
M A N N I N G

Bradley Austin Davis
Karen Bryla

Phillips Alexander Benton

FOREWORD BY Philip Rosedale

www.allitebooks.com

http://www.allitebooks.org

Oculus Rift in Action
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Oculus Rift
in Action

BRADLEY AUSTIN DAVIS
KAREN BRYLA

PHILLIPS ALEXANDER BENTON

M A N N I N G
SHELTER ISLAND
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Technical development editor Justin Chase
PO Box 761 Copyeditor: Liz Welch
Shelter Island, NY 11964 Proofreader: Elizabeth Martin

Technical proofreader: Frederik Vanhoutte
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN 9781617292194
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 For Leo and Kesten
 —B.D.

 For Sam, Ted, and Max
 —K.B.

 For Antonia
 —A.B.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

brief contents
PART 1 GETTING STARTED ..1

1 ■ Meet the Oculus Rift 3

PART 2 USING THE OCULUS C API..31
2 ■ Creating your first Rift interactions 33
3 ■ Pulling data out of the Rift: working with the

head tracker 55
4 ■ Sending output to the Rift: working with the display 72
5 ■ Putting it all together: integrating head tracking

and 3D rendering 100
6 ■ Performance and quality 125

PART 3 USING UNITY..141
7 ■ Unity: creating applications that run on the Rift 143
8 ■ Unity: tailoring your application for the Rift 164

PART 4 THE VR USER EXPERIENCE 185
9 ■ UI design for VR 187

10 ■ Reducing motion sickness and discomfort 228
vii

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSviii
PART 5 ADVANCED RIFT INTEGRATIONS259

11 ■ Using the Rift with Java and Python 261

12 ■ Case study: a VR shader editor 300

13 ■ Augmenting virtual reality 333
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxiii
about the authors xxviii
author online xxix
about the cover illustration xxx

PART 1 GETTING STARTED...1

1 Meet the Oculus Rift 3
1.1 Why support the Rift? 4

The call of virtual reality 4 ■ But what about the Rift? 4

1.2 How is the Rift being used today? 5
1.3 Get to know the Rift hardware 9

The DK2 9 ■ The DK1 14 ■ The GPU 17

1.4 How the Rift works 17
Using head tracking to change the point of view 20
Rendering an immersive view 21

1.5 Setting up the Rift for development 26
1.6 Dealing with motion sickness 27
ix

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
1.7 Development paths 29
1.8 Summary 29

PART 2 USING THE OCULUS C API31

2 Creating your first Rift interactions 33
2.1 SDK interfaces 34

Oculus runtime 34 ■ Oculus SDK 35

2.2 Working with the SDK 35
SDK management 36 ■ Managing the HMD 38

2.3 Getting input from the head tracker 39
Reserving a pointer to the device manager and
locating the headset 42 ■ Fetching tracker data 43
Reporting tracker data to the console 44 ■ Exiting and
cleaning up 44 ■ Understanding the output 44

2.4 A framework for demo code: the GlfwApp base class 45
2.5 Rendering output to the display 47

The constructor: accessing the Rift 50 ■ Creating the OpenGL
window 51 ■ Rendering two rectangles, one for each eye 51

2.6 What’s next? 52
2.7 Summary 53

3 Pulling data out of the Rift: working with the head tracker 55

3.1 The head tracker API 56
Enabling and resetting head tracking 56 ■ Receiving head
tracker data 57

3.2 Receiving and applying the tracker data: an example 61
Initial setup and binding 64 ■ Fetching orientation 65
Applying the orientation to the rendered scene 65

3.3 Additional features: drift correction and prediction 66
Drift correction 67 ■ Prediction 67 ■ Using drift correction
and prediction 70

3.4 Summary 71
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xi
4 Sending output to the Rift: working with the display 72
4.1 Targeting the Rift display 73

Extended vs. Direct HMD mode 73 ■ Creating the OpenGL
window: choosing the display mode 74 ■ Creating the OpenGL
window: Extended Desktop mode 74 ■ Creating the OpenGL
window: Direct HMD mode 77 ■ Full screen vs. windowed:
extensions with glfwCreateWindow() 79 ■ Dispensing with
the boilerplate 80

4.2 How the Rift display is different: why it matters to you 80
Each eye sees a distinct half of the display panel 81
How the lenses affect the view 83

4.3 Generating output for the Rift 85
4.4 Correcting for lens distortion 87

The nature of the distortion 88 ■ SDK distortion correction
support 90 ■ Example of distortion correction 90

4.5 Summary 98

5 Putting it all together: integrating head tracking
and 3D rendering 100
5.1 Setting the scene 102
5.2 Our sample scene in monoscopic 3D 104
5.3 Adding stereoscopy 106

Verifying your scene by inspection 109

5.4 Rendering to the Rift 112
Enhanced data for each eye 114 ■ Improved user settings 116
Setting up the SDK for distortion rendering 117 ■ The offscreen
framebuffer targets 117 ■ The Oculus texture description 118
Projection and modelview offset 120 ■ The Rift’s
rendering loop 121

5.5 Enabling sensors 121
Implications of prediction 123 ■ Getting your matrices
in order 123

5.6 Summary 124
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxii
6 Performance and quality 125
6.1 Understanding VR performance requirements 126
6.2 Detecting and preventing performance issues 127
6.3 Using timewarp: catching up to the user 129

Using timewarp in your code 130 ■ How timewarp works 130
Limitations of timewarp 132

6.4 Advanced uses of timewarp 132
When you’re running early 132 ■ When you’re
running late 134

6.5 Dynamic framebuffer scaling 135
6.6 Summary 140

PART 3 USING UNITY ..141

7 Unity: creating applications that run on the Rift 143
7.1 Creating a basic Unity project for the Rift 145

Use real-life scale for Rift scenes 145 ■ Creating an
example scene 146

7.2 Importing the Oculus Unity 4 Integration package 147
7.3 Using the Oculus player controller prefab: getting a scene

on the Rift, no scripting required 149
Adding the OVRPlayerController prefab to your scene 149
Doing a test run: the Unity editor workflow for Rift
applications 150 ■ The OVRPlayerController
prefab components 152

7.4 Using the Oculus stereo camera prefab: getting a scene on
the Rift using your own character controller 153
The OVRCameraRig prefab components 157

7.5 Using player data from the user’s profile 160
Ensuring the user has created a profile 160

7.6 Building your application as a full-screen standalone
application 161

7.7 Summary 163
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xiii
8 Unity: tailoring your application for the Rift 164
8.1 Creating a Rift-friendly UI 165

Using the Unity GUI tools to create a UI 165 ■ Creating an
in-world UI 171

8.2 Using Rift head tracking to interact with objects 171
Setting up objects for detection 173 ■ Selecting and
moving objects 174 ■ Using collision to put the selected
object down 176

8.3 Easing the user into VR 178
Knowing when the health and safety warning has been
dismissed 178 ■ Re-centering the user’s avatar 179
Creating splash scenes 180

8.4 Quality and performance considerations 180
Measuring quality: looking at application frame rates 180
Using timewarp 181 ■ (Not) Mirroring to the display 183
Using the Unity project quality settings 183

8.5 Summary 184

PART 4 THE VR USER EXPERIENCE.............................185

9 UI design for VR 187
9.1 New UI paradigms for VR 189

UI conventions that won’t work in VR and why 190
Can your world tell your story? 193 ■ Getting your user
from the desktop to VR 198 ■ Cutscenes 199

9.2 Designing 3D user interfaces 202
Criteria for a good UI 203 ■ Guidelines for 3D scene and
UI design 204 ■ The mouse is mightier than the sword 208
Using the Rift as an input device 214

9.3 Animations and avatars 215
Cockpits and torsos: context in the first person 216
Character animations 218

9.4 Tracking devices and gestural interfaces 220
Beyond the gamepad 220 ■ Gestural interfaces 224

9.5 Summary 227
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxiv
10 Reducing motion sickness and discomfort 228
10.1 What does causing motion sickness and

discomfort mean? 229
10.2 Strategies and guidelines for creating a comfortable VR

environment 230
Start with a solid foundation for your VR application 231
Give your user a comfortable start 231 ■ The golden rule of VR
comfort: the user is in control of the camera 232 ■ Rethink your
camera work: new approaches for favorite techniques 233
Make navigation as comfortable as possible: character movement
and speed 237 ■ Design your world with VR constraints
in mind 240 ■ Pay attention to ergonomics: eyestrain, neck strain,
and fatigue 242 ■ Use sound to increase immersion and orient the
user to action 245 ■ Don’t forget your user: give the player
the option of an avatar body 245 ■ Account for human
variation 246 ■ Help your users help themselves 250
Evaluate your content for use in the VR environment 250
Experiment as much as possible 253

10.3 Testing your VR application for motion sickness
potential 254
Use standardized motion and simulator sickness
questionnaires 254 ■ Test with a variety of users and
as many as you can 254 ■ Test with new users 255
Test with users who have set their personal profile 255
Test in stages 255 ■ Test in different display modes 255

10.4 Summary 256

PART 5 ADVANCED RIFT INTEGRATIONS259

11 Using the Rift with Java and Python 261
11.1 Using the Java bindings 262

Meet our Java binding: JOVR 264 ■ The Jocular-examples
project 268 ■ The RiftApp class 270 ■ The RiftDemo
class 284

11.2 Using the Python bindings 286
Meet our Python binding: PyOVR 287 ■ Development
environment 287 ■ The pyovr-examples project 287
The RiftApp class 287 ■ The RiftDemo class 297

11.3 Working with other languages 298
11.4 Summary 299
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xv
12 Case study: a VR shader editor 300
12.1 The starting point: Shadertoy 301
12.2 The destination: ShadertoyVR 303
12.3 Making the jump from 2D to 3D 303

UI layout 303 ■ User inputs 305 ■ Project planning 307
Picking our feature set 307 ■ UI design 308 ■ Windowing
and UI libraries 310

12.4 Implementation 312
Supporting the Rift in Qt 313 ■ Off-screen rendering
and input processing 320

12.5 Dealing with performance issues 321
12.6 Building virtual worlds on the GPU 324

Raycasting: building 3D scenes one pixel at a time 325
Finding the ray direction in 2D 327 ■ Finding the ray
direction in VR 328 ■ Handling the ray origin: stereopsis
and head tracking 330 ■ Adapting an existing Shadertoy
shader to run in ShadertoyVR 331

12.7 Summary 332

13 Augmenting virtual reality 333
13.1 Real-world images for VR: panoramic photography 334

Panorama photos 335 ■ Photo spheres 336
Photo spheres…in space! 338

13.2 Using live webcam video in the Rift 340
Threaded frame capture from a live image feed 342
Image enhancement 346 ■ Proper scaling: webcam
aspect ratio 347 ■ Proper ranging: field of view 348
Image stabilization 348

13.3 Stereo vision 350
Stereo vision in our example code 351 ■ Quirks of stereo video
from inside the Rift 352

13.4 The Leap Motion hand sensor 353
Developing software for the Leap Motion and the Rift 355
The Leap, the Rift, and their respective coordinate systems 356
Demo: integrating Leap and Rift 357

13.5 Summary 366
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxvi
appendix A Setting up the Rift in a development environment 367
appendix B Mathematics and software patterns for 3D graphics 381
appendix C Suggested books and resources 390
appendix D Glossary 394

index 398
Licensed to Mark Watson <nordickan@gmail.com>

foreword
Two amazing advances from the smartphone arms race have come together to create
the head-mounted display (HMD): light, cheap, high-resolution displays, and a new
generation of super accurate and fast-motion sensor chips. Rather than display infor-
mation or graphics on the surface in front of you, these displays rest on your head and
update quickly enough to convince you that what you’re seeing is as real as the place
you left behind. Although HMDs have existed for decades, they’ve never worked well
enough to be more than aspirational prototypes destined for science museums. But
with the Oculus Rift, the sensation of having a stable 3D world surround you as you
move your head is a game-changing shift from peering into a 3D space through a desk-
top screen or handheld device.

 Within the next 10 years, improved devices like the Oculus Rift will replace many
of the screens we surround ourselves with today as their resolution scales to eclipse
our TVs and monitors. Ultimately, we will use them to replace as much or as little of
the world around us as we choose, with digital content that is indistinguishable from
reality. The impact of these first-generation devices on gaming and virtual worlds will
be incredible.

 But along this road there are many changes to UI, experience, and computing
paradigms that you’ll need to understand, and the authors of Oculus Rift in Action take
you on a comprehensive overview of them. As a developer getting started with the Rift,
you get a complete walkthrough of connecting to and rendering to the device.

 Beyond this, you’ll learn the important differences raised by such devices: How do
you type without a keyboard? If Microsoft and the Mac revolutionized computing by
xvii

Licensed to Mark Watson <nordickan@gmail.com>

FOREWORD xviii
putting things in windows, what will we do in an HMD? Why do we get sick using these
devices, and how can we fix that? This book gives a complete and grounded overview
of the specific technology and operation of the Oculus Rift, as well as the big picture
topics that you’ll need to survive in a new world without monitors. Finally, it dives into
the new and complex design factors around how to correctly control things, navigate,
and build in the virtual world as an “avatar” given the capabilities and limitations of
these new input devices for the head and body.

PHILIP ROSEDALE

CREATOR OF SECOND LIFE
Licensed to Mark Watson <nordickan@gmail.com>

preface
No matter what people have, they always dream of something more: more power,
more influence, more knowledge, but perhaps most importantly, more possibilities.
This drive is part of the human condition and is responsible for our going from the
Wright brothers to Apollo 11 in a single century.

 If you want the future, you have to build it yourself. But the future I want, the one
I think many of us want, isn’t something we can each build on our own, if only for lack
of time and resources.

 We’ve written this book to lend a hand to those who want to help build the future
in virtual reality (VR) but perhaps don’t know where to start.

BRAD DAVIS

SEATTLE, WA

Virtual reality was not something I’d expected to ever get involved in. As fun as it
was to daydream about having my own holodeck to simulate an environment as if I
were really there, the technology never seemed to be there, and so I pursued other
work. My coauthor Brad, though, paid more attention and spotted the Oculus Rift on
Kickstarter. As an early backer, he was very enthusiastic about its potential to create
truly commercial VR. Brad made it sound interesting enough that I ordered my own
DK1 development kit. While I waited the two months for it to ship, I researched what
others were doing and watched YouTube videos. When it finally arrived, nothing I’d
seen or read could do justice to the actual experience.
xix

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

PREFACE xx
 Like many people, my first experience was the Oculus World (also known as Tus-
cany) demo. In it you can meander around an old Tuscan villa. The graphics aren’t
spectacular, and the low resolution on the DK1 made it appear as though I was looking
through a screen door, but those things didn’t matter one little bit when I tilted my
head to look up and the scene changed to match where I was looking. I was overcome
by giggly delight, looking up at the wooden rafters of the house. When I moved my
avatar outside, I looked up to see the sky. This was immersion as I’d never felt before,
and it was amazing.

 That first experience sent my mind racing with thoughts about the potential of VR.
I could see the Rift being used for gaming, virtual tourism, storytelling, and science.
But to me, education was the most interesting, and it’s where I first saw the Rift’s
potential turned into reality. When my younger son came home from school telling
me he was learning about Paris and the Eiffel Tower for multicultural day, I down-
loaded the Tower Eiffel demo by Didier Thery and let him see what it’s like to stand
beneath the tower’s impressive metal arches.

 When my boys and I watched the Nova television series with Neil deGrasse
Tyson, I downloaded Titans of Space by DrashVR so that they could take their own
trip through the solar system and feel how grand and vast the universe truly is. They,
of course, now want to visit Paris and work for NASA, and I’m truly excited to see
what the future brings.

KAREN BRYLA

TINTON FALLS, NJ

A long time ago, I noticed that people are always looking around but they rarely look
up. I guess it’s because there’s not usually a lot of stuff overhead to see. I thought that
if I could help people learn to look up as often as they look around, then we would go
to space sooner, because people would look up at the stars and the moon and think,
“Hey, let’s go check that out.” And I want to go to the moon. Not just as a one-off thing
where you leave your lander behind when you go home—I want humans to have real
cities in space, with shops and streets and hot dog stands.

 So I got into computer graphics because of space. I figured that the best way I can
get there (short of becoming an astronaut, which seems too much like real work) is to
make virtual reality happen. I want to put people into virtual worlds that train them
to expect more from the real one. In VR, there’s no reason for the world not to stretch
as far above you as it does to either side. In VR, we can make worlds where all the best
stuff is overhead, and you’ll always have to look up to find it. After a while, looking up
will get to be a habit.

 And if we can teach people to look up, then someday I’ll eat a hot dog on the moon.

ALEX BENTON

LONDON, ENGLAND
Licensed to Mark Watson <nordickan@gmail.com>

acknowledgments
Creating this book was not an isolated effort by the writers. In fact, it took tremendous
effort, patience, and support from a great many wonderful and talented people to
make this book possible.

 Thank you to Dan Maharry, our development editor at Manning, who has the
patience of a saint and excellent taste in ’90s sci-fi. His guidance throughout this pro-
cess was invaluable. Thanks to Robin de Jongh for getting the ball rolling for us. And
thank you to Mary Piergies, Liz Welch, Elizabeth Martin, Kevin Sullivan, Justin Chase,
and Frederik Vanhoutte, and the rest of the team at Manning for all of their help get-
ting this book to completion, something that at times felt like a Sisyphean task. It takes
an amazing team to get that rock over the hill.

 We need to give special thanks to Iñigo Quilez and Pol Jeremias, authors of Shader-
toy.com, for their advice and support on ShadertoyVR. And we also want to thank
Philip Rosedale, creator of Second Life, for writing the foreword.

 We’d also like to thank our MEAP readers for their comments and corrections to
our early draft chapters, and to the following reviewers who read the manuscript at
various stages during development: Alex Lucas, Andrew Henderson, Bas van Oerle,
Behram Patel, Çağatay Çatal, Daniel Walters, George Freeman, Jan-Jaap Severs,
Joaquin Gracia, Jose San Leandro, Kathleen Estrada, Ken Fricklas, Mackenzie Zastrow,
Marco Massenzio, and Scott Chaussée.

 Finally, none of us could have done this without the support of our families.
xxi

Licensed to Mark Watson <nordickan@gmail.com>

http://Shadertoy.com
http://Shadertoy.com

ACKNOWLEDGMENTSxxii
BRAD DAVIS wishes to thank Leo and Kesten, for all their understanding and devotion.

KAREN BRYLA wishes to thank her husband Sam Kass and her children, Ted and Max,
for their patience and support. She particularly wants to thank them for so willingly
testing out early versions of demos to help her better understand what triggers motion
sickness in VR. She also needs to thank Sam for taking many of the photos used in this
book and for his invaluable feedback on the text and examples.

ALEX BENTON wishes to thank his amazing wife, Dr. Antonia Benton, for her constant
support and encouragement, and Verna Coulson for her unwavering enthusiasm.
Licensed to Mark Watson <nordickan@gmail.com>

about this book
Oculus Rift in Action is designed to help you create comfortable and usable virtual real-
ity (VR) applications that run on the Oculus Rift head-mounted display.

How this book is organized
This book is organized into five parts:

■ Part 1: Getting started—Part 1 introduces you to VR and the Oculus Rift hard-
ware. We’ll cover why you’d want to support the Rift in your software and how
the Rift works.

■ Part 2: Using the Oculus C API—Part 2 covers how to develop Rift applications
using the Oculus C API. Whether you’re looking to write applications using the
API directly, to integrate Rift support into your own game engine, or simply to
better understand how Rift support works in your game engine of choice
(Unity, for example), this part of the book is for you.

■ Part 3: Using Unity—Part 3 covers how to use Unity, a popular development IDE
and 3D graphics engine, to develop Rift applications. Unity is a great way to
jump-start creating 3D games as it handles just about every aspect of game devel-
opment, such as graphics, audio, physics, interaction and networking. With the
Unity integration package from Oculus, you can quickly get your application
running on the Rift. If you want to use Unity for your VR development, you’ll
find much value in part 3.

■ Part 4: The VR user experience—In part 4, we turn our attention to the VR experi-
ence. No matter how you’ve created your VR application, you’re going to want
xxiii

Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xxiv
to design your application so that it’s comfortable and easy to use in the VR
environment. In this part of the book we look at the challenges of creating a
usable UI for the VR environment. We cover some of the common pitfalls of
designing a UI for VR along with the latest research into the key components to
an immersive virtual experience. We also take a look at what you can do to max-
imize user comfort, including guidelines and examples of how to mitigate
motion sickness triggers and other causes of physical discomfort such as fatigue
and eyestrain.

■ Part 5: Advanced Rift integrations—In the final chapters, we provide informa-
tion and examples for work that goes beyond the core integration of the Rift
APIs. Here you’ll learn to work with the Oculus C API using Java or Python,
along with the basics of how to use the C APIs with any language. We also pro-
vide an example of creating a complete VR experience by building a VR ver-
sion of an existing web application for use on the Rift. Finally, we cover
integrating additional inputs into Rift apps, using modern hardware like web
cameras and the Leap Motion.

Wondering where to start? Every reader should start with part 1 because it introduces
you to the hardware and to the virtual reality concepts we’ll be using throughout the
book. After that, where you go depends on how you plan to develop your application.
C/C++ developers will want to turn to part 2 and Unity developers to part 3. No mat-
ter how you’re going to develop, your next stop should be part 4, to learn how to
ensure your users get the most out of your application. When you’re ready to move on
to advanced Rift integrations and see a full-fledged VR app in action, turn to part 5.

What this book doesn’t do
This book doesn’t cover how to use OpenGL, nor does it discuss the basics of 3D pro-
gramming. It also doesn’t cover C or C++ or how to use any particular development
environment. If you’re unfamiliar with these topics, you’ll find some good references
listed in appendix C.

Code conventions and downloads
All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. In many listings, the code is annotated to point out the key
concepts, and numbered bullets are sometimes used in the text to provide addi-
tional information about the code.

 We have tried to format the code so that it fits within the available page space in
the book by adding line breaks and using indentation carefully. Sometimes, however,
very long lines include line-continuation markers. Bold fixed-width font like this
in listings indicates new code.

 Source code for all the working examples in this book is available online in our
GitHub repository at github.com/OculusRiftInAction/OculusRiftInAction.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/OculusRiftInAction/OculusRiftInAction

ABOUT THIS BOOK xxv
 If you’re using Unity (part 3 of this book), you don’t need to download the entire
example repository. The scripts and the example scenes for part 3 are in /examples/unity.

 If you’re using the C API (part 2 of this book), details of how to download and
build the C++ and Java example applications are discussed next.

SDK version
All of our C++, Java, and Python examples have been tested against Oculus SDK ver-
sion 0.5.0. The Oculus SDK will continue to evolve, through the release of the Rift and
afterward. As the code in this book gradually drifts further out of date, you should
check back on our GitHub repository for updates and improvements.

 Unity’s Oculus Rift support is updated on a separate track and may be indepen-
dently maintained.

Required tools: Git, CMake, and a build environment
To access the example source code, you need to use a source control tool called Git.
Git binaries for Microsoft Windows, Mac OS X, and Linux are available at git-scm.com.

 To make it easier to work with the examples across a variety of platforms, we use a
tool called CMake. CMake allows you to create meta-project files that describe how
your code is organized into libraries and executables, and it can be used to create
project files for a given platform, such as Xcode (on OS X), Visual Studio (on Win-
dows), and Make or Ninja on Linux. CMake binaries are available at cmake.org.

 If you plan to run the examples, you’ll need to install both CMake and Git.
 To build the code, you’ll need a build environment on your platform, such as Xcode,

Visual Studio, or Make or Ninja. Although the examples listed are the defaults used by
CMake, CMake does allow you to specify a different generator if you want to use some-
thing other than the default. To see a list of all the generators supported on the cur-
rent platform, run cmake –h. Note that we don’t know if every generator supported
will work; we’ve only tested with the latest free versions of the default for each plat-
form (and Eclipse CDT4 using Ninja, because we like it).

Required libraries
Unless otherwise specified, for the examples we’ll be showing throughout the book all
of the libraries required are included in the example code repository.

 This includes the Oculus VR SDK. Although you may want to get the latest version
of the SDK directly from the Oculus website before you start any real-world projects,
you don’t need it for the example code in the book. The steps we’ll describe for set-
ting up your development environment will cover how to download everything you
need to get started.

 Note that the SDK version here is what we refer to as the “community SDK,” because
it’s a copy of the official SDK with some minor changes and bug fixes. The differences
between the community SDK and the official SDK are negligible as of this writing, and
intended to remain so. (If any example code hinges on some difference between the
Licensed to Mark Watson <nordickan@gmail.com>

http://git-scm.com
http://cmake.org

ABOUT THIS BOOK xxvi
official SDK and the community SDK, then we’ve failed to do our jobs.) Therefore,
for the purposes of the code in this book, unless explicitly stated otherwise, please
assume the code we’re teaching would work just as well with either version.

 The libraries on which our example demos depend are connected to the reposi-
tory as Git submodules. Submodules are a mechanism by which one repository can
refer to another, making it easier for the submodules to be updated as needed without
disrupting the overall project. For the most part this should all be transparent to you
when you do the checkout.

Checking out the example code and creating the
project files
To build the example code, you first need to clone the example code repository using
Git. After the clone is complete, create the project files using CMake. After you’ve run
CMake successfully, you can go to your development environment of choice (Xcode,
Eclipse, Visual Studio, etc.) and open the project files.

CLONING THE REPOSITORY WITH GIT

To clone the repository, complete the following steps:

1 Choose the directory where you want to work. You can select any directory that
you want, but keep in mind that when you check out a Git repository, it’ll auto-
matically create a folder for it.

2 Open a command prompt1 and change to your working directory.
To change to your working directory, enter:

cd <directory>

where <directory> is the path and directory of where you plan to do your work.

3 On the command line, run Git to fetch the files.

git clone --recursive

➥ https://github.com/OculusRiftInAction/OculusRiftInAction.git

The --recursive flag is very important here. It tells Git to check out not only
the specified repository, but all of the Git submodules as well.

By default this will create an OculusRiftInAction folder underneath the cur-
rent folder. If you want to use a different name, you can add it to the end of the
command.

After the clone is complete, the next step is to create the project files using CMake.

1 To open a command prompt on Windows, press Windows-R to open the Run dialog box, type cmd, and press
Enter. To open a command prompt on Mac OS X, in the Finder go into Applications, and then Utilities, and
start the Terminal application. This should open a console window in your home directory. On Linux, press
Ctrl-Alt-T.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/OculusRiftInAction/OculusRiftInAction.git

ABOUT THIS BOOK xxvii
CREATING THE PROJECT FILES WITH CMAKE

To create the project files, complete the following steps:

1 Change directories so that you’re in the newly checked-out repository.

cd OculusRiftInAction

2 Create and then change to a build directory:

mkdir build
cd build

3 Run CMake to create the project files. If you’re using the default build environ-
ment for your platform, run this command:

cmake ..

This will create project files for the default build environment on your plat-
form. This is Xcode for OS X, Visual Studio for Windows, and Makefiles for
Unix. But you can customize this by telling CMake to use a different generator.
Run cmake –h to print out a list of command-line switches, as well as the list of
generators supported on the current platform. For example, when running in
Linux, we use the following command:

cmake .. –G "Eclipse CDT4 – Ninja"

NOTE Even if a generator is listed as supported, it doesn’t mean it’ll work.
You’ll need to have it already installed on your system, at the very least, and
we’ve only tested with the latest free versions of the default for each platform.

Once you’ve run CMake successfully and it hasn’t reported any errors, you can go into
your development environment and open the project files. From there, you can use
your chosen environment to build the examples.
Licensed to Mark Watson <nordickan@gmail.com>

about the authors
BRAD DAVIS is a software developer for High Fidelity, a startup working on open
source, social VR applications. He’s an active participant in the Oculus VR developer
forums and maintains a set of example Rift applications on GitHub. His ultimate
dream is to create a portable VR rig that allows you to watch Inception anywhere you
want and then to wear it to a theater during a showing of Inception.

KAREN BRYLA is a graduate of Carnegie Mellon University and an experienced writer,
developer, and usability analyst. Of particular interest to her is how users adapt to new
technology and how she can help developers design applications for new mediums
that are both functional and intuitive.

ALEX BENTON holds a PhD in applied mathematics from the University of Cambridge,
where he is an Associate Lecturer in Advanced Graphics. He was a pioneering author
of the original VRML (Virtual Reality Modeling Language) browser for Netscape in
1996. He has since worked at a number of Silicon Valley startups, including multiple
3D gaming companies, and holds patents in three-dimensional orthodontic software.
He’s currently a Senior Software Engineer at Google in London, England, where he
lives with his wife and two cats.

All three authors are contributing writers to Rifty-Business, rifty-business.blogspot
.com, a blog focused on Rift software development.
xxviii

Licensed to Mark Watson <nordickan@gmail.com>

http://rifty-business.blogspot.com
http://rifty-business.blogspot.com

author online
Purchase of Oculus Rift in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/bdavis. This
page provides information on how to get on the forum after you’re registered, what
kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and authors can take place.
It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the Author Online remains voluntary (and unpaid).

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
xxix

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.manning.com/bdavis
http://www.allitebooks.org

about the cover illustration
The caption for the illustration on the cover of Oculus Rift in Action is “Veiled Dancer.”
The illustration is taken from a collection of costumes of the Ottoman Empire pub-
lished on January 1, 1802, by William Miller of Old Bond Street, London. The title
page is missing from the collection and we have been unable to track it down to date.
The book’s table of contents identifies the figures in both English and French, and
each illustration bears the names of two artists who worked on it, both of whom would
no doubt be surprised to find their art gracing the front cover of a computer program-
ming book ... two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for the
day. The Manning editor didn’t have on his person the substantial amount of cash that
was required for the purchase, and a credit card and check were both politely turned
down. With the seller flying back to Ankara that evening, the situation was getting hope-
less. What was the solution? It turned out to be nothing more than an old-fashioned ver-
bal agreement sealed with a handshake. The seller simply proposed that the money be
transferred to him by wire, and the editor walked out with the bank information on a
piece of paper and the portfolio of images under his arm. Needless to say, we transferred
the funds the next day, and we remain grateful and impressed by this unknown person’s
trust in one of us. It recalls something that might have happened a long time ago.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.
xxx

Licensed to Mark Watson <nordickan@gmail.com>

Part 1

Getting started

Part 1 of Oculus Rift in Action introduces you to the Oculus Rift hardware and
to virtual reality (VR). We begin with an exploration of what VR is and why you’d
want to develop for the Rift. From there, we move on to an overview of the Rift
hardware and how it works. Next you’ll learn about the development paths you
can take for creating your Rift application.

 One unusual aspect to working with the Rift is that using it can be physically
uncomfortable, because it can sometimes trigger symptoms of motion sickness.
To help you have a more pleasant working experience, part 1 also includes tips
on what you can do to deal with motion sickness.

 When you are done with part 1, you’ll be ready to start building Rift applica-
tions using your chosen development path, either working directly with the C
API (part 2) or with Unity (part 3).
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Meet the Oculus Rift
Because you picked up this book, you probably already know that the Rift is a vir-
tual reality head-mounted display (VR HMD). You may have one of your own, or
perhaps you’ve tried one out and were, like us, blown away by the intense immer-
sion. Even if you’ve only read about the Rift in passing, if you watch demo videos
and reaction shots you can often see the look of incredulous delight on people’s
faces the first time they use the Rift.

This chapter covers
■ Supporting the Rift
■ Understanding how the Rift is being used

today
■ Understanding the Rift hardware and how

it works
■ Setting up your hardware
■ Dealing with motion sickness
■ Choosing a development path: C, Java,

Python, or Unity
3

Licensed to Mark Watson <nordickan@gmail.com>

4 CHAPTER 1 Meet the Oculus Rift
 With its vast field of view (more than double what you get with a typical monitor)
and head tracking (the wearer just turns their head to see what they want, with no
need to use a mouse or joystick to orient), the Rift represents an opportunity for
people to view your work in a way they never could before.

 In this book, we’ll show you how to build immersive environments that run on the
Rift. The first steps are rendering to the device and tracking the user’s head move-
ments. After that we’ll discuss the unique usability challenges of VR and the steps you
can take to avoid causing motion sickness for some users.

 Before we get started, let’s talk a bit about why you should support the Rift.

1.1 Why support the Rift?
There are really two questions here: whether you should support VR in general and
whether you should support the Rift specifically.

1.1.1 The call of virtual reality

If you’ve ever seen an episode of Star Trek: The Next Generation and imagined what you
could do with your own personal holodeck, or wished you were the greatest sword-
fighter in the Metaverse, then this book is for you. Perhaps you’ve played games where
you controlled a giant robot and wished you could look out on the war-torn landscape
by turning your head, or maybe you’ve wished you could build cities with a wave of
your hand. If so, you’ve felt the call of VR, and this book is for you.

 Maybe you have more practical interests, such as saving money or increasing safety.
For years, VR has been used in specialized niches where immersion in an environ-
ment, without actually being in the environment, was critical. The canonical example
is the flight simulator. When you’re training a pilot to operate a piece of machinery
that costs tens or hundreds of millions of dollars, spending a few hundred thousand,
or even a few million, on creating an artificial environment in which to train without
the risks associated with a real aircraft can be a wise investment.

1.1.2 But what about the Rift?

What’s special about the Rift is that it can deliver nearly the same level of immersion
as existing commercial setups costing orders of magnitude more, but at a price that
makes it available, if not to the average consumer, at least to the average consumer
who would already have the kind of computing or gaming system that can support
the Rift.1

1 The first development kit was sold for $300, a price comparable to high-end video cards. Oculus has
repeatedly said it’s trying to hit the same price point for the consumer version, albeit with vastly improved
specifications.
Licensed to Mark Watson <nordickan@gmail.com>

5How is the Rift being used today?
The appeal of applying VR to the field of gaming should be obvious, and indeed
gaming is the area that’ll almost certainly drive mass-market adoption. But the excit-
ing thing to us is the potential the Rift brings. By democratizing the use and devel-
opment of VR, it has the potential to radically alter the world in ways we can’t
yet imagine.

 But all this cheerleading might not be assuaging your doubts. Maybe you feel the
call of VR, but you (or your manager) don’t know whether your project has the budget
to include such frivolous features as virtual reality. Well, here’s the great part: support-
ing the Rift is cheap and easy, and we’re going to show you how to do it.

 Need more inspiration? Let’s look at what people are already doing with the Rift.

1.2 How is the Rift being used today?
Developers around the world are taking the Rift and doing amazing things with it,
either displacing previous VR solutions at a fraction of the price or creating innovative
applications that weren’t possible or practical before. The examples that follow are
just a small sample of what’s going on in VR right now, but we hope they provide some
inspiration as you start your own projects.

 One obvious application of VR is virtual tourism. In our opinion, no other media
comes as close to making you feel like you’re somewhere else quite like VR. We’d even
say that if a picture is worth a thousand words, a VR experience is worth a million
words. One virtual tourism demo that can give you a taste for what VR can do is Tower
Eiffel (share.oculus.com/app/tower-eiffel) by Didier Thery (figure 1.1). You can look
at a picture of the Eiffel Tower or watch a movie, you can read about how tall it is and
about how it was constructed, but none of that will convey to you what it feels like to
look up and see the metal arches of the tower above you.

 Visiting the Eiffel Tower is possible in real life, but visiting outer space is a bit out
of reach for most people. That brings us to another one of our favorite demos,
Titans of Space (share.oculus.com/app/titans-of-space) by DrashVR LLC (figure 1.2).
In Titans of Space, you can get a feel for the beauty and vastness of space.

Immersion and presence
Two key terms we use to describe VR are immersion and presence.

Immersion is the art and technology of surrounding the user with a virtual context,
such that there’s world above, below, and all around you.

Presence is the visceral reaction to a convincing immersion experience. It’s when
immersion is so good that the body reacts instinctively to the virtual world as though
it’s the real one.

When you turn your head to look up at the attacking enemy bombers, that’s immersion;
when you can’t stop yourself from ducking as they roar by overhead, that’s presence.
Licensed to Mark Watson <nordickan@gmail.com>

https://share.oculus.com/app/tower-eiffel
https://share.oculus.com/app/titans-of-space

6 CHAPTER 1 Meet the Oculus Rift
Feel like you’re
standing here.

Figure 1.1 Tower Eiffel by Didier Thery

Immersed in this scene, you can
feel the vastness of space.

Figure 1.2 Titans of Space by DrashVR LLC
Licensed to Mark Watson <nordickan@gmail.com>

7How is the Rift being used today?
VR can do more than just make you feel what it’s like to be someplace else: it can pro-
vide an experience so visceral that it’ll make you break out in goose bumps, jump with
fright, or duck to avoid an oncoming object. Don’t Let Go! (share.oculus.com/app/
dont-let-go) by Skydome Studios, shown in figure 1.3, is a fun example of the chills
and thrills of VR.

 When you combine a virtual world with thrills and goals, you’ve got what
some consider the ultimate experience: immersive gaming. Valve’s Team Fortress 2
(store.steampowered.com/app/440/), shown in figure 1.4, was one of the first exist-
ing games to be updated with Oculus Rift support and is well worth a look.

 Of course, not all Rift experiments are fun and games. The Rift has also facilitated
some serious work. One of the more interesting experiments we’ve seen using the Rift
is by the research group BeAnotherLab (www.themachinetobeanother.org). Their
experiment uses the Rift, multiple cameras, and human actors to allow users to view
what it’d be like to be someone else, as shown in figure 1.5. The BeAnotherLab exper-
iment allows researchers to get a view into human empathy that previously wasn’t
affordable to a lab on a modest budget.

When this spider crawls up “your” arm,
it’s a very visceral and creepy feeling.

Figure 1.3 Don’t Let Go! by Skydome Studios
Licensed to Mark Watson <nordickan@gmail.com>

http://store.steampowered.com/app/440/
https://share.oculus.com/app/dont-let-go
https://share.oculus.com/app/dont-let-go
http://www.themachinetobeanother.org

8 CHAPTER 1 Meet the Oculus Rift
Figure 1.4 Team Fortress 2: one of the first games to be updated with Oculus Rift support

Figure 1.5 Two subjects in an experiment by BeAnotherLab look down and see themselves as the other
person, thanks to a set of cameras and the Rift as seen in the BeAnotherLab promotional video found
on its website (www.themachinetobeanother.org/?page_id=764).
Licensed to Mark Watson <nordickan@gmail.com>

http://www.themachinetobeanother.org/?page_id=764

9Get to know the Rift hardware
In even more practical terms, we think the Norwegian army is taking an intriguing
approach to using the Rift (figure 1.6) to increase the safety of soldiers during combat
(http://mng.bz/0tzo). In this experimental use of the Rift, cameras are mounted on
all sides of the tank. The images are then fed to a driver wearing the Rift inside the
tank. The intent is to allow the driver to drive the tank with the hatch closed during
combat situations.

 Ready to meet the Rift? Let’s go!

1.3 Get to know the Rift hardware
So far, two models of the Rift have been made commercially available: the first and
second developer kits, known as DK1 and DK2. The DK1 has been discontinued and
replaced with the DK2. We’ll cover the hardware for both versions.

1.3.1 The DK2

The DK2 kit includes:

■ A headset.
■ An infrared USB camera for positional tracking.
■ Two pairs of lenses, referred to as A and B lenses (plus a cloth to clean them).

The A lenses come preinstalled in the headset.

Figure 1.6 An experiment using the Rift to allow tank drivers to drive with the hatch closed, as seen
in a report on Norwegian TV station TUTV
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://mng.bz/0tzo
http://www.allitebooks.org

10 CHAPTER 1 Meet the Oculus Rift
■ A paired HDMI/USB cable.
■ A positional tracker sync cable.
■ A DVI-to-HDMI adapter.
■ A 5V DC power adapter for U.S.-style power, with international adapters for

other countries.

In addition, the kits include the Oculus Rift Development Kit Instruction Manual. This man-
ual covers basic usage of the headset along with important health and safety notes.
Please read and observe all precautions before using the Rift. For the most up-to-date
health and safety information, check the Oculus VR website (developer.oculus.com/
documentation/).

 The following sections provide more information on the bits and pieces that make
up the DK2.

THE HEADSET

The headset, shown in figure 1.7, is formed of black molded plastic. It has small
adjustment wheels on the left and right sides that allow you to move the display
closer to or farther from your face. There’s foam padding on the surfaces intended
to rest against the skin and straps that secure the Rift to your head. In addition to
the normal “around the sides” strap that you might find on any pair of ski goggles,
another strap goes over the top of your head. This third strap provides additional
support for the headset, which, though light, can be front-heavy enough to cause
fatigue during extended use. Perhaps more important, the third strap reduces the
need to secure the side straps as tightly, alleviating another potential source of dis-
comfort and fatigue.

 The headset’s display power button is located on the top edge of the headset next
to the power indicator light. The indicator light glows blue when the headset is pow-
ered on and receiving a video signal, and it glows orange when the headset is on but
not receiving a video signal. (If you’re not getting a signal, see the troubleshooting
section in appendix A.)

 The headset incorporates the following:

■ A single 1920 × 1080 display
■ An inertial measurement unit (IMU) that reports linear and angular accelera-

tion as well as magnetic field strength and direction
■ Several infrared lights that are tracked by the included tracking camera to pro-

vide user position data
■ A built-in latency tester
Licensed to Mark Watson <nordickan@gmail.com>

https://developer.oculus.com/documentation/
https://developer.oculus.com/documentation/

11Get to know the Rift hardware
Display power button
and indicator light.

Molded black plastic
construction.

HDMI and USB
connection
access panel.

Paired HDMI
and USB cable.

Side straps for securing
the Rift to your head
plus a third strap for
additional support.

The lenses.

Contains head tracker
hardware designed to
report acceleration and
rotational velocity and
contains a built-in
latency tester.

Several infrared lights
are hidden behind the
front panel.

Contains a low-persistence
OLED display providing
a screen resolution

of 1920 1080×
(960 1080 per eye).×

Adjustment wheel to
move the display closer
to or farther from
your face.

Foam padding for
a comfortable fit
against your face.

Figure 1.7 The DK2 headset: front, side, and back views
Licensed to Mark Watson <nordickan@gmail.com>

12 CHAPTER 1 Meet the Oculus Rift
The display is split between both eyes (each eye can see only half of the display), yield-
ing 960 × 1080 per eye, as shown in figure 1.8.

 The display panel itself isn’t particularly remarkable, except in the sense that such
a lightweight and high-density display would’ve been remarkable 10 years ago and an
astonishing 10 years before that. The mobile computing industry has driven the com-
modification of small, high-resolution panels at an amazing pace, and the recent
rounds of competition between the primary tablet and display manufacturers on the
basis of pixels per inch will only drive this trend in a favorable direction.

 The head-tracking hardware is somewhat more specialized. It’s designed to report
both acceleration and rotational velocity at a rate of 1,000 times per second. Even
though impressive, this doesn’t represent any sort of quantum leap over the commod-
ity hardware found in most modern game controllers and mobile devices.

THE LENSES

The DK2 model includes two pairs of lenses, termed the A and B lenses. The A lenses
are for those with 20/20 vision and are installed in the headset by default. The B
lenses (shown in figure 1.9) are for those who are very nearsighted.

1920 pixels

Rift display panelRight eye displayLeft eye display1080
pixels

Left eye Right eye

Left Rift lens Right Rift lens

Figure 1.8 The DK2 display is split between both eyes.

Figure 1.9 The DK2 B lenses
Licensed to Mark Watson <nordickan@gmail.com>

13Get to know the Rift hardware
The lens pairs are identical in terms of how they transmit light. How they differ is that
they place the lens at slightly different distances from the actual display. Combined
with the headset distance-adjustment knobs, this allows the user to vary the distance
between the screen and the lenses, as well as between the lenses and the eyes (com-
monly referred to as “eye relief”), in order to accommodate a wide variety of facial
characteristics as well as users who require prescription glasses.

 Note that the DK2 doesn’t allow you to change the distance between the lenses,
which is fixed at 63.5 mm apart, but this isn’t as much of an issue as you might
expect. The lenses are designed to present the same image to the user regardless of
exactly where the eyes are located. If you move an image-capturing device (your eye,
for instance) off the center axis of the lens, the image captured doesn’t itself move
laterally. As long as they’re within an area of about 1.5 × 1.5 cm across and 0.5 cm
deep, your eyes will perceive the same image from the screen, barring a small
amount of distortion at the edges, with the same pixel appearing “directly ahead.”
This allows the Rift to support a broad swath of users with varying interpupillary dis-
tances. This remarkable property is called collimated light and will be discussed in
detail in chapter 4.

THE POSITIONAL CAMERA

To track the user’s head position, the DK2 uses a camera (figure 1.10) to detect infra-
red lights located in the headset (hidden behind the front of the headset). You’ll
notice that the lens of the camera is mirrored, because it tracks only infrared light.

 The camera is connected to your computer via USB and to the headset using the
included camera sync cable. The placement of the camera is critical to how well posi-
tional tracking will work. The camera should be placed about 5 feet from the headset,
and you should make sure that the camera has an unobstructed view of the headset at
all times. The camera can be placed on your desk or on top of your monitor, or
because it also includes a standard tripod attachment, you can attach it to a tripod,
which gives you more options for placement.

Power indicator light.

Mirrored lens to filter
out non-infrared light.

Stand lets you rest the camera on your desk or clip
the camera to a monitor. It also has a tripod mount
for use with a standard tripod.

Figure 1.10 The DK2
positional camera
Licensed to Mark Watson <nordickan@gmail.com>

14 CHAPTER 1 Meet the Oculus Rift
It’s important that nothing blocks the camera’s view of the headset, so you shouldn’t
place any stickers or other objects on the headset that could block the lights from
detection by the positional camera.

 Now let’s look at the original development kit for those who are still using DK1
hardware.

1.3.2 The DK1

The DK1 kit includes the following:

■ A headset with an attached control box
■ Three pairs of lenses, referred to as A, B, and C lenses (plus a cloth to clean the

lenses)
■ A USB cable with male A to mini B connectors
■ A 5V DC power adapter for U.S.-style power, with international adapters for vari-

ous other countries
■ DVI and/or HDMI cables2

Like the DK2, the kit includes an Oculus Rift Development Kit Instruction Manual that
covers basic usage of the headset, along with health and safety notes. Again, read
and observe all precautions before using the Rift. For the most up-to-date health
and safety information, please check the Oculus VR website (developer.oculus.com/
documentation/).

 Now let’s take a look at the parts of the DK1.

THE HEADSET

The DK1 headset, shown in figure 1.11, is formed of black molded plastic, has small
adjustment wheels on the left and right sides that allow you to move the display closer
to or farther from your face, has foam padding on the surfaces intended to rest
against the skin, and has straps that secure the Rift to your head. You’ll also note that
the DK1 adjustment buckles on the straps include a handy gripper for the wire run-
ning between the Rift and the control box.

 The DK1 headset incorporates a single 1280 × 800 display at the heart of the
device, as well as motion-tracking hardware that reports acceleration, rotation rate,
and magnetic field strength and direction. The display is split between the two eyes
(each eye can see only half of the display), yielding 640 × 800 per eye, as shown in fig-
ure 1.12. This resolution does cause what some call the “screen door” effect—that is, it
looks like you’re looking through a screen door. The grid of individual pixels can
become visible to the naked eye, especially when viewing static content. This effect
improved dramatically in the DK2 should continue to be less of a problem in later ver-
sions of the Rift as screen resolution improves, reducing inter-pixel spacing.

 The headset contains the head-tracking hardware that reports both acceleration
and rotational velocity at a rate of 1,000 times per second.

2 The number and type of cables shipped with the DK1 varied over time.
Licensed to Mark Watson <nordickan@gmail.com>

https://developer.oculus.com/documentation/
https://developer.oculus.com/documentation/

15Get to know the Rift hardware
Molded
black plastic
construction.

Single cable to
the control box.

Adjustment wheel to
move the display closer
to or farther from
your face.

Foam padding for
a comfortable fit
against your face.

Contains head tracker
hardware designed to
report acceleration and
rotational velocity

Contains a 1280 800 LCD×
panel display.

Gripper that can be used
to keep the control box
cable out of your way.

Side straps for securing
the Rift to your head
plus a third strap for
additional support.

The lenses.

Figure 1.11 The DK1 headset: front, side, and back views

1280 pixels

Right eye displayLeft eye display800
pixels

Left eye Right eye

Left Rift lens Right Rift lens

Rift display panel

Figure 1.12 The DK1 display is split between both eyes.
Licensed to Mark Watson <nordickan@gmail.com>

16 CHAPTER 1 Meet the Oculus Rift
THE CONTROL BOX

In addition to the cable extending to the headset, the control box has a DC power
connector, a USB mini-B female port, and DVI and HDMI female ports (see figure 1.13).
It has five buttons: one for power, and two each for controlling brightness and con-
trast on the display. It also has a small blue LED in the center of the Oculus VR logo
that glows blue when the Rift display is active.

THE LENSES

The DK1 model includes three pairs of lenses, pictured in figure 1.14. The pairs are all
identical in terms of how they transmit light. They differ in placing the lenses at
slightly different distances from the LCD display. (You can see this in figure 1.14 by
comparing their heights; the C lenses are visibly shallower than the A lenses.) Com-
bined with the headset distance-adjustment knobs, this allows the user to vary the dis-
tance between the screen and the lenses, as well as between the lenses and the eyes, in

Cable to headset

Contrast

Brightness

Power

HDMI

DVI

USB mini-B

DC power

Blue LED lit when
headset is on

Figure 1.13 The DK1 control box: front and back views

C Lenses: use these
if you are very
nearsighted.

Note the different heights
of the three pairs of lenses.

B Lenses: use these
if you are moderately

nearsighted.

A Lenses: use these
if you are farsighted or have 20/20 vision.

Figure 1.14 The DK1 lenses
Licensed to Mark Watson <nordickan@gmail.com>

17How the Rift works
order to accommodate a wide variety of facial characteristics as well as users who
require prescription glasses.

 The DK1 lenses are fixed at 64 mm apart and cannot be adjusted. As with the DK2,
not being able to adjust the distance between the lenses does not present a major con-
straint, because the lenses transmit collimated light. For more on collimated light, see
chapter 4.

1.3.3 The GPU

It’s worth mentioning one additional component essential to the operation of the Rift
that isn’t included in either kit: the GPU. Every modern personal computer includes a
graphics processing unit (GPU) with a programmable pipeline. This remarkable piece of
technology is an integral part of what makes the Oculus Rift possible.

1.4 How the Rift works
Virtual reality is about constructing an experience that simulates a user’s physical pres-
ence in another environment. The Rift accomplishes this by acting both as a special-
ized input device and a specialized output device.

 As an input device, the Rift uses a combination of several sensors to allow an appli-
cation to query for the current orientation and position of the user’s head. This is
commonly referred to as the head pose. This allows an application to change its output
in response to the user’s changes in where they’re looking or where their head is.

As an output device, the Rift is a display that creates a deep sense of immersion and
presence by attempting to more closely reproduce the sensation of looking at an envi-
ronment as if you were actually there, compared to viewing it on a monitor. It does
this in three ways:

■ By providing a much wider field of view than conventional displays
■ By providing a different image to each eye
■ By blocking out the real environment around you, which would otherwise serve

as a contradiction to the rendered environment

On the Rift display, you’ll display frames that have been generated to conform to this
wide field of view and offer a distinct image to each eye.

 Generating frames that display properly on the Rift doesn’t happen automatically.
You can’t simply replace your monitor with a Rift and expect to continue to use your
computer in the same way. Only applications that have been specifically written to
read the Rift input and customize the output to conform to the Rift’s display will pro-
vide a good experience.

Head pose
In VR applications, a head pose is a combination of the orientation and position of
the head, relative to some fixed coordinate system.
Licensed to Mark Watson <nordickan@gmail.com>

18 CHAPTER 1 Meet the Oculus Rift
To understand how an application running on the Rift is different, it’s important to
look at how it’s distinct from non-Rift applications.

CONVENTIONAL APPLICATIONS

All applications have input and output, and most graphical applications invoke a loop
that conceptually looks something like figure 1.15. The details can be abstracted in
many ways, but just about any program can be viewed as an implementation of this
loop. For as long as the application is running, it responds to user input, renders a
frame, and outputs that frame to the display.

RIFT APPLICATIONS

Rift-specific applications embellish this loop, as seen in figure 1.16. In addition to con-
ventional user input, you have another step that fetches the current head pose from

Frame
Because developing for the Rift involves rendering multiple images, it’s important to
have terminology that makes it clear what image you’re talking about at a given
moment. When we use the term frame, we’re referring to the final image that ends
up on a screen. In the case of a Rift application, these frame images will be com-
posed of two eye images, one each for the left and right eyes. Each eye image is dis-
torted specifically to account for the lens through which it’ll appear, and then the
images composited together during the final rendering step before they’re displayed
on the screen.

Application loop

Start

Display frame
on monitor

Render frame

Process user
input

Figure 1.15 The typical loop for conventional applications
Licensed to Mark Watson <nordickan@gmail.com>

19How the Rift works
the Rift. This is typically used by the application to change how it renders the frame.
Specifically, if you’re rendering a 3D virtual environment, you’ll want the view of the
scene to change in response to the user’s head movements. You also need to distort
the per-eye images to account for the effects of the lenses on the Rift.

 Practically speaking, the head pose is a specialized kind of input. We’ve called it
out on its own (the head wearing the Rift) to emphasize the distinction between Rift
and non-Rift applications.

 You’ll note that we didn’t put accounting for the effects of the lenses in its own
box. This is because it’s part of the overall process of rendering and isn’t the only spe-
cialization required for properly rendering a frame to the Rift.

 As we’ve mentioned, the design of the Rift is such that it shows a different image to
each eye by showing each eye only half of the display panel on the device. To generate
a single frame of output, you need to render an individual image for each eye and dis-
tort that image before moving on to the next eye. Then, after both eye images have
been rendered and distorted, you send the resulting output frame to the device.3

 Let’s take a closer look at how the Rift uses these simple pairs of images to give
such a strong sense of immersion.

3 In the early versions of the SDK, distortion and rendering of the final output to the Rift display device had to
be done by applications. Since version 0.3.x, the distortion and rendering to the device are typically handled
inside the SDK, though you can override this behavior.

Application loop

Start

Display frame
on Rift

Render frame

Process user
input

Initialize SDK
and sensors

Figure 1.16 A typical loop for a Rift application
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

20 CHAPTER 1 Meet the Oculus Rift
1.4.1 Using head tracking to change the point of view

The first way the Rift increases immersion is via head tracking, eliminating part of the
necessary mental translation when interacting with a computer-generated environ-
ment. If you want to see what’s to your left, you no longer have to go through the pro-
cess of calculating how far to move your mouse or how long to hold the joystick. You
simply look to your left. This is as much an instance of a natural user interface (NUI)
as VR. NUI is all about making the interface for interacting with a computer applica-
tion or environment so seamless as to essentially be no interface at all. Interacting
with a touch-screen surface and dragging a UI element around by literally dragging it
is a form of NUI. Changing your perspective within an artificial environment by mov-
ing your head is another.

 The Rift enables this kind of interaction by integrating sensor hardware that
detects spatial acceleration on three axes and rotation rates on three axes. These
add up to six degrees of freedom, commonly abbreviated as 6DOF.4 This kind of sen-
sor hardware is familiar to users of mobile computing devices such as smartphones
and tablets. It’s also commonly found in some game console hardware, such as con-
trollers for Nintendo’s and Sony’s lines. Most commodity hardware of this kind is
intended to be wielded by hand and doesn’t have stringent latency requirements.
VR, however, is significantly more demanding; as such, the Rift tracking hardware is
a step above what’s typically found elsewhere, both in terms of reporting resolution
and accuracy.

 Even with their high quality, the Rift’s sensors alone are insufficiently accurate to
track relative changes in position over time periods of more than a second. This
means that the DK1 kit is limited to tracking only the orientation of a user’s head,
unable to determine position. In the DK2, this limitation has been overcome by add-
ing an infrared camera (separate from the Rift itself) as part of the kit. In combina-
tion with an array of infrared lights built into the headset itself, this allows the position
of the Rift to be tracked, as long as it’s within view of the camera.

 The Oculus SDK provides methods for retrieving raw sensor messages from the
hardware and coalescing them into a single head pose.

 The end result is that as you render each frame in your application, you’re able to
fetch the pose of the user and use that input during the rendering process. That way,
you can ensure the viewpoint that appears inside the Rift corresponds with the user’s
position in 3D space and the direction in which the user is looking (boxes 1, 2, and 3
in figure 1.17).

4 This is a slightly different usage of the term 6DOF than when it’s used to describe a system that tracks both
position and orientation, because here we’re tracking acceleration and angular acceleration, each on three
axes.
Licensed to Mark Watson <nordickan@gmail.com>

21How the Rift works
Now let’s look at rendering for the Rift.

1.4.2 Rendering an immersive view

The second way the Rift increases immersion is by rendering a view that accurately
mimics the way vision works, with a wide field of view and different images presented
to each eye.

HOW THE RIFT ACHIEVES ITS FIELD OF VIEW

The Rift hardware offers a much wider field of view than a typical monitor (see fig-
ure 1.18). Even a 30-inch monitor will usually occupy only about 50 degrees of your
field of view, depending on how close you sit to it. Ideally the Rift provides a field of
view of over 90 degrees or more vertically and a remarkable 100 degrees or more
horizontally. The exact field of view experienced is dependent on a number of fac-
tors, including how the Rift hardware is configured and the physical characteristics
of the wearer.

 The Rift achieves this high field of view through the placement of the display and
the use of special lenses. Inside the Rift is a small high-resolution LCD display, and
wearing the device places the display directly in front of you at a distance of about 4 cm,
as shown in figure 1.19. This alone makes the panel occupy a substantial field of view,
but it’s far too close to allow a user to easily bring it into focus.

 Between your eyes and the display panel are lenses designed to distort light in such
a way as to both make the apparent focal depth infinitely far away (resolving the focus

Rift headset

Sensor hardware
detects head
orientation

User sees images
displayed on
Rift display

Images sent
to headset over

HDMI or DVI

Tracker data sent
over USB

1. Fetch user’s
head orientation data

2. Calculate point
of view

3. Render new images

User moves head

Computer

Figure 1.17 The rendering process for each frame: from head movement to new image on the
headset
Licensed to Mark Watson <nordickan@gmail.com>

22 CHAPTER 1 Meet the Oculus Rift
Rift field of view
(approximately 100 degrees)

Typical field of view
(approximately 50 degrees)

Figure 1.18 Comparison of the field of view of a typical monitor and that of
the Rift

1920 pixels

Rift display panelRight eye displayLeft eye display1080
pixels

Left eye Right eye

Left Rift lens Right Rift lens

Figure 1.19 Panel and lens positions. The resolution listed is for the DK2.
Licensed to Mark Watson <nordickan@gmail.com>

23How the Rift works
issue) and to make the panel appear much wider than it is, further increasing the field
of view (figure 1.20).

 The lenses are also designed to present roughly the same image to the user
whether or not your point of view is off the axis of the lens, using collimated light. The
effect is similar to a magnifying glass, but with a few important differences.

MAXIMIZING THE RIFT’S FIELD OF VIEW

To understand how you can maximize the Rift’s field of view, you need to understand
a bit about how the brain interprets the images perceived by the eyes. Each eye covers
its own field of view, with the left eye showing more of the world to your left and the
right showing more to your right; there’s a large amount of crossover at the center, as
shown in figure 1.21.

 Your brain takes the two images and fuses them into a single panoramic view,
which invokes a sense of depth. Even though the actual depth information (parallax)

The lenses expand the images
displayed such that the perceived
field of view is much larger than

the actual field of view.

Rift display

Actual field
of view

Perceived field
of view

Figure 1.20 The
Rift’s lenses and
software use
collimated light and
distortion technology
to give a perceived
field of view that’s
wider and sharper
than a conventional
display.

Note the area of crossover
in the middle seen by both eyes.

The right eye sees everything
in between the solid lines.

The left eye sees everything
in between the dashed lines.

Field of view

Left eye Right eye
Figure 1.21 Left
and right fields
of view
Licensed to Mark Watson <nordickan@gmail.com>

24 CHAPTER 1 Meet the Oculus Rift
is only available for items in the crossover area (see figure 1.22), the overall sense of
depth ends up being greater than the sum of the parts. Your brain will also take into
account other cues such as lighting, the size of familiar objects, and small object move-
ments relative to one another when the point of view changes, such as when you move
your head.

 To maximize the field of view in the Rift, the images presented to each eye need to
mimic real vision in that more data is presented on the left of the image for the left
eye and more data is presented on the right for the right eye.

RENDERING FOR THE RIFT

To render images properly for the Rift, you need to take into account the LCD display,
how vision works with separate images for each eye, and the lenses used.

 The lenses in the Rift distort the image on the screen (as all lenses do), introduc-
ing a fisheye lens effect. This means that images shown on the screen inside the Rift
must be adjusted before they appear, inverting that distortion. That way, when viewed

Left eye Right eye

Your brain takes the two images
and fuses them into a single

panoramic view.

Image for left eye Image for right eye

Each eye is presented
with a separate image.

Figure 1.22 Left and right images are fused by your brain to create a single image.
Licensed to Mark Watson <nordickan@gmail.com>

25How the Rift works
through the lens, the image distortion and the lens distortion will cancel out, and the
resulting picture will look crisp and clear.

 As you can see in figure 1.23, a grid of lines, if simply viewed through the Rift as is,
would appear distorted inward by the lenses, as though drawn toward the center. This
type of distortion is called a “pincushion” distortion.

 To counter the pincushion effect, software needs to apply the inverse (“barrel”)
distortion to the source image before sending it to the Rift, as shown in figure 1.24.
Now the image appears as intended in the Rift. We’ll cover distortion in more detail in
chapter 4.

 Now that you know there are two images presenting different data to each eye and
that the images are distorted, let’s look at a screenshot from a Rift demo to see what it

Source image
When viewed through

the Rift, the image
appears distorted.

This type of distortion
is known as

“pincushion” distortion.

Figure 1.23 A grid of lines as they’d appear on the screen and through the
Rift lenses

Image with
distortion applied

Source image
When viewed through
the Rift, the image now
appears as intended.

This type of distortion is
known as “barrel” distortion

and it’s the inverse of
“pincushion” distortion.

Figure 1.24 The source image, the same image after an inverse distortion has been
applied, and then the distorted image as seen through the Rift
Licensed to Mark Watson <nordickan@gmail.com>

26 CHAPTER 1 Meet the Oculus Rift
looks like when viewed on a traditional monitor (figure 1.25). This two-oval view is
often what you’ll see when shown a VR application screenshot, and it’s one we’ll be
using in many of the examples in this book.

 Now that you understand how the Rift works, it’s time to get started developing
for it.

1.5 Setting up the Rift for development
Getting the Rift set up for use is pretty well documented in the Oculus Rift Development
Kit Instruction Manual that comes with the kit, and if you follow those instructions, you
should be able to get the Rift up and running. But if you run into issues, or you’d like
to spend some time optimizing your setup for development, please see appendix A on
hardware setup.

 One of the hazards of developing for the Rift is that using it can sometimes trigger
symptoms of motion sickness. If you’re going to be working with the Rift, it’s a good
idea to know how to deal with motion sickness to keep it from becoming a serious
issue for you.

More data is presented on the
left of the image for the left eye.

More data is presented on
the right for the right eye.

The images are distorted and
appear as misshapen ovals.

There’s an image per eye.

Figure 1.25 A screenshot of the Oculus Tuscany demo as seen on a conventional monitor
Licensed to Mark Watson <nordickan@gmail.com>

27Dealing with motion sickness
1.6 Dealing with motion sickness
Motion sickness is generally caused by conflicting sensory signals going to the brain,
such as a mismatch between the visual appearance of velocity and the inner ear’s sen-
sation of motion. It’s been known for some time that first-person games alone or 3D
vision alone can trigger motion sickness in some people. The Rift provides an incredi-
bly immersive experience, and one of the downsides to such impressive immersion is
that even if you’re the type of person who never gets motion sickness in real life, you
might get motion sickness from using the Rift.

 Here are some strategies (for more information see appendix A) to use when you
first start working with the Rift that can help with motion sickness:

■ Read and observe all health and safety information included in the Rift documenta-
tion. For the most up-to-date version, please check the Oculus VR website
(developer.oculus.com/documentation/).

■ Do not try to power through it. If you experience nausea or other symptoms of
motion sickness, stop and take a break right away. We can’t stress enough how
important this is. Trying to force yourself to continue will typically make things
worse and can even lead to an aversion to using the Rift at all.

■ Learn to recognize it quickly. The first symptom of motion sickness isn’t always
nausea. For some people, the first symptom can be headache, flashes of vertigo,
or breaking into a cold sweat. The quicker you recognize the issue, the quicker
you can take corrective action. Often, waiting until you feel nausea will make it
harder to recover.

■ Make sure the Rift has been adjusted to fit correctly on your head . Be sure to:
– Use the correct lenses for your vision
– Set the distance between the lenses and your face—close, but not too close
– Adjust the straps to ensure a perfect headset fit
– Read appendix A for more information

■ Create a user profile for yourself. The Rift takes into account certain physical char-
acteristics of the user, such as height and the distance between the eyes, when
rendering content. You can use the Oculus Configuration Utility to create a
profile for yourself.

■ Start slowly to get your “VR legs”. Give yourself time to get used to using the Rift.
Just like sailors need to get their sea legs, you’ll want to get your VR legs. One
way to ease into the VR waters is to start by familiarizing yourself with games or
demos you want to play on your monitor before using the Rift. Then play on the
Rift only in short increments. Give yourself a few days of playing this way before
spending extended time using the Rift.

■ Use the Rift sitting down. Especially when you are just getting started, don’t try
standing or walking while wearing the Rift. The extra movement from standing
or walking can trigger motion sickness, and because the Rift blocks out the real
world, there’s the added danger of tripping and falling.
Licensed to Mark Watson <nordickan@gmail.com>

http://developer.oculus.com/documentation/

28 CHAPTER 1 Meet the Oculus Rift
■ Turn the brightness level down (DK1 only). For many people, turning the brightness
levels down helps. The brightness and contrast of the headset can be adjusted
using the buttons on the top of the control box. Looking from the back of the
DK1’s control box, the two buttons on the left control the contrast, and the next
two control the brightness.

■ Take regular breaks . Even after you feel like a pro in virtual environments, you
should still take breaks to let your mind and eyes rest. Every so often be sure to
stop, stretch, take a walk, and get some fresh air. (This is good advice for life
in general.)

■ Work in a quiet environment. Ambient noise can interfere with how your brain
perceives the images on screen and can trigger motion sickness. Spatialized
sounds that disagree with your virtual environment send conflicting messages
that your mind will struggle to contextualize. Try working in a quiet environ-
ment or wearing noise-canceling headphones to remove ambient noise.

■ Watch what you eat before strapping on the Rift. This is common sense. Just as you
wouldn’t binge on sushi, donuts, beef jerky, and cherry Gatorade right before
riding in the back of a speeding minivan going down the Pacific Coast Highway,
you should watch what you eat right before using the Rift.

■ Take time to recover. The disorienting effects of using the Rift can last for some
time after taking off the headset. For your safety and the safety of others, you
shouldn’t operate heavy machinery or drive a car, and so on, if you’ve just used
a VR headset.

There are strategies for mitigating motion sickness from within your application (see
chapter 10), and well-designed applications may not cause motion sickness for you.
But as you develop, you may find that one of the “bugs” in your software is that it
causes motion sickness. It may take many testing iterations before you can fix the
problem. In addition, some of the causes of motion sickness are inherent to the Rift
itself, and although Oculus has announced improvements (lower-latency devices,
higher-resolution screens) that should help in future versions of the Rift, you’ll still
need to work with the version you have.

 You don’t need to suffer for your art. If you experience nausea or other motion
sickness symptoms and resting isn’t enough, here are additional remedies you can try:

■ Eat ginger—Ginger has long been used as a motion sickness remedy. You can eat
it in any form—candied ginger, gingersnap cookies, ginger tea, ginger ale—just
make sure that it contains real ginger and not just ginger flavoring. If you don’t
like how ginger tastes, powdered ginger is available in pill form and can be
found in the vitamin aisle of most major drug stores.

■ Eat saltines or other dry crackers—Nibbling on dry crackers may also help.
■ Try acupressure—Acupressure uses pressure or other stimulation on specific

points of the body to treat ailments. Practitioners of acupressure believe stimu-
lation of the P6 acupressure point, located about two finger-widths from the
Licensed to Mark Watson <nordickan@gmail.com>

29Summary
crease on the underside of the wrist, may help symptoms of motion sickness.
You can try applying pressure to this point yourself, or you can use one of the
several brands of acupressure bands available.

