is a 
subtraction that has been placed in parentheses to indicate that it is the resulting value we wish 
to concatenate with the two strings.

Exercise 2.50 In this version of printTicket, we also do something slightly different with 

the total and balance fields. Compare the implementation of the method in Code 2.1 with 

that in Code 2.8 to see whether you can tell what those differences are. Then check your un-

derstanding by experimenting within BlueJ.

Exercise 2.51 Is it possible to remove the else part of the if statement in the printTicket
method (i.e., remove the word else and the block attached to it)? Try doing this and seeing 

if the code still compiles. What happens now if you try to print a ticket without inserting any 

money?



2.15 Scope highlighting | 45

These colored annotations are known as scope highlighting, and they help clarify logical units 
of your program. A scope (also called a block) is a unit of code usually indicated by a pair of 
curly brackets. The whole body of a class is a scope, as is the body of each method and the if
and else parts of an if statement.

As you can see, scopes are often nested: the if statement is inside a method, which is inside a 
class. BlueJ helps by distinguishing different kinds of scopes with different colors.

One of the most common errors in the code of beginning programmers is getting the curly 
brackets wrong—either by having them in the wrong place or by having a bracket missing alto-
gether. Two things can greatly help in avoiding this kind of error:

■ Pay attention to proper indentation of your code. Every time a new scope starts (after an open 
curly bracket), indent the following code one level more. Closing the scope brings the inden-
tation back. If your indentation is completely out, use BlueJ’s “Auto-layout” function (find it 
in the editor menu!) to fix it.

The printTicket method reduces the value of balance by the value of price. As a con-
sequence, if a customer inserts more money than the price of the ticket, then some money will 
be left in the balance that could be used toward the price of a second ticket. Alternatively, the 
customer could ask to be refunded the remaining balance, and that is what the refundBalance
method does, as we shall see in the next section.

2.15 Scope highlighting
You will have noticed by now that the BlueJ editor displays source code with some addi-
tional decoration: colored boxes around some elements that are not reproduced in the code 
samples shown in this book (Figure 2.5).

Figure 2.5
Scope highlighting 

in the BlueJ editor



46 |       Chapter 2 ■ Understanding class definitions

2.16 Local variables
So far, we have met two different sorts of variables: fields (instance variables) and param-
eters. We are now going to introduce a third kind. All have in common that they store data, 
but each sort of variable has a particular role to play.

Section 2.6 noted that a method body (or, in general, a block) can contain both declarations and 
statements. To this point, none of the methods we have looked at contain any declarations. The 
refundBalance method contains three statements and a single declaration. The declaration 
introduces a new kind of variable:

public int refundBalance()
{
    int amountToRefund;
    amountToRefund = balance;
    balance = 0;
    return amountToRefund;
}

■ Pay attention to the scope highlighting. You will quickly get used to the way well-
structured code looks. Try removing a curly bracket in the editor or adding one at an 
arbitrary location, and observe how the coloring changes. Get used to recognizing when 
scopes look wrong.

Exercise 2.52 After a ticket has been printed, could the value in the balance field ever be 

set to a negative value by subtracting price from it? Justify your answer.

Exercise 2.53 So far, we have introduced you to two arithmetic operators, + and -, that can 

be used in arithmetic expressions in Java. Take a look at Appendix C to find out what other 

operators are available.

Exercise 2.54 Write an assignment statement that will store the result of multiplying two 

variables, price and discount, into a third variable, saving.

Exercise 2.55 Write an assignment statement that will divide the value in total by the 

value in count and store the result in mean.

Exercise 2.56 Write an if statement that will compare the value in price against the value 

in budget. If price is greater than budget, then print the message “Too expensive”; other-

wise print the message “Just right”.

Exercise 2.57 Modify your answer to the previous exercise so that the message includes 

the value of your budget if the price is too high.

Concept:

A local variable is 

a variable declared 

and used within a 

single method. Its 

scope and lifetime 

are limited to that 

of the method.



2.16 Local variables | 47

What sort of variable is amountToRefund? We know that it is not a field, because fields are 
defined outside methods. It is also not a parameter, as those are always defined in the method 
header. The amountToRefund variable is what is known as a local variable, because it is de-
fined inside a method body.

Local variable declarations look similar to field declarations, but they never have private or 
public as part of them. Constructors can also have local variables. Like formal parameters, lo-
cal variables have a scope that is limited to the statements of the method to which they belong. 
Their lifetime is the time of the method execution: they are created when a method is called and 
destroyed when a method finishes.

You might wonder why there is a need for local variables if we have fields. Local variables 
are primarily used as temporary storage, to help a single method complete its task; we think of 
them as data storage for a single method. In contrast, fields are used to store data that persists 
through the life of a whole object. The data stored in fields is accessible to all of the object’s 
methods. We try to avoid declaring as fields variables that really only have a local (method-
level) usage, whose values don’t have to be retained beyond a single method call. So even if 
two or more methods in the same class used local variables for a similar purpose, it would not 
be appropriate to define them as fields if their values don’t need to persist beyond the end of 
the methods.

In the refundBalance method, amountToRefund is used briefly to hold the value of the 
balance immediately prior to the latter being set to zero. The method then returns the remem-
bered value of the balance. The following exercises will help to illustrate why a local variable is 
needed here, as we try to write the refundBalance method without one.

Exercise 2.58 Why does the following version of refundBalance not give the same re-

sults as the original?

public int refundBalance()
{
    balance = 0;
    return balance;
}

What tests can you run to demonstrate that it does not?

Exercise 2.59 What happens if you try to compile the TicketMachine class with the fol-

lowing version of refundBalance?

public int refundBalance()
{
    return balance;
    balance = 0;
}

What do you know about return statements that helps to explain why this version does not 

compile?



48 |       Chapter 2 ■ Understanding class definitions

2.17 Fields, parameters, and local variables
With the introduction of amountToRefund in the refundBalance method, we have now 
seen three different kinds of variables: fields, formal parameters, and local variables. It is 
important to understand the similarities and differences between these three kinds. Here is a 
summary of their features:

■ All three kinds of variables are able to store a value that is appropriate to their defined types. 
For instance, a defined type of int allows a variable to store an integer value.

■ Fields are defined outside constructors and methods.

■ Fields are used to store data that persist throughout the life of an object. As such, they main-
tain the current state of an object. They have a lifetime that lasts as long as their object lasts.

■ Fields have class scope: their accessibility extends throughout the whole class, so they can be 
used within any of the constructors or methods of the class in which they are defined.

■ As long as they are defined as private, fields cannot be accessed from anywhere outside 
their defining class.

■ Formal parameters and local variables persist only for the period that a constructor or method 
executes. Their lifetime is only as long as a single call, so their values are lost between calls. 
As such, they act as temporary rather than permanent storage locations.

Exercise 2.60 What is wrong with the following version of the constructor of TicketMachine?

public TicketMachine(int cost)
{
    int price = cost;
    balance = 0;
    total = 0;
}

Try out this version in the better-ticket-machine project. Does this version compile? Create 

an object and then inspect its fields. Do you notice something wrong about the value of the 

price field in the inspector with this version? Can you explain why this is?

Pitfall A local variable of the same name as a field will prevent the field being accessed from within 

a constructor or method. See Section 3.12.2 for a way around this when necessary.

It is quite common to initialize local variables within their declaration. So we could abbrevi-
ate the first two statements of refundBalance as

int amountToRefund = balance;

but it is still important to keep in mind that there are two steps going on here: declaring the 
variable amountToRefund and giving it an initial value.



2.18 Summary of the better ticket machine | 49

2.18 Summary of the better ticket machine
In developing a better version of the TicketMachine class, we have been able to address 
the major inadequacies of the naïve version. In doing so, we have introduced two new lan-
guage constructs: the conditional statement and local variables.

■ A conditional statement gives us a means to perform a test and then, on the basis of the result 
of that test, perform one or the other of two distinct actions.

■ Local variables allow us to calculate and store temporary values within a constructor or 
method. They contribute to the behavior that their defining method implements, but their 
values are lost once that constructor or method finishes its execution.

■ Formal parameters are defined in the header of a constructor or method. They receive their 
values from outside, being initialized by the actual parameter values that form part of the 
constructor or method call.

■ Formal parameters have a scope that is limited to their defining constructor or method.

■ Local variables are defined inside the body of a constructor or method. They can be initial-
ized and used only within the body of their defining constructor or method. Local variables 
must be initialized before they are used in an expression—they are not given a default value.

■ Local variables have a scope that is limited to the block in which they are defined. They are 
not accessible from anywhere outside that block.

Exercise 2.61 Add a new method, emptyMachine, that is designed to simulate emptying 

the machine of money. It should reset total to be zero but also return the value that was 

stored in total before it was reset.

Exercise 2.62 Rewrite the printTicket method so that it declares a local vari-

able, amountLeftToPay. This should then be initialized to contain the difference between 

price and balance. Rewrite the test in the conditional statement to check the value of 

amountLeftToPay. If its value is less than or equal to zero, a ticket should be printed; other-

wise, an error message should be printed stating the amount left to pay. Test your version to 

ensure that it behaves in exactly the same way as the original version. Make sure that you call 

the method more than once, when the machine is in different states, so that both parts of the 

conditional statement will be executed on separate occasions.

Exercise 2.63 Challenge exercise Suppose we wished a single TicketMachine object 

to be able to issue tickets of different prices. For instance, users might press a button on the 

physical machine to select a discounted ticket price. What further methods and/or fields would 

need to be added to TicketMachine to allow this kind of functionality? Do you think that 

many of the existing methods would need to be changed as well?

Save the better-ticket-machine project under a new name, and implement your changes in the 

new project.



50 |       Chapter 2 ■ Understanding class definitions

You can find more details of conditional statements and the form their tests can take in 
Appendix D.

2.19 Self-review exercises
This chapter has covered a lot of new ground, and we have introduced a lot of new concepts. 
We will be building on these in future chapters, so it is important that you are comfortable 
with them. Try the following pencil-and-paper exercises as a way of checking that you are 
becoming used to the terminology that we have introduced in this chapter. Don’t be put off 
by the fact that we suggest that you do these on paper rather than within BlueJ. It will be 
good practice to try things out without a compiler.

Exercise 2.64 List the name and return type of this method:

public String getCode()
{
     return code;
}

Exercise 2.65 List the name of this method and the name and type of its parameter:

public void setCredits(int creditValue)
{
    credits = creditValue;
}

Exercise 2.66 Write out the outer wrapping of a class called Person. Remember to in-

clude the curly brackets that mark the start and end of the class body, but otherwise leave the 

body empty.

Exercise 2.67 Write out definitions for the following fields:

■ a field called name of type String
■ a field of type int called age
■ a field of type String called code
■ a field called credits of type int

Exercise 2.68 Write out a constructor for a class called Module. The constructor should 

take a single parameter of type String called moduleCode. The body of the constructor 

should assign the value of its parameter to a field called code. You don’t have to include the 

definition for code, just the text of the constructor.

Exercise 2.69 Write out a constructor for a class called Person. The constructor should 

take two parameters. The first is of type String and is called myName. The second is of type 

int and is called myAge. The first parameter should be used to set the value of a field called 

name, and the second should set a field called age. You don’t have to include the definitions 

for the fields, just the text of the constructor.



2.20 Reviewing a familiar example | 51

2.20 Reviewing a familiar example
By this point in the chapter, you have met a lot of new concepts. To help reinforce them, we 
shall now revisit a few in a different but familiar context. Along the way, though, watch out 
for one or two further new concepts that we will then cover in more detail in later chapters!

Open the lab-classes project that we introduced in Chapter 1, and then examine the Student
class in the editor (Code 2.9).

Exercise 2.70 Correct the error in this method:

public void getAge()
{
    return age;
}

Exercise 2.71 Write an accessor method called getName that returns the value of a field 

called name, whose type is String.

Exercise 2.72 Write a mutator method called setAge that takes a single parameter of type 

int and sets the value of a field called age.

Exercise 2.73 Write a method called printDetails for a class that has a field of type 

String called name. The printDetails method should print out a string of the form “The

name of this person is”, followed by the value of the name field. For instance, if the value of the 

name field is “Helen”, then printDetails would print:

The name of this person is Helen

/**
 * The Student class represents a student in a
 * student administration system.
 * It holds the student details relevant in our context.
 *
 * @author Michael Kölling and David Barnes
 * @version 2011.07.31
 */
public class Student
{
    // the student’s full name

Code 2.9
The Student class

If you have managed to complete most or all of these exercises, then you might like to try 
creating a new project in BlueJ and making up your own class definition for a Person. The 
class could have fields to record the name and age of a person, for instance. If you were 
unsure how to complete any of the previous exercises, look back over earlier sections in this 
chapter and the source code of TicketMachine to revise what you were unclear about. In 
the next section, we provide some further review material.



52 |       Chapter 2 ■ Understanding class definitions

private String name;
    // the student ID

private String id;
    // the amount of credits for study taken so far

private int credits;

    /**
     * Create a new student with a given name and ID number.
     */

public Student(String fullName, String studentID)
{

name = fullName;
id = studentID;
credits = 0;

}

    /**
     * Return the full name of this student.
     */

public String getName()
{

return name;
}

    /**
     * Set a new name for this student.
     */

public void changeName(String newName)
{

name = newName;
}

    /**
     * Return the student ID of this student.
     */

public String getStudentID()
{

return id;
}

    /**
     * Add some credit points to the student’s
     * accumulated credits.
     */

public void addCredits(int newCreditPoints)
{

credits += newCreditPoints;
}

Code 2.9
continued
The Student class



2.20 Reviewing a familiar example | 53

In this small example, the pieces of information we wish to store for a student are their name, 
their student ID, and the number of course credits they have obtained so far. All of this infor-
mation is persistent during their time as a student, even if some of it changes during that time 
(the number of credits). We want to store this information in fields, therefore, to represent each 
student’s state.

The class contains three fields: name, id, and credits. Each of these is initialized in the single 
constructor. The initial values of the first two are set from parameter values passed into the con-
structor. Each of the fields has an associated get accessor method, but only name and credits
have associated mutator methods. This means that the value of an id field remains fixed once 
the object has been constructed. If a field’s value cannot be changed once initialized, we say 
that it is immutable. Sometimes we make the complete state of an object immutable once it has 
been constructed; the String class is an important example of this.

    /**
     * Return the number of credit points this student
     * has accumulated.
     */

public int getCredits()
{

return credits;
}

    /**
     * Return the login name of this student.
     * The login name is a combination
     * of the first four characters of the
     * student’s name and the first three
     * characters of the student’s ID number.
     */

public String getLoginName()
{

return name.substring(0,4) +
id.substring(0,3);

}

    /**
     * Print the student’s name and ID number
     * to the output terminal.
     */

public void print()
{

System.out.println(name + ", student ID: " + id +
", credits: " + credits);

}
}

Code 2.9
continued
The Student class



54 |       Chapter 2 ■ Understanding class definitions

2.21 Calling methods
The getLoginName method illustrates a new feature that is worth exploring:

public String getLoginName()
{
    return name.substring(0,4) +
           id.substring(0,3);
}

We are seeing two things in action here:

■ Calling a method on another object, where the method returns a result.

■ Using the value returned as a result as part of an expression.

Both name and id are String objects, and the String class has a method, substring, with 
the following header:

/**
 * Return a new string containing the characters from
 * beginIndex to (endIndex-1) from this string.
 */
public String substring(int beginIndex, int endIndex)

An index value of zero represents the first character of a string, so getLoginName takes the 
first four characters of the name string and the first three characters of the id string and then 
concatenates them together to form a new string. This new string is returned as the method’s re-
sult. For instance, if name is the string "Leonardo da Vinci" and id is the string "468366",
then the string "Leon468" would be returned by this method.

We will learn more about method calling between objects in Chapter 3.

Exercise 2.74 Draw a picture of the form shown in Figure 2.3, representing the initial state 

of a Student object following its construction, with the following actual parameter values:

new Student("Benjamin Jonson", "738321")

Exercise 2.75 What would be returned by getLoginName for a student with name
"Henry Moore" and id "557214"?

Exercise 2.76 Create a Student with name "djb" and id "859012". What happens 

when getLoginName is called on this student? Why do you think this is?



2.22 Experimenting with expressions: the Code Pad | 55

2.22 Experimenting with expressions: the Code Pad
In the previous sections, we have seen various expressions to achieve various computations, 
such as the total + price calculation in the ticket machine and the name.substring(0,4)
expression in the Student class.

In the remainder of this book, we shall encounter many more such operations, sometimes 
written with operator symbols (such as “+”) and sometimes written as method calls (such as 
substring). When we encounter new operators and methods, it often helps to try out with dif-
ferent examples what they do.

The Code Pad, which we have briefly used in Chapter 1, can help us experiment with Java 
expressions (Figure 2.6). Here, we can type in expressions, which will then be immediately 
evaluated and the results displayed. This is very helpful for trying out new operators and 
methods.

Exercise 2.77 The String class defines a length accessor method with the following 

header:

/**
 * Return the number of characters in this string.
 */
public int length()

so the following is an example of its use with the String variable fullName:

fullName.length()

Add conditional statements to the constructor of Student to print an error message if 

either the length of the fullName parameter is less than four characters or the length of the 

studentId parameter is less than three characters. However, the constructor should still 

use those parameters to set the name and id fields, even if the error message is printed. 

Hint: Use if statements of the following form (that is, having no else part) to print the error 

messages.

if(perform a test on one of the parameters) {
Print an error message if the test gave a true result

}

See Appendix D for further details of the different types of if statements, if necessary.

Exercise 2.78 Challenge exercise Modify the getLoginName method of Student so 

that it always generates a login name, even if either the name or the id field is not strictly long 

enough. For strings shorter than the required length, use the whole string.



56 |       Chapter 2 ■ Understanding class definitions

When the result of an expression in the Code Pad is an object (such as a String), it will be 
marked with a small red object symbol. You can double-click this symbol to inspect it or drag it 
onto the object bench for further use. You can also declare variables and write complete state-
ments in the Code Pad.

Whenever you encounter new operators and method calls, it is a good idea to try them out here 
to get a feel for their behavior.

You can also explore the use of variables in the Code Pad. Try the following:

sum = 99 + 3;

You will see the following error message:

Error: cannot find symbol - variable sum

This is because Java requires that every variable (sum, in this case) be given a type before it can 
be used. Recall that every time a field, parameter, or local variable has been introduced for the 

Figure 2.6
The BlueJ Code Pad

Exercise 2.79 Consider the following expressions. Try to predict their results, and then type 

them in the Code Pad to check your answers.

99 + 3
"cat" + "fish"
"cat" + 9
9 + 3 + "cat"
"cat" + 3 + 9
"catfish".substring(3,4)
"catfish".substring(3,8)

Did you learn anything you did not expect from the exercise? If so, what was it?



2.22 Experimenting with expressions: the Code Pad | 57

first time in the source, it has had a type name in front of it, such as int or String. In light of 
this, now try the following in the Code Pad:

int sum = 0;

sum = 99 + 3;

This time there is no complaint, because sum has been introduced with a type and can be used 
without repeating the type thereafter. If you then type

sum

on a line by itself (with no semicolon), you will see the value it currently stores.

Now try this in the Code Pad:

String swimmer = "cat" + "fish";

swimmer

One again, we have given an appropriate type to the variable swimmer, allowing us to make an 
assignment to it and find out what it stores. This time we chose to set it to the value we wanted 
at the same time as declaring it.

What would you expect to see after the following?

String fish = swimmer;

fish

Try it out. What do you think has happened in the assignment?

Exercise 2.80 Open the Code Pad in the better-ticket-machine project. Type the following 

in the Code Pad:

TicketMachine t1 = new TicketMachine(1000);
t1.getBalance()
t1.insertMoney(500);
t1.getBalance()

Take care to type these lines exactly as they appear here; pay particular attention to whether 

or not there is a semicolon at the end of the line. Note what the calls to getBalance return 

in each case.

Exercise 2.81 Now add the following in the Code Pad:

TicketMachine t2 = t1;

What would you expect a call to t2.getBalance() to return? Try it out.

Exercise 2.82 Add the following:

t1.insertMoney(500);



58 |       Chapter 2 ■ Understanding class definitions

What would you expect the following to return? Think carefully about this before you try it, and 

be sure to use the t2 variable this time.

t2.getBalance()

Did you get the answer you expected? Can you find a connection between the variables t1
and t2 that would explain what is happening?

Concept summary

■ object creation Some objects cannot be constructed unless extra information is provided.

■ field Fields store data for an object to use. Fields are also known as instance variables.

■ comment Comments are inserted into the source code of a class to provide explanations to 

human readers. They have no effect on the functionality of the class.

■ constructor Constructors allow each object to be set up properly when it is first created.

■ scope The scope of a variable defines the section of source code from which the variable can 

be accessed.

■ lifetime The lifetime of a variable describes how long the variable continues to exist before it 

is destroyed.

■ assignment Assignment statements store the value represented by the right-hand side of the 

statement in the variable named on the left.

■ accessor method Accessor methods return information about the state of an object.

■ mutator method Mutator methods change the state of an object.

■ println The method System.out.println prints its parameter to the text terminal.

2.23 Summary
In this chapter, we have covered the basics of how to create a class definition. Classes contain 
fields, constructors, and methods that define the state and behavior of objects. Within the body of 
a constructor or method, a sequence of statements implements that part of its behavior. Local vari-
ables can be used as temporary data storage to assist with that. We have covered assignment state-
ments and conditional statements and will be adding further types of statements in later chapters.

Terms introduced in this chapter

field, instance variable, constructor, method, method header, method body, 

actual parameter, formal parameter, accessor, mutator, declaration, initializa-

tion, block, statement, assignment statement, conditional statement, return 

statement, return type, comment, expression, operator, variable, local variable, 

scope, lifetime 



2.23 Summary | 59

The following exercises are designed to help you experiment with the concepts of Java that 
we have discussed in this chapter. You will create your own classes that contain elements 
such as fields, constructors, methods, assignment statements, and conditional statements.

■ conditional A conditional statement takes one of two possible actions based upon the result 

of a test.

■ boolean expression Boolean expressions have only two possible values: true and false. They are 

commonly found controlling the choice between the two paths through a conditional statement.

■ local variable A local variable is a variable declared and used within a single method. Its 

scope and lifetime are limited to that of the method.

Exercise 2.83 Below is the outline for a Book class, which can be found in the book-exercise

project. The outline already defines two fields and a constructor to initialize the fields. In this and 

the next few exercises, you will add features to the class outline.

Add two accessor methods to the class—getAuthor and getTitle—that return the 

author and title fields as their respective results. Test your class by creating some 

instances and calling the methods.

/**
 * A class that maintains information on a book.
 * This might form part of a larger application such
 * as a library system, for instance.
 *
 * @author (Insert your name here.)
 * @version (Insert today’s date here.)
 */
public class Book
{
    // The fields.
    private String author;
    private String title;

    /**
     * Set the author and title fields when this object
     * is constructed.
     */
    public Book(String bookAuthor, String bookTitle)
    {
        author = bookAuthor;
        title = bookTitle;
    }

    // Add the methods here...
}



60 |       Chapter 2 ■ Understanding class definitions

Exercise 2.84 Add two methods, printAuthor and printTitle, to the outline Book
class. These should print the author and title fields, respectively, to the terminal window.

Exercise 2.85 Add a field, pages, to the Book class to store the number of pages. This

should be of type int, and its initial value should be passed to the single constructor, along 

with the author and title strings. Include an appropriate getPages accessor method for 

this field.

Exercise 2.X Are the Book objects you have implemented immutable? Justify your answer.

Exercise 2.86 Add a method, printDetails, to the Book class. This should print details 

of the author, title, and pages to the terminal window. It is your choice how the details are for-

matted. For instance, all three items could be printed on a single line, or each could be printed 

on a separate line. You might also choose to include some explanatory text to help a user 

work out which is the author and which is the title, for example

Title: Robinson Crusoe, Author: Daniel Defoe, Pages: 232

Exercise 2.87 Add a further field, refNumber, to the Book class. This field can store a 

reference number for a library, for example. It should be of type String and initialized to the 

zero length string ("") in the constructor, as its initial value is not passed in a parameter to the 

constructor. Instead, define a mutator for it with the following header:

public void setRefNumber(String ref)

The body of this method should assign the value of the parameter to the refNumber field. 

Add a corresponding getRefNumber accessor to help you check that the mutator works 

correctly.

Exercise 2.88 Modify your printDetails method to include printing the reference num-

ber. However, the method should print the reference number only if it has been set—that is, 

the refNumber string has a non-zero length. If it has not been set, then print the string "ZZZ"
instead. Hint: Use a conditional statement whose test calls the length method on the ref-
Number string.

Exercise 2.89 Modify your setRefNumber mutator so that it sets the refNumber field 

only if the parameter is a string of at least three characters. If it is less than three, then print an 

error message and leave the field unchanged.

Exercise 2.90 Add a further integer field, borrowed, to the Book class. This keeps a count 

of the number of times a book has been borrowed. Add a mutator, borrow, to the class. This

should update the field by 1 each time it is called. Include an accessor, getBorrowed, that 

returns the value of this new field as its result. Modify printDetails so that it includes the 

value of this field with an explanatory piece of text.

Exercise 2.91 Add a further boolean field, courseText, to the Book class. This re-

cords whether or not a book is being used as a text book on a course. The field should be 



2.23 Summary | 61

set through a parameter to the constructor and the field is immutable. Provide an accessor 

method for it called isCourseText.

Exercise 2.92 Challenge exercise Create a new project, heater-exercise, within BlueJ. Edit

the details in the project description—the text note you see in the diagram. Create a class, 

Heater, that contains a single field, temperature whose type is double-precision floating 

point—see Appendix B, section B.1, for the Java type name that corresponds to this descrip-

tion. Define a constructor that takes no parameters. The temperature field should be set 

to the value 15.0 in the constructor. Define the mutators warmer and cooler, whose effect 

is to increase or decrease the value of temperature by 5.0° respectively. Define an accessor 

method to return the value of temperature.

Exercise 2.93 Challenge exercise Modify your Heater class to define three new double-

precision floating point fields: min, max, and increment. The values of min and max should 

be set by parameters passed to the constructor. The value of increment should be set to 

5.0 in the constructor. Modify the definitions of warmer and cooler so that they use the 

value of increment rather than an explicit value of 5.0. Before proceeding further with this 

exercise, check that everything works as before.

Now modify the warmer method so that it will not allow the temperature to be set to a value 

greater than max. Similarly modify cooler so that it will not allow temperature to be set to 

a value less than min. Check that the class works properly. Now add a method, setIncre-
ment, that takes a single parameter of the appropriate type and uses it to set the value of in-
crement. Once again, test that the class works as you would expect it to by creating some 

Heater objects within BlueJ. Do things still work as expected if a negative value is passed to 

the setIncrement method? Add a check to this method to prevent a negative value from 

being assigned to increment.



In the previous chapters, we have examined what objects are and how they are implemented. In 
particular, we discussed fields, constructors, and methods when we looked at class definitions.

We shall now go one step further. To construct interesting applications, it is not enough to build 
individual working objects. Instead, objects must be combined so that they cooperate to per-
form a common task. In this chapter, we shall build a small application from three objects and 
arrange for methods to call other methods to achieve their goal.

3.1 The clock example
The project we shall use to discuss interaction of objects is a display for a digital clock. The 
display shows hours and minutes, separated by a colon (Figure 3.1). For this exercise, we 
shall first build a clock with a European-style 24-hour display. Thus, the display shows the 
time from 00:00 (midnight) to 23:59 (one minute before midnight). It turns out on closer in-
spection that building a 12-hour clock is slightly more difficult than it is for a 24-hour clock; 
we shall leave this to the end of this chapter.

CHAPTER

3 Object interaction

Main concepts discussed in this chapter:

■ abstraction

■ modularization

■ object creation

■ object diagrams

■ method calls

■ debuggers

Java constructs discussed in this chapter:

class types, logic operators (&&, ││), string concatenation, modulo operator (%), object 

construction (new), method calls (dot notation), this

11:03
Figure 3.1
A display of a digital 

clock



3.2 Abstraction and modularization
A first idea might be to implement the whole clock display in a single class. That is, after all, 
what we have seen so far: how to build classes to do a job.

However, here we shall approach this problem slightly differently. We will see whether we can 
identify subcomponents in the problem that we can turn into separate classes. The reason is 
complexity. As we progress in this book, the examples we use and the programs we build will 
get more and more complex. Trivial tasks such as the ticket machine can be solved as a single 
problem. You can look at the complete task and devise a solution using a single class. For more 
complex problems, that is too simplistic. As a problem grows larger, it becomes increasingly 
difficult to keep track of all details at the same time.

The solution we use to deal with the complexity problem is abstraction. We divide the problem 
into sub-problems, then again into sub-sub-problems, and so on, until the individual problems 
are small enough to be easy to deal with. Once we solve one of the sub-problems, we do not 
think about the details of that part any more, but treat the solution as a single building block for 
our next problem. This technique is sometimes referred to as divide and conquer.

Let us discuss this with an example. Imagine engineers in a car company designing a new car. 
They may think about the parts of the car, such as the shape of the outer body, the size and loca-
tion of the engine, the number and size of the seats in the passenger area, the exact spacing of 
the wheels, and so on. Another engineer, on the other hand, whose job is to design the engine 
(well, that’s a whole team of engineers in reality, but we simplify this a bit here for the sake of 
the example), thinks of the many parts of an engine: the cylinders, the injection mechanism, the 
carburetor, the electronics, etc. She will think of the engine not as a single entity, but as a com-
plex work of many parts. One of these parts may be a spark plug.

Then there is an engineer (maybe in a different company) who designs the spark plugs. He will 
think of the spark plug as a complex artifact of many parts. He might have done complex stud-
ies to determine exactly what kind of metal to use for the contacts or what kind of material and 
production process to use for the insulation.

The same is true for many other parts. A designer at the highest level will regard a wheel as a 
single part. Another engineer much further down the chain may spend her days thinking about 
the chemical composition necessary to produce the right materials to make the tires. For the tire 
engineer, the tire is a complex thing. The car company will just buy the tire from the tire com-
pany and then view it as a single entity. This is abstraction.

The engineer in the car company abstracts from the details of the tire manufacture to be able to 
concentrate on the details of the construction of, say, the wheel. The designer designing the body 
shape of the car abstracts from the technical details of the wheels and the engine to concentrate on 
the design of the body (he will just be interested in the size of the engine and the wheels).

The same is true for every other component. While someone might be concerned with design-
ing the interior passenger space, someone else may work on developing the fabric that will 
eventually be used to cover the seats.

The point is, if viewed in enough detail, a car consists of so many parts that it is impossible for 
a single person to know every detail about every part at the same time. If that were necessary, 
no car could ever be built.

Concept:

Abstraction is 

the ability to ignore 

details of parts, to 

focus attention on 

a higher level of a 

problem.

Concept:

Modularization

is the process of 

dividing a whole 

into well-defined 

parts that can be 

built and examined 

separately and that 

interact in well-

defined ways.

3.2 Abstraction and modularization | 63



64 |       Chapter 3 ■ Object interaction

The reason why cars are successfully built is that the engineers use modularization and abstrac-
tion. They divide the car into independent modules (wheel, engine, gear box, seat, steering 
wheel, etc.) and get separate people to work on separate modules independently. When a mod-
ule is built, they use abstraction. They view that module as a single component that is used to 
build more-complex components.

Modularization and abstraction thus complement each other. Modularization is the process of 
dividing large things (problems) into smaller parts, while abstraction is the ability to ignore de-
tails to focus on the bigger picture.

3.3 Abstraction in software
The same principles of modularization and abstraction discussed in the previous section are used 
in software development. To help us maintain an overview in complex programs, we try to iden-
tify subcomponents that we can program as independent entities. Then we try to use those sub-
components as if they were simple parts, without being concerned about their inner complexities.

In object-oriented programming, these components and subcomponents are objects. If we were 
trying to construct a car in software, using an object-oriented language, we would try to do what 
the car engineers do. Instead of implementing the car as a single, monolithic object, we would 
first construct separate objects for an engine, gearbox, wheel, seat, and so on, and then assem-
ble the car object from those smaller objects.

Identifying what kinds of objects (and with these, classes) you should have in a software system 
for any given problem is not always easy, and we shall have a lot more to say about that later in 
this book. For now, we shall start with a relatively simple example. Now, back to our digital clock.

3.4 Modularization in the clock example
Let us have a closer look at the clock-display example. Using the abstraction concepts we 
have just described, we want to try to find the best way to view this example so that we can 
write some classes to implement it. One way to look at it is to consider it as consisting of 
a single display with four digits (two digits for the hours, two for the minutes). If we now 
abstract away from that very low-level view, we can see that it could also be viewed as two 
separate two-digit displays (one pair for the hours and one pair for the minutes). One pair 
starts at 0, increases by 1 each hour, and rolls back to 0 after reaching its limit of 23. The 
other rolls back to 0 after reaching its limit of 59. The similarity in behavior of these two 
displays might then lead us to abstract away even further from viewing the hours display 
and minutes display distinctly. Instead, we might think of them as being objects that can 
display values from zero up to a given limit. The value can be incremented, but, if the value 
reaches the limit, it rolls over to zero. Now we seem to have reached an appropriate level of 
abstraction that we can represent as a class: a two-digit display class.

For our clock display, we shall first program a class for a two-digit number display (Figure 3.2) 
and then give it an accessor method to get its value and two mutator methods to set the value 
and to increment it. Once we have defined this class, we can just create two objects of the class 
with different limits to construct the whole clock display.



3.5 Implementing the clock display | 65

3.5 Implementing the clock display
As discussed above, in order to build the clock display, we will first build a two-digit num-
ber display. This display needs to store two values. One is the limit to which it can count 
before rolling over to zero. The other is the current value. We shall represent both of these as 
integer fields in our class (Code 3.1).

03
Figure 3.2
A two-digit number 

display

Concept:

Classes define 

types. A class 

name can be used 

as the type for a 

variable. Variables 

that have a class as 

their type can store 

objects of that 

class.

Code 3.1
Class for a two-digit 

number display

public class NumberDisplay

{
private int limit;
private int value;

Constructor and methods omitted.

}

We shall look at the remaining details of this class later. First, let us assume that we can build 
the class NumberDisplay, and then let us think a bit more about the complete clock display. 
We would build a complete clock display by having an object that has, internally, two number 
displays (one for the hours and one for the minutes). Each of the number displays would be a 
field in the clock display (Code 3.2). Here, we make use of a detail that we have not mentioned 
before: classes define types.

Code 3.2
The ClockDisplay
class containing two 

NumberDisplay fields

public class ClockDisplay

{
private NumberDisplay hours;
private NumberDisplay minutes;

Constructor and methods omitted.

}

When we discussed fields in Chapter 2, we said that the word “private” in the field declaration is 
followed by a type and a name for the field. Here we use the class NumberDisplay as the type 
for the fields named hours and minutes. This shows that class names can be used as types.

The type of a field specifies what kind of values can be stored in the field. If the type is a class, 
the field can hold objects of that class.



66 |       Chapter 3 ■ Object interaction

Concept:

The class

diagram shows 

the classes of an 

application and 

the relationships 

between them. It 

gives information 

about the source 

code and presents 

the static view of a 

program.

11

03

NumberDisplay

ClockDisplay
Figure 3.3
Object diagram and 

class diagram for the 

ClockDisplay

3.6 Class diagrams versus object diagrams
The structure described in the previous section (one ClockDisplay object holding two 
NumberDisplay objects) can be visualized in an object diagram as shown in Figure 3.3a. 
In this diagram, you see that we are dealing with three objects. Figure 3.3b shows the class 
diagram for the same situation.

Concept:

The object

diagram shows 

the objects and 

their relationships 

at one moment 

in time during the 

execution of an 

application. It gives 

information about 

objects at runtime 

and presents the 

dynamic view of a 

program.

These two diagrams offer different views of the same application. The class diagram shows the 
static view. It depicts what we have at the time of writing the program. We have two classes, 
and the arrow indicates that the class ClockDisplay makes use of the class NumberDisplay
(NumberDisplay is mentioned in the source code of ClockDisplay). We also say that 
ClockDisplay depends on NumberDisplay.

To start the program, we will create an object of class ClockDisplay. We will program the 
clock display so that it automatically creates two NumberDisplay objects for itself. Thus, the 
object diagram shows the situation at runtime (when the application is running). This is also 
called the dynamic view.

The object diagram also shows another important detail: when a variable stores an object, the 
object is not stored in the variable directly, but rather an object reference is stored in the vari-
able. In the diagram, the variable is shown as a white box, and the object reference is shown as 
an arrow. The object referred to is stored outside the referring object, and the object reference 
links the two.

It is very important to understand these two different diagrams and different views. BlueJ dis-
plays only the static view. You see the class diagram in its main window. In order to plan and 
understand Java programs, you need to be able to construct object diagrams on paper or in your 

Concept:

Object refer-

ences. Variables 

of object types

store references 

to objects.

Note that the class diagram shows only two classes, whereas the object diagram shows three 
objects. This has to do with the fact that we can create multiple objects from the same class. 
Here, we create two NumberDisplay objects from the NumberDisplay class.



Exercise 3.1 Think again about the lab-classes project that we discussed in Chapter 1 and 

Chapter 2. Imagine that we create a LabClass object and three Student objects. We then 

enroll all three students in that lab. Try to draw a class diagram and an object diagram for that 

situation. Identify and explain the differences between them.

Exercise 3.2 At what time(s) can a class diagram change? How is it changed?

Exercise 3.3 At what time(s) can an object diagram change? How is it changed?

Exercise 3.4 Write a definition of a field named tutor that can hold a reference to an 

object of type Instructor.

3.7 Primitive types and object types
Java knows two very different kinds of type: primitive types and object types. Primitive 
types are all predefined in the Java language. They include int and boolean. A complete 
list of primitive types is given in Appendix B. Object types are those defined by classes. 
Some classes are defined by the standard Java system (such as String); others are those 
classes we write ourselves.

Both primitive types and object types can be used as types, but there are situations in which 
they behave differently. One difference is how values are stored. As we could see from our dia-
grams, primitive values are stored directly in a variable (we have written the value directly into 
the variable box—for example, in Chapter 2, Figure 2.3). Objects, on the other hand, are not 
stored directly in the variable, but instead a reference to the object is stored (drawn as an arrow 
in our diagrams, as in Figure 3.3a).

We will see other differences between primitive types and object types later.

3.8 The ClockDisplay source code
Before we start to analyze the source code, it will help if you have a look at the example.

Exercise 3.5 Start BlueJ, open the clock-display example, and experiment with it. To use 

it, create a ClockDisplay object using the constructor that takes no parameters, then open 

an inspector window for this object. With the inspector open, call the object’s methods. Watch 

the displayString field in the inspector. Read the project comment (by double-clicking the 

text note icon on the main screen) to get more information.

head. When we think about what our program will do, we will think about the object structures 
it creates and how these objects interact. Being able to visualize the object structures is essential.

Concept:

The primitive

types in Java are 

the non-object 

types. Types such 

as int, boolean,

char, double,

and long are the 

most common 

primitive types. 

Primitive types have 

no methods.

3.8 The ClockDisplay source code | 67



68 |       Chapter 3 ■ Object interaction

3.8.1 Class NumberDisplay
We shall now analyze a complete implementation of this task. The project clock-display in the 
examples attached to this book contains the solution. First, we shall look at the implementation 
of the class NumberDisplay. Code 3.3 shows the complete source code. Overall, this class is 
fairly straightforward. It has the two fields discussed above (Section 3.5), one constructor, and 
four methods (getValue, setValue, getDisplayValue, and increment).

The constructor receives the roll-over limit as a parameter. If, for example, 24 is passed in as 
the roll-over limit, the display will roll over to 0 at that value. Thus, the range for the display 
value would be 0 to 23. This feature allows us to use this class for both hour and minute dis-
plays. For the hour display, we will create a NumberDisplay with limit 24; for the minute 
display, we will create one with limit 60.

The constructor then stores the roll-over limit in a field and sets the current value of the 
display to 0.

Code 3.3
Implementation of the 

NumberDisplay
class

/**
 * The NumberDisplay class represents a digital number
 * display that can hold values from zero to a given limit.
 * The limit can be specified when creating the display. The
 * values range from zero (inclusive) to limit-1. If used, for
 * example, for the seconds on a digital clock, the limit
 * would be 60, resulting in display values from 0 to 59.
 * When incremented, the display automatically rolls over to
 * zero when reaching the limit.
 *
 * @author Michael Kölling and David J. Barnes
 * @version 2011.07.31
 */
public class NumberDisplay
{

private int limit;
private int value;

    /**
     * Constructor for objects of class NumberDisplay
     */

public NumberDisplay(int rollOverLimit)
    {
        limit = rollOverLimit;
        value = 0;

}

    /**
     * Return the current value.
     */



3.8 The ClockDisplay source code | 69

public int getValue()
{

return value;
}

    /**
     * Set the value of the display to the new specified
     * value. If the new value is less than zero or over the
     * limit, do nothing.
     */

public void setValue(int replacementValue)
{

if((replacementValue >= 0) &&
(replacementValue < limit)) {

            value = replacementValue;
}

}

    /**
     * Return the display value (that is, the current value
     * as a two-digit String. If the value is less than ten,
     * it will be padded with a leading zero).
     */

public String getDisplayValue()
{

if(value < 10) {
return "0" + value;

}
else {

return "" + value;
}

}

    /**
     * Increment the display value by one, rolling over to zero if
     * the limit is reached.
     */

public void increment()
{

value = (value + 1) % limit;
}

}

Code 3.3
continued
Implementation of the 

NumberDisplay
class



70 |       Chapter 3 ■ Object interaction

Next follows a simple accessor method for the current display value (getValue). This allows 
other objects to read the current value of the display.

The following mutator method setValue is more interesting. It reads:

public void setValue(int replacementValue)
{
    if((replacementValue >= 0) && (replacementValue < limit)) {
        value = replacementValue;
    }
}

Here, we pass the new value for the display as a parameter into the method. However, before 
we assign the value, we have to check whether the value is legal. The legal range for the value, 
as discussed above, is 0 to 1 below the limit. We use an if statement to check that the value is 
legal before we assign it. The symbol “&&” is a logical “and” operator. It causes the condition in 
the if statement to be true if both the conditions on either side of the “&&” symbol are true. See 
the “Logic operators” note that follows for details. Appendix C shows a complete table of logic 
operators in Java.

Logic operators Logic operators operate on boolean values (true or false) and produce a new 

boolean value as a result. The three most important logical operators are and, or, and not. They

are written in Java as:

&& (and)

││ (or)

! (not)

The expression

a && b

is true if both a and b are true, and false in all other cases. The expression

a ││ b

is true if either a or b or both are true, and false if they are both false. The expression

!a

is true if a is false and false if a is true.

Exercise 3.6 What happens when the setValue method is called with an illegal value? Is 

this a good solution? Can you think of a better solution?

Exercise 3.7 What would happen if you replaced the ">=" operator in the test with ">" so 

that it reads

if((replacementValue > 0) && (replacementValue < limit))



3.8 The ClockDisplay source code | 71

The next method, getDisplayValue, also returns the display’s value, but in a different for-
mat. The reason is that we want to display the value as a two-digit string. That is, if the current 
time is 3:05 a.m., we want the display to read 03:05, and not 3:5. To enable us to do this 
easily, we have implemented the getDisplayValue method. This method returns the current 
value as a string, and it adds a leading 0 if the value is less than 10. Here is the relevant section 
of the code:

if(value < 10) {
    return "0" + value;
}
else {
    return "" + value;
}

Note that the zero ("0") is written in double quotes. Thus, we have written the string 0, not the 
integer number 0. Then the expression

"0" + value

“adds” a string and an integer (because the type of value is integer). The plus operator, there-
fore, represents string concatenation again, as seen in Section 2.9. Before continuing, we will 
now look at string concatenation a little more closely.

Exercise 3.8 What would happen if you replaced the && operator in the test with ││ so that 

it reads

if((replacementValue >= 0) ││ (replacementValue < limit))

Exercise 3.9 Which of the following expressions return true?

! (4 < 5)
! false
(2 > 2) ││ ((4 == 4) && (1 < 0))
(2 > 2) ││ (4 == 4) && (1 < 0)
(34 != 33) && ! false

After writing your answers on paper, open the Code Pad in BlueJ and try it out. Check your 

answers.

Exercise 3.10 Write an expression using boolean variables a and b that evaluates to true

when a and b are either both true or both false.

Exercise 3.11 Write an expression using boolean variables a and b that evaluates to true

when only one of a and b is true, and that is false if a and b are both false or both true. (This is 

also called an exclusive or.)

Exercise 3.12 Consider the expression (a && b). Write an equivalent expression (one that 

evaluates to true at exactly the same values for a and b) without using the && operator.



72 |       Chapter 3 ■ Object interaction

3.8.2 String concatenation
The plus operator (+) has different meanings, depending on the type of its operands. If both 

operands are numbers, it represents addition, as we would expect. Thus,

42 + 12

adds those two numbers and the result is 54. However, if the operands are strings, then the 

meaning of the plus sign is string concatenation, and the result is a single string that consists of 

both operands stuck together. For example, the result of the expression

"Java" + "with BlueJ"

is the single string

"Javawith BlueJ"

Note that the system does not automatically add a space between the strings. If you want a 

space, you have to include it yourself within one of the strings.

If one of the operands of a plus operation is a string and the other is not, then the other operand 

is automatically converted to a string, and then a string concatenation is performed. Thus,

"answer: " + 42

results in the string

"answer: 42"

This works for all types. Whatever type is “added” to a string is automatically converted to a 

string and then concatenated.

Back to our code in the getDisplayValue method. If value contains 3, for example, then the 

statement

return "0" + value;

will return the string "03". In the case where the value is greater than 9, we have used a little trick:

return "" + value;

Here, we concatenate value with an empty string. The result is that the value will be converted 

to a string and no other characters will be prefixed to it. We are using the plus operator for the 

sole purpose of forcing a conversion of the integer value to a value of type String.

Exercise 3.13 Does the getDisplayValue method work correctly in all circumstances? 
What assumptions are made within it? What happens if you create a number display with limit 
800, for instance?

Exercise 3.14 Is there any difference in the result of writing

return value + "";

rather than

return "" + value;

in the getDisplayValue method?



3.8 The ClockDisplay source code | 73

3.8.3 The modulo operator

The last method in the NumberDisplay class increments the display value by 1. It takes 
care that the value resets to 0 when the limit is reached:

public void increment()
{
    value = (value + 1) % limit;
}

This method uses the modulo operator (%). The modulo operator calculates the remainder of an 
integer division. For example, the result of the division

27 / 4

can be expressed in integer numbers as

result = 6, remainder = 3

The modulo operator returns just the remainder of such a division. Thus, the result of the ex-
pression (27 % 4) would be 3.

Exercise 3.15 Explain the modulo operator. You may need to consult more resources (on-

line Java language resources, other Java books, etc.) to find out the details.

Exercise 3.16 What is the result of the expression (8 % 3)?

Exercise 3.17 Try out the expression (8 % 3) in the Code Pad. Try other numbers. What 

happens when you use the modulo operator with negative numbers?

Exercise 3.18 What are all possible results of the expression (n % 5), where n is an 

integer variable?

Exercise 3.19 What are all possible results of the expression (n % m), where n and m are 

integer variables?

Exercise 3.20 Explain in detail how the increment method works.

Exercise 3.21 Rewrite the increment method without the modulo operator, using an if 

statement. Which solution is better?

Exercise 3.22 Using the clock-display project in BlueJ, test the NumberDisplay class by 

creating a few NumberDisplay objects and calling their methods.

3.8.4 Class ClockDisplay
Now that we have seen how we can build a class that defines a two-digit number display, we shall 
look in more detail at the ClockDisplay class—the class that will create two number displays to 
create a full time display. Code 3.4 shows the complete source code of the ClockDisplay class.

As with the NumberDisplay class, we shall briefly discuss all fields, constructors, and methods.



74 |       Chapter 3 ■ Object interaction

Code 3.4
Implementation of the 

ClockDisplay
class

/**
 * The ClockDisplay class implements a digital clock display
 * for a European-style 24-hour clock. The clock shows hours
 * and minutes.
 * The range of the clock is 00:00 (midnight) to 23:59 (one
 * minute before midnight).
 *
 * The clock display receives "ticks" (via the timeTick
 * method) every minute and reacts by incrementing the
 * display. This is done in the usual clock fashion: the hour
 * increments when the minutes roll over to zero.
 *
 * @author Michael Kölling and David J. Barnes
 * @version 2011.07.31
 */
public class ClockDisplay
{

private NumberDisplay hours;
private NumberDisplay minutes;
private String displayString; // simulates the actual display

    /**
     * Constructor for ClockDisplay objects. This constructor
     * creates a new clock set at 00:00.
     */

public ClockDisplay()
{

hours = new NumberDisplay(24);
minutes = new NumberDisplay(60);
updateDisplay();

}

    /**
     * Constructor for ClockDisplay objects. This constructor
     * creates a new clock set at the time specified by the
     * parameters.
     */

public ClockDisplay(int hour, int minute)
{

hours = new NumberDisplay(24);
minutes = new NumberDisplay(60);
setTime(hour, minute);

}

    /**
     * This method should get called once every minute - it
     * makes the clock display go one minute forward.
     */



3.8 The ClockDisplay source code | 75

public void timeTick()
{

minutes.increment();
if(minutes.getValue() == 0) { // it just rolled over!

hours.increment();
}
updateDisplay();

}

    /**
     * Set the time of the display to the specified hour and
     * minute.
     */

public void setTime(int hour, int minute)
  {

        hours.setValue(hour);
        minutes.setValue(minute);
        updateDisplay();
    }

    /**
     * Return the current time of this display in the format
     * HH:MM.
     */

public String getTime()
{

return displayString;
}

    /**
     * Update the internal string that represents the
     * display.
     */

private void updateDisplay()
{

displayString = hours.getDisplayValue() + ":" +
minutes.getDisplayValue();

    }
}

In this project, we use the field displayString to simulate the actual display device of the 
clock (as you could see in Exercise 3.5). Were this software to run in a real clock, we would 
present the output on the real clock display instead. So this string serves as our software simula-
tion for the clock’s output device.1

1 The book projects folder also includes a version of this project with a simple graphical user interface 
(GUI), named clock-display-with-GUI. The curious reader may like to experiment with this project; 
however, it will not be discussed in this book.

Code 3.4
continued
Implementation of the 

ClockDisplay
class



76 |       Chapter 3 ■ Object interaction

To achieve this, we use one string field and a method:

public class ClockDisplay
{
    private String displayString;

Other fields and methods omitted.

    /**
     * Update the internal string that represents the display.
     */
    private void updateDisplay()
    {

Method implementation omitted.
    }
}

Whenever we want the display of the clock to change, we shall call the internal method up-
dateDisplay. In our simulation, this method will change the display string (we will examine 
the source code to do this below). In a real clock, this method would also exist; there it would 
change the real clock display.

Apart from the display string, the ClockDisplay class has only two more fields: hours and 
minutes. Each of these fields can hold an object of type NumberDisplay. The logical value 
of the clock’s display (the current time) is stored in these NumberDisplay objects. Figure 3.4 
shows an object diagram of this application when the current time is 15:23.

Figure 3.4
Object diagram 

of the clock display



3.9 Objects creating objects | 77

3.9 Objects creating objects
The first question we have to ask ourselves is: Where do these three objects come 
from? When we want to use a clock display, we might create a ClockDisplay object. 
We then assume that our clock display has hours and minutes. So by simply creating a 
clock display, we expect that we have implicitly created two number displays for the 
hours and minutes.

As writers of the ClockDisplay class, we have to make this happen. We simply write code 
in the constructor of the ClockDisplay that creates and stores two NumberDisplay objects. 
Because the constructor is automatically executed when a ClockDisplay object is created, the 
NumberDisplay objects will automatically be created at the same time. Here is the code of the 
ClockDisplay constructor that makes this work:

public class ClockDisplay
{
    private NumberDisplay hours;
    private NumberDisplay minutes;

Remaining fields omitted.

    public ClockDisplay()
    {
        hours = new NumberDisplay(24);
        minutes = new NumberDisplay(60);
        updateDisplay();
    }

Methods omitted.

}

Each of the first two lines in the constructor creates a new NumberDisplay object and assigns 
it to a variable. The syntax of an operation to create a new object is

new ClassName ( parameter-list)

The new operation does two things:

1 It creates a new object of the named class (here, NumberDisplay).

2 It executes the constructor of that class.

If the constructor of the class is defined to have parameters, then the actual parameters must 
be supplied in the new statement. For instance, the constructor of class NumberDisplay was 
defined to expect one integer parameter:

public NumberDisplay (int rollOverLimit)

Thus, the new operation for the NumberDisplay class, which calls this constructor, must 
provide one actual parameter of type int to match the defined constructor header:

new NumberDisplay (24);

Concept:

Object creation.

Objects can create

other objects,

using the new 

operator.



78 |       Chapter 3 ■ Object interaction

3.10 Multiple constructors
You might have noticed when you created a ClockDisplay object that the pop-up menu of-
fered you two ways to do that:

new ClockDisplay()
new ClockDisplay(int hour, int minute)

This is because the ClockDisplay class contains two constructors. What they provide are 
alternative ways of initializing a ClockDisplay object. If the constructor with no parameters 
is used, then the starting time displayed on the clock will be 00:00. If, on the other hand, you 
want to have a different starting time, you can set that up by using the second constructor. It 
is common for class definitions to contain alternative versions of constructors or methods that 
provide various ways of achieving a particular task via their distinctive sets of parameters. This 
is known as overloading a constructor or method.

This is the same as for methods discussed in Section 2.4. With this constructor, we have achieved 
what we wanted: if someone now creates a ClockDisplay object, the ClockDisplay con-
structor will automatically execute and create two NumberDisplay objects. Then the clock 
display is ready to go.

Exercise 3.23 Create a ClockDisplay object by selecting the following constructor:

new ClockDisplay()

Call its getTime method to find out the initial time the clock has been set to. Can you work 

out why it starts at that particular time?

Exercise 3.24 How many times would you need to call the timeTick method on a newly 

created ClockDisplay object to make its time reach 01:00? How else could you make it 

display that time?

Exercise 3.25 Create a NumberDisplay object with limit 80 in the Code Pad by typing

NumberDisplay nd = new NumberDisplay(80);

Then call its getValue(), setValue(int value), and increment() methods in the 

Code Pad (e.g., by typing nd.getValue()). Note that statements (mutators) need a semico-

lon at the end, while expressions (accessors) do not.

Exercise 3.26 Write the signature of a constructor that matches the following object crea-

tion instruction:

new Editor("readme.txt", –1)

Exercise 3.27 Write Java statements that define a variable named window of type 

Rectangle, and then create a rectangle object and assign it to that variable. The rectangle 

constructor has two int parameters.

Concept:

Overloading. A

class may contain 

more than one con-

structor, or more 

than one method of 

the same name, as 

long as each has 

a distinctive set of 

parameter types.



3.11 Method calls | 79

3.11 Method calls

3.11.1 Internal method calls

The last line of the first ClockDisplay constructor consists of the statement

updateDisplay();

This statement is a method call. As we have seen above, the ClockDisplay class has a method 
with the following signature:

private void updateDisplay()

The method call above invokes this method. Because this method is in the same class as the 
call of the method, we also call it an internal method call. Internal method calls have the syntax

methodName ( parameter-list )

In our example, the method does not have any parameters, so the parameter list is empty. This is 
signified by the pair of parentheses with nothing between them.

When a method call is encountered, the matching method is executed, and then execution re-
turns to the method call and continues at the next statement after the call. For a method signa-
ture to match the method call, both the name and the parameter list of the method must match. 
Here, both parameter lists are empty, so they match. This need to match against both method 
name and parameter lists is important, because there may be more than one method of the same 
name in a class—if that method is overloaded.

In our example, the purpose of this method call is to update the display string. After the two num-
ber displays have been created, the display string is set to show the time indicated by the number 
display objects. The implementation of the updateDisplay method will be discussed below.

3.11.2 External method calls

Now let us examine the next method: timeTick. The definition is:

public void timeTick()
{
    minutes.increment();
    if(minutes.getValue() == 0) { // it just rolled over!
        hours.increment();
    }
    updateDisplay();
}

Exercise 3.28 Look at the second constructor in ClockDisplay’s source code. Explain

what it does and how it does it.

Exercise 3.29 Identify the similarities and differences between the two constructors. Why is 

there no call to updateDisplay in the second constructor, for instance?

Concept:

Methods can call 

other methods of 

the same class as 

part of their imple-

mentation. This is 

called an internal 

method call.



80 |       Chapter 3 ■ Object interaction

Were this display connected to a real clock, this method would be called once every 60 seconds 
by the electronic timer of the clock. For now, we just call it ourselves to test the display.

When the timeTick method is called, it first executes the statement

minutes.increment();

This statement calls the increment method of the minutes object. Thus, when one of the 
methods of the ClockDisplay object is called, it in turn calls a method of another object to do 
part of the task. A method call to a method of another object is referred to as an external method 
call. The syntax of an external method call is

object . methodName ( parameter-list )

This syntax is known as dot notation. It consists of an object name, a dot, the method name, and 
parameters for the call. It is particularly important to appreciate that we use the name of an ob-
ject here and not the name of a class. We use the name minutes rather than NumberDisplay.

The timeTick method then has an if statement to check whether the hours should also be incre-
mented. As part of the condition in the if statement, it calls another method of the minutes object: 
getValue. This method returns the current value of the minutes. If that value is zero, then we know 
that the display just rolled over and we should increment the hours. That is exactly what the code does.

If the value of the minutes is not zero, then we’re done. We don’t have to change the hours in 
that case. Thus, the if statement does not need an else part.

We should now also be able to understand the remaining three methods of the ClockDisplay class 
(see Code 3.4). The method setTime takes two parameters—the hour and the minute—and sets 
the clock to the specified time. Looking at the method body, we can see that it does so by calling 
the setValue methods of both number displays (the one for the hours and the one for the minutes). 
Then it calls updateDisplay to update the display string accordingly, just as the constructor does.

The getTime method is trivial—it just returns the current display string. Because we always 
keep the display string up to date, this is all there is to do.

Finally, the updateDisplay method is responsible for updating the display string so that the 
string correctly reflects the time as represented by the two number display objects. It is called 
every time the time of the clock changes. It works by calling the getDisplayValue methods 
of each of the NumberDisplay objects. These methods return the value of each separate num-
ber display. It then uses string concatenation to concatenate these two values, with a colon in 
the middle, to a single string.

Exercise 3.30 Given a variable

Printer p1;

which currently holds a reference to a printer object, and two methods inside the Printer
class with the headers

public void print(String filename, boolean doubleSided)
public int getStatus(int delay)

write two possible calls to each of these methods.

Concept:

Methods can call 

methods of other 

objects using dot 

notation. This is 

called an external 

method call.



3.12 Another example of object interaction      | 81

3.11.3 Summary of the clock display

It is worth looking for a minute at the way this example uses abstraction to divide the 
problem into smaller parts. Looking at the source code of the class ClockDisplay, you 
will notice that we just create a NumberDisplay object without being particularly inter-
ested in what that object looks like internally. We can then call methods (increment,
getValue) of that object to make it work for us. At this level, we simply assume that 
increment will correctly increment the display’s value, without being concerned with how 
it does it.

In real-world projects, these different classes are often written by different people. You might 
already have noticed that all these two people have to agree on is what method signatures the 
class should have and what they should do. Then one person can concentrate on implementing 
the methods, while the other person can just use them.

The set of methods an object makes available to other objects is called its interface. We shall 
discuss interfaces in much more detail later in this book.

Exercise 3.31 Challenge exercise Change the clock from a 24-hour clock to a 12-

hour clock. Be careful: This is not as easy as it might at first seem. In a 12-hour clock, 

the hours after midnight and after noon are not shown as 00:30, but as 12:30. Thus, 

the minute display shows values from 0 to 59, while the hour display shows values from 

1 to 12!

Exercise 3.32 There are (at least) two ways in which you can make a 12-hour clock. One 

possibility is to just store hour values from 1 to 12. On the other hand, you can simply leave the 

clock to work internally as a 24-hour clock but change the display string of the clock display 

to show 4:23 or 4.23pm when the internal value is 16:23. Implement both versions. Which 

option is easier? Which is better? Why?

3.12 Another example of object interaction
We shall now examine the same concepts with a different example, using different tools. We 
are still concerned with understanding how objects create other objects and how objects call 
each other’s methods. In the first half of this chapter, we have used the most fundamental 
technique to analyze a given program: code reading. The ability to read and understand 
source code is one of the most essential skills for a software developer, and we will need to 
apply it in every project we work on. However, sometimes it is beneficial to use additional 
tools in order to help us gain a deeper understanding about how a program executes. One 
tool we will now look at is a debugger.

A debugger is a program that lets programmers execute an application one step at a time. It 
typically provides functions to stop and start a program at selected points in the source code, 
and to examine the values of variables.

Concept:

A debugger is a 

software tool that 

helps in examining 

how an application 

executes. It can be 

used to find bugs.



82 |       Chapter 3 ■ Object interaction

The name “debugger” Errors in computer programs are commonly known as “bugs.” Thus

programs that help in the removal of errors are known as “debuggers.”

It is not entirely clear where the term “bug” comes from. There is a famous case of what is known 

as “the first computer bug”—a real bug (a moth, in fact)—which was found inside the Mark II com-

puter by Grace Murray Hopper, an early computing pioneer, in 1945. A logbook still exists in the 

National Museum of American History of the Smithsonian Institute that shows an entry with this 

moth taped into the book and the remark “first actual case of a bug being found.” The wording, 

however, suggests that the term “bug” had been in use before this real one caused trouble in the 

Mark II.

To find out more, do a web search for “first computer bug”—you will even find pictures of the 

moth!

Debuggers vary widely in complexity. Those for professional developers have a large 
number of functions useful for sophisticated examination of many facets of an applica-
tion. BlueJ has a built-in debugger that is much simpler. We can use it to stop our program, 
step through it one line of code at a time, and examine the values of our variables. Despite 
the debugger’s apparent lack of sophistication, this is enough to give us a great deal of 
information.

Before we start experimenting with the debugger, we will take a look at the example we will 
use for debugging: a simulation of an e-mail system.

3.12.1 The mail-system example

We start by investigating the functionality of the mail-system project. At this stage, it is not 
important to read the source, but mainly to execute the existing project to get an understand-
ing of what it does.

Exercise 3.33 Open the mail-system project, which you can find in the book’s sup-

port material. The idea of this project is to simulate the act of users sending mail items to 

each other. A user uses a mail client to send mail items to a server, for delivery to another 

user’s mail client. First create a MailServer object. Now create a MailClient object 

for one of the users. When you create the client, you will need to supply a MailServer
instance as a parameter. Use the one you just created. You also need to specify a user-

name for the mail client. Now create a second MailClient in a similar way, with a dif-

ferent username.

Experiment with the MailClient objects. They can be used for sending mail items from one 

mail client to another (using the sendMailItem method) and receiving messages (using the 

getNextMailItem or printNextMailItem methods).



3.12 Another example of object interaction      | 83

Examining the mail system project, we see that:

■ It has three classes: MailServer, MailClient, and MailItem.

■ One mail-server object must be created that is used by all mail clients. It handles the ex-
change of messages.

■ Several mail-client objects can be created. Every mail client has an associated user name.

■ Mail items can be sent from one mail client to another via a method in the mail-client class.

■ Mail items can be received by a mail client from the server one at a time, using a method in 
the mail client.

■ The MailItem class is never explicitly instantiated by the user. It is used internally in the 
mail clients and server to create, store, and exchange messages.

Exercise 3.34 Draw an object diagram of the situation you have after creating a mail server 

and three mail clients. Object diagrams were discussed in Section 3.6.

The three classes have different degrees of complexity. MailItem is fairly trivial. We shall 
discuss only one small detail and leave the rest up to the reader to investigate. MailServer is 
quite complex at this stage; it makes use of concepts discussed only much later in this book. We 
shall not investigate that class in detail here. Instead, we just trust that it does its job—another 
example of the way abstraction is used to hide detail that we do not need to be aware of.

The MailClient class is the most interesting, and we shall examine it in some detail.

3.12.2 The this keyword

The only section we will discuss from the MailItem class is the constructor. It uses a Java 
construct that we have not encountered before. The source code is shown in Code 3.5.

Code 3.5
Fields and constructor 

of the MailItem class

public class MailItem
{
    // The sender of the item.

private String from;
    // The intended recipient.

private String to;
    // The text of the message.

private String message;

    /**
     * Create a mail item from sender to the given recipient,
     * containing the given message.
     * @param from    The sender of this item.
     * @param to      The intended recipient of this item.
     * @param message The text of the message to be sent.
     */



84 |       Chapter 3 ■ Object interaction

public MailItem(String from, String to, String message)
{

this.from = from;
this.to = to;
this.message = message;

}
    Methods omitted.
}

Code 3.5
continued
Fields and constructor of 

the MailItem class

The new Java feature in this code fragment is the use of the this keyword:

this.from = from;

The whole line is an assignment statement. It assigns the value on the right-hand side (from) to 
the variable on the left (this.from).

The reason for using this construct is that we have a situation known as name overloading—the
same name being used for two different entities. The class contains three fields, named from,
to, and message. The constructor has three parameters, also named from, to, and message!

So while we are executing the constructor, how many variables exist? The answer is six: three 
fields and three parameters. It is important to understand that the fields and the parameters are 
separate variables that exist independently of each other, even though they share similar names. 
A parameter and a field sharing a name is not really a problem in Java.

The problem we do have, though, is how to reference the six variables so as to be able to distin-
guish between the two sets. If we simply use the variable name “from” in the constructor (for 
example, in a statement System.out.println(from)), which variable will be used—the 
parameter or the field?

The Java specification answers this question. It specifies that the definition originating in the 
closest enclosing block will always be used. Because the from parameter is defined in the con-
structor and the from field is defined in the class, the parameter will be used. Its definition is 
“closer” to the statement that uses it.

Now all we need is a mechanism to access a field when there is a more closely defined variable 
with the same name. That is what the this keyword is used for. The expression this refers to 
the current object. Writing this.from refers to the from field in the current object. Thus, this 
construct gives us a means to refer to the field instead of the parameter with the same name. 
Now we can read the assignment statement again:

this.from = from;

This statement, as we can see now, has the following effect:

field named from = parameter named from;

In other words, it assigns the value from the parameter to the field with the same name. This is, 
of course, exactly what we need to do to initialize the object properly.

One last question remains: Why are we doing this at all? The whole problem could easily be avoided 
just by giving the fields and the parameters different names. The reason is readability of source code.



3.13 Using a debugger      | 85

Sometimes there is one name that perfectly describes the use of a variable—it fits so well that 
we do not want to invent a different name for it. We want to use it for the parameter, where it 
serves as a hint to the caller, indicating what needs to be passed; and we want to use it for the 
field, where it is useful as a reminder for the implementer of the class, indicating what the field 
is used for. If one name perfectly describes the use, it is reasonable to use it for both and to go 
through the trouble of using the this keyword in the assignment to resolve the name conflict.

3.13 Using a debugger
The most interesting class in the mail-system example is the mail client. We shall now 
investigate it in more detail by using a debugger. The mail client has three methods: get-
NextMailItem, printNextMailItem, and sendMailItem. We will first investigate the 
printNextMailItem method.

Before we start with the debugger, set up a scenario we can use to investigate (Exercise 3.35).

Exercise 3.35 Set up a scenario for investigation: Create a mail server, then create two mail 

clients for the users "Sophie" and "Juan" (you should name the instances sophie and 

juan as well so that you can better distinguish them on the object bench). Then use Sophie’s 

sendMailItem method to send a message to Juan. Do not read the message yet.

After the setup in Exercise 3.35, we have a situation where one mail item is stored on the server 
for Juan, waiting to be picked up. We have seen that the printNextMailItem method picks 
up this mail item and prints it to the terminal. Now we want to investigate exactly how this 
works.

3.13.1 Setting breakpoints

To start our investigation, we set a breakpoint (Exercise 3.36). A breakpoint is a flag at-
tached to a line of source code that will stop the execution of a method at that point when it 
is reached. It is represented in the BlueJ editor as a small stop sign (Figure 3.5).

You can set a breakpoint by opening the BlueJ editor, selecting the appropriate line (in our case, 
the first line of the printNextMailItem method) and then selecting Set/Clear Breakpoint 
from the Tools menu of the editor. Alternatively, you can also simply click into the area next to 
the line of code where the breakpoint symbol appears, to set or clear breakpoints. Note that the 
class has to be compiled to do this.

Exercise 3.36 Open the editor for the MailClient class and set a breakpoint at the first 

line of the printNextMailItem method, as shown in Figure 3.5.



86 |       Chapter 3 ■ Object interaction

Once you have set the breakpoint, invoke the printNextMailItem method on Juan’s mail client. 
The editor window for the MailClient class and a debugger window will pop up (Figure 3.6).

Along the bottom of the debugger window are some control buttons. They can be used to con-
tinue or interrupt the execution of the program. (For a more detailed explanation of the debug-
ger controls, see Appendix F.)

On the right-hand side of the debugger window are three areas for variable display, titled static
variables, instance variables, and local variables. We will ignore the static-variable area for 
now. We will discuss static variables later, and this class does not have any.

Figure 3.5
A breakpoint 

in the BlueJ editor 

Figure 3.6
The debugger window, 

execution stopped 

at a breakpoint 



3.13 Using a debugger      | 87

We see that this object has two instance variables (or fields), server and user, and we can see 
the current values. The user variable stores the string "Juan", and the server variable stores 
a reference to another object. The object reference is what we have drawn as an arrow in the 
object diagrams.

Note that there is no local variable yet. This is because execution stops before the line with the 
breakpoint is executed. Because the line with the breakpoint contains the declaration of the only 
local variable and that line has not yet been executed, no local variable exists at the moment.

The debugger not only allows us to interrupt the execution of the program and inspect the vari-
ables, it also lets us step forward slowly.

3.13.2 Single stepping

When stopped at a breakpoint, clicking the Step button executes a single line of code and 
then stops again.

Exercise 3.37 Step one line forward in the execution of the printNextMailItem method 

by clicking the Step button.

The result of executing the first line of the printNextMailItem method is shown in 
Figure 3.7. We can see that execution has moved on by one line (a small black arrow next to 
the line of source code indicates the current position), and the local variable list in the debug-
ger window indicates that a local variable item has been created and an object assigned to it.

Figure 3.7
Stopped again after 

a single step

Exercise 3.38 Predict which line will be marked as the next line to execute after the next 

step. Then execute another single step and check your prediction. Were you right or wrong? 

Explain what happened and why.



88 |       Chapter 3 ■ Object interaction

We can now use the Step button repeatedly to step to the end of the method. This allows us to 
see the path the execution takes. This is especially interesting in conditional statements: we can 
clearly see which branch of an if statement is executed and use this to see whether it matches 
our expectations.

Exercise 3.39 Call the same method (printNextMailItem) again. Step through the 

method again, as before. What do you observe? Explain why this is.

3.13.3 Stepping into methods

When stepping through the printNextMailItem method, we have seen two method calls 
to objects of our own classes. The line

MailItem item = server.getNextMailItem(user);

includes a call to the getNextMailItem method of the server object. Checking the instance 
variable declarations, we can see that the server object is declared of class MailServer.

The line

item.print();

calls the print method of the item object. We can see in the first line of the printNextMail 
Item method that item is declared to be of class MailItem.

Using the Step command in the debugger, we have used abstraction: we have viewed the print
method of the item class as a single instruction, and we could observe that its effect is to print 
out the details (sender, recipient, and message) of the mail item.

If we are interested in more detail, we can look further into the process and see the print method 
itself execute step by step. This is done by using the Step Into command in the debugger instead 
of the Step command. Step Into will step into the method being called and stop at the first line 
inside that method.

Exercise 3.40 Set up the same test situation as we did before. That is, send a message 

from Sophie to Juan. Then invoke the printNextMailItem message of Juan’s mail client 

again. Step forward as before. This time, when you reach the line

item.print();

use the Step Into command instead of the Step command. Make sure you can see the text 

terminal window as you step forward. What do you observe? Explain what you see.

3.14 Method calling revisited
In the experiments in Section 3.13, we have seen another example of object interaction 
similar to one we saw before: objects calling methods of other objects. In the printNext-
MailItem method, the MailClient object made a call to a MailServer object to retrieve 
the next mail item. This method (getNextMailItem) returned a value—an object of type 



3.15 Summary      | 89

MailItem. Then there was a call to the print method of the mail item. Using abstraction, 
we can view the print method as a single command. Or, if we are interested in more detail, 
we can go to a lower level of abstraction and look inside the print method.

In a similar style, we can use the debugger to observe one object creating another. The send-
Message method in the MailClient class shows a good example. In this method, a MailItem
object is created in the first line of code:

MailItem item = new MailItem(user, to, message);

The idea here is that the mail item is used to encapsulate a mail message. The mail item con-
tains information about the sender, the recipient, and the message itself. When sending a mes-
sage, a mail client creates a mail item with all this information and then stores the mail item on 
the mail server. There it can later be picked up by the mail client of the recipient.

In the line of code above, we see the new keyword being used to create the new object, and we 
see the parameters being passed to the constructor. (Remember: Constructing an object does 
two things—the object is being created and the constructor is executed.) Calling the constructor 
works in a very similar fashion to calling methods. This can be observed by using the Step Into
command at the line where the object is being constructed.

Exercise 3.41 Set a breakpoint in the first line of the sendMailItem method in the 

MailClient class. Then invoke this method. Use the Step Into function to step into the 

constructor of the mail item. In the debugger display for the MailItem object, you can see 

the instance variables and local variables that have the same names, as discussed in Section 

3.12.2. Step further to see the instance variables get initialized.

Exercise 3.42 Use a combination of code reading, execution of methods, breakpoints, 

and single stepping to familiarize yourself with the MailItem and MailClient classes. 

Note that we have not yet discussed enough for you to understand the implementation of 

the MailServer class, so you can ignore this for now. (You can, of course, look at it if you 

feel adventurous, but don’t be surprised if you find it slightly baffling…) Explain in writing how 

the MailClient and MailItem classes interact. Draw object diagrams as part of your 

explanations.

3.15 Summary
In this chapter, we have discussed how a problem can be divided into sub-problems. We can 
try to identify subcomponents in those objects that we want to model, and we can imple-
ment subcomponents as independent classes. Doing so helps in reducing the complexity 
of implementing larger applications, because it enables us to implement, test, and maintain 
individual classes separately.

We have seen how this results in structures of objects working together to solve a common task. 
Objects can create other objects, and they can invoke each other’s methods. Understanding 
these object interactions is essential in planning, implementing, and debugging applications.

We can use pen-and-paper diagrams, code reading, and debuggers to investigate how an appli-
cation executes or to track down bugs.



90 |       Chapter 3 ■ Object interaction

Terms introduced in this chapter

abstraction, modularization, divide and conquer, class diagram, object diagram, 

object reference, overloading, internal method call, external method call, dot 

notation, debugger, breakpoint

Concept summary

■ abstraction Abstraction is the ability to ignore details of parts, to focus attention on a higher 

level of a problem.

■ modularization Modularization is the process of dividing a whole into well-defined parts that 

can be built and examined separately and that interact in well-defined ways.

■ classes define types A class name can be used as the type for a variable. Variables that 

have a class as their type can store objects of that class.

■ class diagram The class diagram shows the classes of an application and the relationships 

between them. It gives information about the source code and presents the static view of a 

program.

■ object diagram The object diagram shows the objects and their relationships at one moment 

in time during the execution of an application. It gives information about objects at runtime and 

presents the dynamic view of a program.

■ object references Variables of object types store references to objects.

■ primitive type The primitive types in Java are the non-object types. Types such as int,

boolean, char, double, and long are the most common primitive types. Primitive types 

have no methods.

■ object creation Objects can create other objects, using the new operator.

■ overloading A class may contain more than one constructor, or more than one method of the 

same name, as long as each has a distinctive set of parameter types.

■ internal method call Methods can call other methods of the same class as part of their im-

plementation. This is called an internal method call.

■ external method call Methods can call methods of other objects using dot notation. This is 

called an external method call.

■ debugger A debugger is a software tool that helps in examining how an application executes. 

It can be used to find bugs.

Exercise 3.43 Use the debugger to investigate the clock-display project. Set breakpoints 

in the ClockDisplay constructor and each of the methods, and then single-step through 

them. Does it behave as you expected? Did this give you new insights? If so, what were they?

Exercise 3.44 Use the debugger to investigate the insertMoney method of the better-

ticket-machine project from Chapter 2. Conduct tests that cause both branches of the if state-

ment to be executed.



3.15 Summary      | 91

Exercise 3.45 Add a subject line for an e-mail to mail items in the mail-system project. 

Make sure printing messages also prints the subject line. Modify the mail client accordingly.

Exercise 3.46 Given the following class (only shown in fragments here),

public class Screen
{
    public Screen(int xRes, int yRes)
    { ...
    }

    public int numberOfPixels()
    { ...
    }

    public void clear(boolean invert)
    { ...
    }
}

write some lines of Java code that create a Screen object. Then call its clear method if (and 

only if) its number of pixels is greater than two million. (Don’t worry about things being logical 

here; the goal is only to write something that is syntactically correct—i.e., that would compile 

if we typed it in.)



The main focus of this chapter is to introduce some of the ways in which objects may be 
grouped together into collections. In particular, we discuss the ArrayList class as an example 
of flexible-size collections and the use of array objects for fixed-size collections. Closely asso-
ciated with collections is the need to iterate over the elements they contain. For this purpose, we 
introduce three new control structures: two versions of the for loop, and the while loop.

This chapter is both long and important. You will not succeed in becoming a good programmer with-
out fully understanding the contents of this chapter. You will need longer to study it than was the case 
for previous chapters. Do not be tempted to rush through it; take your time and study it thoroughly.

4.1 Building on themes from Chapter 3
As well as introducing new material on collections and iteration, we will also be revisiting two 
of the key themes that were introduced in Chapter 3: abstraction and object interaction. There 
we saw that abstraction allows us to simplify a problem by identifying discrete components that 
can be viewed as a whole, rather than being concerned with their detail. We will see this prin-
ciple in action when we start making use of the library classes that are available in Java. While 
these classes are not, strictly speaking, a part of the language, some of them are so closely 
associated with writing most Java programs that they are often thought of in that way. Most 
people writing Java programs will constantly check the libraries to see if someone has already 
written a class that they can make use of. That way, they save a huge amount of effort that can 
be better used in working on other parts of the program. The same principle applies with most 
other programming languages, which also tend to have libraries of useful classes. So it pays to 

CHAPTER

4 Grouping objects

Main concepts discussed in this chapter:

■ collections

■ loops

■ iterators

■ arrays

Java constructs discussed in this chapter:

ArrayList, Iterator, while loop, null, cast, anonymous objects, array, 

for loop, for-each loop, ++



4.2 The collection abstraction | 93

become familiar with the contents of the library and how to use the most common classes. The 
power of abstraction is that we don’t usually need to know much (if anything, indeed!) about 
what the class looks like inside to be able to use it effectively.

If we use a library class, it follows that we will be writing code that creates instances of those 
classes, and then our objects will be interacting with the library objects. Object interaction will 
also figure highly in this chapter, therefore.

You will find that the chapters in this book continually revisit and build on themes that have 
been introduced in previous chapters. We refer to this in the preface as an “iterative approach.” 
One particular advantage of the approach is that it will help you to gradually deepen your un-
derstanding of topics as you work your way through the book.

In this chapter, we also extend our understanding of abstraction to see that it does not just mean 
hiding detail but also means seeing the common features and patterns that recur again and again 
in programs. Recognizing these patterns means that we can often reuse in a new situation part 
or all of a method or class we have previously written. This particular applies when looking at 
collections and iteration.

4.2 The collection abstraction
One of the abstractions we wish to explore in this chapter is the idea of a collection—the no-
tion of grouping things so that we can refer to them and manage them all together. A collec-
tion might be: large (all the students in a university); small (the courses one of the students is 
taking); or empty even (the paintings by Picasso that I own!).

If we own a collection of stamps, autographs, concert posters, ornaments, music, or whatever, 
then there are some common things we will want to do to the collection from time to time, 
regardless of what it is we collect. For instance, we will likely want to add to the collection, 
but we also might want to cut it down—say if we have duplicates or want to raise money for 
additional purchases. We also might want to arrange it in some way—by date of acquisition or 
value, perhaps. What we are describing here are typical operations on a collection.

In a programming context, the collection abstraction becomes a class of some sort, and the operations 
would be methods of that class. A particular collection (my music collection) would be an instance of 
the class. Furthermore, the items stored in a collection instance would, themselves, be objects.

Here are some further collection examples that are more obviously related to a programming context:

■ Electronic calendars store event notes about appointments, meetings, birthdays, and so on. 
New notes are added as future events are arranged, and old notes are deleted as details of past 
events are no longer needed.

■ Libraries record details about the books and journals they own. The catalog changes as new 
books are bought and old ones are put into storage or discarded.

■ Universities maintain records of students. Each academic year adds new records to the col-
lection, while the records of those who have left are moved to an archive collection. Listing 
subsets of the collection will be common: all the students taking first-year CS or all the 
students due to graduate this year, for instance.

Concept:

Collection

A collection object

can store an 

arbitrary number of 

other objects.



94 |       Chapter 4 ■ Grouping objects

It is typical that the number of items stored in a collection will vary from time to time. So far, 
we have not met any features of Java that would allow us to group together arbitrary numbers of 
items. We could, perhaps, define a class with a lot of individual fields to cover a fixed but very 
large number of items, but programs typically have a need for a more general solution than this 
provides. A proper solution would not require us either to know in advance how many items we 
wish to group together, or to fix an upper limit to that number.

So we will start our exploration of the Java library by looking at a class that provides the 
simplest possible way of grouping objects, an unsorted but ordered flexible-sized list: 
ArrayList. In the next few sections, we shall use the example of keeping track of a personal 
music collection to illustrate how we can group together an arbitrary number of objects in a 
single container object.

4.3 An organizer for music files
We are going to write a class that can help us organize our music files stored on a computer. Our 
class won’t actually store the file details; instead, it will delegate that responsibility to the stand-
ard ArrayList library class, which will save us a lot of work. So, why do we need to write our 
own class at all? An important point to bear in mind when dealing with library classes is that 
they have not been written for any particular application scenario—they are general-purpose 
classes. One ArrayList might store student-record objects, while another stores event remind-
ers. This means that it is the classes that we write for using the library classes that provide the 
scenario-specific operations, such as the fact that we are dealing with music files or playing a 
file that is stored in the collection.

For the sake of simplicity, the first version of this project will simply work with the file 
names of individual music tracks. There will be no separate details of title, artist, playing 
time, etc. That means we will just be asking the ArrayList to store String objects rep-
resenting the file names. Keeping things simple at this stage will help to avoid obscuring 
the key concepts we are trying to illustrate, which are the creation and usage of a collection 
object. Later in the chapter, we will add further sophistication to make a more viable music 
organizer and player.

We will assume that each music file represents a single music track. The example files we have 
provided with the project have both the artist’s name and the track’s title embedded in the file 
name, and we will use this feature later. For the time being, here are the basic operations we 
will have in the initial version of our organizer:

■ It allows tracks to be added to the collection.

■ It has no predetermined limit on the number of tracks it can store, aside from the memory 
limit of the machine on which it is run.

■ It will tell us how many tracks are in the collection.

■ It will list all the tracks.



4.4 Using a library class | 95

We shall find that the ArrayList class makes it very easy to provide this functionality from 
our own class.

Notice that we are not being too ambitious in this first version. These features will be sufficient 
for illustrating the basics of creating and using the ArrayList class, and later versions will 
then build further features incrementally until we have something more sophisticated. (Most 
importantly, perhaps, we will later add the possibility of playing the music files. Our first ver-
sion will not be able to do that yet.) This modest, incremental approach is much more likely to 
lead to success than trying to implement everything all at once.

Before we analyze the source code needed to make use of such a class, it is helpful to explore 
the starting behavior of the music organizer.

Exercise 4.1 Open the music-organizer-v1 project in BlueJ and create a MusicOrganizer
object. Store the names of a few audio files into it—they are simply strings. As we are not go-

ing to play the files at this stage, any file names will do, although there is a sample of audio files 

in the audio sub-folder of the project that you might like to use.

Check that the number of files returned by numberOfFiles matches the number you stored. 

When you use the listFile method, you will need to use a parameter value of 0 (zero) to 

print the first file, 1 (one) to print the second, and so on. We shall explain the reason for this 

numbering in due course.

Exercise 4.2 What happens if you create a new MusicOrganizer object and then call 

removeFile(0) before you have added any files to it? Do you get an error? Would you ex-

pect to get an error?

Exercise 4.3 Create a MusicOrganizer and add two file names to it. Call listFile(0)
and listFile(1) to show the two files. Now call removeFile(0) and then list-
File(0). What happened? Is that what you expected? Can you find an explanation of what 

might have happened when you removed the first file name from the collection?

4.4 Using a library class
Code 4.1 shows the full definition of our MusicOrganizer class, which makes use of the li-
brary class ArrayList. Note that library classes do not appear in the BlueJ class diagram.

Class libraries One of the features of object-oriented languages that makes them powerful is 

that they are often accompanied by class libraries. These libraries typically contain many hundreds 

or thousands of different classes that have proved useful to developers on a wide range of differ-

ent projects. Java calls its libraries packages. Library classes are used in exactly the same way as 

we would use our own classes. Instances are constructed using new, and the classes have fields, 

constructors, and methods.



96 |       Chapter 4 ■ Grouping objects

import java.util.ArrayList;

/**
 * A class to hold details of audio files.
 *
 * @author David J. Barnes and Michael Kölling
 * @version 2011.07.31
 */
public class MusicOrganizer
{
    // An ArrayList for storing the file names of music files.

private ArrayList<String> files;

    /**
     * Create a MusicOrganizer
     */

public MusicOrganizer()
{

files = new ArrayList<String>();
}

    /**
     * Add a file to the collection.
     * @param filename The file to be added.
     */

public void addFile(String filename)
{

files.add(filename);
}

    /**
     * Return the number of files in the collection.
     * @return The number of files in the collection.
     */

public int getNumberOfFiles()
{

return files.size();
}

    /**
     * List a file from the collection.
     * @param index The index of the file to be listed.
     */

Code 4.1
The MusicOrganizer
class



4.4 Using a library class | 97

public void listFile(int index)
{

if(index >= 0 && index < files.size()) {
String filename = files.get(index);
System.out.println(filename);

}
}

    /**
     * Remove a file from the collection.
     * @param index The index of the file to be removed.
     */

public void removeFile(int index)
{

if(index >= 0 && index < files.size()) {
files.remove(index);

}
}

}

Code 4.1
continued
The MusicOrganizer
class

4.4.1 Importing a library class

The very first line of the class file illustrates the way in which we gain access to a library class 
in Java, via an import statement:

import java.util.ArrayList;

This makes the ArrayList class from the java.util package available to our class definition. 
Import statements must always be placed before class definitions in a file. Once a class name has 
been imported from a package in this way, we can use that class just as if it were one of our own 
classes. So we use ArrayList at the head of the MusicOrganizer class to define a files field:

private ArrayList<String> files;

Here, we see a new construct: the mention of String in angle brackets: <String>. The need 
for this was alluded to in Section 4.3, where we noted that ArrayList is a general-purpose
collection class—i.e., not restricted in what it can store. When we create an ArrayList object, 
however, we have to be specific about the type of objects that will be stored in that particular 
instance. We can store whatever type we choose, but we have to designate that type when de-
claring an ArrayList variable. Classes such as ArrayList, which get parameterized with a 
second type, are called generic classes (we will discuss them in more detail later).

When using collections, therefore, we always have to specify two types: the type of the collec-
tion itself (here: ArrayList) and the type of the elements that we plan to store in the collection 
(here: String). We can read the complete type definition ArrayList<String> as “ArrayList
of String.” We use this type definition as the type for our files variable.

As you should now have come to expect, we see a close connection between the body of 
the constructor and the fields of the class, because the constructor is responsible for initializing 
the fields of each instance. So, just as the ClockDisplay created NumberDisplay objects for 



98 |       Chapter 4 ■ Grouping objects

its two fields, here we see the constructor of the MusicOrganizer creating an object of type 
ArrayList<String> and storing it in the files field.

4.4.2 Diamond notation

Note that when creating the ArrayList instance, we have specified the complete type again 
with the element type in angle brackets, followed by parentheses for the (empty) parameter list:

files = new ArrayList<String>();

In all versions of Java prior to version 7, using the full form of the generic type when creating 
an instance was a necessity, but from Java 7 onwards it is possible for the Java compiler to infer 
the parameterized type of the object being created from the type of the variable being assigned 
to. This allows us to use the so-called diamond notation as follows:

files = new ArrayList<>();

Using this form doesn’t change the fact that the object being created will only be able to store 
String objects; it is just a convenience for the programmer.

In this book, however, we will retain the older-style notation, both for compatibility with the 
majority of Java source code you are likely to see and because, at the time of writing, not every-
one using the book will have access to a Java 7 compiler.

4.4.3 Key methods of ArrayList
The ArrayList class defines quite a lot of methods, but we shall make use of only four at this 
stage, to support the functionality we require: add, size, get, and remove.

The first two are illustrated in the relatively straightforward addFile and getNumberOf-
Files methods, respectively. The add method of an ArrayList stores an object in the list, 
and the size method tells us how many items are currently stored in it. We will look at how the 
get and remove methods work in Section 4.7, though you will probably get some idea before-
hand simply by reading through the code of the listFile and removeFile methods.

4.5 Object structures with collections
To understand how a collection object such as an ArrayList operates, it is helpful to examine an 
object diagram. Figure 4.1 illustrates how a MusicOrganizer object might look with two filename 
strings stored in it. Compare Figure 4.1 with Figure 4.2, where a third file name has been stored.

There are at least three important features of the ArrayList class that you should observe:

■ It is able to increase its internal capacity as required: as more items are added, it simply 
makes enough room for them.

■ It keeps its own private count of how many items it is currently storing. Its size method 
returns that count.

■ It maintains the order of items you insert into it. The add method stores each new item at the 
end of the list. You can later retrieve them in the same order.



4.5 Object structures with collections | 99

Figure 4.1
A MusicOrganizer
containing two file 

names

Figure 4.2
A MusicOrganizer
containing three file 

names

We notice that the MusicOrganizer object looks quite simple—it has only a single field that 
stores an object of type ArrayList<String>. All the difficult work is done in the ArrayList
object. This is one of the great advantages of using library classes: someone has invested time 
and effort to implement something useful, and we are getting access to this functionality almost 
for free by using this class.

At this stage, we do not need to worry about how an ArrayList is able to support these fea-
tures. It is sufficient to appreciate just how useful this ability is. Remember: This suppression of 



100 |       Chapter 4 ■ Grouping objects

detail is a benefit that abstraction gives us; it means that we can utilize ArrayList to write any 
number of different classes that require storage of an arbitrary number of objects.

The second feature—the ArrayList object keeping its own count of inserted objects—has 
important consequences for the way in which we implement the MusicOrganizer class. 
Although an organizer has a getNumberOfFiles method, we have not actually defined a 
specific field for recording this information. Instead, an organizer delegates the responsibility 
for keeping track of the number of items to its ArrayList object. This means that an organizer 
does not duplicate information that is available to it from elsewhere. If a user requests from the 
organizer information about the number of file names in it, the organizer will pass the question 
on to the files object and then return whatever answer it gets from there.

Duplication of information or behavior is something that we often work hard to avoid. 
Duplication can represent wasted effort and can lead to inconsistencies where two things that 
should be identical turn out not to be, through error. We will have a lot more to say about dupli-
cation of functionality in later chapters.

4.6 Generic classes
The new notation using the angle brackets deserves a little more discussion. The type of our 
files field was declared as

ArrayList<String>

The class we are using here is called simply ArrayList, but it requires a second type to be 
specified as a parameter when it is used to declare fields or other variables. Classes that re-
quire such a type parameter are called generic classes. Generic classes, in contrast to other 
classes we have seen so far, do not define a single type in Java, but potentially many types. The 
ArrayList class, for example, can be used to specify an ArrayList of String, an ArrayList of 
Person, an ArrayList of Rectangle, or an ArrayList of any other class that we have available. 
Each particular ArrayList is a separate type that can be used in declarations of fields, param-
eters, and return values. We could, for example, define the following two fields:

private ArrayList<Person> members;
private ArrayList<TicketMachine> machines;

These definitions state that members refers to an ArrayList that can store Person objects, 
while machines can refer to an ArrayList to store TicketMachine objects. Note that 
ArrayList<Person> and ArrayList<TicketMachine> are different types. The fields cannot 
be assigned to each other even though their types were derived from the same ArrayList class.

Exercise 4.4 Write a declaration of a private field named library that can hold an 

ArrayList. The elements of the ArrayList are of type Book.

Exercise 4.5 Write a declaration of a local variable called cs101 that can hold an 

ArrayList of Student.



4.7 Numbering within collections | 101

Generic classes are used for a variety of purposes; we will encounter more of them later in the 
book. For now, collections such as ArrayList, and some other collections that we shall en-
counter shortly, are the only generic classes we need to deal with.

4.7 Numbering within collections
When exploring the music-organizer-v1 project in the first few exercises, we noted that it was 
necessary to use parameter values starting at 0 to list and remove file names in the collection. 
The reason behind this requirement is that items stored in ArrayList collections have an im-
plicit numbering, or positioning, that starts from 0. The position of an object in a collection is 
more commonly known as its index. The first item added to a collection is given index number 
0, the second is given index number 1, and so on. Figure 4.3 illustrates the same situation as 
above, with index numbers shown in the ArrayList object.

It is important to be aware that this means that the last item in a collection has the index size-1.
For example, in a list of 20 items, the last one will be at index 19.

Exercise 4.6 Write a declaration of a private field called tracks for storing a collection of 

MusicTrack objects.

Exercise 4.7 Write assignments to the library, cs101, and track variables (which 

you defined in the previous three exercises) to create the appropriate ArrayList objects. 

Write them once without using diamond notation and once with diamond notation if you are 

using a Java 7 compiler.

Figure 4.3
Index numbers of 

elements in a 

collection



102 |       Chapter 4 ■ Grouping objects

The listFile and removeFile methods both illustrate the way in which an index number is 
used to gain access to an item in an ArrayList: one via its get method and the other via its 
remove method. Note that both methods make sure that their parameter value is in the range of 
valid index values [0...size()–1] before passing the index on to the ArrayList methods. 
This is a good stylistic validation habit to adopt, as it prevents failure of a library-class method 
call when passing on parameter values that could be invalid.

Pitfall If you are not careful, you may try to access a collection element that is outside the valid 

indices of the ArrayList. When you do this, you will get an error message and the program will 

terminate. Such an error is called an index-out-of-bounds error. In Java, you will see a message 

about an IndexOutOfBoundsException.

Exercise 4.8 If a collection stores 10 objects, what value would be returned from a call to 

its size method?

Exercise 4.9 Write a method call using get to return the fifth object stored in a collection 

called items.

Exercise 4.10 What is the index of the last item stored in a collection of 15 objects?

Exercise 4.11 Write a method call to add the object held in the variable favoriteTrack
to a collection called files.

4.7.1 The effect of removal on numbering

As well as adding items to a collection, it is common to want to remove items, as we saw 
with the removeFile method in Code 4.1. The ArrayList class has a remove method that 
takes the index of the object to be removed. One detail of the removal process to be aware 
of is that it can change the index values at which other objects in the collection are stored. 
If an item with a low index number is removed, then the collection moves all subsequent 
items along by one position to fill in the gap. As a consequence, their index numbers will be 
decreased by 1.

Figure 4.4 illustrates the way in which some of the index values of items in an ArrayList
are changed by the removal of an item from the middle of the list. Starting with the situa-
tion depicted in Figure 4.3, the object with index 1 has been removed. As a result, the object 
originally at index number 2 has changed to 1, whereas the object at index number 0 remains 
unchanged.

Furthermore, we shall see later that it is possible to insert items into an ArrayList at a posi-
tion other than right at the end of it. This means that items already in the list may have their 
index numbers increased when a new item is added. Users have to be aware of this possible 
change of indices when adding or removing elements.



4.7 Numbering within collections | 103

4.7.2 The general utility of numbering with collections

The use of integer index values to access objects in a collection is something that we will see 
over and over again—not just with ArrayLists but also with several different types of collec-
tions. So it is important to understand what we have seen of this so far: that the index values 
start at zero; that the objects are numbered sequentially; and that there are usually no gaps in the 
index values of consecutive objects in the collection.

Using integer values as indices also makes it very easy to express in program code expressions 
such as “the next item” and “the previous item” with respect to an item in the collection. If an item 
is at index p, then “the next” one will be at index (p+1) and “the previous” one is now at index 
(p–1). We can also map natural-language selections such as “the first three” to program-related 
terminology. For example, “the items at indices 0, 1, and 2” or “the last four” could be “the items 
at indices (list.size()-4) to (list.size()-1)”. We could even imagine working our way 
through the entire collection by having an integer index variable whose value is initially set to 
zero and is then successively increased by 1, passing its value to the get method to access each 
item in the list in order (stopping when it goes beyond the final index value of the list).

But we are getting a little ahead of ourselves. Nevertheless, in a little while we will see how all 
this works out in practice when we look at loops and iteration.

Figure 4.4
Index number 

changes following 

removal of an item

Exercise 4.12 Write a method call to remove the third object stored in a collection called 

dates.

Exercise 4.13 Suppose that an object is stored at index 6 in a collection. What will be its 

index immediately after the objects at index 0 and index 9 are removed?



104 |       Chapter 4 ■ Grouping objects

4.8 Playing the music files
It would be a nice feature of our organizer if it not only kept a list of music files but also al-
lowed us to play them. Once again, we can use abstraction to help us here. If we have a class 
that has been written specifically to play audio files, then our organizer class would not need to 
know anything about how to do that; it could simply hand over the name of the file to the player 
class and leave it to do the rest.

Unfortunately, the standard Java library does not have a class that is suitable for playing MP3 
files, which is the audio format we want to work with. However, many individual programmers 
are constantly writing their own useful classes and making them available for other people to 
use. These are often called “third-party libraries,” and they are imported and used in exactly the 
same way as are standard Java library classes.

For the next version of our project, we have made use of a set of classes from javazoom.net
to write our own music-player class. You can find this in the version called music-organizer-v2.
The three methods of the MusicPlayer class we shall be using are playSample, start-
Playing, and stop. The first two take the name of the audio file to play. The first plays 
some seconds of the beginning of the file and returns when it has finished playing, while 
the second starts its playing in the background and then immediately returns control back 
to the organizer—hence the need for the stop method, in case you want to cancel playing. 
Code 4.2 shows the new elements of the MusicOrganizer class that access some of this 
playing functionality.

Exercise 4.14 Add a method called checkIndex to the MusicOrganizer class. It takes 

a single integer parameter and checks whether it is a valid index for the current state of the col-

lection. To be valid, the parameter must lie in the range 0 to size()–1.

If the parameter is not valid, then it should print an error message saying what the valid range 

is. If the index is valid, then it prints nothing. Test your method on the object bench with both 

valid and invalid parameters. Does your method still work when you check an index if the col-

lection is empty?

Exercise 4.15 Write an alternative version of checkIndex called validIndex. It takes 

an integer parameter and returns a boolean result. It does not print anything, but returns true if 

the parameter’s value is a valid index for the current state of the collection and false otherwise. 

Test your method on the object bench with both valid and invalid parameters. Test the empty 

case too.

Exercise 4.16 Rewrite both the listFile and removeFile methods in MusicOrganizer
so that they use your validIndex method to check their parameter, instead of the current 

boolean expression. They should only call get or remove on the ArrayList if validIndex
returns true.



4.8 Playing the music files | 105

import java.util.ArrayList;

/**
 * A class to hold details of audio files.
 * This version can play the files.
 *
 * @author David J. Barnes and Michael Kölling
 * @version 2011.07.31
 */
public class MusicOrganizer
{
    // An ArrayList for storing the file names of music files.

private ArrayList<String> files;
    // A player for the music files.

private MusicPlayer player;

    /**
     * Create a MusicOrganizer
     */

public MusicOrganizer()
{

files = new ArrayList<String>();
player = new MusicPlayer();

}

    /**
     * Start playing a file in the collection.
     * Use stopPlaying() to stop it playing.
     * @param index The index of the file to be played.
     */

public void startPlayingFile(int index)
{

String filename = files.get(index);
player.startPlaying(filename);

}

    /**
     * Stop the player.
     */

public void stopPlaying()
{

player.stop();
}

Other details omitted.
}

Code 4.2
Playing functionality of 

the MusicOrganizer
class



106 |       Chapter 4 ■ Grouping objects

4.8.1 Summary of the music organizer

We have made good progress with the basics of organizing our music collection. We can store 
the names of any number of music files and even play them. We have done this with relatively 
little coding effort, because we have been able to piggyback on the functionality provided by 
library classes: ArrayList from the standard Java library and a music player that uses a third-
party class library. We have also been able to do this with relatively little knowledge of the 
internal workings of these library classes; it was sufficient to know the names, parameter types, 
and return types of the key methods.

However, there is still some key functionality missing if we want a genuinely useful program—
most obvious is the lack of any way to list the whole collection, for instance. This will be the 
topic of the next section, as we introduce the first of several Java loop-control structures.

4.9 Processing a whole collection
At the end of the last section, we said that it would be useful to have a method in the music 
organizer that lists all of the file names stored in the collection. Knowing that each file name 
in the collection has a unique index number, one way to express what we want would be to say 
that we wish to show the file name stored at consecutive, increasing index numbers starting 
from zero. Before reading further, try the following exercises to see whether we can easily write 
such a method with the Java that we already know.

Exercise 4.17 Create a MusicOrganizer object in the second version of our project. 

Experiment with adding some files to it and playing them.

If you want to use the files provided in the audio folder within the project, you must include 

the folder name in the filename parameter, as well as the file name and suffix. For example, to 

use the file BlindBlake-EarlyMorningBlues.mp3 from the audio folder, you must pass the string 

"audio/BlindBlake-EarlyMorningBlues.mp3" to the addFile method.

You can use your own mp3 files by placing them into the audio folder. Remember to use the 

folder name as part of the file name.

Also experiment with file names that do not exist. What happens when you use those?

Exercise 4.18 What might the header of a listAllFiles method in the MusicOrganizer
class look like? What sort of return type should it have? Does it need to take any parameters?

Exercise 4.19 We know that the first file name is stored at index zero in the ArrayList
and the list stores the file names as strings, so could we write the body of listAllFiles
along the following lines?



4.9 Processing a whole collection | 107

You have probably appreciated that it is not really possible to complete Exercise 4.19, because 
it depends on how many file names are in the list at the time they are printed. If there are three, 
then three println statements would be required; if there are four, then four statements would 
be needed; and so on. The listFile and removeFile methods illustrate that the range of 
valid index numbers at any one time is [0 to (size()–1)]. So a listAllFiles method 
would also have to take that dynamic size into account in order to do its job.

What we have here is the requirement to do something several times, but the number of times 
depends upon circumstances that may vary—in this case, the size of the collection. We shall 
meet this sort of requirement in nearly every program we write, and most programming lan-
guages have several ways to deal with it through the use of loop statements, which are also 
known as iterative control structures.

The first loop we will introduce to list the files is a special one for use with collections, one that 
completely avoids the need to use an index variable at all: it is called a for-each loop.

4.9.1 The for-each loop

A for-each loop is one way to perform a set of actions repeatedly on the items in a collection, 
but without having to write out those actions more than once, as we saw was a problem in 
Exercise 4.19. We can summarize the Java syntax and actions of a for-each loop in the follow-
ing pseudo-code:

for(ElementType element : collection) {
loop body

}

The main new piece of Java is the word for. The Java language has two variations of the for
loop: one is the for-each loop, which we are discussing here; the other one is simply called a for
loop and will be discussed later in this chapter.

A for-each loop has two parts: a loop header (the first line of the loop statement) and a loop 
body following the header. The body contains those statements that we wish to perform over 
and over again.

The for-each loop gets its name from the way we can read this loop: if we read the keyword 
for as “for each” and the colon in the loop header as “in,” then the code structure shown above 
slowly starts to make more sense, as in this non-Java pseudo-code:

for each element in collection do: {
loop body

}

System.out.println(files.get(0));
System.out.println(files.get(1));
System.out.println(files.get(2));

etc. How many println statements would be required to complete the method?

Concept:

A loop can be 

used to execute 

a block of state-

ments repeatedly 

without having to 

write them multiple 

times.



108 |       Chapter 4 ■ Grouping objects

When you compare this version to the original pseudo-code in the first version, you notice that 
element was written in the form of a variable declaration as ElementType element. This sec-
tion does indeed declare a variable that is then used for each collection element in turn. Before 
discussing further, let us look at an example of real Java code.

Code 4.3 shows an implementation of a listAllFiles method that lists all file names cur-
rently in the organizer’s ArrayList that use such a for-each loop.

/**
 * Show a list of all the files in the collection.
 */
public void listAllFiles()
{

for(String filename : files) {
System.out.println(filename);

}
}

Code 4.3
Using a for-each loop 

to list the file names

In this for-each loop, the loop body—consisting of a single System.out.println statement —is 
executed repeatedly, once for each element in the files ArrayList. If, for example, there were 
four strings in the list, the println statement would be executed four times.

Each time before the statement is executed, the variable filename is set to hold one of the list 
elements: first the one at index 0, then the one at index 1, and so on. Thus, each element in the 
list gets printed out.

Let us dissect the loop in a little more detail. The keyword for introduces the loop. It is fol-
lowed by a pair of parentheses, within which the loop details are defined. The first of the details 
is the declaration String filename; this declares a new local variable filename that will be 
used to hold the list elements in order. We call this variable the loop variable. We can choose 
the name of this variable just as we can that of any other variable; it does not have to be called 
“filename.” The type of the loop variable must be the same as the declared element type of the 
collection we are going to use—String in our case.

Then follows a colon and the variable holding the collection that we wish to process. From this 
collection, each element will be assigned to the loop variable in turn; and for each of those as-
signments, the loop body is executed once. In the loop body, we then use the loop variable to 
refer to each element.

To test your understanding of how this loop operates, try the following exercises.

Exercise 4.20 Implement the listAllFiles method in your version of the music-

organizer project. (A solution with this method implemented is provided in the music-

organizer-v3 version of this project, but to improve your understanding of the subject, we 

recommend that you write this method yourself.)



4.9 Processing a whole collection | 109

Exercise 4.21 Create a MusicOrganizer and store a few file names in it. Use the 

listAllFiles method to print them out; check that the method works as it should.

Exercise 4.22 Create an ArrayList<String> in the Code Pad by typing the following 

two lines:

import java.util.ArrayList;
new ArrayList<String>()

If you write the last line without a trailing semicolon, you will see the small red object icon. 

Drag this icon onto the object bench. Examine its methods and try calling some (such as add,

remove, size, isEmpty). Also try calling the same methods from the Code Pad. You can 

access objects on the object bench from the Code Pad by using their names. For example, 

if you have an ArrayList named al1 on the object bench, in the Code Pad you can type:

al1.size()

Exercise 4.23 If you wish, you could use the debugger to help you understand how the 

statements in the body of the loop in listAllFiles are repeated. Set a breakpoint just be-

fore the loop, and step through the method until the loop has processed all elements and exits.

Exercise 4.24 Challenge exercise The for-each loop does not use an explicit integer vari-

able to access successive elements of the list. Thus, if we want to include the index of each file 

name in the listing, then we would have to declare our own local integer variable (position,
say) so that we can write in the body of the loop something like:

System.out.println(position + ": " + filename);

See if you can complete a version of listAllFiles to do this. Hint: You will need a local 

variable declaration of position in the method, as well as a statement to update its value by 

one inside the for-each loop.

One of the things this exercise illustrates is that the for-each loop is not really intended to be 

used with a separate index variable.

We have now seen how we can use a for-each loop to perform some operation (the loop body) 
on every element of a collection. This is a big step forward, but it does not solve all our prob-
lems. Sometimes we need a little more control, and Java provides a different loop construct to 
let us do more: the while loop.

4.9.2 Selective processing of a collection

The listAllFiles method illustrates the fundamental usefulness of a for-each loop: it pro-
vides access to every element of a collection, in order, via the variable declared in the loop’s 
header. It does not provide us with the index position of an element, but we don’t always need 
that, so that is not necessarily a problem.

Having access to every item in the collection, however, does not mean we have to do the same 
thing to every one; we can be more selective than that. For instance, we might want to only list 



110 |       Chapter 4 ■ Grouping objects

the music by a particular artist or need to find all the music with a particular phrase in the title. 
There is nothing to stop us doing this, because the body of a for-each loop is just an ordinary 
block, and we can use whatever Java statements we wish inside it. So using an if-statement in 
the body to select the files we want should be easy.

Code 4.4 shows a method to list only those file names in the collection that contain a particular string.

/**
 * List the names of files matching the given search string.
 * @param searchString The string to match.
 */
public void listMatching(String searchString)
{

for(String filename : files) {
if(filename.contains(searchString)) {

            // A match.
System.out.println(filename);

}
}

}

Code 4.4
Printing selected items 

from the collection

Using an if statement and the boolean result of the contains method of the String class, 
we can “filter” which file names are to be printed and which are not. If the file name does not 
match, then we just ignore it—no else part is needed. The filtering criterion (the test in the if 
statement) can be whatever we want.

Exercise 4.25 Add the listMatching method in Code 4.4 to your version of the project. 

(Use music-organizer-v3 if you do not already have your own version.) Check that the method 

only lists matching files. Also try it with a search string that matches none of the file names. Is 

anything at all printed in this case?

Exercise 4.26 Challenge exercise In listMatching, can you find a way to print a mes-

sage, once the for-each loop has finished, if no file names matched the search string? Hint:

Use a boolean local variable.

Exercise 4.27 Write a method in your version of the project that plays samples of all the 

tracks by a particular artist, one after the other. The listMatching method illustrates the ba-

sic structure you need for this method. Make sure that you choose an artist with more than one 

file. Use the playAndWait method of the MusicPlayer, rather than the startPlaying
method; otherwise, you will end up playing all the matching tracks at the same time. The play-
AndWait method plays the beginning of a track (about 15 seconds) and then returns.

Exercise 4.28 Write out the header of a for-each loop to process an ArrayList<Track>
called tracks. Don’t worry about the loop’s body.



4.9 Processing a whole collection | 111

4.9.3 A limitation of using strings

Of course, by this point we can see that simply having file name strings containing all the de-
tails of the music track is not really satisfactory. For instance, suppose we wanted to find all 
tracks with the word “love” in the title. Using the unsophisticated matching technique described 
above, we will also find tracks by artists whose names happen to have that sequence of char-
acters in them (e.g., Glover). While that might not seem like a particularly big problem, it does 
have a rather “cheap” feel about it, and it should be possible to do better with just a little more 
effort. What we really need is a separate class—Track, say—that stores the details of artist and 
title independently of the file name. Then we could more easily match titles separately from art-
ists. The ArrayList<String> in the organizer would then become an ArrayList<Track>.

As we develop the music-organizer project in later sections, we will eventually move towards a 
better structure by introducing a Track class.

4.9.4 Summary of the for-each loop

The for-each loop is always used to iterate over a collection. It provides us with a way to access 
every item in the collection in sequence, one by one, and process those items in whatever way 
we want. We can choose to do the same thing to each item (as we did when printing the full 
listing) or we can be selective and filter the list (as we did when we printed only a subset of the 
collection). The body of the loop can be as complicated as we like.

With its essential simplicity necessarily come some limitations. For instance, one restriction is 
that we cannot change what is stored in the collection while iterating over it, either by adding 
new items to it or removing items from it. That doesn’t mean, however, that we cannot change 
the states of objects already within the collection.

We have also seen that the for-each loop does not provide us with an index value for the items 
in the collection. If we want one, then we have to declare and maintain our own local variable. 
The reason for this has to do with abstraction, again. When dealing with collections and iterat-
ing over them, it is worth bearing two things in mind:

■ A for-each loop provides a general control structure for iterating over different types of collection.

■ There are some types of collections that do not naturally associate integer indices with the 
items they store. We will meet some of these in Chapter 5.

So the for-each loop abstracts the task of processing a complete collection, element by element, 
and is able to handle different types of collection. We do not need to know the details of how it 
manages that.

One of the questions we have not asked is whether a for-each loop can be used if we want to stop 
partway through processing the collection. For instance, suppose that instead of playing every 
track by our chosen artist, we just wanted to find the first one and play it, without going any fur-
ther. While in principle it is possible to do this using a for-each loop, our practice and advice is not 
to use a for-each loop for tasks that might not need to process the whole collection. In other words, 
we recommend using a for-each loop only if you definitely want to process the whole collection.
Again, stated in another way, once the loop starts, you know for sure how many times the body 
will be executed—this will be equal to the size of the collection. This style is often called definite 



112 |       Chapter 4 ■ Grouping objects

iteration. For tasks where you might want to stop partway through, there are more appropriate 
loops to use—for instance, the while loop, which we will introduce next. In these cases, the num-
ber of times the loop’s body will be executed is less certain; it typically depends on what happens 
during the iteration. This style is often called indefinite iteration, and we explore it next.

4.10 Indefinite iteration
Using a for-each loop has given us our first experience with the principle of carrying out some 
actions repeatedly. The statements inside the loop body are repeated for each item in the associ-
ated collection, and the iteration stops when we reach the end of the collection. A for-each loop 
provides definite iteration; given the state of a particular collection, the loop body will be ex-
ecuted the number of times that exactly matches the size of that collection. But there are many 
situations where we want to repeat some actions but we cannot predict in advance exactly how 
many times that might be. A for-each loop does not help us in those cases.

Imagine, for instance, that you have lost your keys and you need to find them before you can 
leave the house. Your search will model an indefinite iteration, because there will be many 
different places to look, and you cannot predict in advance how many places you will have to 
search before you find the keys; after all, if you could predict that, you would go straight to 
where they are! So you will do something like mentally composing a list of possible places they 
could be and then visit each place in turn until you find them. Once found, you want to stop 
looking rather than complete the list (which would be pointless).

What we have here is an example of indefinite iteration: the (search) action will be repeated an 
unpredictable number of times, until the task is complete. Scenarios similar to key searching are 
common in programming situations. While we will not always be searching for something, situ-
ations in which we want to keep doing something until the repetition is no longer necessary are 
frequently encountered. Indeed, they are so common that most programming languages provide at 
least one—and commonly more than one—loop construct to express them. Because what we are 
trying to do with these loop constructs is typically more complex than just iterating over a complete 
collection from beginning to end, they require a little more effort to understand. But this effort will 
be well rewarded from the greater variety of things we can achieve with them. Our focus here will 
be on Java’s while loop, which is similar to loops found in other programming languages.

4.10.1 The while loop

A while loop consists of a header and a body; the body is intended to be executed repeatedly. 
Here is the structure of a while loop where boolean condition and loop body are pseudo-code 
but all the rest is the Java syntax:

while(boolean  condition) {
loop body

}

The loop is introduced with the keyword while, which is followed by a boolean condition. The 
condition is ultimately what controls how many times a particular loop will iterate. The condi-
tion is evaluated when program control first reaches the loop, and it is reevaluated each time 



4.10 Indefinite iteration | 113

the loop body has been executed. This is what gives a while loop its indefinite character—the 
reevaluation process. If the condition evaluates to true, then the body is executed; and once it 
evaluates to false, the iteration is finished. The loop’s body is then skipped over and execu-
tion continues with whatever follows immediately after the loop. Note that the condition could 
actually evaluate to false on the very first time it is tested. If this happens, the body won’t be 
executed at all. This is an important feature of the while loop: the body might be executed zero 
times, rather than always at least once.

Before we look at a proper Java example, let’s look at a pseudo-code version of the key hunt 
described above, to try to develop a feel for how a while loop works. Here is one way to express 
the search:

while(the keys are missing) {
look in the next place

}

When we arrive at the loop for the first time, the condition is evaluated and the keys are miss-
ing. That means we enter the body of the loop and look in the next place on our mental list. 
Having done that, we return to the condition and reevaluate it. If we have found the keys, the 
loop is finished and we can skip over the loop and leave the house. If the keys are still missing, 
then we go back into the loop body and look in the next place. This repetitive process continues 
until the keys are no longer missing.1

Note that we could equally well express the loop’s condition the other way around, as follows:

while(not (the keys have been found)) {
look in the next place

}

The distinction is subtle—one expressed as a status to be changed and the other as a goal that has 
not yet been achieved. Take some time to read the two versions carefully to be sure you understand 
how each works. Both are equally valid and reflect choices of expression we will have to make 
when writing real loops. In both cases, what we write inside the loop when the keys are finally 
found will mean the loop conditions “flip” from true to false the next time they are evaluated.

1 At this stage, we will ignore the possibility that the keys are not found, but taking this kind of possibility 
into account will actually become very important when we look at real Java examples.

Exercise 4.29 Suppose we express the first version of the key search in pseudo-code as 

follows:

boolean missing = true;
while(missing) {
    if(the keys are in the next place) {
        missing = false;
    }
}



114 |       Chapter 4 ■ Grouping objects

4.10.2 Iterating with an index variable

For our first while loop in correct Java code, we shall write a version of the listAllFiles
method shown in Code 4.3. This does not really illustrate the indefinite character of while 
loops, but it does provide a useful comparison with the equivalent, familiar for-each example. 
The while-loop version is shown in Code 4.5. A key feature is the way that an integer variable 
(index) is used both to access the list’s elements and to control the length of the iteration.

Try to express the second version by completing the following outline:

boolean found = false;
while(...) {
    if(the keys are in the next place) {
        ...
    }
}

/**
 * Show a list of all the files in the collection.
 */
public void listAllFiles()
{

int index = 0;
while(index < files.size()) {

String filename = files.get(index);
System.out.println(filename);
index++;

}
}

Code 4.5
Using a while loop 

to list the tracks

It is immediately obvious that the while-loop version requires more effort on our part to pro-
gram it. Consider:

■ We have to declare a variable for the list index, and we have to initialize it ourselves to 0 for 
the first list element. The variable must be declared outside the loop.

■ We have to work out how to express the loop’s condition in order to ensure that the loop 
stops at the right time.

■ The list elements are not automatically fetched out of the collection and assigned to a vari-
able for us. Instead, we have to do this ourselves, using the get method of the ArrayList.
The variable filename will be local to the body of the loop.

■ We have to remember to increment the counter variable (index) ourselves, in order to ensure 
that the loop condition will eventually become false when we have reached the end of the list.



4.10 Indefinite iteration | 115

The final statement in the body of the while loop illustrates a special operator for incrementing 
a numerical variable by 1:

index++;

This is equivalent to

index = index + 1;

So far, the for-each loop is clearly nicer for our purpose. It was less trouble to write, and it is safer. 
The reason it is safer is that it is always guaranteed to come to an end. In our while-loop version, 
it is possible to make a mistake that results in an infinite loop. If we were to forget to increment 
the index variable (the last line in the loop body), the loop condition would never become false,
and the loop would iterate indefinitely. This is a typical programming error that catches out even 
experienced programmers from time to time. The program will then run forever. If the loop in 
such a situation does not contain an output statement, the program will appear to “hang”: it seems 
to do nothing, and does not respond to any mouse clicks or key presses. In reality, the program 
does a lot. It executes the loop over and over, but we cannot see any effect of this, and the program 
seems to have died. In BlueJ, this can often be detected by the fact that the red-and-white-striped 
“running” indicator remains on while the program appears to be doing nothing.

So what are the benefits of a while loop over a for-each loop? They are twofold: first, the while 
loop does not need to be related to a collection (we can loop on any condition that we can write 
as a boolean expression); second, even if we are using the loop to process the collection, we do 
not need to process every element—instead, we could stop earlier if we wanted to by includ-
ing another component in the loop’s condition that expresses why we would want to stop. Of 
course, strictly speaking, the loop’s condition actually expresses whether we want to continue, 
and it is the negation of this that causes the loop to stop.

A benefit of having an explicit index variable is that we can use its value both inside and outside 
the loop, which was not available to us in the for-each examples. So we can include the index in the 
listing if we wish. That will make it easier to choose a track by its position in the list. For instance:

int index = 0;
while(index < files.size()) {

String filename = files.get(index);
// Prefix the file name with the track's index.
System.out.println(index + ": " + filename);
index++;

}

Having a local index variable can be particularly important when searching a list, because it 
can provide a record of where the item was located, which is still available once the loop has 
finished. We shall see this in the next section.

4.10.3 Searching a collection

Searching is one of the most important forms of iteration you will encounter. It is vital, there-
fore, to have a good grasp of its essential elements. The sort of loop structures that result occur 
again and again in practical programming situations.



116 |       Chapter 4 ■ Grouping objects

The key characteristic of a search is that it involves indefinite iteration; this is necessarily so, 
because if we knew exactly where to look, we would not need a search at all! Instead, we have 
to initiate a search, and it will take an unknown number of iterations before we succeed. This 
implies that a for-each loop is inappropriate for use when searching, because it will complete its 
full set of iterations.2

In real search situations, we have to take into account the fact that the search might fail: we 
might run out of places to look. That means that we typically have two finishing possibilities to 
consider when writing a searching loop:

■ The search succeeds after an indefinite number of iterations.

■ The search fails after exhausting all possibilities.

Both of these must be taken into account when writing the loop’s condition. As the loop’s con-
dition should evaluate to true if we want to iterate one more time, each of the finishing criteria 
should, on their own, make the condition evaluate to false to stop the loop.

The fact that we end up searching the whole list when the search fails does not turn a failed search 
into an example of definite iteration. The key characteristic of definite iteration is that you can 
determine the number of iterations when the loop starts. This won’t be the case with a search.

If we are using an index variable to work our way through successive elements of a collection, 
then a failed search is easy to identify: the index variable will have been incremented beyond 
the final item in the list. That’s exactly the situation that is covered in the listAllFiles
method in Code 4.5, where the condition is:

while(index < files.size())

The condition expresses that we want to continue as long as the index is within the valid index range 
of the collection; as soon as it has been incremented out of range, then we want the loop to stop. It is 
worth pointing out that this condition even works if the list is completely empty. In this case, index
will have been initialized to zero and the call to the size method will return zero too. Because zero 
is not less than zero, the loop’s body will not be executed at all, which is what we want.

We also need to add a second part to the condition that indicates whether we have found the 
search item yet and stops the search when we have. We saw in Section 4.10.1 and Exercise 4.29 
that we can often express this positively or negatively, via appropriately set boolean variables:

■ A variable called searching (or missing, say) initially set to true could keep the search 
going until it is set to false inside the loop when the item is found.

■ A variable called found, initially set to false and used in the condition as !found could keep 
the search going until set to true when the item is found.

Here are the two corresponding code fragments that express the full condition in both cases:

int index = 0;
boolean searching = true;
while(index < files.size() && searching)

2 While there are ways to subvert this characteristic of a for-each loop, and they are used quite commonly, 
we consider them to be bad style and do not use them in our examples.



4.10 Indefinite iteration | 117

and

int index = 0;
boolean found = false;
while(index < files.size() && !found)

Take some time to make sure you understand these two fragments, which accomplish exactly 
the same loop control, but expressed in slightly different ways. Remember that the condition as
a whole must evaluate to true if we want to continue looking, and false if we want to stop look-
ing, for any reason. We discussed the “and” operator && in Chapter 3, which only evaluates to 
true if both of its operands are true.

The full version of a method to search for the first file name matching a given search string 
can be seen in Code 4.6 (music-organizer-v4). The method returns the index of the item as its 
result. Note that we need to find a way to indicate to the method’s caller if the search has failed. 
In this case, we choose to return a value that cannot possibly represent a valid location in the 
collection—a negative value. This is a commonly used technique in search situations: the return 
of an out-of-bounds value to indicate failure.

/**
 * Find the index of the first file matching the given
 * search string.
 * @param searchString The string to match.
 * @return The index of the first occurrence, or -1 if
 *         no match is found.
 */
public int findFirst(String searchString)
{

int index = 0;
    // Record that we will be searching until a match is found.

boolean searching = true;

while(searching && index < files.size()) {
String filename = files.get(index);
if(filename.contains(searchString)) {

            // A match. We can stop searching.
searching = false;

}
else {

            // Move on.
index++;

}
}
if(searching) {

        // We didn't find it.
return -1;

}

Code 4.6
Finding the first 

matching item in a list



118 |       Chapter 4 ■ Grouping objects

It might be tempting to try to have just one condition in the loop, even though there are two 
distinct reasons for ending the search. A way to do this would be to arrange artificially for the 
value of index to be too large if we find what we are looking for. This is a practice we discour-
age, because it makes the termination criteria of the loop misleading, and clarity is always to be 
preferred.

4.10.4 Some non-collection examples

Loops are not only used with collections. There are many situations were we want to repeat a 
block of statements that does not involve a collection at all. Here is an example that prints out 
all even numbers from 0 up to 30:

int index = 0;
while(index <= 30) {
    System.out.println(index);
    index = index + 2;
}

In fact, this is the use of a while loop for definite iteration, because it is clear at the start how 
many numbers will be printed. However, we cannot use a for-each loop, because they can only 
be used when iterating over collections. Later we will meet a third, related loop—the for loop—
that would be more appropriate for this particular example.

To test your own understanding of while loops aside from collections, try the following exercises.

else {
        // Return where it was found.

return index;
}

}

Code 4.6
continued
Finding the first 

matching item in a list

Exercise 4.30 Write a while loop (for example, in a method called multiplesOfFive)

that prints out all multiples of 5 between 10 and 95.

Exercise 4.31 Write a while loop to sum the values 1 to 10 and print the sum once the loop 

has finished.

Exercise 4.32 Write a method called sum with a while loop that adds up all numbers be-

tween two numbers a and b. The values for a and b can be passed to the sum method as 

parameters.

Exercise 4.33 Challenge task Write a method isPrime(int n) that returns true if the 

parameter n is a prime number, and false if it is not. To implement the method, you can write 



4.11 Improving structure—the Track class | 119

4.11 Improving structure—the Track class
We have seen in a couple of places that using strings to store all of the track details is not en-
tirely satisfactory and gives our music player a rather cheap feel. Any commercial player would 
allow us to search for tracks by artist, title, album, genre, etc., and would likely include further 
details, such as track playing time and track number. One of the powers of object orientation 
is that it allows us to design classes that closely model the inherent structure and behaviors of 
the real-world entities we are often trying to represent. This is achieved through writing classes 
whose fields and methods match those of the attributes. We know enough already about how 
to write basic classes with fields, constructors, and accessor and mutator methods that we can 
easily design a Track class that has fields for storing separate artist and title information, for 
instance. In this way, we will be able to interact with the objects in the music organizer in a way 
that feels more natural.

So it is time to move away from storing the track details as strings, because having a separate 
Track class is the most appropriate way to represent the main data items—music tracks—that 
we are using in the program. However, we will not be too ambitious. One of the obvious hur-
dles to overcome is how to obtain the separate pieces of information we wish to store in each 
Track object. One way would be to ask the user to input the artist, title, genre, etc., each time 
they add a music file to the organizer. However, that would be fairly slow and laborious, so, for 
this project, we have chosen a set of music files that have the artist and title as part of the file 
name, and we have written a helper class for our application (called TrackReader) that will 
look for any music files in a particular folder and use their file names to fill in parts of the cor-
responding Track objects. We won’t worry about the details of how this is done at this stage. 
(Later in this book, we will discuss the techniques and library classes used in the TrackReader
class.) An implementation of this design is in music-organizer-v5.

Here are some of the key points to look for in this version:

■ The main thing to review is the changes we have made to the MusicOrganizer class, in 
going from storing String objects in the ArrayList to storing Track objects (Code 4.7). 
This has affected most of the methods we developed previously.

a while loop that divides n by all numbers between 2 and (n–1) and tests whether the divi-

sion yields a whole number. You can write this test by using the modulo operator (%) to check 

whether the integer division leaves a remainder of 0 (see the discussion of the modulo operator 

in Section 3.8.3).

Exercise 4.34 In the findFirst method, the loop’s condition repeatedly asks the files
collection how many files it is storing. Does the value returned by size vary from one check to 

the next? If you think the answer is no, then rewrite the method so that the number of files is 

determined only once and stored in a local variable prior to execution of the loop. Then use the 

local variable in the loop’s condition rather than the call to size. Check that this version gives 

the same results. If you have problems completing this exercise, try using the debugger to see 

where things are going wrong.



120 |       Chapter 4 ■ Grouping objects

■ When listing details of the tracks in listAllTracks, we request the Track object to return 
a String containing its details. This shows that we have designed the Track class to be re-
sponsible for formatting the details to be printed, such as artist and title. This is an example of 
what is called responsibility-driven design, which we cover in more detail in a later chapter.

■ In the playTrack method, we now have to retrieve the file name from the selected Track
object before passing it on to the player.

■ In the music library, we have added code to automatically read from the audio folder and 
some print statements to display some information.

import java.util.ArrayList;

/**
 * A class to hold details of audio tracks.
 * Individual tracks may be played.
 *
 * @author David J. Barnes and Michael Kölling
 * @version 2011.07.31
 */
public class MusicOrganizer
{
    // An ArrayList for storing music tracks.

private ArrayList<Track> tracks;
    // A player for the music tracks.

private MusicPlayer player;
    // A reader that can read music files and load them as tracks.

private TrackReader reader;

    /**
     * Create a MusicOrganizer
     */

public MusicOrganizer()
{

tracks = new ArrayList<Track>();
player = new MusicPlayer();
reader = new TrackReader();
readLibrary("audio");
System.out.println("Music library loaded. " +

getNumberOfTracks() + " tracks.");
System.out.println();

}

    /**
     * Add a track to the collection.
     * @param track The track to be added.
     */

Code 4.7
Using Track in the 

MusicOrganizer
class



4.11 Improving structure—the Track class | 121

public void addTrack(Track track)
{

tracks.add(track);
}

    /**
     * Show a list of all the tracks in the collection.
     */

public void listAllTracks()
{

System.out.println("Track listing: ");
for(Track track : tracks) {

System.out.println(track.getDetails());
}
System.out.println();

}

    /**
     * Play a track in the collection.
     * @param index The index of the track to be played.
     */

public void playTrack(int index)
{

if(indexValid(index)) {
Track track = tracks.get(index);
player.startPlaying(track.getFilename());
System.out.println("Now playing: " + track.getArtist() +

  " - " + track.getTitle());
}

}

Other methods omitted.
}

Code 4.7
continued
Using Track in the 

MusicOrganizer
class

While we can see that introducing a Track class has made some of the old methods slightly 
more complicated, working with specialized Track objects ultimately results in a much better 
structure for the program as a whole and allows us to develop the Track class to the most ap-
propriate level of detail for representing more than just music file names.

With a better structuring of track information, we can now do a much better job of searching 
for tracks that meet particular criteria. For instance, if we want to find all tracks that contain the 
word “love” in their title, we can do so as follows without risking mismatches on artists’ names:

    /**
     * List all tracks containing the given search string.
     * @param searchString The search string to be found.
     */



122 |       Chapter 4 ■ Grouping objects

    public void findInTitle(String searchString)
    {
        for(Track track : tracks) {
            String title = track.getTitle();
            if(title.contains(searchString)) {
                System.out.println(track.getDetails());
            }
        }
    }

Exercise 4.35 Add a playCount field to the Track class. Provide methods to reset the 

count to zero and to increment it by one.

Exercise 4.36 Have the MusicOrganizer increment the play count of a track whenever 

it is played.

Exercise 4.37 Add a further field, of your choosing, to the Track class, and provide acces-

sor and mutator methods to query and manipulate it. Find a way to use this information in your 

version of the project; for instance, include it in a track’s details string, or allow it to be set via a 

method in the MusicOrganizer class.

Exercise 4.38 If you play two tracks without stopping the first one, both will play simulta-

neously. This is not very useful. Change your program so that a playing track is automatically 

stopped when another track is started.

4.12 The Iterator type
Iteration is a vital tool in almost every programming project, so it should come as no surprise to 
discover that programming languages typically provide a wide range of features that support it, 
each with their own particular characteristics suited for different situations.

We will now discuss a third variation for how to iterate over a collection that is somewhat in the 
middle between the while loop and the for-each loop. It uses a while loop to perform the iteration 
and an Iterator object instead of an integer index variable to keep track of the position in the list. 
We have to be very careful with naming at this point, because Iterator (note the uppercase I) is 
a Java type, but we will also encounter a method called iterator (lowercase i), so be sure to pay 
close attention to these differences when reading this section and when writing your own code.

Examining every item in a collection is so common that we have already seen a special con-
trol structure—the for-each loop—that is custom made for this purpose. In addition, Java’s 
various collection library classes provide a custom-made common type to support iteration, and 
ArrayList is typical in this respect.

The iterator method of ArrayList returns an Iterator object. Iterator is also defined 
in the java.util package, so we must add a second import statement to the class file to use it:

import java.util.ArrayList;
import java.util.Iterator;

Concept:

An iterator is an 

object that provides 

functionality to 

iterate over all 

elements of a 

collection.



4.12 The Iterator type | 123

An Iterator provides just three methods, and two of these are use to iterate over a collection: 
hasNext and next. Neither takes a parameter, but both have non-void return types, so they are used 
in expressions. The way we usually use an Iterator can be described in pseudo-code as follows:

Iterator<ElementType> it = myCollection.iterator();
while(it.hasNext()) {

call it.next() to get the next element
do something with that element

}

In this code fragment, we first use the iterator method of the ArrayList class to obtain an 
Iterator object. Note that Iterator is also a generic type, so we parameterize it with the type 
of the elements in the collection we are iterating over. Then we use that Iterator to repeatedly 
check whether there are any more elements, it.hasNext(), and to get the next element, it.
next(). One important point to note is that it is the Iterator object that we ask to return the 
next item, and not the collection object. Indeed, we tend not to refer directly to the collection at 
all in the body of the loop; all interaction with the collection is done via the Iterator.

Using an Iterator, we can write a method to list the tracks, as shown in Code 4.8. In effect, 
the Iterator starts at the beginning of the collection and progressively works its way through, 
one object at a time, each time we call its next method.

/**
 * List all the tracks.
 */
public void listAllTracks()
{

Iterator<Track> it = tracks.iterator();
while(it.hasNext()) {

Track t = it.next();
System.out.println(t.getDetails());

}
}

Code 4.8
Using an Iterator
to list the tracks

Take some time to compare this version to the one using a for-each loop in Code 4.7 and the 
two versions of listAllFiles shown in Code 4.3 and Code 4.5. A particular point to note 
about the latest version is that we use a while loop, but we do not need to take care of the index
variable. This is because the Iterator keeps track of how far it has gotten through the collec-
tion, so that it knows both whether there are any more items left (hasNext) and which one to 
return (next) if there is another.

One of the keys to understanding how Iterator works is that the call to next causes the 
Iterator to return the next item in the collection and then move past that item. Therefore, 
successive calls to next on an Iterator will always return distinct items; you cannot go back 
to the previous item once next has been called. Eventually, the Iterator reaches the end 
of the collection and then returns false from a call to hasNext. Once hasNext has returned 
false, it would be an error to try to call next on that particular Iterator object—in effect, the 
Iterator object has been “used up” and has no further use.



124 |       Chapter 4 ■ Grouping objects

On the face of it, Iterator seems to offer no obvious advantages over the previous ways we 
have seen to iterate over a collection, but the following two sections provide reasons why it is 
important to know how to use it.

4.12.1 Index access versus iterators

We have seen that we have at least three different ways in which we can iterate over an 
ArrayList. We can use a for-each loop (as seen in Section 4.9.1), the get method with an 
integer index variable (Section 4.10.2), or an Iterator object (this section).

From what we know so far, all approaches seem about equal in quality. The first one was maybe 
slightly easier to understand, but the least flexible.

The first approach, using the for-each loop, is the standard technique used if all elements of a col-
lection are to be processed (i.e., definite iteration), because it is the most concise for that case. The 
two latter versions have the benefit that iteration can more easily be stopped in the middle of pro-
cessing (indefinite iteration), so they are preferable when processing only a part of the collection.

For an ArrayList, the two latter methods (using the while loops) are in fact equally good. 
This is not always the case, though. Java provides many more collection classes besides the 
ArrayList. We shall see several of them in the following chapters. For some collections, it is 
either impossible or very inefficient to access individual elements by providing an index. Thus, 
our first while loop version is a solution particular to the ArrayList collection and may not 
work for other types of collections.

Figure 4.5
An iterator, after one 

iteration, pointing to 

the next item to be 

processed



4.12 The Iterator type | 125

The most recent solution, using an Iterator, is available for all collections in the Java class 
library and thus is an important code pattern that we shall use again in later projects.

4.12.2 Removing elements

Another important consideration when choosing which looping structure to use comes in when 
we have to remove elements from the collection while iterating. An example might be that we 
want to remove all tracks from our collection that are by an artist we are no longer interested in.

We can quite easily write this in pseudo-code:

for each track in the collection {
    if track.getArtist() is the out-of-favor artist:
        collection.remove(track)
}

It turns out that this perfectly reasonable operation is not possible to achieve with a 
for-each loop. If we try to modify the collection using one of the collection’s remove
methods while in the middle of an iteration, the system will report an error (called a 
ConcurrentModificationException). This happens because changing the collection in 
the middle of an iteration has the potential to thoroughly confuse the situation. What if the re-
moved element was the one we were currently working on? If it has now been removed, how 
should we find the next element? There are no generally good answers to these potential prob-
lems, so using the collection’s remove method is just not allowed during an iteration with the 
for-each loop.

The proper solution to removing while iterating is to use an Iterator. Its third method (in 
addition to hasNext and next) is remove. It takes no parameter and has a void return type. 
Calling remove will remove the item that was returned by the most recent call to next. Here is 
some sample code:

Iterator<Track> it = tracks.iterator();
while(it.hasNext()) {
    Track t = it.next();
    String artist = t.getArtist();
    if(artist.equals(artistToRemove)) {
        it.remove();
    }
}

Once again, note that we do not use the tracks collection variable in the body of the loop. 
While both ArrayList and Iterator have remove methods, we must use the Iterator’s 
remove method, not the ArrayList’s.

Using the Iterator’s remove is less flexible: we cannot remove arbitrary elements, but only 
the last element we retrieved from the Iterator’s next method. On the other hand, using the 
Iterator’s remove is allowed during an iteration. Because the Iterator itself is informed 
of the removal (and does it for us), it can keep the iteration properly in sync with the collection.

Such removal is not possible with the for-each loop, because we do not have an Iterator
there to work with. In this case, we need to use the while loop with an Iterator.



126 |       Chapter 4 ■ Grouping objects

Technically, we can also remove elements by using the collection’s get method with an index 
for the iteration. This is not recommended, however, because the element indices can change 
when we add or delete elements and it is quite easy to get the iteration with indices wrong when 
we modify the collection during iteration. Using an Iterator protects us from such errors.

Exercise 4.39 Implement a method in your music organizer that lets you specify a string as 

a parameter and then removes all tracks whose titles contain that string.

4.13 Summary of the music-organizer project
In the music organizer we have seen how we can use an ArrayList object, created from a 
class out of the class library, to store an arbitrary number of objects in a collection. We do not 
have to decide in advance how many objects we want to store, and the ArrayList object auto-
matically keeps track of the number of items stored in it.

We have discussed how we can use a loop to iterate over all elements in the collection. Java has 
several loop constructs—the two we have used here are the for-each loop and the while loop.
We typically use a for-each loop when we want to process the whole collection and the while 
loop when we cannot predetermine how many iterations we need or when we need to remove 
elements during iteration.

With an ArrayList, we can access elements either by index or we can iterate over all ele-
ments using an Iterator object. It will be worthwhile for you to review the different circum-
stances under which the different types of loop (for-each and while) are appropriate and why an 
Iterator is to be preferred over an integer index, because these sorts of decisions will have 
to be made over and over again. Getting them right can make a big difference to the ease with 
which a particular problem can be solved.

Exercise 4.40 Use the club project to complete the following exercises. Your task is to 

complete the Club class, an outline of which has been provided in the project. The Club
class is intended to store Membership objects in a collection.

Within Club, define a field for an ArrayList. Use an appropriate import statement for this 

field, and think carefully about the element type of the list. In the constructor, create the col-

lection object and assign it to the field. Make sure that all the files in the project compile before 

moving on to the next exercise.

Exercise 4.41 Complete the numberOfMembers method to return the current size of the 

collection. Until you have a method to add objects to the collection, this will always return zero, 

of course, but it will be ready for further testing later.

Exercise 4.42 Membership of a club is represented by an instance of the Membership
class. A complete version of Membership is already provided for you in the club project, and 

it should not need any modification. An instance contains details of a person’s name and the 



4.13 Summary of the music-organizer project | 127

month and year in which they joined the club. All membership details are filled out when an 

instance is created. A new Membership object is added to a Club object’s collection via the 

Club object’s join method, which has the following description:

/**
 * Add a new member to the club's collection of members.
 * @param member The member object to be added.
 */
public void join (Membership member)

Complete the join method.

When you wish to add a new Membership object to the Club object from the object bench, 

there are two ways you can do this. Either create a new Membership object on the object 

bench, call the join method on the Club object, and click on the Membership object to 

supply the parameter or call the join method on the Club object and type into the method’s 

parameter dialog box:

new Membership ("member name ...", month, year)

Each time you add one, use the numberOfMembers method to check both that the join
method is adding to the collection and that the numberOfMembers method is giving the cor-

rect result.

We shall continue to explore this project with some further exercises later in the chapter.

Exercise 4.43 Challenge exercise The following exercises present a challenge because 

they involve using some things that we have not covered explicitly. Nevertheless, you should 

be able to make a reasonable attempt at them if you have a comfortable grasp of the material 

covered so far. They involve adding something that most music players have: a “shuffle,” or 

“random-play,” feature.

The java.util package contains the Random class whose nextInt method will generate 

a positive random integer within a limited range. Write a method in the MusicOrganizer
class to select a single random track from its list and play it.

Hint: You will need to import Random and create a Random object, either directly in the new 

method or in the constructor and stored in a field. You will need to find the API documenta-

tion for the Random class and check its methods to choose the correct version of nextInt.

Alternatively, we cover the Random class in the next chapter.

Exercise 4.44 Challenge exercise Consider how you might play multiple tracks in a random 

order. Would you want to make sure that all tracks are played equally or prefer favorite tracks? 

How might a “play count” field in the Track class help with this task? Discuss the various options.

Exercise 4.45 Challenge exercise Write a method to play every track in the track list exactly 

once in random order.



128 |       Chapter 4 ■ Grouping objects

4.14 Another example: an auction system
In this section, we will follow up some of the new ideas we have introduced in this chapter by 
looking at them again in a different context.

The auction project models part of the operation of an online auction system. The idea is that an auc-
tion consists of a set of items offered for sale. These items are called “lots,” and each is assigned a 
unique lot number by the program. A person can try to buy a lot they want by bidding an amount of 
money for it. Our auctions are slightly different from other auctions because ours offer all lots for a 
limited period.3 At the end of that period, the auction is closed. At the close of the auction, the person 
who bid the highest amount for a lot is considered to have bought it. Any lots for which there are no 
bids remain unsold at the close. Unsold lots might be offered in a later auction, for instance.

Hint: One way to do this would be to shuffle the order of the tracks in the list—or, perhaps 

better, a copy of the list—and then play through from start to finish. Another way would be to 

make a copy of the list and then repeatedly choose a random track from the list, play it, and 

remove it from the list until the list is empty. Try to implement one of these approaches. If you 

try the first, how easy is it to shuffle the list so that it is genuinely in a new random order? Are 

there any library methods that could help with this?

Figure 4.6
The class structure 

of the auction project

3 For the sake of simplicity, the time-limit aspects of auctions are not implemented within the classes we 
are considering here.



4.14 Another example: an auction system | 129

The auction project contains the following classes: Auction, Bid, Lot, and Person. A close 
look at the class diagram for this project (Figure 4.6) reveals that the relationships between the 
various classes are a little more complicated than we have seen in previous projects, and this will 
have a bearing on the way in which information is accessed during the auction activities. For in-
stance, the diagram shows that Auction objects know about all the other types of objects: Bid,
Lot, and Person. Lot objects know about Bid objects, and Bid objects know about Person
objects. What the diagram cannot tell us is exactly how information stored in a Bid object, say, 
is accessed by an Auction object. For that, we have to look at the code of the various classes.

4.14.1 Getting started with the project

At this stage, it would be worth opening the auction project and exploring the source code be-
fore reading further. As well as seeing familiar use of an ArrayList and loops, you will likely 
encounter several things that you do not quite understand at first, but that is to be expected as 
we move on to new ideas and new ways of doing things.

An Auction object is the starting point for the project. People wishing to sell items enter 
them into the auction via the enterLot method, but they only supply a string description. The 
Auction object then creates a Lot object for each entered lot. This models the way things 
work in the real world: it is the auction site, rather than the sellers, for instance, that assigns lot 
numbers or identification codes to items. So a Lot object is the auction site’s representation of 
an item for sale.

In order to bid for lots, people must register with the auction house. In our program, a poten-
tial bidder is represented by a Person object. These objects must be created independently on 
BlueJ’s object bench. In our project, a Person object simply contains the person’s name. When 
someone wants to bid for a lot, they call the bidFor method of the Auction object, entering 
the lot number they are interested in and how much they want to bid for it. Notice that they pass 
the lot number rather than the Lot object; Lot objects remain internal to the Auction object 
and are always referenced externally by their lot number.

Just as the Auction object creates Lot objects, it also transforms a monetary bid amount into a 
Bid object, which records the amount and the person who bid that amount. This is why we see a 
link from the Bid class to the Person class on the class diagram. However, note that there is no 
link from Bid to Lot; the link on the diagram is the other way around, because a Lot records 
which is currently the highest bid for that lot. This means that the Lot object will replace the 
Bid object it stores each time a higher bid is made.

What we have described here reveals quite a nested chain of object references. Auction
objects store Lot objects; each Lot object can store a Bid object; each Bid object stores a 
Person object. Such chains are very common in programs, so this project offers a good oppor-
tunity to explore how they work in practice.

Exercise 4.46 Create an auction with a few lots, persons, and bids. Then use the object 

inspector to investigate the object structure. Start with the auction object, and continue by 

inspecting any further object references you encounter in the objects’ fields.



130 |       Chapter 4 ■ Grouping objects

Because neither the Person class nor the Bid class initiates any activity within the auction sys-
tem, we shall not discuss them here in detail, and so studying these classes is left as an exercise 
to the reader. Instead, we shall focus on the source code of the Lot and Auction classes.

4.14.2 The null keyword

From the discussion above, it should be clear that a Bid object is only created when someone 
actually makes a bid for a Lot. The newly created Bid object then stores the Person making 
the bid. This means that the Person field of every Bid object can be initialized in the Bid con-
structor, and the field will always contain a valid Person object.

In contrast, when a Lot object is created, this simply means it has been entered into the auction 
and it has no bidders yet. Nevertheless, it still has a Bid field, highestBid, for recording the 
highest bid for the lot. What value should be used to initialize this field in the Lot constructor?

What we need is a value for the field that makes it clear that there is currently “no object” be-
ing referred to by that variable. In some sense, the variable is “empty.” To indicate this, Java 
provides the null keyword. Hence, the constructor of Lot has the following statement in it:

highestBid = null;

A very important principle is that, if a variable contains the null value, a method call should not be 
made on it. The reason for this should be clear: as methods belong to objects, we cannot call a method 
if the variable does not refer to an object. This means that we sometimes have to use an if statement 
to test whether a variable contains null or not before calling a method on that variable. Failure to 
make this test will lead to the very common runtime error called a NullPointerException. You 
will see some examples of this test in both the Lot and Auction classes.

In fact, if we fail to initialize an object-type field, it will be given the value null automatically. 
In this particular case, however, we prefer to make the assignment explicitly so that there is no 
doubt in the mind of the reader of the code that we expect highestBid to be null when a Lot
object is created.

4.14.3 The Lot class

The Lot class stores a description of the lot, a lot number, and details of the highest bid re-
ceived for it so far. The most complex part of the class is the bidFor method (Code 4.9). This 
deals with what happens when a person makes a bid for the lot. When a bid is made, it is neces-
sary to check that the new bid is higher in value than any existing bid on that lot. If it is higher, 
then the new bid will be stored as the current highest bid within the lot.

Concept:

The Java reserved 

word null is 

used to mean “no 

object” when an 

object variable is 

not currently refer-

ring to a particular 

object. A field that 

has not explicitly 

been initialized will 

contain the value 

null by default.

public class Lot
{
    // The current highest bid for this lot.

private Bid highestBid;

Other fields and constructor omitted.

Code 4.9
Handle a bid for a lot



4.14 Another example: an auction system | 131

Here, we first check whether this bid is the highest bid. This will be the case if there has been 
no previous bid or if the current bid is higher than the best bid so far. The first part of the check 
involves the following test:

highestBid == null

This is a test for whether the highestBid variable is currently referring to an object or not. 
As described in the previous section, until a bid is received for this lot, the highestBid field 
will contain the null value. If it is still null, then this is the first bid for this particular lot and 
it must clearly be the highest one. If it is not null, then we have to compare its value with the 
new bid. Note that the failure of the first test gives us some very useful information: we now 
know for sure that highestBid is not null, so we know that it is safe to call a method on it. 
We do not need to make a null test again in this second condition. Comparing the values of the 
two bids allows us to choose a higher new bid or reject the new bid if it is no better.

4.14.4 The Auction class

The Auction class (Code 4.10) provides further illustration of the ArrayList and for-each 
loop concepts we discussed earlier in the chapter.

    /**
     * Attempt to bid for this lot. A successful bid
     * must have a value higher than any existing bid.
     * @param bid A new bid.
     * @return true if successful, false otherwise
     */

public boolean bidFor(Bid bid)
{

if(highestBid == null) {
            // There is no previous bid.

highestBid = bid;
return true;

}
else if(bid.getValue() > highestBid.getValue()) {

            // The bid is better than the previous one.
highestBid = bid;
return true;

}
else {

            // The bid is not better.
return false;

}
}

Other methods omitted.
}

Code 4.9
continued
Handle a bid for a lot



132 |       Chapter 4 ■ Grouping objects

import java.util.ArrayList;
/**
 * A simple model of an auction.
 * The auction maintains a list of lots of arbitrary length.
 * @author David J. Barnes and Michael Kölling.
 * @version 2011.07.31
 */
public class Auction
{
    // The list of Lots in this auction.

private ArrayList<Lot> lots;
    // The number that will be given to the next lot entered
    // into this auction.

private int nextLotNumber;

    /**
     * Create a new auction.
     */

public Auction()
{

lots = new ArrayList<Lot>();
nextLotNumber = 1;

}

    /**
     * Enter a new lot into the auction.
     * @param description A description of the lot.
     */

public void enterLot(String description)
{

lots.add(new Lot(nextLotNumber, description));
nextLotNumber++;

}

    /**
     * Show the full list of lots in this auction.
     */

public void showLots()
{

for(Lot lot : lots) {
System.out.println(lot.toString());

}
}

    /**
     * Make a bid for a lot.
     * A message is printed indicating whether the bid is 
     * successful or not.

Code 4.10
The Auction class



4.14 Another example: an auction system | 133

     * @param lotNumber The lot being bid for.
     * @param bidder The person bidding for the lot.
     * @param value The value of the bid.
     */

public void makeABid(int lotNumber, Person bidder, long value)
{

Lot selectedLot = getLot(lotNumber);
if(selectedLot != null) {

Bid bid = new Bid(bidder, value);
boolean successful = selectedLot.bidFor(bid);
if(successful) {

System.out.println("The bid for lot number " +
          lotNumber + " was successful.");

}
else {

                // Report which bid is higher.
Bid highestBid = selectedLot.getHighestBid();
System.out.println("Lot number: " + lotNumber +

  " already has a bid of: " +
  highestBid.getValue());

}
}

}

    /**
     * Return the lot with the given number. Return null
     * if a lot with this number does not exist.
     * @param lotNumber The number of the lot to return.
     */

public Lot getLot(int lotNumber)
{

if((lotNumber >= 1) && (lotNumber < nextLotNumber)) {
            // The number seems to be reasonable.

Lot selectedLot = lots.get(lotNumber – 1);
            // Include a confidence check to be sure we have the
            // right lot.

if(selectedLot.getNumber() != lotNumber) {
                System.out.println("Internal error: Lot number " +

  selectedLot.getNumber() +
  " was returned instead of " +
  lotNumber);
selectedLot = null;

}
return selectedLot;

}

Code 4.10
continued
The Auction class



134 |       Chapter 4 ■ Grouping objects

The lots field is an ArrayList used to hold the lots offered in this auction. Lots are entered 
in the auction by passing a simple description to the enterLot method. A new lot is created by 
passing the description and a unique lot number to the constructor of Lot. The new Lot object 
is added to the collection. The following sections discuss some additional, commonly found 
features illustrated in the Auction class.

4.14.5 Anonymous objects

The enterLot method in Auction illustrates a common idiom—anonymous objects. We see 
this in the following statement:

lots.add(new Lot(nextLotNumber, description));

Here, we are doing two things:

■ We are creating a new Lot object.

■ We are also passing this new object to the ArrayList’s add method.

We could have written the same statement in two lines, to make the separate steps more explicit:

Lot furtherLot = new Lot(nextLotNumber, description);
lots.add(furtherLot);

Both versions are equivalent, but if we have no further use for the furtherLot variable, then 
the original version avoids defining a variable with such a limited use. In effect, we create 
an anonymous object—an object without a name—by passing it straight to the method that 
uses it.

else {
System.out.println("Lot number: " + lotNumber +

" does not exist.");
return null;

}
}

}

Code 4.10
continued
The Auction class

Exercise 4.47 The makeABid method includes the following two statements:

  Bid bid = new Bid(bidder, value);
  boolean successful = selectedLot.bidFor(bid);

The bid variable is only used here as a placeholder for the newly created Bid object before it 

is passed immediately to the lot’s bidFor method. Rewrite these statements to eliminate the 

bid variable by using an anonymous object as seen in the enterLot method.



4.14 Another example: an auction system | 135

4.14.6 Chaining method calls

In our introduction to the auction project, we noted a chain of object references: Auction
objects store Lot objects; each Lot object can store a Bid object; each Bid object stores a 
Person object. If the Auction object needs to identify who currently has the highest bid on a 
Lot, then it would need to ask the Lot to return the Bid object for that lot and then ask the Bid
object for the Person who made the bid.

Ignoring the possibility of null object references, we might see something like the following 
sequence of statement in order to print the name of a bidder:

Bid bid = lot.getHighestBid();
Person bidder = bid.getBidder();
String name = bidder.getName();
System.out.println(name);

Because the bid, bidder, and name variables are being used here simply as staging posts to 
get to the bidder’s name, it is common to see sequences like this compressed through the use of 
anonymous object references. For instance, we can achieve the same effect with the following:

System.out.println(lot.getHighestBid().getBidder().getName());

This looks as if methods are calling methods, but that is not how this must be read. Bearing 
in mind that the two sets of statements are equivalent, the chain of method calls must be read 
strictly from left to right:

lot.getHighestBid().getBidder().getName()

The call to getHighestBid returns an anonymous Bid object, and the getBidder method 
is then called on that object. Similarly, getBidder returns an anonymous Person object, so 
getName is called on that person.

Such chains of method calls can look complicated, but they can be unpicked if you understand 
the underlying rules. Even if you choose not to write your code in this more concise fashion, 
you should learn how to read it, because you may come across it in other programmers’ code.

Exercise 4.48 Add a close method to the Auction class. This should iterate over the 

collection of lots and print out details of all the lots. Use a for-each loop. Any lot that has had at 

least one bid for it is considered to be sold, so what you are looking for is Lot objects whose 

highestBid field is not null. Use a local variable inside the loop to store the value returned 

from calls to the getHighestBid method, and then test that variable for the null value.

For lots with a bidder, the details should include the name of the successful bidder and the 

value of the winning bid. For lots with no bidder, print a message that indicates this.

Exercise 4.49 Add a getUnsold method to the Auction class with the following header:

public ArrayList<Lot> getUnsold()

This method should iterate over the lots field, storing unsold lots in a new ArrayList local 

variable. What you are looking for is Lot objects whose highestBid field is null. At the end 

of the method, return the list of unsold lots.



136 |       Chapter 4 ■ Grouping objects

4.14.7 Using collections

The ArrayList collection class (and others like it) is an important programming tool, because 
many programming problems involve working with variable-sized collections of objects. 
Before moving on to the rest of this chapter, it is important that you become thoroughly familiar 
and comfortable with how to work with them. The following exercises will help you do this.

Exercise 4.50 Suppose that the Auction class includes a method that makes it possible 

to remove a lot from the auction. Assuming that the remaining lots do not have their lotNum-
ber fields changed when a lot is removed, write down what you think the impact would be on 

the getLot method.

Exercise 4.51 Rewrite getLot so that it does not rely on a lot with a particular number 

being stored at index (number–1) in the collection. For instance, if lot number 2 has been 

removed, then lot number 3 will have been moved from index 2 to index 1, and all higher lot 

numbers will also have been moved by one index position. You may assume that lots are al-

ways stored in increasing order according to their lot numbers.

Exercise 4.52 Add a removeLot method to the Auction class, having the following 

header:

/**
 * Remove the lot with the given lot number.
 * @param number The number of the lot to be removed.
 * @return The Lot with the given number, or null if
 * there is no such lot.
 */
public Lot removeLot(int number)

This method should not assume that a lot with a given number is stored at any particular loca-

tion within the collection.

Exercise 4.53 The ArrayList class is found in the java.util package. That package 

also includes a class called LinkedList. Find out what you can about the LinkedList
class, and compare its methods with those of ArrayList. Which methods do they have in 

common, and which are different?

Exercise 4.54 Continue working with the club project from Exercise 4.40. Define a method 

in the Club class with the following description:

/**
 * Determine the number of members who joined in the
 * given month.
 * @param month The month we are interested in.



4.14 Another example: an auction system | 137

 * @return The number of members who joined in that month.
 */
public int joinedInMonth(int month)

If the month parameter is outside the valid range of 1 to 12, print an error message and return 

zero.

Exercise 4.55 Define a method in the Club class with the following description:

/**
 * Remove from the club's collection all members who
 * joined in the given month, and return them stored
 * in a separate collection object.
 * @param month The month of the membership.
 * @param year The year of the membership.
 * @return The members who joined in the given month and year.
 */
public ArrayList<Membership> purge(int month, int year)

If the month parameter is outside the valid range of 1 to 12, print an error message and return 

a collection object with no objects stored in it.

Note: The purge method is significantly harder to write than any of the others in this class.

Exercise 4.56 Open the product project and complete the StockManager class through 

this and the next few exercises. StockManager uses an ArrayList to store Product
items. Its addProduct method already adds a product to the collection, but the following 

methods need completing: delivery, findProduct, printProductDetails, and 

numberInStock.

Each product sold by the company is represented by an instance of the Product class, 

which records a product’s ID, name, and how many of that product are currently in stock. The

Product class defines the increaseQuantity method to record increases in the stock 

level of that product. The sellOne method records that one item of that product has been 

sold, by reducing the quantity field level by 1. Product has been provided for you, and you 

should not need to make any alterations to it.

Start by implementing the printProductDetails method to ensure that you are able to 

iterate over the collection of products. Just print out the details of each Product returned, by 

calling its toString method.

Exercise 4.57 Implement the findProduct method. This should look through the collection 

for a product whose id field matches the ID argument of this method. If a matching product is 

found, it should be returned as the method’s result. If no matching product is found, return null.

This differs from the printProductDetails method in that it will not necessarily have 

to examine every product in the collection before a match is found. For instance, if the first 



138 |       Chapter 4 ■ Grouping objects

product in the collection matches the product ID, iteration can finish and that first Product
object can be returned. On the other hand, it is possible that there might be no match in the 

collection. In that case, the whole collection will be examined without finding a product to re-

turn. In this case, the null value should be returned.

When looking for a match, you will need to call the getID method on a Product.

Exercise 4.58 Implement the numberInStock method. This should locate a product in 

the collection with a matching ID and return the current quantity of that product as a method 

result. If no product with a matching ID is found, return zero. This is relatively simple to imple-

ment once the findProduct method has been completed. For instance, numberInStock
can call the findProduct method to do the searching and then call the getQuantity
method on the result. Take care over products that cannot be found, though.

Exercise 4.59 Implement the delivery method using a similar approach to that used in 

numberInStock. It should find the product with the given ID in the list of products and then 

call its increaseQuantity method.

Exercise 4.60 Challenge exercises Implement a method in StockManager to print details 

of all products with stock levels below a given value (passed as a parameter to the method).

Modify the addProduct method so that a new product cannot be added to the product list 

with the same ID as an existing one.

Add to StockManager a method that finds a product from its name rather than its ID:

public Product findProduct(String name)

In order to do this, you need to know that two String objects, s1 and s2, can be tested for 

equality with the boolean expression

s1.equals(s2)

More details can be found on this in Chapter 5.

4.15 Flexible-collection summary
We have seen that classes such as ArrayList conveniently allow us to create collections 
containing an arbitrary number of objects. The Java library contains more collections like this, 
and we shall look at some of the others in the next chapter. You will find that being able to use 
collections confidently is an important skill in writing interesting programs. There is hardly an 
application we shall see from now on that does not use collections of some form.



4.16 Fixed-size collections | 139

4.16 Fixed-size collections
Flexible-size collections are powerful both because we do not need to know in advance how many 
items will be stored in them and because it is possible to vary the number of items they hold. However, 
some applications are different in that we do know in advance how many items we wish to store in a 
collection, and that number typically remains fixed for the life of the collection. In such circumstances, 
we have the option of choosing to use a specialized fixed-size collection object to store the items.

A fixed-size collection is called an array. Although the fixed-size nature of arrays can be a 
significant disadvantage in many situations, they do have at least two compensating advantages 
over the flexible-size collection classes:

■ Access to the items held in an array is often more efficient than access to the items in a com-
parable flexible-size collection.

■ Arrays are able to store either objects or primitive-type values. Flexible-size collections can 
store only objects.4

Another distinctive feature of arrays is that they have special syntactic support in Java; they can 
be accessed using a custom syntax different from the usual method calls. The reason for this 
is mostly historical: arrays are the oldest collection structure in programming languages, and 
syntax for dealing with arrays has developed over many decades. Java uses the same syntax es-
tablished in other programming languages to keep things simple for programmers who are used 
to arrays already, even though it is not consistent with the rest of the language syntax.

In the following sections, we shall show how arrays can be used to maintain collections of fixed 
size. We shall also introduce a new loop structure that is often closely associated with arrays—
the for loop. (Note that the for loop is different from the for-each loop.)

4.16.1 A log-file analyzer

Web servers typically maintain log files of client accesses to the web pages that they store. 
Given suitable tools, these logs enable web service managers to extract and analyze useful in-
formation such as:

■ which are the most popular pages they provide

■ which sites brought users to this one

■ whether other sites appear to have broken links to this site’s pages

■ how much data is being delivered to clients

■ the busiest periods over the course of a day, a week, or a month

Such information might help managers to determine, for instance, whether they need to 
upgrade to more-powerful server machines or when the quietest periods are in order to schedule 
maintenance activities.

Concept:

An array is a spe-

cial type of collec-

tion that can store 

a fixed number of 

items.

4 A Java construct called “auto-boxing” provides a mechanism that also lets us store primitive values in 
flexible-size collections. It is, however, true that only arrays can directly store them.



140 |       Chapter 4 ■ Grouping objects

The weblog-analyzer project contains an application that performs an analysis of data from 
such a web server. The server writes a line to a log file each time an access is made. A sample 
log file called weblog.txt is provided in the project folder. Each line records the date and time of 
the access in the following format:

year month day hour minute

For instance, the line below records an access at 03:45am on 7 June 2011:

2011 06 07 03 45

The project consists of five classes: LogAnalyzer, LogfileReader, LogEntry,
LoglineTokenizer, and LogfileCreator. We shall spend most of our time looking at the 
LogAnalyzer class, as it contains examples of both creating and using an array (Code 4.11). 
Later exercises will encourage you to examine and modify LogEntry, because it also uses an 
array. The LogReader and LogLineTokenizer classes use features of the Java language that 
we have not yet covered, so we shall not explore those in detail. The LogfileCreator class 
allows you to create your own log files containing random data.

/**
 * Read web server data and analyze
 * hourly access patterns.
 *
 * @author David J. Barnes and Michael Kölling.
 * @version 2011.07.31
 */
public class LogAnalyzer
{
    // Array to store the hourly access counts.

private int[] hourCounts;
    // Use a LogfileReader to access the data.

private LogfileReader reader;

    /**
     * Create an object to analyze hourly web accesses.
     */

public LogAnalyzer()
{

        // Create the array object to hold the hourly
        // access counts.

hourCounts = new int[24];
        // Create the reader to obtain the data.

reader = new LogfileReader();
}

    /**
     * Analyze the hourly access data from the log file.
     */

Code 4.11
The log-file analyzer



4.16 Fixed-size collections | 141

public void analyzeHourlyData()
{

while(reader.hasNext()) {
LogEntry entry = reader.next();
int hour = entry.getHour();
hourCounts[hour]++;

}
}

    /**
     * Print the hourly counts.
     * These should have been set with a prior
     * call to analyzeHourlyData.
     */

public void printHourlyCounts()
{

System.out.println("Hr: Count");
for(int hour = 0; hour < hourCounts.length; hour++) {

System.out.println(hour + ": " + hourCounts[hour]);
}

}

    /**
     * Print the lines of data read by the LogfileReader
     */

public void printData()
{

reader.printData();
}

}

Code 4.11
continued
The log-file analyzer

The analyzer currently uses only part of the data stored in a server’s log line. It provides in-
formation that would allow us to determine which hours of the day, on average, tend to be the 
busiest or quietest for the server. It does this by counting how many accesses were made in each 
one-hour period over the duration covered by the log.

Exercise 4.61 Explore the weblog-analyzer project by creating a LogAnalyzer object and 

calling its analyzeHourlyData method. Follow that with a call to its printHourlyCounts
method, which will print the results of the analysis. Which are the busiest times of the day?

Over the course of the next few sections, we shall examine how this class uses an array to 
accomplish this task.



142 |       Chapter 4 ■ Grouping objects

4.16.2 Declaring array variables

The LogAnalyzer class contains a field that is of an array type:
private int[] hourCounts;

The distinctive feature of an array variable’s declaration is a pair of square brackets as part of 
the type name: int[]. This indicates that the hourCounts variable is of type integer array.
We say that int is the base type of this particular array, which means that the array object will 
store values of type int. It is important to distinguish between an array-variable declaration 
and a similar-looking simple-variable declaration:

int hour; // A single int variable.
int[] hourCounts; // An int-array variable.

Here, the variable hour is able to store a single integer value, whereas hourCounts will be 
used to refer to an array object once that object has been created. An array-variable declaration 
does not itself create the array object. That takes place in a separate stage using the new opera-
tor, as with other objects.

It is worth looking at the unusual syntax again for a moment. The declaration int[] would in 
more conventional syntax appear, maybe, as Array<int>. That it does not has historical rather 
than logical reasons. You should still get used to reading it in the same way: as “array of int.”

Exercise 4.62 Write a declaration for an array variable people that could be used to refer 

to an array of Person objects.

Exercise 4.63 Write a declaration for an array variable vacant that could be used to refer 

to an array of boolean values.

Exercise 4.64 Read through the LogAnalyzer class and identify all the places where the hour-
Counts variable is used. At this stage, do not worry about what all the uses mean, as they will be 

explained in the following sections. Note how often a pair of square brackets is used with the variable.

Exercise 4.65 What is wrong with the following array declarations? Correct them.

[]int counts;
boolean[5000] occupied;

4.16.3 Creating array objects

The next thing to look at is how an array variable is associated with an array object.

The constructor of the LogAnalyzer class includes a statement to create an int array object:

hourCounts = new int[24];

Once again, notice how different the syntax is from that of normal object creation. For instance, 
there are no round brackets for a constructor’s parameters, because an array object does not 
have a constructor. This statement creates an array object that is able to store 24 separate integer 
values and makes the hourCounts array variable refer to that object. The value of 24 is the size 
of the array, and not a constructor parameter. Figure 4.7 illustrates the result of this assignment.



4.16 Fixed-size collections | 143

Figure 4.7
An array of 

24 integers

The general form of an array object’s construction is

new type[integer-expression]

The choice of type specifies what type of items are to be stored in the array. The integer expres-
sion specifies the size of the array—that is, the fixed number of items that can be stored in it.

When an array object is assigned to an array variable, the type of the array object must match 
the declared type of the variable. The assignment to hourCounts is allowed because the array 
object is an integer array, and hourCounts is an integer-array variable. The following declares 
a string-array variable and makes it refer to an array that has a capacity of 10 strings:

String[] names = new String[10];

It is important to note that the creation of the array assigned to names does not actually create 
10 strings. Rather, it creates a fixed-size collection that is able to have 10 strings stored within 
it. Those strings will probably be created in another part of the class to which names belongs. 
Immediately following its creation, an array object can be thought of as empty. If it is an array 
for objects, then the array will contain null values for all elements. If it is an int array, then 
all elements will be set to zero. In the next section we shall look at the way in which items are 
stored into (and retrieved from) arrays.

Exercise 4.66 Given the following variable declarations,

double[] readings;
String[] urls;
TicketMachine[] machines;

write assignments that accomplish the following tasks: (a) Make the readings variable refer 

to an array that is able to hold sixty double values; (b) Make the urls variable refer to an 

array that is able to hold ninety String objects; (c) Make the machines variable refer to an 

array that is able to hold five TicketMachine objects.

Exercise 4.67 How many String objects are created by the following declaration?

String[] labels = new String[20];



144 |       Chapter 4 ■ Grouping objects

4.16.4 Using array objects

The individual elements of an array are accessed by indexing the array. An index is an integer 
expression written between square brackets following the name of an array variable. For in-
stance:

labels[6]
machines[0]
people[x + 10 – y]

The valid values for an index expression depend upon the length of the array on which they 
are used. As with other collections, array indices always start at zero and go up to one less than 
the length of the array. So the valid indices for the hourCounts array are 0 to 23, inclusive.

Exercise 4.68 What is wrong with the following array creation? Correct it.

double[] prices = new double(50);

Pitfall Two very common errors are to think that the valid indices of an array start at 1, and to use 

the value of the length of the array as an index. Using indices outside the bounds of an array will 

lead to a runtime error called an ArrayIndexOutOfBoundsException.

Expressions that select an element from an array can be used anywhere that a variable of the 
base type of the array could be used. This means that we can use them on both sides of assign-
ments, for instance. Here are some examples that use array expressions in different places:

labels[5] = "Quit";
double half = readings[0] / 2;
System.out.println(people[3].getName());
machines[0] = new TicketMachine(500);

Using an array index on the left-hand side of an assignment is the array equivalent of a mutator 
(or set method), because the contents of the array will be changed. Using one anywhere else 
represents the equivalent of an accessor (or get method).

4.16.5 Analyzing the log file

The hourCounts array created in the constructor of LogAnalyzer is used to store an analysis 
of the access data. The data is stored into it in the analyzeHourlyData method and displayed 
from it in the printHourlyCounts method. As the task of the analyze method is to count 
how many accesses were made during each hour period, the array needs 24 locations—one for 
each hour period in a 24-hour day. The analyzer delegates the task of reading its log file to a 
LogfileReader.

The LogfileReader class is quite complex, and we suggest that you do not spend too much 
time investigating its implementation. Its role is to handle the task of breaking up each log line 



4.16 Fixed-size collections | 145

into separate data values, but we can abstract from the implementation details by considering 
just the headers of two of its methods:

public boolean hasNext()
public LogEntry next()

These exactly match the methods we have seen with the Iterator type, and a LogfileReader
can be used in exactly the same way, except that we do not permit the remove method to be used. 
The hasNext method tells the analyzer whether there is at least one more entry in the log file, and 
the next method then returns a LogEntry object containing the values from the next log line.

From each LogEntry, the analyzeHourlyData method of the analyzer obtains the value of 
the hour field:

int hour = entry.getHour();

We know that the value stored in the local variable hour will always be in the range 0 to 23, 
which exactly matches the valid range of indices for the hourCounts array. Each location in 
the array is used to represent an access count for the corresponding hour. So each time an hour 
value is read, we wish to update the count for that hour by 1. We have written this as

hourCounts[hour]++;

Note that it is the value stored in the array element that is being incremented and not the hour
variable. The following alternatives are both equivalent, as we can use an array element in ex-
actly the same way as we would an ordinary variable:

hourCounts[hour] = hourCounts[hour] + 1;
hourCounts[hour] += 1;

By the end of the analyzeHourlyData method, we have a complete set of cumulative counts 
for each hour of the log period.

In the next section, we look at the printHourlyCounts method, as it introduces a new control 
structure that is well suited to iterating over an array.

4.16.6 The for loop

Java defines two variations of for loops, both of which are indicated by the keyword for in 
source code. In Section 4.9, we introduced the first variant, the for-each loop, as a convenient 
means to iterate over a flexible-size collection. The second variant, the for loop, is an alterna-
tive iterative control structure5 that is particularly appropriate when:

■ we wish to execute a set of statements a fixed number of times

■ we need a variable inside the loop whose value changes by a fixed amount—typically in-
creasing by 1—on each iteration

5 Sometimes, if people want to make clearer the distinction between the for loop and the for-each loop, 
they also talk about the former as the “old-style for loop,” because it has been in the Java language 
longer than the for-each loop. The for-each loop is sometimes referred to as the “enhanced for loop.”



146 |       Chapter 4 ■ Grouping objects

The for loop is well suited to situations requiring definite iteration. For instance, it is common 
to use a for loop when we wish to do something to every element in an array, such as printing 
out the contents of each element. This fits the criteria, as the fixed number of times corresponds 
to the length of the array and the variable is needed to provide an incrementing index into the 
array.

A for loop has the following general form:

for(initialization; condition; post-body action) {
statements to be repeated

}

The following concrete example is taken from the printHourlyCounts method of the 
LogAnalyzer:

for(int hour = 0; hour < hourCounts.length; hour++) {
    System.out.println(hour + ": " + hourCounts[hour]);
}

The result of this will be that the value of each element in the array is printed, preceded by its 
corresponding hour number. For instance:

0: 149
1: 149
2: 148
...
23: 166

When we compare this for loop to the for-each loop, we notice that the syntactic difference is in 
the section between the parentheses in the loop header. In this for loop, the parentheses contain 
three separate sections, separated by semicolons.

From a programming-language design point of view, it would have been nicer to use two dif-
ferent keywords for these two loops, maybe for and foreach. The reason that for is used 
for both of them is, again, a historical accident. Older versions of the Java language did not 
contain the for-each loop, and when it was finally introduced, Java designers did not want 
to introduce a new keyword at this stage, because this could cause problems with existing 
programs. So they decided to use the same keyword for both loops. This makes it slightly 
harder for us to distinguish these loops, but we will get used to recognizing the different 
header structures.

Even though the for loop is often used for definite iteration, the fact that it is controlled by a 
general boolean expression means that it is actually closer to the while loop than to the for-
each loop. We can illustrate the way that a for loop executes by rewriting its general form as an 
equivalent while loop:

initialization;
while(condition) {

statements to be repeated
post-body action

}



4.16 Fixed-size collections | 147

So the alternative form for the body of printHourlyCounts would be

int hour = 0;
while(hour < hourCounts.length) {
    System.out.println(hour + ": " + hourCounts[hour]);
    hour++;
}

From this rewritten version, we can see that the post-body action is not actually executed until 
after the statements in the loop’s body, despite the action’s position in the for loop’s header. In 
addition, we can see that the initialization part is executed only once—immediately before the 
condition is tested for the first time.

In both versions, note in particular the condition

hour < hourCounts.length

This illustrates two important points:

■ All arrays contain a field length that contains the value of the fixed size of that array. The 
value of this field will always match the value of the integer expression used to create the ar-
ray object. So the value of length here will be 24.

■ The condition uses the less-than operator, <, to check the value of hour against the length of the 
array. So in this case the loop will continue as long as hour is less than 24. In general, when we 
wish to access every element in an array, a for-loop header will have the following general form:

for(int index = 0; index < array.length; index++)

This is correct, because we do not wish to use an index value that is equal to the array’s 
length; such an element will never exist.

4.16.7 Arrays and the for-each loop

Could we also rewrite the for loop shown above with a for-each loop? The answer is: almost. 
Here is an attempt:

for(int value : hourCounts) {
    System.out.println(": " + value);
}

This code will compile and execute. (Try it out!) From this fragment, we can see that arrays 
can, in fact, be used in for-each loops just like other collections. We have, however, one prob-
lem: we cannot easily print out the hour in front of the colon. This code fragment simply omits 
printing the hour, and just prints the colon and the value. This is because the for-each loop does 
not provide access to a loop-counter variable, which we need in this case for printing the hour.

To fix this, we would need to define our own counter variable (similar to what we did in the while 
loop example). Instead of doing this, we prefer using the old-style for loop because it is more 
concise.



148 |       Chapter 4 ■ Grouping objects

4.16.8 The for loop and iterators

In Section 4.12.2, we showed the necessity of using an Iterator if we wished to remove ele-
ments from a collection. There is a special use of the for loop with an Iterator when we want 
to do something like this. Suppose that we wished to remove every music track by a particular 
artist from our music organizer. The point here is that we need to examine every track in the 
collection, so a for-each loop would seem appropriate, but we know already that we cannot use 
it in this particular case. However, we can use a for loop as follows:

for(Iterator<Track> it = tracks.iterator(); it.hasNext(); ) {
    Track t = it.next();
    if(t.getArtist().equals(artist)) {
        it.remove();
    }
}

The important point here is that there is no post-body action in the loop’s header—it is just blank. 
This is allowed, but we must still include the semicolon after the loop’s condition. By using a for 
loop instead of a while loop, it is a little clearer that we intend to examine every item in the list.

Which loop should I use? We have discussed three different loops: the for-each loop, the 

while loop, and the for loop. As you have seen, in many situations you have a choice of using either 

one of these to solve your task. Usually, one loop could be rewritten using another. So how do you 

decide which one to use at any given point? Here are some guidelines:

■ If you need to iterate over all elements in a collection, the for-each loop is almost always the 

most elegant loop to use. It is clear and concise (but it does not give you a loop counter).

■ If you have a loop that is not related to collections (but instead performs some other action 

repeatedly), the for-each loop is not useful. Your choice will be between the for loop and the 

while loop. The for-each loop is only for collections.

■ The for loop is good if you know at the start of the loop how many iterations you need (that is, 

how often you need to loop around). This information can be in a variable but should not change 

during the loop execution. It is also very good if you need to use the loop counter explicitly.

■ The while loop should be preferred if, at the start of the loop, you don’t know how often you 

need to loop. The end of the loop can be determined on the fly by some condition (for example, 

repeatedly read one line from a file until we reach the end of the file).

■ If you need to remove elements from the collection while looping, use a for loop with an 

Iterator if you want to examine the whole collection, or a while loop if you might finish before 

reaching the end of the collection.

Exercise 4.69 Check to see what happens if the for loop’s condition is incorrectly written 

using the <= operator in printHourlyCounts:

for(int hour = 0; hour <= hourCounts.length; hour++)

Exercise 4.70 Rewrite the body of printHourlyCounts so that the for loop is replaced 

by an equivalent while loop. Call the rewritten method to check that it prints the same results 

as before.



4.16 Fixed-size collections | 149

Exercise 4.71 Correct all the errors in the following method.

/**
 * Print all the values in the marks array that are
 * greater than mean.
 * @param marks An array of mark values.
 * @param mean The mean (average) mark.
 */
public void printGreater(double marks, double mean)
{
    for(index = 0; index <= marks.length; index++) {
        if(marks[index] > mean) {
            System.out.println(marks[index]);
        }
    }
}

Exercise 4.72 Modify the LogAnalyzer class so that it has a constructor that can take 

the name of the log file to be analyzed. Have this constructor pass the file name to the con-

structor of the LogfileReader class. Use the LogfileCreator class to create your own 

file of random log entries, and analyze the data.

Exercise 4.73 Complete the numberOfAccesses method, below, to count the total 

number of accesses recorded in the log file. Complete it by using a for loop to iterate over 

hourCounts:

/**
 * Return the number of accesses recorded in the log
 * file.
 */
public int numberOfAccesses()
{
    int total = 0;
    // Add the value in each element of hourCounts
    // to total.
    ...
    return total;
}

Exercise 4.74 Add your numberOfAccesses method to the LogAnalyzer class and 

check that it gives the correct result. Hint: You can simplify your checking by having the ana-

lyzer read log files containing just a few lines of data. That way you will find it easier to deter-

mine whether or not your method gives the correct answer. The LogfileReader class has a 

constructor with the following header, to read from a particular file:

/**
 * Create a LogfileReader that will supply data
 * from a particular log file.



150 |       Chapter 4 ■ Grouping objects

 * @param filename The file of log data.
 */
public LogfileReader(String filename)

Exercise 4.75 Add a method busiestHour to LogAnalyzer that returns the busiest 

hour. You can do this by looking through the hourCounts array to find the element with the 

biggest count. Hint: Do you need to check every element to see if you have found the busiest 

hour? If so, use a for loop or a for-each loop. Which one is better in this case?

Exercise 4.76 Add a method quietestHour to LogAnalyzer that returns the number 

of the least busy hour. Note: This sounds almost identical to the previous exercise, but there is 

a small trap for the unwary here. Be sure to check your method with some data in which every 

hour has a non-zero count.

Exercise 4.77 Which hour is returned by your busiestHour method if more than one 

hour has the biggest count?

Exercise 4.78 Add a method to LogAnalyzer that finds which two-hour period is the 

busiest. Return the value of the first hour of this period.

Exercise 4.79 Challenge exercise Save the weblog-analyzer project under a different name 

so that you can develop a new version that performs a more extensive analysis of the avail-

able data. For instance, it would be useful to know which days tend to be quieter than others, 

Are there any seven-day cyclical patterns, for instance? In order to perform analysis of daily, 

monthly, or yearly data, you will need to make some changes to the LogEntry class. This al-

ready stores all the values from a single log line, but only the hour and minute values are avail-

able via accessors. Add further methods that make the remaining fields available in a similar 

way. Then add a range of additional analysis methods to the analyzer.

Exercise 4.80 Challenge exercise If you have completed the previous exercise, you could 

extend the log-file format with additional numerical fields. For instance, servers commonly 

store a numerical code that indicates whether an access was successful or not. The value 200 

stands for a successful access, 403 means that access to the document was forbidden, and 

404 means that the document could not be found. Have the analyzer provide information on 

the number of successful and unsuccessful accesses. This exercise is likely to be very chal-

lenging, as it will require you to make changes to every class in the project.

4.17 Summary
In this chapter, we have discussed mechanisms to store collections of objects, rather than single 
objects in separate fields. We have looked at two different collections in detail: the ArrayList
as an example of a collection with flexible size, and arrays as a fixed-size collection.

Using collections such as these will be very important in all projects from now on. You will 
see that almost every application has a need somewhere for some form of collection. They are 
fundamental to writing programs.



4.17 Summary | 151

When using collections, the need arises to iterate over all elements in a collection to make use 
of the objects stored in them. For this purpose, we have seen the use of loops and iterators.

Loops are also a fundamental concept in computing that you will be using in every project from 
now on. Make sure you familiarize yourself sufficiently with writing loops—you will not get 
very far without them. When deciding on the type of loop to use in a particular situation, it is of-
ten useful to consider whether the task involves definite iteration or indefinite iteration. Is there 
certainty or uncertainty about the number of iterations that will be required?

As an aside, we have mentioned the Java class library, a large collection of useful classes that we 
can use to make our own classes more powerful. We shall need to study the library in some more 
detail to see what else is in it that we should know about. This will be the topic of the next chapter.

Terms introduced in this chapter

collection, array, iterator, for-each loop, while loop, for loop, index, import 

statement, library, package, anonymous object, definite iteration, indefinite 

iteration

Concept summary

■ collection A collection object can store an arbitrary number of other objects.

■ loop A loop can be used to execute a block of statements repeatedly without having to write 

them multiple times.

■ iterator An iterator is an object that provides functionality to iterate over all elements of a col-

lection.

■ null The Java reserved word null is used to mean “no object” when an object variable is not 

currently referring to a particular object. A field that has not explicitly been initialized will contain 

the value null by default.

■ array An array is a special type of collection that can store a fixed number of elements.

Exercise 4.81 In the lab-classes project that we have discussed in previous chapters, the 

LabClass class includes a students field to maintain a collection of Student objects. 

Read through the LabClass class in order to reinforce some of the concepts we have dis-

cussed in this chapter.

Exercise 4.82 The LabClass class enforces a limit to the number of students who may be 

enrolled in a particular tutorial group. In view of this, do you think it would be more appropri-

ate to use a fixed-size array rather than a flexible-size collection for the students field? Give 

reasons both for and against the alternatives.



152 |       Chapter 4 ■ Grouping objects

Exercise 4.83 Rewrite the listAllFiles method in the MusicOrganizer class from 

music-organizer-v3 by using a for loop rather than a for-each loop.

Exercise 4.84 Java provides another type of loop: the do-while loop. Find out how this loop 

works and describe it. Write an example of a do-while loop that prints out the numbers from 

1 to 10. To find out about this loop, find a description of the Java language (for example, at

http://download.oracle.com/javase/tutorial/java/nutsandbolts/
in the section "Control Flow Statements").

Exercise 4.85 Rewrite the listAllFiles method in the MusicOrganizer class from 

music-organizer-v3 by using a do-while loop rather than a for-each loop. Test your solu-

tion carefully. Does it work correctly if the collection is empty?

Exercise 4.86 Challenge exercise Rewrite the findFirst method in the MusicOrganizer
class from music-organizer-v4 by using a do-while loop rather than a while loop. Test your solu-

tion carefully. Try searches that will succeed and others that will fail. Try searches where the file 

to be found is first in the list and also where it is last in the list.

Exercise 4.87 Find out about Java’s switch-case statement. What is its purpose? How is 

it used? Write an example. (This is also a control flow statement, so you will find information in 

similar locations as for the do-while loop.)

http://download.oracle.com/javase/tutorial/java/nutsandbolts/


In Chapter 4, we introduced the class ArrayList from the Java class library. We discussed 
how this enabled us to do something that would otherwise be hard to achieve (in this case, stor-
ing an arbitrary number of objects).

This was just a single example of a useful class from the Java library. The library consists of 
thousands of classes, many of which are generally useful for your work and many of which you 
will probably never use.

For a good Java programmer, it is essential to be able to work with the Java library and make 
informed choices about which classes to use. Once you have started work with the library, 
you will quickly see that it enables you to perform many tasks more easily than you would 
otherwise have been able to. Learning to work with library classes is the main topic of this 
chapter.

The items in the library are not just a set of unrelated, arbitrary classes that we all have to 
learn individually, but are often arranged in relationships, exploiting common characteristics. 
Here, we again encounter the concept of abstraction to help us deal with a large amount of 
information. Some of the most important parts of the library are the collections, of which the 
ArrayList class is one. We will discuss other sorts of collections in this chapter and see that 
they share many attributes among themselves, so that we can often abstract from the individual 
details of a specific collection and talk about collection classes in general.

New collection classes, as well as some other useful classes, will be introduced and discussed. 
Throughout this chapter, we will work on the construction of a single application (the TechSupport
system), which makes use of various different library classes. A complete implementation 

Main concepts discussed in this chapter:

■ using library classes

■ writing documentation

CHAPTER

5 More-sophisticated behavior

■ reading documentation

Java constructs discussed in this chapter:

String, ArrayList, Random, HashMap, HashSet, Iterator, Arrays,

static, final



154 |       Chapter 5 ■ More-sophisticated behavior

containing all the ideas and source code discussed here, as well as several intermediate versions, 
is included in the book projects. While this enables you to study the complete solution, you are 
encouraged to follow the path through the exercises in this chapter. These will, after a brief look 
at the complete program, start with a very simple initial version of the project and then gradually 
develop and implement the complete solution.

The application makes use of several new library classes and techniques—each requiring study 
individually—such as hash maps, sets, string tokenization, and further use of random numbers. 
You should be aware that this is not a chapter to be read and understood in a single day, but that 
it contains several sections that deserve a few days of study each. Overall, when you finally 
reach the end and have managed to undertake the implementation suggested in the exercises, 
you will have learned about a good variety of important topics.

5.1 Documentation for library classes
The Java library is big. It consists of thousands of classes, each of which has many methods, both 
with and without parameters, and with and without return types. It is impossible to memorize 
them all and all of the details that go with them. Instead, a good Java programmer should know:

■ some of the most important classes and their methods from the library by name (ArrayList
is one of those important ones) and

■ how to find out about other classes and look up the details (such as methods and parameters).

In this chapter, we will introduce some of the important classes from the class library, and 
further library classes will be introduced throughout the book. But, more importantly, we will 
show you how you can explore and understand the library on your own. This will enable you to 
write much more interesting programs. Fortunately, the Java library is quite well documented. 
This documentation is available in HTML format (so that it can be read in a web browser). This 
is what we shall use to find out about the library classes.

Reading and understanding the documentation is the first part of our introduction to library 
classes. We will take this approach a step further and also discuss how to prepare our own 
classes so that other people can use them in the same way as they would use standard library 
classes. This is important for real-world software development, where teams have to deal with 
large projects and maintenance of software over time.

One thing you may have noted about the ArrayList class is that we used it without ever look-
ing at the source code.We did not check how it was implemented. That was not necessary for 
utilizing its functionality. All we needed to know was the name of the class, the names of the 
methods, the parameters and return types of those methods, and what exactly these methods 
do. We did not really care how the work was done. This is typical for the use of library classes.

The same is also true for other classes in larger software projects. Typically, several people 
work together on a project by working on different parts. Each programmer should concentrate 
on her own area and need not understand the details of all the other parts (we discussed this in 
Section 3.2 where we talked about abstraction and modularization). In effect, each programmer 
should be able to use the classes of other team members as if they were library classes, making 
informed use of them without the need to know how they work internally.

Concept:

Java library. The

Java standard 

class library

contains many 

classes that are 

very useful. It is 

important to know 

how to use the 

library.



5.2 The TechSupport system | 155

For this to work, each team member must write documentation about his class similar to the 
documentation for the Java standard library, which enables other people to use the class without 
the need to read the code. This topic will also be discussed in this chapter.

5.2 The TechSupport system
As always, we shall explore these issues with an example. This time, we shall use the 
TechSupport application. You can find it in the book projects under the name tech-support1.

TechSupport is a program intended to provide technical support for customers of the fictitious 
DodgySoft software company. Some time ago, DodgySoft had a technical support department 
with people sitting at telephones. Customers could call to get advice and help with their techni-
cal problems with the DodgySoft software products. Recently, though, business has not been 
going so well, and DodgySoft decided to get rid of the technical support department to save 
money. They now want to develop the TechSupport system to give the impression that support 
is still provided. The system is supposed to mimic the responses a technical-support person 
might give. Customers can communicate with the technical-support system online.

5.2.1 Exploring the TechSupport system

Exercise 5.1 Open and run the project tech-support-complete. You run it by creating an 

object of class SupportSystem and calling its start method. Enter some problems you 

might be having with your software, to try out the system. See how it behaves. Type “bye” 

when you are done. You do not need to examine the source code at this stage. This project is 

the complete solution that we will have developed by the end of this chapter. The purpose of 

this exercise is only to give you an idea of what we plan to achieve.

Eliza The idea of the TechSupport project is based on the groundbreaking artificial intelligence pro-

gram, Eliza, developed by Joseph Weizenbaum at Massachusetts Institute of Technology in the 1960s. 

You can find out more about the original program by searching the web for “Eliza” and “Weizenbaum.”

We will now start our more detailed exploration by using the tech-support1 project. It is a first, 
rudimentary implementation of our system. We will improve it throughout the chapter. This 
way, we should arrive at a better understanding of the whole system than we would by just 
reading the complete solution.

In Exercise 5.1 you have seen that the program essentially holds a dialog with the user. The user 
can type in a question, and the system responds. Try the same with our prototype version of the 
project, tech-support1.

In TechSupport’s complete version, the system manages to produce reasonably varied responses—
sometimes they even seem to make sense! In the prototype version we are using as a starting point, 
the responses are much more restricted (Figure 5.1). You will notice very quickly that the response 
is always the same:

“That sounds interesting. Tell me more . . .”



156 |       Chapter 5 ■ More-sophisticated behavior

This is, in fact, not very interesting at all and not very convincing when trying to pretend that 
we have a technical-support person sitting at the other end of the dialog. We will shortly try to 
improve this. However, before we do this, we shall explore further what we have so far.

The project diagram shows us three classes: SupportSystem, InputReader, and Responder
(Figure 5.2). SupportSystem is the main class, which uses the InputReader to get some 
input from the terminal and the Responder to generate a response.

Figure 5.1
A first 

TechSupport
dialog

Figure 5.2
TechSupport class 

diagram

Examine the InputReader further by creating an object of this class and then looking at the 
object’s methods. You will see that it has only a single method available, called getInput,
which returns a string. Try it out. This method lets you type a line of input in the terminal 
and then returns whatever you typed as a method result. We will not examine how this works 
internally at this point, but just note that the InputReader has a getInput method that 
returns a string.

Do the same with the Responder class. You will find that it has a generateResponse method 
that always returns the string "That sounds interesting. Tell me more...". This ex-
plains what we saw in the dialog earlier.

Now let us look at the SupportSystem class a bit more closely.



5.2 The TechSupport system | 157

5.2.2 Reading the code

The complete source code of the SupportSystem class is shown in Code 5.1. Code 5.2 shows 
the source code of class Responder.

/**
 * This class implements a technical support system. It is
 * the top-level class in this project. The support system
 * communicates via text input/output in the text terminal.
 * This class uses an object of class InputReader to read
 * input from the user and an object of class Responder to
 * generate responses.
 * It contains a loop that repeatedly reads input and
 * generates output until the user wants to leave.
 *
 * @author     Michael Kölling and David J. Barnes
 * @version    0.1 (2011.07.31)
 */
public class SupportSystem
{

private InputReader reader;
private Responder responder;

    /**
     * Creates a technical support system.
     */

public SupportSystem()
{

reader = new InputReader();
responder = new Responder();

}

    /**
     * Start the technical support system. This will print a
     * welcome message and enter into a dialog with the user,
     * until the user ends the dialog.
     */

public void start()
{

boolean finished = false;

printWelcome();
while(!finished) {

String input = reader.getInput();

if(input.startsWith("bye")) {
finished = true;

}

Code 5.1
The SupportSystem
source code



158 |       Chapter 5 ■ More-sophisticated behavior

else {
String response = responder.generateResponse();
System.out.println(response);

}
}
printGoodbye();

}

    /**
     * Print a welcome message to the screen.
     */

private void printWelcome()
{

System.out.println(
"Welcome to the DodgySoft Technical Support System.");

System.out.println();
System.out.println("Please tell us about your problem.");
System.out.println(

"We will assist you with any problem you might have.");
System.out.println(

"Please type 'bye' to exit our system.");
}

    /**
     * Print a good-bye message to the screen.
     */

private void printGoodbye()
{

System.out.println("Nice talking to you. Bye...");
}

}

Code 5.1 
continued
The SupportSystem
source code

/**
 * The responder class represents a response generator object.
 * It is used to generate an automatic response to an input string.
 *
 * @author     Michael Kölling and David J. Barnes
 * @version    0.1 (2011.07.31)
 */
public class Responder
{
    /**
     * Construct a Responder - nothing to do
     */

Code 5.2
The Responder
source code



5.2 The TechSupport system | 159

Looking at Code 5.2, we see that the Responder class is trivial. It has only one method, and 
that always returns the same string. This is something we shall improve later. For now, we will 
concentrate on the SupportSystem class.

SupportSystem declares two instance fields to hold an InputReader and a Responder ob-
ject, and it assigns those two objects in its constructor.

At the end, it has two methods called printWelcome and printGoodbye. These simply print 
out some text—a welcome message and a good-bye message, respectively.

The most interesting piece of code is the method in the middle: start. We will discuss this 
method in some more detail.

Toward the top of the method is a call to printWelcome, and at the end is a call to print-
Goodbye. These two calls take care of printing out these sections of text at the appropriate 
times. The rest of this method consists of a declaration of a boolean variable and a while loop. 
The structure is

boolean finished = false;

while(!finished) {

do something

    if(exit condition) {
        finished = true;
    }

    else {
do something more

    }
}

This code pattern is a variation of the while-loop idiom discussed in Section 4.10. We use 
finished as a flag that becomes true when we want to end the loop (and with it, the whole 

public Responder()
{
}

    /**
     * Generate a response.
     * @return   A string that should be displayed as the
     *           response
     */

public String generateResponse()
{

return "That sounds interesting. Tell me more...";
}

}

Code 5.2 
continued
The Responder
source code



160 |       Chapter 5 ■ More-sophisticated behavior

program). We make sure that it is initially false. (Remember that the exclamation mark is a 
not operator!)

The main part of the loop—the part that is done repeatedly while we wish to continue—consists 
of three statements if we strip it of the check for the exit condition:

String input = reader.getInput();
...
String response = responder.generateResponse();
System.out.println(response);

Thus, the loop repeatedly

■ reads some user input,

■ asks the responder to generate a response, and

■ prints out that response.

(You may have noticed that the response does not depend on the input at all! This is certainly 
something we shall have to improve later.)

The last part to examine is the check of the exit condition. The intention is that the program 
should end once a user types the word ‘bye’. The relevant section of source code we find in the 
class reads

String input = reader.getInput();

if(input.startsWith("bye")) {
    finished = true;
}

If you understand these pieces in isolation, then it is a good idea to look again at the complete 
start method in Code 5.1 and see whether you can understand everything together.

In the last code fragment examined above, a method called startsWith is used. Because that 
method is called on the input variable, which holds a String object, it must be a method of 
the String class. But what does this method do? And how do we find out?

We might guess, simply from seeing the name of the method, that it tests whether the input 
string starts with the word “bye”. We can verify this by experiment. Run the TechSupport
system again and type “bye bye” or “bye everyone”. You will notice that both versions cause 
the system to exit. Note, however, that typing “Bye” or “ bye”—starting with a capital letter 
or with a space in front of the word—is not recognized as starting with “bye”. This could be 
slightly annoying for a user, but it turns out that we can solve these problems if we know a bit 
more about the String class.

How do we find out more information about the startsWith method or other methods of the 
String class?

5.3 Reading class documentation
The class String is one of the classes of the standard Java class library. We can find out more 
details about it by reading the library documentation for the String class.



5.3 Reading class documentation | 161

To do this, choose the Java Class Libraries item from the BlueJ Help menu. This will open a 
web browser displaying the main page of the Java API (Application Programming Interface) 
documentation.1

The web browser will display three frames. In the one at the top left, you see a list of packages. 
Below that is a list of all classes in the Java library. The large frame on the right is used to dis-
play details of a selected package or class.

In the list of classes on the left, find and select the class String. The frame on the right then 
displays the documentation of the String class (Figure 5.3).

1 By default, this function accesses the documentation through the Internet. This will not work if your ma-
chine does not have network access. However, BlueJ can be configured to use a local copy of the Java 
API documentation. This is recommended, because it speeds up access and can work without an Internet 
connection. For details, see Appendix A.

Concept:

The Java class

library docu-

mentation shows 

details about all 

classes in the 

library. Using this 

documentation is 

essential in order 

to make good use 

of library classes.

Figure 5.3
The Java class library 

documentation

Exercise 5.2 Investigate the String documentation. Then look at the documentation for 

some other classes. What is the structure of class documentation? Which sections are com-

mon to all class descriptions? What is their purpose?



162 |       Chapter 5 ■ More-sophisticated behavior

5.3.1 Interfaces versus implementation

You will see that the documentation includes different pieces of information. They are, among 
other things:

■ the name of the class;

■ a general description of the purpose of the class;

■ a list of the class’s constructors and methods;

■ the parameters and return types for each constructor and method;

■ a description of the purpose of each constructor and method.

This information, taken together, is called the interface of a class. Note that the interface does 
not show the source code that implements the class. If a class is well described (that is, if its 
interface is well written) then a programmer does not need to see the source code to be able to 
use the class. Seeing the interface provides all the information needed. This is abstraction in 
action again.

The source code behind the scene, which makes the class work, is called the implementation
of the class. Usually a programmer works on the implementation of one class at a time, while 
making use of several other classes via their interfaces.

This distinction between the interface and the implementation is a very important concept, and 
it will surface repeatedly in this and later chapters of this book.

Exercise 5.3 Look up the startsWith method in the documentation for String. There 

are two versions. Describe in your own words what they do and the differences between them.

Exercise 5.4 Is there a method in the String class that tests whether a string ends with a 

given suffix? If so, what is it called and what are its parameters and return type?

Exercise 5.5 Is there a method in the String class that returns the number of characters 

in the string? If so, what is it called and what are its parameters?

Exercise 5.6 If you found methods for the two tasks above, how did you find them? Is it 

easy or hard to find methods you are looking for? Why?

Concept:

The interface of 

a class describes 

what a class does 

and how it can 

be used with-

out showing the 

implementation.

Note The word interface has several meanings in the context of programming and Java. It is used 

to describe the publicly visible part of a class (which is how we have just been using it here), but 

it also has other meanings. The user interface (often a graphical user interface) is sometimes re-

ferred to as just the interface, but Java also has a language construct called interface (discussed in 

Chapter 10) that is related but distinct from our meaning here.

It is important to be able to distinguish between the different meanings of the word interface in a 

particular context.

Concept:

The complete 

source code that 

defines a class 

is called the 

implementation

of that class.



5.3 Reading class documentation | 163

The interface terminology is also used for individual methods. For example, the String docu-
mentation shows us the interface of the length method:

public int length()

Returns the length of this string. The length is equal to the number of Unicode code 
units in the string.

Specified by:

length in interface CharSequence

Returns:

the length of the sequence of characters represented by this object.

The interface of a method consists of the signature of the method and a comment (shown here 
in italics). The signature of a method includes (in this order):

■ an access modifier (here public), which we shall discuss below;

■ the return type of the method (here int);

■ the method name;

■ a list of parameters (which is empty in this example).

The interface provides everything we need to know to make use of this method.

5.3.2 Using library-class methods

Back to our TechSupport system. We now want to improve the processing of input a little. We 
have seen in the discussion above that our system is not very tolerant: if we type “Bye” or 
“ bye” instead of “bye”, for instance, the word is not recognized. We want to change that by 
adjusting the text read in from a user so that these variations are all recognized as “bye”.

The documentation of the String class tells us that it has a method called trim to remove 
spaces at the beginning and the end of the string. We can use that method to handle the second 
problem case.

Concept:

Immutable

objects. An object 

is said to be immu-

table if its contents 

or state cannot be 

changed once it 

has been created. 

Strings are an ex-

ample of immutable 

objects.

Exercise 5.7 Find the trim method in the String class’s documentation. Write down the 

signature of that method. Write down an example call to that method on a String variable 

called text.

One important detail about String objects is that they are immutable—that is, they cannot be 
modified once they have been created. Note carefully that the trim method, for example, re-
turns a new string; it does not modify the original string. Pay close attention to the following 
“Pitfall” comment.



164 |       Chapter 5 ■ More-sophisticated behavior

After studying the interface of the trim method, we can see that we can remove the spaces 
from an input string with the following line of code:

input = input.trim();

This code will request the String object stored in the input variable to create a new, simi-
lar string with the leading and trailing spaces removed. The new String is then stored in the 
input variable because we have no further use for the old one. Thus, after this line of code, 
input refers to a string without spaces at either end.

We can now insert this line into our source code so that it reads

String input = reader.getInput();
input = input.trim();

if(input.startsWith("bye")) {
    finished = true;
}
else {

    ... Code omitted.

}

The first two lines can also be merged into a single line:

String input = reader.getInput().trim();

The effect of this line of code is identical to that of the first two lines above. The right-hand side 
should be read as if it were parenthesized as follows:

(reader.getInput()) . trim()

Which version you prefer is mainly a matter of taste. The decision should be made mainly on 
the basis of readability: use the version that you find easier to read and understand. Often, nov-
ice programmers will prefer the two-line version, whereas more experienced programmers get 
used to the one-line style.

Pitfall It is a common error in Java to try to modify a string—for example by writing

input.toUpperCase();

This is incorrect (strings cannot be modified), but this unfortunately does not produce an error. The

statement simply has no effect, and the input string remains unchanged.

The toUpperCase method, as well as other string methods, does not modify the original string, 

but instead returns a new string that is similar to the original one, with some changes applied (here, 

with characters changed to uppercase). If we want our input variable to be changed, then we have 

to assign this new object back into the variable (discarding the original one), like this:

input = input.toUpperCase();

The new object could also be assigned to another variable or processed in other ways.



5.3 Reading class documentation | 165

Now we have solved the problem caused by spaces surrounding the input, but we have not yet 
solved the problem with capital letters. However, further investigation of the String class’s 
documentation suggests a possible solution, because it describes a method named toLowerCase.

Exercise 5.8 Implement this improvement in your version of the tech-support1 project. Test

it to confirm that it is tolerant of extra space around the word ‘bye’.

Exercise 5.9 Improve the code of the SupportSystem class in the tech-support1 project 

so that case in the input is ignored. Use the String class’s toLowerCase method to do this. 

Remember that this method will not actually change the String it is called on, but result in 

the creation of a new one being created with slightly different contents.

5.3.3 Checking string equality

An alternative solution would have been to check whether the input string is the string ‘bye’ 
instead of whether it starts with the string ‘bye.’ An (incorrect!) attempt to write this code could 
look as follows:

if(input == "bye") { // does not always work!
   ...
}

The problem here is that it is possible for several independent String objects to exist that all 
represent the same text. Two String objects, for example, could both contain the characters 
‘bye’. The equality operator (==) checks whether each side of the operator refers to the same 
object, not whether they have the same value! That is an important difference.

In our example, we are interested in the question of whether the input variable and the string 
constant ‘bye’ represent the same value, not whether they refer to the same object. Thus, using 
the == operator is wrong. It could return false, even if the value of the input variable is ‘bye’.2

The solution is to use the equals method, defined in the String class. This method correctly 
tests whether the contents of two String objects are the same. The correct code reads:

if(input.equals("bye")) {
   ...
}

This can, of course, also be combined with the trim and toLowerCase methods.

2 Unfortunately, Java’s implementation of strings means that using = = will often misleadingly give the 
‘right’ answer when comparing two different String objects with identical contents. However, you 
should never use == between String objects when you want to compare their contents.

Pitfall Comparing strings with the == operator can lead to unintended results. As a general rule, 

strings should almost always be compared with equals, rather than with the == operator.



166 |       Chapter 5 ■ More-sophisticated behavior

5.4 Adding random behavior
So far, we have made a small improvement to the TechSupport project, but overall it remains 
very basic. One of the main problems is that it always gives the same response, independent of 
the user’s input. We shall now improve this by defining a set of plausible phrases with which to 
respond. We will then have the program randomly choose one of them each time it is expected 
to reply. This will be an extension of the Responder class in our project.

To do this, we will use an ArrayList to store some response strings, generate a random in-
teger number, and use the random number as an index into the response list to pick one of our 
phrases. In this version, the response will still not depend on the user’s input (we’ll do that 
later), but at least it will vary the response and look a lot better.

First, we have to find out how to generate a random integer number.

Exercise 5.10 Find the equals method in the documentation for class String. What is 

the return type of this method?

Exercise 5.11 Change your implementation to use the equals method instead of 

startsWith.

Random and pseudo-random Generating random numbers on a computer is actually not as 

easy to do as one might initially think. Because computers operate in a very well-defined, determin-

istic way that relies on the fact that all computation is predictable and repeatable, they provide little 

space for real random behavior.

Researchers have, over time, proposed many algorithms to produce seemingly random sequences 

of numbers. These numbers are typically not really random, but follow complicated rules. They are 

therefore referred to as pseudo-random numbers.

In a language such as Java, the pseudo-random number generation has fortunately been imple-

mented in a library class, so all we have to do to receive a pseudo-random number is to make 

some calls to the library.

If you want to read more about this, do a web search for “pseudo random numbers.”

5.4.1 The Random class

The Java class library contains a class named Random that will be helpful for our project.

Exercise 5.12 Find the class Random in the Java class library documentation. Which pack-

age is it in? What does it do? How do you construct an instance? How do you generate a 

random number? Note that you will probably not understand everything that is stated in the 

documentation. Just try to find out what you need to know.

Exercise 5.13 Write a small code fragment (on paper) that generates a random integer 

number using this class.



5.4 Adding random behavior | 167

To generate a random number, we have to:

■ create an instance of class Random and

■ make a call to a method of that instance to get a number.

Looking at the documentation, we see that there are various methods called nextSomething for 
generating random values of various types. The one that generates a random integer number is 
called nextInt.

The following illustrates the code needed to generate and print a random integer number:

Random randomGenerator;

randomGenerator = new Random();
int index = randomGenerator.nextInt();
System.out.println(index);

This code fragment creates a new instance of the Random class and stores it in the randomGen-
erator variable. It then calls the nextInt method to receive a random number, stores it in the 
index variable, and eventually prints it out.

Exercise 5.14 Write some code (in BlueJ) to test the generation of random numbers. To do 

this, create a new class called RandomTester. You can create this class in the tech-support1

project, or you can create a new project for it—it doesn’t matter. In class RandomTester,

implement two methods: printOneRandom (which prints out one random number) and 

printMultiRandom(int howMany) (which has a parameter to specify how many num-

bers you want, and then prints out the appropriate number of random numbers).

Your class should create only a single instance of class Random (in its constructor) and store it 
in a field. Do not create a new Random instance every time you want a new number.

5.4.2 Random numbers with limited range

The random numbers we have seen so far were generated from the whole range of Java integers 
(–2147483648 to 2147483647). That is okay as an experiment, but seldom useful. More often, 
we want random numbers within a given limited range.

The Random class also offers a method to support this. It is again called nextInt, but it has a 
parameter to specify the range of numbers that we would like to use.

Exercise 5.15 Find the nextInt method in class Random that allows the target range of 

random numbers to be specified. What are the possible random numbers that are generated 

when you call this method with 100 as its parameter?

Exercise 5.16 Write a method in your RandomTester class called throwDice that re-

turns a random number between 1 and 6 (inclusive).



168 |       Chapter 5 ■ More-sophisticated behavior

When using a method that generates random numbers from a specified range, care must be taken 
to check whether the boundaries are inclusive or exclusive. The nextInt (int n) method in the 
Java library Random class, for example, specifies that it generates a number from 0 (inclusive) to 
n (exclusive). That means that the value 0 is included in the possible results, whereas the speci-
fied value for n is not. The highest number possibly returned by this call is n–1.

Exercise 5.17 Write a method called getResponse that randomly returns one of the 

strings "yes", "no", or "maybe".

Exercise 5.18 Extend your getResponse method so that it uses an ArrayList to store 

an arbitrary number of responses and randomly returns one of them.

Exercise 5.19 Add a method to your RandomTester class that takes a parameter max
and generates a random number in the range 1 to max (inclusive).

Exercise 5.20 Add a method to your RandomTester class that takes two parameters, 

min and max, and generates a random number in the range min to max (inclusive). Rewrite the 

body of the method you wrote for the previous exercise so that it now calls this new method to 

generate its result. Note that it should not be necessary to use a loop in this method.

5.4.3 Generating random responses

Now we can look at extending the Responder class to select a random response from a list of 
predefined phrases. Code 5.2 shows the source code of class Responder as it is in our first version.

We shall now add code to this first version to:

■ declare a field of type Random to hold the random number generator;

■ declare a field of type ArrayList to hold our possible responses;

■ create the Random and ArrayList objects in the Responder constructor;

■ fill the responses list with some phrases;

■ select and return a random phrase when generateResponse is called.

Code 5.3 shows a version of the Responder source code with these additions.

import java.util.ArrayList;
import java.util.Random;

/**
 * The responder class represents a response-generator object.
 * It is used to generate an automatic response by randomly
 * selecting a phrase from a predefined list of responses.
 *

Code 5.3
The Responder
source code with 

random responses



5.4 Adding random behavior | 169

 * @author     Michael Kölling and David J. Barnes
 * @version    0.2 (2011.07.31)
 */
public class Responder
{

private Random randomGenerator;
private ArrayList<String> responses;

    /**
     * Create a responder.
     */

public Responder()
{

randomGenerator = new Random();
responses = new ArrayList<String>();
fillResponses();

}

    /**
     * Generate a response.
     * @return  A string that should be displayed as the
     *          response
     */

public String generateResponse()
{

        // Pick a random number for the index in the default response
        // list. The number will be between 0 (inclusive) and the size
        // of the list (exclusive).

int index = randomGenerator.nextInt(responses.size());
return responses.get(index);

}

    /**
     * Build up a list of default responses from which we can
     * pick one if we don’t know what else to say.
     */

private void fillResponses()
{

responses.add("That sounds odd. Could you describe \n" +
"that problem in more detail?");

responses.add("No other customer has ever \n" +
"complained about this before. \n" +
"What is your system configuration?");

responses.add("That’s a known problem with Vista." +
"Windows 7 is much better.");

responses.add("I need a bit more information on that.");
responses.add("Have you checked that you do not \n" +

"have a dll conflict?");

Code 5.3 
continued
The Responder
source code with 

random responses



170 |       Chapter 5 ■ More-sophisticated behavior

In this version, we have put the code that fills the response list into its own method, named 
fillResponses, which is called from the constructor. This ensures that the responses list will 
be filled as soon as a Responder object is created, but the source code for filling the list is kept 
separate to make the class easier to read and understand.

The most interesting code segment in this class is in the generateResponse method. Leaving 
out the comments, it reads

public String generateResponse()
{
    int index = randomGenerator.nextInt(responses.size());
    return responses.get(index);
}

The first line of code in this method does three things:

■ It gets the size of the response list by calling its size method.

■ It generates a random number between 0 (inclusive) and the size (exclusive).

■ It stores that random number in the local variable index.

If this seems a lot of code for one line, you could also write

int listSize = responses.size();
int index = randomGenerator.nextInt(listSize);

This code is equivalent to the first line above. Which version you prefer, again, depends on 
which one you find easier to read.

It is important to note that this code segment will generate a random number in the range 
0 to listSize–1 (inclusive). This fits perfectly with the legal indices for an ArrayList.
Remember that the range of indices for an ArrayList of size listSize is 0 to listSize–1.
Thus, the computed random number gives us a perfect index to randomly access one from the 
complete set of the list’s elements.

The last line in the method reads

return responses.get(index);

responses.add("That is explained in the manual. \n" +
"Have you read the manual?");

responses.add("Your description is a bit \n" +
"wishy-washy. Have you got an expert \n" +
"there with you who could describe \n" +
"this more precisely?");

responses.add("That’s not a bug, it’s a feature!");
responses.add("Could you elaborate on that?");

}
}

Code 5.3 
continued
The Responder
source code with 

random responses



5.5 Packages and import | 171

This line does two things:

■ It retrieves the response at position index using the get method.

■ It returns the selected string as a method result, using the return statement.

If you are not careful, your code may generate a random number that is outside the valid indices 
of the ArrayList. When you then try to use it as an index to access a list element, you will get 
an IndexOutOfBoundsException.

5.4.4 Reading documentation for parameterized classes

So far, we have asked you to look at the documentation for the String class from the java.
lang package and the Random class from the java.util package. You might have noticed 
when doing this that some class names in the documentation list look slightly different, such as 
ArrayList<E> or HashMap<K, V>. That is, the class name is followed by some extra infor-
mation in angle brackets. Classes that look like this are called parameterized classes or generic
classes. The information in the brackets tells us that when we use these classes, we must supply 
one or more type names in angle brackets to complete the definition. We have already seen this 
idea in practice in Chapter 4, where we used ArrayList by parameterizing it with type names 
such as String. They can also be parameterized with any other type:

private ArrayList<String> notes;
private ArrayList<Student> students;

Because we can parameterize an ArrayList with any other class type that we choose, this is 
reflected in the API documentation. So if you look at the list of methods for ArrayList<E>,
you will see methods such as:

boolean add(E o)
E get(int index)

This tells us that the type of objects we can add to an ArrayList depends on the type used to 
parameterize it, and the type of the objects returned from its get method depends on this type 
in the same way. In effect, if we create an ArrayList<String> object and then the documen-
tation tells us that the object has the following two methods:

boolean add(String o)
String get(int index)

whereas if we create an ArrayList<Student> object, then it will have these two methods:

boolean add(Student o)
Student get(int index)

We will ask you to look at the documentation for further parameterized types in later sections 
in this chapter.

5.5 Packages and import
There are still two lines at the top of the source file that we need to discuss:

import java.util.ArrayList;
import java.util.Random;



172 |       Chapter 5 ■ More-sophisticated behavior

We encountered the import statement for the first time in Chapter 4. Now is the time to look at 
it a little more closely.

Java classes that are stored in the class library are not automatically available for use, like the 
other classes in the current project. Rather, we must state in our source code that we would like 
to use a class from the library. This is called importing the class and is done using the import
statement. The import statement has the form

import qualified-class-name;

Because the Java library contains several thousand classes, some structure is needed in the 
organization of the library to make it easier to deal with the large number of classes. Java uses 
packages to arrange library classes into groups that belong together. Packages can be nested 
(that is, packages can contain other packages).

The classes ArrayList and Random are both in the package java.util. This information can 
be found in the class documentation. The full name or qualified name of a class is the name of 
its package, followed by a dot followed by the class name. Thus, the qualified names of the two 
classes we used here are java.util.ArrayList and java.util.Random.

Java also allows us to import complete packages with statements of the form

import package-name.*;

So the following statement would import all class names from the java.util package:

import java.util.*;

Listing all used classes separately, as in our first version, is a little more work in terms of typing 
but serves well as a piece of documentation. It clearly indicates which classes are actually used 
by our class. Therefore, in this book, we shall tend to use the style of the first example, listing 
all imported classes separately.

There is one exception to these rules: some classes are used so frequently that almost every 
class would import them. These classes have been placed in the package java.lang, and this 
package is automatically imported into every class. So we do not need to write import state-
ments for classes in java.lang. The class String is an example of such a class.

Exercise 5.21 Implement in your version of the tech-support system the random-response 

solution discussed here.

Exercise 5.22 What happens when you add more (or fewer) possible responses to the 

responses list? Will the selection of a random response still work properly? Why or why not?

The solution discussed here is also in the book projects under the name tech-support2. We 
recommend, however, that you implement it yourself as an extension of the base version.

5.6 Using maps for associations
We now have a solution to our technical-support system that generates random responses. This 
is better than our first version, but is still not very convincing. In particular, the input of the user 
does not influence the response in any way. It is this area that we now want to improve.



5.6 Using maps for associations | 173

The plan is that we shall have a set of words that are likely to occur in typical questions and we 
will associate these words with particular responses. If the input from the user contains one of 
our known words, we can generate a related response. This is still a very crude method, because 
it does not pick up any of the meaning of the user’s input, nor does it recognize a context, but it 
can be surprisingly effective. And it is a good next step.

To do this, we will use a HashMap. You will find the documentation for the class HashMap in 
the Java library documentation. HashMap is a specialization of a Map, which you will also find 
documented. You will see that you need to read the documentation of both to understand what a 
HashMap is and how it works.

Exercise 5.23 What is a HashMap? What is its purpose and how do you use it? Answer

these questions in writing, and use the Java library documentation of Map and HashMap for 

your responses. Note that you will find it hard to understand everything, as the documentation 

for these classes is not very good. We will discuss the details later in this chapter, but see what 

you can find out on your own before reading on.

Exercise 5.24 HashMap is a parameterized class. List those of its methods that depend 

on the types used to parameterize it. Do you think the same type could be used for both of its 

parameters?

5.6.1 The concept of a map

A map is a collection of key/value pairs of objects. As with the ArrayList, a map can store a 
flexible number of entries. One difference between the ArrayList and a Map is that with a Map
each entry is not an object, but a pair of objects. This pair consists of a key object and a value
object.

Instead of looking up entries in this collection using an integer index (as we did with the 
ArrayList), we use the key object to look up the value object.

An everyday example of a map is a telephone directory. A telephone directory contains entries, 
and each entry is a pair: a name and a phone number. You use a phone book by looking up a 
name and getting a phone number. We do not use an index—the position of the entry in the 
phone book—to find it.

A map can be organized in such a way that looking up a value for a key is easy. In the case of a 
phone book, this is done using alphabetical sorting. By storing the entries in the alphabetical or-
der of their keys, finding the key and looking up the value is easy. Reverse lookup (finding the 
key for a value—i.e., finding the name for a given phone number) is not so easy with a map. As 
with a phone book, reverse lookup in a map is possible, but it takes a comparatively long time. 
Thus, maps are ideal for a one-way lookup, where we know the lookup key and need to know a 
value associated with this key.

5.6.2 Using a HashMap
HashMap is a particular implementation of Map. The most important methods of the HashMap
class are put and get.

Concept:

A map is a col-

lection that stores 

key/value pairs as 

entries. Values can 

be looked up by 

providing the key.



174 |       Chapter 5 ■ More-sophisticated behavior

The put method inserts an entry into the map, and get retrieves the value for a given key. The 
following code fragment creates a HashMap and inserts three entries into it. Each entry is a key/
value pair consisting of a name and a telephone number.

HashMap<String, String> phoneBook = new HashMap<String, String>();

phoneBook.put("Charles Nguyen", "(531) 9392 4587");
phoneBook.put("Lisa Jones", "(402) 4536 4674");
phoneBook.put("William H. Smith", "(998) 5488 0123");

As we saw with ArrayList, when declaring a HashMap variable and creating a HashMap ob-
ject, we have to say what type of objects will be stored in the map and, additionally, what type 
of objects will be used for the key. For the phone book, we will use strings for both the keys and 
the values, but the two types will sometimes be different.

As we have seen in Section 4.4.2 if we are using Java 7 (or newer), the generic type specifica-
tion on the right-hand side of the assignment may be left out, like this:

HashMap<String, String> phoneBook = new HashMap<>();

This is known as the “diamond operator” because of the two empty angle brackets: <>.

In Java 7, this line is equivalent to the first line above (but in Java 6 it does not compile). If you leave 
out the generic parameters, the compiler will just assume the same parameters used on the left-hand 
side of the assignment. Thus, the effect is exactly the same—we just save a little bit of typing.

The following code will find the phone number for Lisa Jones and print it out.

String number = phoneBook.get("Lisa Jones");
System.out.println(number);

Note that you pass the key (the name “Lisa Jones”) to the get method in order to receive the 
value (the phone number).

Read the documentation of the get and put methods of class HashMap again and see whether 
the explanation matches your current understanding.

Exercise 5.25 How do you check how many entries are contained in a map?

Exercise 5.26 Create a class MapTester (either in your current project or in a new project). 

In it, use a HashMap to implement a phone book similar to the one in the example above. 

(Remember that you must import java.util.HashMap.) In this class, implement two methods:

public void enterNumber(String name, String number)

and

public String lookupNumber(String name)

The methods should use the put and get methods of the HashMap class to implement their 

functionality.

Exercise 5.27 What happens when you add an entry to a map with a key that already ex-

ists in the map?