■ Talk to your doctor about medication—If you’re having persistent issues with motion
sickness, there are prescription and nonprescription medicines that may pre-
vent and treat symptoms. Talk to your doctor to learn more.

Using and developing for the Rift should be fun, and we hope these tips help keep
any motion sickness issues you might have to a minimum.

1.7 Development paths
This book covers several different approaches to Rift development.

■ Using the C APIs—If you plan to work directly with the Rift C APIs, head to part 2
and start with chapter 2. It will introduce you to the C API and get you started
writing your first Rift programs.

■ Using Java or Python—If you plan to use a language other than C, such as Java or
Python, we recommend reading through part 2, starting with chapter 2 on
using the C APIs first, and then reading chapter 11 for examples of building Rift
applications with the Python and Java bindings. The methodology discussed in
chapter 11 also applies to other languages.

■ Using Unity—If you plan to use the popular Unity game engine for your devel-
opment, head to part 3 and read chapters 7 and 8. It’s possible to interact with
the C API from within Unity, so when you want a better understanding of the C
API, you’ll find part 2 an interesting read.

No matter which development path you choose, know that you can develop for the
Rift even if you don’t yet have one, because the Oculus SDK and Unity can be used
without a headset. For more information, see appendix A.

1.8 Summary
In this chapter we introduced the Oculus Rift:

■ The Oculus Rift is a virtual reality head-mounted display.
■ The Rift is immersive, can be used to create presence, and is inexpensive, both

in terms of supporting it in your applications, and in terms of hardware cost.
■ The Rift is two devices in one: a specialized input device and a specialized out-

put device.
■ As an input device, the Rift uses a combination of several sensors to allow an

application to query for the current orientation and position of the user’s head.
An application can change its output in response to where the user is looking
or where their head is.

■ As an output device, the Rift is a display that creates a deep sense of immersion
and presence by attempting to more closely reproduce the sensation of looking at
an environment as if you were actually there, compared to viewing it on a monitor.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

30 CHAPTER 1 Meet the Oculus Rift
■ Rendering images properly for the Rift means you need to take into account the
display, how vision works with separate images for each eye, and the lenses used.

■ The lenses in the Rift distort the image on the screen (as all lenses do), intro-
ducing a fisheye lens effect. That means that images shown on the screen inside
the Rift must be predistorted in software before they are shown.

■ Only applications that have been specifically written to read the Rift input and
to customize their output to conform to the Rift’s display will provide a good
experience.

■ Using the Rift may cause motion sickness. We provided some simple sugges-
tions that can help you manage any symptoms of motion sickness you might feel
when using the Rift.

■ When using the Rift, be sure to use the right lenses for your vision, set the dis-
tance between the lenses and your face, and adjust the straps to ensure a per-
fect headset fit. To maximize comfort, be sure to create a user profile using the
Oculus Configuration Tool.

■ You can develop for the Rift even if you don’t yet have one, because the SDK (or
the Unity game development environment) can be used without a headset.
Licensed to Mark Watson <nordickan@gmail.com>

Part 2

Using the Oculus C API

In these chapters you’ll learn how to develop Rift applications using the Ocu-
lus C API. Whether you’re looking to write applications using the API directly to
integrate Rift support into your own game engine, or to better understand how
Rift support was added to your game engine of choice (Unity, for example) so
that you can take full advantage of what Rift support offers, this part of the book
is for you.

 In chapter 2 you’ll get your feet wet creating your first Rift applications. We
start by introducing you to the software needed for Rift development: the Ocu-
lus SDK and runtime. In our first example we cover the first steps in creating
every Rift application by showing you the minimal code needed to work with the
SDK. The next two examples show the basics of using the SDK to interact with the
Rift hardware, demonstrating how to retrieve basic input from the Rift sensors
and how to render simple output to the Rift display.

 Chapter 3 takes an in-depth look into working with the head tracker by learn-
ing how to get reports from the Rift and understanding what it reports and how
to apply the data to a rendered scene.

 The Rift display is a highly specialized display, and chapter 4 covers the
details of what makes rendering to it different from working with a traditional
monitor and what you as a developer need to do to account for the differences.

 Chapter 5 ties it all together. You’ll take a simple demo app from a classic
desktop OpenGL program all the way to a full-fledged Rift-based VR application.

 Chapter 6 covers performance and quality concerns for VR along with con-
crete steps for evaluating and improving your application.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Creating your first
Rift interactions
Working with a Rift involves working with two distinct devices: a set of sensors con-
nected via USB (the head tracker), and a monitor device, connected via HDMI or
DVI (the display), as seen in figure 2.1.

This chapter covers
■ Initializing the Oculus SDK
■ Getting input from the head tracker
■ Rendering output to the display

Rift display

Rift headset

Sensor hardware

Rift application

Tracker data sent
over USB

Images sent
to headset

over HDMI or DVI

Figure 2.1 Tracker data is taken as input and images are sent as output to
the Rift.
33

Licensed to Mark Watson <nordickan@gmail.com>

34 CHAPTER 2 Creating your first Rift interactions
Both devices are managed via the Oculus SDK, so the first thing we’ll cover is how to
initialize the SDK and open the lines of communication. Once you know how to use
the SDK, you can begin working with the Rift.

2.1 SDK interfaces
The 0.2.x versions of the Oculus SDK were C++ code that handled the interaction with
the Rift hardware directly and required the client application to perform the distor-
tion of the rendered content required by the Rift. The 0.3.x series of the SDK sup-
planted this with a C API that provided a more streamlined and easier-to-use interface
as well as support for having the SDK perform the distortion on rendered content.
The 0.4.x version of the SDK made small evolutionary changes to the C API and intro-
duced the concept of the Oculus runtime.

 Since the release of the DK2 and version 0.4, the Oculus software can be broken
down into two major components: the Oculus runtime and the SDK.

2.1.1 Oculus runtime

The Oculus runtime addresses two limitations of the Rift: concurrent access to the
hardware and the inapplicability of the desktop metaphor to the Rift display.

CONCURRENT ACCESS

Prior to the 0.4.x series of the Oculus software, each application was responsible for
interacting with the hardware directly in a manner that was necessarily exclusive. This
meant that if one application was accessing the Rift’s sensors, no other application
could do so at the same time. This would preclude the ability for someone to create a
launcher application that could operate in VR and subsequently launch other applica-
tions that would also operate in VR.1

 The runtime solves this problem by centralizing access to the hardware to the
runtime process. The exclusive hardware functions are now contained within the run-
time. Other applications use the SDK to access the tracking information via shared
memory. The fine details of this process are abstracted behind the API. From a
developer’s perspective, you can simply call the function to get the head pose and
receive up-to-date information, regardless of how many other applications are access-
ing the Rift.

DESKTOP METAPHOR

Although the Rift display is essentially a monitor from the perspective of a com-
puter, from the perspective of a user it doesn’t have the same functionality as a con-
ventional flat-panel monitor. If you plug it in, your computer is likely to attempt to
extend the desktop to this new display. Unfortunately, interacting with OS-created
windows that are being rendered to the Rift is problematic at best. Significant portions

1 ...unless they wanted to create an entire separate VR API used by both the launcher application and the
launched applications, an approach attempted by Valve with its SteamVR API.
Licensed to Mark Watson <nordickan@gmail.com>

35Working with the SDK
of the display aren’t visible to the user unless you remove the lenses and hold the
Rift at a distance.

 One solution is to clone the Rift display to another of your computer’s monitors,
but this can have a negative impact on the performance of applications that are ren-
dering to it.

 With the 0.4.x series of the Oculus software, the new runtime enables something
called Direct HMD mode. The intent of this mode is to hide the Rift display from the
OS-level interface for working with monitors, thus preventing the problems with the
desktop being extended to the display. At the same time, the SDK provides functions
that allow applications to continue to target the Rift display with Direct3D or OpenGL
rendering systems, in order to allow VR applications to function.

2.1.2 Oculus SDK

The SDK consists of nearly 50 C functions that govern the application’s interaction
with the Rift hardware and the Oculus runtime. Most times, developers will use only
about half of them in a given application, and fewer than half a dozen are typically
needed anywhere other than during the setup of your application.

 We’ll discuss each of the SDK functions as we come to the relevant sections of the
text. We’ll cover working with the SDK functions from other languages like Java and
Python in chapter 11.

2.2 Working with the SDK
Whether you’re working with the community SDK provided with the book examples
or with the official SDK available on the Oculus VR site, the Oculus libraries require a
bit of care during setup and shutdown. Our first example, listing 2.1, covers the mini-
mum amount of code involved in running any code at all that invokes the SDK. The
example is disarmingly simple, but it’s critically important. In earlier versions of the
SDK, failing to properly initialize or shut down the SDK can result in your application
crashing, or hanging so that the user has to forcibly terminate it. More recent versions
are significantly more forgiving, although this largely means your application simply
won’t work properly rather than crash.

 This example won’t generate any output, but then again, if it links and runs, it
shouldn’t crash either. So without further ado, see the following listing for the abso-
lute minimum you can do to connect to the SDK and disconnect.

#include <OVR.h>

int main(int argc, char ** argv) {
 if (!ovr_Initialize()) {
 return -1;
 }

 int hmdCount = ovrHmd_Detect();

Listing 2.1 Basic SDK and HMD usage

Initializes the SDK.

Counts the number
of connected devices.
Licensed to Mark Watson <nordickan@gmail.com>

36 CHAPTER 2 Creating your first Rift interactions
 for (int i = 0; i < hmdCount; ++i) {
 ovrHmd hmd = ovrHmd_Create(i);
 ovrHmd_Destroy(hmd);
 }

 ovrHmd hmd = ovrHmd_CreateDebug(ovrHmd_DK2);
 ovrHmd_Destroy(hmd);

 ovr_Shutdown();
 return 0;
}

As you can see, this listing is only few lines long. Still, it deserves some explanation,
especially as we’re covering two topics: SDK management and head-mounted display
(HMD) management.

2.2.1 SDK management

The function ovr_Initialize() must be called before any other SDK method can be called. It
sets up the SDK’s internal mechanisms for logging and memory allocation. Here’s
what its prototype looks like:

OVR_EXPORT ovrBool ovr_Initialize();

This function returns an ovrBool, which is a typedef for a char type, as C has no built-
in Boolean type. You check the return value of ovr_Initialize() and fail out of the
application if it returns a non-true value.

 Similarly, the ovr_Shutdown() method should be called when you’re finished
working with the headset, and you must call no other SDK method afterward. Its pro-
totype looks like this:

OVR_EXPORT void ovr_Shutdown();

It’s critical to ensure that calls to OVR SDK functions are scoped so that they occur
inside calls to these “bookend” functions. Bugs related to initialization order can be
easy to trigger and hard to diagnose, so it’s desirable to place the bookends as close to
the top of the call stack as possible, preferably in the main function or its equivalent
on your platform.

MACROS FOR OUR EXAMPLES

In our examples from this point on, we’ll wrap the mechanics of launching our appli-
cations with macros. We have two favorites: RUN_APP and RUN_OVR_APP. The former
runs a standard OpenGL application in a stable, cross-platform way; the latter does the
same but the OpenGL app targets the Rift.

 RUN_APP expands to the code in the next listing.

#ifdef OS_WIN
 #define MAIN_DECL int __stdcall WinMain(
 HINSTANCE hInstance,

Listing 2.2 RUN_APP, our standard run macro for windowed OpenGL (Common.h)

Loops over each device,
opening and closing
them in turn.

Creates and destroys
a “fake” Rift device.

Shuts down
the SDK.
Licensed to Mark Watson <nordickan@gmail.com>

37Working with the SDK
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow)
#else
 #define MAIN_DECL int main(int argc, char ** argv)
#endif

#define RUN_APP(AppClass)
 MAIN_DECL {
 try {
 return AppClass().run();
 } catch (std::exception & error) {
 SAY_ERR(error.what());
 } catch (const std::string & error) {
 SAY_ERR(error.c_str());
 }
 return -1;
 }

RUN_OVR_APP expands to the code in this listing.

#define RUN_OVR_APP(AppClass)
 MAIN_DECL {
 if (!ovr_Initialize()) {
 SAY_ERR("Failed to initialize the Oculus SDK");
 return -1;
 }
 int result = -1;
 try {
 result = ExampleCode().run();
 } catch (std::exception & error) {
 // Do something useful with this error
 }
 ovr_Shutdown();
 return result;
}

We have several other macros in our demo library, such as SAY and SAY_ERR, which
write to standard output and standard error.

 In our RUN_OVR_APP macro, we wrap calls to the ovr_Initialize() and ovr
_Shutdown() methods around our example code. This isn’t bulletproof, but it suffices
for our examples and may provide a design pattern you can follow when developing
for the Rift.

 We’ve also taken the opportunity in listings 2.2 and 2.3 to abstract out a few of the
more OS-specific irks of running a C++ program by using macros to tuck out of sight
the different declarations of main() with a second macro, MAIN_DECL. MAIN_DECL lets
us move past whether our entry point method needs to be WinMain() (on Windows
systems) or main() (non-Windows).

Listing 2.3 RUN_OVR_APP, our run macro for OpenGL on the Rift (OvrUtils.h)

Initializes the SDK

Runs the example code
(we’ll use macro parameter
substitution here)

Shuts down the SDK
Licensed to Mark Watson <nordickan@gmail.com>

38 CHAPTER 2 Creating your first Rift interactions
Again, all of our sample code is online at our GitHub repository (github.com/Oculus-
RiftInAction/OculusRiftInAction), so if you haven’t downloaded it yet, now’s the
time. All the code we discuss from here on out will use standard macros declared in
our examples.

2.2.2 Managing the HMD

Just initializing the SDK doesn’t do anything useful for us as developers, though. You
want to interact with the Rift hardware, not the SDK. In order to do that, you need to
know how many devices are connected and be able to open a handle to them. Count-
ing the number of connected devices means calling ovrHmd_Detect():

OVR_EXPORT int ovrHmd_Detect();

This function returns the number of connected devices or zero if no devices are
detected. Once you have the number of devices, you can loop over each one, open it,
and query it for information about itself using the ovrHmd_Create() function:

OVR_EXPORT ovrHmd ovrHmd_Create(int index)

ovrHmd_Create() takes the (zero-based) index of the device you want to open and
returns a new type: ovrHmd. This is a new type that serves two roles. First, it acts as a
handle to the hardware for making other calls to the SDK. The majority of the SDK C
functions take an ovrHmd value as their first argument. Second, the ovrHmd type acts to
provide the developer with a description of the connected device. If you look at the C
API headers, you’ll see that ovrHmd is a typedef for a pointer to another structure,
ovrHmdDesc. The members of this structure contain information about the connected
hardware as well as its state (for example, whether Direct HMD mode is active). For
instance, it contains an ovrHmdType member named Type. ovrHmdType is an enum
value that lists all the types supported by the SDK, such as ovrHmd_DK1 or ovrHmd_DK2
(presumably other values will be supported as newer models are released). The spe-
cial value ovrHmd_Other is used to indicate that a Rift has been detected but the
model type isn’t understood or supported by the SDK.

 Having opened a given device, you should close it again before attempting to shut
down the SDK or exit the application; you can use ovrHmd_Destroy() to do so. This is

Delaying ovr_Initialize()
Generally speaking, if you’re using the Rift you want to call ovr_Initialize() as
early as possible to avoid problems. In a number of our examples, though, we want
to render to a conventional window on the desktop using information about the ori-
entation of the Rift. As of this writing, there are bugs in the Oculus runtime that
sometimes prevent rendering to a normal OpenGL window if you’ve already run
ovr_Initialize(). In these cases we’ll use the regular RUN_APP macro and call
ovr_Initialize() only after we’ve created the OpenGL window we want to use.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/OculusRiftInAction/OculusRiftInAction
https://github.com/OculusRiftInAction/OculusRiftInAction

39Getting input from the head tracker
the first of the previously mentioned many functions that take an ovrHmd value as their
first parameter:

OVR_EXPORT void ovrHmd_Destroy(ovrHmd hmd);

It’s always a good idea to close any resources you’ve opened before exiting the applica-
tion to ensure that they aren’t locked when other applications come along to use
them, although Oculus does a good job of virtualizing access to the hardware so that
no one application can gain an exclusive lock on it.

WORKING WITHOUT HARDWARE

Let’s say you want to start developing a Rift application but you don’t have an actual
Rift at hand or you have a Rift but you want to experiment with a different model.
Fortunately, developing without a Rift is supported through the use of the ovrHmd
_CreateDebug() function:

OVR_EXPORT ovrHmd ovrHmd_CreateDebug(ovrHmdType type);

This function allows you to create and work with an ovrHmd instance exactly as if you’d
connected to a device. It lets you specify the model of Rift you want to work with via
the ovrHmdType parameter. The debug creation function is useful for testing your
application’s ability to parse the information about the Rift, as well as performing the
required rendering distortion. It does have the drawback of not being able to provide
head pose tracking, but at the very least it’s enough to get you started or to allow for
development on the go without having to lug around actual Rift hardware.

 Now that you know how to interact with the SDK and headset at a basic level with-
out setting anything on fire, we can move on to more interesting stuff, like setting
things on fire.2

2.3 Getting input from the head tracker
The Rift contains sensor hardware (called an inertial measurement unit, or IMU) that
detects linear acceleration on three axes and rotation speed on three axes. The three
rotation axes and three acceleration axes add up to six degrees of freedom, com-
monly abbreviated as 6DOF. Additionally, the DK2 (and presumably subsequent mod-
els) includes an infrared camera meant to track the orientation and position of an
array of infrared LEDs built into the surface of the Rift.

2 Metaphorically speaking, of course.

Why both an IMU and a camera?
The inclusion of multiple different sensing mechanisms may seem puzzling. The cam-
era can determine both the position and orientation of the Rift, as long as the user
is within the camera’s field of view. In theory you could calculate positional changes
along with orientation by using the information from the IMU alone. So why are both
mechanisms used?
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

40 CHAPTER 2 Creating your first Rift interactions
To produce a good VR environment, the view of the scene must be constantly and
accurately updated based on movement of the Rift. To do this, you first need to fetch
the head pose. The Oculus runtime turns the information from the Rift hardware into
the requisite accurate pose, and the SDK provides a low-latency mechanism for fetch-
ing the most recent pose, as well as providing support to predict information about
future poses over short time scales.

 In this section we’ll cover a minimal example of using the tracker to fetch the cur-
rent head pose of the Rift. Most of the examples that relate to the display, and the
bulk of the code in this book in general, will be creating GUI applications. For work-
ing with only the sensor, we find it easier to work with a text-mode console application
as shown in figure 2.2.

The example in listing 2.4 should launch and, if it finds the sensor, spend 10 seconds
reporting the current orientation of the Rift, expressed as degrees of roll, pitch, and
yaw. Assuming the Rift headset is connected, when run you should see output some-
thing like this:

Current orientation - roll 0.00, pitch 0.00, yaw 0.00
Current orientation - roll -56.48, pitch -50.88, yaw -28.67
Current orientation - roll -56.46, pitch -50.89, yaw -28.65
Current orientation - roll -56.47, pitch -50.88, yaw -28.66
Current orientation - roll -56.48, pitch -50.87, yaw -28.66

(continued)

Well, the theory about determining position from the IMU doesn’t work in practice. To
turn the IMU acceleration data into velocity, you have to perform a mathematical oper-
ation called integration, which ends up magnifying the small amounts of error in the
data by a significant amount. To turn that velocity data into positional data, you have
to integrate again, which amplifies the error. Over a time period as small as a few sec-
onds, you can end up with meters of drift, making the IMU useless for positional data.

The camera, on the other hand, can provide highly accurate positional data, but can’t
provide information with a high enough time resolution. The IMU reports information
at 1000 Hz; the camera reports at a small fraction of that rate.

So the IMU provides the extremely low-latency orientation information and might even
provide positional changes over time scales of a few milliseconds. The camera pro-
vides accurate positional information that isn’t subject to drift in the way the IMU is.

Rift display

Rift headset

Sensor hardware

Rift application

Tracker data sent
over USB

Images sent
to headset

over HDMI or DVI Console log

Figure 2.2 Getting
input from the head
tracker
Licensed to Mark Watson <nordickan@gmail.com>

41Getting input from the head tracker
To fetch these values, you need to enable head tracking and fetch the current head
pose from the SDK (see listing 2.4). Note that running this example requires a con-
nected Rift. Running it with a “debug” Rift would produce no useful information
because the debug mechanism provides no head-tracking data.

Roll, pitch, and yaw
There are a number of ways to represent rotations in 3D space. The most common
are three-by-three matrices, quaternions, and Euler (rhymes with oil-er, not yule-er)
angles. Euler angles are the easiest to conceptualize, because they can easily be
decomposed into roll, pitch, and yaw:

Yaw is when you turn your head to your left or right and corresponds to rotation on
the Y axis. Pitch is when you tilt your head forward (look toward the ground) or back
(look to the sky) and corresponds to rotation on the X axis. Roll is when you tilt your
head to the left or right, toward one shoulder, and corresponds to rotation on the
Z axis.

Yaw

Pitch

Roll

Y

X

Z

Yaw

Yaw is turning your head
to the left or right.

This corresponds to
rotation on the Y axis.

Pitch is tilting your head
forward or back.

This corresponds to
rotation on the X axis.

Roll is tilting your head to the left
or right toward one shoulder.

This corresponds to
rotation on the Z axis.

Pitch Roll
Licensed to Mark Watson <nordickan@gmail.com>

42 CHAPTER 2 Creating your first Rift interactions

e
t.

e
#include "Common.h"

class Tracker {
public:
 int run() {
 ovrHmd hmd = ovrHmd_Create(0);
 if (!hmd) {
 SAY_ERR("Unable to open Rift device");
 return -1;
 }

 if (!ovrHmd_ConfigureTracking(hmd,
 ovrTrackingCap_Orientation, 0)) {
 SAY_ERR("Unable start Rift head tracker");
 return -1;
 }

 for (int i = 0; i < 10; ++i) {
 ovrTrackingState state =
 ovrHmd_GetTrackingState(hmd, 0);

 ovrQuatf orientation = state.HeadPose.ThePose.Orientation;
 glm::quat q = glm::make_quat(&orientation.x);
 glm::vec3 euler = glm::eulerAngles(q);

 SAY("Current orientation - roll %0.2f, pitch %0.2f, yaw %0.2f",
 euler.z * RADIANS_TO_DEGREES,
 euler.x * RADIANS_TO_DEGREES,
 euler.y * RADIANS_TO_DEGREES);
 Platform::sleepMillis(1000);
 }
 ovrHmd_Destroy(hmd);
 return 0;
 }
};

RUN_OVR_APP(Tracker);

We’re using our RUN_OVR_APP macro. This ensures that the ovr_Initialize() and
ovr_Shutdown() functions are called at startup and shutdown. The macro takes care
of it for us. It’s important to remember they’re being called, but we won’t belabor the
point further.

 The next sections provide a closer look at what’s happening in the code.

2.3.1 Reserving a pointer to the device manager and
locating the headset

You first use the SDK to acquire a handle to the Rift, similar to the way you did in list-
ing 2.1, although this time you open the first Rift available, rather than attempting to
detect and open a particular one. If no Rift is found, then you emit an error and exit
the application.

Listing 2.4 Getting head tracker data

Opens the
headset.

Starts the
sensor device.

Fetches data.

Converts the
data into a mor
readable forma

Reports
data to th
console.

Sleeps for a second
before fetching the
next value. Closes the

HMD device.

We’re using the new
RUN_OVR_APP macro here.
Licensed to Mark Watson <nordickan@gmail.com>

43Getting input from the head tracker
 As previously mentioned, the ovrHmd type serves as both a description of the basic
properties of the Rift and a handle. The client can then go back to the API and say “do
something specific with this particular Rift” by passing in the handle. You perform
exactly this kind of operation a couple of lines later:

 if (!ovrHmd_ConfigureTracking(hmd,
 ovrTrackingCap_Orientation, 0)) {

This line uses the Rift handle to start the SDK listening to the head-tracking sensors. In
addition to a handle, you’re passing in two other parameters. These are fields for sup-
ported and required capability bits and will be covered in greater detail in chapter 3.
You specify the flag for orientation tracking in the supported field and nothing in the
required field.

 Configuring tracking causes the SDK to start listening to the updates from the Ocu-
lus runtime. The runtime in turn is listening to the messages from the head-tracking
hardware (the IMU for the DK1, the IMU and camera for the DK2) and aggregating
that information via sensor fusion, which creates a continuous representation of the
current pose of the headset.

2.3.2 Fetching tracker data

After you enter the loop, you start fetching data using this function:

ovrTrackingState state = ovrHmd_GetTrackingState(hmd, 0);

Here ovrTrackingState is a structure that encapsulates quite a bit of data about the
current and predicted state of the headset. We’ll delve into it more deeply in chap-
ter 3, but for the time being we’re focused on a single deeply nested member,
state.HeadPose.ThePose.Orientation, which encodes the current orientation as a
quaternion.

These lines are used to convert the quaternion into a more readable form of rotation
known as Euler angles:

ovrQuatf orientation = state.HeadPose.ThePose.Orientation;
glm::quat q = glm::make_quat(&orientation.x);
glm::vec3 euler = glm::eulerAngles(q);

Quaternions, rotation matrices, and Euler angles
Whenever we discuss the head-tracking capabilities of the Rift, we’re going to be talking
about rotation. Rotations can be described by quaternions (advanced 4-dimensional
vectors), rotation matrices (3 x 3 or 4 x 4 grids of trigonometric numbers), or Euler
angles (often expressed as roll, pitch, and yaw). If you’re familiar with 3D rendering
systems, you’ve probably already encountered some of these. To learn more, refer to
appendix B.
Licensed to Mark Watson <nordickan@gmail.com>

44 CHAPTER 2 Creating your first Rift interactions
The glm::quat type3 is a more fully featured class that represents a quaternion, as
opposed to the ovrQuatf struct, which contains only the data and has no methods.
Converting from the OVR type to the GLM type allows you to take advantage of the
eulerAngles method in GLM. Refer to appendix B on coordinate systems for
greater detail.

2.3.3 Reporting tracker data to the console

A program with no output isn’t very useful, so you’ll use a simple macro to write the
angles to the console. The angles are returned in radians, the SI unit for angles, but
it’s easier to read as degrees, so you do the conversion as you print them.

SAY("Current orientation - roll %0.2f, pitch %0.2f, yaw %0.2f",
 euler.z * RADIANS_TO_DEGREES,
 euler.x * RADIANS_TO_DEGREES,
 euler.y * RADIANS_TO_DEGREES);

SAY is the printf macro, which writes to stdout; RADIANS_TO_DEGREES is the macro for
the conversion from radians to (you guessed it) degrees: 360°/2.

 Finally, you sleep for a second before you fetch the next value:

 Platform::sleepMillis(1000);

Putting this pause in is the only way to make the program reasonably useful. With 10
reports at one-second intervals, you can hold the device in your hands and see the
changes in the output as you move it in various ways. If you didn’t pause, the output
would scroll by so fast that it’d be difficult to make much sense of the output or for the
values to change significantly between readings.

2.3.4 Exiting and cleaning up

After you’ve looped 10 times, you’re ready to exit:

ovrHmd_Destroy(hmd);
return 0;

You call ovrHmd_Destroy(hmd) to release your reference to the headset, allowing it to
be deallocated properly.

2.3.5 Understanding the output

Running the application should produce output similar to this:

Current orientation - roll 0.00, pitch 0.00, yaw 0.00
Current orientation - roll -56.48, pitch -50.88, yaw -28.67
Current orientation - roll -56.46, pitch -50.89, yaw -28.65
Current orientation - roll -56.47, pitch -50.88, yaw -28.66
Current orientation - roll -56.48, pitch -50.87, yaw -28.66

3 Part of the GLM C++ math library at glm.g-truc.net/
Licensed to Mark Watson <nordickan@gmail.com>

http://glm.g-truc.net/

45A framework for demo code: the GlfwApp base class
The first report has 0 for all the angles. After connecting to the sensor, you don’t delay
before you report the first value. It’s therefore possible for the first item to print
before any messages have been received, because data is collected from the device on
another thread.

 After that first line, with a device at rest, you’d expect the angles to remain at 0.
They don’t for two reasons: drift and pitch correction. Drift is the name for the collec-
tion of tiny phenomena that lead to the Rift gradually losing its initial orientation.
Pitch correction is the Rift’s built-in technology that uses real-world gravity to measure
the pitch of the virtual-world camera.

 Pitch correction takes at least a few messages to kick in, but once it does, the sensor
fusion software reevaluates the reported value, taking the direction of gravity into
account. Drift is caused by the random fluctuations in the reported values from the
hardware, combining with accumulated floating-point errors. You can see the effect of
drift in the tiny fluctuations in the least significant digits.

 The sample shown at the beginning of this subsection was captured while the Rift
was hanging from a hook, completely still, and even so there’s a small random amount
of change in the values. The fluctuation here is about 2/100th of a degree, equivalent
to about 1.2 minutes of arc, or approximately the width of the International Space Sta-
tion in the sky as viewed from Earth, and that’s just over a period of a few seconds.
Because drift is typically random, while the Rift is still it’s unlikely to accumulate very
quickly. It can be exacerbated by the pattern and order of head movements, so for
instance, turning your head left, then looking up, and then moving directly forward
can magnify the drift in a particular direction and cause it to accumulate faster.

 All good? Then let’s move on: now that you know how to talk to the Rift, it’s time to
lay down a bit of groundwork for bringing up simple OpenGL apps. After that we can
get on to the real fun: sending video to the Rift!

2.4 A framework for demo code: the GlfwApp base class
One of the downsides to OpenGL (and to programming in general, if we’re honest) is
that the ratio of “boilerplate” code to the code that actually does the thing you’re
interested in can be painfully high, especially in little demos. To hide away as many of
the OpenGL and platform-dependent issues as possible, we’re using the GLFW library
(www.glfw.org) and we’ve written a lightweight wrapper class, GlfwApp, around it.
(The acronym GLFW appears to have started life as “[Open]GL FrameWork,” but
these days everybody calls the project GLFW.)

 Like the RUN_OVR_APP macro, GlfwApp is available online (github.com/Oculus-
RiftInAction/OculusRiftInAction). Feel free to download it, and we hope it serves
you well.

 GlfwApp takes care of opening a window, binding an OpenGL context, setting up
the rendering frame, and so on. Well, really most of that is taken care of by the
underlying GLFW3 C library, and we’ve just wrapped it in a C++ package. If you look
at the example code at the GlfwApp implementation, you’ll see that it contains a
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/OculusRiftInAction/OculusRiftInAction
https://github.com/OculusRiftInAction/OculusRiftInAction
http://www.glfw.org

46 CHAPTER 2 Creating your first Rift interactions
run() method, which will be called from our OVR_RUN_APP macro. Its core loop is
shown next.

int GlfwApp::run() {
 window = createRenderingTarget(windowSize, windowPosition);
 if (!window) {
 FAIL("Unable to create OpenGL window");
 }
 initGl();
 while (!glfwWindowShouldClose(window)) {
 glfwPollEvents();
 update();
 draw();
 finishFrame();
 }
 shutdownGl();
 return 0;
}

You launch each of our demo programs with the RUN_APP or RUN_OVER_APP macro,
passing in the name of the class you want to run. The RUN macro is responsible for cre-
ating an instance of the named class, which implicitly calls the instance’s constructor,
and then calls its run() method.

 GlfwApp is designed to allow you to run both Rift and non-Rift content, so it
doesn’t have any preconceived concept of the size or position of the OpenGL win-
dow. It’s up to the derived class to implement the createRenderingTarget()
method and specify what the size and position of the window should be, and
whether or not it should be a full-screen window. Once this method has been called,
the window should’ve been created, so you test for this and fail out of the program if
it hasn’t been.

 Having created the window, you now need to set up OpenGL, so you call initGl().
This is the place to put any initialization that depends on or interacts with OpenGL.
Such initialization can only occur after an OpenGL context has been created, so it
can’t be done in the constructor. The GlfwApp class has an implementation of this
method that does some pretty basic OpenGL setup in its own right. Derived classes are
free to override this method but should ensure that they call the base class implemen-
tation when they do so.

 With all of the setup complete, you enter your primary loop:

 while (!glfwWindowShouldClose(window)) {
 glfwPollEvents();
 update();
 draw();
 finishFrame();
 }

Listing 2.5 The core loop of GlfwApp, our demo framework base class
Licensed to Mark Watson <nordickan@gmail.com>

47Rendering output to the display
glfwWindowShouldClose() returns a non-zero value if the window has been closed or
requested to be closed by the OS.

 glfwPollEvents() handles all the pending OS-level events for the window. For our
purposes, this refers to input events like mouse and keyboard actions.

 update() is a virtual GlfwApp member function that’s called once per frame and is
specifically intended for actions that manage the state or affect the output of the
application but that are not themselves rendering commands.

 It’s vitally important to maintain a clean separation between code that does the
rendering and code that doesn’t. This is critical for the Rift, or for any application that
wants to support stereoscopic rendering of any kind. If your state-altering instructions
are mixed with your rendering instructions, you may see unpleasant artifacts when
you try to render the same scene simultaneously from two different viewpoints.

 The heart of the loop is the GlfwApp::draw() method. In this method, classes
derived from our example framework will make all the OpenGL rendering calls.

 Finally, you call GlfwApp::finishFrame(). By default, this calls glfwSwapBuffers(),
triggering OpenGL to update the output device. OpenGL and Direct3D applications,
and indeed graphics mechanism in general, are buffered in such a way that the draw-
ing takes place in an offscreen buffer, and pixels are only copied en masse to the
actual display output when it’s complete. This is typically referred to as double buffering,
though your video card is free to use more than just two buffers internally.

 Once you exit the loop, having been told to do so by the return value of glfw-
WindowShouldClose(), you destroy the OpenGL window. GLFW automatically cleans
up after itself and you return from your run method, thus ending the program.

 That’s a quick recap of the core of our demo app base class. You’ll be using Glfw-
App and classes derived from it in the rest of the book, so it’ll soon become familiar.
Now it’s time to get some pixels onto the Rift.

2.5 Rendering output to the display
Now that you have input from the tracker and a solid base class for our display demos,
let’s look at working with the other device in the headset: let’s send output to the Rift’s
display (figure 2.3).

Rift display

Rift headset

Sensor hardware

Rift application

Tracker data sent
over USB

Images sent
to headset

over HDMI or DVI

Figure 2.3 Sending output to the display
Licensed to Mark Watson <nordickan@gmail.com>

48 CHAPTER 2 Creating your first Rift interactions
From the point of view of a computer, the Rift is just another screen; it takes its
video input over an HDMI (or DVI) cable and it displays whatever the OS sends it
(figure 2.4).

 In fact, if you plug your Rift in right
now and don’t run any targeted soft-
ware, you’ll probably see a portion of
your OS desktop glowing at you through
the bulbous lenses. You can’t really use it
like that because the design of the Rift
means each eye only sees half of the dis-
play panel. The OS doesn’t take that into
account, so if you look through the Rift
you’ll see a couple of overlapping views
of your own desktop.

 The challenge that the Rift faces is,
of course, the whole “two eyes” thing. We
get our stereo vision from the brain’s
remarkable ability to parse two almost-identical images, separated only by a nose, and
turn that into spatial awareness. We’ll go into the details of fields of view (with and
without noses) in chapter 5.

 Let’s look at the simple mechanics of showing a unique image to each eye with
OpenGL. The example code in the following listing will render two rectangles to the
Rift, one red and one blue (figure 2.5).

#include "Common.h"

class RiftDisplay : public GlfwApp {
 ovrHmd hmd;

Listing 2.6 Rendering to the display

1920 pixels

DK2 display panel

Right eye regionLeft eye region
1080
pixels

960 pixels 960 pixels

Figure 2.4 The display panel divided into left and right sections

Red Blue

Figure 2.5 Rendering two rectangles to the Rift,
one red (left) and one blue (right)

GlfwApp is a wrapper class
that abstracts OpenGL
platform-specific issues.
Licensed to Mark Watson <nordickan@gmail.com>

49Rendering output to the display

si

u

fo

s
public:
 RiftDisplay() {
 hmd = ovrHmd_Create(0);
 if (!hmd) {
 hmd = ovrHmd_CreateDebug(ovrHmd_DK2);
 }
 if (!hmd) {
 FAIL("Unable to detect Rift display");
 }
 }

 virtual GLFWwindow * createRenderingTarget(
 glm::uvec2 & outSize,
 glm::ivec2 & outPosition) {
 GLFWwindow * window;
 bool extendedMode =
 ovrHmdCap_ExtendDesktop & hmd->HmdCaps;

 outPosition = glm::ivec2(
 hmd->WindowsPos.x,
 hmd->WindowsPos.y);
 outSize = glm::uvec2(
 hmd->Resolution.w,
 hmd->Resolution.h);

 if (extendedMode) {
 GLFWmonitor * monitor =
 glfw::getMonitorAtPosition(outPosition);
 if (nullptr != monitor) {
 const GLFWvidmode * mode =
 glfwGetVideoMode(monitor);
 outSize = glm::uvec2(mode->width, mode->height);
 }
 glfwWindowHint(GLFW_DECORATED, 0);
 window = glfw::createWindow(outSize, outPosition);
 } else {
 window = glfw::createSecondaryScreenWindow(outSize);
 void * nativeWindowHandle =
 glfw::getNativeWindowHandle(window);
 if (nullptr != nativeWindowHandle) {
 ovrHmd_AttachToWindow(hmd, nativeWindowHandle,
 nullptr, nullptr);
 }
 }
 return window;
 }

 void draw() {
 glm::uvec2 eyeSize = getSize();
 eyeSize.x /= 2;

 glEnable(GL_SCISSOR_TEST);

 glScissor(0, 0, eyeSize.x, eyeSize.y);
 glClearColor(1, 0, 0, 1);
 glClear(GL_COLOR_BUFFER_BIT);

Locates the
headset device.

Our parent class calls this
virtual method to create
the OpenGL window.Detects

whether
the Rift is

running in
Direct

HMD or
Extended

mode. You begin by assuming
the HMD size and
position values are
valid for use.

Extended
and Direct

mode
window

setup are
gnificantly
different.

In extended mode
you need to query
the resolution of
the Rift.

You also need to make
sure that the created
window doesn’t include
window decorations.

In direct
mode, you

create a
window

wherever
you want;
se the Rift

native
resolution
r the size.

Direct HMD mode require
that you pass the native
window handle you’re
using into the SDK.

For our drawing method, you
want to display the color red
on the left eye half of the
display, so you set up a scissor
region and clear it, with the
clear color set to red.
Licensed to Mark Watson <nordickan@gmail.com>

50 CHAPTER 2 Creating your first Rift interactions
 glScissor(eyeSize.x, 0, eyeSize.x, eyeSize.y);
 glClearColor(0, 0, 1, 1);
 glClear(GL_COLOR_BUFFER_BIT);

 glDisable(GL_SCISSOR_TEST);
 }
};

RUN_OVR_APP(RiftDisplay);

This class exposes the complexity of creating an output window for the Rift display.
Even this example is significantly smaller than it could be because we’re pushing a lot
of code into helper methods and the parent class, GlfwApp.

 Let’s walk through the Rift code now, step by step. After all that setup, it’s high
time the Rift took center stage.

2.5.1 The constructor: accessing the Rift

Our example constructor only does one thing: finds the Rift if one is connected, or
returns a debug Rift if one isn’t detected.

 You locate the headset through the call

hmd = ovrHmd_Create(0);

This call fetches the first headset it finds. Make sure you check that a headset was actu-
ally found, or hilarity will ensue. If users haven’t correctly connected their device or
don’t own a Rift to begin with, hmd will be zero. As in the sensor example, always check
your state before continuing, and try to give your users a “friendly” fallback experi-
ence in the event of failure.

 In this case, because you’re only using the Rift for output, it’s reasonable for you to
fall back on building an instance of the debug Rift device if you can’t detect a real
one. That’s what you do with these lines:

if (!hmd) {
 hmd = ovrHmd_CreateDebug(ovrHmd_DK2);
}

It’s important that you keep your users informed of failures during application
launch. There’s little in this world more frustrating than working with an application
that supposedly supports the Rift but silently ignores it and won’t give the user any
indication of why. You don’t want to be the developer who promises to allow users to
enjoy their shiny4 new hardware and fails to deliver.

4 Well… matte black. But metaphorically speaking, very shiny indeed.

For the right eye, you
change the scissor region
and the clear color and
again clear the display.
Licensed to Mark Watson <nordickan@gmail.com>

51Rendering output to the display
2.5.2 Creating the OpenGL window

Now that you’ve opened the Rift device (or its debug evil twin), you’re ready to create
the OpenGL window for your output with the createRenderingTarget() method. To
accomplish that, you’re going to let GLFW do all the heavy lifting.

 As of SDK version 0.4.4, the Rift can be connected to the PC in one of two modes:
Extended Desktop mode or Direct HMD mode. In Extended mode, the Rift acts like another
screen on your computer, so you target it by opening a completely standard OpenGL
window. In Direct HMD mode, you have to open a native window and pass the details
of that window to the Oculus SDK so that the SDK can handle the rendering for you.
We’ll come back to the difference between these two modes in chapter 4.

 For now, suffice it to say that GLFW has several methods for creating and configur-
ing windows. Choose your setup based on whether the Rift is in Extended or Direct
HMD mode, tweaking a few related settings as needed.

 For more details about the subtleties of Direct HMD and Extended modes, and
how they affect window setup, check out chapter 4.

2.5.3 Rendering two rectangles, one for each eye

Finally, there’s our draw() method. You want to render two rectangles, one for each
eye. To do it with close to the minimum amount of code, you’ll use the OpenGL scissor
functionality. OpenGL has two similar mechanisms to limit the output to a given rect-
angle on the screen: viewports and scissors. The key difference between the two (for our
purposes) is that scissor rectangles limit the area that a glClear call will affect; view-
ports don’t. To draw simple rectangles on the screen without going into dealing with
geometry and vertices, you just set a scissor region, set the OpenGL clear color to the
color you want, and tell OpenGL to clear that region.

 This is probably the last time you’ll be using the scissor functionality, because
most of the time you’re going to want to render something more interesting than a
colored rectangle.

 First, you want to determine the size of the rectangle you’ll render for each eye.
This is exactly half the window size:

void draw() {
 glm::uvec2 eyeSize = getSize();
 eyeSize.x /= 2;

You grab the window size from getSize(), which the parent class GlfwApp provides,
and you divide the horizontal distance in two, because the Rift display is bilaterally
symmetrical.

 Next, you need to enable OpenGL’s scissor-testing function, because it’s not on by
default:

 glEnable(GL_SCISSOR_TEST);
Licensed to Mark Watson <nordickan@gmail.com>

52 CHAPTER 2 Creating your first Rift interactions
Now you clear the left eye with the color red:

 glScissor(0, 0, eyeSize.x, eyeSize.y);
 glClearColor(1, 0, 0, 1);
 glClear(GL_COLOR_BUFFER_BIT);;

The first line establishes the size and position of the rectangle for the left eye. The
first two parameters are pixel coordinates for the lower-left corner of the rectangle.
The second two parameters are the size of the rectangle. Remember that eyeSize was
computed using half the original display width, so this should take up half the screen.

 The glClearColor() function is used to specify the color that should be used
when clearing the screen, defined as four floating-point values between 0 and 1 that
represent the level of the colors red, green, and blue as well as the alpha value. You set
red to 1 and blue and green to 0. Alpha doesn’t matter for our purposes, but you set it
to 1 by convention.

 The “drawing” is done by the glClear() call, which erases the contents of the
color buffer and replaces them with the clear color.

 Next you repeat the process for the right eye with the color blue. The only differ-
ences here are the position of the rectangle (now starting halfway across the screen)
and the clear color (now setting blue to 1 and red to 0):

 glScissor(eyeSize.x, 0, eyeSize.x, eyeSize.y);
 glClearColor(0, 0, 1, 1);
 glClear(GL_COLOR_BUFFER_BIT);

Finally you clean up by disabling the scissor test again. This isn’t strictly necessary—
nothing else is working with the OpenGL state—but it’s good practice when working
with libraries like the Oculus SDK that might use or affect state to try to manage it
effectively.

 glDisable(GL_SCISSOR_TEST);
}

And that’s it. If you run the example you should see only red in the left eye and only
blue in the right eye, and a general impression of purple if you look through both
eyes at the same time.5

2.6 What’s next?
You’ve seen how to get basic input from the head tracker, and how to render the sim-
plest output to the Rift display panel with information gleaned from the SDK. To cre-
ate a fully functional Rift application, you’ll want to bring these together, creating an
interactive scene that responds to the Rift’s movements.

 Compared to the examples in this chapter, creating a fully functional Rift program
pulls in a significant amount of complexity. For one thing, in our output example we

5 Any euphoric or psychedelic effect you experience as a result may be taxable depending on your jurisdiction.
Licensed to Mark Watson <nordickan@gmail.com>

53Summary
basically cheated. Rendering primary colors to a 2D rectangle by using glScissor and
glClearColor is easily an order of magnitude simpler than doing any real work in
OpenGL, like rendering 3D geometry. And, in a real application you’ll need to do
more than render a scene—you’ll need to render it for the Rift headset. That means
rendering from two different perspectives and distorting the output image to make
the resulting image look correct from within the Rift. And it means you have to start
working with 3D geometry, model-view and projection matrices, and OpenGL shaders
to render the scene. Don’t worry if it’s not all clear as crystal yet! In chapters 4 and 5
we’ll delve into these issues in greater depth and in an incremental fashion. We’ll go
deep into the details of what’s being done, why it’s being done, how you should do it,
and how to know you’re doing it correctly. We begin in chapter 3 with an in-depth
dive into working with the head tracker by looking at not just getting reports from the
Rift but also understanding what it reports and how to apply the data to a rendered
scene.

 But if you just can’t wait to start digging into something more substantial, the
example code repository also includes an additional example (titled HelloRift) along-
side the other chapter 2 examples. This application will run with or without a Rift con-
nected and represents a full end-to-end application that both does the required Rift
distortion and uses the tracker to detect orientation. You’re free to inspect it to see the
entire mechanism at work (but we humbly suggest that because you already paid for
the rest of this book, you might as well read it).

2.7 Summary
In this chapter, you learned that

■ Working with the Rift involves working with two distinct devices: a set of sensors
connected via USB (the head tracker), and a monitor device connected via
HDMI or DVI (the display).

■ Both devices are managed via the Oculus SDK.
■ Since the release of DK2 and version 0.4 of the Oculus software, the software is

broken down into two major components, the runtime and the SDK.
■ The Oculus runtime serves to address two limitations of the Rift: concurrent

access to the hardware and the inapplicability of the desktop metaphor to the
Rift display.

■ The Oculus SDK is a C API.
■ When using the SDK you need to properly initialize and shut down the SDK.

Failing to do so can result in your application crashing, or hanging so that the
user has to forcibly terminate the application.

■ The Rift contains sensor hardware that detects acceleration on three axes and
rotation speed on three axes.

■ The DK2 includes an infrared camera meant to track the orientation and posi-
tion of an array of infrared LEDs built into the surface of the Rift.
Licensed to Mark Watson <nordickan@gmail.com>

54 CHAPTER 2 Creating your first Rift interactions
■ The Oculus SDK provides support for taking the raw messages from the hard-
ware and coalescing them into a single orientation in a form that’s easily
applied to modern rendering systems.

■ All of the C++ rendering examples in this book use a set of macros and a light-
weight base class called GlfwApp, which hides away as many of the OpenGL and
platform-dependent issues as possible.

■ Because the Rift separates the user’s eyes in the headset, to use the Rift a dis-
tinct image needs to be rendered for each eye.
Licensed to Mark Watson <nordickan@gmail.com>

Pulling data out of
the Rift: working with

the head tracker
For some users of the Rift, the first impression is, yeah, that’s a nice view. They
aren’t really wowed. Then they move their head, and that’s when it hits them.
They break into a huge grin and make a 360-degree spin just to take it all in. The
sense of immersion they get from having their point of view be consistent with
where they’re looking completely sells them on the experience.

 The Rift includes the hardware that lets you track head movement, but how do
you use it to create an immersive experience?

 The Oculus Rift includes solid-state circuitry that reports the device’s current
acceleration and angular velocity as vectors up to a thousand times a second. By
combining these individual hardware reports, the Rift SDK is able to provide a con-
tinuous representation of the current orientation of the Rift in three dimensions.

This chapter covers
■ Understanding the head tracker
■ Using the head tracker API to fetch an

orientation
■ Applying the new orientation to a rendered

scene
■ Using gravimetric and magnetic drift correction
■ Using prediction to reduce latency
55

Licensed to Mark Watson <nordickan@gmail.com>

56 CHAPTER 3 Pulling data out of the Rift: working with the head tracker
3.1 The head tracker API
Access to the head tracker hardware is provided via an ovrHmd handle, the acquisition
of which we covered in chapter 2.

 The C API provided by the SDK masks much of the complexity of interacting with
the hardware and software, reducing the interface to a number of supported and
required capabilities that you can specify when you activate tracking. Interacting with
the sensor hardware boils down to a few simple functions:

■ ovrHmd_ConfigureTracking allows you to tell the SDK to start tracking the head
orientation and position.

■ ovrHmd_RecenterPose indicates that the internal state of the sensor should be
reset so that future readings should be relative to the current position and ori-
entation of the headset.

■ ovrHmd_GetTrackingState returns the current orientation and position infor-
mation for the tracker, as well as a variety of other values.

■ ovrHmd_GetEyePose also returns information about the current orientation
and position of the sensor but can be called only at certain times.

The distinction between ovrHmd_GetTrackingState and ovrHmd_GetEyePose deserves
explanation. The latter is typically called twice each frame, once for each eye, and
returns a simple ovrPosef type. The ovrPosef structure contains the information that
should be used by the renderer to draw the scene from a particular point of view. The
ovrHmd_GetSensorState function can be called any time to fetch the current state of
the sensor, and it contains quite a bit more information than a simple pose. We’ll dis-
cuss the distinction and use cases of each function in a bit more detail in a moment.

3.1.1 Enabling and resetting head tracking

To start working with the head tracker, you need to call ovrHmd_ConfigureTracking.
Typically you’ll do this near the start of your application (or near the point when the
user activates the Rift mode for your application), shortly after you’ve acquired your
ovrHmd handle. The method has the following signature:

OVR_EXPORT ovrBool ovrHmd_ConfigureTracking(
 ovrHmd hmd,
 unsigned int supportedSensorCaps,
 unsigned int requiredSensorCaps);

As you can see, this function takes two parameters in addition to the ovrHmd handle: a
supported sensor-capabilities bit field and a required sensor-capabilities bit field. These
bit fields are intended to be filled with flags from the ovrTrackingCaps enum type.
Currently there are three flags:

ovrTrackingCap_Orientation = 0x0010,
ovrTrackingCap_MagYawCorrection = 0x0020,
ovrTrackingCap_Position = 0x0040,
Licensed to Mark Watson <nordickan@gmail.com>

57The head tracker API
All present Rift models support orientation, but only the DK2 models1 and later sup-
port position tracking via the camera. Magnetic yaw correction appears to have been
dropped from DK2 in favor of using optical yaw correction via the same camera that
supports positional tracking. Adding a flag into the supportedSensorCaps parameter
will have no negative effect if the functionality isn’t supported by the hardware.

RESETTING THE TRACKER ORIENTATION

You may be tempted to initialize the sensor during the headset initialization and sim-
ply leave it running for the life of the application. But keep in mind that this approach
can lead to a problem where the tracker starts its lifetime while the Rift isn’t on the
user’s head or facing in the correct direction.

 For this situation, among others, it’s desirable to be able to reset the state of the head
tracker so that its current orientation and position are reset to identity values. In other
words, when the user starts playing they should be able to hit a key and reset what for-
ward means so that it’s comfortable. This is done with the ovrHmd_RecenterPose()
method. This method takes only one parameter: the ovrHmd handle to the headset.

 When you use the recenter function, it resets the position so that the user’s cur-
rently reported position is considered the origin for future tracker position data. It
also resets the yaw value of the orientation so that the current direction is considered
forward, or “no yaw.” It doesn’t affect the effective pitch and roll values, because those
are determined via the direction of the gravitational pull acting on the headset.2

 We’ll discuss at length the need for properly providing a transition from a desktop
experience to a VR experience in chapter 9. Ensuring that you give the user an oppor-
tunity to become comfortable before starting to use and apply head-tracking data is
part of that experience.

3.1.2 Receiving head tracker data

Next we’ll look at two functions you’ll find useful for fetching information about the
current state of the head tracker (including, but not always limited to, its position and
orientation). They return different amounts of information and have distinctly differ-
ent use cases.

ANYTIME TRACKING

The first is ovrHmd_GetTrackingState. This method can be called any time in your
application, from any thread. It has the following signature:

ovrTrackingState ovrHmd_GetTrackingState(ovrHmd hmd, double absTime);

The first argument is, as always, the ovrHmd handle to the current headset. The second
argument represents the time for which you want any predicted data. ovrHmd_Get-
TrackingState returns information about the state of the headset, optionally using
current velocities and accelerations to predict the headset’s state in the future.

1 The Crystal Cove prototype also supported position tracking, but it was never available to the general public.
2 Try not to use the recenter function while in a centrifuge, or it may throw off the calculations.
Licensed to Mark Watson <nordickan@gmail.com>

58 CHAPTER 3 Pulling data out of the Rift: working with the head tracker
OVRTRACKINGSTATE

The type returned from ovrHmd_GetTrackingState is pretty deep, containing a num-
ber of structures, which contain their own structures, and so on. Let’s look at all the
structures involved (see the following listing; ovrQuatf and ovrVector3f are excluded
because they’re self-evident).

typedef struct ovrPosef_
{
 ovrQuatf Orientation;
 ovrVector3f Position;
} ovrPosef;

typedef struct ovrPoseStatef_
{
 ovrPosef ThePose;
 ovrVector3f AngularVelocity;
 ovrVector3f LinearVelocity;
 ovrVector3f AngularAcceleration;
 ovrVector3f LinearAcceleration;
 double TimeInSeconds;
} ovrPoseStatef;

typedef struct ovrSensorData_
{
 ovrVector3f Accelerometer;
 ovrVector3f Gyro;
 ovrVector3f Magnetometer;
 float Temperature;
 float TimeInSeconds;
} ovrSensorData;

typedef struct ovrTrackingState_
{
 ovrPoseStatef HeadPose;
 ovrPosef CameraPose;
 ovrPosef LeveledCameraPose;
 ovrSensorData RawSensorData;
 unsigned int StatusFlags;
} ovrTrackingState;

The HeadPose member holds not only the current pose of the tracker (in member
field ThePose), but information about the linear and angular accelerations and veloc-
ities of the head. The pose is a critical part of our rendering process,3 although the
other values might be useful for triggering effects or rendering changes based on how
fast the user was moving or turning their head.

 The CameraPose and LeveledCameraPose members can be used to detect the bounds
of the camera frustum relative to the head. This information is particularly useful if

Listing 3.1 Structures used for head tracking

3 You’ll see this in action in chapter 4.

Holds the orientation and
position of a tracked object
relative to some fixed origin.

Holds a pose, speed and
acceleration informaton, and
the time the sample was taken.

Contains the most
recent raw information
from the sensors.

Contains a pose state for the
head, with two variants of a
pose for the camera, some raw
sensor data, and a bit field for
status flags.
Licensed to Mark Watson <nordickan@gmail.com>

59The head tracker API
you want to ensure that as a user approaches the edge of the positional tracking frus-
tum you take some action to prevent or account for the sudden loss of positional track-
ing when the user moves out of bounds.

 HeadPose, CameraPose, and LeveledCameraPose are all of type ovrPosef, a type
that encapsulates a particular orientation and position. These are contained in
Orientation and Position, which are a quaternion (ovrQuaternionf) and a 3D vec-
tor (ovrVector3f), respectively.

So if, for instance, you want to know the exact orientation of the headset right at a
given moment, you can do so by calling this:

ovrHmd_GetTrackingState(hmd, ovr_GetTimeInSeconds())
 .HeadPose
 .ThePose
 .Orientation;

RENDERING TRACKING

The other function that returns head tracker data, ovrHmd_GetEyePoses, is part of
the rendering and timing mechanism built into the Oculus SDK. We’ll cover this sys-
tem in more detail in chapter 4, but for now it’s important to understand the distinc-
tion between what ovrHmd_GetTrackingState and ovrHmd_GetEyePoses are intended
to do.

 The signature method looks like this:

void ovrHmd_GetEyePoses(
 ovrHmd hmd,
 unsigned int frameIndex,
 ovrVector3f hmdToEyeViewOffset[2],
 ovrPosef outEyePoses[2],
 ovrTrackingState* outHmdTrackingState);

Unlike the more general-purpose function described earlier, this function is specifi-
cally optimized for providing the information required for rendering. As opposed to
just the tracking state structure returned by ovrHmd_GetSensorState, this method
provides as output a pair of ovrPosef structures, containing a predicted orientation
and position for the headset. The exact amount of time used for the prediction is
determined inside the SDK based on its knowledge of when the image is likely to be
displayed on the Rift panel. You can still get the same tracking state information pro-
vided by ovrHmd_GetSensorState by passing in a non-null pointer in the outHmd-
TrackingState parameter.

Quaternions
Quaternions are one of the three main ways of representing a rotation transformation.
More details can be found in appendix B.
Licensed to Mark Watson <nordickan@gmail.com>

60 CHAPTER 3 Pulling data out of the Rift: working with the head tracker
USE CASES

Each of these methods has its uses. In the case of ovrHmd_GetEyePoses, there’s really
only one use case: get the best possible orientation and position of the headset for
rendering the scene for an eye, given a good idea of when exactly the rendered pixels
will appear on the screen. Because this is, after all, the primary use case for the head
tracker, that leaves open the question of what purpose the ovrHmd_GetTrackingState
function serves.

 For one thing, there may be times when you want to know what the head pose is
outside of the rendering loop. If the user leans their head forward or to the side,
that movement may need to trigger some event or action within the application. In
such cases it’d be advantageous to have a stored pose that’s updated once per frame,
rather than once per eye, and use that as the aggregate head pose for the user as
a whole.

 Also, consider an application that includes some sort of head gestural support
such as responding to nods or headshakes with programmed behaviors. This sort of
interaction would rely much more heavily on the angular velocity data returned by
ovrHmd_GetTrackingState than on the actual current head pose. You might even
wish to launch a separate thread for sampling the sensor data at a higher rate than the
rendering loop might offer in order to provide more accurate gestural detection, or
to offload the work onto a separate CPU core.

 Finally, in VR applications it may not be uncommon to have additional data
injected into the scene that comes from inputs with unstable levels of latency. Con-
sider a camera that might be attached to the Rift. Webcams often have variable frame
rates, which are influenced by the amount of light available in the surrounding envi-
ronment. If you simply inject a webcam image into the scene in a fixed position in the
rendered scene, the latency of the webcam will mean that the world inside the camera
view will seem to lag behind the rest of the scene. This can be countered by calling
ovrHmd_GetTrackingState with an absTime value in the past to determine the orien-
tation the head likely had when the image was captured. The prior orientation can
then be compared with the orientation at the time of render (part of the head pose)
and the image positioned within the scene appropriately. This kind of integration of
external inputs is covered in more detail in chapter 13.

 In the following listing, let’s look back at some of the code in the run() method
from the example in chapter 2, where you fetched an orientation and then printed
the orientation to the console. This time around you’ll be making much more inter-
esting use of the data by using it to transform the scene.

int run() {
 ovrHmd hmd = ovrHmd_Create(0);
 if (!hmd || !ovrHmd_ConfigureTracking(hmd,
 ovrTrackingCap_Orientation, 0)) {

Listing 3.2 Fetching the Rift’s orientation, revisited

Opens the
headset

 b
Licensed to Mark Watson <nordickan@gmail.com>

61Receiving and applying the tracker data: an example

on
es
 SAY_ERR("Unable to detect Rift head tracker");
 return -1;
 }

 // ...

 ovrTrackingState state = ovrHmd_GetTrackingState(hmd, 0);
 ovrQuatf orientation = state.HeadPose.ThePose.Orientation;
 glm::quat q = glm::make_quat(&orientation.x);
 glm::vec3 euler = glm::eulerAngles(q);

 SAY("Current orientation - roll %0.2f, pitch %0.2f, yaw %0.2f",
 euler.z * RADIANS_TO_DEGREES,
 euler.x * RADIANS_TO_DEGREES,
 euler.y * RADIANS_TO_DEGREES);

 // ...

 ovrHmd_Destroy(hmd);
 return 0;
}

The listing starts by opening the headset using ovrHmd_Create and then enabling the
sensor with ovrHmd_ConfigureTracking B. With setup out of the way, you repeatedly
fetch the Rift’s orientation c. The remainder of the inner loop takes the returned
orientation, expressed as a quaternion; converts it into a more human-friendly repre-
sentation of the orientation, Euler angles; and finally prints out the results d. Once
you’ve finished with the sensor, you tell the SDK to destroy your handle to the head-
set e. The OVR SDK does its best to clean up on exit, but it may log an error or throw
a debug assertion if you fail to do this.

 In this example, you printed the orientation data to the console. For Rift applica-
tions, you’ll want to apply this orientation data to a rendered scene. To do so, you’ll
convert the orientation quaternion you’ve read from the Rift into a basis transform and
transform your scene dynamically. To learn more about the mathematical concepts of
basis transforms, please refer to appendix B.

 In section 3.2 we’ll walk you through some of the mathematical underpinnings
that support our use of transforms with the Rift, and we’ll introduce the software
design pattern called matrix stacks as a great way to organize transform data. In the
subsequent sections, we’ll explore how to build transforms from the Rift’s data, how to
improve the quality of that data, and even how you can see into the future (for a few
dozen milliseconds, anyway).

 Ready to go? Read on!

3.2 Receiving and applying the tracker data: an example
Using the orientation sensors of the Rift is straightforward. You enable the tracker
using one function and read data out using another function for that purpose.

Fetches
the data

 c

Prints
orientati
in degre

 d

Closes the headset and
releases resources e
Licensed to Mark Watson <nordickan@gmail.com>

62 CHAPTER 3 Pulling data out of the Rift: working with the head tracker
Listing 3.3 renders a simple object to your screen that looks like the headset itself (fig-
ure 3.1). Note that this example isn’t intended for output on the Rift display but
rather for rendering to a conventional monitor.

 As you move the Rift around, the object responds to the movement. We’ve abridged
this example a bit for print: in the chapter’s download files you’ll find a slightly cooler
version of this demo, which renders the sensor feedback directly to the screen.

#include "Common.h"

class SensorFusionExample : public GlfwApp {
 ovrHmd hmd;
 glm::quat orientation;
 glm::vec3 linearA;
 glm::vec3 angularV;

public:

 SensorFusionExample() {
 }

 virtual ~SensorFusionExample() {
 ovrHmd_Destroy(hmd);
 ovr_Shutdown();
 }

 virtual GLFWwindow * createRenderingTarget(
 glm::uvec2 & outSize,
 glm::ivec2 & outPosition) {

Listing 3.3 Example_3_3_Tracker.cpp (Abridged)

The screen displays the current
orientation of the Rift.

The Rift model responds
to movement of the headset
so that the model appears
to have the same orientation
as the headset.

Figure 3.1 Output from Example_3_3_Tracker.cpp

Ensures you release
your resources properly
when you’re done.
Licensed to Mark Watson <nordickan@gmail.com>

63Receiving and applying the tracker data: an example
 outSize = glm::uvec2(800, 600);
 outPosition = glm::ivec2(100, 100);
 Stacks::projection().top() = glm::perspective(
 PI / 3.0f, aspect(outSize),
 0.01f, 10000.0f);
 Stacks::modelview().top() = glm::lookAt(
 glm::vec3(0.0f, 0.0f, 3.5f),
 Vectors::ORIGIN, Vectors::UP);

 GLFWwindow * result =
 glfw::createWindow(outSize, outPosition);

 ovr_Initialize();
 hmd = ovrHmd_Create(0);

 if (!hmd
 || !ovrHmd_ConfigureTracking(hmd,
 ovrTrackingCap_Orientation, 0)) {
 FAIL("Unable to locate Rift sensor device");
 }
 return result;
 }

 virtual void onKey(int key, int scancode, int action, int mods) {
 // ...
 }

 void update() {
 ovrTrackingState trackingState =
 ovrHmd_GetTrackingState(hmd, 0);

 ovrPoseStatef & poseState =
 trackingState.HeadPose;

 orientation = ovr::toGlm(
 poseState.ThePose.Orientation);
 linearA = ovr::toGlm(
 poseState.LinearAcceleration);
 angularV = ovr::toGlm(
 poseState.AngularVelocity);
 }

 void draw() {
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 MatrixStack & mv = Stacks::modelview();
 mv.withPush([&]{
 mv.rotate(orientation);
 oria::renderRift();
 });

 // ...
 }
};

RUN_OVR_APP(SensorFusionExample)

Acquires the handle
to the headset.

Enables the tracking sensors
on the headset, requesting
orientation data.

Once each frame, you fetch
the current sensor data.

poseState holds all the current
head pose data, including position,
orientation, and motion.

Converts from the OVR C API
structures to the equivalent GLM
types, extracting the current
orientation, linear acceleration,
and angular velocity.

Applies the orientation of the
Rift to the modelview matrix
and then renders your model.
Licensed to Mark Watson <nordickan@gmail.com>

64 CHAPTER 3 Pulling data out of the Rift: working with the head tracker
Much of the example is still taken up by OpenGL initialization and rendering support,
but you should take note of these three key steps:

■ Initially setting up the ovrHmd handle and enabling the sensor
■ Fetching the sensor data in the update function
■ Applying the orientation to the rendered model

These steps are worth examining in detail.

3.2.1 Initial setup and binding

The setup code for this example is nearly identical to previous examples, but we want
to cover a few important points.

LOCATING THE HEADSET
First off is the unusual way in which we’re initializing the SDK and acquiring the
headset. You’ll notice that we’re only doing this after we’ve created the OpenGL win-
dow. This is because when working with the Rift in Direct HMD mode, calling the
ovr_Initialize function causes the SDK to integrate with the display driver in such a
way that if you’re working with a window that isn’t intended to render to the Rift, you
can get unpredictable results.

 This has obvious implications for you if you want your applications to support both
Rift and non-Rift modes and potentially switch between them. But this behavior is
likely due to the relative immaturity of the Direct HMD mode and will, we hope, be
resolved in the near future; otherwise we’d make a bigger deal of it.

 In this example, you want to use a rendering window to show information from the
Rift SDK but display it on a conventional monitor. To avoid problems doing so, you
don’t initialize the SDK until after you’ve created the OpenGL window.

 The code itself should otherwise look familiar to you. As with all applications
that use the SDK, you open a headset handle to grant you access to the rest of the
SDK functionality:

hmd = ovrHmd_Create(0);

ENABLING THE SENSOR AND SELECTING OPTIONS

Having acquired the headset handle, you enable the sensors for it:

ovrHmd_ConfigureTracking(hmd, ovrSensorCap_Orientation, 0)

You haven’t requested yaw correction or position information, so the only thing you
can count on from the sensors is the orientation, although in practice, the SDK
appears to attempt to provide position data, either using the camera or the head and
neck model, even if it hasn’t specifically been requested.

 No further work is required to get the individual head-tracking readings from the
headset; the OVR SDK handles this automatically in a background thread.
Licensed to Mark Watson <nordickan@gmail.com>

65Receiving and applying the tracker data: an example
3.2.2 Fetching orientation

Retrieving the Rift’s current orientation from the SDK involves a single method call:

ovrTrackingState trackingState = ovrHmd_GetTrackingState(hmd, 0);
ovrPoseStatef & poseState = trackingState.HeadPose;

A call to ovrHmd_GetTrackingState will return a structure containing the state of
the headset. Because you’re passing in 0 as the second parameter, you’re getting the
instantaneous current orientation of the headset at the time of call, rather than a pre-
dicted value. (That’s right—the Rift can predict the future! See section 3.3.2.)

 The poseState will contain the Rift’s best guess of its current orientation and posi-
tion relative to its last reset and true vertical:

orientation = ovr::toGlm(poseState.ThePose.Orientation);

ovrPoseStatef.ThePose.Orientation is of type ovrQuatf. That structure contains
the raw values of the quaternion, but because it’s a C structure it has no methods to
use them or convert them to other types. We’re using the GLM math library, so we’ve
written a simple utility function to convert from the OVR type to the equivalent GLM
type. You’ll see the use of ovr::toGlm and ovr::fromGlm to convert back and forth
between the OVR math structures and the equivalent GLM classes. We’re also grabbing
the angular velocity and linear acceleration vectors in the same way.