5.6 Using maps for associations | 175

5.6.3 Using a map for the TechSupport system

In the TechSupport system, we can make good use of a map by using known words as keys and as-
sociated responses as values. Code 5.4 shows an example in which a HashMap named response-
Map is created and three entries are made. For example, the word “slow” is associated with the text

“I think this has to do with your hardware. Upgrading your processor should solve all 
performance problems. Have you got a problem with our software?”

Now, whenever somebody enters a question containing the word “slow,” we can look up and 
print out this response. Note that the response string in the source code spans several lines but 
is concatenated with the + operator, so a single string is entered as a value into the HashMap.

Exercise 5.28 What happens when you add an entry to a map with two different keys?

Exercise 5.29 How do you check whether a given key is contained in a map? (Give a Java 

code example.)

Exercise 5.30 What happens when you try to look up a value and the key does not exist in 

the map?

Exercise 5.31 How do you check how many entries are contained in a map?

Exercise 5.32 How do you print out all keys currently stored in a map?

private HashMap<String, String> responseMap;

...

public Responder()
{

responseMap = new HashMap<String, String>();
fillResponseMap();

}

/**
 * Enter all the known keywords and their associated
 * responses into our response map.
 */
private void fillResponseMap()
{

responseMap.put("slow",
"I think this has to do with your hardware. \n" +
"Upgrading your processor should solve all " +
"performance problems. \n" +
"Have you got a problem with our software?");

responseMap.put("bug",

Code 5.4
Associating selected 

words with possible 

responses



176 |       Chapter 5 ■ More-sophisticated behavior

A first attempt at writing a method to generate the responses could now look like the gener-
ateResponse method below. Here, to simplify things for the moment, we assume that only a 
single word (for example, “slow”) is entered by the user.

public String generateResponse(String word)
{
    String response = responseMap.get(word);
    if(response != null) {
        return response;
    }
    else {
        // If we get here, the word was not recognized. In
        // this case, we pick one of our default responses.
        return pickDefaultResponse();
    }
}

In this code fragment, we look up the word entered by the user in our response map. If we find 
an entry, we use this entry as the response. If we don’t find an entry for that word, we call a 
method called pickDefaultResponse. This method can now contain the code of our previ-
ous version of generateResponse, which randomly picks one of the default responses (as 
shown in Code 5.3). The new logic, then, is that we pick an appropriate response if we recog-
nize a word, or a random response out of our list of default responses if we don’t.

"Well, you know, all software has some bugs. \n" +
"But our software engineers are working very " +
"hard to fix them. \n" +
"Can you describe the problem a bit further?");

responseMap.put("expensive",
"The cost of our product is quite competitive. \n" +
"Have you looked around and " +
"really compared our features?");

}

Code 5.4 
continued
Associating selected 

words with possible 

responses

Exercise 5.33 Implement the changes discussed here in your own version of the 

TechSupport system. Test it to get a feel for how well it works.

This approach of associating keywords with responses works quite well as long as the user does 
not enter complete questions, but only single words. The final improvement to complete the ap-
plication is to let the user enter complete questions again and then pick matching responses if 
we recognize any of the words in the questions.

This poses the problem of recognizing the keywords in the sentence that was entered by the 
user. In the current version, the user input is returned by the InputReader as a single string. 
We shall now change this to a new version in which the InputReader returns the input as a 



5.7 Using sets | 177

set of words. Technically, this will be a set of strings, where each string in the set represents a 
single word that was entered by the user.

If we can do that, then we can pass the whole set to the Responder, which can then check 
every word in the set to see whether it is known and has an associated response.

To achieve this in Java, we need to know about two things: how to cut a single string containing 
a whole sentence into words and how to use sets. These two issues are discussed in the next two 
sections.

5.7 Using sets
The Java standard library includes different variations of sets implemented in different classes. 
The class we shall use is called HashSet.

Exercise 5.34 What are the similarities and differences between a HashSet and an 

ArrayList? Use the descriptions of Set, HashSet, List, and ArrayList in the library 

documentation to find out, because HashSet is a special case of a Set and ArrayList is a 

special case of a List.

The two types of functionality that we need are the ability to enter elements into the set and re-
trieve the elements later. Fortunately, these tasks contain hardly anything new for us. Consider 
the following code fragment:

import java.util.HashSet;
...
HashSet<String> mySet = new HashSet<String>();

mySet.add("one");
mySet.add("two");
mySet.add("three");

Compare this code with the statements needed to enter elements into an ArrayList. There is 
almost no difference, except that we create a HashSet this time instead of an ArrayList. Now 
let us look at iterating over all elements:

for(String item : mySet) {
do something with that item

}

Again, these statements are the same as the ones we used to iterate over an ArrayList in 
Chapter 4.

In short, using collections in Java is quite similar for different types of collections. Once you 
understand how to use one of them, you can use them all. The differences really lie in the 
behavior of each collection. A list, for example, will keep all elements entered in the desired 
order, provides access to elements by index, and can contain the same element multiple times. 

Concept:

A set is a collection 

that stores each 

individual element 

at most once. It 

does not maintain 

any specific order.



178 |       Chapter 5 ■ More-sophisticated behavior

A set, on the other hand, does not maintain any specific order (the elements may be returned in 
a for-each loop in a different order from that in which they were entered) and ensures that each 
element is in the set at most once. Entering an element a second time simply has no effect.

List, Map, and Set It is tempting to assume that a HashSet must be used in a similar way 

to a HashMap. In fact, as we have illustrated, a HashSet is actually much closer in usage to an 

ArrayList.

When trying to understand how the various collection classes are used, it helps to pay close at-

tention to their names. The names consist of two parts, e.g.: “Array” “List.” The second half tells 

us what kind of collection we are dealing with (List, Map, Set), and the first tells us how it is imple-

mented (for instance, using an array).

For using collections, the type of the collection (the second part) is the more important. We have 

discussed before that we can often abstract from the implementation; we do not need to think 

about it much. Thus, for our purposes, a HashSet and a TreeSet are very similar. They are both 

sets, so they behave in the same way. The difference is only in their implementation, which is im-

portant only when we start thinking about efficiency: one implementation will perform some opera-

tions much faster than another. However, efficiency concerns come much later, and only when we 

have either very large collections or applications in which performance is critical.

5.8 Dividing strings
Now that we have seen how to use a set, we can investigate how we can cut the input string 
into separate words to be stored in a set of words. The solution is shown in a new version of the 
InputReader’s getInput method (Code 5.5).

/**
 * Read a line of text from standard input (the text
 * terminal), and return it as a set of words.
 *
 * @return  A set of Strings, where each String is one of the
 *          words typed by the user
 */
public HashSet<String> getInput()
{

System.out.print("> ");                  // print prompt
String inputLine = reader.nextLine().trim().toLowerCase();
String[] wordArray = inputLine.split(" ");

    // add words from array into hashset
HashSet<String> words = new HashSet<String>();
for(String word : wordArray) {

words.add(word);
}

return words;

}

Code 5.5
The getInput
method returning 

a set of words



5.9 Finishing the TechSupport system | 179

Here, in addition to using a HashSet, we also use the split method, which is a standard 
method of the String class.

The split method can divide a string into separate substrings and return those in an array 
of strings. The parameter to the split method defines at what kind of characters the original 
string should be split. We have defined that we want to cut our string at every space character.

The next few lines of code create a HashSet and copy the words from the array into the set 
before returning the set.3

3 There is a shorter, more elegant way of doing this. One could write

HashSet<String> words = new HashSet<String>(Arrays.asList(wordArray));

to replace all four lines of code. This uses the Arrays class from the standard library and a static
method (also known as class method) that we do not really want to discuss just yet. If you are curious, 
read about class methods in Section 6.15, and try to use this version.

Exercise 5.35 The split method is more powerful than it first seems from our example. 

How can you define exactly how a string should be split? Give some examples.

Exercise 5.36 How would you call the split method if you wanted to split a string at 

either space or tab characters? How might you break up a string in which the words are sepa-

rated by colon characters (:)?

Exercise 5.37 What is the difference in the result of returning the words in a HashSet
compared with returning them in an ArrayList?

Exercise 5.38 What happens if there is more than one space between two words (e.g., 

two or three spaces)? Is there a problem?

Exercise 5.39 Challenge exercises Read the footnote about the Arrays.asList
method. Find and read the sections in this book about class variables and class methods. 

Explain in your own words how this works.

What are examples of other methods that the Arrays class provides?

Create a class called SortingTest. In it, create a method that accepts an array of int val-

ues as a parameter and prints out to the terminal the elements sorted (smallest element first).

5.9 Finishing the TechSupport system
To put everything together, we also have to adjust the SupportSystem and Responder
classes to deal correctly with a set of words rather than a single string. Code 5.6 shows the new 
version of the start method from the SupportSystem class. It has not changed a great deal. 
The changes are:



180 |       Chapter 5 ■ More-sophisticated behavior

■ The input variable receiving the result from reader.getInput() is now of type HashSet.

■ The check for ending the application is done using the contains method of the HashSet
class, rather than a String method. (Look this method up in the documentation.)

■ The HashSet class has to be imported using an import statement (not shown here).

Finally, we have to extend the generateResponse method in the Responder class to accept 
a set of words as a parameter. It then has to iterate over these words and check each of them 
with our map of known words. If any of the words is recognized, we immediately return the 
associated response. If we do not recognize any of the words, as before, we pick one of our 
default responses. Code 5.7 shows the solution.

public void start()
{

boolean finished = false;

printWelcome();

while(!finished) {
HashSet<String> input = reader.getInput();

if(input.contains("bye")) {
finished = true;

}
else {

String response = responder.generateResponse(input);
System.out.println(response);

}
}
printGoodbye();

}

Code 5.6
Final version of the 

start method

public String generateResponse(HashSet<String> words)
{

for(String word : words) {
        String response = responseMap.get(word);

if(response != null) {
return response;

}
}

    // If we get here, none of the words from the input line was
    // recognized. In this case, we pick one of our default
    // responses.

return pickDefaultResponse();
}

Code 5.7
Final version of the 

generate Response
method



5.10 Writing class documentation | 181

This is the last change to the application discussed here in this chapter. The solution in the 
project tech-support-complete contains all these changes. It also contains more associations of 
words to responses than are shown in this chapter.

Many more improvements to this application are possible. We shall not discuss them here. 
Instead, we suggest some, in the form of exercises, left to the reader. Some of these are quite 
challenging programming exercises.

Exercise 5.40 Implement the final changes discussed above in your own version of the 

program.

Exercise 5.41 Add more word/response mappings into your application. You could copy 

some out of the solutions provided and add some yourself.

Exercise 5.42 Ensure that the same default response is never repeated twice in a row.

Exercise 5.43 Sometimes two words (or variations of a word) are mapped to the same 

response. Deal with this by mapping synonyms or related expressions to the same string so 

that you do not need multiple entries in the response map for the same response.

Exercise 5.44 Identify multiple matching words in the user’s input, and respond with a more 

appropriate answer in that case.

Exercise 5.45 When no word is recognized, use other words from the user’s input to pick a 

well-fitting default response: for example, words such as “why,” “how,” and “who.”

5.10 Writing class documentation
When working on your projects, it is important to write documentation for your classes as you 
develop the source code. It is quite common for programmers not to take documentation seri-
ously enough, and very frequently this creates serious problems later.

If you do not supply sufficient documentation, it may be very hard for another programmer (or 
yourself some time later!) to understand your classes. Typically, what you have to do in that 
case is to read the class’s implementation and figure out what it does. This may work with a 
small student project, but it creates serious problems in real-world projects.

It is not uncommon for commercial applications to consist of hundreds of thousands of lines of 
code in several thousand classes. Imagine that you had to read all that in order to understand 
how an application works! You would never succeed.

When we used the Java library classes, such as HashSet or Random, we relied exclusively on 
the documentation to find out how to use them. We never looked at the implementation of those 
classes. This worked because these classes were sufficiently well documented (although even 
this documentation could be improved). Our task would have been much harder had we been 
required to read the classes’ implementation before using them.

In a software development team, the implementation of classes is typically shared between 
multiple programmers. While you might be responsible for implementing the SupportSystem

Concept:

The documenta-

tion of a class 

should be de-

tailed enough for 

other program-

mers to use the 

class without the 

need to read the 

implementation.



182 |       Chapter 5 ■ More-sophisticated behavior

class from our last example, someone else might implement the InputReader. Thus, you 
might write one class while making calls to methods of other classes.

The same argument discussed for library classes holds true for classes that you write: if we 
can use the classes without having to read and understand the complete implementation, our 
task becomes a lot easier. As with library classes, we want to see just the public interface of the 
class, instead of the implementation. It is therefore important to write good class documentation 
for our own classes as well.

Java systems include a tool called javadoc that can be used to generate such an interface de-
scription from source files. The standard library documentation that we have used, for example, 
was created from the classes’ source files by javadoc.

5.10.1 Using javadoc in BlueJ

The BlueJ environment uses javadoc to let you create documentation for your class in two 
ways:

■ You can view the documentation for a single class by switching the pop-up selector at the 
top right of the editor window from Source Code to Documentation (or by using Toggle 
Documentation View from the editor’s Tools menu).

■ You can use the Project Documentation function from the main window’s Tools menu to 
generate documentation for all classes in the project.

The BlueJ tutorial provides more detail if you are interested. You can find the BlueJ tutorial in 
BlueJ’s Help menu.

5.10.2 Elements of class documentation

The documentation of a class should at least include:

■ the class name

■ a comment describing the overall purpose and characteristics of the class

■ a version number

■ the author’s name (or authors’ names)

■ documentation for each constructor and each method

The documentation for each constructor and method should include:

■ the name of the method

■ the return type

■ the parameter names and types

■ a description of the purpose and function of the method

■ a description of each parameter

■ a description of the value returned



5.11 Public versus private | 183

In addition, each complete project should have an overall project comment, often contained in 
a “ReadMe” file. In BlueJ, this project comment is accessible through the text note displayed in 
the top left corner of the class diagram.

Exercise 5.46 Use BlueJ’s Project Documentation function to generate documentation for 

your TechSupport project. Examine it. Is it accurate? Is it complete? Which parts are useful? 

Which are not? Do you find any errors in the documentation?

Some elements of the documentation, such as names and parameters of methods, can always be 
extracted from the source code. Other parts, such as comments describing the class, methods, and 
parameters, need more attention, as they can easily be forgotten, be incomplete, or be incorrect.

In Java, javadoc comments are written with a special comment symbol at the beginning:

/**
   This is a javadoc comment.
 */

The comment start symbol must have two asterisks to be recognized as a javadoc comment. 
Such a comment immediately preceding the class declaration is read as a class comment. If the 
comment is directly above a method signature, it is considered a method comment.

The exact details of how documentation is produced and formatted are different in different pro-
gramming languages and environments. The content, however, should be more or less the same.

In Java, using javadoc, several special key symbols are available for formatting the documen-
tation. These key symbols start with the @ symbol and include

@version
@author
@param
@return

Exercise 5.47 Find examples of javadoc key symbols in the source code of the 

TechSupport project. How do they influence the formatting of the documentation?

Exercise 5.48 Find out about and describe other javadoc key symbols. One place 

where you can look is the online documentation of Oracle’s Java distribution. It contains a 

document called javadoc – The Java API Documentation Generator (for example, at http://
download.oracle.com/javase/6/docs/technotes/tools/windows/javadoc.
html). In this document, the key symbols are called javadoc tags.

Exercise 5.49 Properly document all classes in your version of the TechSupport project.

5.11 Public versus private
It is time to discuss in more detail one aspect of classes that we have encountered several times 
already without saying much about it: access modifiers.

http://download.oracle.com/javase/6/docs/technotes/tools/windows/javadoc.html
http://download.oracle.com/javase/6/docs/technotes/tools/windows/javadoc.html
http://download.oracle.com/javase/6/docs/technotes/tools/windows/javadoc.html


184 |       Chapter 5 ■ More-sophisticated behavior

Access modifiers are the keywords public or private at the beginning of field declarations 
and method signatures. For example:

// field declaration
private int numberOfSeats;

// methods
public void setAge(int replacementAge)
{ ...
}

private int computeAverage()
{ ...
}

Fields, constructors, and methods can all be either public or private, although so far we have seen 
mostly private fields and public constructors and methods. We shall come back to this below.

Access modifiers define the visibility of a field, constructor, or method. If a method, for ex-
ample, is public, it can be invoked from within the same class or from any other class. Private 
methods, on the other hand, can be invoked only from within the class in which they are de-
clared. They are not visible to other classes.

Now that we have discussed the difference between the interface and the implementation of a 
class (Section 5.3.1), we can more easily understand the purpose of these keywords.

Remember: The interface of a class is the set of details that another programmer using the class 
needs to see. It provides information about how to use the class. The interface includes con-
structor and method signatures and comments. It is also referred to as the public part of a class. 
Its purpose is to define what the class does.

The implementation is the section of a class that defines precisely how the class works. The 
method bodies, containing the Java statements, and most fields are part of the implementation. 
The implementation is also referred to as the private part of a class. The user of a class does not 
need to know about the implementation. In fact, there are good reasons why a user should be 
prevented from knowing about the implementation (or at least from making use of this knowl-
edge). This principle is called information hiding.

The public keyword declares an element of a class (a field or method) to be part of the inter-
face (i.e., publicly visible); the private keyword declares it to be part of the implementation 
(i.e., hidden from outside access).

5.11.1 Information hiding

In many object-oriented programming languages, the internals of a class—its implementation—are 
hidden from other classes. There are two aspects to this. First, a programmer making use of a class 
should not need to know the internals; second, a user should not be allowed to know the internals.

The first principle—need to know—has to do with abstraction and modularization as discussed 
in Chapter 3. If it were necessary to know all internals of all classes we need to use, we would 
never finish implementing large systems.

Concept:

Access modifiers

define the visibility 

of a field, construc-

tor, or method. 

Public elements are 

accessible from in-

side the same class 

and from other 

classes; private ele-

ments are accessi-

ble only from within 

the same class.



5.11 Public versus private | 185

The second principle—not being allowed to know—is different. It also has to do with modu-
larization, but in a different context. The programming language does not allow access to the 
private section of one class by statements in another class. This ensures that one class does not 
depend on exactly how another class is implemented.

This is very important for maintenance work. It is a very common task for a maintenance pro-
grammer to later change or extend the implementation of a class to make improvements or fix 
bugs. Ideally, changing the implementation of one class should not make it necessary to change 
other classes as well. This issue is known as coupling. If changes in one part of a program do 
not make it necessary to also make changes in another part of the program, this is known as 
weak coupling or loose coupling. Loose coupling is good, because it makes a maintenance pro-
grammer’s job much easier. Instead of understanding and changing many classes, she may only 
need to understand and change one class. For example, if a Java systems programmer makes an 
improvement to the implementation of the ArrayList class, you would hope that you would 
not need to change your code using this class. This will work, because you have not made any 
references to the implementation of ArrayList in your own code.

So, to be more precise, the rule that a user should not be allowed to know the internals of a 
class does not refer to the programmer of another class, but to the class itself. It is not usually 
a problem if a programmer knows the implementation details, but a class should not “know” 
(depend on) the internal details of another class. The programmer of both classes might even be 
the same person, but the classes should still be loosely coupled.

The issues of coupling and information hiding are very important, and we shall have more to 
say about them in later chapters.

For now, it is important to understand that the private keyword enforces information hiding 
by not allowing other classes access to this part of the class. This ensures loose coupling and 
makes an application more modular and easier to maintain.

5.11.2 Private methods and public fields

Most methods we have seen so far were public. This ensures that other classes can call these 
methods. Sometimes, though, we have made use of private methods. In the SupportSystem
class of the TechSupport system, for instance, we saw the methods printWelcome and 
printGoodbye declared as private methods.

The reason for having both options is that methods are actually used for different purposes. 
They are used to provide operations to users of a class (public methods), and they are used to 
break up a larger task into several smaller ones to make the large task easier to handle. In the 
second case, the subtasks are not intended to be invoked directly from outside the class, but are 
placed in separate methods purely to make the implementation of a class easier to read. In this 
case, such methods should be private. The printWelcome and printGoodbye methods are 
examples of this.

Another good reason for having a private method is for a task that is needed (as a subtask) in 
several of a class’s methods. Instead of writing the code multiple times, we can write it once in 
a single private method and then call this method from several different places. We shall see an 
example of this later.

Concept:

information hiding

is a principle that 

states that internal 

details of a class’s 

implementation 

should be hidden 

from other classes. 

It ensures better 

modularization of an 

application.



186 |       Chapter 5 ■ More-sophisticated behavior

In Java, fields can also be declared private or public. So far, we have not seen examples of 
public fields, and there is a good reason for this. Declaring fields public breaks the information-
hiding principle. It makes a class that is dependent upon that information vulnerable to incorrect 
operation if the implementation changes. Even though the Java language allows us to declare 
public fields, we consider this bad style and will not make use of this option. Some other object-
oriented languages do not allow public fields at all.

A further reason for keeping fields private is that it allows an object to maintain greater control 
over its state. If access to a private field is channeled through accessor and mutator methods, 
then an object has the ability to ensure that the field is never set to a value that would be incon-
sistent with its overall state. This level of integrity is not possible if fields are made public.

In short, fields should always be private.

Java has two more access levels. One is declared by using the protected keyword as access 
modifier; the other one is used if no access modifier at all is declared. We shall discuss these in 
later chapters.

5.12 Learning about classes from their interfaces
We shall briefly discuss another project to revisit and practice the concepts discussed in this 
chapter. The project is named scribble, and you can find it in the Chapter 5 folder of the book 
projects. This section does not introduce any new concepts, so it consists in large part of exer-
cises, with some commentary sprinkled in.

5.12.1 The scribble demo

The scribble project provides three classes: DrawDemo, Pen, and Canvas (Figure 5.4).

Figure 5.4
The scribble project

The Canvas class provides a window on screen that can be used to draw on. It has operations 
for drawing lines, shapes, and text. A canvas can be used by creating an instance interactively 



5.12 Learning about classes from their interfaces | 187

or from another object. The Canvas class should not need any modification. It is probably best 
to treat it as a library class: open the editor and switch to the documentation view. This displays 
the class’s interface with the javadoc documentation.

The Pen class provides a pen object that can be used to produce drawings on the canvas by 
moving the pen across the screen. The pen itself is invisible, but it will draw a line when moved 
on the canvas.

The DrawDemo class provides a few small examples of how to use a pen object to produce a 
drawing on screen.

The best starting point for understanding and experimenting with this project is the DrawDemo
class.

Exercise 5.50 Create a DrawDemo object and experiment with its various methods. Read

the DrawDemo source code and describe (in writing) how each method works.

Exercise 5.51 Create a Pen object interactively using its default constructor (the construc-

tor without parameters). Experiment with its methods. While you do this, make sure to have 

a window open showing you the documentation of the Pen class (either the editor window in 

Documentation view or a web-browser window showing the project documentation). Refer to 

the documentation to be certain what each method does.

Exercise 5.52 Interactively create an instance of class Canvas and try some of its meth-

ods. Again, refer to the class’s documentation while you do this.

Some of the methods in the classes Pen and Canvas refer to parameters of type Color. This 
type is defined in class Color in the java.awt package (thus, its fully qualified name is java.
awt.Color). The Color class defines some color constants, which we can refer to as follows:

Color.RED

Using these constants requires the Color class to be imported in the using class.

Exercise 5.53 Find some uses of the color constants in the code of class DrawDemo.

Exercise 5.54 Write down four more color constants that are available in the Color class. 

Refer to the class’s documentation to find out what they are.

When calling methods interactively that expect parameters of the Color class, we have to refer 
to the class slightly differently. Because the interactive dialog has no import statement (and thus 
the Color class is not automatically known), we have to write the fully qualified class name to 
refer to the class (Figure 5.5). This enables the Java system to find the class without using an 
import statement.



188 |       Chapter 5 ■ More-sophisticated behavior

Now that we know how to change the color for pens and canvases, we can do some more exercises.

Figure 5.5

Exercise 5.55 Create a canvas. Using the canvas’s methods interactively, draw a red circle 

near the center of the canvas. Now draw a yellow rectangle.

Exercise 5.56 How do you clear the whole canvas?

As you have seen, we can either draw directly on to the canvas or we can use a pen object to 
draw. The pen provides us with an abstraction that holds a current position, rotation, and color, 
and this makes producing some kinds of drawings easier. Let us experiment with this a bit 
more, this time by writing code in a class instead of using interactive calls.

Figure 5.6
A spiral drawn on the 

canvas

Exercise 5.57 In class DrawDemo, create a new method named drawTriangle. This

method should create a pen (as in the drawSquare method) and then draw a green triangle.

Exercise 5.58 Write a method drawPentagon that draws a pentagon.

Exercise 5.59 Write a method drawPolygon(int n) that draws a regular polygon with 

n sides (thus, n=3 draws a triangle, n=4 draws a square, etc.).

Exercise 5.60  Write a method called spiral that draws a spiral (see Figure 5.6).



5.12 Learning about classes from their interfaces | 189

5.12.2 Code completion

Often, we are reasonably familiar with a library class that we are using but we still cannot re-
member the exact names of all methods or the exact parameters. For this situation, development 
environments commonly offer some help: code completion.

Code completion is a function that is available in BlueJ’s editor when the cursor is behind the 
dot of a method call. In this situation, typing CTRL-space will bring up a pop-up listing all 
methods in the interface of the object we are using in the call (Figure 5.7).

Figure 5.7
Code completion

When the code completion pop-up is displayed, we can type the beginning of the method name 
to narrow down the method list. Hitting Return enters the selected method call into our source 
code. Code completion can also be used without a preceding object to call local methods.

Using code completion should not be a replacement for reading the documentation of a class, 
because it does not include all information (such as the introductory class comment). But once 
we are reasonably familiar with a class in general, code completion is a great aid for more eas-
ily recalling details of a method and entering the call into our source.

Exercise 5.61 Add a method to your DrawDemo class that produces a picture on the can-

vas directly (without using a pen object). The picture can show anything you like, but should at 

least include some shapes, different colors, and text. Use code completion in the process of 

entering your code.



190 |       Chapter 5 ■ More-sophisticated behavior

5.12.3 The bouncing-balls demo

Open the bouncing-balls project and find out what it does. Create a BallDemo object and ex-
ecute its bounce method.

Exercise 5.62 Change the method bounce in class BallDemo to let the user choose how 

many balls should be bouncing.

For this exercise, you should use a collection to store the balls. This way, the method can deal 
with 1, 3, or 75 balls—any number you want. The balls should initially be placed in a row along 
the top of the canvas.

Which type of collection should you choose? So far, we have seen an ArrayList, a HashMap,
and a HashSet. Try the next exercises first, before you write your implementation.

Exercise 5.63 Which type of collection (ArrayList, HashMap, or HashSet) is most suita-

ble for storing the balls for the new bounce method? Discuss in writing, and justify your choice.

Exercise 5.64 Change the bounce method to place the balls randomly anywhere in the top 

half of the screen.

Exercise 5.65 Write a new method named boxBounce. This method draws a rectan-

gle (the “box”) on screen and one or more balls inside the box. For the balls, do not use 

BouncingBall, but create a new class BoxBall that moves around inside the box, bounc-

ing off the walls of the box so that the ball always stays inside. The initial position and speed of 

the ball should be random. The boxBounce method should have a parameter that specifies 

how many balls are in the box.

Exercise 5.66 Give the balls in boxBounce random colors.

5.13 Class variables and constants
So far, we have not looked at the BouncingBall class. If you are interested in really under-
standing how this animation works, you may want to study this class as well. It is reasonably 
simple. The only method that takes some effort to understand is move, where the ball changes 
its position to the next position in its path.

We shall leave it largely to the reader to study this method, except for one detail that we want to 
discuss here. We start with an exercise.

Exercise 5.67 In class BouncingBall, you will find a definition of gravity (a simple inte-

ger). Increase or decrease the gravity value; compile and run the bouncing ball demo again. Do 

you observe a change?



5.13 Class variables and constants | 191

The most interesting detail in this class is the line

private static final int GRAVITY = 3;

This is a construct we have not seen yet. This one line, in fact, introduces two new keywords, 
which are used together: static and final.

5.13.1 The static keyword

The keyword static is Java’s syntax to define class variables. Class variables are fields that are stored 
in a class itself, not in an object. This makes them fundamentally different from instance variables (the 
fields we have dealt with so far). Consider this segment of code (a part of the BouncingBall class):

public class BouncingBall
{
    // Effect of gravity.
    private static final int GRAVITY = 3;

    private int xPosition;
    private int yPosition;

    Other fields and method omitted.
}

Now imagine that we create three BouncingBall instances. The resulting situation is shown 
in Figure 5.8.

Concept:

Classes can have 

fields. These are 

known as class

variables or static 

variables. Exactly

one copy exists 

of a class variable 

at all times, inde-

pendent of the 

number of created 

instances.

BouncingBall
Figure 5.8
Instance variables 

and a class variable



192 |       Chapter 5 ■ More-sophisticated behavior

As we can see from the diagram, the instance variables (xPosition and yPosition) are 
stored in each object. Because we have created three objects, we have three independent copies 
of these variables.

The class variable GRAVITY, on the other hand, is stored in the class itself. As a result, there is 
always exactly one copy of this variable, independent of the number of created instances.

Source code in the class can access (read and set) this kind of variable just as it can an instance 
variable. The class variable can be accessed from any of the class’s instances. As a result, the 
objects share this variable.

Class variables are frequently used if a value should always be the same for all instances of a 
class. Instead of storing one copy of the same value in each object, which would be a waste of 
space and might be hard to coordinate, a single value can be shared among all instances.

Java also supports class methods (also known as static methods), which are methods that 
belong to a class. We shall discuss those later.

5.13.2 Constants

One frequent use for the static keyword is to define constants. Constants are similar to vari-
ables, but they cannot change their value during the execution of an application. In Java, con-
stants are defined with the keyword final. For example:

private final int SIZE = 10;

Here, we define a constant named SIZE with the value 10. We notice that constant declarations 
look similar to field declarations, with two differences:

■ they include the keyword final before the type name; and

■ they must be initialized with a value at the point of declaration.

If a value is intended not to change, it is a good idea to declare it final. This ensures that it 
cannot accidentally be changed later. Any attempt to change a constant field will result in a 
compile-time error message. Constants are, by convention, often written in capital letters. We 
will follow that convention in this book.

In practice, it is frequently the case that constants apply to all instances of a class. In this situa-
tion, we declare class constants. Class constants are constant class fields. They are declared by 
using a combination of the static and final keywords. For example:

private static final int SIZE = 10;

The definition of GRAVITY from our bouncing-ball project is another example of such a 
constant. This is the style in which constants are defined most of the time. Instance-specific 
constants are much less frequently used.

We have encountered two more examples of constants in the scribble project. The first example 
was two constants used in the Pen class to define the size of the “random squiggle” (go back 
to the project and find them!). The second example was the use of the color constants in that 
project, such as Color.RED. In that case, we did not define the constants, but instead used con-
stants defined in another class.



5.14 Summary | 193

The reason we could use the constants from class Color is that they were declared public. As 
opposed to other fields (about which we commented earlier that they should never be declared 
public), declaring constants public is generally unproblematic and sometimes useful.

Exercise 5.68 Write constant declarations for the following:

■ A public variable that is used to measure tolerance, with the value 0.001.

■ A private variable that is used to indicate a pass mark, with the integer value of 40.

■ A public character variable that is used to indicate that the help command is 'h'.

Exercise 5.69 Take a look at the LogEntry class in the weblog-analyzer project from Chapter 4. 

How have constants been used in that class? Do you think that this is a good use of constants?

Exercise 5.70 Suppose that a change to the weblog-analyzer project meant that it was no 

longer necessary to store year values in the dataValues array in the LogEntry class. How

much of the class would need to be altered if the month value were now to be stored at index 

0, the day value at index 1, and so on? Do you see how the use of named constants for spe-

cial values simplifies this sort of process?

5.14 Summary
Dealing with class libraries and class interfaces is essential for a competent programmer. There 
are two aspects to this topic: reading class library descriptions (especially class interfaces) and 
writing them.

It is important to know about some essential classes from the standard Java class library and to 
be able to find out more when necessary. In this chapter, we have presented some of the most 
important classes and have discussed how to browse the library documentation.

It is also important to be able to document any class that is written, in the same style as the li-
brary classes, so that other programmers can easily use the class without the need to understand 
the implementation. This documentation should include good comments for every project, 
class, and method. Using javadoc with Java programs will help you to do this.

Terms introduced in this chapter

interface, implementation, map, set, javadoc, access modifier, information hiding, 

coupling, class variable, static, constant, final

Concept summary

■ Java library The Java standard class library contains many classes that are very useful. It is 

important to know how to use the library.

■ library documentation The Java class library documentation shows details about all classes 

in the library. Using this documentation is essential in order to make good use of library classes.



194 |       Chapter 5 ■ More-sophisticated behavior

■ interface The interface of a class describes what a class does and how it can be used with-

out showing the implementation.

■ implementation The complete source code that defines a class is called the implementation 

of that class.

■ immutable An object is said to be immutable if its contents or state cannot be changed once 

it has been created. Strings are an example of immutable objects.

■ map A map is a collection that stores key/value pairs as entries. Values can be looked up by 

providing the key.

■ set A set is a collection that stores each individual element at most once. It does not maintain 

any specific order.

■ documentation The documentation of a class should be detailed enough for other program-

mers to use the class without the need to read the implementation.

■ access modifier Access modifiers define the visibility of a field, constructor, or method. 

Public elements are accessible from inside the same class and from other classes; private ele-

ments are accessible only from within the same class.

■ information hiding Information hiding is a principle that states that internal details of a class’s 

implementation should be hidden from other classes. It ensures better modularization of an 

application.

■ class variable, static variable Classes can have fields. These are known as class variables 

or static variables. Exactly one copy exists of a class variable at all times, independent of the 

number of created instances.

Exercise 5.71 There is a rumor circulating on the Internet that George Lucas (the creator of 

the Star Wars movies) uses a formula to create the names for the characters in his stories (Jar 

Jar Binks, ObiWan Kenobi, etc.). The formula—allegedly—is this:

Your Star Wars first name:

1 Take the first three letters of your last name.

2 Add to that the first two letters of your first name.

Your Star Wars last name:

1 Take the first two letters of your mother’s maiden name.

2 Add to this the first three letters of the name of the town or city where you were born.

And now your task: Create a new BlueJ project named star-wars. In it create a class named 

NameGenerator. This class should have a method named generateStarWarsName that 

generates a Star Wars name, following the method described above. You will need to find out 

about a method of the String class that generates a substring.



5.14 Summary | 195

Exercise 5.72 The following code fragment attempts to print out a string in uppercase letters:

public void printUpper(String s)
{
    s.toUpperCase();
    System.out.println(s);
}

This code, however, does not work. Find out why, and explain. How should it be written 

properly?

Exercise 5.73 Assume that we want to swap the values of two integer variables, a and b.
To do this, we write a method

public void swap(int i1, int i2)
{
    int tmp = i1;
    i1 = i2;
    i2 = tmp;
}

Then we call this method with our a and b variables:

swap(a, b);

Are a and b swapped after this call? If you test it, you will notice that they are not! Why does 

this not work? Explain in detail.



In this chapter, we look at some of the factors that influence the design of a class. What makes 
a class design either good or bad? Writing good classes can take more effort in the short term 
than writing bad classes, but in the long term that extra effort will often be justified. To help 
us write good classes, there are some principles that we can follow. In particular, we introduce 
the view that class design should be responsibility-driven, and that classes should encapsulate 
their data.

This chapter is, like many of the chapters before, structured around a project. It can be studied 
by just reading it and following our line of argument, or it can be studied in much more depth 
by doing the project exercises in parallel with working through the chapter.

The project work is divided into three parts. In the first part, we discuss the necessary 
changes to the source code and develop and show complete solutions to the exercises. The 
solution for this part is also available in a project accompanying this book. The second part 
suggests more changes and extensions, and we discuss possible solutions at a high level (the 
class-design level) but leave it to readers to do the lower-level work and to complete the 
implementation.

The third part suggests even more improvements in the form of exercises. We do not give 
solutions—the exercises apply the material discussed throughout the chapter.

Implementing all parts makes a good programming project over several weeks. It can also be 
used very successfully as a group project.

Designing classes

CHAPTER

6
Main concepts discussed in this chapter:

■ responsibility-driven design

■ coupling

■ cohesion

■ refactoring

Java constructs discussed in this chapter:

static (for methods), Math, enumerated types, switch



6.1 Introduction | 197

6.1 Introduction
It is possible to implement an application and get it to perform its task with badly designed 
classes. Just executing a finished application does not usually indicate whether it is well struc-
tured internally or not.

The problems typically surface when a maintenance programmer wants to make some changes to 
an existing application. If, for example, a programmer attempts to fix a bug or wants to add new 
functionality to an existing program, a task that might be easy and obvious with well-designed 
classes may well be very hard and involve a great deal of work if the classes are badly designed.

In larger applications, this effect occurs earlier on, during the original implementation. If the 
implementation starts with a bad structure, then finishing it might later become overly com-
plex, and the complete program may either not be finished, or contain bugs, or take a lot longer 
to build than necessary. In reality, companies often maintain, extend, and sell an application 
over many years. It is not uncommon that an implementation for software that we can buy in a 
software store today was started more than ten years ago. In this situation, a software company 
cannot afford to have badly structured code.

Because many of the effects of bad class design become most obvious when trying to adapt or 
extend an application, we shall do exactly that. In this chapter, we will use an example called 
world-of-zuul, which is a simple, rudimentary implementation of a text-based adventure game. 
In its original state, the game is not actually very ambitious—for one thing, it is incomplete. 
By the end of this chapter, however, you will be in a position to exercise your imagination and 
design and implement your own game and make it really fun and interesting.

world-of-zuul Our world-of-zuul game is modeled on the original Adventure game that was 

developed in the early 1970s by Will Crowther and expanded by Don Woods. The original game is 

also sometimes known as the Colossal Cave Adventure. This was a wonderfully imaginative and 

sophisticated game for its time, involving finding your way through a complex cave system, locat-

ing hidden treasure, using secret words, and other mysteries, all in an effort to score the maximum 

number of points. You can read more about it at sites such as http://jerz.setonhill.edu/
if/canon/Adventure.htm and http://www.rickadams.org/adventure/, or try doing a 

web search for “Colossal Cave Adventure.”

While we work on extending the original application, we will take the opportunity to discuss aspects 
of its existing class design. We will see that the implementation we start with contains examples of 
bad design, and we will be able to appreciate how this impacts on our tasks and how we can fix them.

In the project examples for this book, you will find two versions of the zuul project: zuul-bad
and zuul-better. Both implement exactly the same functionality, but some of the class structure 
is different, representing bad design in one project and better design in the other. The fact that 
we can implement the same functionality in either a good way or a bad way illustrates the fact 
that bad design is not usually a consequence of having a difficult problem to solve. Bad design 
has more to do with the decisions that we make when solving a particular problem. We cannot 
use the argument that there was no other way to solve the problem as an excuse for bad design.

So, we will use the project with the bad design so that we can explore why it is bad and then 
improve it. The better version is an implementation of the changes we discuss here.

http://jerz.setonhill.edu/if/canon/Adventure.htm
http://jerz.setonhill.edu/if/canon/Adventure.htm
http://www.rickadams.org/adventure/


198 |       Chapter 6 ■ Designing classes

Exercise 6.1 Open the project zuul-bad. (This project is called “bad” because its implemen-

tation contains some bad design decisions, and we want to leave no doubt that this should not 

be used as an example of good programming practice!) Execute and explore the application. 

The project comment gives you some information about how to run it.

While exploring the application, answer the following questions:

■ What does this application do?

■ What commands does the game accept?

■ What does each command do?

■ How many rooms are in the scenario?

■ Draw a map of the existing rooms.

Exercise 6.2 After you know what the whole application does, try to find out what each indi-

vidual class does. Write down for each class its purpose. You need to look at the source code 

to do this. Note that you might not (and need not) understand all of the source code. Often, 

reading through comments and looking at method headers is enough.

6.2 The world-of-zuul game example
From Exercise 6.1, you have seen that the zuul game is not yet very adventurous. It is, in fact, 
quite boring in its current state. But it provides a good basis for us to design and implement our 
own game, which will hopefully be more interesting.

We start by analyzing the classes that are already there in our first version and trying to find out 
what they do. The class diagram is shown in Figure 6.1.

Figure 6.1
Zuul class diagram



6.2 The world-of-zuul game example | 199

The project shows five classes. They are Parser, CommandWords, Command, Room, and 
Game. An investigation of the source code shows, fortunately, that these classes are quite 
well documented, and we can get an initial overview of what they do by just reading the class 
comment at the top of each class. (This fact also serves to illustrate that bad design involves 
something deeper than simply the way a class looks or how good its documentation is.) Our 
understanding of the game will be assisted by having a look at the source code to see what 
methods each class has and what some of the methods appear to do. Here, we summarize the 
purpose of each class:

■ CommandWords The CommandWords class defines all valid commands in the game. It does 
this by holding an array of String objects representing the command words.

■ Parser The parser reads lines of input from the terminal and tries to interpret them as 
commands. It creates objects of class Command that represent the command that was 
entered.

■ Command A Command object represents a command that was entered by the user. It has 
methods that make it easy for us to check whether this was a valid command and to get the 
first and second words of the command as separate strings.

■ Room A Room object represents a location in a game. Rooms can have exits that lead to other 
rooms.

■ Game The Game class is the main class of the game. It sets up the game and then enters a 
loop to read and execute commands. It also contains the code that implements each user 
command.

Exercise 6.3 Design your own game scenario. Do this away from the computer. Do not 

think about implementation, classes, or even programming in general. Just think about invent-

ing an interesting game. This could be done with a group of people.

The game can be anything that has as its base structure a player moving through different 

locations. Here are some examples:

■ You are a white blood cell traveling through the body in search of viruses to attack. . .

■ You are lost in a shopping mall and must find the exit. . .

■ You are a mole in its burrow and you cannot remember where you stored your food 

reserves before winter. . .

■ You are an adventurer who searches through a dungeon full of monsters and other 

characters. . .

■ You are from the bomb squad and must find and defuse a bomb before it goes off. . .

Make sure that your game has a goal (so that it has an end and the player can “win”). Try to 

think of many things to make the game interesting (trap doors, magic items, characters that 

help you only if you feed them, time limits. . . whatever you like). Let your imagination run wild.

At this stage, do not worry about how to implement these things.



200 |       Chapter 6 ■ Designing classes

6.3 Introduction to coupling and cohesion
If we are to justify our assertion that some designs are better than others, then we need to define 
some terms that will allow us to discuss the issues that we consider to be important in class 
design. Two terms are central when talking about the quality of a class design: coupling and 
cohesion.

The term coupling refers to the interconnectedness of classes. We have already discussed in 
earlier chapters that we aim to design our applications as a set of cooperating classes that com-
municate via well-defined interfaces. The degree of coupling indicates how tightly these classes 
are connected. We strive for a low degree of coupling, or loose coupling.

The degree of coupling determines how hard it is to make changes in an application. In a tightly 
coupled class structure, a change in one class can make it necessary to change several other 
classes as well. This is what we try to avoid, because the effect of making one small change can 
quickly ripple through a complete application. In addition, finding all the places where changes 
are necessary and actually making the changes can be difficult and time consuming.

In a loosely coupled system, on the other hand, we can often change one class without making 
any changes to other classes, and the application will still work. We shall discuss particular 
examples of tight and loose coupling in this chapter.

The term cohesion relates to the number and diversity of tasks for which a single unit of an 
application is responsible. Cohesion is relevant for units of a single class and an individual 
method.1

Ideally, one unit of code should be responsible for one cohesive task (that is, one task that can 
be seen as a logical unit). A method should implement one logical operation, and a class should 
represent one type of entity. The main reason behind the principle of cohesion is reuse: if a 
method or a class is responsible for only one well-defined thing, then it is much more likely that 
it can be used again in a different context. A complementary advantage of following this princi-
ple is that, when change is required to some aspect of an application, we are likely to find all the 
relevant pieces located in the same unit.

We shall discuss with examples below how cohesion influences the quality of class design.

Concept:

The term coupling

describes the inter-

connectedness of 

classes. We strive 

for loose coupling 

in a system—that 

is, a system where 

each class is largely 

independent and 

communicates with 

other classes via a 

small, well-defined 

interface.

Concept:

The term cohesion

describes how 

well a unit of code 

maps to a logical 

task or entity. In 

a highly cohesive 

system, each unit 

of code (method, 

class, or module) 

is responsible for a 

well-defined task or 

entity. Good class 

design exhibits 

a high degree of 

cohesion.

1 We sometimes also use the term module (or package in Java) to refer to a multi-class unit. Cohesion is 
relevant at this level too.

Exercise 6.4 Draw (on paper) a map for the game you invented in Exercise 6.3. Open the 

zuul-bad project and save it under a different name (e.g., zuul). This is the project you will use 

for making improvements and modifications throughout this chapter. You can leave off the 

-bad suffix, because it will (hopefully) soon not be that bad anymore.

As a first step, change the createRooms method in the Game class to create the rooms and 

exits you invented for your game. Test!



6.4 Code duplication | 201

6.4 Code duplication
Code duplication is an indicator of bad design. The Game class shown in Code 6.1 contains a 
case of code duplication. The problem with code duplication is that any change to one version 
must also be made to another if we are to avoid inconsistency. This increases the amount of 
work a maintenance programmer has to do, and it introduces the danger of bugs. It very easily 
happens that a maintenance programmer finds one copy of the code and, having changed it, 
assumes that the job is done. There is nothing indicating that a second copy of the code exists, 
and it might incorrectly remain unchanged.

Concept:

Code duplication

(having the same 

segment of code in 

an application more 

than once) is a sign 

of bad design. It 

should be avoided.

public class Game
{
    // . . . some code omitted . . .

private void createRooms()
{

Room outside, theater, pub, lab, office;

        // create the rooms
outside = new Room(

"outside the main entrance of the university");
theater = new Room("in a lecture theater");
pub = new Room("in the campus pub");
lab = new Room("in a computing lab");
office = new Room("in the computing admin office");

        // initialize room exits
outside.setExits(null, theater, lab, pub);
theatre.setExits(null, null, null, outside);
pub.setExits(null, outside, null, null);
lab.setExits(outside, office, null, null);
office.setExits(null, null, null, lab);

currentRoom = outside; // start game outside
}

    // . . . some code omitted . . .
    /**
     * Print out the opening message for the player.
     */

private void printWelcome()
{

System.out.println();
System.out.println("Welcome to the World of Zuul!");

Code 6.1
Selected sections of the 

(badly designed) Game
class



202 |       Chapter 6 ■ Designing classes

System.out.println(
"Zuul is a new, incredibly boring adventure game.");

System.out.println("Type ‘help’ if you need help.");
System.out.println();
System.out.println("You are " +

                           currentRoom.getDescription());
System.out.print("Exits: ");
if(currentRoom.northExit != null) {

System.out.print("north ");
}
if(currentRoom.eastExit != null) {

System.out.print("east ");
}
if(currentRoom.southExit != null) {

System.out.print("south ");
}
if(currentRoom.westExit != null) {

System.out.print("west ");
}
System.out.println();

}

    // . . . some code omitted . . .

    /**
     * Try to go in one direction. If there is an exit, enter
     * the new room; otherwise print an error message.
     */

private void goRoom(Command command)
{

if(!command.hasSecondWord()) {
            // if there is no second word,
            // we don’t know where to go

System.out.println("Go where?");
return;

}
String direction = command.getSecondWord();

        // Try to leave current room.
Room nextRoom = null;
if(direction.equals("north")) {

nextRoom = currentRoom.northExit;
}
if(direction.equals("east")) {

nextRoom = currentRoom.eastExit;
}

Code 6.1
continued
Selected sections of the 

(badly designed) Game
class



6.4 Code duplication | 203

if(direction.equals("south")) {
nextRoom = currentRoom.southExit;

}
if(direction.equals("west")) {

nextRoom = currentRoom.westExit;
}
if(nextRoom == null) {

System.out.println("There is no door!");
}
else {

currentRoom = nextRoom;
System.out.println("You are " +

  currentRoom.getDescription());
System.out.print("Exits: ");
if(currentRoom.northExit != null) {

System.out.print("north ");
}
if(currentRoom.eastExit != null) {

System.out.print("east ");
}
if(currentRoom.southExit != null) {

System.out.print("south ");
}
if(currentRoom.westExit != null) {

System.out.print("west ");
}
System.out.println();

}
}

    // . . . some code omitted . . .
}

Code 6.1
continued
Selected sections of the 

(badly designed) Game
class

Both the printWelcome and goRoom methods contain the following lines of code:

System.out.println("You are " + currentRoom.getDescription());
System.out.print("Exits: ");
if(currentRoom.northExit != null) {
    System.out.print("north ");
}
if(currentRoom.eastExit != null) {
    System.out.print("east ");
}
if(currentRoom.southExit != null) {
    System.out.print("south ");
}



204 |       Chapter 6 ■ Designing classes

if(currentRoom.westExit != null) {
    System.out.print("west ");
}
System.out.println();

Code duplication is usually a symptom of bad cohesion. The problem here has its roots in the 
fact that both methods in question do two things: printWelcome prints the welcome message 
and prints the information about the current location, while goRoom changes the current loca-
tion and then prints information about the (new) current location.

Both methods print information about the current location, but neither can call the other, 
because they also do other things. This is bad design.

A better design would use a separate, more cohesive method whose sole task is to print the cur-
rent location information (Code 6.2). Both the printWelcome and goRoom methods can then 
make calls to this method when they need to print this information. This way, writing the code 
twice is avoided, and when we need to change it, we need to change it only once.

private void printLocationInfo()
{

System.out.println("You are " + currentRoom.getDescription());
System.out.print("Exits: ");
if(currentRoom.northExit != null) {

System.out.print("north ");
}
if(currentRoom.eastExit != null) {

System.out.print("east ");
}
if(currentRoom.southExit != null) {

System.out.print("south ");
}
if(currentRoom.westExit != null) {

System.out.print("west ");
}
System.out.println();

}

Code 6.2
printLocation
Info as a separate 

method

Exercise 6.5 Implement and use a separate printLocationInfo method in your 

project, as discussed in this section. Test your changes.

6.5 Making extensions
The zuul-bad project does work. We can execute it, and it correctly does everything that it was 
intended to do. However, it is in some respects quite badly designed. A well-designed alterna-
tive would perform in the same way; we would not notice any difference just by executing the 
program.



6.5 Making extensions | 205

Once we try to make modifications to the project, however, we will notice significant 
differences in the amount of work involved in changing badly designed code, compared with 
changes to a well-designed application. We will investigate this by making some changes to the 
project. While we are doing this, we will discuss examples of bad design when we see them in 
the existing source, and we will improve the class design before we implement our extensions.

6.5.1 The task

The first task we will attempt is to add a new direction of movement. Currently, a player can 
move in four directions: north, east, south, and west. We want to allow for multilevel buildings 
(or cellars, or dungeons, or whatever you later want to add to your game) and add up and down
as possible directions. A player can then type "go down" to move, say, down into a cellar.

6.5.2 Finding the relevant source code

Inspection of the given classes shows us that at least two classes are involved in this change: 
Room and Game.

Room is the class that stores (among other things) the exits of each room, and, as we saw in 
Code 6.1, in the Game class the exit information from the current room is used to print out infor-
mation about exits and to move from one room to another.

The Room class is fairly short. Its source code is shown in Code 6.3. Reading the source, we can 
see that the exits are mentioned in two different places: they are listed as fields at the top of the 
class, and they get assigned in the setExits method. To add two new directions, we would 
need to add two new exits (upExit and downExit) in these two places.

public class Room
{

public String description;
public Room northExit;
public Room southExit;
public Room eastExit;
public Room westExit;

    /**
     * Create a room described "description "Initially, it
     * has no exits. "description" is something like
     *  "a kitchen" or "an open courtyard".
     */

public Room(String description)
{

this.description = description;
}

Code 6.3
Source code of the 

(badly designed) Room
class



206 |       Chapter 6 ■ Designing classes

    /**
     * Define the exits of this room. Every direction either
     * leads to another room or is null (no exit there).
     */

public void setExits(Room north, Room east, Room south,
                         Room west)

{
if(north != null) {

northExit = north;
}
if(east != null) {

eastExit = east;
}
if(south != null) {

southExit = south;
}
if(west != null) {

westExit = west;
}

}

    /**
     * Return the description of the room (the one that was
     * defined in the constructor).
     */

public String getDescription()
{

return description;
}

}

Code 6.3
continued
Source code of the 

(badly designed) Room
class

It is a bit more work to find all relevant places in the Game class. The source code is somewhat 
longer (it is not fully shown here), and finding all the relevant places takes some patience and care.

Reading the code shown in Code 6.1, we can see that the Game class makes heavy use of the 
exit information of a room. The Game object holds a reference to one room in the current-
Room variable and frequently accesses this room’s exit information.

■ In the createRoom method, the exits are defined.

■ In the printWelcome method, the current room’s exits are printed out so that the player 
knows where to go when the game starts.

■ In the goRoom method, the exits are used to find the next room. They are then used again to 
print out the exits of the next room we have just entered.

If we now want to add two new exit directions, we will have to add the up and down options in 
all these places. However, read the following section before you do this.



6.6 Coupling | 207

6.6 Coupling
The fact that there are so many places where all exits are enumerated is symptomatic of poor 
class design. When declaring the exit variables in the Room class, we need to list one variable 
per exit; in the setExits method, there is one if statement per exit; in the goRoom method, 
there is one if statement per exit; in the printLocationInfo method, there is one if statement 
per exit; and so on. This design decision now creates work for us: when adding new exits, we 
need to find all these places and add two new cases. Imagine the effect if we decided to use 
directions such as northwest, southeast, etc.!

To improve the situation, we decide to use a HashMap to store the exits, rather than separate 
variables. Doing this, we should be able to write code that can cope with any number of exits 
and does not need so many modifications. The HashMap will contain a mapping from a named 
direction (e.g., "north") to the room that lies in that direction (a Room object). Thus, each 
entry has a String as the key and a Room object as the value.

This is a change in the way a room stores information internally about neighboring rooms. 
Theoretically, this is a change that should affect only the implementation of the Room class (how
the exit information is stored), not the interface (what the room stores).

Ideally, when only the implementation of a class changes, other classes should not be affected. 
This would be a case of loose coupling.

In our example, this does not work. If we remove the exit variables in the Room class and 
replace them with a HashMap, the Game class will not compile any more. It makes numerous 
references to the room’s exit variables, which all would cause errors.

We see that we have a case here of tight coupling. In order to clean this up, we will decouple 
these classes before we introduce the HashMap.

6.6.1 Using encapsulation to reduce coupling

One of the main problems in this example is the use of public fields. The exit fields in the 
Room class have all been declared public. Clearly, the programmer of this class did not 
follow the guidelines we have set out earlier in this book (“Never make fields public!”). We 
shall now see the result! The Game class in this example can make direct accesses to these 
fields (and it makes extensive use of this fact). By making the fields public, the Room class 
has exposed in its interface not only the fact that it has exits, but also exactly how the exit 
information is stored. This breaks one of the fundamental principles of good class design: 
encapsulation.

The encapsulation guideline (hiding implementation information from view) suggests that only 
information about what a class can do should be visible to the outside, not about how it does it. 
This has a great advantage: if no other class knows how our information is stored, then we can 
easily change how it is stored without breaking other classes.

We can enforce this separation of what and how by making the fields private and using an 
accessor method to access them. The first stage of our modified Room class is shown in 
Code 6.4.

Concept:

Proper 

encapsulation in 

classes reduces 

coupling and thus 

leads to a better 

design.



208 |       Chapter 6 ■ Designing classes

public class Room
{

private String description;
private Room northExit;
private Room southExit;
private Room eastExit;
private Room westExit;

// existing methods unchanged

public Room getExit(String direction)
{

if(direction.equals("north")) {
return northExit;

}
if(direction.equals("east")) {

return eastExit;
}
if(direction.equals("south")) {

return southExit;
}
if(direction.equals("west")) {

return westExit;
}
return null;

}
}

Code 6.4
Using an accessor 

method to decrease 

coupling

Having made this change to the Room class, we need to change the Game class as well. 
Wherever an exit variable was accessed, we now use the accessor method. For example, 
instead of writing

nextRoom = currentRoom.eastExit;

we now write

nextRoom = currentRoom.getExit("east");

This makes coding one section in the Game class much easier as well. In the goRoom method, 
the replacement suggested here will result in the following code segment:

Room nextRoom = null;
if(direction.equals("north")) {
    nextRoom = currentRoom.getExit("north");
}
if(direction.equals("east")) {
    nextRoom = currentRoom.getExit("east");
}



6.6 Coupling | 209

if(direction.equals("south")) {
    nextRoom = currentRoom.getExit("south");
}
if(direction.equals("west")) {
    nextRoom = currentRoom.getExit("west");
}

Instead, this whole code segment can now be replaced with:

Room nextRoom = currentRoom.getExit(direction);

Exercise 6.6 Make the changes we have described to the Room and Game classes.

Exercise 6.7 Make a similar change to the printLocationInfo method of Game so that 

details of the exits are now prepared by the Room rather than the Game. Define a method in 

Room with the following signature:

/**
 * Return a description of the room’s exits,
 * for example, "Exits: north west".
 * @return A description of the available exits.
 */
public String getExitString()

So far, we have not changed the representation of the exits in the Room class. We have only 
cleaned up the interface. The change in the Game class is minimal—instead of an access of a 
public field, we use a method call—but the gain is dramatic. We can now make a change to 
the way exits are stored in the room, without any need to worry about breaking anything in 
the Game class. The internal representation in Room has been completely decoupled from the 
interface. Now that the design is the way it should have been in the first place, exchanging the 
separate exit fields for a HashMap is easy. The changed code is shown in Code 6.5.

import java.util.HashMap;

// class comment omitted

public class Room
{

private String description;
private HashMap<String, Room> exits;

    /**
     * Create a room described "description "Initially, it
     * has no exits. "description" is something like "a
     * kitchen" or "an open courtyard".
     */

Code 6.5
Source code of the 

Room class



210 |       Chapter 6 ■ Designing classes

public Room(String description)
{

this.description = description;
exits = new HashMap<String, Room>();

}

    /**
     * Define the exits of this room. Every direction either
     * leads to another room or is null (no exit there).
     */

public void setExits(Room north, Room east, Room south,
                         Room west)

{
if(north != null)

exits.put("north", north);
if(east != null)

exits.put("east", east);
if(south != null)

exits.put("south", south);
if(west != null)

exits.put("west", west);
}

    /**
     * Return the room that is reached if we go from this
     * room in direction "direction "If there is no room in
     * that direction, return null.
     */

public Room getExit(String direction)
{

return exits.get(direction);
}

    /**
     * Return the description of the room (the one that was
     * defined in the constructor).
     */

public String getDescription()
{

return description;
}

}

Code 6.5
continued
Source code of the 

Room class



6.6 Coupling | 211

It is worth emphasizing again that we can make this change now without even checking 
whether anything will break elsewhere. Because we have changed only private aspects of the 
Room class, which, by definition, cannot be used in other classes, this change does not impact 
on other classes. The interface remains unchanged.

A by-product of this change is that our Room class is now even shorter. Instead of listing four 
separate variables, we have only one. In addition, the getExit method is considerably simplified.

Recall that the original aim that set off this series of changes was to make it easier to add the two 
new possible exits in the up and down direction. This has already become a lot easier. Because we 
now use a HashMap to store exits, storing these two additional directions will work without any 
change. We can also obtain the exit information via the getExit method without any problem.

The only place where knowledge about the four existing exits (north, east, south, west) is still 
coded into the source is in the setExits method. This is the last part that needs improvement. 
At the moment, the method’s signature is

public void setExits(Room north, Room east, Room south, Room west)

This method is part of the interface of the Room class, so any change we make to it will 
inevitably affect some other classes by virtue of coupling. It is worth noting that we can never 
completely decouple the classes in an application; otherwise objects of different classes would 
not be able to interact with one another. Rather, we try to keep the degree of coupling as low as 
possible. If we have to make a change to setExits anyway, to accommodate additional direc-
tions, then our preferred solution is to replace it entirely with this method:

/**
 * Define an exit from this room.
 * @param direction The direction of the exit.
 * @param neighbor The room in the given direction.
 */
public void setExit(String direction, Room neighbor)
{
    exits.put(direction, neighbor);
}

Now, the exits of this room can be set one exit at a time, and any direction can be used for an 
exit. In the Game class, the change that results from modifying the interface of Room is as fol-
lows. Instead of writing

lab.setExits(outside, office, null, null);

we now write

lab.setExit("north", outside);
lab.setExit("east", office);

We have now completely removed the restriction from Room that it can store only four exits. 
The Room class is now ready to store up and down exits, as well as any other direction you 
might think of (northwest, southeast, etc.).

Exercise 6.8 Implement the changes described in this section in your own zuul project.



212 |       Chapter 6 ■ Designing classes

6.7 Responsibility-driven design
We have seen in the previous section that making use of proper encapsulation reduces coupling 
and can significantly reduce the amount of work needed to make changes to an application. 
Encapsulation, however, is not the only factor that influences the degree of coupling. Another 
aspect is known by the term responsibility-driven design.

Responsibility-driven design expresses the idea that each class should be responsible for han-
dling its own data. Often, when we need to add some new functionality to an application, we 
need to ask ourselves in which class we should add a method to implement this new function. 
Which class should be responsible for the task? The answer is that the class that is responsible 
for storing some data should also be responsible for manipulating it.

How well responsibility-driven design is used influences the degree of coupling and, therefore, 
again, the ease with which an application can be modified or extended. As usual, we will dis-
cuss this in more detail with our example.

6.7.1 Responsibilities and coupling

The changes to the Room class that we discussed in Section 6.6.1 make it quite easy now to add 
the new directions for up and down movement in the Game class. We investigate this with an 
example. Assume that we want to add a new room (the cellar) under the office. All we have to 
do to achieve this is to make some small changes to the Game’s createRooms method to create 
the room and to make two calls to set the exits:

private void createRooms()
{
    Room outside, theater, pub, lab, office, cellar;

. . .
    cellar = new Room("in the cellar");

. . .
    office.setExit("down", cellar);
    cellar.setExit("up", office);
}

Because of the new interface of the Room class, this will work without problems. The change is 
now very easy and confirms that the design is getting better.

Further evidence of this can be seen if we compare the original version of the printLoca-
tionInfo method shown in Code 6.2 with the getExitString method shown in Code 6.6 
that represents a solution to Exercise 6.7.

Concept:

Responsibility-

driven design

is the process of 

designing classes 

by assigning well-

defined responsibili-

ties to each class. 

This process can 

be used to deter-

mine which class 

should implement 

which part of an 

application function.

/**
 * Return a description of the room’s exits,
 * for example, "Exits: north west".
 * @return A description of the available exits.
 */

Code 6.6
The getExitString
method of Room



6.7 Responsibility-driven design | 213

public String getExitString()
{

String exitString = "Exits: ";
if(northExit != null)

exitString += "north ";
if(eastExit != null)

exitString += "east ";
if(southExit != null)

exitString += "south ";
if(westExit != null)

exitString += "west ";
return exitString;

}

Code 6.6
continued
The getExitString
method of Room

Because information about its exits is now stored only in the room itself, it is the room that 
is responsible for providing that information. The room can do this much better than any 
other object, because it has all the knowledge about the internal storage structure of the exit 
data. Now, inside the Room class, we can make use of the knowledge that exits are stored in a 
HashMap, and we can iterate over that map to describe the exits.

Consequently, we replace the version of getExitString shown in Code 6.6 with the version 
shown in Code 6.7. This method finds all the names for exits in the HashMap (the keys in the 
HashMap are the names of the exits) and concatenates them to a single String, which is then 
returned. (We need to import Set from java.util for this to work.)

Exercise 6.9 Look up the keySet method in the documentation of HashMap. What does it do?

Exercise 6.10 Explain, in detail and in writing, how the getExitString method shown in 

Code 6.7 works.

/**
 * Return a description of the room’s exits,
 * for example "Exits: north west".
 * @return A description of the available exits.
 */
public String getExitString()
{

String returnString = "Exits:";
Set<String> keys = exits.keySet();
for(String exit : keys) {

returnString += " " + exit;
}
return returnString;

}

Code 6.7
A revised version of 

getExitString



214 |       Chapter 6 ■ Designing classes

Our goal to reduce coupling demands that, as far as possible, changes to the Room class do not 
require changes to the Game class. We can still improve this.

Currently, we have still encoded in the Game class the knowledge that the information we want 
from a room consists of a description string and the exit string:

System.out.println("You are " + currentRoom.getDescription());
System.out.println(currentRoom.getExitString());

What if we add items to rooms in our game? Or monsters? Or other players?

When we describe what we see, the list of items, monsters, and other players should be included 
in the description of the room. We would need not only to make changes to the Room class to 
add these things, but also to change the code segment above where the description is printed out.

This is again a breach of the responsibility-driven design rule. Because the Room class holds 
information about a room, it should also produce a description for a room. We can improve this 
by adding to the Room class the following method:

/**
 * Return a long description of this room, of the form:
 *     You are in the kitchen.
 *     Exits: north west
 * @return A description of the room, including exits.
 */
public String getLongDescription()
{
    return "You are " + description + ".\n" + getExitString();
}

In the Game class, we then write

System.out.println(currentRoom.getLongDescription());

The “long description” of a room now includes the description string and information about the 
exits and may in the future include anything else there is to say about a room. When we make 
these future extensions, we will have to make changes to only a single class: the Room class.

Exercise 6.11 Implement the changes described in this section in your own zuul project.

Exercise 6.12 Draw an object diagram with all objects in your game, the way they are just 

after starting the game.

Exercise 6.13 How does the object diagram change when you execute a go command?

6.8 Localizing change
Another aspect of the decoupling and responsibility principles is that of localizing change. We 
aim to create a class design that makes later changes easy by localizing the effects of a change.



6.9 Implicit coupling | 215

Ideally, only a single class needs to be changed to make a modification. Sometimes several 
classes need change, but we then aim at this being as few classes as possible. In addition, the 
changes needed in other classes should be obvious, easy to detect, and easy to carry out.

To a large extent, we can achieve this by following good design rules such as using 
responsibility-driven design and aiming for loose coupling and high cohesion. In addition, how-
ever, we should have modification and extension in mind when we create our applications. It is im-
portant to anticipate that an aspect of our program might change, in order to make this change easy.

6.9 Implicit coupling
We have seen that the use of public fields is one practice that is likely to create an unnecessarily 
tight form of coupling between classes. With this tight coupling, it may be necessary to make 
changes to more than one class for what should have been a simple modification. Therefore, pub-
lic fields should be avoided. However, there is an even worse form of coupling: implicit coupling.

Implicit coupling is a situation where one class depends on the internal information of another, 
but this dependence is not immediately obvious. The tight coupling in the case of the public 
fields was not good, but at least it was obvious. If we change the public fields in one class and 
forget about the other, the application will not compile any more and the compiler will point 
out the problem. In cases of implicit coupling, omitting a necessary change can go undetected.

We can see the problem arising if we try to add further command words to the game.

Suppose that we want to add the command look to the set of legal commands. The purpose of look
is merely to print out the description of the room and the exits again (we “look around the room”). 
This could be helpful if we have entered a sequence of commands in a room so that the descrip-
tion has scrolled out of view and we cannot remember where the exits of the current room are.

We can introduce a new command word simply by adding it to the array of known words in the 
validCommands array in the CommandWords class:

// a constant array that holds all valid command words
private static final String validCommands[] = {
    "go", "quit", "help", "look"
};

This, by the way, shows an example of good cohesion: instead of defining the command words in 
the parser, which would have been one obvious possibility, the author created a separate class just 
to define the command words. This makes it very easy for us to now find the place where command 
words are defined, and it is easy to add one. The author was obviously thinking ahead, assuming 
that more commands might be added later, and created a structure that makes this very easy.

We can test this already. When we make this change and then execute the game and type the 
command look, nothing happens. This contrasts with the behavior of an unknown command 
word; if we type any unknown word, we see the reply

I don’t know what you mean...

Thus, the fact that we do not see this reply indicates that the word was recognized, but nothing 
happens because we have not yet implemented an action for this command.

Concept:

One of the main 

goals of a good 

class design is 

that of localizing

change: making 

changes to one 

class should have 

minimal effects on 

other classes.



216 |       Chapter 6 ■ Designing classes

We can fix this by adding a method for the look command to the Game class:

private void look()
{
    System.out.println(currentRoom.getLongDescription());
}

You should, of course, also add a comment for this method. After this, we only need to add 
a case for the look command in the processCommand method, which will invoke the look
method when the look command is recognized:

if(commandWord.equals("help")) {
   printHelp();
}
else if(commandWord.equals("go")) {
    goRoom(command);
}
else if(commandWord.equals("look")) {
    look();
}
else if(commandWord.equals("quit")) {
    wantToQuit = quit(command);
}

Try this out, and you will see that it works.

Exercise 6.14 Add the look command to your version of the zuul game.

Exercise 6.15 Add another command to your game. For a start, you could choose some-

thing simple, such as a command eat that, when executed, just prints out “You have eaten 

now and you are not hungry any more.” Later, we can improve this so that you really get hun-

gry over time and you need to find food.

Coupling between the Game, Parser, and CommandWords classes so far seems to have been 
very good—it was easy to make this extension, and we got it to work quickly.

The problem that was mentioned before—implicit coupling—becomes apparent when we now 
issue a help command. The output is

You are lost. You are alone. You wander
around at the university.
Your command words are:
  go quit help

Now we notice a small problem. The help text is incomplete: the new command, look, is not 
listed.

This seems easy to fix: we can just edit the help text string in the Game’s printHelp method. 
This is quickly done and does not seem a great problem. But suppose we had not noticed this 
error now. Did you think of this problem before you just read about it here?



6.9 Implicit coupling | 217

This is a fundamental problem, because every time a command is added, the help text needs to 
be changed, and it is very easy to forget to make this change. The program compiles and runs, 
and everything seems fine. A maintenance programmer may well believe that the job is finished 
and release a program that now contains a bug.

This is an example of implicit coupling. When commands change, the help text must be modified 
(coupling), but nothing in the program source clearly points out this dependence (thus implicit).

A well-designed class will avoid this form of coupling by following the rule of responsibility-driven 
design. Because the CommandWords class is responsible for command words, it should also be respon-
sible for printing command words. Thus, we add the following method to the CommandWords class:

/**
 * Print all valid commands to System.out.
 */
public void showAll()
{
    for(String command : validCommands) {
        System.out.print(command + " ");
    }
    System.out.println();
}

The idea here is that the printHelp method in Game, instead of printing a fixed text with the 
command words, invokes a method that asks the CommandWords class to print all its command 
words. Doing this ensures that the correct command words will always be printed, and adding a 
new command will also add it to the help text without further change.

The only remaining problem is that the Game object does not have a reference to the CommandWords
object. You can see in the class diagram (Figure 6.1) that there is no arrow from Game to 
CommandWords. This indicates that the Game class does not even know of the existence of the 
CommandWords class. Instead, the game just has a parser, and the parser has command words.

We could now add a method to the parser that hands the CommandWords object to the Game
object so that they could communicate. This would, however, increase the degree of coupling in 
our application. Game would then depend on CommandWords, which it currently does not. Also, 
we would see this effect in the class diagram: Game would then have an arrow to CommandWords.

The arrows in the diagram are, in fact, a good first indication of how tightly coupled a program 
is—the more arrows, the more coupling. As an approximation of good class design, we can aim 
at creating diagrams with few arrows.

Thus, the fact that Game did not have a reference to CommandWords is a good thing! We should not 
change this. From Game’s viewpoint, the fact that the CommandWords class exists is an implemen-
tation detail of the parser. The parser returns commands, and whether it uses a CommandWords
object to achieve this or something else is entirely up to the parser’s implementation.

It follows that a better design just lets the Game talk to the Parser, which in turn may talk 
to CommandWords. We can implement this by adding the following code to the printHelp
method in Game:

System.out.println("Your command words are:");
parser.showCommands();



218 |       Chapter 6 ■ Designing classes

All that is missing, then, is the showCommands method in the Parser, which delegates this 
task to the CommandWords class. Here is the complete method (in class Parser):

/**
 * Print out a list of valid command words.
 */
public void showCommands()
{
    commands.showAll();
}

Exercise 6.16 Implement the improved version of printing out the command words, as 

described in this section.

Exercise 6.17 If you now add another new command, do you still need to change the Game
class? Why?

The full implementation of all changes discussed in this chapter so far is available in your code 
examples in a project named zuul-better. If you have done the exercises so far, you can ignore 
this project and continue to use your own. If you have not done the exercises but want to do 
the following exercises in this chapter as a programming project, you can use the zuul-better
project as your starting point.

6.10 Thinking ahead
The design we have now is an important improvement to the original version. It is, however, 
possible to improve it even more.

One characteristic of a good software designer is the ability to think ahead. What might change? 
What can we safely assume will stay unchanged for the life of the program?

One assumption that we have hard-coded into most of our classes is that this game will run as a 
text-based game with terminal input and output. But will it always be like this?

It might be an interesting extension later to add a graphical user interface with menus, but-
tons, and images. In that case, we would not want to print the information to the text terminal 
anymore. We might still have command words, and we might still want to show them when a 
player enters a help command. But we might then show them in a text field in a window, rather 
than using System.out.println.

It is good design to try to encapsulate all information about the user interface in a single 
class or a clearly defined set of classes. Our solution from Section 6.9, for example—the 
showAll method in the CommandWords class—does not follow this design rule. It would 
be nicer to define that CommandWords is responsible for producing (but not printing!) 
the list of command words, but that the Game class should decide how it is presented to 
the user.



6.11 Cohesion | 219

We can easily achieve this by changing the showAll method so that it returns a string 
containing all command words instead of printing them out directly. (We should probably 
rename it getCommandList when we make this change.) This string can then be printed in the 
printHelp method in Game.

Note that this does not gain us anything right now, but we might profit from the improved 
design in the future.

Concept:

Method cohesion.

A cohesive method 

is responsible for 

one, and only one, 

well-defined task.

Exercise 6.18 Implement the suggested change. Make sure that your program still works 

as before.

Exercise 6.19 Find out what the model-view-controller pattern is. You can do a web search 

to get information, or you can use any other sources you find. How is it related to the topic 

discussed here? What does it suggest? How could it be applied to this project? (Only discuss

its application to this project, as an actual implementation would be an advanced-challenge 

exercise.)

6.11 Cohesion
We introduced the idea of cohesion in Section 6.3: a unit of code should always be responsible 
for one, and only one, task. We shall now investigate the cohesion principle in more depth and 
analyze some examples.

The principle of cohesion can be applied to classes and methods: classes should display a high 
degree of cohesion, and so should methods.

6.11.1 Cohesion of methods

When we talk about cohesion of methods, we seek to express the ideal that any one method 
should be responsible for one, and only one, well-defined task.

We can see an example of a cohesive method in the Game class. This class has a private method 
named printWelcome to show the opening text, and this method is called when the game 
starts in the play method (Code 6.8).

/**
 * Main play routine. Loops until end of play.
 */
public void play()
{

printWelcome();

    // Enter the main command loop. Here we repeatedly read
    // commands and execute them until the game is over.

Code 6.8
Two methods with a 

good degree of 

cohesion



220 |       Chapter 6 ■ Designing classes

From a functional point of view, we could have just entered the statements from the print-
Welcome method directly into the play method and achieved the same result without defining 
an extra method and making a method call. The same can, by the way, be said for the pro-
cessCommand method that is also invoked in the play method: this code, too, could have been 
written directly into the play method.

It is, however, much easier to understand what a segment of code does and to make modifi-
cations if short, cohesive methods are used. In the chosen method structure, all methods are 
reasonably short and easy to understand, and their names indicate their purposes quite clearly. 
These characteristics represent valuable help for a maintenance programmer.

6.11.2 Cohesion of classes

The rule of cohesion of classes states that each class should represent one single, well-defined 
entity in the problem domain.

As an example of class cohesion, we now discuss another extension to the zuul project. We now 
want to add items to the game. Each room may hold an item, and each item has a description and 
a weight. An item’s weight can be used later to determine whether it can be picked up or not.

A naïve approach would be to add two fields to the Room class: itemDescription and item-
Weight. This could work. We could now specify the item details for each room, and we could 
print out the details whenever we enter a room.

Concept:

Class cohesion

A cohesive class 

represents one 

well-defined entity.

boolean finished = false;
while (! finished) {

Command command = parser.getCommand();
finished = processCommand(command);

}
System.out.println("Thank you for playing.  Good bye.");

}

/**
 * Print out the opening message for the player.
 */
private void printWelcome()
{

System.out.println();
System.out.println("Welcome to The World of Zuul!");
System.out.println(

"Zuul is a new, incredibly boring adventure game.");
System.out.println("Type ’help’ if you need help.");
System.out.println();
System.out.println(currentRoom.getLongDescription());

}

Code 6.8
continued
Two methods with a 

good degree of 

cohesion



6.11 Cohesion | 221

This approach, however, does not display a good degree of cohesion: the Room class now de-
scribes both a room and an item. It also suggests that an item is bound to a particular room, 
which we might not wish to be the case.

A better design would create a separate class for items, probably called Item. This class would have 
fields for a description and weight, and a room would simply hold a reference to an item object.

Exercise 6.20 Extend either your adventure project or the zuul-better project so that a room 

can contain a single item. Items have a description and a weight. When creating rooms and 

setting their exits, items for this game should also be created. When a player enters a room, 

information about an item present in this room should be displayed.

Exercise 6.21 How should the information be produced about an item present in a room? 

Which class should produce the string describing the item? Which class should print it? 

Why? Explain in writing. If answering this exercise makes you feel you should change your 

implementation, go ahead and make the changes.

The real benefits of separating rooms and items in the design can be seen if we change the 
specification a little. In a further variation of our game, we want to allow not only a single item 
in each room, but an unlimited number of items. In the design using a separate Item class, this 
is easy: we can create multiple Item objects and store them in a collection of items in the room.

With the first, naïve approach, this change would be almost impossible to implement.

Exercise 6.22 Modify the project so that a room can hold any number of items. Use a 

collection to do this. Make sure the room has an addItem method that places an item into the 

room. Make sure all items get shown when a player enters a room.

6.11.3 Cohesion for readability

There are several ways in which high cohesion benefits a design. The two most important ones 
are readability and reuse.

The example discussed in Section 6.11.1, cohesion of the printWelcome method, is clearly an 
example in which increasing cohesion makes a class more readable and thus easier to under-
stand and maintain.

The class-cohesion example in Section 6.11.2 also has an element of readability. If a separate Item
class exists, a maintenance programmer will easily recognize where to start reading code if a change 
to the characteristics of an item is needed. Cohesion of classes also increases readability of a program.

6.11.4 Cohesion for reuse

The second great advantage of cohesion is a higher potential for reuse.

The class-cohesion example in Section 6.11.2 also shows an example of this: by creating a separate 
Item class, we can create multiple items and thus use the same code for more than a single item.



222 |       Chapter 6 ■ Designing classes

Concept:

Refactoring is 

the activity of 

restructuring an 

existing design to 

maintain a good 

class design when 

the application 

is modified or 

extended.

Reuse is also an important aspect of method cohesion. Consider a method in the Room class 
with the following signature:

public Room leaveRoom(String direction)

This method could return the room in the given direction (so that it can be used as the new 
currentRoom) and also print out the description of the new room that we just entered.

This seems like a possible design, and it can indeed be made to work. In our version, however, 
we have separated this task into two methods:

public Room getExit(String direction)
public String getLongDescription()

The first one is responsible for returning the next room, whereas the second one produces the 
room’s description.

The advantage of this design is that the separate tasks can be reused more easily. The getLongDe-
scription method, for example, is now used not only in the goRoom method, but also in print-
Welcome and the implementation of the look command. This is only possible because it displays a 
high degree of cohesion. Reusing it would not be possible in the version with the leaveRoom method.

Exercise 6.23 Implement a back command. This command does not have a second word. 

Entering the back command takes the player into the previous room he/she was in.

Exercise 6.24 Test your new command. Does it work as expected? Also test cases where 

the command is used incorrectly. For example, what does your program do if a player types a 

second word after the back command? Does it behave sensibly?

Exercise 6.25 What does your program do if you type “back” twice? Is this behavior sensible?

Exercise 6.26 Challenge exercise Implement the back command so that using it repeatedly 

takes you back several rooms, all the way to the beginning of the game if used often enough. Use a 

Stack to do this. (You may need to find out about stacks. Look at the Java library documentation.)

6.12 Refactoring
When designing applications, we should attempt to think ahead, anticipate possible changes in 
the future, and create highly cohesive, loosely coupled classes and methods that make modifi-
cations easy. This is a noble goal, but of course we cannot always anticipate all future adapta-
tions, and it is not feasible to prepare for all possible extensions we can think of.

This is why refactoring is important.

Refactoring is the activity of restructuring existing classes and methods to adapt them to 
changed functionality and requirements. Often in the lifetime of an application, functionality is 
gradually added. One common effect is that, as a side-effect of this, methods and classes slowly 
grow in length.



6.12 Refactoring | 223

It is tempting for a maintenance programmer to add some extra code to existing classes or 
methods. Doing this for some time, however, decreases the degree of cohesion. When more and 
more code is added to a method or a class, it is likely that at some stage it will represent more 
than one clearly defined task or entity.

Refactoring is the rethinking and redesigning of class and method structures. Most commonly, 
the effect is that classes are split in two or that methods are divided into two or more methods. 
Refactoring can also include the joining of multiple classes or methods into one, but that is less 
common than splitting.

6.12.1 Refactoring and testing

Before we provide an example of refactoring, we need to reflect on the fact that, when we 
refactor a program, we are usually proposing to make some potentially large changes to some-
thing that already works. When something is changed, there is a likelihood that errors will be 
introduced. Therefore, it is important to proceed cautiously; and, prior to refactoring, we should 
establish that a set of tests exists for the current version of the program. If tests do not exist, then 
we should first decide how we can reasonably test the functionality of the program and record 
those tests (for instance, by writing them down) so that we can repeat the same tests later. We 
will discuss testing more formally in the next chapter. If you are already familiar with automated 
testing, use automated tests. Otherwise, manual (but systematic) testing is sufficient for now.

Once a set of tests has been decided, the refactoring can start. Ideally, the refactoring should 
then follow in two steps:

■ The first step is to refactor in order to improve the internal structure of the code, but without 
making any changes to the functionality of the application. In other words, the program should, 
when executed, behave exactly as it did before. Once this stage is completed, the previously 
established tests should be repeated to ensure that we have not introduced unintended errors.

■ The second step is taken only once we have reestablished the baseline functionality in the re-
factored version. Then we are in a safe position to enhance the program. Once that has been 
done, of course, testing will need to be conducted on the new version.

Making several changes at the same time (refactoring and adding new features) makes it harder 
to locate the source of problems when they occur.

Exercise 6.27 What sort of baseline functionality tests might we wish to establish in the 

current version of the game?

6.12.2 An example of refactoring

As an example, we shall continue with the extension of adding items to the game. In Section 6.11.2, 
we started adding items, suggesting a structure in which rooms can contain any number of items. 
A logical extension to this arrangement is that a player should be able to pick up items and carry 
them around. Here is an informal specification of our next goal:

■ The player can pick up items from the current room.

■ The player can carry any number of items, but only up to a maximum weight.



224 |       Chapter 6 ■ Designing classes

■ Some items cannot be picked up.

■ The player can drop items in the current room.

To achieve these goals, we can do the following:

■ If not already done, we add a class Item to the project. An item has, as discussed above, a 
description (a string) and a weight (an integer).

■ We should also add a field name to the Item class. This will allow us to refer to the item 
with a name shorter than that of the description. If, for instance, there is a book in the current 
room, the field values of this item might be:

name: book
description: an old, dusty book bound in gray leather
weight: 1200

If we enter a room, we can print out the item’s description to tell the player what is there. But 
for commands, the name will be easier to use. For instance, the player might then type take
book to pick up the book.

■ We can ensure that some items cannot be picked up, by just making them very heavy (more 
than a player can carry). Or should we have another boolean field canBePickedUp?
Which do you think is the better design? Does it matter? Try answering this by thinking 
about what future changes might be made to the game.

■ We add commands take and drop to pick up and drop items. Both commands have an item 
name as a second word.

■ Somewhere we have to add a field (holding some form of collection) to store the items cur-
rently carried by the player. We also have to add a field with the maximum weight the player 
can carry, so that we can check it each time we try to pick up something. Where should these 
go? Once again, think about future extensions to help you make the decision.

This last task is what we will discuss in more detail now, in order to illustrate the process of 
refactoring.

The first question to ask ourselves when thinking about how to enable players to carry items 
is: Where should we add the fields for the currently carried items and the maximum weight? A 
quick look over the existing classes shows that the Game class is really the only place where it 
can be fitted in. It cannot be stored in Room, Item, or Command, because there are many differ-
ent instances of these classes over time, which are not all always accessible. It does not make 
sense in Parser or CommandWords either.

Reinforcing the decision to place these changes in the Game class is the fact that it already 
stores the current room (information about where the player is right now), so adding the current 
items (information about what the player has) seems to fit with this quite well.

This approach could be made to work. It is, however, not a solution that is well designed. The 
Game class is fairly big already, and there is a good argument that it contains too much as it is. 
Adding even more does not make this better.

We should ask ourselves again which class or object this information should belong to. 
Thinking carefully about the type of information we are adding here (carried items, maximum 



6.12 Refactoring | 225

weight), we realize that this is information about a player! The logical thing to do (following 
responsibility-driven design guidelines) is to create a Player class. We can then add these 
fields to the Player class and create a Player object at the start of the game, to store the data.

The existing field currentRoom also stores information about the player: the player’s current 
location. Consequently, we should now also move this field into the Player class.

Analyzing it now, it is obvious that this design better fits the principle of responsibility-driven 
design. Who should be responsible for storing information about the player? The Player class, 
of course.

In the original version, we had only a single piece of information for the player: the current room. 
Whether we should have had a Player class even back then is up for discussion. There are argu-
ments both ways. It would have been nice design, so, yes, maybe we should. But having a class with 
only a single field and no methods that do anything of significance might be regarded as overkill.

Sometimes there are gray areas such as this one, where either decision is defensible. But after 
adding our new fields, the situation is quite clear. There is now a strong argument for a Player
class. It would store the fields and have methods such as dropItem and pickUpItem (which 
can include the weight check and might return false if we cannot carry it).

What we did when we introduced the Player class and moved the currentRoom field from 
Game into Player was refactoring. We have restructured the way we represent our data, to 
achieve a better design under changed requirements.

Programmers not as well trained as us (or just being lazy) might have left the currentRoom
field where it was, seeing that the program worked as it was and there did not seem to be a great 
need to make this change. They would end up with a messy class design.

The effect of making the change can be seen if we think one step further ahead. Assume that 
we now want to extend the game to allow for multiple players. With our nice new design, this 
is suddenly very easy. We already have a Player class (the Game holds a Player object), and 
it is easy to create several Player objects and store in Game a collection of players instead 
of a single player. Each player object would hold its own current room, items, and maximum 
weight. Different players could even have different maximum weights, opening up the even 
wider concept of having players with quite different capabilities—their carrying capability be-
ing just one of possibly many.

The lazy programmer who left currentRoom in the Game class, however, has a serious problem 
now. Because the whole game has only a single current room, current locations of multiple players 
cannot easily be stored. Bad design usually bites back later to create more work for us in the end.

Doing good refactoring is as much about thinking in a certain mindset as it is about technical 
skills. While we make changes and extensions to applications, we should regularly question 
whether an original class design still represents the best solution. As the functionality changes, 
arguments for or against certain designs change. What was a good design for a simple applica-
tion might not be good any more when some extensions are added.

Recognizing these changes and actually making the refactoring modifications to the source 
code usually saves a lot of time and effort in the end. The earlier we clean up our design, the 
more work we usually save.



226 |       Chapter 6 ■ Designing classes

We should be prepared to factor out methods (turn a sequence of statements from the body of 
an existing method into a new, independent method) and classes (take parts of a class and create 
a new class from it). Considering refactoring regularly keeps our class design clean and saves 
work in the end. Of course, one of the things that will actually mean that refactoring makes life 
harder in the long run is if we fail to adequately test the refactored version against the original. 
Whenever we embark on a major refactoring task, it is essential to ensure that we test well, 
before and after the change. Doing these tests manually (by creating and testing objects interac-
tively) will get tedious very quickly. We shall investigate how we can improve our testing—by 
automating it—in the next chapter.

Exercise 6.28 Refactor your project to introduce a separate Player class. A Player
object should store at least the current room of the player, but you may also like to store the 

player’s name or other information.

Exercise 6.29 Implement an extension that allows a player to pick up one single item. This

includes implementing two new commands: take and drop.

Exercise 6.30 Extend your implementation to allow the player to carry any number of 

items.

Exercise 6.31 Add a restriction that allows the player to carry items only up to a specified 

maximum weight. The maximum weight a player can carry is an attribute of the player.

Exercise 6.32 Implement an items command that prints out all items currently carried and 

their total weight.

Exercise 6.33 Add a magic cookie item to a room. Add an eat cookie command. If a player 

finds and eats the magic cookie, it increases the weight that the player can carry. (You might 

like to modify this slightly to better fit into your own game scenario.)

6.13 Refactoring for language independence
One feature of the zuul game that we have not commented on yet is that the user interface is closely 
tied to commands written in English. This assumption is embedded in both the CommandWords
class, where the list of valid commands is stored, and the Game class, where the processCom-
mand method explicitly compares each command word against a set of English words. If we wish 
to change the interface to allow users to use a different language, then we would have to find all 
the places in the source code where command words are used and change them. This is a further 
example of a form of implicit coupling, which we discussed in Section 6.9.

If we want to have language independence in the program, then ideally we should have just one place 
in the source code where the actual text of command words is stored and have everywhere else refer to 
commands in a language-independent way. A programming language feature that makes this possible 
is enumerated types, or enums. We will explore this feature of Java via the zuul-with-enums projects.



6.13 Refactoring for language independence | 227

6.13.1 Enumerated types

Code 6.9 shows a Java enumerated type definition called CommandWord.

/**
 * Representations for all the valid command words for the game.
 *
 * @author Michael Kölling and David J. Barnes
 * @version 2011.08.09
 */
public enum CommandWord
{
    // A value for each command word, plus one for unrecognized
    // commands.

GO, QUIT, HELP, UNKNOWN;
}

Code 6.9
An enumerated type for 

command words

In its simplest form, an enumerated type definition consists of an outer wrapper that uses the 
word enum rather than class and a body that is simply a list of variable names denoting the 
set of values that belong to this type. By convention, these variable names are fully capitalized. 
We never create objects of an enumerated type. In effect, each name within the type definition 
represents a unique instance of the type that has already been created for us to use. We refer to 
these instances as CommandWord.GO, CommandWord.QUIT, etc. Although the syntax for using 
them is similar, it is important to avoid thinking of these values as being like the numeric class 
constants we discussed in Section 5.13. Despite the simplicity of their definition, enumerated 
type values are proper objects and are not the same as integers.

How can we use the CommandWord type to make a step toward decoupling the game logic of 
zuul from a particular natural language? One of the first improvements we can make is to the 
following series of tests in the processCommand method of Game:

if(command.isUnknown()) {
    System.out.println("I don’t know what you mean...");
    return false;
}
String commandWord = command.getCommandWord();
if(commandWord.equals("help")) {
    printHelp();
}
else if(commandWord.equals("go")) {
    goRoom(command);
}
else if(commandWord.equals("quit")) {
    wantToQuit = quit(command);
}



228 |       Chapter 6 ■ Designing classes

If commandWord is made to be of type CommandWord rather than String, then this can be 
rewritten as:

if(commandWord == CommandWord.UNKNOWN) {
   System.out.println("I don’t know what you mean...");
}
else if(commandWord == CommandWord.HELP) {
   printHelp();
}
else if(commandWord == CommandWord.GO) {
   goRoom(command);
}
else if(commandWord == CommandWord.QUIT) {
   wantToQuit = quit(command);
}

In fact, now that we changed the type to CommandWord, we could also use a switch statement instead 
of the series of if statements. This expresses the intent of this code segment a little more clearly.2

switch (commandWord) {
    case UNKNOWN:
        System.out.println("I don’t know what you mean...");
        break;
    case HELP:
        printHelp();
        break;
    case GO:
        goRoom(command);
        break;
    case QUIT:
        wantToQuit = quit(command);
        break;
}

The switch statement takes the variable in the parentheses following the switch keyword 
(commandWord in our case) and compares it to each of the values listed after the case key-
words. When a case matches, the code following it is executed. The break statement causes the 
switch statement to abort at that point, and execution continues after the switch statement. For a 
fuller description of the switch statement, see Appendix D. 

Now we just have to arrange for the user’s typed commands to be mapped to the corresponding 
CommandWord values. Open the zuul-with-enums-v1 project to see how we have done this. The most 
significant change can be found in the CommandWords class. Instead of using an array of strings to 
define the valid commands, we now use a map between strings and CommandWord objects:

public CommandWords()
{
    validCommands = new HashMap<String, CommandWord>();
    validCommands.put("go", CommandWord.GO);

2 As of Java 7, strings can also be used as values in switch statements. In Java 6 and earlier, strings cannot 
be used in switch statements.

Concept:

A switch

statement selects

a sequence of 

statements for 

execution from 

multiple different 

options.



6.13 Refactoring for language independence | 229

    validCommands.put("help", CommandWord.HELP);
    validCommands.put("quit", CommandWord.QUIT);
}

The command typed by a user can now easily be converted to its corresponding enumerated 
type value.

Exercise 6.34 Review the source code of the zuul-with-enums-v1 project to see how it 

uses the CommandWord type. The classes Command, CommandWords, Game, and Parser
have all been adapted from the zuul-better version to accommodate this change. Check that 

the program still works as you would expect.

Exercise 6.35 Add a look command to the game, along the lines described in 

Section 6.9.

Exercise 6.36 “Translate” the game to use different command words for the GO and 

QUIT commands. These could be from a real language or just made-up words. Do you only 

have to edit the CommandWords class to make this change work? What is the significance 

of this?

Exercise 6.37 Change the word associated with the HELP command and check that it 

works correctly. After you have made your changes, what do you notice about the welcome 

message that is printed when the game starts?

Exercise 6.38 In a new project, define your own enumerated type called Position with 

values TOP, MIDDLE, and BOTTOM.

6.13.2 Further decoupling of the command interface

The enumerated CommandWord type has allowed us to make a significant decoupling of the 
user interface language from the game logic, and it is almost completely possible to translate 
the commands into another language just by editing the CommandWords class. (At some stage, 
we should also translate the room descriptions and other output strings, probably by reading 
them from a file, but we shall leave this until later.) There is one further piece of decoupling 
of the command words that we would like to perform. Currently, whenever a new command is 
introduced into the game, we must add a new value to the CommandWord and an association 
between that value and the user’s text in the CommandWords classes. It would be helpful if we 
could make the CommandWord type self-contained—in effect, move the text:value association 
from CommandWords to CommandWord.

Java allows enumerated type definitions to contain much more than a list of the type’s values. 
We will not explore this feature in much detail but just give you a flavor of what is possible. 
Code 6.10 shows an enhanced CommandWord type that looks quite similar to an ordinary class 
definition. This can be found in the zuul-with-enums-v2 project.



230 |       Chapter 6 ■ Designing classes

/**
 * Representations for all the valid command words for the game
 * along with a string in a particular language.
 *
 * @author Michael Kölling and David J. Barnes
 * @version 2011.08.10
 */
public enum CommandWord
{
    // A value for each command word along with its
    // corresponding user interface string.

GO("go"), QUIT("quit"), HELP("help"), UNKNOWN("?");

    // The command string.
private String commandString;

    /**
     * Initialize with the corresponding command string.
     * @param commandString The command string.
     */

CommandWord(String commandString)
{

this.commandString = commandString;
}

    /**
     * @return The command word as a string.
     */

public String toString()
{

return commandString;
}

}

Code 6.10
Associating command 

strings with enumerated 

type values

The main points to note about this new version of CommandWord are that:

■ Each type value is followed by a parameter value—in this case, the text of the command as-
sociated with that value.

■ The type definition includes a constructor. This does not have the word public in its header. 
Enumerated type constructors are never public, because we do not create the instances. The 
parameter associated with each type value is passed to this constructor.

■ The type definition includes a field, commandString. The constructor stores the command 
string in this field.

■ A toString method has been used to return the text associated with a particular type value.



6.14 Design guidelines | 231

With the text of the commands stored in the CommandWord type, the CommandWords class in 
zuul-with-enums-v2 uses a different way to create its map between text and enumerated values:

validCommands = new HashMap<String, CommandWord>();
for(CommandWord command : CommandWord.values()) {
    if(command != CommandWord.UNKNOWN) {
        validCommands.put(command.toString(), command);
    }
}

Every enumerated type defines a values method that returns an array filled with the value 
objects from the type. The code above iterates over the array and calls the toString method to 
obtain the command String associated with each value.

Exercise 6.39 Add your own look command to zuul-with-enums-v2. Do you only need to 

change the CommandWord type?

Exercise 6.40 Change the word associated with the help command in CommandWord. Is 

this change automatically reflected in the welcome text when you start the game? Take a look 

at the printWelcome method in the Game class to see how this has been achieved.

6.14 Design guidelines
An often-heard piece of advice to beginners about writing good object-oriented programs is, 
“Don’t put too much into a single method” or “Don’t put everything into one class.” Both sug-
gestions have merit but frequently lead to the counter-questions, “How long should a method 
be?” or “How long should a class be?”

After the discussion in this chapter, these questions can now be answered in terms of cohesion 
and coupling. A method is too long if it does more than one logical task. A class is too complex 
if it represents more than one logical entity.

You will notice that these answers do not give clear-cut rules that specify exactly what to do. 
Terms such as one logical task are still open to interpretation, and different programmers will 
decide differently in many situations.

These are guidelines (not cast-in-stone rules). Keeping these in mind, though, will significantly 
improve your class design and enable you to master more complex problems and write better 
and more interesting programs.

It is important to understand the following exercises as suggestions, not as fixed specifica-

tions. This game has many possible ways in which it can be extended, and you are encour-

aged to invent your own extensions. You do not need to do all the exercises here to create an 

interesting game; you may want to do more, or you may want to do different ones. Here are 

some suggestions to get you started.



232 |       Chapter 6 ■ Designing classes

6.15 Executing without BlueJ
When our game is finished, we may want to pass it on to others to play. To do this, it would 
be nice if people could play the game without the need to start BlueJ. To be able to do this, we 
need one more thing: class methods, which in Java are also referred to as static methods.

6.15.1 Class methods

So far, all methods we have seen have been instance methods: they are invoked on an instance 
of a class. What distinguishes class methods from instance methods is that class methods can be 
invoked without an instance—having the class is enough.

Exercise 6.41 Add some form of time limit to your game. If a certain task is not completed 

in a specified time, the player loses. A time limit can easily be implemented by counting the 

number of moves or the number of entered commands. You do not need to use real time.

Exercise 6.42 Implement a trapdoor somewhere (or some other form of door that you can 

only cross one way).

Exercise 6.43 Add a beamer to the game. A beamer is a device that can be charged and fired.

When you charge the beamer, it memorizes the current room. When you fire the beamer, it transports 

you immediately back to the room it was charged in. The beamer could either be standard equipment 

or an item that the player can find. Of course, you need commands to charge and fire the beamer.

Exercise 6.44 Add locked doors to your game. The player needs to find (or otherwise ob-

tain) a key to open a door.

Exercise 6.45 Add a transporter room. Whenever the player enters this room, he/she is 

randomly transported into one of the other rooms. Note: Coming up with a good design for 

this task is not trivial. It might be interesting to discuss design alternatives for this with other 

students. (We discuss design alternatives for this task at the end of Chapter 9. The adventur-

ous or advanced reader may want to skip ahead and have a look.)

Exercise 6.46 Challenge exercise In the processCommand method in Game, there is a 

switch statement (or a sequence of if statements) to dispatch commands when a command 

word is recognized. This is not a very nice design, because every time we add a command, we 

have to add a case here. Can you improve this design? Design the classes so that handling of 

commands is more modular and new commands can be added more easily. Implement it. Test it.

Exercise 6.47 Add characters to the game. Characters are similar to items, but they can 

talk. They speak some text when you first meet them, and they may give you some help if you 

give them the right item.

Exercise 6.48 Add moving characters. These are like other characters, but every time the 

player types a command, these characters can move into an adjoining room.



6.15 Executing without BlueJ | 233

In Section 5.13, we discussed class variables. Class methods are conceptually related and use a 
related syntax (the keyword static in Java). Just as class variables belong to the class rather 
than to an instance, so do class methods.

A class method is defined by adding the keyword static in front of the type name in the 
method’s signature:

public static int getNumberOfDaysThisMonth()
{

. . .
}

Such a method can then be called by specifying the name of the class in which it is defined, 
before the dot in the usual dot notation. If, for instance, the above method is defined in a class 
called Calendar, the following call invokes it:

int days = Calendar.getNumberOfDaysThisMonth();

Note that the name of the class is used before the dot—no object has been created.

Exercise 6.49 Read the class documentation for class Math in the package java.lang.

It contains many static methods. Find the method that computes the maximum of two integer 

numbers. What is its signature?

Exercise 6.50 Why do you think the methods in the Math class are static? Could they be 

written as instance methods?

Exercise 6.51 Write a test class that has a method to test how long it takes to count from 1 

to 100 in a loop. You can use the method currentTimeMillis from class System to help 

with the time measurement.

6.15.2 The main method

If we want to start a Java application without BlueJ, we need to use a class method. In BlueJ, 
we typically create an object and invoke one of its methods, but without BlueJ an application 
starts without any object in existence. Classes are the only things we have initially, so the first 
method that can be invoked must be a class method.

The Java definition for starting applications is quite simple: the user specifies the class that should be 
started, and the Java system will then invoke a method called main in that class. This method must 
have a specific signature. If such a method does not exist in that class, an error is reported. Appendix E 
describes the details of this method and the commands needed to start the Java system without BlueJ.

Exercise 6.52 Find out the details of the main method and add such a method to your Game
class. The method should create a Game object and invoke the play method on it. Test the main
method by invoking it from BlueJ. Class methods can be invoked from the class’s pop-up menu.

Exercise 6.53 Execute your game without BlueJ.



234 |       Chapter 6 ■ Designing classes

6.15.3 Limitations of class methods

Because class methods are associated with a class rather than an instance, they have two impor-
tant limitations. The first limitation is that a class method may not access any instance fields de-
fined in the class. This is logical, because instance fields are associated with individual objects. 
Instead, class methods are restricted to accessing class variables from their class. The second 
limitation is like the first: a class method may not call an instance method from the class. A 
class method may only invoke other class methods defined in its class.

You will find that we make very little use of class methods in the examples in this book.

6.16 Summary
In this chapter, we have discussed what are often called the nonfunctional aspects of an appli-
cation. Here, the issue is not so much to get a program to perform a certain task, but to do this 
with well-designed classes.

Good class design can make a huge difference when an application needs to be corrected, modi-
fied, or extended. It also allows us to reuse parts of the application in other contexts (for exam-
ple, for other projects) and thus creates benefits later.

There are two key concepts under which class design can be evaluated: coupling and cohesion. 
Coupling refers to the interconnectedness of classes, cohesion to modularization into appropri-
ate units. Good design exhibits loose coupling and high cohesion.

One way to achieve a good structure is to follow a process of responsibility-driven design. 
Whenever we add a function to the application, we try to identify which class should be respon-
sible for which part of the task.

When extending a program, we use regular refactoring to adapt the design to changing require-
ments and to ensure that classes and methods remain cohesive and loosely coupled.

Terms introduced in this chapter

code duplication, coupling, cohesion, encapsulation, responsibility-driven 

design, implicit coupling, refactoring, class method

Concept summary

■ coupling The term coupling describes the interconnectedness of classes. We strive for loose

coupling in a system—that is, a system where each class is largely independent and commu-

nicates with other classes via a small, well-defined interface.

■ cohesion The term cohesion describes how well a unit of code maps to a logical task or en-

tity. In a highly cohesive system, each unit of code (method, class, or module) is responsible 

for a well-defined task or entity. Good class design exhibits a high degree of cohesion.



6.16 Summary | 235

■ code duplication Code duplication (having the same segment of code in an application more 

than once) is a sign of bad design. It should be avoided.

■ encapsulation Proper encapsulation in classes reduces coupling and thus leads to a better 

design.

■ responsibility-driven design Responsibility-driven design is the process of designing 

classes by assigning well-defined responsibilities to each class. This process can be used to 

determine which class should implement which part of an application function.

■ localizing change One of the main goals of a good class design is that of localizing change: 

making changes to one class should have minimal effects on other classes.

■ method cohesion A cohesive method is responsible for one, and only one, well-defined task.

■ class cohesion A cohesive class represents one well-defined entity.

■ refactoring Refactoring is the activity of restructuring an existing design to maintain a good 

class design when the application is modified or extended.

■ switch statement A switch statement selects a sequence of statements for execution from 

multiple different options.

Exercise 6.54 Without using BlueJ, edit your TechSupport project from Chapter 5 so that it 

can execute without BlueJ. Then run it from a command line.

Exercise 6.55 Can you call a static method from an instance method? Can you call an 

instance method from a static method? Can you call a static method from a static method? 

Answer these questions on paper, then create a test project to check your answers and try it. 

Explain in detail your answers and observations.

Exercise 6.56 Can a class count how many instances have been created of that class? 

What is needed to do this? Write some code fragments that illustrate what needs to be done. 

Assume that you want a static method called numberOfInstances that returns the number 

of instances created.



7.1 Introduction
If you have followed the previous chapters in this book and if you have implemented the 
exercises we have suggested, then you have written a good number of classes by now. One 
observation that you will likely have made is that a class you write is rarely perfect after 
the first attempt to write its source code. Usually, it does not work correctly at first, and some 
more work is needed to complete it.

The problems you are dealing with will shift over time. Beginners typically struggle with Java 
syntax errors. Syntax errors are errors in the structure of the source code itself. They are easy to 
spot, because the compiler will highlight them and display some sort of error message.

More-experienced programmers who tackle more-complicated problems usually have less dif-
ficulty with the language syntax. They are more concerned with logical errors instead.

A logical error is a problem where the program compiles and executes without an obvious error 
but delivers the wrong result. Logical problems are much more severe and harder to find than 
syntax errors. In fact, it is sometimes not easy to detect that there even is an error in the first place.

Writing syntactically correct programs is relatively easy to learn, and good tools (such as com-
pilers) exist to detect syntax errors and point them out. Writing logically correct programs, on 
the other hand, is very difficult for any nontrivial problem, and proof that a program is correct 
cannot, in general, be automated. It is so hard, in fact, that most software that is sold commer-
cially is known to contain a significant number of bugs.

Thus, it is essential for a competent software engineer to learn how to deal with correctness and 
how to reduce the number of errors in a class.

CHAPTER

7 Well-behaved objects

Main concepts discussed in this chapter:

■ testing

■ debugging

■ unit testing

■ test automation

Java constructs introduced in this chapter:

(No new Java constructs are introduced in this chapter.)



7.3 Unit testing within BlueJ | 237

In this chapter, we shall discuss a variety of activities that are related to improving the correct-
ness of a program. These include testing, debugging, and writing for maintainability.

Testing is an activity that is concerned with finding out whether a segment of code contains any 
errors. Testing well is not easy, and there is much to think about when testing a program.

Debugging comes after testing. If tests have shown that an error is present, we use debugging 
techniques to find out exactly where the error is and how to fix it. There can be a significant 
amount of work between knowing that an error exists and finding the cause and fixing it.

Writing for maintainability is maybe the most fundamental topic. It is about trying to write code 
in such a way that errors are avoided in the first place and, if they still slip in, that they can be 
found as easily as possible. Code style and commenting are part of it, as are the code quality 
principles that we have discussed in the previous chapter. Ideally, code should be easy to under-
stand so that the original programmer avoids introducing errors and a maintenance programmer 
can easily find possible errors.

In practice, this is not always simple. But there are big differences between few and many errors 
and also between the effort it takes to debug well-written code and not-so-well-written code.

7.2 Testing and debugging
Testing and debugging are crucial skills in software development. You will often need to check 
your programs for errors and then locate the source of those errors when they occur. In addition, 
you might also be responsible for testing other people’s programs or modifying them. In the 
latter case, the debugging task is closely related to the process of understanding someone else’s 
code, and there is a lot of overlap in the techniques you might use to do both. In the sections 
that follow, we shall investigate the following testing and debugging techniques:

■ manual unit testing within BlueJ

■ test automation

■ manual walkthroughs

■ print statements

■ debuggers

We shall look at the first two testing techniques in the context of some classes that you might 
have written for yourself, and the remaining debugging techniques in the context of understand-
ing someone else’s source code.

7.3 Unit testing within BlueJ
The term unit testing refers to a test of the individual parts of an application, as opposed to 
application testing, which is testing of the complete application. The units being tested can be 
of various sizes. They may be a group of classes, a single class, or even a single method. It is 
worth observing that unit testing can be done long before an application is complete. Any single 
method, once written and compiled, can (and should) be tested.

Concept:

Testing is the ac-

tivity of finding out 

whether a piece of 

code (a method, 

class, or program) 

produces the in-

tended behavior.

Concept:

Debugging is the 

attempt to pinpoint 

and fix the source 

of an error.



238 |       Chapter 7 ■ Well-behaved objects

Because BlueJ allows us to interact directly with individual objects, it offers unique ways to 
conduct testing on classes and methods. One of the points we want to stress in this section is 
that it is never too early to start testing. There are several benefits in early experimentation and 
testing. First, they give us valuable experience with a system; this can make it possible to spot 
problems early enough to fix them, and at a much lower cost than if they had not been uncov-
ered until much later in the development. Second, we can start to build up a series of test cases 
and results that can be used over and over again as the system grows. Each time we make a 
change to the system, these test cases allow us to check that we have not inadvertently intro-
duced errors into the rest of the system as a result of the changes.

In order to illustrate this form of testing within BlueJ, we shall use the online-shop project, 
which represents an early stage in the development of software for an online sales shop (such as 
Amazon.com). Our project contains only a very small part of this application, namely the part 
that deals with customer comments for sales items.

Open the online-shop project. Currently, it contains only two classes: SalesItem and 
Comment. The intended functionality of this part of the application—concentrating solely on 
handling customer comments—is as follows:

■ Sales items can be created with a description and price.

■ Customer comments can be added to and removed from sales items.

■ Comments include a comment text, an author’s name, and a rating. The rating is in the range 
of 1 to 5 (inclusive).

■ Each person may leave only one comment. Subsequent attempts to leave a comment by the 
same author are rejected.

■ The user interface (not implemented in this project yet) will include a question asking, “Was 
this comment helpful to you?” with Yes and No buttons. A user clicking Yes or No is known 
as upvoting or downvoting the comment. The balance of up and down votes is kept for com-
ments, so that the most useful comments (the ones with the highest vote balance) can be 
displayed at the top.

The Comment class in our project stores information about a single comment. For our testing, 
we shall concentrate on the SalesItem class, shown in Code 7.1. Objects of this class repre-
sent a single sales item, including all comments left for this item.

As part of our testing, we should check several parts of the intended functionality, including:

■ Can comments be added and removed from a sales item?

■ Does the showInfo method correctly show all the information stored about a sales item?

■ Are the constraints (ratings must be 1 to 5, only one comment per person) enforced 
correctly?

■ Can we correctly find the most helpful comment (the one with the most votes)?

We shall find that all of these can be tested conveniently using the object bench within BlueJ. In 
addition, we shall see that the interactive nature of BlueJ makes it possible to simplify some of 
the testing by making controlled alterations to a class under test.