 You might be wondering why we put our sensor capture into our update() method
instead of our draw() method. This isn’t an example of how you must do things—it’s
an example of good software design patterns. As we’ll discuss in chapter 5, there are
strong benefits to software design that separates data mutation (such as update())
from data display (draw()). By keeping a clean and logical separation between these
two orthogonal phases of your application, you’ll be building a framework that could
scale to much greater degrees of complexity down the road.

3.2.3 Applying the orientation to the rendered scene

In the draw() method we’ve shown you, you clear the view; then you use a matrix stack
implementation to push a temporary change to the local frame of reference. At each
call to draw() you’ll push a new matrix onto the stack, update it to include a rotation
based on the inverse of the current orientation of the Rift, render your Rift model, and
then pop the local matrix off the stack. The value of orientation changes each time
you invoke update() and our view of the model is re-rendered every draw() with the
new transformation applied. This causes the model to pivot smoothly on the screen.

void draw() {
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 gl::MatrixStack & mv = gl::Stacks::modelview();
 mv.withPush([&]{
 mv.rotate(orientation);
 oria::renderRift();
 });
Licensed to Mark Watson <nordickan@gmail.com>

66 CHAPTER 3 Pulling data out of the Rift: working with the head tracker
 // ...
}

The Rift reports its orientation in world coordinates (figure 3.2). If you were to con-
vert its current orientation into a matrix, it’d form a rotation matrix that, when multi-
plied against the vectors of the identity basis, would return three orthogonal basis
vectors aligning exactly with the orientation of the Rift.

If you applied the Rift’s transform to the world, it would rotate the world into its own
frame. But in this example you don’t want to convert all other coordinates into Rift
coordinates; instead, you want to transform from the Rift’s frame of reference into the
world coordinate system. So instead of spinning the world around the Rift, you’ll spin
the Rift around the world. You invert the world-to-Rift transform to produce the Rift-
to-world transform.

 That transformation, when applied to geometry already in world coordinates, will
rotate the geometry to the Rift’s basis in world coordinates; in other words, as you tip
the device forward, the model on screen tips forward as well.

 Mind you, there’s more afoot than we’ve discussed so far. The SDK is performing a
number of tasks internally to ensure it reports the best, most appropriate sensor data
for any given request.

3.3 Additional features: drift correction and prediction
The SDK tracking system includes two additional bits of functionality that you should
be aware of: drift correction and prediction.

Y world

X world

Z world

Y local

Z local X local

(0, 0, 0)
world

Figure 3.2 The gray Rift
model with a local and a global
coordinate system around it
Licensed to Mark Watson <nordickan@gmail.com>

67Additional features: drift correction and prediction
3.3.1 Drift correction

The sensors in the Rift aren’t infinitely precise. As messages are accumulated and the
orientation updated, tiny errors will build up. You could be optimistic and hope that
the average total of sensor errors would add up to zero and cancel out—but in prac-
tice, the various environmental factors that mislead the Rift are invariably asymmetric
and errors grow instead of diminish. Drift can occur on any of the three axes of rota-
tion, and must be accounted for and corrected. The SDK does this in a few ways.

 For drift on the X and Z axes (pitch and roll), the SDK can use a known vector—
gravity—to account for them. Because the headset contains an accelerometer, the
SDK can always tell which way is down, because gravity causes the accelerometer to
constantly report an acceleration of about 9.8 meters per second squared in the oppo-
site direction. Because the SDK knows which direction is up and which is down, the
roll and pitch of the headset can always be found relative to those vectors.

 Yaw drift is a little trickier. There’s no gravitational force acting on the headset that
tells you which direction is forward, so you have to find something else that can pro-
vide your drift correction.

 For the DK1 Rift, the magnetometer built into the headset was used, but only if it
had been calibrated. This tended to be problematic because Earth’s magnetic field
might not be dominant when you’re surrounded by a bunch of computer equipment.
In fact, even the DK1’s own screen produced a non-negligible magnetic field, which
sometimes made performing the calibration difficult.

 For the DK2 Rift, yaw correction is accomplished via the tracking camera. The cam-
era can determine the full orientation of the Rift along with its position, making the
more temperamental magnetic correction superfluous to the extent that the recent
versions of the Oculus configuration software no longer support magnetic calibration
for the DK2.

3.3.2 Prediction

One of the greatest impediments to presence is latency. If the view doesn’t change
in response to movement fast enough, then at best the feeling of immersion is lost,
and at worst you can make yourself ill. A commonly cited upper limit for acceptable
latency in VR applications is 60 ms, but many people can still perceive latency at
that level. The lower limit appears to be around 20 ms, but it’s subjective. So one of
the goals of development is to make sure that the rendered view at any given
moment represents the orientation of the Rift at that moment, within (ideally) about
20 ms.

 The difficulty lies in the delays imposed by the various steps in the rendering pro-
cess. Fetching sensor information, rendering the scene, and distorting the image all
take time. Double buffering and frame delays by the graphics driver may cost more
time. On top of this are the physical limitations inherent in the display panel.
Licensed to Mark Watson <nordickan@gmail.com>

68 CHAPTER 3 Pulling data out of the Rift: working with the head tracker
The end result (figure 3.3) is that if you’re turning your head, the image appears to
lag behind where you’re looking. The faster you turn your head, the further behind
the image is.

 Fifty degrees per second is a moderate rate of turn for the human head. At that
rate, every 20 ms of latency causes 1 degree of error. That’s pretty lousy, but things can
get a lot worse: it’s completely reasonable for a human head to briefly, sharply, turn at
a rate of 250 degrees per second. Suddenly as we’re moving our heads everything we
see is about 5 degrees away from where it should be. It may not seem like much, but
your brain is accustomed to seeing things where it expects to see them when you move
your head, and defying that expectation can cause distress and motion sickness.

 To correct for these issues, the SDK allows you to use prediction. Specifically, instead of
asking for the pose of the headset now, you can ask for the pose of the headset where it
will be when the image you’re rendering actually appears on the screen. Prediction is
built into the SDK and will normally be applied without your direct intervention; when
you call the ovrHmd_GetEyePoses() function, it’s baked in. But if you’re interested in
seeing prediction in action, you can also query prediction values manually.

 The method ovrHmd_GetTrackingState() lets you query for the head pose at any
point in time between the present and 0.1 seconds in the future. Thus, if you update
your call to ovrHmd_GetTrackingState() as follows:

ovrTrackingState trackingState =
 ovrHmd_GetTrackingState(hmd, ovr_GetTimeInSeconds() + X);

the call to ovrHmd_GetTrackingState will now return the predicted state of the headset,
as the Rift believes it will be oriented, X seconds into the future. (Time, in this case, is
relative to the start of the application, or more precisely, the initialization of the Ocu-
lus SDK.) Predicted pose is computed by integrating the headset’s current position,
velocities, and accelerations to generate a remarkably good best guess of where the
headset will be X seconds (or fractions of a second) from now.

Slow Fast

As you turn your head, the image appears
to lag behind where you’re looking.

The faster you turn your head,
the farther behind the image is.

Figure 3.3 Bad things
happen when the view
doesn’t change in
response to movement
fast enough.
Licensed to Mark Watson <nordickan@gmail.com>

69Additional features: drift correction and prediction

Yo
the

ac

c
orien

C
a

Ca

h

 We’ve written a small demo to illustrate how prediction tries to gauge where your
head is going to be. The relevant code appears in the following abridged listing. The full
code can be found at github.com/OculusRiftInAction/OculusRiftInAction.

class SensorFusionPredictionExample : public GlfwApp {

 float predictionValue{ 0.030 };
 glm::mat4 actual;
 glm::mat4 predicted;

// ...

 void update() {
 ovrTrackingState recordedState =
 ovrHmd_GetTrackingState(hmd,
 ovr_GetTimeInSeconds());
 ovrTrackingState predictedState =
 ovrHmd_GetTrackingState(hmd,
 ovr_GetTimeInSeconds() + predictionValue);

 actual = glm::mat4_cast(ovr::toGlm(
 recordedState.HeadPose.ThePose.Orientation));
 predicted = glm::mat4_cast(ovr::toGlm(
 predictedState.HeadPose.ThePose.Orientation));
 }

 void draw() {
 oglplus::Context::Clear().ColorBuffer().DepthBuffer();

 MatrixStack & mv = Stacks::modelview();
 mv.withPush([&]{
 mv.transform(actual);
 oria::renderRift();
 });
 mv.withPush([&]{
 mv.transform(predicted).scale(1.25f);
 oria::renderRift(0.3f);
 });
 }

In this sample you’ve doubled up on the data captured in update() by capturing both
the current, actual pose B and the predicted, integrated pose c. You then use the
two orientation matrices to render two overlapping models of the Rift: one normal
model, showing the current actual orientation, and one slightly larger and transpar-
ent, showing the predicted pose (figure 3.4). As the prediction delta grows, this trans-
parent predicted model will begin to wildly overanticipate the motion of its smaller,
actual cousin.

 Because the predicted pose is computed by integrating current velocities into the
future, it should be clear that the further ahead you predict, the lower the probability

Listing 3.4 Example_3_5_TrackerPrediction.cpp (Abridged)

Stores a delta in seconds
of how far into the future
you’ll ask the Rift to
predict its orientation.

u’ll use
 matrix
tual to

store
urrent
tation.

You’ll use the matrix
predicted to store
predicted orientation.

To fetch current state, you call
ovrHmd_GetTrackingState()
with a timestamp of now.

 b

To fetch predicted state, you
call ovrHmd_GetTrackingState()
with a timestamp of now plus
predictionValue.

 c
apture the
ctual head

pose.

pture the
predicted
ead pose.

Renders a 3D model of a Rift in
the current, actual orientation.

Renders a 3D model of a Rift, enlarged and
transparent, in the predicted orientation.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/OculusRiftInAction/OculusRiftInAction

70 CHAPTER 3 Pulling data out of the Rift: working with the head tracker
of accuracy. That’s why prediction is typically limited to a handful of microseconds.
When the SDK is handling the prediction gap for you, it uses its knowledge of the cur-
rent frame rate to gauge how long the current frame is likely to take to render; then it
only predicts ahead by that tiny interval (typically less than 20 ms).

 In figure 3.4, to emphasize this point, we’ve sampled at 30 ms and at 150 ms into
the future. We rolled the Rift emphatically to the left and right so the prediction inte-
gration had a lot of velocity to work with, and you can see that the further ahead we
tried to predict, the further apart reality and prediction begin to drift.

 Prediction isn’t a panacea—clearly our heads can stop, start, change direction, and
change speed unpredictably. Still, it provides a better starting point for rendering
than simply using the last position retrieved.

3.3.3 Using drift correction and prediction

The good news is that you don’t have to exert any effort to take advantage of drift cor-
rection or prediction. Early versions of the SDK left it up to the developer to enable
them and apply them correctly, but as the software has evolved it’s been recognized
that if their implementation is sufficiently bulletproof, there’s no real reason to ever
not use them.

 Drift correction ends up being automatic and invisible. Prediction also ends up
being automatic to the extent that you don’t need to do any work calculating how far
ahead you should be predicting, assuming you’re using the ovrHmd_GetEyePoses()
function for interacting with the tracker. We’ll cover its use in chapter 5 which ties the
rendering and head-tracking functionality together.

Figure 3.4 Prediction is vital for anticipating the user's head position as they move while a frame is
rendered. However, over-predicting can lead to unpredictable results.
Licensed to Mark Watson <nordickan@gmail.com>

71Summary
3.4 Summary
In this chapter, you learned that

■ The C API provided by the SDK masks much of the complexity of interacting
with the hardware and software.

■ Interacting with the sensor hardware involves four functions: ovrHmd_Configure-
Tracking, ovrHmd_RecenterPose, ovrHmd_GetTrackingState, and ovrHmd_Get-
EyePose.

■ Using the orientation sensors of the Rift is straightforward. You enable the
tracker using one function and read data out using one of two functions
(ovrHmd_GetTrackingState or ovrHmd_GetEyePose) for that purpose.

■ ovrHmd_GetEyePose is used to get the best possible orientation and position of
the headset for rendering the scene for an eye, given a good idea of when
exactly the rendered pixels will appear on the screen.

■ ovrHmd_GetTrackingState is used when you want to know what the head pose
is outside of the rendering loop; for example, if you wanted to use head ges-
tures as part of your control scheme (say, allowing the user to nod yes).

■ The Rift reports its orientations in world coordinates, which you can convert
into a scene transform.

■ The sensors in the Rift aren’t infinitely precise, but the SDK automatically cor-
rects for drift in all three axes.

■ One of the greatest impediments to presence is latency. By using the SDK’s pre-
diction functionality, you can reduce the apparent effects of latency.
Licensed to Mark Watson <nordickan@gmail.com>

Sending output to the Rift:
working with the display
The Rift contains a specialized display system, consisting of a rectangular LCD or
OLED panel typical of standard monitors, paired with lenses that modify your per-
ception of the display. An enclosure mounts the panel in a fixed position relative to
your eyes and partitions the panel so that each eye sees only one half of the display.
The beauty of this arrangement is that it mimics human vision with a large field of
view and different images presented to each eye.

 From the perspective of the OS and code-running applications on the Rift, the
Rift is just another monitor. But from a 3D-graphics–rendering perspective, it isn’t
just another monitor: when rendering for the Rift you need to account for its
unique design. In this chapter we’ll take a closer look at what distinguishes the Rift
display from a conventional monitor, and we’ll show you how to deal with some of

This chapter covers
■ Targeting the display in Extended and Direct

HMD modes
■ Understanding the Rift display
■ Performing the required distortion on

prerendered images
72

Licensed to Mark Watson <nordickan@gmail.com>

73Targeting the Rift display
those differences. Although we won’t be able to address every issue in this chapter,
you’ll be taking solid first steps toward rendering to the Rift.

 Before you take those first steps, let’s ensure that the output you create will get ren-
dered to the Rift and not someplace else.

4.1 Targeting the Rift display
As of this writing, there are two ways to connect a Rift headset to your computer:
Extended Desktop mode and Direct HMD mode.

■ In Extended Desktop mode, the OS treats the Rift display as just another moni-
tor. It’s accessible through the Display control panel and can be resized and
repositioned.

■ In Direct HMD mode, the host OS does not treat the Rift as a conventional mon-
itor. The Rift is hidden from the Display control panel and can’t be enabled
there. This prevents the user from having to deal with the desktop UI being
extended onto a device where it can’t properly be used.

There’s good news and bad here, for both modes.

4.1.1 Extended vs. Direct HMD mode

Extended mode lets you leverage all the preexisting work that’s gone into rendering
stuff to monitors over the past few decades—and that’s good. But it’s a double-edged
sword, because the Rift can’t be used like just another monitor. Many of the assump-
tions that developers made when writing OSes (that you can see the whole display at
once, for example) don’t hold for the Rift—and that’s bad.

 In Direct HMD mode, you can use the Oculus runtime and explicit mechanisms
built into the SDK to target your OpenGL or Direct3D rendering output to the Rift dis-
play. That’s good. But it means that if you want to roll your own display access, you
can’t reach the display without going through the runtime, which can be a real restric-
tion on developers. That’s bad (www.youtube.com/watch?v=r_pqnsKWlpc).

 For better or worse, this isn’t a choice that you get to make in your Rift software—
it’ll be a choice that users have made while setting up their system. Many users will
favor Direct HMD mode because it doesn’t litter your desktop with a new display that
you can’t access—but as of this writing, Direct HMD isn’t supported yet on Linux or
Mac OS and it interacts very poorly with DisplayLink USB displays, which are common
for laptop users. That means you’ll need to expect and plan for a mixed audience.

 Your app can always check which mode the user’s device is in, of course. Any time
after you’ve acquired an ovrHmd instance, you can query whether the device is running
in Direct HMD mode or Extended mode by calling ovrHmd_GetEnabledCaps(). The
result is a bit field that can be compared against the bit flag ovrHmdCap_Extend-
Desktop to see if the device is operating in Extended mode.
Licensed to Mark Watson <nordickan@gmail.com>

https://www.youtube.com/watch?v=r_pqnsKWlpc

74 CHAPTER 4 Sending output to the Rift: working with the display

para

com
w
p

4.1.2 Creating the OpenGL window: choosing the display mode

To help isolate the code required for setting up an OpenGL window, we’ve pulled
the code that you first saw in listing 2.6 out into a library method used by many of
our upcoming examples: createRiftRenderingWindow() (shown in the following
listing). createRiftRenderingWindow() is responsible for detecting whether the user
is in Extended mode or in Direct HMD mode and choosing a construction method
accordingly.

GLFWwindow * createRiftRenderingWindow(
 ovrHmd hmd,
 glm::uvec2 & outSize,
 glm::ivec2 & outPosition) {
 bool extendedMode = true;

 outPosition = glm::ivec2(
 hmd->WindowsPos.x,
 hmd->WindowsPos.y);
 outSize = glm::uvec2(
 hmd->Resolution.w,
 hmd->Resolution.h);

 ON_WINDOWS([&] {
 extendedMode =
 (ovrHmdCap_ExtendDesktop & hmd->HmdCaps);
 });

 return extendedMode
 ? createExtendedModeWindow(outSize, outPosition)
 : createDirectHmdModeWindow(hmd, outSize);
}

The code in listing 4.1 is pretty straightforward, with one exception: as of this writing,
Direct HMD mode support on non-Windows systems is still pretty unstable—so much
so, in fact, that in our cross-platform experiments we’ve found that the ovrHmd-
Cap_ExtendDesktop flag may not be accurately reported on non-Windows OSes. So
our library defaults to assuming that you’re in Extended mode, and you only check
for Direct HMD if the app is running on Windows.

 Presumably, by the time you read these words, that instability has long since been
smoothed out; check the book’s GitHub repository (github.com/OculusRiftInAction/
OculusRiftInAction) and the book’s website for updates.

4.1.3 Creating the OpenGL window: Extended Desktop mode

In Extended Desktop mode, you’ll target the Rift by sending graphical commands to a
conventional OpenGL window, positioned to fill a single OS display device. That dis-
play device will be (you guessed it) the Rift.

Listing 4.1 createRiftRenderingWindow() (OvrUtils.cpp)

Input parameter: the
pointer to the HMD

Output parameter: your
computed window sizeOutput

meter:
your

puted
indow

osition

Defaults to the Rift’s own idea of its
location, but this isn’t set in stone.

Defaults to the Rift’s own idea of size
as well, but this is also changeable.

ovrHmdCap_ExtendDesktop
is currently only reported
reliably on Windows.

Passes size and/or
position to the
appropriate subroutine.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/OculusRiftInAction/OculusRiftInAction
https://github.com/OculusRiftInAction/OculusRiftInAction

75Targeting the Rift display
 The most stable way to identify the Rift is to examine its current position relative to
the OS desktop.

POSITIONING THE WINDOW

In listing 2.6, you saw a simple example of targeting the Rift display and rendering two
colors to its left and right halves. We showed you how to use the description of the
connected Rift’s properties stored in the ovrHmd structure to identify its display. This
structure contains information about the device: in particular, it contains a WindowPos
member of type ovrVector2i, which contains an X and a Y value representing the 2D
integer coordinates of the Rift’s display panel relative to the desktop origin.

 You’ll use this position, in combination with the GLFW functions glfwGetMonitors
and glfwGetMonitorPos, to implement your own method, which is able to sift through
all the displays on the system looking for the Rift, as shown in the following listing.

GLFWmonitor * getMonitorAtPosition(
 const glm::ivec2 & position) {
 int count;
 GLFWmonitor ** monitors = glfwGetMonitors(&count);
 for (int i = 0; i < count; ++i) {
 glm::ivec2 candidatePosition;
 glfwGetMonitorPos(
 monitors[i],
 &candidatePosition.x,
 &candidatePosition.y);
 if (candidatePosition == position) {
 return monitors[i];
 }
 }
 return nullptr;
}

With this handy method, you can now identify the monitor that’s the OS’s representa-
tion of the Rift.

SIZING THE WINDOW

Having found the monitor to which you’ll be rendering your content, you next have
to decide how big the window should be.

 The ovrHmd structure contains a Resolution member, and at first glance, that
might seem to be all the information you need to size the OpenGL window you’ll be
opening. But this member contains the native resolution of the headset. That means
you should be cautious in using this value. When running in Extended mode, the Rift
may not be running at its native resolution; with this user-controlled display device,
the user is free to use the OS control panel to change its resolution at will. Even with-
out user interference, the Rift could be being driven by an older PC or laptop that
can’t achieve the headset’s full resolution.

Listing 4.2 getMonitorAtPosition() (GlfwUtils.h)

Retrieves the list of all
monitors on the system.

For each monitor, retrieves
its current position.

If the position reported
matches that of the Rift,
you’ve found your target.
Licensed to Mark Watson <nordickan@gmail.com>

76 CHAPTER 4 Sending output to the Rift: working with the display

Req

GLF
app

ch

w

ab
c

 This was why we hunted up the Rift’s monitor: you want the image to fill its screen,
and that means sizing the image to the current resolution of the device. So you’ll use
the WindowPos member to identify the Rift display, and then you’ll use GLFW method
glfwGetVideoMode() to retrieve the size of that display.

CREATING THE WINDOW

Once you know the window’s target size and place, opening it is comparatively sim-
ple (largely because the GLFW library abstracts away virtually all of the OS-specific
pain points). Our method for creating an Extended mode OpenGL window is
shown next.

GLFWwindow * createExtendedModeWindow(
 glm::uvec2 & outSize,
 glm::ivec2 & outPosition) {
 // In Extended Desktop mode, we should be using the
 // current resolution of the Rift.
 GLFWmonitor * monitor =
 glfw::getMonitorAtPosition(outPosition);
 if (nullptr != monitor) {
 auto mode = glfwGetVideoMode(monitor);
 outSize = glm::uvec2(mode->width, mode->height);
 }

 // If we're creating a desktop window, we strip off any window decorations
 // which might change the location of the rendered contents
 // relative to the lenses.
 glfwWindowHint(GLFW_DECORATED, 0);

 GLFWwindow * window = glfwCreateWindow(
 size.x, size.y,
 "glfw", nullptr, nullptr);
 glfwSetWindowPos(window, position.x, position.y);
}

The one line here that might seem slightly out of place is where you “hint” to GLFW B
that you’d like to create your window without top, bottom, left, or side edges. No scroll
bars, please, this code is on a diet; no title bar or close button; just the OpenGL, thanks.

 If you failed to remove the window decorations, then the window position you
specify would be treated as the upper-left corner of that frame rather than of the
OpenGL window itself. This would result in pushing the contents down and to the right
by the width of that frame. The midline would shift to the right in the Rift and content
meant for the left eye would be visible to the right.

 Proper rendering to the Rift requires exact positioning of the OpenGL output on
the headset display, so this movement is unacceptable—so you disable the decorations.

Listing 4.3 createExtendedModeWindow() (OvrUtils.cpp)

Identifies the Rift’s OS
monitor and retrieves
the current operating
resolution.

uests
that

W not
ly any
rome

to the
indow
you’re
out to
reate.

 b

Uses GLFW to create
and size the window.

Uses GLFW to
position the window.
Licensed to Mark Watson <nordickan@gmail.com>

77Targeting the Rift display
4.1.4 Creating the OpenGL window: Direct HMD mode

The code for Direct HMD mode is simpler. You’ll create a simple OpenGL window.
When you bind the Oculus runtime to that window, the window becomes a proxy to
the Rift’s display screen. Because Direct HMD mode works only with the native resolu-
tion of the display, which you’ve already retrieved in outSize, in Direct HMD mode
you can create a window of that size pretty much anywhere.

 In theory, you don’t even need to match the size of the Rift resolution. You could
create a window of half the width and height of the Rift resolution, and then attach it.
Your main monitor will display a smaller version of what’s on the Rift, but the Rift
display will be running at full resolution. Unfortunately, although this works for
Direct3D, it doesn’t currently work for OpenGL. Creating a window smaller than the
Rift resolution results in the content being blurry, because it’s using the resolution of
the window for the actual Rift display.

 To create an OpenGL Direct HMD window, you’ll want to create a new window of
the correct size, and then, before you take any other action, you’ll need to tell the
OVR SDK about it. The step where you “bind” the native OS window you’ve created to
the Rift SDK is critical: from there on out, the SDK will use the bound native window as
its surface proxy and rendering target. That window will be bound directly to the Ocu-
lus runtime and its attendant display pipeline. Our method for constructing a Direct
HMD mode OpenGL window is shown in this listing.

GLFWwindow * createDirectHmdModeWindow(
 ovrHmd hmd, glm::uvec2 & outSize) {

 GLFWwindow * window =
 glfw::createSecondaryScreenWindow(outSize);

 void * nativeWindowHandle =
 glfw::getNativeWindowHandle(window);
 if (nullptr != nativeWindowHandle) {
 ovrHmd_AttachToWindow(
 hmd, nativeWindowHandle, nullptr, nullptr);
 }

 return window;
}

One nice touch here is that when we got tired of having the Rift ovals open on our
main display (which was usually where we were writing our code, and that got pretty
annoying pretty fast), we tweaked up a little helper method that would throw the Rift
window onto another display. Our helper function, glfw::createSecondaryScreen-
Window(), takes as input the desired size of the window and attempts to find a monitor
that’s big enough to place it on that isn’t the primary monitor, though it’ll fall back to
the primary if no other suitable monitors are found. That way, when you’re develop-
ing using your main screen, the code will find someplace else to open the Rift window.

Listing 4.4 createDirectHmdModeWindow() (OvrUtils.cpp)

You create your proxy window on
a screen that isn’t the primary
monitor, just for ease of use.

Fetches the native window
handle from GLFW so you can
pass it to the Oculus runtime.

Binds the Oculus runtime to
your proxy window’s native
OS handle. This step is critical
in Direct HMD mode.
Licensed to Mark Watson <nordickan@gmail.com>

78 CHAPTER 4 Sending output to the Rift: working with the display
 For Direct HMD mode to function, you must call ovrHmd_AttachToWindow(), an
Oculus SDK function, and pass it the native handle to the window:

void * nativeWindowHandle = glfw::getNativeWindowHandle(window);
if (nullptr != nativeWindowHandle) {
 ovrHmd_AttachToWindow(hmd, nativeWindowHandle, nullptr, nullptr);
}

This uses a second helper function, glfw::getNativeWindowHandle(). It takes a
GLFWwindow pointer and returns the native handle. It seems a shame that we’ve gone
through so much trouble to make our code platform-independent only to have to
explicitly use special code to get a native handle in this way, but this is simply a limita-
tion of the SDK.

 The code for getNativeWindowHandle() is shown in the next listing

void * getNativeWindowHandle(GLFWwindow * window) {
 void * nativeWindowHandle = nullptr;
 ON_WINDOWS([&]{
 nativeWindowHandle = (void*) glfwGetWin32Window(window);
 });
 ON_LINUX([&]{
 nativeWindowHandle = (void*) glfwGetX11Window(window);
 });
 ON_MAC([&]{
 nativeWindowHandle = (void*) glfwGetCocoaWindow(window);
 });
 return nativeWindowHandle;
}

The listing shows that you can never quite get away from platform-specific code in C++,
but you can get pretty darned close. Each of the different native methods is its plat-
form’s version of how to retrieve a pointer to the native window object.

Listing 4.5 getNativeWindowHandle() (GlfwUtils.cpp)

Caveats: Direct HMD mode in SDK 0.4.4
If you compare the code printed here to the code on Oculus Rift in Action’s GitHub
repository, you may notice a few differences. As of this writing, there are two small
“gotchas” specific to Direct HMD mode that our demo code addresses on the GitHub
repository, which we haven’t touched on here, because, hopefully, by the time you’re
reading this they’ll have been resolved in the Oculus SDK.

■ Direct HMD’s Linux support is still nascent, and version 0.4.4 suffers from an
alignment glitch. The default orientation of the HMD to the OS will be vertical,
not horizontal. We address this by flipping the X and Y dimensions of the win-
dow size. Unfortunately, at this time there’s no way to detect this inversion
in software.
Licensed to Mark Watson <nordickan@gmail.com>

79Targeting the Rift display
4.1.5 Full screen vs. windowed: extensions with glfwCreateWindow()

Most games and fully 3D applications use a mechanism known colloquially as full screen
mode to get the best possible performance for their application. In full screen mode, all
outputs from the GPU except for a targeted display are disabled, and the entire surface
of the remaining display is treated as the rendering target for the underlying graphics
API (typically OpenGL or Direct3D). This is reasonable because no matter how little
computing effort is going into rendering all the other windows on your desktop, it’s
non-zero, which means that some of the resources that could be going into making your
application more responsive are being diverted elsewhere. In many situations those
other outputs can be a considerable drag on resources and have a measureable impact
on your application’s frame rate, though the specifics are subject to the underlying
hardware, graphics driver, and OS version.1 Full screen mode may or may not convey
perceptible benefits in terms of your application’s performance, but it’s unlikely to hurt.

 Conversely, when creating an application, ease of development tends to favor win-
dowed mode, where you create a rendering target that exists on the desktop alongside
all your other windows. For instance, many OSes are slow to change focus from full
screen windows to the desktop, which can seriously impede development. In short,
both modes have their selling points; the choice is yours.

■ A bug in the 0.4.4 SDK currently prevents Direct HMD mode from engaging prop-
erly unless the ovrHmd_GetEyePoses function is called at least once. Although
this won’t affect normal applications that sample the head pose each frame, it
can impact smaller demos if they don’t use head tracking.

You’ll address these issues with two extra snippets of code in createDirectHmd-
ModeWindow().

Before window creation:

 ON_LINUX([&] {
 std::swap(outSize.x, outSize.y);
 });

Before returning the attached native window:

 {
 static ovrVector3f offsets[2];
 static ovrPosef poses[2];
 ovrHmd_GetEyePoses(hmd, 0, offsets, poses, nullptr);
 }

These resolve both issues silently, making our library clean and portable. After these
bugs are addressed in upcoming versions of the SDK, expect this code to change.
Keep an eye on the book’s GitHub repository for details.

1 We’re looking at you, Windows 7 “Aero Glass” theme.
Licensed to Mark Watson <nordickan@gmail.com>

80 CHAPTER 4 Sending output to the Rift: working with the display
 If you’ve decided to create your window in full screen mode, you’ll need to identify
the Rift in GLFW. If you’ve chosen to clone the Rift to your primary display while
developing, then instead of writing this,

glfwCreateWindow(size.x, size.y, "glfw", nullptr, nullptr);

you’d write this:

glfwCreateWindow(size.x, size.y, "glfw", glfwGetPrimaryMonitor(), nullptr);

The second-to-last parameter to glfwCreateWindow takes a GLFWmonitor pointer. By
populating this parameter with a value you’ve previously fetched from another
GLFW function, or our getMonitorAtPosition() helper, you’re telling GLFW that
you wish to create a full screen window. The window size parameters are then treated
as the resolution you wish to set on the monitor when it goes into full screen mode.
Be careful when using this approach—arbitrarily resizing your users’ displays can
cause chaos on multimonitor desktops. Be sure to always undo any resolution changes
you cause.

 The final parameter to glfwCreateWindow() accepts a GLFWwindow pointer, the
same type as the function returns. Passing a previously created window in here will
cause the new window and the preexisting window to share an OpenGL context,
meaning that you could do things like render two views of the same scene without hav-
ing to copy information like textures and geometry over to each context individually.
In theory you could create two GLFW windows, positioned side-by-side on the Rift dis-
play, so that each eye has its own dedicated OpenGL window. But we see no advantage
to this approach, and we’ve built no examples that use it.

4.1.6 Dispensing with the boilerplate

All this detection and creation code swiftly becomes repetitive, tiresome, and repeti-
tive. For that reason we’ve created a class in our shared example code called RiftGlfw-
App, which takes care of calling createDirectHmdModeWindow(), creating the window
for you, and targeting the Rift display. From this point forward in the book, examples
that target the Rift display will be derived from RiftGlfwApp.

 Now that you can target the Rift display, let’s look at the Rift display itself. We know
it can’t be used like a typical monitor, but what makes it different, and what do those
differences mean when rendering to it?

4.2 How the Rift display is different: why it matters to you
The Rift display differs from a conventional display in a number of ways, some of
which must be accounted for when rendering:

■ Each eye sees a distinct half of the display panel.
■ The per-eye aspect ratio is 8:9 (4:5 for the DK1).
Licensed to Mark Watson <nordickan@gmail.com>

81How the Rift display is different: why it matters to you
■ Each eye views its half of the display panel through a lens.
■ The lenses are not horizontally centered above the half of the display that they view.
■ The lenses serve two functions:

– They increase the apparent field of view.
– They produce collimated light, allowing the eyes to focus on the screen

despite its proximity.

The cumulative effect of these differences is, in part, what creates the Rift’s impressive
field of view, but these differences are also what make rendering for the Rift a chal-
lenge. Identifying these differences will make it easier to understand the steps needed
to properly render for the Rift.

4.2.1 Each eye sees a distinct half of the display panel

Any system producing stereoscopic content needs to present a different image to each
eye. Most commercial systems do this with a single display by generating either super-
imposed or alternating images and using glasses to divide the two images into a single
image for each eye.

 The design of the Rift (in the DK2) contains a 16:9 display panel partitioned such
that the left eye sees one half of the panel and the right eye sees the other, as shown in
figure 4.1.

The Rift’s lenses aren’t centered directly over their corresponding halves of the dis-
play. The distance between the lenses is based on the average human interpupillary
distance (IPD; the distance between the pupils of the eyes), whereas the physical size
of the display panel isn’t exactly twice that value. This means that your eyes aren’t
likely to be centered behind the midpoints of their respective halves of the display; see
figure 4.2.

1920 pixels

DK2 display panel

Right eye regionLeft eye region
1080
pixels

960 pixels 960 pixels

Figure 4.1 The Rift’s screen is partitioned into left and right halves, one for each
eye. Each eye sees a display with a “portrait” aspect ratio of 8:9.
Licensed to Mark Watson <nordickan@gmail.com>

82 CHAPTER 4 Sending output to the Rift: working with the display
For the DK1 model the offset between the center pixel and the lens axis was about 7
percent. For the DK2 the offset is actually less than 1 percent. These offsets are part of
what the distortion mechanism accounts for.

 This offset provides more image data to the outer edge of the per-eye views, which
equates to how human vision works (figure 4.3). We see a broad sweep of overlapped
image in the center of our field of view, but to either side of the shared viewing cone
we also see more to the left and to the right, from only one eye.

The panel is wider than twice the distance between your eyes.

Center

Eye position

Eyes are not centered behind
each half of the panel.

Center

Eye position

Figure 4.2 The Rift extends out beyond the sides of the head far
enough that the eyes can’t be centered horizontally.

Note the area of crossover
in the middle seen by both eyes.

The right eye sees everything
in between the solid lines.

The left eye sees everything
in between the dashed lines.

Field of view

Left eye Right eye

Figure 4.3 The Rift field of view closely reflects how human vision works.
Licensed to Mark Watson <nordickan@gmail.com>

83How the Rift display is different: why it matters to you
Ultimately, each eye sees a display whose dimensions are 960 × 1080 on the DK2, which
yields an aspect ratio of 8:9.

4.2.2 How the lenses affect the view

The Rift’s goal is to present an image that, when viewed through the collimating lenses,
will shine light onto the retina in exactly the same manner that natural light would be in
a real scene, with depth and perspective. To achieve this, light must reach the eyes from
the sides as well as from straight ahead, as it does in real life. To mimic real human
vision, the split panel of the Rift’s display must be viewed through lenses that expand the
image displayed to occupy a much larger field of view (figure 4.4).

Aside from the increased field of view, the lenses also produce collimated light. This is a
fancy way of saying that the lenses and the display are set up in such a way as to try to
make the display appear as if it were infinitely far away. The upshot of this is twofold.
First, it allows the eyes to retain a relaxed status of focus, as if you were looking at a dis-
tant landscape. Second, it keeps a fixed relationship between the angle of light hitting
the eye and the location on the display panel from which the light was emitted.

Collimated light
Collimated light is light whose rays have been aligned in parallel, such as in a laser.
Because it doesn’t converge, collimated light is described as “converging at infinity.”
The Oculus Rift uses high-quality lenses to collimate the light from its screen; similar
techniques are sometimes used in smaller laser generators. But the Rift’s lenses
aren’t perfect. Consequently the light in the Rift will still scatter a bit more than the
light of a laser would, but all things considered, that’s probably for the best.

The lenses expand the images
displayed such that the perceived
field of view is much larger than

the actual field of view.

Rift display

Actual field
of view

Perceived field
of view

Figure 4.4 The dashed lines represent the perceived field of view; the solid
lines represent the actual field of view. The Rift’s lenses ensure that light
reaches the eye as though coming from a wider field of view, even though it
hasn’t. This deceives the eye into perceiving a wider image.
Licensed to Mark Watson <nordickan@gmail.com>

84 CHAPTER 4 Sending output to the Rift: working with the display
These features of collimated light are easy to demonstrate. If you hold the Rift to your
head (while it’s displaying something static) and wiggle it around a bit, left or right,
up or down, the part of the image directly in front of you doesn’t change (figure 4.5.)
This works in all three dimensions; if you move the Rift directly away from your eye,
the image doesn’t shrink.

 Taking one of the lenses out of the Rift and doing the same experiment shows a
remarkable difference. Moving the Rift laterally changes the portion of the image
that’s “directly ahead,” and moving the Rift away from you shrinks the image rapidly.

 The lenses can only do so much, so the farther away your eye is from the lens axis,
or the greater the distance between your eye and the lens, the more undesirable dis-
tortion you’ll see. This distortion typically manifests as blurring or warping, increasing
in intensity the further from the lens axis you’re looking. The Rift design provides an
eye box (figure 4.6), which is about 1.5 cm across in the vertical and horizontal direc-
tions, and slightly less than 1 cm deep. Within this box, barring a small amount of dis-
tortion, the image presented to the eye will depend only on the angle between the eye
and the lens plane, not the position of the eye relative to the lens.

 This also tells us that when the lenses are set up for a perfect image, users with
long eyelashes (> 0.5 cm) may feel their eyelashes brushing across the lens.

 The use of collimated light reduces the amount of work we have to do to achieve
proper display on the Rift, because it removes some of the variables: the exact posi-
tioning of the eyes is no longer critical, and the IPD is no longer a factor. Oculus does

Lens

Eye position 1

Eye position 2

Light coming through the lens
enters the eye at the same angle,
even though the eye has moved.

Figure 4.5 Even though the eye
changes position by small
amounts, the collimated light from
the individual pixels on the screen
enters the eye at the same angle.
This holds true through a moderate
range of eye motion, up to the point
where the eye entirely leaves the
central axis of the lens.
Licensed to Mark Watson <nordickan@gmail.com>

85Generating output for the Rift
offer a configuration utility that allows you to input your actual IPD, but this is only
used when rendering a scene in order to produce the proper amount of parallax for a
given person. It’s not used in the distortion correction mechanism or when displaying
nonstereoscopic content.

 Collimated light doesn’t cure all ills, though; most of the other optical properties
we’ve mentioned (the aspect ratio, the increased field of view, the offset of the
lenses from display centers and the distortion) must be accounted for when render-
ing to the Rift.

Now that you have an understanding of the Rift display, let’s look at creating output
for the Rift.

4.3 Generating output for the Rift
For each frame generated as output for the Rift, the rendering part of the overall
workflow for a Rift-enabled application looks like figure 4.7.

Warning: collimated light considered harmful to displays
With collimated light, for any given pixel on the panel, no matter where your eye is,
the light from that pixel appears to be coming from the same direction relative to your
eye. But lenses work in both directions. That means that all the light from the outside
world that’s traveling in a given direction ends up getting focused onto a tiny spot on
the display. For this reason you must never allow sunlight to strike the lenses. All of
the sunlight across the surface of the lens would be focused onto a single point on
the display and will damage it quite quickly. While being handled or placed onto the
head, this may not be a major concern, but the Rift should never be stored in a fash-
ion where the sun might strike the lenses.

~ 0.5 cm

~ 1.5 cm

~ 1.5 cm

Eye box

As long as the eye is positioned anywhere inside this area, barring a small
amount of distortion, the image presented to the eye will depend only on the
angle between the eye and the lens plane and not on the position of the eye
relative to the lens.

Lens

Figure 4.6 The Rift eye box
Licensed to Mark Watson <nordickan@gmail.com>

86 CHAPTER 4 Sending output to the Rift: working with the display
We’re pretty happy with this image, and ready to call it a day, but we’re apparently
contractually obligated to go into more detail. Looking at figure 4.7, you might notice
that there’s a clearly delineated step specifically for distortion (Distort texture to out-
put frame) and that all of the other correction must be going on in the other box, the
per-eye rendering of the scene. This is the case. Let’s take a more detailed look what
exactly is going on in each of those boxes (figure 4.8).

 In figure 4.8, you’ll see that all the other corrections required for rendering to the
Rift are handled by manipulation of the projection and view matrices and that the dis-
tortion box only handles the distortion.

Projection and view matrices
When doing 3D rendering there are always (at least) two matrices to deal with.

A projection matrix is responsible for performing the mapping of points in 3D space
onto a 2D plane (the display panel). This defines a view frustum that determines the
field of view and accounts for the aspect ratio of the output display panel. In addition,
manipulation of the projection matrix can move the point on the 2D plane that’s the
“center” of the image, the point at which the viewpoint is straight ahead.

The view matrix is responsible for determining the position of the virtual camera in
3D space. It controls the position and direction of the point of view. The view matrix
is sometimes referred to as the modelview matrix because it can also be used to
position individual items within the scene relative to the camera.

Manipulation of both these matrices will be covered in more detail in chapter 5. More
details about matrices in general and their use in rendering can be found in appendix B.

Eye = right

Eye = left

Render per-eye
scene to texture

Distort texture to
output frame

Both eyes
rendered?

Display frame
on Rift

Fetch eye
poses

Render and distort frame

No Yes

Figure 4.7 The render process flow for each frame displayed on the Rift
Licensed to Mark Watson <nordickan@gmail.com>

87Correcting for lens distortion
Covering both the rendering step and the distortion step is a little much for a single
chapter, so we’ll be focusing on the distortion mechanism here.

4.4 Correcting for lens distortion
As we discussed earlier, the Rift uses lenses both to increase the apparent field of view
(through magnification) and to provide a clear (focused) view of the screen despite
its proximity to the viewer. Without the lenses there is no Rift.

 But though the lenses are invaluable, they also distort the image by bending it and
by introducing chromatic aberration.

Chromatic aberration
Chromatic aberration is a type of visual distortion caused by lenses that fail to bend
light of different colors by the same amount. Blue light will be bent at a greater angle
than green light, and green at a greater angle than red. This is the property that gives
a prism the ability to split a white beam of light into a spectrum. Although this is desir-
able for spectroscopy and Pink Floyd album covers, it’s less desirable for proper
image reproduction.

As of SDK version 0.5.0, the Oculus SDK automatically compensates for the distor-
tion induced by chromatic aberration. No intervention is necessary on your part.

Build baseline
projection

matrix

Apply per-eye
projection

offset

3D
scene?

Build baseline
modelview

matrix

Apply per-eye
modelview

offset

Activate
offscreen

buffer

Deactivate
offscreen

buffer

Render

Per-eye render step Per-eye distort step

Start Done

Set per-eye
viewport

Render scene
texture with
distortion

Activate
distortion
shader

Bind per-eye
distortion
texture

Bind scene
texture

Yes

No

Figure 4.8 The per-eye render step and the per-eye distortion boxes expanded to show the individual steps
Licensed to Mark Watson <nordickan@gmail.com>

88 CHAPTER 4 Sending output to the Rift: working with the display
In the next section, we discuss the causes of the distortion and why it needs correcting.

4.4.1 The nature of the distortion

The Rift lenses create what is called a pincushion distortion. A pincushion distortion is
what happens when you magnify an image using a lens. If you apply a magnifying glass
to an image, it creates a distortion.

 So if you show an undistorted image of a brick wall on the Rift, when you look
through the Rift lens, you see it distorted, as in figure 4.9.

HOW WE COUNTERACT THE LENS DISTORTION

Correcting the distortion caused by the lenses is accomplished by applying a different,
inverse distortion before the frame is sent to the screen. The mathematical inverse of a
pincushion distortion is called a barrel distortion. In a barrel distortion, the lines that
are normally straight curve inward.

 This means that for any given pincushion distortion, you can create a specific bar-
rel distortion that exactly counteracts it. That is, if you took a picture of a grid of lines
through a barrel lens and you printed it out (resulting in an image where the lines of
the grid curved inward) and then took another picture through a pincushion lens
that was the exact inverse of the first lens, and printed that out, the lines would be
straight again.

 And that’s how distortion correction for the Rift works. You render a scene, with its
conventionally straight lines, in memory as a texture. Then you distort the image with
a barrel distortion before putting it on the screen. When you view the image through
lenses, the lenses impose a pincushion distortion. The distortions cancel each other
out, and you’re presented with an undistorted view of the screen that retains the mag-
nification effect of the lenses and the wide field of view (see figure 4.10).

Undistorted image
Same image with lens pincushion

distortion applied

Figure 4.9 Undistorted image (left) + lens pincushion distortion = distorted image
(right). Some pixels in the source image have been lost, pushed beyond the bounds of
the destination image.
Licensed to Mark Watson <nordickan@gmail.com>

89Correcting for lens distortion
You might be wondering why we distort the image instead of using better lenses. Well,
there’s a good reason for that.

WHY NOT JUST USE BETTER LENSES?
It is possible to create lens arrays that introduce the desired properties of magnifying
the screen and keeping it in focus without distorting the shape and color. After all,
people have been using cameras for many years that produce all sorts of zooming
effects without severe distortion. The problem is that such lenses end up being ridicu-
lously complex in design as well as physically heavy and large (figure 4.11).

You distort the image with
a barrel distortion before
putting it on the screen.

You render a scene, with its
conventionally straight lines,

in memory as a texture.

When you view the image through lenses,
the lenses impose a pincushion distortion.

The distortions cancel each other out,
and you are presented with an undistorted

view of the screen, but retaining the
magnification effect of the lenses and

the wide field of view.

Figure 4.10 How Rift distortion works: Undistorted image (left) + software barrel distortion (center)
+ pincushion lens distortion = correct image (right). Because the barrel distortion shrank the image
inward, no pixels were lost in the subsequent pincushion transformation.

Figure 4.11 There’s a reason professional camera lenses
are expensive.
Licensed to Mark Watson <nordickan@gmail.com>

90 CHAPTER 4 Sending output to the Rift: working with the display
These lens arrays can’t be made smaller because they’re limited by the refraction
index of the materials used to create them. Even an array made of diamond or some
other exotic material would likely be far too large to place in a head-mounted display,
to say nothing of the cost.

 On the other hand, the cost of correcting the distortion by applying an inverse
distortion to the image before you display it is comparatively negligible. The bal-
ance, therefore, leans heavily toward solving the problem with computational power
rather than optics. The upside is that the Rift can be made at a consumer price
point, rather than costing thousands or tens of thousands of dollars. The downside
is that it adds some complexity to applications designed to run on the Rift. Fortu-
nately, the Oculus SDK does most of the heavy lifting.

4.4.2 SDK distortion correction support

Early versions of the Oculus SDK provided small example applications that imple-
mented distortion correction using the information made available by the SDK
proper. The SDK itself knew nothing about rendering APIs or shaders. The shaders
were complex, and the code required to initialize them with the correct data was scat-
tered around the example code, making replicating the distortion correction some-
thing of a burden on developers. It also meant that although Oculus could add new
features to the distortion correction step, the adoption of those features by applica-
tions would be limited by the time required for developers to fully understand the fea-
ture and then reimplement it in their own code.

 Since the 0.3.x version of the SDK, Oculus VR has undertaken an effort to provide
distortion correction support directly within the SDK, referred to as “SDK-side distor-
tion.” This means that Oculus can work on optimizing the performance of distortion
within the SDK, and they are free to add new features to the distortion mechanism
without worrying about whether developers will be able to easily adopt them.

 It’s still possible to implement the distortion functionality on your own, and the
SDK even provides a number of helpful functions to support that. But for this chapter
(and most of the others) we’ll focus on the use of SDK-side distortion, which is likely to
be sufficient to support the needs of most developers.

4.4.3 Example of distortion correction

To perform the required distortion for the Rift, you typically render a 3D scene to a set
of textures and then pass them to the SDK to perform the distortion and present them
to the user. For this example, though, we’ll work with prerendered images so that we
can focus in isolation on the elements that are required for distortion (listing 4.6; also
see Example_4_3_1_Distorted.cpp on the GitHub repository). If you’re curious, we’ve
also prepared an undistorted version of listing 4.6. You’ll find it on the GitHub reposi-
tory as Example_4_3_0_Undistorted.cpp.

Licensed to Mark Watson <nordickan@gmail.com>

91Correcting for lens distortion

The O
wr

p
textu
#include "Common.h"

Resource SCENE_IMAGES_DK1[2] = {
 Resource::IMAGES_TUSCANY_UNDISTORTED_LEFT_DK1_PNG,
 Resource::IMAGES_TUSCANY_UNDISTORTED_RIGHT_DK1_PNG
};

Resource SCENE_IMAGES_DK2[2] = {
 Resource::IMAGES_TUSCANY_UNDISTORTED_LEFT_DK2_PNG,
 Resource::IMAGES_TUSCANY_UNDISTORTED_RIGHT_DK2_PNG
};

class DistortedExample : public RiftGlfwApp {
protected:
 Texture2dPtr sceneTextures[2];
 ovrTexture eyeTextures[2];

public:

 void initGl() {
 RiftGlfwApp::initGl();

 Resource * sceneImages = SCENE_IMAGES_DK2;
 if (hmd->Type == ovrHmd_DK1) {
 sceneImages = SCENE_IMAGES_DK1;
 }

 for_each_eye([&](ovrEyeType eye){

 glm::uvec2 textureSize;
 sceneTextures[eye] = oria::load2dTexture(
 sceneImages[eye], textureSize);

 memset(eyeTextures + eye, 0,
 sizeof(eyeTextures[eye]));
 ovrTextureHeader & eyeTextureHeader =
 eyeTextures[eye].Header;
 eyeTextureHeader.TextureSize =
 ovr::fromGlm(textureSize);
 eyeTextureHeader.RenderViewport.Size =
 eyeTextureHeader.TextureSize;
 eyeTextureHeader.API = ovrRenderAPI_OpenGL;

 ((ovrGLTextureData&)eyeTextures[eye]).TexId =
 sceneTextures[eye]->texture;
 });

 ovrRenderAPIConfig cfg;
 memset(&cfg, 0, sizeof(cfg));
 cfg.Header.API = ovrRenderAPI_OpenGL;
 cfg.Header.RTSize.w = windowSize.x;
 cfg.Header.RTSize.h = windowSize.y;
 cfg.Header.Multisample = 1;
 int distortionCaps = ovrDistortionCap_Vignette
#if defined(OVR_OS_WIN32)
 ((ovrGLConfigData&)config).Window = 0;

Listing 4.6 Distorting images with the SDK

Undistorted screen
grabs from the Tuscany
demo, one per eye.

RiftGlfwApp takes care of
creating the HMD handle
and the OpenGL window.

penGL
appers
for the
er-eye

re data

Oculus SDK structures for holding
information about the textures

OpenGL setup and
SDK configuration.

Uses HMD instances to
determine which pair
of images to render.

Per-eye
setup of

the
textures

Loads the per-eye image of
your resources into OpenGL.

Initializes the
SDK texture
structure.

Passes TextureID
to OpenGL.

Sets up the
SDK distortion
functionality.
Licensed to Mark Watson <nordickan@gmail.com>

92 CHAPTER 4 Sending output to the Rift: working with the display

Dis
a
he

T

#elif defined(OVR_OS_LINUX)
 ((ovrGLConfigData&)config).Disp = 0;
#endif
 ovrEyeRenderDesc eyeRenderDescs[2];
 int configResult = ovrHmd_ConfigureRendering(hmd, &cfg,
 distortionCaps, hmdDesc.DefaultEyeFov, eyeRenderDescs);
 if (0 == configResult) {
 FAIL("Unable to configure rendering");
 }

 ovrhmd_EnableHSWDisplaySDKRender(hmd, false);
 }

 virtual void finishFrame() {
 }

 void draw() {
 static ovrPosef eyePoses[2];
 ovrHmd_BeginFrame(hmd, getFrame());
 ovrHmd_EndFrame(hmd, eyePoses, eyeTextures);
 }
};

RUN_OVR_APP(DistortedExample)

The end result should look something like figure 4.12.
 As you can see, listing 4.6 has only two methods. The parent classes handle the work

of acquiring an HMD handle and creating the output window on your desktop with the
correct size and position. So you only have to worry about two things: setup and frame
rendering, as encapsulated in the initGl() and draw() methods, respectively.

Sets up the
SDK distortion
functionality.

ables the
utomatic
alth and

safety
warning.

Overrides the finishFrame method
of the parent class to prevent your
application from performing the
OpenGL buffer swapping, because
the SDK will be doing it instead.

he per-
frame

drawing
call

The SDK distortion is book-ended
by these begin/end frame calls.

Figure 4.12 The image is now distorted.
Licensed to Mark Watson <nordickan@gmail.com>

93Correcting for lens distortion
SETTING UP OPENGL
In initGl() you call the parent class OpenGL initialization, and then immediately
enter a per-eye loop. For each eye you must load your texture and then populate an
Oculus SDK structure to provide it with information about the texture.

 The DK1 and DK2 have different projections, so the choice of texture to load
depends on the headset model you are targeting. With that in mind, we’ve provided
sample textures for both headsets. We’ve encapsulated our texture management in
our example code library, so loading the texture is a simple matter of making a call
into that library. You’ll need to know the texture size for some later operations, though,
so store it in a local variable:

glm::uvec2 textureSize;
sceneTextures[eye] =
 oria::load2dTexture(sceneImages[eye], textureSize);

Your texture handling is done, but you also need to tell the Oculus SDK everything it’ll
need to know to work with the texture.

OCULUS SDK PLATFORM-SPECIFIC TYPES

The Oculus SDK is designed to be able to work across a variety of platforms, and to
work with both Direct3D and OpenGL. Some of the information about textures is
common to all platforms. This information is stored in an ovrTextureHeader type,
defined in the main OVR C API header: OVR_CAPI.h. The header is then contained in
an ovrTexture structure, declared in the same file. ovrTexture also includes an array
of values called PlatformData. This isn’t meant to be used directly, but rather to
reserve space for the platform-specific information to be stored.

 To work with platform-specific data, you need to include either the OVR_CAPI_GL.h
header or the OVR_CAPI_D3D.h header, depending on the API you’re working with.
Because we’re working with OpenGL we’ve the chosen the former, although like the
OVR_CAPI.h header, it’s folded into the common header we include in all our examples.

 The OpenGL platform header declares an ovrGLTextureData type that, like ovr-
Texture, contains an ovrTextureHeader member. But in place of the PlatformData
member it has a TexID member of type GLuint. In OpenGL, a texture ID is all you
need to access a texture so that one member provides all the required platform-
specific information. The SDK function ovrHmd_EndFrame() requires that we pass in a
pointer to ovrTexture, so we’ve declared the type as such. You’ll see how to set the
OpenGL-specific data in a moment.

OCULUS SDK TEXTURE SETUP

All the Oculus SDK types are simple C structures, so you have to explicitly zero out
their values:

memset(eyeTextures + eye, 0, sizeof(eyeTextures[eye]));

Next, you grab a reference to the ovrTextureHeader instance to make the subsequent
references to it a little cleaner:

ovrTextureHeader & eyeTextureHeader = eyeTextures[eye].Header;
Licensed to Mark Watson <nordickan@gmail.com>

94 CHAPTER 4 Sending output to the Rift: working with the display
The SDK needs to know the size of the texture you’re working with, and it needs to
know the area on to which you’ve rendered content. You captured the size of the tex-
ture as you loaded it, so you just have to copy that information over, converting types
appropriately as you go:

eyeTextureHeader.TextureSize = ovr::fromGlm(textureSize);

You also need to initialize the RenderViewport member of the header. Render-
Viewport is an ovrRecti structure, containing both an ovrSizei Size member and
an ovrVector2i Pos member. It tells the SDK where on the texture surface the
scene has been drawn. This can be useful in two ways. First, it makes it possible to
use a single large texture for both eyes by having the RenderViewport point to a
different half of the texture for each eye. Second, it makes it possible to dynamically
change the size of the RenderViewport at runtime in order to respond to lower-than-
acceptable frame rates. The latter technique will be covered in chapter 6, when we
discuss performance.

 For this example you’re using two distinct textures and each one has a scene cover-
ing the entirety of the image, so you want RenderViewport.Size to be equal to the
texture size:

eyeTextureHeader.RenderViewport.Size = eyeTextureHeader.TextureSize;

You don’t need to explicitly set the RenderViewport.Pos values, because they’ll
already have the desired position of 0,0 by virtue of the memset call you used to zero
out the structure as a whole.

 Because the relevant SDK functions accept only the non-platform-specific types,
those types that do have platform-specific versions also include an API member to
specify for which platform they’re intended to be used. We’re using OpenGL, so popu-
late the API member like so:

eyeTextureHeader.API = ovrRenderAPI_OpenGL;

Lastly, you need to provide the SDK with the OpenGL identifier for the texture. To
access the TexID member you need to set, fetch the texture ID from oglplus:

((ovrGLTextureData&)eyeTextures[eye]).TexId =
 oglplus::GetName(*sceneTextures[eye]);

Once you’ve done this for each eye, your per-eye setup is complete and you can move
to configuring the distortion itself.

OCULUS SDK DISTORTION SETUP

Like the texture structures, the baseline-rendering configuration structures are wrapped
by platform-specific structures. There’s an ovrRenderAPIConfig, which contains pad-
ding for the platform-specific types, and an ovrGLConfigData, which replaces the
padding with platform-specific information.
Licensed to Mark Watson <nordickan@gmail.com>

95Correcting for lens distortion
GLFW doesn’t normally provide the information you’d use to populate the platform-
specific portion of ovrGlConfigData, but this isn’t the end of the world. On Windows
and Linux platforms, the SDK will query the OS to find the active window during
startup if the field hasn’t been populated. But you need to be sure to initialize the val-
ues to 0 for this to work. If you fail to initialize the values, they’ll simply be random
and the SDK will assume that those random numbers are actually platform-specific
window handles, which will likely lead to a crash. On Mac OS X platforms, no special
values are required.2 3

 Let’s take a look at the configuration code. First you declare your configuration
structure locally (it won’t be of any use to you after configuration) and zero out
the memory:

ovrRenderAPIConfig config;
memset(&config, 0, sizeof(config));

The Oculus SDK only takes the non-platform-specific types, so you need to set the API
member to indicate that you’re using OpenGL:

config.Header.API = ovrRenderAPI_OpenGL;

Platform specifics in the rendering configuration
The OVR SDK stored configuration data for OpenGL in ovrGLConfigData, but its con-
tents are different depending on what platform you’re targeting. The platform-specific
members are extra information that the SDK needs in order to perform a buffer swap,
making the most recently rendered image on the back buffer visible on the display
panel.2 Buffer swapping isn’t part of the OpenGL API but is handled by platform-
specific calls, and these calls require platform-specific information.

For a Windows environment an HWND value is required, and so the ovrGLConfigData
structure contains a Window member of type HWND. For Linux a Display pointer
and a Window are both needed, so the structure contains a Disp member of type
Display* and a Win member of type Window.3 For OS X environments, no special
value is needed.

This diversity is unfortunate. You use the GLFW library to protect you from the plat-
form specifics involved in using OpenGL, but now the SDK wants you to provide it with
the very platform specifics you’d hoped to avoid. It’s possible to get GLFW to give you
the requested information, but only by including special headers and defining prepro-
cessor values related to the platform on which you’re running. Other abstraction lay-
ers for OpenGL might not necessarily even provide that.

Happily the most recent version of the SDK does its best to make the parameters
optional. If they aren’t set, then when the SDK configures its rendering, it’ll use the
currently active window, which presumably would be the one you’ve created.

2 The reasoning behind this will be discussed in chapter 6 in the section on timewarp.
3 Yes, Oculus used Window as a member name in Win32 environments, even though Window is a type identifier

in Linux. Don’t look at us; we didn’t do it.
Licensed to Mark Watson <nordickan@gmail.com>

96 CHAPTER 4 Sending output to the Rift: working with the display
The SDK needs to know the size (but not the position) of the output region. Again you
use our library function to convert from glm::uvec2 to ovrSizei:

config.Header.BackBufferSize = ovr::fromGlm(getSize());

The SDK contains a Multisample member that’s a single int. Currently, this value
isn’t referenced anywhere in the SDK rendering functions. You’re setting it to a
value of 1 to indicate that you only want a single sample in the final output image, in
the hopes that if the value ever does start being used it doesn’t suddenly cause a per-
formance issue:

config.Header.Multisample = 1;

Finally, you set the platform-specific members by casting to an ovrGLConfigData refer-
ence and setting the values to 0. Technically this isn’t necessary because you’ve already
zeroed out the entire structure, but we want to explicitly call it out here because other
platforms might need to take different actions at this point:

#if defined(OVR_OS_WIN32)
 ((ovrGLConfigData&)config).Window = 0;
#elif defined(OVR_OS_LINUX)
 ((ovrGLConfigData&)config).Disp = 0;
#endif

Now that you have your config data set up, you must call the SDK method that’ll ini-
tialize distortion rendering:

int distortionCaps = ovrDistortionCap_Vignette;
ovrEyeRenderDesc eyeRenderDescs[2];
int configResult = ovrHmd_ConfigureRendering(hmd, &config,
 distortionCaps, hmd->DefaultEyeFov, eyeRenderDescs);
if (0 == configResult) {
 FAIL("Unable to configure rendering");
}

The ovrHmd_ConfigureRendering call requires five parameters. The first is the Rift
headset handle, which is managed by your parent class. The second is your configura-
tion data. Then you specify the distortion capabilities you want (we’ll get to these in
a moment), with the desired field of view and render settings for each eye—in this
case using the default values provided by the SDK in ovrHmdDesc. The last parameter
is your ovrEyeRenderDesc array. This is actually an output member. The fields of
your array members will be populated upon the successful return from the configu-
ration call.

 “But wait!” you say excitedly. “What are distortion capabilities?” Well, they’re flags
that let you tell the SDK exactly how you want the distortion to be performed. Cur-
rently there are a number of different distortion capabilities you can enable. We’ll dis-
cuss them all in due course.
Licensed to Mark Watson <nordickan@gmail.com>

97Correcting for lens distortion
The ovrDistortionCap_Vignette flag turns on a fading effect at the borders of the
Rift. This helps the sense of presence by smoothing out one of the more apparent
indicators that you’re looking at a rendered image. The human brain is very good at
detecting edges, and depending on how you have your Rift set up and the exact orien-
tation of your eyes at a given moment, it’s possible to see the edges of the rendered
image. The sharpness of the transition from the rendered scene to the black back-
ground makes it more noticeable. If you use the vignette effect to create a transition
layer, even one only a few pixels wide, the edge becomes less distracting and the sense
of presence is improved (figure 4.13).

 We’ll cover additional flags in chapter 5.

RENDERING FRAMES

The bulk of the work done in a normal application would be to do the rendering of
the scenes to be displayed on the Rift. Because you’re working with prerendered
images in this example, the draw method ends up being a representation of the mini-
mal loop for working with Oculus’ SDK-based distortion.

static ovrPosef poses[2];
ovrHmd_BeginFrame(hmd, getFrame());
ovrHmd_EndFrame(hmd, poses, eyeTextures);

This “bookend” function marks the boundaries of rendering of the frame as a whole.
No rendering should be done prior to the BeginFrame call, and once EndFrame com-
pletes, the buffer swap will have already occurred, so no further rendering should be
done. These functions also assist the SDK in determining the exact timing of the frame

With the Vignette flag
disabled, the edge of the
image is sharply defined.

With the Vignette flag enabled,
there is a soft transition at the

edge of the image.

Figure 4.13 Comparison of the image edge with the vignette flag disabled (left)
and enabled (right)
Licensed to Mark Watson <nordickan@gmail.com>

98 CHAPTER 4 Sending output to the Rift: working with the display
and perform some precondition checking. The SDK will throw an exception if, for
instance, they’re called out of order or called from different threads.

 Between the frame calls, you’d normally perform your rendering. But because
you’re working with fixed images, you can take a moment here to chill out and relax
before moving on to chapter 5.

4.5 Summary
In this chapter, you learned that

■ The Rift contains a specialized display system, consisting of a rectangular LCD
or OLED panel typical of standard monitors and lenses to modify the percep-
tion of that panel. In addition, it provides an enclosure to mount the panel in a
fixed position relative to your eyes, as well as to partition the panel so that each
eye sees only one half of the panel.

■ Applications need to target the Rift display to ensure that the output created
will get rendered to the Rift and not someplace else.

■ When the Rift is connected to a computer and enabled in the Display control
panel, the OS will extend the desktop metaphor to the Rift.

■ As of SDK 0.4.x, the Oculus software includes a runtime that provides a display
mode called Direct HMD mode. In Direct HMD mode, the host OS does not treat
the Rift as a conventional monitor.

■ For Direct HMD mode, Oculus has provided explicit mechanisms in the SDK to
allow you to target your OpenGL or Direct3D rendering output to the Rift dis-
play panel.

■ The Rift display differs from a conventional display in a number of ways, some
of which must be accounted for when rendering.

■ The per-eye aspect ratio of the Rift is 8:9 (4:5 for the DK1).
■ The lenses aren’t horizontally centered above the half of the display that

they view.
■ The Rift uses lenses both to increase the apparent field of view (through mag-

nification) and to provide a clear (focused) view of the screen despite its
proximity to the viewer. The lenses also distort the image by bending it and by
introducing chromatic aberration. Chromatic aberration is automatically resolved
by the SDK.

■ In the workflow for creating images for the Rift, distortion correction is done as
a separate step from all other correction (for aspect ratio differences, the lens
offset, etc.). Only the distortion correction is covered in this chapter. All of the
other corrections required are handled by manipulation of the projection and
view matrices and are covered in chapter 5.

■ The Rift lenses create what is called a pincushion distortion. A pincushion distor-
tion is what happens when you magnify an image using a lens.
Licensed to Mark Watson <nordickan@gmail.com>

99Summary
■ Correcting the distortion caused by the lenses is accomplished by applying a dif-
ferent, inverse distortion before the frame is sent to the screen. The mathemati-
cal inverse of a pincushion distortion is called a barrel distortion.

■ When using SDK-side distortion, you can specify the distortion capabilities you
want to use. The ovrDistortionCap_Vignette flag turns on a fading effect at
the borders of the Rift. This helps the sense of presence by smoothing out one
of the more apparent indicators that you’re looking at a rendered image.
Licensed to Mark Watson <nordickan@gmail.com>

Putting it all together:
integrating head tracking

and 3D rendering
Let’s take stock of all the aspects of computer graphics you’ve seen so far in this
book, because now it’s time to put them into play. You’ll build a complete example
in this chapter, from basic rendering to advanced Riftiness. The scene itself is going
to be very simple—just a cube on a stick in space—but artistic skill in scene design
isn’t the focus here.

This chapter covers
■ Building a simple scene, displayed on the

conventional monitor
■ Splitting the scene for stereoscopic viewing,

using the Rift’s user settings
■ Moving your scene to the Rift, targeting the Rift

display, and enabling distortion
■ Enabling head tracking, producing a fully

immersive Rift experience
100

Licensed to Mark Watson <nordickan@gmail.com>

101Putting it all together: integrating head tracking and 3D rendering
 We’ll begin with the basics. To render a 3D scene using Direct3D or OpenGL for a
conventional monitor, you need a number of elements:

■ A view matrix to position the camera within the scene
■ A projection matrix to define the view frustum,1 which contains the field of view

and aspect ratio
■ Shaders that will transform scene geometry into view geometry, and from there

into real pixels
■ An actual scene to render

A scene to render typically consists of a set of models, each of which will need the
following:

■ A basis2 in 3D space, which describes the model’s position and orientation with
respect to the scene. The basis could also be with respect to the model’s parent
in a scene graph describing a model hierarchy. The basis is often represented as
a 4 × 4 matrix.

■ Geometry that defines the shape of the model and perhaps other attributes,
such as color, texture coordinates, and normal vectors.