7.3 Unit testing within BlueJ | 239

import java.util.ArrayList;
import java.util.Iterator;

/**
 * The class represents sales items on an online e-commerce site (such
 * as Amazon.com). SalesItem objects store all information relevant to
 * this item, including description, price, customer comments, etc.
 *
 * NOTE: The current version is incomplete! Currently, only code
 * dealing with customer comments is here.
 *
 * @author Michael Kölling and David J. Barnes
 * @version 0.1 (2011-07-31)
 */
public class SalesItem
{

private String name;
private int price;  // in cents
private ArrayList<Comment> comments;

    /**
     * Create a new sales item.
     */

public SalesItem(String name, int price)
{

this.name = name;
this.price = price;
comments = new ArrayList<Comment>();

}

    /**
     * Return the name of this item.
     */

public String getName()
{

return name;
}

    /**
     * Return the price of this item.
     */

public int getPrice()
{

return price;
}

Code 7.1
The SalesItem class



240 |       Chapter 7 ■ Well-behaved objects

    /**
     * Return the number of customer comments for this item.
     */

public int getNumberOfComments()
{

return comments.size();
}

    /**
     * Add a comment to the comment list of this sales item. Return
     * true if successful, false if the comment was rejected.
     *
     * The comment will be rejected if the same author has already
     * left a comment or if the rating is invalid. Valid ratings are
     * numbers between 1 and 5 (inclusive).
     */

public boolean addComment(String author, String text, int rating)
{

if(ratingInvalid(rating)) {  // reject invalid ratings
return false;

}

if(findCommentByAuthor(author) != null) {
            // reject multiple comments by same author

return false;
}

comments.add(new Comment(author, text, rating));
return true;

}

    /**
     * Remove the comment stored at the index given. If the index is
     * invalid, do nothing.
     */

public void removeComment(int index)
{

if(index >=0 && index < comments.size()) { // index is valid
comments.remove(index);

}
}

    /**
     * Upvote the comment at 'index'. That is: count this comment as
     * more helpful. If the index is invalid, do nothing.
     */

Code 7.1
continued
The SalesItem class



7.3 Unit testing within BlueJ | 241

public void upvoteComment(int index)
{

if(index >=0 && index < comments.size()) { // index is valid
comments.get(index).upvote();

}
}

    /**
     * Downvote the comment at 'index'. That is: count this comment as
     * less helpful. If the index is invalid, do nothing.
     */

public void downvoteComment(int index)
{

if(index >=0 && index < comments.size()) { // index is valid
comments.get(index).downvote();

}
}

    /**
     * Show all comments on screen. (Currently, for testing purposes:
     * print to the terminal. Modify later for web display.)
     */

public void showInfo()
{

System.out.println("*** " + name + " ***");
System.out.println("Price: " + priceString(price));
System.out.println();
System.out.println("Customer comments:");
for(Comment comment : comments) {

System.out.println("-----------------------------------");
System.out.println(comment.getFullDetails());

}
System.out.println();
System.out.println("=====================================");

}

    /**
     * Return the most helpful comment. The most useful comment is the
     * one with the highest vote balance. If there are multiple
     * comments with equal highest balance, return any one of them.
     */

public Comment findMostHelpfulComment()
{

Iterator<Comment> it = comments.iterator();
Comment best = it.next();

Code 7.1
continued
The SalesItem class



242 |       Chapter 7 ■ Well-behaved objects

while(it.hasNext()) {
Comment current = it.next();
if(current.getVoteCount() > best.getVoteCount()) {

best = current;
}

}
return best;

}

    /**
     * Check whether the given rating is invalid. Return true if it is
     * invalid. Valid ratings are in the range [1..5].
     */

private boolean ratingInvalid(int rating)
{

return rating < 0 || rating > 5;
}

    /**
     * Find the comment by the author with the given name.
     *
     * @return The comment if it exists, null if it doesn'>t.
     */

private Comment findCommentByAuthor(String author)
{

for(Comment comment : comments) {
if(comment.getAuthor().equals(author)) {

return comment;
}

}
return null;

}

    /**
     * For a price given as an int, return a readable String
     * representing the same price. The price is given in whole cents.
     * For example for price==12345, the following String
     * is returned: $123.45
     */

private String priceString(int price)
{

int dollars = price / 100;
int cents = price — (dollars*100);

Code 7.1
continued
The SalesItem class



7.3 Unit testing within BlueJ | 243

if(cents <= 9) {
return "$" + dollars + ".0" + cents;  // zero padding

}
else {

return "$" + dollars + "." + cents;
}

}
}

Code 7.1
continued
The SalesItem class

7.3.1 Using inspectors

When testing interactively, using object inspectors is often very helpful. In preparation for our 
testing, create a SalesItem object on the object bench and open its inspector by selecting the 
Inspect function from the object’s menu. Select the comments field and open its inspector as 
well (Figure 7.1). Check that the list has been created (is not null) and is initially of size 0. 
Check also that the size grows as you add comments. Leave the comment-list inspector open to 
assist with subsequent tests.

Figure 7.1
Inspector for the 

comments list

An essential component of testing classes that use data structures is checking that they behave 
properly both when the data structures are empty and—if appropriate—when they are full. 
Testing for full data structures only applies to those that have a fixed limit, such as arrays. In 
our case, where we use an ArrayList, testing for the list being full does not apply, because 
the list expands as needed. However, making tests with an empty list is important, as this is a 
special case that needs special treatment.

A first test that can be performed on SalesItem is to call its showInfo method before any comments 
have been added. This should correctly show the item’s description and price, and no comments.

A key feature of good testing is to ensure that boundaries are checked, because these are often 
the points at which things go wrong. The boundaries associated with the SalesItem class are, 
for example, the empty comment list. Boundaries set for the Comment class include the restric-
tion of the rating to the range 1 to 5. Ratings at the top and bottom of this range are boundary 



244 |       Chapter 7 ■ Well-behaved objects

cases. It will be important to check not only ratings in the middle of this range, but also the 
maximum and minimum possible rating.

In order to conduct tests along these lines, create a SalesItem object on the object bench and 
try the following as initial tests of the comment functionality. If you do these tests carefully, 
they should uncover two errors in our code.

Exercise 7.1 Add several comments to the sales item while keeping an eye on the inspector 

for the comments list. Make sure the list behaves as expected (that is, its size should increase). 

You may also like to inspect the elementData field of the ArrayList object.

Exercise 7.2 Check that the showInfo method correctly prints the item information, 

including the comments. Try this both for items with and without comments.

Exercise 7.3 Check that the getNumberOfComments method works as expected.

Exercise 7.4 Now check that duplicate authors are correctly handled—i.e., that further 

comments by the same author are rejected. When trying to add a comment with an author 

name for whom a comment already exists, the addComment method should return false.

Check also that the comment was not added to the list.

Exercise 7.5 Perform boundary checking on the rating value. That is, create comments not 

only with medium ratings, but also with top and bottom ratings. Does this work correctly?

Exercise 7.6 Good boundary testing also involves testing values that lie just beyond the valid 

range of data. Test 0 and 6 as rating values. In both cases, the comment should be rejected 

(addComment should return false, and the comment should not be added to the comment list).

Exercise 7.7 Test the upvoteComment and downvoteComment methods. Make sure 

that the vote balance is correctly counted.

Exercise 7.8 Use the upvoteComment and downvoteComment methods to mark some 

comments as more or less helpful. Then test the findMostHelpfulComment method. 

This method should return the comment that was voted most helpful. You will notice that the 

method returns an object reference. You can use the Inspect function in the method result 

dialog to check whether the correct comment was returned. Of course, you will need to know 

which is the correct comment in order to check whether you get the right result!

Exercise 7.9 Do boundary testing of the findMostHelpfulComment method. That is, 

call this method when the comments list is empty (no comments have been added). Does this 

work as expected?

Exercise 7.10 The tests in the exercises above should have uncovered two bugs in our 

code. Fix them. After fixing these errors, is it safe to assume that all previous tests will still work 

as before? Section 7.4 will discuss some of the testing issues that arise when software is cor-

rected or enhanced.



7.4 Test automation | 245

From these exercises, it is easy to see how valuable interactive method invocations and inspec-
tors are in giving immediate feedback on the state of an object, often avoiding the need to add 
print statements to a class when testing or debugging it.

7.3.2 Positive versus negative testing

When deciding about what to test, we generally distinguish positive and negative test cases. 
Positive testing is the testing of functionality that we expect to work. For example, adding a 
comment by a new author with a valid rating is a positive test. When testing positive test cases, 
we have to convince ourselves that the code did indeed work as expected.

Negative testing is the test of cases that we expect to fail. Using an invalid rating or attempting 
to store a second comment from the same author are both negative tests. When testing negative 
cases, we expect the program to handle this error in some specified, controlled way.

Concept:

Positive testing is 

the testing of cases 

that are expected 

to succeed.

Concept:

Negative testing

is the testing of 

cases that are 

expected to fail.
Pitfall It is a very common error for inexperienced testers to conduct only positive tests. Negative 

tests—testing that what should go wrong indeed does go wrong, and does so in a well-defined 

manner—are crucial for a good test procedure.

Exercise 7.11 Which of the test cases mentioned in the previous exercises are positive 

tests and which are negative? Make a table of each category. Can you think of further positive 

tests? Can you think of further negative ones?

7.4 Test automation
One reason why thorough testing is often neglected is that it is both a time consuming and a 
relatively boring activity if done manually. You will have noticed, if you did all exercises in 
the previous section, that testing thoroughly can become tedious very quickly. This particularly 
becomes an issue when tests have to be run not just once but possibly many hundreds or thou-
sands of times. Fortunately, there are techniques available that allow us to automate repetitive 
testing, and so remove much of the drudgery associated with it. The next section looks at test 
automation in the context of regression testing.

7.4.1 Regression testing

It would be nice if we could assume that correcting errors only ever improves the quality of a 
program. Sadly, experience shows that it is all too easy to introduce further errors when modi-
fying software. Thus, fixing an error at one spot may introduce another error at the same time.

As a consequence, it is desirable to run regression tests whenever a change is made to software. 
Regression testing involves rerunning tests that have previously passed, to ensure that the new 
version still passes them. It is much more likely to be performed if it can be automated. One of the 
easiest ways to automate regression tests is to write a program that acts as a test rig, or test harness.



246 |       Chapter 7 ■ Well-behaved objects

7.4.2 Automated testing using JUnit

Support for regression testing is integrated in BlueJ (and many other development environ-
ments) using a testing system called JUnit. JUnit is a testing framework devised by Erich 
Gamma and Kent Beck for the Java language, and similar systems are now available for many 
other programming languages.

JUnit, www.junit.org JUnit is a popular testing framework to support organized unit testing 

and regression testing in Java. It is available independent of specific development environments, 

as well as integrated in many environments. JUnit was developed by Erich Gamma and Kent Beck. 

You can find the software and a lot of information about it at http://www.junit.org.

To start investigating regression testing with our example, open the online-shop-junit pro-
ject. This project contains the same classes as the previous one, plus an additional class, 
SalesItemTest.

SalesItemTest is a test class. The first thing to note is that its appearance is different from 
what we have seen previously (Figure 7.2). It is annotated as a <<unit test>>, its color is 
different from that of the ordinary classes in the diagram, and it is attached to the SalesItem
class (it will be moved with this class if SalesItem is moved in the diagram).

You will note that Figure 7.2 also shows some additional controls in the main window, below 
the Compile button. These allow you to use the built-in regression testing tools. If you have 
not used JUnit in BlueJ before, the testing tools are switched off, and the buttons will not yet 
be visible on your system. You should switch on these testing tools now. To do this, open the 
Miscellaneous tab in your Preferences dialog and ensure that the Show unit testing tools option 
is selected.

Figure 7.2
A project with a test 

class

http://www.junit.org
www.junit.org


7.4 Test automation | 247

A further difference is apparent in the menu that appears when we right-click the test class 
(Figure 7.3). There are three new sections in the menu instead of a list of constructors.

Figure 7.3
The pop-up menu 

for a test class

Using test classes, we can automate regression testing. The test class contains code to perform 
a number of prepared tests and check their results. This makes repeating the same tests many 
times much easier.

A test class is usually associated with an ordinary project class. In this case, SalesItemTest
is associated with the SalesItem class, and we say that SalesItem is the reference class for 
SalesItemTest.

In our project, the test class has already been created, and it already contains some tests. We can 
now execute these tests by clicking the Run Tests button.

Exercise 7.12 Run the tests in your project, using the Run Tests button. You should see a 

window similar to Figure 7.4, summarizing the results of the tests.

Figure 7.4
The Test Results

window



248 |       Chapter 7 ■ Well-behaved objects

Figure 7.4 shows the result of running three tests named testAddComment, testIllegal-
Rating, and testInit, which are defined in the test class. The ticks immediately to the left 
of the test names indicate that the tests succeeded. You can achieve the same result by selecting 
the Test All option from the pop-up menu associated with the test class or running the tests indi-
vidually by selecting them from the same menu.

Test classes are clearly different in some way from ordinary classes, and if you open the source 
code of SalesItemTest, you will notice that it has some new features. At this stage of the 
book, we are not going to discuss in detail how test classes work internally, but it is worth not-
ing that although the source code of SalesItemTest could have been written by a person, it 
was, in fact, automatically generated by BlueJ. Some of the comments were then added after-
wards to document the purpose of the tests.

Each test class typically contains tests for the functionality of its reference class. It is created 
by using the right mouse button over a potential reference class and selecting Create Test Class
from the pop-up menu. Note that SalesItem already has a test class, so this additional menu 
item does not appear in its class menu, but the one for Comment does have this option, as it cur-
rently has no associated test class.

The test class contains source code both to run tests on a reference class and to check whether 
the tests were successful or not. For instance, here is one of the statements from testInit that 
checks that the price of the item is 1000 at that point:

assertEquals(1000, salesIte1.getPrice());

When such tests are run, BlueJ is able to display the results in the window shown in Figure 7.4.

In the next section, we shall discuss how BlueJ supports creation of tests so that you can create 
your own automated tests.

Exercise 7.13 Create a test class for the Comment class in the online-shop-junit project.

Exercise 7.14 What methods are created automatically when a new test class is created?

7.4.3 Recording a test

As we discussed at the beginning of Section 7.4, test automation is desirable because manu-
ally creating and re-creating tests is a time-consuming process. BlueJ makes it possible to 
combine the effectiveness of manual unit testing with the power of test automation by enabling 
us to record manual tests and then replay them later for the purposes of regression testing. The 
SalesItemTest class was created via this process.

Suppose that we wanted to thoroughly test the addComment method of the SalesItem class. 
This method, as we have seen, adds customer comments if they are valid. There are several tests 
we would like to make, such as:

■ adding a first comment to an empty comment list (positive)

■ adding further comments when other comments already exist (positive)



7.4 Test automation | 249

■ attempting to add a comment with an author who has already submitted a comment 
(negative)

■ attempting to add a comment with an invalid rating (negative)

The first of these already exists in the SalesItemTest class. We will now describe how to cre-
ate the next one using the online-shop-junit project.

A test is recorded by telling BlueJ to start recording, performing the test manually, and then 
signaling the end of the test. The first step is done via the menu attached to a test class. This tells 
BlueJ which class you wish the new test to be stored in. Select Create Test Method…from the 
SalesItemTest class’s pop-up menu. You will be prompted for a name for the test method. 
By convention, we start the name with the prefix “test.” For example, to create a method that 
tests adding two comments, we might call that method testTwoComments.1

Once you have entered a name and clicked OK, a red recording indicator appears to the left of 
the class diagram, and the End and Cancel buttons become available. End is used to indicate the 
end of the test-creation process and Cancel to abandon it.

Once recording is started, we just carry out the actions that we would with a normal manual 
test:

■ Create a SalesItem object.

■ Add a comment to the sales item.

Once addComment has been called, a new dialog window will appear (Figure 7.5). This is an 
extended version of the normal method result window, and it is a crucial part of the automated 
testing process. Its purpose is to allow you to specify what the result of the method call should
be. This is called an assertion.

1 Earlier versions of JUnit, up to version 3, required the method names to start with the prefix “test.” This 
is not a requirement anymore in current versions.

Figure 7.5
The Method Result

dialog with assertion 

facility



250 |       Chapter 7 ■ Well-behaved objects

In this case, we expect the method return value to be true, and we want to include a check in our 
test to make sure that this is really the case. We can now make sure that the Assert that check-
box is checked, enter true in the dialog, and select the Close button.

■ Add a second comment to your sales item. Make sure the comments are valid (they have 
unique authors and the rating is valid). Assert that the result is true for the second comment 
addition as well.

■ We now expect two comments to exist. To test that this is indeed the case, call the getNum-
berOfComments method and assert that the result is 2.

This is the final stage of the test. We then press the End button to stop the recording. At that 
point, BlueJ adds source code to the SalesItemTest class for our new method, testTwo-
Comments, then compiles the class and clears the object bench. The resulting generated method 
is shown in Code 7.2.

Concept:

An assertion is 

an expression that 

states a condition 

that we expect 

to be true. If the 

condition is false, 

we say that the 

assertion fails. This

indicates an error in 

our program.

@Test
public void testTwoComments()
{

SalesItem salesIte1 = new SalesItem("Java Book", 12345);
assertEquals(true, salesIte1.addComment("James Duckling",

                 "Great book. ...", 4));
assertEquals(true, salesIte1.addComment("Fred", "Like it", 2));
assertEquals(2, salesIte1.getNumberOfComments());

}

Code 7.2
An automatically gener-

ated test method

As can be seen, the method contains statements that reproduce the actions made when recording 
it: a SalesItem object is created, and the addComment and getNumberOfComments methods 
are called. The call to assertEquals is what checks that the result returned by these methods 
matches the expected value. You can also see a new construct, @Test, before the method. This 
is an annotation that identifies this method as a test method.

The exercises below are provided so that you can try this process out for yourself. They include 
an example to show what happens if the actual value does not match the expected value.

Exercise 7.15 Create a test to check that addComment returns false when a comment 

from the same author already exists.

Exercise 7.16 Create a test that performs negative testing on the boundaries of the rating 

range. That is, test the values 0 and 6 as a rating (the values just outside the legal range). We 

expect these to return false, so assert false in the result dialog. You will notice that one of 

these actually (incorrectly) returns true. This is the bug we uncovered earlier in manual test-

ing. Make sure that you assert false anyway. The assertion states the expected result, not 

the actual result.

Exercise 7.17 Run all tests again. Explore how the Test Result dialog displays the failed 

test. Select the failed test in the list. What options do you have available to explore the details 

of the failed test?



7.4 Test automation | 251

7.4.4 Fixtures

As a set of test methods is built up, it is common to find yourself creating similar objects for 
each one. For instance, every test of the SalesItem class will involve creating at least one 
SalesItem and initializing it, often by adding one or more comments. An object or a group 
of objects that is used in more than one test is known as a fixture. Two menu items associated 
with a test class enable us to work with fixtures in BlueJ: Object Bench to Test Fixture and Test 
Fixture to Object Bench. In your project, create two SalesItem objects on the object bench. 
Leave one without any comments, and add two comments to the other. Now select Object
Bench to Test Fixture from SalesItemTest. The objects will disappear from the object bench, 
and if you examine the source code of SalesItemTest, you will see that its setUp method 
looks something like Code 7.3, where salesIte1 and salesIte2 have been defined as fields.

Exercise 7.18 Create a test class that has Comment as its reference class. Create a test 

that checks whether the author and rating details are stored correctly after creation. Record 

separate tests that check whether the upvote and downvote methods work as expected.

Exercise 7.19 Create tests for SalesItem that test whether the findMostHelpfulCom-
ment method works as expected. Note that this method returns a Comment object. During 

your testing, you can use the Get button in the method result dialog to get the result object 

onto the object bench, which then allows you to make further method calls and add assertions 

for this object. This allows you to identify the comment object returned (e.g., by checking its 

author). You can also assert that the result is null or not null, depending on what you expect.

Concept:

A fixture is a set of 

objects in a defined 

state that serves 

as a basis for unit 

tests.

/**
 * Sets up the test fixture.
 *
 * Called before every test case method.
 */
@Before
public void setUp()
{

salesIte1 = new SalesItem("Java Book", 12345);
salesIte2 = new SalesItem("Other", 123);
salesIte2.addComment("Fred", "too expensive", 1);

}

Code 7.3
Creating a fixture

The significance of the setUp method is that it is automatically called immediately before 
every test method is called. (The @Before annotation above the method header ensures this.) 
This means that the individual test methods no longer need to create their own versions of the 
fixture objects.

Once we have a fixture associated with a test class, recording tests becomes significantly simpler. 
Whenever we create a new test method, the objects from the fixture will automatically appear on 
the object bench—there is no longer a need to create new test objects manually each time.



252 |       Chapter 7 ■ Well-behaved objects

Should we wish to add further objects to the fixture at any time, one of the easiest ways is to 
select Test Fixture to Object Bench, add further objects to the object bench in the usual way, and 
then select Object Bench to Test Fixture. We could also edit the setUp method in the editor and 
add further fields directly to the test class.

Test automation is a powerful concept because it makes it more likely that tests will be written 
in the first place, and more likely that they will be run and rerun as a program develops. You 
should try to get into the habit of starting to write unit tests early in the development of a pro-
ject, and of keeping them up to date as the project progresses. In Chapter 12, we shall return to 
the subject of assertions in the context of error handling.

Exercise 7.20 Add further automated tests to your project until you reach a point where you 

are reasonably confident of the correct operation of the classes. Use both positive and nega-

tive tests. If you discover any errors, be sure to record tests that guard against recurrence of 

these errors in later versions.

In the next section, we look at debugging—the activity that starts when we have noticed the 
existence of an error and we need to find and fix it.

7.5 Debugging
Testing is important, and testing well helps uncover the existence of errors. However, testing 
alone is not enough. After detecting the existence of an error, we also have to find its cause and 
fix it. That’s where debugging comes in.

To discuss various approaches to debugging, we use a hypothetical scenario. Imagine that you 
have been asked to join an existing project team that is working on an implementation of a soft-
ware calculator (Figure 7.6). You have been drafted in because a key member of the program-
ming team, Hacker T. Largebrain, has just been promoted to a management position on another 
project. Before leaving, Hacker assured the team you are joining that his implementation of the 
part of the calculator he was responsible for was finished and fully tested. He had even written 
some test software to verify that this was the case. You have been asked to take over the class 
and simply ensure that it is properly commented prior to integration with the classes being writ-
ten by other members of the team.

The software for the calculator has been carefully designed to separate the user interface from 
the calculator logic so that the calculator might be used in different contexts later on. The 
first version, which we are looking at here, will run with a graphical user interface, shown in 
Figure 7.6. However, in later extensions to the project, it is intended that the same calculator 
implementation should be able to run in a web browser or on a mobile device. In preparation for 
this, the application has been split into separate classes, most importantly UserInterface, to 
implement the graphical user interface, and CalcEngine, to implement the calculation logic. 
It is this latter class that Hacker was responsible for. This class should remain unchanged when 
the calculator runs with a different user interface.



7.5 Debugging | 253

To investigate how the CalcEngine class is used by other classes, it is useful to look at its interface.
Confusingly, we are now not talking about the user interface, but about the class interface. This 
double meaning of the term interface is unfortunate, but it is important to understand both meanings.

The class interface is the summary of the public-method headers that other classes can use. It is 
what other classes can see and how they can interact with our class. The interface is shown in 
the javadoc documentation of a class and in the Documentation view in the editor. Code 7.4 
shows the interface of the CalcEngine class.

Figure 7.6
The user interface 

of a software 

calculator

// Return the value to be displayed.
public int getDisplayValue();

// Call when a digit button is pressed.
public void numberPressed(int number);

// Call when a plus operator is pressed.
public void plus();

// Call when a minus operator is pressed.
public void minus();

// Call to complete a calculation.
public void equals();

// Call to reset the calculator.
public void clear();

Code 7.4
The interface of the 

arithmetic logic unit

Such an interface can be written before the full classes are implemented. It represents a sim-
ple form of contract between the CalcEngine class and other parts of the program that wish 
to use it. The CalcEngine class provides the implementation of this interface. The interface 
describes a minimum set of methods that will be implemented in the logic component, and 
for each method the return type and parameters are fully defined. Note that the interface gives 
no details of exactly what its implementing class will do internally when notified that a plus 



254 |       Chapter 7 ■ Well-behaved objects

operator has been pressed, for instance; that is left to its implementers. In addition, the imple-
menting class might well have additional methods not listed here.

In the sections that follow, we shall look at Hacker’s attempt to implement this interface. In this 
case, we decide that the best way to understand Hacker’s software prior to documenting it is to 
explore its source and the behavior of its objects.

7.6 Commenting and style
Open the calculator-engine project to view the classes. This is Hacker’s own version of the 
project, containing only the calculator engine and a test class, but not the user interface class. 
The CalcEngineTester class takes the place of the user interface at this stage of develop-
ment. This illustrates another positive feature of defining interfaces between classes: it becomes 
easier to develop mock-ups of the other classes for the purpose of testing.

If you take a look at the CalcEngine class, you will find that its author has paid attention to 
some important areas of good style:

■ The class has been given a multiline comment at the top, indicating the purpose of the class. 
Also included are annotations indicating author and version number.

■ Each method of the interface has a comment indicating its purpose, parameters, and return 
type. This will certainly make it easier to generate project documentation for the interface, as 
discussed in Chapter 5.

■ The layout of the class is consistent, with appropriate amounts of white-space indentation 
used to indicate the distinct levels of nested blocks and control structures.

■ Expressive variable names and method names have been chosen.

Although these conventions may seem time consuming during implementation, they can be of 
enormous benefit in helping someone else to understand your code (as we have to in this scenario) 
or in helping you to remember what a class does if you have taken a break from working on it.

We also note another detail that looks less promising: Hacker has not used a specialized unit 
test class to capture his tests, but has written his own test class. As we know about unit test sup-
port in BlueJ, we wonder why.

This does not necessarily have to be bad. Handwritten test classes may be just as good, but it 
makes us a little suspicious. Did Hacker really know what he was doing? We shall come back 
to this point a bit later.

So, maybe Hacker’s abilities are as great as he thinks they are, and in that case you will not 
have much to do to make the class ready for integration with the others?! Try the following 
exercises to see if this is the case.

Exercise 7.21 Make sure the classes in the project are compiled, and then create a 

CalcEngineTester object within BlueJ. Call the testAll method. What is printed in the 

terminal window? Do you believe the final line of what it says?



7.7 Manual walkthroughs | 255

The experiments above should have alerted you to the fact that not all seems to be right with 
the CalcEngine class. It looks like it contains some errors. But what are they, and how can we 
find them? In the sections that follow, we shall consider a number of different ways in which we 
can try to locate where errors are occurring in a class.

7.7 Manual walkthroughs
Manual walkthroughs are a relatively underused technique, perhaps because they are a par-
ticularly “low-tech” debugging and testing technique. However, do not let this fool you into 
thinking that they are not useful. A manual walkthrough involves printing copies of the classes 
you are trying to understand or debug and then getting right away from your computer! It is all 
too easy to spend a lot of time sitting in front of a computer screen not making much progress 
in trying to deal with a programming problem. Relocating and refocusing your efforts can often 
free your mind to attack a problem from a completely different direction. We have often found 
that going off to lunch or cycling home from the office brings enlightenment that has otherwise 
eluded us through hours of slogging away at the keyboard!

A walkthrough involves both reading classes and tracing the flow of control between classes and 
objects. This aids understanding both the ways in which objects interact with one another and how 
they behave internally. In effect, a walkthrough is a pencil-and-paper simulation of what happens 
inside the computer when you run a program. In practice, it is best to focus on a narrow portion of 
an application, such as a single logical grouping of actions or even a single method call.

7.7.1 A high-level walkthrough

We shall illustrate the walkthrough technique with the calculator-engine project. You might 
find it useful to print out copies of the CalcEngine and CalcEngineTester classes in order 
to follow through the steps of this technique.

We shall start by examining the testPlus method of the CalcEngineTester class, as it contains 
a single logical grouping of actions that should help us gain an understanding of how several meth-
ods of the CalcEngine class work together to fulfill the computation role of a calculator. As we 
work our way through it, we shall often make penciled notes of questions that arise in our minds.

1 For this first stage, we do not want to delve into too much detail. We simply want to look at 
how the testPlus method uses an engine object, without exploring the internal details of 
the engine. From earlier experimentation, it would appear that there are some errors to be 

Exercise 7.22 Using the object you created in the previous exercise, call the testPlus
method. What result does it give? Is that the same result as was printed by the call to tes-
tAll? Call testPlus one more time. What result does it give now? Should it always give the 

same answer? If so, what should that answer be? Take a look at the source of the testPlus
method to check.

Exercise 7.23 Repeat the previous exercise with the testMinus method. Does it always 

give the same result?

Concept:

A walkthrough

is an activity of 

working through a 

segment of code 

line by line while 

observing changes 

of state and other 

behavior of the 

application.



256 |       Chapter 7 ■ Well-behaved objects

found, but we do not know whether the errors are in the tester or the engine. So the first step 
is to check that the tester appears to be using the engine appropriately.

2 We note that the first statement of testPlus assumes that the engine field already refers 
to a valid object:

engine.clear();

We can verify that this is the case by checking the tester’s constructor. It is a common 
error for an object’s fields not to have been initialized properly, either in their declara-
tions or in a constructor. If we attempt to use a field with no associated object, then a 
NullPointerException is a likely runtime error.

3 The first statement’s call to clear appears to be an attempt to put the calculator engine into 
a valid starting state, ready to receive instructions to perform a calculation. This looks like 
a reasonable thing to do, equivalent to pressing a “reset” or “clear” key on a real calculator. 
At this stage, we do not look at the engine class to check exactly what the clear method 
does. That can wait until we have achieved a level of confidence that the tester’s actions are 
reasonable. Instead, we simply make a penciled note to check that clear puts the engine 
into a valid starting state as expected.

4 The next statement in testPlus is the entry of a digit via the numberPressed method:

engine.numberPressed(3);

This too is reasonable, as the first step in making a calculation is to enter the first operand. 
Once again, we do not look to see what the engine does with the number. We simply assume 
that it stores it somewhere for later use in the calculation.

5 The next statement calls plus, so we now know that the full value of the left operand is 3. We 
could make a penciled note of this fact on the printout, or make a tick against this assertion in 
one of the comments of testPlus. Similarly, we should note or confirm that the operation be-
ing executed is addition. This seems like a trivial thing to do, but it is all too easy for a class’s 
comments to get out of step with the code they are supposed to document. So checking the 
comments at the same time as we read the code can help us avoid being misled by them later.

6 Next, another single digit is entered as the right operand by a further call to numberPressed.

7 Completion of the addition is requested by a call to the equals method. We might make 
a penciled note that, from the way it has been used in testPlus, the equals method ap-
pears not to return the result of the calculation, as we might have expected otherwise. This is 
something else that we can check when we look at CalcEngine.

8 The final statement of testPlus obtains the value that should appear in the calculator’s 
display:

return engine.getDisplayValue();

Presumably, this is the result of the addition, but we cannot know that for sure without look-
ing in detail at CalcEngine. Once again, we shall make a note to check that this is indeed 
the case.

With our examination of testPlus completed, we have gained a reasonable degree of con-
fidence that it uses the engine appropriately: that is, simulating a recognizable sequence of 



7.7 Manual walkthroughs | 257

key presses to complete a simple calculation. We might remark that the method is not particu-
larly ambitious—both operands are single-digit numbers, and only a single operator is used. 
However, that is not unusual in test methods, because it is important to test for the most basic 
functionality before testing more complex combinations. Nevertheless, it is useful to observe 
that some more complex tests should be added to the tester at some stage.

Exercise 7.24 Perform a similar walkthrough of your own with the testMinus method. 

Does that raise any further questions in your mind about things you might like to check when 

looking at CalcEngine in detail?

Before looking at the CalcEngine class, it is worth walking through the testAll method to 
see how it uses the testPlus and testMinus methods we have been looking at. From this we 
observe the following:

1 The testAll method is a straight-line sequence of print statements.

2 It contains one call to each of testPlus and testMinus, and the values they return are 
printed out for the user to see. We might note that there is nothing to tell the user what the 
results should be. This makes it hard for the user to confirm that the results are correct.

3 The final statement boldly states:

All tests passed.

but the method contains no tests to establish the truth of this assertion! There really should 
be a proper means of establishing both what the result values should be and whether they 
have been calculated correctly or not. This is something we should remedy as soon as we 
have the chance to get back to the source of this class.

At this stage, we should not be distracted by the final point into making changes that do not 
directly address the errors we are looking for. If we make those sorts of changes, we could eas-
ily end up masking the errors. One of the crucial requirements for successful debugging is to be 
able to trigger the error you are looking for easily and reproducibly. When that is the case, it is 
much easier to assess the effect of an attempted correction.

Having checked over the test class, we are in a position to examine the source of the CalcEngine
class. We can do so armed with a reasonable sequence of method calls to explore from the walk-
through of the testPlus method, as well as with a set of questions thrown up by it.

7.7.2 Checking state with a walkthrough

A CalcEngine object is quite different in style from its tester. This is because the engine is 
a completely passive object. It initiates no activity of its own, but simply responds to external 
method calls. This is typical of the server style of behavior. Server objects often rely heavily 
on their state to determine how they should respond to method calls. This is particularly true of 
the calculator engine. So an important part of conducting the walkthrough is to be sure that we 
always have an accurate representation of its state. One way to do this on paper is by making 
up a table of an object’s fields and their values (Figure 7.7). A new line can be entered to keep a 
running log of the values following each method call.



258 |       Chapter 7 ■ Well-behaved objects

Method called displayValue leftOperand previousOperator

initial state 0 0 ' '

clear 0 0 ' '

numberPressed(3) 3 0 ' '

Figure 7.7
Informal tabulation 

of an object’s state

This technique makes it quite easy to check back if something appears to go wrong. It is also 
possible to compare the states after two calls to the same method.

1 As we start the walkthrough of CalcEngine, we document the initial state of the engine, 
as in the first row of values in Figure 7.7. All of its fields are initialized in the constructor. 
As we observed when walking through the tester, object initialization is important, and we 
might make a note here to check that the default initialization is sufficient—particularly as 
the default value of previousOperator would appear not to represent a meaningful op-
erator. Furthermore, this might make us think about whether it really is meaningful to have 
a previous operator before the first real operator in a calculation. In noting down these ques-
tions, we do not necessarily have to try to discover the answers right away, but they provide 
prompts as we discover more about the class.

2 The next step is to see how a call to clear changes the engine’s state. As shown in the 
second data row of Figure 7.7, the state remains unchanged at this point because display-
Value is already set to 0. But we might note another question here: Why is the value of only 
one of the fields set by this method? If this method is supposed to implement a form of reset, 
why not clear all of the fields?

3 Next, a call to numberPressed with an actual parameter of 3 is investigated. The method 
multiplies an existing value of displayValue by 10 and then adds in the new digit. This 
correctly models the effect of appending a new digit onto the right-hand end of an existing 
number. It relies on displayValue having a sensible initial value of 0 when the first digit 
of a new number is entered, and our investigation of the clear method gives us confidence 
that this will be the case. So this method looks all right.

4 Continuing to follow the order of calls in the testPlus method, we next look at plus.
Its first statement calls the applyPreviousOperator method. Here we have to decide 
whether to continue ignoring nested method calls or whether to break off and see what it 
does. Taking a quick look at the applyPreviousOperator method, we can see that it 
is fairly short. Furthermore, it is clearly going to alter the state of the engine, and we shall 
not be able to continue documenting the state changes unless we follow it up. So we would 
certainly decide to follow the nested call. It is important to remember where we came from, 
so we would mark the listing just inside the plus method before following through the 
applyPreviousOperator method. If following a nested method call is likely to lead to 
further nested calls, we should need to use something more than a simple mark to help us 
find our way back to the caller. In that case, it is better to mark the call points with ascending 
numerical values, reusing previous values as calls return.

5 The applyPreviousOperator method gives us some insights into how the previous-
Operator field is used. It also appears to answer one of our earlier questions: whether 
having a space as the initial value for the previous operator was all right. The method 



7.7 Manual walkthroughs | 259

explicitly checks to see that previousOperator contains either a + or a – before applying 
it. So another value will not result in an incorrect operation being applied. By the end of this 
method, the value of leftOperand will have been changed, so we would note its new value 
in the state table.

6 Returning to the plus method, the remaining two fields have their values set, so the next 
row of the state table will contain the following values:

plus 0 3 '+'

The walkthrough of the engine can be continued in a similar fashion, documenting the state 
changes, gaining insights into its behavior, and raising questions along the way. The following 
exercises should help you complete the walkthrough.

Exercise 7.25 Complete the state table based on the following subsequent calls found in 

the testPlus method:

numberPressed(4);
equals();
getDisplayValue();

Exercise 7.26 When walking through the equals method, did you feel the same reassur-

ances that we felt in applyPreviousOperator about the default value of previousOp-
erator?

Exercise 7.27 Walk through a call to clear immediately following the call to getDis-
playValue at the end of your state table, and record the new state. Is the engine in the same 

state as it was at the previous call to clear? If not, what impact do you think this could have 

on any subsequent calculations?

Exercise 7.28 In the light of your walkthrough, what changes do you think should be made 

to the CalcEngine class? Make those changes to a paper version of the class, and then try 

the walkthrough all over again. You should not need to walk through the CalcEngineTester
class, just repeat the actions of its testAll method.

Exercise 7.29 Try a walkthrough of the following sequence of calls on your corrected ver-

sion of the engine:

clear();
numberPressed(9);
plus();
numberPressed(1);
minus();
numberPressed(4);
equals();

What should the result be? Does the engine appear to behave correctly and leave the correct 

answer in displayValue?



260 |       Chapter 7 ■ Well-behaved objects

7.7.3 Verbal walkthroughs

Another way in which the walkthrough technique can be used to find errors in a program is to try 
explaining to another person what a class or method does. This works in two completely different ways:

■ The person you explain the code to might spot the error for you.

■ You will often find that the simple act of trying to put into words what a piece of code should 
do is enough to trigger in your own mind an understanding of why it does not.

This latter effect is so common that it can often be worth explaining a piece of code to someone who 
is completely unfamiliar with it—not in anticipation that they will find the error, but that you will!

7.8 Print statements
Probably the most common technique used to understand and debug programs—even amongst 
experienced programmers—is to annotate methods temporarily with print statements. Print 
statements are popular because they exist in most languages, they are available to everyone, 
and they are very easy to add with any editor. No additional software or language features are 
required to make use of them. As a program runs, these additional print statements will typi-
cally provide a user with information such as:

■ which methods have been called

■ the values of parameters

■ the order in which methods have been called

■ the values of local variables and fields at strategic points

Code 7.5 shows an example of how the numberPressed method might look with print state-
ments added. Such information is particularly helpful in providing a picture of the way in which 
the state of an object changes as mutators are called. To help support this, it is often worth 
including a debugging method that prints out the current values of all the fields of an object. 
Code 7.6 shows such a reportState method for the CalcEngine class.

/**
 * A number button was pressed.
 * @param number The number that was pressed.
 */
public void numberPressed(int number)
{

System.out.println("numberPressed called with: " +
number);

displayValue = displayValue * 10 + number;

System.out.println("displayValue is: " + displayValue +
" at end of numberPressed.");

}

Code 7.5
A method with debug-

ging print statements 

added



7.8 Print statements | 261

If each method of CalcEngine contained a print statement at its entry point and a call to 
reportState at its end, Figure 7.8 shows the output that might result from a call to the tester’s 
testPlus method. (This was generated from a version of the calculator engine that can be 
found in the calculator-engine-print project.) Such output allows us to build up a picture of how 
control flows between different methods. For instance, we can see from the order in which the 
state values are reported that a call to plus contains a nested call to applyPreviousOperator.

/**
 * Print the values of this object's fields.
 * @param where Where this state occurs.
 */
public void reportState(String where)
{

System.out.println("displayValue: " + displayValue +
" leftOperand: " + leftOperand +
" previousOperator: " +
previousOperator + " at " + where);

}

Code 7.6
A state-reporting 

method

clear called
displayValue: 0 leftOperand: 0 previousOperator: at end of clear
numberPressed called with: 3
displayValue: 3 leftOperand: 0 previousOperator: at end of number...
plus called
applyPreviousOperator called
displayValue: 3 leftOperand: 3 previousOperator: at end of apply...
displayValue: 0 leftOperand: 3 previousOperator: + at end of plus
numberPressed called with: 4
displayValue: 4 leftOperand: 3 previousOperator: + at end of number...
equals called
displayValue: 7 leftOperand: 0 previousOperator: + at end of equals

Figure 7.8
Debugging output 

from a call to 

testPlus

Print statements can be very effective in helping us understand programs or locate errors, but 
there are a number of disadvantages:

■ It is not usually practical to add print statements to every method in a class. So they are only 
fully effective if the right methods have been annotated.

■ Adding too many print statements can lead to information overload. A large amount of out-
put can make it difficult to identify what you need to see. Print statements inside loops are a 
particular source of this problem.

■ Once their purpose has been served, it can be tedious to remove them.

■ There is also the chance that, having removed them, they will be needed again later. It can be 
very frustrating to have to put them back in again!



262 |       Chapter 7 ■ Well-behaved objects

7.8.1 Turning debugging information on or off

If a class is still under development when print statements are added, we often do not want to see 
the output every time the class is used. It is best if we can find a way to turn the printing on or off as 
required. The most common way to achieve this is to add an extra boolean debugging field to the 
class and then make printing dependent upon the value of the field. Code 7.7 illustrates this idea.

Exercise 7.30 Open the calculator-engine-print project and complete the addition of print 

statements to each method and the constructor.

Exercise 7.31 Create a CalcEngineTester in the project and run the testAll method. 

Does the output that results help you identify where the problem lies?

Exercise 7.32 Do you feel that the amount of output produced by the fully annotated 

CalcEngine class is too little, too much, or about right? If you feel that it is too little or too 

much, either add further print statements or remove some until you feel that you have the right 

level of detail.

Exercise 7.33 What are the respective advantages and disadvantages of using manual 

walkthroughs or print statements for debugging? Discuss.

/**
 * A number button was pressed.
 * @param number The number that was pressed.
 */
public void numberPressed(int number)
{

if(debugging) {
System.out.println("numberPressed called with: " +

number);
}

displayValue = displayValue * 10 + number;
if(debugging) {

reportState();
}

}

Code 7.7
Controlling whether 

debugging information 

is printed or not

A more economical variation on this theme is to replace the direct calls to print statements with 
calls to a specialized printing method added to the class.2 The printing method would print only 
if the debugging field is true. Therefore, calls to the printing method would not need to be 

2 In fact, we could move this method to a specialized debugging class, but we shall keep things simple in 
this discussion.



7.9 Debuggers | 263

guarded by an if statement. Code 7.8 illustrates this approach. Note that this version assumes 
that reportState either tests the debugging field itself or also calls the new printDebug-
ging method.

/**
 * A number button was pressed.
 * @param number The number that was pressed.
 */
public void numberPressed(int number)
{

printDebugging("numberPressed called with: " + number);

displayValue = displayValue * 10 + number;
reportState();

}

/**
 * Only print the debugging information if debugging
 * is true.
 * @param info The debugging information.
 */
public void printDebugging(String info)
{

if(debugging) {
System.out.println(info);

}
}

Code 7.8
A method for selectively 

printing debugging 

information

As you can see from these experiments, it takes some practice to find the best level of detail to print 
out to be useful. In practice, print statements are often added to one or a small number of methods 
at a time, when we have a rough idea in what area of our program an error might be hiding.

7.9 Debuggers
In Chapter 3, we introduced the use of a debugger to understand how an existing application 
operates and how its objects interact. In a very similar manner, we can use the debugger to track 
down errors.

The debugger is essentially a software tool that provides support for performing a walkthrough 
on a segment of code. We typically set a breakpoint at the statement where we want to start our 
walkthrough and then use the Step or Step Into functions to do the actual walking.

One advantage is that the debugger automatically takes care of keeping track of every object’s 
state, and, thus, doing this is quicker and less error prone than doing the same manually. 



264 |       Chapter 7 ■ Well-behaved objects

A disadvantage is that debuggers typically do not keep a permanent record of state changes, so 
it is harder to go back and check the state as it was a few statements earlier.

A debugger typically also gives you information about the call sequence (or stack) at each point 
in time. The call sequence shows the name of the method containing the current statement, the 
name of the method that the current method was called from, and the name of the method that 
that method was called from, and so on. Thus, the call sequence contains a record of all cur-
rently active, unfinished methods—similar to what we have done manually during our walk-
through by writing marks next to method-call statements.

In BlueJ, the call sequence is displayed on the left-hand side of the debugger window (Figure 7.9). 
Every method name in that sequence can be selected to inspect the current values of that method’s 
local variables.

Figure 7.9
The BlueJ debugger

window, with 

execution stopped at 

a breakpoint

Exercise 7.34 Using the calculator-engine project, set a breakpoint in the first line of the 

testPlus method in the CalcEngineTester class. Execute this method. When the 

debugger appears, walk through the code step by step. Experiment with both the Step and 

Step Into buttons.

Exercise 7.35 Challenge exercise In practice, you will probably find that Hacker

T. Largebrain’s attempt to program the CalcEngine class is too full of errors to be worth 

trying to fix. Instead, write your own version of the class from scratch. The calculator-gui

project contains classes that provide the GUI shown in Figure 7.6. You can use this project as 

the basis for your own implementation of the CalcEngine class. Be sure to document your 

class thoroughly and to create a thorough set of tests for your implementation so that your 

experience with Hacker’s code will not have to be repeated by your successor! Make sure to 

use dedicated unit test classes for your testing, instead of writing tests into standard classes; 

as you have seen, this makes asserting the correct results much easier.



7.12 Summary | 265

7.10 Choosing a debugging strategy
We have seen that several different debugging and testing strategies exist: written and verbal 
walkthroughs, use of print statements (either temporary or permanent, with enabling switches), 
interactive testing using the object bench, writing your own test class, and using a dedicated 
unit test class.

In practice, we would use different strategies at different times. Walkthroughs, print statements, 
and interactive testing are useful techniques for initial testing of newly written code, to inves-
tigate how a program segment works, or for debugging. Their advantage is that they are quick 
and easy to use, they work in any programming language, and they are (except for the interac-
tive testing) independent of the environment. Their main disadvantage is that the activities are 
not easily repeatable. This is okay for debugging, but for testing we need something better: we 
need a mechanism that allows easy repetition for regression testing. Using unit test classes has 
the advantage—once they have been set up—that tests can be replayed any number of times.

So Hacker’s way of testing—writing his own test class—was one step in the right direction, but 
was, of course, flawed. We know now that his problem was that although his class contained 
reasonable method calls for testing, it did not include any assertions on the method results, and 
thus did not detect test failure. Using a dedicated unit test class can solve these problems.

Exercise 7.36 Open your project again and add better testing by replacing Hacker’s test 

class with a unit test class attached to the CalcEngine. Add similar tests to those Hacker

used (and any others you find useful), and include correct assertions.

7.11 Putting the techniques into practice
This chapter has described several techniques that can be used either to understand a new pro-
gram or to test for errors in a program. The bricks project provides a chance for you to try out 
those techniques with a new scenario. The project contains part of an application for a company 
producing bricks. Bricks are delivered to customers on pallets (stacks of bricks). The Pallet
class provides methods telling the height and weight of an individual pallet, according to the 
number of bricks on it.

Exercise 7.37 Open the bricks project. Test it. There are at least four errors in this project. 

See if you can find them and fix them. What techniques did you use to find the errors? Which 

technique was most useful?

7.12 Summary
When writing software, we should anticipate that it will contain logical errors. Therefore, it 
is essential to consider both testing and debugging to be normal activities within the overall 
development process. BlueJ is particularly good at supporting interactive unit testing of both 



266 |       Chapter 7 ■ Well-behaved objects

methods and classes. We have also looked at some basic techniques for automating the testing 
process and performing simple debugging.

Writing good JUnit tests for our classes ensures that errors are detected early, and they give a 
good indication which part of the system an error originates in, making the resulting debugging 
task much easier.

Terms introduced in this chapter

syntax error, logical error, testing, debugging, unit testing, JUnit, positive testing,

negative testing, regression testing, manual walkthrough, call sequence

Concept summary

■ testing Testing is the activity of finding out whether a piece of code (a method, class, or 

program) produces the intended behavior.

■ debugging Debugging is the attempt to pinpoint and fix the source of an error.

■ positive testing Positive testing is the testing of cases that are expected to succeed.

■ negative testing Negative testing is the testing of cases that are expected to fail.

■ assertion An assertion is an expression that states a condition that we expect to be true. If 

the condition is false, we say that the assertion fails. This indicates an error in our program.

■ fixture A fixture is a set of objects in a defined state that serves as a basis for unit tests.

■ walkthrough A walkthrough is an activity of working through a segment of code line by line 

while observing changes of state and other behavior of the application.



FPO

Part 2
Application structures



This page intentionally left blank 



Improving structure with inheritance

CHAPTER

8
Main concepts discussed in this chapter:

■ inheritance

■ subtyping

■ substitution

■ polymorphic variables

Java constructs discussed in this chapter:

extends, super (in constructor), cast, Object, autoboxing, wrapper classes

In this chapter, we introduce some additional object-oriented constructs to improve the general 
structure of our applications. The main concepts we shall use to design better program struc-
tures are inheritance and polymorphism.

Both of these concepts are central to the idea of object orientation, and you will discover later 
how they appear in various forms in everything we discuss from now on. However, it is not 
only the following chapters that rely heavily on these concepts. Many of the constructs and 
techniques discussed in earlier chapters are influenced by aspects of inheritance and polymor-
phism, and we shall revisit some issues introduced earlier and gain a fuller understanding of the 
interconnections between different parts of the Java language.

Inheritance is a powerful construct that can be used to create solutions to a variety of different 
problems. As always, we will discuss the important aspects using an example. In this example, 
we will first introduce only some of the problems that are addressed by using inheritance struc-
tures and discuss further uses and advantages of inheritance and polymorphism as we progress 
through this chapter.

The example we discuss to introduce these new structures is called network.

8.1 The network example
The network project implements a prototype of a small part of a social-network application like 
Facebook or Google+. The part we are concentrating on is the news feed—the list of messages 
that should appear on screen when a user opens the network’s main page.



270 |       Chapter 8 ■ Improving structure with inheritance

Here, we will start small and simple, with a view to extending and growing the application later. 
Initially, we have only two types of post appearing in our news feed: text posts (which we call 
messages) and photo posts consisting of a photo and a caption.

The part of the application that we are prototyping here is the engine that stores and displays 
these posts. The functionality that we want to provide with this prototype should at least include 
the following:

■ It should allow us to create text and photo posts.
■ Text posts consist of a message of arbitrary length, possibly spanning multiple lines. Photo 

posts consist of an image and a caption. Some additional details are stored with each post.
■ It should store this information permanently so that it can be used later.
■ It should provide a search function that allows us to find, for example, all posts by a certain 

user or all photos within a given date range.
■ It should allow us to display lists of posts, such as a list of the most recent posts or a list of all 

posts by a given user.
■ It should allow us to remove information.

The details we want to store for each message post are:

■ the username of the author
■ the text of the message
■ a time stamp (time of posting)
■ how many people like this post
■ a list of comments on this post by other users

The details we want to store for each photo post are:

■ the username of the author
■ the filename of the image to display
■ the caption for the photo (one line of text)
■ a time stamp (time of posting)
■ how many people like this post
■ a list of comments on this post by other users

8.1.1 The network project: classes and objects

To implement the application, we first have to decide what classes to use to model this problem. In this 
case, some of the classes are easy to identify. It is quite straightforward to decide that we should have 
a class MessagePost to represent message posts and a class PhotoPost to represent photo posts.

Objects of these classes should then encapsulate all the data we want to store about these 
objects (Figure 8.1).



8.1 The network example | 271

Some of these data items should probably also have accessor and mutator methods (Figure 8.2).1 For 
our purpose, it is not important to decide on the exact details of all the methods right now, but just to 
get a first impression of the design of this application. In this figure, we have defined accessor and 
mutator methods for those fields that may change over time (“liking” or “unliking” a post and adding 
a comment) and assume for now that the other fields are set in the constructor. We have also added a 
method called display that will show details of a MessagePost or PhotoPost object.

Figure 8.1
Fields in 

MessagePost and 

PhotoPost objects

1 The notation style for class diagrams that is used in this book and in BlueJ is a subset of a widely used 
notation called UML. Although we do not use everything from UML (by far), we attempt to use UML 
notation for those things that we show. The UML style defines how fields and methods are shown in a 
class diagram. The class is divided into three parts that show (in this order from the top) the class name, 
the fields, and the methods.

Figure 8.2
Details of the 

MessagePost and 

PhotoPost classes



272 |       Chapter 8 ■ Improving structure with inheritance

Once we have defined the MessagePost and PhotoPost classes, we can create as many post ob-
jects as we need—one object per message post or photo post that we want to store. Apart from this, 
we then need another object: an object representing the complete news feed that can hold a collection 
of message posts and a collection of photo posts. For this, we shall create a class called NewsFeed.

The NewsFeed object could itself hold two collection objects (for example, of types ArrayList 
<MessagePost> and ArrayList<PhotoPost>). One of these collections can then hold all message 
posts, the other all photo posts. An object diagram for this model is shown in Figure 8.3.

Figure 8.3
Objects in the net-

work application

The corresponding class diagram, as BlueJ displays it, is shown in Figure 8.4. Note that BlueJ 
shows a slightly simplified diagram: classes from the standard Java library (ArrayList in this 
case) are not shown. Instead, the diagram focuses on user-defined classes. Also, BlueJ does not 
show field and method names in the diagram.

Figure 8.4
BlueJ class diagram 

of network



8.1 The network example | 273

In practice, to implement the full network application, we would have more classes to handle 
things such as saving the data to a database and providing a user interface, most likely through 
a web browser. These are not very relevant to the present discussion, so we shall skip describing 
those for now and concentrate on a more detailed discussion of the core classes mentioned here.

8.1.2 Network source code

So far, the design of the three current classes (MessagePost, PhotoPost, and NewsFeed) has 
been very straightforward. Translating these ideas into Java code is equally easy. Code 8.1 shows 
the source code of the MessagePost class. It defines the appropriate fields, sets in its constructor all 
the data items that are not expected to change over time, and provides accessor and mutator methods 
where appropriate. It also implements the display method to show the post in the text terminal.

import java.util.ArrayList;

/**
 * This class stores information about a post on a social network. 
 * The main part of the post consists of a (possibly multiline)
 * text message. Other data such as author and time are also stored.
 * 
 * @author Michael Kölling and David J. Barnes
 * @version 0.1
 */
public class MessagePost
{

private String username; // username of the post’s author
private String message;  // an arbitrarily long, multiline message
private long timestamp;
private int likes;
private ArrayList<String> comments;

    /**
     * Constructor for objects of class MessagePost.
     * 
     * @param author    The username of the author of this post.
     * @param text      The text of this post.
     */

public MessagePost(String author, String text)
{

username = author;
message = text;
timestamp = System.currentTimeMillis();
likes = 0;
comments = new ArrayList<String>();

}

Code 8.1
Source code of the 

MessagePost class



274 |       Chapter 8 ■ Improving structure with inheritance

    /**
     * Record one more ‘Like’ indication from a user.
     */

public void like()
{

likes++;
}

    /**
     * Record that a user has withdrawn his/her ‘Like’ vote.
     */

public void unlike()
{

if (likes > 0) {
likes--;

}
}

    /**
     * Add a comment to this post.
     * 
     * @param text  The new comment to add.
     */

public void addComment(String text)
{

comments.add(text);
}

    /**
     * Return the text of this post.
     * 
     * @return The post’s text.
     */

public String getText()
{

return message;
}

    /**
     * Return the time of creation of this post.
     * 
     * @return The post’s creation time, as a system time value.
     */

public long getTimeStamp()
{

return timestamp;
}

Code 8.1
continued
Source code of the 

MessagePost class



8.1 The network example | 275

    /**
     * Display the details of this post.
     * 
     * (Currently: Print to the text terminal. This is simulating 
     * display in a web browser for now.)
     */

public void display()
{

System.out.println(username);
System.out.println(message);
System.out.print(timeString(timestamp));
if(likes > 0) {

System.out.println("  —  " + likes + " people like this.");
}
else {

System.out.println();
}
if(comments.isEmpty()) {

System.out.println("   No comments.");
}
else {

System.out.println("   " + comments.size() +
" comment(s). Click here to view.");

}
}

    /**
     * Create a string describing a time point in the past in relative 
     * terms, such as "30 seconds ago" or "7 minutes ago".
     * Currently, only seconds and minutes are used for the string.
     * 
     * @param time  The time value to convert (in system milliseconds)
     * @return      A relative time string for the given time
     */

private String timeString(long time)
{

long current = System.currentTimeMillis();
long pastMillis = current — time; // time passed in millisecs
long seconds = pastMillis / 1000;
long minutes = seconds / 60;
if(minutes > 0) {

return minutes + " minutes ago";
}

Code 8.1
continued
Source code of the 

MessagePost class



276 |       Chapter 8 ■ Improving structure with inheritance

Some details are worth mentioning briefly:

■ Some simplifications have been made. For example, comments for a post are stored as 
strings. In a more complete version, we would probably use a custom class for comments, as 
comments also have additional detail such as an author and a time. The “like” count is stored 
as a simple integer. We are currently not recording which user liked a post. While these sim-
plifications make our prototype incomplete, they are not relevant for our main discussion 
here, and we shall leave them as they are for now.

■ The time stamp is stored as a single number, of type long. This reflects common practice. We 
can easily get the system time from the Java system, as a long value in milliseconds. We have 
also written a short method, called timeString, to convert this number into a relative time 
string, such as “5 minutes ago.” In our final application, the system would have to use real time 
rather than system time, but again, system time is good enough for our prototype for now.

Note that we do not intend right now to make the implementation complete in any sense. It 
serves to provide a feel for what a class such as this might look like. We will use this as the 
basis for our following discussion of inheritance.

Now let us compare the MessagePost source code with the source code of class PhotoPost,
shown in Code 8.2. Looking at both classes, we quickly notice that they are very similar. This is 
not surprising, because their purpose is similar: both are used to store information about news-
feed posts, and the different types of post have a lot in common. They differ only in their details, 
such as some of their fields and corresponding accessors and the bodies of the display method.

else {
return seconds + " seconds ago";

}
}

}

Code 8.1
continued
Source code of the 

MessagePost class

import java.util.ArrayList;

/**
 * This class stores information about a post on a social network. 
 * The main part of the post consists of a photo and a caption.
 * Other data such as author and time are also stored.
 * 
 * @author Michael Kölling and David J. Barnes
 * @version 0.1
 */
public class PhotoPost
{

private String username;  // username of the post’s author
private String filename;  // the name of the image file

Code 8.2
Source code of the 

PhotoPost class



8.1 The network example | 277

private String caption;   // a one-line image caption
private long timestamp;
private int likes;
private ArrayList<String> comments;

    /**
     * Constructor for objects of class PhotoPost.
     * 
     * @param author    The username of the author of this post.
     * @param filename  The filename of the image in this post.
     * @param caption   A caption for the image.
     */

public PhotoPost(String author, String filename, String caption)
{

username = author;
this.filename = filename;
this.caption = caption;
timestamp = System.currentTimeMillis();
likes = 0;

 comments = new ArrayList<String>();
}

    /**
     * Record one more ‘Like’ indication from a user.
     */

public void like()
{

likes++;
}

    /**
     * Record that a user has withdrawn his/her ‘Like’ vote.
     */

public void unlike()
{

if (likes > 0) {
likes--;

}
}

    /**
     * Add a comment to this post.
     * 
     * @param text  The new comment to add.
     */

Code 8.2
continued
Source code of the 

PhotoPost class



278 |       Chapter 8 ■ Improving structure with inheritance

public void addComment(String text)
{

comments.add(text);
}

    /**
     * Return the filename of the image in this post.
     * 
     * @return The post’s image filename.
     */

public String getImageFile()
{

return filename;
}

    /**
     * Return the caption of the image of this post.
     * 
     * @return The image’s caption.
     */

public String getCaption()
{

return caption;
}

    /**
     * Return the time of creation of this post.
     * 
     * @return The post’s creation time, as a system time value.
     */

public long getTimeStamp()
    {

return timestamp;
}

    /**
     * Display the details of this post.
     * 
     * (Currently: Print to the text terminal. This is simulating 
     * display in a web browser for now.)
     */

public void display()
{

System.out.println(username);
System.out.println("  [" + filename + "]");
System.out.println("  " + caption);
System.out.print(timeString(timestamp));

Code 8.2
continued
Source code of the 

PhotoPost class



8.1 The network example | 279

if(likes > 0) {
System.out.println("  —  " + likes + " people like this.");

}
else {

System.out.println();
}
if(comments.isEmpty()) {

System.out.println("   No comments.");
}
else {

System.out.println("   " + comments.size() + 
" comment(s). Click here to view.");

}
}

    /**
     * Create a string describing a time point in the past in relative 
     * terms, such as "30 seconds ago" or "7 minutes ago".
     * Currently, only seconds and minutes are used for the string.
     * 
     * @param time  The time value to convert (in system milliseconds)
     * @return      A relative time string for the given time
     */

private String timeString(long time)
{

long current = System.currentTimeMillis();
long pastMillis = current - time;  // time passed in millisecs
long seconds = pastMillis / 1000;
long minutes = seconds / 60;
if(minutes > 0) {

return minutes + " minutes ago";
}
else {

return seconds + " seconds ago";
}

}
}

Code 8.2
continued
Source code of the 

PhotoPost class

Next, let us examine the source code of the NewsFeed class (Code 8.3). It too is quite simple. It 
defines two lists (each based on class ArrayList) to hold the collection of message posts and 
the collection of photo posts. The constructor is where the empty lists are created. It then pro-
vides two methods for adding items: one for adding message posts, one for adding photo posts. 
The last method, named show, prints a list of all message and photo posts to the text terminal.



280 |       Chapter 8 ■ Improving structure with inheritance

import java.util.ArrayList;

/**
 * The NewsFeed class stores news posts for the news feed in a
 * social-network application (like FaceBook or Google+).
 *
 * Display of the posts is currently simulated by printing the
 * details to the terminal. (Later, this should display in a browser.)
 *
 * This version does not save the data to disk, and it does not
 * provide any search or ordering functions.
 *
 * @author Michael Kölling and David J. Barnes
 * @version 0.1
 */
public class NewsFeed
{

private ArrayList<MessagePost> messages;
private ArrayList<PhotoPost> photos;

    /**
     * Construct an empty news feed.
     */

public NewsFeed()
{

messages = new ArrayList<MessagePost>();
photos = new ArrayList<PhotoPost>();

}

    /**
     * Add a text post to the news feed.
     *
     * @param text  The text post to be added.
     */

public void addMessagePost(MessagePost message)
{

messages.add(message);
}

    /**
     * Add a photo post to the news feed.
     *
     * @param photo  The photo post to be added.
     */

public void addPhotoPost(PhotoPost photo)
{

photos.add(photo);
}

Code 8.3
Source code of the 

NewsFeed class



8.1 The network example | 281

    /**
     * Show the news feed. Currently: print the news feed details
     * to the terminal. (To do: replace this later with display
     * in web browser.)
     */

public void show()
{

        // display all text posts
for(MessagePost message : messages) {

message.display();
System.out.println();   // empty line between posts

}

        // display all photos
for(PhotoPost photo : photos) {

photo.display();
System.out.println();   // empty line between posts

}
}

}

Code 8.3
continued
Source code of the 

NewsFeed class

This is by no means a complete application. It has no user interface yet (so it will not be usable 
outside BlueJ), and the data entered is not stored to the file system or in a database. This means 
that all data entered will be lost each time the application ends. There are no functions to sort 
the displayed list of posts—for example, by date and time or by relevance. Currently, we will 
always get messages first, in the order in which they were entered, followed by the photos. 
Also, the functions for entering and editing data, as well as searching for data and displaying it, 
are not flexible enough for what we would want from a real program.

However, this does not matter in our context. We can work on improving the application later. 
The basic structure is there, and it works. This is enough for us to discuss design problems and 
possible improvements.

Exercise 8.1 Open the project network-v1. It contains the classes exactly as we have 

discussed them here. Create some MessagePost objects and some PhotoPost objects. 

Create a NewsFeed object. Enter the posts into the news feed, and then display the feed’s 

contents.

Exercise 8.2 Try the following. Create a MessagePost object. Enter it into the news feed. 

Display the news feed. You will see that the post has no associated comments. Add a com-

ment to the MessagePost object on the object bench (the one you entered into the news 

feed). When you now list the news feed again, will the post listed there have a comment 

attached? Try it. Explain the behavior you observe.



282 |       Chapter 8 ■ Improving structure with inheritance

8.1.3 Discussion of the network application

Even though our application is not yet complete, we have done the most important part. We 
have defined the core of the application—the data structure that stores the essential information.

This was fairly straightforward so far, and we could now go ahead and design the rest that is 
still missing. Before doing that, though, we will discuss the quality of the solution so far.

There are several fundamental problems with our current solution. The most obvious one is 
code duplication.

We have noticed above that the MessagePost and PhotoPost classes are very similar. In 
fact, the majority of the classes’ source code is identical, with only a few differences. We have 
already mentioned the problems associated with code duplication in Chapter 6. Apart from the 
annoying fact that we have to write everything twice (or copy and paste, then go through and 
fix all the differences), there are often problems associated with maintaining duplicated code. 
Many possible changes would have to be done twice. If, for example, the type of the comment 
list is changed from ArrayList<String> to ArrayList<Comment> (so that more details 
can be stored), this change has to be made once in the MessagePost class and again in the 
PhotoPost class. In addition, associated with maintenance of code duplication is always the 
danger of introducing errors, because the maintenance programmer might not realize that an 
identical change is needed at a second (or third) location.

There is another spot where we have code duplication: in the NewsFeed class. We can see that 
everything in that class is done twice—once for message posts and once for photo posts. The 
class defines two list variables, then creates two list objects, defines two add methods, and has 
two almost-identical blocks of code in the show method to print out the lists.

The problems with this duplication become clear when we analyze what we would have to do to 
add another type of post to this program. Imagine that we want to store not only text messages 
and photo posts, but also activity posts. Activity posts can be automatically generated and in-
form us about an activity of one of our contacts, such as “Fred has changed his profile picture” 
or “Ava is now friends with Feena.” Activity posts seem similar enough that it should be easy to 
modify our application to do this. We would introduce another class, ActivityPost, and es-
sentially write a third version of the source code that we already have in the MessagePost and 
PhotoPost classes. Then we have to work through the NewsFeed class and add another list 
variable, another list object, another add method, and another loop in the show method.

We would have to do the same for a fourth type of post. The more we do this, the more the code-
duplication problem increases and the harder it becomes to make changes later. When we feel un-
comfortable about a situation such as this one, it is often a good indicator that there may be a better 
alternative approach. For this particular case, the solution is found in object-oriented languages. 
They provide a distinctive feature that has a big impact on programs involving sets of similar 
classes. In the following sections, we will introduce this feature, which is called inheritance.

8.2 Using inheritance
Inheritance is a mechanism that provides us with a solution to our problem of duplication. The 
idea is simple: instead of defining the MessagePost and PhotoPost classes completely inde-
pendently, we first define a class that contains everything these two have in common. We shall 



8.2 Using inheritance | 283

call this class Post. Then we can declare that a MessagePost is a Post and a PhotoPost is a 
Post. Finally, we add those extra details needed for a message post to the MessagePost class, 
and those for a photo post to the PhotoPost class. The essential feature of this technique is that 
we need to describe the common features only once.

Figure 8.5 shows a class diagram for this new structure. At the top, it shows the class Post,
which defines all fields and methods that are common to all posts (messages and photos). 
Below the Post class, it shows the MessagePost and PhotoPost classes, which hold only 
those fields and methods that are unique to each particular class.

Concept:

Inheritance allows 

us to define one 

class as an exten-

sion of another.

Figure 8.5
MessagePost and 

PhotoPost inheriting 

from Post

This new feature of object-oriented programming requires some new terminology. In a situ-
ation such as this one, we say that the class MessagePost inherits from class Post. Class 
PhotoPost also inherits from Post. In the vernacular of Java programs, the expression “class 
MessagePost extends class Post” could be used, because Java uses an extends keyword to 
define the inheritance relationship (as we shall see shortly). The arrows in the class diagram 
(usually drawn with hollow arrow heads) represent the inheritance relationship.

Class Post (the class that the others inherit from) is called the parent class or superclass. The 
inheriting classes (MessagePost and PhotoPost in this example) are referred to as child
classes or subclasses. In this book, we will use the terms “superclass” and “subclass” to refer to 
the classes in an inheritance relationship.

Inheritance is sometimes also called an is-a relationship. The reason is that a subclass is a spe-
cialization of a superclass. We can say that “a message post is a post” and “a photo post is a post.”

Concept:

A superclass is 

a class that is ex-

tended by another 

class.

Concept:

A subclass is a 

class that extends 

(inherits from) another 

class. It inherits all 

fields and methods 

from its superclass.



284 |       Chapter 8 ■ Improving structure with inheritance

The purpose of using inheritance is now fairly obvious. Instances of class MessagePost will 
have all fields defined in class MessagePost and in class Post. (MessagePost inherits the 
fields from Post.) Instances of PhotoPost will have all fields defined in PhotoPost and in 
Post. Thus, we achieve the same as before, but we need to define the fields username, time-
stamp, likes, and comments only once, while being able to use them in two different places).

The same holds true for methods: instances of subclasses have all methods defined in both 
the superclass and the subclass. In general, we can say: because a message post is a post, a 
message-post object has everything that a post has, and more. And because a photo post is also 
a post, it has everything that a post has, and more.

Thus, inheritance allows us to create two classes that are quite similar, while avoiding the need 
to write the identical part twice. Inheritance has a number of other advantages, which we dis-
cuss below. First, however, we will take another, more general look at inheritance hierarchies.

8.3 Inheritance hierarchies
Inheritance can be used much more generally than shown in the example above. More than two 
subclasses can inherit from the same superclass, and a subclass can, in turn, be a superclass to 
other subclasses. The classes then form an inheritance hierarchy.

The best-known example of an inheritance hierarchy is probably the classification of species 
used by biologists. A small part is shown in Figure 8.6. We can see that a poodle is a dog, which 
is a mammal, which is an animal.

Concept:

Classes that are 

linked through inher-

itance relationships 

form an inherit-

ance hierarchy.

Figure 8.6
An example of an 

inheritance hierarchy

We know some things about poodles—for example, that they are alive, they can bark, they eat 
meat, and they give birth to live young. On closer inspection, we see that we know some of 
these things not because they are poodles, but because they are dogs, mammals, or animals. 
An instance of class Poodle (an actual poodle) has all the characteristics of a poodle, a dog, a 
mammal, and an animal, because a poodle is a dog, which is a mammal, and so on.



8.4 Inheritance in Java | 285

The principle is simple: inheritance is an abstraction technique that lets us categorize classes of 
objects under certain criteria and helps us specify the characteristics of these classes.

Exercise 8.3 Draw an inheritance hierarchy for the people in your place of study or work. 

For example, if you are a university student, then your university probably has students (first-

year students, second-year students, . . .), professors, tutors, office personnel, etc.

8.4 Inheritance in Java
Before discussing more details of inheritance, we will have a look at how inheritance is ex-
pressed in the Java language. Here is a segment of the source code of the Post class:

public class Post
{
    private String username;  // username of the post’s author
    private long timestamp;
    private int likes;
    private ArrayList<String> comments;

// Constructors and methods omitted.
}

There is nothing special about this class so far. It starts with a normal class definition and de-
fines Post’s fields in the usual way. Next, we examine the source code of the MessagePost
class:

public class MessagePost extends Post
{
    private String message;

// Constructors and methods omitted.
}

There are two things worth noting here. First, the keyword extends defines the inheritance re-
lationship. The phrase “extends Post” specifies that this class is a subclass of the Post class. 
Second, the MessagePost class defines only those fields that are unique to MessagePost
objects (only message in this case). The fields from Post are inherited and do not need to be 
listed here. Objects of class MessagePost will nonetheless have fields for username, time-
stamp, and so on.

Next, let us have a look at the source code of class PhotoPost:

public class PhotoPost extends Post
{
    private String filename;
    private String caption;

// Constructors and methods omitted.
}

This class follows the same pattern as the MessagePost class. It uses the extends keyword to 
define itself as a subclass of Post and defines its own additional fields.



286 |       Chapter 8 ■ Improving structure with inheritance

8.4.1 Inheritance and access rights

To objects of other classes, MessagePost or PhotoPost objects appear just like all other 
types of objects. As a consequence, members defined as public in either the superclass or sub-
class portions will be accessible to objects of other classes, but members defined as private
will be inaccessible.

In fact, the rule on privacy also applies between a subclass and its superclass: a subclass 
cannot access private members of its superclass. It follows that if a subclass method 
needed to access or change private fields in its superclass, then the superclass would 
need to provide appropriate accessor and/or mutator methods. However, an object of a 
subclass may call any public methods defined in its superclass as if they were defined lo-
cally in the subclass—no variable is needed, because the methods are all part of the same 
object.

This issue of access rights between super- and subclasses is one we will discuss further in 
Chapter 9 when we introduce the protected modifier.

Exercise 8.4 Open the project network-v2. This project contains a version of the network

application, rewritten to use inheritance, as described above. Note that the class diagram 

displays the inheritance relationship. Open the source code of the MessagePost class and 

remove the “extends Post” phrase. Close the editor. What changes do you observe in the 

class diagram? Add the “extends Post” phrase again.

Exercise 8.5 Create a MessagePost object. Call some of its methods. Can you call the 

inherited methods (for example, addComment)? What do you observe about the inherited 

methods?

Exercise 8.6 In order to illustrate that a subclass can access non-private elements of 

its superclass without any special syntax, try the following slightly artificial modification to 

the MessagePost and Post classes. Create a method called printShortSummary in 

the MessagePost class. Its task is to print just the phrase “Message post from NAME”, 

where NAME should show the name of the author. However, because the username field 

is private in the Post class, it will be necessary to add a public getUserName method 

to Post. Call this method from printShortSummary to access the name for printing. 

Remember that no special syntax is required when a subclass calls a superclass method. 

Try out your solution by creating a MessagePost object. Implement a similar method in the 

PhotoPost class.

8.4.2 Inheritance and initialization

When we create an object, the constructor of that object takes care of initializing all object 
fields to some reasonable state. We have to look more closely at how this is done in classes that 
inherit from other classes.

When we create a MessagePost object, we pass two parameters to the message post’s con-
structor: the name of the author and the message text. One of these contains a value for a field 



8.4 Inheritance in Java | 287

public class Post
{

private String username;  // username of the post’s author
private long timestamp;
private int likes;
private ArrayList<String> comments;

    /**
     * Constructor for objects of class Post.
     *
     * @param author    The username of the author of this post.
     */

public Post(String author)
{

username = author;
timestamp = System.currentTimeMillis();
likes = 0;
comments = new ArrayList<String>();

}

// Methods omitted.
}

public class MessagePost extends Post
{

private String message;  // an arbitrarily long, multi-line message

    /**
     * Constructor for objects of class MessagePost.
     *
     * @param author    The username of the author of this post.
     * @param text      The text of this post.
     */

public MessagePost(String author, String text)
{

super(author);
message = text;

}

// Methods omitted.
}

Code 8.4
Initialization of subclass 

and superclass fields

defined in class Post, and the other a value for a field defined in class MessagePost. All of 
these fields must be correctly initialized, and Code 8.4 shows the code segments that are used 
to achieve this in Java.



288 |       Chapter 8 ■ Improving structure with inheritance

Several observations can be made here. First, the class Post has a constructor, even though 
we do not intend to create an instance of class Post directly.2 This constructor receives the 
parameters needed to initialize the Post fields, and it contains the code to do this initialization. 
Second, the MessagePost constructor receives parameters needed to initialize both Post and 
MessagePost fields. It then contains the following line of code:

super(author);

The keyword super is a call from the subclass constructor to the constructor of the superclass. 
Its effect is that the Post constructor is executed as part of the MessagePost constructor’s 
execution. When we create a message post, the MessagePost constructor is called, which, in 
turn, as its first statement, calls the Post constructor. The Post constructor initializes the post’s 
fields, and then returns to the MessagePost constructor, which initializes the remaining field 
defined in the MessagePost class. For this to work, those parameters needed for the initializa-
tion of the post fields are passed on to the superclass constructor as parameters to the super call.

In Java, a subclass constructor must always call the superclass constructor as its first statement. 
If you do not write a call to a superclass constructor, the Java compiler will insert a superclass 
call automatically, to ensure that the superclass fields get properly initialized. The inserted call 
is equivalent to writing

super();

Inserting this call automatically works only if the superclass has a constructor without param-
eters (because the compiler cannot guess what parameter values should be passed). Otherwise, 
an error will be reported.

In general, it is a good idea to always include explicit superclass calls in your constructors, even 
if it is one that the compiler could generate automatically. We consider this good style, because 
it avoids the possibility of misinterpretation and confusion in case a reader is not aware of the 
automatic code generation.

2 Currently, there is nothing actually preventing us from creating a Post object, although that was not 
our intention when we designed these classes. In Chapter 10, we shall see some techniques that allow 
us to make sure that Post objects cannot be created directly, but only MessagePost or PhotoPost
objects.

Concept:

Superclass 

constructor The 

constructor of a 

subclass must 

always invoke the 

constructor of its 

superclass as its 

first statement. If 

the source code 

does not include 

such a call, Java 

will attempt to insert 

a call automatically.

Exercise 8.7 Set a breakpoint in the first line of the MessagePost class’s constructor. Then 

create a MessagePost object. When the debugger window pops up, use Step Into to step 

through the code. Observe the instance fields and their initialization. Describe your observations.

8.5 Network: adding other post types
Now that we have our inheritance hierarchy set up for the network project so that the common 
elements of the items are in the Post class, it becomes a lot easier to add other types of posts. 
For instance, we might want to add event posts, which consist of a description of a standard event 
(e.g., “Fred has joined the ‘Neal Stephenson fans’ group.”). Standard events might be a user join-
ing a group, a user becoming friends with another, or a user changing their profile picture. To 



8.5 Network: adding other post types | 289

achieve this, we can now define a new subclass of Post named EventPost (Figure 8.7). Because 
EventPost is a subclass of Post, it automatically inherits all fields and methods that we have 
already defined in Post. Thus, EventPost objects already have a username, a time stamp, a likes 
counter, and comments. We can then concentrate on adding attributes that are specific to event 
posts, such as the event type. The event type might be stored as an enumeration constant (see 
Chapter 6) or as a string describing the event.

Figure 8.7
Network items with an 

EventPost class

This is an example of how inheritance enables us to reuse existing work. We can reuse the code 
that we have written for photo posts and message posts (in the Post class) so that it also works 
for the EventPost class. The ability to reuse existing software components is one of the great 
benefits that we get from the inheritance facility. We will discuss this in more detail later.

This reuse has the effect that a lot less new code is needed when we now introduce additional 
post types. Because new post types can be defined as subclasses of Post, only the code that is 
actually different from Post has to be added.

Now imagine that we change the requirements a bit: event posts in our network application 
will not have a “Like” button or comments attached. They are for information only. How do we 
achieve this? Currently, because EventPost is a subclass of Post, it automatically inherits the 
likes and comments fields. Is this a problem?

We could leave everything as it is and decide to never display the likes count or comments 
for event posts—just ignore the fields. This does not feel right. Having the fields present but 
unused invites problems. Someday a maintenance programmer will come along who does not 
realize that these fields should not be used and try to process them.

Or we could write EventPost without inheriting from Post. But then we are back to code 
duplication for the username and timestamp fields and their methods.

The solution is to refactor the class hierarchy. We can introduce a new superclass for all posts that 
have comments attached (named CommentedPost), which is a subclass of Post (Figure 8.8). We 
then shift the likes and comments fields from the Post class to this new class. MessagePost
and PhotoPost are now subclasses of our new CommentedPost class, while EventPost

Concept:

Inheritance al-

lows us to reuse

previously written 

classes in a new 

context.



290 |       Chapter 8 ■ Improving structure with inheritance

inherits from Posts directly. MessagePost objects inherit everything from both superclasses 
and have the same fields and methods as before. Objects of class EventPost will inherit the 
username and timestamp, but not the comments.

Figure 8.8
Adding more post 

types to network

This is a very common situation in designing class hierarchies. When the hierarchy does not 
seem to fit properly, we have to refactor the hierarchy.

Classes that are not intended to be used to create instances, but whose purpose is exclusively to 
serve as superclasses for other classes (such as Post and CommentedPost), are called abstract
classes. We shall investigate this in more detail in Chapter 10.

Exercise 8.8 Open the network-v2 project. Add a class for event posts to the project. 

Create some event-post objects and test that all methods work as expected.

8.6 Advantages of inheritance (so far)
We have seen several advantages of using inheritance for the network application. Before 
we explore other aspects of inheritance, we shall summarize the general advantages we have 
encountered so far:

■ Avoiding code duplication The use of inheritance avoids the need to write identical or very 
similar copies of code twice (or even more often).



8.7 Subtyping | 291

■ Code reuse Existing code can be reused. If a class similar to the one we need already exists, 
we can sometimes subclass the existing class and reuse some of the existing code rather than 
having to implement everything again.

■ Easier maintenance Maintaining the application becomes easier, because the relationship 
between the classes is clearly expressed. A change to a field or a method that is shared be-
tween different types of subclasses needs to be made only once.

■ Extendibility Using inheritance, it becomes much easier to extend an existing application in 
certain ways.

Exercise 8.9 Order these items into an inheritance hierarchy: apple, ice cream, bread, fruit, 

food item, cereal, orange, dessert, chocolate mousse, baguette.

Exercise 8.10 In what inheritance relationship might a touch pad and a mouse be? (We are 

talking about computer input devices here, not small furry mammals.)

Exercise 8.11 Sometimes things are more difficult than they first seem. Consider this: In what 

kind of inheritance relationship are Rectangle and Square? What are the arguments? Discuss.

8.7 Subtyping
The one thing we have not yet investigated is how the code in the NewsFeed class was changed 
when we modified our project to use inheritance. Code 8.5 shows the full source code of class 
NewsFeed. We can compare this with the original source shown in Code 8.3.

import java.util.ArrayList;

/**
 * The NewsFeed class stores news posts for the news feed in a
 * social-network application (like FaceBook or Google+).
 *
 * Display of the posts is currently simulated by printing the
 * details to the terminal. (Later, this should display in a browser.)
 *
 * This version does not save the data to disk, and it does not
 * provide any search or ordering functions.
 *
 * @author Michael Kölling and David J. Barnes
 * @version 0.2
 */
public class NewsFeed
{

private ArrayList<Post> posts;

Code 8.5
Source code of the 

NewsFeed class 

(second version)



292 |       Chapter 8 ■ Improving structure with inheritance

    /**
     * Construct an empty news feed.
     */

public NewsFeed()
{

posts = new ArrayList<Post>();
}

    /**
     * Add a post to the news feed.
     *
     * @param post  The post to be added.
     */

public void addPost(Post post)
{

posts.add(post);
}

    /**
     * Show the news feed. Currently: print the news feed details
     * to the terminal. (To do: replace this later with display
     * in web browser.)
     */

public void show()
{

        // display all posts
for(Post post : posts) {

post.display();
System.out.println();   // empty line between posts

}
}

}

Code 8.5
continued
Source code of the 

NewsFeed class 

(second version)

As we can see, the code has become significantly shorter and simpler since our change to use 
inheritance. Where in the first version (Code 8.3) everything had to be done twice, it now ex-
ists only once. We have only one collection, only one method to add posts, and one loop in the 
show method.

The reason why we could shorten the source code is that, in the new version, we can use the 
type Post where we previously used MessagePost and PhotoPost. We investigate this first 
by examining the addPost method.

In our first version, we had two methods to add posts to the news feed. They had the following 
headers:

public void addMessagePost(MessagePost message)
public void addPhotoPost(PhotoPost photo)



8.7 Subtyping | 293

In our new version, we have a single method to serve the same purpose:

public void addPost(Post post)

The parameters in the original version are defined with the types MessagePost and 
PhotoPost, ensuring that we pass MessagePost and PhotoPost objects to these methods, 
because actual parameter types must match the formal parameter types. So far, we have in-
terpreted the requirement that parameter types must match as meaning “must be of the same 
type”—for instance, that the type name of an actual parameter must be the same as the type 
name of the corresponding formal parameter. This is only part of the truth, in fact, because an 
object of a subclass can be used wherever its superclass type is required.

8.7.1 Subclasses and subtypes

We have discussed earlier that classes define types. The type of an object that was created 
from class MessagePost is MessagePost. We also just discussed that classes may have 
subclasses. Thus, the types defined by the classes can have subtypes. In our example, the type 
MessagePost is a subtype of type Post.

8.7.2 Subtyping and assignment

When we want to assign an object to a variable, the type of the object must match the type of 
the variable. For example,

Car myCar = new Car();

is a valid assignment, because an object of type Car is assigned to a variable declared to hold 
objects of type Car. Now that we know about inheritance, we must state the typing rule more 
completely: a variable can hold objects of its declared type or of any subtype of its declared 
type.

Imagine that we have a class Vehicle with two subclasses, Car and Bicycle (Figure 8.9). In 
this case, the typing rule admits that the following assignments are all legal:

Vehicle v1 = new Vehicle();
Vehicle v2 = new Car();
Vehicle v3 = new Bicycle();

Concept:

Subtype As an 

analog to the 

class hierarchy, 

types form a type 

hierarchy. The type 

defined by a sub-

class definition is a 

subtype of the type 

of its superclass.

Concept:

Variables and 

subtypes Variables 

may hold objects of 

their declared type 

or of any subtype 

of their declared 

type.

Figure 8.9
An inheritance 

hierarchy



294 |       Chapter 8 ■ Improving structure with inheritance

The type of a variable declares what it can store. Declaring a variable of type Vehicle states 
that this variable can hold vehicles. But because a car is a vehicle, it is perfectly legal to store 
a car in a variable that is intended for vehicles. (Think of the variable as a garage: if someone 
tells you that you may park a vehicle in a garage, you would think that parking either a car or a 
bicycle in the garage would be okay.)

This principle is known as substitution. In object-oriented languages, we can substitute a sub-
class object where a superclass object is expected, because the subclass object is a special case 
of the superclass. If, for example, someone asks us to give them a pen, we can fulfill the request 
perfectly well by giving them a fountain pen or a ballpoint pen. Both fountain pen and ballpoint 
pen are subclasses of pen, so supplying either where an object of class Pen was expected is fine.

However, doing it the other way is not allowed:

Car c1 = new Vehicle(); // this is an error!

This statement attempts to store a Vehicle object in a Car variable. Java will not allow this, 
and an error will be reported if you try to compile this statement. The variable is declared to 
be able to store cars. A vehicle, on the other hand, may or may not be a car—we do not know. 
Thus, the statement may be wrong and is not allowed.

Similarly:

Car c2 = new Bicycle(); // this is an error!

This is also an illegal statement. A bicycle is not a car (or, more formally, the type Bicycle is 
not a subtype of Car), and thus the assignment is not allowed.

Concept:

Substitution

Subtype objects 

may be used 

wherever objects 

of a supertype 

are expected. 

This is known as 

substitution.

Exercise 8.12 Assume that we have four classes: Person, Teacher, Student, and 

PhDStudent. Teacher and Student are both subclasses of Person. PhDStudent is a 

subclass of Student.

a. Which of the following assignments are legal, and why or why not?

Person p1 = new Student();
Person p2 = new PhDStudent();
PhDStudent phd1 = new Student();
Teacher t1 = new Person();
Student s1 = new PhDStudent();

b. Suppose that we have the following legal declarations and assignments:

Person p1 = new Person();
Person p2 = new Person();
PhDStudent phd1 = new PhDStudent();
Teacher t1 = new Teacher();
Student s1 = new Student();

Based on those just mentioned, which of the following assignments are legal, and why or why not?

s1 = p1;
s1 = p2;
p1 = s1;



8.7 Subtyping | 295

8.7.3 Subtyping and parameter passing

Passing a parameter (that is, assigning an actual parameter to a formal parameter variable) be-
haves in exactly the same way as an assignment to a variable. This is why we can pass an object 
of type MessagePost to a method that has a parameter of type Post. We have the following 
definition of the addPost method in class NewsFeed:

public class NewsFeed
{
    public void addPost(Post post)
    {
        . . .
    }
}

We can now use this method to add message posts and photo posts to the feed:

NewsFeed feed = new NewsFeed();
MessagePost message = new MessagePost(...);
PhotoPost photo = new PhotoPost(...);

feed.addPost(message);
feed.addPost(photo);

Because of subtyping rules, we need only one method (with a parameter of type Post) to add 
both MessagePost and PhotoPost objects.

We will discuss subtyping in more detail in the next chapter.

8.7.4 Polymorphic variables

Variables holding object types in Java are polymorphic variables. The term “polymorphic” 
(literally, many shapes) refers to the fact that a variable can hold objects of different types 
(namely, the declared type or any subtype of the declared type). Polymorphism appears in 
object-oriented languages in several contexts—polymorphic variables are just the first example. 
We will discuss other incarnations of polymorphism in more detail in the next chapter.

For now, we just observe how the use of a polymorphic variable helps us simplify our show
method. The body of this method is

for(Post post : posts) {
    post.display();
    System.out.println();   // empty line between posts
}

t1 = s1;
s1 = phd1;
phd1 = s1;

Exercise 8.13 Test your answers to the previous question by creating bare-bones versions 

of the classes mentioned in that exercise and trying it out in BlueJ.



296 |       Chapter 8 ■ Improving structure with inheritance

Here, we iterate through the list of posts (held in an ArrayList in the posts variable). We get 
out each post and then invoke its display method. Note that the actual posts that we get out 
of the list are of type MessagePost or PhotoPost, not of type Post. We can, however, use 
a loop variable of type Post, because variables are polymorphic. The post variable is able to 
hold MessagePost and PhotoPost objects, because these are subtypes of Post.

Thus, the use of inheritance in this example has removed the need for two separate loops in the 
show method. Inheritance avoids code duplication not only in the server classes, but also in 
clients of those classes.

Note When doing the exercises, you may have noticed that the show method has a problem: not 

all details are printed out. Solving this problem requires some more explanation. We will provide this 

in the next chapter.

Exercise 8.14 What has to change in the NewsFeed class when another Post subclass 

(for example, a class EventPost) is added? Why?

8.7.5 Casting

Sometimes the rule that we cannot assign from a supertype to a subtype is more restrictive than 
necessary. If we know that the supertype variable holds a subtype object, the assignment could 
actually be allowed. For example:

Vehicle v;
Car c = new Car();
v = c; // correct
c = v; // error

The above statements would not compile: we get a compiler error in the last line, because as-
signing a Vehicle variable to a Car variable (supertype to subtype) is not allowed. However, 
if we execute these statements in sequence, we know that we could actually allow this assign-
ment. We can see that the variable v actually contains an object of type Car, so the assignment 
to c would be okay. The compiler is not that smart. It translates the code line by line, so it looks 
at the last line in isolation without knowing what is currently stored in variable v. This is called 
type loss. The type of the object in v is actually Car, but the compiler does not know this.

We can get around this problem by explicitly telling the type system that the variable v holds a 
Car object. We do this using a cast operator:

c = (Car) v; // okay

The cast operator consists of the name of a type (here, Car) written in parentheses in front of a vari-
able or an expression. Doing this will cause the compiler to believe that the object is a Car, and it 
will not report an error. At runtime, however, the Java system will check that it really is a Car. If 
we were careful, and it is truly is a Car, everything is fine. If the object in v is of another type, the 
runtime system will indicate an error (called a ClassCastException), and the program will stop.3

3 Exceptions are discussed in detail in Chapter 12.



8.8 The Object class | 297

Now consider this code fragment, in which Bicycle is also a subclass of Vehicle:

Vehicle v;
Car c;
Bicycle b;
c = new Car();
v = c; // okay
b = (Bicycle) c; // compile time error!
b = (Bicycle) v; // runtime error!

The last two assignments will both fail. The attempt to assign c to b (even with the cast) will be a 
compile-time error. The compiler notices that Car and Bicycle do not form a subtype/supertype 
relationship, so c can never hold a Bicycle object—the assignment could never work.

The attempt to assign v to b (with the cast) will be accepted at compile time but will fail at 
runtime. Vehicle is a superclass of Bicycle, and thus v can potentially hold a Bicycle ob-
ject. At runtime, however, it turns out that the object in v is not a Bicycle but a Car, and the 
program will terminate prematurely.

Casting should be avoided wherever possible, because it can lead to runtime errors, and that is 
clearly something we do not want. The compiler cannot help us to ensure correctness in this case.

In practice, casting is very rarely needed in a well-structured object-oriented program. In almost 
all cases, when you use a cast in your code, you could restructure your code to avoid this cast 
and end up with a better-designed program. This usually involves replacing the cast with a 
polymorphic method call (more about this in the next chapter).

8.8 The Object class
All classes have a superclass. So far, it has appeared as if most classes we have seen do not have 
a superclass. In fact, while we can declare an explicit superclass for a class, all classes that have 
no superclass declaration implicitly inherit from a class called Object.

Object is a class from the Java standard library that serves as a superclass for all objects. 
Writing a class declaration such as

public class Person
{
    ...
}

is equivalent to writing

public class Person extends Object
{
    ...
}

The Java compiler automatically inserts the Object superclass for all classes without an ex-
plicit extends declaration, so it is never necessary to do this for yourself. Every single class 
(with the sole exception of the Object class itself) inherits from Object, either directly or 
indirectly. Figure 8.10 shows some randomly chosen classes to illustrate this.

Concept:

All classes with no 

explicit superclass 

have Object as 

their superclass.



298 |       Chapter 8 ■ Improving structure with inheritance

Having a common superclass for all objects serves two purposes: First, we can declare polymor-
phic variables of type Object to hold any object. Having variables that can hold any object type is 
not often useful, but there are some situations where this can help. Second, the Object class can 
define some methods that are then automatically available for every existing object. Of particular 
importance are the methods toString, equals, and hashCode which Object defines. This sec-
ond point becomes interesting a bit later, and we shall discuss this in more detail in the next chapter.

8.9 Autoboxing and wrapper classes
We have seen that, with suitable parameterization, the collection classes can store objects of 
any object type. There remains one problem: Java has some types that are not object types.

As we know, the simple types—such as int, boolean, and char—are separate from object 
types. Their values are not instances of classes, and they do not inherit from the Object class. 
Because of this, they are not subtypes of Object, and it would not normally be possible to add 
them into a collection.

This is unfortunate. There are situations in which we might want to create a list of int values or 
a set of char values, for instance. What can we do?

Java’s solution to this problem is wrapper classes. Every primitive type in Java has a corre-
sponding wrapper class that represents the same type but is a real object type. The wrapper class 
for int, for example, is called Integer. A complete list of simple types and their wrapper 
classes is given in Appendix B.

The following statement explicitly wraps the value of the primitive int variable ix in an 
Integer object:

Integer iwrap = new Integer(ix);

And now iwrap could obviously easily be stored in an ArrayList<Integer> collection, for 
instance. However, storing of primitive values into an object collection is made even easier 
through a compiler feature known as autoboxing.

Figure 8.10
All classes inherit from 

Object

Concept:

Autoboxing is 

performed auto-

matically when a 

primitive-type value 

is used in a context 

requiring a wrapper 

type.



8.11 Summary | 299

Whenever a value of a primitive type is used in a context that requires a wrapper type, the com-
piler automatically wraps the primitive-type value in an appropriate wrapper object. This means 
that primitive-type values can be added directly to a collection:

private ArrayList<Integer> markList;
...
public void storeMarkInList(int mark)
{

markList.add(mark);
}

The reverse operation—unboxing—is also performed automatically, so retrieval from a collec-
tion might look like this:

int firstMark = markList.remove(0);

Autoboxing is also applied whenever a primitive-type value is passed as a parameter to a 
method that expects a wrapper type and when a primitive-type value is stored in a wrapper-type 
variable. Similarly, unboxing is applied when a wrapper-type value is passed as a parameter 
to a method that expects a primitive-type value and when stored in a primitive-type variable. 
It is worth noting that this almost makes it appear as if primitive types can be stored in collec-
tions. However, the type of the collection must still be declared using the wrapper type (e.g., 
ArrayList<Integer>, not ArrayList<int>).

8.10 The collection hierarchy
The Java library uses inheritance extensively in the definition of the collections classes. Class 
ArrayList, for example, inherits from a class called AbstractList, which, in turn, inherits 
from AbstractCollection. We shall not discuss this hierarchy here, because it is described 
in detail at various easily accessible places. One good description is at Oracle’s web site at 
http://download.oracle.com/javase/tutorial/collections/index.html.

Note that some details of this hierarchy require an understanding of Java interfaces. We discuss 
those in Chapter 10.

Exercise 8.15 Use the documentation of the Java standard class libraries to find out about 

the inheritance hierarchy of the collection classes. Draw a diagram showing the hierarchy.

8.11 Summary
This chapter has presented a first view of inheritance. All classes in Java are arranged in an 
inheritance hierarchy. Each class may have an explicitly declared superclass, or it inherits im-
plicitly from the class Object.

Subclasses usually represent specializations of superclasses. Because of this, the inheritance 
relationship is also referred to as an is-a relationship (a car is-a vehicle).

http://download.oracle.com/javase/tutorial/collections/index.html
http://download.oracle.com/javase/tutorial/collections/index.html


300 |       Chapter 8 ■ Improving structure with inheritance

Subclasses inherit all fields and methods of a superclass. Objects of subclasses have all fields 
and methods declared in their own classes, as well as those from all superclasses. Inheritance 
relationships can be used to avoid code duplication, to reuse existing code, and to make an ap-
plication more maintainable and extendable.

Subclasses also form subtypes, which leads to polymorphic variables. Subtype objects may be 
substituted for supertype objects, and variables are allowed to hold objects that are instances of 
subtypes of their declared type.

Inheritance allows the design of class structures that are easier to maintain and more flexible. 
This chapter contains only an introduction to the use of inheritance for the purpose of improv-
ing program structures. More uses of inheritance and their benefits will be discussed in the fol-
lowing chapters.

Terms introduced in this chapter

inheritance, superclass (parent), subclass (child), is-a, inheritance hierarchy, 

abstract class, subtype substitution, polymorphic variable, type loss, cast, 

autoboxing, wrapper classes

Concept summary

■ inheritance Inheritance allows us to define one class as an extension of another.

■ superclass A superclass is a class that is extended by another class.

■ subclass A subclass is a class that extends (inherits from) another class. It inherits all fields 

and methods from its superclass.

■ inheritance hierarchy Classes that are linked through inheritance relationships form an inher-

itance hierarchy.

■ superclass constructor The constructor of a subclass must always invoke the constructor 

of its superclass as its first statement. If the source code does not include such a call, Java will 

attempt to insert a call automatically.

■ reuse Inheritance allows us to reuse previously written classes in a new context.

■ subtype As an analog to the class hierarchy, types form a type hierarchy. The type defined by 

a subclass definition is a subtype of the type of its superclass.

■ variables and subtypes Variables may hold objects of their declared type or of any subtype 

of their declared type.

■ substitution Subtype objects may be used wherever objects of a supertype are expected. 

This is known as substitution.

■ Object All classes with no explicit superclass have Object as their superclass.

■ autoboxing Autoboxing is performed automatically when a primitive-type value is used in a 

context requiring a wrapper type.



8.11 Summary | 301

Exercise 8.16 Go back to the lab-classes project from Chapter 1. Add instructors to the pro-

ject (every lab class can have many students and a single instructor). Use inheritance to avoid 

code duplication between students and instructors (both have a name, contact details, etc.).

Exercise 8.17 Draw an inheritance hierarchy representing parts of a computer system 

(processor, memory, disk drive, DVD drive, printer, scanner, keyboard, mouse, etc.).

Exercise 8.18 Look at the code below. You have four classes (O, X, T, and M) and a variable 

of each of these.

O o;
X x;
T t;
M m;

The following assignments are all legal (assume that they all compile):

m = t;
m = x;
o = t;

The following assignments are all illegal (they cause compiler errors):

o = m;
o = x;
x = o;

What can you say about the relationships of these classes? Draw a class diagram.

Exercise 8.19 Draw an inheritance hierarchy of AbstractList and all its (direct and 

indirect) subclasses as they are defined in the Java standard library.



The last chapter introduced the main concepts of inheritance by discussing the network
example. While we have seen the foundations of inheritance, there are still numerous important
details that we have not yet investigated. Inheritance is central to understanding and using 
object-oriented languages, and understanding it in detail is necessary to progress from here.

In this chapter, we shall continue to use the network example to explore the most important of 
the remaining issues surrounding inheritance and polymorphism.

9.1 The problem: network’s display method
When you experimented with the network examples in Chapter 8, you probably noticed that 
the second version—the one using inheritance—has a problem: the display method does not 
show all of a post’s data.

Let us look at an example. Assume that we create a MessagePost and a PhotoPost object 
with the following data:

The message post:

Leonardo da Vinci

Had a great idea this morning.
But now I forgot what it was. Something to do with flying . . .

40 seconds ago. 2 people like this.

No comments.

CHAPTER

9 More about inheritance

Main concepts discussed in this chapter:

■ method polymorphism

■ overriding

■ static and dynamic type

■ dynamic method lookup

Java constructs discussed in this chapter:

super (in method), toString, protected, instanceof



9.1 The problem: network’s display method | 303

 The photo post:

Alexander Graham Bell

[experiment.jpg]
I think I might call this thing ‘telephone’.

12 minutes ago. 4 people like this.

No comments.

If we enter these objects into the news feed1 and then invoke the first version of the news feed’s 
show method (the one without inheritance), it prints

 Leonardo da Vinci
 Had a great idea this morning.
 But now I forgot what it was. Something to do with flying ...
 40 seconds ago  -  2 people like this.
   No comments.

 Alexander Graham Bell
 [experiment.jpg]
 I think I might call this thing 'telephone'.
 12 minutes ago  -  4 people like this.
   No comments.

While the formatting isn’t pretty (because, in the text terminal, we don’t have format-
ting options available), all the information is there, and we can imagine how the show
method might be adapted later to show the data in a nicer formatting in a different user 
interface.

Compare this with the second network version (with inheritance), which prints only

Leonardo da Vinci
40 seconds ago  -  2 people like this.
  No comments.

Alexander Graham Bell
12 minutes ago  -  4 people like this.
  No comments.

We note that the message post’s text, as well as the photo post’s image filename and 
caption, are missing. The reason for this is simple. The display method in this version 
is implemented in the Post class, not in MessagePost and PhotoPost (Figure 9.1). 
In the methods of Post, only the fields declared in Post are available. If we tried to 
access the MessagePost’s message field from Post’s display method, an error would 
be reported. This illustrates the important principle that inheritance is a one-way street: 
MessagePost inherits the fields of Post, but Post still does not know anything about fields 
in its subclasses.

1 The text for the message post is a two-line string. You can enter a multiline text into a string by using 
“\n” in the string for the line break.



304 |       Chapter 9 ■ More about inheritance

9.2 Static type and dynamic type
Trying to solve the problem of developing a complete polymorphic display method leads us 
into a discussion of static and dynamic types and method lookup. But let us start at the beginning.

A first attempt to solve the display problem might be to move the display method to the sub-
classes (Figure 9.2). That way, because the method would now belong to the MessagePost
and PhotoPost classes, it could access the specific fields of MessagePost and PhotoPost.
It could also access the inherited fields by calling accessor methods defined in the Post class. 
That should enable it to display a complete set of information again. Try out this approach by 
completing Exercise 9.1.

Post

MessagePost PhotoPost

NewsFeedFigure 9.2
Display, version 2: 

display method 

in subclasses

Post

MessagePost PhotoPost

NewsFeedFigure 9.1
Display, version 1: 

display method in 

superclass



9.2 Static type and dynamic type | 305

When we try to move the display method from Post to the subclasses, we notice that we 
have some problems: the project does not compile any more. There are two fundamental issues:

■ We get errors in the MessagePost and PhotoPost classes, because we cannot access the 
superclass fields.

■ We get an error in the NewsFeed class, because it cannot find the display method.

The reason for the first sort of error is that the fields in Post have private access and so are 
inaccessible to any other class—including subclasses. Because we do not wish to break encap-
sulation and make these fields public, as was suggested above, the easiest way to solve this is to 
define public accessor methods for them. However, in Section 9.9, we shall introduce a further 
type of access designed specifically to support the superclass–subclass relationship.

The reason for the second sort of error requires a more detailed explanation, and this is explored 
in the next section.

9.2.1 Calling display from NewsFeed
First, we investigate the problem of calling the display method from NewsFeed. The relevant 
lines of code in the NewsFeed class are:

for(Post post : posts) {
    post.display();
    System.out.println();
}

The for-each statement retrieves each post from the collection; the first statement inside its 
body tries to invoke the display method on the post. The compiler informs us that it cannot 
find a display method for the post.

On the one hand, this seems logical; Post does not have a display method any more (see Figure 9.2).

On the other hand, it seems illogical and is annoying. We know that every Post object in 
the collection is in fact a MessagePost or a PhotoPost object, and both have display
methods. This should mean that post.display() ought to work, because, whatever it is—
MessagePost or PhotoPost—we know that it does have a display method.

To understand in detail why it doesn’t work, we need to look more closely at types. Consider 
the following statement:

Car c1 = new Car();

We say that the type of c1 is Car. Before we encountered inheritance, there was no need to 
distinguish whether by “type of c1” we meant “the type of the variable c1” or “the type of the 
object stored in c1.” It did not matter, because the type of the variable and the type of the object 
were always the same.

Exercise 9.1 Open your last version of the network project. (You can use network-v2 if you 

do not have your own version yet.) Remove the display method from class Post and move 

it into the MessagePost and PhotoPost classes. Compile. What do you observe?



306 |       Chapter 9 ■ More about inheritance

Concept

The dynamic type

of a variable v is 

the type of the ob-

ject that is currently 

stored in v.

Now that we know about subtyping, we need to be more precise. Consider the following statement:

Vehicle v1 = new Car();

What is the type of v1? That depends on what precisely we mean by “type of v1.” The type of 
the variable v1 is Vehicle; the type of the object stored in v1 is Car. Through subtyping and 
substitution rules, we now have situations where the type of the variable and the type of the 
object stored in it are not exactly the same.

Let us introduce some terminology to make it easier to talk about this issue:

■ We call the declared type of the variable the static type, because it is declared in the source 
code—the static representation of the program.

■ We call the type of the object stored in a variable the dynamic type, because it depends on 
assignments at runtime—the dynamic behavior of the program.

Thus, looking at the explanations above, we can be more precise: the static type of v1 is 
Vehicle, the dynamic type of v1 is Car. We can now also rephrase our discussion about the 
call to the post’s display method in the NewsFeed class. At the time of the call

post.display();

the static type of post is Post, while the dynamic type is either MessagePost or PhotoPost
(Figure 9.3). We do not know which one of these it is, assuming that we have entered both 
MessagePost and PhotoPost objects into the feed.

Concept:

The static type of 

a variable v is the 

type as declared in 

the source code in 

the variable decla-

ration statement.

Figure 9.3
Variable of type Post
containing an object 

of type PhotoPost

The compiler reports an error because, for type checking, the static type is used. The dynamic 
type is often only known at runtime, so the compiler has no other choice but to use the static 
type if it wants to do any checks at compile time. The static type of post is Post, and Post
does not have a display method. It makes no difference that all known subtypes of Post do 
have a display method. The behavior of the compiler is reasonable in this respect, because it 
has no guarantee that all subclasses of Post will, indeed, define a display method, and this is 
impossible to check in practice.

In other words, to make this call work, class Post must have a display method, so we appear 
to be back to our original problem without having made any progress.

Exercise 9.2 In your network project, add a display method in class Post again. For 

now, write the method body with a single statement that prints out only the username. Then

modify the display methods in MessagePost and PhotoPost so that the MessagePost
version prints out only the message and the PhotoPost version prints only the caption. This

removes the other errors encountered above (we shall come back to those below).



9.3 Overriding | 307

Post

MessagePost PhotoPost

NewsFeedFigure 9.4
Display, version 3: 

display method 

in subclasses and 

superclass

You should now have a situation corresponding to Figure 9.4, with display methods in three 

classes. Compile your project. (If there are errors, remove them. This design should work.)

Before executing, predict which of the display methods will get called if you execute the 

news feed’s show method.

Try it out. Enter a message post and a photo post into the news feed and call the news feed’s 

show method. Which display methods were executed? Was your prediction correct? Try to 

explain your observations.

9.3 Overriding
The next design we shall discuss is one where both the superclass and the subclasses have a 
display method (Figure 9.4). The header of all the display methods is exactly the same.

Code 9.1 shows the relevant details of the source code of all three classes. Class Post has a 
display method that prints out all the fields that are declared in Post (those common to mes-
sage posts and photo posts), and the subclasses MessagePost and PhotoPost print out the 
fields specific to MessagePost and PhotoPost objects, respectively.

public class Post
{

...
public void display()
{

System.out.println(username);
System.out.print(timeString(timestamp));

Code 9.1
Source code of the 

display methods 

in all three classes



308 |       Chapter 9 ■ More about inheritance

if(likes > 0) {
System.out.println("  —  " + likes + " people like this.");

}
else {

System.out.println();
}

if(comments.isEmpty()) {
System.out.println("   No comments.");

}
else {

System.out.println("   " + comments.size() +
" comment(s). Click here to view.");

}
}

}

public class MessagePost extends Post
{

...
public void display()
{

System.out.println(message);
}

}

public class PhotoPost extends Post
{

...
public void display()
{

System.out.println("  [" + filename + "]");
System.out.println("  " + caption);

}
}

Code 9.1
continued
Source code of the 

display methods 

in all three classes

Concept:

Overriding A

subclass can over-

ride a method 

implementation.

To do this, the 

subclass declares 

a method with the 

same signature 

as the superclass, 

but with a different 

method body. The

overriding method 

takes precedence 

for method calls on 

subclass objects.

This design works a bit better. It compiles, and it can be executed (even though it is not perfect 
yet). An implementation of this design is provided in the project network-v3. (If you have done 
Exercise 9.2, you already have a similar implementation of this design in your own version.)

The technique we are using here is called overriding (sometimes it is also referred to as redefini-
tion). Overriding is a situation where a method is defined in a superclass (method display in class 
Post in this example), and a method with exactly the same signature is defined in the subclass.

In this situation, objects of the subclass have two methods with the same name and header: one 
inherited from the superclass and one from the subclass. Which one will be executed when we 
call this method?



9.4 Dynamic method lookup | 309

9.4 Dynamic method lookup
One surprising detail is what exactly is printed once we execute the news feed’s show method. 
If we again create and enter the objects described in Section 9.1, the output of the show method 
in our new version of the program is

Had a great idea this morning.
But now I forgot what it was. Something to do with flying ...

  [experiment.jpg]
  I think I might call this thing 'telephone'.

We can see from this output that the display methods in MessagePost and in PhotoPost
were executed, but not the one in Post.

This may seem strange at first. Our investigation in Section 9.2 has shown that the compiler 
insisted on a display method in class Post—methods in the subclasses were not enough. 
This experiment now shows that the method in class Post is then not executed at all, but the 
subclass methods are. In short:

■ Type checking uses the static type, but at runtime, the methods from the dynamic type are 
executed.

This is a fairly important statement. To understand it better, we look in more detail at how 
methods are invoked. This procedure is known as method lookup, method binding, or method
dispatch. We will use the term “method lookup” in this book.

We start with a simple method-lookup scenario. Assume that we have an object of a class 
PhotoPost stored in a variable v1 declared of type PhotoPost (Figure 9.5). The PhotoPost
class has a display method and no declared superclass. This is a very simple situation—there 
is no inheritance or polymorphism involved here. We then execute the statement

v1.display();

PhotoPost

instance of

Figure 9.5
Method lookup with 

a simple object

When this statement executes, the display method is invoked in the following steps:

1 The variable v1 is accessed.

2 The object stored in that variable is found (following the reference).



310 |       Chapter 9 ■ More about inheritance

3 The class of the object is found (following the “instance of” reference).

4 The implementation of the display method is found in the class and executed.

This is all very straightforward and not surprising.