In subsequent examples you’ll be adding stereo support. To render the same scene
stereoscopically, you’ll need all these things, plus the following:

■ A per-eye modification to the view matrix, to account for the different positions
of the eyes

■ A mechanism to subdivide the rendering surface in order to render the two
views of the scene, one for each eye

Finally, in order to render a 3D scene for the Rift, you need all of the previous items as
well as the following:

■ A per-eye projection matrix transform, to account for the different fields of view
perceived by each eye (provided by the Oculus SDK)

■ An offscreen surface (a “framebuffer” in OpenGL or a “render target” in DirectX)
on which to render the undistorted view of the scene

■ A distortion mechanism for rendering the offscreen buffer contents to the
actual screen, appropriately distorted for the optics of the Rift

Many wheels to set in motion, or so it might seem, but it all slots together quite nicely.
To get things rolling, let’s start with a modicum of scene design.

1 See en.wikipedia.org/wiki/Frustum for more information.
2 See appendix B for more about basis transforms and frames of reference.
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Frustum

102 CHAPTER 5 Putting it all together: integrating head tracking and 3D rendering
5.1 Setting the scene
This chapter’s first example renders to a conventional monitor, without distortion or
stereoscopic views. This allows you to establish the components required for basic
rendering but not specific to any aspect of the Rift.

 The scene will consist of a single model: a small cube, supported by a pedestal, col-
ored blue on the front and other colors on each side, as shown in figure 5.1. The cube
rests at eye height, initially 0.5 meters directly ahead of the viewer. The floor is overlaid
by a wireframe grid, 1 meter square. The scene is surrounded by an infinitely distant sky-
box, which means that when you get to the Rift you’ll have something to look around at.

Our small, central cube-on-a-pedestal does have one interesting thing going for it: its
width is exactly the distance between the user’s eyes (their IPD). We’ll come back to
why we’ve chosen such a cubist centerpiece later in the chapter (and no, it’s not a nod
to Picasso).

 Each of the four demos in this chapter will derive from GlfwApp or its child class,
RiftGlfwApp. GlfwApp is the core example class in our demo code (github.com/
OculusRiftInAction/OculusRiftInAction). You’ve seen us using GlfwApp in almost
every demo so far. GlfwApp is driven by the core render loop shown in the next listing.

int GlfwApp::run() {
 window = createRenderingTarget(windowSize, windowPosition);

Listing 5.1 GlfwApp::Run(), the heart of our sample app (abridged for clarity)

Figure 5.1 Our sample scene: a cube on a stick
Licensed to Mark Watson <nordickan@gmail.com>

http://github.com/OculusRiftInAction/OculusRiftInAction
http://github.com/OculusRiftInAction/OculusRiftInAction

103Setting the scene
 if (!window) {
 FAIL("Unable to create OpenGL window");
 }
 initGl();
 while (!glfwWindowShouldClose(window)) {
 glfwPollEvents();
 update();
 draw();
 finishFrame();
 }
 return 0;
}

In this render loop, for as long as the window shouldn’t close, you’ll first call
update(), and then draw(). We separate the two operations in the name of good soft-
ware design. The intent is that update() will be the one-stop shop for all your scene
state changes, such as moving the camera; when you call draw(), it’ll be purely
devoted to rendering, with no camera motion or user input handling.

 By handling all your camera events in update(), you can safely pull changes to
your camera position from multiple sources (such as keyboard, mouse, and controller
inputs) before rendering begins. This ensures that you won’t process a given update
more than once per frame, including the per-eye orientation matrices that you’ll read
from the Rift. More than that, it’s a good design pattern and a good idea: your render-
ing code is isolated from the code that updates your state.

Separating visualization from transformation
A common faux pas among novice 3D coders is to update their app’s state in their
render loop, usually at the start of their “render my scene” method. It’s an easy place
to put update code, because you know it gets called once per frame. Typical exam-
ples of state changes are updates like “increment a counter,” “advance time,” or
“run the next step of my physics engine.”

This is, in general, a Bad Idea. Here’s why:

■ It introduces a potentially unpredictable delay in your render call, which can
cause lag.

■ It locks GPU operations and CPU operations together, depriving you of the par-
allelization benefits of having a GPU with its own processing power.

■ Debugging becomes much more difficult, because you’ve got to wade through
rendering code to get to state code (or vice versa).

■ Writing unit tests becomes much more difficult as well, because unit tests of
your state logic will have to mock out an entire rendering stack, or vice versa.

What’s more, it gets worse on the Rift (or any kind of stereoscopic display): an app
for the Rift is going to perform two renders for each frame, one for each eye. If
you’re updating the game state during the render, this means that the displayed
state will be different for each eye. Worse, your app will behave differently on the
Licensed to Mark Watson <nordickan@gmail.com>

104 CHAPTER 5 Putting it all together: integrating head tracking and 3D rendering
Each of our examples will render the same scene, albeit in different ways. The scene
you need to render has been encapsulated inside a single function, oria::render-
ExampleScene(float ipd, float eyeHeight). This function takes care of all the
OpenGL-specific work you do to load shaders and geometry and render the contents
of the scene.

 Two explicit inputs are used—ipd and eyeHeight—as well as an implicit input, the
state of the modelview matrix, which determines the position of the camera. We won’t
cover the inner workings of renderExampleScene() here, because it’s largely about
the mechanics of OpenGL rendering, and that’s not what this book is about; suffice it
to say, it renders a scene with a skybox, a floor, and a couple of cubes.

 The contents of the scene aren’t important; you could be rendering a medical visu-
alization application, or the next “Medal of Battle Duty” game. We’ll spend the remain-
der of this chapter fleshing out how you use this method in the context of rendering
conventionally, stereoscopically, and finally as a VR scene designed for the Rift. To
clearly delineate non-Rift code from Rift code, we’ll begin with a minimal, monocular,
3D view of our scene—just the basics, no Rift code.

5.2 Our sample scene in monoscopic 3D
The following listing contains the complete code of our first simple scene rendered
with monoscopic rendering.

#include "Common.h"

static const glm::uvec2 WINDOW_SIZE(1280, 800);
static const glm::ivec2 WINDOW_POS(100, 100);

class CubeScene_Mono : public GlfwApp {
public:
 CubeScene_Mono() {
 Stacks::projection().top() = glm::perspective(
 PI / 2.0f, aspect(WINDOW_SIZE), 0.01f, 100.0f);

 Stacks::modelview().top() = glm::lookAt(
 vec3(0, OVR_DEFAULT_EYE_HEIGHT, 0.5f),
 vec3(0, OVR_DEFAULT_EYE_HEIGHT, 0),
 Vectors::UP);
 }

(continued)

Rift than in tests or on a normal screen, which can make debugging subtle bugs
terrifically difficult.

You’re far better off updating state in a separate event handler. That way, your state
and your display are completely isolated from each other.

Listing 5.2 Example_5_1_Monoscopic.cpp, our sample scene in monoscopic rendering

Sets up
the camera
perspective.

Sets up the camera position.
Your camera is 0.5 meters
back from the cube.
Licensed to Mark Watson <nordickan@gmail.com>

105Our sample scene in monoscopic 3D

yo
 virtual GLFWwindow * createRenderingTarget(
 glm::uvec2 & outSize, glm::ivec2 & outPosition) {
 outSize = WINDOW_SIZE;
 outPosition = WINDOW_POS;
 return glfw::createWindow(outSize, outPosition);
 }

 virtual void draw() {
 oglplus::Context::Clear().ColorBuffer().DepthBuffer();
 oria::renderExampleScene(
 OVR_DEFAULT_IPD, OVR_DEFAULT_EYE_HEIGHT);
 }
};

RUN_APP(CubeScene_Mono);

As you can see, the listing is short! But then, that’s object-oriented programming for
you. Most of the details of rendering are nicely tucked out of the way for you by your
parent classes and helper functions. We want this class to be simple, because what we
want you to understand is not how this example works, but what you need to add to it
to get to a fully immersive VR example.

 In this example you launch a decorated 1280 × 800 GLFW window, placing its
upper-left corner at (100, 100). You use a 90° (expressed in radians as pi / 2) field of
view, and you call the parent class’s render methods without undue interference.
There’s really almost nothing to it (figure 5.2).

 That’s it for monoscopic rendering, so let’s spice things up a bit: in Example 2,
you’ll convert to stereoscopic (“split-screen”) rendering.

Creates a simple,
decorated GLFW window
on the primary monitor.

Clears the
screen.Renders

ur scene.

RUN_OVR_APP is our
standard “launch on any
platform” C++ macro.

Figure 5.2 Our sample scene, rendered in basic monoscopic 3D
Licensed to Mark Watson <nordickan@gmail.com>

106 CHAPTER 5 Putting it all together: integrating head tracking and 3D rendering
5.3 Adding stereoscopy
Now that you can distinguish the code that renders the scene, you can build on that to cre-
ate a version that renders the same scene as a stereoscopic view (but without distortion).

 As we stated, adding stereoscopy requires two things:

■ A mechanism to divide the two images in some fashion so that they’re perceived
by the left and right eyes individually

■ The ability to render each eye with a per-eye view transform to provide parallax,
which is one mechanism to provide the sense of depth

We can introduce the second element easily, but the first component is, in a sense,
hardware-dependent. 3D output devices typically take a signal that’s in a specific format

Depth cues
Depth cues are the pieces of information that your brain uses to determine the dis-
tance to an object, and four of the main ones are familiar size, binocular parallax,
motion parallax, and oculomotor.

Familiar size cues are those that come from knowing how big something actually is.
If you see a door and have no reason to think you’re looking at a dollhouse, then you
get a sense of how big the door is, because doors tend to come in roughly the same
size. These cues are reasonably accurate out to at least several hundred yards, or to
put it in evolutionary terms, “as far as you could sprint if your life depended on it,”
because determining whether that shelter is a half mile away or a mile away probably
doesn’t matter when you’re trying to outrun a lion.

Binocular parallax cues come from seeing an object at two slightly different angles
because your eyes are some distance apart. These are only accurate out to at most
a few meters.

Motion parallax cues derive from seeing an object from slightly different angles because
of the movement of the observer. This can include both large-scale movement, such as
traveling in a vehicle, and small-scale movement, like shifting your head.

Oculomotor cues are based on internal feedback from the muscles controlling your
eyes and come in two forms: accommodation and convergence. Accommodation is
the amount to which your muscles are distorting the cornea in order to focus at a
given distance. Convergence is the degree to which your eyes are crossing inward to
keep both eyes locked on a given target.

One of the shortcomings of VR is that although current-generation consumer HMDs
can provide the first three of these kinds of cues, there isn’t any way to provide ocul-
omotor cues. This in turn leads to a disparity between what the eye muscles are
saying about the distance to an object and what all the other systems are saying.
This is likely one of the reasons the Oculus best practices guide recommends
against placing objects in a scene very close to the user—the closer an object is, the
stronger the oculomotor cues are, and the greater the disparity. This in turn can lead
to VR-induced eye fatigue or even sim sickness.
Licensed to Mark Watson <nordickan@gmail.com>

107Adding stereoscopy
such as 3D-SBS3 and then extract the left eye and right eye images and interlace them,
either temporally (in the case of active 3D systems involving LCD shutter glasses) or spa-
tially (in the case of passive 3D systems using polarized glasses). The Rift is probably clos-
est in its workings to the 3D-SBS systems, although it’s an awful lot more clever.

 For Example 2 (listing 5.3) we’re not trying to provide you with a 3D experience
(yet); we’re only demonstrating the additional work it takes to render one. You’ll ren-
der each eye image and set them next to each other. Note that this example won’t
look correct in the Rift, because you’re not taking the additional steps required for
such proper rendering. The goal is to differentiate stereoscopic rendering needs from
monoscopic. (New code appears in bold.)

#include "Common.h"

static const glm::uvec2 WINDOW_SIZE(1280, 800);
static const glm::ivec2 WINDOW_POS(100, 100);

static const glm::uvec2 EYE_SIZE(
 WINDOW_SIZE.x / 2, WINDOW_SIZE.y);

static const float EYE_ASPECT =
 glm::aspect(EYE_SIZE);

struct PerEyeArg {
 glm::ivec2 viewportPosition;
 glm::mat4 modelviewOffset;
};

class CubeScene_Stereo : public GlfwApp {
 PerEyeArg eyes[2];

public:
 CubeScene_Stereo () {
 Stacks::projection().top() = glm::perspective(
 PI / 2.0f, EYE_ASPECT, 0.01f, 100.0f);

 Stacks::modelview().top() = glm::lookAt(
 vec3(0, OVR_DEFAULT_EYE_HEIGHT, 0.5f),
 vec3(0, OVR_DEFAULT_EYE_HEIGHT, 0),
 Vectors::UP);

 glm::vec3 offset(OVR_DEFAULT_IPD / 2.0f, 0, 0);
 eyes[ovrEye_Left] = {
 glm::ivec2(0, 0),
 glm::translate(glm::mat4(), offset)
 };
 eyes[ovrEye_Right] = {
 glm::ivec2(WINDOW_SIZE.x / 2, 0),
 glm::translate(glm::mat4(), -offset)
 };
 }

3 “3D Side-by-Side,” where the two images for the two eyes are compressed into the left and right halves of a
single formatted frame.

Listing 5.3 Example_5_2_Stereoscopic.cpp, adding stereoscopy to the previous listing

Describes a single eye’s
viewport as width, height,
and aspect ratio.

Stores each eye’s
viewport position and
camera offset translation.

The left and right eyes
are distinguished by
distinct viewport
frames and distinct
translations of the
modelview matrix, one
positive, one negative.
Licensed to Mark Watson <nordickan@gmail.com>

108 CHAPTER 5 Putting it all together: integrating head tracking and 3D rendering
 virtual GLFWwindow * createRenderingTarget(
 glm::uvec2 & outSize, glm::ivec2 & outPosition) {
 outSize = WINDOW_SIZE;
 outPosition = WINDOW_POS;
 return glfw::createWindow(outSize, outPosition);
 }

 virtual void draw() {
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 MatrixStack & mv = gl::Stacks::modelview();

 for (int i = 0; i < ovrEye_Count; ++i) {
 ovrEyeType eye = hmd->EyeRenderOrder[i];
 PerEyeArg & eyeArgs = eyes[eye];
 viewport(eyeArgs.viewportPosition, EYE_SIZE);
 Stacks::with_push(mv, [&]{
 mv.preMultiply(eyeArgs.modelviewOffset);
 oria::renderExampleScene(
 OVR_DEFAULT_IPD, OVR_DEFAULT_EYE_HEIGHT);
 });
 }
 }
};

RUN_APP(CubeScene_Stereo);

The core of the differences between this example and the last is in the per-eye argu-
ments, which hold the small set of eye-specific values that you use to set OpenGL’s ren-
dering viewport and camera position for each eye’s point of view:

static const glm::uvec2 WINDOW_SIZE(1280, 800);
// ...
static const glm::uvec2 EYE_SIZE(WINDOW_SIZE.x / 2, WINDOW_SIZE.y);

The dimensions of the viewports of each eye are fixed, with each viewport at a con-
stant size of (WINDOW_SIZE.x / 2) by (WINDOW_SIZE.y)—that is, 640 × 800. This
describes exactly one half of the screen. You then store a per-eye offset of where to
place the upper-left corner of the viewport on the display: (0, 0) for the left eye,
((WINDOW_SIZE.x / 2), 0) for the right. The PerEyeArg structure links this offset to a
4 × 4 matrix, the modelviewOffset, which you’ll initialize with a small translation
along the X axis.

struct PerEyeArg {
 glm::ivec2 viewportPosition;
 glm::mat4 modelviewOffset;
};

The modelviewOffset matrices represent the displacement of your eyeballs away from
the center of your head. Each matrix is an X-axis translation of distance IPD / 2. The
IPD is the distance from the central axis of one eye to the central axis of the other, so

Updates the
camera’s position
by the eye’s
modelview matrix
and renders to the
eye’s viewport.
Licensed to Mark Watson <nordickan@gmail.com>

109Adding stereoscopy
each eye-specific viewpoint is half the IPD off from the central axis of the head, offset
perpendicular to the line of sight:

virtual void draw() {
 oglplus::Context::Clear().ColorBuffer().DepthBuffer();
 MatrixStack & mv = Stacks::modelview();
 for (int i = 0; i < 2; ++i) {
 PerEyeArg & eyeArgs = eyes[i];
 viewport(EYE_SIZE, eyeArgs.viewportPosition);
 Stacks::with_push(mv, [&]{
 mv.preMultiply(eyeArgs.modelviewOffset);
 oria::renderExampleScene(
 OVR_DEFAULT_IPD, OVR_DEFAULT_EYE_HEIGHT);
 });
 }
}

The draw() method has been expanded. Where previously you were calling render-
ExampleScene() once, now you call it twice, once per eye. Before you render the
scene, for each eye you set the OpenGL viewport,

 viewport(EYE_SIZE, ivec2(eyeArgs.viewportPosition));

after which you push a new frame onto the top of your matrix stack,

 Stacks::with_push(mv, [&]{

which you multiply with the offset of the current eye, effectively shifting the scene to
the left or right by half the user’s IPD:

 mv.preMultiply(eyeArgs.modelviewOffset);

Finally you render

 oria::renderExampleScene(
 OVR_DEFAULT_IPD, OVR_DEFAULT_EYE_HEIGHT);

and your reward is stereoscopy (figure 5.3)!

5.3.1 Verifying your scene by inspection

Now that you’ve added the stereo views, it’s time to reveal why our sample scene is cen-
tered on the IPD cube, a cube whose edges are exactly the user’s IPD in length. We’ve
deliberately built a scene that would highlight common mathematical errors in your
code, even if they’re subtle. The aim is to help you verify that your matrices and per-
spective transforms are being applied correctly and in the correct order.

 When thinking about a cube, the typical assumption is that you can’t see two
opposing sides at the same time. You can’t be looking at the front and back of the
Licensed to Mark Watson <nordickan@gmail.com>

110 CHAPTER 5 Putting it all together: integrating head tracking and 3D rendering
cube at the same time. But, for a small enough cube, you can see the left and right
sides at the same time.

 Consider a very small cube, like a six-sided die,4 only a centimeter or two across. If
you hold it up between your eyes, your left eye can see a sidelong view of the left face
of the die, whereas your right eye can see a sidelong view of the right face of the cube.

 If the cube size is exactly equal to the distance between your eyes and it’s held
directly in front of you, you can only see the front of the die. Your line of sight from
each eye will be exactly coplanar to the sides. Rotating the cube slightly, or moving
your viewpoint slightly, will allow you to see one side or another but never both at the
same time, because as soon as one side comes into view, the opposing side has gone
out of view (figure 5.4).

 For our example we’re using a colored cube instead of a die—the high contrast of
the different colors makes it pretty apparent if you’re seeing even a few pixels of a
given side of the cube. The geometry of the setup means that if you move your view-
point to the right, the right side of the cube (if you run the code, it’s bright red)
should come into view of the right eye well before the left eye (figure 5.5).

4 Also known as a d6, if you’re hip. Interestingly, this exercise wouldn’t work with a d4, d8, or d10, but it would
work with a d20 or a d12…not that anybody uses d12s, except barbarians.

Figure 5.3 Our sample scene, rendered in stereoscopic 3D. The effects of stereoscopy are visible; for
example, the convergence point of the lines in the floor grid is different for each side.
Licensed to Mark Watson <nordickan@gmail.com>

111Adding stereoscopy
If you render a scene like this and discover that you can see both sides of the cube,
then you’re likely either applying the modelview offset incorrectly or misapplying the
projection matrix.

 This may seem like an odd choice of example, but it’s a valuable diagnostic tool.
Remember that there are two eyes and two matrices (projection and modelview) you

Figure 5.4 When you look at a small die up close, you can see both sides. But if the
die is exactly as wide as your IPD, then your eyes are coplanar with the sides of the
cube and you can no longer see them.

Figure 5.5 The geometry of the setup means that if you move your viewpoint to the right, the right side
of the cube should come into view of the right eye well before the left eye.
Licensed to Mark Watson <nordickan@gmail.com>

112 CHAPTER 5 Putting it all together: integrating head tracking and 3D rendering
have to work with. That duality is an easy place for errors to creep into the code. In
addition, depending on API design, a common source of error can be confusion as to
whether you should be applying a matrix or its inverse, or whether you should be
doing premultiplication or postmultiplication of the offset against the existing matrix
(whether this is a left- or right-handed coordinate system). That’s 2 × 2 × 2 × 2 ways
to botch applying the matrix offsets to the scene, and not all those ways are immedi-
ately obvious when you render the application to the screen or even to the Rift.
When you start taking into consideration other potential bugs, like failing to initial-
ize one of the matrices, or failing to use the correct scale for your offsets, those 2s
can become 3s or more.

 If matrices are applied in the wrong order or multiplied incorrectly, or if there’s
simply a bug in the math, sometimes the bugs aren’t too far off from the intended
results and can be deceptively close to true. A coder could mistake the double-vision
effects that result from accidentally inverting a modelview offset for a more compli-
cated problem with the matrix itself, and attempt to “fix” the problem by adjusting it.

 By choosing such a simple sample scene, it should be easy to spot math errors. If
you can see both sides of the cube with one eye, then your perspective matrix is prob-
ably off. Also, bugs in the order of applying your matrices will often manifest as the
left and right sides of the stereo image failing to line up if you tilt the camera. Of
course, the easiest way to tilt the camera will be if you’re wearing the Rift, so let’s move
on to that, shall we?

5.4 Rendering to the Rift
The next step in our progression of examples is to take our stereoscopic display and
move it to where it will do the most good: the Rift. This will mean targeting the Rift’s
display as a video output device, and enabling distortion in the rendering pipeline. In
the following listing you’ll use the Rift as a fixed display, and you’ll add the orientation
and position sensors to fully enable immersion. (New code appears in bold.)

#include "Common.h"

struct PerEyeArg {
 FramebufferWrapperPtr framebuffer;
 glm::mat4 projection;
 glm::mat4 modelviewOffset;
};

class CubeScene_Rift: public RiftGlfwApp {
 PerEyeArg eyes[2];
 ovrTexture eyeTextures[2];

 float ipd, eyeHeight;

public:
 CubeScene_Rift() {

Listing 5.4 Example_5_3_RiftRendered.cpp, moving to the Rift

Enhanced data for each eye, including
the use of per-eye projection.

You’re now using a Rift-
specific parent class.

The Oculus API requires that
the textures be passed as a
single contiguous array.
Licensed to Mark Watson <nordickan@gmail.com>

113Rendering to the Rift

T
r

som
setu

yo
the O

c

S

o

f

 eyeHeight = ovrHmd_GetFloat(hmd,
 OVR_KEY_EYE_HEIGHT, eyeHeight);
 ipd = ovrHmd_GetFloat(hmd, OVR_KEY_IPD, ipd);
 Stacks::modelview().top() = glm::lookAt(
 vec3(0, eyeHeight, 0.5f),
 vec3(0, eyeHeight, 0),
 Vectors::UP);
 }

 virtual void initGl() {
 GlfwApp::initGl();

 ovrRenderAPIConfig cfg;
 memset(&cfg, 0, sizeof(cfg));
 cfg.Header.API = ovrRenderAPI_OpenGL;
 cfg.Header.BackBufferSize = ovr::fromGlm(getSize());
 cfg.Header.Multisample = 1;

 int distortionCaps = ovrDistortionCap_Vignette;
 ovrEyeRenderDesc eyeRenderDescs[2];
 int configResult = ovrHmd_ConfigureRendering(hmd, &cfg,
 distortionCaps, hmd->DefaultEyeFov, eyeRenderDescs);

 for_each_eye([&](ovrEyeType eye){
 PerEyeArg & eyeArgs = eyes[eye];
 ovrFovPort fov = hmd->DefaultEyeFov[eye];

 ovrSizei texSize = ovrHmd_GetFovTextureSize(
 hmd, eye, fov, 1.0f);
 eyeArgs.framebuffer = FramebufferWrapperPtr(
 new FramebufferWrapper());
 eyeArgs.framebuffer->init(ovr::toGlm(texSize));

 ovrTextureHeader & textureHeader = eyeTextures[eye].Header;
 textureHeader.API = ovrRenderAPI_OpenGL;
 textureHeader.TextureSize = texSize;
 textureHeader.RenderViewport.Size = texSize;
 textureHeader.RenderViewport.Pos.x = 0;
 textureHeader.RenderViewport.Pos.y = 0;
 ((ovrGLTexture&)eyeTextures[eye]).OGL.TexId =
 oglplus::GetName(eyeArgs.framebuffer->color);

 eyeArgs.modelviewOffset = glm::translate(
 glm::mat4(),
 ovr::toGlm(
 eyeRenderDescs[eye].HmdToEyeViewOffset));

 ovrMatrix4f projection = ovrMatrix4f_Projection(
 fov, 0.01f, 100, true);
 eyeArgs.projection = ovr::toGlm(projection);
 });
 }

 virtual void finishFrame() {
 }

Now that you’re
working in VR, it’s
important to use the
user’s IPD and height.

he Rift
equires
e extra
p, once
u have
penGL

ontext. Initialization of
the Rift distortion
occurs just as it
did in chapter 4.

The Oculus
DK provides

both a
default field
f view and a

maximum
ield of view.
You’re using
the default.

Unlike in chapter 4, you’re
using offscreen rendering
areas and frame buffers,
rather than static textures.

You need to
set up texture
details to pass
to the SDK.

Your modelview
offset and
projection
matrix are also
now provided
by the SDK.

Because the Oculus SDK handles the buffer
swapping for you, you need to override the
parent class method that normally does it,
replacing it with a no-op.
Licensed to Mark Watson <nordickan@gmail.com>

114 CHAPTER 5 Putting it all together: integrating head tracking and 3D rendering

t.

y
projec
the pe

You
exa
pas
act
 virtual void draw() {
 static ovrPosef eyePoses[2];

 ovrHmd_BeginFrame(hmd, getFrame());
 MatrixStack & mv = Stacks::modelview();
 for (int i = 0; i < ovrEye_Count; ++i) {
 ovrEyeType eye = hmd->EyeRenderOrder[i];
 PerEyeArg & eyeArgs = eyes[eye];
 Stacks::projection().top() = eyeArgs.projection;

 eyeArgs.framebuffer->Bind();
 oglplus::Context::Clear().DepthBuffer();
 Stacks::withPush(mv, [&]{
 mv.preMultiply(eyeArgs.modelviewOffset);
 oria::renderExampleScene(ipd, eyeHeight);
 });
 }
 ovrHmd_EndFrame(hmd, eyePoses, eyeTextures);
 }
};

RUN_OVR_APP(CubeScene_Rift);

We’ve added some fairly substantial chunks of code, but there shouldn’t be any sur-
prises after the previous chapter. The key differences between this listing and its pre-
decessor are as follows:

■ The binding and use of an offscreen rendering target through our Framebuffer-
Wrapper class. Because you’re rendering offscreen, the framebuffer has replaced
the viewport information in the PerEyeArg structure.

■ Retrieval of the user’s actual height and IPD from the Rift’s settings.
■ Projection matrices that are customized for each eye.
■ The PerEyeArg structure, which stores these additional components data for

each eye.
■ The use of the Rift’s rendering pipeline and distortion mechanism.

The result is shown in figure 5.6. You now see the Rift’s characteristic distortion of the
stereoscopic views of the two eyes.

5.4.1 Enhanced data for each eye

Now that you’re rendering to the Rift, you need to keep track of a bit more informa-
tion for each eye than you did before. Our per-eye data structures have evolved from

 glm::mat4 modelviewOffset;
 glm::uvec2 viewportPosition;

to

 FramebufferWrapperPtr framebuffer;
 glm::mat4 modelviewOffset;
 glm::mat4 projection;

Rendering for the Rift must be bookended
by these begin/end frame calls, even when
you aren’t using the eye pose data.

The Rift SDK has a
recommended eye order
that’s related to the refresh
rate and direction of the Rif

Each eye
can have a

different
projection
matrix, so
ou update
tion inside
r-eye loop.

You bind your framebuffer
so that you can render to
an offscreen texture. render the

mple scene,
sing in your
ual IPD and
eye height.

Rendering for the Rift must
be bookended by these
begin/end frame calls, even
when you aren’t using the
eye pose data.
Licensed to Mark Watson <nordickan@gmail.com>

115Rendering to the Rift
You still track the modelviewOffset, because the user’s eyes are still physically sepa-
rated. But in the previous example you were content for your modelview offset to be a
simple lateral shift by IPD / 2. Here, you’re being more advanced: you query the Rift
for the eyeRenderDescs[eye].HmdToEyeViewOffset, a 3D offset whose direction is
specific to each eye. This value is based on the IPD the user has entered (if any) and
ensures an accurate and more enjoyable experience for each configured user.

 You don’t need to track the viewportPosition explicitly any longer, because
you’re no longer rendering to a subsection of a larger frame; now you’ll be rendering
to a framebuffer. (Technically, you now set a viewport for the offscreen buffer, but
that’s a detail of implementation; see the section on offscreen framebuffer targets
later in the chapter.)

 For each eye you now also track projection. The projection field stores a dis-
tinct projection matrix for each eye. This matrix, whose values are generated by the
SDK, expresses available field of view in each direction. Most conventional applica-
tions create a projection matrix from a vertical field of view and an aspect ratio (as
well as a near and far clipping plane). The common projection matrix is almost
always symmetrical up/down and left/right. The Oculus SDK, on the other hand,
constructs an asymmetrical projection matrix out of four floating point values that rep-
resent the field of view in four directions: up, down, left, and right. The matrix is
asymmetrical because each of our eyes has a larger field of view on the outer side of

Figure 5.6 Our sample scene, viewed through the Rift. Notice the clear differences in viewpoint for
each eye, introduced by the IPD modelview offset translations.
Licensed to Mark Watson <nordickan@gmail.com>

116 CHAPTER 5 Putting it all together: integrating head tracking and 3D rendering
the head (left for the left eye, right for the right eye) than on the inner side, because
of the way our skulls are shaped.

 Outside of the PerEyeArgs structure, you also have an array of eyeTextures. These
store a reference to the OpenGL texture object to which you’ll render, which you then
pass to the SDK with ovrHmd_EndFrame(). You also track the region within the texture
to which you’re rendering. The texture is now the offscreen canvas, which the SDK will
distort and render to its physical display. Note that although logically it’d make sense
to include the texture information in PerEyeArgs, the SDK design currently requires
that the values for both eyes be passed as a single contiguous array, so you have to
declare it as such in the main class.

5.4.2 Improved user settings

Two of the lines we’ve added to the constructor deserve special mention:

eyeHeight = ovrHmd_GetFloat(hmd, OVR_KEY_EYE_HEIGHT, eyeHeight);
ipd = ovrHmd_GetFloat(hmd, OVR_KEY_IPD, ipd);

These lines fetch the user’s IPD and eye height. You’ll use these values to position the
cube directly ahead of users when the scene first loads, at exactly the height of their
eyes if they were standing. You’ll also set the width of the cube to exactly their IPD.

 Be careful to provide reasonable defaults for these values. If the user hasn’t run the
setup utility to configure the Rift yet, their IPD and eye height won’t be set in the Rift’s
settings; if so, you’ll fall back to OVR_DEFAULT_IPD and OVR_DEFAULT_PLAYER_HEIGHT.

Reasonable defaults
Oculus VR has provided default values that you should use in your code whenever
users haven’t configured their Rift properly. Don’t try to guess how tall your user is or
how far apart their eyes are; let the values in the SDK do that for you. But those val-
ues are only averages and human beings tend to differ; your users are sure to have
a better experience if your app strongly advises them to configure the Rift and set up
their profile.

One tricky angle to the question of “What is default, really?” is that Oculus has cho-
sen to use the average values of IPD and eye height of an adult male as their default
constants. This is an interesting choice because the average human isn’t, in fact,
male. It’s been suggested that perhaps the default SDK values, used when no user-
specific value has been profiled, should be an average of both male and female
adults. When asked, an Oculus representative described their choice of male
defaults as “based on common user values,” which may be a reflection of the com-
mon developers or testers at Oculus.

Because the Rift’s “common user values” will align more poorly with the average
woman than the average man, it’s especially important that your application prompt
users to set up their personal profile with the configuration utilities provided by Ocu-
lus. In this way you’ll ensure that all users, regardless of body type, have a positive
experience in VR.
Licensed to Mark Watson <nordickan@gmail.com>

117Rendering to the Rift
5.4.3 Setting up the SDK for distortion rendering

To perform distortion, the SDK needs to initialize one of its rendering subsystems and
know exactly what distortion features you’d like enabled. This code is essentially iden-
tical to the equivalent code in chapter 4, where we focused exclusively on distortion,
but we’ll recap it quickly here.

 You declare the non-platform-specific configuration type and initialize its memory
to 0:

 ovrRenderAPIConfig cfg;
 memset(&cfg, 0, sizeof(cfg));

You explicitly specify the rendering API you’re using,

 cfg.Header.API = ovrRenderAPI_OpenGL;

and you specify the size of the destination-rendering window, which should generally
be the same as the Rift display resolution:

 cfg.Header.BackBufferSize = ovr::fromGlm(getSize());
 cfg.Header.Multisample = 1;

You indicate the distortion capabilities you want. Here we’ve used the vignette effect,
which is also nice to have because it improves immersion by reducing the visibility of
the transition from the rendered portion of the display to the unrendered portion.

 Having prepared these settings, you call the ovrHmd_ConfigureRendering method
with the desired parameters:

 int distortionCaps = ovrDistortionCap_Vignette;
 ovrEyeRenderDesc eyeRenderDescs[2];
 int configResult = ovrHmd_ConfigureRendering(hmd, &cfg,
 distortionCaps, hmd->DefaultEyeFov, eyeRenderDescs);

Depending on the rendering API used, you might also want to cast the ovrRenderAPI-
Config instance to a platform-specific type and populate additional data, but for
OpenGL it’s not necessary (the SDK will discover the required values on its own if
they’re set to 0).

5.4.4 The offscreen framebuffer targets

For each eye, you build a framebuffer, each of which will contain its own depth and
color textures. These framebuffers are where you’ll render your scene so that the
results of the scene end up in the attached color texture. This example encapsulates
the creation of a framebuffer into your wrapper classes, which requires as input only
the size of the texture. The size of the texture depends on the field of view being used
and the model of the Rift.

 Keep in mind that the texture size will generally be higher than the actual per-eye
resolution. You fetch the texture size from the SDK by providing the eye, the desired
Licensed to Mark Watson <nordickan@gmail.com>

118 CHAPTER 5 Putting it all together: integrating head tracking and 3D rendering
field of view, and another float parameter called pixelsPerDisplayPixel, which you
hardcode as 1.0 here:

 ovrSizei texSize = ovrHmd_GetFovTextureSize(hmd, eye, fov, 1.0f);

The last parameters specified how many pixels in the texture will map to each pixel at
the very center of the view, where the distortion magnification effect is greatest.
There’s very little reason to ever specify a value other than 1.0 here, unless you’re
extremely constrained on texture memory. Even if you decide to vary the texture size
(and thus the quality and sharpness of the distorted image as it appears on the Rift
display), there are easier ways to accomplish this dynamically in the application than
to change the value here. This will be discussed in chapter 6.

 Given the texture size, this line constructs the framebuffer (including the wrapped
depth and color buffers):

 eyeArgs.framebuffer->init(ovr::toGlm(texSize));

FrameBufferWrapperPtr, as we’ve mentioned, is a convenience class that we created
to simplify our demo code. Its init() method binds an OpenGL framebuffer and
builds an OpenGL texture target, which it attaches to the framebuffer. In our demo
code on the GitHub repository, we implemented FrameBufferWrapperPtr on top of
the oglplus framebuffer class, which wraps object-oriented design around a self-
contained buffer concept.

 If you’re not using a third-party library, there’s nothing stopping you from build-
ing your own offscreen framebuffer. The OpenGL code looks roughly like this:

GLuint framebuffer, texture;
glGenFramebuffers(1, &frameBuffer);
glGenTextures(1, &texture);
glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer);
glBindTexture(GL_TEXTURE_2D, texture);
glTexStorage2D(GL_TEXTURE_2D, 1, GL_RGBA8, size.x, size.y);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
 texture, 0);

This snippet will help you build an offscreen buffer, which you can bind as a render
target and render to. This gives you a texture target that you can pass to the SDK for
rendering on the Rift.

5.4.5 The Oculus texture description

Creating the framebuffer and associated textures isn’t enough; you also have to
describe them to the Oculus SDK. For this you use the ovrTexture type, declared in
your class like this:

ovrTexture eyeTextures[2];

Note that you’re declaring the ovrTexture member outside of the PerEyeArg struc-
ture, even though you do in fact have one ovrTexture per eye. This is because the
Licensed to Mark Watson <nordickan@gmail.com>

119Rendering to the Rift
Oculus API for accepting the textures for a given frame requires an array of exactly
two instances of this type, arranged contiguously in memory:

OVR_EXPORT void ovrHmd_EndFrame(ovrHmd hmd,
 const ovrPosef renderPose[2],
 const ovrTexture eyeTexture[2]);

If you placed the texture member inside the PerEyeArg structure, the two instances
wouldn’t be contiguous and you’d have to copy them out to another array anyway.

 Almost all the data you want to set is in the Header member of the ovrTexture
structure, so create a reference to it and populate the fields:

ovrTextureHeader & textureHeader = eyeTextures[eye].Header;

You need to let the SDK know what API you’re using for rendering. In theory the SDK
should be able to deduce this from the rendering configuration you did earlier, but
it’s also conceivable that a single rendering API might have more than one mechanism
for representing textures.

textureHeader.API = ovrRenderAPI_OpenGL;

You also have to tell the SDK the actual size of the texture you’re using, as well as the
region on the texture to which you’re rendering. The former is done by populating
the TextureSize parameter. This should always be set to the actual resolution of the
texture you’ve created:

textureHeader.TextureSize = texSize;

The latter is done by populating the RenderViewport member, which has both Size
and Pos members of its own. In most cases you want to render to the entire texture, so
Size should be set to the same value as the TextureSize member of the header, and
Pos should be set to the origin of the texture at (0, 0):

textureHeader.RenderViewport.Size = texSize;
textureHeader.RenderViewport.Pos.x = 0;
textureHeader.RenderViewport.Pos.y = 0;

There are a couple of use cases for modifying the values here. The first is that some
developers may wish to use a single “double-wide” texture to contain both the left and
right images. In this case you’d use a single framebuffer and vary the viewports when
rendering. You’d set the TextureSize, RenderViewport.Size, and RenderView-
port.Pos values to correspond to your texture size and viewports.

 The other use case for varying these values is if you’re unable to maintain a suit-
able frame rate with the specified texture size and you want to trade off image
quality for speed. This is discussed in chapter 6, where we explore performance
optimizations.

 The very last piece of information that you need to provide to the SDK is the iden-
tifier of the texture itself. But you can’t inject this value directly into the ovrTexture
Licensed to Mark Watson <nordickan@gmail.com>

120 CHAPTER 5 Putting it all together: integrating head tracking and 3D rendering
or ovrTextureHeader types. These types are intended to be platform-neutral, so they
don’t contain members for OpenGL- or Direct3D-specific data. If you look at the defi-
nition for ovrTexture you’ll see something like this:

typedef struct ovrTexture_s {
 ovrTextureHeader Header;
 uintptr_ PlatformData[8];
} ovrTexture;

Rather than include OpenGL or Direct3D types here, Oculus has reserved room for
them by adding an array of integer pointers. To populate the required fields, it’s
necessary to cast the ovrTexture to a platform-specific type: ovrD3D11TextureData,
ovrD3D10TextureData, ovrD3D9TextureData, or ovrGLTextureData, depending on
the API being used. This example uses OpenGL, so choose ovrGLTextureData to per-
form your cast. It looks like this:

typedef struct ovrGLTextureData_s {
 ovrTextureHeader Header;
 TexId;
} ovrGLTextureData;

You need to populate that TexId member with your OpenGL texture identifier, which
is fetched out of the framebuffer’s color field:

((ovrGLTextureData&)textures[eye]).TexId = eyeArg.frameBuffer.color->texture;

5.4.6 Projection and modelview offset

Once you’ve built your offscreen rendering targets, the final piece of the setup puzzle
is to build your projection and modelview offset matrices:

ovrFovPort fov = hmd->DefaultEyeFov[eye];
//...
eyeArgs.modelviewOffset = glm::translate(glm::mat4(),
 ovr::toGlm(eyeRenderDescs[eye].HmdToEyeViewOffset));

ovrMatrix4f projection = ovrMatrix4f_Projection(fov, 0.01f, 100, true);
eyeArgs.projection = ovr::toGlm(projection);

The variable hmd->DefaultEyeFov[eye] stores each field of view for the eyes of the
user. This field of view—expressed as functions of angles up, down, left and right—
describes the sides of the infinite pyramid representing the user’s view through the
Rift. You turn this into a projection matrix by providing a near and far clipping plane,
turning the pyramid into a frustum that each eye can see. The projection matrix also
accounts for the distance between the lens axis and the center of the half of the
screen devoted to each eye.

 The field of view (FOV) frustum is complemented by the modelviewOffset, which
is the translation matrix of the view adjustment for the current eye. This will be a lin-
ear translation, exactly half of the user’s IPD to the left or right (along the X axis).
Licensed to Mark Watson <nordickan@gmail.com>

121Enabling sensors
5.4.7 The Rift’s rendering loop

Your use of the Rift’s rendering pipeline is bracketed by two key function calls:

ovrHmd_BeginFrame(hmd, getFrame());
// ...
ovrHmd_EndFrame(hmd, eyePoses, eyeTextures);

These calls, which you first encountered in chapter 4, are the heart of the Rift’s distor-
tion and timing pipeline. The function ovrHmd_BeginFrame signals that a new frame is
beginning, whereas the function ovrHmd_EndFrame tells the SDK that rendering has
been completed so that it can perform the distortion and the buffer swap to place the
rendered image on the Rift display.

 The Rift uses “absolute” time to best predict the exact head pose that the sensors
should report. That is, it computes the millisecond when the frame that you’re begin-
ning now will actually be rendered to the user’s eyes. That means, hopefully, reduced
latency in user head motion tracking.

 This is where the Rift begins sending your rendered imagery to its display. Per-
ceived latency is further improved here by the use of timewarp, which corrects for the
difference between the estimated position at the time the eye render starts and the
actual orientation when the frame is placed on the screen. In fact, the EndFrame method
blocks until immediately prior to the display’s vertical sync (v-sync) so that it can get the
most accurate position for the render. Timewarp is discussed in detail in chapter 6.

 The poses parameter here is a two-element array of ovrPosef elements. The
parameter can’t be null, so you’re passing in a local array.

 Even though you’re populating the array elements using the ovrHmd_GetEyePoses
function, you’re not using them for rendering. The only reason you call ovrHmd_
GetEyePoses is because in some versions of the SDK, Direct HMD mode doesn’t func-
tion properly if you don’t call it. But you’ll need those poses in the very next example,
when you turn on the sensors. True VR only comes into play when you’re integrating
the head-tracking information with the rendering, so let’s take a look at that.

5.5 Enabling sensors
Now that you can render to the Rift, there’s just one more key component and
you’ll have a fully Rift-enabled application: adding head tracking. We’ve explored
how to use the Rift’s sensors in previous chapters, and the SDK makes adding sensor
data to your transforms stacks very straightforward; let’s take a look. (New code
appears in bold.)

// ...
// Everything is the same as the previous example until the constructor and

destructor:
// ...

Listing 5.5 Example_5_4_RiftSensors.cpp (abridged)
Licensed to Mark Watson <nordickan@gmail.com>

122 CHAPTER 5 Putting it all together: integrating head tracking and 3D rendering
 CubeScene_RiftSensors() {
 if (!ovrHmd_ConfigureTracking(hmd,
 ovrTrackingCap_Orientation | ovrTrackingCap_Position, 0)) {
 SAY("Warning: Unable to configure Rift tracking.");
 }
 }

// ...
// And again, nothing changes until the draw method:
// ...

 virtual void draw() {
 ovrPosef eyePoses[2];
 ovrHmd_GetEyePoses(hmd, getFrame(), eyeOffsets, eyePoses, nullptr);

 ovrHmd_BeginFrame(hmd, getFrame());
 MatrixStack & mv = Stacks::modelview();
 for (int i = 0; i < ovrEye_Count; ++i) {
 ovrEyeType eye = hmdDesc.EyeRenderOrder[i];
 PerEyeArg & eyeArgs = eyes[eye];
 Stacks::projection().top() = eyeArgs.projection;

 eyeArgs.framebuffer->Bind();
 oglplus::Context::Clear().DepthBuffer();
 Stacks::with_push(mv, [&]{
 mv.preMultiply(glm::inverse(ovr::toGlm(eyePoses[eye])));
 oria::renderExampleScene(ipd, eyeHeight);
 });
 }
 ovrHmd_EndFrame(hmd, poses, textures);
 }

That’s all—one new line of setup and two new lines of render loop logic. The Rift’s
sensors are that easy to access. You only need to call ovrHmd_ConfigureTracking() to
start the flow of data.

 In your render loop you’re now initializing the poses array you’ve been ignoring,
using ovrHmd_GetEyePose(). This function returns the predicted orientation of each eye
at the time at which this particular frame will be displayed on the Rift.

 The method ovr::toGlm() converts the translation and orientation quaternion
returned from the Rift into a single 4 × 4 matrix, which you’ll be able to pass to the
GPU as a complete transform:

 static inline glm::mat4 fromOvr(const ovrPosef & op) {
 glm::mat4 orientation = glm::mat4_cast(toGlm(op.Orientation));
 glm::mat4 translation = glm::translate(glm::mat4(), toGlm(op.Position));
 return translation * orientation;
 }

It’s important to remember that the Rift returns its sensor data in “user” coordinates.
Before you can pass the returned basis transform to the GPU, it must be inverted from
player to worldview coordinates:

glm::inverse(ovr::toGlm(eyePoses[eye]))
Licensed to Mark Watson <nordickan@gmail.com>

123Enabling sensors
You apply the predicted orientation to the modelview matrix to reorient the world
around yourself.

5.5.1 Implications of prediction

There are a couple of different sensor samples going on during rendering when pre-
diction is enabled: one right before rendering each per-eye view, and (if you’ve turned
on timewarp—see chapter 6) another right before the v-sync. The per-eye sensor sam-
ples are predicted values, but the shorter the prediction interval, the more accurate
the predicted transform is going to be.

 If you render the eyes in the wrong order (in the case of DK2, left to right), then
the length of the prediction time for the left eye is ((time to render left frame) +
(time to render right frame) + (time to vsync) + (time to display right frame)).
If you render the eyes in the correct order, then the prediction time for the left frame
becomes (time to render left frame + time to vsync + time to display right
frame), and the prediction time for the right frame becomes (time to render right
frame + time to render left frame + time to vsync). The right eye prediction time
becomes longer, but the average prediction length goes down.

 As you saw in chapter 4, this means that the Rift cares about rendering order.
That’s why our code

 for (int i = 0; i < ovrEye_Count; ++i) {
 ovrEyeType eye = hdm->EyeRenderOrder[i];
 // ...

is careful to let the SDK dictate the order of eye update. It gives you better predic-
tion results.

5.5.2 Getting your matrices in order

The modelview matrix is conceptually the collapsing of two individual matrices: the
model matrix, which represents the position of a given item in the world, and the view
matrix, which represents the position from which you’re viewing the world. They tend
to be glued together because generally when rendering a scene, you’re not going to
change the viewpoint between rendering one object and the next. So there’s no point
in starting with a blank identity matrix and applying the same view transformation for
every single object you render.

 You’ve modified the modelview matrix before, using per-eye translations to dis-
place the camera for each eye. This gave you stereo vision, producing the same kind
of stereo depth perception you get in the real world. Adding head tracking is very
much the same, and it follows similar logic. As you concatenate the matrices for your
modelview transform (perhaps with a Stack metaphor, as we’ve done here), the order
in which you assemble your matrices will look something like this:

eye_offset_matrix * view_matrix * model_matrix...
Licensed to Mark Watson <nordickan@gmail.com>

124 CHAPTER 5 Putting it all together: integrating head tracking and 3D rendering
Adding in the head tracker transform results in this:

eye_offset_matrix * head_pose_matrix * view_matrix * model_matrix...

The ordering here is important. The eye offset matrix is specified as a translation on
the X coordinate. If you apply it after the head pose and the head pose isn’t aligned
with the world X axis, then the two eyes won’t be positioned appropriately relative to
one another.

 Remember, matrices are applied from right to left to the vectors that they’re multi-
plied onto: A × B × C × V = A × (B × (C × V)).

 Fortunately, the Oculus SDK takes some of the risk of error out of the equation if you
use their ovrHmd_GetEyePoses() method. When you call ovrHmd_GetEyePoses(), you
pass in the eyeOffsets array that you retrieved during initialization, extracted from
the headset configuration details retrieved from ovrHmd_ConfigureRendering(). The
eyeOffset is an array of two vectors, representing eye separation.

 If you dig into the implementation of ovrHmd_GetEyePoses() in the SDK, you’ll
find this snippet of code:

outEyePoses[0] = Posef(hmdPose.Orientation,
 ((Posef)hmdPose).Apply(-((Vector3f)hmdToEyeViewOffset[0])));
outEyePoses[1] = Posef(hmdPose.Orientation,
 ((Posef)hmdPose).Apply(-((Vector3f)hmdToEyeViewOffset[1])));

And that is matrix composition in action. The eye poses that are returned to you have
the eye offset matrix baked into them so that each eye pose is literally the pose of that
eye’s view, completely, including IPD.

 This means that when you use the existing SDK methods for full pose capture, your
odds of accidentally introducing an out-of-order error through your matrix math are
significantly reduced.

5.6 Summary
In this chapter you learned that

■ A complete Rift application is the cumulative product of a series of steps. Our
example evolved from mono, to stereo, to stereo distortion, to active use of the
Rift sensors.

■ The key APIs of the Oculus SDK are easily accessed and each has a logical place
in the flow of your application.

■ The proper ordering of mathematical matrices is vital to avoid hard-to-spot dis-
play bugs.

■ With simple scene design, you can set up a virtual environment that makes
those bugs easier to catch.
Licensed to Mark Watson <nordickan@gmail.com>

Performance and quality
The performance of your VR app is critical to its success or failure, far more so than
in conventional applications. With conventional applications, most of the time
poor-quality applications will result in disinterest—a financial disaster perhaps, but
generally no one is physically hurt. For VR, the stakes are higher. In VR, poor qual-
ity can lead to more than disinterest in your application and financial loss; it may
also lead to users feeling physically ill. We’ll cover motion sickness in detail in chap-
ter 10, describing its causes and its ill effects; but while those causes can be many
and varied, chief among them are poor frame rates and bad software latency. With
that in mind, let’s take a look at the critical performance criteria for VR applica-
tions and what you can do to meet them.

This chapter covers
■ Understanding why performance is so critical to

VR applications
■ Understanding why performance demands are

higher for VR than non-VR
■ Using timewarp to deal with poor renderer

performance
■ Using dynamic framebuffer scaling to improve

renderer performance
125

Licensed to Mark Watson <nordickan@gmail.com>

126 CHAPTER 6 Performance and quality
 Achieving a given level of performance in VR has a higher cost than doing so in a
conventional application because of the need for rendering two views of a given scene
rather than one. Another factor is the need to render at a higher resolution than the
target display due to the nature of the distortion effect. With these factors in mind,
this chapter discusses two technologies available to all Rift applications: timewarp and
dynamic framebuffer scaling :

■ Timewarp addresses drops in renderer performance by allowing an application
to use data from previously rendered frames if a new frame isn’t ready by the
time the display is about to refresh.

■ Dynamic framebuffer scaling addresses issues with consistently low renderer
performance by reducing the workload of rendering a given frame at the cost
of quality in the resulting scene.

Before we dig into these techniques, let’s see what drives the Rift’s performance
requirements.

6.1 Understanding VR performance requirements
When building VR apps for the Rift, you’re constrained by

■ Higher performance requirements
■ Stricter performance requirements
■ Higher rendering costs

Let’s take a closer look at each of these issues.

HIGHER PERFORMANCE REQUIREMENTS

In a standard application rendered on a monitor, low frame rates aren’t desirable, but
neither are they disastrous. Users may be dissatisfied with only 30 frames per second,
but they’re unlikely to become physically ill, even if the frame rate drops even further
occasionally.

 But in VR, the golden rule is, above all else, you must respond to changes in orien-
tation and position instantly.1 This has consequences for your application. In VR, the
maximum allowable latency (the interval between the time the user moves their head
and the time when the view is updated) is considered to be about 20 ms.

 This 20 ms interval puts a floor on your frame rate of about 50 frames per second.2

Your frame rate must never drop below that point. Lower latency (and consequently
higher frame rates) will feel even smoother and provide a greater sense of presence to
the user.

 Fifty frames per second may not seem so bad, but realistically your requirements are
significantly higher. The DK2 headset runs at 75 Hz, and in order to take advantage of

1 “Instantly” here meaning, below the user’s level of perception.
2 You heard it from John Carmack himself (oculusrift-blog.com/john-carmacks-message-of-latency/682/):

1000 ms in a second divided by 20 ms per frame = 50 frames per second, assuming the SwapBuffer call is
instantaneous.
Licensed to Mark Watson <nordickan@gmail.com>

http://oculusrift-blog.com/john-carmacks-message-of-latency/682/

127Detecting and preventing performance issues
timewarp, rendering should always be locked to the refresh rate of the device. Subse-
quent models are likely to push this refresh rate even higher. What’s more, this refresh
rate isn’t currently under the control of the application or available for modification via
the SDK. The refresh rate you get is the frame rate you must target.

STRICTER PERFORMANCE REQUIREMENTS

In a standard application, a momentary drop in frame rate can be annoying. In VR,
short-term frame rate drops are disastrous. Missing even a single frame of rendering will
result in pauses or flickering that’s both perceptible to the user and extremely damag-
ing to the sense of presence. Even worse, it can induce motion sickness. Consider the
DK2 running at 75 Hz. If a single vertical sync (v-sync) goes by without a new frame
being rendered, the effective frame rate is reduced to 38 frames per second, and the
latency is pushed above the threshold of perception, even if it’s only for one frame.

HIGHER RENDERING COST

Rendering a frame for the Rift is more expensive than rendering one for a 2D moni-
tor. For one, you have to render your entire scene twice, and the increased costs don’t
stop there.

 Due to the nature of the distortion, in order to maintain a high-quality image over
the entire distorted scene, the resolution of the offscreen target for predistortion ren-
dering must be significantly higher than that of the screen area on which it’ll eventu-
ally be displayed. For the DK2, using the default field of view, the optimal offscreen
rendering size is 1182 × 1461 pixels, compared to the 960 × 1080 pixel region where
the distortion view will be displayed. As newer headsets increase in resolution, the off-
screen rendering size will increase as well.3

 The distortion itself adds a small, but non-negligible, amount of overhead. So you
have the overhead of rendering the scene twice, the overhead of rendering over 50
percent more pixels, plus the distortion overhead, and because of the frame rate con-
straints, you’ve got much less time in which to accomplish all this work. What’s an
industrious developer to do?

6.2 Detecting and preventing performance issues
Obviously the first thing you should do is make sure you have a well-behaved render-
ing engine for VR. This means taking advantage of the existing tools that the SDK pro-
vides to create a good VR experience.

FOLLOW THE SDK GUIDELINES

In particular, you should ensure that you’re using vertical sync to lock the frame rate
to the Rift’s refresh rate. You should also be using timewarp to ensure that the per-
ceived latency is as low as possible. (More on timewarp in a moment.)

3 Fortunately, the relationship is linear, so a Rift with the same distortion mechanism but twice the resolution
will require twice the offscreen rendering size.
Licensed to Mark Watson <nordickan@gmail.com>

128 CHAPTER 6 Performance and quality
OPTIMIZING YOUR RENDERING PIPELINE

Unfortunately, the details of this kind of optimization are largely out of scope for a book
on VR development. Rendering performance as a whole is a deep topic. Entire libraries
can be written on the topic. But we can make some general basic recommendations.

 Take advantage of modern rendering techniques that minimize the number of
rendering calls required to draw something.4

 Where possible, use asynchronous mechanisms to transfer data such as geometry
and textures to the GPU. If you’re in the middle of your rendering loop and you’re
suddenly doing extra work to load the new building geometry or character skin onto
the GPU, you’re doing work you could push to another thread.5

 Find your bottlenecks so that when the time comes to work on performance in the
rendering pipeline, you know where to focus your efforts.6

DETECTING PERFORMANCE ISSUES

The first component of addressing performance issues is detecting if (or perhaps
admitting) you have one.

 “Hi, I’m Crysis, and I have low frame rates.”
 “Hi, Crysis.”
 Most games and rendering engines have some mechanism for determining the

current frame rate, so this is a good place to start. The frame rate you achieve should
be equal to the native refresh rate of the Rift display—60 Hz for the DK1 and 75 Hz for
the DK2. Future devices may vary.

 The problem with frame rate counters is that they’re generally empirical measure-
ments of how many frames you rendered over a given time. By the time you’ve fetched
the counter and found it’s not what you want, your users have already suffered the
consequences of the dropped frames as a stuttering of their environment.

 Ideally you want to discover and resolve performance issues before they happen,
or at least before they become apparent to the user. Fortunately, there are some great
techniques for doing that.

 Two main Rift-specific tools for coping with performance problems are timewarp
and dynamic framebuffer scaling. The first, timewarp, helps your application appear
to continue rendering smoothly even if the rendering pipeline is falling behind on
producing the required number of frames per second. The second, dynamic frame-
buffer scaling, helps reduce the overall load on your rendering pipeline by reducing
the number of pixels you need to render. Both are useful on their own, but they work
best if used in conjunction with each other.

4 There’s an excellent video on this kind of optimization: www.youtube.com/watch?v=-bCeNzgiJ8I.
5 See chapter 28 of OpenGL Insights (CRC Press, 2012) for an in-depth discussion of the possibilities of asynchro-

nous loading of resources.
6 See chapter 28 of GPU Gems (Addison-Wesley Professional, 2004) for basic guidelines for identifying rendering

bottlenecks. This chapter is available online at http.developer.nvidia.com/GPUGems/gpugems_ch28.html.
Licensed to Mark Watson <nordickan@gmail.com>

http://http.developer.nvidia.com/GPUGems/gpugems_ch28.html
https://www.youtube.com/watch?v=-bCeNzgiJ8I

129Using timewarp: catching up to the user
6.3 Using timewarp: catching up to the user
In a Rift application, head pose information is captured before you render the image
for each eye. But rendering isn’t an instantaneous operation; processing time and
v-sync mean that every frame can take a dozen milliseconds to get to the screen. This
presents a problem, because the head pose information at the start of the frame prob-
ably won’t match where the head is when the frame is rendered. So the head pose
information has to be predicted for some point in the future, but the prediction is
necessarily imperfect. During the rendering of eye views, users could change the
speed or direction they’re turning their head or start moving from a still position, or
otherwise change their current motion vector (figure 6.1).

THE PROBLEM: POSE AND PREDICTION DIVERGE

As a consequence, the predicted head pose used to render an eye view will rarely
exactly match the actual pose the head has when the image is displayed on the screen.
Even though this is typically over a time of less than 13 ms, and the amount of error is
very small in the grand scheme of things, the human visual cortex has millions of years
of evolution behind it and is perfectly capable of perceiving the discrepancy, even if it
can’t necessarily nail down what’s exactly wrong. Users will perceive it as latency—or
worse, they won’t be able to say what it is that they perceive, but they’ll declare the
whole experience “un-immersive.” You could even make them ill (see chapter 10 for
the relationship between latency and simulation sickness).

THE SOLUTION: TIMEWARP

To attempt to correct for these issues, timewarp was introduced in the 0.3.x versions of
the Oculus SDK. The SDK can’t actually use time travel to send back head pose infor-
mation from the future,7 so it does the next best thing. Immediately before putting the
image on the screen, it samples the predicted head pose again. Because this prediction

7 It’s very difficult to accelerate a Rift up to 88 miles per hour.

Render Render

Begin
frame

Predict
orientation

Predict
orientation

Refresh puts
content on

screen
Time when user

could change the direction
or speed of their head

movement

Figure 6.1 There will be a gap between when you sample the predicted orientation of the Rift for
each eye and when you display the rendered and distorted frame. In that time a user could change
their head movement direction or speed. This is usually perceived as latency.
Licensed to Mark Watson <nordickan@gmail.com>

130 CHAPTER 6 Performance and quality
occurs so close to the time at which the images will be displayed on the screen, it’s
much more accurate than the earlier poses. The SDK can look at the difference
between the timewarp head pose and the original predicted head pose and shift the
image slightly to compensate for the difference.

6.3.1 Using timewarp in your code
Because the functionality and implementation of timewarp is part of the overall dis-
tortion mechanism inside the SDK, all you need to do to use it (assuming you’re using
SDK-side distortion) is to pass the relevant flag into the SDK during distortion setup,
shown in the next listing.

 int distortionCaps =
 ovrDistortionCap_TimeWarp |
 ovrDistortionCap_Vignette;
 ovrEyeRenderDesc eyeRenderDescs[2];
 int configResult = ovrHmd_ConfigureRendering(hmd, &cfg,
 distortionCaps, hmd->DefaultEyeFov, eyeRenderDescs);

All you need do is add the flag ovrDistortionCap_TimeWarp to your call to ovrHmd
_ConfigureRendering().

6.3.2 How timewarp works
Consider an application running at 75 frames per second. It has 13.33 milliseconds to
render each frame (not to mention do everything else it has to do for each frame).
Suppose your “update state” code takes 1 millisecond, each eye render takes 4 milli-
seconds, and the distortion (handled by the SDK) takes 1 millisecond. Assuming you
start your rendering loop immediately after the previous refresh, the sequence of
events would look something like figure 6.2.

Listing 6.1 Dynamic framebuffer scaling example

7. Buffers
swapped,
new scene

displayed on Rift

5. SDK waits
until just before

buffer swap

6. SDK fetches
predicted pose,
starts distortion

rendering:
= 12 mst

4. Finish rendering
second eye, pass

eye renders to SDK:
= 9 mst

2. State update
ends, fetch predicted

head pose, start
rendering first eye:

= 1 mst

1. Frame begins,
update game:

= 0t

3. Finish rendering
first eye, fetch predicted

head pose, start rendering
second eye:

= 5 mst

Figure 6.2 A simple timeline for a single frame showing the points at which the (predicted) head pose is
fetched. By capturing the head orientation a third time immediately before ending the frame, it’s possible
to warp the image to adjust for the differences between the predicted and actual orientations. Only a few
milliseconds—probably less than 10—have passed since the original orientations were captured, but this
penultimate update can still strongly improve the perception of responsiveness in the Rift.
Licensed to Mark Watson <nordickan@gmail.com>

131Using timewarp: catching up to the user
1 Immediately after the previous screen refresh, you begin your game loop, start-
ing by updating any game state you might have.

2 Having updated the game state, you grab the predicted head pose and start ren-
dering the first eye. ~12 ms remain until the screen refresh, so the predicted
head pose is for 12 ms in the future.

3 You’ve finished with the first eye, so you grab the predicted head pose again
and start rendering the second eye. This pose is for ~8ms in the future, so it’s
likely more accurate than the first eye pose, but still imperfect.

4 After rendering has completed for each eye, you pass the rendered offscreen
images to the SDK. ~4 ms remain until the screen refresh.

5 The SDK wants to fetch the most accurate head pose it can for timewarp, so it’ll
wait until the last possible moment to perform the distortion.

6 With just enough time to perform the distortion, the SDK fetches the head
pose one last time. This head pose is only predicted about 1 ms into the future,
so it’s much more accurate than either of the per-eye render predictions. The
difference between each per-eye pose and this final pose is computed and sent
into the distortion mechanism so that it can correct the rendered image posi-
tion by rotating it slightly, as if on the inner surface of a sphere centered on
the user.

7 The distorted points of view are displayed on the Rift screen.

By capturing the head pose a third time, so close to rendering, the Rift can “catch up”
to unexpected motion. When the user’s head rotates, the point where the image is
projected can be shifted, appearing where it would have been rendered if the Rift
could’ve known where the head pose was going to be.

 The exact nature of the shifting is similar to if you took the image and painted it
on the interior of a sphere that was centered on your eye, and then slightly rotated the
sphere. If the predicted head pose was incorrect, and you ended up turning your head
further to the right than predicted, the timewarp mechanism would compensate by
rotating the image to the left (figure 6.3).

Original head pose With timewarp applied

The timewarp mechanism shifts
the image to the left if head pose
was farther right than predicted.

Figure 6.3 The rendered image is
shifted to compensate for the
difference between the predicted
head pose at eye render time and the
actual head pose at distortion time.
Licensed to Mark Watson <nordickan@gmail.com>

132 CHAPTER 6 Performance and quality
One caveat: when you go adding extra swivel to an image, there’ll be some pixels at
the edge of the frame that weren’t rendered before and now they need to be filled in.
How best to handle these uncomputed pixels is a topic of ongoing study, although ini-
tial research from Valve and Oculus suggest that simply coloring them black is fine.

6.3.3 Limitations of timewarp

Timewarp isn’t a latency panacea. This “rotation on rails” works fine if the user’s
point of view only rotates, but in real life our anatomy isn’t so simple. When you turn
your head your eyes translate as well, swinging around the axis of your neck, produc-
ing parallax. If you’re looking at a soda can on your desk and you turn your head to
the right, you’d expect a little bit more of the desk behind the right side of the can
to be visible, because by turning your head you’ve also moved your eyes a little bit in
3D space. The timewarped view can’t do that, because it can’t manufacture those
previously hidden pixels out of nothing. For that matter, the timewarp code doesn’t
know where new pixels should appear, because by the time you’re doing timewarp,
the scene is simply a flat 2D image, devoid of any information about the distance
from the eye to a given pixel.

 This is especially visible in motion with a strong translation component, but (per-
haps fortunately) the human head’s range and rate of motion in rotation is much
greater than in translation. Translation generally involves large, coarse motions of the
upper body that are easily predicted by hardware and difficult for the user to amend
faster than the Rift can anticipate.

 Oculus recognizes that the lack of parallax in timewarped images is an issue, and
they’re researching the topic. But all the evidence so far has been that, basically, users
just don’t notice. It seems probable that parallax timewarp would be a real boost to
latency if it were easy, but without it we still get real and significant improvements
from rotation alone.

6.4 Advanced uses of timewarp
Beyond the basics, there are a few rather nifty things you can do with timewarp.

6.4.1 When you’re running early

One obvious use of timewarp is to fit in extra processing, when you know that you can
afford it. The Rift SDK provides access to its timing data through several API functions:

■ ovrHmd_BeginFrame—Typically used in the render loop
■ ovrHmd_GetFrameTiming—Typically used for custom timing and optimization
■ ovrHmd_BeginFrameTiming—Typically used when doing client-side distortion

These methods return an instance of the ovrFrameTiming structure, which stores the
absolute time values associated with the frame. The Rift uses system time as an abso-
lute time marker, instead of computing a series of differences from one frame to the
Licensed to Mark Watson <nordickan@gmail.com>

133Advanced uses of timewarp
next, because doing so reduces the gradual buildup of incremental error. These times
are stored as doubles, which is a blessing after all the cross-platform confusion over
how to count milliseconds. See table 6.1 for the contents of ovrFrameTiming.

Generally speaking, it’s expected that the following should hold,

ThisFrameSeconds
 < TimewarpPointSeconds
 < NextFrameSeconds
 < EyeScanoutSeconds[EyeOrder[0]]
 <= ScanoutMidpointSeconds
 <= EyeScanoutSeconds[EyeOrder[1]]

although actual results may vary during execution.
 Knowing when the Rift is going to reach TimewarpPointSeconds and Scanout-

MidpointSeconds gives you a lot of flexibility if you happen to be rendering faster
than necessary. There are some interesting possibilities here: if you know that your
code will finish generating the current frame before the clock hits TimewarpPoint-
Seconds, then you effectively have “empty time” to play with in the frame. You could
use that time to do almost anything (provided it’s quick)—send data to the GPU to
prepare for the next frame, compute another million particle positions, prove the Rie-
mann hypothesis—whatever, really (figure 6.4.)

 Keep this in mind when using timewarp. It effectively gives your app free license to
scale its scene density, graphics level, and just plain awesomeness up or down dynami-
cally as a function of current performance, measured and decided right down to the
individual frame.

Table 6.1 The data members of the ovrFrameTiming struct

float DeltaSeconds The amount of time that has passed since the previous frame
returned its BeginFrameSeconds value; usable for movement
scaling. This will be clamped to no more than 0.1 seconds to pre-
vent excessive movement after pauses for loading or initialization.

double ThisFrameSeconds Absolute time value of when rendering of this frame began or is
expected to begin; generally equal to NextFrameSeconds of
the previous frame. Can be used for animation timing.

double
TimewarpPointSeconds

Absolute point when IMU (timewarp) expects to be sampled for
this frame.

double NextFrameSeconds Absolute time when current frame and GPU flush will finish, and
the next frame starts.

double
ScanoutMidpointSeconds

Time when half of the screen will be scanned out. Can be passed
as a prediction value to ovrHmd_GetSensorState() to get
general orientation.

double
EyeScanoutSeconds[2]

Timing points when each eye will be scanned out to display. Used
for rendering each eye.
Licensed to Mark Watson <nordickan@gmail.com>

134 CHAPTER 6 Performance and quality
But it’s not a free pass! Remember that there are nasty consequences to overrunning
your available frame time: a dropped frame. And if you don’t adjust your own timing,
you risk the SDK spending a busy-wait cycle for almost all of the following frame, using
past data for the next image, which can consume valuable CPU. So you’ve got a power-
ful weapon here, but you must be careful not to shoot yourself in the foot with it.

6.4.2 When you’re running late

Of course, when the flak starts to fly, odds are that you won’t be rendering frames
ahead of the clock—it’s a lot more likely that you’ll be scrambling to catch up. Some-
times rendering a single frame costs you longer than the number of milliseconds your
target frame rate allows. But timewarp can be useful here too.

 Say your engine realizes that it’s going to be running late. Instead of continuing to
render the current frame, you can send the previous frame to the Rift and let the Rift
apply timewarp to the images generated a dozen milliseconds ago (figure 6.5). The
older images won’t be quite right, but if it buys you enough time to get back on top of

Begin
frame

Timewarp
frame

Do cool stuff
for free here

Figure 6.4 Timewarp means you’ve got a chance to do extra processing for “free” if you know when
you’re idle.

Realize that you’re not
going to finish rendering

this frame in time

Begin
frame

End
previous

frame
Timewarp
previous

frame

Render
previous

frame

Figure 6.5 If you’re squeezed for rendering time, you can occasionally save a few cycles by
dropping a frame and re-rendering the previous frame through timewarp.
Licensed to Mark Watson <nordickan@gmail.com>

135Dynamic framebuffer scaling
your rendering load, it’ll be worth it, and no human eye will catch it when you occa-
sionally replay one frame out of 75. Far more importantly, the image sent to the Rift
will continue to respond to the user’s head motions with absolute fidelity; low latency
means responsive software, even with the occasional lost frame.

 Remember, timewarp can distort any frame, as long as it’s clear when that frame
was originally generated so that the Rift knows how much distortion to apply.

 The assumption here is that your code is sufficiently instrumented and capable of
self-analysis that you do more than just render a frame and hope it was fast enough.
Carefully instrumented timing code isn’t hard to add, especially with such display-
bound timing methods as ovrHmd_GetFrameTiming, but it does mean more complex-
ity in the rendering loop. If you’re using a commercial graphics engine, the engine
may already have the support baked in. This is the sort of monitoring that any 3D app
engine that handles large, complicated, variable-density scenes will hopefully be capa-
ble of performing.

 Dropping frames with timewarp is an advanced technique and probably not worth
investing engineering resources into early in a project. This is something that you
should only build when your scene has grown so complicated that you anticipate hav-
ing spikes of rendering time. But if that’s you, then timewarp will help.

6.5 Dynamic framebuffer scaling
When inspection of your application shows that you’re not producing frames quickly
enough, it’s important to make changes to try to meet your frame rate requirements.

 Many rendering engines have multiple options for scaling the rendering load,
such as different levels of quality for shadowing or antialiasing, or different levels of
texture quality. These options aren’t necessarily the kinds of things that are easy to
change from frame to frame, though. Even if they were, they tend to have visible
effects on the rendered scene and aren’t likely to have much fine tuning. If you’re
only missing your rendering time by 2 percent, ideally you’d want some dial in your
rendering engine that could reduce the load by exactly that amount, while maintain-
ing as much quality and stability in the scene as possible.

 In fact, there is just such a dial. Most high-end rendering systems tend to be bottle-
necked in the fragment processing, texture bandwidth, or framebuffer bandwidth
portions of the rendering pipeline. Any such bottleneck will be susceptible to render-
ing fewer overall pixels.

 Because the Oculus SDK functions by rendering scenes to offscreen buffer(s), you
can easily dial down the load at any time by rendering to a smaller offscreen viewport.

 In fact, the SDK appears to have been designed specifically to make this easy. Let’s
take a look at an example that allows the user to directly control the scaling effect. In
this application you’ll have two keys, HOME and END, that modify the texture scaling.
Each press of the END key will halve the total number of pixels rendered, whereas
HOME will double the total number of pixels rendered, up to the maximum of using
the full size of the offscreen framebuffer.
Licensed to Mark Watson <nordickan@gmail.com>

136 CHAPTER 6 Performance and quality
As with timewarp, the effects of dynamic framebuffer scaling are only perceptible over
time, so a static screenshot won’t give you any real impression of what’s happening.
Again, we’ve created a YouTube video to demonstrate the effect, located here: goo.gl/
KsAFRQ. Because the effect is tied to the resolution of the output, it’s best to watch the
video at its full 1920 × 1080 resolution.

 Still, we can show a bit of the difference in image quality at various levels of scal-
ing. Our basic scene consists of our standard cube, floor, and skybox that we’ve used
before (figure 6.6). This image is captured at the full resolution we’ve been using up
to now.

 You can compare a close-up view of the original resolution to one-sixteenth the
original resolution (figure 6.7).

Figure 6.6 Our scene rendered at full resolution

Figure 6.7 When you compare a close-up of the original resolution (left)
with a view one-sixteenth of the original resolution (right), you can see
that the image quality is significantly degraded.
Licensed to Mark Watson <nordickan@gmail.com>

http://goo.gl/KsAFRQ
http://goo.gl/KsAFRQ

137Dynamic framebuffer scaling
The following listing shows the example code required to adjust the “resolution dial.”

class DynamicFramebufferScaleExample : public RiftApp {
 float ipd{ OVR_DEFAULT_IPD };
 float eyeHeight{ OVR_DEFAULT_PLAYER_HEIGHT };
 float texRes{ 1.0f };

public:
 DynamicFramebufferScaleExample() {
 ipd = ovrHmd_GetFloat(hmd,
 OVR_KEY_IPD,
 OVR_DEFAULT_IPD);

 eyeHeight = ovrHmd_GetFloat(hmd,
 OVR_KEY_PLAYER_HEIGHT,
 OVR_DEFAULT_PLAYER_HEIGHT);

 resetCamera();
 }

 virtual void onKey(int key, int scancode, int action, int mods) {
 if (!CameraControl::instance().onKey(key, scancode, action, mods)) {
 static const float ROOT_2 = sqrt(2.0f);
 static const float INV_ROOT_2 = 1.0f / ROOT_2;
 if (action == GLFW_PRESS) {
 switch (key) {
 case GLFW_KEY_HOME:
 if (texRes < 0.95f) {
 texRes = std::min(texRes * ROOT_2, 1.0f);
 }
 break;
 case GLFW_KEY_END:
 if (texRes > 0.05f) {
 texRes *= INV_ROOT_2;
 }
 break;
 case GLFW_KEY_R:
 resetCamera();
 break;
 }
 } else {
 RiftApp::onKey(key, scancode, action, mods);
 }
 }
 }

 void resetCamera() {
 player = glm::inverse(glm::lookAt(
 glm::vec3(0, eyeHeight, 0.4), // Position of the camera
 glm::vec3(0, eyeHeight, 0), // Where the camera is looking
 GlUtils::Y_AXIS)); // Camera up axis
 ovrHmd_RecenterPose(hmd);
 }

Listing 6.2 Dynamic framebuffer scaling example: adjusting the “resolution dial”

The base class
is RiftApp.

Indicates the percentage
of the viewport to which
you’ll render.

HOME and
END modify
the texture
resolution.
Licensed to Mark Watson <nordickan@gmail.com>

138 CHAPTER 6 Performance and quality
 void renderScene() {
 int currentEye = getCurrentEye();
 ovrTexture & eyeTex = eyeTextures[currentEye];
 ovrRecti & rvp = eyeTex.Header.RenderViewport;
 const ovrSizei & texSize = eyeTex.Header.TextureSize;
 rvp.Size.w = texSize.w * texRes;
 rvp.Size.h = texSize.h * texRes;

 glViewport(
 rvp.Pos.x, rvp.Pos.y,
 rvp.Size.w, rvp.Size.h);

 glEnable(GL_DEPTH_TEST);
 glClear(GL_DEPTH_BUFFER_BIT);
 gl::MatrixStack & mv = gl::Stacks::modelview();
 mv.withPush([&]{
 mv.postMultiply(glm::inverse(player));
 GlUtils::renderCubeScene(ipd, eyeHeight);
 });

 std::string message = Platform::format(
 "Texture Scale %0.2f\nMegapixels per eye: %0.2f", texRes,
 (rvp.Size.w * rvp.Size.h) / 1000000.0f);
 GlfwApp::renderStringAt(message, glm::vec2(-0.5f, 0.5f));
 }
};

RUN_OVR_APP(DynamicFramebufferScaleExample);

The bulk of this example is similar to many of our earlier examples. But you’re using a
new base class, RiftApp, instead of RiftGlfwApp:

class DynamicFramebufferScaleExample : public RiftApp {

RiftApp takes care of all of the boilerplate you spent chapters 2 through 5 learning to
write. In addition to the functionality that RiftGlfwApp and its base classes handle
(detecting the Rift hardware, and creating the OpenGL windows in the right place), it
handles the configuration of distortion rendering and the handling of the head
tracker by applying the head pose to the player matrix. Classes deriving from Rift-
App only need to define what kind of scene they want to render.

 In this example you do slightly more than this minimum, because you want to
handle user interaction in the form of key presses, and you also want to track your
texture resolution:

 float texRes{ 1.0f };

In addition to your usual member variables for eye height and IPD, you have a texRes
member. This serves as a multiplication factor for the texture dimensions. It should be
a number between 1.0 (meaning you’re using the entire offscreen texture) and 0.0
(meaning you’re rendering no pixels at all). Bear in mind that you use this multiplier
with both the X and Y dimensions of the texture, so if you set it to 0.5, you’re dividing

Here you modify the
offscreen texture
based on texRes.

You also modify the viewport
to which you’ll render.

Prints out
diagnostic
information
to the scene.
Licensed to Mark Watson <nordickan@gmail.com>

139Dynamic framebuffer scaling
both the height and width of the texture in half, and thus rendering only a quarter of
the pixels, not half.

 In your onKey() method, you’re looking for presses of the HOME and END keys.
The HOME key will increase the texRes value by a constant scale, up to a maximum of
1.0. The END key will decrease the texRes value by the inverse of that constant scale:

static const float ROOT_2 = sqrt(2.0f);
static const float INV_ROOT_2 = 1.0f / ROOT_2;

Choosing the square root of 2 means that whenever you hit END, you’ll halve the
total number of pixels rendered, and every time you hit HOME, you’ll double the
number of pixels (up to the maximum value). This is a bit of a brute-force
approach to modifying the resolution and is intended simply to demonstrate the
technique. In practice, an application would want to adjust this value by a percent-
age tied to the gap between their rendering performance target and their current
actual performance.

 Finally, there’s the renderScene() method, which includes the changes required
to apply the texture scaling. Here you’ll use the value of texRes combined with the
size of the offscreen framebuffer to determine the size of the area to which you’ll ren-
der. The current eye being rendered and the OVR texture types are exposed in the
eyeTextures member of the base class, which is an array of type ovrTexture:

int currentEye = getCurrentEye();
ovrTexture & eyeTex = eyeTextures[currentEye];
ovrRecti & rvp = eyeTex.Header.RenderViewport;
const ovrSizei & texSize = eyeTex.Header.TextureSize;
rvp.Size.w = texSize.w * texRes;
rvp.Size.h = texSize.h * texRes;

By doing this calculation and storing the results in the ovrTexture Header.Render-
Viewport member, the SDK has implicitly been told the region to which you’ll be ren-
dering. The only remaining part is to update your rendering viewport so that you
actually target that region of the framebuffer:

glViewport(
 rvp.Pos.x, rvp.Pos.y,
 rvp.Size.w, rvp.Size.h);

In your applications, you may find it more intuitive to have the scaling factor be a
direct percentage, but if you do this, be sure to multiply the texture dimensions by its
square root rather than the number itself, or you’ll find your image quality degrading
faster than you expect.

 The final bit of new code is some additional rendering logic, which renders a string
containing both the texRes value and the number of megapixels being rendered.
Licensed to Mark Watson <nordickan@gmail.com>

140 CHAPTER 6 Performance and quality
6.6 Summary
In this chapter you learned

■ The performance of your VR app is a critical component key to its success or
failure, far more so than in conventional applications, meaning you have higher
performance requirements, stricter performance requirements, and higher ren-
dering costs than for more conventional applications.

■ In VR, the maximum allowable latency (the interval between the time the user
moves their head and the time when the view is updated) is considered to be
about 20 ms.

■ In VR, short-term frame rate drops are disastrous. Missing even a single frame
of rendering will result in a pause or flicker that’s both perceptible to the
user and extremely damaging to the sense of presence and can even induce
motion sickness.

■ Your app’s frame rate should be equal to the native refresh rate of the Rift dis-
play. This is 60 Hz for the DK1 and 75 Hz for the DK2.

■ There are two main Rift-specific tools for coping with performance problems:
timewarp and dynamic framebuffer scaling:
– Timewarp helps your application appear to continue smoothly even if the ren-

dering pipeline is falling behind on the required number of frames per second.
– Dynamic framebuffer scaling helps reduce the overall load on your render-

ing pipeline by reducing the number of pixels you need to render.
– Timewarp and dynamic framebuffer scaling, though useful on their own,

work best when used in conjunction.
Licensed to Mark Watson <nordickan@gmail.com>

Part 3

Using Unity

In these two chapters, we cover how to use Unity, a popular development IDE
and 3D graphics engine, to develop Rift applications. Unity is a great way to
jump-start creating 3D games because it handles just about every aspect of game
development, such as graphics, audio, physics, interaction, and networking.
Along with the Unity Integration package from Oculus, you can quickly get your
application running on the Rift. You can even do so without having to write a
single script! Unity makes it easy to get an application running on the Rift, and it
has the power you need to create fully immersive and playable applications.

 Chapter 7 covers obtaining and using the Oculus Integration package to cre-
ate Unity applications that can run on the Rift.

 Chapter 8 covers creating VR applications that take into account some of
nuances of being in a VR environment.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Unity: creating applications
that run on the Rift
Unity is a game development IDE and cross-platform 3D graphics engine developed
by Unity Technologies. Unity is a popular game engine and so we’re sure that some
of you are thinking, “I don’t want to parse the head tracker data or do the render-
ing for the Rift myself in C++. I’m a Unity developer. I want to know how to create
Rift applications using Unity.” If that sounds like we’re reading your mind, this
chapter is for you.

This chapter covers
■ Creating scenes that can be run on the Rift
■ Adding the Oculus Unity 4 Integration package

to your project
■ Using the Oculus prefab player controller and

prefab stereo camera
■ Building your application as a full screen

standalone application
143

Licensed to Mark Watson <nordickan@gmail.com>

144 CHAPTER 7 Unity: creating applications that run on the Rift
Unity handles just about every aspect of game development, such as graphics, audio,
physics, interactions, and networking. Developing for the Rift adds two new tasks to
the process: using the head tracker data to change the point of view and properly ren-
dering stereo images to the display. That’s where the Oculus Unity 4 Integration pack-
age comes in. It includes a stereo camera prefab, that, when used in place of the
typical single camera in a scene, handles both of those tasks for you.1

NOTE Prefabs are reusable game objects stored in your Project view. Prefabs
allow you to define an object and reuse it as many times as you want in a
scene. When a prefab is added to a scene, the prefab in the scene is an
instance of the original prefab—essentially a clone of the prefab in your Proj-
ect view. Any changes you make to the prefab in the Project view will be
applied to every instance of the prefab in your scene.

In addition, to give you an example of how to use the stereo camera prefab with a
character controller, the Integration package includes a player controller prefab that
incorporates the stereo camera prefab with a first-person character controller. With
the Oculus player controller prefab, you can even create a navigable Rift application
without doing any scripting of your own.

Downloads and requirements
To create Rift applications using Unity, you’ll need Unity 51 and the Oculus Unity 4
Integration package version 0.5.0.1-beta.

Unity is available from the Unity Technologies at store.unity3d.com. If you’re new to
Unity, we highly recommend working through the Editor tutorial (unity3d.com/learn/
tutorials/modules) on the Unity website. This tutorial will get you up to speed with
the Unity interface and Unity development concepts. If you’re looking for something
more comprehensive, we recommend Unity in Action by Joseph Hocking (Manning
Publications, 2015).

The Oculus Unity 4 Integration package can be obtained from the Oculus VR Devel-
oper Center Downloads page at developer.oculusvr.com/?action=dl. The file is Unity 4
Integration.

The Oculus Integration package is a collection of scripts, prefabs (reusable Unity
objects), and plugins that provide everything you need to get a Unity application run-
ning on the Rift. Unlike the previous chapters, we won’t be making use of the Oculus
SDK directly and you won’t need to have it installed.

The example scenes and scripts used in this chapter are available from our GitHub
repository in the examples/unity/ directory. Note that Unity uses C# and JavaScript,
and we’ll be using those languages for the example code in this chapter.

1 As this book was going to press, native VR support was added to Unity 5.1. To use the Oculus Unity 4 Integra-
tion package with Unity 5.1, in your project’s Player Settings, ensure that the Virtual Reality Supported check
box is unchecked.
Licensed to Mark Watson <nordickan@gmail.com>

https://store.unity3d.com
http://unity3d.com/learn/tutorials/modules
http://unity3d.com/learn/tutorials/modules
https://developer.oculusvr.com/?action=dl

145Creating a basic Unity project for the Rift
 In this chapter, we’ll show you how to use Unity and the Oculus Unity Integration
package to create a simple scene that can be run on the Rift. The basic steps are

1 Create a project and scene in Unity.
2 Import the Oculus Unity Integration package into your project’s assets.
3 Use the Oculus player controller prefab (OVRPlayerController) or the Oculus

stereo camera prefab (OVRCameraRig) with a custom character controller in
your scene.

We’ll be covering these steps in detail in the following sections along with using data
from the user’s profile in your application and building your application as a full-
screen standalone application for testing and distribution.

Although our complete example scenes are available on our GitHub repository in the
examples/unity directory, we recommend that you create your own project and a sim-
ilar scene to work with. We’ll be going over all of the steps needed to create each
scene, and by doing each step as we go, you’ll be sure to get a solid grip on using the
Oculus Integration package. Start by downloading the Unity 4 Integration package
from developer.oculusvr.com. It’s not the smallest of downloads (274 MB), so while
that download is in progress, you can start creating a scene of your own.

7.1 Creating a basic Unity project for the Rift
You add Rift support to a Unity project from within a scene, so to get started you’ll
need a project and a scene to work with. If you want to see the Rift in action, for a bare
minimum scene all you need is a plane to move around on, a light to see by, and some
simple objects to give you something to look at.

 An important caveat about creating scenes for the Rift, even for a bare minimum
scene, is that virtual size matters!

7.1.1 Use real-life scale for Rift scenes

By default, the units in Unity are meters, and one Unity unit represents one meter in
space.2 When creating a scene for the Rift, you’ll find it’s best to design the scene to

Working without a Rift
Using Unity and the Oculus Unity Integration package is a great way to start developing
for the Rift, even before you have one. When building your VR application, you should
include both a non-Rift player controller (and be sure to include using the mouse to con-
trol where the character looks, in both Project view and Y directions) and a Rift player
controller. Then, by enabling and disabling the appropriate player controllers, you can
easily test-run your application with and without the Rift attached. We’ll be pointing out
best practices as we go, along with some problems that are only visible when viewed
on the Rift, so with good planning you can avoid some unpleasant surprises.

2 This is a common convention in OpenGL and many other 3D platforms as well.
Licensed to Mark Watson <nordickan@gmail.com>

http://developer.oculusvr.com

146 CHAPTER 7 Unity: creating applications that run on the Rift
scale, and there are two excellent reasons for doing so. First, all components in the
Oculus Integration package were created to scale, and it’ll save you time and customi-
zation to already have a world where these components fit. For example, the default
character controller in the Oculus Integration package is 2 units (meters) tall and you
can’t simply stick a 2-meter-tall character into a 10-centimeter-tall world. And,
although character size may seem easily adjusted, it’s not the only adjustment you’d
need to make. You’d also have to update the stereo camera parameters for your one-
tenth scale world to look correct. Second, VR worlds designed to scale are more com-
fortable for players to use and can help curb motion sickness, which is an important
issue to consider when creating VR.

Now that you know what the bare minimum scene requirements are, let’s build a scene
to work with.

7.1.2 Creating an example scene
For the scenes used in this chapter, we didn’t want to be someone who does only the
bare minimum. So, for each of the scenes in our example project, we used assets from
the Unity 5 Environment asset package to add flair and to create a more pleasant
scene3 to view—a sandy beach with palm trees (figure 7.1).

 To create a similar scene, create a new project and new scene. Be sure to include
the standard Unity package needed to create your scene (Environment) and to select
3D for the project type. After the project has been created, to create a scene like the
one in figure 7.1 complete the following steps:

1 Add a plane4 for the character to stand on. Use a 10 × 10 plane positioned at
the origin point (GameObject > 3D Object > Plane, Transform - Scale – 10 × 1 ×
10) to give yourself room to roam around and rename this object Beach.

2 Add a Directional Light set above the scene so you can see where you’re going
(GameObject > Light > Directional Light). Set the Transform position Y to 30
to move it up and out of the way.

3 Dress the scene up a bit using the sand and palm assets from the Unity standard
assets. To add a sky, select Window > Lighting and drag a skybox material onto
the Skybox Material slot in the Inspector.

Creating comfortable virtual environments
Designing to scale isn’t the only thing you can do to reduce motion sickness. Using
darker textures, avoiding objects that flicker (including skinny objects that can flicker
unintentionally), and using elevators rather than stairs are all things that can help.
For a more complete description of what you can do, see chapter 10.

3 During testing, using darker textures, rather than an all-white scene, caused fewer headaches.
4 A plane has no volume and scale doesn’t work on the Y axis; therefore, the Y value is typically set to 1. Planes

are single-sided objects and the orientation can be changed by setting Y to a negative value (-1).
Licensed to Mark Watson <nordickan@gmail.com>

147Importing the Oculus Unity 4 Integration package
With the scene ready, the next step is to import the Oculus Integration package into
the project.

7.2 Importing the Oculus Unity 4 Integration package
If you haven’t already done so, download the Unity 4 Integration ZIP file from
developer.oculusvr.com. Extract the contents of the file to a stable location; these are the
Oculus resources you’ll be using in Unity. While you’re there, the download also includes
a handy Integration Guide, OculusUnityIntegrationGuide.pdf, that’s worth a read.

 To import the Oculus Unity Integration package into your project, complete the
following steps:

1 From the top menu, under Assets choose Import Package > Custom Package.
2 Find the OculusUnityIntegration folder that you extracted and select Oculus-

UnityIntegration.unitypackage.

Alternatively, with Unity already running, you can navigate on your desktop to where
you’ve unzipped the integration package and double-click OculusUnityIntegra-
tion.unitypackage directly or drag the package to the asset panel.

 You’ll now see a list of the items that’ll be imported into your project (figure 7.2).
For a complete description of these packages, see the OculusUnityIntegrationGuide
.pdf that came with the OVR Unity download.

 Click Import to add the packages into your project, and then be sure to save
the changes.

 After importing the Oculus Integration package, you should see an OVR directory
and a Plugins directory added to your project’s assets (figure 7.3).

Figure 7.1 Our sample game scene
Licensed to Mark Watson <nordickan@gmail.com>

http://developer.oculusvr.com

148 CHAPTER 7 Unity: creating applications that run on the Rift
Click Import
to import all

items.

You want to import
all items and all
items are checked
by default.

Figure 7.2 The Oculus packages to import into your project

Figure 7.3 The OVR assets and plugins added to your project
Licensed to Mark Watson <nordickan@gmail.com>

149Using the Oculus player controller prefab: getting a scene on the Rift, no scripting
If you look in the Assets > OVR > Prefabs folder, you’ll see two prefabs: OVRCameraRig
and OVRPlayerController:

■ The OVRCameraRig prefab is a stereo camera that’s used in place of a single
Unity camera.

■ The OVRPlayerController prefab is an OVRCameraRig prefab attached to a
character controller.

These two prefabs are your fast-pass tickets to getting a Unity application running on
the Rift.

7.3 Using the Oculus player controller prefab: getting a
scene on the Rift, no scripting required
The Oculus player controller prefab, OVRPlayerController, is the easiest way to get a
scene running on the Rift because it contains both a character controller and the Rift
stereo camera. Let’s look at how to use it in a scene, and then we’ll take a closer look
at the OVRPlayerController prefab itself to give you a better idea of what you can do to
customize it for your needs.

7.3.1 Adding the OVRPlayerController prefab to your scene

The OVRPlayerController contains both a stereo camera and a character controller, so
all you need to do to have a functioning Rift scene is add it to the scene. In our exam-
ples, Beach_OVRPlayerController is the completed scene using this prefab.

 To add the OVRPlayerController prefab to your scene, complete the following steps:

1 Drag the OVRPlayerController prefab from the Project view onto the Scene
view. The OVRPlayerController prefab can be found in Project view: choose
Assets > OVR > Prefabs.

2 Reposition the OVRPlayerController to a good place in the scene. It should be
located above the Beach and not colliding with any objects. The OVRPlayer-
Controller prefab character controller has a default height of 2 units and a
radius of 0.5 units. The position is the center of the capsule, so you should set
the Transform Position Y to 1 so that the OVRPlayerController is positioned
above the Beach.

3 Remove or disable any other cameras and audio listeners you might have in the
scene. Warning! You’ll get an error if there’s more than one audio listener in
the scene. Both the default main camera and the OVRCameraRig prefab con-
tain audio listeners.

You can give this scene a test run.
Licensed to Mark Watson <nordickan@gmail.com>

150 CHAPTER 7 Unity: creating applications that run on the Rift
7.3.2 Doing a test run: the Unity editor workflow for Rift applications

For quick iteration, you’ll want to be able to run applications in the Unity editor. To
run Rift applications in the Unity editor5 with the Rift attached, do the following:

1 Have your monitors configured for Extended mode.
2 Grab the Game view from the editor and drag it onto the Rift display (the

extended portion of your screen).
3 Click the maximize button on the top right of the game window (to the left of

the X button) to switch to full screen.

This method can work for quick iteration, but for your comfort, you should build a
standalone app for testing. We’ll cover how later in this chapter.

The first thing you should see when running the application is the Oculus health and
safety warning (figure 7.4).

 This health and safety warning is automatically included in every Rift application
you build. To dismiss this warning, you can press any key. You should now be able to
wander the beach and look around (figure 7.5).

 Looking down, you’ll see that you’re a floating head in space—you don’t have a
body or a static reference point. This can be disorientating for many users, and you
can help curb motion sickness in your applications by providing your character with
the option to have a body or other static reference point. For more ideas on how to
prevent motion sickness, see chapter 10.

 You can navigate the scene using the W, A, S, D keys on a QWERTY keyboard and
mouse controls, or a connected game controller.6

 Now that you’ve seen the OVRPlayerController prefab in action, let’s look at the
Prefab itself to get a better idea of how it works.

5 This workflow is for Windows development. For Mac users, for quick tests, we found it easiest to run in mir-
rored mode and select Build And Run from the File menu. Note that there are significant quality issues with
mirrored mode, and you may need to build and then launch the application using extended mode to get a
usable test run.

Headache warning! Maximize On Play isn’t full screen
When testing your game in the Unity editor, using Maximize On Play will maximize
the Game view to 100 percent of your editor window, which isn’t quite full screen.
Because the editor window borders are on the game window, you’ll still lose a small
percentage of the screen to desktop elements. This reduction means the alignment
is slightly off, and it also means you aren’t seeing the actual scale. Both of these
side effects can lead to major headaches. Although using Maximize On Play is a quick
way to iterate, for a better and more comfortable testing environment do a standalone
build for each test run; see section 7.6.

6 XInput-compliant gamepads aren’t supported on Mac OS.
Licensed to Mark Watson <nordickan@gmail.com>

151Using the Oculus player controller prefab: getting a scene on the Rift, no scripting
Figure 7.4 The Oculus health and safety warning

Figure 7.5 The beach scene on the Rift
Licensed to Mark Watson <nordickan@gmail.com>

152 CHAPTER 7 Unity: creating applications that run on the Rift
7.3.3 The OVRPlayerController prefab components

If you look at the OVRPlayerController prefab in Hier-
archy view (figure 7.6), you can see that it consists of
the OVRPlayerController object and the child objects:7

ForwardDirection and the OVRCameraRig prefab.
 The OVRPlayerController object itself is a character

controller with two C# scripts attached (figure 7.7) that
handle character movement.

 You can see in the Inspector that the default value for the CharacterController
Height is 2 and the Radius is 0.5. This means that the character will take up a
capsule-shaped space that’s 2 meters high and 1 meter in diameter. When designing
your VR world, keep this size in mind so that you can be sure to give your character
enough space to comfortably move around without unintentionally colliding with
other objects.

7 The Unity hierarchy allows you to connect objects with parent-child relationships. To make an object the child
of another object, in the Hierarchy view, drag the GameObject you want to be the child onto the GameObject
you want to be the parent. This defines the relationship. The parent-child relationship is important because
all changes to the parent’s Transform (move, scale, or rotate) are applied to its children as well.

Figure 7.6 The OVRPlayer-
Controller prefab hierarchy

The Character Controller
default Height is 2 and
the Radius is 0.5. This
means that the character
will take up a capsule-shaped
space that is 2 meters high
and 1 meter in diameter.

The OVRPlayerController
has two scripts attached.

Figure 7.7 The OVRPlayerController in the Inspector panel
Licensed to Mark Watson <nordickan@gmail.com>

153Using the Oculus stereo camera prefab: getting a scene on the Rift
The two C# scripts attached to the OVRPlayer-
Controller prefab are OVRPlayerController.cs
and OVRGamepadController.cs. These two scripts
can be found in Project view: choose Assets > OVR
> Scripts > Util. The OVRPlayerController.cs and
OVRGamepadController.cs scripts allow you to
navigate the scene using the W, A, S, D keys and
mouse controls or a connected game controller.
A complete description of the control layout
and supported game controllers can be found in
the OculusUnityIntegrationGuide.pdf, which can
be found in the Unity 4 Integration package.

 Let’s now turn our attention to the child objects: ForwardDirection and the OVR-
CameraRig prefab (figure 7.8).

 The ForwardDirection game object only contains the matrix that determines
motor control direction. As we mentioned when testing the OVRPlayerController,
when you look down you don’t have a body. Being just a floating head in space can be
disorienting, and we recommend giving your player the option of having a character
body to look at. If you choose to give your character a body, the ForwardDirection
game object is a convenient location to put the body geometry.

 The OVRCameraRig prefab is the head and eyes of the Oculus Integration pack-
age. It includes stereo camera anchor transforms (LeftEyeAnchor and RightEye-
Anchor) and a transform for the spot between both eyes (CenterEyeAnchor) all
organized under a TrackingSpace object. The attached scripts handle the image pro-
cessing for proper display on the Rift and using the head tracker data to change the
user’s point of view. This prefab can be used independently of the OVRPlayerController.
We’ll cover its use, structure, and attached scripts in the next section.

7.4 Using the Oculus stereo camera prefab: getting a
scene on the Rift using your own character controller
If you find that the OVRPlayerController controls don’t meet the needs of your
application, you can use the OVRCameraRig prefab with your own custom controller
to get a scene on the Rift. The OVRCameraRig prefab serves as the head and eyes of
the Oculus Integration package. It provides a stereo camera and the scripts for proper
display to the Rift, and it handles the head tracker data to change the user’s point
of view.

 First we’ll look at how to use the OVRCameraRig prefab with a basic character con-
troller. Then we’ll dig into the details of the OVRCameraRig prefab itself to help you
get a better idea of what adjustments to the prefab’s default values you can make to
create a more comfortable experience for your users and to see what options it pro-
vides that you can take advantage of to create a better character controller.

Figure 7.8 The OVRPlayerController
prefab hierarchy
Licensed to Mark Watson <nordickan@gmail.com>

154 CHAPTER 7 Unity: creating applications that run on the Rift
 To use the OVRCameraRig prefab in your scene, you need to attach it to a moving
object, such as a character controller. For our example, you’ll take these steps:

1 Create a scene.
2 Add a character controller to the scene.
3 Add the OVRCameraRig prefab to the character controller.
4 Change the MouseLook script for a more comfortable Rift environment.

The next sections will walk you through these steps.

CREATE A SCENE

You can’t have two character controllers in the same scene, so you’ll need to create a
new scene for this example. You can use the same basic scene that you used for the
OVRPlayerController; the basic scene requirements are the same. For a simple way to
create the new scene, save a copy of the OVRPlayerController scene and then delete
the OVRPlayerController prefab from the scene.

ADD A CHARACTER CONTROLLER

In this example you’re going to use a character controller capsule with the Character-
Motor.js, FPSInputController.js, and MouseLook.cs scripts,8 which can be obtained
from our GitHub repository.

To add this character controller to your scene, complete the following steps:

1 Add an empty GameObject to your scene and rename it Player to make it eas-
ier to keep track of it.

2 Under the GameObject menu, select Create Empty.
3 Add a character controller to the Player game object and adjust the Transform

Position setting of the Player object so that it’s located above the Beach plane
and not colliding with any objects.

8 These scripts are from the standard Unity 4.6 Character Controller assets package but have been updated for
the Unity 5 API.

Why not use the FirstPersonController.cs script that comes with Unity 5?
Unity 5 included a significant refresh of the standard asset packages. These updates
included adding a number of options to the first-person controller script, such as foot-
step sounds, head bob, and FOV kick. These options can be great in traditional
games, but for VR they can be rather problematic. Head bob and FOV kick are partic-
ularly concerning because these types of motion can be severe motion sickness trig-
gers for some users. For that reason, we’ve chosen not to use the first-person
controller script from Unity 5. For more information about motion sickness and what
you can do about it, see chapter 10.
Licensed to Mark Watson <nordickan@gmail.com>

155Using the Oculus stereo camera prefab: getting a scene on the Rift
4 From the Component menu, select Physics > Character Controller. The default
height for the character controller is 2, so for the Transform setting of the
Player object, set Y Position to 1 to reposition the Player object so that it’s not
colliding with the Beach.

5 Add the CharacterMotor.js, FPSInputController.js and MouseLook.cs control
scripts to your Player capsule. Simply drag the scripts onto your Player (fig-
ure 7.9). If you don’t have these assets, these scripts can be found on our
GitHub repository.

You now have a character controller, called Player, in your scene (figure 7.9). If you
want to test this setup with a single camera, add a camera to the player as a child
object and do a test run, but be sure to remove the single camera before adding the
OVRCameraRig prefab.

ADD THE OVRCAMERARIG PREFAB TO THE CHARACTER CONTROLLER

With the character controller and scripts in place, you can now add the Rift stereo
cameras to the Player. To add the OVRCameraRig to your scene, grab the OVRCamera-
Rig prefab from the Project View in Assets > OVR > Prefabs and add it as a child of
your Player, as seen in figure 7.10.

The Player uses the
default Height of 2 and
Radius of 0.5.

The Player has three
scripts attached.

The Y position is set to
1 so that the Player
does not collide with
the Beach.

Figure 7.9 The Player character controller expanded in the Inspector
Licensed to Mark Watson <nordickan@gmail.com>

156 CHAPTER 7 Unity: creating applications that run on the Rift
If you haven’t already done so, you should disable or delete any other character con-
trollers and cameras in the scene, such as the OVRPlayerController we used in the pre-
vious section, or the main default camera if you’re using a new scene. Go ahead and
give the scene a test run. You will see the health and safety warning first. After you
press any key to dismiss it, you should see your beach scene (figure 7.11).

You should be able to move the character around, but you may notice that using the
mouse allows you to look in every direction, which can be very uncomfortable. The
mouse cursor is still visible but only to one eye, which can also be quite annoying. To
prevent these two issues, you need to make adjustments to the MouseLook.cs script
for use with the Rift.

Add OVRCameraRig
as a child of the Player.

Figure 7.10 The OVRCameraRig added as a child of the Player
in the scene hierarchy

Figure 7.11 The scene displayed in the Rift
Licensed to Mark Watson <nordickan@gmail.com>

157Using the Oculus stereo camera prefab: getting a scene on the Rift
CHANGE THE MOUSELOOK SCRIPT FOR USE WITH THE RIFT
You can make two simple changes to the MouseLook.cs script to create a more com-
fortable environment on the Rift. First, you should set the axes for the mouse rotation
appropriate to your testing environment. If you’re testing with a Rift attached, we rec-
ommend setting Axes to MouseX because you’ll be using the Rift to look in all direc-
tions. If testing without a Rift, we recommend setting it to MouseXAndY so that you
can use the mouse to look in all directions. Second, you should hide the mouse cur-
sor. To make these changes, complete the following steps:

1 In the Player Inspector for the MouseLook script (figure 7.12), set Axes to MouseX.
2 In the MouseLook.cs script, edit the Start() function by adding the following

line to hide the mouse cursor:

Cursor.lockState = CursorLockMode.Locked;
Cursor.visible = false;

3 Give it a test run.

You should now be able to navigate the scene and use the mouse to rotate only on the
X axis. The mouse cursor should no longer be visible.

 If you tested both the OVRPlayerController and the Unity Standard Player control-
ler, you might have noticed that the default player speeds for OVRPlayerController are
much slower than those in the Standard Unity Player controller. Character speed plays
a big part in how comfortable the VR environment you’re creating is, and in general,
you want to use real-world speed and abilities. Again, for more information about
motion sickness and what you can do about it, see chapter 10.

 Now that you’ve seen OVRCameraRig in action, let’s take a closer look at the OVR-
CameraRig prefab components to get a better idea of how it works and to see what
other options are available.

7.4.1 The OVRCameraRig prefab components

If you click the OVRCameraRig prefab in the
Hierarchy view, you can see that it consists of
an OVRCameraRig object and four child objects:
LeftEyeAnchor, CenterEyeAnchor, RightEye-
Anchor, and TrackerAnchor (figure 7.13) under
a TrackingSpace container object.

 Let’s start by looking at the OVRCameraRig
object and its attached scripts (figure 7.14).

If you’re testing with a
Rift attached, set Axes to
MouseX. If you’re testing
without a Rift attached,
set it to MouseXAndY.

Figure 7.12 The MouseLook script in the Player Inspector

Figure 7.13 The OVRCameraRig
hierarchy
Licensed to Mark Watson <nordickan@gmail.com>

158 CHAPTER 7 Unity: creating applications that run on the Rift
As you can see in figure 7.14, OVRCameraRig has two C# scripts attached: OVRCamera-
Rig.cs and OVRManager.cs. These scripts can be found in the Project View in Assets >
OVR > Scripts.

 The OVRManager script is the main interface between Unity and the Rift hard-
ware. It references the low-level C API (Ovrcapi.cs) HMD wrapper, the display manager
(OVRDisplay.cs), and the tracker (OVRTracker.cs). Basically, this script performs the
heavy lifting of working with the Rift, because it does much of the work detailed in
chapters 2 through 5 of this book, including initializing the Oculus SDK, getting an
instance of the HMD, getting the tracker data, and properly rendering to the display.

NOTE This script allows you to change the Rift reset values. It should be
declared only once.

Let’s take a look at the public values (figure 7.15).

OVRCameraRig
has two scripts
attached.

Figure 7.14 OVRCameraRig expanded in the Inspector

These scales allow you to manipulate
pixel fidelity for more control over
performance and quality trade-offs.

Disable this option if you want
the tracker’s position to remain
the same from one scene
to the next.

When enabled, Use Position
Tracking updates the HMD position.

Time Warp reduces latency. You
can experiment with the effects using
the Freeze Time Warp option.

Figure 7.15 The OVRManager script values
Licensed to Mark Watson <nordickan@gmail.com>

159Using the Oculus stereo camera prefab: getting a scene on the Rift
The OVRCameraRig script is the interface
between Unity and the cameras, and it’s where
all camera control should be done. This script
has no public values (figure 7.16).

 Let’s now look at LeftEyeAnchor, Center-
EyeAnchor, and RightEyeAnchor, child objects
attached to OVRCameraRig in the Tracking-
Space container object (figure 7.17).

 These child objects contain transforms for
the poses of the left and right eyes, as well as the
transform for the pose halfway between the eyes.

 As you might surmise, both LeftEyeAnchor and RightEyeAnchor contain Unity
camera objects. These are the cameras that provide the views for the left and right
eyes (figure 7.18).

Figure 7.17 The OVRCameraRig hierarchy

Figure 7.16 The OVRCameraRig
script expanded in the Inspector

Figure 7.18 LeftEyeAnchor
expanded in the Inspector.
Licensed to Mark Watson <nordickan@gmail.com>

160 CHAPTER 7 Unity: creating applications that run on the Rift
The CenterEyeAnchor object contains a transform and an audio listener (figure 7.19),
but it doesn’t contain a camera.

 Why have a CenterEyeAnchor? Knowing the exact position between the eyes will
make it easier to determine what the user is looking at. That position will come in
handy when creating a UI—something we’ll cover in the next chapter.

 The distance between the cameras (LeftEyeAnchor and RightEyeAnchor) is set by
the Oculus scripts to be the user’s IPD (the distance between their eyes, as you’ll
recall). Let’s take a closer look at this value and where it comes from.

7.5 Using player data from the user’s profile
Included in the Oculus Runtime is the Oculus Configuration tool. This tool allows
users to create a personal profile with information such as their height and their IPD.
If the user hasn’t created a user profile using the Oculus Configuration tool, the
default values are used.

 Setting the distance between the virtual stereo cameras to the user’s actual IPD can
help curb motion sickness for your users. To help your users have the best possible
experience, you should encourage them to create a profile.

7.5.1 Ensuring the user has created a profile

Creating a user profile is ultimately up to the user. To encourage the user to create a
profile, stress the importance of setting it up in the application’s documentation. Be
sure to cover exactly how to set up a profile and why it needs to be done. Documenta-
tion is a good start, but relying on users to read and follow the documentation, some-
thing we all know many won’t do, isn’t a complete solution. You can also check to see
if a profile has been created, and if not, prompt the user to create one.

KNOWING WHICH PROFILE IS BEING USED

To learn which profile is being used, you can use the GetString() method found in
the OVRManager.cs script:

public string GetString(string propertyName, string defaultVal = null)

Figure 7.19 CenterEyeAnchor
expanded in the Inspector
Licensed to Mark Watson <nordickan@gmail.com>

161Building your application as a full screen standalone application
Listing 7.1 shows a simple example of using this method to print the name of the cur-
rent user profile to the console log. You can test this script by attaching it to an empty
game object in a scene that’s using the OVRCameraRig or OVRPlayerController pre-
fab. With the Rift attached, run the scene in the Unity editor. If default is returned,
no user profile has been found.

using UnityEngine;
using System.Collections;
using Ovr;

public class report : MonoBehaviour {
 void Start () {
 Debug.Log (OVRManager.capiHmd.GetString(Hmd.OVR_KEY_USER, ""));
 }
}

The GetString() method found in the OVRManager.cs script method is used to get the
profile values for the current HMD. The OVRManager.cs script gets a reference to the
current HMD, capiHmd. The Hmd class, defined in OvrCapi.cs, provides a number of con-
stants that you can use to get user profile information for the current HMD. This exam-
ple used OVR_KEY_USER to get the profile name. You could also get the user’s height
(OVR_KEY_PLAYER_HEIGHT), IPD (OVR_KEY_IPD), or gender (OVR_KEY_GENDER).

 Knowing which profile is in use is a start, but printing it to the console won’t help
your users. They won’t be able to see it or know what it means. For it to be useful to
the user, you need to present this information in a reasonable way—and that means
building a UI for your VR application. UI for VR is big topic on its own, and we’ll be
covering UI design in the next chapter.

7.6 Building your application as a full screen standalone
application
As we mentioned after the first test run, using Maximize On Play in the Unity editor,
though quick and easy, isn’t a great way to test the application because it isn’t exactly
full screen. Because it’s less than full screen, the scale is slightly off and the alignment
may also be off. Combined, these two issues can make testing uncomfortable. In addi-
tion, when using the editor for testing, you’ll need to use Extended mode9 for your
monitor setup, which means you won’t be able to see what’s displayed on the Rift with-
out putting it on. For a better testing environment, you’ll want to do a standalone

Listing 7.1 report.cs: printing the current user profile name to the console log

9 Mac users can use mirrored mode, but application performance suffers significantly. In particular, scene jud-
der—the whole view jittering as you look around—occurs when the application’s frame rate falls below 75
FPS. If you want to use mirrored mode, you can try setting your display’s refresh rate to 60 Hz. Though this
results in screen blur rather than judder, we found this to be less headache inducing and that being able to
see what the person on the Rift is doing and the faster workflow were reasonable trade-offs for the perfor-
mance hit while testing.

Prints the name of the
current user profile to

the console log
Licensed to Mark Watson <nordickan@gmail.com>

162 CHAPTER 7 Unity: creating applications that run on the Rift
build for each test and you will, of course, also need to package the application as a
standalone build for distribution.

 To build the project as a standalone application, complete the following steps:

1 In the Project Settings, set the default screen resolution to that of the Rift. For
the DK1 use 1280 × 800 and for the DK2 use 1920 × 1080 (see figure 7.20). Set-
ting the screen resolution raises the odds that you’ll default to what’s present.
Select Edit > Project Settings > Player.

2 In the Inspector for Player Settings under Resolution and Presentation, for a
DK1 Rift uncheck Default Is Full Screen, and then set Default Screen Width to
1280 and Default Screen Height to 800; for a DK2 Rift, uncheck Default Is Full
Screen, and then set Default Screen Width to 1920 and Default Screen Height
to 1080, as seen in figure 7.20.

3 Select File > Build Settings from the main menu.
4 In the Build Settings window, select the appropriate Target Platform and Archi-

tecture settings for your build.
5 Click Build.

Building the application for Windows will create an <App>_ DirectToRift.exe Rift-
specific binary and an <App>_Win.exe standard binary (along with the <App>_Win_Data
folder). The <App>_Win_DirectToRift.exe binary produced by the build can be run
in Direct to HMD mode. Using Direct to HMD mode will allow you to see what’s on the
Rift even when you aren’t wearing the Rift (a very useful feature when testing).
Although <App>_Win_DirectToRift.exe works in both Direct and Extended modes,
you should still include the <App>_Win.exe in your final distribution.

 When developing on/for Windows, you should avoid using File > Build & Run
because it runs the standard binary and not the DirectToRift binary and therefore
can’t be used in Direct to HMD mode.

 When developing on/for a Mac, we’ve found that File > Build & Run was some-
times a reasonable option. Mac applications can still be run in mirrored mode,
although performance suffers. The advantage of being able to see what was on the
Rift without wearing it and the turnaround time of simply selecting File > Build & Run
to see the results of our changes often outweighed the performance hit.

Figure 7.20 Player Project Resolution
settings for a DK2 Rift in the Inspector
Licensed to Mark Watson <nordickan@gmail.com>

163Summary
7.7 Summary
In this chapter you learned that

■ The OVRPlayerController and OVRCameraRig prefabs handle the Rift-specific
development tasks of using the head tracker data to change the point of view
and properly render stereo images to the display for you.

■ The OVRPlayerController prefab can be used to create Rift-compatible applica-
tions without doing any scripting of your own.

■ The OVRCameraRig prefab can be used with your own character controllers
and scripts to create Rift-compatible applications.

■ The OVRCameraRig prefab uses the player data gathered by the Oculus Config-
uration tool in your Unity applications, allowing you to create a better user
experience. Encourage your users to create a profile.

■ The OVRManager.cs script is the main interface between Unity and the Rift
hardware. Basically, this script performs much of the work detailed in chapters
2 through 5 such as initializing the Oculus SDK, getting an instance of the HMD,
getting the tracker data, and properly rendering to the display.

■ The distance between the two cameras is set by the Oculus scripts to be the
user’s IPD—that is, the distance between their eyes.

■ To know which profile is being used, you can use the GetString() method
found in the OVRManager.cs script.

■ Using Maximize On Play in the Unity editor isn’t full screen, which can make
testing uncomfortable. For a better testing environment, create a standalone
build for each test.

■ Building the application for Windows will create an <App>_ DirectToRift.exe
Rift-specific binary and an <App>_Win.exe standard binary (along with the
<App>_Win_Data folder). The <App>_Win_DirectToRift.exe binary produced
by the build can be run in Direct to HMD mode.

■ When developing on/for Windows, don’t use File > Build & Run because it
runs the standard binary and not the DirectToRift binary and therefore can’t be
used in Direct to HMD mode.

■ When developing on/for a Mac, we’ve found that File Build & Run might be
a reasonable option because Mac applications can be run in mirrored mode
(although performance suffers).
Licensed to Mark Watson <nordickan@gmail.com>

Unity: tailoring your
application for the Rift
Creating usable and immersive VR environments takes a lot more than simply get-
ting your application running on the Rift. Being in a VR environment is different
than using a traditional monitor, and those differences have some rather far-reaching
implications for how you design your application’s UI and how you determine per-
formance and quality criteria. They’ll even affect how you get the user into the
application in the first place!

This chapter covers
■ Building a UI for VR
■ Using Rift head tracking to interact with objects

in a scene
■ Easing the user into VR
■ Improving performance and quality

Looking at things from a Unity perspective
Many of the topics we’re covering here are covered more broadly in chapters 9 and
10. This chapter will get you through the basics, but if you want to delve into any of
the issues in more depth, we strongly recommend reading those two chapters as well.
164

Licensed to Mark Watson <nordickan@gmail.com>

165Creating a Rift-friendly UI
Let’s start by taking a look at how to create a basic UI for a Rift application.

8.1 Creating a Rift-friendly UI
One of the trickiest things to do in VR is create a GUI. Many of the GUIs we’re familiar
with are created as 2D overlays of 3D scenes. For a Rift application, a 2D overlay simply
doesn’t work. To be properly visible on the Rift, the GUI needs to be rendered to both
the left and right cameras and it needs to have the Rift distortion applied. As of
Unity 4.6, the Unity GUI tools provide the option of rendering the UI as part of the 3D
scene (world space)—just what’s needed for creating a GUI in VR.

8.1.1 Using the Unity GUI tools to create a UI

Let’s say you wanted to have a timer that shows the user the elapsed time since starting
the application in your beach scene, as seen in figure 8.1.

 This is a simple GUI consisting of just a background box and a text label. To create
this GUI, as with all GUIs using the Unity GUI system, you begin by adding a Canvas
object to the project.

NOTE A Canvas object is a Unity GameObject with a canvas component
attached. All Unity UI elements must be child objects of a canvas. If you create
a UI element and there is no existing canvas, a new one will be created. (You
may have multiple canvases in a scene, too, which is a neat feature if you want
to do something like speech bubbles for characters.)

By default, Canvas objects are rendered as a screen overlay. For the Rift, you need the
canvas to be in world space.

Figure 8.1 A simple GUI showing the elapsed seconds since the start of the application
Licensed to Mark Watson <nordickan@gmail.com>

166 CHAPTER 8 Unity: tailoring your application for the Rift
CREATING A WORLD SPACE CANVAS
To add a canvas to your project, in the
Hierarchy window select Create > UI >
Canvas. This adds a Canvas object and
an EventSystem object to your project
(figure 8.2).

 To change the Render Mode of a
canvas to 3D space, in the Inspector for
the canvas, set Render Mode to World
Space (figure 8.3).

 When you changed the Canvas Ren-
der Mode to World Space, you may have
noticed that the Rect transform became
editable.

NOTE Rect transforms are a special type of transform for GUI elements. In
addition to position, rotation, and scale, Rect transforms have a width and
height used to specify the dimensions of the rectangle.

The size of a screen space canvas is determined automatically to be the size of the
screen, but for a world space canvas you need to set the size manually to something
reasonable for your scene by editing the canvas Rect transform.

Adding a Canvas object to
your project adds both a
Canvas object and an
EventSystem object.

Figure 8.2 Canvas object and an EventSystem
object as seen in the project hierarchy

To include the GUI
canvas as part of the
3D scene, set the
Render Mode
to World Space.

The Rect Transform
becomes editable
when the Canvas
Render Mode is set
to World Space.

Figure 8.3 Set Render Mode to World Space
Licensed to Mark Watson <nordickan@gmail.com>

167Creating a Rift-friendly UI
SETTING THE CANVAS TO A REASONABLE SIZE
Right now, the GUI takes up almost all of the user’s view. If you look at the Inspector
for the canvas (figure 8.4) you can see there are width and height properties and
scale properties.

 The height and width properties are pixel sizes and are used to set the canvas reso-
lution. In our example we’ve set these to 600 and 400. If you’re using graphics in your
GUI, you’ll want to set these to something that works well with your graphics. To
change the canvas size, you need to set the canvas scale. You don’t need a very large
canvas, so set the canvas scale to 0.005 in all directions (figure 8.4).

POSITIONING THE CANVAS

Now that you have a world space canvas of a reasonable size, you need to position the
canvas so that the user can see it. For our example, you want the GUI directly centered
in front of the player and you want the GUI to move with the player. To do that, grab
the Canvas object and make it a child of the CenterEyeAnchor object (figure 8.5).

The canvas Width and
Height properties set
the canvas resolution.

To adjust the canvas
size, set the Scale
properties. Our example
sets the Scale to
0.005 in all directions.

Figure 8.4 To set the canvas size, change the canvas Scale properties.

If you make the Canvas a child of
CenterEyeAnchor, the GUI will
move with the player’s view.

Figure 8.5 As a child of the CenterEyeAnchor, the GUI will move
with the player’s view.
Licensed to Mark Watson <nordickan@gmail.com>

168 CHAPTER 8 Unity: tailoring your application for the Rift
To adjust the position of the canvas so that it’s just in front of the player, set the Rect
transform for the canvas to 0,0,1 as shown in figure 8.6.

 The GUI is now in a position where you should be able to see it. But you haven’t
added any GUI elements to the canvas, so there’s not much to see.

SETTING UP THE GUI ELEMENTS

For this GUI you need a background box and a text label to display the elapsed sec-
onds. To add these objects, in the Hierarchy window select Create > UI > Image and
Create > UI > Image > Text. Both objects must be children of the Canvas object (fig-
ure 8.7).

Note that the hierarchy order is important; the render order of GUI items is the order
they appear in the Hierarchy window. If your Text object is above your Image object,
when rendered the Image object will obscure your text.

 For the Text object to display the elapsed time, you need to attach a script (Update-
Timer.cs, shown in the following listing) to the Text object.

using UnityEngine;
using UnityEngine.UI;
using System.Collections;

Listing 8.1 UpdateTimer.cs: displaying the elapsed time

Set the position of the
canvas to 0,0,1 so that
it is centered just in front
of the player.

Figure 8.6 Position the Canvas object so that it’s centered just in front of the player.

The render order of GUI items
is the order they appear in
the hierarchy window.

Figure 8.7 The order of UI elements in the Hierarchy window is
important because it is the order the elements are rendered.

Adds the Unity UI
namespace
Licensed to Mark Watson <nordickan@gmail.com>

169Creating a Rift-friendly UI
public class UpdateTimer : MonoBehaviour {

 Text elapsedTimeText;
 private float startTime;
 private float elapsedTime;

 void Awake(){
 startTime = Time.time;
 elapsedTimeText = gameObject.GetComponent<Text>();
 }

 void Update () {
 elapsedTime = Time.time - startTime;
 elapsedTimeText.text = "Elapsed Time " + elapsedTime.ToString("N0");
 }
}

If you test the application, you’ll see that the UI is a bit messy. You can do a bit of styling
in the Inspector for the UI elements to clean it up. In the Inspector for both objects, set
the X, Y, Z positions of the Rect transform to 0. The text is aligned top-right by default.
You can change the text alignment to center-middle and change the text style in the
Inspector for the Text object. To allow the user to see what’s behind the GUI, you can set
the alpha level of the Image default color to allow some transparency.

GUI styling hints
We haven’t done much styling for the GUI and as you can tell, this isn’t a very read-
able GUI. For Rift applications, to help with readability, keep the following tips in mind
when creating your own GUIs:

■ Menus can be read most easily when they are at the center of the screen. When
you look through the Rift, you’ll notice that the closer the text is to the center of
the view, the easier it is to read. The closer you get to the edge of the view, the
more the distortion affects the view and the more difficult it is to read. Make
sure you either place your menu near the center of the screen or allow the user
to look directly at the menu.

■ Text should be readable without having to roll your eyes. Anything that forces the
user to move their eyes in their sockets rather than to move their head to look
at something can cause significant eyestrain.

■ The Rift aspect ratio is different than that of a typical monitor. If your UI assumes
that the monitor is wider than it is high, as is the case for most typical monitors,
directly porting such menus to the Rift may result in an unreadable menu,
because the edges of the menu may no longer fit into the view.

The Unity GUI tools provide some great options for styling including making it easy
to include animations. See the online Unity UI tutorials for more information:
unity3d.com/learn/tutorials/modules/beginner/ui.

Creates a UI
Text variable

Sets the variable to
your UI Text object

Updates
the UI text
Licensed to Mark Watson <nordickan@gmail.com>

http://unity3d.com/learn/tutorials/modules/beginner/ui

170 CHAPTER 8 Unity: tailoring your application for the Rift
Most users would prefer to look at a beach than at a countdown timer, so let’s give the
user the option of dismissing the GUI.

TOGGLE GUI VISIBILITY

To toggle the GUI visibility, you can make the GUI elements inactive. You want to be
able to easily toggle the visibility of both the text and the background, so you’ll add an
empty GameObject (renamed TimerMenu) to the canvas hierarchy and add both
items as children of this object (figure 8.8).

 The Unity GUI system allows integration with the Unity animation system. You
can use the animation system to create some pretty fancy transitions for GUI ele-
ments,1 but working with the animation system is beyond the scope of this book. So,
for our example, you’ll take the simple route and change the visibility by setting the
container GameObject’s active status (shown next). To use this script, attach it to
your Canvas object.

using UnityEngine;
using System.Collections;

public class ToggleMenu: MonoBehaviour {

 private bool displayTimer;
 private bool oldTimerKey;
 public GameObject timerMenu;

 void Start () {
 displayTimer = true;
 timerMenu = GameObject.Find("TimerMenu");
 }

 void Update () {
 bool timerKey = Input.GetKey(KeyCode.T);

1 If you plan to use the animation system, you also need to add a Canvas group (Component > Layout > Canvas
Group) to the GameObjects used for organization to be able to apply the animation effects to all child objects.
A Canvas group has an Alpha property, and you can also toggle GUI visibility by changing this Alpha property.

Listing 8.2 ToggleMenu.cs

You can use empty GameObjects
to organize UI elements into
groups, just as you would for
other Unity objects.

Figure 8.8 You can use empty
GameObjects to organize UI
elements in the hierarchy.
Licensed to Mark Watson <nordickan@gmail.com>

171Using Rift head tracking to interact with objects
 if (timerKey && !oldTimerKey){
 displayTimer = !displayTimer;
 }
 oldTimerKey= timerKey;

 if (displayTimer){
 timerMenu.SetActive (true);

 }else{
 timerMenu.SetActive (false);
 }

 }
}

The Unity GUI system is a great way to create traditional-style GUIs in VR, and though
you’ll probably find traditional GUIs very useful, one big drawback is that floating pan-
els simply aren’t very immersive. For a more immersive UI, you’ll want to build the UI
into your world.

8.1.2 Creating an in-world UI

When creating a UI for VR, ask yourself how immersive you want the experience to
feel. In general, using conventional menus floating on a plane in between you and
the VR world simply isn’t very immersive. If immersion isn’t a top priority for your
application, a conventional-style GUI may work. If immersion is a goal, one way to
achieve it is to build the UI into the VR world. For example, the timer GUI shown in
the previous example could be a giant clock. Or perhaps for something a little eas-
ier to visualize, instead of a level menu, you could use an elevator with buttons (fig-
ure 8.9).

 If you’re getting the idea that you need to redesign your UI from the ground up
for VR, you’re on the right track. Chapter 9 goes into a lot more detail about what the
current research has to say about UI for VR and provides great ideas for what you can
do, most of which can be easily applied to applications created in Unity. One excel-
lent technique for creating a more immersive UI for VR is to use the input you get
from the Rift.

8.2 Using Rift head tracking to interact with objects
If you think of the head tracker data as one more way to get input from your user, you
can take your application in more immersive and interesting directions. For example,
the Trial of the Rift Drifter (share.oculusvr.com/app/trial-of-the-rift-drifter) game by
Aldin Dynamics uses the head tracker data to allow a user to shake their head “yes” or
“no” to answer in-game questions. Other games use it to allow you to gaze at an object
or menu item to select it, or to use your gaze to aim a weapon.

For the timerMenu object used to
group your UI elements, set active
to true or false to toggle visibility.
Licensed to Mark Watson <nordickan@gmail.com>

https://share.oculusvr.com/app/trial-of-the-rift-drifter

172 CHAPTER 8 Unity: tailoring your application for the Rift
A level menu on a plane in front of

the user breaks immersion.

Using the cursor for input requires

the user to use a mouse.

Integrating the menu into the

scene as elevator buttons is

more immersive.

Raycasting can be used to detect which button

the user is looking at. By allowing the user to

select something by looking at it, you don’t need

an input device other than the Rift.

Figure 8.9 Building the UI into your VR world creates a more immersive environment for the user.
Licensed to Mark Watson <nordickan@gmail.com>

173Using Rift head tracking to interact with objects
For this next example scene (figure 8.10), we’ve added several cubes to the scene to
give us some objects to play with. Let’s call these cubes “crates.”2 When you gaze at a
crate, it turns blue. If you keep it in your sight for two seconds, it turns red and then
you’re able to move the crate to another point on the beach simply by turning your
head to look at where you want the crate to go. When the crate collides with the beach
or with another crate, it turns white and stays put until you pick it up again.

 Let’s start by creating the crates and adding them to your scene.

8.2.1 Setting up objects for detection

For the crates, you’ll use cubes of various sizes and at various locations. To add a cube,
select GameObject > Create Other > Cube. You’ll want to add multiple cubes to the
beach, so drag the cube to the Asset window to make it a prefab and rename it Crate.
Now you can drag as many crates as you want to the scene while only having to update
the prefab to properly set up the crates. When adding a crate to the scene, the exact
position of the crate isn’t important, but you must be sure that it’s not colliding with
the beach.

 So you can detect collisions between any two objects, at least one of the objects in
the collision must have a rigidbody attached. You want the crates to be able to detect
collisions with the beach and with other crates, so you attach a rigidbody to the crate.
Select the prefab Crate, and then in the Inspector, click the Add Component button
and then select Physics > Rigidbody to attach a rigidbody.

 Having a rigidbody attached means the crates will act under the control of the
physics engine, and the crate’s position will be influenced by gravity. You want the
crates to fall, so for the rigidbody attached to the crate, check Use Gravity to set it to

2 Every game needs crates.

This block has turned
red and moves where
you look.

Figure 8.10 Moving crates using input from the Rift
Licensed to Mark Watson <nordickan@gmail.com>

174 CHAPTER 8 Unity: tailoring your application for the Rift
true. Note that you’re leaving Is Kinematic unchecked. This means the crate will be
under the control of the physics engine, and if you place a crate hovering in the air,
it’ll fall to the beach when you run the scene. When you view your prefab Crate in the
Inspector, it should look like figure 8.11.

 To interact with these objects you’ll need two scripts: one to select and move the
object, and one to put the object back down.

8.2.2 Selecting and moving objects

Let’s start with the script that handles selecting and moving the crates, the Movegaze.cs
script in the following listing, which you’ll attach to the CenterEyeAnchor object.

using UnityEngine;
using System.Collections;

public class Movegaze : MonoBehaviour {

 private float startTime;
 private GameObject attachedObject = null;
 private GameObject lookedatObject = null;

 void Start (){
 startTime = Time.time;
 }

Listing 8.3 Movegaze.cs: using Rift head tracking to select and move objects

You want the crates to be under
the control of the physics engine,
so Is Kinematic is unchecked.

You want the crates to fall, so
Use Gravity is checked.

By creating a prefab Crate, you
can drag as many crates as you
want onto the scene while only
having to update the prefab to
properly set up the crates.

Figure 8.11 The prefab Crate in the Inspector
Licensed to Mark Watson <nordickan@gmail.com>

175Using Rift head tracking to interact with objects

hat
 the
chor.
 function Update() {
 Ray ray = new Ray(transform.position, transform.forward);
 RaycastHit hit;
 float currentTime = Time.time;
 if (attachedObject == null) {
 if (Physics.Raycast (ray, out hit, 100)) {
 if ((currentTime – startTime) > 2) {
 attachedObject = lookedatObject;
 attachedObject.GetComponent<Rigidbody>().useGravity = false;
 attachedObject.GetComponent<Rigidbody>().isKinematic = false;
 attachedObject.transform.parent = this.transform;
 attachedObject.GetComponent<Renderer>().material.color = Color.red;
 } else{
 if (lookedatObject == null){
 lookedatObject = hit.collider.gameObject;
 lookedatObject.renderer.material.color = Color.blue;
 }
 }
 } else {
 if (lookedatObject != null) {
 lookedatObject. GetComponent<Renderer>().material.color =

Color.white;
 }
 startTime = currentTime;
 lookedatObject = null;
 }

 } else {
 if (attachedObject. GetComponent<Renderer>().material.color ==

Color.white){
 startTime = currentTime;
 attachedObject = null;
 }
 }
 }
}

To make sure this script works, you need to do two things. First, attach the script to the
CenterEyeAnchor object; then for any objects that you don’t want to detect, you need
to set them to ignore the raycast.

ATTACHING THE SCRIPT TO CENTEREYEANCHOR

The script must be attached to the CenterEyeAnchor object in the scene for it to work
(figure 8.12). The CenterEyeAnchor object in the OVRCameraRig prefab maintains a
transform at the pose halfway between the left and right eye cameras. By attaching it
to CenterEyeAnchor and by casting a ray that originates from that object, you can find
out what’s in your line of sight.

 To attach the script to CenterEyeAnchor, in the Inspector for CenterEyeAnchor
click Add Component and then select the Movegaze.cs script.

Casts a ray t
originates at
CenterEyeAn

Sets gravity
to false.

Sets
isKinematic

to false.

To move an object
in the scene with

the Rift, make
it the child

object of the
CenterEyeObject.

Sets startTime to
currentTime.
Licensed to Mark Watson <nordickan@gmail.com>

176 CHAPTER 8 Unity: tailoring your application for the Rift
SETTING THE BEACH, THE PALMS AND THE PLAYER TO IGNORE THE RAYCAST

The script changes the renderer color blue for any collider object the raycast hits. To
prevent the beach and palm trees from turning blue, in the Inspector for the Beach
and Palm tree objects set Layer to Ignore Raycast (figure 8.13).

 You also don’t want to be able to pick yourself up, so you need to do the same
thing for the Player object. In the Inspector for the Player object, set Layer to Ignore
Raycast, and when asked “Do you want to set layer to Ignore Raycast for all child
objects as well?” select “Yes, change children.”

 Now that you can pick up the crates, you need a script to put the crates down.

8.2.3 Using collision to put the selected object down

You’re moving the crate using input from the headset by attaching the crate to
CenterEyeAnchor. When the crate is attached to CenterEyeAnchor, it always stays at
the center of your view. This means you can’t look away from it to put it down. You
have to use some other mechanism to determine when to remove the crate from the
parent object, and in our example, the mechanism used is collision.

The Movegaze.cs script
is attached to the
CenterEyeAnchor object.

Figure 8.12 CenterEyeAnchor
in the Inspector with the
Movegaze.cs script attached

You don't want to pick up the Beach,
the Palm trees, or the Player. To
prevent the raycast from hitting the
Beach, Palm, and Player objects,
in the Inspector for those objects,
set Layer to Ignore Raycast.