Next, we look at method lookup with inheritance. This scenario is similar, but this time the PhotoPost
class has a superclass Post and the display method is defined only in the superclass (Figure 9.6).

PhotoPost

instance of

PostFigure 9.6
Method lookup 

with inheritance

We execute the same statement. The method invocation then starts in a similar way: steps 1 to 3 
from the previous scenario are executed again, but then it continues differently:

4 No display method is found in class PhotoPost.

5 Because no matching method was found, the superclass is searched for a matching method. 
If no method is found in the superclass, the next superclass (if it exists) is searched. This 
continues all the way up the inheritance hierarchy to the Object class, until a method is 
found. Note that at runtime a matching method should definitely be found, or else the class 
would not have compiled.

6 In our example, the display method is found in class Post, and will be executed.

This scenario illustrates how objects inherit methods. Any method found in a superclass can be 
invoked on a subclass object and will correctly be found and executed.

Next, we come to the most interesting scenario: method lookup with a polymorphic variable 
and method overriding (Figure 9.7). The scenario is again similar to the one before, but there 
are two changes:

■ The declared type of the variable v1 is now Post, not PhotoPost.

■ The display method is defined in class Post and then redefined (overridden) in class 
PhotoPost.



9.5 Super call in methods | 311

This scenario is the most important one for understanding the behavior of our network
application and in finding a solution to our display method problem.

The steps in which method execution takes place are exactly the same as steps 1 through 4 from 
scenario 1. Read them again.

Some observations are worth noting:
■ No special lookup rules are used for method lookup in cases where the dynamic type is not 

equal to the static type. The behavior we observe is a result of the general rules.
■ Which method is found first and executed is determined by the dynamic type, not the static type. 

In other words, the fact that the declared type of the variable v1 is now Post does not have any 
effect. The instance we are dealing with is of class PhotoPost—that is all that counts.

■ Overriding methods in subclasses take precedence over superclass methods. Because method 
lookup starts in the dynamic class of the instance (at the bottom of the inheritance hierarchy), 
the last redefinition of a method is found first, and this is the one that is executed.

■ When a method is overridden, only the last version (the one lowest in the inheritance 
hierarchy) is executed. Versions of the same method in any superclasses are not also 
automatically executed.

This explains the behavior that we observe in our network project. Only the display methods 
in the subclasses (MessagePost and PhotoPost) are executed when posts are printed out, 
leading to incomplete listings. In the next section, we discuss how to fix this.

9.5 Super call in methods
Now that we know in detail how overridden methods are executed, we can understand the 
solution to the problem. It is easy to see that what we would want to achieve is for every call to 
a display method of, say, a PhotoPost object, to result in both the display method of the 

PhotoPost

instance of

PostFigure 9.7
Method lookup with 

polymorphism and 

overriding



312 |       Chapter 9 ■ More about inheritance

Post class and that of the PhotoPost class being executed for the same object. Then all the 
details would be printed out. (A different solution will be discussed later in this chapter.)

This is, in fact, quite easy to achieve. We can simply use the super construct, which we have 
already encountered in the context of constructors in Chapter 8. Code 9.2 illustrates this idea 
with the display method of the PhotoPost class.

public void display()
{

super.display();
System.out.println("  [" + filename + "]");
System.out.println("  " + caption);

}

Code 9.2
Redefining method 

with super call

When display is now called on a PhotoPost object, initially the display method in the 
PhotoPost class will be invoked. As its first statement, this method will in turn invoke the 
display method of the superclass, which prints out the general post information. When con-
trol returns from the superclass method, the remaining statements of the subclass method print 
the distinctive fields of the PhotoPost class.

There are three details worth noting:

■ Contrary to the case of super calls in constructors, the method name of the superclass 
method is explicitly stated. A super call in a method always has the form

super.method-name ( parameters )

The parameter list can, of course, be empty.

■ Again, contrary to the rule for super calls in constructors, the super call in methods may 
occur anywhere within that method. It does not have to be the first statement.

■ And contrary to the case of super calls in constructors, no automatic super call is gener-
ated and no super call is required; it is entirely optional. So the default behavior gives the 
effect of a subclass method completely hiding (i.e., overriding) the superclass version of the 
same method.

Exercise 9.3 Modify your latest version of the network project to include the super call in the 

display method. Test it. Does it behave as expected? Do you see any problems with this solution?

It is worth reiterating what was illustrated in Exercise 8.6: that in the absence of method over-
riding, the non-private members of a superclass are directly accessible from its subclasses 
without any special syntax. A super call only has to be made when it is necessary to access the 
superclass version of an overridden method.

If you completed Exercise 9.3, you will have noticed that this solution works but is not perfect 
yet. It prints out all details, but in a different order from what we wanted. We will fix this last 
problem later in the chapter.



9.7 Object methods: toString | 313

9.6 Method polymorphism
What we have just discussed in the previous sections (Sections 9.2–9.5) is yet another form of 
polymorphism. It is what is known as polymorphic method dispatch (or method polymorphism
for short).

Remember that a polymorphic variable is one that can store objects of varying types (every 
object variable in Java is potentially polymorphic). In a similar manner, Java method calls are 
polymorphic, because they may invoke different methods at different times. For instance, the 
statement

post.display();

could invoke the MessagePost’s display method at one time and the PhotoPost’s dis-
play method at another, depending on the dynamic type of the post variable.

9.7 Object methods: toString
In Chapter 8, we mentioned that the universal superclass, Object, implements some methods 
that are then part of all objects. The most interesting of these methods is toString, which we 
introduce here (if you are interested in more detail, you can look up the interface for Object in 
the standard library documentation).

Concept:

Method polymor-

phism. Method 

calls in Java are 

polymorphic. The

same method call 

may at different 

times invoke dif-

ferent methods, 

depending on the 

dynamic type of 

the variable used to 

make that call.

Concept:

Every object in Java 

has a toString
method that can 

be used to return 

a string repre-

sentation of itself. 

Typically, to make 

it useful, an object 

should override this 

method.

Exercise 9.4 Look up toString in the library documentation. What are its parameters? 

What is its return type?

The purpose of the toString method is to create a string representation of an object. This is 
useful for any objects that are ever to be textually represented in the user interface, but also helps 
for all other objects; they can then easily be printed out for debugging purposes, for instance.

The default implementation of toString in class Object cannot supply a great amount of detail. 
If, for example, we call toString on a PhotoPost object, we receive the string similar to this:

PhotoPost@6acdd1

The return value simply shows the object’s class name and a magic number.2

2 The magic number is in fact the memory address where the object is stored. It is not very useful except 
to establish identity. If this number is the same in two calls, we are looking at the same object. If it is 
different, we have two distinct objects.

Exercise 9.5 You can easily try this out. Create an object of class PhotoPost in your 

project, and then invoke the toString method from the Object submenu in the object’s 

pop-up menu.



314 |       Chapter 9 ■ More about inheritance

To make this method more useful, we would typically override it in our own classes. We can, 
for example, define the Post’s display method in terms of a call to its toString method. In 
this case, the toString method would not print out the details, but just create a string with the 
text. Code 9.3 shows the changed source code.

public class Post
{

.....

public String toString()
{

String text = username + "\n" + timeString(timestamp);
if(likes > 0) {

text += "  —  " + likes + " people like this.\n";
}
else {

text += "\n";
}

if(comments.isEmpty()) {
return text + "   No comments.\n";

}
else {

return text + "   " + comments.size() +
" comment(s). Click here to view.\n";

}
}

public void display()
{

System.out.println(toString());
}

}

public class MessagePost extends Post
{

...
public String toString()
{

return super.toString() + message + "\n";
}

public void display()
{

System.out.println(toString());
}

}

Code 9.3
toString method 

for Post and 

MessagePost



9.7 Object methods: toString | 315

Ultimately, we would plan on removing the display methods completely from these classes. A 
great benefit of defining just a toString method is that we do not mandate in the Post classes 
what exactly is done with the description text. The original version always printed the text to 
the output terminal. Now, any client (e.g., the NewsFeed class) is free to do whatever it chooses 
with this text. It might show the text in a text area in a graphical user interface; save it to a file; 
send it over a network; show it in a web browser; or, as before, print it to the terminal.

The statement used in the client to print the post could now look as follows:

System.out.println(post.toString());

In fact, the System.out.print and System.out.println methods are special in this 
respect: if the parameter to one of the methods is not a String object, then the method auto-
matically invokes the object’s toString method. Thus we do not need to write the call explic-
itly and could instead write

System.out.println(post);

Now consider the modified version of the show method of class NewsFeed shown in Code 9.4. 
In this version, we have removed the toString call. Would it compile and run correctly?

public class NewsFeed
{

// fields, constructors, and other methods omitted

    /**
     * Show the news feed. Currently: print the news feed details
     * to the terminal. (To do: replace this later with display
     * in web browser.)
     */

public void show()
{

 for(Post post : posts) {
System.out.println(post);

}
}

}

Code 9.4
New version of 

NewsFeed show
method

In fact, the method does work as expected. If you can explain this example in detail, then you 
probably already have a good understanding of most of the concepts that we have introduced in 
this and the previous chapter! Here is a detailed explanation of the single println statement 
inside the loop.

■ The for-each loop iterates through all posts and places them in a variable with the static type 
Post. The dynamic type is either MessagePost or PhotoPost.

■ Because this object is being printed to System.out and it is not a String, its toString
method is automatically invoked.

■ Invoking this method is valid only because the class Post (the static type!) has a toString
method. (Remember: Type checking is done with the static type. This call would not be 



316 |       Chapter 9 ■ More about inheritance

allowed if class Post had no toString method. However, the toString method in class 
Object guarantees that this method is always available for any class.)

■ The output appears properly with all details, because each possible dynamic type 
(MessagePost and PhotoPost) overrides the toString method and the dynamic method 
lookup ensures that the redefined method is executed.

The toString method is generally useful for debugging purposes. Often, it is very convenient 
if objects can easily be printed out in a sensible format. Most of the Java library classes override 
toString (all collections, for instance, can be printed out like this), and often it is a good idea 
to override this method for our classes as well.

9.8 Object equality: equals and hashCode
It is often necessary to determine whether two objects are “the same.” The Object class defines 
two methods, equals and hashCode, that have a close link with determining similarity. We 
actually have to be careful when using phrases such as “the same”; this is because it can mean 
two quite different things when talking about objects. Sometimes we wish to know whether two 
different variables are referring to the same object. This is exactly what happens when an object 
variable is passed as a parameter to a method: there is only one object, but both the original vari-
able and the parameter variable refer to it. The same thing happens when any object variable is as-
signed to another. These situations produce what is called reference equality. Reference equality is 
tested for using the == operator. So the following test will return true if both var1 and var2 are 
referring to the same object (or are both null), and false if they are referring to anything else:

var1 == var2

Reference equality takes no account at all of the contents of the objects referred to, just whether 
there is one object referred to by two different variables or two distinct objects. That is why we also 
define content equality, as distinct from reference equality. A test for content equality asks whether 
two objects are the same internally—that is, whether the internal states of two objects are the same. 
This is why we rejected using reference equality for making string comparisons in Chapter 5.

What content equality between two particular objects means is something that is defined by the 
objects’ class. This is where we make use of the equals method that every class inherits from 
the Object superclass. If we need to define what it means for two objects to be equal accord-
ing to their internal states, then we must override the equals method, which then allows us to 
write tests such as

var1.equals(var2)

This is because the equals method inherited from the Object class actually makes a test for 
reference equality. It looks something like this:

public boolean equals(Object obj)
{
    return this == obj;
}

Because the Object class has no fields, there is no state to compare, and this method obviously 
cannot anticipate fields that might be present in subclasses.



9.8 Object equality: equals and hashCode | 317

The way to test for content equality between two objects is to test whether the values of their 
two sets of fields are equal. Notice, however, that the parameter of the equals method is of 
type Object, so a test of the fields will make sense only if we are comparing fields of the same 
type. This means that we first have to establish that the type of the object passed as a parameter 
is the same as that of the object it is being compared with. Here is how we might think of writ-
ing the method in the Student class of the lab-classes project from Chapter 1:

public boolean equals(Object obj)
{
    if(this == obj) {
        return true;   // Reference equality.
    }
    if(!(obj instanceof Student)) {
        return false;   // Not the same type.
    }
    // Gain access to the other student’s fields.
    Student other = (Student) obj;
    return name.equals(other.name) &&
           id.equals(other.id) &&
           credits == other.credits;
}

The first test is just an efficiency improvement; if the object has been passed a reference to itself
to compare against, then we know that content equality must be true. The second test makes 
sure that we are comparing two students. If not, then we decide that the two objects cannot be 
equal. Having established that we have another student, we use a cast and another variable of 
the right type so that we can access its details properly. Finally, we make use of the fact that 
the private elements of an object are directly accessible to an instance of the same class; this is 
essential in situations such as this one, because there will not necessarily be accessor methods 
defined for every private field in a class. Notice that we have consistently used content-equality 
tests rather than reference-equality tests on the object fields name and id.

It will not always be necessary to compare every field in two objects in order to establish that 
they are equal. For instance, if we know for certain that every Student is assigned a unique id,
then we need not test the name and credits fields as well. It would then be possible to reduce 
the final statement above to

return id.equals(other.id);

Whenever the equals method is overridden, the hashCode method should also be overridden. 
The hashCode method is used by data structures such as HashMap and HashSet to provide ef-
ficient placement and lookup of objects in these collections. Essentially, the hashCode method 
returns an integer value that represents an object. From the default implementation in Object,
distinct objects have distinct hashCode values.

There is an important link between the equals and hashCode methods in that two objects that 
are the same as determined by a call to equals must return identical values from hashCode.
This stipulation, or contract, can be found in the description of hashCode in the API documen-
tation of the Object class.3 It is beyond the scope of this book to describe in detail a suitable 

3 Note that it is not essential that unequal objects always return distinct hash codes.



318 |       Chapter 9 ■ More about inheritance

technique for calculating hash codes, but we recommend the interested reader to see Joshua 
Bloch’s Effective Java, whose technique we use here.4 Essentially, an integer value should be 
computed making use of the values of the fields that are compared by the overridden equals
method. Here is a hypothetical hashCode method that uses the values of an integer field called 
count and a String field called name to calculate the code:

public int hashCode()
{
    int result = 17;   // An arbitrary starting value.
    // Make the computed value depend on the order in which
    // the fields are processed.
    result = 37 * result + count;
    result = 37 * result + name.hashCode();
    return result;
}

9.9 Protected access
In Chapter 8, we noted that the rules on public and private visibility of class members apply 
between a subclass and its superclass, as well as between classes in different inheritance hier-
archies. This can be somewhat restrictive, because the relationship between a superclass and 
its subclasses is clearly closer than it is with other classes. For this reason, object-oriented lan-
guages often define a level of access that lies between the complete restriction of private access 
and the full availability of public access. In Java, this is called protected access and is provided 
by the protected keyword as an alternative to public and private. Code 9.5 shows an 
example of a protected accessor method, which we could add to class Post.

Concepts:

Declaring a field or a 

method protected

allows direct access 

to it from (direct or 

indirect) subclasses.

protected long getTimeStamp()
{

return timestamp;
}

Code 9.5
An example of a 

protected method

Protected access allows access to the fields or methods within a class itself and from all its 
subclasses, but not from other classes.5 The getTimeStamp method shown in Code 9.5 can be 
called from class Post or any subclasses, but not from other classes. Figure 9.8 illustrates this. 
The oval areas in the diagram show the group of classes that are able to access members in class 
SomeClass.

4 At the time of writing, sample chapters that contain material relevant to this topic are available at 
http://java.sun.com/developer/Books/effectivejava/.

5 In Java, this rule is not as clear-cut as described here, because Java includes an additional level of vis-
ibility, called package level, but with no associated keyword. We will not discuss this further, and it is 
more general to consider protected access as intended for the special relationship between superclass 
and subclass.

http://java.sun.com/developer/Books/effectivejava/


9.9 Protected access | 319

While protected access can be applied to any member of a class, it is usually reserved for 
methods and constructors. It is not usually applied to fields, because that would be a weaken-
ing of encapsulation. Wherever possible, mutable fields in superclasses should remain private. 
There are, however, occasional valid cases where direct access by subclasses is desirable. 
Inheritance represents a much closer form of coupling than does a normal client relationship.

Inheritance binds the classes closer together, and changing the superclass can more easily break the 
subclass. This should be taken into consideration when designing classes and their relationships.

SomeClass

Subclass1 Subclass2

Client

Figure 9.8
Access levels: private, 

protected, and public

Exercise 9.6 The version of display shown in Code 9.2 produces the output shown in 

Figure 9.9. Reorder the statements in the method in your version of the network project so that 

it prints the details as shown in Figure 9.10.

Leonardo da Vinci
40 seconds ago - 2 people like this.
  No comments.
Had a great idea this morning.
But now I forgot what it was. Something to do with flying...

Figure 9.9
Possible output from 

display: superclass 

call at the beginning 

of display (shaded 

areas printed by su-

perclass method)

Had a great idea this morning.
But now I forgot what it was. Something to do with flying...
Leonardo da Vinci
40 seconds ago - 2 people like this.
  No comments.

Figure 9.10
Alternative output 

from display
(shaded areas 

printed by superclass 

method)



320 |       Chapter 9 ■ More about inheritance

9.10 The instanceof operator
One of the consequences of the introduction of inheritance into the network project has been 
that the NewsFeed class knows only about Post objects and cannot distinguish between 
message posts and photo posts. This has allowed all types of post to be stored in a single list.

However, suppose that we wish to retrieve just the message posts or just the photo posts from 
the list; how would we do that? Or perhaps we wish to look for a message by a particular 
author? That is not a problem if the Post class defines a getAuthor method, but this will find 
both message and photo posts. Will it matter which type is returned?

There are occasions when we need to rediscover the distinctive dynamic type of an object rather 
than dealing with a shared supertype. For this, Java provides the instanceof operator. The 
instanceof operator tests whether a given object is, directly or indirectly, an instance of a 
given class. The test

obj instanceof MyClass

returns true if the dynamic type of obj is MyClass or any subclass of MyClass. The left 
operand is always an object reference, and the right operand is always the name of a class. So

post instanceof MessagePost

returns true only if post is a MessagePost, as opposed to a PhotoPost, for instance.

Use of the instanceof operator is often followed immediately by a cast of the object refer-
ence to the identified type. For instance, here is some code to identify all of the message posts 
in a list of posts and to store them in a separate list.

ArrayList<MessagePost> messages = new ArrayList<MessagePost>();
for(Post post : posts) {
    if(post instanceof MessagePost) {
        messages.add((MessagePost) post);
    }
}

It should be clear that the cast here does not alter the post object in any way, because we have 
just established that it already is a MessagePost object.

Exercise 9.7 Having to use a superclass call in display is somewhat restrictive in the ways in 

which we can format the output, because it is dependent on the way the superclass formats its fields. 

Make any necessary changes to the Post class and to the display method of MessagePost so 

that it produces the output shown in Figure 9.11. Any changes you make to the Post class should 

be visible only to its subclasses. Hint: You could add protected accessors to do this.

Leonardo da Vinci
Had a great idea this morning.
But now I forgot what it was. Something to do with flying...
40 seconds ago - 2 people like this.
  No comments.

Figure 9.11
Output from display
mixing subclass and 

superclass details 

(shaded areas represent 

superclass details)



9.11 Another example of inheritance with overriding | 321

9.11 Another example of inheritance with overriding
To discuss another example of a similar use of inheritance, we go back to a project from 
Chapter 6: the zuul project. In the world-of-zuul game, we used a set of Room objects to create 
a scene for a simple game. One of the exercises toward the end of the chapter suggested that 
you implement a transporter room (a room that beams you to a random location in the game if 
you try to enter or leave it). We revisit this exercise here, because its solution can greatly benefit 
from inheritance. If you don’t remember this project well, have a quick read through Chapter 6 
again, or look at your own zuul project.

There is no single solution to this task. Many different solutions are possible and can be made 
to work. Some are better than others, though. They may be more elegant, easier to read, and 
easier to maintain and to extend.

Assume that we want to implement this task so that the player is automatically transported to 
a random room when she tries to leave the magic transporter room. The most straightforward 
solution that comes to mind first for many people is to deal with this in the Game class, which 
implements the player’s commands. One of the commands is “go,” which is implemented in 
the goRoom method. In this method, we used the following statement as the central section 
of code:

nextRoom = currentRoom.getExit(direction);

This statement retrieves from the current room the neighboring room in the direction we want 
to go. To add our magic transportation, we could modify this in a form similar to the following:

if(currentRoom.getName().equals("Transporter room")) {
    nextRoom = getRandomRoom();
}
else {
    nextRoom = currentRoom.getExit(direction);
}

The idea here is simple: we just check whether we are in the transporter room. If we are, then 
we find the next room by getting a random room (of course, we have to implement the get-
RandomRoom method somehow); otherwise, we just do the same as before.

While this solution works, it has several drawbacks. The first is that it is a bad idea to use text 
strings, such as the room’s name, to identify the room. Imagine that someone wanted to trans-
late your game into another language—say, to German. They might change the names of the 
rooms—“Transporter room” becomes “Transporterraum”—and suddenly the game does not 
work any more! This is a clear case of a maintainability problem.

The second solution, which is slightly better, would be to use an instance variable instead of the 
room’s name to identify the transporter room. Similar to this:

if(currentRoom == transporterRoom) {
    nextRoom = getRandomRoom();
}
else {
    nextRoom = currentRoom.getExit(direction);
}



322 |       Chapter 9 ■ More about inheritance

This time, we assume that we have an instance variable transporterRoom of class Room,
where we store the reference to our transporter room.6 Now the check is independent of the 
room’s name. That is a bit better.

There is still a case for further improvement, though. We can understand the shortcomings of 
this solution when we think about another maintenance change. Imagine that we want to add 
two more transporter rooms so that our game has three different transporter locations.

A very nice aspect of our existing design was that we could set up the floor plan in a single spot, 
and the rest of the game was completely independent of it. We could easily change the layout of the 
rooms, and everything would still work—high score for maintainability! With our current solution, 
though, this is broken. If we add two new transporter rooms, we have to add two more instance var-
iables or an array (to store references to those rooms), and we have to modify our goRoom method 
to add a check for those rooms. In terms of easy changeability, we have gone backwards.

The question, therefore, is: Can we find a solution that does not require a change to the com-
mand implementation each time we add a new transporter room? Following is our next idea.

We can add a method isTransporterRoom in the Room class. This way, the Game object 
does not need to remember all the transporter rooms—the rooms themselves do. When rooms 
are created, they could receive a boolean flag indicating whether a given room is a transporter 
room. The goRoom method could then use the following code segment:

if(currentRoom.isTransporterRoom()) {
    nextRoom = getRandomRoom();
}
else {
    nextRoom = currentRoom.getExit(direction);
}

Now we can add as many transporter rooms as we like; there is no need for any more changes 
to the Game class. However, the Room class has an extra field whose value is really needed only 
because of the nature of one or two of the instances. Special-case code such as this is a typical 
indicator of a weakness in class design. This approach also does not scale well should we decide 
to introduce further sorts of special rooms, each requiring its own flag field and accessor method.7

With inheritance, we can do better and implement a solution that is even more flexible than 
this one. We can implement a class TransporterRoom as a subclass of class Room. In this 
new class, we override the getExit method and change its implementation so that it returns a 
random room:

public class TransporterRoom extends Room
{
    /**
     * Return a random room, independent of the direction
     * parameter.
     * @param direction Ignored.
     * @return A random room.
     */

6 Make sure that you understand why a test for reference equality is the most appropriate here.
7 We might also think of using instanceof, but the point here is that none of these ideas is the best.



9.12 Summary | 323

    public Room getExit(String direction)
    {
        return findRandomRoom();
    }

    /*
     * Choose a random room.
     * @return A random room.
     */
    private Room findRandomRoom()
    {
        ... // implementation omitted
    }
}

The elegance of this solution lies in the fact that no change at all is needed in either the origi-
nal Game or Room classes! We can simply add this class to the existing game, and the goRoom
method will continue to work as it is. Adding the creation of a TransporterRoom to the setup 
of the floor plan is (almost) enough to make it work. Note, too, that the new class does not need a 
flag to indicate its special nature—its very type and distinctive behavior supply that information.

Because TransporterRoom is a subclass of Room, it can be used everywhere a Room object is 
expected. Thus, it can be used as a neighboring room for another room or be held in the Game
object as the current room.

What we have left out, of course, is the implementation of the findRandomRoom method. 
In reality, this is probably better done in a separate class (say RoomRandomizer) than in the 
TransporterRoom class itself. We leave this open as an exercise for the reader.

Exercise 9.8 Implement a transporter room with inheritance in your version of the zuul project.

Exercise 9.9 Discuss how inheritance could be used in the zuul project to implement a 

player and a monster class.

Exercise 9.10 Could (or should) inheritance be used to create an inheritance relationship 

(super-, sub-, or sibling class) between a character in the game and an item?

9.12 Summary
When we deal with classes with subclasses and polymorphic variables, we have to distinguish 
between the static and dynamic type of a variable. The static type is the declared type, while the 
dynamic type is the type of the object currently stored in the variable.

Type checking is done by the compiler using the static type, whereas at runtime method lookup 
uses the dynamic type. This enables us to create very flexible structures by overriding methods. 
Even when using a supertype variable to make a method call, overriding enables us to ensure 
that specialized methods are invoked for every particular subtype. This ensures that objects of 
different classes can react distinctly to the same method call.



324 |       Chapter 9 ■ More about inheritance

When implementing overriding methods, the super keyword can be used to invoke the super-
class version of the method. If fields or methods are declared with the protected access modi-
fier, subclasses are allowed to access them, but other classes are not.

Terms introduced in this chapter

static type, dynamic type, overriding, redefinition, method lookup, method 

dispatch, method polymorphism, protected

Concept summary

■ static type The static type of a variable v is the type as declared in the source code in the 

variable declaration statement.

■ dynamic type The dynamic type of a variable v is the type of the object that is currently stored in v.

■ overriding A subclass can override a method implementation. To do this, the subclass de-

clares a method with the same signature as the superclass, but with a different method body. 

The overriding method takes precedence for method calls on subclass objects.

■ method polymorphism Method calls in Java are polymorphic. The same method call may at 

different times invoke different methods, depending on the dynamic type of the variable used 

to make that call.

■ toString Every object in Java has a toString method that can be used to return a string 

representation of itself. Typically, to make it useful, a class should override this method.

■ protected Declaring a field or a method protected allows direct access to it from (direct or 

indirect) subclasses.

Exercise 9.11 Assume that you see the following lines of code:

Device dev = new Printer();
dev.getName();

Printer is a subclass of Device. Which of these classes must have a definition of method 

getName for this code to compile?

Exercise 9.12 In the same situation as in the previous exercise, if both classes have an 

implementation of getName, which one will be executed?

Exercise 9.13 Assume that you write a class Student that does not have a declared su-

perclass. You do not write a toString method. Consider the following lines of code:

Student st = new Student();
String s = st.toString();

Will these lines compile? If so, what exactly will happen when you try to execute?



9.12 Summary | 325

Exercise 9.14 In the same situation as before (class Student, no toString method), will 

the following lines compile? Why?

Student st = new Student();
System.out.println(st);

Exercise 9.15 Assume that your class Student overrides toString so that it returns the 

student’s name. You now have a list of students. Will the following code compile? If not, why 

not? If yes, what will it print? Explain in detail what happens.

for(Object st : myList) {
    System.out.println(st);
}

Exercise 9.16 Write a few lines of code that result in a situation where a variable x has the 

static type T and the dynamic type D.



In this chapter, we examine further inheritance-related techniques that can be used to enhance 
class structures and improve maintainability and extendibility. These techniques introduce an 
improved method of representation of abstractions in object-oriented programs.

The previous two chapters have discussed the most important aspects of inheritance in applica-
tion design, but several more advanced uses and problems have been ignored so far. We will 
now complete the picture with a more advanced example.

The project we use for this chapter is a simulation. We use it to discuss inheritance again and 
see that we run into some new problems. Abstract classes and interfaces are then introduced to 
deal with these problems.

10.1 Simulations
Computers are frequently used to simulate real systems. These include systems that model traf-
fic flows in a city, forecast weather, simulate the spread of infection, analyze the stock market, 
do environmental simulations, and much more. In fact, many of the most powerful computers 
in the world are used for running some sort of simulation.
When creating a computer simulation, we try to model the behavior of a subset of the real world 
in a software model. Every simulation is necessarily a simplification of the real thing. Deciding 
which details to leave out and which to include is often a challenging task. The more detailed 
a simulation is, the more accurate it may be in forecasting the behavior of the real system. But 
more detail increases the complexity of the model and the requirements for both more comput-
ing power and more programmer time. A well-known example is weather forecasting: climate 
models in weather simulations have been improved by adding more and more detail over the 
last few decades. As a result, weather forecasts have improved significantly in accuracy (but are 
far from perfect, as we all have experienced at some time). Much of this improvement has been 
made possible through advances in computer technology.

CHAPTER

10 Further abstraction techniques

Main concepts discussed in this chapter:

■ abstract classes ■ interfaces ■ multiple inheritance

Java constructs discussed in this chapter:

abstract, implements, interface



10.2 The foxes-and-rabbits simulation | 327

The benefit of simulations is that we can undertake experiments that we could not do with the real 
system, either because we have no control over the real thing (for instance, the weather) or because 
it is too costly, too dangerous, or irreversible in case of disaster. We can use the simulation to inves-
tigate the behavior of the system under certain circumstances or to investigate “what if” questions.

An example of the use of environmental simulations is to try to predict the effects of human 
activity on natural habitats. Consider the case of a national park containing endangered spe-
cies and a proposal to build a freeway through the middle of it, completely separating the two 
halves. The supporters of the freeway proposal claim that splitting the park in half will lead 
to little actual land loss and make no difference to the animals in it, but environmentalists 
claim otherwise. How can we tell what the effect is likely to be without building the freeway? 
Simulation is one option. An essential question in all cases of this kind will be, of course, “How 
good is the simulation?” One can “prove” just about anything with an ill-designed simulation. 
Gaining trust in it through controlled experiments will be essential.

The issue in this particular case boils down to whether it is significant for the survival of a spe-
cies to have a single, connected habitat area or whether two disjoint areas (with the same total 
size as the other) are just as good. Rather than building the freeway first and then observing 
what happens, we will try to simulate the effect in order to make a well-informed decision.1

Our simulation will necessarily be simpler than the scenario we have described, because we are 
using it mainly to illustrate new features of object-oriented design and implementation. Therefore, 
it will not have the potential to simulate accurately many aspects of nature, but some of the simu-
lation’s characteristics are nonetheless interesting. In particular, it will demonstrate the structure 
of typical simulations. In addition, its accuracy may surprise you; it would be a mistake to equate 
greater complexity with greater accuracy. It is often the case that a simplified model of something 
can provide greater insight and understanding than a more complex one, from which it is often 
difficult to isolate the underlying mechanisms—or even be sure that the model is valid.

10.2 The foxes-and-rabbits simulation
The simulation scenario we have chosen to work with in this chapter uses the freeway example 
from above as its basis. It involves tracking populations of foxes and rabbits within an enclosed 
field. This is just one particular example of what are known as predator–prey simulations. Such 
simulations are often used to model the variation in population sizes that result from a preda-
tor species feeding on a prey species. A delicate balance exists between such species. A large 
population of prey will potentially provide plenty of food for a small population of predators. 
However, too many predators could kill off all the prey and leave the hunters with nothing 
to eat. Population sizes could also be affected by the size and nature of the environment. For 
instance, a small, enclosed environment could lead to overcrowding and make it easy for the 
predators to locate their prey, or a polluted environment could reduce the stock of prey and pre-
vent even a modest population of predators from surviving. Because predators in one context 
are themselves often prey for other species (think of cats, birds, and worms, for instance), loss 
of one part of the food chain can have dramatic effects on the survival of other parts.

1 In this particular case, by the way, size does matter: the size of a natural park has a significant impact on 
its usefulness as a habitat for animals.



328 |       Chapter 10 ■ Further abstraction techniques

As we have done in previous chapters, we will start with a version of an application that works 
perfectly well from a user’s point of view but whose internal view is not so good when judged by 
the principles of good object-oriented design and implementation. We will use this base version 
to develop several improved versions that progressively introduce new abstraction techniques.

One particular problem that we wish to address in the base version is that it does not make good 
use of the inheritance techniques that were introduced in Chapter 8. However, we will start by 
examining the mechanism of the simulation, without being too critical of its implementation. 
Once we understand how it works, we shall be in a good position to make some improvements.

Predator–prey modeling There is a long history of trying to model predator–prey relationships 

mathematically before the invention of the computer, because they have economic, as well as envi-

ronmental, importance. For instance, mathematical models were used in the early twentieth century 

to explain variations in the level of fish stocks in the Adriatic Sea as a side effect of World War I. To

find out more about the background of this topic, and perhaps gain an understanding of population 

dynamics, do a web search for the Lotka-Volterra model.

10.2.1 The foxes-and-rabbits project

Open the foxes-and-rabbits-v1 project. The class diagram is shown in Figure 10.1.

Rabbit

Fox

Field

Location

Randomizer

FieldStats

Counter

SimulatorView

Simulator

Figure 10.1
Class diagram of the 

foxes-and-rabbits

project



10.2 The foxes-and-rabbits simulation | 329

The main classes we will focus on in our discussion are Simulator, Fox, and Rabbit. The 
Fox and Rabbit classes provide simple models of the behavior of a predator and prey, respec-
tively. In this particular implementation, we have not tried to provide an accurate biological 
model of real foxes and rabbits; rather, we are simply trying to illustrate the principles of typical 
predator–prey simulations. Our main concerns will be on the aspects that most affect population 
size: birth, death, and food supply.

The Simulator class is responsible for creating the initial state of the simulation, and then 
controlling and executing it. The basic idea is simple: the simulator holds collections of foxes 
and rabbits, and it repeatedly gives those animals an opportunity to live through one step2 of 
their life cycle. At each step, each fox and each rabbit is allowed to carry out the actions that 
characterize their behaviors. After each step (when all the animals have had the chance to act), 
the new current state of the field is displayed on screen.

We can summarize the purpose of the remaining classes as follows:

■ Field represents a two-dimensional enclosed field. The field is composed of a fixed num-
ber of locations, which are arranged in rows and columns. At most, one animal may occupy 
a single location within the field. Each field location can hold an animal or it can be empty.

■ Location represents a two-dimensional position within the field, specified by a row and a 
column value.

■ These five classes together (Simulator, Fox, Rabbit, Field, and Location) provide the 
model for the simulation. They completely determine the simulation behavior.

■ The Randomizer class provides us with a degree of control over random aspects of the 
simulation, such as when new animals are born.

■ The classes SimulatorView, FieldStats, and Counter provide a graphical display of 
the simulation. The display shows an image of the field and counters for each species (the 
current number of rabbits and foxes).

■ SimulatorView provides a visualization of the state of the field. An example can be seen in 
Figure 10.2.

■ FieldStats provides to the visualization counts of the numbers of foxes and rabbits in the field.

■ A Counter stores a current count for one type of animal to assist with the counting.

Try the following exercises to gain an understanding of how the simulation operates before 
reading about its implementation.

2 We won’t define how much time a “step” actually represents. In practice, this has to be decided by a 
combination of such things as what we are trying to discover, what events we are simulating, and how 
much real time is available to run the simulation.

Exercise 10.1 Create a Simulator object, using the constructor without parameters, 

and you should see an initial state of the simulation similar to that in Figure 10.2. The more 

numerous rectangles represent the rabbits. Does the number of foxes change if you call the 

simulateOneStep method just once?



330 |       Chapter 10 ■ Further abstraction techniques

Figure 10.2
The initial state of the 

foxes-and-rabbits

simulation

Exercise 10.2 Does the number of foxes change on every step? What natural processes do 

you think we are modeling that cause the number of foxes to increase or decrease?

Exercise 10.3 Call the simulate method with a parameter to run the simulation continu-

ously for a significant number of steps, such as 50 or 100. Do the numbers of foxes and rab-

bits increase or decrease at similar rates?

Exercise 10.4 What changes do you notice if you run the simulation for a much longer time, 

say for 4,000 steps? You can use the runLongSimulation method to do this.

Exercise 10.5 Use the reset method to create a new starting state for the simulation, and 

then run it again. Is an identical simulation run this time? If not, do you see broadly similar pat-

terns emerging anyway?

Exercise 10.6 If you run a simulation for long enough, do all of the foxes or all of the rabbits 

ever die off completely? If so, can you pinpoint any reasons why that might be occurring?

Exercise 10.7 Make a note of the numbers of foxes and rabbits at each of the first few 

steps and at the end of a long run. It will be useful to have a record of these when we come to 

make changes later on and perform regression testing.

Exercise 10.8 After having run the simulation for a while, reset it and also call the static 

reset method of the Randomizer class. Now run the first few steps again, and you should 

see the original simulation repeated. Take a look at the code of the Randomizer class to see 

if you can work out why this might be. You might need to look at the API for the java.util.
Random class to help you with this.



10.2 The foxes-and-rabbits simulation | 331

Now that we have a broad, external understanding of what this project does, we will look in 
detail at the implementation of the Rabbit, Fox, and Simulator classes.

10.2.2 The Rabbit class

The source code of the Rabbit class is shown in Code 10.1.

Exercise 10.9 Check to see that setting the useShared field in Randomizer to false
breaks the repeatability of the simulations seen in Exercise 10.8. Be sure to restore it to true
afterwards, because repeatability will be an important element in later testing.

// import statements and class comment omitted

public class Rabbit
{
    // Characteristics shared by all rabbits (class variables).

    // The age at which a rabbit can start to breed.
private static final int BREEDING_AGE = 5;

    // The age to which a rabbit can live.
private static final int MAX_AGE = 40;

    // The likelihood of a rabbit breeding.
private static final double BREEDING_PROBABILITY = 0.12;

    // The maximum number of births.
private static final int MAX_LITTER_SIZE = 4;

    // A shared random number generator to control breeding.
private static final Random rand = Randomizer.getRandom();

    // Individual characteristics (instance fields).

    // The rabbit’s age.
private int age;

    // Whether the rabbit is alive or not.
private boolean alive;

    // The rabbit’s position.
private Location location;

    // The field occupied.
private Field field;

    /**
     * Create a new rabbit. A rabbit may be created with age
     * zero (a newborn) or with a random age.
     *

Code 10.1
The Rabbit class



332 |       Chapter 10 ■ Further abstraction techniques

     * @param randomAge If true, the rabbit will have a random age.
     * @param field The field currently occupied.
     * @param location The location within the field.
     */

public Rabbit(boolean randomAge, Field field, Location location)
{

        // body of constructor omitted
}

    /**
     * This is what the rabbit does most of the time: it runs
     * around. Sometimes it will breed or die of old age.
     * @param newRabbits A list to return newly born rabbits.
     */

public void run(List<Rabbit> newRabbits)
{

incrementAge();
if(alive) {

giveBirth(newRabbits);
             // Try to move into a free location.

Location newLocation =
field.freeAdjacentLocation(location);

if(newLocation ! = null) {
setLocation(newLocation);

}
else {

                 // Overcrowding.
setDead();

}
}

}

    /**
     * Indicate that the rabbit is no longer alive.
     * It is removed from the field.
     */

public void setDead()
{

alive = false;
if(location != null) {

field.clear(location);
location = null;
field = null;

}
}

Code 10.1
continued
The Rabbit class



10.2 The foxes-and-rabbits simulation | 333

    /**
     * Increase the age.
     * This could result in the rabbit’s death.
     */

private void incrementAge()
{

age++;
if(age > MAX_AGE) {

setDead();
}

}

    /**
     * Check whether or not this rabbit is to give birth at this step.
     * New births will be made into free adjacent locations.
     * @param newRabbits A list to return newly born rabbits.
     */

private void giveBirth(List<Rabbit> newRabbits)
{

        // New rabbits are born into adjacent locations.
        // Get a list of adjacent free locations.

List<Location> free = field.getFreeAdjacentLocations(location);
int births = breed();
for(int b = 0; b < births && free.size() > 0; b++) {

Location loc = free.remove(0);
Rabbit young = new Rabbit(false, field, loc);
newRabbits.add(young);

}
}

    /**
     * Generate a number representing the number of births,
     * if it can breed.
     * @return The number of births (may be zero).
     */

private int breed()
{

int births = 0;
if(canBreed() && rand.nextDouble() <= BREEDING_PROBABILITY) {  

births = rand.nextInt(MAX_LITTER_SIZE) + 1;
}
return births;

}

// other methods omitted
}

Code 10.1
continued
The Rabbit class



334 |       Chapter 10 ■ Further abstraction techniques

The Rabbit class contains a number of class variables that define configuration settings that are 
common to all rabbits. These include values for the maximum age to which a rabbit can live (defined 
as a number of simulation steps) and the maximum number of offspring it can produce at any one 
step. Centralized control of random aspects of the simulation is provided through a single, shared 
Random object supplied by the Randomizer class. This is what makes possible the repeatability 
seen in Exercise 10.8. In addition, each individual rabbit has four instance variables that describe its 
state: its age as a number of steps, whether it is still alive, and its location in a particular field.

Exercise 10.10 Do you feel that omitting gender as an attribute in the Rabbit class is likely 

to lead to an inaccurate simulation? Write down the arguments for and against including it.

Exercise 10.11 Are there other simplifications that you feel are present in our implementa-

tion of the Rabbit class, compared with real life? Discuss whether these could have a signifi-

cant impact on the accuracy of the simulation.

Exercise 10.12 Experiment with the effects of altering some or all of the values of the class 

variables in the Rabbit class. For instance, what effect does it have on the populations if the 

breeding probability of rabbits is much higher or much lower than it currently is?

A rabbit’s behavior is defined in its run method, which in turn uses the giveBirth and 
incrementAge methods and implements the rabbit’s movement. At each simulation step, the 
run method will be called and a rabbit will increase its age; if old enough, it might also breed, 
and it will then try to move. Both the movement and the breeding behaviors have random 
components. The direction in which the rabbit moves is randomly chosen, and breeding occurs 
randomly, controlled by the class variable BREEDING_PROBABILITY.

You can already see some of the simplifications that we have made in our model of rabbits: 
there is no attempt to distinguish males from females, for instance, and a rabbit could poten-
tially give birth to a new litter at every simulation step once it is old enough.

10.2.3 The Fox class

There is a lot of similarity between the Fox and the Rabbit classes, so only the distinctive ele-
ments of Fox are shown in Code 10.2.

// import statements and class comment omitted

public class Fox
{
    // Characteristics shared by all foxes (class variables).

    // The food value of a single rabbit. In effect, this is the
    // number of steps a fox can go before it has to eat again.

private static final int RABBIT_FOOD_VALUE = 9;

Code 10.2
The Fox class



10.2 The foxes-and-rabbits simulation | 335

// other static fields omitted

    // Individual characteristics (instance fields).

    // The fox’s age.
private int age;

    // Whether the fox is alive or not.
private boolean alive;

    // The fox’s position.
private Location location;

    // The field occupied.
private Field field;

    // The fox’s food level, which is increased by eating rabbits.
private int foodLevel;

    /**
     * Create a fox. A fox can be created as a newborn (age zero
     * and not hungry) or with a random age and food level.
     *
     * @param randomAge If true, the fox will have random age
     *                  and hunger level.
     * @param field The field currently occupied.
     * @param location The location within the field.
     */

public Fox(boolean randomAge, Field field, Location location)
{

// body of constructor omitted
}

    /**
     * This is what the fox does most of the time: it hunts for
     * rabbits. In the process, it might breed, die of hunger,
     * or die of old age.
     * @param field The field currently occupied.
     * @param newFoxes A list to return newly born foxes.
     */

public void hunt(List<Fox> newFoxes)
{

incrementAge();
incrementHunger();
if(alive) {

giveBirth(newFoxes);
            // Move towards a source of food if found.

Location newLocation = findFood();
if(newLocation == null) {

                // No food found – try to move to a free location.
newLocation = field.freeAdjacentLocation(location);

}

Code 10.2
continued
The Fox class



336 |       Chapter 10 ■ Further abstraction techniques

            // See if it was possible to move.
if(newLocation != null) {

setLocation(newLocation);
}
else {

                // Overcrowding.
setDead();

}
}

}

    /**
     * Look for rabbits adjacent to the current location.
     * Only the first live rabbit is eaten.
     * @return Where food was found, or null if it wasn’t.
     */

private Location findFood()
{

List<Location> adjacent = field.adjacentLocations(location);
Iterator<Location> it = adjacent.iterator();
while(it.hasNext()) {

Location where = it.next();
Object animal = field.getObjectAt(where);
if(animal instanceof Rabbit) {

Rabbit rabbit = (Rabbit) animal;
if(rabbit.isAlive()) {

rabbit.setDead();
foodLevel = RABBIT_FOOD_VALUE;
return where;

}
}

}
return null;

}

    // other methods omitted
}

Code 10.2
continued
The Fox class

For foxes, the hunt method is invoked at each step and defines their behavior. In addition to aging 
and possibly breeding at each step, a fox searches for food (using findFood). If it is able to find a 
rabbit in an adjacent location, then the rabbit is killed and the fox’s food level is increased. As with 
rabbits, a fox that is unable to move is considered dead through overcrowding.

Exercise 10.13 As you did for rabbits, assess the degree to which we have simplified the model 

of foxes and evaluate whether you feel the simplifications are likely to lead to an inaccurate simulation.



10.2 The foxes-and-rabbits simulation | 337

Exercise 10.14 Does increasing the maximum age for foxes lead to a significantly higher 

numbers of foxes throughout a simulation, or is the rabbit population more likely to be reduced 

to zero as a result?

Exercise 10.15 Experiment with different combinations of settings (breeding age, maximum 

age, breeding probability, litter size, etc.) for foxes and rabbits. Do species always disappear 

completely in some configurations? Are there configurations that are stable—i.e., that produce 

a balance of numbers for a significant length of time?

Exercise 10.16 Experiment with different sizes of fields. (You can do this by using the 

second constructor of Simulator.) Does the size of the field affect the likelihood of species 

surviving?

Exercise 10.17 Compare the results of running a simulation with a single large field and two 

simulations with fields that each have half the area of the single field. This models something 

close to splitting an area in half with a freeway. Do you notice any significant differences in the 

population dynamics between the two scenarios?

Exercise 10.18 Repeat the investigations of the previous exercise, but vary the proportions 

of the two, smaller fields. For instance, try three-quarters and one quarter, or two-thirds and 

one-third. Does it matter at all how the single field is split?

Exercise 10.19 Currently, a fox will eat at most one rabbit at each step. Modify the find-
Food method so that rabbits in all adjacent locations are eaten at a single step. Assess the im-

pact of this change on the results of the simulation. Note that the findFood method currently 

returns the location of the single rabbit that is eaten, so you will need to return the location of 

one of the eaten rabbits in your version. However, don’t forget to return null if there are no 

rabbits to eat.

Exercise 10.20 Following on from the previous exercise, if a fox eats multiple rabbits at a 

single step, there are several different possibilities as to how we can model its food level. If we 

add all the rabbit’s food values, the fox will have a very high food level, making it unlikely to die 

of hunger for a very long time. Alternatively, we could impose a ceiling on the fox’s food level. 

This models the effect of a predator that kills prey regardless of whether it is hungry or not. 

Assess the impacts on the resulting simulation of implementing this choice.

Exercise 10.21 Challenge exercise Given the random elements in the simulation, 

argue why the population numbers in an apparently stable simulation could ultimately 

collapse.

10.2.4 The Simulator class: setup

The Simulator class is the central part of the application that coordinates all the other pieces. 
Code 10.3 illustrates some of its main features.



338 |       Chapter 10 ■ Further abstraction techniques

// import statements and class comment omitted

public class Simulator
{
    // static variables omitted

    // Lists of animals in the field.
private List<Rabbit> rabbits;
private List<Fox> foxes;

    // The current state of the field.
private Field field;

    // The current step of the simulation.
private int step;

    // A graphical view of the simulation.
private SimulatorView view;

    /**
     * Create a simulation field with the given size.
     * @param depth Depth of the field.
     *            Must be greater than zero.
     * @param width Width of the field.
     *            Must be greater than zero.
     */

public Simulator(int depth, int width)
{

if(width <= 0 || depth <= 0) {
            System.out.println(

"The dimensions must be greater than zero.");
System.out.println( "Using default values.");
depth = DEFAULT_DEPTH;
width = DEFAULT_WIDTH;

}
rabbits = new ArrayList<Rabbit>();
foxes = new ArrayList<Fox>();
field = new Field(depth, width);

        // Create a view of the state of each location in the
        // field.

view = new SimulatorView(depth, width);
view.setColor(Rabbit.class, Color.ORANGE);
view.setColor(Fox.class, Color.BLUE);

        // Set up a valid starting point.
reset();

}

    /**
     * Run the simulation from its current state for the

Code 10.3
Part of the Simulator
class



10.2 The foxes-and-rabbits simulation | 339

     * given number of steps.
     * Stop before the given number of steps if it ceases to
     * be viable.
     * @param numSteps The number of steps to run for.
     */

public void simulate(int numSteps)
{

for(int step = 1; step <= numSteps &&
view.isViable(field); step++) {

simulateOneStep();
}

}

    /**
     * Run the simulation from its current state for a single
     * step.
     * Iterate over the whole field, updating the state of
     * each fox and rabbit.
     */

public void simulateOneStep()
{

        // method body omitted
}

    /**
     * Reset the simulation to a starting position.
     */

public void reset()
{

step = 0;
rabbits.clear();
foxes.clear();
field.clear();
populate();

        // Show the starting state in the view.
view.showStatus(step, field);

}

    /**
     * Populate the field with foxes and rabbits.
     */

private void populate()
{

Random rand = Randomizer.getRandom();
field.clear();

Code 10.3
continued
Part of the Simulator
class



340 |       Chapter 10 ■ Further abstraction techniques

for(int row = 0; row < field.getDepth(); row++) {
for(int col = 0; col < field.getWidth(); col++) {

if(rand.nextDouble() <= FOX_CREATION_PROBABILITY) {
Location location = new Location(row, col);
Fox fox = new Fox(true, field, location);
foxes.add(fox);

}
else if(rand.nextDouble() <=

RABBIT_CREATION_PROBABILITY) {
Location location = new Location(row, col);
Rabbit rabbit = new Rabbit(true, field, location);
rabbits.add(rabbit);

}
                // else leave the location empty.

}
}

}
    // other methods omitted
}

Code 10.3
continued
Part of the Simulator
class

The Simulator has three important parts: its constructor, the populate method, and the 
simulateOneStep method. (The body of simulateOneStep is shown below.)

When a Simulator object is created, all other parts of the simulation are constructed by it 
(the field, the lists to hold the different types of animals, and the graphical interface). Once all 
these have been set up, the simulator’s populate method is called (indirectly, via the reset
method) to create the initial populations. Different probabilities are used to decide whether a 
particular location will contain one of these animals. Note that animals created at the start of the 
simulation are given a random initial age. This serves two purposes:

■ It represents more accurately a mixed-age population that should be the normal state of the 
simulation.

■ If all animals were to start with an age of zero, no new animals would be created until the ini-
tial population had reached their respective breeding ages. With foxes eating rabbits regard-
less of the fox’s age, there is a risk that either the rabbit population will be killed off before it 
has a chance to reproduce or that the fox population will die of hunger.

Exercise 10.22 Modify the populate method of Simulator to determine whether set-

ting an initial age of zero for foxes and rabbits is always catastrophic. Make sure that you run it 

a sufficient number of times—with different initial states, of course!

Exercise 10.23 If an initial random age is set for rabbits but not foxes, the rabbit population will 

tend to grow large while the fox population remains very small. Once the foxes do become old enough 

to breed, does the simulation tend to behave again like the original version? What does this suggest 

about the relative sizes of the initial populations and their impact on the outcome of the simulation?



10.2 The foxes-and-rabbits simulation | 341

10.2.5 The Simulator class: a simulation step

The central part of the Simulator class is the simulateOneStep method shown in 
Code 10.4. It uses separate loops to let each type of animal move (and possibly breed or do 
whatever it is programmed to do). Because each animal can give birth to new animals, lists 
for these to be stored in are passed as parameters to the hunt and run methods of Fox and 
Rabbit. The newly born animals are then added to the master lists at the end of the step. 
Running longer simulations is trivial. To do this, the simulateOneStep method is called 
repeatedly in a simple loop.

public void simulateOneStep()
{

step++;
    // Provide space for newborn rabbits.

List<Rabbit> newRabbits = new ArrayList<Rabbit>();
    // Let all rabbits act.

for(Iterator<Rabbit> it = rabbits.iterator(); it.hasNext(); ) {
Rabbit rabbit = it.next();
rabbit.run(newRabbits);
if(!rabbit.isAlive()) {

it.remove();
}

}

    // Provide space for newborn foxes.
List<Fox> newFoxes = new ArrayList<Fox> ();

    // Let all foxes act.
for(Iterator<Fox> it = foxes.iterator(); it.hasNext(); ) {

Fox fox = it.next();
fox.hunt(newFoxes);
if(!fox.isAlive()) {

it.remove();
}

}

    // Add the newly born foxes and rabbits to the main lists.
rabbits.addAll(newRabbits);
foxes.addAll(newFoxes);
view.showStatus(step, field);

}

Code 10.4
Inside the Simulator
class: simulating one 

step

In order to let each animal act, the simulator holds separate lists of the different types of ani-
mals. Here, we make no use of inheritance, and the situation is reminiscent of the first version 
of the network project introduced in Chapter 8.



342 |       Chapter 10 ■ Further abstraction techniques

10.2.6 Taking steps to improve the simulation

Now that we have examined how the simulation operates, we are in a position to make 
improvements to its internal design and implementation. Making progressive improvements 
through the introduction of new programming features will be the focus of subsequent sections. 
There are several points at which we could start, but one of the most obvious weaknesses is that 
no attempt has been made to exploit the advantages of inheritance in the implementation of the 
Fox and Rabbit classes, which share a lot of common elements. In order to do this, we shall 
introduce the concept of an abstract class.

Exercise 10.24 Each animal is always held in two different data structures: the Field and 

the Simulator’s rabbits and foxes lists. There is a risk that they could be inconsistent 

with each other. Check that you thoroughly understand how the Field and the animal lists are 

kept consistent between the simulateOneStep method in Simulator, hunt in Fox, and 

run in Rabbit.

Exercise 10.25 Do you think it would be better for Simulator not to keep separate lists 

of foxes and rabbits but to generate these lists again from the contents of the field at the be-

ginning of each simulation step? Discuss this.

Exercise 10.26 Write a test to ensure that, at the end of a simulation step, there is no ani-

mal (dead or alive) in the field that is not in one of the lists and vice versa. Should there be any 

dead animals in any of those places at that stage?

Exercise 10.27 Identify the similarities and differences between the Fox and Rabbit
classes. Make separate lists of the fields, methods, and constructors, and distinguish between 

the class variables (static fields) and instance variables.

Exercise 10.28 Candidate methods for placement in a superclass are those that are identi-

cal in all subclasses. Which methods are truly identical in the Fox and Rabbit classes? In 

reaching a conclusion, you might like to consider the effect of substituting the values of class 

variables into the bodies of the methods that use them.

Exercise 10.29 In the current version of the simulation, the values of all similarly named 

class variables are different. If the two values of a particular class variable (BREEDING_AGE,

say) were identical, would it make any difference to your assessment of which methods are 

truly identical?

10.3 Abstract classes
Chapter 8 introduced concepts such as inheritance and polymorphism that we ought to be able 
to exploit in the simulation application. For instance, the Fox and Rabbit classes share many 
similar characteristics that suggest they should be subclasses of a common superclass, such as 
Animal. In this section, we will start to make such changes in order to improve the design and 



10.3 Abstract classes | 343

implementation of the simulation as a whole. As with the project in Chapter 8, using a common 
superclass should avoid code duplication in the subclasses and simplify the code in the client 
class (here, Simulator). It is important to note that we are undertaking a process of refactoring 
and that these changes should not change the essential characteristics of the simulation as seen 
from a user’s viewpoint.

10.3.1 The Animal superclass

For the first set of changes, we will move the identical elements of Fox and Rabbit to an 
Animal superclass. The project foxes-and-rabbits-v1 provides a copy of the base version of the 
simulation for you to follow through the changes we make.

■ Both Fox and Rabbit define age, alive, field, and location attributes. However, at 
this point we will only move alive, location, and field to the Animal superclass and 
come back to discuss the age field later. As is our normal practice with instance fields, we 
will keep all of these private in the superclass. The initial values are set in the constructor of 
Animal, with alive set to true, and field and location passed via super calls from 
the constructors of Fox and Rabbit.

■ These fields will need accessors and mutators, so we can move the existing getLocation,
setLocation, isAlive, and setDead from Fox and Rabbit. We will also need to add a 
getField method in Animal so that direct access to field from the subclass methods run,
hunt, giveBirth, and findFood can be replaced.

■ In moving these methods, we have to think about the most appropriate visibility for them. 
For instance, setLocation is private in both Fox and Rabbit, but cannot be kept private in 
Animal because Fox and Rabbit would not be able to call it. So we should raise it to pro-
tected visibility, to indicate that it is for subclasses to call.

■ In a similar vein, notice that setDead was public in Rabbit but private in Fox. Should it 
therefore be public in Animal? It was public in Rabbit because a fox needs to be able to call a 
rabbit’s setDead method when it eats its prey. Now that they are sibling classes of a shared su-
perclass, a more appropriate visibility is protected, again indicating that this is a method that 
is not a part of an animal’s general interface—at least at this stage of the project’s development.

Making these changes is a first step toward eliminating code duplication through the use of 
inheritance, in much the same way as we did this in Chapter 8.

Exercise 10.30 What sort of regression-testing strategy could you establish before undertaking 

the process of refactoring on the simulation? Is this something you could conveniently automate?

Exercise 10.31 The Randomizer class provides us with a way to control whether the 

“random” elements of the simulation are repeatable or not. If its useShared field is set to 

true, then a single Random object is shared between all of the simulation objects. In addition, 

its reset method resets the starting point for the shared Random object. Use these features 

as you work on the following exercise, to check that you do not change anything fundamental 

about the overall simulation as you introduce an Animal class.



344 |       Chapter 10 ■ Further abstraction techniques

10.3.2 Abstract methods

So far, use of the Animal superclass has helped to avoid a lot of the code duplication in the 
Rabbit and Fox classes, and has potentially made it easier to add new animal types in the 
future. However, as we have seen in Chapter 8, intelligent use of inheritance should also sim-
plify the client class—in this case, Simulator. We shall investigate this now.

In the Simulator class, we have used separate typed lists of foxes and rabbits and per-list 
iteration code to implement each simulation step. The relevant code is shown in Code 10.4. 
Now that we have the Animal class, we can improve this. Because all objects in our animal 
collections are a subtype of Animal, we can merge them into a single collection and hence 
iterate just once using the Animal type. However, one problem with this is evident from the 
single-list solution in Code 10.5. Although we know that each item in the list is an Animal, we 
still have to work out which type of animal it is in order to call the correct action method for its 
type—run or hunt. We determine the type using the instanceof operator.

Create the Animal superclass in your version of the project. Make the changes discussed 

above. Ensure that the simulation works in a similar manner as before. You should be able to 

check this by having the old and new versions of the project open side by side, for instance, 

and making identical calls on Simulator objects in both, expecting identical outcomes.

Exercise 10.32 How has using inheritance improved the project so far? Discuss this.

for(Iterator<Animal> it = animals.iterator(); it.hasNext(); ) {
Animal animal = it.next();
if(animal instanceof Rabbit) {

Rabbit rabbit = (Rabbit) animal;
        rabbit.run(newAnimals);

}
else if(animal instanceof Fox) {

Fox fox = (Fox) animal;
fox.hunt(newAnimals);

}
else {

System.out.println("found unknown animal");
}

    // Remove dead animals from the simulation.
if(! animal.isAlive()) {

it.remove();
}

}

Code 10.5
An unsatisfactory 

single-list solution to 

making animals act

The fact that in Code 10.5 each type of animal must be tested for and cast separately and that 
special code exists for each animal class is a good sign that we have not taken full advantage of 
what inheritance has to offer. A better solution is to place a method in the superclass (Animal),



10.3 Abstract classes | 345

letting an animal act, and then override it in each subclass so that we have a polymorphic 
method call to let each animal act appropriately, without the need to test for the specific animal 
types. This is a standard refactoring technique in situations like this, where we have subtype-
specific behavior invoked from a context that only deals with the supertype.

Let us assume that we create such a method, called act, and investigate the resulting source 
code. Code 10.6 shows the code implementing this solution.

// Let all animals act.
for(Iterator<Animal> it = animals.iterator(); it.hasNext(); ) {

Animal animal = it.next();
animal.act(newAnimals);

    // Remove dead animals from the simulation.
if(! animal.isAlive()) {

it.remove();
}

}

Code 10.6
The fully improved 

solution to animal 

action

Several observations are important at this point:

■ The variable we are using for each collection element (animal) is of type Animal. This is 
legal, because all objects in the collection are foxes or rabbits and are all subtypes of Animal.

■ We assume that the specific action methods (run for Rabbit, hunt for Fox) have been renamed 
act. This is more appropriate than previously. Instead of telling each animal exactly what to do, 
we are just telling it to “act,” and we leave it up to the animal itself to decide what exactly it wants 
to do. This reduces coupling between Simulator and the individual animal subclasses.

■ Because the dynamic type of the variable determines which method is actually executed (as 
discussed in Chapter 9), the fox’s action method will be executed for foxes and the rabbit’s 
method for rabbits.

■ Because type checking is done using the static type, this code will compile only if class 
Animal has an act method with the right header.

The last of these points is the only remaining problem. Because we are using the statement

animal.act(newAnimals);

and the variable animal is of type Animal, this will compile only if Animal defines an act
method—as we saw in Chapter 9. However, the situation here is rather different from the situ-
ation we encountered with the display method in Chapter 9. There, the superclass version of 
display had a useful job to do: print the fields defined in the superclass. Here, although each 
particular animal has a specific set of actions to perform, we cannot describe in any detail the 
actions for animals in general. The particular actions depend on the specific subtype.

Our problem is to decide how we should define Animal’s act method.

The problem is a reflection of the fact that no instance of class Animal will ever exist. There 
is no object in our simulation (or in nature) that is just an animal and not also an instance of a 



346 |       Chapter 10 ■ Further abstraction techniques

more specific subclass. These kinds of classes, which are not intended for creating objects but 
serve only as superclasses, are known as abstract classes. For animals, for example, we can say 
that each animal can act, but we cannot describe exactly how it acts without referring to a more 
specific subclass. This is typical for abstract classes, and it is reflected in Java constructs.

For the Animal class, we wish to state that each animal has an act method, but we cannot give 
a reasonable implementation in class Animal. The solution in Java is to declare the method 
abstract. Here is an example of an abstract act method:

abstract public void act(List<Animal> newAnimals);

An abstract method is characterized by two details:

■ It is prefixed with the keyword abstract.

■ It does not have a method body. Instead, its header is terminated with a semicolon.

Because the method has no body, it can never be executed. But we have already established that 
we do not want to execute an Animal’s act method, so that is not a problem.

Before we investigate in detail the effects of using an abstract method, we shall introduce more 
formally the concept of an abstract class.

10.3.3 Abstract classes

It is not only methods that can be declared abstract; classes can be declared abstract as well. 
Code 10.7 shows an example of class Animal as an abstract class. Classes are declared abstract 
by inserting the keyword abstract into the class header.

public abstract class Animal
{
    // fields omitted

    /**
     * Make this animal act – that is, make it do whatever
     * it wants/needs to do.
     * @param newAnimals A list to return newly born animals.
     */

abstract public void act(List<Animal> newAnimals);

    // other methods omitted
}

Code 10.7
Animal as an abstract 

class

Concept:

An abstract class

is a class that is not 

intended for creating 

instances. Its pur-

pose is to serve as a 

superclass for other 

classes. Abstract 

classes may contain 

abstract methods.

Classes that are not abstract (all classes we have seen previously) are called concrete classes.

Declaring a class abstract serves several purposes:

■ No instances can be created of abstract classes. Trying to use the new keyword with an 
abstract class is an error and will not be permitted by the compiler. This is mirrored in BlueJ: 
right-clicking on an abstract class in the class diagram will not list any constructors in the 

Concept:

An abstract

method definition

consists of a 

method header 

without a method 

body. It is marked 

with the keyword 

abstract.



10.3 Abstract classes | 347

pop-up menu. This serves our intention discussed above: we stated that we did not want in-
stances of class Animal created directly—this class serves only as a superclass. Declaring 
the class abstract enforces this restriction.

■ Only abstract classes can have abstract methods. This ensures that all methods in concrete 
classes can always be executed. If we allowed an abstract method in a concrete class, we 
would be able to create an instance of a class that lacked an implementation for a method.

■ Abstract classes with abstract methods force subclasses to override and implement those 
methods declared abstract. If a subclass does not provide an implementation for an inherited 
abstract method, it is itself abstract, and no instances may be created. For a subclass to be 
concrete, it must provide implementations for all inherited abstract methods.

Now we can start to see the purpose of abstract methods. Although they do not provide an 
implementation, they nonetheless ensure that all concrete subclasses have an implementation of 
this method. In other words, even though class Animal does not implement the act method, it 
ensures that all existing animals have an implemented act method. This is done by ensuring that

■ no instance of class Animal can be created directly, and

■ all concrete subclasses must implement the act method.

Although we cannot create an instance of an abstract class directly, we can otherwise use an abstract 
class as a type in the usual ways. For instance, the normal rules of polymorphism allow us to handle 
foxes and rabbits as instances of the Animal class. So those parts of the simulation that do not need 
to know whether they are dealing with a specific subclass can use the superclass type instead.

Concept:

Abstract sub-

class. For a 

subclass of an 

abstract class to 

become concrete, 

it must provide 

implementations

for all inherited 

abstract methods. 

Otherwise, the sub-

class will itself be 

abstract.

Exercise 10.33 Although the body of the loop in Code 10.6 no longer deals with the Fox
and Rabbit types, it still deals with the Animal type. Why is it not possible for it to treat each 

object in the collection simply using the Object type?

Exercise 10.34 Is it necessary for a class with one or more abstract methods to be defined 

as abstract? If you are not sure, experiment with the source of the Animal class in the foxes-

and-rabbits-v2 project.

Exercise 10.35 Is it possible for a class that has no abstract methods to be defined as 

abstract? If you are not sure, change act to be a concrete method in the Animal class by 

giving it a method body with no statements.

Exercise 10.36 Could it ever make sense to define a class as abstract if it has no abstract 

methods? Discuss this.

Exercise 10.37 Which classes in the java.util package are abstract? Some of them 

have Abstract in the class name, but is there any other way to tell from the documentation? 

Which concrete classes extend them?

Exercise 10.38 Can you tell from the API documentation for an abstract class which (if any) 

of its methods are abstract? Do you need to know which methods are abstract?



348 |       Chapter 10 ■ Further abstraction techniques

The project foxes-and-rabbits-v2 provides an implementation of our simulation with the 
improvements discussed here. It is important to note that the change in Simulator to process-
ing all the animals in a single list, rather than in separate lists, means that the simulation results 
in version 2 will not be identical to those in version 1.

In the book projects, you will find a third version of this project: foxes-and-rabbits-graph. This 
project is identical to foxes-and-rabbits-v2 in its model (i.e., the animal/fox/rabbit/simulator 
implementations), but it adds a second view to the project: a graph showing population num-
bers over time. We will discuss some aspects of its implementation a little later in this chapter; 
for now, just experiment with this project.

Exercise 10.39 Review the overriding rules for methods and fields discussed in Chapter 9. 

Why are they particularly significant in our attempts to introduce inheritance into this 

application?

Exercise 10.40 The changes made in this section have removed the dependences (cou-

plings) of the simulateOneStep method on the Fox and Rabbit classes. The Simulator
class, however, is still coupled to Fox and Rabbit, because these classes are referenced in 

the populate method. There is no way to avoid this; when we create animal instances, we 

have to specify exactly what kind of animal to create.

This could be improved by splitting the Simulator into two classes: one class, Simulator,

that runs the simulation and is completely decoupled from the concrete animal classes, and 

another class, PopulationGenerator (created and called by the simulator), that creates 

the population. Only this class is coupled to the concrete animal classes, making it easier for 

a maintenance programmer to find places where change is necessary when the application is 

extended. Try implementing this refactoring step. The PopulationGenerator class should 

also define the colors for each type of animal.

Exercise 10.41 Open and run the foxes-and-rabbits-graph project. Pay attention to the 

Graph View output. Explain, in writing, the meaning of the graph you see, and try to explain 

why it looks the way it looks. Is there a relationship between the two curves?

Exercise 10.42 Repeat some of your experiments with different sizes of fields (especially 

smaller fields). Does the graph view give you any new insights or help you understand or 

explain what you see?

If you have done all the exercises in this chapter so far, then your version of the project will be 
the same as foxes-and-rabbits-v2 and similar to foxes-and-rabbits-graph, except for the graph 
display. You can continue the exercises from here on with either version of these projects.

10.4 More abstract methods
When we created the Animal superclass in Section 10.3, we did this by identifying common 
elements of the subclasses, but we chose not to move the age field and the methods associated 
with it. This might be overly conservative. We could, in fact, have quite easily moved the age



10.4 More abstract methods | 349

field to Animal and provided for it there an accessor and a mutator that were called by subclass
methods, such as incrementAge. Why didn’t we move incrementAge and canBreed into 
Animal, then? The reason for not moving these is that, although several of the remaining 
method bodies in Fox and Rabbit contain textually identical statements, their use of class 
variables with different values means that they cannot be moved directly to the superclass. In 
the case of canBreed, the problem is the BREEDING_AGE variable, while breed depends on 
BREEDING_PROBABILITY and MAX_LITTER_SIZE. If canBreed is moved to Animal, for 
instance, then the compiler will need to have access to a value for the subtype-specific breeding 
age in class Animal. It is tempting to define a BREEDING_AGE field in the Animal class and 
assume that its value will be overridden by similarly named fields in the subclasses. However, 
fields are handled differently from methods in Java: they cannot be overridden by subclass ver-
sions.3 This means that a canBreed method in Animal would use a meaningless value defined 
in that class rather than one that is specific to a particular subclass.

The fact that the field’s value would be meaningless gives us a clue as to how we can get around 
this problem and, as a result, move more of the similar methods from the subclasses to the 
superclass.

Remember that we defined act as abstract in Animal because having a body for the method 
would be meaningless. If we access the breeding age with a method rather than a field, we can 
get around the problems associated with the age-dependent properties. This approach is shown 
in Code 10.8.

3 This rule applies regardless of whether a field is static or not.

/**
 * An animal can breed if it has reached the breeding age.
 * @return true if the animal can breed
 */
public boolean canBreed()
{

return age >= getBreedingAge();
}

/**
 * Return the breeding age of this animal.
 * @return The breeding age of this animal.
 */
abstract protected int getBreedingAge();

Code 10.8
The canBreed method 

of Animal

The canBreed method has been moved to Animal and rewritten to use the value returned 
from a method call rather than the value of a class variable. For this to work, a method get-
BreedingAge must be defined in class Animal. Because we cannot specify a breeding age for 
animals in general, we can again use an abstract method in the Animal class and concrete 



350 |       Chapter 10 ■ Further abstraction techniques

redefinitions in the subclasses. Both Fox and Rabbit will define their own versions of get-
BreedingAge to return their particular values of BREEDING_AGE:

/**
  * @return The age at which a rabbit starts to breed.
  */
public int getBreedingAge()
{
    return BREEDING_AGE;
}

So even though the call to getBreedingAge originates in the code of the superclass, the 
method called is defined in the subclass. This may seem mysterious at first but it is based on the 
same principles we described in Chapter 9 in using the dynamic type of an object to determine 
which version of a method is called at runtime. The technique illustrated here makes it possible 
for each instance to use the value appropriate to its subclass type. Using the same approach, we 
can move the remaining methods, incrementAge and breed, to the superclass.

Concept:

Superclass 

method calls.

Calls to non-private 

instance methods 

from within a su-

perclass are always 

evaluated in the 

wider context of the 

object’s dynamic 

type.

Exercise 10.43 Using your latest version of the project (or the foxes-and-rabbits-v2 project 

in case you have not done all the exercises), record the number of foxes and rabbits over a 

small number of steps, to prepare for regression testing of the changes to follow.

Exercise 10.44 Move the age field from Fox and Rabbit to Animal. Initialize it to zero 

in the constructor. Provide accessor and mutator methods for it and use these in Fox and 

Rabbit rather than in direct accesses to the field. Make sure the program compiles and 

runs as before.

Exercise 10.45 Move the canBreed method from Fox and Rabbit to Animal, and 

rewrite it as shown in Code 10.8. Provide appropriate versions of getBreedingAge in Fox
and Rabbit that return the distinctive breeding age values.

Exercise 10.46 Move the incrementAge method from Fox and Rabbit to Animal
by providing an abstract getMaxAge method in Animal and concrete versions in Fox and 

Rabbit.

Exercise 10.47 Can the breed method be moved to Animal? If so, make this change.

Exercise 10.48 In light of all the changes you have made to these three classes, reconsider 

the visibility of each method and make any changes you feel are appropriate.

Exercise 10.49 Was it possible to make these changes without having any impact on any 

other classes in the project? If so, what does this suggest about the degrees of encapsulation 

and coupling that were present in the original version?

Exercise 10.50 Challenge exercise Define a completely new type of animal for the simula-

tion, as a subclass of Animal. You will need to decide what sort of impact its existence will 



10.5 Multiple inheritance | 351

10.5 Multiple inheritance

10.5.1 An Actor class

In this section, we discuss some possible future extensions and some programming constructs 
to support these extensions.

The first obvious extension for our simulation is the addition of new animals. If you have 
attempted Exercise 10.50 then you will have touched on this already. We should, however, 
generalize this a bit: maybe not all participants in the simulation will be animals. Our current 
structure assumes that all acting participants in the simulation are animals and that they inherit 
from the Animal superclass. One enhancement that we might like to make is the introduction 
of human predators to the simulation, as either hunters or trappers. They do not neatly fit the 
existing assumption of purely animal-based actors. We might also extend the simulation to 
include plants eaten by the rabbits, or even some aspects of the weather. The plants as food 
would influence the population of rabbits (in effect, rabbits become predators of the plants), and 
the growth of the plants might be influenced by the weather. All these new components would 
act in the simulation, but they are clearly not animals, so it would be inappropriate to have them 
as subclasses of Animal.

As we consider the potential for introducing further actors into the simulation, it is worth 
revealing why we chose to store details of the animals in both a Field object and an Animal
list. Visiting each animal in the list is what constitutes a single simulation step. Placing all par-
ticipants in a single list keeps the basic simulation step simple. However, this clearly duplicates 
information, which risks creating inconsistency. One reason for this design decision is that it 
allows us to consider participants in the simulation that are not actually within the field—a rep-
resentation for the weather might be one example of this.

have on the existing animal types. For instance, your animal might compete with foxes as a 

predator on the rabbit population, or your animal might prey on foxes but not on rabbits. You 

will probably find that you need to experiment quite a lot with the configuration settings you 

use for it. You will need to modify the populate method to have some of your animals cre-

ated at the start of a simulation.

You should also define a new color for your new animal class. You can find a list of pre-

defined color names on the API page documenting the Color class in the java.awt
package.

Exercise 10.51 Challenge exercise The text of the giveBirth methods in Fox and 

Rabbit is very similar. The only difference is that one creates new Fox objects and the other 

creates new Rabbit objects. Is it possible to use the technique illustrated with canBreed to 

move the common code into a shared giveBirth method in Animal? If you think it is, try it 

out. Hint: The rules on polymorphic substitution apply to values returned from methods as well 

as in assignment and parameter passing.



352 |       Chapter 10 ■ Further abstraction techniques

To deal with more general actors, it seems like a good idea to introduce an Actor super-
class. The Actor class would serve as a superclass to all kinds of simulation participants, 
independent of what they are. Figure 10.3 shows a class diagram for this part of the simu-
lation. The Actor and Animal classes are abstract, while Rabbit, Fox, and Hunter are 
concrete classes.

Animal

Rabbit Fox

Actor

Hunter

SimulatorFigure 10.3
Simulation structure 

with Actor

The Actor class would include the common part of all actors. One thing all possible actors 
have in common is that they perform some kind of action. We will also need to know whether 
an actor is still active or not. So the only definitions in class Actor are those of abstract act
and isActive methods:

// all comments omitted

public abstract class Actor
{
    abstract public void act(List<Actor> newActors);
    abstract public boolean isActive();
}

This should be enough to rewrite the actor loop in the Simulator (Code 10.6), using class 
Actor instead of class Animal. (Either the isAlive method could be renamed to isActive
or a separate isActive method in Animal could simply call the existing isAlive method.)

Exercise 10.52 Introduce the Actor class into your simulation. Rewrite the simulate-
OneStep method in Simulator to use Actor instead of Animal. You can do this even if 

you have not introduced any new participant types. Does the Simulator class compile? Or is 

there something else that is needed in the Actor class?



10.5 Multiple inheritance | 353

This new structure is more flexible because it allows easier addition of non-animal actors. 
In fact, we could even rewrite the statistics-gathering class, FieldStats, as an Actor—it
too acts once every step. Its action would be to update its current count of animals.

10.5.2 Flexibility through abstraction

By moving towards the notion of the simulation being responsible for managing actor objects, 
we have succeeded in abstracting quite a long way away from our original very specific sce-
nario of foxes and rabbits in a rectangular field. This process of abstraction has brought with 
it an increased flexibility that may allow us to widen even further the scope of what we might 
do with a general simulation framework. If we think through the requirements of other similar 
simulation scenarios, then we might come up with ideas for additional features that we could 
introduce.

For instance, it might be useful to simulate other predator–prey scenarios such as a marine 
simulation involving fish and sharks, or fish and fishing fleets. If the marine simulation were 
to involve modeling food supplies for the fish, then we would probably not want to visualize 
plankton populations—either because the numbers are too vast or because their size is too 
small. Other environmental simulations might involve modeling the weather, which, while it is 
clearly an actor, also might not require visualization.

In the next section, we shall investigate the separation of visualization from acting, as a further 
extension to our simulation framework.

10.5.3 Selective drawing

One way to implement the separation of visualization from acting is to change the way it is 
performed in the simulation. Instead of iterating over the whole field every time and drawing 
actors in every position, we could iterate over a separate collection of drawable actors. The 
code in the simulator class would look similar to this:

// Let all actors act.
for(Actor actor : actors) {
    actor.act(...);
}

// Draw all drawables.
for(Drawable item : drawables) {
    item.draw(...);
}

All of the actors would be in the actors collection, and those actors we want to show on 
screen would also be in the drawables collection. For this to work, we need another super-
class called Drawable, which declares an abstract draw method. Drawable actors must then 
inherit from both Actor and Drawable. (Figure 10.4 shows an example where we assume that 
we have ants, which act but are too numerous to visualize.)



354 |       Chapter 10 ■ Further abstraction techniques

10.5.4 Drawable actors: multiple inheritance

The scenario presented here uses a structure known as multiple inheritance. Multiple 
inheritance exists in cases where one class has more than one immediate superclass.4 The 
subclass then has all the features of both superclasses and those defined in the subclass 
itself.

Multiple inheritance is quite easy to understand in principle but can lead to significant 
complications in the implementation of a programming language. Different object-
oriented languages vary in their treatment of multiple inheritance: some languages allow 
the inheritance of multiple superclasses; others do not. Java lies somewhere in the middle. 
It does not allow multiple inheritance of classes but provides another construct, called an 
“interface,” that allows a limited form of multiple inheritance. Interfaces are discussed in 
the next section.

10.6 Interfaces
Up to this point in the book, we have used the term “interface” in an informal sense, to repre-
sent that part of a class that couples it to other classes. Java captures this concept more formally 
by allowing interface types to be defined.

At first glance, interfaces are similar to classes, with the most obvious difference being that 
none of their method definitions includes a method body. Thus, they are similar to abstract 
classes in which all methods are abstract.

Animal

Rabbit Fox

Actor

Hunter

Ant

DrawableFigure 10.4
Actor hierarchy with 

Drawable class

4 Don’t confuse this case with the regular situation where a single class might have several superclasses 
in its inheritance hierarchy, such as Fox, Animal, Actor, and Object. This is not what is meant by 
multiple inheritance.

Concept:

Multiple inherit-

ance. A situation in 

which a class inher-

its from more than 

one superclass is 

called multiple in-

heritance.



10.6 Interfaces | 355

10.6.1 An Actor interface

Code 10.9 shows Actor defined as an interface type.

/**
 * The interface to be extended by any class wishing
 * to participate in the simulation.
 */
public interface Actor
{
    /**
     * Perform the actor’s regular behavior.
     * @param newActors A list for receiving newly created actors.
     */

void act(List<Actor> newActors);

    /**
     * Is the actor still active?
     * @return true if still active, false if not.
     */

boolean isActive();
}

Code 10.9
The Actor interface

Java interfaces have a number of significant features:

■ The keyword interface is used instead of class in the header of the declaration.

■ All methods in an interface are abstract; no method bodies are permitted. The abstract
keyword is not needed, therefore.

■ Interfaces do not contain any constructors.

■ All method headers in an interface have public visibility, so the public keyword is not needed.

■ Only public constant class fields (static and final) are allowed in an interface. The 
public, static, and final keywords may be omitted, therefore.

A class can inherit from an interface in a similar way to that for inheriting from a class. 
However, Java uses a different keyword—implements—for inheriting interfaces.

A class is said to implement an interface if it includes an implements clause in its class header. 
For instance:

public class Fox extends Animal implements Drawable
{
    // Body of class omitted.
}

As in this case, if a class both extends a class and implements an interface, then the extends 
clause must be written first in the class header.

Concepts:

A Java interface

is a specification of 

a type (in the form 

of a type name and 

a set of methods) 

that does not 

define any imple-

mentation for the 

methods.



356 |       Chapter 10 ■ Further abstraction techniques

Two of our abstract classes in the example above, Actor and Drawable, are good candidates 
for being written as interfaces. Both of them contain only the definition of methods, without 
method implementations. Thus, they already fit the definition of an interface perfectly: they 
contain no instance fields, no constructors, and no method bodies.

The class Animal is a different case. It is a real abstract class that provides a partial implemen-
tation (many methods have method bodies) and only a single abstract method in its original 
version. So it must remain as a class rather than becoming an interface.

Exercise 10.53 Redefine as an interface the abstract class Actor in your project. Does the 

simulation still compile? Does it run? Make any changes necessary to make it runnable again.

Exercise 10.54 Are the fields in the following interface class fields or instance fields?

public interface Quiz
{
    int CORRECT = 1;
    int INCORRECT = 0;
    ...
}

What visibility do they have?

Exercise 10.55 What are the errors in the following interface?

public interface Monitor
{
    private static final int THRESHOLD = 50;
    public Monitor (int initial);
    public int getThreshold()
    {
        return THRESHOLD;
    }
    ...
}

10.6.2 Multiple inheritance of interfaces

As mentioned above, Java allows any class to extend at most one other class. However, it 
allows a class to implement any number of interfaces (in addition to possibly extending one 
class). Thus, if we define both Actor and Drawable as interfaces instead of abstract classes, 
we can define class Hunter (Figure 10.4) to implement both of them:

public class Hunter implements Actor, Drawable
{
    // Body of class omitted.
}



10.6 Interfaces | 357

The class Hunter inherits the methods of all interfaces (act and draw, in this case) as abstract 
methods. It must, then, provide method definitions for both of them by overriding the methods, 
or the class itself must be declared abstract.

The Animal class shows an example where a class does not implement an inherited interface 
method. Animal, in our new structure in Figure 10.4, inherits the abstract method act from 
Actor. It does not provide a method body for this method, which makes Animal itself abstract 
(it must include the abstract keyword in the class header).

The Animal subclasses then implement the act method and become concrete classes.

Exercise 10.56 Challenge exercise Add a non-animal actor to the simulation. For instance, 

you could introduce a Hunter class with the following properties. Hunters have no maximum 

age and neither feed nor breed. At each step of the simulation, a hunter moves to a random 

location anywhere in the field and fires a fixed number of shots into random target locations 

around the field. Any animal in one of the target locations is killed.

Place just a small number of hunters in the field at the start of the simulation. Do the hunters re-

main in the simulation throughout, or do they ever disappear? If they do disappear, why might 

that be, and does that represent realistic behavior?

What other classes required changing as a result of introducing hunters? Is there a need to 

introduce further decoupling to the classes?

10.6.3 Interfaces as types

When a class implements an interface, it does not inherit any implementation from it, because 
interfaces cannot contain method bodies. The question, then, is: What do we actually gain by 
implementing interfaces?

When we introduced inheritance in Chapter 8, we emphasized two great benefits of inheritance:

■ The subclass inherits the code (method implementations and fields) from the superclass. This 
allows reuse of existing code and avoids code duplication.

■ The subclass becomes a subtype of the superclass. This allows polymorphic variables and 
method calls. In other words, it allows different special cases of objects (instances of sub-
classes) to be treated uniformly (as instances of the supertype).

Interfaces do not provide the first benefit (because they do not contain implementations), but 
they do provide the second. An interface defines a type just as a class does. This means that 
variables can be declared to be of interface types even though no objects of that type can exist 
(only subtypes).

In our example, even though Actor is now an interface, we can still declare an Actor variable 
in the Simulator class. The simulation loop still works unchanged.

Interfaces can have no direct instances, but they serve as supertypes for instances of other 
classes.



358 |       Chapter 10 ■ Further abstraction techniques

10.6.4 Interfaces as specifications

In this chapter, we have introduced interfaces as a means to implement multiple inheritance in 
Java. This is one important use of interfaces, but there are others.

The most important characteristic of interfaces is that they completely separate the definition of 
the functionality (the class’s “interface” in the wider sense of the word) from its implementation. 
A good example of how this can be used in practice can be found in the Java collection hierarchy.

The collection hierarchy defines (among other types) the interface List and the classes 
ArrayList and LinkedList (Figure 10.5). The List interface specifies the full functionality 
of a list, without giving any implementation. The subclasses (LinkedList and ArrayList)
provide two different implementations of the same interface. This is interesting, because the 
two implementations differ greatly in the efficiency of some of their functions. Random access 
to elements in the middle of the list, for example, is much faster with the ArrayList. Inserting 
or deleting elements, however, can be much faster in the LinkedList.

ArrayList

«interface»
List

LinkedList

implementsimplements

Figure 10.5
The List interface 

and its subclasses

Which implementation is better in any given application can be hard to judge in advance. It 
depends a lot on the relative frequency with which certain operations are performed and on 
some other factors. In practice, the best way to find out is often to try it out: implement the 
application with both alternatives and measure the performance.

The existence of the List interface makes it very easy to do this. If, instead of using 
ArrayList or LinkedList as variable and parameter types, we always use List, our appli-
cation will work independently of the specific type of list we are currently using. Only when we 
create a new list do we really have to use the name of the specific implementation. We would, 
for instance, write

List<Type> myList = new ArrayList<Type>();

Note that the polymorphic variable’s type is just List of Type. This way, we can change the 
whole application to use a linked list by just changing ArrayList to LinkedList in a single 
location when the list is being created.

Exercise 10.57 Which methods do ArrayList and LinkedList have that are not 

defined in the List interface? Why do you think that these methods are not included in 

List?



10.7 A further example of interfaces | 359

10.6.5 Library support through abstract classes and interfaces

In Chapter 5, we pointed out the importance of paying attention to the names of the collec-
tion classes: ArrayList, LinkedList, HashSet, TreeSet, etc. Now that we have been 
introduced to abstract classes and interfaces, we can see why these particular names have been 
chosen. The java.util package defines several important collection abstractions in the form 
of interfaces, such as List, Map and, Set. The concrete class names have been chosen to com-
municate information about both what kind of interface they conform to and some of the under-
lying implementation detail. This information is very useful when it comes to making informed 
decisions about the right concrete class to use in a particular setting. However, by using the 
highest-level abstract type (be it abstract class or interface) for our variables, wherever possible, 
our code will remain flexible in light of future library changes—such as the addition of a new 
Map or Set implementation, for instance.

In Chapter 11, where we introduce the Java GUI libraries, we will be making enormous use of 
abstract classes and interfaces as we see how to create quite sophisticated functionality with 
very little additional code.

10.7 A further example of interfaces
In the previous section, we have discussed how interfaces can be used to separate the specifica-
tion of a component from its implementation so that different implementations can be “plugged 
in,” thus making it easy to replace components of a system. This is often done to separate parts 
of a system that are logically only loosely coupled.

We have seen an example of this (without discussing it explicitly) at the end of Section 10.3. 
There, we investigated the foxes-and-rabbits-graph project, which added another view of the 
populations in the form of a line graph. Looking at the class diagram for this project, we can see 
that the addition also makes use of a Java interface (Fig 10.6).

Exercise 10.58 Write a class that can make comparisons between the efficiency of the 

common methods from the List interface in the ArrayList and LinkedList classes 

such as add, get, and remove. Use the polymorphic-variable technique described above to 

write the class so that it only knows it is performing its tests on objects of the interface type 

List rather than on the concrete types ArrayList and LinkedList. Use large lists of 

objects for the tests, to make the results significant. You can use the currentTimeMillis
method of the System class for getting hold of the start and finish time of your test methods.

Exercise 10.59 Read the API description for the sort methods of the Collections
class in the java.util package. Which interfaces are mentioned in the descriptions?

Exercise 10.60 Challenge exercise Investigate the Comparable interface. This is a 

parameterized interface. Define a simple class that implements Comparable. Create a collec-

tion containing objects of this class and sort the collection. Hint: The LogEntry class of the 

weblog-analyzer project in Chapter 4 implements this interface.



360 |       Chapter 10 ■ Further abstraction techniques

The previous versions of the foxes-and-rabbits project contained only one SimulatorView
class. This was a concrete class, and it provided the implementation of a grid-based view of the 
field. As we have seen, the visualization is quite separate from the simulation logic (the field 
and the actors), and different visualization views are possible.

For this project, SimulatorView was changed from a class to an interface, and the implemen-
tation of this view was moved into a class named GridView.

GridView is identical to the previous SimulatorView class. The new SimulatorView interface 
was constructed by searching through the Simulator class to find all methods that are actually 
called from outside and then defining an interface that specifies exactly those methods. They are:

view.setColor(classObject, color);
view.isViable(field);
view.showStatus(step, field);
view.reset();

We can now easily define the complete SimulatorView interface:

import java.awt.Color;

public interface SimulatorView
{
    void setColor(Class animalClass, Color color);
    boolean isViable(Field field);
    void showStatus(int step, Field field);
    void reset();
}

The one, slightly tricky detail in the definition above is the use of the type Class as the first 
parameter of the setColor method. We will explain that in the next section.

The previous SimulatorView class, now called GridView, is specified to implement the new 
SimulatorView interface:

public class GridView extends JFrame implements SimulatorView

{
    ...
}

It does not require any additional code, because it already implements the interface’s methods. 
However, after making these changes, it becomes fairly easy to “plug in” other views for the 

GraphView

«interface»
SimulatorView

GridView

implementsimplements

Figure 10.6
The SimulatorView
interface and 

implementing

classes



10.8 The Class class | 361

simulation by providing further implementations of the SimulatorView interface. The new 
class GraphView, which produces the line graph, is an example of this.

Once we have more than one view implementation, we can easily replace the current view 
with another or, as we have in our example, even display two views at the same time. In the 
Simulator class, the concrete subclasses GridView and GraphView are only mentioned once 
when each view was constructed. Thereafter, they are stored in a collection holding elements of 
the SimulatorView supertype, and only the interface type is used to communicate with them.

The implementations of the GridView and GraphView classes are fairly complex, and we do not 
expect you to fully understand them at this stage. The pattern of providing two implementations for a 
single interface, however, is important here, and you should make sure that you understand this aspect.

Exercise 10.61 Review the source code of the Simulator class. Find all occurrences 

of the view classes and interfaces, and trace all variables declared using any of these types. 

Explain exactly how the views are used in the Simulator class.

Exercise 10.62 Implement a new class TextView that implements SimulatorView.

TextView provides a textual view of the simulation. After every simulation step, it prints out 

one line in the form

Foxes: 121 Rabbits: 266

Use TextView instead of GridView for some tests. (Do not delete the GridView classes. 

We want to have the ability to change between different views!)

Exercise 10.63 Can you manage to have all three views active at the same time?

10.8 The Class class
In Chapter 8, we described the paradoxically named Object class. It shouldn’t surprise you, 
therefore, that there is also a Class class! This is where talking about classes and objects can 
become very confusing.

We used the Class type in defining the SimulatorView interface in the previous section. The 
Class class has nothing specifically to do with interfaces; it is a general feature of Java, but we 
just happen to be meeting it for the first time here. The idea is that each type has a Class object 
associated with it.

The Object class defines the method getClass to return the Class associated with an object. 
Another way to get the Class object for a type is to write “.class” after the type name: for 
instance, Fox.class or int.class—notice that even the primitive types have Class objects 
associated with them.

Class objects are particularly useful if we want to know whether the type of two objects is the 
same. We use this feature in the original SimulatorView class to associate each animal type 
with a color in the field. SimulatorView has the following field to map one to the other:

private Map<Class, Color> colors;



362 |       Chapter 10 ■ Further abstraction techniques

When the view is set up, the constructor of Simulator has the following calls to its setColor
method:

view.setColor(Rabbit.class, Color.ORANGE);
view.setColor(Fox.class, Color.BLUE);

We won’t go into any further detail about Class, but this description should be sufficient to en-
able you to understand the code shown in the previous section.

10.9 Abstract class or interface?
In some situations, a choice has to be made between whether to use an abstract class or an 
interface. Sometimes the choice is easy: when the class is intended to contain implementations 
for some methods, we need to use an abstract class. In other cases, either abstract classes or 
interfaces can do the job.

If we have a choice, interfaces are usually preferable. If we provide a type as an abstract class, 
then subclasses cannot extend any other classes. Because interfaces allow multiple inheritance, 
the use of an interface does not create such a restriction. Therefore, using interfaces leads to a 
more flexible and more extendible structure.

10.10 Event-driven simulations
The style of simulation we have used in this chapter has the characteristic of time passing in 
discrete, equal-length steps. At each time step, each actor in the simulation was asked to act—
i.e., take the actions appropriate to its current state. This style of simulation is sometimes called 
time-based, or synchronous, simulation. In this particular simulation, most of the actors will 
have had something to do at each time step: move, breed, and eat. In many simulation sce-
narios, however, actors spend large numbers of time steps doing nothing—typically, waiting for 
something to happen that requires some action on their part. Consider the case of a newly born 
rabbit in our simulation, for instance. It is repeatedly asked whether it is going to breed, even 
though it takes several time steps before this is possible. Isn’t there a way to avoid asking this 
unnecessary question until it is actually ready?

There is also the question of the most appropriate size of the time step. We deliberately 
left vague the issue of how much real time a time step represents, and the various actions 
actually require significantly different amounts of time (eating and movement should 
occur much more frequently than giving birth, for instance). Is there a way to decide on 
a time-step size that is not so small that most of the time nothing will be happening or 
too long that different types of actions are not distinguished clearly enough between time 
steps?

An alternative approach is to use an event-based, or asynchronous, simulation style. In 
this style, the simulation is driven by maintaining a schedule of future events. The most 
obvious difference between the two styles is that, in an event-based simulation, time 
passes in uneven amounts. For instance, one event might occur at time t and the next two 
events occur at times t+2 and time t+8, while the following three events might all occur 
at time t+9.



10.11 Summary of inheritance | 363

For a fox-and-rabbits simulation, the sort of events we are talking about would be birth, 
movement, hunting, and death from natural causes. What typically happens is that, as each 
event occurs, a fresh event is scheduled for some point in the future. For instance, when a 
birth event occurs, the event marking that animal’s death from old age will be scheduled. All 
future events are stored in an ordered queue, where the next event to take place is held at the 
head of the queue. It is important to appreciate that newly scheduled events will not always be 
placed at the end of the current queue; they will often have to be inserted somewhere before the 
end, in order to keep the queue in time order. In addition, some future events will be rendered 
obsolete by events that occur before them—an obvious example is that the natural-death event 
for a rabbit will not take place if the rabbit is eaten beforehand!

Event-driven simulations lend themselves particularly well to the techniques we have 
described in this chapter. For instance, the concept of an event is likely to be implemented 
as an Event abstract class containing concrete details of when the event will occur, but only 
abstract details of what the event involves. Concrete subclasses of Event will then supply the 
specific details for the different event types. Typically, the main simulation loop will not need 
to be concerned with the concrete event types, but will be able to use polymorphic method 
calls when an event occurs.

Event-based simulations are often more efficient and are preferable where large systems and 
large amounts of data are involved, while synchronous simulations are better for produc-
ing time-based visualizations (such as animations of the actors) because time flows more 
evenly.

Exercise 10.64 Find out some more about how event-driven simulations differ from time-

based simulations.

Exercise 10.65 Look at the java.util package to see if there are any classes that might 

be well suited to storing an event queue in an event-based simulation.

Exercise 10.66 Challenge exercise Rewrite the foxes-and-rabbits simulation in the event-

based style.

10.11 Summary of inheritance
In the past three chapters, we have discussed many different aspects of inheritance techniques. 
These include code inheritance and subtyping as well as inheriting from interfaces, abstract 
classes, and concrete classes.

In general, we can distinguish two main purposes of using inheritance: we can use it to inherit 
code (code inheritance), and we can use it to inherit the type (subtyping). The first is useful for 
code reuse, the second for polymorphism and specialization.

When we inherit from (“extend”) concrete classes, we do both: we inherit the implementation 
and the type. When we inherit from (“implement”) interfaces, we separate the two: we inherit 
a type but no implementation. For cases where parts of both are useful, we can inherit from ab-
stract classes; here, we inherit the type and a partial implementation.



364 |       Chapter 10 ■ Further abstraction techniques

When inheriting a complete implementation, we can choose to add or override methods. 
When no or only partial implementation of a type is inherited, the subclass must provide the 
implementation before it can be instantiated.

Some other object-oriented languages also provide mechanisms to inherit code without inherit-
ing the type. Java does not provide such a construct.

10.12 Summary
In this chapter, we have discussed the fundamental structure of computer simulations. We have 
then used this example to introduce abstract classes and interfaces as constructs that allow us to 
create further abstractions and develop more-flexible applications.

Abstract classes are classes that are not intended to have any instances. Their purpose is to 
serve as superclasses to other classes. Abstract classes may have both abstract methods—
methods that have a header but no body—and full method implementations. Concrete sub-
classes of abstract classes must override abstract methods to provide the missing method 
implementations.

Another construct for defining types in Java is the interface. Java interfaces are similar to com-
pletely abstract classes: they define method headers but provide no implementation. Interfaces 
define types that can be used for variables.

Interfaces can be used to provide a specification for a class (or part of an application) without 
stating anything about the concrete implementation.

Java allows multiple inheritance of interfaces (which it calls “implements” relationships) but 
only single inheritance for classes (“extends” relationships).

Terms introduced in this chapter

abstract method, abstract class, concrete class, abstract subclass, multiple 

inheritance, interface (Java construct), implements

Concept summary

■ abstract method An abstract method definition consists of a method header without a 

method body. It is marked with the keyword abstract.

■ abstract class An abstract class is a class that is not intended for creating instances. Its 

purpose is to serve as a superclass for other classes. Abstract classes may contain abstract 

methods.

■ abstract subclass For a subclass of an abstract class to become concrete, it must 

provide implementations for all inherited abstract methods. Otherwise, it will itself be 

abstract.



10.12 Summary | 365

■ superclass method calls Calls to non-private instance methods from within a superclass are 

always evaluated in the wider context of the object’s dynamic type.

■ multiple inheritance A situation in which a class inherits from more than one superclass is 

called multiple inheritance.

■ interface A Java interface is a specification of a type (in the form of a type name and a set of 

methods) that does not define any implementation for the methods.

Exercise 10.67 Can an abstract class have concrete (non-abstract) methods? Can a 

concrete class have abstract methods? Can you have an abstract class without abstract 

methods? Justify your answers.

Exercise 10.68 Look at the code below. You have five types—classes or interfaces—(U, G, 

B, Z, and X) and a variable of each of these types.

U u;
G g;
B b;
Z z;
X x;

The following assignments are all legal (assume that they all compile).

u = z;
x = b;
g = u;
x = u;

The following assignments are all illegal (they cause compiler errors).

u = b;
x = g;
b = u;
z = u;
g = x;

What can you say about the types and their relationships? (What relationship are they to each 

other?)

Exercise 10.69 Assume that you want to model people in a university to implement a course 

management system. There are different people involved: staff members, students, teaching 

staff, support staff, tutors, technical-support staff, and student technicians. Tutors and student 

technicians are interesting: tutors are students who have been hired to do some teaching, and 

student technicians are students who have been hired to help with the technical support.

Draw a type hierarchy (classes and interfaces) to represent this situation. Indicate which types 

are concrete classes, abstract classes, and interfaces.



366 |       Chapter 10 ■ Further abstraction techniques

Exercise 10.70 Challenge exercise Sometimes class/interface pairs exist in the Java standard 

library that define exactly the same methods. Often, the interface name ends with Listener and 

the class name with Adapter. An example is PrintJobListener and PrintJobAdapter.

The interface defines some method headers, and the adapter class defines the same methods, 

each with an empty method body. What might the reason be for having them both?

Exercise 10.71 The collection library has a class named TreeSet, which is an example of 

a sorted set. Elements in this set are kept in order. Carefully read the description of this class, 

and then write a class Person that can be inserted into a TreeSet, which will then sort the 

Person objects by age.

Exercise 10.72 Use the API documentation for the AbstractList class to write a con-

crete class that maintains an unmodifiable list.



11.1 Introduction
So far in this book, we have concentrated on writing applications with text-based interfaces. 
The reason is not that text-based interfaces have any great advantage in principle; they just have 
the one advantage that they are easier to create.

We did not want to distract too much attention from the important software-development issues 
in the early stages of learning about object-oriented programming. These were issues such as 
object structure and interaction, class design, and code quality.

Graphical user interfaces (GUIs) are also constructed from interacting objects, but they have 
a very specialized structure, and we avoided introducing them before discussing object struc-
tures in more general terms. Now, however, we are ready to have a look at the construction 
of GUIs.

GUIs give our applications an interface consisting of windows, menus, buttons, and other 
graphical components. They make the applications look much more like the “typical” applica-
tion most people are used to nowadays.

Note that we are stumbling about the double meaning of the word interface again here. The 
interfaces we are talking about now are neither interfaces of classes nor the Java interface con-
struct. We are now talking about user interfaces—the part of an application that is visible on 
screen for the user to interact with.

Once we know how to create GUIs with Java, we can develop much better-looking programs.

CHAPTER

11 Building graphical user interfaces

Main concepts discussed in this chapter:

■ constructing GUIs

■ interface components

■ GUI layout

■ event handling

Java constructs discussed in this chapter:

JFrame, JLabel, JButton, JMenuBar, JMenu, JMenuItem, ActionEvent, Color,

FlowLayout, BorderLayout, GridLayout, BoxLayout, Box, JOptionPane,

EtchedBorder, EmptyBorder, anonymous inner classes, final variables



368 |       Chapter 11 ■ Building graphical user interfaces

11.2 Components, layout, and event handling
The details involved in creating GUIs are extensive. In this book, we shall not be able to cover 
all details of all possible things you can do with them, but we shall discuss the general princi-
ples and a good number of examples.

All GUI programming in Java is done through the use of dedicated standard class libraries. 
Once we understand the principles, we can find out all the necessary details by working with 
the standard library documentation.

The principles we need to understand can be divided into three topic areas:

■ What kinds of elements can we show on screen?

■ How do we arrange those elements?

■ How do we react to user input?

We shall discuss these questions under the keywords components, layout, and event handling.

Components are the individual parts that a GUI is built from. They are things such as buttons, menus, 
menu items, checkboxes, sliders, text fields, and so on. The Java library contains a good number of 
ready-made components, and we can also write our own. We shall have to learn what the important 
components are, how to create them, and how to make them look the way we want them to look.

Layout deals with the issue of how to arrange the components on screen. Older, more primitive 
GUI systems handled this with two-dimensional coordinates: the programmer specified x- and 
y-coordinates (in pixels) for the position and the size of each component. In more modern GUI 
systems, this is too simplistic. We have to take into account different screen resolutions, differ-
ent fonts, users resizing windows, and many other aspects that make layout more difficult. The 
solution will be a scheme where we can specify the layout in more general terms. We can, for 
example, specify that a particular component should be below this other one or that this compo-
nent should be stretched if the window gets resized but this other should always have a constant 
size. We shall see that this is done using layout managers.

Event handling refers to the technique we shall use to deal with user input. Once we have cre-
ated our components and positioned them on screen, we also have to make sure that something 
happens when a user clicks a button. The model used by the Java library for this is event-based: 
if a user activates a component (e.g., clicks a button or selects a menu item) the system will 
generate an event. Our application can then receive a notification of the event (by having one of 
its methods invoked), and we can take appropriate action.

We shall discuss each of these areas in much more detail later in this chapter. First, however, we 
shall briefly introduce a bit more background and terminology.

11.3 AWT and Swing
Java has two GUI libraries. The older one is called AWT (Abstract Window Toolkit) and was 
introduced as part of the original Java API. Later, a much-improved GUI library, called Swing,
was added to Java.

Concept:

A GUI is built by 

arranging compo-

nents on screen. 

Components are 

represented by 

objects.

Concept:

Arranging the 

layout of compo-

nents is achieved 

by using layout 

managers.

Concept:

The term event

handling refers to 

the task of react-

ing to user events, 

such as mouse-

button clicks or 

keyboard input.



11.4 The ImageViewer example | 369

Swing makes use of some of the AWT classes, replaces some AWT classes with its own 
versions, and adds many new classes (Figure 11.1).

Figure 11.1
AWT and Swing

In this book, we shall use the Swing libraries. This means that we shall use some AWT classes 
that are still used with Swing programs but use the Swing versions of all classes that exist in 
both libraries.

Wherever there are equivalent classes in AWT and Swing, the Swing versions have been iden-
tified by adding the letter J to the start of the class name. You will, for example, see classes 
named Button and JButton, Frame and JFrame, Menu and JMenu, and so on. The classes 
starting with a J are the Swing versions; these are the ones we shall use, and the two should not 
be mixed in an application.

That is enough background for a start. Let us look at some code.

11.4 The ImageViewer example
As always, we shall discuss the new concepts by using an example. The application we shall 
build in this chapter is an image viewer (Figure 11.2). This is a program that can open and dis-
play image files in JPEG and PNG formats, perform some image transformations, and save the 
images back to disk.

As part of this, we shall use our own image class to represent an image while it is in memory, 
implement various filters to change the image’s appearance, and use Swing components to 
build a user interface. While doing this, we shall concentrate our discussion on the GUI aspects 
of the program.

If you are curious to see what we shall build, you can open and try out the imageviewer1-0
project—that is the version displayed in Figure 11.2; just create an ImageViewer object. There 
are some sample images in the images folder inside the chapter11 folder (one level up from the 
project folder). You can, of course, also open your own images. Here, we start slowly, initially 
with something much simpler, and we shall work our way to the final application step by step.

11.4.1 First experiments: creating a frame

Almost everything you see in a GUI is contained in a top-level window. A top-level window is 
one that is under the control of the operating system’s window management and which typically 
can be moved, resized, minimized, and maximized independently.

Concept:

Image format

Images can be 

stored in different 

formats. The dif-

ferences primarily 

affect file size and 

the quality of the 

image.



370 |       Chapter 11 ■ Building graphical user interfaces

Java calls these top-level windows frames. In Swing, they are represented by a class called 
JFrame.

Figure 11.2
A simple 

image-viewer

application

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

// Comment omitted.

public class ImageViewer
{

private JFrame frame;

    /**
     * Create an ImageViewer and show it on screen.
     */

public ImageViewer()
{

makeFrame();
}

    /**
     * Create the Swing frame and its content.
     */

private void makeFrame()

Code 11.1
A first version of an 

ImageViewer class



11.4 The ImageViewer example | 371

To get a GUI on screen, the first thing we have to do is create and display a frame. Code 11.1 
shows a complete class (already named ImageViewer in preparation for things to come) that 
shows a frame on screen. This class is available in the book projects as imageviewer0-1 (the 
number stands for version 0.1).

{
frame = new JFrame("ImageViewer");
Container contentPane = frame.getContentPane();

JLabel label = new JLabel("I am a label.");
contentPane.add(label);

frame.pack();
frame.setVisible(true);

}
}

Code 11.1
continued
A first version of an 

ImageViewer class

Exercise 11.1 Open the imageviewer0-1 project. (This will become the basis of your own 

image viewer.) Create an instance of class ImageViewer. Resize the resulting frame (make it 

larger). What do you observe about the placement of the text in the frame?

We shall now discuss the ImageViewer class shown in Code 11.1 in some detail.

The first three lines in that class are import statements of all classes in the packages java.awt,
java.awt.event, and javax.swing.1 We need many of the classes in these packages for all 
Swing applications we create, so we shall always import the three packages completely in our 
GUI programs.

Looking at the rest of the class shows very quickly that all the interesting stuff is in the make-
Frame method. This method takes care of constructing the GUI. The class’s constructor contains 
only a call to this method. We have done this so that all the GUI construction code is at a well-
defined place and is easy to find later (cohesion!). We shall do this in all our GUI examples.

The class has one instance variable of type JFrame. This is used to hold the frame that the im-
age viewer wants to show on screen. Let us now take a closer look at the makeFrame method.

The first line in this method is

frame = new JFrame("ImageViewer");

This statement creates a new frame and stores it in our instance variable for later use.

As a general principle, you should, in parallel with studying the examples in this book, look at 
the class documentation for all classes we encounter. This applies to all the classes we use; we 
shall not point this out every time from now on, but just expect you to do it.

1 The swing package is really in a package called javax (ending with an x), not java. The reason for 
this is largely historic—there does not seem to be a logical explanation for it.



372 |       Chapter 11 ■ Building graphical user interfaces

A frame consists of three parts: the title bar, an optional menu bar, and the content pane
(Figure 11.3). The exact appearance of the title bar depends on the underlying operating system. 
It usually contains the window title and a few window controls.

Exercise 11.2 Find the documentation for class JFrame. What is the purpose of the 

"ImageViewer" parameter that we used in the constructor call above?
Concept:

Components are 

placed in a frame 

by adding them to 

the frame’s menu

bar, or content

pane.

Figure 11.3
Different parts of a 

frame

The menu bar and the content pane are under the control of the application. To both, we can add 
some components to create a GUI. We shall concentrate on the content pane first.

11.4.2 Adding simple components

Immediately following creation of the JFrame, the frame will be invisible and its content pane 
will be empty. We continue by adding a label to the content pane:

Container contentPane = frame.getContentPane();

JLabel label = new JLabel("I am a label.");
contentPane.add(label);

The first line gets the content pane from the frame. We always have to do this; GUI components 
are added to a frame by adding them to the frame’s content pane.2

The content pane itself is of type Container. A container is a Swing component that can hold 
arbitrary groups of other components—rather like an ArrayList can hold an arbitrary collec-
tion of objects. We shall discuss containers in more detail later.

2 Java also has an add method for adding components directly in the JFrame class, which will also add 
the component to the content pane. However, we need access to the content pane for other reasons later 
anyway, so we do the adding of components to the content pane at this point as well.