Figure 8.13 Setting Layer to
Ignore Raycast for the Beach
in the Inspector
Licensed to Mark Watson <nordickan@gmail.com>

177Using Rift head tracking to interact with objects

cra
by

the tr
parent

t
t

e

.

To handle the collision, you need a script attached to the object you’re moving. The
script in the next listing will detect the collision, remove the parent transform, and
then reset the crate so that it can be selected again.

using UnityEngine;
using System.Collections;

public class Cubecollision : MonoBehaviour {

 void OnCollisionEnter (Collision col){
 GetComponent<Renderer>().material.color = Color.white;
 transform.parent = null;
 transform.rotation = Quaternion.Euler(0, 0, 0);
 if(col.gameObject.name == "Beach"){
 Vector3 newPos = transform.position;
 newPos.y = col.gameObject.transform.position.y
 +transform.localScale.y/2.0f + .1f;
 transform.position = newPos;

 GetComponent<Rigidbody>().isKinematic = true;
 GetComponent<Rigidbody>().useGravity = true;
 } else {

 GetComponent<Rigidbody>().useGravity = true;
 }
 }

 void OnCollisionStay() {
 GetComponent<Rigidbody>().AddForce(transform.forward * 20);
 }
}

For the script to work, it needs to be attached to the crates; we’ll show you how in the
next section.

ATTACHING THE COLLISION SCRIPT TO THE CRATES

You need to attach the Cubecollision.cs script to the crates. To attach the script, in the
Inspector for the prefab Crate click Add Component and then select the Cube-
collision.cs script (figure 8.14).

 With the crates set up and the script attached, you can give the scene a test run.
You should be able to wander around the beach, look at crates, and move them to
another spot on the beach.

 Whether you’re using a UI built into the VR world that uses head tracking as input
or a more tradition GUI, the UI won’t be of much use if your user can’t see it. If you
tried out the example timer UI, you may have noticed that by the time you get the Rift
on and dismiss the health and safety warning, nine or more seconds may have already
gone by. This means that your user won’t have seen or been able to interact with your

Listing 8.4 Cubecollision.cs: Using collision

Sets the crate
render color
to white.

Puts the
te down
 setting

ansform
 to null.

Positions the
crate so it’s not
intersecting the
beach.

Enables gravity and sets
isKinematic to true.

Only enables gravity. You
want the crate to fall, bu
you still want it to detec
when it has collided with
other objects.

Applies forc
until crates
move apart
Licensed to Mark Watson <nordickan@gmail.com>

178 CHAPTER 8 Unity: tailoring your application for the Rift
application for those nine seconds. If you want to give your application a chance to
shine, you’re going to have to help the user get into the VR experience comfortably
and not start the action until you’re sure the user can see it.

8.3 Easing the user into VR
Having the user miss the first few seconds of your application isn’t the only issue
with getting the user from a traditional monitor and into VR. You’ll also want to
make sure the user is comfortable and that the user’s sense of “forward” is the same
as the user’s real sense of forward. Doing so will make your users a lot more comfort-
able. But before we worry about which way users are looking, let’s make sure they
can see the application.

8.3.1 Knowing when the health and safety warning has been dismissed

On startup all Rift applications display the health and safety warning (HSW), which
appears as a big rectangle pinned to the user’s perspective that largely obscures the
user’s view of everything else in the scene.

 Let’s say you wanted to have your timer not count the elapsed seconds until after
the HSW has been dismissed. There are two small changes you must make to your
UpdateTimer.cs script to do just that, as shown next.

The Cubecollision.cs
script is attached to
the prefab Crate.

Figure 8.14 The prefab Crate
expanded in the Inspector
Licensed to Mark Watson <nordickan@gmail.com>

179Easing the user into VR
using UnityEngine;
using System.Collections;
using Ovr;

public class UpdateTimer : MonoBehaviour {
 <…>
 void Update () {
 if (OVRManager.isHSWDisplayed){
 startTime = Time.time;
 }
 elapsedTime = Time.time - startTime;
 <…>
}

The HSW tells the user to “Press any key to dismiss.” You might think that you can sim-
ply use the key press as the trigger for starting the timer, but unfortunately, this
doesn’t quite work. The warning must be displayed for a minimum amount of time
before it can be dismissed—15 seconds the first time it’s displayed for a given profile
and 6 seconds for subsequent times. The result is that often the key will be pressed but
the HSW will still be displayed for a few more seconds. Another consideration is
whether you want to restart the timer if the scene is reloaded. On reload, the HSW
won’t be displayed and so the user won’t need to press a key.

 Fortunately, the Oculus Unity Integration package provides a way to know if the
HSW is still being displayed:

OVRManager.isHSWDisplayed

This code will return true if the HSW is still on screen. Use it in your Update() method
to wait for the HSW to be dismissed. Once you know users have dismissed the HSW,
you can make sure they’re facing “forward.”

8.3.2 Re-centering the user’s avatar

Most users start a VR application and then put on the Rift. Keeping in mind that the
Rift DK2 supports positional tracking, if the tracking starts before the user has the
headset on, the end result might be that the user’s sense of “forward” in the game
may not match the user’s sense of “forward” in real life, or the user may find them-
selves standing next to their avatar body, slightly in front of the body, or even sitting
in the body!

 To give the user a good start, you’ll want to re-center the user’s view when the user
first gets the Rift on, and you’ll want to provide an option to re-center manually. To
re-center the user’s avatar, use this:

OVRManager.display.RecenterPose();

Listing 8.5 Starting the timer after the HSW is dismissed

Adds the Ovr
namespace

Checks to see if the HSW is
displayed, and if it is, resets the
start time to the current time
Licensed to Mark Watson <nordickan@gmail.com>

180 CHAPTER 8 Unity: tailoring your application for the Rift
You can ask the user to press a specific key to calibrate, and (ideally) that key will do
the same thing in the future.

8.3.3 Creating splash scenes

Many of the best demos we’ve seen start with a splash scene, and we consider having a
splash scene to be a best practice. Splash scenes not only introduce the application,
they also allow the user to dismiss the HSW and re-center their view (and learn how to
re-center later if needed) without missing a second of critical content. This is also a
great place to remind your user to create a profile if they haven’t already done so (as
we recommended in chapter 7).

8.4 Quality and performance considerations
The user’s view matching exactly what the user is doing has an enormous impact on
the performance criteria for your application. In chapter 6 we discussed at length the
quality and performance requirements for VR and why they’re significantly stricter
and higher than for many traditional applications. We’d say that failing to meet the
quality requirements for VR not only will result in a poor application, but you may also
have some physically ill users.

 Let’s take a look at the performance criteria for VR applications, how you can mea-
sure the quality of your VR application, and what you can do to improve the user’s per-
ceived sense of quality.

8.4.1 Measuring quality: looking at application frame rates

A good first step in making sure your application is of usable quality is to see what your
frame rate is. In the OVR > Scripts > Util folder is the OVRMainMenu.cs script. This
script is used to display various diagnostic information, including the frames per sec-
ond (FPS). To use this script, simply attach it to an object in your scene. Then, when
the scene is running, to access the menu, simply press the spacebar (figure 8.15). The
top item displayed is the current FPS.

 The frame rate should be equal to the native refresh rate of the Rift display. This is
60 Hz for the DK1 and 75 Hz for the DK2.

 Not hitting these frame rates can result in missed frames, causing the scene to visi-
bly shake or blink, both of which may induce unwanted physical side effects in your
user (headaches, nausea, and so forth). Now that you know there’s a problem, what
can you do about it?

 The next sections will cover techniques for improving the quality of your Unity Rift
applications.

Licensed to Mark Watson <nordickan@gmail.com>

181Quality and performance considerations
8.4.2 Using timewarp

In the Rift, your view needs to match exactly what you’re doing. But as you move your
head, the scene being rendered to the Rift display may be a little behind where you’re
actually looking. One technique used to compensate for that lag is timewarp. We cov-
ered timewarp extensively in chapter 6, but here’s the gist: timewarp uses the latest
tracking pose to adjust the onscreen position of the rendered images to reduce the
perceived latency of Rift applications. Given an image, and the head pose for which
that image was rendered, the distorted view of the image is adjusted to account for the
difference between head pose at the time of render and the head pose at the time
the image is displayed on the screen. If we look at the timeline of events, it looks
something like figure 8.16.

 The head pose is sampled before rendering, allowing the image to be rendered
from the point of view of the user, no matter how they’ve moved or turned their head.
But because the head might move between the time the image is rendered and the
time the image is displayed (marked as v-sync in figure 8.16), timewarp is applied.
Immediately before distortion, the head pose is sampled again and the difference

The OVRPlayerController
menu displays FPS (frames
per second) as the top item.

Figure 8.15 The OVRPlayerController menu displays FPS as the top item.
Licensed to Mark Watson <nordickan@gmail.com>

182 CHAPTER 8 Unity: tailoring your application for the Rift
between the rendered head pose and the distortion head pose is used to rotate the
viewport slightly to match the pose at the time of render. The time taken by distortion
in the image here is actually not to scale. It takes an almost negligible amount of time,
so the sampled head pose ends up being almost exactly what it’ll be at the time of dis-
play on the Rift.

 Using timewarp is easy because it’s enabled by default in the OVRManager script
attached to the OVRCameraRig object. We don’t expect that you’ll need to, but you
can disable timewarp in the Inspector for the OVRManager script by unchecking the
Time Warp box (figure 8.17).

 If you want to experiment with the effects of timewarp, you can use the Freeze
Time Warp option.

Distort frame 1
with timewarp

Sample head pose for
frame 1 timewarp

Sample head pose for
rendering frame 1

Render frame 1

Time

V-sync V-sync V-sync

Frame 1 displayed with
correct timewarp

Figure 8.16 A look at when timewarp is applied during the rendering process

Time Warp is a technique
for reducing the apparent
effects of latency. It is
enabled by default.

You can experiment with the
effects of Time Warp by using
the Freeze Time Warp option.

Figure 8.17 Timewarp options are found in the Inspector for the OVRManager script.
Licensed to Mark Watson <nordickan@gmail.com>

183Quality and performance considerations
8.4.3 (Not) Mirroring to the display

Being able to see what the user is seeing can be a very valuable tool when debugging
your application, particularly when looking for causes of motion sickness (see chapter
10). Unfortunately, mirroring the Rift display to another monitor can cause signifi-
cant performance issues.

 On a MacBook Pro, running the Tuscany demo from Oculus, we were seeing 75
FPS when running in Extended mode but only 46 FPS when in mirrored mode (in
both scenarios the refresh rate was set to 75 Hz).

 For Windows applications you have the option of running in Extended mode or of
using the Oculus Direct Mode driver. When running in Direct mode, the content is
mirrored to a small window on your main monitor. The Direct mode driver was
designed as a workaround for the issues of mirroring (cloning) a display, and the per-
formance exchange is less of an issue.

8.4.4 Using the Unity project quality settings

The Unity project quality settings provide options for scaling the rendering load, such
as different levels of quality for shadowing, or anti-aliasing, or different levels of tex-
ture quality, that can help improve your frame rates.

ANTI-ALIASING

The Rift uses stereo rendering, which effectively reduces the horizontal resolution by
50%. One way to compensate for the reduced resolution is to enable or increase anti-
aliasing. To change the anti-aliasing settings for your build, select Edit > Project Set-
tings > Quality and look at the setting for Anti Aliasing (figure 8.18).

 We suggest starting with a value of 4X Multi Sampling and experimenting to see
what works best for your application. Remember to consider your target platform; you
may be targeting systems less powerful than your own.

Set Anti Aliasing to at
least 4x Multi Sampling.

Figure 8.18 Project quality settings for rendering in the Inspector
Licensed to Mark Watson <nordickan@gmail.com>

184 CHAPTER 8 Unity: tailoring your application for the Rift
8.5 Summary
In this chapter we covered

■ Rift head-tracking data can be used for more than changing the user’s point
of view. If you think of the head tracker data as one more way to get input
from your user, you can take your application in more immersive and interest-
ing directions.

■ When you’re creating a UI for the Rift, the UI must be rendered in 3D space.
Set the Render Mode to World Space for the UI canvas to have the UI ele-
ments rendered in 3D space.

■ For a more immersive UI, you should build the UI into the world you’re creating.
■ Help your user get started right and make the transition from traditional moni-

tor to VR as seamless as possible.
■ The user can’t see what’s going on when the health and safety warning is still

displayed. Wait until the user has dismissed the HSW before starting any
game action.

■ When starting your application you need to think in terms of splash scenes and
not splash screens.

■ Performance criteria for VR applications are both higher and stricter than for
most traditional applications.

■ The frame rate should be equal to (or greater than) the native refresh rate of
the Rift display: 60 Hz for the DK1 and 75 Hz for the DK2.

■ You can increase the perceived quality of your application by using timewarp.
■ The Rift uses stereo rendering, which effectively reduces the horizontal resolu-

tion by 50%. This means special attention must be paid to graphics quality.
■ Reading chapters 9 and 10 is highly recommended as those chapters cover

many of these same topics but in much more depth.
Licensed to Mark Watson <nordickan@gmail.com>

Part 4

The VR user experience

Now we turn our attention to the VR experience. VR gives us the opportu-
nity to visit any world we imagine. As developers, we want the world we create to
be one where the user can navigate and interact in a natural and comfortable
way. We want the user to feel immersed in the world we’ve built, to feel like
they’re really there. We don’t want them thinking about how to write an angry
email to software support because they can’t figure out how to do anything once
the application starts. And, of course, we don’t want the user to feel ill from
using the software.

 Chapter 9 looks at the challenges of creating a UI for the VR environment.
Many techniques used to create a UI for traditional applications don’t work in
the VR environment. And the truth is, UI for VR needs to be redesigned from the
ground up. This chapter looks at some of the common pitfalls of designing a UI
for VR, along with what the latest research says you can do to create an immer-
sive user experience.

 Chapter 10 covers what you can do to maximize user comfort. This chapter
provides guidelines and examples of how to mitigate motion sickness triggers
and other causes of physical discomfort such as fatigue and eyestrain.

 Chapter 9 is important if you want your users to have a smooth entry into
your world. Chapter 10 is critical if you want them to keep coming back.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

UI design for VR
Hallucinated any big, floating scoreboards lately?
 It’s funny, but it’s true: if we showed you a picture of the world with lots of little

floating squares full of words, with numbers and pictures inside funny-shaped sym-
bols all hanging in front of your face (figure 9.1), you’d be totally okay with it. You
recognize that all this floating visual noise is the UI of a game, and you recognize
the abstract symbols it employs. The big plus symbol in the lower-left corner? Sure,
that means health. And behind the pleasantly transparent pop-up, that’s your gun,
rendered in 3D. 2D and 3D elements coexist on your screen, and that’s okay.

 Problem is, where is that plus symbol? Is it ahead of you? Is it ahead of your gun?
Is it closer than the gun? What about that big “Blue team wins!” in the middle
there? It must be between you and your gun, right? But if you can focus on that

This chapter covers
■ Why UI design for the Rift needs to be different

from conventional UI
■ Ways to move conventional UI elements into VR
■ Guidelines for 3D scene and UI design
■ Input devices and VR UI design
187

Licensed to Mark Watson <nordickan@gmail.com>

188 CHAPTER 9 UI design for VR
temple in the distance, you obviously can’t focus on something that’s nearer than
arm’s reach at the same time, can you?

 And this is the problem with the UIs of today’s non-immersive virtual environ-
ments: they blend 2D and 3D in a way that makes sense when the application is run-
ning on a flat monitor but that will make very little sense (and very much sim sickness)
if you try to copy that same chimeric blend in the Rift. 2D elements overlaid onto a 3D
scene can be fine when there’s a window or monitor framing them, but VR will strip
away that frame, and that’s going to cause real issues.

 In this chapter we’ll explore some of the woes that will arise if you try to use exist-
ing 2D and 3D UI conventions in virtual reality. We’ll discuss why many of the old UI
metaphors from desktop apps and games won’t work in VR, how you can adapt your
UI so that your user enjoys the experience, and best practices for sound UI develop-
ment. We’ll also touch on some of the ongoing research in this very tricky field.

 The bad news is that this isn’t yet a “solved” problem, and even this incredibly bril-
liant book won’t have all the answers; the good news is that this isn’t yet a “solved”
problem, and that means that you’re on the forefront of the next generation of UI
design. And how cool is that?

Figure 9.1 Team Fortress 2, by Valve. The floating scoreboard somewhere in the space between you and
your gun, the health and status readouts pinned to the corners of the screen, and the external 2D overlays
are all UI conventions that you take for granted in today’s computer-generated 3D environments.
Licensed to Mark Watson <nordickan@gmail.com>

189New UI paradigms for VR
9.1 New UI paradigms for VR
A lot of our existing UI design won’t work well in the Rift because the Rift is immer-
sive. UIs designed until now have been built for screens, which sat in front of the user
and stayed still if the user moved. In the Rift there is no screen. The black plastic frame
that has enclosed our virtual desktops for so long is just… gone.

 Without the screen, there’s nothing between us and the virtual environment. This
means that UI elements whose utility came from their positions in 2D space on the flat
screen are going to be suddenly out of place.

 Unfortunately, this isn’t an issue limited to the old-style desktop GUIs that run our
OSes. Even cutting-edge game UIs today still make broad assumptions about the screen
being a static, immobile rectangle.

 Consider the non-VR game EVE Online (figure 9.2). When you have this kind of
heavyweight UI, with dozens, if not hundreds, of potential inputs and outputs, they’re
usually presented as framing elements surrounding the main presentation area. Broadly
speaking, this is a style of UI that simply won’t work in VR, because framing elements
that build on the “negative space” of the monitor frame no longer have such a negative
space to attach to. Actually sticking UI elements to the edge of the rendered image on
the Rift would put them, at best, much further away from the center of the view, making
it a struggle to flick your eyes back and forth to see them. At worst, they’d become com-
pletely invisible because they’re actually outside the user’s perceived field of view.

Figure 9.2 EVE Online, by CCP. A 3D virtual universe is overlaid by a complex 2D UI. The positions of
the many interface elements are driven by the fact that the game is played on a screen, at a fixed
distance and position from the player. Skilled players learn where on the screen to look for data at a
moment’s notice.
Licensed to Mark Watson <nordickan@gmail.com>

190 CHAPTER 9 UI design for VR
Having established that there are classes of conventional UIs that won’t “port” well
into VR, let’s examine a few specific examples.

9.1.1 UI conventions that won’t work in VR and why

This section explores a few common UI conventions seen in games and nongames
alike that don’t translate well into VR.

WIDGETS THAT “FLOAT” IN FRONT OF YOUR VIEW OF THE SCENE

Common game examples include health bars, weapon selectors, and ammo counters,
such as those shown in figure 9.1.

■ Why they don’t work—By sitting “between” the user and the virtual world, these
UI elements break immersion. Their presence creates a barrier, with the player
on the wrong side.

■ A better way—Instead of painting flat symbols onto an invisible plane between
the user and the environment, try showing the same information in the game
world itself. For example, the Team Fortress 2 scoreboard in figure 9.1 could’ve
been an actual scoreboard, mounted on the wall or projected upward into the
sky, Hunger Games-style, for all players to see.

WIDGETS THAT ARE “PINNED” TO THE EDGES AND CORNERS OF THE SCREEN

On a Rift headset, the edges of the view lose the most resolution under the distor-
tion function. In Lessons Learned Porting Team Fortress 2 to Virtual Reality (media
.steampowered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf), Joe Ludwig
observes that UI elements glued to the edges will be the least clear and the least often
looked at, making them entirely unsuitable for VR UI.

■ Why they don’t work—Those UI elements will be hard to see without rolling your
eyes; there’s no way for the user to turn their head to look at a widget closely if
the widget moves with them.

Although the edge of the screen is only a few degrees from the center on a
normal monitor, on the Rift it’s 55 degrees. That’s one small step for man, but
it’s a really long jump for an eyeball. It’s stressful to keep the eyes pointed that
far off-axis for any length of time.

Depending on facial structure and eye depth, individual users may see dif-
ferent amounts of content toward the edges, especially if the Rift hasn’t been
fully calibrated for them. Edge objects could be completely outside their field
of view.

■ A better way—Try to move critical UI elements toward the center of the view
whenever possible. Better yet, try to embed critical information into the scene
itself instead of onto an interposed UI; build a scene where the user will natu-
rally spend most of their time looking in that direction. A good example is a
cockpit heads-up display (HUD), where critical information can be shown on in-
scene elements at the center of where the user is most likely to be looking,
instead of out at the edges.
Licensed to Mark Watson <nordickan@gmail.com>

http://media.steampowered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf
http://media.steampowered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf

191New UI paradigms for VR
MAKING ASSUMPTIONS ABOUT THE ASPECT RATIO OF THE SCREEN

Nearly all UIs seem to make assumptions about the aspect ratio of the screen (typi-
cally, that it’s wider than it is tall) that don’t hold in the Rift. Aspect ratios as a whole
are a red herring in VR: if there’s no width or height to the screen (the user can just
turn their head to see more “screen”), then there aren’t any ratios between width and
height either.

■ Why this doesn’t work—Left unaddressed in a port from a 2D UI to the Rift, these
assumptions of ratio can introduce serious bugs, leading to players having to
swivel their heads to read portions of their HUD. Several games ported to the
Rift in 2013, such as Linden Lab’s Second Life or Born Ready’s Strike Suit Zero, suf-
fer from this issue. In the early version of Strike Suit Zero shown in figure 9.3, the
developers preserved the old wider-than-it-is-tall aspect ratio of their UI, but
the player is viewing the game on a Rift, whose display is taller than it is wide. As
a result, the status bar and in-game information slide off either side of the
player’s view.

■ A better way—Forget about screens! (“Do not try to fit the screen…that’s impos-
sible. Instead only realize the truth: there is no screen.”) Instead of defining the
dimensions of UI elements by the bounds of a rectangle, bind them to the
world or the viewing direction of the user. As we suggested earlier, try to move
interface elements closer to the center of the user’s line of sight.

Figure 9.3 Strike Suit Zero, from Born Ready Games. The text and menus describing Armor, Shield, and
other stats is sized to the width of a conventional monitor, forcing players to turn their heads to scan
the whole line.
Licensed to Mark Watson <nordickan@gmail.com>

192 CHAPTER 9 UI design for VR
BLENDING “GAME SPACE” WITH “HUD SPACE”
Often, interacting with an element in “game space” will bring up UI elements in “HUD
space.” In a game like Relic’s Homeworld (figure 9.4), clicking on a ship brings up a
pop-up menu which comes up next to the ship and hovers in space alongside it,
although it’s not a real 3D object. Rotating the 3D view won’t rotate the menu.

■ Why this doesn’t work—If this were in VR, that menu would appear to be hanging
in space, a megalithic plank of text kilometers tall, half the height of the Home-
world Mothership.

The user has been using the mouse to select ships in the virtual space. The
sudden injection of a flat, planar menu means that the user’s mouse control,
which was previously moving across the curve of the sphere that implicitly sur-
rounds the user in VR, now suddenly locks to a 2D plane. This change of mouse
interaction model can be jarring and disruptive, as well as create an odd sense
of distorted perspective.

Conversely, if the menu were to be integrated into the virtual world, then the
game author faces a different sort of problem: spontaneous appearances of

Figure 9.4 Homeworld, by Relic. Interaction with in-game entities (here, the user has clicked on a
scout fighter ship) will bring up a detailed pop-up menu of commands. If this menu were in the 3D space
of the game, it would be a multi-kilometer-tall hanging billboard.
Licensed to Mark Watson <nordickan@gmail.com>

193New UI paradigms for VR
massive billboard structures. That sort of thing isn’t very good for a game’s
space fiction.

■ A better way—This one’s tricky. If you can integrate your menu into the virtual
world, then that will work well; for example, controls in a cockpit. In a Home-
world-style application (any app with an “omniscient” or “god-like” perspective),
we suggest placing the user inside a virtual control center whose menus appear
outside of the game’s space. But such an “augmented reality inside virtual real-
ity” approach won’t always be feasible and will require a lot of user experience
development work. Finding the smoothest integration between fiction and
usability remains an open question.

9.1.2 Can your world tell your story?

If you can get away with no HUD at all, that’s probably your best bet.

—Joe Ludwig, 2013

Joe’s right. The real world doesn’t have a HUD1 so if you can possibly build your game
without one, that’s the most surefire path to an immersive VR experience. The best
solution to many of the problems we’ve discussed here is to move as much of the UI as
possible into your virtual world. That makes a lot of sense: the very name of the UI ele-
ment, HUD for heads-up display, came from glass displays first used in aircraft to allow
pilots to read data without glancing down. In most games, there’s no such glass, so
there should be no HUD.

 For example, your soldier’s gun could show the number of remaining bullets on
the clip. (And that’s not sci-fi—you can get that for real guns today.) Or your mage’s
spell-casting energy could manifest as a blue nimbus on its hand that fades as it runs
low on power.

COCKPIT HUDS

If you’re writing a game and your player is seated in a cockpit or driving seat, then
you’ve got room in-game for as fully detailed a HUD as you might like (figure 9.5).
Instead of writing your HUD as a flat 2D graphical UI element, you can build your HUD
into your virtual reality so that the content of the HUD augments the virtual scene.
Think of this as augmented virtual reality.

 This is actually an interesting point—the HUDs in games today are unrealistic,
but they echo the HUDs of real-world vehicles like fighter planes quite well because
the games aren’t very realistic either. Think about the difference between the HUD
of an F-15 and Tony Stark’s HUD in Iron Man. In an F-15, when the plane veers away
from its target the HUD stays in front of the pilot; in Iron Man, when Tony steers
away from a target, his in-helmet HUD tracks the target until it’s out of his field of
view. It does so by enhancing the details about the simulated representation of his

1 Unless you’re flying an F-15. Or you’re Tony Stark.
Licensed to Mark Watson <nordickan@gmail.com>

194 CHAPTER 9 UI design for VR
quarry. So where the F-15’s HUD augments actual reality, Stark’s HUD augments vir-
tual reality.2

 So, let’s clarify Joe Ludwig’s quote. He’s right; plastering a flat planar 2D HUD onto
the Rift’s display is a no-go. But if you can build a virtual HUD in the virtual cockpit of
a virtual F-15, that’s awesome.

 This is an idea that game developers have already begun to use to excellent effect.
In Meteor Entertainment’s Hawken (figure 9.5), their mech’s cockpit’s controls show
all the sorts of stats that your average driver of 80 tons of mechanized death needs to
know; the mech’s cockpit gives a very natural, immersive place to look for all that data.
To the player, the immersive cockpit is enhanced and fleshed out by the flow of live
content, and the sense of presence becomes very strong.

DATA ON DEMAND

An even more effective way to provide data to the user is to deliver it on demand, as a
function of where the user is looking. We suggested that a soldier’s gun could show
the number of remaining bullets on the clip, perhaps as a digital readout on the gun.
This is an example of contextually relevant content: when players are looking ahead,

2 Giant mechanical robots, piloted by the player. Ideal for all your building-crushing needs.

Figure 9.5 Hawken, from Meteor Entertainment. Most UI elements, such as speed and heading, are
built into the fictional structure of the mech2 along the lower front of the cockpit, giving them a reason
to be in front of the player. It’s safe to expect that players will spend most their time in the game looking
forward.
Licensed to Mark Watson <nordickan@gmail.com>

195New UI paradigms for VR
spotting enemies is more critical than spotting their ammo count, but if they look
down at their gun, it becomes one of the key things players might want to know.

 With that in mind, there’s no need to try to shoehorn an ammo counter on top of
a gun. Instead, use the Rift’s orientation sensors to know where the user is looking.
When the user looks down and to the right, their gun arm can pivot to show them the
side of their rifle, with its ammo count clearly visible; then when they look up again,
their gun arm swings back to the ready. The effect for the user would be very immer-
sive; indie projects like Shadow Projection (described later in this chapter) already use
this technique with great success.

IN-WORLD SCREENS

Another good example of the effective use of flat imagery in a 3D world is the sniper
problem. Many first-person shooter (FPS) games have a zoom feature, such as when
using a sniper rifle (figure 9.6).

 A zoom effect is usually achieved by narrowing the rendered FOV to a small section
of arc, often only a few degrees, and filling the screen with the resulting image. The
result is flattened and loses 3D convergence cues. (Remember that 3D convergence—
the way our eyes point along lines that aren’t quite parallel to focus on a distant
point—is one of the strongest depth indicators we perceive.) This can be a disruptive
experience in the Rift, because in the Rift the viewer’s FOV is fixed and must be that of
the actual headset or you risk illness (chapter 10), and the sudden lack of convergence

Figure 9.6 Crysis 3, from Electronic Arts. The sniper scope zooms up to 10x; if the scope were to track
the user’s head while wearing a Rift, it would be impossible to control. Consider placing a 2D image of
the same zoom level on a small virtual screen at the back of the scope instead.
Licensed to Mark Watson <nordickan@gmail.com>

196 CHAPTER 9 UI design for VR
cues will be disorienting. Plus, it’ll no longer be at all clear to wearers what they
should expect to see when they turn their head—if the zoomed point tracks their line
of sight, they’ll lose their target at a glance.

 A better solution here would be to fit a virtual screen to the front of the scope,
and then lift the scope and its screen up to the user’s eye when the user engages the
sniper zoom. The virtual screen could fit right into the barrel of the scope. Their
heads would remain free to look around, but players would see their weapons lifted
in front of them and the image at the base of the scope showing precisely where
they were aiming.

BUILDING THE GAME MENU INTO AN IN-WORLD SCREEN

In Activision’s Call of Duty: Black Ops, the developers use a cleverly immersive way to
integrate the game controls into their world. The player menu at the start of the game
is shown on a television screen (figure 9.7); user actions change the selection on the
TV set. The menu is an integrated part of the game world and avoids the jarring dis-
continuity of a floating menu pane.

 In the sequel, Call of Duty: Black Ops II, the storyline begins in 2025, and the main
menu sequence is much more advanced: we see the main character don a pair of
glasses, presumably some sort of augmented reality or holographic technology, and

Figure 9.7 In Activision’s Call of Duty: Black Ops, the menu (circled, highlighted) is an integrated part
of the game world.
Licensed to Mark Watson <nordickan@gmail.com>

197New UI paradigms for VR
then manipulate game controls with a futuristic wrist-mounted projected virtual con-
trol (figure 9.8).

 The idea that the protagonist is the one controlling the TV and virtual console is
fascinating. Although the Black Ops games aren’t Rift games (yet), they demonstrate
perfectly that primary, nongame UI elements can be integrated seamlessly into the
game fiction.

FANTASY SETTINGS

Conversely, if your game is set in a fantasy world where there’s no good reason for
your number of arrows or hit points to be inscribed on something upon your person,
getting away from a HUD UI is going to be a lot harder. Games like Blizzard’s World of
Warcraft (figure 9.9) deliver a tremendous amount of content through the HUD, and
it’s difficult to conceive of how that gameplay could be delivered in-world.

 World of Warcraft demonstrates that there will probably always be use cases where
the virtual world can’t entirely contain and express the game’s content; some sort
of abstraction will be necessary. But it’s not inconceivable that what today appears
as a floating panel of 2D text, tomorrow could hover on a character’s shield or per-
haps in speech bubbles. There’s still a lot of UI experimentation to be done for
such games.

Figure 9.8 In the sequel, Call of Duty: Black Ops II, the main character uses augmented-reality glasses
to operate the in-game controls (highlighted). Here the player is configuring the weapons loadout of his
character before charging into battle.
Licensed to Mark Watson <nordickan@gmail.com>

198 CHAPTER 9 UI design for VR
9.1.3 Getting your user from the desktop to VR

Odds are pretty good that your users are launching your cool VR app from an icon on
their desktops, in that old ugly 2D UI we call home. That means when they launch,
they’re not wearing the Rift. This presents a challenge: swapping between 2D and 3D
UIs should be transparently smooth.

 Keep these issues in mind:

■ You can’t assume that the user is wearing the Rift, so you’ll need a simple 2D
(conventional desktop) UI as well.

■ You don’t want to stick a flat menu on the screen if users are in VR.
■ Having to ask users to tell you when they’re wearing the Rift (a) requires a UI

and (b) feels clumsy. It should be something we already know.
■ When they’re ready to go to VR mode, you’ll want to smoothly transition users

from the 2D UI to wearing the Rift.
■ Until you know they’re wearing their Rift, you can’t assume that its current ori-

entation is forward. (It might be on their desk pointing who-knows-where.)

Figure 9.9 World of Warcraft, by Blizzard. WoW presents the player with a tremendous amount of game
data that has no “in-world” context. The UI (highlighted here in multiple rectangles) relies on a mixture
of text and iconic widgets to give the user features and feedback.
Licensed to Mark Watson <nordickan@gmail.com>

199New UI paradigms for VR
The Rift doesn’t (yet) offer a way to programmatically determine whether or not it’s
being worn. Fortunately, it’s not too hard to analyze the accelerometer output of the
Rift. Consider this graph of linear accelerations reported by the Rift, averaged over
100 frames per sample.

This graph covers an elapsed period of about 20 seconds, sampling at 60 Hz. The ver-
tical axis is the average of a window over 100 samples of the absolute values of the lin-
ear acceleration vectors reported by the Rift, so it measures m/s2. The horizontal axis
is elapsed time.

 At first, the Rift is at rest on an immobile flat surface. During this time there’s noise
from the accelerometer, but it’s fairly consistent. The user then picks up the Rift, caus-
ing a massive spike of accelerometer data (clamped by the graph to 2 m/s2). After
placing the Rift on their head, the user tries to sit as still as they can with, as you can
see, less success than the table. The average absolute linear acceleration rises from
below 0.5 m/s2 to roughly 0.75 m/s2.

 As you can see, the accelerometer patterns of a Rift at rest are markedly different
from those of a Rift on a human head, no matter how still the wearer tries to be. The
Rift detects simple shifts of weight, breathing, and even physiological tremor, the nat-
ural built-in twitches and shifts that occur in human muscles at rest. Based on this rel-
atively simple and primitive experiment, it should be possible to determine in code
whether or not the Rift is currently in use. You can then switch smoothly between Rift
rendering and conventional desktop UI. In fact, that could be an excellent game fea-
ture: a Rift game should automatically pause itself when the Rift is removed.

9.1.4 Cutscenes

A cutscene is a long-standing device used in games to convey story without direct inter-
action from the player. In cutscenes the player stops playing and watches a little movie
inside the game—maybe a snippet of film with real actors, or a rendered CGI anima-
tion, or even prerecorded animations in the engine of the game itself. There are
many styles.

Rift resting on tabletop Rift on head

2.0 m/s2

1.5 m/s2

1.0 m/s2

0.5 m/s2

0.0 m/s2
Licensed to Mark Watson <nordickan@gmail.com>

200 CHAPTER 9 UI design for VR
 Cutscenes are some of the most cinematic elements of video games. Unfortunately,
in the Rift they pose a critical problem. When the user is in an environment that has
been inducing that sense of presence and immersion, it’s not acceptable to suddenly
disable head-tracking to lock the player’s view to watch a scene. That means many of
the classic cinematic tropes based on camera motion can’t be used, such as establish-
ing shots, cutaway shots, shot/countershot conversations (where the camera switches
between two speakers), following pans, and many more.

 Because you can no longer take control of the camera, you’re going to have to
rethink how you present these cinematics. To begin, you need to refocus on what you
want the cutscenes to achieve. Cutscenes are, above all, about the story: they exist in a
game to move the story forward. Whether it’s the flashback to the hero’s exploding
planet or the villain’s final monologue, cutscenes are all about story. You just need to
use new techniques to tell your tales in the Rift.

 As Neal Stephenson said in his novel Interface:

It’s a new communications medium. What is necessary is to develop a grammar
and syntax. [...] It’s like film. When film was invented, no one knew how to use it.
But gradually, a visual grammar was developed. Filmgoers began to understand
how the grammar was used to communicate certain things. We have to do the same
thing with this.

Neal Stephenson, Interface (Arrow, 2002), p. 300

CUTSCENES IN CONVENTIONAL VIDEO
Sometimes you’ve already got a cutscene video ready to go, and it’s not feasible to
rewrite it from scratch. Games that are targeted at both Rift and non-Rift platforms,
for instance, will probably have conventional 2D video cutscenes that can’t be
migrated into VR. The problem becomes how best to show them there.

 One approach, though somewhat jarring to users, is that you can take over their
view completely. If you’ve got a movie cutscene that you must show without context,
you can show the movie as though the user were in a darkened virtual theater, create a
virtual screen a few dozen feet away, and play. But this effect will be unpleasant and
disorienting to the user. A movie hanging in space will be just that—a flat 2D movie
without context—and it will be very jarring.

 Only use this technique as a last resort. Head tracking will have to be restricted and
the user won’t appreciate being suddenly disembodied. (Most people don’t.)

 Also, if you must show video instead of your virtual environment, remember to
ease the transition. Never just instantaneously replace VR with a movie floating in a
black void; instead fade out gently, and then fade back in. This gentler transition is
consistent with the familiar fade motif used in movies and will feel much less disrup-
tive to the user.

 A far better solution is to borrow an idea that you’ve already seen: show your
cutscene as a flat 2D video inside the 3D virtual environment (figure 9.10).
Licensed to Mark Watson <nordickan@gmail.com>

201New UI paradigms for VR
Any flat screen in VR can play a flat movie. Perhaps the scientist can explain her evil
plan while gesturing—pointedly—at the giant monitor playing a video. Perhaps our
hero muses over his lost love as misty videos of their times together play on the nearby
TV screen. As games like Call of Duty show, it’s reasonable to break the fourth wall a bit
to embed 2D media into a virtual environment.

CUTSCENES WITHIN THE VIRTUAL ENVIRONMENT

An even better approach to cutscenes than prerecorded video is to play out the
cutscene in the virtual world itself using the in-world engine. Most virtual reality
engines today (such as Unity, discussed in chapters 7 and 8) have more than ample
capacity for complex preset animations.

 Here you face a different breed of problem: drawing the user’s attention. In an envi-
ronment where your users can look around freely, it’s not immediately obvious how
you can ensure that they’re looking at the right part of the scene when the crucial,
exciting thing happens. If the mad scientist dramatically throws the switch but the
player is looking out the castle window and doesn’t notice, then you’ve lost a lot
of storytelling.

■ One trick you can use is audio cues. Spatialized audio is pretty common in virtual
reality engines nowadays. So the scientist doesn’t just throw the switch; he
makes a speech—a loud speech—to draw the player’s attention. Perhaps sparks
fly as he grasps the switch, casting shadows that point toward him dramatically
(and pointedly, for the player distracted by the pretty window).

■ Another trick you can use is responsive triggers. With the Rift, it’s not hard to
detect when a particular part of the virtual scene is in the center of the player’s
view. So, the scientist could launch into his mad monologue, and then you

Figure 9.10 Even cutscene actors who’ve acted this scene several times before, and would probably
claim to be very efficient at it, benefit from embedding 2D video in the 3D virtual world. (The Matrix
Reloaded, 2003)
Licensed to Mark Watson <nordickan@gmail.com>

202 CHAPTER 9 UI design for VR
could pad it out, with multiple bits of optional audio and maybe some cackling,
until the player looks around at the madman. By waiting until you know he’s on
the screen, you’re assured that the story won’t advance without the player’s
knowledge.

Avoid distractions in your scenes. This is more important in VR than it was in classic 2D
animation, because players can lose track of the action if they’re looking at something
else, wondering if it’s a critical part of the scene too. That means you have to be care-
ful to balance cool, distracting bits of world-building against the demands of keeping
the user’s attention on the part of the scene that’s vital to the story.

 Russian playwright Anton Chekhov had the following advice for aspiring word-
smiths, commonly called Chekhov’s Gun:

Remove everything that has no relevance to the story. If you say in the first chapter
that there is a rifle hanging on the wall, in the second or third chapter it absolutely
must go off. If it’s not going to be fired, it shouldn’t be hanging there.

—Anton Chekhov, 1889

In other words, make your scene as simple as possible, but no simpler.

9.2 Designing 3D user interfaces
Not too long ago, we were demoing the Oculus Rift at a Maker Faire.3 We noticed that
every so often, we had to tell people to look around. And even when we told them to
look around, some people asked, “How?” We had to tell them to just turn their head.
It was like a throwback to the 1990s—telling people that underlined text means you
can click on it to get to more information on web pages. Of course, nowadays if you
see a label that says Click Me after a link, it’s annoying; clicking text is so ingrained
these days that iOS considers the button graphic to be excessive. Our idea of “good”
UI has evolved. But the Rift today is still where web browsers were in the ’90s. People
won’t know what to do; some explicit user instruction has to happen. For now, until
the common interface model has become clear, apps are going to have to teach users
to interact in VR—and they’re going to have to instruct without overwhelming the
interface or the user.

 In this section we’ll explore the following:

■ General rules for “good” UI
■ Guidelines and ground rules that researchers and experimental developers, as

well as hardened game designers like the crew at Valve, have worked out specif-
ically for UIs in VR

■ Handling user input for effective immersion, using conventional devices like
gamepads and with more novel controllers like the Rift itself

3 Maker Faires are sort of like mixes of science fairs and county fairs—fun for the whole family, plus electricity.
Licensed to Mark Watson <nordickan@gmail.com>

203Designing 3D user interfaces
Most of the material we’ll cover here is advice chosen to improve the user’s sense of
immersion. What we won’t cover in this chapter is simulation sickness; make no mis-
take, that’s a topic every bit as critical as UI design, so for an overview of techniques
focused on not making your users ill, please see chapter 10.

9.2.1 Criteria for a good UI

If you’re just getting started building a 3D UI, it can be helpful to have a set of stan-
dards to measure yourself against. In Usability Engineering (Morgan Kaufmann, 1993),
Jakob Nielsen establishes a set of traits that a good UI should have. Not all of Nielsen’s
metrics apply in VR, but they remain an effective tool for judging whether your UI is
going to work for the majority of your users.

 Nielsen wrote that any good UI should do the following:

■ Always display relevant state . Primary application state should be visible to the
user. For an FPS shoot-em-up, this means showing variables like ammo count
and health. You don’t have to overdo it. If players are fit and healthy, there’s no
need to tell them that; if they’re dying, make sure they know, with visual and
audio cues.

■ Use familiar context and imagery. Don’t make your users learn super-specialized
custom terms just so they can use your app. If you’re writing a surgery interface
for medical training, don’t force medical students to learn about virtual cam-
eras and FOVs even if you had to think about them a lot as you designed
the app.

■ Support undo/redo . Don’t penalize your users for clicking the wrong thing.
Where pushing the wrong virtual lever would ignite all the ammo inside your
mech, give the user a chance to cancel or revert the command. Wait…why do
you even have that lever?

■ Stick with what your users know. Don’t reinvent the wheel, especially if you’re
unfamiliar with the field. If you’re writing that surgery sim, get advice from an
actual surgeon—don’t invent new names for things.

■ Design to prevent error. A classic example is a numeric entry field. If you want users
to type a value between 1 and 10 in a box, don’t ask them to type; they could
type 42. Instead, give them a slider that only goes from 1 to 10.

■ Don’t require expert understanding. Visually indicate when an action can be per-
formed, and provide useful data if the action will need context. If a jet fighter
pilot can drop a bomb, then somewhere on the UI should be a little indicator of
the number of bombs remaining. That tells players that bombs are an option
and how many they’ve got. And better yet, if it takes a key press to drop the
bomb, show that key on the UI.

■ Build shortcuts for expert users. The feeling that you’re becoming an expert in a
system often comes from learning its shortcuts. Make sure that you offer com-
bos and shortcuts that your users can learn—but don’t require them.
Licensed to Mark Watson <nordickan@gmail.com>

204 CHAPTER 9 UI design for VR
■ Keep it simple . Don’t overwhelm your users with useless information; don’t com-
pete with yourself for space on the screen. Always keep your UI simple. “If you
can’t explain it to a six-year-old, you don’t understand it yourself” (attributed to
Albert Einstein).

■ Make error messages meaningful. Don’t force users
to look up arcane error codes (figure 9.11). If
something goes wrong, take the time to clearly
say what, and more importantly, what the user
should do about it.

■ Write the manual . Sure, ideally your UI should be
so easy that a child can use it, but that’s not
always going to be the case. Document how to
use your app, both in the app itself and online
where people can look it up; these days, wikis
are awesome.

In short: always show state; make your UI simple, clean, and clear; don’t penalize users
if they do the wrong thing, and help them to recover from errors; and don’t require
expertise, but do reward it.

9.2.2 Guidelines for 3D scene and UI design

In the 2008 article “3D User Interfaces—New Directions and Perspectives,”4 Wolfgang
Stuerzlinger lays out guidelines for designing an effective 3D UI for first-person inter-
action. Although we won’t reproduce the full list here, several of Stuerzlinger’s points
deserve emphasis in the context of designing for the Rift.

 Our brains have evolved to do a lot of distance estimation from secondary cues,
including the size and occlusion of objects by those around them. That means we see
best when things are touching other things. From lions on savannahs to cars on high-
ways, we use relative positioning for context. In the real world, most things don’t float
untethered in space (excluding balloons, birds, and Death Stars).

 Unfortunately, many 3D interfaces show objects floating because it’s easy to do.
Often for the developer it’s easier to have a thing float than to have it rest precisely
atop another. If you think about how hard it is to judge just how far away a flying bird
is from you, it shouldn’t be a surprise that it’s difficult to make the same judgment call
in virtual reality. (Exhibit A: a VR sequence from the computer game System Shock [fig-
ure 9.12]. All objects are airborne.)

 The key lesson here is simple: your users will have an easier time estimating the
size and distance of objects if they’re in contact with other objects whose size and dis-
tance are already known. For best effect, connect things to the ground.

4 D. A. Bowman, S. Coquillart, B. Froehlich, M. Hirose…and W. Stuerzlinger. (2008). “3D User Interfaces: New
Directions and Perspectives,” IEEE Computer Graphics and Applications 28(6): 20–36.

Figure 9.11 An unhelpful error
message
Licensed to Mark Watson <nordickan@gmail.com>

205Designing 3D user interfaces
Some applications try to address the disconnected-floating-objects problem with real-
istic shadows, but you shouldn’t depend on shadows for context. Our brains get a lot
of 3D data out of shadows, but we intuit more about the objects on which the shadows
lie than we do about the objects casting the shadows. It’s surprisingly difficult to judge
how high something is based on its shadow, because you don’t know exactly where the
point directly beneath the object should be.

 If things in your scene must hover, try to give them motion. Even if it’s just a subtle
bobbing effect, motion dramatically increases the amount of feedback the eyes get
from parallax. Parallax signals lend realism. This helps the user estimate distance
without other cues.

SOLID THINGS ARE SOLID

In the real world, objects don’t (usually) pass through one another. We use this under-
standing as a visual depth cue. When objects do pass through one another, it can
make gauging their relative distance from the viewer quite difficult.

 This guideline is less demanding for developers than it once was, because as com-
puting power has risen, implementations of object intersection routines have become

Figure 9.12 System Shock, by Looking Glass Technologies. The player has entered “Cyberspace.” In
this video-game rendition of VR, objects spin, pulse, and float completely without tether or reference
to gravity. This makes judging their positions and distances remarkably difficult for the player.
Licensed to Mark Watson <nordickan@gmail.com>

206 CHAPTER 9 UI design for VR
commonplace. Today overlapping objects is almost universally seen as a bug, although
some massively multiplayer online role-playing games (MMORPGs) and online FPS
games still allow player characters to walk through one another.

 Stuerzlinger observes that in a virtual world in which object interpenetration is
guaranteed not to occur, the task of moving objects around is much easier. When the
user is confident that objects will slide against one another, 3D motion devolves down
to 2D motion, a significantly simpler control task. This is well demonstrated by the
LEGO movie games series, which often contain challenges in which the player must
slide some heavy object from one point to another (figure 9.13).

 Positioning these game items would be much more difficult for the player if
objects’ motions were not constrained to sliding in a plane.

ONLY INTERACT WITH WHAT YOU CAN SEE

Studies such as those by Poupyrev and colleagues5 and by Ware and Lowther6 have
demonstrated conclusively that users find selection with a 2D pointer or control more

5 Poupyrev, I., S. Weghorst, M. Billinghurst, and T. Ichikawa. (1998). “Egocentric Object Manipulation in Vir-
tual Environments: Empirical Evaluation of Interaction Techniques,” Computer Graphics Forum, 17(3): 41–52.

6 Ware, C. and K. Lowther. (1997). “Selection Using a One-Eyed Cursor in a Fish Tank VR Environment,” ACM
Transactions on Computer-Human Interactions, 4(4): 309–322.

Figure 9.13 Lego Indiana Jones from LucasArts. Game puzzles often rely on the player positioning
objects against others. Here the object to be moved is constrained to the checkerboard tiled path,
which greatly simplifies the user’s task.
Licensed to Mark Watson <nordickan@gmail.com>

207Designing 3D user interfaces
effective than 3D selection. There’s also ample evidence that motion within a 2D plane
is easier to control than arbitrary 3D motion. This is corroborated by research show-
ing that using a mouse on a flat surface allows greater precision than using a mouse
in the air.

 There’s a strong intuitive sense to these results. If we accept the premise that users
are less adept at selecting and manipulating objects that lie behind something else in
the scene (a reasonable assumption), then the set of manipulable objects in any scene
becomes the set whose geometry is immediately visible to the user. This set maps to a
2D plane and is therefore easily accessible with a mouse. Note, though, that Poupyrev
and colleagues did observe a clear loss of 2D accuracy as 3D distance increased.

 Poupyrev and colleagues also note the long-understood UI design phenomenon
that test subjects performed better when the experiment included visual feedback.
Whenever your user interacts with anything, give that user some feedback. Users
love feedback.

 Stuerzlinger draws the conclusion that if the primary interface to manipulation in
a virtual world is to be through 2D controls such as the mouse, then the user’s view-
point becomes critically important and therefore ease of navigation is essential.
Unfortunately, this conclusion is at odds with Rift-specific research showing that navi-
gation should be avoided if possible (see chapter 10). An acceptable middle ground
appears to be to try to design virtual scenes to reduce occlusion, thereby reducing the
need for motion.

THE STRONGEST DEPTH CUES ARE PERSPECTIVE AND OCCLUSION

Stuerzlinger states that for manipulation of objects beyond arm’s length in a virtual
space, perspective and occlusion are the strongest signals of depth to the brain.
This conclusion is supported by the fact that 3D FPS video games such as Doom and
Quake were so successful long before stereo 3D technologies were readily available
for the home.

 The best signals for perspective in a scene come from objects’ relationship to other
objects. If an item in a virtual environment rests against another, larger object whose
scale is intuitively known (such as the ground, a building, or a starship), then perspec-
tive cues will quickly kick in to inform the user’s understanding of the scene.

 When one object occludes another, their relative scale helps us sense their relative
distance; by the same token, failure to occlude can make such judgments quite diffi-
cult. In figure 9.14, stills from the 1982 movie Tron demonstrate how a lack of occlu-
sion can make judging the size and distance of a virtual object difficult. This is a scene
where Flynn (Jeff Bridges) meets Bit, a floating binary life form. It’s difficult to judge
Bit’s size—comparable to an apple, perhaps, or maybe about the size of a basketball.
Had the scene shown Bit behind Flynn or ahead of him, we’d have had significantly
stronger visual cues, because we have a sense of the size of a human. Unfortunately in
1982 it was difficult to occlude a virtual object with a real person, or vice versa. To
compensate, in this scene Bridges acts with exaggerated physical motions and looks
pointedly at Bit, yanking his head dramatically back as Bit flies past him; the human
Licensed to Mark Watson <nordickan@gmail.com>

208 CHAPTER 9 UI design for VR
actor lends realism (and scale) to the virtual actor by using body language to fix it in
the scene.

 If you can, give your users better cues to gauge size and distance. (Or hire Jeff
Bridges. That works too).

 It’s also worth noting that although occlusion and perspective are very strong sig-
nals to the brain, others are at play as well:

■ One of the strongest secondary signals we use is parallax, the apparent change in
an object’s size when viewed from two different positions (such as when the
object, or the viewer, is in motion).

■ A secondary signal we use to determine depth is shape-from-shading. Our eyes
shift constantly, even when at rest, and the subtle changes in shading that we
see from these very slightly separated viewpoints are used by the brain to recon-
struct the shape and depth of an object.

The Rift easily supports parallax, but not shape-from-shading.

9.2.3 The mouse is mightier than the sword

Gestural interfaces may or may not be the future of virtual reality UIs, but until the
hardware is more widely available, UIs for the Rift are going to have to assume more
primitive forms of input.

Figure 9.14 Scenes from the movie Tron: Flynn meets Bit, a floating character. Because Bit never
occludes or touches or is occluded by another object, its size is difficult to judge; we’re forced to guess
its size from the direction of Flynn’s startled look.
Licensed to Mark Watson <nordickan@gmail.com>

209Designing 3D user interfaces
MOUSE AND GAMEPAD

One open question is the age-old gamepad versus mouse debate: which is better for
exploring and playing in virtual environments, a gamepad or a mouse and keyboard?

 Gamers have been arguing this one since FPS first came to consoles, and despite
ad hoc surveys and vast reams of anecdotal evidence, we don’t seem to be any closer
to an actual answer. Even Microsoft, whose Xbox and PC games would stand the
most to gain from a final answer, has categorically denied ever having run such a
study. The best conclusion from the gaming world has been that games can be
designed for mouse and keyboard or for controller, and that the game design makes
all the difference.

 The Oculus Best Practices Guide (static.oculus.com/sdk-downloads/documents/
Oculus_Best_Practices_Guide.pdf) suggests that, for the simple reason that players
can’t see a keyboard when they’re wearing the Rift, a gamepad could be easier for
most people to use in VR. Admittedly, not everybody has a gamepad, but for those who
do, they’re far easier to use “blind” than typing on a keyboard. Gamepads are also
much easier to learn to use than traditional mouse-and-keyboard FPS controls, which
will make learning a new app much less of a barrier for novice Rift users. And, of
course, the fumble factor is dramatically lower with a gamepad. Nothing breaks
immersion faster than having to lift the Rift off your face to peer down at your key-
board and hunt for the right key to press.

 That said, the mouse is an incredibly effective pointing tool, and the modern user
is intimately familiar with mouse UI semantics. Most modern users are very accurate
with the mouse.

 So our advice is to support both, and let your users use whichever works best
for them.

THE GAMEPAD OR MOUSE AS INTERMEDIARY

A number of studies have been conducted on the most effective type of mouse
action for a 3D virtual environment and how best to represent the pointer visually.
Researchers have explored the effectiveness of presenting the pointer in stereo or to
only one eye (Ware and Lowther, Schemali and Eisemann7), of using virtual hand or
virtual ray pointer metaphors (Poupyrev and colleagues, Schemali and Eisemann),
and of presenting the pointer in 2D on the screen plane or in 3D in the scene (Ludwig,
Lessons Learned).

 With any mouse or gamepad, the device is an intermediary between the user and
the scene. In New Directions and Perspectives, Stuerzlinger discusses the aspects of 3D UI
design that must be considered in light of this mediation.

■ We look at the entire tool, not just the pointy end. Research indicates that when we
manipulate an object, we’re aware of the whole object, not just of the point of

7 Schemali, L. and E. Eisemann. (2014). “Design and Evaluation of Mouse Cursors in a Stereoscopic Desktop
Environment,” available at vimeo.com/91489021.
Licensed to Mark Watson <nordickan@gmail.com>

http://static.oculus.com/sdk-downloads/documents/Oculus_Best_Practices_Guide.pdf
http://static.oculus.com/sdk-downloads/documents/Oculus_Best_Practices_Guide.pdf
http://vimeo.com/91489021

210 CHAPTER 9 UI design for VR
collision. When we reach for something, proprioception ensures that we’re
aware of our hand and entire arm, not just the fingertip about to make
contact. This implies that in a virtual experience, the user is aware of the vir-
tual mouse as a whole, not just the single pixel at the pointer’s tip that’s the
point of interaction.

■ Arbitrary manipulation can be too much; restrict motion to what’s natural. Truly
free-form manipulation systems can be difficult to use, compared to manipu-
lating objects that have natural constraints. For example, chairs have a natu-
ral direction of up; a good UI won’t overwhelm the user by offering tools to
spin and flip a chair unless there’s a strong reason in the virtual world to
do so.

■ Many tasks are really 2D or 2.5D . Many motions that we execute in the real world
are intrinsically one-dimensional (pulling or pushing, lifting or lowering) or
two-dimensional (cleaning a surface, scooping and raising food). In fact it’s
fairly rare for our motions to be truly three-dimensional (martial arts is proba-
bly a good example). This means that the challenge for a good UI design isn’t
in the execution of the motion, but rather in the smooth transition between
planes of motion (figure 9.15).

Although further research is warranted, Stuerzlinger’s conclusions appear to be sup-
ported by Schemali and Eisemann’s work on optimal types of mouse cursor in virtual
environments. Schemali and Eisemann explored how quickly users could select and
manipulate an object in 3D using conventional mouse cursors, cursors with 3D form
that existed “in” the scene, and cursors with 3D form that pivoted smoothly around
the interaction point to always be pointing away from the surface of the object (effec-
tively colliding with the shape of the object and “feeling” it). They concluded that flat
2D cursors were ill suited to VR, but that their rotating cursor took longer to use than
a simpler 3D cursor in the scene.

 The observation that most objects have a natural interaction (chairs aren’t usually
flipped upside-down) tells us that although someday holodecks may offer us truly arbi-
trary interactions with all elements of our scene, for now a good UI in the Rift should
focus on presenting clean, simple, minimalist interactions in only dimensions appro-
priate to the object and its environment.

THE CROSSHAIR IN TEAM FORTRESS 2
In Lessons Learned, author Joe Ludwig discusses the issues that Valve faced in
bringing the game Team Fortress 2 to the Rift. It’s an excellent talk and the slides are
available online (media.steampowered.com/apps/valve/2013/Team_Fortress_in_VR
_GDC.pdf).

 One problem that Valve solved was where to put the HUD; in TF2, you can’t live
without it. (Pun intended.) For the most part in VR the TF2 HUD elements are rendered
onto a transparent pane about 10 meters ahead of the player.
Licensed to Mark Watson <nordickan@gmail.com>

http://media.steampowered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf
http://media.steampowered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf

211Designing 3D user interfaces
Figure 9.15 Homeworld, from Relic. Tactical view for ship commands. (Left) The user
drags in the 3D plane to instruct a fighter ship to travel laterally in space. (Right) With
a key press, the user changes control mode to dragging in a vertical plane, setting the
target height of the fighter. This allows players to easily instruct their spaceships to
move in three dimensions.
Licensed to Mark Watson <nordickan@gmail.com>

212 CHAPTER 9 UI design for VR
The crosshair is handled differently (figure 9.16). In VR Team Fortress 2, the crosshair is
projected out to the point where the ray from the midline of the player intersects the
scene. This means that the crosshair changes depth as the player turns their head and
mouse. Ludwig describes the effect as “a little odd” but effective. This is akin to mak-
ing the crosshair into a laser sight.

 Valve’s design choice is supported by research results such as Teather and Stuerz-
linger’s 2013 paper8 on how the choice of 3D pointer influences human ability to
point at an object, and by Schemali and Eisemann’s work on mouse cursors. But both
papers report that user accuracy decreased with depth in the scene. Teather and
Stuerzlinger also observed that when tasked with selecting a point atop one of a set of
virtual stone columns all pointing toward the camera, the speed with which subjects
were able to accurately respond diminished both with the depth of the column and
the perceived height of the column, implying that subjects were less confident in their
accuracy as they traced the cursor along the column.

8 Teather, R. J. and W. Stuerzlinger. (2013). “Pointing at 3D Target Projections with One-Eyed and Stereo Cur-
sors,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13), 159–168. ACM,
New York, NY.

Figure 9.16 Team Fortress 2, from Valve. Note how the HUD elements are in different places for the
two eyes, causing them to float between the user and the scene, but the crosshair is deeper in the
scene, projected to the middle of the dark wooden cabinet to the left.
Licensed to Mark Watson <nordickan@gmail.com>

213Designing 3D user interfaces
 Valve explored a number of ways to map the user’s head and mouse control to
character behavior. They experimented with several options, including the following:9

■ Aiming and steering coupled on the Rift. The mouse steers as well.
■ Aiming with the Rift, steering with the mouse.
■ Steering has a dead zone. Inside the dead zone you aim with the Rift and the

mouse aims and steers simultaneously. Outside the dead zone, aiming and
steering are coupled for both the Rift and mouse. This is the default in TF2.

■ Steering with the Rift, aiming with the mouse inside a dead zone. Outside the
dead zone, the mouse steers as well.

■ Relative camera control with the Rift (no influence on aiming or steering, rela-
tive to your character’s facing direction).

■ Absolute camera control with the Rift. Your reference isn’t tied to your character’s
orientation, so steering with the mouse doesn’t influence the direction in which
you look. You must actually turn around to see where you’re going if your charac-
ter turns around. Aiming and steering is coupled and controlled with the mouse.

In user testing, Ludwig reported that their best results came from the third option: a
blend of Rift and mouse. If the player turns their head, the Rift’s rotation turns their
character in the game. Conventional FPS mouse and keyboard controls still work, but
the mouse has a “dead zone” within which the crosshairs can move freely (the shaded
rectangle in the center of figure 9.17) that doesn’t affect which way the character is
facing. As the mouse leaves this central area, it swings the camera and the character.

9 Source: from the online game documentation at wiki.teamfortress.com/

Figure 9.17 A rough approximation
of the mouse’s dead zone (no pun
intended) in Team Fortress 2. Inside
the dead zone you aim with the Rift
and the mouse aims and steers
simultaneously. Outside the dead
zone, aiming and steering are
coupled for both the Rift and mouse.
Licensed to Mark Watson <nordickan@gmail.com>

http://wiki.teamfortress.com/

214 CHAPTER 9 UI design for VR
In play, this feels like a reasonable balance of inputs, and hand and head seem to
quickly blend well. There’s a bit less of the uncanny valley feeling of turning the cam-
era with just the mouse and more control of gameplay than turning the character with
just the Rift. Still, Ludwig emphasizes that these control schemes are an ongoing area
of research and that further exploration is required.

9.2.4 Using the Rift as an input device
In several of the modes, Valve effectively made the Rift itself into an input device. By turn-
ing their heads, users turned themselves in the game, just like with the mouse. This raises
an intriguing prospect: could we do away with the mouse entirely and just use the Rift?

 When they’re wearing a Rift, it’s easy to tell roughly what users are looking at. We
can’t be pixel-precise, of course, because we’re relying on gross head motion, but even
without the classic gaze-tracking signals (fluctuation of the pupil, involuntary dilation
of the iris), we can still get a pretty good estimate of what part of a scene has caught
the user’s attention.

 One excellent demo of this technique is Shadow Projection, an early Oculus Rift
demo developed by Kent Bye, Jesse Falleur, and Yori Kvitchko. In Shadow Projection you
take on the role of a crystalline sci-fi energy being, recognizing and assembling the
pieces of a 3D puzzle. As you play the game, you “click” on virtual pieces by examining
them each in turn and then looking directly at a cloud of lights above your choice; the
cloud shrinks down and winks out, indicating selection.

 Wisely, Shadow Projection teaches the user how to play right from the start: when you
launch the game, you appear in the virtual environment facing the large, clear words
“WATCH HERE TO START.” Many users will surely look around to visually explore their

Figure 9.18 In Shadow Projection, red sparkles appear on the words “WATCH HERE TO START,”
but only when the user turns to look directly at them.
Licensed to Mark Watson <nordickan@gmail.com>

215Animations and avatars
new surroundings, and in the game, nothing happens for as long as you do. But when
you pause and turn to look directly at “WATCH HERE,” a cloud of red sparkles appears
to indicate that you’ve successfully “clicked” (figure 9.18).

 Once you, the user, have figured out how to “click,” the game interface is quite
simple and the same effective visual metaphor is used consistently from then on.
You’re given a choice of three puzzle pieces, with a cloud of sparkles above each; when
you look directly at a cloud, the sparkles gradually all turn red over the course of
about 2 seconds, and then collapse down (figure 9.19).

This shows several excellent UI features:

■ Selection regions are clearly delineated and distinct, but they’re not square
buttons.

■ You have time to look away again if this wasn’t the cloud of points you were
looking for.

■ The condensing cloud goes “down,” evoking a downward mouse click.

When designing the interface, you need to think about the context for each element
you present.

9.3 Animations and avatars
One of the best ways to promote immersion is context. If the day ever comes that
we look down and discover that we’ve turned invisible, that’ll be more than a little
disturbing.

 Problem is, many apps being written for the Rift seem perfectly willing to cast the
user in the role of the Invisible Man (or Woman). Even the canonical demo, Tuscany
from Oculus VR, is guilty. In the Tuscany demo, when you tilt your head and look
down, there’s nothing there (figure 9.20.) That’ll break your sense of immersion
faster than a guillotine.

 What’s going on here is a conflict of proprioception. Proprioception is our instinc-
tive awareness and understanding of where our limbs are and what they’re doing.

Figure 9.19 Shadow Projection’s “click” animation, triggered by the user gazing at a particle cloud.
The condensing particles take about 2 seconds to shrink to full density; looking away during that time
will immediately cancel the click.
Licensed to Mark Watson <nordickan@gmail.com>

216 CHAPTER 9 UI design for VR
Proprioception is easy to demonstrate: close your eyes and clap. Your brain automati-
cally tracks your arms and knows where they should be.

 In the Rift, we run into a major problem: proprioception tells us that our hands
are on a keyboard and mouse and that our thighs are at right angles to the floor as we
sit in our chair. But in the Rift we look down and we don’t see anything of the sort. So,
how can we help our users feel like they’re really there?

9.3.1 Cockpits and torsos: context in the first person

To counter the lack of in-world presence, some demos provide better context. Most
users of the Rift are going to be in a chair, so if your virtual environment centers the
user’s point of view above a chair, that will help significantly for context and immer-
sion.

 In the tech demo Spaceflight VR, the player is seated in a high-tech fighter cockpit
(figure 9.21), and the chair is empty. (Perhaps the player is invisible?) Although the
fiction of the cockpit is believable, it’s still jarring to glance down and not see your
own legs and body flying the ship.

 One of the most effective demos we’ve tried recently was Don’t Let Go!, by Yorick
van Vliet of Skydome Studios (figure 9.22). In Don’t Let Go!, the player must struggle to

Where are your hands and feet?

Figure 9.20 The Oculus VR Tuscany demo. The camera is as close as can be to the railing and you’re
looking down, so you should see your feet (and ideally your hands on the balcony as well). You don’t,
and that immediately breaks the sense of immersion.
Licensed to Mark Watson <nordickan@gmail.com>

217Animations and avatars
Where's your body?

Figure 9.21 Spaceflight VR, a demo for the Rift. The player is sitting in a chair, but the chair appears
to be empty.

Figure 9.22 Yorick’s Don’t Let Go! demo. The goal of the game is to sit with your hands on a keyboard,
exactly like your in-game avatar. Seeing your in-game body hold the same pose as your real body makes
the sense of immersion very strong.
Licensed to Mark Watson <nordickan@gmail.com>

218 CHAPTER 9 UI design for VR
sit in a chair. That makes the immersion very believable: after all, you’re already in a
chair. Best of all, when you look down in Don’t Let Go!, you see an upper body and
arms, with hands in almost the same position as your real hands; it’s not hard at all to
fool yourself into thinking that you’re really in the game.

 Shadow Projection uses a similar design, with its seated crystalline avatar (figure 9.23).
Shadow Projection takes the proprioception benefits of a seated avatar one step further by
binding natural body language to the Rift’s gaze direction. When you look down at your
left hand, your avatar raises that hand up so you can examine whatever’s in it more
closely. The avatar’s animation is limited and simple, but fluid and natural; it feels
incredibly realistic to glance down at your hand and see it lift up, even if your real hands
are still idle on the keyboard.

 The lesson here is clear: the more closely you can match the virtual avatar to the
player’s proprioception, the more immersive your experience becomes.

9.3.2 Character animations

This raises a tricky question: when avatars in the game move their heads, what hap-
pens to the camera?

 Let’s say your character has to defuse a bomb on the ground. You move your avatar
up to the bomb; then your character kneels to disarm it. Tension builds as you lean in
over the ticking fuse. You peer closer, searching for that one red wire…this is an exam-
ple of a preprogrammed character animation. Users won’t explicitly instruct their avatar to
kneel or lean forward, but realism and cinematography will call for it.

Figure 9.23 In Shadow Projection, when you look down at your left hand, the avatar naturally raises
its arm so that you can look more closely at what you’re holding.
Licensed to Mark Watson <nordickan@gmail.com>

219Animations and avatars
 Unfortunately, it’s not a good idea to pin the camera to the moving avatar, for sev-
eral reasons:

■ The canonical rule of VR is don’t move the user’s point of view unexpectedly. Moving
the camera without direct action from users, or without setting the scene so
they anticipate motion, is far too likely to cause simulation sickness. See chapter
10 for details.

■ When the avatar kneels or stands up, it will badly violate the proprioception of a
sitting player.

■ If you allow the user to continue to look around, you risk users turning away
from the bomb. But if you lock their view to the avatar, users will feel that
they’ve lost control as the Rift ceases to respond.

■ If your animation rotates users (the character turns as they kneel at the bomb),
you risk breaking the game’s sense of forward.

The right solution for avatar animations that move the avatar probably hasn’t been
discovered yet. If your game is heavily geared for the Rift, it may be best to sidestep the
issue and avoid animations when you can.

 If your animation is designed to move the character, it’s okay for users to see a
quick fade-to-black and then a fade-back-in and see the character has moved. In his
2014 GDC talk Developing VR Experiences with the Oculus Rift (gdcvault.com/play/
1020714), Tom Forsyth gives the simple examples of getting into a car, getting out of
bed, and getting up after being knocked down—all seemingly innocuous animations
that would swing the user’s head through a nauseating series of angles and turns. For
these cases, Forsyth reports that it’s okay just to fade out and fade quickly back in
again with your character in the new pose; the viewer’s brain adapts pretty readily. But,
he cautions, keep head tracking turned on throughout the cut-and-fade; even as you
fade out and back, let your users turn their heads—otherwise it’ll leave them feeling
like they’ve lost control.

 For animations that don’t move the user, the “right” answer is open for debate.
Forsyth suggests that perhaps it’s best to show a “ghostly” version of the player’s avatar
performing the animation and then return to match with the eyes of the player; for
something like leaning over to pick up a fallen weapon, it might be acceptable to the
user if the character avatar peeled away from the Rift viewpoint, leaned down, picked
up the weapon, and then stood up again until the avatar’s eyes lined up with the Rift
again. Of course, that approach is fraught with complexity—you’ll have to turn the
avatar’s head to match the Rift at the same time as you’re running the animation,
which will be a real technical animation challenge. In addition, it’ll probably be pretty
weird to see a ghost view of your own face peel away from you and then come back.
But it could work.

THE MEATHOOK AVATARS OF TEAM FORTRESS 2
In Team Fortress 2, each of the characters has a lot of wacky personality. When you play
the game in VR mode, you really are that character, and the effect is great. The Heavy
Licensed to Mark Watson <nordickan@gmail.com>

http://www.gdcvault.com/play/1020714
http://www.gdcvault.com/play/1020714

220 CHAPTER 9 UI design for VR
lumbers about, the Scout sprints like a maniac, and all the character animations—the
lumbering gait, the swinging bat—happen like you’re really there. Forsyth describes
how “ridiculously fun” these engaging animations are and how much they add to the
experience of gameplay.

 When a character animation plays, often the character’s feet are firmly planted on
the ground, or if they aren’t, it’s part of the animation. Characters may bob or duck,
lifting and lowering their heads as they move. And here, Forsyth observes, there’s a
problem: moving the avatar’s head without tracking it with the Rift is bad, and moving
the Rift view is much worse. So Valve needed a way to run complex animations without
moving the avatar’s head.

 The solution that Valve adopted for TF2 is what Forsyth calls “meathook avatars.” The
idea is that by anchoring the animation to the observer’s neck and head, instead of to
the ground, an animation can play and move the avatar’s limbs without bobbing the
head about. Of course, this means that the avatar’s feet will leave the ground, but unless
players are looking straight down and watching for it, they won’t notice the disconnect.

 Forsyth explains that they used the word meathook because if you hang an avatar’s
body from the neck and head and animate it below that so the feet dance in the air, it
looks like it’s been hung on a hook. As long as you’re careful to play the Rift variant
only to the Rift itself, this works well. Of course, don’t play the same animation in
third-person view or to other players online—that would look more than a little odd.

9.4 Tracking devices and gestural interfaces
So far we’ve looked at all the ways you can help your users feel as immersed as can be
while they navigate in the Rift with a gamepad or mouse. But no VR UI will be com-
plete until you can reach out in the real world and reach out inside the Rift as well.

9.4.1 Beyond the gamepad

In this section we’re going to sum up a few of the VR tracking devices that are com-
mercially available today, or will be available soon. These are devices whose sensors
offer a much higher potential of immersion than a gamepad or mouse. The pres-
ence of a particular product in this section doesn’t mean that we endorse it; we’ve
chosen just a few devices out of the many that are beginning to spring up. (Thank
you, Kickstarter!)

3DCONNEXION SPACEMOUSE

3Dconnexion’s SpaceMouse (www.3dconnexion.com) is a
6DOF joystick designed for animators and 3D modelers
(figure 9.24).

 The SpaceMouse transmits translations and rotations,
and it claims to offer a smooth and intuitive mapping from
the user’s hand motion to in-app manipulation. The Space-
Mouse has highly precise variable pressure sensors. This
allows a trained user to twist, pull, and push with anything

Figure 9.24 3Dconnexion’s
SpaceMouse
Licensed to Mark Watson <nordickan@gmail.com>

http://www.3dconnexion.com

221Tracking devices and gestural interfaces
from fine shades of pressure up to broad, coarse motions. In 2013, 3Dconnexion
introduced a wireless version of the SpaceMouse.

 3Dconnexion works closely with application developers to integrate the SpaceMouse,
and their site boasts a long list of integrated platforms. They don’t position their prod-
uct as a gaming peripheral; this is a precision pointer, not a tough piece of gaming hard-
ware. Developers can sign up for the free 3Dconnexion SDK at www.3dconnexion.com.

LEAP MOTION

The Leap Motion (www.leapmotion.com) is a small,
oblong peripheral that sits beside your keyboard or
mouse and watches the airspace above it (figure 9.25).

 The Leap Motion detects a human hand or hands
hovering overhead and transmits the hand’s position to
the PC. With the Leap Motion a user can send swipe,
pinch, wave, and grab motions to the PC, which can then be captured by software for
gestural UI. Leap offers an impressive array of software apps that integrate its ges-
ture controls.

 Leap has a robust developer support program and offers their SDK for free down-
load (developer.leapmotion.com). They’ve also recently announced “The Leap Fund,
a $25 million investment initiative focused on entrepreneurs that use Leap Motion
technology to develop breakthrough experiences” to encourage small and medium-
sized developers building the next killer app or integrating the Leap into existing
software. Leap’s clear commitment to applications beyond the games industry is
good news for VR developers who aren’t sticking to the entertainment space.

MICROSOFT KINECT

The Microsoft Kinect (www.xbox.com/xbox-
one/accessories/kinect-for-xbox-one) is an
oblong bar designed to be mounted above
or below a video display (figure 9.26).

 The device comprises a suite of sensors,
including a conventional webcam-style cam-
era, an infrared laser-projection depth sen-
sor, and an array of microphones for
spatialized audio. The Kinect is able to provide full-body 3D motion capture, allowing
software to “see” where a human body is in space. The Kinect is also suitable for facial
recognition, although its resolution isn’t typically sufficient for resolving hand ges-
tures. Microsoft continues to evolve the Kinect; the version shipped with the Xbox
One is significantly more advanced than the original, and the Kinect 2 for Windows
began shipping in summer 2014.

 For developers, Microsoft’s SDK (www.microsoft.com/en-us/kinectforwindowsdev)
is freely available for download. Ample resources from Microsoft are supplemented
nowadays by a cornucopia of third-party community projects on the web; curious people

Figure 9.25 The Leap Motion

Figure 9.26 The Microsoft Kinect for the
Xbox One
Licensed to Mark Watson <nordickan@gmail.com>

http://developer.leapmotion.com
http://www.3dconnexion.com
http://www.leapmotion.com
http://www.xbox.com/xbox-one/accessories/kinect-for-xbox-one
http://www.xbox.com/xbox-one/accessories/kinect-for-xbox-one
http://www.microsoft.com/en-us/kinectforwindowsdev

222 CHAPTER 9 UI design for VR
with screwdrivers have reverse-engineered a large number of the Kinect’s features. Ask
your favorite search engine for details.

 Many feel that the Kinect is the last piece in the gesture UI puzzle; all that’s needed
now is the software. By helping applications to detect waves, swipes, and other com-
mon gesture UI motions, the Kinect sensors seem well positioned as a mainstay for
future VR UI. A team at MIT has built a JavaScript plug-in to Google Chrome that
allows users to control their browser by gestures; another MIT group has used a Kinect
to re-create the Minority Report UI. A number of other academic and research-driven
projects have emerged.

VIRTUIX OMNI

Unlike the examples cited so far, the Virtuix Omni (www.virtuix.com) is a VR support
device for the rest of us…literally: it’s not for your hands, it’s for your feet (figure 9.27).

 Players stand inside a 20-inch-diameter ring of restraining plastic wearing special
shoes; to move yourself forward in a game, you simply walk forward in the Omni.
The developers of the Omni claim that the device allows for “running, jumping,
backwards stepping, strafing (sideways stepping), and even sitting.” High-precision
sensors in the Omni track the player’s body motion and translate human motion
into keyboard and gamepad controls, theoretically allowing intuitive control of almost
any first-person game.

 Virtuix have suggested that the Omni could also be
used for nongame activities, such as fitness and exercise
programs. This has interesting implications for the couch
potatoes among us. The Virtuix Omni SDK is available
from Virtuix’s developer website at www.virtuix.com/
resource-center/.

RAZER HYDRA

The Razer Hydra (www.razerzone.com) is a pair of 6DOF joy-
sticks, comparable to those of a Nintendo Wii (figure 9.28).

Figure 9.27 The Virtuix Omni

Figure 9.28 The Razer Hydra
Licensed to Mark Watson <nordickan@gmail.com>

http://www.virtuix.com/resource-center/
http://www.virtuix.com/resource-center/
http://www.virtuix.com
http://www. razerzone.com

223Tracking devices and gestural interfaces
 The central base station allows the joysticks to report not only their orientations
and rotations but also absolute position relative to the base station. This means that
users can lift and twist a Razer Hydra controller and watch their hands lift and twist in
VR. The Hydra is a computer games controller and has been successfully integrated
into a number of best-selling titles, such as Bethesda Software’s Skyrim.

 The Razer Hydra began its commercial life as the Sixense TrueMotion. An SDK
for programming the controller is offered by Sixense at sixense.com/hardware/
sixensesdk.

STEM SYSTEM

The STEM System (sixense.com/hardware/wireless)
is developer Sixense’s next-generation sequel to the
Razer Hydra (figure 9.29).

 According to the website, the STEM System is “a
wireless, motion tracking platform for video games,
virtual reality (VR), and more. It enables players to
interact naturally and intuitively with games by track-
ing full position and orientation at all times, whether
at the desktop or throughout the entire living room.”

 The STEM System consists of up to five wireless
tracking beacons and a central base station, echoing
the design of the older Razer Hydra. Each of the five
beacons transmits its location and orientation with
(according to the developers) sub–10 ms latency. By
attaching a beacon to each arm and leg and another to the torso or spine of the
user, the STEM System can compute a remarkably accurate projection of where a
human body must be (figure 9.30). Beacons in the hand are held in Razer Hydra–
style game controllers.

Figure 9.29 The STEM System

Figure 9.30 Still
from the video “Five-
Tracker Demo: STEM
System Prototype,”
on YouTube
Licensed to Mark Watson <nordickan@gmail.com>

http:// sixense.com/hardware/sixensesdk
http:// sixense.com/hardware/sixensesdk
http:// sixense.com/hardware/wireless

224 CHAPTER 9 UI design for VR
Using the inverse kinematic support already available through Unity, developers have
reported being able to integrate the STEM’s data into virtual worlds remarkably easily.
For more advanced integrations, the Sixense SDK (sixense.com/hardware/sixensesdk)
is available.

 In early prototypes of the STEM system, Sixense suggested that the fifth sensor
could alternatively be attached to the user’s head rather than the torso. But with the
addition of high-resolution head tracking to the Crystal Cove, this now seems like a
less likely configuration. The flexibility of the system is clear: with the ability to place
each sensor almost anywhere, a remarkable degree of immersion can be achieved.

9.4.2 Gestural interfaces

With such a panoply of high-potential devices becoming available, the end could well
be in sight for the gamepad and mouse. As immersive hardware becomes more com-
monplace, we can expect to see paradigms for UI design shift even further than they
already have.

 That said, it’s possible that the UI of the future has already been designed. There’s
been a strong trend in the movies lately toward what researchers have begun to call
gestural UIs. With waves of their hands, actors can give crisp, clear instruction to their
computers and data flows around them.

 Today dozens of science-fiction movies have used gestural UIs, among them

■ Minority Report (2002)—Detective Anderton (Tom Cruise) waves scores of
images across his screen, pauses the stream with an outthrust hand, spreads his
fingers apart to zoom, and more.

■ World Builder (2007, short)—A romantic artist uses simple hand gestures to
stretch, translate, rotate, and clone primitive objects into a virtual city street.

■ Iron Man (2008)—Tony Stark (Robert Downey Jr.) redesigns his eponymous
armor by grasping a hologram, tapping to select, grabbing and dragging to dis-
card, and spinning the model with a wave of his hand.

The same hologram interface was later spoofed in an episode of Marvel’s
Agents of S.H.I.E.L.D. TV series (2014), in which Agents Coulson and Ward can’t
figure out the gestural UI and are unable to zoom the mystery device they’ve
captured (figure 9.31).

■ Ender’s Game (2013)—Video playback is paused with an outthrust hand and
rewound with a gesture from right to left; later, Ender Wiggin (Asa Butterfield)
pivots the cameras of a massive 3D virtual battlespace by tilting his arms to tip
the scene forward.

The best part is these UIs aren’t entirely fictional. The Minority Report interface, as we
mentioned earlier, was re-created in the real world in 2010 by researchers at MIT
(video.mit.edu/watch/kinect-hand-detection-12073/) using a Kinect and the open
source libfreenect library for Linux (figure 9.32). The hand detection software,
which is publicly available, is said to be able to distinguish hands and fingers in a
Licensed to Mark Watson <nordickan@gmail.com>

http:// sixense.com/hardware/sixensesdk
http://video.mit.edu/watch/kinect-hand-detection-12073/

225Tracking devices and gestural interfaces
Figure 9.31 Marvel’s Agents of S.H.I.E.L.D. Coulson and Ward struggle to convince their
holographic table to “zoom in” on a mysterious device. (Episode 1x13, “T.R.A.C.K.S.,” 2014)

Figure 9.32 The Minority Report UI running on a Kinect, by
researchers at CSAIL, MIT’s Computer Science and Artificial
Intelligence Laboratory (image and video by Garratt Gallagher).
Licensed to Mark Watson <nordickan@gmail.com>

226 CHAPTER 9 UI design for VR
cloud of more than 60,000 points at 30 frames per second. The developers claim that
this enables natural, real-time interaction.

 The work at MIT is clearly only the beginning, and we expect many more innova-
tions to come along, especially now that tracking devices and the Rift make things
like holographic tables a realistic possibility. What’s interesting is that this new field
of UI design has already been designed, sort of, by Hollywood: a sort of informal
consensus is growing across recent films that already defines many of our gestural
preconceptions.

 To learn more about this growing new interface field, we encourage you to read
the book Make It So: Interaction Design Lessons from Science Fiction by Nathan Shedroff
and Christopher Noessel (Rosenfeld Media, 2012). Their chapter on the gesture UI
summarizes a few of the key concepts that Hollywood has now taught us to expect:

■ Wave to activate—To engage something’s primary function, just wave at it.
Modern-day faucets already do this.

■ Push to move—Virtual objects can be pushed and pulled in space, with collision
but without gravity or friction. Mobile web browsers echo this today as we navi-
gate up and down a web page on our phones by dragging a finger.

■ Turn to rotate—Grasping opposing points on a virtual model and twisting around
a central axis will rotate an object. We see a similar metaphor again on mobile
devices, where a two-finger rotation can often rotate images or game cameras.

■ Swipe to dismiss—The most natural of motions, flinging our hand through a vir-
tual object dismisses it from view. This is the virtual equivalent of shoving every-
thing off a table.

■ Point or touch to select—The mouse without the mouse: the user reaches out nat-
urally to a virtual object, and the object responds to the contact.

■ Extend the hand to shoot—When wearing a device with a single distance function
(such as a glove that fires repulsor beams), it’s enough to thrust out your arm
with the hand in a specific pose to fire the weapon.

■ Pinch and spread to scale—Like rotation, users can grab arbitrary points in the vir-
tual model and collapse their hands down or fling them open, expanding or
contracting their view of the entire model.

Shedroff and Noessel emphasize that their catalog of the gestures UI of Hollywood
requires the computer to understand subtleties of human intent and context; actor
Tom Cruise can page quickly through Minority Report images by waving both hands,
but when he really sweeps his arms, he clears the screen. They also remind their reader
that the set of gestures is not yet complete; Hollywood—or perhaps the gaming indus-
try—will uncover more.

 In the meantime, with the Rift and Kinect and body trackers like the STEM System
all coming on line, the gestural interface of the future may well be much closer than
we think.
Licensed to Mark Watson <nordickan@gmail.com>

227Summary
9.5 Summary
In this chapter you learned

■ Because the frame of the screen has been removed and the user is now
immersed in a virtual environment, conventional UI practices must be rethought
from the ground up for the Rift.

■ By following well-researched guidelines, you can produce clear, easy-to-use, and
above all simple UIs that work smoothly in VR.

■ Giving your user a strong sense of context is key to immersion and can help
reduce simulation sickness.

■ Don’t move the camera without the user’s direct command.
■ VR interfaces are already being influenced by Hollywood science fiction, such as

gestural interfaces, but there’s still a lot of experimentation left to be done.
■ Remember the guidelines of good UI design:

– Always show state
– Make your UI simple, clean, and clear
– Don’t penalize users for errors, and help them recover
– Don’t require expertise, but do reward it.
Licensed to Mark Watson <nordickan@gmail.com>

Reducing motion sickness
and discomfort
You’ve created the first version of your software. The graphics are stunning and the
software is responding to every head movement. For the first few minutes, your new
test subjects are impressed and smiling but pretty quickly their smiles fade and they
start to look a little green. One test subject even pulls off the Rift and asks if there’s
someplace he can lie down for a bit. You wanted to create an immersive experience
that gave your users the feeling they’d been transported somewhere else, but
instead they ended up feeling like they had been on a bad trip to nowhere. This
reaction wasn’t at all what you expected. You tested the software yourself many
times and never had this reaction. So, what happened? And more important,
what can you do about it? As your users graphically demonstrated, motion sickness
is one of the biggest challenges to creating a usable, comfortable, and immersive
VR environment.

This chapter covers
■ Why the Rift can cause user discomfort,

including motion sickness
■ Creating a comfortable VR environment
■ Testing your VR application for motion sickness

potential
228

Licensed to Mark Watson <nordickan@gmail.com>

229What does causing motion sickness and discomfort mean?
10.1 What does causing motion sickness and
discomfort mean?
Motion sickness, VR sickness, or simulator sickness—whatever you call it, what we’re
talking about are the symptoms of discomfort people feel when experiencing a mis-
match between actual motion and what their body expects. In traditional motion sick-
ness, such as you might get from riding in a car or airplane, motion is felt but not
seen. You may feel fine riding in a car looking out the window and watching the world
go by, but the minute you look down to read a book and you’ve focused on a station-
ary object, you feel sick. Simulator sickness and VR sickness from using the Rift can
arise in the same way. With the Rift on, you can feel that you’ve moved your head but
the view hasn’t changed, or illness can be triggered from the inverse situation where
motion is seen but not felt; that is, the view changes but you’re sitting still. No matter
the trigger, the symptoms of discomfort are similar: headache, drowsiness, nausea, diz-
ziness, and sweating. 1

It is also important to note that with the Rift, motion sickness symptoms aren’t the
only discomfort users might feel. The Rift is a device worn on the head and over the
eyes. Although it isn’t heavy or particularly uncomfortable, using it can cause fatigue,
eyestrain, and neck strain.

 Finding and addressing the specific cause of motion sickness or other discomfort
in your software may not be simple or easy to do by yourself. It’ll take testing, itera-
tion, and intuition. For testing, you’re going to need to get help from others,
because what might cause one person severe discomfort may not be noticed by
another. Just because you felt no symptoms using the software doesn’t mean no one
else will. You’ll need to test carefully, in stages, and with a variety of people, so that
you can get the feedback you need to create comfortable software. But before you
even get to testing, you’re going to need your intuition to get a prototype worth test-
ing. Fortunately, you don’t have to rely on your intuition alone. As more and more
VR applications are being created, some general design guidelines for increasing
comfort are taking shape.

Migraine headaches and motion sickness
People who get migraine headaches are more prone to motion sickness.1 There’s
a wide range of migraine triggers (among them, food, stress, and weather), most
of which aren’t relevant to Rift use. But eyestrain, lights (bright or flickering), and
movie viewing are all part of the experience of using a Rift and all are possible
migraine triggers.

1 Cuomo-Granston, A., and P. D. Drummond. (2010). “Migraine and Motion Sickness: What Is the Link?” Prog-
ress in Neurobiology 91: 300–312.
Licensed to Mark Watson <nordickan@gmail.com>

230 CHAPTER 10 Reducing motion sickness and discomfort
10.2 Strategies and guidelines for creating a comfortable
VR environment
Motion sickness from VR isn’t a solved problem, nor do we expect it to be in the
near future. The good news is that everyone working on VR is also working on
this problem.

In addition to our own observations,2 the ongoing discussions on the Rift Forums on this
topic, and the information in the Oculus Best Practices Guide (developer.oculusvr.com/;
a must-read for anyone doing VR), we found the postmortems published by Valve
about Team Fortress 2 (media.steampowered.com/apps/valve/2013/Team_Fortress_in_
VR_GDC.pdf) and by Marauder Interactive about Enemy StarFighter (enemystarfighter
.com/blog/2013/9/5/vr-lessons-learned) very helpful.

 In this section, we’ll look at some of the best advice currently available. We’ll be
covering the following topics:

■ Starting with a solid foundation
■ Giving the user a comfortable start
■ Following the golden rule of VR comfort: the user is in control of the camera
■ Rethinking your camera work to use new approaches for favorite techniques
■ Making navigation as comfortable as possible
■ Designing the world with VR constraints in mind
■ Paying attention to ergonomic issues such as eyestrain, neck strain, and fatigue
■ Using sound to orient the user and increase immersion
■ Giving your player the option of an avatar body
■ Accounting for human variation
■ Helping your users help themselves

Limitation of 3D display and the Rift
The Rift, like many 3D devices, uses stereoscopic images to create the illusion of
3D. With stereoscopic 3D there’s a disparity between focus depth and vergence (the
simultaneous movement of both eyes in opposite directions to obtain or maintain bin-
ocular vision), and this disparity can lead to eyestrain. When we perceive a real object
coming toward us, our eyes refocus to ensure clarity. But with 3D displays like the Rift,
our brain is tricked into thinking an object is coming at us when in reality the screen
is at a fixed position. As our eyes constantly readjust to fight our natural tendency to
focus on the closer object, we get eyestrain.

2 We’ve done both formal and informal testing of the Rift using various demos. We’ve posted some of our test-
ing results on our blog at rifty-business.blogspot.com/search/label/usability-test-results.
Licensed to Mark Watson <nordickan@gmail.com>

http://rifty-business.blogspot.com/search/label/usability-test-results
https://developer.oculusvr.com/
http://media.steampowered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf
http://enemystarfighter.com/blog/2013/9/5/vr-lessons-learned
http://enemystarfighter.com/blog/2013/9/5/vr-lessons-learned
http://media.steampowered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf

231Strategies and guidelines for creating a comfortable VR environment
■ Evaluating your content for use in VR
■ Experimenting as much as possible

As you develop your application, keep in mind that any time someone is using the
Rift there’s the potential for discomfort. You’ll want to pay attention to these guide-
lines for everything you create, including menus and loading scenes, not just for
gameplay.

10.2.1 Start with a solid foundation for your VR application

Building a comfortable VR environment starts with building a solid foundation.
Almost everything we’ve talked about prior to this chapter goes into creating a com-
fortable VR environment. And if you do nothing else, at the very least make sure you
get the foundation right:

■ Make certain your users are aware of the health and safety issues of using
the Rift.

■ Use the correct distortion for the Rift lenses (covered in chapter 4 for using the
C API or done for you by using the Unity Integration package).

■ Use the correct projection matrix and model view matrix (covered in chapter 5
for using the C API or done for you by using the Unity Integration package).

■ Have latency down to a reasonable level (covered in chapter 6 for using the C
API or chapter 8 for using Unity).

■ Use a UI intended for VR (covered in chapter 9).

Displaying a safety warning is easy. Oculus has taken care of that for you—all applica-
tions built with the 0.4 SDK and later automatically display a safety warning on startup.
For the rest, as you can see, just by reading and following the development process in
this book you’re on the right track. But there’s more you can do.

10.2.2 Give your user a comfortable start

The Oculus Health and Safety Warnings found in the Oculus Best Practices Guide tell
the user to “remain seated whenever possible.” Oculus has stated that they’re target-
ing a seated experience at this time. When using the Rift, users will typically be seated
and they’ll naturally get themselves into a comfortable position. You want the user to
be able to remain in that comfortable position even after putting on the Rift. But
when observing people using the Rift, we’ve seen them put the Rift on, then twist
around to get a better view, and then spend the entire time trying to navigate a demo
with their head turned toward their shoulder. When they take off the Rift, they com-
plain that their neck hurts (figure 10.1).

 We’ve also observed people who, instead of turning their head to look, used the
gamepad to turn around and then groaned and said, “I did not like that, at all.”

Licensed to Mark Watson <nordickan@gmail.com>

232 CHAPTER 10 Reducing motion sickness and discomfort
You can prevent both of these scenarios by

■ Making it clear to the user when to put on the Rift
■ Letting the user indicate when to start tracking head position
■ Orienting a user’s avatar in the direction they need to look/move at the start of

the game

We covered how you can help the user move from the desktop environment to the
Rift environment in chapter 9. By analyzing the head tracker data (the data from a
Rift sitting on a desk shows a very different pattern compared to the data from a Rift
being worn by a person), you can know when to start head tracking and when you can
assume the current orientation is forward. After the user has the Rift on, you’ll also
want to give the user an option to re-center the view if drift has occurred or if the user
wasn’t facing forward.

 Now that the user is off to a good start and head tracking has been enabled, the
first rule of head tracking is that the user needs to be in control.

10.2.3 The golden rule of VR comfort: the user is in control of the camera

If there’s a golden rule for VR comfort, it’s that the user is in control of the camera.
Looking around in the VR world needs to feel to the user as much as possible like
looking around in the real world. This means that head tracking must exactly match
what the user is doing and it means you can’t change the FOV.

HEAD TRACKING MUST EXACTLY MATCH WHAT THE USER IS DOING
You want to make sure that head tracking exactly matches what the user is doing. As
the Team Fortress folks put it, “If the user turns their head 27 degrees to the right and
rolls it 3 degrees, their view in the game needs to turn 27 degrees to the right and roll
3 degrees. Anything else is going to make people sick.”

The user has turned his head over his
shoulder for a better view of the game.
Playing for long periods in this position

can lead to neck strain.

Let the user get into a comfortable
position before the game starts and
then orient the player in the direction

they need to be.

Figure 10.1 Don’t force your user to look over a shoulder to get a good view.
Licensed to Mark Watson <nordickan@gmail.com>

233Strategies and guidelines for creating a comfortable VR environment
 Usurping control of the camera’s orientation is pretty much a recipe for motion
sickness. That said, there might be times for judiciously breaking this rule, and as
you’ll see later in this chapter, there are places where compromises need to be made.

DON'T CHANGE CAMERA POSITION IN AN UNEXPECTED WAY

Moving the camera’s position in a way that the user doesn’t expect can be a motion
sickness trigger for some people. When changing the camera’s position, do so in a way
that puts the user in control of the change, such as using the gamepad for navigation.
If you’re moving the camera for the user, we suggest moving in the direction the user
(or the vehicle the user is in) is facing and that you make sure the user expects the
change. If the user is inside a cockpit or car, the user expects the scene outside of
the vehicle to change and the movement is more comfortable.

DON’T CHANGE THE FIELD OF VIEW
In the Rift, the FOV is fixed because it must be the same as the actual headset. The
Oculus Best Practices Guide puts this rule in very strong terms: “You should not change
any of the default settings related to FOV or scale under any circumstances, and care
must be taken to get the view scaling exactly the same way the SDK specifies.”

 So, why is changing the FOV such a big deal? No matter how still you think you
might be sitting, your head is always moving a tiny amount. You naturally adjust to this
movement by moving your eyes to preserve the image at the center of the visual field.
For example, when you turn your head to the left, your eyes move to the right. This
reflexive movement is called the vestibulo-ocular reflex and it’s what allows you to have a
stable view of any object.

 If the rendered FOV doesn’t match the perceived FOV, those small head move-
ments and the reflexive eye movements will no longer correspond one to one. This
mismatch can make it appear as though stationary objects gain sudden motion when
you turn your head, leading to severe motion sickness. It may also lead to maladapta-
tion of the vestibulo-ocular reflex, diminishing the user’s ability to maintain a stable
view of an object.

10.2.4 Rethink your camera work: new approaches for favorite techniques

Many modern games borrow heavily from cinema for storytelling techniques, such as
using cutscenes for flashbacks to provide the required background information to
play the game or zooming in on an important element in the story. Unfortunately,
many of those techniques violate the golden rule of VR comfort by taking control of
the camera. If you want to incorporate some of these techniques into your applica-
tion, you need to take a new approach. The exciting thing is, in some cases, using a
new approach won’t just make the experience more comfortable; it can also make the
experience more immersive.

DON’T TURN THE CAMERA VIEW: GET THE USER’S ATTENTION INSTEAD

Users are going to look at what they want to see. It may be tempting to turn their
view for them to get their attention, but that’s a surefire way to make the user sick.
Licensed to Mark Watson <nordickan@gmail.com>

234 CHAPTER 10 Reducing motion sickness and discomfort
As discussed in chapter 9, if you need to get a user to change their head orientation,
you must do it by getting their attention and having them change where they’re look-
ing on their own. Motion, color changes, and sound cues are all ways to get the user’s
attention. In the Oculus Rift demo Shadow Projection users have to look at the avatar’s
hand to see the shape they’re searching for (figure 10.2).

 Users are free to look anywhere they please, but as the game begins an object flies in
and down into the avatar’s hand to get users’ attention, showing them where to look.

DON’T SIMPLY ZOOM THE CAMERA: PROVIDE CONTEXT, GIVE THE USER CONTROL, AND USE
A SUBSCREEN FOR THE ZOOMED-IN IMAGE
You can zoom in on an object comfortably if the user has the proper context to under-
stand it and you use a subscreen for the zoomed-in image so that you’re not changing
the Rift FOV. Context comes from the storytelling in your game; for example, using a
scope on a gun for targeting. Or, as in Private Eye (privateeyevr.com/), you’re a 1950s
New York detective, and one of your tools is a pair of binoculars (figure 10.3).

 The binoculars give the user context for the zoom, and because players must
choose to bring the binoculars to their eyes, they’re in control. More critical than con-
text and control in this case is using a subscreen for the zoomed-in image. If you try
out this application, you’ll notice that the head tracking remains relative to the Rift
FOV, but the FOV you see in the subscreen is a much smaller portion of the screen.
This results in an experience similar to looking through binoculars.

To get the user’s attention and have them look at the
object in the avatar’s hand, the first object in the game

(a triangle) flies across the user’s view and into the
avatar’s hand.

Figure 10.2 Shadow Projection uses a flying object to get the user’s attention.
Licensed to Mark Watson <nordickan@gmail.com>

http://privateeyevr.com/

235Strategies and guidelines for creating a comfortable VR environment
DON’T FREEZE THE CAMERA: USE OTHER METAPHORS TO SHOW THAT THE WORLD HAS STOPPED

Suddenly stopping the head tracking is disorienting and you don’t want to do it for
any reason. Many games freeze the camera when a character dies as a cinematic way
of expressing that the world has stopped. If your character dies, you need to use a
different metaphor to express death, such as a slow fade to black (or try to be a bit
more creative).

PAY SPECIAL ATTENTION TO CUTSCENES
We wrote at length about cutscenes in chapter 9, but because it’s going to be one of
the major hurdles in getting high-quality cinematic-style games on the Rift, we want
to discuss them here as well. Cutscenes are one of the great tools in cinema for story-
telling; the director can show you what’s going on somewhere else and can focus the
camera on what’s important. As a software developer, you’re used to being in the
role of director. You choose where the user looks and where to focus the camera,
but the golden rule of VR comfort is that the user is in control of the camera. So, as
the developer/director of the story, how do you move the story forward if you don’t

When zoomed, the scene
edges are blurred reminding
the user that they are
looking through binoculars.

The player has binoculars
that are raised to the eyes
before the scene is zoomed
in. This gives the user both
control over the zoom
and context.

Figure 10.3 An example of giving the user control and context for a camera zoom
Licensed to Mark Watson <nordickan@gmail.com>

236 CHAPTER 10 Reducing motion sickness and discomfort
have control of the camera? And how do you do it without breaking the user’s feel-
ing of immersion?

 For background content or other content that the user is simply viewing and not
part of, the easiest solution is to find a way to transition to a more screen-like experi-
ence for the duration of the non-interaction. For example, there could be some kind
of actual screen or display in the environment to which the user’s attention is some-
how drawn (figure 10.4), as in Technolust (irisproductions.ca/technolust/).

 Incorporating scene changes into the story can also be very effective. As you can
see in figure 10.5, one example is Trial of the Rift Drifter, created by Aldin Dynamics
(share.oculusvr.com/app/trial-of-the-rift-drifter).

 In Trial, you’re a prisoner and for a scene change, a sack is placed over your head
and when it’s pulled off, you’re in the new scene. Both the visual and audio cues make
for a believable transition.

 No matter which technique you use, the content needs to serve the story you’re
telling. A sack over your head works great for a dystopian prison scene or an oak
barrel over your head works well for a pirate pub brawl, but throwing something
over the user’s head won’t work for every scene. The point is, you’ve got to be cre-
ative in your storytelling (and quite honestly, that creativity is something we can’t
wait to see).

Background information
is presented on a screen
within the game rather
than as a cutscene.

Figure 10.4 Background content that might have been a cutscene in other media is shown on a
computer screen that’s part of the environment, as in Technolust, by Iris Productions.
Licensed to Mark Watson <nordickan@gmail.com>

http://irisproductions.ca/technolust/
https://share.oculusvr.com/app/trial-of-the-rift-drifter

237Strategies and guidelines for creating a comfortable VR environment
10.2.5 Make navigation as comfortable as possible: character
movement and speed

You can avoid most motion sickness by providing a stationary experience for the user.
Depending on the story you’re telling, this can be a good solution to the problem. For
example, Private Eye, a film noir detective game with more than a nod to Hitchcock’s
Rear Window, cleverly limits movement in the game by giving the player character a
broken leg. Of course, that won’t always work; you can’t break the leg of every player
character, and simply saying “don’t let the player move” is about as practical as telling

Scene changes built seamlessly into the story provide
greater immersion and are less likely to cause motion sickness.

You are a prisoner
with a sack over your
head. The scene change
occurs as the sack is
removed. The sound
of cloth moving through
air adds to the immersion.

Figure 10.5 In Trial of the Rift Drifter, the scene change is part of the story.
Licensed to Mark Watson <nordickan@gmail.com>

238 CHAPTER 10 Reducing motion sickness and discomfort
someone who gets car sick to just stay home. Balancing the trade-off between naviga-
tion and comfort is going to be a difficult job, so let’s look at ways you can tip the
scales in your favor.

USE REAL-WORLD SPEEDS
Whenever possible, use real-world speeds for your characters. The Oculus Best Practices
Guide lists a walking rate of 1.4 m/s and a jogging rate of 3 m/s as most comfortable.
In general, the more natural the interaction, the more comfortable the user experi-
ence will be.

DON’T USE HEAD BOB

Head bob, the slight up and down movement used to simulate human movement in
some first-person games, doesn’t work well on the Rift. Each of those small move-
ments adds a bit of discomfort for most users. We want the user to be in control of as
much motion as possible, and any added motion not initiated by the user, no matter
how small, is a source of discomfort.

 Unfortunately, smoothly gliding from place to place can be disconcerting as well,
and more research needs to be done in this area. Solutions may come from using
input devices that take into account more body movement. We’ve been experiment-
ing with using the Wii Fit board as a controller to allow walking by putting pressure
alternately onto each foot, because this will naturally cause the body to shift and the
view to move with it.

LIMIT BACKSTEPPING, SIDESTEPPING (STRAFING), TURNING AROUND, AND SPINNING

Try to limit situations that require backstepping, sidestepping (strafing), and turning
around. Spinning the user around is just cruel.

 When we talk about spinning, we mean both actively making users turn themselves
around, and having objects rotating around the user or using stripes (of light or tex-
ture) streaming around users to make it appear as though they’re inside a rotating
object. We’ve even heard complaints from some users that moving along a curved wall
was too much.

 You don’t want to eliminate these situations completely—it can make moving
around in your virtual world too cumbersome—but be cognizant of the cumulative
effects these actions can have on your users.

TRY USING “VR COMFORT MODE” FOR TURNING

Users are typically sitting in a chair where they’re not able to easily turn 180 degrees
around and face the opposite direction. For turning around, users are going to need
to use the mouse or gamepad (or other input device), and for many people this type
of movement is very uncomfortable. The main problem with turning via controllers is
that it’s a sudden transition from a match to a mismatch between eye/head motion
and the world.

 The team at Cloudhead Games (www.thegallerygame.com) has shared their ideas
on how to make turning in VR more comfortable, and they’ve called their method VR
Licensed to Mark Watson <nordickan@gmail.com>

www.thegallerygame.com

239Strategies and guidelines for creating a comfortable VR environment
Comfort Mode. In it, turning isn’t continuous, but rather turns happen in rapid
chunks. For example, you’re looking forward and then in an instant you’re looking 15
degrees to the left of the former view.

 Both types of turns are examples of taking control of the camera, but in order to
give users a full world to explore, and without requiring them to be able to turn their
actual heads and face every direction (and do so without getting tangled up in
cables), this is unavoidable.

 According to the Cloudhead Games team, their tests show that turning ends up
being less distressing if the change in orientation is sudden, without any actual per-
ceived motion, rather than constant transitions between modes where the inner ear
matches the motion and those where it doesn’t.

 Turning is one of the most common complaints that we’ve heard from users in
terms of comfort. Because it’s difficult to design a fully immersive world without being
able to turn around, we expect that there will be a lot more research done in this area.
And because what’s best practice today may easily change by tomorrow, techniques for
turning is an area to watch in the VR development community.

USE CAUTION WHEN ADDING FLYING OR OTHER EXTREME ACTIONS
Even though your users can be faster than a speeding bullet, more powerful than a
locomotive, and able to leap tall buildings in a single bound inside a virtual world,
extreme actions in VR are still extreme actions. And unless your user is Superman,
they probably aren’t used to being able to do these things. Learning to handle new
superpowers will take time. Even Superman was probably a little queasy the first time
he flew.

 Be kind to your users (who probably aren’t Superman or Wonder Woman) and do
the following:

■ Provide some orientation to them up front about what they need to do or about
what they’re about to experience.

■ Provide multiple play paths that are more and less extreme. Doing so gives your
users the chance to participate or decline, and if they choose the more extreme
path, be sure to give them time to get used to the VR experience before actions
become extreme.

■ Build in rest time between extreme actions even after users have had time to get
used to the experience. Most people don’t want to ride the roller coaster non-
stop for the entire day at the fun park.

Even with these precautions, extreme actions in VR may still cause motion sickness just
as they would in real life. But don’t let motion sickness dissuade you from trying out
extreme actions in VR. In VR, you aren’t risking broken bones, so it can be an awe-
some opportunity to safely be a bit of a daredevil.
Licensed to Mark Watson <nordickan@gmail.com>

240 CHAPTER 10 Reducing motion sickness and discomfort
10.2.6 Design your world with VR constraints in mind

VR gives you the opportunity to visit any world you imagine. But some of those worlds
will be more comfortable to visit than others, and in this section we’re going to look at
some points to consider when designing your world.

DESIGN TO SCALE

The scale of the world and the player is an important part of the immersive VR experi-
ence. By default, the Rift SDK uses meters as the reference unit and, to keep things
simple, you should use meters too. In addition, objects should be sized based on real-
world sizes when the scale of the objects isn’t part of the game.

 Real-world architects know that the size and scale of everything contributes to
how comfortable and navigable the building they’ve designed is. Many books are
available on architectural graphics standards that provide examples of properly scaled
rooms, doorways, stairs, and kitchens. You can leverage what real-world architects
already know about design and scale as a starting point for creating comfortable
VR spaces.

 Using real-life scale is part of what makes it feel natural to be on the set of a famous
TV show in the demo Jerry’s Place (jerrysplacevr.com) by Greg Miller (figure 10.6).

 We also love the artwork and attention to detail that went into this demo.

LIMIT STAIRS AND OTHER UNEVEN SURFACES
The Tuscany demo included with the Oculus SDK contains stairs that a user can go up
and then look out at the sea from a balcony. In a fair number of the Rift demos we’ve

Figure 10.6 Using real-life scale is part of what makes it feel natural to be on the set of a famous
TV show in the demo Jerry’s Place.
Licensed to Mark Watson <nordickan@gmail.com>

http://jerrysplacevr.com

241Strategies and guidelines for creating a comfortable VR environment
given, the moment users got hit with motion sickness for the first time was going up or
down these stairs.

 We suggest, if possible, that you use flat walking surfaces and elevators/lifts. Invisi-
ble ramps can be placed over stairs to create a smoother experience. Also, remember
that if users enter an elevator, have them exit the elevator on the opposite side, so they
don’t need to turn around to continue.

DON’T CHANGE THE USER’S HORIZON LINE

One piece of advice given to people who experience motion sickness while traveling
in a car or on a boat is to focus on the horizon line. This advice is so common that we
can imagine many users who start experiencing motion sickness do just that. Now,
imagine that the horizon line moves.

DON’T LEAVE THE USER FLOATING IN A VOID: ADD STATIC REFERENCE POINTS WHENEVER POSSIBLE

Having static reference points, such as a cockpit, can help. This makes driving games a
natural fit for VR. A cockpit, though, isn’t a suitable solution for many scenarios. One
suggestion for first-person scenarios is to use an indicator on the ground to show
which way the user’s body is facing in relation to the head, although we suspect that
would break immersion rather quickly.

 If you choose to provide an on-rails experience where users don’t control where
they go, a static reference point is almost essential. Additional cues to help orient the
user are also quite welcome. The demo Titans of Space (www.crunchywood.com) by
DrashVR displays the words “Auto Pilot” in the cockpit when you’re moving, as seen in
figure 10.7.

DON’T ADD LARGE MOVING OBJECTS THAT TAKE UP THE MAJORITY OF THE USER’S VIEW

If a moving object takes up the majority of the user’s view, they may interpret the situ-
ation as self-movement that they didn’t initiate. This type of self-movement illusion is

A cockpit provides
a static reference point.

Adding “Auto Pilot”
to the cockpit display
helps the user feel
more comfortable with
movement they are
not in control of.

Figure 10.7 Titans of Space uses a cockpit (set on “Auto Pilot”) as a static reference point.
Licensed to Mark Watson <nordickan@gmail.com>

www.crunchywood.com

242 CHAPTER 10 Reducing motion sickness and discomfort
called vection, and it can lead to disorientation and motion sickness. A classic example
of vection is when someone is at a train station and a nearby train moves. They see the
train move and interpret that as though they’re moving.

 In VR, a specific scenario regarding vection to look out for is when the user’s view
is very close to the ground plane and the user moves the avatar’s position. Remem-
ber, the user is not actually physically moving, they are only pressing buttons. If the
ground plane entirely fills their view, when the user moves the avatar’s position it
creates an illusion similar to the train pulling away from the station, causing a feel-
ing of motion sickness.

USE DARKER TEXTURES
Some people are sensitive to bright white light, so using darker textures can help
them feel more comfortable. In addition, the darker textures can help with the sense
of immersion.

 When we were creating the example scene used in chapters 7 and 8 (figure 10.8),
we’d initially used a plain white scene. During testing, we found that the white scene
induced headaches. After adding darker textures to the scene, we had fewer headaches.

DON’T INTRODUCE INTENTIONAL FLICKERING OR USE HIGH-CONTRAST FLASHING

Pay attention to small and thin objects as well. These objects can cause unintentional
flickering, because they can sometime seem to appear and disappear. Flickering and
flashing, aside from contributing to motion sickness and user eyestrain, can cause sei-
zures in photosensitive people, and so is best avoided.

10.2.7 Pay attention to ergonomics: eyestrain, neck strain, and fatigue

When playing a game or watching media on a traditional monitor, the user can look
straight ahead at the monitor. With the Rift, the user has a device on their head and

The darker colors used in this basic scene caused
fewer headaches during testing.

This bright all-white basic scene was
headache inducing.

Figure 10.8 A basic scene created in Unity for this book
Licensed to Mark Watson <nordickan@gmail.com>

243Strategies and guidelines for creating a comfortable VR environment
they’re moving their head around and looking in all directions. Though slight, the
added weight of the Rift itself can contribute to user discomfort. With that in mind,
let’s look at things you can do to limit eyestrain, neck strain, and fatigue.

LIMIT HOW MUCH THE USER NEEDS TO MOVE THEIR HEAD AROUND

As we mentioned in chapter 9, head motion can be used as a control scheme. In Pro-
ton Pulse (share.oculusvr.com/app/proton-pulse-rift) by Justin Moravetz, you control
the transparent panel that the “ball” bounces off of with your head. In Chicken Walk
(share.oculusvr.com/app/chicken-walk) by Mechabit Ltd. you’re the chicken and you
need to “peck” the ground to eat and drink (figure 10.9).

 Using head motion as part of the control scheme can increase immersion. You
really do feel more like a chicken by pecking for food. Like real-life chickens, the
Chicken Walk chicken doesn’t need to eat and drink constantly, so pecking for food
adds to the immersion but doesn’t give the user a workout. If you force your user to
turn their head constantly or to rotate the head further than is comfortable, you do
risk tiring them and causing neck strain.

 This is one of those situations where carefully breaking the rules can pay off.
Dejobaan Games and Owlchemy Labs, the makers of AaaaaAAaaaAAAaaAAAAaCULUS!!!
(share.oculusvr.com/app/aaaaaaaaaaaaaaaaaaaaculus), found that by slightly over-
rotating the camera, users had the illusion of looking straight down, even though they
weren’t (www.youtube.com/watch?v=DqZZKi4UHuo). By using this illusion, they were
able to reduce fatigue from being hunched over.

The user bobs
his head up and
down pecking
like a chicken
to drink water.

You are the chicken
in Chicken Walk.
You even have a beak.

Figure 10.9 In Chicken Walk the user needs to peck like a chicken to drink water.
Licensed to Mark Watson <nordickan@gmail.com>

https://share.oculusvr.com/app/aaaaaaaaaaaaaaaaaaaaculus
https://share.oculusvr.com/app/proton-pulse-rift
https://share.oculusvr.com/app/chicken-walk
www.youtube.com/watch?v=DqZZKi4UHuo

244 CHAPTER 10 Reducing motion sickness and discomfort
DON’T MAKE THE USER ROLL THEIR EYES TO SEE SOMETHING

If the user needs to see something, make sure that it’s comfortable look at it. Don’t pin it
to the edge of the screen and force the user to roll their eyes to look at it (figure 10.10).

 Even if the user does roll their eyes to see an item pinned to the edge, the item
may simply be too difficult to read because the Rift’s distortion is greatest at the edges
of its display and can make items appear blurry.

 Instead, let the user move their head to place the object or text in the center of the
screen where it’s easily seen (figure 10.11).

Items “pinned” to the edge of your view are hard to see
without rolling your eyes in their sockets, causing eyestrain.

Figure 10.10 The “Look Here” box in this example scene is hard for the user to
look at without rolling their eyes.

The user can look at the text to get it in the center
of the screen where it is easily read.

And the user can look around at the scenery
without the text blocking their view.

Figure 10.11 In Titans of Space the user can look down at the console to read the text, but also look
up to see the planets.
Licensed to Mark Watson <nordickan@gmail.com>

245Strategies and guidelines for creating a comfortable VR environment
Even if the user can get the text into a position where it can be seen, take special care
to make sure the text is easily readable on the Rift screen.

MAKE SURE ANY DISPLAYED TEXT IS EASILY READABLE

You want to make sure any displayed text is easily readable. Eyestrain from reading
text that’s too small or lacks contrast is no less of a problem in VR than it is any-
where else.

 If your users are able to move about in the game, you may not be able to control
how close or how far away they are from certain textural elements in your applica-
tions. But if it’s something you can control, such as the depth plane of a HUD, the Ocu-
lus Best Practice Guide recommends that it be rendered at least 50 cm from the camera.
Ideally, if you choose to use a HUD, you should give users the ability to adjust the
depth of the HUD to what feels most comfortable for them.

 Speaking of HUDs, remember that if you port a game to the Rift and you used a 2D
overlay for the HUD or for floating text, you need to make sure the UI overlay is also
properly rendered in 3D. If not, you’ll end up with text appearing doubled, which,
aside from being unreadable, can be headache inducing at the least.

 Floating text and HUDs, even when very readable, can break immersion for the
user, especially if they are out of place for the story you’re telling. We suggest that you
try to avoid floating text interfaces as much as possible and use other cues to move the
story forward. See chapter 9 for more details.

10.2.8 Use sound to increase immersion and orient the user to action

The Rift covers your eyes, blocking out the real world, but it doesn’t block out sound.
Sound cues can orient the user to the action, and more important, sound can help
with the sense of overall immersion. The Shadow Projection team noted, “The sound
design proved to be a crucial element to the overall immersion. It wasn’t until we
added the music that people really started to feel like they were being taken to
another place.”

 For many users, outside sound can be a distraction and cause disorientation, so
some may choose to wear headphones. Your sound design should take into account
the audio output: headphones or speakers. For both speakers and headphones, the
soundscape should follow the player’s position, but if the person is wearing head-
phones, the audio output can also follow the user’s ears (via head movement).

10.2.9 Don’t forget your user: give the player the option of an avatar body

Give your character a body (figure 10.12). Many of the people we’ve seen test out the
Rift weren’t bothered by not having a body, but for some, it was very disorienting to
look down and not see arms, a body, and legs. Some users, discovering that they didn’t
have a body, could no longer pay attention to the rest of the demo. They kept looking
down and exclaiming “I have no body!” and missed out on anything else that was hap-
pening around them. And even for those who were comfortable with being a floating
Licensed to Mark Watson <nordickan@gmail.com>

246 CHAPTER 10 Reducing motion sickness and discomfort
head, it broke the sense of immersion. One user described it as feeling like he was
“watching video from a drone,” whereas when he played a demo that included an ava-
tar body, he felt like he was really there.

 The downside of an avatar body is that without additional hardware, the user’s
hand movements and the avatar’s hand movements don’t match. Some users find the
lack of control over the avatar’s hand movements more disconcerting than having no
avatar at all. You may want to give users the option of not having an avatar body.

 Don’t forget that if your VR world has a mirror, you should include a head in
the reflection. Seeing yourself headless might not make you sick but it’d be a lit-
tle creepy.

10.2.10 Account for human variation

We’re sure it isn’t news to you that not all humans look alike or are the same size. But
how do those differences affect the VR experience? Physical differences can affect the
VR experience in two important ways: comfort and immersion. The good news is that
you can account for this variation in your software and create a better experience for
your users.

 We’ll first look at the profile data collected by the Oculus Configuration Utility and
how that data is used. Then, because there are also additional human-variation issues
that aren’t covered by the Oculus Configuration Utility that we think also need to be
addressed, we’ll cover those as well.

The user can look down
and see they have a body.

Figure 10.12 In Titans of Space users can look down and see that they have a body.
Licensed to Mark Watson <nordickan@gmail.com>

247Strategies and guidelines for creating a comfortable VR environment
USE THE PROFILE DATA GATHERED BY THE OCULUS CONFIGURATION UTILITY
The Oculus Configuration Utility is included with the Rift and allows users to create
personal user profiles (figure 10.13).

 The data stored for each user’s profile includes gender, player height, eye-to-neck
distance (horizontal and vertical), and IPD. It also includes a handy utility for measur-
ing the user’s IPD. Let’s look at what these values are and how they’re used:

■ Gender—The SDK uses this value to calculate the distance from the top of the
skull to the eye using average head size values. This value can also be used to
determine avatar generation.

■ Player height—This value is used to calculate the player’s eye height to set the
location of the point of view.

■ IPD—This is the distance between the pupils, used to determine the separation
of the stereo cameras.

■ Eye-to-neck distance (horizontal and vertical)—The horizontal and vertical distances
between the eyes and the neck pivot. These values are used by the SDK to deter-
mine the pivot point around which the point of view moves.

Clicking Advanced brings up the Advanced
configuration panel, where the user can

measure and set their IPD.

Figure 10.13 The Oculus Configuration Utility
Licensed to Mark Watson <nordickan@gmail.com>

248 CHAPTER 10 Reducing motion sickness and discomfort
If a user has created a profile, the SDK will automatically use the data from the profile.
If the user hasn’t created a profile, the SDK defines the following default values for the
user as defined in OVR_CAPI_Keys.h:

#define OVR_DEFAULT_GENDER "Unknown"
#define OVR_DEFAULT_PLAYER_HEIGHT 1.778f
#define OVR_DEFAULT_EYE_HEIGHT 1.675f
#define OVR_DEFAULT_IPD 0.064f
#define OVR_DEFAULT_NECK_TO_EYE_HORIZONTAL 0.0805f
#define OVR_DEFAULT_NECK_TO_EYE_VERTICAL 0.075f

The default values defined in the SDK are intended to provide a reasonably comfort-
able experience for what Oculus terms their “common user.” For the most part, these
values are based on adult human averages, but the user’s height is set to 1.778 meters,
the average adult male height. The average adult human is closer to 1.692 meters3 tall
(in the United States). And, not to put too fine a point on it, half the world’s popula-
tion isn’t male. Although you can tinker with the SDK default values, making changes
to the SDK isn’t recommended.

 For your user to have the best possible VR experience, they need to create a pro-
file. We’ll cover ways to encourage profile creation in the section “Help your users
help themselves.”

 Now that you’ve seen what the SDK does in terms of accounting for human varia-
tion, let’s look at other human variation issues that you might want to address.

CORRECT FOR STRABISMUS
Strabismus (also known as being cross-eyed or wall-eyed) is a disorder in which your
eyes don’t line up; this misalignment can result in stereoblindness (the inability to see
in 3D using stereo vision) or double vision. Prismatic lenses are sometimes used to cor-
rect for this disorder, and though it’s possible to wear glasses while using the Rift,
doing so isn’t ideal.

 This disorder can be compensated for in the software by calibrating a per-eye off-
set, and we’ve included the sample StrabismusCorrection application (figure 10.14) in
our GitHub repository to show you how that can be done. We’d like to see this as an
addition to the user profile created by the Oculus Configuration Utility.

CREATE AVATARS FOR EVERYONE
We covered how avatars provide context for the user—looking down and seeing a body
with arms and legs can help with the sense of immersion. And we also covered how the
sense of proprioception helps with immersion—the closer the avatar’s position matches
your own physical position, the greater the immersion. The avatar’s appearance can also
increase immersion the more the user can identify with the avatar.

3 The average height listed here is an average of male and female heights. The average height for men over age
20 in the U.S. is 1.763 meters (5 feet, 9 inches) and for women over age 20 the average height is 1.622 meters
(5 feet, 4 inches). Children are, of course, shorter. (Source: en.wikipedia.org/wiki/Human_height.)
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Human_height

249Strategies and guidelines for creating a comfortable VR environment
Being able to feel like yourself in the story means being able to see yourself in the story. To
give your users a more immersive experience, you should create male, female, and
androgynous avatars in a range of skin tones, ages, and physiques, and then allow
users to choose the avatar they most identify with. Yes, we know this is a seriously large
amount of work to do, but it’s the kind of inclusiveness we’d like to see for the future
of gaming, and avatar skin tone is another profile option we’d like to see in the Ocu-
lus Configuration Utility.

 Not every story is about giving your users the opportunity to see themselves in a
new environment. Your story may hinge on giving the user the experience of feeling
what it’s like to be someone else. For example, the artists and researchers at BeAn-
otherLab (www.themachinetobeanother.org) have been experimenting with using VR to
create an environment that offers users the experience of seeing themselves in the
body of another person. Their Machine to Be Another uses a human performer as the ava-
tar. The performer’s job is to replicate the user’s movements as accurately as possible,
thereby providing the illusion that the user is the performer. One of the conclusions
they reached from this project based on statements from the users and performers

Karen’s hands are not that masculine (thank you very much)
Karen: When I played the Titans of Space demo and looked down at the gloved hands
and I sat exactly as the avatar was portrayed, I thought “those are my hands.” In the
Don’t Let Go! demo, even with my hands positioned exactly like the avatar’s hands, I
didn’t quite get the same sense that those were my hands. They were just too mas-
culine to be mine. It wasn’t until the spider reached the avatar’s shoulder that it really
felt like the spider was on me (and then, I admit, I let go).

Strabismus, a disorder
in which the two eyes
do not line up, can
result in stereoblindness.

It can be compensated
for by calibrating a per-eye
offset as is done in the
StrabismusCorrection
example application.

Figure 10.14 Strabismus correction
Licensed to Mark Watson <nordickan@gmail.com>

www.themachinetobeanother.org

250 CHAPTER 10 Reducing motion sickness and discomfort
was that “the system has great potential as a social tool to stimulate empathy among
different groups.”

10.2.11Help your users help themselves

When it comes to making the Rift a comfortable experience, it isn’t entirely up to you,
the developer. Users have to do their part as well. The good news is you can help them
help themselves.

ENCOURAGE USERS TO SET AND USE THEIR USER PROFILE
Creating a user profile is ultimately up to the user, and if a profile hasn’t been set up,
the default profile is automatically used. To help your users have the best possible
experience, you should encourage them to create a profile:

■ Stress the importance of setting up a profile in the application’s documentation. Be sure
to cover exactly how to set up a profile and why it needs to be done. Documen-
tation is a good start, but relying on users to read and follow the documenta-
tion, something we all know many users won’t do, isn’t a complete solution.

■ Provide the user with a way to select and update the profile from within your application.
You can display the current profile settings and prompt the user to either use
those settings or create another profile. To get the name of the current profile,
use the following:

ovr.Hmd_GetString(hmd, OVR_KEY_USER, "")

If default is returned, prompt the user to create a profile.

A profile will help users have the best possible VR experience while they’re playing.
Another thing to consider when thinking about creating a comfortable user experi-
ence is that users are going to get tired and will need to take breaks.

ENCOURAGE USERS TO TAKE BREAKS

Make it easy for users to suspend the game and return to where they left off. You want
to create content so engaging that your users can’t tear themselves away from it, but
users are human and they must take breaks. In addition, if users try to push them-
selves through symptoms of motion sickness, those symptoms might get worse and can
result in such an unpleasant experience that users could develop an aversion to your
software, no matter how much they initially enjoyed it. You don’t want that to happen.
Give your users the ability to pause and take a break whenever they need it and you’ll
have happier users.

 By making it easy for your users to do the right thing, you can make the experience
one they will enjoy.

10.2.12Evaluate your content for use in the VR environment

Goals and other engaging content help keep users immersed in the experience and
can provide an excellent distraction from any motion sickness they might be feeling.
Users can forgive some discomfort if they’re getting an exceptional experience in
Licensed to Mark Watson <nordickan@gmail.com>

251Strategies and guidelines for creating a comfortable VR environment
exchange. But be wary of relying too heavily on your content to distract your users. At
a certain level, no amount of engagement can overcome the discomfort.

VR EXPERIENCES CAN BE MORE INTENSE THAN TRADITIONAL MEDIA

Be aware that immersive experiences can feel much more intense than viewing the
same content on a traditional screen. What seems not that scary on a traditional
screen can be terrifying in VR (figure 10.15).

 For example, the silent T-Rex in the GiganotosaurusVR demo by Meld Media
(share.oculusvr.com/app/meld-media---giganotosaurusvr) is not at all frightening
on the screen, but what a difference viewing it on the Rift makes! When the dino-
saur’s teeth are bared over your head, it can make you flinch and it can give kids
nightmares.4

 You might not realize it, but vision and hearing aren’t the only senses you have
contributing to the feeling of immersion and presence you get with VR—proprio-
ception is also at work. Proprioception, as we explained earlier, is the sense of the
relative position of neighboring parts of the body and the strength of effort being
employed in movement. In our personal experience, when the sense of where our
body was happened to match up exactly with the position of the avatar, it was a very
visceral feeling.

4 Karen regrets letting her younger son view this demo.

The T-rex is not
scary on the page,
but viewing it on
the Rift is a
different story.

Figure 10.15 The T-Rex in the GiganotosaurusVR demo by Meld Media isn’t very scary on a traditional
screen, but seeing it on the Rift is a different experience entirely.
Licensed to Mark Watson <nordickan@gmail.com>

https://share.oculusvr.com/app/meld-media---giganotosaurusvr

252 CHAPTER 10 Reducing motion sickness and discomfort
The demo Don’t Let Go!, created by Yorick van Vliet for the Oculus VR and IndieCade
VR Jam (figure 10.16), demonstrates this phenomenon in a terrifying way using a very
large spider.

 Knowing that the immersive experiences can feel much more intense than view-
ing the same scene on a traditional screen, you need to ask yourself two questions:
Does the experience create an appropriate emotional response? And how intense is
too intense?

RESPONSIBILITY TO CONSIDER THE IMPACT OF YOUR WORK
The first-person perspective along with the sense of presence provided by VR can
result in intense psychological responses in users. We’ve observed users getting goose
bumps and flinching in fear when using the Rift, as well as having nightmares from
what first appeared to be mild content. We’ve also seen many very happy users
(intense responses haven’t all been negative).

 When testing your software, you need to take your users’ emotional response seri-
ously. And if the response is too intense or not appropriate to the experience you want
to provide, you should reevaluate inclusion of that content.

 Intense emotional responses, including being scared silly, can be part of the
fun. But for those suffering from phobias or other psychological trauma, the virtu-
ally real experience the Rift provides may be too real. We suggest that for intense
content, warn your users ahead of time and allow them to make an informed choice
about continuing. For example, White Door Games, maker of the horror game

Seeing a spider crawl up “your” arm is a very visceral and
creepy experience when viewed through a Rift.

Figure 10.16 Don’t Let Go!
Licensed to Mark Watson <nordickan@gmail.com>

253Strategies and guidelines for creating a comfortable VR environment
Dreadhalls (www.dreadhalls.com), rightly claims on their website that the game “is
an intense and scary experience, not for the faint of heart.” And the demo Don’t
Let Go! we referenced earlier does a great job of warning you that a spider is com-
ing (figure 10.17).

 One of the authors (not saying who)5 really doesn’t like spiders, and despite the
fact that the demo is a great example of how proprioception affects the sense of pres-
ence, the spider-fearing author chose not to try it out.

10.2.13Experiment as much as possible

You probably noticed that we’ve posted screenshots from a number of our favorite
demos in this section. Although we’ve gained a lot of knowledge working on our
own projects, we’ve also learned a great deal simply by keeping an eye on what oth-
ers are doing and by trying out their demos. We suggest that if you haven’t already,
check out the demos at Oculus Share (share.oculusvr.com), which is basically a
developer portal where you can upload games, tech demos, and experiments. It’s a
great place to find new ideas, and you can upload your own demo to get feedback
from others.

5 It’s Brad.

A spider crawling up your arm is an intense experience in the Rift.
A helpful spider warning lets those with arachnophobia

opt out before the spider appears.

Figure 10.17 Don’t Let Go! does a great job of warning you that a spider is coming.
Licensed to Mark Watson <nordickan@gmail.com>

https://share.oculusvr.com
www.dreadhalls.com

254 CHAPTER 10 Reducing motion sickness and discomfort
10.3 Testing your VR application for motion sickness potential
Before you bring your application to mass market, you’ll want to be sure you’re pro-
viding a reasonably comfortable experience for your users. To help you get the most
out of your user testing, we suggest that you follow these recommendations:

■ Use standardized motion sickness and simulator sickness questionnaires.
■ Test with as many users as you can, and be sure to test with users of various

heights, ages, and susceptibility to motion sickness.
■ Test with new users.
■ Test with users who have set their personal profile; using the default profile will

introduce bias into your results.
■ Test in stages.
■ Test using different display modes if Direct HMD mode doesn’t work for you.

Motion sickness can be a truly unpleasant experience.6 We cannot stress that enough.
We strongly advise you to ensure that any test subjects you work with are fully aware of
the risks involved with testing and have the ability to opt out of testing.

10.3.1 Use standardized motion and simulator sickness questionnaires

There are a number of ways to assess motion sickness caused by VR, but the most pop-
ular is the Simulator Sickness Questionnaire (SSQ) published by R.S. Kennedy, N.E.
Lane, K.S. Berbaum, and M.G. Lilienthal in 1993. This questionnaire uses a list of 27
symptoms, such as fatigue, headache, nausea and difficulty focusing, all commonly
experienced by users of VR. Users report the degree to which they experienced each
symptom and scores can then be calculated and compared. A copy of this question-
naire can be found on page 294 in the Oxford Textbook of Vertigo and Imbalance (http://
bit.ly/1Q8eTYe). Another option is the much simplified Fast MS Scale (FMS), created
by Behrang Keshavarz and Heiko Hecht. In that scale scores range from 0 (no sickness
at all) to 20 (frank sickness).

10.3.2 Test with a variety of users and as many as you can

What doesn’t make four people sick might make a fifth person violently ill. You’ll need
to test with a fairly large group. Be sure to use a group of people of different heights and
ages. Motion sickness may also have a genetic component (www.ncbi.nlm.nih.gov/
pubmed/17086768), so try to have testers who are unrelated.

 If you’ve used a standardized motion sickness questionnaire, try to get a variety in
susceptibility and triggers. Again, use a standardized questionnaire designed to find
out how susceptible to motion sickness your users are, and to get an understanding of
what has caused them motion sickness in the past.

6 The authors are neither doctors nor lawyers and therefore can’t give medical or legal advice. It’s your respon-
sibility to ensure that any testing you perform meets with all ethical, medical, and legal requirements.
Licensed to Mark Watson <nordickan@gmail.com>

http://bit.ly/1Q8eTYe
http://bit.ly/1Q8eTYe
www.ncbi.nlm.nih.gov/pubmed/17086768
www.ncbi.nlm.nih.gov/pubmed/17086768

255Testing your VR application for motion sickness potential
10.3.3 Test with new users

If you’ve been at this for a while, you’ve got your VR legs, and just like it takes some
pretty rough seas for an old sea dog to take notice, you may not be as sensitive to the
issue as your users. Think about who your users are. If they aren’t hard-core VR gamers
(and who is at this point?), be sure to test your software using people who are not only
new to your software but are also new to VR.

10.3.4 Test with users who have set their personal profile

The closer your users’ profile values are to their physical measurements, the better
experience they’ll have in VR. To ensure that each tester is evaluating your software
from the same baseline experience, you want to make sure your testers have set up a
personal user profile. If a user profile hasn’t been set, the Rift will use the default val-
ues set by the SDK. The default values in the SDK aren’t for the average human, but
they’re set to what Oculus terms the “common user.” Because these values favor a spe-
cific demographic of users, if your testing is done using the default values, your results
will be biased.

10.3.5 Test in stages

To minimize bad experiences causing negative associations, you should stage testing.
Don’t just go to beta because you didn’t get sick. Try testing with yourself, then 5–10
people, then 50–100 people, and so on. And give yourself time to respond to feedback
before you go to beta.

10.3.6 Test in different display modes

If you’re unable to use Direct HMD Access From Apps as your display mode, your dis-
play setup is an important consideration while testing.

TESTING IN EXTENDED OR CLONED MODE

If you aren’t running in Direct HMD mode, the Rift can be configured to be run as a
cloned display or as an extended display. In appendix A, we list the advantages and
disadvantages of each setup, and these differences are an important consideration
during testing. Table 10.1 shows the pros and cons of each setup.

Table 10.1 Extended vs. cloned: pros and cons

Display
configuration

Advantages Disadvantages

Extended Better performance

Resolution can be optimized
for the Rift without affecting
your primary display.