11.4 The ImageViewer example | 373

We then create a label component (type JLabel) and add it to the content pane. A label is a 
component that can display text and/or an image.

Finally, we have the two lines

frame.pack();
frame.setVisible(true);

The first line causes the frame to arrange the components inside it properly and to size itself 
appropriately. We always have to call the pack method on the frame after we have added or 
resized components.

The last line finally makes the frame visible on screen. We always start out with the frame 
being invisible so that we can arrange all the components inside the frame without the con-
struction process being visible on screen. Then, when the frame is built, we can show it in a 
completed state.

Exercise 11.3 Another often-used Swing component is a button (type JButton). Replace

the label in the example above with a button.

Exercise 11.4 What happens when you add two labels (or two buttons) to the content 

pane? Can you explain what you observe? Experiment with resizing the frame.

11.4.3 An alternative structure

We have chosen to develop our application by creating a JFrame object as an attribute 
of the ImageViewer and populating it with further GUI components that are created 
outside the frame object. An alternative structure for this top level would be to define 
ImageViewer as a subclass of JFrame and populate internally. This style is also com-
monly seen. Code 11.2 shows the equivalent of Code 11.1 in this style. This version is 
available as the project imageviewer0-1a. While it is worth being familiar with both styles, 
neither is obviously superior to the other, and we will continue with our original version in 
the rest of this chapter.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
// Comment omitted.
public class ImageViewer extends JFrame
{
    /**
     * Create an ImageViewer and show it on screen.
     */

public ImageViewer()

Code 11.2
An alternative structure 

for the ImageViewer
class



374 |       Chapter 11 ■ Building graphical user interfaces

11.4.4 Adding menus

Our next step toward building a GUI is to add menus and menu items. This is conceptually easy 
but contains one tricky detail: How do we arrange to react to user actions, such as the selection 
of a menu item? We discuss this below.

First, we create the menus. Three classes are involved:

■ JMenuBar—An object of this class represents a menu bar that can be displayed below 
the title bar at the top of a window (see Figure 11.3). Every window has at most one 
JMenuBar.3

■ JMenu—Objects of this class represent a single menu (such as the common File, Edit, or 
Help menus). Menus are often held in a menu bar. They could also appear as pop-up menus, 
but we shall not do that now.

■ JMenuItem—Objects of this class represent a single menu item inside a menu (such as Open
or Save).

For our image viewer, we shall create one menu bar and several menus and menu items.

The class JFrame has a method called setJMenuBar. We can create a menu bar and use this 
method to attach our menu bar to the frame:

JMenuBar menubar = new JMenuBar();
frame.setJMenuBar(menubar);

{
super("ImageViewer");
makeFrame();
setVisible(true);

}

    /**
     * Create the Swing frame and its content.
     */

private void makeFrame()
{

Container contentPane = getContentPane();
JLabel label = new JLabel("I am a label.");
contentPane.add(label);
pack();

}
}

Code 11.2
continued
An alternative structure 

for the ImageViewer
class

3 In Mac OS, the native display is different: the menu bar is at the top of the screen, not the top of each 
window. In Java applications, the default behavior is to attach the menu bar to the window. It can be 
placed at the top of the screen with Java applications by using a Mac OS–specific property.



11.4 The ImageViewer example | 375

Now we are ready to create a menu and add it to the menu bar:

JMenu fileMenu = new JMenu("File");
menubar.add(fileMenu);

These two lines create a menu labeled File and insert it into our menu bar. Finally, we can add menu 
items to the menu. The following lines add two items, labeled Open and Quit, to the File menu:

JMenuItem openItem = new JMenuItem("Open");
fileMenu.add(openItem);

JMenuItem quitItem = new JMenuItem("Quit");
fileMenu.add(quitItem);

Exercise 11.5 Add the menu and menu items discussed here to your image-viewer project. 

What happens when you select a menu item?

Exercise 11.6 Add another menu called Help that contains a menu item named About

ImageViewer. (Note: To increase readability and cohesion, it may be a good idea to move the 

creation of the menus into a separate method, perhaps named makeMenuBar, which is called 

from our makeFrame method.)

So far, we have achieved half of our task; we can create and display menus. But the second half 
is missing—nothing happens yet when a user selects a menu. We now have to add code to react 
to menu selections. This is discussed in the next section.

11.4.5 Event handling

Swing uses a very flexible model to deal with GUI input: an event-handling model with event
listeners.

The Swing framework itself and some of its components raise events when something happens 
that other objects may be interested in. There are different types of events caused by different 
types of actions. When a button is clicked or a menu item is selected, the component raises an 
ActionEvent. When a mouse is clicked or moved, a MouseEvent is raised. When a frame is 
closed or iconified, a WindowEvent is generated. There are many other types of events.

Any of our objects can become an event listener for any of these events. When it is a listener, 
it will get notified about any of the events it listens to. An object becomes an event listener by 
implementing one of several existing listener interfaces. If it implements the right interface, it 
can register itself with a component it wants to listen to.

Let us look at an example. A menu item (class JMenuItem) raises an ActionEvent when 
it is activated by a user. Objects that want to listen to these events must implement the 
ActionListener interface from the java.awt.event package.

There are two alternative styles for implementing event listeners: either a single object listens 
for events from many different event sources, or each distinct event source is assigned its own 
unique listener. We shall discuss both styles in the next two sections.

Concept:

An object can lis-

ten to component 

events by imple-

menting an event-

listener interface.



376 |       Chapter 11 ■ Building graphical user interfaces

11.4.6 Centralized receipt of events

In order to make our ImageViewer object be the single listener to all events from the menu, we 
have to do three things:

1 We must declare in the class header that it implements the ActionListener interface.

2 We have to implement a method with the signature

    public void actionPerformed(ActionEvent e)

This is the only method declared in the ActionListener interface.

3 We must call the addActionListener method of the menu item to register the 
ImageViewer object as a listener.

Numbers 1 and 2—implementing the interface and defining its method—ensure that our object 
is a subtype of ActionListener. Number 3 then registers our own object as a listener for the 
menu items. Code 11.3 shows the source code for this in context.

public class ImageViewer
implements ActionListener

{

    // Fields and constructor omitted.

public void actionPerformed(ActionEvent event)
{

System.out.println("Menu item: " + event.getActionCommand());
}

    /**
     * Create the Swing frame and its content.
     */

private void makeFrame()
{

frame = new JFrame("ImageViewer");
makeMenuBar(frame);

        // Other GUI building code omitted.
}

    /**
     * Create the main frame’s menu bar.
     * @param frame The frame the menu bar should be added to.
     */

private void makeMenuBar(JFrame frame)
    {

JMenuBar menubar = new JMenuBar();
frame.setJMenuBar(menubar);

Code 11.3
Adding an action 

listener to a menu item



11.4 The ImageViewer example | 377

Note especially the lines

JMenuItem openItem = new JMenuItem("Open");
openItem.addActionListener(this);

in the code example. Here, a menu item is created, and the current object (the ImageViewer
object itself) is registered as an action listener by passing this as a parameter to the addAc-
tionListener method.

The effect of registering our object as a listener with the menu item is that our own action-
Performed method will be called by the menu item each time the item is activated. When our 
method is called, the menu item will pass along a parameter of type ActionEvent that provides 
some details about the event that has occurred. These details include the exact time of the event, 
the state of the modifier keys (the shift, control, and meta keys), a “command string,” and more.

The command string is a string that somehow identifies the component that caused the event. 
For menu items, this is by default the label text of the item.

In our example in Code 11.3, we register the same action object for both menu items. This means 
that both menu items will invoke the same actionPerformed method when they are activated.

In the actionPerformed method, we simply print out the command string of the item to demon-
strate that this scheme works. Here, we could now add code to properly handle the menu invocation.

This code example, as discussed this far, is available in the book projects as project 
imageviewer0-2.

        // create the File menu
JMenu fileMenu = new JMenu("File");
menubar.add(fileMenu);

JMenuItem openItem = new JMenuItem("Open");
openItem.addActionListener(this);
fileMenu.add(openItem);

JMenuItem quitItem = new JMenuItem("Quit");
quitItem.addActionListener(this);
fileMenu.add(quitItem);

}
}

Code 11.3
continued
Adding an action 

listener to a menu item

Exercise 11.7 Implement the menu-handling code, discussed above, in your own image- 

viewer project. Alternatively, open the imageviewer0-2 project and carefully examine the source 

code. Describe in writing and in detail the sequence of events that results from activating the 

Quit menu item.

Exercise 11.8 Add another menu item called Save.



378 |       Chapter 11 ■ Building graphical user interfaces

We note that this approach works.

We can now implement methods to handle menu items to do our various program tasks. There 
is, however, one other aspect we should investigate: the current solution is not very nice in 
terms of maintainability and extendibility.

Examine the code that you had to write in the actionPerformed method for Exercise 11.9. 
There are several problems. They are:

■ You probably used an if statement and the getActionCommand method to find out which 
item was activated. For example, you could write:

if(event.getActionCommand().equals("Open")) ...

Depending on the item label string for performing the function is not a good idea. What if 
you now translated the interface into another language? Just changing the text on the menu 
item would have the effect that the program does not work anymore. (Or you would have 
to find all places in the code where this string was used and change them all—a tedious and 
error-prone procedure.)

■ Having a central dispatch method (such as our actionPerformed) is not a nice structure 
at all. We essentially make every separate item call a single method, only to write tedious 
code in that method to call separate methods for every item from there. This is annoying 
in maintenance terms (for every additional menu item we have to add a new if statement 
in actionPerformed); it also seems a waste of effort. It would be much nicer if we could 
make every menu item call a separate method directly.

In the next section, we introduce a new language construct that allows us to do just that.

11.4.7 Inner classes

To solve the problems with centralized event dispatch mentioned above, we use a new construct 
that we have not discussed before: inner classes. Inner classes are classes that are declared tex-
tually inside another class:

class EnclosingClass
{
    ...
    class InnerClass
    {
        ...
    }
}

Exercise 11.9 Add three private methods to your class, named openFile, saveFile,

and quit. Change the actionPerformed method so that it calls the corresponding method 

when a menu item is activated.

Exercise 11.10 If you have done Exercise 11.6 (adding a Help menu), make sure that its 

menu item also gets handled appropriately.



11.4 The ImageViewer example | 379

Instances of the inner class are attached to instances of the enclosing class; they can only exist 
together with an enclosing instance, and they exist conceptually inside the enclosing instance. 
One interesting detail is that statements in methods of the inner class can see and access private 
fields and methods of the enclosing class. There is obviously a very tight coupling between the 
two, therefore. The inner class is considered to be a part of the enclosing class just as are any of 
the enclosing class’s methods.

We can now use this construct to make a separate action-listener class for every menu item we 
like to listen to. As they are separate classes, they can each have a separate actionPerformed
method so that each of these methods handles only a single item’s activation. The structure is this:

class ImageViewer
{
    ...
    class OpenActionListener implements ActionListener
    {
        public void actionPerformed(ActionEvent event)
        {

// perform open action
        }
    }
    class QuitActionListener implements ActionListener
    {
        public void actionPerformed(ActionEvent event)
        {

// perform quit action
        }
    }
}

(As a style guide, we usually write inner classes at the end of the enclosing class—after the 
methods.)

Once we have done this, we can now create instances of these inner classes in exactly the same way 
as for those of any other class. Note also that ImageViewer does not implement ActionListener
anymore (we remove its actionPerformed method), but the two inner classes do. This now al-
lows us to use instances of the inner classes as action listeners for the menu items.

JMenuItem openItem = new JMenuItem("Open");
openItem.addActionListener(new OpenActionListener());
...
JMenuItem quitItem = new JMenuItem("Quit");
quitItem.addActionListener(new QuitActionListener());

In summary, instead of having the image-viewer object listen to all action events, we create 
separate listener objects for each possible event, where each listener object listens to one sin-
gle event type. As every listener has its own actionPerformed method, we can now write 
specific handling code in these methods. Also, because the listener classes are in the scope 
of the enclosing class (they can access the enclosing class’s private fields and methods), they 
can make full use of the enclosing class in the implementation of the actionPerformed
methods.



380 |       Chapter 11 ■ Building graphical user interfaces

Notice a couple of characteristics of these listener objects:

■ We don’t bother storing them in variables—so, in effect, they are anonymous objects. Only 
the menu items have a reference to the listener objects, so that they can call their action-
Performed methods.

■ We only create a single object from each of the inner classes, because each is highly 
specialized for a particular menu item.

These characteristics will lead us to explore a further feature of Java in the next section.

Exercise 11.11 Implement menu-item handling with inner classes, as discussed here, in 

your own version of the image viewer.

Inner classes can generally be used in some cases to improve cohesion in larger projects. The foxes-
and-rabbits project from Chapter 10, for example, has a class SimulatorView that includes an 
inner class FieldView. You may like to study this example to deepen your understanding.

11.4.8 Anonymous inner classes

The solution to the action dispatch problem using inner classes is fairly good, but we want 
to take it one step further: we can use anonymous inner classes. The project imageviewer0-3
shows an implementation using this construct.

Exercise 11.12 Open the imageviewer0-3 project and examine it; that is, test it and read 

its source code. Don’t worry about understanding everything, because some new features 

are the subject of this section. What do you notice about the use of inner classes to enable 

ImageViewer to listen for and handle events?

Exercise 11.13 You will notice that activating the Quit menu item now quits the program. 

Examine how this is done. Look up the library documentation for any classes and methods involved.

At the center of the changes in this version is the way the action listeners are set up to listen to 
menu-item action events. The relevant code looks like this:

JMenuItem openItem = new JMenuItem("Open");
openItem.addActionListener(new ActionListener() {
            public void actionPerformed(ActionEvent e) { openFile(); }
        });

This code fragment looks quite mysterious when you encounter it for the first time, and you 
will probably have trouble interpreting it, even if you have understood everything we have dis-
cussed in this book so far. This construct is probably syntactically the most confusing example 
that you will ever see in the Java language. But don’t worry—we shall investigate this slowly.

What you are seeing here is an anonymous inner class. The idea for this construct is based on 
the observations from our previous version that we only use each inner class exactly once to 
create a single, unnamed instance. For this situation, anonymous inner classes provide a syntac-
tical shortcut: they let us define a class and create a single instance of this class, all in one step. 



11.4 The ImageViewer example | 381

The effect is identical to the inner-class version above, with the difference that we do not need 
to define separate named classes for the listeners and that the definition of the listener method is 
closer to the registration of the listener with the menu item.

The scope coloring in BlueJ’s editor gives us some hints that may help in understanding this 
structure (Figure 11.4). The green shading indicates a class, the yellowish color shows a method 
definition, and the white background identifies a method body. We can see that the body of the 
makeMenuBar method contains, very tightly packed, two (strange-looking) class definitions, 
which each have a single method definition with a short body.

Figure 11.4
Scope coloring with 

two anonymous inner 

classes

When using an anonymous inner class, we create an inner class without naming it and immedi-
ately create a single instance of the class. In the action-listener code above, this is done with the 
code fragment

new ActionListener() {
        public void actionPerformed(ActionEvent e) { openFile(); }
    }

An anonymous inner class is created by naming a supertype (often an abstract class or an 
interface—here ActionListener), followed by a block that contains an implementation for 
its abstract methods. This looks unusual, because it is not otherwise permitted to create an 
instance of an abstract class or interface directly.

In this example, we create a new subtype of ActionListener that implements the action-
Performed method. This new class does not receive a name. Instead, we precede it with the 
new keyword to create a single instance of this class.

In our example, this single instance is an action-listener object (it is of a subtype of 
ActionListener). It can be passed to a menu item’s addActionListener method and 



382 |       Chapter 11 ■ Building graphical user interfaces

will invoke the openFile method of its enclosing class when activated. Each subtype of 
ActionListener created in this way represents a unique anonymous class.

Just like named inner classes, anonymous inner classes are able to access the fields and meth-
ods of their enclosing classes. In addition, because they are defined inside a method, they are 
able to access the local variables and parameters of that method. However, an important rule 
is that local variables accessed in this way must be declared as final variables. You will see an 
example of this in the imageviewer2-0 project, discussed in Section 11.6.

It is worth emphasizing some observations about anonymous inner classes. First, for our con-
crete problem, using anonymous inner classes is very useful. It allows us to completely remove 
the central actionPerformed method from our ImageViewer class. Instead, we create a sep-
arate, custom-made action listener (class and object) for each menu item. This action listener 
can directly call the method implementing the corresponding function.

This structure is nicely cohesive and extendable. If we need an additional menu item, we just 
add code to create the item and its listener, as well as the method that handles its function. No 
listing in a central method is required.

Second, using anonymous inner classes can make code quite hard to read. It is strongly recom-
mended to use them only for very short classes and for well-established code idioms. For us, 
implementing event listeners is the only example in this book where we use this construct.4

Third, we often use anonymous classes where only a single instance of the implementation will 
be required—where the actions associated with each menu item are unique to that particular 
item. In addition, the instance will always be referred to via its supertype. Both reasons mean 
there is less need for a name for the new class; hence, it can be anonymous.

For all our following work, we shall avoid the central actionPerformed method and use 
anonymous inner classes instead. So you should leave the imageviewer0-2 project behind and 
use the structure from imageviewer0-3 as a basis for your further work.

11.4.9 Summary of key GUI elements

At the beginning of this chapter, we listed the three areas of GUI construction: components, 
layout, and event handling. So far, we have concentrated on two of these areas. We have en-
countered a small number of components (labels, buttons, menus, menu items), and we have 
discussed the handling of action events in quite some detail.

Getting to the current state (showing a frame with a label and a few menus) was hard work, 
and we had to discuss a lot of background concepts. It gets easier from now on—really! 
Understanding the event handling for menu items was probably the most difficult detail we had 
to master for our example.

Adding more menus and other components to the frame will now be quite easy—just more 
of the same. The one entirely new area we shall have to look at is layout: how to arrange the 
components in the frame.

Concept:

Anonymous inner

classes are a 

useful construct for 

implementing event 

listeners.

4 If you’d like to find out more about inner classes, have a look at these two sections of the online Java tuto-
rial: http://download.oracle.com/javase/tutorial/java/javaOO/nested.html and 
http://download.oracle.com/javase/tutorial/java/javaOO/innerclasses.html.

http://download.oracle.com/javase/tutorial/java/java00/nested.html
http://download.oracle.com/javase/tutorial/java/java00/innerclasses.html


11.5 ImageViewer 1.0: the first complete version | 383

11.5 ImageViewer 1.0: the first complete version
We shall now work on creating the first complete version—one that can really accomplish the 
main task: display some images.

11.5.1 Image-processing classes

On the way to the solution, we shall investigate one more interim version: imageviewer0-4. Its 
class structure is shown in Figure 11.5.

Figure 11.5
The class structure 

of the image 

viewer application

As you can see, we have added three new classes: OFImage,ImagePanel, and ImageFileManager.
OFImage is a class to represent an image that we want to display and manipulate. ImageFileManager
is a helper class that provides static methods to read an image file (in JPEG or PNG format) from disk 
and return it in OFImage format and then save the OFImage back to disk. ImagePanel is a custom 
Swing component to show the image in our GUI.

We shall briefly discuss the most important aspects of each of these classes in some more detail. 
We shall not, however, explain them completely—that is left as an investigation for the curious 
reader.

The OFImage class is our own custom format for representing an image in memory. You can 
think of an OFImage as a two-dimensional array of pixels. Each of the pixels can have a color. 
We use the standard class Color (from package java.awt) to represent each pixel’s color. 
(Have a look at the documentation of class Color as well; we shall need it later.)

OFImage is implemented as a subclass of the Java standard class BufferedImage (from pack-
age java.awt.image). BufferedImage gives us most of the functionality we want (it also 
represents an image as a two-dimensional array), but it does not have methods to set or get a 
pixel using a Color object (it uses different formats for this, which we do not want to use). So 
we made our own subclass that adds these two methods.

For this project, we can treat OFImage like a library class; you will not need to modify this 
class.



384 |       Chapter 11 ■ Building graphical user interfaces

The most important methods from OFImage for us are:

■ getPixel and setPixel to read and modify single pixels

■ getHeight and getWidth to find out about the image’s size.

The ImageFileManager class offers three methods: one to read a named image file from 
disk and return it as an OFImage, one to write an OFImage file to disk, and one to open a file-
chooser dialog to let a user select an image to open. The methods can read files in the standard 
JPEG and PNG formats, and the save method will write files in JPEG format. This is done us-
ing the standard Java image I/O methods from the ImageIO class (package javax.imageio).

The ImagePanel class implements a custom-made Swing component to display our image. 
Custom-made Swing components can easily be created by writing a subclass of an existing 
component. As such, they can be inserted into a Swing container and displayed in our GUI like 
any other Swing component. ImagePanel is a subclass of JComponent. The other important 
point to note here is that ImagePanel has a setImage method that takes an OFImage as a pa-
rameter to display any given OFImage.

11.5.2 Adding the image

Now that we have prepared the classes for dealing with images, adding the image to the user 
interface is easy. Code 11.4 shows the important differences from previous versions.

public class ImageViewer
{

private JFrame frame;
private ImagePanel imagePanel;

    // Constructor and quit method omitted.

    /**
     * Open function: open a file chooser to select a new
     * image file.
     */

private void openFile()
{

OFImage image = ImageFileManager.getImage();
imagePanel.setImage(image);
frame.pack();

}

    /**
     * Create the Swing frame and its content.
     */

Code 11.4
ImageViewer class 

with ImagePanel



11.5 ImageViewer 1.0: the first complete version | 385

When comparing this code with the previous version, we note that there are only two small changes:

■ In method makeFrame, we now create and add an ImagePanel component instead of a 
JLabel. Doing this is not more complicated than adding the label. The ImagePanel object 
is stored in an instance field so that we can access it again later.

■ Our openFile method has now been changed to actually open and display an image file. 
Using our image-processing classes, this also is easy now. The ImageFileManager class 
has a method to select and open an image, and the ImagePanel object has a method to dis-
play that image. One thing to note is that we need to call frame.pack() at the end of the 
openFile method, as the size of our image component has changed. The pack method will 
recalculate the frame layout and redraw the frame so that the size change is properly handled.

private void makeFrame()
{

frame = new JFrame("ImageViewer");
makeMenuBar(frame);

Container contentPane = frame.getContentPane();

imagePanel = new ImagePanel();
contentPane.add(imagePanel);

        // building is done – arrange the components and show
frame.pack();
frame.setVisible(true);

}

    // MakeMenuBar method omitted.
}

Code 11.4
continued
ImageViewer class 

with ImagePanel

Exercise 11.14 Open and test the imageviewer0-4 project. The folder for this chapter’s 

projects also includes a folder called images. Here, you can find some test images you can 

use. Of course, you can also use your own images.

Exercise 11.15 What happens when you open an image and then resize the frame? What if 

you first resize the frame and then open an image?

With this version, we have solved the central task; we can now open an image file from disk 
and display it on screen. Before we call our project “version 1.0,” however, and thus declare it 
finished for the first time, we want to add a few more improvements (see Figure 11.2).

■ We want to add two labels: one to display the image filename at the top and a status text at 
the bottom.

■ We want to add a Filter menu that contains some filters that change the image’s appearance.

■ We want to add a Help menu that contains an About ImageViewer item. Selecting this menu item 
should display a dialog with the application’s name, version number, and author information.



386 |       Chapter 11 ■ Building graphical user interfaces

11.5.3 Layout

First, we shall work on the task of adding two text labels to our interface: one at the top that is 
used to display the filename of the image currently displayed and one at the bottom that is used 
for various status messages.

Creating these labels is easy—they are both simple JLabel instances. We store them in in-
stance fields so that we can access them later to change their displayed text. The only question 
is how to arrange them on screen.

A first (naïve and incorrect) attempt could look like this:

Container contentPane = frame.getContentPane();

filenameLabel = new JLabel();
contentPane.add(filenameLabel);

imagePanel = new ImagePanel();
contentPane.add(imagePanel);

statusLabel = new JLabel("Version 1.0");
contentPane.add(statusLabel);

The idea here is simple: we get the frame’s content pane and add, one after the other, all three 
components that we wish to display. The only problem is that we did not specify exactly how 
these three components should be arranged. We might want them to appear next to each other, or 
one below the other, or in any other possible arrangement. As we did not specify any layout, the 
container (the content pane) uses a default behavior. And this, it turns out, is not what we want.

Swing uses layout managers to arrange the layout of components in a GUI. Each container that 
holds components, such as the content pane, has an associated layout manager that takes care of 
arranging the components within that container.

Exercise 11.16 Continuing from your last version of the project, use the code fragment 

shown above to add the two labels. Test it. What do you observe?

Swing provides several different layout managers to support different layout preferences. The 
most important are: FlowLayout, BorderLayout, GridLayout, and BoxLayout. Each of 
those is represented by a Java class in the Swing library, and each lays out in different ways the 
components under its control.

Here follows a short description of each layout. The key differences between them are the ways 
in which they position components and how the available space is distributed between the com-
ponents. You can find the examples illustrated here in the layouts project.

A FlowLayout (Figure 11.6) arranges all components sequentially from left to right. It will 
leave each component at its preferred size and center them horizontally. If the horizontal space 
is not enough to fit all components, they wrap around to a second line. The FlowLayout can 
also be set to align components left or right. Because the components are not resized to fill the 
available space, there will be spare space around them if the window is resized.



11.5 ImageViewer 1.0: the first complete version | 387

Figure 11.6
FlowLayout

A BorderLayout (Figure 11.7) places up to five components in an arranged pattern: one in the 
center and one each at the top, bottom, right, and left. Each of these positions may be empty, 
so it may hold fewer than five components. The five positions are named CENTER, NORTH, 
SOUTH, EAST, and WEST. There is no leftover space with a BorderLayout when the win-
dow is resized; it is all distributed (unevenly) between the components.

Figure 11.7
BorderLayout

This layout may seem very specialized at first—one wonders how often this is needed. But in 
practice, this is a surprisingly useful layout that is used in many applications. In BlueJ, for ex-
ample, both the main window and the editor use a BorderLayout as the main layout manager.

When a BorderLayout is resized, the middle component is the one that gets stretched in both 
dimensions. The east and west components change in height but keep their width. The north 
and south components keep their height, and only the width changes.

As the name suggests, a GridLayout is useful (Figure 11.8) for laying out components in an 
evenly spaced grid. The numbers of rows and columns can be specified, and the GridLayout
manager will always keep all components at the same size. This can be useful to force buttons, for 



388 |       Chapter 11 ■ Building graphical user interfaces

example, to have the same width. The width of JButton instances is initially determined by the 
text on the button—each button is made just wide enough to display its text. Inserting buttons into a 
GridLayout will result in all buttons being resized to the width of the widest button. If an odd num-
ber of equal-size components cannot fill a 2D grid, there may be spare space in some configurations.

Figure 11.8
GridLayout

A BoxLayout lays out multiple components either vertically or horizontally. The components are 
not resized, and the layout will not wrap components when resized (Figure 11.9). By nesting multi-
ple BoxLayouts inside each other, sophisticated two-dimensionally aligned layouts may be built.

Figure 11.9
BoxLayout



11.5 ImageViewer 1.0: the first complete version | 389

11.5.4 Nested containers

All the layout strategies discussed above are fairly simple. The key to building good-looking 
and well-behaved interfaces lies in one last detail: layouts can be nested. Many of the Swing 
components are containers. Containers appear to the outside as a single component, but they 
can contain multiple other components. Each container has its own layout manager attached.

The most-used container is the class JPanel. A JPanel can be inserted as a component into the 
frame’s content pane, and then more components can be laid out inside the JPanel. Figure 11.10, 
for example, shows an interface arrangement similar to that of the BlueJ main window. The con-
tent pane of this frame uses a BorderLayout, where the EAST position is unused. The NORTH 
area of this BorderLayout contains a JPanel with a horizontal FlowLayout that arranges its 
components (say toolbar buttons) in a row. The SOUTH area is similar: another JPanel with a 
FlowLayout.

Exercise 11.17 Using the layouts project from this chapter, experiment with the examples 

illustrated in this section. Add and remove components from the existing classes to get a 

proper feel for the key characteristics of the different layout styles. What happens if there is no 

CENTER component with BorderLayout, for instance?

Figure 11.10
Building an interface

using nested 

containers



390 |       Chapter 11 ■ Building graphical user interfaces

The button group in the WEST area was first placed into a JPanel with a one-column 
GridLayout to give all buttons the same width. This JPanel was then placed into another 
JPanel with a FlowLayout so that the grid did not extend over the full height of the WEST 
area. The outer JPanel is then inserted into the WEST area of the frame.

Note how the container and the layout manager cooperate in the layout of the components. 
The container holds the components, but the layout manager decides their exact arrangement 
on screen. Every container has a layout manager. It will use a default layout manager if we do 
not explicitly set one. The default is different for different containers: the content pane of a 
JFrame, for example, has by default a BorderLayout, whereas JPanels use a FlowLayout
by default.

Exercise 11.18 Look at the GUI of the calculator project used in Chapter 7 (Figure 7.6 on 

page 253). What kind of containers/layout managers do you think were used to create it? After

answering in writing, open the calculator-gui project and check your answer by reading the 

code.

Exercise 11.19 What kind of layout managers might have been used to create the layout of 

BlueJ’s editor window?

Exercise 11.20 In BlueJ, invoke the Use Library Class function from the Tools menu. 

Look  at the dialog you see on screen. Which containers/layout managers might have 

been used to create it? Resize the dialog and observe the resize behavior to get additional 

information.

It is time to look again at some code for our ImageViewer application. Our goal is quite sim-
ple. We want to see three components above each other: a label at the top, the image in the mid-
dle, and another label at the bottom. Several layout managers can do this. Which one to choose 
becomes clearer when we think about resizing behavior. When we enlarge the window, we 
would like the labels to maintain their height and the image to receive all the extra space. This 
suggests a BorderLayout: the labels can be in the NORTH and SOUTH areas, and the image 
in the CENTER. Code 11.5 shows the source code to implement this.

Two details are worth noting. First, the setLayout method is used on the content pane to set 
the intended layout manager.5 The layout manager itself is an object, so we create an instance of 
BorderLayout and pass it to the setLayout method.

Second, when we add a component to a container with a BorderLayout, we use a differ-
ent add method that has a second parameter. The value for the second parameter is one of 
the public constants NORTH, SOUTH, EAST, WEST, and CENTER, which are defined in class 
BorderLayout.

5 Strictly speaking, the setLayout call is not needed here, as the default layout manager of the content 
pane is already a BorderLayout. We have included the call here for clarity and readability.



11.5 ImageViewer 1.0: the first complete version | 391

11.5.5 Image filters

Two things remain to be done before our first image-viewer version is finished: adding some 
image filters and adding a Help menu. Next, we shall do the filters.

The image filters are the first step toward image manipulation. Eventually, we want not only to 
be able to open and display images, but also to be able to manipulate them and save them back 
to disk.

Here, we start by adding three simple filters. A filter is a function that is applied to the whole 
image. (It could, of course, be modified to be applied to a part of an image, but we are not doing 
that just yet.)

The three filters are named darker, lighter, and threshold. Darker makes the whole image 
darker, and lighter makes it lighter. The threshold filter turns the image into a grayscale picture 
with only a few preset shades of gray. We have chosen a three-level threshold. This means we 
shall use three colors: black, white, and medium-gray. All pixels that are in the upper-third 
value range for brightness will be turned white, all that are in the lower third will be turned 
black, and the middle third will be gray.

To achieve this, we have to do two things:

■ create menu items for each filter with an associated menu listener

■ implement the actual filter operation

First the menus. There is nothing really new in this. It is just more of the same menu-creation 
code that we already wrote for our existing menu.

contentPane = frame.getContentPane();

contentPane.setLayout(new BorderLayout());

filenameLabel = new JLabel();
contentPane.add(filenameLabel, BorderLayout.NORTH);

imagePanel = new ImagePanel();
contentPane.add(imagePanel, BorderLayout.CENTER);

statusLabel = new JLabel("Version 1.0");
contentPane.add(statusLabel, BorderLayout.SOUTH);

Code 11.5
Using a Border
Layout to arrange

components

Exercise 11.21 Implement and test the code shown above in your version of the project.

Exercise 11.22 Experiment with other layout managers. Try in your project all of the layout 

managers mentioned above, and test whether they behave as expected.



392 |       Chapter 11 ■ Building graphical user interfaces

We need to add the following parts:

■ We create a new menu (class JMenu) named Filter and add it to the menu bar.

■ We create three menu items (class JMenuItem) named Darker, Lighter, and Threshold, and 
add them to our filter menu.

■ To each menu item, we add an action listener, using the code idiom for anonymous classes 
that we discussed for the other menu items. The action listeners should call the methods 
makeDarker, makeLighter, and threshold, respectively.

After we have added the menus and created the (initially empty) methods to handle the filter 
functions, we need to implement each filter.

The simplest kinds of filters involve iterating over the image and making a change of some sort 
to the color of each pixel. A pattern for this process is shown in Code 11.6. More-complicated 
filters might use the values of neighboring pixels to adjust a pixel’s value.

Exercise 11.23 Add the new menu and the menu items to your version of the image-

viewer0-4 project, as described here. In order to add the action listeners, you need to create 

the three methods makeDarker, makeLighter, and threshold as private methods in 

your ImageViewer class. They all have a void return type and take no parameters. These

methods can initially have empty bodies, or they could simply print out that they have been 

called.

int height = getHeight();
int width = getWidth();
for(int y = 0; y < height; y++) {

for(int x = 0; x < width; x++) {
Color pixel = getPixel(x, y);
alter the pixel’s color value;
setPixel(x, y, pixel);

}
}

Code 11.6
Pattern for a simple 

filtering process

The filter function itself operates on the image, so following responsibility-driven de-
sign guidelines, it should be implemented in the OFImage class. On the other hand, han-
dling the menu invocation also includes some GUI-related code (for instance, we have to 
check whether an image is open at all when we invoke the filter), and this belongs in the 
ImageViewer class.

As a result of this reasoning, we create two methods, one in ImageViewer and one in 
OFImage, to share the work (Code 11.7 and Code 11.8). We can see that the makeDarker
method in ImageViewer contains the part of the task that is related to the GUI (checking 



11.5 ImageViewer 1.0: the first complete version | 393

public class ImageViewer
{
    // Fields, constructors and all other methods omitted.

    /**
     * 'Darker' function: make the picture darker.
     */

private void makeDarker()
{

if(currentImage != null) {
currentImage.darker();
frame.repaint();
showStatus("Applied: darker");

}
else {

showStatus("No image loaded.");
}

}
}

Code 11.7
The filter method 

in the ImageViewer
class

public class OFImage extends BufferedImage
{

// Fields, constructors and all other methods omitted.

    /**
     * Make this image a bit darker.
     */

public void darker()
{

int height = getHeight();
int width = getWidth();
for(int y = 0; y < height; y++) {

for(int x = 0; x < width; x++) {
setPixel(x, y, getPixel(x, y).darker());

}
}

}
}

Code 11.8
Implementation of a 

filter in the OFImage
class

that we have an image loaded, displaying a status message, repainting the frame), whereas 
the darker method in OFImage includes the actual work of making each pixel in the im-
age a bit darker.



394 |       Chapter 11 ■ Building graphical user interfaces

You can find a working implementation of everything described so far in the imageviewer1-0
project. You should, however, attempt to do the exercises yourself first, before you look at the 
solution.

11.5.6 Dialogs

Our last task for this version is to add a Help menu that holds a menu item labeled About
ImageViewer…When this item is selected, a dialog should pop up that displays some short 
information.

Now we have to implement the showAbout method so that it displays an “About” dialog.

Exercise 11.24 What does the method call frame.repaint() do, which you can see in 

the makeDarker method?

Exercise 11.25 We can see a call to a method showStatus, which is clearly an internal 

method call. From the name, we can guess that this method should display a status message 

using the status label we created earlier. Implement this method in your version of the ima-

geviewer0-4 project. (Hint: Look at the setText method in the JLabel class.)

Exercise 11.26 What happens if the Darker menu item is selected when no image has 

been opened?

Exercise 11.27 Explain in detail how the darker method in OFImage works. (Hint: It 

contains another method call to a method also called darker. Which class does this second 

method belong to? Look it up.)

Exercise 11.28 Implement the lighter filter in OFImage.

Exercise 11.29 Implement the threshold filter. To get the brightness of a pixel, you can get 

its red, green, and blue values and add them up. The Color class defines static references to 

suitable black, white, and gray objects.

Exercise 11.30 Again add a menu named Help. In it, add a menu item labeled About

ImageViewer…

Exercise 11.31 Add a method stub (a method with an empty body) named showAbout,

and add an action listener to the About ImageViewer. . .menu item that calls this method.

One of the main characteristics of a dialog is whether or not it is modal. A modal dialog blocks 
all interaction with other parts of the application until the dialog has been closed. It forces the 
user to deal with the dialog first. Non-modal dialogs allow interaction in other frames while the 
dialogs are visible.



11.5 ImageViewer 1.0: the first complete version | 395

Dialogs can be implemented in a similar way to our main JFrame. They often use the class 
JDialog to display the frame.

For modal dialogs with a standard structure, however, there are some convenience methods in 
class JOptionPane that make it very easy to show such dialogs. JOptionPane has, among 
other things, static methods to show three types of standard dialog. They are:

■ Message dialog: This is a dialog that displays a message and has an OK button to close the 
dialog.

■ Confirm dialog: This dialog usually asks a question and has buttons for the user to make a 
selection—for example, Yes, No, and Cancel.

■ Input dialog: This dialog includes a prompt and a text field for the user to enter some text.

Our “About” box is a simple message dialog. Looking through the JOptionPane documenta-
tion, we find that there are static methods named showMessageDialog to do this.

Exercise 11.32 Find the documentation for showMessageDialog. How many methods 

with this name are there? What are the differences between them? Which one should we use 

for the “About” box? Why?

Exercise 11.33 Implement the showAbout method in your ImageViewer class, using a 

call to a showMessageDialog method.

Exercise 11.34 The showInputDialog methods of JOptionPane allow a user to be 

prompted for input via a dialog when required. On the other hand, the JTextField compo-

nent allows a permanent text input area to be displayed within a GUI. Find the documentation 

for this class. What input causes an ActionListener associated with a JTextField to be 

notified? Can a user be prevented from editing the text in the field? Is it possible for a listener 

to be notified of arbitrary changes to the text in the field? (Hint: What use does a JTextField
make of a Document object?)

You can find an example of a JTextField in the calculator project in Chapter 7.

After studying the documentation, we can now implement our “About” box by making a call to 
the showMessageDialog method. The code is shown in Code 11.9. Note that we have intro-
duced a string constant named VERSION to hold the current version number.

private void showAbout()
{

JOptionPane.showMessageDialog(frame,
"ImageViewer\n" + VERSION,
"About ImageViewer",
JOptionPane.INFORMATION_MESSAGE);

}

Code 11.9
Displaying a modal 

dialog



396 |       Chapter 11 ■ Building graphical user interfaces

This was the last task to be done to complete “version 1.0” of our image-viewer application. 
If you have done all the exercises, you should now have a version of the project that can open 
images, apply filters, display status messages, and display a dialog.

The imageviewer1-0 project, included in the book projects, contains an implementation of all 
the functionality discussed thus far. You should carefully study this project and compare it with 
your own solutions.

In this project, we have also improved the openFile method to include better notification of 
errors. If the user chooses a file that is not a valid image file, we now show a proper error mes-
sage. Now that we know about message dialogs, this is easy to do.

11.5.7 Summary of layout management

In this section, we have added some custom classes to deal with images, but more impor-
tantly for our GUI, we have looked at the layout of components. We have seen how con-
tainers and layout managers work together to achieve the exact arrangement we need on 
screen.

Learning to work with layout managers takes some experience and often some trial-
and-error experimentation. Over time, however, you will get to know the layout managers 
well.

We have now covered the basics of all important areas of GUI programming. For the rest of the 
chapter, we can concentrate on fine-tuning and improving what we’ve got.

11.6 ImageViewer 2.0: improving program 
structure
Version 1.0 of our application has a useable GUI and can display images. It can also apply three 
basic filters.

The next obvious idea for an improvement of our application is to add some more-
interesting filters. Before we rush in and do it, however, let us think about what this 
involves.

With the current structure of filters, we have to do three things for each filter:

1 add a menu item

2 add a method to handle the menu activation in ImageViewer

3 add an implementation of the filter in OFImage

Numbers 1 and 3 are unavoidable—we need a menu item and a filter implementation. But 
number 2 looks suspicious. If we look at these methods in the ImageViewer class (Code 11.10 
shows two of them as an example), this looks a lot like code duplication. These methods are 
essentially the same (except for some small details), and for each new filter we have to add an-
other one of these methods.



11.6 ImageViewer 2.0: improving program structure | 397

private void makeLighter()
{

if(currentImage != null) {
currentImage.lighter();
frame.repaint();
showStatus("Applied: lighter");

}
else {

showStatus("No image loaded.");
}

}

private void threshold()
{

if(currentImage != null) {
currentImage.threshold();
frame.repaint();
showStatus("Applied: threshold");

}
else {

showStatus("No image loaded.");
}

}

Code 11.10
Two of the filter-

handling methods from 

ImageViewer

In this case, we want to find a design that lets us add new filters without having to add a new 
dispatch method for the filter every time.

To achieve what we want, we need to avoid hard-coding every filter-method name 
(lighter, threshold, etc.) into our ImageViewer class. Instead, we shall use a col-
lection of filters and then write a single filter-invocation method that finds and invokes 
the right filter. This will be similar in style to the introduction of an act method when 
decoupling the simulator from individual actor types in the foxes-and-rabbits project in 
Chapter 10.

In order to do this, filters must themselves become objects, rather than just method names. If we 
want to store them in a common collection, then all filters will need a common superclass, which 
we name Filter and give an apply method (Figure 11.11 shows the structure, Code 11.11 
shows the source code).

Every filter will have an individual name, and its apply method will apply that particular 
sort of filter to an image. Note that this is an abstract class, as the apply method has to 
be abstract at this level, but the getName method can be fully implemented so it is not an 
interface.

As we know, code duplication is a sign of bad design and should be avoided. We deal with it by 
refactoring our code.



398 |       Chapter 11 ■ Building graphical user interfaces

Figure 11.11
Class structure for 

filters as objects

public abstract class Filter
{

private String name;

    /**
     * Create a new filter with a given name.
     */

public Filter(String name)
{

this.name = name;
}

    /**
     * Return the name of this filter.
     *
     * @return The name of this filter.
     */

public String getName()
{

return name;
}

    /**
     * Apply this filter to an image.
     *

Code 11.11
Abstract class Filter:

Superclass for all filters



11.6 ImageViewer 2.0: improving program structure | 399

Once we have written the superclass, it is not hard to implement specific filters as subclasses. All we 
need to do is provide an implementation for the apply method that manipulates an image (passed in 
as a parameter) using its getPixel and setPixel methods. Code 11.12 shows an example.

     * @param image The image to be changed by this filter.
     */

public abstract void apply(OFImage image);
}

Code 11.11
continued
Abstract class Filter:

Superclass for all filters

// All comments omitted.

public class DarkerFilter extends Filter
{

public DarkerFilter(String name)
{

super(name);
}

public void apply(OFImage image)
{

int height = image.getHeight();
int width = image.getWidth();
for(int y = 0; y < height; y++) {

for(int x = 0; x < width; x++) {
image.setPixel(

x, y, image.getPixel(x, y).darker());
}

}
}

}

Code 11.12
Implementation of a 

specific filter class

As a side effect of this, the OFImage class becomes much simpler, as all of the filter methods 
can be removed from it. It now only defines the setPixel and getPixel methods.

Once we have defined our filters like this, we can create filter objects and store them in a 
collection (Code 11.13).

public class ImageViewer
{
    // Other fields and comments omitted.

private List<Filter> filters;

Code 11.13
Adding a collection 

of filters



400 |       Chapter 11 ■ Building graphical user interfaces

Once we have this structure in place, we can make the last two necessary changes:

■ We change the code that creates the filter menu items so that it iterates over the filter collec-
tion. For every filter, it creates a menu item and uses the filter’s getName method to deter-
mine the item’s label.

■ Having done this, we can write a generic applyFilter method that receives a filter as a 
parameter and applies this filter to the current image.

The imageviewer2-0 project includes a complete implementation of these changes.

public ImageViewer()
{

filters = createFilters();
...

}

private List<Filter> createFilters()
{

List<Filter> filterList = new ArrayList<Filter>();
filterList.add(new DarkerFilter("Darker"));
filterList.add(new LighterFilter("Lighter"));
filterList.add(new ThresholdFilter("Threshold"));

return filterList;
}

    // Other methods omitted.
}

Code 11.13
continued
Adding a collection 

of filters

Exercise 11.35 Open the imageviewer2-0 project. Study the code for the new method to 

create and apply filters in class ImageViewer. Pay special attention to the makeMenuBar
and applyFilter methods. Explain in detail how the creation of the filter menu items and 

their activation works. Draw an object diagram. Note, in particular, that the filter variable in 

makeMenuBar has been declared as final, as discussed in Section 11.4.8. Make sure that 

you understand why this is necessary.

Exercise 11.36 What needs to be changed to add a new filter to your image viewer?

Exercise 11.37 Challenge exercise You might have observed that the apply methods of 

all of the Filter subclasses have a very similar structure: iterate over the whole image and 

change the value of each pixel independently of surrounding pixels. It should be possible to iso-

late this duplication in much the same way as we did in creating the Filter class.

Create a method in the Filter class that iterates over the image and applies a filter-specific 

transformation to each individual pixel. Replace the bodies of the apply methods in the three 

Filter subclasses with a call to this method, passing the image and an object that can apply 

the appropriate transformation.



11.6 ImageViewer 2.0: improving program structure | 401

In this section, we have done pure refactoring. We have not changed the functionality of the ap-
plication at all, but have worked exclusively at improving the implementation structure so that 
future changes become easier.

Now, after finishing the refactoring, we should test that all existing functionality still works 
as expected. In all development projects, we need phases like this. We do not always make 
perfect design decisions at the start, and applications grow and requirements change. Even 
though our main task in this chapter is to work with GUIs, we needed to step back and refac-
tor our code before proceeding. This work will pay off in the long run by making all further 
changes easier.

Sometimes it is tempting to leave structures as they are, even though we recognize that they 
are not good. Putting up with a bit of code duplication may be easier in the short term than do-
ing careful refactoring. One can get away with that for a short while, but for projects that are 
intended to survive for a longer time, this is bound to create problems. As a general rule: Take 
the time; keep your code clean!

Now that we have done this, we are ready to add some more filters.

Exercise 11.38 Add a grayscale filter to your project. The filter turns the image into a 

black-and-white image in shades of gray. You can make a pixel any shade of gray by giving all 

three color components (red, green, blue) the same value. The brightness of each pixel should 

remain unchanged.

Exercise 11.39 Add a mirror filter that flips the image horizontally. The pixel at the top left 

corner will move to the top right, and vice versa, producing the effect of viewing the image in 

a mirror.

Exercise 11.40 Add an invert filter that inverts each color. “Inverting” a color means replac-

ing each color value x with 255 – x.

Exercise 11.41 Add a smooth filter that “smoothes” the image. A smooth filter replaces 

every pixel value with the average of its neighboring pixels and itself (nine pixels in total). You 

have to be careful at the image’s edges, where some neighbors do not exist. You also have 

to make sure to work with a temporary copy of the image while you process it, because 

the result is not correct if you work on a single image. (Why is this?) You can easily obtain 

a copy of the image by creating a new OFImage with the original as the parameter to its 

constructor.

Exercise 11.42 Add a solarize filter. Solarization is an effect one can create manu-

ally on photo negatives by re-exposing a developed negative. We can simulate this by 

replacing each color component of each pixel that has a value v of less than 128 with 

255 – v. The brighter components (value of 128 or more) we leave unchanged. (This is 

a very simple solarization algorithm—you can find more-sophisticated ones described in 

the literature.)



402 |       Chapter 11 ■ Building graphical user interfaces

Once you have implemented some more filters of your own, you should change the version 
number of your project to “version 2.1.”

11.7 ImageViewer 3.0: more interface components
Before we leave the image-viewer project behind us, we want to add a few last improvements, 
and in the process look at two more GUI components: buttons and borders.

11.7.1 Buttons

We now want to add functionality to the image viewer to change the size of the image. We 
do this by providing two functions: larger, which doubles the image size, and smaller, which 
halves the size. (To be exact, we double or halve both the width and the height, not the area.)

One way to do this is to implement filters for these tasks. But we decide against it. So far, filters 
never change the image size, and we want to leave it at that. Instead, we introduce a toolbar on 
the left side of our frame with two buttons in it labeled Larger and Smaller (Figure 11.12). This 
also gives us a chance to experiment a bit with buttons, containers, and layout managers.

Exercise 11.43 Implement an edge detection filter. Do this by analyzing the nine pixels in a 

three-by-three square around each pixel (similar to the smooth filter), and then set the value of the 

middle pixel to the difference between the highest and the lowest value found. Do this for each 

color component (red, green, blue). This also looks good if you invert the image at the same time.

Exercise 11.44 Experiment with your filters on different pictures. Try applying multiple 

filters, one after another.

Figure 11.12
Image viewer with 

toolbar buttons



11.7 ImageViewer 3.0: more interface components | 403

So far, our frame uses a BorderLayout, where the WEST area is empty. We can use this 
area to add our toolbar buttons. There is one small problem, though. The WEST area of a 
BorderLayout can hold only one component, but we have two buttons.

The solution is simple. We add a JPanel to the frame’s WEST area (as we know, a JPanel
is a container), and then stick the two buttons into the JPanel. Code 11.14 shows the code to 
do this.

// Create the toolbar with the buttons
JPanel toolbar = new JPanel();

smallerButton = new JButton("Smaller");
toolbar.add(smallerButton);

largerButton = new JButton("Larger");
toolbar.add(largerButton);

contentPane.add(toolbar, BorderLayout.WEST);

Code 11.14
Adding a toolbar panel 

with two buttons

When we try this out, we see that it works partially but does not look as expected. The reason 
is that a JPanel uses, by default, a FlowLayout, and a FlowLayout arranges its components 
horizontally. We would like them arranged vertically.

We can achieve this by using another layout manager. A GridLayout does what we want. When 
creating a GridLayout, constructor parameters determine how many rows and columns we 
wish to have. A value of zero has a special meaning here, standing for “as many as necessary.”

Thus, we can create a single column GridLayout by using 0 as the number of rows and 1 as 
the number of columns. We can then use this GridLayout for our JPanel by using the panel’s 
setLayout method immediately after creating it:

JPanel toolbar = new JPanel();
toolbar.setLayout(new GridLayout(0, 1));

Alternatively, the layout manager can also be specified as a constructor parameter of the 
container:

JPanel toolbar = new JPanel(new GridLayout(0, 1));

Exercise 11.45 Add two buttons labeled Larger and Smaller to your latest version of the 

project, using code similar to the one above. Test it. What do you observe?

Exercise 11.46 Change your code so that your toolbar panel uses a GridLayout, as 

discussed above. Test. What do you observe?



404 |       Chapter 11 ■ Building graphical user interfaces

If we try this out, we can see that we are getting closer, but we still do not have what we 
want. Our buttons now are much larger than we intended. The reason is that a container in a 
BorderLayout (our toolbar JPanel in this case) always covers its whole area (the WEST area 
in our frame). And a GridLayout always resizes its components to fill the whole container.

A FlowLayout does not do this; it is quite happy to leave some empty space around the 
components. Our solution is therefore to use both: the GridLayout to arrange the buttons in 
a column and a FlowLayout around it to allow some space. We end up with a GridLayout
panel inside a FlowLayout panel inside a BorderLayout. Code 11.15 shows this solution. 
Constructions like this are very common. You will often nest various containers inside other 
containers to create exactly the look you want.

// Create the toolbar with the buttons.
JPanel toolbar = new JPanel();
toolbar.setLayout(new GridLayout(0, 1));

smallerButton = new JButton("Smaller");
toolbar.add(smallerButton);

largerButton = new JButton("Larger");
toolbar.add(largerButton);

// Add toolbar into panel with flow layout for spacing.
JPanel flow = new JPanel();
flow.add(toolbar);

contentPane.add(flow, BorderLayout.WEST);

Code 11.15
Using a nested 

GridLayout container 

inside a FlowLayout
container

Our buttons now look quite close to what we were aiming for. Before adding the finishing 
polish, we can first work on making the buttons work.

We need to add two methods, named, for instance, makeLarger and makeSmaller, to do the 
actual work, and we need to add action listeners to the buttons that invoke these methods.

Exercise 11.47 In your project, add two method stubs named makeLarger and make
Smaller. Initially, put just a single println statement into these method bodies to see when 

they have been called. The methods can be private.

Exercise 11.48 Add action listeners to the two buttons that invoke the two new methods. 

Adding action listeners to buttons is identical to adding action listeners to menu items. You 

can essentially copy the code pattern from there. Test it. Make sure your makeSmaller and 

makeLarger methods get called by activating the buttons.



11.7 ImageViewer 3.0: more interface components | 405

11.7.2 Borders

The last polish we want to add to our interface is some internal borders. Borders can be used to group 
components or just to add some space between them. Every Swing component can have a border.

Some layout managers also accept constructor parameters that define their spacing, and the lay-
out manager will then create the requested space between components.

The most used borders are BevelBorder, CompoundBorder, EmptyBorder, EtchedBorder,
and TitledBorder. You should familiarize yourself with these.

We shall do three things to improve the look of our GUI:

■ add some empty space around the outside of the frame

■ add spacing between the components of the frame

■ add a line around the image

The code to do this is shown in Code 11.16. The setBorder call on the content pane with an 
EmptyBorder as a parameter adds empty space around the outside of the frame. Note that we 
now cast the contentPane to a JPanel, as the supertype Container does not have the set-
Border method.6

Exercise 11.49 Properly implement the makeSmaller and makeLarger methods. To do 

this, you have to create a new OFImage with a different size, copy the pixels from the current 

image across (while scaling it up or down), and then set the new image as the current image. 

At the end of your method, you should call the frame’s pack method to rearrange the compo-

nents with the changed size.

Exercise 11.50 All Swing components have a setEnabled(boolean) method that can 

enable and disable the component. Disabled components are usually displayed in light gray 

and do not react to input. Change your image viewer so that the two toolbar buttons are ini-

tially disabled. When an image is opened, they should be enabled, and when it is closed, they 

should be disabled again.

6 Using a cast in this way only works because the dynamic type of the content pane is already JPanel.
The cast does not transform the content-pane object into a JPanel in any sense.

JPanel contentPane = (JPanel) frame.getContentPane();
contentPane.setBorder(new EmptyBorder(12, 12, 12, 12));

// Specify the layout manager with nice spacing.
contentPane.setLayout(new BorderLayout(6, 6));

imagePanel = new ImagePanel();
imagePanel.setBorder(new EtchedBorder());
contentPane.add(imagePanel, BorderLayout.CENTER);

Code 11.16
Adding spacing with 

gaps and borders



406 |       Chapter 11 ■ Building graphical user interfaces

Creating the BorderLayout with two int parameters adds spacing between the components 
that it lays out. And finally, setting an EtchedBorder for the imagePanel adds a line with 
an “etched” look around the image. (Borders are defined in the package javax.swing.
border—we have to add an import statement for this package.)

All the improvements discussed in the section have been implemented in the last version of this 
application in the book projects: imageviewer3-0. In that version, we have also added a Save As
function to the file menu so that images can be saved back to disk.

And we have added one more filter, called Fish Eye, to give you some more ideas about what 
you can do. Try it out. It works especially well on portraits.

11.8 Further extensions
Programming GUIs with Swing is a big subject area. Swing has many different types of com-
ponents and many different containers and layout managers. And each of these has many at-
tributes and methods.

Becoming familiar with the whole Swing library takes time, and is not something done in a few 
weeks. Usually, as we work on GUIs, we continue to read about details that we did not know 
before and become experts over time.

The example discussed in this chapter, even though it contains a lot of detail, is only a brief 
introduction to GUI programming. We have discussed most of the important concepts, but 
there is still a large amount of functionality to be discovered, most of which is beyond the 
scope of this book. There are various sources of information available to help you continue. 
You frequently have to look up the API documentation for the Swing classes; it is not pos-
sible to work without it. There are also many GUI/Swing tutorials available, both in print and 
on the web.

A very good starting point for this, as so often is the case, is the Java Tutorial, available publicly 
on Oracle’s web site. It contains a section titled Creating a GUI with JFC/Swing (http://
download.oracle.com/javase/tutorial/uiswing/index.html).

In this section, there are many interesting subsections. One of the most useful may be the sec-
tion entitled Using Swing Components and in it the subsection How To. . . It contains these en-
tries: How to Use Buttons, Check Boxes, and Radio Buttons; How to Use Labels; How to Make 
Dialogs; How to Use Panels; and so on.

Similarly, the top-level section Laying Out Components within a Container also has a How
To. . . section that tells you about all available layout managers.

Exercise 11.51 Find the online Java Tutorial section Creating a GUI with JFC/Swing (the 

sections are called trails on the web site). Bookmark it.

Exercise 11.52 What do CardLayout and GroupLayout have to offer that is different 

from the layout managers we have discussed in this chapter?

http://download.oracle.com/javase/tutorial/uiswing/index.html
http://download.oracle.com/javase/tutorial/uiswing/index.html


11.8 Further extensions | 407

This is where we shall leave the discussion of the image-viewer example. It can, however, be 
extended in many directions by interested readers. Using the information from the online tuto-
rial, you can add numerous interface components.

The following exercises give you some ideas, and obviously there are many more possibilities.

Exercise 11.53 What is a slider? Find a description and summarize. Give a short example 

in Java code about creating and using a slider.

Exercise 11.54 What is a tabbed pane? Find a description and summarize. Give examples 

of what a tabbed pane might be used for.

Exercise 11.55 What is a spinner? Find a description and summarize.

Exercise 11.56 Find the demo application ProgressBarDemo. Run it on your computer. 

Describe what it does.

Exercise 11.57 Implement an undo function in your image viewer. This function reverses 

the last operation.

Exercise 11.58 Disable all menu items that cannot be used when no image is being displayed.

Exercise 11.59 Implement a reload function that discards all changes to the current image 

and reloads it from disk.

Exercise 11.60 The JMenu class is actually a subclass of JMenuItem. This means that 

nested menus can be created by placing one JMenu inside another. Add an Adjust menu to 

the menu bar. Nest within it a Rotate menu that allows the image to be rotated either 90 or 180 

degrees, clockwise or counterclockwise. Implement this functionality. The Adjust menu could 

also contain menu items that invoke the existing Larger and Smaller functionality, for instance.

Exercise 11.61 The application always resizes its frame in order to ensure that the full image 

is always visible. Having a large frame is not always desirable. Read the documentation on the 

JScrollPane class. Instead of adding the ImagePanel directly to the content pane, place 

the panel in a JScrollPane and add the scroll pane to the content pane. Display a large im-

age and experiment with resizing the window. What difference does having a scroll pane make? 

Does this allow you to display images that would otherwise be too large for the screen?

Exercise 11.62 Change your application so that it can open multiple images at the same 

time (but only one image is displayed at any time). Then add a pop-up menu (using class 

JComboBox) to select the image to display.

Exercise 11.63 As an alternative to using a JComboBox as in Exercise 11.62, use a 

tabbed pane (class JTabbedPane) to hold multiple open images.



408 |       Chapter 11 ■ Building graphical user interfaces

11.9 Another example: MusicPlayer
So far in this chapter, we have discussed one example of a GUI application in detail. We now 
want to introduce a second application to provide another example to learn from. This program 
introduces a few additional GUI components.

This second example is a music-player application. We shall not discuss it in any great amount 
of detail. It is intended as a basis for studying the source code largely on your own and as a 
source of code fragments for you to copy and modify. Here, in this chapter, we shall only point 
out a few selected aspects of the application that are worth focusing on.

Exercise 11.64 Implement a slide-show function that lets you choose a directory and then 

displays each image in that directory for a specified length of time (say, 5 seconds).

Exercise 11.65 Once you have the slide show, add a slider (class JSlider) that lets you 

select an image in the slide show by moving the slider. While the slide show runs, the slider 

should move to indicate progress.

Exercise 11.66 Open the musicplayer project. Create an instance of MusicPlayerGUI,

and experiment with the application.

The musicplayer project provides a GUI interface to classes based on the music-organizer pro-
jects from Chapter 4. As there, the program finds and plays MP3 files stored in the audio folder 
inside the project folder. If you have sound files of the right format of your own, you should be 
able to play them by dropping them in the project’s audio folder.

The music player is implemented across three classes: MusicPlayerGUI, MusicPlayer, and 
MusicFilePlayer. Only the first is intended to be studied here. MusicFilePlayer can be 
used essentially as a library class; instances are created along with the name of the MP3 file to 
be played. Familiarize yourself with its interface, but you do not need to understand or modify 
its implementation. (You are welcome, of course, to study this class as well if you like, but it 
uses some concepts that we shall not discuss in this book.)

Following are some noteworthy observations about the musicplayer project.

Model/view separation

This application uses a better model/view separation than the previous example. This means 
that the application functionality (the model) is separated cleanly from the application’s user 
interface (the GUI). Each of those two, the model and the view, may consist of multiple classes, 
but every class should be clearly in one or the other group to achieve a clear separation. In our 
example, the view consists of a single GUI class.

Separating the application’s functionality from the interface is an example of good cohesion; 
it makes the program easier to understand, easier to maintain, and easier to adapt to different 
requirements (especially different user interfaces). It would, for example, be fairly easy to write 



11.9 Another example: MusicPlayer | 409

a text-based interface for the music player, effectively replacing the MusicPlayerGUI class 
and leaving the MusicPlayer class unchanged.

Inheriting from JFrame

In this example, we are demonstrating the alternative popular version of creating frames that we men-
tioned at the start of the chapter. Our GUI class does not instantiate a JFrame object; instead, it extends 
the JFrame class. As a result, all the JFrame methods we need to call (such as getContentPane,
setJMenuBar, pack, setVisible, and so on) can now be called as internal (inherited) methods.

There is no strong reason for preferring one style (using a JFrame instance) over the other (in-
heriting from JFrame). It is largely a matter of personal preference, but you should be aware 
that both styles are widely used.

Displaying static images

It is very common that we want to display an image in a GUI. The easiest way to do this is to 
include in the interface a JLabel that has a graphic as its label (a JLabel can display either text 
or a graphic or both). The sound player includes an example of doing this. The relevant source 
code is

JLabel image = new JLabel(new ImageIcon(“title.jpg”));

This statement will load an image file named “title.jpg” from the project directory, create an 
icon with that image, and then create a JLabel that displays the icon. (The term “icon” seems 
to suggest that we are dealing only with small images here, but the image can in fact be of any 
size.) This method works for JPEG, GIF, and PNG images.

Combo boxes

The sound player presents an example of using a JComboBox. A combo box is a set of values, 
one of which is selected at any time. The selected value is displayed, and the selection can be 
accessed through a pop-up menu. In the sound player, the combo box is used to select a particu-
lar ordering for the tracks—by artist, title, etc.

A JComboBox may also be editable, in which case the values are not all predefined but can be 
typed by a user. Ours is not.

Lists

The program also includes an example of a list (class JList) for the list of tracks. A list can 
hold an arbitrary number of values, and one or more can be selected. The list values in this 
example are strings, but other types are possible. A list does not automatically have a scrollbar.

Scrollbars

Another component demonstrated in this example is the use of scrollbars.

Scrollbars can be created by using a special container, an instance of class JScrollPane. GUI 
objects of any type can be placed into a scroll pane, and the scroll pane will, if the held object is 
too big to be displayed in the available space, provide the necessary scrollbars.



410 |       Chapter 11 ■ Building graphical user interfaces

In our example, we have placed our track list into a scroll pane. The scroll pane itself is then 
placed into its parent container. The scrollbars only become visible when necessary. You can try 
this by either adding more tracks until they do not fit into the available space or by resizing the 
window to make it too small to display the current list.

Other elements demonstrated in this example are the use of a slider (which does not do much), 
and the use of color for changing the look of an application. Each of the GUI’s elements has 
many methods for modifying the component’s look or behavior—you should look through 
the documentation for any component that interests you and experiment with modifying some 
properties of that component.

Exercise 11.67 Change the music player so that it displays a different image in its center. 

Find an image on the web to use, or make your own.

Exercise 11.68 Change the colors of the other components (foreground and background 

colors) to suit the new main image.

Exercise 11.69 Add a new component to display details of the current track when one is 

playing.

Exercise 11.70 Add a reload capability to the music player that rereads the files from the audio

folder. Then you can drop a new file into the folder and load it without having to quit the player.

Exercise 11.71 Add an Open item to the file menu. When activated, it presents a file-

selection dialog that lets the user choose a sound file to open. If the user chooses a directory, 

the player should open all sound files in that directory (as it does now with the audio directory).

Exercise 11.72 Modify the slider so that the start and end (and possibly other tick marks) 

are labeled with numbers. The start should be zero, and the end should be the length of the 

music file. The MusicPlayer class has a getLength method. Note that the slider is not 

currently functional.

Exercise 11.73 Modify the music player so that a double click on a list element in the track 

list starts playing that track.

Exercise 11.74 Improve the button look. All buttons that have no function at any point in 

time should be grayed out at that time and should be enabled only when they can reasonably 

be used.

Exercise 11.75 The display of tracks is currently simply a JList of String objects. 

Investigate whether there are any Swing components available that would provide greater 

sophistication than this. For instance, can you find a way to provide a header line and align the 

artist, title, and other parts of the track information? Implement this in your version.

Exercise 11.76 Challenge exercise Have the position slider move as a track is being played.



11.10 Summary | 411

11.10 Summary
In this chapter, we have given an introduction to GUI programming using the Swing and AWT 
libraries. We have discussed the three main conceptual areas: creating GUI components, layout, 
and event handling.

We have seen that building a GUI usually starts with creating a top-level frame, such as a 
JFrame. The frame is then filled with various components that provide information and func-
tionality to the user. Among the components we have encountered are menus, menu items, but-
tons, labels, borders, and others.

Components are arranged on screen with the help of containers and layout managers. 
Containers hold collections of components, and each container has a layout manager that takes 
care of arranging the components within the container’s screen area. Nesting containers, using 
combinations of different layout managers, is a common way to achieve the desired combina-
tion of component size and juxtaposition.

Interactive components (those that can react to user input) generate events when they are ac-
tivated by a user. Other objects can become event listeners and be notified of such events by 
implementing standard interfaces. When the listener object is notified, it can take appropriate 
action to deal with the user event.

We have introduced the concept of anonymous inner classes as a modular, extendable technique 
for writing event listeners.

And finally, we have given a pointer to an online reference and tutorial site that may be used to 
learn about details not covered in the chapter.

Exercise 11.77 Add a GUI to the world-of-zuul project from Chapter 6. Every room should 

have an associated image that is displayed when the player enters the room. There should 

be a non-editable text area to display text output. To enter commands, you can choose 

between different possibilities: you can leave the input text-based and use a text field (class 

JTextField) to type commands, or you can use buttons for command entry.

Exercise 11.78 Add sounds to the word-of-zuul game. You can associate individual sounds 

with rooms, items, or characters.

Exercise 11.79 Design and build a GUI for a text editor. Users should be able to enter text, 

edit, scroll, etc. Consider functions for formatting (font faces, style, and size) and a character/

word-count function. You do not need to implement the load and save functions just yet—you 

may like to wait with that until you have read the next chapter.

Terms introduced in this chapter

GUI, AWT, Swing, component, layout, event, event handling, event listener, 

frame, menu bar, menu, menu item, content pane, modal dialog, anonymous 

inner class, final variable



412 |       Chapter 11 ■ Building graphical user interfaces

Concept summary

■ components A GUI is built by arranging components on screen. Components are 

represented by objects.

■ layout Arranging the layout of components is achieved by using layout managers.

■ event handling The term event handling refers to the task of reacting to user events, such as 

mouse-button clicks or keyboard input.

■ image format Images can be stored in different formats. The differences primarily affect file 

size and the quality of the image.

■ menu bar, content pane Components are placed in a frame by adding them to the frame’s 

menu bar, or content pane.

■ event listener An object can listen to component events by implementing an event-listener 

interface.

■ anonymous inner classes Anonymous inner classes are a useful construct for implementing 

event listeners.



In Chapter 7, we saw that logical errors in programs are harder to spot than syntactic errors 
because a compiler cannot give any help with logical errors. Logical errors arise for several 
reasons, which may overlap in some situations:

■ The solution to a problem has been implemented incorrectly. For instance, a problem involv-
ing generating some statistics on data values might have been programmed to find the mean 
value rather than the median value (the “middle” value).

■ An object might be asked to do something it is unable to. For instance, a collection object’s 
get method might be called with an index value outside the valid range.

■ An object might be used in ways that have not been anticipated by the class designer, 
leading to the object being left in an inconsistent or inappropriate state. This often hap-
pens when a class is reused in a setting that is different from its original one, perhaps 
through inheritance.

Although the sort of testing strategies discussed in Chapter 7 can help us identify and eliminate 
many logical errors before our programs are put to use, experience suggests that program failures 
will continue to occur. Furthermore, even the most thoroughly tested program may fail as a result 
of circumstances beyond the programmer’s control. Consider the case of a web-browser asked to 
display a web page that does not exist or a program that tries to write data to a disk that has no more 
space left. These problems are not the result of logical programming errors, but they could easily 
cause a program to fail if the possibility of their arising has not been taken into account.

In this chapter, we look at how to anticipate potential errors and how to respond to error situa-
tions as they arise during the execution of a program. In addition, we provide some suggestions 

CHAPTER

12 Handling errors

Main concepts discussed in this chapter:

■ defensive programming

■ exception throwing and handling

■ error reporting

■ basic file processing

Java constructs discussed in this chapter:

TreeMap, TreeSet, SortedMap, assert, exception, throw, throws, 
try, catch, File, FileReader, FileWriter, Path, Scanner, stream



414 |       Chapter 12 ■ Handling errors

on how to report errors when they occur. We also provide a brief introduction to how to perform 
textual input/output, as file processing is one of the situations where errors can easily arise.

12.1 The address-book project
We shall use the address-book family of projects to illustrate some of the principles of error
reporting and error handling that arise in many applications. The projects represent an appli-
cation that stores personal-contact details—name, address, and phone number—for an arbi-
trary number of people. Such a contacts list might be used on a mobile phone or in an e-mail 
program, for instance. The contact details are indexed in the address book by both name and 
phone number. The main classes we shall be discussing are AddressBook (Code 12.1) and 
ContactDetails. In addition, the AddressBookDemo class is provided as a convenient 
means of setting up an initial address book with some sample data.

import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;
import java.util.SortedMap;
import java.util.TreeMap;
import java.util.TreeSet;

/**
 * A class to maintain an arbitrary number of contact details.
 * Details are indexed by both name and phone number.
 * @author David J. Barnes and Michael Kölling.
 * @version 2011.07.31
 */
public class AddressBook
{
    // Storage for an arbitrary number of details.

private TreeMap<String, ContactDetails> book;
private int numberOfEntries;

    /**
     * Perform any initialization for the address book.
     */

public AddressBook()
{

book = new TreeMap<String, ContactDetails>();
numberOfEntries = 0;

}

    /**
     * Look up a name or phone number and return the
     * corresponding contact details.

Code 12.1
The AddressBook
class



12.1 The address-book project | 415

     * @param key The name or number to be looked up.
     * @return The details corresponding to the key.
     */

public ContactDetails getDetails(String key)
{

return book.get(key);
}

    /**
     * Return whether or not the current key is in use.
     * @param key The name or number to be looked up.
     * @return true if the key is in use, false otherwise.
     */

public boolean keyInUse(String key)
{

return book.containsKey(key);
}

    /**
     * Add a new set of details to the address book.
     * @param details The details to associate with the person.
     */

public void addDetails(ContactDetails details)
{

book.put(details.getName(), details);
book.put(details.getPhone(), details);
numberOfEntries++;

}

    /**
     * Change the details previously stored under the given key.
     * @param oldKey One of the keys used to store the details.
     * @param details The replacement details.
     */

public void changeDetails(String oldKey,
ContactDetails details)

{
removeDetails(oldKey);
addDetails(details);

}

    /**
     * Search for all details stored under a key that starts with
     * the given prefix.
     * @param keyPrefix The key prefix to search on.
     * @return An array of those details that have been found.
     */

Code 12.1
continued
The AddressBook
class



416 |       Chapter 12 ■ Handling errors

public ContactDetails[] search(String keyPrefix)
{

List<ContactDetails> matches =
new LinkedList<ContactDetails>();

        // Find keys that are equal-to or greater-than the prefix.
SortedMap<String, ContactDetails> tail =

book.tailMap(keyPrefix);
Iterator<String> it = tail.keySet().iterator();
boolean endOfSearch = false;
while(!endOfSearch && it.hasNext()) {

String key = it.next();
if(key.startsWith(keyPrefix)) {

matches.add(book.get(key));
}
else {

                // As the list is sorted, no more will be found.
endOfSearch = true;

}
}
ContactDetails[] results =

new ContactDetails[matches.size()];
matches.toArray(results);
return results;

}

    /**
     * Return the number of entries currently in the
     * address book.
     * @return The number of entries.
     */

public int getNumberOfEntries()
{

return numberOfEntries;
}

    /**
     * Remove the entry with the given key from the address book.
     * @param key One of the keys of the entry to be removed.
     */

public void removeDetails(String key)
{

ContactDetails details = book.get(key);
book.remove(details.getName());
book.remove(details.getPhone());
numberOfEntries--;

}

Code 12.1
continued
The AddressBook
class



12.1 The address-book project | 417

    /**
     * Return all the contact details, sorted according
     * to the sort order of the ContactDetails class.
     * @return A sorted list of the details.
     */

public String listDetails()
{

        // Because each entry is stored under two keys, it is
        // necessary to build a set of the ContactDetails.
        // This eliminates duplicates.

StringBuilder allEntries = new StringBuilder();
Set<ContactDetails> sortedDetails =

new TreeSet<ContactDetails>(book.values());
for(ContactDetails details : sortedDetails) {

allEntries.append(details);
allEntries.append('\n');
allEntries.append('\n');

}
return allEntries.toString();

}
}

Code 12.1
continued
The AddressBook
class

New details can be stored in the address book via its addDetails method. This assumes that 
the details represent a new contact and not a change of details for an existing one. To cover the 
latter case, the changeDetails method removes an old entry and replaces it with the revised 
details. The address book provides two ways to retrieve entries: the getDetails method 
takes a name or phone number as the key and returns the matching details; the search method 
returns an array of all those details that start with a given search string (for instance, the search 
string "08459" would return all entries with phone numbers having that area prefix).

There are two introductory versions of the address-book project for you to explore. Both 
provide access to the same version of AddressBook, as shown in Code 12.1. The address-
book-v1t project provides a text-based user interface, similar in style to the interface of the zuul
game discussed in Chapter 6. Commands are currently available to list the address book’s con-
tents, search it, and add a new entry. Probably more interesting as an interface, however, is the 
address-book-v1g version, which incorporates a simple GUI. Experiment with both versions to 
gain some experience with what the application can do.

Exercise 12.1 Open the address-book-v1g project and create an AddressBookDemo ob-

ject. Call its showInterface method to display the GUI and interact with the sample address 

book.

Exercise 12.2 Repeat your experimentation with the text interface of the address-book-v1t

project.



418 |       Chapter 12 ■ Handling errors

12.2 Defensive programming

12.2.1 Client–server interaction

An AddressBook is a typical server object, initiating no actions on its own behalf; all of its 
activities are driven by client requests. Implementers can adopt at least two possible views 
when designing and implementing a server class:

■ They can assume that client objects will know what they are doing and will request services 
only in a sensible and well-defined way.

■ They can assume that server objects will operate in an essentially problematic environ-
ment in which all possible steps must be taken to prevent client objects from using them 
incorrectly.

These views clearly represent opposite extremes. In practice, the most likely scenario usually 
lies somewhere in between. Most client interactions will be reasonable, with the occasional 
attempt to use the server incorrectly—either as the result of a logical programming error or of 
misconception on the part of the client programmer. A third possibility, of course, is an inten-
tionally hostile client who is trying to break or find a weakness in the server.

Exercise 12.3 Examine the implementation of the AddressBook class and assess 

whether you think it has been well written or not. Do you have any specific criticisms of it?

Exercise 12.4 The AddressBook class uses quite a lot of classes from the java.util
package; if you are not familiar with any of these, check the API documentation to fill in the 

gaps. Do you think the use of so many different utility classes is justified? Could a HashMap
have been used in place of the TreeMap?

If you are not sure, try changing TreeMap to HashMap and see if HashMap offers all of the 

required functionality.

Exercise 12.5 Modify the CommandWords and AddressBookTextInterface classes 

of the address-book-v1t project to provide interactive access to the getDetails and 

removeDetails methods of AddressBook.

Exercise 12.6 The AddressBook class defines a field to record the number of entries. 

Do you think it would be more appropriate to calculate this value directly, from the number of 

unique entries in the TreeMap? For instance, can you think of any circumstances in which the 

following calculation would not produce the same value?

    return book.size() / 2;

Exercise 12.7 How easy do you think it would be to add a String field for an email address 

to the ContactDetails class, and then to use this as a third key in the AddressBook?
Don’t actually try it, at this stage.



12.2 Defensive programming | 419

These different views provide a useful base from which to discuss questions such as:

■ How much checking should a server’s methods perform on client requests?

■ How should a server report errors to its clients?

■ How can a client anticipate failure of a request to a server?

■ How should a client deal with failure of a request?

If we examine the AddressBook class with these issues in mind, we shall see that the class has 
been written to trust completely that its clients will use it appropriately. Exercise 12.8 illustrates 
one of the ways in which this is the case and how things can go wrong.

Exercise 12.8 Using the address-book-v1g project, create a new AddressBook object 

on the object bench. This will be completely empty of contact details. Now make a call to its 

removeDetails method with any string value for the key. What happens? Can you under-

stand why this happens?

Exercise 12.9 For a programmer, the easiest response to an error situation arising is to 

allow the program to terminate (i.e., to “crash”). Can you think of any situations in which simply 

allowing a program to terminate could be very dangerous?

Exercise 12.10 Many commercially sold programs contain errors that are not handled 

properly in the software and cause them to crash. Is that unavoidable? Is it acceptable? 

Discuss this issue.

The problem with the removeDetails method is that it assumes that the key passed to it is 
a valid key for the address book. It uses the supposed key to retrieve the associated contact 
details:

ContactDetails details = book.get(key);

However, if the map does not have that particular key, then the details variable ends up con-
taining null. That, of itself, is not an error; but the error arises from the following statement, 
where we assume that details refers to a valid object:

book.remove(details.getName());

It is not allowed to call a method on a variable containing null, and the result is a runtime error. 
BlueJ reports this as a NullPointerException and highlights the statement from which it 
resulted. Later in this chapter, we shall be discussing exceptions in detail. For now, we can sim-
ply say that, if an error such as this were to occur in a running application, then the application 
would crash—i.e., terminate in an uncontrolled way—before it had completed its task.

There is clearly a problem here, but whose fault is it? Is it the fault of the client object for calling 
the method with a bad parameter value, or is it the fault of the server object for failing to handle 
this situation properly? The writer of the client class might argue that there is nothing in the meth-
od’s documentation to say that the key must be valid. Conversely, the writer of the server class 
might argue that it is obviously wrong to try to remove details with an invalid key. Our concern 



420 |       Chapter 12 ■ Handling errors

in this chapter is not to resolve such disputes, but to try to prevent them from arising in the first 
place. We shall start by looking at error handling from the point of view of the server class.

Exercise 12.11 Save a copy, to work on, of one of the address-book-v1 projects 

under another name. Make changes to the removeDetails method to avoid a 

NullPointerException arising if the key value does not have a corresponding entry in the 

address book. Use an if statement. If the key is not valid, then the method should do nothing.

Exercise 12.12 Is it necessary to report the detection of an invalid key in a call to remove-
Details? If so, how would you report it?

Exercise 12.13 Are there any other methods in the AddressBook class that are vulnerable 

to similar errors? If so, try to correct them in your copy of the project. Is it acceptable in all cases 

for the method simply to do nothing if its parameter values are inappropriate? Do the errors need 

reporting in some way? If so, how would you do it, and would it be the same way for each error?

12.2.2 Parameter checking

A server object is most vulnerable when its constructor and methods receive external values 
through their parameters. The values passed to a constructor are used to set up an object’s ini-
tial state, while the values passed to a method will be used to influence the overall effect of the 
method call and may change the state of the object and a result the method returns. Therefore, it 
is vital that a server object knows whether it can trust parameter values to be valid or whether it 
needs to check their validity for itself. The current situation in both the ContactDetails and 
AddressBook classes is that there is no checking at all on parameter values. As we have seen 
with the removeDetails method, this can lead to a fatal runtime error.

Preventing a NullPointerException in removeDetails is relatively easy, and Code 12.2 
illustrates how this can be done. Note that, as well as improving the source code in the method, 
we have updated the method’s comment, to document the fact that unknown keys are ignored.

/**
 * Remove the entry with the given key from the address book.
 * If the key does not exist, do nothing.
 * @param key One of the keys of the entry to be removed.
 */
public void removeDetails(String key)
{

if(keyInUse(key)) {
ContactDetails details = book.get(key);
book.remove(details.getName());
book.remove(details.getPhone());
numberOfEntries--;

}
}

Code 12.2
Guarding against an 

invalid key in 

removeDetails



12.3 Server-error reporting | 421

If we examine all the methods of AddressBook, we find that there are other places where we 
could make similar improvements:

■ The addDetails method should check that its actual parameter is not null.

■ The changeDetails method should check both that the old key is one that is in use and that 
the new details are not null.

■ The search method should check that the key is not null.

These changes have all been implemented in the version of the application to be found in the 
address-book-v2g and address-book-v2t projects.

Exercise 12.14 Why do you think we have felt it unnecessary to make similar changes to 

the getDetails and keyInUse methods?

Exercise 12.15 In dealing with parameter errors, we have not printed any error messages. 

Do you think an AddressBook should print an error message whenever it receives a bad 

parameter value to one of its methods? Are there any situations where a printed error message 

would be inappropriate? For instance, do error messages printed to the terminal seem appro-

priate with the GUI version of the project?

Exercise 12.16 Are there any further checks you feel we should make on the parameters of 

other methods, to prevent an AddressBook object from functioning incorrectly?

12.3 Server-error reporting
Having protected a server object from performing an illegal operation through bad parameter 
values, we could take the view that this is all that the server writer needs to do. However, ide-
ally we should like to avoid such error situations from arising in the first place. Furthermore, 
it is often the case that incorrect parameter values are the result of some form of programming 
error in the client that supplied them. Therefore, rather than simply programming around the 
problem in the server and leaving it at that, it is good practice for the server to make some effort 
to indicate that a problem has arisen, either to the client itself or to a human user or program-
mer. In that way, there is a chance that an incorrectly written client will be fixed. But notice that 
those three “audiences” for the notification will often be completely different.

What is the best way for a server to report problems when they occur? There is no single answer 
to this question, and the most appropriate answer will often depend upon the context in which 
a particular server object is being used. In the following sections, we shall explore a range of 
options for error reporting by a server.

Exercise 12.17 How many different ways can you think of to indicate that a method has 

received incorrect parameter values or is otherwise unable to complete its task? Consider as many 

different sorts of applications as you can—for instance: those with a GUI; those with a textual 

interface and a human user; those with no sort of interactive user, such as software in a vehicle’s 

engine-management system; or software in embedded systems such as a cash machine.



422 |       Chapter 12 ■ Handling errors

12.3.1 Notifying the user

The most obvious way in which an object might respond when it detects something wrong is 
to try to notify the application’s user in some way. The main options are either to print an error 
message using System.out or System.err or to display an error message alert window.

The two main problems with both approaches are:

■ They assume that the application is being used by a human user who will see the error mes-
sage. There are many applications that run completely independently of a human user. An 
error message, or an error window, will go completely unnoticed. Indeed, the computer run-
ning the application might not have any visual-display device connected to it at all.

■ Even where there is a human user to see the error message, it will be rare for that user to be in 
a position to do something about the problem. Imagine a user at an automatic teller machine 
being confronted with a NullPointerException! Only in those cases where the user’s 
direct action has led to the problem—such as supplying invalid input to the application—is 
the user likely to be able take some appropriate corrective or avoiding action the next time.

Programs that print inappropriate error messages are more likely to annoy their users rather 
than achieve a useful outcome. Therefore, except in a very limited set of circumstances, notify-
ing the user is not a general solution to the problem of error reporting.

12.3.2 Notifying the client object

A radically different approach from those we have discussed so far is for the server object to 
feedback an indication to the client object when something has gone wrong. There are two main 
ways to do this:

■ A server can use a non-void return type of a method to return a value that indicates either 
success or failure of the method call.

■ A server can throw an exception if something goes wrong. This introduces a new feature of 
Java that is also found in some other programming languages. We shall describe this feature 
in detail in Section 12.4.

Both techniques have the benefit of encouraging the programmer of the client to take into 
account that a method call could fail. However, only the decision to throw an exception will 
actively prevent the client’s programmer from ignoring the consequences of method failure.

The first approach is easy to introduce to a method that would otherwise have a void return 
type, such as removeDetails. If the void type is replaced by a boolean type, then the 
method can return true to indicate that the removal was successful and false to indicate that 
it failed for some reason (Code 12.3).

/**
 * Remove the entry with the given key from the address book.
 * The key should be one that is currently in use.
 * @param key One of the keys of the entry to be removed.

Code 12.3
A boolean return type 

to indicate success or 

failure



12.3 Server-error reporting | 423

This allows a client to use an if statement to guard statements that depend on the successful 
removal of an entry:

if(contacts.removeDetails("...")) {
    // Entry successfully removed. Continue as normal.
    ...
}
else {
    // The removal failed. Attempt a recovery, if possible.
    ...
}

Where a server method already has a non-void return type—effectively preventing a boolean
diagnostic value from being returned—there may still be a way to indicate that an error has 
occurred through the return type. This will be the case if a value from the return type’s range is 
available to act as an error diagnostic value. For instance, the getDetails method returns a 
ContactDetails object corresponding to a given key, and the example below assumes that a 
particular key will locate a valid set of contact details:

// Send David a text message.
ContactDetails details = contacts.getDetails("David");
String phone = details.getPhone();
...

One way for the getDetails method to indicate that the key is invalid or not in use is to have 
it return a null value instead of a ContactDetails object (Code 12.4).

 * @return true if the entry was successfully removed,
 *         false otherwise.
 */
public boolean removeDetails(String key)
{

if(keyInUse(key)) {
ContactDetails details = book.get(key);
book.remove(details.getName());
book.remove(details.getPhone());
numberOfEntries--;
return true;

}
else {

return false;
}

}

Code 12.3
continued
A boolean return type 

to indicate success or 

failure

/**
 * Look up a name or phone number and return the
 * corresponding contact details.
 * @param key The name or number to be looked up.

Code 12.4
Returning an out-of-

bounds error diagnostic 

value



424 |       Chapter 12 ■ Handling errors

This would allow a client to examine the result of the call and then either continue with the 
normal flow of control or attempt to recover from the error:

ContactDetails details = contacts.getDetails("David");
if(details != null) {
    // Send a text message to David.
    String phone = details.getPhone();
    ...
}
else {
    // Failed to find the entry. Attempt a recovery, if possible.
    ...
}

It is common for methods that return object references to use the null value as an indication of 
failure or error. With methods that return primitive-type values, there will sometimes be an out-
of-bounds value that can fulfill a similar role: for instance, the indexOf method of the String
class returns a negative value to indicate that it has failed to find the character sought.

 * @return The details corresponding to the key, or
 *         null if the key is not in use.
 */
public ContactDetails getDetails(String key)
{

if(keyInUse(key)) {
return book.get(key);

}
else {

return null;
}

}

Code 12.4
continued
Returning an out-of-

bounds error diagnostic 

value

Exercise 12.18 Do you think the different interface styles of the v2t and v2g address-book

projects mean that there should be a difference in the way errors are reported to users?

Exercise 12.19 Using a copy of the address-book-v2t project, make changes to the 

AddressBook class to provide failure information to a client when a method has received 

incorrect parameter values or is otherwise unable to complete its task.

Exercise 12.20 Do you think that a call to the search method that finds no matches 

requires an error notification? Justify your answer.

Exercise 12.21 What combinations of parameter values would it be inappropriate to pass 

to the constructor of the ContactDetails class?



12.4 Exception-throwing principles | 425

Clearly, an out-of-bounds value cannot be used where all values from the return type already 
have valid meanings to the client. In such cases, it will usually be necessary to resort to the 
alternative technique of throwing an exception (see Section 12.4), which does, in fact, offer 
some significant advantages. To help you appreciate why this might be, it is worth considering 
two issues associated with the use of return values as failure or error indicators:

■ Unfortunately, there is no way to require the client to check the return value for its diagnostic 
properties. As a consequence, a client could easily carry on as if nothing has happened and 
could then end up terminating with a NullPointerException; or, worse than that, it could 
even use the diagnostic return value as if it were a normal return value, creating a difficult-
to-diagnose logical error!

■ In some cases, we may be using the diagnostic value for two quite different purposes. This 
is the case in the revised removeDetails (Code 12.3) and getDetails (Code 12.4). 
One purpose is to tell the client whether its request was successful or not. The other is to 
indicate that there was something wrong with its request, such as passing bad parameter 
values.

In many cases, an unsuccessful request will not represent a logical programming error, whereas 
an incorrect request almost certainly does. We should expect quite different follow-up actions 
from a client in these different situations. Unfortunately, there is no general satisfactory way to 
resolve the conflict simply by using return values.

12.4 Exception-throwing principles
Throwing an exception is the most effective way a server object has of indicating that it is 
unable to fulfill a call on one of its methods. One of the major advantages this has over using
a special return value is that it is (almost) impossible for a client to ignore the fact that an 
exception has been thrown and carry on regardless. Failure by the client to handle an exception 
will result in the application terminating immediately.1 In addition, the exception mechanism is 
independent of the return value of a method, so it can be used for all methods, irrespective of 
the return type.

An important point to bear in mind throughout the following discussion is that, where excep-
tions are involved, the place where an error is discovered will be distinct from where recovery 
(if any) is attempted. Discovery will be in the server’s method, and recovery will be in the cli-
ent. If recovery were possible at the point of discovery, then there would be no point in throw-
ing an exception.

Exercise 12.22 Does a constructor have any means of indicating to a client that it cannot 

correctly set up the new object’s state? What should a constructor do if it receives inappropri-

ate parameter values?

1 This is exactly what you will have experienced whenever your programs inadvertently died because of a 
NullPointerException or IndexOutOfBoundsException.



426 |       Chapter 12 ■ Handling errors

12.4.1 Throwing an exception

Code 12.5 shows how an exception is thrown using a throw statement. Here, the getDetails
method is throwing an exception to indicate that passing a null value for the key does not 
make sense because it is not a valid key.

/**
 * Look up a name or phone number and return the
 * corresponding contact details.
 * @param key The name or number to be looked up.
 * @return The details corresponding to the key,
 *         or null if there are none matching.
 * @throws IllegalArgumentException if the key is invalid.
 */
public ContactDetails getDetails(String key)
{

if(key == null){
throw new IllegalArgumentException(

"null key in getDetails");
}
return book.get(key);

}

Code 12.5
Throwing an exception

There are two stages to throwing an exception. First, an exception object is created using the 
new keyword (in this case, an IllegalArgumentException object); then the exception 
object is thrown using the throw keyword. These two stages are almost invariably combined in 
a single statement:

throw new ExceptionType("optional-diagnostic-string");

When an exception object is created, a diagnostic string may be passed to its constructor. 
This string is later available to the receiver of the exception via the exception object’s get-
Message and toString methods. The string is also shown to the user if the exception is not 
handled and leads to the termination of the program. The exception type we have used here, 
IllegalArgumentException, is defined in the java.lang package and is regularly used to 
indicate that an inappropriate actual parameter value has been passed to a method or constructor.

Code 12.5 also illustrates that the javadoc documentation for a method can be expanded to 
include details of any exceptions it throws, using the @throws tag.

12.4.2 Checked and unchecked exceptions

An exception object is always an instance of a class from a special inheritance hierarchy. We 
can create new exception types by creating subclasses in this hierarchy (Figure 12.1). Strictly 

Concept:

An exception is 

an object repre-

senting details of 

a program failure. 

An exception is 

thrown to indicate 

that a failure has 

occurred.



12.4 Exception-throwing principles | 427

speaking, exception classes are always subclasses of the Throwable class that is defined in 
the java.lang package. We shall follow the convention of defining and using exception 
classes that are subclasses of the Exception class, also defined in java.lang.2 The java.
lang package defines a number of commonly seen exception classes that you might already 
have run across inadvertently in developing programs, such as NullPointerException,
IndexOutOfBoundsException, and ClassCastException.

2 Exception is one of two direct subclasses of Throwable; the other is Error. Subclasses of Error
are usually reserved for runtime-system errors rather than errors over which the programmer has control.

MyCheckedException

MyUncheckedException

Figure 12.1
The exception 

class hierarchy

Java divides exception classes into two categories: checked exceptions and unchecked excep-
tions. All subclasses of the Java standard class RuntimeException are unchecked exceptions; 
all other subclasses of Exception are checked exceptions.

Slightly simplified, the difference is this: checked exceptions are intended for cases where the 
client should expect that an operation could fail (for example, if it tries to write to a disk, it 
should anticipate that the disk could be full). In such cases, the client will be forced to check 
whether the operation was successful. Unchecked exceptions are intended for cases that should 
never fail in normal operation—they usually indicate a program error. For instance, a program-
mer would never knowingly try to get an item from a position in a list that does not exist, so 
when they do, it elicits an unchecked exception.

Unfortunately, knowing which category of exception to throw in any particular circumstance is 
not an exact science, but we can offer the following general advice:

■ One rule of thumb is to use unchecked exceptions for situations that should lead to program 
failure—typically because it is suspected that there is a logical error in the program that will 
prevent it from continuing any further. It follows that checked exceptions should be used 



428 |       Chapter 12 ■ Handling errors

where there may be a possibility of the client effecting a recovery. One problem with this 
policy is that it assumes that the server is aware enough of the context in which it is being 
used to be able to determine whether client recovery is likely or unlikely to be possible.

■ Another rule of thumb is to use unchecked exceptions for situations that could reasonably be 
avoided. For instance, calling a method on a variable containing null is the result of a logical 
programming error that is completely avoidable, and the fact that NullPointerException is 
unchecked fits this model. It follows that checked exceptions should be used for failure situations 
that are beyond the control of the programmer, such as a disk becoming full when trying to write 
to a file or a network operation failing because a wireless network connection has dropped out.

The formal Java rules governing the use of exceptions are significantly different for unchecked 
and checked exceptions, and we shall outline the differences in detail in Sections 12.4.4 and 
12.5.1, respectively. In simplified terms, the rules ensure that a client object calling a method 
that could throw a checked exception will contain code that anticipates the possibility of a prob-
lem arising and that attempts to handle the problem whenever it occurs.3

3 In fact, it is still all too easy for the writer of the client to adhere to the rules in principle but to fail to 
attempt a proper recovery from the problem, which rather subverts their purpose!

Exercise 12.23 List three exception types from the java.io package.

Exercise 12.24 Is SecurityException from the java.lang package a checked or an 

unchecked exception? What about NoSuchMethodException? Justify your answers.

12.4.3 The effect of an exception

What happens when an exception is thrown? There are really two effects to consider: the effect 
in the method where the problem is discovered and the exception is thrown, and the effect in the 
caller of the problem method.

When an exception is thrown, the execution of the current method finishes immediately; it does not 
continue to the end of the method body. A consequence of this is that a method with a non-void
return type is not required to execute a return statement on a route that throws an exception. This 
is reasonable, because throwing an exception is an indication of the throwing method’s inability to 
continue normal execution, which includes not being able to return a valid result. We can illustrate 
this principle with the following alternative version of the method body shown in Code 12.5:

if(key == null) {
    throw new IllegalArgumentException("null key in getDetails");
}
else {
    return book.get(key);
}

The absence of a return statement in the route that throws an exception is acceptable. Indeed, 
the compiler will indicate an error if any statements are written following a throw statement, 
because they could never be executed.



12.4 Exception-throwing principles | 429

The effect of an exception on the point in the program that called the problem method is a lit-
tle more complex. In particular, the full effect depends upon whether or not any code has been 
written to catch the exception. Consider the following contrived call to getDetails:

AddressDetails details = contacts.getDetails(null);
// The following statement will not be reached.
String phone = details.getPhone();

We can say that, in all cases, the execution of these statements will be left incomplete; the 
exception thrown by getDetails will interrupt the execution of the first statement, and no 
assignment will be made to the details variable. As a result, the second statement will not be 
executed either.

This neatly illustrates the power of exceptions to prevent a client from carrying on regardless of 
the fact that a problem has arisen. What actually happens next depends upon whether or not the 
exception is caught. If it isn’t caught, then the program will simply terminate with an indication 
that an uncaught IllegalArgumentException has been thrown. We shall discuss how to 
catch an exception in Section 12.5.2.

12.4.4 Using unchecked exceptions

Unchecked exceptions are the easiest to use from a programmer’s point of view, because the 
compiler enforces few rules on their use. This is the meaning of “unchecked”: the compiler does 
not apply special checks, either on the method in which an unchecked exception is thrown or on 
the place from which the method is called. An exception class is unchecked if it is a subclass of 
the RuntimeException class, defined in the java.lang package. All of the examples we have 
used so far to illustrate exception throwing have involved unchecked exceptions. So there is little 
further to add here about how to throw an unchecked exception—simply use a throw statement.

If we also follow the convention that unchecked exceptions should be used in those situations 
where we expect the result to be program termination—i.e., the exception is not going to be 
caught—then there is also nothing further to be discussed about what the method’s caller should 
do, because it will do nothing and let the program fail. However, if there is a need to catch an 
unchecked exception, then an exception handler can be written for it, exactly as for a checked 
exception. How to do this is described in Section 12.5.2.

We have already seen use of the unchecked IllegalArgumentException. This is thrown by a 
constructor or method to indicate that its parameter values are inappropriate. For instance, the get-
Details method might also choose to throw this if the key string passed to it is blank (Code 12.6).

Concept:

An unchecked

exception is a 

type of exception 

whose use will not 

require checks from 

the compiler.

/**
 * Look up a name or phone number and return the
 * corresponding contact details.
 * @param key The name or number to be looked up.
 * @throws IllegalArgumentException if the key is invalid.
 * @return The details corresponding to the key,
 *         or null if there are none matching.
 */

Code 12.6
Checking for an illegal 

parameter value



430 |       Chapter 12 ■ Handling errors

It is well worth having a method conduct a series of validity checks on its parameters before 
proceeding with the main purpose of the method. This makes it less likely that a method will get 
part way through its actions before having to throw an exception because of bad parameter val-
ues. A particular reason for avoiding this situation is that partial mutation of an object is likely 
to leave it in an inconsistent state for future use. If a method fails for any reason, the object on 
which it was called should ideally be left in the state it was before the operation was attempted.

public ContactDetails getDetails(String key)
{

if(key == null) {
throw new IllegalArgumentException("null key in getDetails");

}
if(key.trim().length() == 0) {

throw new IllegalArgumentException(
"Empty key passed to getDetails");

}
return book.get(key);

}

Code 12.6
continued
Checking for an illegal 

parameter value

Exercise 12.25 Review all of the methods of the AddressBook class and decide whether 

there are any additional situations in which they should throw an IllegalArgumentException.

Add the necessary checks and throw statements.

Exercise 12.26 If you have not already done so, add javadoc documentation to describe 

any exceptions thrown by methods in the AddressBook class.

Exercise 12.27 UnsupportedOperationException is an unchecked exception defined 

in the java.lang package. How might this be used in an implementation of the java.util.
Iterator interface to prevent removal of items from a collection that is being iterated over? 

Try this out in the LogfileReader class of the weblog-analyzer project from Chapter 4.

12.4.5 Preventing object creation

An important use for exceptions is to prevent objects from being created if they cannot be placed 
in a valid initial state. This will usually be the result of inappropriate parameter values being 
passed to a constructor. We can illustrate this with the ContactDetails class. The constructor 
is currently fairly forgiving of the parameter values it receives: it does not reject null values but 
replaces them with empty strings. However, the address book needs at least a name or phone num-
ber from each entry to use as a unique index value, so an entry with both name and phone fields 
blank would be impossible to index. We can reflect this requirement by preventing construction of 
a ContactDetails object with no valid key details. The process of throwing an exception from 
a constructor is exactly the same as throwing one from a method. Code 12.7 shows the revised 
constructor that will prevent an entry from ever having both name and phone fields blank.



12.5 Exception handling | 431

An exception thrown from a constructor has the same effect on the client as an exception 
thrown from a method. So the following attempt to create an invalid ContactDetails object 
will completely fail; it will not result in a null value being stored in the variable:

ContactDetails badDetails = new ContactDetails("", "", "");

/**
 * Set up the contact details. All details are trimmed to remove
 * trailing white space. Either name or phone must be non-blank.
 * @param name The name.
 * @param phone The phone number.
 * @param address The address.
 * @throws IllegalStateException If both name and phone are blank.
 */
public ContactDetails(String name, String phone, String address)
{
    // Use blank strings if any of the parameters is null.

if(name == null) {
name = "";

}
if(phone == null) {

phone = "";
}
if(address == null) {

address = "";
}

this.name = name.trim();
this.phone = phone.trim();
this.address = address.trim();

if(this.name.length() == 0 && this.phone.length() == 0) {
throw new IllegalStateException(

"Either the name or phone must not be blank.");
}

}

Code 12.7
The constructor of the 

ContactDetails
class

12.5 Exception handling
The principles of exception throwing apply equally to both unchecked and checked exceptions, 
but the rules of Java mean that exception handling becomes a requirement only with checked 
exceptions. A checked exception class is one that is a subclass of Exception but not of 
RuntimeException. There are several more rules to follow when using checked exceptions, 
because the compiler enforces checks both in a method that throws a checked exception and in 
any caller of that method.



432 |       Chapter 12 ■ Handling errors

12.5.1 Checked exceptions: the throws clause

The first requirement of the compiler is that a method throwing a checked exception must declare 
that it does so in a throws clause added to the method’s header. For instance, a method throwing 
a checked IOException from the java.io package might have the following header:4

public void saveToFile(String destinationFile)
   throws IOException

It is permitted to use a throws clause for unchecked exceptions, but the compiler does not 
require one. We recommend that a throws clause be used only to list the checked exceptions 
thrown by a method.

It is important to distinguish between a throws clause in the header of a method and the 
@throws javadoc comment that precedes the method; the latter is completely optional for both 
types of exception. Nevertheless, we recommend that javadoc documentation be included for 
both checked and unchecked exceptions. In that way, as much information as possible will be 
available to someone wishing to use a method that throws an exception.

12.5.2 Anticipating exceptions: the try statement

The second requirement, when using checked exceptions, is that a caller of a method that 
throws a checked exception must make provision for dealing with the exception. This usually 
means writing an exception handler in the form of a try statement. Most practical try statements 
have the general form shown in Code 12.8. This introduces two new Java keywords—try and 
catch—which mark a try block and a catch block, respectively.

4 Note that the keyword here is throws and not throw.

Concept:

A checked

exception is a type 

of exception whose 

use will require 

extra checks from 

the compiler. In 

particular, checked 

exceptions in Java 

require the use of 

throws clauses and 

try statements.

Concept:

Program code that 

protects state-

ments in which 

an exception 

might be thrown is 

called an excep-

tion handler. It 

provides reporting 

and/or recovery 

code should one 

arise.

try {
Protect one or more statements here.

}
catch(Exception e) {

Report and recover from the exception here.
}

Code 12.8
The try and catch 

blocks of an exception 

handler

Suppose we have a method that saves the contents of an address book to a file. The user is 
requested in some way for the name of a file (perhaps via a GUI dialog window), and the 
address book’s saveToFile method is then called to write out the list to the file. If we did not 
have to take exceptions into account, then this would be written as follows:

String filename = request-a-file-from-the-user;
addressbook.saveToFile(filename);

However, because the writing process could fail with an exception, the call to saveToFile
must be placed within a try block to show that this has been taken into account. Code 12.9 
illustrates how we would tend to write this, anticipating possible failure.

Any number of statements can be included in a try block, so, in fact, we tend to place there not 
just the single statement that could fail, but all of the statements that are related to it in some way. 



12.5 Exception handling | 433

The idea is that a try block represents a sequence of actions we wish to treat as a logical whole 
but recognize that they might fail at some point.5 The catch block will then attempt to deal with 
the situation or report the problem if an exception arises from any statement within the associ-
ated try block. Note that, because both the try and catch blocks make use of the filename vari-
able, it has to be declared outside the try statement in this example, for reasons of scope.

In order to understand how an exception handler works, it is essential to appreciate that an excep-
tion prevents the normal flow of control from being continued in the caller. An exception inter-
rupts the execution of the caller’s statements, and hence any statements immediately following the 
problem statement will not be executed. The question then arises, “Where is execution resumed in 
the caller?” A try statement provides the answer: if an exception arises from a statement called in 
the try block, then execution is resumed in the corresponding catch block. So, if we consider the 
example in Code 12.9, the effect of an IOException being thrown from the call to saveToFile
will be that control will transfer from the try block to the catch block, as shown in Code 12.10.

Statements in a try block are known as protected statements. If no exception arises during execu-
tion of protected statements, then the catch block will be skipped over when the end of the try 
block is reached. Execution will continue with whatever follows the complete try/catch statement.

1 Exception thrown from here 2 Control transfers to here

String filename = null;
try {

filename = request-a-file-from-the-user;
addressbook.saveToFile(filename);
successful = true;

}
catch(IOException e) {

System.out.println("Unable to save to " + filename);
successful = false;

}

Code 12.9
An exception handler

5 See Exercise 12.30 for an example of what can happen if a statement that might result in an exception is 
treated in isolation from the statements around it.

try {
filename = request-a-file-from-the-user;
addressbook.saveToFile(filename);
successful = true;

}
catch(IOException e) {

System.out.println("Unable to save to " + filename);
successful = false;

}

Code 12.10
Transfer of control 

in a try statement



434 |       Chapter 12 ■ Handling errors

A catch block names the type of exception it is designed to deal with in a pair of parentheses 
immediately following the catch word. As well as the exception type name, this also includes 
a variable name (traditionally, simply e or ex) that can be used to refer to the exception object 
that was thrown. Having a reference to this object can be useful in providing information that 
will support recovery from, or reporting of, the problem—e.g., accessing any diagnostic mes-
sage placed in it by the throwing method. Once the catch block has been completed, control 
does not return to the statement that caused the exception.

Exercise 12.28 The address-book-v3t project includes some throwing of unchecked 

exceptions if parameter values are null. The project source code also includes the checked 

exception class NoMatchingDetailsException, which is currently unused. Modify the 

removeDetails method of AddressBook so that it throws this exception if its key 

parameter is not a key that is in use. Add an exception handler to the remove method of 

AddressBookTextInterface to catch and report occurrences of this exception.

Exercise 12.29 Make use of NoMatchingDetailsException in the changeDetails
method of AddressBook. Enhance the user interface so that the details of an existing entry 

may be changed. Catch and report exceptions in AddressBookTextInterface that arise 

from use of a key that does not match any existing entry.

Exercise 12.30 Why is the following not a sensible way to use an exception handler? Will 

this code compile and run?

Person p = null;
try {
    // The lookup could fail.
    p = database.lookup(details);
}
catch(Exception e) {
}
System.out.println("The details belong to: " + p);

Note that in all the examples of try statements you have seen, the exception is not thrown 
directly by the statements in the try block, which is in the client object. Rather, the exception 
arises indirectly, passed back from a method in the server object, which is called from the state-
ments within the try block. This is the usual pattern, and it would almost certainly be a mistake 
to enclose a throw statement directly within a try statement.

12.5.3 Throwing and catching multiple exceptions

Sometimes a method throws more than one type of exception in order to indicate different sorts 
of problems. Where these are checked exceptions, they must all be listed in the throws clause of 
the method, separated by commas. For instance:

public void process()
    throws EOFException, FileNotFoundException



12.5 Exception handling | 435

An exception handler must cater for all checked exceptions thrown from its protected state-
ments, so a try statement may contain multiple catch blocks, as shown in Code 12.11. Note that 
the same variable name can be used for the exception object in each case.

try {
...
ref.process();
...

}
catch(EOFException e) {
    // Take action appropriate to an end-of-file exception.

...
}
catch(FileNotFoundException e) {
    // Take action appropriate to a file-not-found exception.

...
}

Code 12.11
Multiple catch blocks 

in a try statement

When an exception is thrown by a method call in a try block, the catch blocks are checked 
in the order in which they are written until a match is found for the exception type. So, if 
an EOFException is thrown, then control will transfer to the first catch block, and if a 
FileNotFoundException is thrown, then control will transfer to the second. Once the end of 
a single catch block is reached, execution continues following the last catch block.

Polymorphism can be used to avoid writing multiple catch blocks, if desired. However, this 
could be at the expense of being able to take type-specific recovery actions. In Code 12.12, 
the single catch block will handle every exception thrown by the protected statements. This 
is because the exception-matching process that looks for an appropriate catch block simply 
checks that the exception object is an instance of the type named in the block. As all exceptions 
are subtypes of the Exception class, the single block will catch everything, whether checked 
or unchecked. From the nature of the matching process, it follows that the order of catch blocks 
in a single try statement matters and that a catch block for one exception type cannot follow a 
block for one of its supertypes (because the earlier supertype block will always match before 
the subtype block is checked). The compiler will report this as an error.

try {
...
ref.process();
...

}
catch(Exception e) {
    // Take action appropriate to all exceptions.

...
}

Code 12.12
Catching all exceptions 

in a single catch block



436 |       Chapter 12 ■ Handling errors

12.5.4 Multi-catch Java 7

A new feature was introduced in Java 7 that allows multiple exceptions to be handled in the 
same catch block. This reduces the code duplication involved when the same recovery action is 
required for different exception types. The different exception types are written in front of the 
exception variable name, separated by the “|” symbol. See Code 12.13.

try {
...
ref.process();
...

}
catch(EOFException | FileNotFoundException e) {
    // Take action appropriate to both exceptions.

...
}

Code 12.13
Multi-catch in Java 7

Java 7 also introduced another new feature to the try statement, called “try-with-resources” or 
“automatic resource management” (ARM). We shall cover this briefly, along with file handling, 
in Section 12.9.

Exercise 12.31 Enhance the try statements you wrote as solutions to Exercises 12.28 and 

12.29 so that they handle checked and unchecked exceptions in different catch blocks.

Exercise 12.32 What is wrong with the following try statement?

    Person p = null;
    try {
        p = database.lookup(details);
        System.out.println("The details belong to: " + p);
    }
    catch(Exception e) {
        // Handle any checked exceptions ...
        ...
    }
    catch(RuntimeException e) {
        // Handle any unchecked exceptions ...
        ...
    }

12.5.5 Propagating an exception

So far, we have suggested that an exception must be caught and handled at the earliest possible 
opportunity. That is, an exception thrown in a method process would have to be caught and 
handled in the method that called process. In fact, this is not strictly the case, as Java allows 



12.5 Exception handling | 437

an exception to be propagated from the client method to the caller of the client method, and 
possibly beyond. A method propagates an exception simply by not including an exception 
handler to protect the statement that might throw it. However, for a checked exception, the 
compiler requires that the propagating method include a throws clause, even though it does not 
itself create and throw the exception. This means that you will sometimes see a method that 
has a throws clause but with no throw statement in the method body. Propagation is common 
where the calling method is either unable to, or does not need to, undertake any recovery action 
itself, but this might be possible or necessary from within higher-level calls. It is also common 
in constructors, where a constructor’s actions in setting up a new object fail and the constructor 
cannot recover from this.

If the exception being propagated is unchecked, then the throws clause is optional, and we pre-
fer to omit it.

12.5.6 The finally clause

A try statement can include a third component that is optional. This is the finally clause
(Code 12.14), and it is often omitted. The finally clause provides for statements that should 
be executed whether an exception arises in the protected statements or not. If control reaches 
the end of the try block, then the catch blocks are skipped and the finally clause is executed. 
Conversely, if an exception is thrown from the try block, the appropriate catch block is executed
and this is then followed by execution of the finally clause.

try {
Protect one or more statements here.

}
catch(Exception e) {

Report and recover from the exception here.
}
finally {

Perform any actions here common to whether or not
an exception is thrown.

}

Code 12.14
A try statement with a 

finally clause

At first sight, a finally clause would appear to be redundant. Doesn’t the following example il-
lustrate the same flow of control as Code 12.14?

try {
Protect one or more statements here.

}
catch(Exception e) {

Report and recover from the exception here.
}
Perform any actions here common to whether or not an exception is thrown.



438 |       Chapter 12 ■ Handling errors

In fact, there are at least two cases where these two examples would have different effects:

■ A finally clause is executed even if a return statement is executed in the try or catch blocks.

■ If an exception is thrown in the try block but not caught, then the finally clause is still executed.

In the latter case, the uncaught exception could be an unchecked exception that does not require 
a catch block, for instance. However, it could also be a checked exception that is not handled 
by a catch block but propagated from the method, to be handled at a higher level in the call 
sequence. In such a case, the finally clause would still be executed.

It is also possible to omit the catch blocks in a try statement that has both a try block and a 
finally clause if the method is propagating all exceptions:

try {
Protect one or more statements here.

}
finally {

Perform any actions here common to whether or not
        an exception is thrown.
}

12.6 Defining new exception classes
Where the standard exception classes do not satisfactorily describe the nature of an error condition, 
new, more-descriptive exception classes can be defined using inheritance. New checked exception 
classes can be defined as subclasses of any existing checked exception class (such as Exception), 
and new unchecked exceptions would be subclasses of the RuntimeException hierarchy.

All existing exception classes support the inclusion of a diagnostic string passed to a construc-
tor. However, one of the main reasons for defining new exception classes is to include further 
information within the exception object to support error diagnosis and recovery. For instance, 
some methods in the address-book application, such as changeDetails, take a key parameter 
that should match an existing entry. If no matching entry can be found, then this represents a 
programming error, as the methods cannot complete their task. In reporting the exception, it 
is helpful to include details of the key that caused the error. Code 12.15 shows a new checked 
exception class that is defined in the address-book-v3t project. It receives the key in its con-
structor and then makes it available through both the diagnostic string and a dedicated accessor 
method. If this exception were to be caught by an exception handler in the caller, the key would 
be available to the statements that attempt to recover from the error.

/**
 * Capture a key that failed to match an entry
 * in the address book.
 *
 * @author David J. Barnes and Michael Kölling.
 * @version 2011.07.31
 */

Code 12.15
An exception class with 

extra diagnostic 

information



12.6 Defining new exception classes | 439

The principle of including information that could support error recovery should particularly be kept 
in mind when defining new checked exception classes. Defining formal parameters in an excep-
tion’s constructor will help to ensure that diagnostic information is available. In addition, where 
recovery is either not possible or not attempted, ensuring that the exception’s toString method is 
overridden to include appropriate information will help in diagnosing the reason for the error.

public class NoMatchingDetailsException extends Exception
{
    // The key with no match.

private String key;

    /**
     * Store the details in error.
     * @param key The key with no match.
     */

public NoMatchingDetailsException(String key)
{

this.key = key;
}

    /**
     * @return The key in error.
     */

public String getKey()
{

return key;
}

    /**
     * @return A diagnostic string containing the key in error.
     */

public String toString()
{

return "No details matching '" + key + "' were found.";
}

}

Code 12.15
continued
An exception class with 

extra diagnostic 

information

Exercise 12.33 In the address-book-v3t project, define a new checked exception class: 

DuplicateKeyException. This should be thrown by the addDetails method if either of 

the non-blank key fields of its actual parameter is already currently in use. The exception class 

should store details of the offending key(s). Make any further changes to the user interface 

class that are necessary to catch and report the exception.

Exercise 12.34 Do you feel that DuplicateKeyException should be a checked or 

unchecked exception? Give reasons for your answer.



440 |       Chapter 12 ■ Handling errors

12.7 Using assertions

12.7.1 Internal consistency checks

When we design or implement a class, we often have an intuitive sense of things that should 
be true at a given point in the execution, but rarely state them formally. For instance, we would 
expect a ContactDetails object to always contain at least one non-blank field, or, when 
the removeDetails method is called with a particular key, we would expect that key to be 
no longer in use at the end of the method. Typically, these are conditions we wish to establish 
while developing a class, before it is released. In one sense, the sort of testing we discussed in 
Chapter 7 is an attempt to establish whether we have implemented an accurate representation 
of what a class or method should do. Characteristic of that style of testing is that the tests are 
external to the class being tested. If a class is changed, then we should take the time to run 
regression tests in order to establish that it still works as it should; it is easy to forget to do that. 
The practice of checking parameters, which we have introduced in this chapter, slightly shifts 
the emphasis from wholly external checking to a combination of external and internal checking. 
However, parameter checking is primarily intended to protect a server object from incorrect 
usage by a client. That still leaves the question of whether we can include some internal checks 
to ensure that the server object behaves as it should.

One way we could implement internal checking during development would be through the nor-
mal exception-throwing mechanism. In practice, we would have to use unchecked exceptions, 
because we could not expect regular client classes to include exception handlers for what are 
essentially internal server errors. We would then be faced with the issue of whether to remove 
these internal checks once the development process has been completed, in order to avoid the 
potentially high cost of runtime checks that are almost certainly bound to pass.

12.7.2 The assert statement

In order to deal with the need to perform efficient internal consistency checks, which can be 
turned on in development code but off in released code, an assertion facility is available in 
Java. The idea is similar to what we saw in Chapter 7 with JUnit testing, where we asserted the 
results we expected from method calls and the JUnit framework tested whether or not those 
assertions were confirmed.

The address-book-assert project is a development version of the address-book projects that 
illustrates how assertions are used. Code 12.16 shows the removeDetails method, which now 
contains two forms of the assert statement.

/**
 * Remove the entry with the given key from the address book.
 * The key should be one that is currently in use.
 * @param key One of the keys of the entry to be removed.
 * @throws IllegalArgumentException If the key is null.
 */

Code 12.16
Using assertions for 

internal consistency 

checks



12.7 Using assertions | 441

The assert keyword is followed by a boolean expression. The purpose of the statement is to 
assert something that should be true at this point in the method. For instance, the first assert
statement in Code 12.16 asserts that keyInUse should return false at that point, either 
because the key wasn’t in use in the first place or because it is no longer in use as the associ-
ated details have now been removed from the address book. This seemingly obvious assertion 
is more important than might at first appear; notice that the removal process does not actually 
involve use of the key with the address book.

Thus, an assert statement serves two purposes. It expresses explicitly what we assume to be true 
at a given point in the execution and therefore increases readability both for the current devel-
oper and for a future maintenance programmer; also, it actually performs the check at runtime 
so that we get notified if our assumption turns out to be incorrect. This can greatly help in find-
ing errors early and easily.

If the boolean expression in an assert statement evaluates to true, then the assert statement 
has no further effect. If the statement evaluates to false, then an AssertionError will be 
thrown. This is a subclass of Error (see Figure 12.1) and is part of the hierarchy regarded as 
representing unrecoverable errors—hence, no handler should be provided in clients.

The second assert statement in Code 12.16 illustrates the alternative form of assert statement. The 
string following the colon symbol will be passed to the constructor of AssertionError to provide 
a diagnostic string. The second expression does not have to be an explicit string; any value-giving 
expression is acceptable and will be turned into a String before being passed to the constructor.

The first assert statement shows that an assertion will often make use of an existing method 
within the class (e.g., keyInUse). The second example illustrates that it might be useful to pro-
vide a method specifically for the purpose of performing an assertion test (consistentSize
in this example). This might be used if the check involves significant computation. Code 12.17 
shows the consistentSize method, whose purpose is to ensure that the numberOfEntries
field accurately represents the number of unique details in the address book.

public void removeDetails(String key)
{

if(key == null) {
throw new IllegalArgumentException(

"Null key passed to removeDetails.");
}
if(keyInUse(key)) {

ContactDetails details = book.get(key);
book.remove(details.getName());
book.remove(details.getPhone());
numberOfEntries--;

}
assert !keyInUse(key);
assert consistentSize() :

"Inconsistent book size in removeDetails";
}

Code 12.16
continued
Using assertions for 

internal consistency 

checks

Concept:

An assertion is a 

statement of a fact 

that should be true 

in normal program 

execution. We can 

use assertions to 

state our assump-

tions explicitly and 

to detect program-

ming errors more 

easily.



442 |       Chapter 12 ■ Handling errors

12.7.3 Guidelines for using assertions

Assertions are primarily intended to provide a way to perform consistency checks during the 
development and testing phases of a project. They are not intended to be used in released code. 
It is for this reason that a Java compiler will include assert statements in the compiled code only 
if requested to do so. It follows that assert statements should never be used to perform normal 
functionality. For instance, it would be wrong to combine assertions with removal of details, as 
follows, in the address book:

// Error: don’t use assert with normal processing!
assert book.remove(details.getName()) != null;
assert book.remove(details.getPhone()) != null;

/**
 * Check that the numberOfEntries field is consistent with
 * the number of entries actually stored in the address book.
 * @return true if the field is consistent, false otherwise.
 */
private boolean consistentSize()
{

Collection<ContactDetails> allEntries = book.values();
    // Eliminate duplicates, as we are using multiple keys.

Set<ContactDetails> uniqueEntries =
new HashSet<ContactDetails>(allEntries);

int actualCount = uniqueEntries.size();
return numberOfEntries == actualCount;

}

Code 12.17
Checking for internal 

consistency in the 

address book

Exercise 12.35 Open the address-book-assert project. Look through the AddressBook
class and identify all of the assert statements to be sure that you understand what is being 

checked and why.

Exercise 12.36 The AddressBookDemo class contains several test methods that call 

methods of AddressBook that contain assert statements. Look through the source of 

AddressBookDemo to check that you understand the tests, and then try out each of the test 

methods. Are any assertion errors generated? If so, do you understand why?

Exercise 12.37 The changeDetails method of AddressBook currently has no assert 

statements. One assertion we could make about it is that the address book should contain the 

same number of entries at the end of the method as it did at the start. Add an assert statement 

(and any other statements you might need) to check this. Run the testChange method of 

AddressBookDemo after doing so. Do you think this method should also include the check 

for a consistent size?



12.8 Error recovery and avoidance | 443

12.7.4 Assertions and the BlueJ unit-testing framework

In Chapter 7, we introduced the support that BlueJ provides for the JUnit unit-testing 
framework. That support is based on the assertion facility we have been discussing in this 
section. Methods from the framework, such as assertEquals, are built around an asser-
tion statement that contains a boolean expression made up from their parameters. If JUnit 
test classes are used to test classes containing their own assertion statements, then assertion 
errors from these statements will be reported in the test-results window along with test-
class assertion failures. The address-book-junit project contains a test class to illustrate 
this combination. The testAddDetailsError method of AddressBookTest will trigger 
an assertion error, because addDetails should not be used to change existing details (see 
Exercise 12.33).

12.8 Error recovery and avoidance
So far, the main focus of this chapter has been on the problem of identifying errors in a server 
object and ensuring that any problem is reported back to the client if appropriate. There are two 
complementary issues that go with error reporting: error recovery and error avoidance.

12.8.1 Error recovery

The first requirement of successful error recovery is that clients take note of any error notifica-
tion that they receive. This may sound obvious, but it is not uncommon for a programmer to 
assume that a method call will not fail and so not bother to check the return value. While ignor-
ing errors is harder to do when exceptions are used, we have often seen the equivalent of the 
following approach to exception handling:

AddressDetails details = null;
try {
    details = contacts.getDetails(...);
}

Exercise 12.38 Suppose that we decide to allow the address book to be indexed by 

address as well as name and phone number. If we simply add the following statement to the 

addDetails method

book.put(details.getAddress(), details);

do you anticipate that any assertions will now fail? Try it. Make any further necessary changes 

to AddressBook to ensure that all of the assertions are now successful.

Exercise 12.39 ContactDetails are immutable objects—that is, they have no muta-

tor methods. How important is this fact to the internal consistency of an AddressBook?

Suppose the ContactDetails class had a setPhone method, for instance? Can you 

devise some tests to illustrate the problems this could cause?



444 |       Chapter 12 ■ Handling errors

catch(Exception e) {
    System.out.println("Error: " + e);
}
String phone = details.getPhone();

The exception has been caught and reported, but no account has been taken of the fact that it is 
probably incorrect just to carry on regardless.

Java’s try statement is the key to supplying an error-recovery mechanism when an exception 
is thrown. Recovery from an error will usually involve taking some form of corrective action 
within the catch block and then trying again. Repeated attempts can be made by placing the 
try statement in a loop. An example of this approach is shown in Code 12.18, which is an 
expanded version of Code 12.9. The efforts to compose an alternative filename could involve 
trying a list of possible folders, for instance, or prompting an interactive user for different 
names.

// Try to save the address book.
boolean successful = false;
int attempts = 0;
do {

try {
addressbook.saveToFile(filename);
successful = true;

}
catch(IOException e) {

System.out.println("Unable to save to " + filename);
attempts++;
if(attempts < MAX_ATTEMPTS) {

filename = an alternative file name;
}

}
} while(!successful && attempts < MAX_ATTEMPTS);
if(!successful) {

Report the problem and give up;
}

Code 12.18
An attempt at error 

recovery

Although this example illustrates recovery for a specific situation, the principles it illustrates 
are more general:

■ Anticipating an error, and recovering from it, will usually require a more complex flow of 
control than if an error cannot occur.

■ The statements in the catch block are key to setting up the recovery attempt.

■ Recovery will often involve having to try again.

■ Successful recovery cannot be guaranteed.

■ There should be some escape route from endlessly attempting hopeless recovery.



12.8 Error recovery and avoidance | 445

There won’t always be a human user around to prompt for alternative input. It might be the 
client object’s responsibility to log the error so that it can be investigated.

12.8.2 Error avoidance

It should be clear that arriving at a situation where an exception is thrown will be, at worst, fatal 
to the execution of a program and, at best, messy to recover from in the client. It can be simpler 
to try to avoid the error in the first place, but this often requires collaboration between server 
and client.

Many of the cases where an AddressBook object is forced to throw an exception involve null
parameter values passed to its methods. These represent logical programming errors in the cli-
ent that could clearly be avoided by simple prior tests in the client. Null parameter values are 
usually the result of making invalid assumptions in the client. For instance, consider the follow-
ing example:

String key = database.search(zipCode);
ContactDetails university = contacts.getDetails(key);

If the database search fails, then the key it returns may well be either blank or null. Passing 
that result directly to the getDetails method will produce a runtime exception. However, 
using a simple test of the search result, the exception can be avoided and the real problem of a 
failed zip code search can be addressed instead:

String key = database.search(zipCode);
if(key != null && key.length() > 0) {
    ContactDetails university = contacts.getDetails(key);
    ......

}
else {

Deal with the zipcode error . . .
}

In this case, the client could establish for itself that it would be inappropriate to call the serv-
er’s method. This is not always possible, and sometimes the client must enlist the help of the 
server.

Exercise 12.33 established the principle that the addDetails method should not accept a 
new set of details if one of the key values is already in use for another set. In order to avoid 
an inappropriate call, the client could make use of the address book’s keyInUse method, as 
follows:

// Add what should be a new set of details to the address book.
if(contacts.keyInUse(details.getName()) {
    contacts.changeDetails(details.getName(), details);
}
else if(contacts.keyInUse(details.getPhone()) {
    contacts.changeDetails(details.getPhone(), details);
}
else {

Add the details . . .
}



446 |       Chapter 12 ■ Handling errors

Using this approach, it is clearly possible to completely avoid a DuplicateKeyException
being thrown from addDetails, which suggests that it could be downgraded from a checked 
to an unchecked exception.

This particular example illustrates some important general principles:

■ If a server’s validity-check and state-test methods are visible to a client, the client will often 
be able to avoid causing the server to throw an exception.

■ If an exception can be avoided in this way, then the exception being thrown really represents 
a logical programming error in the client. This suggests use of an unchecked exception for 
such situations.

■ Using unchecked exceptions means that the client does not have to use a try statement when 
it has already established that the exception will not be thrown. This is a significant gain, 
because having to write try statements for “cannot happen” situations is annoying for a pro-
grammer and makes it less likely that providing proper recovery for genuine error situations 
will be taken seriously.

The effects are not all positive, however. Here are some reasons why this approach is not 
always practical:

■ Making a server class’s validity-check and state-test methods publicly visible to its clients 
might represent a significant loss of encapsulation and result in a higher degree of coupling 
between server and client than is desirable.

■ It will probably not be safe for a server class to assume that its clients will make the neces-
sary checks that avoid an exception. As a result, those checks will often be duplicated in both 
client and server. If the checks are computationally “expensive” to make, then duplication 
may be undesirable or prohibitive. However, our view would be that it is better to sacrifice 
efficiency for the sake of safer programming, where the choice is available.

12.9 File-based input/output
An important programming area in which error recovery cannot be ignored is input/output. 
This is because a programmer may have little direct control over the external environment in 
which their code is executed. For instance, a required data file may have been accidentally 
deleted or have become corrupted in some way, before the application is run; or an attempt to 
store results to the file system may be thwarted by lack of appropriate permissions or exceed-
ing a file-system quota. There are many ways in which an input or output operation could fail 
at any stage. Furthermore, modern input/output has moved beyond a program simply accessing 
its local file store to a networked environment in which connectivity to the resources being 
accessed may be fragile and inconsistent—for example, when in a mobile environment.

The Java API has undergone a number of evolutions over the years, reflecting the increasing 
diversity of environments in which Java programs have come to be used. The core package for 
input/output-related classes has always been java.io. This package contains numerous classes 
to support input/output operations in a platform-independent manner. In particular, it defines the 
checked exception class IOException as a general indicator that something has gone wrong 
with an input/output operation, and almost any input/output operation must anticipate that one 



12.9 File-based input/output | 447

of these might be thrown. Instances of checked subclasses of IOException may be thrown 
at times to provide more-detailed diagnostic information, such as FileNotFoundException
and EOFException. From Java 7, a shift is taking place from a number of classes in the java.
io package to those in the java.nio hierarchy, although without completely superseding eve-
rything in java.io. We will introduce some of these new classes alongside the legacy ones.

A full description of the many different classes in the java.io and java.nio packages is 
beyond the scope of this book, but we shall provide some fundamental examples within the 
context of several of the projects we have already seen. This should give you enough back-
ground to experiment with input/output in your own projects. In particular, we shall illustrate 
the following common tasks:

■ obtaining information about a file from the file system

■ writing textual output to a file with the FileWriter class

■ reading textual input from a file with the FileReader and BufferedReader classes

■ anticipating IOException exceptions

■ parsing input with the Scanner class

In addition, we look at reading and writing binary versions of objects as a brief introduction to 
Java’s serialization feature.

For further reading on input/output in Java, we recommend Oracle’s tutorial, which can be 
found online at:

http://download.oracle.com/javase/tutorial/essential/io/index.html

12.9.1 Readers, writers, and streams

Several of the classes of the java.io package fall into one of two main categories: those 
dealing with text files and those dealing with binary files. We can think of text files as contain-
ing data in a form similar to Java’s char type—typically simple, line-based, human-readable 
alphanumeric information. Web pages, written in HTML, are a particular example. Binary 
files are more varied: image files are one common example, as are executable programs such 
as word processors and media players. Java classes concerned with processing text files are 
known as readers and writers, whereas those concerned with binary files are known as stream
handlers. In the main, we shall focus on readers and writers.

12.9.2 The File class and Path interface

A file is much more than just a name and some contents. A file will be located in a particular 
folder or directory on a particular disk drive, for instance, and different operating systems have 
different conventions for which characters are used in file pathnames. The File class allows a 
program to enquire about details of an external file in a way that is independent of the particular 
file system on which the program is running. The name of the file is passed to the constructor of 
File. Creating a File object within a program does not create a file in the file system. Rather, 
it results in details about a file being stored in the File object if the external file exists.

http://download.oracle.com/javase/tutorial/essential/io/index.html


448 |       Chapter 12 ■ Handling errors

In Java 7, the Path interface in java.nio.file fulfills a similar role. Because Path is an 
interface rather than a class, a concrete instance of an implementing class is created via a static 
get method of the Paths class (note the plural name), which is also in the java.nio.file
package. When working with legacy code, an equivalent Path object may be created from a 
File object via the toPath method of File.

We can sometimes avoid getting into situations that require an exception to be handled, by 
using a File or Path object to check whether or not a file exists. A File object has exists
and canRead methods, which make attempting to open a file less likely to fail if we use them 
first. However, because opening a file that we know exists still requires a potential exception to 
be handled, most people don’t bother with checking first.

Path does not itself have equivalent methods. Instead, the Files class (plural, again) provides 
a large number of static methods for querying the attributes of a Path object; for instance, 
exists, isReadable, isDirectory, etc.

Exercise 12.40 Read the API documentation for the File class from the java.io pack-

age. What sort of information is available on files?

Exercise 12.41 Using a File object, how can you tell whether a file name represents an 

ordinary file or a directory (folder)?

Exercise 12.42 Is it possible to determine anything about the contents of a particular file 

from the information stored in a File object?

Exercise 12.43 If you are using Java 7, repeat the preceding three exercises using the 

Path and Files classes.

12.9.3 File output

There are three steps involved in storing data in a file:

1 The file is opened.

2 The data is written.

3 The file is closed.

The nature of file output means that any of these steps could fail, for a range of reasons, many 
completely beyond the application programmer’s control. As a consequence, it will be neces-
sary to anticipate exceptions being thrown at every stage.

In order to write a text file, it is usual to create a FileWriter object, whose constructor takes the 
name of the file to be written. The file name can be either in the form of a String or a File object. 
Creating a FileWriter has the effect of opening the external file and preparing it to receive 
some output. If the attempt to open the file fails for any reason, then the constructor will throw 
an IOException. Reasons for failure might be that file system permissions prevent a user from 
writing to certain files or that the given file name does not match a valid location in the file system.



12.9 File-based input/output | 449

When a file has been opened successfully, then the writer’s write methods can be used to store 
characters—often in the form of strings—into the file. Any attempt to write could fail, even if 
the file has been opened successfully. Such failures are rare, but still possible.

Once all output has been written, it is important to formally close the file. This ensures that all the 
data really has been written to the external file system, and it often has the effect of freeing some 
internal or external resources. Once again, on rare occasions the attempt to close the file could fail.

The basic pattern that emerges from the above discussion looks like this:

try {
    FileWriter writer = new FileWriter("... name of file ...");
    while(there is more text to write) {
       ...
        writer.write(next piece of text);
       ...
    }
    writer.close();
}
catch(IOException e) {

something went wrong in dealing with the file
}

The main issue that arises is how to deal with any exceptions that are thrown during the three stages. 
An exception thrown when attempting to open a file is really the only one it is likely to be possible to 
do anything about, and only then if there is some way to generate an alternative name to try instead. 
As this will usually require the intervention of a human user of the application, the chances of deal-
ing with it successfully are obviously application- and context-specific. If an attempt to write to the 
file fails, then it is unlikely that repeating the attempt will succeed. Similarly, failure to close a file is 
not usually worth a further attempt. The consequence is likely to be an incomplete file.

An example of this pattern can be seen in Code 12.19. The LogfileCreator class in the 
weblog-analyzer project includes a method to write a number of random log entries to a file 
whose name is passed as a parameter to the createFile method. This uses two different 
write methods: one to write a string and one to write a character. After writing out the text of 
the entry as a string, we write a newline character so that each entry appears on a separate line.

/**
 * Create a file of random log entries.
 * @param filename The file to write.
 * @param numEntries How many entries.
 * @return true if successful, false otherwise.
 */
public boolean createFile(String filename, int numEntries)
{

boolean success = false;
try {

FileWriter writer = new FileWriter(filename);
LogEntry[] entries = new LogEntry[numEntries];

Code 12.19
Writing to a text file



450 |       Chapter 12 ■ Handling errors

for(int i = 0; i < numEntries; i++) {
entries[i] = createEntry();

}
Arrays.sort(entries);
for(int i = 0; i < numEntries; i++) {

writer.write(entries[i].toString());
writer.write('\n');

}

writer.close();
success = true;

}
catch(IOException e) {

System.err.println("There was a problem writing to " +
   filename);

}
return success;

}

Code 12.19
continued
Writing to a text file

One problem with the pattern shown in Code 12.19 is that failure, once the file has been 
opened, will leave it open. This wastes a small amount of program resource but, more impor-
tantly, leaves the file system in a misleading position, because it must assume that the program 
is still using the file. See the following section for a way to deal with error situations as a result 
of changes introduced in Java 7.

12.9.4 The try-with-resource statement

Java 7 introduced a feature to the try statement for dealing with situations where a resource 
such as an open file should definitely be closed once it is finished with—whether the use of it 
completed successfully or not. This form is called try with resource or automatic resource man-
agement (ARM). Code 12.20 shows its use with an alternative version of Code 12.19, which 
you can find in the project weblog-analyzer-v7.

/**
 * Create a file of random log entries.
 * @param filename The file to write.
 * @param numEntries How many entries.
 * @return true if successful, false otherwise.
 */

Code 12.20
Writing to a text file 

using a try-with-

resource statement



12.9 File-based input/output | 451

The resource is created in a new parenthesized section immediately after the try word. Once 
the try statement is completed, the close method will be called automatically on this resource. 
This version of the try statement is only appropriate for objects of classes that implement the 
AutoCloseable interface, defined in the java.lang package. These will predominantly be 
classes associated with input/output.

public boolean createFile(String filename, int numEntries)
{

boolean success = false;
try(FileWriter writer = new FileWriter(filename)) {

entry creation omitted

for(int i = 0; i < numEntries; i++) {
writer.write(entries[i].toString());
writer.write('\n');

}
success = true;

}
catch(IOException e) {

System.err.println("There was a problem writing to " +
  filename);

}
return success;

}

Code 12.20
continued
Writing to a text file 

using a try-with-

resource statement

Exercise 12.44 Modify the world-of-zuul project so that it writes a script of user input to a text 

file as a record of the game. There are several different ways that you might think of tackling this:

■ You could modify the Parser class to store each line of input in a list and then write out 

the list at the end of the game. This will produce a solution that is closest to the basic pat-

tern we have outlined in the discussion above.

■ You could place all of the file handling in the Parser class so that, as each line is read, 

it is written out immediately in exactly the same form as it was read. File opening, writ-

ing, and closing will all be separated in time from one another (or would it make sense to 

open, write, and then close the file for every line that is written?).

■ You could place the file handling in the Game class and implement a toString method 

in the Command class to return the String to be written for each command.

Consider each of these possible solutions in terms of responsibility-driven design and the han-

dling of exceptions, along with the likely implications for playing the game if it proves impos-

sible to write the script. How can you ensure that the script file is always closed when the end 

of the game is reached? This is important to ensure that all of the output is actually written to 

the external file system.



452 |       Chapter 12 ■ Handling errors

12.9.5 Text input

The complement to the output of text with a FileWriter is the input with a FileReader. As you 
might expect, a complementary set of three input steps is required: opening the file, reading from 
it, and closing it. Just as the natural units for writing text are characters and strings, the obvious 
units for reading text are characters and lines. However, although the FileReader class contains 
a method to read a single character,6 it does not contain a method to read a line. The problem with 
reading lines from a file is that there is no predefined limit to the length of a line. This means that 
any method to return the next complete line from a file must be able to read an arbitrary number of 
characters. For this reason, we usually want to be working with the BufferedReader class, which 
does define a readLine method. However, BufferedReader cannot open files! Therefore, 
we must create a FileReader first and immediately wrap it in a BufferedReader object. 
Thereafter, we ignore the FileReader object and work solely with the BufferedReader.

The line-termination character is always removed from the String that readLine returns, and 
a null value is used to indicate the end of file.

This suggests the following basic pattern for reading the contents of a text file:

try {

    BufferedReader reader = new BufferedReader(
        new FileReader("... name of file ..."));
    String line = reader.readLine();
    while(line != null) {

do something with line
        line = reader.readLine();
    }
    reader.close();
}
catch(FileNotFoundException e) {

the specified file could not be found
}
catch(IOException e) {

something went wrong with reading or closing
}

Note that we don’t even bother to store the FileReader object into a variable, but pass it 
straight to the constructor of BufferedReader. This avoids the confusion of having two 
Reader variables referring to the same source of input, because we should access the file only 
via the BufferedReader object.

With Java 7, we would use a try-with-resources statement here, as above, but also see below for 
an alternative way to create the BufferedReader via the Files class.

Code 12.21 illustrates the practical use of a BufferedReader in the tech-support project from 
Chapter 5. This has been done so that we can read the system’s default responses from a file 
rather than hardwiring them into the code of the Responder class (project: tech-support-io).

6 In fact, its read method returns each character as an int value rather than as a char, because it uses 
an out-of-bounds value, -1, to indicate the end of the file. This is exactly the sort of technique we de-
scribed in Section 12.3.2.



12.9 File-based input/output | 453

import java.io.*;
import java.util.*;

public class Responder
{
    // Default responses to use if we don’t recognize a word.

private List<String> defaultResponses;
    // The name of the file containing the default responses.

private static final String FILE_OF_DEFAULT_RESPONSES =
"default.txt";

. . . other fields and methods omitted . . .

    /**
     * Build up a list of default responses from which we can pick
     * if we don’t know what else to say.
     */

private void fillDefaultResponses()
{

try {
BufferedReader reader = new BufferedReader(

new FileReader(FILE_OF_DEFAULT_RESPONSES));
String response = reader.readLine();
while(response != null) {

defaultResponses.add(response);
response = reader.readLine();

}
reader.close();

}
catch(FileNotFoundException e) {

System.err.println("Unable to open " +
FILE_OF_DEFAULT_RESPONSES);

}
catch(IOException e) {

System.err.println("A problem was encountered reading " +
  FILE_OF_DEFAULT_RESPONSES);

}
        // Make sure we have at least one response.

if(defaultResponses.size() == 0) {
defaultResponses.add("Could you elaborate on that?");

}
}

}

Code 12.21
Reading from a text file

As with output, the question arises as to what to do about any exceptions thrown during the 
whole process. In this example, we have printed an error message and then provided at least 
one response in case of a complete failure to read anything.



454 |       Chapter 12 ■ Handling errors

With Java 7, the normal way to create a BufferedReader is via the static new-
BufferedReader method of the Files class. In addition to a Path parameter corresponding 
to the file to be opened, one complication is that a Charset parameter is also required. This 
is used to describe the character set to which the characters in the file belong. Charset can be 
found in the java.nio.charset package. There are a number of standard character sets, such 
as US-ASCII and ISO-8859-1, and more details can be found in the API documentation for 
Charset. Code 12.22 shows the use of these features to read a text file.

import java.io.*;
import java.nio.charset.Charset;
import java.nio.file.*;
import java.util.*;

public class Responder
{

. . . fields and methods omitted . . .

    /**
     * Build up a list of default responses from which we can pick
     * if we don’t know what else to say.
     */

private void fillDefaultResponses()
{

Charset charset = Charset.forName("US-ASCII");
Path path = Paths.get(FILE_OF_DEFAULT_RESPONSES);
try(BufferedReader reader =

Files.newBufferedReader(path, charset)) {
String response = reader.readLine();
while(response != null) {

defaultResponses.add(response);
response = reader.readLine();

}
}
catch(FileNotFoundException e) {

System.err.println("Unable to open " +
  FILE_OF_DEFAULT_RESPONSES);

}
catch(IOException e) {

System.err.println("A problem was encountered reading " +
  FILE_OF_DEFAULT_RESPONSES);

}
        // Make sure we have at least one response.

if(defaultResponses.size() == 0) {
defaultResponses.add("Could you elaborate on that?");

}
}

}

Code 12.22
Reading from a text file 

with Java 7



12.9 File-based input/output | 455

12.9.5 Scanner: parsing input

So far, we have treated input largely as unstructured lines of text, for which BufferedReader
is the ideal class. However, many applications will then go on to decompose the individual lines 
into component pieces representing multi-typed data values. For instance, comma-separated 
values (CSV) format is a commonly used way to store text files whose lines consist of multiple 
values, each of which is separated from its neighbors by a comma character.7 In effect, such 
lines of text have an implicit structure. Identifying the underlying structure is known as parsing,
while piecing the individual characters into separate data values is known as scanning.

The Scanner class, in the java.util package, is specifically designed to scan text and convert 
composite sequences of characters to typed values, such as integers (nextInt) and floating-point 
numbers (nextDouble). While a Scanner can be used to break up String objects, it is also 
often used to read and convert the contents of files directly instead of using BufferedReader.
It has constructors that can take String, File, or (in Java 7) Path arguments. Code 12.23 illus-
trates how a text file that is to be interpreted as containing integer data might be read in this way.

Exercise 12.45 The file default.txt in the project folder contains the default responses 

read in by the fillDefaultResponses method. Using any text editor, change the content 

of this file so that it contains an empty line between any two responses. Then change your 

code to work correctly again in reading in the responses from this file.

Exercise 12.46 Change your code so that several lines of text found in the file not sepa-

rated by an empty line are read as one single response. Change the default.txt file so that 

is contains some responses spanning multiple lines. Test.

Exercise 12.47 Modify the Responder class of the tech-support-io project so that it 

reads the associations between keywords and responses from a text file, rather than initializing 

responseMap with strings written into the source code in the fillResponseMap method. 

You can use the fillDefaultResponses method as a pattern, but you will need to make 

some changes to its logic, because there are two strings to be read for each entry rather than 

one— the keyword and the response. Try storing keywords and responses on alternating lines; 

keep the text of each response on a single line. You may assume that there will always be an 

even number of lines (i.e., no missing responses).

7 In practice, any character can be used in place of a comma; for instance, a tab character is frequently 
used.

/**
 * Read integers from a file and return them
 * as an array.
 * @param filename The file to be read.
 * @return The integers read.
 */

Code 12.23
Reading integer data 

with Scanner



456 |       Chapter 12 ■ Handling errors

Note that this method does not guarantee to read the whole file. The Scanner’s hasNextInt
method that controls the loop will return false if it encounters text in the file that does not 
appear to be part of an integer. At that point, the data gathering will be terminated. In fact, it 
is perfectly possible to mix calls to the different next methods when parsing a complete file, 
where the data it contains is to be interpreted as consisting of mixed types.

Another common use of Scanner is to read input from the “terminal” connected to a program. 
We have regularly used calls to the print and println methods of System.out to write 
text to the BlueJ terminal window. System.out is of type java.io.PrintStream and maps 
to what is often called the standard output destination. Similarly, there is a corresponding 
standard input source available as System.in, which is of type java.io.InputStream. An 
InputStream is not normally used directly when it is necessary to read user input from the ter-
minal, because it delivers input one character at a time. Instead, System.in is usually passed 
to the constructor of a Scanner. The InputReader class in the tech-support-complete project 
of Chapter 5 uses this approach to read questions from the user:

Scanner reader = new Scanner(System.in);
. . . intervening code omitted . . .
String inputLine = reader.nextLine();

The nextLine method of Scanner returns the next complete line of input from standard input 
(without including the final newline character).

public int[] readInts(String filename)
{

int[] data;
try {

List<Integer> values = new ArrayList<Integer>();
Scanner scanner = new Scanner(new File(filename));
while(scanner.hasNextInt()) {

values.add(scanner.nextInt());
}

        // Copy them to an array of the exact size.
data = new int[values.size()];
Iterator<Integer> it = values.iterator();
int i = 0;
while(it.hasNext()) {

data[i] = it.next();
i++;

}
}
catch(FileNotFoundException e) {

System.out.println("Cannot find file: " + filename);
data = new int[0];

}
return data;

}

Code 12.23
continued
Reading integer data 

with Scanner



12.9 File-based input/output | 457

12.9.7 Object serialization

In simple terms, serialization allows a whole object to be written to an external file in a single 
write operation and read back in at a later stage using a single read operation.8 This works 
with both simple objects and multi-component objects such as collections. This is a significant 
feature that avoids having to read and write objects field by field. It is particularly useful in 
applications with persistent data, such as address books or media databases, because it allows 
all entries created in one session to be saved and then read back in at a later session. Of course, 
we have the choice to write out the contents of objects as text strings, but the process of reading 
the text back in again, converting the data to the correct types, and restoring the exact state of a 
complex set of objects is often difficult, if not impossible. Object serialization is a much more 
reliable process.

In order to be eligible to participate in serialization, a class must implement the 
Serializable interface that is defined in the java.io package. However, it is worth not-
ing that this interface defines no methods. This means that the serialization process is man-
aged automatically by the runtime system and requires little user-defined code to be written. 
In the address-book-io project, both AddressBook and ContactDetails implement this 
interface so that they can be saved to a file. The AddressBookFileHandler class defines 
the methods saveToFile and readFromFile to illustrate the serialization process. Code 
12.24 contains the source of saveToFile to illustrate how little code is actually required 
to save the whole address book, in a single write statement. Note too that, because we are 
writing objects in binary form, a Stream object has been used rather than a Writer. The 
AddressBookFileHandler class also includes further examples of the basic reading and 
writing techniques used with text files. See, for instance, its saveSearchResults and 
showSearchResults methods.

Exercise 12.48 Review the InputReader class of tech-support-complete to check that 

you understand how it uses the Scanner class.

Exercise 12.49 Read the API documentation for the Scanner class in the java.util
package. What next methods does it have in addition to those we have discussed in this 

section?

Exercise 12.50 Review the Parser class of zuul-better to also see how it uses the 

Scanner class. It does so in two slightly different ways.

Exercise 12.51 Review the LoglineTokenizer class of weblog-analyzer to see how it 

uses a Scanner to extract the integer values from log lines.

8 This is a simplification, because objects can also be written and read across a network, for instance, and 
not just within a file system.

Concept:

Serialization

allows whole ob-

jects, and object 

hierarchies, to be 

read and written 

in a single opera-

tion. Every object 

involved must be 

from a class that 

implements the 

Serializable
interface.



458 |       Chapter 12 ■ Handling errors

public class AddressBookFileHandler
{

. . . fields and methods omitted . . .

    /**
     * Save a binary version of the address book to the given file.
     * If the file name is not an absolute path, then it is assumed
     * to be relative to the current project folder.
     * @param destinationFile The file where the details
     * are to be saved.
     * @throws IOException If the saving process fails for any reason.
     */

public void saveToFile(String destinationFile) throws IOException
{

File destination = makeAbsoluteFilename(destinationFile);
ObjectOutputStream os = new ObjectOutputStream(

new FileOutputStream
(destination));

os.writeObject(book);
os.close();

}
}

Code 12.24
Serialization of a com-

plete Address Book
with all Contact
Details

Exercise 12.52 Modify the network project from Chapter 9 so that the data can be stored to 

a file. Use object serialization for this. Which classes do you have to declare to be serializable?

Exercise 12.53 What happens if you change the definition of a class by, say, adding an extra 

field and then try to read back serialized objects created from the previous version of the class?

12.10 Summary
When two objects interact, there is always the chance that something could go wrong, for a 
variety of reasons. For instance:

■ The programmer of a client might have misunderstood the state or the capabilities of a par-
ticular server object.

■ A server object may be unable to fulfill a client’s request because of a particular set of exter-
nal circumstances.

■ A client might have been programmed incorrectly, causing it to pass inappropriate parameter 
values to a server method.

If something does go wrong, a program is likely either to terminate prematurely (i.e., crash!) or 
to produce incorrect and undesirable effects. We can go a long way toward avoiding many of 



12.10 Summary | 459

these problems by using exception throwing. This provides a clearly defined way for an object 
to report to a client that something has gone wrong. Exceptions prevent a client from simply 
ignoring the problem, and encourage programmers to try to find an alternative course of action 
as a workaround if something does go wrong.

When developing a class, assert statements can be used to provide internal consistency check-
ing. These are typically omitted from production code.

Input/output is an area where exceptions are likely to occur. This is primarily because a pro-
grammer has little, if any, control over the environments in which their programs are run, but it 
also reflects the complexity and diversity of the environments in which programs are run.

The Java API supports input/output of both textual and binary data via readers, writers, and 
streams. Java 7 has brought changes to I/O through the introduction of the java.nio packages.

Exercise 12.54 Add to the address-book project the ability to store multiple e-mail 

addresses in a ContactDetails object. All of these e-mail addresses should be valid keys. 

Use assertions and JUnit testing through all stages of this process to provide maximum confi-

dence in the final version.

Terms introduced in this chapter

exception, unchecked exception, checked exception, exception handler, assertion, 

serialization

Concept summary

■ exception An exception is an object representing details of a program failure. An exception is 

thrown to indicate that a failure has occurred.

■ unchecked exception An unchecked exception is a type of exception whose use will not 

require checks from the compiler.

■ checked exception A checked exception is a type of exception whose use will require extra 

checks from the compiler. In particular, checked exceptions in Java require the use of throws 

clauses and try statements.

■ exception handler Program code that protects statements in which an exception might be 

thrown is called an exception handler. It provides reporting and/or recovery code should one 

arise.

■ assertion An assertion is a statement of a fact that should be true in normal program execu-

tion. We can use assertions to state our assumptions explicitly and to detect programming 

errors more easily.

■ serialization Serialization allows whole objects, and object hierarchies, to be read and writ-

ten in a single operation. Every object involved must be from a class that implements the 

Serializable interface.



In previous chapters of this book, we have described how to write good classes. We have dis-
cussed how to design them, how to make them maintainable and robust, and how to make them 
interact. All of this is important, but we have omitted one aspect of the task: finding the classes.

In all our previous examples, we have assumed that we more or less know what the classes are 
that we should use to solve our problems. In a real software project, deciding what classes to 
use to implement a solution to a problem can be one of the most difficult tasks. In this chapter, 
we discuss this aspect of the development process.

These initial steps of developing a software system are generally referred to as analysis and 
design. We analyze the problem, and then we design a solution. The first step of design will be 
at a higher level than the class design discussed in Chapter 6. We will think about what classes 
we should create to solve our problem and how exactly they should interact. Once we have a 
solution to this problem, then we can continue with the design of individual classes and start 
thinking about their implementation.

13.1 Analysis and design
Analysis and design of software systems is a large and complex problem area. Discussing it in 
detail is far outside the scope of this book. Many different methodologies have been described 
in the literature and are used in practice for this task. In this chapter, we aim only to give an 
introduction to the problems encountered in the process.

We will use a fairly simple method to address these tasks, which serves well for relatively small 
problems. To discover initial classes, we use the verb/noun method. Then we will use CRC
cards to perform the initial application design.

CHAPTER

13 Designing applications

Main concepts discussed in this chapter:

■ discovering classes

■ CRC cards

■ designing interfaces

■ patterns

Java constructs discussed in this chapter:

(No new Java constructs are introduced in this chapter.)



13.1 Analysis and design | 461

13.1.1 The verb/noun method

This method is all about identifying classes and objects, and the associations and interac-
tions between them. The nouns in a human language describe “things,” such as people, 
buildings, and so on. The verbs describe “actions,” such as writing, eating, etc. From these 
natural-language concepts, we can see that, in a description of a programming problem, the 
nouns will often correspond to classes and objects, whereas the verbs will correspond to the 
things those objects do—that is, to methods. We do not need a very long description to be 
able to illustrate this technique. The description typically needs to be only a few paragraphs 
in length.

The example we will use to discuss this process is the design of a cinema booking system.

13.1.2 The cinema booking example

This time, we will not start by extending an existing project. We now assume that we are 
in a situation where it is our task to create a new application from scratch. The task is to 
create a system that can be used by a company operating cinemas to handle bookings of 
seats for movie screenings. People often call in advance to reserve seats. The application 
should, then, be able to find empty seats for a requested screening and reserve them for the 
customer.

We will assume that we have had several meetings with the cinema operators, during which 
they have described to us the functionality they expect from the system. (Understanding what 
the expected functionality is, describing it, and agreeing about it with a client is a significant 
problem in itself. This, however, is outside the scope of this book and can be studied in other 
courses and other books.)

Here is the description we wrote for our cinema booking system:

The cinema booking system should store seat bookings for multiple theaters. 
Each theater has seats arranged in rows. Customers can reserve seats and are given 
a row number and a seat number. They may request bookings of several adjoining seats.

Each booking is for a particular show (that is, the screening of a given movie 
at a certain time). Shows are at an assigned date and time and are scheduled for 
a theater where they are screened. The system stores the customer’s telephone 
number.

Given a reasonably clear description such as this, we can make a first attempt at discovering 
classes and methods by identifying the nouns and verbs in the text.

13.1.3 Discovering classes

The first step in identifying the classes is to go through the description and mark all the 
nouns and verbs in the text. Doing this, we find the following nouns and verbs. (The nouns are 
shown in the order in which they appear in the text; verbs are shown attached to the nouns they 
refer to.)

Concept:

verb/noun Classes 

in a system roughly 

correspond to 

nouns in the 

system’s description. 

Methods correspond 

to verbs.



462 |       Chapter 13 ■ Designing applications

Nouns Verbs

cinema booking system stores (seat bookings)
stores (telephone number)

seat booking has (seats)
theater

seat
row
customer reserves (seats)

is given (row number, seat number)
requests (seat booking)

row number
seat number
show is scheduled (in theater)

movie
date
time
telephone number

The nouns we identified here give us a first approximation for classes in our system. As a first 
cut, we can use one class for each noun. This is not an exact method; we might find later that 
we need a few additional classes or that some of our nouns are not needed. This, however, we 
will test a bit later. It is important not to exclude any nouns straight away; we do not yet have 
enough information to make an informed decision.

Almost always when we do this exercise with students, some students immediately leave out 
some nouns. For example, a student leaves out the noun “row” from the previous description. 
When questioned about this, students often say: “Well, that’s just a number, so I just use an int. 
That doesn’t need a class.” It is really important at this stage not to do this. We really do not 
have enough information at this point to decide whether row should be an int or a class. We 
can make this decision only much later. For now, we just go through the paragraph mechani-
cally, picking out all nouns. We make no judgments yet about which are “good ones” and which 
are not.

You might like to note that all of the nouns have been written in their singular form. It is typical 
that the names of classes are singular rather than plural. For instance, we would always choose 
to define a class as Cinema rather than Cinemas. This is because the multiplicity is achieved 
by creating multiple instances of a class.

Exercise 13.1 Review projects from earlier chapters in this book. Are there any cases of 

a class name being a plural name? If so, are those situations justified for a particular reason?



13.1 Analysis and design | 463

13.1.4 Using CRC cards

The next step in our design process is to work out interactions between our classes. In order to 
do this, we shall use a method called CRC cards.1

CRC stands for Class/Responsibilities/Collaborators. The idea is to take cardboard cards (nor-
mal index cards do a good job) and use one card for each class. It is important for this activity 
to do this using real, physical cards, not just a computer or a single sheet of paper. Each card is 
divided into three areas: one area at the top left, where the name of the class is written; one area 
below this, to note responsibilities of the class; and one area to the right for writing collabora-
tors of this class (classes that this one uses). Figure 13.1 illustrates the layout of a CRC card.

1 CRC cards were first described in a paper by Kent Beck and Ward Cunningham, titled A Laboratory 
For Teaching Object-Oriented Thinking. This paper is worth reading as information supplemental to this 
chapter. You can find it online at http://c2.com/doc/oopsla89/paper.html or by doing a 
web search for its title.

Figure 13.1
A CRC card

Exercise 13.2 Make CRC cards for the classes in the cinema booking system. At this 

stage, you need only fill in the class names.

13.1.5 Scenarios

Now we have a first approximation to the classes needed in our system, and a physical rep-
resentation of them on CRC cards. In order to figure out necessary interactions between the 
classes in our system, we play through scenarios. A scenario is an example of an activity that 
the system has to carry out or support. Scenarios are also referred to as use cases. We do not 
use that term here because it is often used to denote a more formal way of describing scenarios.

Playing through scenarios is best done in a group. Each group member is assigned one class (or 
a small number of classes), and that person plays their role by saying out loud what the class 
is currently doing. While the scenario is played through, the person records on the CRC card 
everything that is found out about the class in action: what its responsibilities should be and 
which other classes it collaborates with.

Concept:

Scenarios (also 

known as “use 

cases”) can be 

used to get an 

understanding of 

the interactions in a 

system.

http://c2.com/doc/oopsla89/paper.html


464 |       Chapter 13 ■ Designing applications

We start with a simple example scenario:

A customer calls the cinema and wants to make a reservation for two seats tonight to 
watch the classic movie The Shawshank Redemption. The cinema employee starts using 
the booking system to find and reserve a seat.

Because the human user interacts with the booking system (represented by the Cinema 
BookingSystem class), this is where the scenario starts. Here is what might happen next:

■ The user (the cinema employee) wants to find all showings of The Shawshank Redemption
that are on tonight. So we can note on the CinemaBookingSystem CRC card, as a responsi-
bility: Can find shows by title and day. We can also record class Show as a collaborator.

■ We have to ask ourselves: How does the system find the show? Who does it ask? One solu-
tion might be that the CinemaBookingSystem stores a collection of shows. This gives us an 
additional class: the collection. (This might be implemented later by using an ArrayList, a 
LinkedList, a HashSet, or some other form of collection. We can make that decision later; 
for now, we just note this as a Collection.) This is an example of how we might introduce 
additional classes during the playing of scenarios. It might happen every now and then that 
we have to add classes for implementation reasons that we initially overlooked. We add to 
the responsibilities of the CinemaBookingSystem card: Stores collection of shows. And we 
add Collection to the collaborators.

Exercise 13.3 Make a CRC card for the newly identified Collection class, and add it to 

your system.

■ We assume that three shows come up: one at 5:30 p.m., one at 9:00 p.m., and one at 11:30 
p.m. The employee informs the customer of the times, and the customer chooses the one at 
9:00 p.m. So the employee wants to check the details of that show (whether it is sold out, 
which theater it runs at, etc.). Thus, in our system, the CinemaBookingSystem must be able 
to retrieve and display the show’s details. Play this through. The person playing the booking 
system should ask the person playing the show to tell them the required details. Then you 
note on the card for CinemaBookingSystem: Retrieves and displays show details, and on 
the Show card you write: Provides details about theater and number of free seats.

■ Assume that there are plenty of free seats. The customer chooses seats 13 and 14 in row 
12. The employee makes that reservation. We note on the CinemaBookingSystem card: 
Accepts seat reservations from user.

■ We now have to play through exactly how the seat reservation works. A seat reservation is 
clearly attached to a particular show, so the CinemaBookingSystem should probably tell 
the show about the reservation; it delegates the actual task of making the reservation to the 
Show object. We can note for the Show class: Can reserve seats. (You may have noticed that 
the notion of objects and classes is blurred when playing through CRC scenarios. In effect, 
the person representing a class is representing its instances too. This is intentional and not 
usually a problem.)

■ Now it is the Show class’s turn. It has received a request to reserve a seat. What exactly does 
it do? To be able to store seat reservations, it must have a representation of the seats in the 



13.1 Analysis and design | 465

theater. So we assume that each show has a link to a Theater object. (Note this on the card: 
Stores theater. This is also a collaborator.) The theater should probably know about the exact 
number and arrangement of seats it has. (We can also note in the back of our heads, or on a 
separate piece of paper, that each show must have its own instance of the Theater object, 
because several shows can be scheduled for the same Theater and reserving a seat in one 
does not reserve the same seat for another show. This is something to look out for when 
Show objects are created. We have to keep this in mind so that later, when we play through 
the scenario of Scheduling a new show, we remember to create a theater instance for each 
show.) The way a show deals with reserving a seat is probably by passing this reservation 
request on to the theater.

■ Now the theater has accepted a request to make a reservation. (Note this on the card: Accepts 
reservation request.) How does it deal with it? The theater could have a collection of seats in 
it. Or it could have a collection of rows (each row being a separate object), and rows, in turn, 
hold seats. Which of these alternatives is better? Thinking ahead about other possible scenarios, 
we might decide to go with the idea of storing rows. If, for example, a customer requests four 
seats together in the same row, it might be easier to find four adjacent seats if we have them all 
arranged by rows. We note on the Theater card: Stores rows. Row is now a collaborator.

■ We note on the Row class: Stores collection of seats. And then we note a new collaborator: 
Seat.

■ Getting back to the Theater class, we have not yet worked out exactly how it should react 
to the seat reservation request. Let us assume it does two things: find the requested row and 
then make a reservation request with the seat number to the Row object.

■ Next, we note on the Row card: Accepts reservation request for seat. It must then find the right 
Seat object (we can note that as a responsibility: Can find seats by number) and can make a 
reservation for that seat. It would do so by telling the Seat object that it is now reserved.

■ We can now add to the Seat card: Accepts reservations. The seat itself can remember whether 
it has been reserved. We note on the Seat card: Stores reservation status (free/reserved).

Exercise 13.4 Play this scenario through on your cards (with a group of people, if possible). 

Add any other information you feel was left out in this description.

Should the seat also store information about who has reserved it? It could store the name of the 
customer or the telephone number. Or maybe we should create a Customer object as soon as 
someone makes a reservation, and store the Customer object with the seat once the seat has 
been reserved? These are interesting questions, and we will try to work out the best solution by 
playing through more scenarios.

This was just the first, simple scenario. We need to play through many more scenarios to get a 
better understanding of how the system should work.

Playing through scenarios works best when a group of people sit around a table and move the 
cards around on it. Cards that cooperate closely can be placed close together to give an impres-
sion of the degree of coupling in the system.



466 |       Chapter 13 ■ Designing applications

Other scenarios to play through next would include the following:

■ A customer requests five seats together. Work out exactly how five adjoining seats are found.

■ A customer calls and says he forgot the seat numbers he was given for the reservation he 
made yesterday. Could you please look up the seat numbers again?

■ A customer calls to cancel a reservation. He can give his name and the show but has forgot-
ten the seat numbers.

■ A customer calls who already has a reservation. She wants to know whether she can reserve 
another seat next to the ones she already has.

■ A show is canceled. The cinema wants to call all customers that have reserved a seat for that 
show.

These scenarios should give you a good understanding of the seat lookup and reservation part 
of the system. Then we need another group of scenarios: those dealing with setting up the 
theater and scheduling shows. Here are some possible scenarios:

■ The system has to be set up for a new cinema. The cinema has two theaters, each of a differ-
ent size. Theater A has 26 rows with 18 seats each. Theater B has 32 rows. In this theater, the 
first six rows have 20 seats, the next 10 rows have 22 seats, and the other rows have 26 seats.

■ A new movie is scheduled for screening. It will be screened for the next two weeks, 
three times each day (4:40 p.m., 6:30 p.m., and 8:30 p.m.). The shows have to be added to 
the system. All shows run in theater A.

Exercise 13.5 Play through these scenarios. Note on a separate piece of paper all the 

questions you have left unanswered. Make a record of all scenarios you have played through.

Exercise 13.6 What other scenarios can you think of? Write them down, and then play 

them out.

Playing through scenarios takes some patience and some practice. It is important to spend 
enough time doing this. Playing through the scenarios mentioned here will take several hours.

It is very common for beginners to take shortcuts and not question and record every detail about 
the execution of a scenario. This is dangerous! We will soon move on to developing this system 
in Java, and if details are left unanswered, it is very likely that ad hoc decisions will be made at 
implementation time that will later turn out to be bad choices.

It is also common for beginners to forget some scenarios. Forgetting to think through a part 
of the system before starting the class design and implementation can cause a large amount of 
work later, when an already partially implemented system would have to be changed.

Doing this activity well, carefully stepping through all necessary steps, and recording steps in 
sufficient detail takes some practice and a lot of discipline. This exercise is harder than it looks 
and more important than you realize.



13.2 Class design | 467

13.2 Class design
Now it is time for the next big step: moving from CRC cards to Java classes. During the CRC 
card exercise, you should have gained a good understanding of how your application is struc-
tured and how your classes cooperate to solve the program’s tasks. You may have come across 
cases where you had to introduce additional classes (this is often the case with classes that rep-
resent internal data structures), and you may have noticed that you have a card for a class that 
was never used. If the latter is the case, this card can now be removed.

Recognizing the classes for the implementation is now trivial. The cards show us the complete 
set of classes we need. Deciding on the interface of each class (that is, the set of public methods 
that a class should have) is a bit harder, but we have made an important step toward that as well. 
If the playing of the scenarios was done well, then the responsibilities noted for each class de-
scribe the class’s public methods (and maybe some of the instance fields). The responsibilities of 
each class should be evaluated according to the class design principles discussed in Chapter 6: 
responsibility-driven design, coupling, and cohesion.

13.2.1 Designing class interfaces

Before starting to code our application in Java, we can once more use the cards to make another 
step toward the final design by translating the informal descriptions into method calls and add-
ing parameters.

To arrive at more formal descriptions, we can now play through the scenarios again, this time 
talking in terms of method calls, parameters, and return values. The logic and the structure of 
the application should not change any more, but we try to note down complete information 
about method signatures and instance fields. We do this on a new set of cards.

Exercise 13.7 Make a class design for an airport-control-system simulation. Use CRC

cards and scenarios. Here is a description of the system:

The program is an airport simulation system. For our new airport, we need to know 

whether we can operate with two runways or whether we need three. The airport works 

as follows:

There are multiple runways. Planes take off and land on runways. Air traffic controllers 

coordinate the traffic and give planes permission to take off or land. The controllers 

sometimes give permission right away, but sometimes they tell planes to wait. Planes 

must keep a certain distance from one another. The purpose of the program is to simu-

late the airport in operation.

Exercise 13.8 Make a new set of CRC cards for the classes you have identified. Play

through the scenarios again. This time, note exact method names for each method you call 

from another class, and specify in detail (with type and name) all parameters that are passed 

and the methods’ return values. The method signatures are written on the CRC card instead 

of the responsibilities. On the back of the card, note the instance fields that each class holds.



468 |       Chapter 13 ■ Designing applications

Once we have done the exercise described above, writing each class’s interface is easy. We can 
translate directly from the cards into Java. Typically, all classes should be created and method
stubs for all public methods should be written. A method stub is a placeholder for the method 
that has the correct signature and an empty method body.2

Many students find doing this in detail tedious. At the end of the project, however, you will 
hopefully come to appreciate the value of these activities. Many software development teams 
have realized after the fact that time saved at the design stage had to be spent many times over 
to fix mistakes or omissions that were not discovered early enough.

Inexperienced programmers often view the writing of the code as the “real programming.” 
Doing the initial design is seen as, if not superfluous, at least annoying, and people cannot wait 
to get it over with so that the “real work” can start. This is a very misguided picture.

The initial design is one of the most important parts of the project. You should plan to spend at 
least as much time working on the design as on the implementation. Application design is not 
something that comes before the programming—it is (the most important part of ) programming!

Mistakes in the code itself can later be fixed fairly easily. Mistakes in the overall design can, 
at best, be expensive to put right and, at worst, fatal to the whole application. In unlucky cases, 
they can be almost unfixable (short of starting all over again).

13.2.2 User interface design

One part that we have left out of the discussion so far is the design of the user interface.3 At 
some stage, we have to decide in detail what users see on the screen and how they interact with 
our system.

In a well-designed application, this is quite independent of the underlying logic of the applica-
tion, so it can be done independently of designing the class structure for the rest of the project. 
As we saw in the previous chapters, BlueJ gives us the means of interacting with our application 
before a final user interface is available, so we can choose to work on the internal structure first.

The user interface may be a GUI (graphical user interface) with menus and buttons, it can be 
text based, or we can decide to run the application using the BlueJ method-call mechanism. 
Maybe the system runs over a network and the user interface is presented in a web browser on 
a different machine.

For now, we shall ignore the user-interface design and use BlueJ method invocation to work 
with our program.

2 If you wish, you can include trivial return statements in the bodies of methods with non-void return 
types. Just return a null value for object-returning methods and a zero, or false, value for primitive 
types.

3 Note carefully the double meaning of the term ‘designing interfaces’ here! Above, we were talking 
about the interfaces of single classes (a set of public methods); now, we talk about the user interface—
what the user sees on screen to interact with the application. Both are very important issues, and unfor-
tunately the term interface is used for both.



13.4 Cooperation | 469

13.3 Documentation
After identifying the classes and their interfaces, and before starting to implement the methods 
of a class, the interface should be documented. This involves writing a class comment and 
method comments for each class in the project. These should be described in sufficient detail to 
identify the overall purpose of each class and method.

Along with analysis and design, documentation is a further area that is often neglected by be-
ginners. It is not easy for inexperienced programmers to see why documentation is so impor-
tant. The reason is that inexperienced programmers usually work on projects that only have a 
handful of classes and are written in the span of a few weeks or months. A programmer can get 
away with bad documentation when working on these mini-projects.

However, even experienced programmers often wonder how it is possible to write the docu-
mentation before the implementation. This is because they fail to appreciate that good docu-
mentation focuses on high-level issues such as what a class or method does rather than on 
low-level issues such as exactly how it is done. This is usually symptomatic of viewing the 
implementation as being more important than the design.

If a software developer wants to progress to more-interesting problems and starts to work pro-
fessionally on real-life applications, it is not unusual to work with dozens of other people on an 
application over several years. The ad hoc solution of just “having the documentation in your 
head” does not work anymore.

Exercise 13.9 Create a BlueJ project for the cinema booking system. Create the necessary 

classes. Create method stubs for all methods.

Exercise 13.10 Document all classes and methods. If you have worked in a group, assign 

responsibilities for classes to different group members. Use the javadoc format for com-

ments, with appropriate javadoc tags to document the details.

13.4 Cooperation

Pair programming Implementation of classes is traditionally done alone. Most programmers 

work on their own when writing the code, and other people are brought in only after the implemen-

tation is finished, to test or review the code.

More recently, pair programming has been suggested as an alternative that is intended to produce 

better-quality code (code with better structure and fewer bugs). Pair programming is also one of the 

elements of a technique known as Extreme Programming. Do a web search for “pair programming” 

or “extreme programming” to find out more.

Software development is usually done in teams. A clean object-oriented approach provides 
strong support for teamwork, because it allows for the separation of the problem into loosely 
coupled components (classes) that can be implemented independently.



470 |       Chapter 13 ■ Designing applications

Although the initial design work was best done in a group, it is now time to split it up. If the 
definition of the class interfaces and the documentation was done well, it should be possible to 
implement the classes independently. Classes can now be assigned to programmers, who can 
work on them alone or in pairs.

In the remainder of this chapter, we shall not discuss the implementation phase of the cinema 
booking system in detail. That phase largely involves the sorts of task we have been doing 
throughout this book in previous chapters, and we hope that by now readers can determine for 
themselves how to continue from here.

13.5 Prototyping
Instead of designing and then building the complete application in one giant leap, prototyping
can be used to investigate parts of a system.

A prototype is a version of the application where one part is simulated in order to experiment with 
other parts. You may, for example, implement a prototype to test a graphical user interface. In that 
case, the logic of the application may not be properly implemented. Instead, we would write sim-
ple implementations for those methods that simulate the task. For example, when calling a method 
to find a free seat in the cinema system, a method could always return seat 3, row 15 instead of 
actually implementing the search. Prototyping allows us to develop an executable (but not fully 
functional) system quickly so that we can investigate parts of the application in practice.

Prototypes are also useful for single classes to aid a team development process. Often when dif-
ferent team members work on different classes, not all classes take the same amount of time to be 
completed. In some cases, a missing class can hold up continuation of development and testing 
of other classes. In those cases, it can be beneficial to write a class prototype. The prototype has 
implementations of all method stubs, but instead of containing full, final implementations, the 
prototype only simulates the functionality. Writing a prototype should be possible quickly, and 
development of client classes can then continue using the prototype until the class is implemented.

As we discuss in Section 13.6, one additional benefit of prototyping is that it can give the devel-
opers insights into issues and problems that were not considered at an earlier stage.

Concept:

Prototyping is the 

construction of a 

partially working 

system in which 

some functions of 

the application are 

simulated. It serves 

to provide an un-

derstanding early 

in the development 

process of how the 

system will work.

Exercise 13.11 Outline a prototype for your cinema-system example. Which of the classes 

should be implemented first, and which should remain in prototype stage?

Exercise 13.12 Implement your cinema-system prototype.

13.6 Software growth
Several models exist for how software should be built. One of the most commonly known is 
often referred to as the waterfall model (because activity progresses from one level to the next, 
like water in a cascading waterfall—there is no going back).



13.6 Software growth | 471

13.6.1 Waterfall model

In the waterfall model, several phases of software development are done in a fixed sequence:

■ analysis of the problem

■ design of the software

■ implementation of the software components

■ unit testing

■ integration testing

■ delivery of the system to the client

If any phase fails, we might have to step back to the previous phase to fix it (for example, if 
testing shows failure, we go back to implementation), but there is never a plan to revisit earlier 
phases.

This is probably the most traditional, conservative model of software development, and it has 
been in widespread use for a long time. However, numerous problems have been discovered 
with this model over the years. Two of the main flaws are that it assumes that developers un-
derstand the full extent of the system’s functionality in detail from the start and that the system 
does not change after delivery.

In practice, both assumptions are typically not true. It is quite common that the design of a 
system’s functionality is not perfect at the start. This is often because the client, who knows the 
problem domain, does not know much about computing, and because the software engineers, 
who know how to program, have only limited knowledge of the problem domain.

13.6.2 Iterative development

One possibility to address the problems of the waterfall model is to use early prototyping and 
frequent client interaction in the development process. Prototypes of the systems are built that 
do not do much but give an impression of what the system would look like and what it would 
do, and clients comment regularly on the design and functionality. This leads to a more circular 
process than the waterfall model. Here, the software development iterates several times through 
an analysis–design–prototype implementation–client feedback cycle.

Another approach is captured in the notion that good software is not designed, it is grown. The 
idea behind this is to design a small and clean system initially and get it into a working state in 
which it can be used by end users. Then additional features are gradually added (the software 
grows) in a controlled manner, and “finished” states (meaning states in which the software is 
completely usable and can be delivered to clients) are reached repeatedly and fairly frequently.

In reality, growing software is, of course, not a contradiction to designing software. Every 
growth step is carefully designed. What the software growth model does not try to do is design 
the complete software system right from the start. Even more, the notion of a complete software 
system does not exist at all!

The traditional waterfall model has as its goal the delivery of a complete system. The software 
growth model assumes that complete systems that are used indefinitely in an unchanged state 



472 |       Chapter 13 ■ Designing applications

do not exist. There are only two things that can happen to a software system: either it is continu-
ously improved and adapted, or it will disappear.

This discussion is central to this book, because it strongly influences how we view the tasks and 
skills required of a programmer or software engineer. You might be able to tell that the authors 
of this book strongly favor the software growth model over the waterfall model.4

As a consequence, certain tasks and skills become much more important than they would be in 
the waterfall model. Software maintenance, code reading (rather than just writing), designing 
for extendibility, documentation, coding for understandability, and many other issues we have 
mentioned in this book take their importance from the fact that we know there will be others 
coming after us who have to adapt and extend our code.

Viewing a piece of software as a continuously growing, changing, adapting entity, rather than 
a static piece of text that is written and preserved like a novel, determines our views about how 
good code should be written. All the techniques we have discussed throughout this book work 
toward this.

4 An excellent book describing the problems of software development and some possible approaches to 
solutions is The Mythical Man-Month by Frederick P. Brooks Jr., Addison-Wesley. Even though the 
original edition is nearly 40 years old, it makes entertaining and very enlightening reading.

Exercise 13.13 In which ways might the cinema booking system be adapted or extended 

in the future? Which changes are more likely than others? Write down a list of possible future 

changes.

Exercise 13.14 Are there any other organizations that might use booking systems similar to 

the one we have discussed? What significant differences exist between the systems?

Exercise 13.15 Do you think it would be possible to design a “generic” booking system 

that could be adapted or customized for use in a wide range of different organizations with 

booking needs? If you were to create such a system, at what point in the development pro-

cess of the cinema system would you introduce changes? Or would you throw that one away 

and start again from scratch?

13.7 Using design patterns
In earlier chapters, we have discussed in detail some techniques for reusing some of our work 
and making our code more understandable to others. So far, a large part of these discussions has 
remained at the level of source code in single classes.

As we become more experienced and move on to design larger software systems, the imple-
mentation of single classes is not the most difficult problem any more. The structure of the 
overall system—the complex relationships between classes—becomes harder to design and to 
understand than the code of individual classes.

Concept:

A design pattern

is a description of a 

common comput-

ing problem and 

a description of a 

small set of classes 

and their interac-

tion structure that 

helps to solve that 

problem.



13.7 Using design patterns | 473

It is a logical step that we should try to achieve the same goals for class structures that we at-
tempted for source code. We want to reuse good bits of work, and we want to enable others to 
understand what we have done.

At the level of class structures, both these goals can be served by using design patterns. A de-
sign pattern describes a common problem that occurs regularly in software development and 
then describes a general solution to that problem that can be used in many different contexts. 
For software design patterns, the solution is typically a description of a small set of classes and 
their interactions.

Design patterns help in our task in two ways. First, they document good solutions to problems 
so that these solutions can be reused later for similar problems. The reuse in this case is not at 
the level of source code, but at the level of class structures.

Second, design patterns have names and thus establish a vocabulary that helps software design-
ers talk about their designs. When experienced designers discuss the structure of an application, 
one might say, “I think we should use a Singleton here.” Singleton is the name of a widely 
known design pattern, so if both designers are familiar with the pattern, being able to talk about 
it at this level saves explanation of a lot of detail. Thus, the pattern language introduced by 
commonly known design patterns introduces another level of abstraction, one that allows us to 
cope with complexity in ever-more-complex systems.

Software design patterns were made popular by a book published in 1995 that describes a set 
of patterns, their applications, and benefits.5 This book is still today one of the most important 
works about design patterns. Here, we do not attempt to give a complete overview of design 
patterns. Rather, we discuss a small number of patterns to give readers an impression of the 
benefits of using design patterns, and then we leave it up to the reader to continue the study of 
patterns in other literature.

13.7.1 Structure of a pattern

Descriptions of patterns are usually recorded using a template that contains some minimum 
information. A pattern description is not only information about a structure of some classes, but 
also includes a description of the problem(s) this pattern addresses and competing forces for or 
against use of the pattern.

A description of a pattern includes at least:

■ a name that can be used to conveniently talk about the pattern

■ a description of the problem that the pattern addresses (often split into sections such as 
intent, motivation, and applicability)

■ a description of the solution (often listing structure, participants, and collaborations)

■ the consequences of using the pattern, including results and trade-offs

In the following section, we shall briefly discuss some commonly used patterns.

5 Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, 
Ralph Johnson, and John Vlissides, Addison-Wesley, 1995.



474 |       Chapter 13 ■ Designing applications

13.7.2 Decorator

The Decorator pattern deals with the problem of adding functionality to an existing object. We 
assume that we want an object that responds to the same method calls (has the same interface) 
as the existing object but has added or altered behavior. We may also want to add to the existing 
interface.

One way this could be done is by inheritance. A subclass may override the implementation of 
methods and add additional methods. But using inheritance is a static solution: once created, 
objects cannot change their behavior.

A more dynamic solution is the use of a Decorator object. The Decorator is an object that en-
closes an existing object and can be used instead of the original (it usually implements the same 
interface). Clients then communicate with the Decorator instead of with the original object 
directly (without a need to know about this substitution). The Decorator passes the method calls 
on to the enclosed object, but it may perform additional actions. We can find an example in 
the Java input/output library. There, a BufferedReader is used as a Decorator for a Reader
(Figure 13.2). The BufferedReader implements the same interface and can be used instead 
of an unbuffered Reader, but it adds to the basic behavior of a Reader. In contrast to using 
inheritance, decorators can be added to existing objects.

Figure 13.2
Structure of the 

decorator pattern

13.7.3 Singleton

A common situation in many programs is to have an object of which there should be only a sin-
gle instance. In our world-of-zuul game, for instance, we want only a single parser. If we write a 
software development environment, we might want only a single compiler or a single debugger.

The Singleton pattern ensures that only one instance will be created from a class, and it pro-
vides unified access to it. In Java, a Singleton can be defined by making the constructor private. 
This ensures that it cannot be called from outside the class, and thus client classes cannot create 
new instances. We can then write code in the Singleton class itself to create a single instance 
and provide access to it (Code 13.1 illustrates this for a Parser class).

public class Parser
{

private static Parser instance = new Parser();

public static Parser getInstance()

Code 13.1
The Singleton pattern



13.7 Using design patterns | 475

In this pattern:

■ The constructor is private so that instances can be created only by the class itself. This has 
to be in a static part of the class (initializations of static fields or static methods), because no 
instance will otherwise exist.

■ A private static field is defined and initialized with the (sole) instance of the parser.

■ A static getInstance method is defined, which provides access to the single instance.

Clients of the Singleton can now use that static method to gain access to the parser object:

Parser parser = Parser.getInstance();

13.7.4 Factory method

The Factory method pattern provides an interface for creating objects but lets subclasses decide 
which specific class of object is created. Typically, the client expects a superclass or an inter-
face of the actual object’s dynamic type, and the factory method provides specializations.

Iterators of collections are an example of this technique. If we have a variable of type 
Collection, we can ask it for an Iterator object (using the iterator method) and then work 
with that iterator (Code 13.2). The iterator method in this example is the Factory method.

{
return instance;

}

private Parser()
{

...
}

}

Code 13.1
continued
The Singleton pattern

public void process(Collection<Type> coll)
{

Iterator<Type> it = coll.iterator();
...

}

Code 13.2
A use of a factory 

method

From the client’s point of view (in the code shown in Code 13.2), we are dealing with objects of type 
Collection and Iterator. In reality, the (dynamic) type of the collection may be ArrayList,
in which case the iterator method returns an object of type ArrayListIterator. Or it may 
be a HashSet, and iterator returns a HashSetIterator. The Factory method is specialized in 
subclasses to return specialized instances to the “official” return type.

We can make good use of this pattern in our foxes-and-rabbits simulation, to decouple the 
Simulator class from the specific animal classes. (Remember: In our version, Simulator



476 |       Chapter 13 ■ Designing applications

was coupled to classes Fox and Rabbit, because it creates the initial instances.) Instead, we 
can introduce an interface ActorFactory and classes implementing this interface for each ac-
tor (for example, FoxFactory and RabbitFactory). The Simulator would simply store a 
collection of ActorFactory objects, and it would ask each of them to produce a number of ac-
tors. Each factory would, of course, produce a different kind of actor, but the Simulator talks 
to them via the ActorFactory interface.

13.7.5 Observer

In the discussions of several of the projects in this book, we have tried to separate the internal 
model of the application from the way it is presented on screen (the view). The Observer pat-
tern provides one way of achieving this model/view separation.

More generally, the Observer pattern defines a one-to-many relationship so that when one ob-
ject changes its state, many others can be notified. It achieves this with a very low degree of 
coupling between the observers and the observed object.

We can see from this that the Observer pattern not only supports a decoupled view on the 
model, but it also allows for multiple different views (either as alternatives or simultaneously). 
As an example, we can again use our foxes-and-rabbits simulation.

In the simulation, we presented the animal populations on screen in a two-dimensional ani-
mated grid. There are other possibilities. We might have preferred to show the population as 
a graph of population numbers along a timeline or as an animated bar chart (Figure 13.3). We 
might even like to see all representations at the same time.

Figure 13.3
Multiple views of one 

subject



13.7 Using design patterns | 477

For the Observer pattern, we use two types: Observable and Observer.6 The observ-
able entity (the Field in our simulation) extends the Observable class, and the observer 
(SimulatorView) implements the Observer interface (Figure 13.4).

6 In the Java java.util package, Observer is actually an interface with a single method, update.

Field

«abstract»
Observable

SimView

«abstract»
Observer

Figure 13.4
Structure of the 

Observer pattern

The Observable class provides methods for observers to attach themselves to the observed 
entity. It ensures that the observers’ update method is called whenever the observed entity (the 
field) invokes its inherited notify method. The actual observers (the viewers) can then get a 
new, updated state from the field and redisplay.

The Observer pattern can also be used for problems other than a model/view separation. It can 
always be applied when the state of one or more objects depends on the state of another object.

13.7.6 Pattern summary

Discussing design patterns and their applications in detail is beyond the scope of this book. 
Here, we have presented only a brief idea of what design patterns are, and we have given an 
informal description of some of the more common patterns.

We hope, however, that this discussion serves to show where to go from here. Once we under-
stand how to create good implementations of single classes with well-defined functionality, 
we can concentrate on deciding what kinds of classes we should have in our application and 
how they should cooperate. Good solutions are not always obvious, so design patterns describe 
structures that have proven useful over and over again for solving recurring classes of prob-
lems. They help us in creating good class structures.

The more experienced you get as a software developer, the more time you will spend thinking 
about higher-level structure rather than about implementation of single methods.



478 |       Chapter 13 ■ Designing applications

13.8 Summary
In this chapter, we have moved up one step in terms of abstraction levels, away from thinking 
about the design of single classes (or cooperation between two classes) and toward the design 
of an application as a whole. Central to the design of an object-oriented software system is 
the decision about the classes to use for its implementation and the communication structures 
between these classes.

Some classes are fairly obvious and easy to discover. We have used as a starting point a method 
of identifying nouns and verbs in a textual description of the problem. After discovering the 
classes, we can use CRC cards and played-out scenarios to design the dependences and com-
munication details between classes and to flesh out details about each class’s responsibilities. 
For less-experienced designers, it helps to play through scenarios in a group.

CRC cards can be used to refine the design down to the definition of method names and their 
parameters. Once this has been achieved, classes with method stubs can be coded in Java and 
the classes’ interfaces can be documented.

Following an organized process such as this one serves several purposes. It ensures that 
potential problems with early design ideas are discovered before much time is invested in 
implementation. It also enables programmers to work on the implementation of several classes 
independently, without having to wait for the implementation of one class to be finished before 
implementation of another can begin.

Flexible, extendible class structures are not always easy to design. Design patterns are used to 
document generally good structures that have proven useful in the implementation of different 
classes of problems. Through the study of design patterns, a software engineer can learn a lot 
about good application structures and improve application design skills.

The larger a problem, the more important is a good application structure. The more experienced 
a software engineer becomes, the more time he or she will spend designing application struc-
tures rather than just writing code.

Terms introduced in this chapter

analysis and design, verb/noun method, CRC card, scenario, use case, method 

stub, design pattern

Exercise 13.16 Three further, commonly used patterns are the State pattern, the Strategy

pattern, and the Visitor pattern. Find descriptions of each of these, and identify at least one 

example application for each.

Exercise 13.17 Late in the development of a project, you find that two teams who have 

been working independently on two parts of an application have implemented incompatible 

classes. The interface of several classes implemented by one team is slightly different from the 

interface the other team is expecting to use. Explain how the Adapter pattern might help in this 

situation by avoiding the need to rewrite any of the existing classes.



13.8 Summary | 479

Concept summary

■ verb/noun Classes in a system roughly correspond to nouns in the system’s description. 

Methods correspond to verbs.

■ scenarios Scenarios (also known as “use cases”) can be used to get an understanding of the 

interactions in a system.

■ prototyping Prototyping is the construction of a partially working system in which some 

functions of the application are simulated. It serves to provide an understanding early in the 

development process of how the system will work.

■ design pattern A design pattern is a description of a common computing problem and a 

description of a small set of classes and their interaction structure that helps to solve that 

problem.

Exercise 13.18 Assume that you have a school management system for your school. In it, 

there is a class called Database (a fairly central class) that holds objects of type Student.

Each student has an address that is held in an Address object (i.e., each Student object 

holds a reference to an Address object).

Now, from the Database class, you need to get access to a student’s street, city, and zip 

code. The Address class has accessor methods for these. For the design of the Student
class, you now have two choices:

Either you implement getStreet, getCity, and getZipCode methods in the Student
class—which just pass the method call on to the Address object and hand the result back—

or you implement a getAddress method in Student that returns the complete Address
object to the Database and lets the Database object call the Address object’s methods 

directly.

Which of these alternatives is better? Why? Make a class diagram for each situation and list 

arguments either way.



In this chapter, we draw together many of the object-oriented principles that we have intro-
duced in this book by presenting an extended case study. We shall take the study from the 
initial discussion of a problem, through class discovery, design, and an iterative process of 
implementation and testing. Unlike previous chapters, it is not our intention here to introduce 
any major new topics. Rather, we are seeking to reinforce those topics that have been covered 
in the second half of the book, such as inheritance, abstraction techniques, error handling, and 
application design.

14.1 The case study
The case study we will be using is the development of a model for a taxi company. The com-
pany is considering whether to expand its operations into a new part of a city. It operates taxis 
and shuttles. Taxis drop their passengers at their target locations before taking on new pas-
sengers, whereas shuttles may collect several passengers from different locations on the same 
trip, taking them to similar locations (such as collecting several guests from different hotels and 
taking them to different terminals at the airport). Based on estimates of the number of potential 
customers in the new area, the company wishes to know whether an expansion would be profit-
able and how many cabs it would need there in order to operate effectively.

14.1.1 The problem description

The following paragraph presents an informal description of the taxi company’s operating pro-
cedures, arrived at following several meetings with them.

The company operates both individual taxis and shuttles. The taxis are used to transport 
an individual (or small group) from one location to another. The shuttles are used to pick 

CHAPTER

14 A case study

Main concepts discussed in this chapter:

■ whole-application development

Java constructs discussed in this chapter:

(No new Java constructs are introduced in this chapter.)



14.2 Analysis and design | 481

up individuals from different locations and transport them to their several destinations. 
When the company receives a call from an individual, hotel, entertainment venue, or tour-
ist organization, it tries to schedule a vehicle to pick up the fare. If it has no free vehicles, 
it does not operate any form of queuing system. When a vehicle arrives at a pickup loca-
tion, the driver notifies the company. Similarly, when a passenger is dropped off at their 
destination, the driver notifies the company.

As we suggested in Chapter 10, one of the common purposes of modeling is to help us learn 
something about the situation being modeled. It is useful to identify at an early stage what we 
wish to learn, because the resulting goals may well have an influence on the design we produce. 
For instance, if we are seeking to answer questions about the profitability of running taxis in 
this area, then we must ensure that we can obtain information from the model that will help us 
assess profitability. Two issues we ought to consider, therefore, are: how often potential cus-
tomers are lost because no vehicle is available to collect them and, at the opposite extreme, how 
much time taxis remain idle for lack of passengers. These influences are not found in the basic 
description of how the taxi company normally operates, but they do represent scenarios that 
will have to be played through when we draw up the design.

So we might add the following paragraph to the description:

The system stores details about passenger requests that cannot be satisfied. It also pro-
vides details of how much time vehicles spend in each of the following activities: carrying 
passengers, going to pickup locations, and being idle.

However, as we develop our model, we shall focus on just the original description of the com-
pany’s operating procedures and leave the additional features as exercises.

Exercise 14.1 Is there any additional data that you feel it would be useful to gather from the 

model? If so, add these requirements to the descriptions given above and use them in your 

own extensions to the project.

14.2 Analysis and design
As suggested in Chapter 13, we will start by seeking to identify the classes and interactions in 
the system’s description, using the verb/noun method.

14.2.1 Discovering classes

The following (singular versions of) nouns are present in the description: company, taxi, shut-
tle, individual, location, destination, hotel, entertainment venue, tourist organization, vehicle, 
fare, pickup location, driver, and passenger.

The first point to note is that it would be a mistake to move straight from this list of nouns to a set 
of classes. Informal descriptions are rarely written in a way that suits that sort of direct mapping.

One refinement that is commonly needed in the list of nouns is to identify any synonyms: dif-
ferent words used for the same entity. For instance, “individual” and “fare” are both synonyms 
for “passenger.”



482 |       Chapter 14 ■ A case study

A further refinement is to eliminate those entities that do not really need to be modeled in the 
system. For instance, the description identified various ways in which the taxi company might 
be contacted: by individuals, hotels, entertainment venues, and tourist organizations. Will it re-
ally be necessary to maintain these distinctions? The answer will depend upon the information 
we want from the model. We might wish to arrange discounts for hotels that provide large num-
bers of customers or send publicity material to entertainment venues that do not. If this level 
of detail is not required, then we can simplify the model by just “injecting” passengers into it 
according to some statistically reasonable pattern.

Exercise 14.2 Consider simplifying the number of nouns associated with the vehicles. Are 

“vehicle” and “taxi” synonyms in this context? Do we need to distinguish between “shuttle” and 

“taxi”? What about between the type of vehicle and “driver”? Justify your answers.

Exercise 14.3 Is it possible to eliminate any of the following as synonyms in this context: 

“location,” “destination,” and “pickup location”?

Exercise 14.4 Identify the nouns from any extensions you have added to the system, and 

make any necessary simplifications.

14.2.2 Using CRC cards

Figure 14.1 contains a summary of the noun and verb associations we are left with once some 
simplification has been performed on the original description. Each of the nouns should now be 
assigned to a CRC card, ready to have its responsibilities and collaborators identified.

Nouns Verbs

company

taxi

shuttle
passenger
location
passenger-source
vehicle

operates taxis and shuttles
receives a call
schedules a vehicle
transports a passenger

transports one or more passengers

calls the company
picks up passenger
arrives at pickup location
notifies company of arrival
notifies company of drop-off

Figure 14.1
Noun and verb 

associations in the 

taxi company

From that summary, it is clear that “taxi” and “shuttle” are distinct specializations of a more gen-
eral vehicle class. The main distinction between a taxi and a shuttle is that a taxi is only ever con-
cerned with picking up and transporting a single passenger or coherent group, but a shuttle deals 
with multiple independent passengers concurrently. The relationship between these two vehicles 
is suggestive of an inheritance hierarchy, where “taxi” and “shuttle” represent subtypes of vehicle.



14.2 Analysis and design | 483

14.2.3 Scenarios

The taxi company does not actually represent a very complex application. We shall find that 
much of the total interaction in the system is explored by taking the fundamental scenario of 
trying to satisfy a passenger request to go from one location in the city to another. In practice, 
this single scenario will be broken down into a number of steps that are followed in sequence, 
from the initial call to the final drop-off.

■ We have decided that a passenger source creates all new passenger objects for the system. So a 
responsibility of PassengerSource is Create a Passenger, and a collaborator is Passenger.

■ The passenger source calls the taxi company to request a pickup for a passenger. We note 
TaxiCompany as a collaborator of PassengerSource and add Request a pickup as a respon-
sibility. Correspondingly, we add to TaxiCompany a responsibility to Receive a pickup request.
Associated with the request will be a passenger and a pickup location. So TaxiCompany has 
Passenger and Location as collaborators. When it calls the company with the request, the 
passenger source could pass the passenger and pickup location as separate objects. However, 
it is preferable to associate closely the pickup location with the passenger. So a collaborator of 
Passenger is Location, and a responsibility will be Provide pickup location.

■ From where does the passenger’s pickup location originate? The pickup location and desti-
nation could be decided when the Passenger is created. So add to PassengerSource the 
responsibility Generate pickup and destination locations for a passenger, with Location
as a collaborator; and add to Passenger the responsibilities Receive pickup and destination 
locations and Provide destination location.

■ On receipt of a request, the TaxiCompany has a responsibility to Schedule a vehicle. This 
suggests that a further responsibility is Store a collection of vehicles, with Collection and 
Vehicle as collaborators. Because the request might fail—there may be no vehicles free—a 
success or failure indication should be returned to the passenger source.

■ There is no indication whether the company seeks to distinguish between taxis and shuttles 
when scheduling, so we do not need to take that aspect into account here. However, a vehi-
cle can be scheduled only if it is free. This means that a responsibility of Vehicle will be 
Indicate whether free.

■ When a free vehicle has been identified, it must be directed to the pickup location. TaxiCompany
has the responsibility Direct vehicle to pickup, with the corresponding responsibility in Vehicle
being Receive pickup location. Location is added as a collaborator of Vehicle.

■ On receipt of a pickup location, the behavior of taxis and shuttles may well differ. A taxi 
will have been free only if it was not already on its way to either a pickup or a destination 

Exercise 14.5 Create physical CRC cards for the nouns/classes identified in this section, in 

order to be able to work through the scenarios suggested by the project description.

Exercise 14.6 Do the same for any of your own extensions you wish to follow through in the 

next stage.



484 |       Chapter 14 ■ A case study

location. So the responsibility of Taxi is Go to pickup location. In contrast, a shuttle has to 
deal with multiple passengers. When it receives a pickup location, it may have to choose 
between several possible alternative locations to head to next. So we add the responsibility 
to Shuttle to Choose next target location, with a Collection collaborator to maintain the 
set of possible target locations to choose from. The fact that a Vehicle moves between loca-
tions suggests that it has a responsibility to Maintain a current location.

■ On arrival at a pickup location, a Vehicle must Notify the company of pickup arrival, with 
TaxiCompany as a collaborator; TaxiCompany must Receive notification of pickup arrival.
In real life, a taxi meets its passenger for the first time when it arrives at the pickup location, 
so this is the natural point for the vehicle to receive its next passenger. In the model, it does 
so from the company, which received it originally from the passenger source. TaxiCompany
responsibility: Pass passenger to vehicle; Vehicle responsibility: Receive passenger, with 
Passenger added as a collaborator to Vehicle.

■ The vehicle now requests the passenger’s intended destination. Vehicle responsibility: Request 
destination location; Passenger responsibility: Provide destination location. Once again, at 
this point the behavior of taxis and shuttles will differ. A Taxi will simply Go to passenger des-
tination. A shuttle will Add location to collection of target locations and choose the next one.

■ On arrival at a passenger’s destination, a Vehicle has responsibilities to Offload passenger
and Notify the company of passenger arrival. The TaxiCompany must Receive notification 
of passenger arrival.

The steps we have outlined represent the fundamental activity of the taxi company, repeated 
over and over as each new passenger requests the service. An important point to note, however, 
is that our computer model needs to be able to restart the sequence for each new passenger as 
soon as each fresh request is received, even if a previous request has not yet run to comple-
tion. In other words, within a single step of the program, one vehicle could still be heading to 
a pickup location while another could be arriving at a passenger’s destination, and a new pas-
senger might be requesting a pickup.

Exercise 14.7 Review the problem description and the scenario we have worked through. 

Are there any further scenarios that need to be addressed before we move on to class design? 

Have we adequately covered what happens, for instance, if there is no vehicle available when a 

request is received? Complete the scenario analysis if you feel there is more to be done.

Exercise 14.8 Do you feel that we have described the scenario at the correct level of detail? 

For instance, have we included too little or too much detail in the discussion of the differences 

between taxis and shuttles?

Exercise 14.9 Do you feel it is necessary to address how vehicles move between locations 

at this stage?

Exercise 14.10 Do you think that a need for further classes will emerge as the application 

is developed—classes that have no immediate reference in the problem description? If so, why 

is this the case?



14.3 Class design | 485

14.3 Class design
In this section, we shall start to make the move from a high-level abstract design on paper to a 
concrete outline design within a BlueJ project.

14.3.1 Designing class interfaces

In Chapter 13, we suggested that the next step was to create a fresh set of CRC cards from the 
first, turning the responsibilities of each class into a set of method signatures. Without wishing to 
de-emphasize the importance of that step, we shall leave it for you to do and move directly to a 
BlueJ project outline containing stub classes and methods. This should provide a good feel for the 
complexity of the project and whether we have missed anything crucial in the steps taken so far.

It is worth pointing out that, at every stage of the project life cycle, we should expect to find 
errors or loose ends in what we have done in earlier stages. This does not necessarily imply that 
there are weaknesses in our techniques or abilities. It is more a reflection of the fact that project 
development is often a discovery process. It is only by exploring and trying things out that we 
gain a full understanding of what it is we are trying to achieve. So discovering omissions actu-
ally says something positive about the process we are using!

14.3.2 Collaborators

Having identified collaborations between classes, one issue that will often need to be addressed 
is how a particular object obtains references to its collaborators. There are usually three distinct 
ways in which this happens, and these often represent three different patterns of object interaction:

■ A collaborator is received as an argument to a constructor. Such a collaborator will usually 
be stored in one of the new object’s fields so that it is available through the new object’s 
life. The collaborator may be shared in this way with several different objects. Example: 
A PassengerSource object receives the TaxiCompany object through its constructor.

■ A collaborator is received as an argument to a method. Interaction with such a collaborator is 
usually transitory—just for the period of execution of the method—although the receiving object 
may choose to store the reference in one of its fields, for longer-term interaction. Example: 
TaxiCompany receives a Passenger collaborator through its method to handle a pickup request.

■ The object constructs the collaborator for itself. The collaborator will be for the exclusive 
use of the constructing object, unless it is passed to another object in one of the previous 
two ways. If constructed in a method, the collaboration will usually be short term, for the 
duration of the block in which it is constructed. However, if the collaborator is stored in a 
field, then the collaboration is likely to last the full lifetime of the creating object. Example: 
TaxiCompany creates a collection to store its vehicles.

Exercise 14.11 As the next section discusses the taxi-company-outline project, pay particu-

lar attention to where objects are created and how collaborating objects get to know about each 

other. Try to identify at least one further example of each of the patterns we have described.



486 |       Chapter 14 ■ A case study

14.3.3 The outline implementation

The project taxi-company-outline contains an outline implementation of the classes, respon-
sibilities, and collaborations that we have described as part of the design process. You are 
encouraged to browse through the source code and associate the concrete classes with the cor-
responding descriptions of Section 14.2.3. Code 14.1 shows an outline of the Vehicle class from 
the project.

/**
 * Capture outline details of a vehicle.
 *
 * @author David J. Barnes and Michael Kölling
 * @version 2011.07.31
 */

public abstract class Vehicle
{

private TaxiCompany company;
    // Where the vehicle is.

private Location location;
    // Where the vehicle is headed.

private Location targetLocation;

    /**
     * Constructor of class Vehicle
     * @param company The taxi company. Must not be null.
     * @param location The vehicle’s starting point. Must not
     *                 be null.
     * @throws NullPointerException If company or location is
     *                              null.
     */

public Vehicle(TaxiCompany company, Location location)
{

if(company == null) {
throw new NullPointerException("company");

}
if(location == null) {

throw new NullPointerException("location");
}
this.company = company;
this.location = location;
targetLocation = null;

}

Code 14.1
An outline of the 

Vehicle class



14.3 Class design | 487

    /**
     * Notify the company of our arrival at a pickup
     * location.
     */

public void notifyPickupArrival()
{

company.arrivedAtPickup(this);
}

    /**
     * Notify the company of our arrival at a
     * passenger’s destination.
     */

public void notifyPassengerArrival(Passenger passenger)
{

company.arrivedAtDestination(this, passenger);
}

    /**
     * Receive a pickup location.
     * How this is handled depends on the type of vehicle.
     * @param location The pickup location.
     */

public abstract void setPickupLocation(Location location);

    /**
     * Receive a passenger.
     * How this is handled depends on the type of vehicle.
     * @param passenger The passenger.
     */

public abstract void pickup(Passenger passenger);

    /**
     * Get the target location.
     * @return Whether or not this vehicle is free.
     */

public abstract boolean isFree();

    /**
     * Offload any passengers whose destination is the
     * current location.
     */

public abstract void offloadPassenger();

    /**
     * @return Where this vehicle is currently located.
     */

Code 14.1
continued
An outline of the 

Vehicle class



488 |       Chapter 14 ■ A case study

public Location getLocation()
{

return location;
}

    /**
     * Set the current location.
     * @param location Where it is. Must not be null.
     * @throws NullPointerException If location is null.
     */

public void setLocation(Location location)
{

if(location != null) {
this.location = location;

}
else {

throw new NullPointerException();
}

}

    /**
     * @return Where this vehicle is currently headed, or
     * null if it is idle.
     */

public Location getTargetLocation()
{

return targetLocation;
}

    /**
     * Set the required target location.
     * @param location Where to go. Must not be null.
     * @throws NullPointerException If location is null.
     */

public void setTargetLocation(Location location)
{

if (location != null) {
targetLocation = location;

}
else {

throw new NullPointerException();
}

}

    /**
     * Clear the target location.
     */

Code 14.1
continued
An outline of the 

Vehicle class



14.3 Class design | 489

The process of creating the outline project raised a number of issues. Here are some of them:

■ You should expect to find some differences between the design and the implementation, ow-
ing to the different natures of design and implementation languages. For instance, discussion 
of the scenarios suggested that PassengerSource should have the responsibility Generate
pickup and destination locations for a passenger, and Passenger should have the responsi-
bility Receive pickup and destination locations. Rather than mapping these responsibilities to 
individual method calls, the more natural implementation in Java is to write something like

new Passenger(new Location(...), new Location(...))

■ We have ensured that our outline project is complete enough to compile successfully. That 
is not always necessary at this stage, but it does mean that undertaking incremental develop-
ment at the next stage will be a little easier. However, it does have the corresponding disad-
vantage of making missing pieces of code potentially harder to spot, because the compiler 
will not point out the loose ends.

■ The shared and distinct elements of the Vehicle, Taxi, and Shuttle classes only really 
begin to take shape as we move towards their implementation. For instance, the different ways 
in which taxis and shuttles respond to a pickup request is reflected in the fact that Vehicle
defines setPickupLocation as an abstract method, which will have separate concrete im-
plementations in the subclasses. On the other hand, even though taxis and shuttles have dif-
ferent ways of deciding where they are heading, they can share the concept of having a single 
target location. This has been implemented as a targetLocation field in the superclass.

■ At two points in the scenario, a vehicle is expected to notify the company of its arrival at 
either a pickup point or a destination. There are at least two possible ways to organize this in 
the implementation. The direct way is for a vehicle to store a reference to its company. This 
would mean that there would be an explicit association between the two classes on the class 
diagram.

An alternative is to use the Observer pattern introduced in Chapter 13, with Vehicle
extending the Observable class and TaxiCompany implementing the Observer interface. 
Direct coupling between Vehicle and TaxiCompany is reduced, but implicit coupling is 
still involved, and the notification process is a little more complex to program.

■ Up to this point, there has been no discussion about how many passengers a shuttle can carry. 
Presumably there could be different-sized shuttles. This aspect of the application has been 
deferred until a later resolution.

There is no absolute rule about exactly how far to go with the outline implementation in any 
particular application. The purpose of the outline implementation is not to create a fully work-
ing project, but to record the design of the outline structure of the application (which has been 

public void clearTargetLocation()
    {

targetLocation = null;
}

}

Code 14.1
continued
An outline of the 

Vehicle class



490 |       Chapter 14 ■ A case study

developed through the CRC card activities earlier). As you review the classes in the taxi-
company-outline project, you may feel that we have gone too far in this case, or maybe even 
not far enough. On the positive side, by attempting to create a version that at least compiles, we 
certainly found that we were forced to think about the Vehicle inheritance hierarchy in some 
detail: in particular, which methods could be implemented in full in the superclass and which 
were best left as abstract. On the negative side, there is always the risk of making implementa-
tion decisions too early: for instance, committing to particular sorts of data structures that might 
be better left until later or, as we did here, choosing to reject the Observer pattern in favor of the 
more direct approach.

Exercise 14.12 For each of the classes in the project, look at the class interface and write a 

list of JUnit tests that should be used to test the functionality of the class.

Exercise 14.13 The taxi-company-outline project defines a Demo class to create a pair of 

PassengerSource and TaxiCompany objects. Create a Demo object and try its pickup-
Test method. Why is the TaxiCompany object unable to grant a pickup request at this stage?

Exercise 14.14 Do you feel that we should have developed the source code further at this 

stage, to enable at least one pickup request to succeed? If so, how much further would you 

have taken the development?

14.3.4 Testing

Having made a start on implementation, we should not go too much further before we start to 
consider how we shall test the application. We do not want to make the mistake of devising tests 
only once the full implementation is complete. We can already put some tests in place that will 
gradually evolve as the implementation is evolved. Try the following exercises to get a feel for 
what is possible at this early stage.

Exercise 14.15 The taxi-company-outline-testing project includes some simple initial JUnit 

tests. Try them out. Add any further tests you feel are appropriate at this stage of the develop-

ment, to form the basis of a set of tests to be used during future development. Does it matter if 

the tests we create fail at this stage?

Exercise 14.16 The Location class currently contains no fields or methods. How is fur-

ther development of this class likely to affect existing test classes?

14.3.5 Some remaining issues

One of the major issues that we have not attempted to tackle yet is how to organize the sequenc-
ing of the various activities: passenger requests, vehicle movements, and so on. Another is that 
locations have not been given a detailed concrete form, so movement has no effect. As we fur-
ther develop the application, resolutions of these issues and others will emerge.



14.4 Iterative development | 491

14.4 Iterative development
We obviously still have quite a long way to go from the outline implementation developed in 
taxi-company-outline to the final version. However, rather than being overwhelmed by the 
magnitude of the overall task, we can make things more manageable by identifying some dis-
crete steps to take toward the ultimate goal and undertaking a process of iterative development.

14.4.1 Development steps

Planning some development steps helps us to consider how we might break up a single large 
problem into several smaller problems. Individually, these smaller problems are likely to be 
both less complex and more manageable than the one big problem, but together they should 
combine to form the whole. As we seek to solve the smaller problems, we might find that we 
need to also break up some of them. In addition, we might find that some of our original as-
sumptions were wrong or that our design is inadequate in some way. This process of discovery, 
when combined with an iterative development approach, means that we obtain valuable feed-
back on our design and on the decisions we make, at an early enough stage for us to be able to 
incorporate it back into a flexible and evolving process.

Considering what steps to break the overall problem into has the added advantage of helping to 
identify some of the ways in which the various parts of the application are interconnected. In a 
large project, this process helps us to identify the interfaces between components. Identifying 
steps also helps in planning the timing of the development process.

It is important that each step in an iterative development represent a clearly identifiable point 
in the evolution of the application toward the overall requirements. In particular, we need to be 
able to determine when each step has been completed. Completion should be marked by the 
passing of a set of tests and a review of the step’s achievements, so as to be able to incorporate 
any lessons learned into the steps that follow.

Here is a possible series of development steps for the taxi company application:

■ Enable a single passenger to be picked up and taken to their destination by a single taxi.

■ Provide sufficient taxis to enable multiple independent passengers to be picked up and taken 
to their destinations concurrently.

■ Enable a single passenger to be picked up and taken to their destination by a single shuttle.

■ Ensure that details are recorded of passengers for whom there is no free vehicle.

■ Enable a single shuttle to pick up multiple passengers and carry them concurrently to their 
destinations.

■ Provide a GUI to display the activities of all active vehicles and passengers within the simulation.

■ Ensure that taxis and shuttles are able to operate concurrently.

■ Provide all remaining functionality, including full statistical data.

We will not discuss the implementation of all of these steps in detail, but we will complete the 
application to a point where you should be able to add the remaining functionality for yourself.



492 |       Chapter 14 ■ A case study

14.4.2 A first stage

For the first stage, we want to be able to create a single passenger, have them picked up by a 
single taxi, and have them delivered to their destination. This means that we shall have to work 
on a number of different classes: Location, Taxi, and TaxiCompany, for certain, and pos-
sibly others. In addition, we shall have to arrange for simulated time to pass as the taxi moves 
within the city. This suggests that we might be able to reuse some of the ideas involving actors 
that we saw in Chapter 10.

The taxi-company-stage-one project contains an implementation of the requirements of this first 
stage. The classes have been developed to the point where a taxi picks up and delivers a pas-
senger to their destination. The run method of the Demo class plays out this scenario. However, 
more important at this stage are really the test classes—LocationTest, PassengerTest,
PassengerSourceTest, and TaxiTest—which we discuss in Section 14.4.3.

Rather than discuss this project in detail, we shall simply describe here some of the issues that 
arose from its development out of the previous outline version. You should supplement this 
discussion with a thorough reading of the source code.

The goals of the first stage were deliberately set to be quite modest yet still relevant to the fun-
damental activity of the application—collecting and delivering passengers. There were good 
reasons for this. By setting a modest goal, the task seemed achievable within a reasonably short 
time. By setting a relevant goal, the task was clearly taking us closer toward completing the 
overall project. Such factors help to keep our motivation high.

We have borrowed the concept of actors from the foxes-and-rabbits project of Chapter 10. For this 
stage, only taxis needed to be actors, through their Vehicle superclass. At each step a taxi either 
moves toward a target location or remains idle (Code 14.2). Although we did not have to record 
any statistics at this stage, it was simple and convenient to have vehicles record a count of the 
number of steps for which they are idle. This anticipated part of the work of one of the later stages.

Exercise 14.17 Critically assess the list of steps we have outlined, with the following ques-

tions in mind. Do you feel the order is appropriate? Is the level of complexity of each too high, 

too low, or just right? Are there any steps missing? Revise the list as you see fit, to suit your 

own view of the project.

Exercise 14.18 Are the completion criteria (tests on completion) for each stage sufficiently 

obvious? If so, document some tests for each.

 /**
  * A taxi is able to carry a single passenger.
  *
  * @author David J. Barnes and Michael Kölling
  * @version 2011.07.31
  */

Code 14.2
The Taxi class as 

an actor



14.4 Iterative development | 493

public class Taxi extends Vehicle
{

private Passenger passenger;

    /**
     * Constructor for objects of class Taxi
     * @param company The taxi company. Must not be null.
     * @param location The vehicle’s starting point.
     *                 Must not be null.
     * @throws NullPointerException If company or location is null.
     */

public Taxi(TaxiCompany company, Location location)
{

super(company, location);
}

    /**
     * Carry out a taxi’s actions.
     */

public void act()
{

Location target = getTargetLocation();
if(target != null) {

            // Find where to move to next.
Location next = getLocation().nextLocation(target);
setLocation(next);
if(next.equals(target)) {

if(passenger != null) {
notifyPassengerArrival(passenger);
offloadPassenger();

}
else {

notifyPickupArrival();
}

}
}
else {

incrementIdleCount();
}

}

    /**
     * Is the taxi free?
     * @return Whether or not this taxi is free.
     */

Code 14.2
continued
The Taxi class as 

an actor



494 |       Chapter 14 ■ A case study

public boolean isFree()
{

return getTargetLocation() == null && passenger == null;
}

    /**
     * Receive a pickup location. This becomes the
     * target location.
     * @location The pickup location.
     */

public void setPickupLocation(Location location)
{

setTargetLocation(location);
}

    /**
     * Receive a passenger.
     * Set their destination as the target location.
     * @param passenger The passenger.
     */

public void pickup(Passenger passenger)
{

this.passenger = passenger;
setTargetLocation(passenger.getDestination());

}

    /**
     * Offload the passenger.
     */

public void offloadPassenger()
    {

passenger = null;
clearTargetLocation();

    }

    /**
     * Return details of the taxi, such as where it is.
     * @return A string representation of the taxi.
     */

public String toString()
    {

return "Taxi at " + getLocation();
    }
}

Code 14.2
continued
The Taxi class as 

an actor



14.4 Iterative development | 495

The need to model movement required the Location class to be implemented more fully 
than in the outline. On the face of it, this should be a relatively simple container for a two-
dimensional position within a rectangular grid. However, in practice, it also needs to provide 
both a test for coincidence of two locations (equals), and a way for a vehicle to find out 
where to move to next, based on its current location and its destination (nextLocation). At 
this stage, no limits were put on the grid area (other than that coordinate values should be posi-
tive), but this raises the need in a later stage for something to record the boundaries of the area 
in which the company operates.

One of the major issues that had to be addressed was how to manage the association between 
a passenger and a vehicle, between the request for a pickup and the point of the vehicle’s ar-
rival. Although we were required only to handle a single taxi and a single passenger, we tried 
to bear in mind that ultimately there could be multiple pickup requests outstanding at any one 
time. In Section 14.2.3, we had decided that a vehicle should receive its passenger when it noti-
fies the company that it has arrived at the pickup point. So, when a notification is received, the 
company needs to be able to work out which passenger has been assigned to that vehicle. The 
solution we chose was to have the company store a vehicle:passenger pairing in a map. When 
the vehicle notifies the company that it has arrived, the company passes the corresponding pas-
senger to it. However, there are various reasons why this solution is not perfect, and we shall 
explore this issue further in the exercises below.

One error situation we addressed was that there might be no passenger found when a vehicle 
arrives at a pickup point. This would be the result of a programming error, so we defined the 
unchecked MissingPassengerException class.

As only a single passenger was required for this stage, development of the PassengerSource
class was deferred to a later stage. Instead, passengers were created directly in the Demo and 
Test classes.

Exercise 14.19 If you have not already done so, take a thorough look through the imple-

mentation in the taxi-company-stage-one project. Ensure that you understand how movement 

of the taxi is effected through its act method.

Exercise 14.20 Do you feel that the TaxiCompany object should keep separate lists of 

those vehicles that are free and those that are not, to improve the efficiency of its scheduling? 

At what points would a vehicle move between the lists?

Exercise 14.21 The next planned stage of the implementation is to provide multiple taxis to 

carry multiple passengers concurrently. Review the TaxiCompany class with this goal in mind. 

Do you feel that it already supports this functionality? If not, what changes are required?

Exercise 14.22 Review the way in which vehicle:passenger associations are stored in the 

assignments’ map in TaxiCompany. Can you see any weaknesses in this approach? Does it 

support more than one passenger being picked up from the same location? Could a vehicle 

ever need to have multiple associations recorded for it?



496 |       Chapter 14 ■ A case study

14.4.3 Testing the first stage

As part of the implementation of the first stage, we have developed two test classes: LocationTest
and TaxiTest. The first checks basic functionality of the Location class that is crucial to correct 
movement of vehicles. The second is designed to test that a passenger is picked up and delivered 
to their destination in the correct number of steps and that the taxi becomes free again immediately 
afterwards. In order to develop the second set of tests, the Location class was enhanced with the 
distance method, to provide the number of steps required to move between two locations.1

In normal operation, the application runs silently, and without a GUI there is no visual way to 
monitor the progress of a taxi. One approach would be to add print statements to the core meth-
ods of classes such as Taxi and TaxiCompany. However, BlueJ does offer the alternative of 
setting a breakpoint within the act method of, say, the Taxi class. This would make it possible 
to “observe” the movement of a taxi by inspection.

Having reached a reasonable level of confidence in the current state of the implementation, 
we have simply left print statements in the notification methods of TaxiCompany to provide a 
minimum of user feedback.

As testimony to the value of developing tests alongside implementation, it is worth recording 
that the existing test classes enabled us to identify and correct two serious errors in our code.

Exercise 14.23 If you see any problems with the current way in which vehicle:passenger asso-

ciations are stored, would creating a unique identification for each association help—say a “booking 

number”? If so, would any of the existing method signatures in the Vehicle hierarchy need to be 

changed? Implement an improved version that supports the requirements of all existing scenarios.

1 We anticipate that this will have an extended use later in the development of the application as it should 
enable the company to schedule vehicles on the basis of which is closest to the pickup point.

Exercise 14.24 Review the tests implemented in the test classes of taxi-company-stage-

one. Should it be possible to use these as regression tests during the next stages, or would 

they require substantial changes?

Exercise 14.25 Implement additional tests and further test classes that you feel are nec-

essary to increase your level of confidence in the current implementation. Fix any errors you 

discover in the process of doing this.

14.4.4 A later stage of development

It is not our intention to discuss in full the completion of the development of the taxi company 
application, as there would be little for you to gain from that. Instead, we shall briefly present 
the application at a later stage, and we encourage you to complete the rest from there.

This more advanced stage can be found in the taxi-company-later-stage project. It handles multiple 
taxis and passengers, and a GUI provides a progressive view of the movements of both (Figure 14.2). 
Here is an outline of some of the major developments in this version from the previous one.



14.4 Iterative development | 497

Figure 14.2
A visualization of 

the city

■ A Simulation class now manages the actors, much as it did in the foxes-and-rabbits
project. The actors are the vehicles, the passenger source, and a GUI provided by the 
CityGUI class. After each step, the simulation pauses for a brief period so that the GUI does 
not change too quickly.

■ The need for something like the City class was identified during development of stage one. 
The City object defines the dimensions of the city’s grid and holds a collection of all the 
items of interest that are in the city—the vehicles and the passengers.

■ Items in the city may optionally implement the DrawableItem interface, which allows 
the GUI to display them. Images of vehicles and people are provided in the images folder 
within the project folder for this purpose.

■ The Taxi class implements the DrawableItem interface. It returns alternative images to the 
GUI, depending on whether it is occupied or empty. Image files exist in the images folder 
for a shuttle to do the same.

■ The PassengerSource class has been refactored significantly from the previous version, to 
better fit its role as an actor. In addition, it maintains a count of missed pickups for statistical 
analysis.

■ The TaxiCompany class is responsible for creating the taxis to be used in the simulation.

As you explore the source code of the taxi-company-later-stage project, you will find illus-
trations of many of the topics we have covered in the second half of this book: inheritance, 
polymorphism, abstract classes, interfaces, and error handling.



498 |       Chapter 14 ■ A case study

Exercise 14.26 Add assertion and exception-throwing consistency checks within each 

class, to guard against inappropriate use. For instance, ensure that a Passenger is never 

created with pickup and destination locations that are the same; ensure that a taxi is never 

requested to go to a pickup when it already has a target location; etc.

Exercise 14.27 Report on the statistical information that is being gathered by taxis and the 

passenger source; also on taxi idle time and missed pickups. Experiment with different num-

bers of taxis to see how the balance between these two sets of data varies.

Exercise 14.28 Adapt the vehicle classes so that records are kept of the amount of time 

spent traveling to pickup locations and passenger destinations. Can you see a possible 

conflict here for shuttles?

14.4.5 Further ideas for development

The version of the application provided in the taxi-company-later-stage project represents a 
significant point in the development toward full implementation. However, there is still a lot 
that can be added. For instance, we have hardly developed the Shuttle class at all, so there 
are plenty of challenges to be found in completing its implementation. The major difference 
between shuttles and taxis is that a shuttle has to be concerned with multiple passengers, 
whereas a taxi has to be concerned with only one. The fact that a shuttle is already carrying a 
passenger should not prevent it from being sent to pick up another. Similarly, if it is already on 
its way to a pickup, it could still accept a further pickup request. These issues raise questions 
about how a shuttle organizes its priorities. Could a passenger end up being driven back and 
forth while the shuttle responds to competing requests, the passenger never getting delivered? 
What does it mean for a shuttle not to be free? Does it mean that it is full of passengers or that 
it has enough pickup requests to fill it? Suppose at least one of those pickups will reach their 
destination before the final pickup is reached: Does that mean it could accept more pickup 
requests than its capacity?!

Another area for further development is vehicle scheduling. The taxi company does not op-
erate particularly intelligently at present. How should it decide which vehicle to send when 
there may be more than one available? No attempt is made to assign vehicles on the basis of 
their distance from a pickup location. The company could use the distance method of the 
Location class to work out which is the nearest free vehicle to a pickup. Would this make a 
significant difference to the average waiting time of passengers? How might data be gathered 
on how long passengers wait to be picked up? What about having idle taxis move to a central 
location, ready for their next pickup, in order to reduce potential waiting times? Does the size 
of the city have an impact on the effectiveness of this approach? For instance, in a large city, 
is it better to have idle taxis space themselves out from one another rather than have all gather 
at the center?

Could the simulation be used to model competing taxi companies operating in the same area 
of the city? Multiple TaxiCompany objects could be created and the passenger source allocate 
passengers to them competitively on the basis of how quickly they could be picked up. Is this 
too fundamental a change to graft onto the existing application?



14.6 Taking things further | 499

14.4.6 Reuse

Currently, our goal has been to simulate the operation of vehicles in order to assess the com-
mercial viability of expanding a business into a new area of the city. You may have noticed that 
substantial parts of the application may actually be useful once the expansion is in operation.

Assuming that we develop a clever scheduling algorithm for our simulation to decide which vehicle 
should take which call or that we have worked out a good scheme for deciding where to send the ve-
hicles to wait while they are idle, we might decide to use the same algorithms when the company ac-
tually operates in the new area. The visual representation of each vehicle’s location could also help.

In other words, there is potential to turn the simulation of the taxi company into a taxi manage-
ment system used to help the real company in its operations. The structure of the application 
would change, of course: the program would not control and move the taxis, but rather record 
their positions, which it might receive from GPS (global positioning system) receivers in each ve-
hicle. However, many of the classes developed for the simulation could be reused with little or no 
change. This illustrates the power of reuse that we gain from good class structure and class design.

14.5 Another example
There are many other projects that you could undertake along similar lines to the taxi company 
application. A popular alternative is the issue of how to schedule elevators in a large building. 
Coordination between elevators becomes particularly significant here. In addition, within an 
enclosed building, it may be possible to estimate numbers of people on each floor and hence to 
anticipate demand. There are also time-related behaviors to take account of: morning arrivals, 
evening departures, and local peaks of activity around lunchtimes.

Use the approach we have outlined in this chapter to implement a simulation of a building with 
one or more elevators.

14.6 Taking things further
We can only take you so far by presenting our own project ideas and showing you how we 
would develop them. You will find that you can go much further if you develop your own ideas 
for projects and implement them in your own way. Pick a topic that interests you, and work 
through the stages we have outlined: analyze the problem, work out some scenarios, sketch out 
a design, plan some implementation stages, and then make a start.

Designing and implementing programs is an exciting and creative activity. Like any worthwhile 
activity, it takes time and practice to become proficient at it. So do not become discouraged 
if your early efforts seem to take forever or are full of errors. That is normal, and you will 
gradually improve with experience. Do not be too ambitious to start with, and expect to have to 
rework your ideas as you go; that is all part of the natural learning process.

Most of all: Have fun!



A.1 Installing BlueJ

To work with BlueJ, you must install a Java Development Kit (JDK) and the BlueJ environment.

You can find the JDK and detailed installation instructions on this book’s CD or at http://
www.oracle.com/technetwork/java/javase/overview/index.html

You can find the BlueJ environment and installation instructions on this book’s CD or at 
http://www.bluej.org

A.2 Opening a project

To use any of the example projects included on this book’s CD, the projects must be copied to 
a writable disk. BlueJ projects can be opened but not executed from a CD (to execute, BlueJ 
needs to write to the project folder). Therefore, it does not usually work to use projects from the 
CD directly.

The easiest way is to copy the folder containing all of the book’s projects (named projects) to 
your hard disk. After installing and starting BlueJ by double-clicking its icon, select Open …
from the Project menu. Navigate to the projects folder and select a project. (You can have mul-
tiple projects open at the same time.) Each project folder contains a bluej.project file that, 
when associated with BlueJ, can be double-clicked to open a project directly.

More information about the use of BlueJ is included in the BlueJ Tutorial. The tutorial is on the 
book’s CD, and it is also accessible via the BlueJ Tutorial item in BlueJ’s Help menu.

A.3 The BlueJ debugger

Information on using the BlueJ debugger may be found in Appendix F and in the BlueJ Tutorial. 
The tutorial is on the book’s CD, and it is also accessible via the BlueJ Tutorial item in BlueJ’s 
Help menu.

A.4 CD contents

On the CD that is included in this book, you will find the following files and directories:

APPENDIX

A Working with a BlueJ Project

http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.bluej.org


A: Working with a BlueJ Project | 501

Folder Comment

bluej/ The BlueJ system and documentation.

bluejsetup-305.exe BlueJ installer for Microsoft Windows (all versions).

BlueJ-305.zip BlueJ for Mac OS X.

bluej-305.deb BlueJ for Debian-based systems (Debian, Ubuntu).

bluej-305.jar BlueJ for other systems.

tutorial.pdf The BlueJ Tutorial.

testing-tutorial.pdf A tutorial introducing the testing tools.

teamwork-tutorial.pdf The tutorial for use of team work tools.

repository-setup.pdf Information about setting up a CVS or Subversion repository 
for team work support.

ReadMe.htm CD documentation. Open this file in a web browser to read it. 
Contains CD content overview, installation instructions, and 
other useful pointers.

jdk/ Contains Java systems (JDK) for various operating systems.

linux/ JDK installer for Linux.

solaris/ JDK installer for Solaris.

windows/ JDK installer for Microsoft Windows (all versions).

jdk-doc/ Contains the Java library documentation. This is a single zip
file. Copy this file to your hard disk and uncompress to use the 
documentation.

projects/ Contains all projects discussed in this book. Copy this complete 
folder to your hard disk before using the projects. Contains sub-
folders for each chapter.

A.5 Configuring BlueJ

Many of the settings of BlueJ can be configured to better suit your personal situation. Some 
configuration options are available through the Preferences dialog in the BlueJ system, but 
many more configuration options are accessible by editing the “BlueJ definitions file.” The lo-
cation of that file is <bluej_home>/lib/bluej.defs, where <bluej_home> is the folder where the 
BlueJ system is installed.1

Configuration details are explained in the “Tips archive” on the BlueJ web site. You can access it at

http://www.bluej.org/help/archive.html

1 On Mac OS, the bluej.defs file is inside the application bundle. See the “Tips archive” for instructions 
how to find it.

http://www.bluej.org/help/archive.html


502 |       Appendices

Following are some of the most common things people like to configure. Many more configu-
ration options can be found by reading the bluej.defs file.

A.6 Changing the interface language

You can change the interface language to one of several available languages. To do this, open 
the bluej.defs file and find the line that reads

bluej.language=english

Change it to one of the other available languages. For example:

bluej.language=spanish

Comments in the file list all available languages. They include at least Afrikaans, Catalan, 
Chinese, Czech, Danish, Dutch, English, French, German, Greek, Italian, Japanese, Korean, 
Portuguese, Russian, Slovak, Spanish, and Swedish.

A.7 Using local API documentation

You can use a local copy of the Java class library (API) documentation. That way, access to 
the documentation is faster and you can use the documentation without being online. To do 
this, copy the Java documentation file from the book’s CD (a zip file) and unzip it at a location 
where you want to store the Java documentation. This will create a folder named jdk-7-api-doc.

Then open a web browser, and, using the Open File …. (or equivalent) function, open the file 
index.html inside this folder. Once the API view is correctly displayed in the browser, copy the 
URL (web address) from your browser’s address field, open BlueJ, open the Preferences dialog, 
go to the Miscellaneous tab, and paste the copied URL into the field labeled JDK documenta-
tion URL. Using the Java Class Libraries item from the Help menu should now open your local 
copy.

A.8 Changing the new class templates

When you create a new class, the class’s source is set to a default source text. This text is taken 
from a template and can be changed to suit your preferences. Templates are stored in the folders

<bluej_home>/lib/<language>/templates/ and

<bluej_home>/lib/<language>/templates/newclass/

where <bluej_home> is the BlueJ installation folder and <language> is your currently used 
language setting (for example, english).

Template files are pure text files and can be edited in any standard text editor.



Java’s type system is based on two distinct kinds of type: primitive types and object types.

Primitive types are stored in variables directly, and they have value semantics (values are cop-
ied when assigned to another variable). Primitive types are not associated with classes and do 
not have methods.

In contrast, an object type is manipulated by storing a reference to the object (not the object 
itself). When assigned to a variable, only the reference is copied, not the object.

B.1 Primitive types

The following table lists all the primitive types of the Java language:

Type name Description Example literals

Integer numbers
byte byte-sized integer (8 bit) 24 –2
short short integer (16 bit) 137 –119
int integer (32 bit) 5409 –2003
long long integer (64 bit) 423266353L 55L

Real numbers
float single-precision floating point 43.889F
double double-precision floating point 45.63 2.4e5

Other types
char a single character (16 bit) 'm' '?' '\u00F6'
boolean a boolean value (true or false) true false

Notes:

■ A number without a decimal point is generally interpreted as an int but automatically con-
verted to byte, short, or long types when assigned (if the value fits). You can declare a 
literal as long by putting an L after the number. (l, lowercase L, works as well but should be 
avoided because it can easily be mistaken for a one (1).)

■ A number with a decimal point is of type double. You can specify a float literal by putting 
an F or f after the number.

■ A character can be written as a single Unicode character in single quotes or as a four-digit 
Unicode value, preceded by “\u”.

■ The two boolean literals are true and false.

APPENDIX

B Java data types



504 |       Appendices

Because variables of the primitive types do not refer to objects, there are no methods associated 
with the primitive types. However, when used in a context requiring an object type, autoboxing 
might be used to convert a primitive value to a corresponding object. See Section B.4 for more 
details.

The following table details minimum and maximum values available in the numerical types.

Type name Minimum Maximum

byte –128 127

short –32768 32767

int –2147483648 2147483647

long –9223372036854775808 9223372036854775807

Positive minimum Positive maximum

float 1.4e–45 3.4028235e38

double 4.9e–324 1.7976931348623157e308

B.2 Casting of primitive types

Sometimes it is necessary to convert a value of one primitive type to a value of another primi-
tive type—typically, a value from a type with a particular range of values to one with a smaller 
range. This is called casting. Casting almost always involves loss of information—for example, 
when converting from a floating-point type to an integer type. Casting is permitted in Java 
between the numeric types, but it is not possible to convert a boolean value to any other type 
with a cast, or vice versa.

The cast operator consists of the name of a primitive type written in parentheses in front of a 
variable or an expression. For instance,

int val = (int) mean;

If mean is a variable of type double containing the value 3.9, then the statement above would 
store the integer value 3 (conversion by truncation) in the variable val.

B.3 Object types

All types not listed in Section B.1, Primitive types, are object types. These include class and 
interface types from the Java library (such as String) and user-defined types.

A variable of an object type holds a reference (or “pointer”) to an object. Assignments and 
parameter passing have reference semantics (i.e., the reference is copied, not the object). After 
assigning a variable to another one, both variables refer to the same object. The two variables 
are said to be aliases for the same object. This rule applies in simple assignment between vari-
ables, but also when passing an object as an actual parameter to a method. As a consequence, 



B: Java data types | 505

state changes to an object via a formal parameter will persist, after the method has completed, 
in the actual parameter.

Classes are the templates for objects, defining the fields and methods that each instance possesses.

Arrays behave like object types; they also have reference semantics. There is no class definition 
for arrays.

B.4 Wrapper classes

Every primitive type in Java has a corresponding wrapper class that represents the same type 
but is a real-object type. This makes it possible to use values from the primitive types where 
object types are required, through a process known as autoboxing. The following table lists 
the primitive types and their corresponding wrapper type from the java.lang package. Apart 
from Integer and Character, the wrapper class names are the same as the primitive-type 
names, but with an uppercase first letter.

Whenever a value of a primitive type is used in a context that requires an object type, the 
compiler uses autoboxing to automatically wrap the primitive-type value in an appropri-
ate wrapper object. This means that primitive-type values can be added directly to a col-
lection, for instance. The reverse operation—unboxing—is also performed automatically 
when a wrapper-type object is used in a context that requires a value of the corresponding 
primitive type.

Primitive type Wrapper type

byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character

boolean Boolean

B.5 Casting of object types

Because an object may belong to an inheritance hierarchy of types, it is sometimes necessary 
to convert an object reference of one type to a reference of a subtype lower down the inherit-
ance hierarchy. This process is called casting (or downcasting). The cast operator consists of the 
name of a class or interface type written in parentheses in front of a variable or an expression. 
For instance,

Car c = (Car) veh;



506 |       Appendices

If the declared (i.e., static) type of variable veh is Vehicle and Car is a subclass of Vehicle,
then this statement will compile. A separate check is made at runtime to ensure that the object 
referred to by veh really is a Car and not an instance of a different subtype.

It is important to appreciate that casting between object types is completely different from cast-
ing between primitive types (Section B.2, above). In particular, casting between object types 
involves no change of the object involved. It is purely a way of gaining access to type informa-
tion that is already true of the object—that is, part of its full dynamic type.



C.1 Arithmetic expressions

Java has a considerable number of operators available for both arithmetic and logical expressions. 
Table C.1 shows everything that is classified as an operator, including things such as type casting and 
parameter passing. Most of the operators are either binary operators (taking a left and a right operand) 
or unary operators (taking a single operand). The main binary arithmetic operations are:

+ addition
— subtraction
* multiplication
/ division
% modulus, or remainder after division

The results of both division and modulus operations depend on whether their operands are inte-
gers or floating-point values. Between two integer values, division yields an integer result and 
discards any remainder, but between floating-point values, a floating-point value is the result:

5 / 3 gives a result of 1
5.0 / 3 gives a result of 1.6666666666666667

(Note that only one of the operands needs to be of a floating-point type to produce a floating-
point result.)

When more than one operator appears in an expression, then rules of precedence have to be 
used to work out the order of application. In Table C.1, those operators having the highest 
precedence appear at the top, so we can see that multiplication, division, and modulus all take 
precedence over addition and subtraction, for instance. This means that both of the following 
examples give the result 100:

51 * 3 – 53
154 — 2 * 27

Binary operators with the same precedence level are evaluated from left to right, and unary 
operators with the same precedence level are evaluated right to left.

When it is necessary to alter the normal order of evaluation, parentheses can be used. So both of 
the following examples give the result 100:

(205 — 5) / 2
2 * (47 + 3)

APPENDIX

C Operators



508 |       Appendices

The main unary operators are —, !, ++, — — , [], and new. You will notice that ++ and —— appear 
in each of the top two rows in Table C.1. Those in the top row take a single operand on their 
left, while those in the second row take a single operand on their right.

[] . ++ —— (parameters)

++ —— + — ! ~

new (cast)

* / %

+ —

<< >> >>>

< > >= <= instanceof

== !=

&

^

|

&&

||

?:

= += — = *= /=  %=  >>=  <<=  >>>=  &=  |=  ^=

Table C.1
Java operators, 

highest precedence 

at the top

C.2 Boolean expressions

In boolean expressions, operators are used to combine operands to produce a value of either 
true or false. Such expressions are usually found in the test expressions of if statements and 
loops.

The relational operators usually combine a pair of arithmetic operands, although the tests for 
equality and inequality are also used with object references. Java’s relational operators are:

== equal to != not equal to

< less than <=   less than or equal to

> greater than >=   greater than or equal to

The binary logical operators combine two boolean expressions to produce another boolean 
value. The operators are:

&&  and
||  or
^   exclusive or



C: Operators | 509

In addition,

! not

takes a single boolean expression and changes it from true to false and vice versa.

C.3 Short-circuit operators

Both && and || are slightly unusual in the way they are applied. If the left operand of && is 
false, then the value of the right operand is irrelevant and will not be evaluated. Similarly, if 
the left operand of || is true, then the right operand is not evaluated. Thus, they are known as 
short-circuit operators.



D.1 Control structures

Control structures affect the order in which statements are executed. There are two main catego-
ries: selection statements and loops.

A selection statement provides a decision point at which a choice is made to follow one route 
through the body of a method or constructor rather than another route. An if-else statement in-
volves a decision between two different sets of statements, whereas a switch statement allows 
the selection of a single option from among several.

Loops offer the option to repeat statements, either a definite or an indefinite number of times. 
The former is typified by the for-each loop and for loop, while the latter is typified by the while
loop and do loop.

In practice, it should be borne in mind that exceptions to the above characterizations are quite 
common. For instance, an if-else statement can be used to select from among several alternative 
sets of statements if the else part contains a nested if-else statement, and a for loop can be used 
to loop an indefinite number of times.

D.2 Selection statements

D.2.1 if-else

The if-else statement has two main forms, both of which are controlled by the evaluation of a 
boolean expression:

if(expression) { if(expression) {
statements statements

}                         } 
else {

statements
                          }

In the first form, the value of the boolean expression is used to decide whether or not to execute 
the statements. In the second form, the expression is used to choose between two alternative 
sets of statements, only one of which will be executed.

APPENDIX

D Java control structures



D: Java control structures | 511

Examples:

if(field.size() == 0) {
    System.out.println("The field is empty.");
}

if(number < 0) {
    reportError();
}
else {
   processNumber(number);
}

It is very common to link if-else statements together by placing a second if-else in the else part of the 
first. This can be continued any number of times. It is a good idea to always include a final else part.

if(n < 0) {
    handleNegative();
}
else if(number == 0) {
    handleZero();
}
else {
   handlePositive();
}

D.2.2 switch

The switch statement switches on a single value to one of an arbitrary number of cases. Two 
possible patterns of use are:

switch(expression) { switch(expression) {
case value: statements; case value1:

break; case value2:
case value: statements; case value3:

break; statements;
further cases possible                     break;
default: statements; case value4:

break; case value5:
} statements;

break;
further cases possible
default:

statements;
break;

                                }

Notes:

■ A switch statement can have any number of case labels.
■ The break statement after every case is needed, otherwise the execution “falls through” into 

the next label’s statements. The second form above makes use of this. In this case, all three



512 |       Appendices

of the first values will execute the first statements section, whereas values four and five will 
execute the second statements section.

■ The default case is optional. If no default is given, it may happen that no case is 
executed.

■ The break statement after the default (or the last case, if there is no default) is not needed 
but is considered good style.

■ From Java 7, the expression used to switch on and the case labels may be strings.

Examples:

switch(day) {
case 1:  dayString = "Monday";

break;
case 2:  dayString = "Tuesday";

break;
case 3:  dayString = "Wednesday";

break;
case 4:  dayString = "Thursday";

break;
case 5:  dayString = "Friday";

break;
case 6:  dayString = "Saturday";

break;
case 7:  dayString = "Sunday";

break;
default: dayString = "invalid day";

break;
}

switch(dow.toLowerCase()) {
case "mon":
case "tue":
case "wed":
case "thu":
case "fri":

        goToWork();
break;

case "sat":
case "sun":

        stayInBed();
break;

}

D.3 Loops

Java has three loops: while, do-while, and for. The for loop has two forms. Both while and do-
while are well suited for indefinite iteration. The for-each loop is intended for definite iteration 
over a collection, and the for loop falls somewhere between the two. Except for the for-each 
loop, repetition is controlled in each with a boolean expression.



D: Java control structures | 513

D.3.1 While

The while loop executes a block of statements as long as a given expression evaluates 
to true. The expression is tested before execution of the loop body, so the body may be 
executed zero times (i.e., not at all). This capability is an important feature of the while 
loop.

while(expression) {
statements

}

Examples:

System.out.print("Please enter a filename: ");
input = readInput();
while(input == null) {
    System.out.print("Please try again: ");
    input = readInput();
}

int index = 0;
boolean found = false;
while(!found && index < list.size()) {

if(list.get(index).equals(item)) {
       found = true;
    }

else {
       index++;
    }
}

D.3.2 do-while

The do-while loop executes a block of statements as long as a given expression evaluates to 
true. The expression is tested after execution of the loop body, so the body always executes at 
least once. This is an important difference from the while loop.

do {
statements

} while(expression);

Example:

do {
   System.out.print("Please enter a filename: ");
   input = readInput();
} while(input == null);



514 |       Appendices

D.3.3 for

The for loop has two different forms. The first form is also known as a for-each loop and is used 
exclusively to iterate over elements of a collection. The loop variable is assigned the value of 
successive elements of the collection on each iteration of the loop.

for(variable-declaration: collection) {
statements

}

Example:

for(String note : list) {
    System.out.println(note);
}

No associated index value is made available for the elements of the collection. A for-each loop 
cannot be used if the collection is to be modified while it is being iterated over.

The second form of for loop executes as long as a condition evaluates to true. Before the loop 
starts, an initialization statement is executed exactly once. The condition is evaluated before 
every execution of the loop body (so the statements in the loop’s body may execute zero times). 
An increment statement is executed after each execution of the loop body.

for(initialization; condition; increment) {
statements

}

Example:

for(int i = 0; i < text.size(); i++) {
    System.out.println(text.get(i));
}

Both types of for loop are commonly used to execute the body of the loop a definite number 
of times—for instance, once for each element in a collection—although a for loop is actually 
closer in effect to a while loop than to a for-each loop.

D.4 Exceptions

Throwing and catching exceptions provides another pair of constructs to alter control flow. 
However, exceptions are primarily used to anticipate and handle error situations rather than the 
normal flow of control.

try {
statements

}
catch(exception-type name) {

statements
}



D: Java control structures | 515

finally {
statements

}

Example:

try {
    FileWriter writer = new FileWriter("foo.txt");
    writer.write(text);
    writer.close();
}
catch(IOException e) {
    Debug.reportError("Writing text to file failed.");
    Debug.reportError("The exception is: " + e);
}

An exception statement may have any number of catch clauses. They are evaluated in order of 
appearance, and only the first matching clause is executed. (A clause matches if the dynamic 
type of the exception object being thrown is assignment-compatible with the declared exception 
type in the catch clause.) The finally clause is optional.

Java 7 introduced two mainstream additions to the try statement: multi-catch and try-with-
resources, or automatic resource management (ARM).
Multiple exceptions may be handled in the same catch clause by writing the list of exception 
types separated by the “|” symbol.

Example:

try {
...

    var.doSomething();
...

}
catch(EOFException | FileNotFoundException e) {

...
}

Automatic resource management—also known as “try-with-resource”—recognizes that try 
statements are often used to protect statements that use resources that should be closed when 
their use is complete, both upon success and failure. The header of the try statement is amended 
to include the opening of the resource—often a file—and the resource will be closed automati-
cally at the end of the try statement.

Example:

try (FileWriter writer = new FileWriter(filename)){
...
Use the writer ...
...

}
catch(IOException e) {

...
}



516 |       Appendices

D.5 Assertions

Assertion statements are primarily used as a testing tool during program development rather 
than in production code. There are two forms of assert statement:

assert boolean-expression;
assert boolean-expression: expression;

Examples:

assert getDetails(key) != null;
assert expected == actual:

"Actual value: " + actual +
" does not match expected value: " + expected;

If the assertion expression evaluates to false, then an AssertionError will be thrown.

A compiler option allows assertion statements to be rendered inactive in production code with-
out having to remove them from the program source.



Throughout this book, we have used BlueJ to develop and execute our Java applications. There 
is a good reason for this: BlueJ gives us tools to make some development tasks very easy. In 
particular, it lets us execute individual methods of classes and objects easily; this is very useful 
if we want to quickly test a segment of new code.

We separate the discussion of working without BlueJ into two categories: executing an applica-
tion without BlueJ and developing without BlueJ.

E.1 Executing without BlueJ

Usually, when applications are delivered to end users, they are executed differently than from 
within BlueJ. They then have one single starting point, which defines where execution begins 
when a user starts an application.

The exact mechanism used to start an application depends on the operating system. Usually, 
this is done by double-clicking an application icon or by entering the name of the application 
on a command line. The operating system then needs to know which method of which class to 
invoke to execute the complete program.

In Java, this problem is solved using a convention. When a Java program is started, the name of 
the class is specified as a parameter of the start command, and the name of the method is main.
The name “main” is arbitrarily chosen by the Java developers, but it is fixed—the method must 
have this name. (The choice of “main” for the name of the initial method actually goes back to 
the C language, from which Java inherits much of its syntax.)

Let us consider, for example, the following command, entered at a command line such as the 
Windows command prompt or a Unix terminal:

java Game

The java command starts the Java virtual machine. It is part of the Java Development Kit (JDK), 
which must be installed on your system. Game is the name of the class that we want to start.

The Java system will then look for a method in class Game with exactly the following signature:

public static void main(String[] args)

The method has to be public so that it can be invoked from the outside. It also has to be 
static, because no objects exist when we start off. Initially, we have only classes, so static 

Running Java without BlueJ

APPENDIX

E



518 |       Appendices

methods are all we can call. This static method then typically creates the first object. The return 
type is void, as this method does not return a value.

The parameter is a String array. This allows users to pass in additional arguments. In our 
example, the value of the args parameter will be an array of length zero. The command line 
starting the program can, however, define arguments:

java Game 2 Fred

Every word after the class name in this command line will be read as a separate String and 
be passed into the main method as an element in the string array. In this case, the args array 
would contain two elements, which are the strings "2" and "Fred". Command-line parameters 
are not very often used with Java.

The body of the main method can theoretically contain any statements you like. Good style, 
however, dictates that the length of the main method should be kept to a minimum. Specifically, 
it should not contain anything that is part of the application logic.

Typically, the main method should do exactly what you did interactively to start the same ap-
plication in BlueJ. If, for instance, you created an object of class Game and invoked a method 
named start to start an application, you should add the following main method to the Game
class:

public static void main(String[] args)
{
    Game game = new Game();
    game.start();
}

Now, executing the main method will mimic your interactive invocation of the game.

Java projects are usually stored each in a separate directory. All classes for a project are placed 
inside this directory. When you execute the command to start Java and execute your applica-
tion, make sure that the project directory is the active directory in your command terminal. This 
ensures that the classes will be found.

If the specified class cannot be found, the Java virtual machine will generate an error message 
similar to this one:

Exception in thread "main" java.lang.NoClassDefFoundError: Game

If you see a message like this, make sure that you have typed the class name correctly 
and that the current directory actually contains this class. The class is stored in a file with 
the suffix .class. The code for class Game, for example, is stored in a file named Game.
class.

If the class is found but does not contain a main method (or the main method does not have the 
right signature), you will see a message similar to this one:

Exception in thread "main" java.lang.NoSuchMethodError: main

In that case, make sure that the class you want to execute has a correct main method.



E: Running Java without BlueJ | 519

E.2 Creating executable .jar files

Java projects are typically stored as a collection of files in a directory (or “folder”). We shall 
briefly discuss the different files below.

To distribute applications to others, it is often easier if the whole application is stored in a single 
file. Java’s mechanism for doing this is the Java Archive (.jar) format. All of the files of an 
application can be bundled into a single file, and they can still be executed. (If you are familiar 
with the “zip” compression format, it might be interesting to know that the format is, in fact, the 
same. “Jar” files can be opened with zip programs and vice versa.)

To make a .jar file executable, it is necessary to specify the main class somewhere. 
(Remember: The executed method is always main, but we need to specify the class this method 
is in.) This is done by including a text file in the .jar file (the manifest file) with this informa-
tion. Luckily, BlueJ takes care of this for you.

To create an executable .jar file in BlueJ, use the Project—Create Jar File function, and 
specify in the resulting dialog the class that contains the main method. (You must still write a 
main method exactly as discussed above.)

For details with this function, read the BlueJ tutorial, which you can get through the BlueJ menu 
Help—Tutorial or from the BlueJ web site.

Once the executable .jar file has been created, it can be executed by double-clicking it. The 
computer that executes this .jar file must have the JDK or JRE (Java Runtime Environment) 
installed and associated with .jar files.

E.3 Developing without BlueJ

If you want not only to execute but also develop your programs without BlueJ, you will need to 
edit and compile the classes. The source code of a class is stored in a file ending in .java. For 
example, class Game is stored in a file called Game.java. Source files can be edited with any 
text editor. There are many free or inexpensive text editors around. Some, such as Notepad or 
WordPad, are distributed with Windows, but if you really want to use the editor for more than 
a quick test, you will soon want to get a better one. Be careful with word processors, though. 
Word processors typically do not save text in plain text format, and the Java system will not be 
able to read it.

The source files can then be compiled from a command line with the Java compiler that is in-
cluded with the JDK. It is called javac. To compile a source file named Game.java, use the 
command

javac Game.java

This command will compile the Game class and any other classes it depends on. It will create 
a file called Game.class. This file contains the code that can be executed by the Java virtual 
machine. To execute it, use the command

java Game

Note that this command does not include the .class suffix.



The BlueJ debugger provides a set of basic debugging features that are intentionally simplified 
yet genuinely useful, both for debugging programs and for gaining an understanding of the 
runtime behavior of programs.

The debugger window can be accessed by selecting the Show Debugger item from the View
menu or by pressing the right mouse button over the work indicator and selecting Show
Debugger from the pop-up menu. Figure F.1 shows the debugger window.

Using the debugger

APPENDIX

F

Figure F.1
The BlueJ debugger 

window

The debugger window contains five display areas and five control buttons. The areas and but-
tons become active only when a program reaches a breakpoint or halts for some other reason. 
The following sections describe how to set breakpoints, how to control program execution, and 
the purpose of each of the display areas.



F: Using the debugger | 521

F.1 Breakpoints

A breakpoint is a flag attached to a line of code (Figure F.2). When a breakpoint is reached dur-
ing program execution, the debugger’s displays and controls become active, allowing you to 
inspect the state of the program and control further execution.

Figure F.2
A breakpoint attached 

to a line of code

Breakpoints are set via the editor window. Either press the left mouse button in the breakpoint area 
to the left of the source text or place the cursor on the line of code where the breakpoint should be 
and select Set/Clear Breakpoint from the editor’s Tools menu. Breakpoints can be removed by the 
reverse process. Breakpoints can be set only within classes that have been compiled.

F.2 The control buttons

Figure F.3 shows the control buttons that are active at a breakpoint.

Figure F.3
Active control buttons 

at a breakpoint

F.2.1 Halt

The Halt button is active when the program is running, thus allowing execution to be inter-
rupted should that be necessary. If execution is halted, the debugger will show the state of the 
program as if a breakpoint had been reached.

F.2.2 Step

The Step button resumes execution at the current statement. Execution will pause again when the 
statement is completed. If the statement involves a method call, the complete method call is com-
pleted before the execution pauses again (unless the call leads to another explicit breakpoint).



522 |       Appendices

F.2.3 Step Into

The Step Into button resumes execution at the current statement. If this statement is a method 
call, then execution will “step into” that method and be paused at the first statement inside it.

F.2.4 Continue

The Continue button resumes execution until the next breakpoint is reached, execution is inter-
rupted via the Halt button, or the execution completes normally.

F.2.5 Terminate

The Terminate button aggressively finishes execution of the current program such that it cannot 
be resumed again. If it is simply desired to interrupt the execution in order to examine the cur-
rent program state, then the Halt operation is preferred.

F.3 The variable displays

Figure F.4 shows all three variable display areas active at a breakpoint, in an example taken 
from the predator–prey simulation discussed in Chapter 10. Static variables are displayed in the 
upper area, instance variables in the middle area, and local variables in the lower area.

Figure F.4
Active-variable

displays

When a breakpoint is reached, execution will be halted at a statement of an arbitrary object 
within the current program. The Static variables area displays the values of the static variables 
defined in the class of that object. The Instance variables area displays the values of that particu-
lar object’s instance variables. Both areas also include any variables inherited from superclasses.



F: Using the debugger | 523

The Local variables area displays the values of local variables and parameters of the cur-
rently executing method or constructor. Local variables will appear in this area only once they 
have been initialized, as it is only at that point that they come into existence within the virtual 
machine.

A variable in any of these areas that is an object reference may be inspected by double-clicking on it.

F.4 The Call Sequence display

Figure F.5 shows the Call Sequence display, containing a sequence six methods deep. Methods 
appear in the format Class.method in the sequence, irrespective of whether they are static 
methods or instance methods. Constructors appear as Class.<init> in the sequence.

Figure F.5
A call sequence

The call sequence operates as a stack, with the method at the top of the sequence being the one 
where the flow of execution currently lies. The variable display areas reflect the details of the 
method or constructor currently highlighted in the call sequence. Selecting a different line of the 
sequence will update the contents of the other display areas.

F.5 The Threads display

The Threads display area is beyond the scope of this book and will not be discussed further.



In this appendix, we give a brief outline of the main features of BlueJ’s support for JUnit-style 
unit testing. More details can be found in the testing tutorial that is available from the book’s 
CD and the BlueJ web site.

G.1 Enabling unit-testing functionality

In order to enable the unit-testing functionality of BlueJ, it is necessary to ensure that the Show
unit testing tools box is ticked under the Tools-Preferences-Miscellaneous menu. The main 
BlueJ window will then contain a number of extra buttons that are active when a project is open.

G.2 Creating a test class

A test class is created by right-clicking a class in the class diagram and choosing Create Test 
Class. The name of the test class is determined automatically by adding Test as a suffix to the 
name of the associated class. Alternatively, a test class may be created by selecting the New
Class … button and choosing Unit Test for the class type. In this case, you have a free choice 
over its name.

Test classes are annotated with <<unit test>> in the class diagram, and they have a color 
distinct from ordinary classes.

G.3 Creating a test method

Test methods can be created interactively. A sequence of user interactions with the class dia-
gram and object bench are recorded and then captured as a sequence of Java statements and 
declarations in a method of the test class. Start recording by selecting Create Test Method from 
the pop-up menu associated with a test class. You will be prompted for the name of the new 
method. Earlier versions of JUnit, up to version 3, required the method names to start with the 
prefix “test”. This is not a requirement in current versions. The recording symbol to the left of 
the class diagram will then be colored red, and the End and Cancel buttons become available.

Once recording has started, any object creations or method calls will form part of the code of 
the method being created. Select End to complete the recording and capture the test, or select 
Cancel to discard the recording, leaving the test class unchanged.

Test methods have the annotation @Test in the source of the test class.

Unit unit-testing tools

APPENDIX

G



G: Unit unit-testing tools | 525

G.4 Test assertions

While recording a test method, any method calls that return a result will bring up a Method
Result window. This offers the opportunity to make an assertion about the result value by tick-
ing the Assert that box. A drop-down menu contains a set of possible assertions for the result 
value. If an assertion is made, this will be encoded as a method call in the test method which is 
intended to lead to an AssertionError if the test fails.

G.5 Running tests

Individual test methods can be run by selecting them from the pop-up menu associated with the 
test class. A successful test will be indicated by a message in the main window’s status line. An 
unsuccessful test will cause the Test Results window to appear. Selecting Test All from the test 
class’s pop-up menu runs all tests from a single test class. The Test Results window will detail 
the success or failure of each method.

G.6 Fixtures

The contents of the object bench may be captured as a fixture by selecting Object Bench to Test 
Fixture from the pop-up menu associated with the test class. The effect of creating a fixture is 
that a field definition for each object is added to the test class, and statements are added to its 
setUp method that re-create the exact state of the objects as they were on the bench. The ob-
jects are then removed from the bench.

The setUp method has the annotation @Before in the test class and the method is automati-
cally executed before the run of any test method, so all objects in a fixture are available for all 
tests.

The objects of a fixture may be re-created on the object bench by selecting Test Fixture to 
Object Bench from the test class’s menu.

A tearDown method, with the annotation @After, is called following each test method. This 
can be used to conduct any post-test housekeeping or clean-up operations, should they be 
needed.



In this Appendix, we briefly describe the tools available to support teamwork.

BlueJ includes teamwork support tools based on a source-code-repository model. In this model, a 
repository server is set up that is accessible over the Internet from the machines the users work on.

The server needs to be set up by an administrator. BlueJ supports both Subversion and CVS 
repositories.

H.1 Server setup

The setup of the repository server should normally be done by an experienced administra-
tor. Detailed instructions can be found on the book CD in the document titled repository-
setup.pdf.

H.2 Enabling teamwork functionality

The teamwork tools are initially hidden in BlueJ. To show the tools, open the Preferences dialog 
and, in the Miscellaneous tab, tick the Show teamwork controls box. The BlueJ interface then 
contains three extra buttons (Update, Commit, Status) and an additional submenu titled Team in 
the Tools menu.

H.3 Sharing a project

To create a shared project, one team member creates the project as a standard BlueJ project. The 
project can then be shared by using the Share this Project function from the Team menu. When 
this function is used, a copy of the project is placed into the central repository. The server name 
and access details need to be specified in a dialog; ask your administrator (the one who set up 
the repository) for the details to fill in here.

H.4 Using a shared project

Once a user has created a shared project in the repository, other team members can use this 
project. To do this, select Checkout Project from the Team menu. This will place a copy of 
the shared project from the central server into your local file system. You can then work on the 
local copy.

Teamwork tools

APPENDIX

H



H: Teamwork tools | 527

H.5 Update and commit

Every now and then, the various copies of the project that team members have on their local 
disks need to be synchronized. This is done via the central repository. Use the Commit function 
to copy your changes into the repository, and use the Update function to copy changes from the 
repository (which other team members have committed) into your own local copy. It is good 
practice to commit and update frequently so that the changes at any step do not become too 
substantial.

H.6 More information

More detailed information is available in the Team Work Tutorial, which is on the book’s CD 
under the name teamwork-tutorial.pdf.



I
Writing good documentation for class and interface definitions is an important complement to 
writing good-quality source code. Documentation allows you to communicate your intentions 
to human readers in the form of a natural-language, high-level overview, rather than forcing 
them to read relatively low-level source code. Of particular value is documentation for the 
public elements of a class or interface, so that programmers can make use of it without having 
to know the details of its implementation.

In all of the project examples in this book, we have used a particular commenting style that is 
recognized by the javadoc documentation tool, which is distributed as part of the JDK. This 
tool automates the generation of class documentation in the form of HTML pages in a consist-
ent style. The Java API has been documented using this same tool, and its value is appreciated 
when using library classes.

In this appendix, we give a brief summary of the main elements of the documentation com-
ments that you should get into the habit of using in your own source code.

I.1 Documentation comments

The elements of a class to be documented are the class definition as a whole, its fields, construc-
tors, and methods. Most important from the viewpoint of a user of your class is to have docu-
mentation for the class and its public constructors and methods. We have tended not to provide 
javadoc-style commenting for fields, because we regard these as private implementation-level 
details and not something to be relied upon by users.

Documentation comments are always opened with the character triplet “/**” and closed by the 
character pair “*/”. Between these symbols, a comment will have a main description followed 
by a tag section, although both are optional.

I.1.1 The main description

The main description for a class should be a general description of the purpose of the 
class. Code I.1 shows part of a typical main description, taken from the Game class of the 
world-of-zuul project. Note how the description includes details of how to use this class to 
start the game.

Javadoc

APPENDIX



I: Javadoc | 529

The main description for a method should be kept fairly general, without going into a lot of 
detail about how the method is implemented. Indeed, the main description for a method will 
often only need to be a single sentence, such as

/**
 * Create a new passenger with distinct pickup and destination
 * locations.
 */

Particular thought should be given to the first sentence of the main description for a class, inter-
face, or method, as it is used in a separate summary at the top of the generated documentation.

Javadoc also supports the use of HTML markup within these comments.

I.1.2 The tag section

Following the main description comes the tag section. Javadoc recognizes around 20 tags, of 
which we discuss only the most important here (Table I.1). Tags can be used in two forms: 
block tags and in-line tags. We shall only discuss block tags, as these are the most commonly 
used. Further details about in-line tags and the remaining available tags can be found in the 
javadoc section of the Tools and Utilities documentation that is part of the JDK.

/**
 * This class is the main class of the "World of Zuul".
 * application
 * "World of Zuul" is a very simple, text-based adventure game.
 * Users can walk around some scenery. That’s all. It should
 * really be extended to make it more interesting!
 * To play this game, create an instance of this class and call
 * the "play" method.
 */

Code I.1
The main description 

of a class comment

Tag Associated text

@author author name(s)

@param parameter name and description

@return description of the return value

@see cross-reference

@throws exception type thrown and the circumstances

@version version description

Table I.1
Common javadoc
tags

The @author and @version tags are regularly found in class and interface comments and can-
not be used in constructor, method, or field comments. Both are followed by free-text, and there 
is no required format for either. Examples are

@author Hacker T. Largebrain
@version 2012.12.03



530 |       Appendices

The @param and @throws tags are used with methods and constructors, whereas @return is 
just used with methods. Examples are

@param limit The maximum value allowed.
@return A random number in the range 1 to limit (inclusive).
@throws IllegalLimitException If limit is less than 1.

The @see tag has several different forms and may be used in any documentation comment. It 
provides a way to cross-reference a comment to another class, method, or other form of docu-
mentation. A See Also section is added to the item being commented. Here are some typical 
examples:

@see "The Java Language Specification, by Joy et al"
@see <a href=“http://www.bluej.org/”>The BlueJ web site</a>
@see #isAlive
@see java.util.ArrayList#add

The first simply embeds a text string with no hyperlink; the second embeds a hyperlink to the 
specified document; the third links to the documentation for the isAlive method in the same 
class; the fourth links to the documentation for the add method in the ArrayList class of the 
java.util package.

I.2 BlueJ support for javadoc

If a project has been commented using the javadoc style, then BlueJ provides support for 
generating the complete HTML documentation. In the main window, select the Tools/Project 
Documentation menu item, and the documentation will be generated (if necessary) and dis-
played within a browser window.

Within the BlueJ editor, the source-code view of a class can be switched to the documentation view 
by changing the Source Code option to Documentation at the right of the window (Figure I.1) or 
by using Toggle Documentation View from the editor’s Tools menu. This provides a quick preview 
of the documentation, but will not contain references to documentation of superclasses or used 
classes.

Figure I.1
The Source Code and 

Documentation view 

option

More details are available at:

http://www.oracle.com/technetwork/java/javase/documentation/
index-137868.html

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.bluej.org/%E2%80%9D


APPENDIX

J.1 Naming

J.1.1 Use meaningful names

Use descriptive names for all identifiers (names of classes, variables, and methods). Avoid 
ambiguity. Avoid abbreviations. Simple mutator methods should be named setSomething(…).
Simple accessor methods should be named getSomething(…). Accessor methods with boolean
return values are often called isSomething(…)—for example, isEmpty().

J.1.2 Class names start with a capital letter

J.1.3 Class names are singular nouns

J.1.4 Method and variable names start with lowercase letters

All three—class, method, and variable names—use capital letters in the middle to increase 
readability of compound identifiers, e.g. numberOfItems.

J.1.5 Constants are written in UPPERCASE

Constants occasionally use underscores to indicate compound identifiers:

MAXIMUM_SIZE.

J.2 Layout

J.2.1 One level of indentation is four spaces

J.2.2 All statements within a block are indented one level

J.2.3 Braces for classes and methods are alone on one line

The braces for class and method blocks are on separate lines and are at the same indentation 
level. For example:

Program style guideJ



532 |       Appendices

public int getAge()
{

statements
}

J.2.4 For all other blocks, braces open at the end of a line

All other blocks open with braces at the end of the line that contains the keyword defining the 
block. The closing brace is on a separate line, aligned under the keyword that defines the block. 
For example:

while(condition) {
statements

}

if(condition) {
statements

}
else {

statements
}

J.2.5 Always use braces in control structures

Braces are used in if-statements and loops even if the body is only a single statement.

J.2.6 Use a space before the opening brace of a control structure’s block

J.2.7 Use a space around operators

J.2.8 Use a blank line between methods (and constructors)

Use blank lines to separate logical blocks of code; this means at least between methods, but also 
between logical parts within a method.

J.3 Documentation

J.3.1 Every class has a class comment at the top

The class comment contains at least:

■ a general description of the class
■ the author’s name(s)
■ a version number

Every person who has contributed to the class has to be named as an author or has to be 
otherwise appropriately credited.



J: Program style guide | 533

A version number can be a simple number, a date, or other format. The important thing is that a 
reader must be able to recognize whether two versions are different and to determine which one 
is newer.

J.3.2 Every method has a method comment

J.3.3 Comments are Javadoc-readable

Class and method comments must be recognized by Javadoc. In other words, they should start 
with the comment symbol “/**”.

J.3.4 Code comments (only) where necessary

Comments in the code should be included where the code is not obvious or is difficult to under-
stand (and preference should be given to make the code obvious or easy to understand where 
possible) and where comments facilitate understanding of a method. Do not comment obvious 
statements—assume that your reader understands Java!

J.4 Language-use restrictions

J.4.1 Order of declarations: Fields, constructors, methods

The elements of a class definition appear (if present) in the following order: package statement; 
import statements; class comment; class header; field definitions; constructors; methods; inner 
classes.

J.4.2 Fields may not be public (except for final fields)

J.4.3 Always use an access modifier

Specify all fields and methods as either private, public, or protected. Never use default 
(package private) access.

J.4.4 Import classes separately

Importing statements explicitly naming every class are preferred over importing whole pack-
ages. For example:

import java.util.ArrayList;
import java.util.HashSet;

is better than

import java.util.*;

J.4.5 Always include a constructor (even if the body is empty)



534 |       Appendices

J.4.6 Always include a superclass constructor call

In constructors of subclasses, do not rely on automatic insertion of a superclass call. Include the 
super() call explicitly, even if it would work without it.

J.4.7 Initialize all fields in the constructor

J.5 Code idioms

J.5.1 Use iterators with collections

To iterate over a complete collection, use a for-each loop. When the collection must be changed 
during iteration, use an Iterator with a while loop or a for loop, not an integer index.



APPENDIX

The Java platform includes a rich set of libraries that support a wide variety of programming 
tasks.

In this Appendix, we briefly summarize details of some classes and interfaces from the most 
important packages of the Java API. A competent Java programmer should be familiar with 
most of these. This Appendix is only a summary, and it should be read in conjunction with the 
full API documentation.

K.1 The java.lang package

Classes and interfaces in the java.lang package are fundamental to the Java language, as this 
package is automatically imported implicitly into any class definition.

package java.lang–Summary of the most important classes

interface Comparable Implementation of this interface allows comparison and ordering of objects 

from the implementing class. Static utility methods such as Arrays.sort
and Collections.sort can then provide efficient sorting in such cases, for 

instance.

class Math Math is a class containing only static fields and methods. Values for the math-

ematical constants e and π are defined here, along with trigonometric functions 

and others such as abs, min, max, and sqrt.

class Object All classes have Object as a superclass at the root of their class hierarchy. 

From it, all objects inherit default implementations for important methods such 

as equals and toString. Other significant methods defined by this class are 

clone and hashCode.

class String Strings are an important feature of many applications, and they receive special 

treatment in Java. Key methods of the String class are charAt, equals,

indexOf, length, split, and substring. Strings are immutable objects, 

so methods such as trim that appear to be mutators actually return a new 

String object representing the result of the operation.

class StringBuilder The StringBuilder class offers an efficient alternative to String when it is 

required to build up a string from a number of components: e.g., via concatena-

tion. Its key methods are append, insert, and toString.

Important library classesK



536 |       Appendices

K.2 The java.util package

The java.util package is a relatively incoherent collection of useful classes and interfaces.

package java.util–Summary of the most important classes and interfaces

interface Collection This interface provides the core set of methods for most of the collection-based classes defined in the 

java.util package, such as ArrayList, HashSet, and LinkedList. It defines signatures for 

the add, clear, iterator, remove, and size methods.

interface Iterator Iterator defines a simple and consistent interface for iterating over the contents of a collection. Its

three methods are hasNext, next, and remove.

interface List List is an extension of the Collection interface and provides a means to impose a sequence 

on the selection. As such, many of its methods take an index parameter: for instance, add, get,

remove, and set. Classes such as ArrayList and LinkedList implement List.

interface Map The Map interface offers an alternative to list-based collections by supporting the idea of associat-

ing each object in a collection with a key value. Objects are added and retrieved via its put and get
methods. Note that a Map does not return an Iterator, but its keySet method returns a Set of 

the keys, and its values method returns a Collection of the objects in the map.

interface Set Set extends the Collection interface with the intention of mandating that a collection contain no 

duplicate elements. It is worth pointing out that, because it is an interface, Set has no actual impli-

cation to enforce this restriction. This means that Set is actually provided as a marker interface to 

enable collection implementers to indicate that their classes fulfill this particular restriction.

class ArrayList ArrayList is an implementation of the List interface that uses an array to provide efficient direct 

access via integer indices to the objects it stores. If objects are added or removed from anywhere 

other than the last position in the list, then following items have to be moved to make space or close 

the gap. Key methods are add, get, iterator, remove, and size.

class Collections Collections contains many useful static methods for manipulating collections. Key methods are 

binarySearch, fill, and sort.

class HashMap HashMap is an implementation of the Map interface. Key methods are get, put, remove, and 

size. Iteration over a HashMap is usually a two-stage process: obtain the set of keys via its keySet
method, and then iterate over the keys.

class HashSet HashSet is a hash-based implementation of the Set interface. It is closer in usage to a Collection
than to a HashMap. Key methods are add, remove, and size.

class LinkedList LinkedList is an implementation of the List interface that uses an internal linked structure to store 

objects. Direct access to the ends of the list is efficient, but access to individual objects via an index 

is less efficient than with an ArrayList. On the other hand, adding objects or removing them from 

within the list requires no shifting of existing objects. Key methods are add, getFirst, getLast,

iterator, removeFirst, removeLast, and size.

class Random The Random class supports generation of pseudo-random values—typically, random numbers. The 

sequence of numbers generated is determined by a seed value, which may be passed to a con-

structor or set via a call to setSeed. Two Random objects starting from the same seed will return 

the same sequence of values to identical calls. Key methods are nextBoolean, nextDouble,

nextInt, and setSeed.

class Scanner The Scanner class provides a way to read and parse input. It is often used to read input from the 

keyboard. Key methods are next and hasNext.



K: Important library classes | 537

K.3 The java.io and java.nio.file packages

The java.io and java.nio.file packages contain classes that support input and output 
and access to the file system. Many of the input/output classes in java.io are distinguished 
by whether they are stream-based (operating on binary data) or readers and writers (operating
on characters). The java.nio.file package supplies several classes that support convenient 
access to the file system.

package java.io.file–Summary of the most important classes and interfaces

interface Serializable The Serializable interface is an empty interface requiring no code to be 

written in an implementing class. Classes implement this interface in order to 

be able to participate in the serialization process. Serializable objects 

may be written and read as a whole to and from sources of output and input. 

This makes storage and retrieval of persistent data a relatively simple pro-

cess in Java. See the ObjectInputStream and ObjectOutputStream
classes for further information.

class BufferedReader BufferedReader is a class that provides buffered character-based access 

to a source of input. Buffered input is often more efficient than unbuffered, 

particularly if the source of input is in the external file system. Because it buff-

ers input, it is able to offer a readLine method that is not available in most 

other input classes. Key methods are close, read, and readLine.

class BufferedWriter BufferedWriter is a class that provides buffered character-based output. 

Buffered output is often more efficient than unbuffered, particularly if the des-

tination of the output is in the external file system. Key methods are close,

flush, and write.

class File The File class provides an object representation for files and folders (directo-

ries) in an external file system. Methods exist to indicate whether a file is read-

able and/or writeable, and whether it is a file or a folder. A File object can be 

created for a nonexistent file, which may be a first step in creating a physical 

file on the file system. Key methods are canRead, canWrite, createNew-
File, createTempFile, getName, getParent, getPath, isDirec-
tory, isFile, and listFiles.

class FileReader The FileReader class is used to open an external file ready for reading its 

contents as characters. A FileReader object is often passed to the con-

structor of another reader class (such as a BufferedReader) rather than 

being used directly. Key methods are close and read.

class FileWriter The FileWriter class is used to open an external file ready for writing 

character-based data. Pairs of constructors determine whether an existing 

file will be appended or its existing contents discarded. A FileWriter ob-

ject is often passed to the constructor of another Writer class (such as a 

BufferedWriter) rather than being used directly. Key methods are close,

flush, and write.

class IOException IOException is a checked exception class that is at the root of the excep-

tion hierarchy of most input/output exceptions.

interface Path The Path interface provides the key methods for accessing information about 

a file in the file system. Path is, in effect, a replacement for the older File
class of the java.io package.



538 |       Appendices

package java.io.file–Summary of the most important classes and interfaces

class Paths The Paths class provides get methods to return concrete instances of the 

Path interface.

class Files Files is a class that provides static methods to query attributes of files and 

directories (folders), as well as to manipulate the file system—e.g., creating 

directories and changing file permissions. It also includes methods for opening 

files, such as newBufferedReader.

K.4 The java.net package

The java.net package contains classes and interfaces supporting networked applications. 
Most of these are outside the scope of this book.

package java.net–Summary of the most important classes

class URL The URL class represents a Uniform Resource Locator. In other words, it provides 

a way to describe the location of something on the Internet. In fact, it can also 

be used to describe the location of something on a local file system. We have in-

cluded it here because classes from the java.io and javax.swing packages 

often use URL objects. Key methods are getContent, getFile, getHost,

getPath, and openStream.

K.5 Other important packages

Other important packages are:

java.awt
java.awt.event
javax.swing
javax.swing.event

These are used extensively when writing graphical user interfaces (GUIs), and they contain 
many useful classes that a GUI programmer should become familiar with.



A
abstract, 346
abstract classes, 346–48
Filter, 398–99
interfaces, 356, 362
library classes, 359

abstraction, 92
ArrayList, 100
collections, grouping objects, 93–94
flexibility, 353
object interaction, 63–65
print, 89

abstraction techniques, 326–64
abstract classes, 342–46
abstract methods, 344–46
Class, 361–62
event-driven simulations, 362–63
foxes-and-rabbits project, 327–42
interfaces, 354–59
multiple inheritance, 351–54
simulations, 326–42

AbstractList, 299
abstract methods, 344–46, 348–51, 355
abstract subclasses, 347
Abstract Window Toolkit (AWT), 368–69
access modifiers, 183–86
accessor methods, 33–35, 38, 304
access rights, 286
act, 345
ActionEvent, 375
ActionListener, 375, 376–77, 379, 

381–82, 395
actionPerformed, 377, 378, 379, 380
ActivityPost, 282
Actor, 352–256
add, 98, 171, 372n, 390
addActionListener, 377, 381–82
addDetails, 417, 421, 439, 445, 446
AddressBook

defensive programming, 418–21
errors, 414–21, 445
internal consistency, 442
serialization, 457

AdressBookFileHandler, 457
alive, 343
analysis and design, 460–67, 481–84
and operator, 70, 117
Animal, 343–44, 346, 356–57
annotation, 250, 254, 524, 525
anonymous inner classes, 380–82

Index

anonymous objects, 134
application design, 460–78

analysis and design, 460–67
class design, 467–68
cooperation, 469–70
design patterns, 472–78
documentation, 469
prototyping, 470
waterfall model, 470–71

application testing, 237
apply, 397
applyFilter, 400
applyPreviousOperator, 258–59, 261
ARM see automatic resource management
arrays

errors, 144
expressions, 144
grouping objects, 139–49
LogAnalyzer, 142
log-file analyzer, 139–41

array index, 144
Array<int>, 142
ArrayList, 94–95, 97, 100–101, 153
add to, 171
auction project, 129
collection hierarchy, 358
collections, 124
elementData, 244
getResponse, 168
inheritance, 299
iterator, 122–23
LinkedList, 136
listAllFiles, 108
lots, 134
Map, 173
network project, 272
random numbers, 166
remove, 102
sets, 177–78
source code, 154

ArrayListIterator, 475
ArrayList<String>, 99
array objects, 142–44
array variables, 142
assert, 441
AssertionError, 441
assertion facility, 440
assertions, 250

errors, 440–43
guidelines, 442–43

internal consistency checks, 440–41
unit testing, 443

assert statement, 440–42
assignment, 293–95
assignment statement, 30–31
associations, 172–77
asynchronous simulation see event-driven 

simulations
Auction, 131–34
auction project

anonymous objects, 134
chaining method calls, 135–36
collections, 136–38
grouping objects, 128–38

autoboxing, 139n, 298–99
AutoCloseable, 451
automatic resource management (ARM), 450–51
AWT see Abstract Window Toolkit

B
back command, 222
balance, 25, 28
base types, 142
Beck, Kent, 246, 463n
BevelBorder, 405
binary files, 447
Bloch, Joshua, 318
blocks, 32

see also catch blocks
boolean
AssertionError, 441
condition, 112
expressions, 71

conditional statements, 43
String, 138

boolean, 31, 262, 422–23
BorderLayout, 386–87, 390

components, 391
containers, 404
frames, 403

borders, 405–6
bouncing-balls project, 190–93
boundaries

random numbers, 168
testing, 243–44

BoxLayout, 388
breakpoints, 85–87, 263
bricks project, 265
Brooks, Frederick P., 472n



540 |       Index

flexible-size, 138
get, 126
hierarchy, 299, 358
maps, 173
numbering within, 101–4
processing whole, 106–12
search, 115–18
selective processing, 109–10
sets, 177

Color, 187
combo boxes, 409
Command, 199, 224
command strings, 377
commandWord, 231
CommandWords, 199, 217, 224
comma-separated values (CSV), 455
comments, 7, 25, 238
CommentedPost, 289–90
commenting style, 254–55
compiler, 13, 297, 298–99, 429
complexity, 63

debuggers, 82
components, 368
BorderLayout, 391
ImageViewer, 372–73, 402–6

compound assignment operator, 35n
CompoundBorder, 405
concatenation, strings, 37, 72
conditional statements, 18, 42–45
confirm dialog, 395
consistentSize, 441
constants, 190–93
constructors

access modifiers, 184
class definitions, 27–28
exceptions, 426
library classes, 95
local variables, 47
MailItem, 83–84
overloading, 78
parameters, 28
return types, 32, 39
Singleton pattern, 475
superclasses, 288

ContactDetails, 414, 423, 430–31
Container, 372, 405
containers, 389–91, 404
contains, 110
content equality, 316
contentPane, 405
content pane, frames, 372
cost, 29
count, 318
Counter, 329
coupling, 200, 207–11

implicit, 215–18
localizing change, 214–15
loose, 200, 207
responsibility-driven design, 212–14
tight, 207
see also decoupling

CRC see Class/Responsibilities/Collaborators
Crowther, Will, 197

mutator methods, 33–35
parameters, 28–30, 48–49
scope highlighting, 45–46
ticket machine project, 18–22

class design, 196–234
application design, 467–68
code duplication, 201–4
cohesion, 200, 219–22
coupling, 200, 207–11
decoupling, 229–31
enumerated types, 227–29
execution, 232–34
extensions, 204–6
guidelines, 231–32
implicit coupling, 215–18
interfaces, 467–68
localizing change, 214–15
refactoring, 222–26

language independence, 226–31
responsibility-driven design, 212–14
taxi company project, 485–90
thinking ahead, 218–19

class diagrams, 66–68, 198, 328
class methods, 179n, 232, 233, 234
Class/Responsibilities/Collaborators (CRC), 463

taxi company project, 482–83
class scope, 48
class variables, 190–93
clauses

finally, 437–38
implements, 355
throws, 432

client-server interaction, 418–20
ClockDisplay

GUI, 75n
method calls, 79–81
modulo operator, 73
NumberDisplay, 69
object diagram, 76
object interaction, 69–76
string concatenation, 72

close, 451
code, 10–11

cohesion, 200
compiler, 13
completion, library classes, 189
duplication

class design, 201–4
inheritance, 290
network project, 282

indentation, 45
inheritance, 363

Code Pad, 55–58
cohesion, 200, 219–22

code duplication, 204
Collection, 475
collections

abstraction, 93–94
ArrayList, 124
arrays, 139–49
auction project, 136–38
classes, 153–54
filters, 399–400

BufferedImage, 383
BufferedReader, 452, 453, 455, 474
bugs, 82

see also debugger/debugging
Button, 369
buttons, 402–5

C
calculator-engine project, 252–64
call sequence, 264
canRead, 448
Canvas, 4, 186–87
casting, 296–97, 405n
catch, 432, 434
catch blocks, 432, 434

error recovery, 444
polymorphism, 435

chaining method calls, 135–36
changeDetails, 417, 421, 438
char, 452n
Charset, 453
checked exceptions, 426–28, 432
checkIndex, 104
cinema booking project, 461–66
Circle, 4, 8, 9
Class, 360, 361–62
class, 355
classes, 3–4

cohesion, 220–21
collections, 153–54
define types, 65
generic, 97, 100–101
implementation, 162–63, 360

filters, 399
inheritance, 283
inner classes

anonymous, 380–82
GUI, 378–80

instantiation, 3
interfaces, 162–63, 186–90

implementation, 355
methods, 9
naming, 5
network project, 270–73
reference class, 247
superclasses, 297
taxi company project, 481–82
testing, 490
verb/noun method, 461–62
see also abstract classes; library classes

ClassCastException, 296, 427
class definitions, 18–58

accessor methods, 33–35
assignment statement, 30–31
comments, 25
conditional statements, 42–45
constructors, 27–28
exceptions, 438–39
expressions, 55–58
fields, 23–27, 48–49
local variables, 46–49
methods, 31–33
method calls, 54–55



Index | 541

expressions, 31, 54, 55–58, 144
extends, 285
extensions, 204–6, 291, 406–8
external method calls, 79–80

F
Factory method, 475–76
Field, 329, 477
field, 343
fields

access modifiers, 184
class definitions, 23–27, 48–49
class scope, 48
constructors, 27
initialization, 28
library classes, 95
local variables, 47, 48
MailItem, 83–84
mutable, 319
objects, 9, 28
print statements, 260
private, 25
public, 185–86
source code, 25
variables, 25–26, 48–49

FieldStats, 329, 353
FieldView, 380
File, 447–48
files

binary, 447
log-file analyzer, 139–41, 145–47
output, 448–50
see also text files

FileNotFoundException, 435, 447
FileReader, 452–55
FileWriter, 448
fillResponses, 170
Filter, 396–402
filters

classes, 399
collections, 399–400
image filters, 391–94
ImageViewer, 396–402

final, 355
finally clause, 437–38
final variable, 382
findFirst, 119
finished, 159–60
fixed-size collections see arrays
fixtures, 251–52
FlowLayout, 386–87, 403
for-each loop, 107–9, 112, 115, 145n, 315

arrays, 147
keywords, 146

for loop, 107, 139, 145–47, 145n, 148
formal parameters, 48–49
Fox, 334–37
foxes-and-rabbits project

abstraction techniques, 327–42
decoupling, 397
inner classes, 380
interfaces, 359–61
Observer pattern, 476

Frame, 369

EOFException, 435, 447
equals, 298, 316–18
Error, 427n
errors, 413–58
AddressBook, 414–21
arrays, 144
assertions, 440–43
avoidance, 445–46
debugger, 82
defensive programming, 418–21
exception throwing, 425–31
logical, 236
null, 424
out-of-bounds, 423–24
char, 452n

parameters, 420–21
print statements, 261
recovery, 443–45

input/output, 446–58
runtime, 419
server-error reporting, 421–25
strings, 164
syntax, 236
see also exceptions

EtchedBorder, 405–6
Event, 363
event-driven simulations, 362–63
event handling, 368, 375
event listeners, 375, 376–78
EventPost, 289–90
Exception, 427, 427n, 435
exceptions

casting, 296
checked, 426–28, 432
ClassCastException, 296, 427
class definitions, 438–39
constructors, 426
DuplicateKeyException, 439, 446
effects, 428–29
EOFException, 435, 447
FileNotFoundException, 435, 447
finally clause, 437–38
handlers, 431–38
hierarchy, 426–27
IllegalArgumentException, 429–30
IndexOutOfBoundsException,

102, 427
IOException, 446–47, 448
methods, 428
NullPointerException, 130, 419, 420, 

422, 427, 428
propagation, 436–37
RuntimeException, 427, 429, 438
strings, 426
throwing

errors, 425–31
file output, 448–50
multiple exceptions, 434–35
preventing object creation, 430–31

try statement, 432–34
unchecked, 426–30

exclusive boundaries, 168
exists, 448

CSV see comma-separated values
Cunningham, Ward, 463n

D
darker, 393
darker image, 391–94
data types, 7–8, 25
debugger/debugging, 237, 252–54, 263–65

mail-system project, 82–89
object interaction, 81–89
single stepping, 87–88
static variables, 86
strategy choices, 265
toString, 316
turning information on off, 262–63

declarations, 32, 46, 47, 142
Decorator pattern, 474
decoupling, 229–31, 397
defensive programming, 418–21
definite iteration, 12, 118, 146
delegates, 100
design

analysis and design, 460–67, 481–84
user interface, 468
see also application design; class design; 

responsibility-driven design
design patterns, 472–78
details, 419, 429
dialogs, 394–95
diamond notation, 98, 174
display, 271, 296, 302–4
MessagePost, 309
NewsFeed, 305–7
PhotoPost, 309
Post, 307, 309
source code, 307–8
superclasses, 320

displayString, 69, 75
displayValue, 258
divide and conquer, 63
dividing strings, 178–79
documentation

application design, 469
library classes, 154–55

elements, 182–83
reading, 160–66
writing, 181–83

dot notation, 80
downvoting, 238
Drawable, 353–54
drawables, 353–54
DuplicateKeyException, 439, 446
dynamic types, 304–7
dynamic view, 68

E
edge detection filters, 402
elementData, 244
ElementType element, 108
else, 43, 45
EmptyBorder, 405
encapsulation, 207–11
enhanced for loop see for-each loop
enumerated types, 227–29



542 |       Index

information hiding, 184–85
inheritance, 269–99, 285–88

accessor methods, 304
access rights, 286
advantages, 290–91
classes, 283
code, 363
code duplication, 290
extensions, 291
hierarchy, 284–85
implementation, 363–64
initialization, 286–88
instanceof, 320
JFrame, 409
method lookups, 308–11
multiple, 351–54
multiple interfaces, 356–57
Object, 297–98
object equality, 316–18
object methods, 313–16
overriding, 307–8, 321–23
private, 286
protected access, 318–20
reuse, 288, 291
subtypes, 291–97
summary, 363–64
toString, 313–16
using, 282–84
world-of-zuul game, 321–23

initialization, 27, 28, 48, 286–88
input, 160, 164, 180
input dialog, 395
input/output error recovery, 446–58
InputReader, 156, 176–77
inspectors, 243–45
instances, 4, 8, 379
instance methods, 232
instanceof, 320, 344
instance variables, 86, 87

see also fields
instantiation, 3
int, 25, 31, 32, 452n
integer arrays, 142
integer expressions, 143
interface, 355
interfaces

abstract classes, 356, 362
abstraction techniques, 354–59
abstract methods, 355
classes, 162–63, 186–90

design, 467–68
implementation, 355

decoupling, 229–31
foxes-and-rabbits project, 359–61
library classes, 359
multiple, 356–57
specifications, 358–59
types, 357
see also graphical user interface; user 

interface
internal consistency checks, 440–41
internal method calls, 79
invert filters, 401

H
hashCode, 298, 316–18
HashMap, 173–74, 213
HashSet, 177–78, 180, 475
HashSetIterator, 475
hasNext, 125, 145
hierarchy

collections, 299, 358
exceptions, 426–27
inheritance, 284–85

Hopper, Grace Murray, 82
hunt, 336
Hunter, 356–57

I
Id, 54
if, 43, 45
if statements, 80, 110
IllegalArgumentException, 429–30
ImageFileManager, 383–84
image filters, 391–94
ImagePanel, 383, 384–85
ImageViewer

alternative structure, 373–74
anonymous inner classes, 380–82
borders, 405–6
buttons, 402–5
components, 372–73, 402–6
containers, 389–91
dialogs, 394–95
event listeners, 376–78
extensions, 406–8
filters, 396–402
first complete version, 383–96
frames, 369–72
GUI, 369–406
image filters, 391–94
improving program structure, 396–402
layout, 386–89

immutable object, 163
implementation

classes, 162–63, 360
interface, 355

filter classes, 399
inheritance, 363–64
methods, 308
strings, 165n

implements clause, 355
implicit coupling, 215–18
implicit numbering, 101
import, 180
import statements, 97–98, 171–72
inclusive boundaries, 168
incrementAge, 34
indefinite iteration, 112–19
indentation, 45
index, 170, 171
index access versus iterators, 124–25
index numbers, 101, 103
indexOf, 424
IndexOutOfBoundsException, 102, 427
index variables, 103, 115
infinite loops, 115

frames, 369–72, 372, 403
frame.pack(), 385
from, 84

G
Game, 199, 217
Gamma, Erich, 246
general-purpose collection class, 97
generateResponse, 170, 176
generic classes, 97, 100–101
get, 98, 126, 171, 173–74
getActionCommand, 378
getClass, 361
getDetails, 417, 423, 429
getDisplayValue, 71, 80
getExit, 211
getExitString, 212, 213
getField, 343
getHeight, 384
getID, 138
getLongDescription, 222
getNextMailItem, 82, 85, 88
getNumberOfComments, 244
getPixel, 384, 399
getResponse, 168
getTimeStamp, 318
getValue, 70
getWidth, 384
giveBirth, 34
graphical user interface (GUI), 75n,

367–410
anonymous inner classes, 380–82
AWT, 368–69
combo boxes, 409
components, 368
event handling, 368, 375
extensions, 406–8
inner classes, 378–80
layout, 368
lists, 409
menu items, 374–75
scrollbars, 409
static images, 409
Swing, 368–69
see also ImageViewer

GraphView, 361
grayscale filters, 401
GridLayout, 386–87, 390, 403
GridView, 360–61
grouping objects, 92–151

arrays, 139–49
auction project, 128–38
collection abstraction, 93–94
flexible-collection, 138
for-each loop, 107–9
generic classes, 100–101
indefinite iteration, 112–19
Iterator, 122–26
library classes, 94, 95–98
MusicOrganizer project, 94–128
numbering within collections, 101–4
processing whole collection, 106–12
Track, 119–22

GUI see graphical user interface



Index | 543

makeDarker, 392
makeFrame, 371, 385
makeLarger, 404–5
makeLighter, 392
makeSmaller, 404–5
makeVisible, 5–6
Map, 173, 359
maps

associations, 172–77
collections, 173

Menu, 369
menu bar

frames, 372
Mac OS, 374

menu items, 380
ActionListener, 376–77
GUI, 374–75

message dialog, 395
MessagePost, 270–72
display, 309
inheritance, 283–84
source code, 273–76
toString, 314

methods, 14, 36, 38, 185–86, 355
access modifiers, 184
ArrayList, 98
body, 31, 32
classes, 9
class definitions, 31–33
cohesion, 219–20
exceptions, 428
implementation, 308
library classes, 95, 163–65
overloading, 78
overriding, 311–12
parameters, 6, 28
polymorphism, 313
printing from, 36–38
return types, 39
signature, 7
see also specific methods or method types

method body, 36, 47, 49
method calls, 5–6, 14

chaining, 135–36
class definitions, 54–55
debugger, 88
mail-system project, 88–89
null, 419
object interaction, 79–81
print statements, 260
String, 14
super, 311–12
superclasses, 350

method header, 31, 49
method lookups, 308–11
method space, 29
method statements, 379
method stubs, 468
mirror filters, 401
missing, 116
modal dialog, 394, 395
model-view-controller, 219
modularization, 63–65
modules, 200n

documentation, 154–55
elements, 182–83
reading, 160–66
writing, 181–83

grouping objects, 94, 95–98
import statements, 97–98, 171–72
interfaces, 359
maps, 172–77
methods, 163–65
MusicOrganizer project, 95–98
packages, 171–72
sets, 177–78
standard, 154
String, 160–62

lifetime, variables, 29–30
lighter image, 391–94
LinkedList, 136, 358
List, 177–78, 358
lists, 409
listAllFiles, 106, 108, 114, 123
listFile, 102, 104
listSize, 170
localizing change, 214–15
local variables

class definitions, 46–49
debugger, 86
print statements, 260

Location, 329
location, 343
LogAnalyzer, 140, 142, 149
LogEntry, 140, 145
log-file analyzer, 139–41, 145–47
LogfileCreator, 140, 449
LogfileReader, 140, 145
logical errors, 236
logic operators, 70
LoglineTokenizer, 140
LogReader, 140
long, 276
loops, 103

for, 107, 139, 145–47, 145n, 148
definite iteration, 118
for-each, 107–9, 112, 115, 145n, 315

arrays, 147
keywords, 146

infinite, 115
removing elements, 125–26
while, 112–14, 115, 148, 159–60

loop body, 112
loop statements, 107
loop variables, 108
loose coupling, 200, 207
Lot, 130–31
lots, 134

M
machine code, 13
Mac OS, 374
magic numbers, 313, 313n
MailClient, 82, 83, 86, 89
MailItem, 83–84, 88, 89
MailServer, 82, 83
mail-system project, 82–89
main, 233–34

IOException, 446–47, 448
isAlive, 343
is-a relationship, 283
isDirectory, 448
isReadable, 448
isVisible, 9
Item, 221, 224
itemDescription, 220
itemWeight, 220
iteration, 103, 114

definite, 12, 118, 146
indefinite, 112–19

iterative control structures, 107
iterative development, 471–72, 491–99
Iterator, 122–26, 145, 148, 475
iterator, 122–23, 475
iterators, 124–25
iwrap, 298–99

J
Java 7

multiple exceptions, 436
text files, 454

java.awt, 371
java.awt.event, 371, 375
javadoc, 182, 187, 426
java.io, 446, 447
java.lang, 172, 427, 429, 451
java.nio, 447
java.util, 213, 455
javax, 371n
javax.swing, 371
JButton, 369, 373
JComboBox, 409
JComponent, 384
JDialog, 395
JFrame, 369, 374, 390
add, 372n
inheritance, 409
Swing, 370

JList, 409
JMenu, 369, 374
JMenuBar, 374
JMenuItem, 374
JOptionPane, 395
JPanel, 390, 403, 405, 405n
JScrollPane, 409
JTextField, 395
JUnit, 246–48

K
keyInUse, 441, 445
key objects, 173
keywords, 23, 146

access modifiers, 184
generateResponse, 176

L
labels, 373
layout, 368, 386–89
layout managers, 386
length, 147
library classes, 92

abstract classes, 359
code completion, 189



544 |       Index

types, 7
value, 29, 260
variables, 28–29

Parser, 199, 217, 218, 224, 474
parsing, 455–57
Path, 447–48
PhotoPost, 270–72, 276–79, 309
pickDefaultResponse, 176
Picture, 12, 13
pixels, 6n
plus, 259, 261
polymorphism, 269, 295–96, 304

catch blocks, 435
methods, 313

populate, 340
PopulationGenerator, 348
positive testing, 245
Post, 289–90, 307, 309, 314

constructors, 288
for-each loop, 315
inheritance, 283–84
subclasses, 285

predator-prey simulations, 327–42
previousOperator, 258–59
price, 25, 28
primitive types, 69, 298–99
primitive values, 69, 139n
print, 89
printDebugging, 263
printHelp, 217
printing, 36–38
println, 37, 44, 107
printLocationInfo, 207
printMultiRandom (), 167
printNextMail, 85–88
printNextMailItem, 82
print statements, 260–63
private, 26, 183–86, 286, 318–19
private fields, 25
private methods, 185–86
process, 436–37
propagation, 436–37
protected, 318–19
protected access, 318–20
protected statements, 433
prototyping, 470
pseudo-code, 42–43, 112, 123
pseudo-random numbers, 166
public, 183–86, 318–19, 355
public fields, 185–86
purge, 137
put, 173–74
quit, 378

R
Rabbit, 331–34
Random, 34, 166–67
randomGenerator, 167
Randomizer, 34, 330–31
random numbers

boundaries, 168
generating random responses, 168–71
limited range, 167–68
TechSupport project, 166–77

fields, 9, 28
HashMap, 174
immutable, 163
interaction, 12
key objects, 173
methods, 6
network project, 270–73
new, 89
parameters, 14–16
state, 8–9
value, 173
variables, 69
see also grouping objects; well-behaved objects

object bench, 5, 9, 85
object diagram, 66–68, 76, 83, 98–99
object equality, 316–18
object inspector, 8–9
object interaction, 62–89, 92

abstraction, 63–65
debugger, 81–89
method calls, 79–81
modularization, 63–65
multiple constructors, 78
objects creating objects, 77–78
object types, 69
primitive types, 69

object methods, 313–16
object-oriented programming, 3, 64, 184, 269, 326
object reference, 68
object types, 69
Observable, 477
Observer, 477, 477n
Observer pattern, 476–77
OFImage, 383–84, 393
old-style see for loop
openFile, 378, 385
addActionListener, 381–82

operators
compound assignment operator, 35n
logic operators, 70
modulo operator, 73
not operator, 160
and operator, 70, 117

out-of-bounds error, 423–24
char, 452n

out-of-bounds value, 117, 425
overloading, 78
overriding
equals, 318
inheritance, 307–8, 321–23
methods, 311–12

P
pack, 373, 385
packages, 171–72
package level, 318
pair programming, 469
parameters, 6–7

class definitions, 28–30, 48–49
defensive programming, 420–21
errors, 420–21
name, 7, 29
objects, 14–16
println, 44
subtypes, 295

modulo operator, 73
MouseEvent, 375
moveHorizontal, 6
moveLeft, 6
moveRight, 5–6
multiple constructors, 78
multiple exceptions, 434–35, 436
multiple inheritance, 351–54, 356–57
multiple instances, 8
multiple interfaces, 356–57
MusicOrganizer

for-each loop, 107–9
grouping objects, 94–128
library classes, 95–98
numbering within collections, 101–4
object diagram, 98–99
playing music files, 104–6
processing whole collection, 106–12

MusicPlayer, 104–6, 408–10
mutable fields, 319
mutator methods, 33–35

N
name

parameters, 7, 29
variables, 30

need to know, 184
negative testing, 245
nested containers, 389–91
network project, 269–99

adding other post types, 288–90
classes, 270–73
code duplication, 282
display, 302–4
objects, 270–73
source code, 273–81

new, 89, 95
NewsFeed, 273, 279–81, 291–92, 305–7, 315
next, 125
next (), 123
nextDouble, 455
nextInt, 167, 455
nextLine, 456
not being allowed to know, 185
notify, 477
not operator, 160
null, 130, 419, 421, 424
NullPointerException, 130, 419, 420, 

422, 427, 428
numbers

implicit numbering, 101
index numbers, 101, 103
magic numbers, 313, 313n
pseudo-random numbers, 166
see also random numbers

NumberDisplay, 65–68, 69
numberOfAccesses, 149
numberOfEntries, 441

O
Object, 297–98, 316–18, 361
objects, 3–5, 9–10

collections, 93
creation, 19

prevention, 430–31



Index | 545

print, 260–63
protected, 433
return, 32, 33
switch, 228, 228n
throw, 426
try, 451

error recovery, 444
exceptions, 432–34
finally clause, 437–38
unchecked exceptions, 446

try resource, 450–51
static, 191–92, 233, 355
static images, 409
static methods, 179n, 448, 475
static types, 304–7, 315
static variables, 86
Step, 88, 263
Step Into, 88, 263
String, 7, 31

boolean expressions, 138
hashCode, 318
id, 54
immutable object, 163
indexOf, 424
library classes, 160–62
method calls, 14
put, 160, 164
Scanner, 455
showAll, 219
split, 179
toString, 231
Track, 120
trim, 163

strings
checking equality, 165–66
command strings, 377
concatenation, 37, 72
dividing, 178–79
errors, 164
exceptions, 426
implementation, 165n
limitations, 111
switch statements, 228n

string literals, 37
subclasses, 283, 285, 304

abstract, 347
initialization, 287
overriding, 308
subtypes, 293

superclasses, 357
substitution, 294
substring, 54
subtypes, 435

assignment, 293–95
casting, 296–97
inheritance, 291–97
parameters, 295
subclasses, 293

superclasses, 357
superclasses, 294

subclasses, 357
variables, 293

super, 288, 311–12

setPixel, 399
setUp, 251
setup, 337–40
setValue, 70, 80
show, 296, 315
showAbout, 395
showAll, 219
showCommands, 218
showInfo, 238, 244
showInputDialog, 395
showMessageDialog, 395
showSearchResults, 457
signature, methods, 7
Simulate, 341–42
simulate, 330
simulateOneStep, 340, 341–42
Simulator, 329, 337–40, 361, 362
SimulatorView, 329, 361, 380

class implementation, 360
Observer pattern, 477

single stepping, 87–88
Singleton pattern, 474–75
size, 98, 119, 170
smooth filters, 401
solarize filters, 401
source code, 12–13
ArrayList, 154
class implementation, 162–63
ClockDisplay, 69–76, 75n
debugger, 81
display, 307–8
fields, 25
MessagePost, 273–76
network project, 273–81
NewsFeed, 279–81, 291–92
PhotoPost, 276–79
Responder, 158–59, 168–70
Room, 206
Simulator, 361
SupportSystem, 157–58

split, 179
Square, 4
stack, 264
Stack, 222
standard input, 456
standard library classes, 154
standard output, 456
start, 159, 160, 180
startsWith, 160
state

debuggers, 264
methods, 14
objects, 8–9
walkthroughs, 257–60

statements
assert, 440–42
assignment, 30–31
conditional, 18, 42–45
if, 80, 110
import, 97–98, 171–72
loop, 107
method, 379
method body, 32, 36

RandomTester, 167
read, 452n
readability, 221
Reader, 474
readers, 447
refactoring, 222–26

language independence, 226–31
reference class, 247
regression testing, 245
remove, 98, 102, 125
removeDetails, 419, 420, 422, 

440–41
removeFile, 102, 104
reportState, 263
reserved words see keywords
reset, 330
Responder, 156, 158–59, 168–70
responsibility-driven design, 120

coupling, 212–14
localizing change, 214–15

return statements, 32, 33
return types, 32, 33, 38, 39
return values, 14, 34–35, 35n
reuse

cohesion, 221–22
inheritance, 288, 291
taxi company project, 499

Room, 199, 206, 212
runtime, 68
runtime error, 419
RuntimeException, 427, 429, 438

S
saveFile, 378
saveSearchResults, 457
saveToFile, 432
Scanner, 455–57
scenarios, 463–67, 483–84
scope

class scope, 48
coloring, 381
formal parameters, 49
highlighting, 45–46
local variables, 49
variables, 29

scribble project, 186–90
scrollbars, 409
search, 115–18
search, 421
searching, 116
selective drawing, 353–54
sendMailItem, 82, 89
Serializable, 457
serialization, 447, 457–58
server-error reporting, 421–25
Set, 177–78, 213, 359
sets, 177–78
setBorder, 405
setColor, 360, 362
setExits, 207, 211
setJmenuBar, 374
setLayout, 403
setLocation, 343



546 |       Index

objects, 173
parameters, 29, 260
primitive, 69, 139n
return values, 14, 34–35, 35n
switch statements, 228n

variables, 130, 174
dynamic types, 304–7
fields, 25–26, 48–49
formal parameters, 48–49
lifetime, 29–30
name, 30
objects, 69
parameters, 28–29
polymorphism, 295–96
primitive values, 69
scope, 29
static types, 304–7
subtypes, 293
types, 56
see also specific variable types

Vehicle, 486–89
verbal walkthroughs, 260
verb/noun method, 461–62
void, 422–23

methods, 14, 36, 38
return values, 34–35, 35n

W
walkthroughs, 255–60

breakpoints, 263
state, 257–60
verbal, 260
well-behaved objects, 255–60

waterfall model, 470–71
well-behaved objects, 236–65

commenting style, 254–55
debugger/debugging, 237, 252–54, 

263–64
strategy choices, 265

print statements, 260–63
test automation, 245–52
testing, 237
unit testing, 237–45
walkthroughs, 255–60

while loop, 112–14, 115, 148, 159–60
world-of-zuul game, 197–234

code duplication, 201–4
cohesion, 200, 219–20
decoupling, 229–31
enumerated types, 227–29
extensions, 204–6
implicit coupling, 215–18
inheritance, 321–23
localizing change, 214–15
refactoring, 222–26

language independence, 226–31
responsibility-driven design, 212–14

wrapper classes, 298–99
write, 449
writers, 447
writing maintainability, 237

@throws, 426, 432
throws clause, 432
throw statements, 426
tight coupling, 207
time-based simulation, 362
time stamp, 276
timeString, 276
title bar, 372
TitleBorder, 405
toLowerCase, 165
toString, 230

inheritance, 313–16
MessagePost, 314
Object, 298
String, 231

total, 25, 28
toUpperCase, 164
Track, 119–22
TrackReader, 119
TreeSet, 178
Triangle, 4
trim, 163
try, 432
try resource statement, 450–51
try statements, 451

error recovery, 444
exceptions, 432–34
finally clause, 437–38
unchecked exceptions, 446

types
base types, 142
data types, 7–8, 25
dynamic types, 304–7
enumerated types, 227–29
interfaces, 357
object types, 69
parameters, 7
primitive types, 69, 298–99
return types, 32, 33, 38, 39
variables, 56
see also subtypes

U
UML, 271n
unchecked exceptions, 426–30, 446
unit testing, 237–45

assertions, 443
inspectors, 243–45

update, 477n
updateDisplay, 79–80
updateValue, 80
upvoting, 238
use cases see scenarios
user interface, 468

see also graphical user interface
UserInterface, 252

V
validIndex, 104
values

CSV, 455
expressions, 54

superclasses, 283, 320, 398–99
casting, 296–97
constructors, 288
initialization, 287
method calls, 350
mutable fields, 319
overriding, 308
subtypes, 294

subclasses, 357
SupportSystem, 156, 157–58
Swing, 370, 372

event handling, 375
GUI, 368–69
layout managers, 386

swing, 371n
switch statements, 228, 228n
synchronous simulation, 362
syntax errors, 236
System.err, 422
System.out, 37, 422
System.out.print, 315
System.out.println, 108, 218, 315

T
taxi company project, 480–99

analysis and design, 481–84
classes, 481–82
class design, 485–90
class testing, 490
CRC, 482–83
iterative development, 491–99
reuse, 499
scenarios, 483–84

TechSupport project, 155–66
finishing, 179–81
library class methods, 163–65
random numbers, 166–77

testAddComment, 248
testAll, 254, 257
test class, 246
test harness, 245
testIllegalRating, 248
testing, 237

automation, 245–52
boundaries, 243–44
classes, 490
negative, 245
positive, 245
recording, 248–51
see also unit testing

testInit, 248
testMinus, 257
testPlus, 255, 256, 261
text files, 449–50
FileReader, 452–55
Java 7, 454
java.io, 447

this, 83–85
threshold, 392
threshold image, 391–94
Throwable, 427, 427n



Oracle Binary Code License Agreement 
for the Java SE Platform Products
ORACLE AMERICA, INC. (“ORACLE”), FOR AND ON BEHALF OF ITSELF AND ITS SUBSIDIARIES AND AFFILIATES 
UNDER COMMON CONTROL, IS WILLING TO LICENSE THE SOFTWARE TO YOU ONLY UPON THE CONDITION THAT 
YOU ACCEPT ALL OF THE TERMS CONTAINED IN THIS BINARY CODE LICENSE AGREEMENT AND SUPPLEMENTAL 
LICENSE TERMS (COLLECTIVELY “AGREEMENT”). PLEASE READ THE AGREEMENT CAREFULLY. BY SELECTING 
THE “ACCEPT LICENSE AGREEMENT” (OR THE EQUIVALENT) BUTTON AND/OR BY USING THE SOFTWARE YOU 
ACKNOWLEDGE THAT YOU HAVE READ THE TERMS AND AGREE TO THEM. IF YOU ARE AGREEING TO THESE 
TERMS ON BEHALF OF A COMPANY OR OTHER LEGAL ENTITY, YOU REPRESENT THAT YOU HAVE THE LEGAL 
AUTHORITY TO BIND THE LEGAL ENTITY TO THESE TERMS. IF YOU DO NOT HAVE SUCH AUTHORITY, OR IF 
YOU DO NOT WISH TO BE BOUND BY THE TERMS, THEN SELECT THE “DECLINE LICENSE AGREEMENT” (OR 
THE EQUIVALENT) BUTTON AND YOU MUST NOT USE THE SOFTWARE ON THIS SITE OR ANY OTHER MEDIA ON 
WHICH THE SOFTWARE IS CONTAINED.

1. DEFINITIONS. “Software” means the Java SE Platform Products in binary form that you selected for download, install or use 
from Oracle or its authorized licensees, any other machine readable materials (including, but not limited to, libraries, source
files, header files, and data files), any updates or error corrections provided by Oracle, and any user manuals, programming 
guides and other documentation provided to you by Oracle under this Agreement. “General Purpose Desktop Computers and 
Servers” means computers, including desktop and laptop computers, or servers, used for general computing functions under 
end user control (such as but not specifically limited to email, general purpose Internet browsing, and office suite productivity 
tools). The use of Software in systems and solutions that provide dedicated functionality (other than as mentioned above) or 
designed for use in embedded or function-specific software applications, for example but not limited to: Software embedded in 
or bundled with industrial control systems, wireless mobile telephones, wireless handheld devices, netbooks, kiosks, TV/STB, 
Blu-ray Disc devices, telematics and network control switching equipment, printers and storage management systems, and other 
related systems are excluded from this definition and not licensed under this Agreement. “Programs” means Java technology ap-
plets and applications intended to run on the Java Platform, Standard Edition platform on Java-enabled General Purpose Desktop 
Computers and Servers. “Commercial Features” means those features identified in Table 1-1 (Commercial Features In Java SE 
Product Editions) of the Software documentation accessible at http://www.oracle.com/technetwork/java/javase/documentation/
index.html.

“README File” means the README file for the Software accessible at http://www.oracle.com/technetwork/java/javase/docu-
mentation/index.html.

2. LICENSE TO USE. Subject to the terms and conditions of this Agreement including, but not limited to, the Java Technology 
Restrictions of the Supplemental License Terms, Oracle grants you a non-exclusive, non-transferable, limited license without li-
cense fees to reproduce and use internally the Software complete and unmodified for the sole purpose of running Programs. THE 
LICENSE SET FORTH IN THIS SECTION 2 DOES NOT EXTEND TO THE COMMERCIAL FEATURES. YOUR RIGHTS 
AND OBLIGATIONS RELATED TO THE COMMERCIAL FEATURES ARE AS SET FORTH IN THE SUPPLEMENTAL 
TERMS ALONG WITH ADDITIONAL LICENSES FOR DEVELOPERS AND PUBLISHERS.

3. RESTRICTIONS. Software is copyrighted. Title to Software and all associated intellectual property rights is retained by Oracle 
and/or its licensors. Unless enforcement is prohibited by applicable law, you may not modify, decompile, or reverse engineer 
Software. You acknowledge that the Software is developed for general use in a variety of information management applications; 
it is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of 
personal injury. If you use the Software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, 
backup, redundancy, and other measures to ensure its safe use. Oracle disclaims any express or implied warranty of fitness for 
such uses. No right, title or interest in or to any trademark, service mark, logo or trade name of Oracle or its licensors is granted
under this Agreement. Additional restrictions for developers and/or publishers licenses are set forth in the Supplemental License 
Terms.

4. DISCLAIMER OF WARRANTY. THE SOFTWARE IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY 
KIND. ORACLE FURTHER DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT 
LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR 
NONINFRINGEMENT.

5. LIMITATION OF LIABILITY. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY INDIRECT, INCIDENTAL, 
SPECIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, OR DAMAGES FOR LOSS OF PROFITS, REVENUE, DATA 
OR DATA USE, INCURRED BY YOU OR ANY THIRD PARTY, WHETHER IN AN ACTION IN CONTRACT OR TORT, 
EVEN IF ORACLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ORACLE’S ENTIRE LIABILITY 
FOR DAMAGES HEREUNDER SHALL IN NO EVENT EXCEED ONE THOUSAND DOLLARS (U.S. $1,000).

http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javase/documentation/index.html


6. TERMINATION. This Agreement is effective until terminated. You may terminate this Agreement at any time by destroying all 
copies of Software. This Agreement will terminate immediately without notice from Oracle if you fail to comply with any provi-
sion of this Agreement. Either party may terminate this Agreement immediately should any Software become, or in either party’s 
opinion be likely to become, the subject of a claim of infringement of any intellectual property right. Upon termination, you must
destroy all copies of Software.

7. EXPORT REGULATIONS. You agree that U.S. export control laws and other applicable export and import laws govern your 
use of the Software, including technical data; additional information can be found on Oracle’s Global Trade Compliance web site 
(http://www.oracle.com/products/export). You agree that neither the Software nor any direct product thereof will be exported, 
directly, or indirectly, in violation of these laws, or will be used for any purpose prohibited by these laws including, without 
limitation, nuclear, chemical, or biological weapons proliferation.

8. TRADEMARKS AND LOGOS. You acknowledge and agree as between you and Oracle that Oracle owns the ORACLE and 
JAVA trademarks and all ORACLE- and JAVA-related trademarks, service marks, logos and other brand designations (“Oracle 
Marks”), and you agree to comply with the Third Party Usage Guidelines for Oracle Trademarks currently located at http://www.
oracle.com/us/legal/third-party-trademarks/index.html. Any use you make of the Oracle Marks inures to Oracle’s benefit.

9. U.S. GOVERNMENT LICENSE RIGHTS. If Software is being acquired by or on behalf of the U.S. Government or by a U.S. 
Government prime contractor or subcontractor (at any tier), then the Government’s rights in Software and accompanying docu-
mentation shall be only those set forth in this Agreement.

10. GOVERNING LAW. This agreement is governed by the substantive and procedural laws of California. You and Oracle agree 
to submit to the exclusive jurisdiction of, and venue in, the courts of San Francisco, or Santa Clara counties in California in any 
dispute arising out of or relating to this agreement.

11. SEVERABILITY. If any provision of this Agreement is held to be unenforceable, this Agreement will remain in effect with 
the provision omitted, unless omission would frustrate the intent of the parties, in which case this Agreement will immediately 
terminate.

12. INTEGRATION. This Agreement is the entire agreement between you and Oracle relating to its subject matter. It supersedes 
all prior or contemporaneous oral or written communications, proposals, representations and warranties and prevails over any 
conflicting or additional terms of any quote, order, acknowledgment, or other communication between the parties relating to 
its subject matter during the term of this Agreement. No modification of this Agreement will be binding, unless in writing and 
signed by an authorized representative of each party.

SUPPLEMENTAL LICENSE TERMS

These Supplemental License Terms add to or modify the terms of the Binary Code License Agreement. Capitalized terms not de-
fined in these Supplemental Terms shall have the same meanings ascribed to them in the Binary Code License Agreement. These 
Supplemental Terms shall supersede any inconsistent or conflicting terms in the Binary Code License Agreement, or in any license 
contained within the Software.

A. COMMERCIAL FEATURES. You may not use the Commercial Features for running Programs, Java applets or applications 
in your internal business operations or for any commercial or production purpose, or for any purpose other than as set forth in
Sections B, C, D and E of these Supplemental Terms. If You want to use the Commercial Features for any purpose other than as 
permitted in this Agreement, You must obtain a separate license from Oracle.

B. SOFTWARE INTERNAL USE FOR DEVELOPMENT LICENSE GRANT. Subject to the terms and conditions of this 
Agreement and restrictions and exceptions set forth in the README File incorporated herein by reference, including, but not 
limited to the Java Technology Restrictions of these Supplemental Terms, Oracle grants you a non-exclusive, non-transferable, 
limited license without fees to reproduce internally and use internally the Software complete and unmodified for the purpose of
designing, developing, and testing your Programs.

C. LICENSE TO DISTRIBUTE SOFTWARE. Subject to the terms and conditions of this Agreement and restrictions and excep-
tions set forth in the README File, including, but not limited to the Java Technology Restrictions of these Supplemental Terms, 
Oracle grants you a non-exclusive, non-transferable, limited license without fees to reproduce and distribute the Software, 
provided that (i) you distribute the Software complete and unmodified and only bundled as part of, and for the sole purpose of 
running, your Programs, (ii) the Programs add significant and primary functionality to the Software, (iii) you do not distribute
additional software intended to replace any component(s) of the Software, (iv) you do not remove or alter any proprietary 
legends or notices contained in the Software, (v) you only distribute the Software subject to a license agreement that: (a) is a
complete, unmodified reproduction of this Agreement; or (b) protects Oracle’s interests consistent with the terms contained in 
this Agreement and that includes the notice set forth in Section G, and (vi) you agree to defend and indemnify Oracle and its li-
censors from and against any damages, costs, liabilities, settlement amounts and/or expenses (including attorneys’ fees) incurred 

http://www.oracle.com/products/export
http://www.oracle.com/us/legal/third-party-trademarks/index.html
http://www.oracle.com/us/legal/third-party-trademarks/index.html


in connection with any claim, lawsuit or action by any third party that arises or results from the use or distribution of any and all 
Programs and/or Software.

D. LICENSE TO DISTRIBUTE REDISTRIBUTABLES. Subject to the terms and conditions of this Agreement and restric-
tions and exceptions set forth in the README File, including but not limited to the Java Technology Restrictions of these 
Supplemental Terms, Oracle grants you a non-exclusive, non- transferable, limited license without fees to reproduce and 
distribute those files specifically identified as redistributable in the README File (“Redistributables”) provided that: (i) you
distribute the Redistributables complete and unmodified, and only bundled as part of Programs, (ii) the Programs add signifi-
cant and primary functionality to the Redistributables, (iii) you do not distribute additional software intended to supersede any
component(s) of the Redistributables (unless otherwise specified in the applicable README File), (iv) you do not remove or 
alter any proprietary legends or notices contained in or on the Redistributables, (v) you only distribute the Redistributables pur-
suant to a license agreement that: (a) is a complete, unmodified reproduction of this Agreement; or (b) protects Oracle’s interests 
consistent with the terms contained in the Agreement and includes the notice set forth in Section G, (vi) you agree to defend and 
indemnify Oracle and its licensors from and against any damages, costs, liabilities, settlement amounts and/or expenses (includ-
ing attorneys’ fees) incurred in connection with any claim, lawsuit or action by any third party that arises or results from the use 
or distribution of any and all Programs and/or Software.

E. DISTRIBUTION BY PUBLISHERS. This section pertains to your distribution of the JavaTM SE Development Kit 
Software with your printed book or magazine (as those terms are commonly used in the industry) relating to Java technol-
ogy (“Publication”). Subject to and conditioned upon your compliance with the restrictions and obligations contained in 
the Agreement, Oracle hereby grants to you a non-exclusive, nontransferable limited right to reproduce complete and un-
modified copies of the Software on electronic media (the “Media”) for the sole purpose of inclusion and distribution with 
your Publication(s), subject to the following terms: (i) You may not distribute the Software on a stand-alone basis; it must be 
distributed with your Publication(s); (ii) You are responsible for downloading the Software from the applicable Oracle web site; 
(iii) You must refer to the Software as JavaTM SE Development Kit; (iv) The Software must be reproduced in its entirety and 
without any modification whatsoever (including with respect to all proprietary notices) and distributed with your Publication 
subject to a license agreement that is a complete, unmodified reproduction of this Agreement; (v) The Media label shall include 
the following information: Copyright 2011, Oracle America, Inc. All rights reserved. Use is subject to license terms. ORACLE 
and JAVA trademarks and all ORACLE- and JAVA-related trademarks, service marks, logos and other brand designations are 
trademarks or registered trademarks of Oracle in the U.S. and other countries. This information must be placed on the Media 
label in such a manner as to only apply to the Oracle Software; (vi) You must clearly identify the Software as Oracle’s product on 
the Media holder or Media label, and you may not state or imply that Oracle is responsible for any third-party software contained
on the Media; (vii) You may not include any third party software on the Media which is intended to be a replacement or substi-
tute for the Software; (viii) You agree to defend and indemnify Oracle and its licensors from and against any damages, costs, 
liabilities, settlement amounts and/or expenses (including attorneys’ fees) incurred in connection with any claim, lawsuit or 
action by any third party that arises or results from the use or distribution of the Software and/or the Publication; ; and (ix) You 
shall provide Oracle with a written notice for each Publication; such notice shall include the following information: (1) title of 
Publication, (2) author(s), (3) date of Publication, and (4) ISBN or ISSN numbers. Such notice shall be sent to Oracle America, 
Inc., 500

Oracle Parkway, Redwood Shores, California 94065 U.S.A , Attention: General Counsel.

F. JAVA TECHNOLOGY RESTRICTIONS. You may not create, modify, or change the behavior of, or authorize your licensees to 
create, modify, or change the behavior of, classes, interfaces, or subpackages that are in any way identified as “java”, “javax”, 
“sun”, “oracle” or similar convention as specified by Oracle in any naming convention designation.

G. COMMERCIAL FEATURES NOTICE. For purpose of complying with Supplemental Term Section C.(v)(b) and D.(v)(b), your 
license agreement shall include the following notice, where the notice is displayed in a manner that anyone using the Software 
will see the notice:

Use of the Commercial Features for any commercial or production purpose requires a separate license from Oracle. 
“Commercial Features” means those features identified Table 1-1 (Commercial http://www.oracle.com/technetwork/java/
javase/documentation/index.html

H. SOURCE CODE. Software may contain source code that, unless expressly licensed for other purposes, is provided solely for 
reference purposes pursuant to the terms of this Agreement. Source code may not be redistributed unless expressly provided for 
in this Agreement.

I. THIRD PARTY CODE. Additional copyright notices and license terms applicable to portions of the Software are set 
forth in the THIRDPARTYLICENSEREADME file accessible at http://www.oracle.com/technetwork/java/javase/documen-
tation/index.html. In addition to any terms and conditions of any third party opensource/freeware license identified in the 
THIRDPARTYLICENSEREADME file, the disclaimer of warranty and limitation of liability provisions in paragraphs 4 and 5 
of the Binary Code License Agreement shall apply to all Software in this distribution.

http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javase/documentation/index.html


J. TERMINATION FOR INFRINGEMENT. Either party may terminate this Agreement immediately should any Software be-
come, or in either party’s opinion be likely to become, the subject of a claim of infringement of any intellectual property right.

K. INSTALLATION AND AUTO-UPDATE. The Software’s installation and auto- update processes transmit a limited amount of 
data to Oracle (or its service provider) about those specific processes to help Oracle understand and optimize them. Oracle does
not associate the data with personally identifiable information. You can find more information about the data Oracle collects as a 
result of your Software download at http://www.oracle.com/technetwork/java/javase/documentation/index.html.

For inquiries please contact: Oracle America, Inc., 500 Oracle Parkway, Redwood Shores, California 94065, USA.

Last updated May 17, 2011

http://www.oracle.com/technetwork/java/javase/documentation/index.html

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	List of projects discussed in detail in this book
	Acknowledgments
	Part 1 Foundations of object orientation
	Chapter 1 Objects and classes
	1.1 Objects and classes
	1.2 Creating objects
	1.3 Calling methods
	1.4 Parameters
	1.5 Data types
	1.6 Multiple instances
	1.7 State
	1.8 What is in an object?
	1.9 Java code
	1.10 Object interaction
	1.11 Source code
	1.12 Another example
	1.13 Return values
	1.14 Objects as parameters
	1.15 Summary

	Chapter 2 Understanding class definitions
	2.1 Ticket machines
	2.2 Examining a class definition
	2.3 The class header
	2.4 Fields, constructors, and methods
	2.5 Parameters: receiving data
	2.6 Assignment
	2.7 Methods
	2.8 Accessor and mutator methods
	2.9 Printing from methods
	2.10 Method summary
	2.11 Summary of the naïve ticket machine
	2.12 Reflecting on the design of the ticket machine
	2.13 Making choices: the conditional statement
	2.14 A further conditional-statement example
	2.15 Scope highlighting
	2.16 Local variables
	2.17 Fields, parameters, and local variables
	2.18 Summary of the better ticket machine
	2.19 Self-review exercises
	2.20 Reviewing a familiar example
	2.21 Calling methods
	2.22 Experimenting with expressions: the Code Pad
	2.23 Summary

	Chapter 3 Object interaction
	3.1 The clock example
	3.2 Abstraction and modularization
	3.3 Abstraction in software
	3.4 Modularization in the clock example
	3.5 Implementing the clock display
	3.6 Class diagrams versus object diagrams
	3.7 Primitive types and object types
	3.8 The ClockDisplay source code
	3.9 Objects creating objects
	3.10 Multiple constructors
	3.11 Method calls
	3.12 Another example of object interaction
	3.13 Using a debugger
	3.14 Method calling revisited
	3.15 Summary

	Chapter 4 Grouping objects
	4.1 Building on themes from Chapter 3
	4.2 The collection abstraction
	4.3 An organizer for music files
	4.4 Using a library class
	4.5 Object structures with collections
	4.6 Generic classes
	4.7 Numbering within collections
	4.8 Playing the music files
	4.9 Processing a whole collection
	4.10 Indefinite iteration
	4.11 Improving structure—the Track class
	4.12 The Iterator type
	4.13 Summary of the music-organizer project
	4.14 Another example: An auction system
	4.15 Flexible-collection summary
	4.16 Fixed-size collections
	4.17 Summary

	Chapter 5 More-sophisticated behavior
	5.1 Documentation for library classes
	5.2 The TechSupport system
	5.3 Reading class documentation
	5.4 Adding random behavior
	5.5 Packages and import
	5.6 Using maps for associations
	5.7 Using sets
	5.8 Dividing strings
	5.9 Finishing the TechSupport system
	5.10 Writing class documentation
	5.11 Public versus private
	5.12 Learning about classes from their interfaces
	5.13 Class variables and constants
	5.14 Summary

	Chapter 6 Designing classes
	6.1 Introduction
	6.2 The world-of-zuul game example
	6.3 Introduction to coupling and cohesion
	6.4 Code duplication
	6.5 Making extensions
	6.6 Coupling
	6.7 Responsibility-driven design
	6.8 Localizing change
	6.9 Implicit coupling
	6.10 Thinking ahead
	6.11 Cohesion
	6.12 Refactoring
	6.13 Refactoring for language independence
	6.14 Design guidelines
	6.15 Executing without BlueJ
	6.16 Summary

	Chapter 7 Well-behaved objects
	7.1 Introduction
	7.2 Testing and debugging
	7.3 Unit testing within BlueJ
	7.4 Test automation
	7.5 Debugging
	7.6 Commenting and style
	7.7 Manual walkthroughs
	7.8 Print statements
	7.9 Debuggers
	7.10 Choosing a debugging strategy
	7.11 Putting the techniques into practice
	7.12 Summary


	Part 2 Application structures
	Chapter 8 Improving structure with inheritance
	8.1 The network example
	8.2 Using inheritance
	8.3 Inheritance hierarchies
	8.4 Inheritance in Java
	8.5 Network: adding other post types
	8.6 Advantages of inheritance (so far)
	8.7 Subtyping
	8.8 The Object class
	8.9 Autoboxing and wrapper classes
	8.10 The collection hierarchy
	8.11 Summary

	Chapter 9 More about inheritance
	9.1 The problem: network’s display method
	9.2 Static type and dynamic type
	9.3 Overriding
	9.4 Dynamic method lookup
	9.5 Super call in methods
	9.6 Method polymorphism
	9.7 Object methods: toString
	9.8 Object equality: equals and hashCode
	9.9 Protected access
	9.10 The instanceof operator
	9.11 Another example of inheritance with overriding
	9.12 Summary

	Chapter 10 Further abstraction techniques
	10.1 Simulations
	10.2 The foxes-and-rabbits simulation
	10.3 Abstract classes
	10.4 More abstract methods
	10.5 Multiple inheritance
	10.6 Interfaces
	10.7 A further example of interfaces
	10.8 The Class class
	10.9 Abstract class or interface?
	10.10 Event-driven simulations
	10.11 Summary of inheritance
	10.12 Summary

	Chapter 11 Building graphical user interfaces
	11.1 Introduction
	11.2 Components, layout, and event handling
	11.3 AWT and Swing
	11.4 The ImageViewer example
	11.5 ImageViewer 1.0: the first complete version
	11.6 ImageViewer 2.0: improving program structure
	11.7 ImageViewer 3.0: more interface components
	11.8 Further extensions
	11.9 Another example: MusicPlayer
	11.10 Summary

	Chapter 12 Handling errors
	12.1 The address-book project
	12.2 Defensive programming
	12.3 Server-error reporting
	12.4 Exception-throwing principles
	12.5 Exception handling
	12.6 Defining new exception classes
	12.7 Using assertions
	12.8 Error recovery and avoidance
	12.9 File-based input/output
	12.10 Summary

	Chapter 13 Designing applications
	13.1 Analysis and design
	13.2 Class design
	13.3 Documentation
	13.4 Cooperation
	13.5 Prototyping
	13.6 Software growth
	13.7 Using design patterns
	13.8 Summary

	Chapter 14 A case study
	14.1 The case study
	14.2 Analysis and design
	14.3 Class design
	14.4 Iterative development
	14.5 Another example
	14.6 Taking things further


	Appendices
	A: Working with a BlueJ project
	B: Java data types
	C: Operators
	D: Java control structures
	E: Running Java without BlueJ
	F: Using the debugger
	G: Unit unit-testing tools
	H: Teamwork tools
	I: Javadoc
	J: Program style guide
	K: Important library classes

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W