There’s a portion of the desktop where you can
“lose” windows or your mouse.

On some systems, when selecting Extended, the Rift
is set by default as the primary display, making your
system almost impossible to use.
Licensed to Mark Watson <nordickan@gmail.com>

256 CHAPTER 10 Reducing motion sickness and discomfort
The big advantage of Extended mode is performance. Using the latency testing hard-
ware available from Oculus VR on a DK1, we found that the latency between rendering a
frame on the computer and having the pixels on the display panel change in response
was about 20 milliseconds when running in Extended mode versus 50 milliseconds
when running in cloned mode. If you’re measuring performance to fight motion sick-
ness, that kind of latency differential can have a significant impact. You’ll also note that
screen tearing won’t be an issue and screen shaking is less likely to be an issue. Because
screen tearing, shaking, and blur can all be causes of discomfort, when testing you may
want to eliminate them as a possible causes of motion sickness for a particular scene.

 The disadvantage of Extended mode is that you can’t see what the players are see-
ing and doing. You need to rely on the users telling you what they’re doing to know
what’s happening in the game that might have provoked an unwanted physical reac-
tion. If you run in cloned mode, you can see your users’ physical reaction and see
what they’re doing at the same time, and that can give you a lot of insight into what
might be the cause of motion sickness.

 You may need to run the same tests in each mode to help narrow down the cause
of motion sickness in a scene. Running in Extended mode can remove variables that
could affect your results, and running in cloned mode can provide better insight into
what’s happening at the moment.

10.4 Summary
In this chapter you learned

■ Using the Rift can cause symptoms of motion sickness and discomfort such as
headache, drowsiness, nausea, dizziness, vomiting, sweating, eyestrain, neck
strain, and fatigue.

■ You can minimize the possibility of motion sickness by making sure the user is
in control of the camera.

■ The user being in control of the camera means that head tracking must exactly
match the view, and it means that you can’t change the field of view.

Cloned
(Mirrored)

You can see your entire
desktop. There’s no portion
of the desktop where you
can “lose” windows or
your mouse.

You can preview Rift graph-
ics and show them to oth-
ers, in the iconic “two
ovals” view.

Performance can suffer.

Screen tearing (visual artifacts in the display caused
by showing information from two or more frames in a
single screen draw) may occur.

You may see significant apparent shaking, particu-
larly if the frame rate falls below 70 FPS. You can
set the refresh rate to 60 Hz to minimize this issue,
but you’ll then see blurring.

Table 10.1 Extended vs. cloned: pros and cons (continued)

Display
configuration

Advantages Disadvantages
Licensed to Mark Watson <nordickan@gmail.com>

257Summary
■ You need to use new approaches to camera work for telling your story because
many current popular techniques (zooming the camera, freezing the camera,
using motion blur, turning the camera, using cutscenes) take control of the
camera away from the user and can result in motion sickness.

■ World design—what the world looks like and how the character can move
around—affects user comfort.

■ You can minimize some causes of neck strain, eyestrain, and fatigue by paying
attention to how much the user needs to move their head and eyes to use your
application.

■ Your software can account for human variation to create a better experience for
your users.

■ The VR experience can be more intense than what’s experienced with tradi-
tional media. You need to be aware of the emotional impact of your work.

■ Testing your application for potential motion sickness and discomfort needs to
be done in stages, with a varied group of people, and with people new to your
software.

■ Using the default user profile can introduce bias into your testing results. You
need to make sure your testers have set a personal profile.

■ Motion sickness from using the Rift isn’t a solved problem. New techniques are
being discovered all the time.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Part 5

Advanced Rift
integrations

Building complete Rift applications typically involves more than using the
Rift APIs. Often you’ll need to integrate with other libraries, perhaps for UI cre-
ation. Or maybe you’ve got a preexisting library of awesomeness, legacy code writ-
ten in a language other than C. In these final chapters, we provide information
and examples for work that goes beyond the core integration of the Rift APIs.

 In chapter 11 we show you how to work with the Oculus C API using Java or
Python. We also discuss the basics of how to use the C APIs with any language.

 In chapter 12 we cover creating a complete VR experience by building a VR
version of an existing web application for use on the Rift. ShadertoyVR is a com-
plete Rift-based VR editor.

 In chapter 13 we explore creating Rift applications using additional inputs
such as web cameras and the Leap Motion.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Using the Rift
with Java and Python
The Rift is often seen as a gaming device, and gaming will likely be a big driver for
its initial market. Because of this, and because of the backgrounds of some of the
original developers1 working at Oculus, the initial SDK for interacting with the Rift
was exclusively in C++. Most big gaming engines are developed in C++, most triple-A
games are written in C++, and so on. Similarly, early development focused on deliv-
ering features first for Windows and Direct3D, with the OpenGL API and platforms
like Mac OS X and Linux lagging in feature support and stability. There were some
attempts by developers to create non-C++ mechanisms for interacting with the Rift,
either attempting to wrap the Oculus libraries or interacting with the hardware
directly and attempting to reproduce the same functionality in another language.
To our knowledge, none of these have gained widespread adoption thus far.

This chapter covers
■ Working with the Rift in Java with JOVR
■ Using the Rift in Python using PyOVR
■ Developing Rift applications in other languages

1 Many of the Oculus crew came from Scaleform (later purchased by Autodesk), a middleware company for
game development.
261

Licensed to Mark Watson <nordickan@gmail.com>

262 CHAPTER 11 Using the Rift with Java and Python
 Mainstream VR will need to include applications written in languages other than C
and C++. Many current-day applications and games would benefit from a VR overhaul,
and not all of them are C++ apps. Minecraft is a popular game written entirely in Java.
PyMOL is a molecular modeling application written in Python. In this chapter we’ll
discuss how to leverage the power of the Rift using bindings and examples in Python
and Java.

 The examples presented here will build on the basics and theory covered in
chapters 2 through 5. Even if you prefer to develop strictly in Python and/or Java,
we strongly recommend you review those chapters before jumping directly into this
one. Although the examples in those chapters are in C++, they provide an in-depth
discussion of the basic concepts involved; this chapter will, of necessity, be compara-
tively truncated.

 That said, this book isn’t intended to be an introduction to either Java or Python,
and some level of proficiency with the language in question is assumed in the follow-
ing sections.

11.1 Using the Java bindings
Your goal for the Java bindings is to get the same level of functionality that you’ve
achieved in the chapter 5 examples. In this example, you’ll render a familiar colored
cube with a cityscape background (figure 11.1).

 The application should respond to head movement in a realistic fashion, and
once you’re done, the output should look very much like the output from chapter 5’s
later examples.

Figure 11.1 The example scene as rendered to the Rift from your Java application
Licensed to Mark Watson <nordickan@gmail.com>

263Using the Java bindings
REQUIREMENTS

For this Java example, you have two basic requirements worth noting:

■ Java 7 or higher
■ Maven (maven.apache.org/)

You don’t need to download the Oculus SDK to use the Java example code. The bina-
ries for the standard platforms are built into the JAR file that contains the Java bind-
ings, the JAR files are automatically fetched by the Maven build system (see the
accompanying sidebar), along with all other dependencies.

JNA VS. JNI VS. HOMEBREW

Working with the Rift in Java still requires interaction with the Rift hardware at some
level. Fortunately, Java has mechanisms that allow applications to interact with librar-
ies written in other languages. The existing Oculus SDK C API can be accessed through
either JNI or JNA.

 JNI (Java Native Interface) is a framework built into Java that allows Java code run-
ning inside the JVM to call code in external libraries, such as Windows’ DLL files. JNI is
often used for direct access to OS-specific feature implementations; hardware acceler-
ated graphics, for instance, are often implemented through native libraries accessed
via JNI.

 JNA (Java Native Access) is an open source project that provides similar access to
native libraries but aims to do so through a simpler and easier-to-use API compared
to JNI.

Maven
Maven is a tool used for declaratively specifying a number of things about your proj-
ect, probably the most significant being the libraries your project depends on. It’s
also network aware, so you don’t have to download your dependencies. Maven does
that for you, either from the central Maven repository or from another repository
you’ve declared in your project file.

Maven project files (POM files) can be used as the exclusive management mecha-
nism for a project, but that’s only effective if you’re planning on doing most of your
development from the command line or a standalone editor. If you’re more comfort-
able with an IDE such as Eclipse, you’ll be happy to know that most Java develop-
ment environments have Maven integration available or built in.

When using Maven to work with native libraries, such as those used here, you may
prefer to manually configure native library paths and use Maven’s command-line
tools. If you do so, remember to add -Djava.library.path=target/native to the
VM arguments so that Java can find the Rift native binaries. Alternatively, you may
prefer using mavennatives (code.google.com/p/mavennatives/), an Eclipse plug-in
that automates native binary management, which obviates all need for manual con-
figuration of native library paths. But be warned that the mavennatives project is open
source and is no longer actively supported.
Licensed to Mark Watson <nordickan@gmail.com>

http://code.google.com/p/mavennatives/
maven.apache.org/

264 CHAPTER 11 Using the Rift with Java and Python
 JNI tends to be faster, but it requires you to write your binding code with both a Java
portion and a C portion that wraps whatever native code you want to run. By contrast,
JNA isn’t as fast (developers.opengamma.com/blog/2012/05/25/jna-jni-and-raw-java-
performance), but it’s easier to work with, requiring only that you declare functions in
Java with method signatures that match those in the library you wish to use.

 Although JNA is slower than JNI, both mechanisms are measured in milliseconds
(if not microseconds) per call, and the performance difference tends to be a function
of how much information is being passed per function call. Because the number of
calls to the SDK tends to be less than a dozen per frame, each passing only a tiny
amount of data, we’ve opted for JNA for its ease of use.

 Mind you, for your own project nobody’s forcing you to use either solution. Tech-
nically, you could use the Rift in Java without going to the C API at all by reproducing
the SDK functions in native Java. But this approach would present an enormous main-
tenance burden—you’d be reinventing the wheel, the cart, and the horse that pulls it.
And even then you wouldn’t entirely escape from the need to use JNI or JNA: reading
data from the Rift requires reading the head tracker hardware using the HID (a hard-
ware specification for interacting with human interface devices, such as mice, key-
boards, and in this case, head-tracking hardware) via platform-specific APIs. Because
calling C code ends up being on the critical path, it’s simpler to accept that you’ll be
using the C SDK through native access, rather than try to reimplement all the subtle
features like sensor fusion.

11.1.1 Meet our Java binding: JOVR

To communicate with the Rift in Java, we’ve built a native binding library called JOVR.2

JOVR was written by the authors of this book, but unlike most of the code in this book
it’s not meant to be merely illustrative. Instead it’s a fully usable tool designed to allow
any Java application to integrate with the SDK and support the Rift. Indeed, it’s being
used to integrate Oculus Rift support into the Java Monkey Engine renderer as we write.

 Our examples use JOVR, so you’ll get to see it in action here.

JOVR
JOVR is nearly 2,000 lines of code, but most of that was automatically generated by the
tool we’ve used to create the bindings based on the Oculus SDK C headers.

 JOVR declares Java versions of all of the structures and functions in the Oculus C
API header. For instance, in the Oculus C API there’s a structure for encoding a
quaternion defined like this:

typedef struct ovrQuatf_
{
 float x, y, z, w;
} ovrQuatf;

2 Decoding this clever acronym is left as an exercise for the reader.
Licensed to Mark Watson <nordickan@gmail.com>

http://developers.opengamma.com/blog/2012/05/25/jna-jni-and-raw-java-performance
http://developers.opengamma.com/blog/2012/05/25/jna-jni-and-raw-java-performance

265Using the Java bindings
There’s a corresponding Java type in the JOVR project that looks (something) like this:

package com.oculusvr.capi;

public class OvrQuaternionf extends Structure {
 public float x;
 public float y;
 public float z;
 public float w;

 public OvrQuaternionf () {
 super();
 }

 public OvrQuaternionf (float x, float y, float z, float w) {
 super();
 this.x = x;
 this.y = y;
 this.z = z;
 this.w = w;
 }
}

That may look overly verbose compared to the C definition, but the upside is that you
don’t have to write it—you just use it. Actually, we should confess: we didn’t write it
either. Instead we used a tool called JNAerator (code.google.com/p/jnaerator/) to
automatically parse the Oculus C API header files and generate the corresponding
Java classes. JNAerator did 90 percent of the required work for us.

 That said, JNAerator’s output wasn’t optimal. For instance, originally the Java class
it produced was named ovrQuatf_, exactly like the C structure definition. Fortunately,
Eclipse has powerful refactoring tools that allowed us to easily rename the classes to
be more Java-like.

 In addition to the few dozen classes created for the C structures, there’s a single
com.oculusvr.capi.OvrLibrary class that was generated to encapsulate the C API
functions and constants. This is the heart of the JOVR bindings. Each function that’s
exposed by the OVR C API is converted into a method in the OvrLibrary class. There’s
one instance of the class that’s created when the library is loaded; this happens auto-
matically when OvrLibrary is loaded by the Java class loader.

 Here’s a small sample of the OvrLibrary class that demonstrates how the constants
and functions from the C API have been mapped to Java. Note that constant values are
encapsulated into interfaces, whereas C functions become method members of the
OvrLibrary interface:

public interface OvrLibrary extends Library {
 public static final String JNA_LIBRARY_NAME = "OVR_C";
 public static final NativeLibrary JNA_NATIVE_LIB =
 NativeLibrary.getInstance(OvrLibrary.JNA_LIBRARY_NAME);
 public static final OvrLibrary INSTANCE =
 (OvrLibrary) Native.loadLibrary(
 OvrLibrary.JNA_LIBRARY_NAME,OvrLibrary.class);
Licensed to Mark Watson <nordickan@gmail.com>

http://code.google.com/p/jnaerator/

266 CHAPTER 11 Using the Rift with Java and Python

atic
.

All
t
in

Hm
 public static interface ovrHmdType {
 public static final int ovrHmd_None = 0;
 public static final int ovrHmd_DK1 = 3;
 public static final int ovrHmd_DK2 = 6;
 ...
 };

 byte ovr_Initialize();
 void ovr_Shutdown();
 int ovrHmd_Detect();

JOVR has a class to represent the HMD abstraction that the SDK declares: ovrHmd,
now renamed to the more Java-like Hmd. The ovrHmd type in the Oculus SDK serves
both as a description of a particular device as well as a handle for interacting with it.
Most of the functions in the C API take it as their first parameter. But in JOVR we’ve
turned the structure into a more fully featured class. This class contains members
that map to the C API methods. Internally, Hmd still calls the C API methods, passing
itself as the first parameter where appropriate. The few methods in the SDK that
don’t take an ovrHmd parameter have been converted into static methods on our Hmd
type, again for convenience.

 The Hmd class ends up being the primary mechanism through which clients can
most easily access the SDK functionality, as shown in the following listing.

public class Hmd extends PointerType {

 public static void initialize() {
 if (0 == OvrLibrary.INSTANCE.ovr_Initialize()) {
 throw new IllegalStateException(
 "Unable to initialize Oculus SDK");
 }
 }

 public static Hmd create(int index) {
 return OvrLibrary.INSTANCE.ovrHmd_Create(index);
 }

 public void destroy() {
 OvrLibrary.INSTANCE.ovrHmd_Destroy(this);
 }

 public boolean configureTracking (
 int supportedCaps, int requiredCaps) {
 return 0 != OvrLibrary.INSTANCE.ovrHmd_ConfigureTracking(this,
 supportedCaps, requiredCaps);
 }

 public void recenterPose () {
 OvrLibrary.INSTANCE.ovrHmd_RecenterPose(this);
 }

 ...

Listing 11.1 Hmd.java

Functions from the C API
that don’t take an ovrHmd
parameter are exposed as st
members on the Hmd class

INSTANCE is a singleton, akin
to the library handle you’d
receive from LoadLibrary() on
windows or dlopen() on Linux.

ows you
o create
stances

of the
d type.

Static functions from the C API
that take an ovrHmd parameter
are exposed as nonstatic
members on the Hmd class.
Licensed to Mark Watson <nordickan@gmail.com>

267Using the Java bindings
And so on. You’ll see how this benefits you later on, when we look at the actual exam-
ple code.

API DIFFERENCES BETWEEN JOVR AND THE OCULUS C API
In a very few cases the C API has been tweaked slightly for ease of use. For instance, C
methods can’t return more than one type, and if a method can reasonably fail and
needs to be able to return an error indicator, then there’s no way to return other data
the function normally would’ve produced. Typically if a C function must have com-
plex output and needs to return error states, then it declares an output variable as
part of its parameter list. Consider the following function from the mapped C API
that’s used to construct a distortion mesh:

ovrBool ovrHmd_CreateDistortionMesh(
 ovrHmd hmd,
 ovrEyeType eyeType,
 ovrFovPort fov,
 unsigned int distortionCaps,
 ovrDistortionMesh *meshData);

Here’s its corresponding Java mapping in the OvrLibrary class:

byte ovrHmd_CreateDistortionMesh(
 Hmd hmd,
 int eyeType,
 FovPort.ByValue fov,
 int distortionCaps,
 DistortionMesh meshData);

In both of these cases the final parameter, meshData, is an output variable, the piece
of information that you want when you call the function. The return value is simply
an error indicator that returns a nonzero value if the function succeeded. But most
object-oriented (OO) languages include exception handling, meaning that meth-
ods should return the type of information that’s most natural for them to return (in
this case, an instance of DistortionMesh) and errors should be handled by raising
an exception.

 Therefore, the Hmd wrapper method that JOVR builds around such functions
hides some of the gory details of checking for a return value and converting it to an
exception:

public DistortionMesh createDistortionMesh(
 int eyeType, FovPort fov, int distortionCaps) {
 Preconditions.checkNotNull(fov);
 DistortionMesh meshData = new DistortionMesh();
 if (0 == OvrLibrary.INSTANCE.ovrHmd_CreateDistortionMesh(
 this, eyeType, byValue(fov), distortionCaps, meshData)) {
 throw new IllegalStateException("Unable to create distortion mesh");
 }
 return meshData;
}

Licensed to Mark Watson <nordickan@gmail.com>

268 CHAPTER 11 Using the Rift with Java and Python
Additionally, the methods ovrMatrix4f_Projection and ovrMatrix4f_OrthoSub-
Projection have been renamed to getPerspectiveProjection and getOrthographic-
Projection, respectively, but still take the same arguments and provide the same results.

BINARY FILES

In addition to the Java classes, the JOVR JAR contains binary files for each of the sup-
ported platforms. This means a DLL for 64-bit Windows, another DLL for 32-bit Win-
dows, a shared library file for 64-bit Linux, and so on.

 These binaries are stored in the JAR in such a fashion that JNA is able to automati-
cally extract and load the shared library. This removes the need to download and
install a driver or SDK or to have the binary in a special location on the disk, making it
much easier to get up and running.

MOVING ON

We’re not going to delve any deeper into the inner workings of JOVR. As stated, it’s
intended to be used as is. Whether you’re working with our examples or developing
your own set of demos or even a full-fledged game, JOVR can simply be treated as an
upstream dependency.

We’ll focus on showing an example of such usage in our sample project, the unimagi-
natively titled Jocular-examples.

11.1.2 The Jocular-examples project

If you downloaded a zip file containing the examples for the book, or if you recur-
sively cloned the example repository on GitHub, then the Jocular-examples project
should be available in the examples/java folder of the main example code. If you’re
only interested in the Java examples, they’re available as an independent repository
at github.com/jherico/jocular-examples.

 If you’re using Eclipse, you can create a project for the example code by selecting
File > Import, selecting Existing Maven Projects, and then selecting the directory
where the POM file resides. Eclipse will handle the rest.

THE PROJECT FILE

We begin by looking at the Maven project file for the Java example project. Maven
project files are called POMs (Project Object Models). The following listing shows the
complete POM file for the example.

JOVR development
If you’re interested in following or participating in the development of the JOVR
wrapper, or submitting bugs or just hurling abuse, it’s maintained on Github at
github.com/jherico/jovr.
Licensed to Mark Watson <nordickan@gmail.com>

http://github.com/jherico/jovr
http://github.com/jherico/jocular-examples

269Using the Java bindings
<project ... >
 <parent>
 <groupId>org.saintandreas</groupId>
 <artifactId>parent</artifactId>
 <version>1.0.0</version>
 </parent>
 <artifactId>jocular-examples</artifactId>
 <version>1.0-SNAPSHOT</version>

 <dependencies>
 <dependency>
 <groupId>org.saintandreas</groupId>
 <artifactId>jovr</artifactId>
 <version>0.4.0.0</version>
 </dependency>
 <dependency>
 <groupId>org.saintandreas</groupId>
 <artifactId>math</artifactId>
 <version>[1.0.4, 2)</version>
 </dependency>
 <dependency>
 <groupId>org.saintandreas</groupId>
 <artifactId>oria-resources</artifactId>
 <version>[1.0.2, 2)</version>
 </dependency>
 <dependency>
 <groupId>org.saintandreas</groupId>
 <artifactId>glamour-lwjgl</artifactId>
 <version>[1.0.3, 2)</version>
 </dependency>
 </dependencies>
</project>

In the POM file you declare a number of things. The most critical from the point of
view of you, the reader, are probably the dependencies.

EXAMPLE DEPENDENCIES

You declare a dependency on the JOVR library, first and foremost. This will allow you
to access the Rift API and is equivalent to linking your application to the SDK in a C or
C++ application.

 We (the authors) maintain the JOVR library and have released versions of it for
each version of the SDK since the CAPI was introduced in 0.3.1. The JOVR library
includes an additional version-number field so that bug fixes and enhancements may
be released for JOVR while still tracking a given Oculus SDK version. For example, the
0.3.2.x version of JOVR corresponds to the 0.3.2 version of the Oculus SDK.

 For JOVR, we’ve declared that we’re using 0.4.0.0 specifically, but for each of our
other dependencies we’ve declared a version range rather than a specific version. For
instance, we’ve declared the glamour-lwjgl dependency as [1.0.3, 2). The first
value, 1.0.3, is the minimum version that Maven is allowed to use. The square bracket

Listing 11.2 pom.xml

Uniquely identifies
this Maven project
and its output.

A dependency on
JOVR for access to
the Oculus SDK.

A math library to perform
matrix, vector, and
quaternion manipulations.

Holds shaders,
textures, and models.

The Java-based OpenGL wrapper
library. Depends on LWJGL for
low-level OpenGL bindings.
Licensed to Mark Watson <nordickan@gmail.com>

270 CHAPTER 11 Using the Rift with Java and Python
at the beginning marks it as inclusive, meaning that Maven can use the exact version
number listed. The second number is a maximum version and uses a parenthesis
instead of a square bracket. That marks the maximum as exclusive, meaning that
Maven’s allowed to use anything up to but not including that version. So 1.0.3 is okay,
as is 1.0.4 or 1.10, but 2.0 isn’t allowed, and 2.1 or anything higher is right out. Using a
version range tells Maven to use the most recent version available within limits. This
lets us pick up newer versions automatically, while hopefully avoiding compatibility
breaking changes.

 For the Oculus SDK, because we’re actively tracking a library whose version num-
ber is out of our control, we have to append an additional point version onto the exist-
ing Oculus version number, and because that library is in active development, we can’t
allow a version range at all.

 The oria-resources dependency brings in a JAR file that contains all the images,
models, and shaders used for the example code. In previous C++ demos, on Windows,
this content was compiled into a resource DLL from which it was loaded. Building it
into a JAR file accomplishes the same purpose in Java.

 The Oculus API can use OpenGL to do distortion, but it doesn’t expose the
OpenGL API to you. For that you use the glamour-lwjgl dependency. The Glamour
project serves a function similar to the OpenGL header library you’ve used in the C++
examples. It provides class wrappers around some of the commonly used OpenGL
concepts like vertex and index buffers, textures, and shaders. Glamour in turn depends
on the Lightweight Java OpenGL Library (LWJGL for short; available from lwjgl.org)
for the actual low-level OpenGL bindings. It’d be just as easy to use the other popular
Java OpenGL library, JOGL (jogamp.org/jogl), if you so desired.

11.1.3 The RiftApp class

In our C++ examples, as we became familiar with certain concepts we moved portions
of the per-application work into base classes—first into GlfwApp, then later RiftApp.
This was done in order to reduce the amount of boilerplate code in each example. We
don’t have space to go through the same series of examples we did in chapters 2
through 5 here, but we still want to distinguish between the example-specific code and
the common base code you might see in any Java-based Rift application.

 In our examples we follow a basic pattern of pushing functionality out of the exam-
ple code itself and into utility classes and parent classes to reflect good Rift-oriented
design. So you’ll see a recurring pattern of developing a class to handle the basics of
interacting with the rendering and input systems (GlfwApp in C++, LfwJglApp in Java).
From there you derive a class that knows how to interact with the Oculus SDK, create a
window on the Rift display, and perform a rendering loop that includes distortion
(called RiftApp in both C++ and Java). Finally, from RiftApp you derive an example-
specific class that knows how to draw something interesting.

 Now we’ll look at the contents of the Java version of RiftApp and briefly cover, in
the following listing, exactly how each component relates to the examples from earlier
Licensed to Mark Watson <nordickan@gmail.com>

lwjgl.org
jogamp.org/jogl

271Using the Java bindings
chapters. Once the base class is sorted out, you’ll move on to the actual example and
render a simple scene.

package org.saintandreas.vr;

// (imports not shown for brevity)

public abstract class RiftApp extends LwjglApp {

 protected abstract void renderScene();

 protected final Hmd hmd;

 private EyeRenderDesc eyeRenderDescs[];

 private final FovPort fovPorts[] =
 (FovPort[])new FovPort().toArray(2);

 private final Texture eyeTextures[] =
 (Texture[])new Texture().toArray(2);

 private final Posef poses[] =
 (Posef[])new Posef().toArray(2);

 private final FrameBuffer frameBuffers[] =
 new FrameBuffer[2];
 private final Matrix4f projections[] =
 new Matrix4f[2];

 private int frameCount = -1;

 private static Hmd openFirstHmd() {
 Hmd hmd = Hmd.create(0);
 if (null == hmd) {
 hmd = Hmd.createDebug(
 OvrLibrary.ovrHmdType.ovrHmd_DK1);
 }
 return hmd;
 }

 public RiftApp() {
 Hmd.initialize();

 hmd = openFirstHmd();
 if (null == hmd) {
 throw new IllegalStateException(
 "Unable to initialize HMD");
 }

 hmdDesc = hmd.getDesc();
 if (0 == hmd.configureTracking(
 ovrTrackingCap_Orientation |
 ovrTrackingCap_Position, 0)) {
 throw new IllegalStateException(
 "Unable to start the sensor");
 }

Listing 11.3 RiftApp.java, a Java equivalent to our C++ RiftApp class

Gives an entry point into
all the Oculus C API
functionality.

Everything we need
for perspective and
distortion.

Finds the right
Hmd instance.

Gives a place to initialize
everything that isn’t dependent
on having an OpenGL context.
Licensed to Mark Watson <nordickan@gmail.com>

272 CHAPTER 11 Using the Rift with Java and Python
 for (int eye = 0; eye < 2; ++eye) {
 fovPorts[eye] = hmd.DefaultEyeFov[eye];
 projections[eye] = RiftUtils.toMatrix4f(
 Hmd.getPerspectiveProjection(
 fovPorts[eye], 0.1f, 1000000f, true));

 Texture texture = eyeTextures[eye] = new Texture();
 TextureHeader header = texture.Header;
 header.TextureSize = hmd.getFovTextureSize(
 eye, fovPort, 1.0f);

 header.RenderViewport.Size = header.TextureSize;
 header.RenderViewport.Pos = new OvrVector2i(0, 0);
 }
 }

 @Override
 protected void onDestroy() {
 hmd.destroy();
 Hmd.shutdown();
 }

 @Override
 protected void setupContext() {
 contextAttributes = new ContextAttribs(3, 3)
 .withProfileCore(true)
 .withDebug(true);
 }

 @Override
 protected final void setupDisplay() {
 System.setProperty(
 "org.lwjgl.opengl.Window.undecorated", "true");

 Rectangle targetRect = new Rectangle(
 hmd.WindowsPos.x, hmd.WindowsPos.y,
 hmd.Resolution.w, hmd.Resolution.h);
 setupDisplay(targetRect);
 }

 @Override
 protected void initGl() {
 super.initGl();
 for (int eye = 0; eye < 2; ++eye) {
 TextureHeader eth = eyeTextures[eye].ogl.Header;
 frameBuffers[eye] = new FrameBuffer(
 eth.TextureSize.w, eth.TextureSize.h);
 eyeTextures[eye].TextureId =
 frameBuffers[eye].getTexture().id;
 }

 RenderAPIConfig rc = new RenderAPIConfig();
 rc.Header.BackBufferSize = hmd.Resolution;
 rc.Header.Multisample = 1;

 int distortionCaps =
 ovrDistortionCap_TimeWarp |
 ovrDistortionCap_Vignette;

Cleans up on
application
shutdown.

Specifies the specific
version and profile of
OpenGL requested.

Determines the exact
size and position of
the Rift display.

Finishes initialization
of items that need an
active OpenGL context.
Licensed to Mark Watson <nordickan@gmail.com>

273Using the Java bindings
 for (int i = 0; i < rc.PlatformData.length; ++i) {
 rc.PlatformData[i] = Pointer.createConstant(0);
 }

 eyeRenderDescs = hmd.configureRendering(
 rc, distortionCaps, fovPorts);

 for (int eye = 0; eye < 2; ++eye) {
 this.eyeOffsets[eye].x = eyeRenderDescs[eye].HmdToEyeViewOffset.x;
 this.eyeOffsets[eye].y = eyeRenderDescs[eye].HmdToEyeViewOffset.y;
 this.eyeOffsets[eye].z = eyeRenderDescs[eye].HmdToEyeViewOffset.z;
 }
 }

 @Override
 public final void drawFrame() {
 hmd.beginFrame(++frameCount);
 Posef eyePoses[] = hmd.getEyePoses(frameCount, eyeOffsets);
 for (int i = 0; i < 2; ++i) {
 int eye = hmd.EyeRenderOrder[i];
 Posef pose = eyePoses[eye];
 MatrixStack.PROJECTION.set(projections[eye]);
 poses[eye].Orientation = pose.Orientation;
 poses[eye].Position = pose.Position;

 MatrixStack mv = MatrixStack.MODELVIEW;
 mv.push();
 mv.preTranslate(RiftUtils.toVector3f(
 poses[eye].Position).mult(-1));
 mv.preRotate(RiftUtils.toQuaternion(
 poses[eye].Orientation).inverse());
 frameBuffers[eye].activate();
 renderScene();
 frameBuffers[eye].deactivate();
 mv.pop();
 }
 hmd.endFrame(poses, eyeTextures);
 }

 @Override
 protected void finishFrame() {
 Display.processMessages();
 }
}

Wow, that’s oodles of code. If you’ve dug into the C++ examples, then this code should
look somewhat familiar. If you’ve jumped directly into this chapter, we’ll do our best
to accommodate you and cover the gist of what’s going on in terms of interaction with
the SDK.

 Let’s skip past the package declaration and imports. These are standard con-
cepts; they shouldn’t need illumination to a Java developer and are outside the scope
of this book.

Called by the main
application loop.

Signals the SDK
to swap buffers.
Licensed to Mark Watson <nordickan@gmail.com>

274 CHAPTER 11 Using the Rift with Java and Python
CLASS DECLARATION

The base class for our applications is declared like this:

public abstract class RiftApp extends LwjglApp {

It’s declared as an abstract class, meaning it can’t be instantiated because it’s missing
some piece of implementation. In this case the portion it’s missing is an actual scene
to render. To render a scene you’re going to create a new class that declares RiftApp
as its parent class and provides an implementation for our only abstract function:

protected abstract void renderScene();

We’ll get to just such an implementation after we’ve discussed the entire RiftApp
base class.

 You also declare a parent class of your own, LwjglApp, which is equivalent to the
GlfwApp base class in our C++ examples. LwjglApp handles the interaction with the
OpenGL library you’re using to initialize and use OpenGL from Java. The methods
within RiftApp that are tagged with @Override are overriding LwjglApp methods in
order to implement missing functionality or to augment default behaviors.3

The LwjglApp base class
As with C++, our OpenGL base class declares your primary game loop, which looks
something like this:

while (!Display.isCloseRequested()) {
 update();
 drawFrame();
 finishFrame();
}

The first method, update(), is meant as a placeholder for updating the game state
and handling user input. If a user presses a key that should move their position for-
ward, or if a particle system needs to have its positions recalculated, it would happen
inside the update() method. The second method, drawFrame(), is where the ren-
dering should occur. The third, finishFrame(), typically serves the purpose of mov-
ing the rendered pixels to the screen.

In LwjglApp, finishFrame() is implemented as a call to Display.update() which
is LWJGL’s way of performing a buffer swap. Oftentimes applications won’t push this
into a method; they’ll simply call the appropriate buffer-swap function or method
directly in the main loop. This approach isn’t suitable for applications using the Ocu-
lus SDK’s built-in distortion rendering, because the SDK depends on being able to do
the buffer swap itself.3

3 See chapter 5 for a discussion of why the SDK needs to control the buffer-swapping mechanism.
Licensed to Mark Watson <nordickan@gmail.com>

275Using the Java bindings
MEMBER VARIABLE DECLARATIONS

After the class declaration and the abstraction function we’ve declared, we get into
the member variables. There are quite a few of them and some have unusual patterns
in their declarations, so we’ll cover them piecemeal.

 protected final Hmd hmd;

The Hmd type has a direct equivalent in the Oculus C API in the form of ovrHmd. It has
two roles. First, it acts as a handle that provides access to much of the headset func-
tionality via functions in the SDK. Second, it provides a basic description of a given
HMD’s properties and capabilities.

 In the JOVR library the Hmd type has been augmented to include member functions
providing access to virtually all of the SDK C API functionality. Rather than calling a
(wrapped) C function and passing an Hmd instance as the first parameter, you can
call a member of the Hmd class, which in turn calls the C function and passes itself as
the first parameter. Many error values returned from the C library are converted to
exceptions as control passes back to Java.

 Unlike most of the member variables, which are declared private, the member vari-
able hmd is declared protected. The hmd has less restrictive access controls because
derived classes will have legitimate reasons to use hmd. Access to the active user pro-
file’s settings is all done through functions that require the hmd instance to be passed
in as a variable. These settings, which include things like the height, gender, and IPD
for a user, can be valuable in setting up the scene and the user’s viewpoint in it. As
such, we must make the hmd protected and not private so that derived classes can
access this information as needed.

 FovPort fovPorts[] = (FovPort[]) new FovPort().toArray(2);

If you haven’t worked with JNA before, this declaration (and the corresponding ones
for eyeTextures and poses) is likely to look a little odd. The reason can be traced
back to the Oculus SDK C API declarations. Many of the declarations look something
like this:

ovrBool ovrHmd_ConfigureRendering(Hmd hmd,
 const ovrRenderAPIConfig* apiConfig,
 unsigned int distortionCaps,
 const ovrFovPort eyeFovIn[2],
 ovrEyeRenderDesc eyeRenderDescOut[2]);

As you can see, the C API calls for fixed-size arrays of values to be passed in. In C terms
this means that the two structures must be contiguous in memory. Java arrays are
entirely different from C arrays and the elements aren’t necessarily contiguous in
memory. To rectify this, the JNA library provides a base class, Structure, from which
you must derive all the types you use in calling C methods. Structure has a toArray()
method that returns precisely what you need: a Java array in which the items in the
array are contiguous in memory. Because the base class can only return the base type,
we must explicitly cast the returned arrays to the types you’re interested in.
Licensed to Mark Watson <nordickan@gmail.com>

276 CHAPTER 11 Using the Rift with Java and Python
 The remaining member declarations are pretty vanilla. We’re allocating space we’ll
need to initialize and then perform distortion rendering.

HMD HANDLE HELPER METHOD

You’ve declared you Hmd instance as final. You assign a value to it exactly once in the
constructor of you class and thereafter it can never be altered for the lifetime of
the RiftApp instance.

 There are two different functions in the SDK that can return a valid HMD, so you’ve
pushed the creation of the Hmd instance out into a static method. This method uses a
local Hmd type that can be assigned to multiple times, and then returns the final result:

 private static Hmd openFirstHmd() {
 Hmd hmd = Hmd.create(0);
 if (null == hmd) {
 hmd = Hmd.createDebug(OvrLibrary.ovrHmdType.ovrHmd_DK1);
 }
 return hmd;
 }

A real application might wish to do something more complicated than this, such as
first determining how many HMD devices are connected to the system and then iterat-
ing over them to open the first available device.

CONSTRUCTOR

The constructor is quite lengthy, so we’ll break it down for you.
 As with any Rift application, the first thing we must do before calling any other SDK

methods is to initialize the SDK itself:

 public RiftApp() {
 Hmd.initialize();

We’re using our friendly Hmd wrapper class static method here, but we could just as
easily have called the C API binding directly like this: OvrLibrary.INSTANCE.ovr
_Initialize(). This is pretty much the case throughout the application, so we won’t
mention it again.

 Next, we’ll use another static method, create(), to open the first HMD we can
find. If we fail to get a reference to any Rift device, we’ll throw an exception. This
should never occur, because if there’s no physical Rift connected to the system, the
ovrHmd.createDebug() method should always return a fake Rift for us to work with.

 hmd = openFirstHmd();
 if (null == hmd) {
 throw new IllegalStateException("Unable to initialize HMD");
 }

We’ll want our application to respond to head orientation and position changes, so we
need to start the sensor devices and raise an exception if we’re unable to do so. The
first parameter is the supported sensor capabilities, and the second is the required
capabilities. Both are bit-field flags that accept the constants defined in the type
OvrLibrary.ovrTrackingCaps. We’re passing in ovrTrackingCap_Orientation and
Licensed to Mark Watson <nordickan@gmail.com>

277Using the Java bindings
ovrTrackingCap_Position to indicate that we’re ready to receive orientation and
position data and the method shouldn’t fail if it can’t configure the sensors:

 if (0 == hmd.configureTracking(
 ovrTrackingCap_Orientation |
 ovrTrackingCap_Position, 0)) {
 throw new IllegalStateException(
 "Unable to start the sensor");
 }

Finally, we want to determine the correct projection matrices to use for each eye and
the ideal texture sizes in preparation for when we’re actually ready to set up and then
perform rendering:

 for (int eye = 0; eye < 2; ++eye) {
 fovPorts[eye] = hmd.DefaultEyeFov[eye];
 projections[eye] = RiftUtils.toMatrix4f(
 Hmd.getPerspectiveProjection(
 fovPorts[eye], 0.1f, 1000000f, true));

 Texture texture = eyeTextures[eye] = new Texture();
 TextureHeader header = texture.Header;
 header.TextureSize = hmd.getFovTextureSize(
 eye, fovPort, 1.0f);

 header.RenderViewport.Size = header.TextureSize;
 header.RenderViewport.Pos = new OvrVector2i(0, 0);
 }

Note that the TextureHeader type also contains a member variable named API, which
we’re not initializing. This is because that member is used to distinguish between
Direct3D versions and OpenGL. In Java we can only reasonably be expected to be ren-
dering via OpenGL, so the JOVR library defaults that member to the value for OpenGL,
and there’s no need to set it.

 The most interesting thing to note here is the existence of a RenderViewport
member on the texture header. This allows you to specify the size and position of the
portion of the texture to which you’ve rendered your scene. You may ask why you’d
ever not use the entire texture. There are a variety of reasons.

 A developer might wish to use a single texture allocation for both eyes, devoting
half of the texture to each eye. In this case, the Size member of RenderViewport
would be half the size of the full texture and the Pos member would be different for
each eye.

 Or a developer might have a well-established system for allocating textures, but it’s
constrained to produce only textures from a certain fixed set of sizes. In this case, it’d
be desirable to grab a texture of the smallest size into which the recommended tex-
ture size will fit, and then render only to a subsection of that texture that matches the
recommended size.

 Finally, because the Texture header is passed into the distortion function on every
single frame, it’s possible to respond to low frame rates by reducing the amount of
pixels being rendered, using a combination of glViewport manipulation during the
Licensed to Mark Watson <nordickan@gmail.com>

278 CHAPTER 11 Using the Rift with Java and Python
scene rendering and RenderViewport manipulation during the distortion. This is cov-
ered in greater detail in chapter 6, in which we focus on performance.

DESTRUCTION

If you’re a Java developer, you know that Java doesn’t have the same concept of a
destructor as C++. There’s a concept known as a finalize method that appears roughly
analogous, but every Java resource since the dawn of time4 tells you in no uncertain
terms not to rely on it, ever. That’s because finalizers aren’t guaranteed to be called in
any given timeframe.

 What you have instead is an onDestroy() method, which your parent class guaran-
tees will be called once your OpenGL window has been destroyed and you’re about to
shut down:

 @Override
 protected void onDestroy() {
 hmd.destroy();
 Hmd.shutdown();
 }

In our onDestroy method you release your hold on the HMD, and then shut down the
SDK. It’s important to notice that the first method is nonstatic but the second is being
called in a static context, using the type Hmd, not the instance variable hmd, because the
instance variable hmd has now been destroyed. Practically speaking, failing to do these
things probably won’t have any impact on your application, but failing to clean up
after yourself should be considered playing with fire. It’s possible that not shutting
down properly could leave your Rift in an unusable state, requiring a reset of the
device or even the host system before you can resume development.

OPENGL CONTEXT AND WINDOW CREATION

Just as with the C++ GlfwApp base class, the Java LwjglApp base class expects its derived
classes to determine where and how to create the output rendering window:

 @Override
 protected void setupContext() {
 contextAttributes = new ContextAttribs(3, 3)
 .withProfileCore(true)
 .withDebug(true);
 }

 @Override
 protected final void setupDisplay() {
 System.setProperty(
 "org.lwjgl.opengl.Window.undecorated", "true");

 Rectangle targetRect = new Rectangle(
 hmd.WindowsPos.x, hmd.WindowsPos.y,
 hmd.Resolution.w, hmd.Resolution.h);
 setupDisplay(targetRect);
 }

4 Well, 1997 or so…
Licensed to Mark Watson <nordickan@gmail.com>

279Using the Java bindings
Just as we do in our GlfwApp class, we take special steps here to ensure that we will cre-
ate an OpenGL 3.3 Core profile context. The contextAttributes member is actually
a base class member that we’re replacing, which would otherwise have simply pro-
vided us with the default OpenGL context, whatever that might happen to be for the
version of LWJGL that we’re using.

 Additionally, we set a system property that indicates that we want no window deco-
rations. Such decorations are the bane of proper positioning of the rendered imagery
relative to the lenses on the Rift and should never be allowed when using windowed
OpenGL. Most applications will probably be using full-screen rendering anyway. See
chapter 4 for more details on the distinction.

 Finally, we’re using the information from the Hmd structure to set the position
and resolution of the window itself. This is something of a cheat. If you refer to the
chapter 2 example on using the display, you’ll see that we point out that the resolu-
tion provided in the Hmd structure is the native resolution of the device, not neces-
sarily the current resolution of the signal that is being sent to the device. What we
should be doing is iterating across all the displays and finding the one whose desk-
top position matches that of the Rift, and then detecting the current resolution of
that display.

 For the sake of brevity, though, we’re omitting that step. Caveat coder.

OPENGL INITIALIZATION

Next we come to the OpenGL setup method, initGl(). As mentioned in the sections
on C++, the work done in this method has to be distinct from the work done in the
constructor because it uses methods that won’t do anything until an OpenGL context
has been created.

protected void initGl() {
 super.initGl();
 for (int eye = 0; eye < 2; ++eye) {
 TextureHeader eth = eyeTextures[eye].ogl.Header;
 frameBuffers[eye] = new FrameBuffer(
 eth.TextureSize.w, eth.TextureSize.h);
 eyeTextures[eye].ogl.TextureId =
 frameBuffers[eye].getTexture().id;
 }

The Oculus SDK examples tend to favor the creation of a single offscreen rendering
target, with each eye rendering to half of it. We prefer to create two distinct rendering
targets (framebuffers in OpenGL parlance). We haven’t found any particular advan-
tage to one approach over the other, so far. We prefer ours because it means we don’t
have to do any additional math to create the single combined texture size from the
recommended per-eye texture sizes.

 After you’ve created your framebuffers, you can assign the actual texture ID to the
Oculus SDK TextureHeader type, which will be used to let the distortion mechanism
know exactly from where it should pull the undistorted view of the scene.
Licensed to Mark Watson <nordickan@gmail.com>

280 CHAPTER 11 Using the Rift with Java and Python
 Finally, you’re ready to initialize the SDK distortion mechanism:

 RenderAPIConfig rc = new RenderAPIConfig();
 rc.Header.RTSize = hmdDesc.Resolution;
 rc.Header.Multisample = 1;

 int distortionCaps =
 ovrDistortionCap_TimeWarp |
 ovrDistortionCap_Vignette;

 for (int i = 0; i < rc.PlatformData.length; ++i) {
 rc.PlatformData[i] = Pointer.createConstant(0);
 }

 eyeRenderDescs = hmd.configureRendering(
 rc, distortionCaps, fovPorts,);

 for (int eye = 0; eye < 2; ++eye) {
 this.eyeOffsets[eye].x = eyeRenderDescs[eye]
 .HmdToEyeViewOffset.x;
 this.eyeOffsets[eye].y = eyeRenderDescs[eye]
 .HmdToEyeViewOffset.y;
 this.eyeOffsets[eye].z = eyeRenderDescs[eye]
 .HmdToEyeViewOffset.z;
 }
 }

The bulk of this code is pretty unremarkable and is directly equivalent to the corre-
sponding C++ code that would be used to perform the same action. One unusual
point is worth noting: the current Oculus SDK is designed around the idea that the SDK
performs the buffer-swapping operation that takes the rendered pixels on the back
buffer and actually causes them to appear on the screen.

 Buffer swapping is a platform-specific operation that correspondingly requires
platform-specific information. For instance, on Windows a Microsoft-specific HWND
for the window (or an HDC for the window’s drawing surface) is required. These
platform-specific details are the kinds of things Java is supposed to insulate you from.
The LWJGL library provides a mechanism for swapping the buffers, just as it provides
a platform-neutral way of creating an OpenGL window. It doesn’t expose the low-level
platform-specific information about the windows that have been created and makes it
impossible to provide the information normally required by the SDK.

 Although the Oculus SDK wants these platform-specific values to be set, if they
aren’t set the SDK does its best to derive them from the current state of the system,
essentially looking at the currently active window, which is presumably the one you’ve
just created.

 As with the TextureHeader type we described earlier, RenderAPIConfig has an
additional parameter API that we don’t bother setting, because JOVR kindly defaults it
to the OpenGL value for us.
Licensed to Mark Watson <nordickan@gmail.com>

281Using the Java bindings
BUFFER SWAPPING AND MESSAGE PROCESSING

As we mentioned earlier, our parent LwjglApp class uses the finishFrame() method
to perform buffer swapping, and we need to disable that behavior because the SDK
will handle it instead. As such, we have an overridden version of that method:

 @Override
 protected void finishFrame() {
 Display.processMessages();
 }

The parent class calls Display.update() in this method to perform the buffer swap-
ping, but the function does more than that. It also interacts with the input system,
allowing applications to receive events relating to keyboard and mouse input. Because
we still want these aspects to function, we have to replace the missing call with
another method that performs the same actions but that doesn’t perform a buffer
swap: Display.processMessages().

FRAME RENDERING

Having set up OpenGL, the only remaining task for the RiftApp parent class is to
encapsulate the per-frame actions that will result in output to the headset:

@Override
public final void drawFrame() {
 hmd.beginFrame(++framecount);
 Posef eyePoses[] = hmd.getEyePoses(frameCount, eyeOffsets);
 for (int i = 0; i < 2; ++i) {
 int eye = hmdDesc.EyeRenderOrder[i];
 Posef pose = hmd.beginEyeRender(eye);
 MatrixStack.PROJECTION.set(projections[eye]);

 poses[eye].Orientation = pose.Orientation;
 poses[eye].Position = pose.Position;

 MatrixStack mv = MatrixStack.MODELVIEW;
 mv.push();
 mv.preTranslate(
 RiftUtils.toVector3f(poses[eye].Position).mult(-1));
 mv.preRotate(
 RiftUtils.toQuaternion(poses[eye].Orientation).inverse());
 frameBuffers[eye].activate();
 renderScene();
 frameBuffers[eye].deactivate();
 mv.pop();
 }
 hmd.endFrame(poses, eyeTextures);
}

This function is in itself somewhat complex. This isn’t surprising because it’s the heart
of the Oculus SDK–based distortion mechanism. So let’s break it down further, piece
by piece.

 First, note that we’ve declared the function final so that it can’t be overridden in
child classes. This is because we want to ensure that any child classes don’t try to over-
ride this method, mistakenly thinking that it’s intended to contain scene-rendering
Licensed to Mark Watson <nordickan@gmail.com>

282 CHAPTER 11 Using the Rift with Java and Python
logic. Although that’s broadly the intent for classes derived from LwjglApp, for classes
derived from RiftApp that purpose is served by the renderScene() method.

 Our first call lets the SDK know that we’re rendering a new frame so that it can set
up state. beginFrame() returns a type called FrameTiming (equivalent to ovrFrame-
Timing from the C API) that includes specific information about things like the delta
time between frames and the midpoint render time. We’re not using this information
in our example, so we don’t bother to capture it:

hmd.beginFrame(++frameCount);

Next we come to the per-eye loop:

Posef eyePoses[] = hmd.getEyePoses(frameCount, eyeOffsets);
for (int i = 0; i < 2; ++i) {
 int eye = hmdDesc.EyeRenderOrder[i];

You may note that in most places where we iterate over the eyes we do so in strictly
ascending order, but that here we fetch which eye we’re working on from the HmdDesc
structure. This is because the SDK itself knows the order in which the pixels will be
illuminated.

 Most displays light up their pixels row by row, meaning that each row will be
divided half and half between the eyes. But the DK2 HMD illuminates pixels column by
column, starting at the right side of the display.

 If a user renders the eyes in the order specified in the EyeRenderOrder member of
HmdDesc, the SDK is able to provide better prediction of the head position for each eye,
because it’s able to empirically measure the time required to perform the first eye ren-
der and can typically assume a similar amount of time will be required for the second.

 Next, we need to inject the projection for the eye. As discussed in chapter 4, the
projection matrices must account for the asymmetrical FOV of each eye, as described
by the FOV port, and also account for the offset between the physical center of the per-
eye half of the screen and the lens axis for that eye. Fortunately, the SDK takes care of
all of this for the user, so all we need to do is ensure that whatever mechanism we’re
using for matrix stacks has the correct value set at the start of the render:

MatrixStack.PROJECTION.set(projections[eye]);

Our MatrixStack class is analogous to the gl::Stacks type in our C++ examples.
Both fill the role previously provided by the now deprecated OpenGL matrix stack
functions. Like that class, it has static members for both projection and modelview
matrix stacks. This is handy, because it’s time to start manipulating the latter.

 For each eye we want to do several things. First we want to apply the head pose to
the matrix. The head pose represents the orientation and position of the user’s head.
We get the current pose information as a return value whenever we begin the render
for a given eye, like so:

Posef pose = hmd.getEyePose(eye);
Licensed to Mark Watson <nordickan@gmail.com>

283Using the Java bindings
Now we’re going to pass this pose in to the SDK as part of an array. Unfortunately we
can’t simply say poses[eye] = pose, because that would break the contiguous memory
nature of the array. Instead we have a small hoop to jump through, which is assigning
the values from pose to the members of the array entry:

poses[eye].Orientation = pose.Orientation;
poses[eye].Position = pose.Position;

Now that we have the pose information, we want to apply it to the modelview matrix.
In a typical game or application, the modelview stack might already be populated with
information about the current viewpoint of the user. We don’t want to disrupt that
information, so we need to push the modelview stack before we manipulate it:

MatrixStack mv = MatrixStack.MODELVIEW;
mv.push();

For each eye we want to do several things:

■ Apply the head pose to the modelview matrix.
■ Apply the eye offset to the modelview matrix.
■ Activate an offscreen framebuffer and render our scene to it.

First we want to apply the head pose to the matrix. The head pose represents the ori-
entation and position of the user’s head. We got the current pose information as a
return value when we called beginEyeRender() previously. But the pose we’ve received
is given as the coordinates and orientation of where the player actually is, similar to if
they were the coordinates of a camera for rendering the scene. A modelview trans-
form is the inverse of a camera transform, so we need to apply the inverse of the orien-
tation and position.

 Additionally, we need to apply them in the correct order, applying the position first
and then the rotation, doing both as pre-multiplications of the modelview matrix.
Details of why this is the case can be found in chapter 5.

 Note that because the CAPI structures provided by the Oculus SDK don’t have the
kind of functionality that we’d expect from vector, matrix, or quaternion classes, we’re
using a RiftUtils class to convert from the CAPI types to the equivalent types in our
own math library (which in turn is based on the jMonkeyEngine [jmonkeyengine.org/]
math library). These classes have member functions like inverse, which allow us to
perform the required transformations:

mv.preTranslate(RiftUtils.toVector3f(pose.Position).mult(-1));
mv.preRotate(RiftUtils.toQuaternion(pose.Orientation).inverse());

Finally, having set up our matrices, we’re now ready to activate the framebuffer and
render the scene to an offscreen texture:

frameBuffers[eye].activate();
renderScene();
frameBuffers[eye].deactivate();
Licensed to Mark Watson <nordickan@gmail.com>

jmonkeyengine.org/

284 CHAPTER 11 Using the Rift with Java and Python
As described earlier, our renderScene() method doesn’t do anything. It’s up to a derived
class to implement drawing something of interest, which we’ll get to in a moment.

 Having done the rendering for our eye, we pop our changes to the modelview
matrix off the stack and close the per-eye loop:

 mv.pop();
}

Once we’ve rendered both eyes, we let the SDK know we’re done with the scene itself,
providing it the poses we used and the textures that contain our rendering:

hmd.endFrame(poses, eyeTextures);

It’s at this point that the Oculus SDK takes the scene information and performs the
distortion, rendering to the OpenGL back buffer.

11.1.4 The RiftDemo class

The Java RiftApp class is abstract, so it doesn’t make for a terrifically engaging demon-
stration. Rather, it’s the Java analog to the RiftApp class in our C++ example code: the
end result of putting together all the pieces of code that are required for rendering to
the Rift, sans an actual scene to render.

 To that end we’ve re-created our original sample demo scene from chapter 5, now
in Java. This fully armed and operational demo class is shown next.

// Import statements

public class RiftDemo extends RiftApp {
 private float ipd = OvrLibrary.OVR_DEFAULT_IPD;
 private float eyeHeight = OvrLibrary.OVR_DEFAULT_EYE_HEIGHT;

 public RiftDemo() {
 ipd = hmd.getFloat(OvrLibrary.OVR_KEY_IPD, ipd);
 eyeHeight = hmd.getFloat(OvrLibrary.OVR_KEY_EYE_HEIGHT, ipd);
 recenterView();
 }

 private void recenterView() {
 Vector3f center = Vector3f.UNIT_Y.mult(eyeHeight);
 Vector3f eye = new Vector3f(0, eyeHeight, ipd * 5.0f);
 MatrixStack.MODELVIEW.lookat(eye, center, Vector3f.UNIT_Y);
 hmd.recenterPose();
 }

 @Override
 protected void onKeyboardEvent() {
 if (Keyboard.getEventKeyState()
 && Keyboard.getEventKey() == Keyboard.KEY_R) {
 recenterView();
 }
 }

Listing 11.4 RiftDemo.java, extending RiftApp to render our demo scene

Fetches the IPD
and eye height

Positions the camera
five steps out from
the central cube
Licensed to Mark Watson <nordickan@gmail.com>

285Using the Java bindings
 @Override
 public void renderScene() {
 glClear(GL_DEPTH_BUFFER_BIT);
 SceneHelpers.renderSkybox();
 SceneHelpers.renderFloor();

 MatrixStack mv = MatrixStack.MODELVIEW;
 mv.push();
 mv.translate(new Vector3f(0, eyeHeight, 0))
 .scale(ipd);
 SceneHelpers.renderColorCube();
 mv.pop();
 mv.push();
 mv.translate(new Vector3f(0, eyeHeight / 2, 0))
 .scale(new Vector3f(ipd / 2, eyeHeight, ipd / 2));
 SceneHelpers.renderColorCube();
 mv.pop();
 }

 public static void main(String[] args) {
 new RiftDemo().run();
 }
}

The results of rendering should look something like figure 11.2.
 The Rift demo code isn’t terribly interesting, and it has only a couple of interac-

tions with the Oculus SDK worth mentioning. The first is that it uses the user pro-
file eye height (the distance in meters from the ground to the user’s eyes) and IPD
(the distance in meters between the user’s pupils). These are used to construct the
scene where the viewpoint is a reasonable distance above the rendered ground,

Renders a cube on
a pedestal, with a
background scene

Runs the
example

Figure 11.2 The Java demo in action
Licensed to Mark Watson <nordickan@gmail.com>

286 CHAPTER 11 Using the Rift with Java and Python
and to render a cube on a pedestal that’s exactly as wide as the distance between the
user’s eyes.

 The justification for this is established in chapter 5, on 3D rendering. Succinctly,
having the cubes be exactly as wide as the distance between the pupils and positioned
a small distance ahead of the user makes it easy to detect a large number of potential
mistakes in setting up the modelview and projection matrices.

 The second point of interaction with the Oculus SDK is that we use the recenter-
Pose() method on the Hmd type both during initialization and if the user presses the R
key. This allows the user to put on the headset, get seated comfortably, and then
inform the SDK that they’re in their starting position, from which all movement and
orientation changes should be considered relative.

 The remainder of the code is mostly interaction with helper classes for rendering
various scene entities. In our renderScene() method, we draw our skybox and a floor,
and then we render a color cube in front of the user at a distance of five times the dis-
tance between the pupils. This puts it close enough that you can get a sense of depth
even if you’re completely still, yet far enough that it doesn’t feel like it’s invading your
personal space or forcing you to cross your eyes.

11.2 Using the Python bindings
Our Python example returns once more to our simple color cube, although this
example is somewhat more primitive, dropping the skybox and pedestal for a simple
gray background (figure 11.3).

 Integration of Python with C code is even easier than with Java. Python includes a
foreign language library called ctypes. This library provides the same functionality as
the JNA/JNI mechanisms in Java: access to methods defined in C-style libraries. There

Figure 11.3 Our Python example scene, a simple cube
Licensed to Mark Watson <nordickan@gmail.com>

287Using the Python bindings
are a number of open source projects designed to allow you to generate code bind-
ings. For our application, we used ctypesgen (code.google.com/p/ctypesgen/).

11.2.1 Meet our Python binding: PyOVR

The Python bindings we’re working with are called PyOVR, based on code generated
by ctypesgen, and then supplemented with custom Python code intended to provide a
more Python-like façade on the exposed functionality.

11.2.2 Development environment

Our Python 2.7 example depends on the libraries PyOpenGL, cgkit, Numpy, and
Pygame. Please note that although it shouldn’t be hard to update the example from
version 2.7 to the latest build of Python, the four supporting libraries don’t all have
support for the latest version of the language.

 In order to use the demo sample, you’ll need to add the Oculus SDK Python bind-
ings directory to your PYTHONPATH system variable.

 If you’ve checked out all of the demo code on our GitHub repository, you’ll find the
bindings in OculusRiftInAction/libraries/OculusSDK/Bindings/Python. The oculusvr
module is in this path. This is the directory you should add to your PYTHONPATH.

 Alternatively, you can check out the Python demo and bindings directly, on their
own, from GitHub:

■ Bindings: github.com/jherico/python-ovrsdk
■ Demo: github.com/OculusRiftInAction/pyovr-examples

11.2.3 The pyovr-examples project

The Python examples are less sophisticated than the C++ and Java ones. We’ve devel-
oped libraries to encapsulate much of the OpenGL boilerplate and heavy lifting for
our work in Java and C++, but we didn’t find any such tools in Python and weren’t well
positioned to write them. As such, the Python example provides only the bare mini-
mum in terms of scene content: the colored cube. A skybox and floor representation
are both absent.

11.2.4 The RiftApp class

As with C++ and Java, we’ve created a base class that encapsulates the boilerplate of
working with the Oculus Rift and OpenGL.

 Because OpenGL only defines mechanisms for rendering to an OpenGL context,
not how to create or position a window or context, we have to use some other mecha-
nism to do so. In C++, we used GLFW3. In Java, we used LWJGL. Here in Python, we use
a library called Pygame (www.pygame.org). Pygame gives us access to the same func-
tionality that we require for using the Oculus SDK: the ability to create a double-
buffered OpenGL window of a given size, at a given desktop position, and without win-
dow decorations. The following listing shows the Python RiftApp class.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.pygame.org
http://code.google.com/p/ctypesgen/
http://github.com/jherico/python-ovrsdk
http://github.com/OculusRiftInAction/pyovr-examples

288 CHAPTER 11 Using the Rift with Java and Python
import oculusvr as ovr
import numpy as np
import pygame
import pygame.locals as pgl

from OpenGL.GL import *
from cgkit.cgtypes import mat4, vec3, quat
from ctypes import *
from oculusvr import Hmd, ovrGLTexture, ovrPosef, ovrVector3f

class RiftApp():
 def __init__(self):
 ovr.Hmd.initialize()
 self.hmd = ovr.Hmd()

 self.hmdDesc = self.hmd.hmd.contents
 self.frame = 0

 # Workaround for a race condition bug in the SDK
 import time
 time.sleep(0.1)

 self.hmd.configure_tracking()
 self.fovPorts = (
 self.hmdDesc.DefaultEyeFov[0],
 self.hmdDesc.DefaultEyeFov[1]
)
 projections = map(
 lambda fovPort:
 (ovr.Hmd.get_perspective(
 fovPort, 0.01, 1000, True)),
 self.fovPorts
)
 self.projections = map(
 lambda pr:
 pr.toList(),
 projections)
 self.eyeTextures = [ovrGLTexture(), ovrGLTexture()]
 for eye in range(0, 2):
 size = self.hmd.get_fov_texture_size(
 eye, self.fovPorts[eye])
 eyeTexture = self.eyeTextures[eye]
 eyeTexture.API = ovr.ovrRenderAPI_OpenGL
 header = eyeTexture.Texture.Header;
 header.TextureSize = size
 vp = header.RenderViewport;
 vp.Size = size
 vp.Pos.x = 0
 vp.Pos.y = 0

 def close(self):
 glDeleteFramebuffers(2, self.fbo)
 glDeleteTextures(self.color)
 glDeleteRenderbuffers(2, self.depth)

Listing 11.5 RiftApp.py

Sets up as much internal
state as possible without
having an OpenGL context.

Releases Oculus SDK
and OpenGL resources.
Licensed to Mark Watson <nordickan@gmail.com>

289Using the Python bindings
 self.hmd.destroy()
 self.hmd = None
 ovr.Hmd.shutdown()

 def create_window(self):
 import os
 os.environ['SDL_VIDEO_WINDOW_POS'] = "%d,%d" % (
 self.hmdDesc.WindowsPos.x,
 self.hmdDesc.WindowsPos.y)
 pygame.init()
 pygame.display.set_mode(
 (
 self.hmdDesc.Resolution.w,
 self.hmdDesc.Resolution.h
),
 pgl.HWSURFACE | pgl.OPENGL | pgl.DOUBLEBUF | pgl.NOFRAME)
 window_info = pygame.display.get_wm_info()
 window = c_void_p(window_info['window'])
 ovr.ovrHmd_AttachToWindow(self.hmd.hmd, window, 0, 0)

 def init_gl(self):
 self.fbo = glGenFramebuffers(2)
 self.color = glGenTextures(2)
 self.depth = glGenRenderbuffers(2)

 for eye in range(0, 2):
 self.build_framebuffer(eye)
 self.eyeTextures[eye].OGL.TexId = np.asscalar(self.color[eye])

 rc = ovr.ovrRenderAPIConfig()
 header = rc.Header;
 header.API = ovr.ovrRenderAPI_OpenGL
 header.BackBufferSize = self.hmdDesc.Resolution
 header.Multisample = 1
 for i in range(0, 8):
 rc.PlatformData[i] = 0
 self.eyeRenderDescs = \
 self.hmd.configure_rendering(rc, self.fovPorts)

 self.eyeOffsets = [ovrVector3f(), ovrVector3f()]
 for eye in range(0, 2):
 self.eyeOffsets[eye] = self.eyeRenderDescs[eye].HmdToEyeViewOffset

 # Bug in the SDK leaves a program bound, so clear it
 glUseProgram(0)

 def build_framebuffer(self, eye):
 size = self.eyeTextures[eye].Texture.Header.TextureSize

 # Set up the color attachement texture
 glBindTexture(GL_TEXTURE_2D, self.color[eye])
 glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_MIN_FILTER, GL_LINEAR)
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8,
 size.w, size.h, 0, GL_RGB,
 GL_UNSIGNED_BYTE, None)
 glBindTexture(GL_TEXTURE_2D, 0)

Creates a window, passing
settings from the Oculus
SDK to pygame.

Completes the
SDK setup.

Builds the OpenGL
offscreen rendering
targets for distortion
rendering.
Licensed to Mark Watson <nordickan@gmail.com>

290 CHAPTER 11 Using the Rift with Java and Python
 # Set up the depth attachment renderbuffer
 glBindRenderbuffer(GL_RENDERBUFFER, self.depth[eye])
 glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT,
 size.w, size.h)
 glBindRenderbuffer(GL_RENDERBUFFER, 0)

 # Set up the framebuffer proper
 glBindFramebuffer(GL_FRAMEBUFFER, self.fbo[eye])
 glFramebufferTexture2D(GL_FRAMEBUFFER,
 GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
 self.color[eye], 0)
 glFramebufferRenderbuffer(GL_FRAMEBUFFER,
 GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER,
 self.depth[eye])
 fboStatus = glCheckFramebufferStatus(GL_FRAMEBUFFER)
 if (GL_FRAMEBUFFER_COMPLETE != fboStatus):
 raise Exception("Bad framebuffer setup")
 glBindFramebuffer(GL_FRAMEBUFFER, 0)

 def render_frame(self):
 self.frame += 1

 # Fetch the head pose
 poses = self.hmd.get_eye_poses(self.frame, self.eyeOffsets)

 self.hmd.begin_frame(self.frame)
 for i in range(0, 2):
 eye = self.hmdDesc.EyeRenderOrder[i]

 glMatrixMode(GL_PROJECTION)
 glLoadMatrixf(self.projections[eye])

 self.eyeview = mat4(1.0)

 # Apply the head orientation
 rot = poses[eye].Orientation
 # Convert the OVR orientation (a quaternion
 # structure) to a cgkit quaternion class, and
 # from there to a mat4 Coordinates are camera
 # coordinates
 rot = quat(rot.toList())
 rot = rot.toMat4()

 # Apply the head position
 pos = poses[eye].Position
 # Convert the OVR position (a vector3 structure)
 # to a cgcit vector3 class. Position is in camera /
 # Rift coordinates
 pos = vec3(pos.toList())
 pos = mat4(1.0).translate(pos)

 pose = pos * rot

 # apply it to the eyeview matrix
 self.eyeview = pose;

 # The subclass is responsible for taking eyeview
 # and applying it to whatever camera or modelview
 # coordinate system it uses before rendering the
 # scene

Renders a left and right eye
view to offscreen rendering
targets, then passes it to
the Oculus SDK.
Licensed to Mark Watson <nordickan@gmail.com>

291Using the Python bindings
 # Activate the offscreen framebuffer and render the scene
 glBindFramebuffer(GL_FRAMEBUFFER, self.fbo[eye])
 size = self.eyeTextures[eye].Texture.Header.RenderViewport.Size
 glViewport(0, 0, size.w, size.h)
 self.render_scene()
 glBindFramebuffer(GL_FRAMEBUFFER, 0)
 self.hmd.end_frame(poses, self.eyeTextures)
 glGetError()

 def update(self):
 for event in pygame.event.get():
 self.on_event(event)

 def on_event(self, event):
 if event.type == pgl.QUIT:
 self.running = False
 return True
 if event.type == pgl.KEYUP and event.key == pgl.K_ESCAPE:
 self.running = False
 return True
 return False

 def run(self):
 self.create_window()
 self.init_gl()
 self.running = True
 start = ovr.Hmd.get_time_in_seconds()
 last = start
 while self.running:
 self.update()
 self.render_frame()
 #pygame.display.flip()
 now = ovr.Hmd.get_time_in_seconds()
 if (now - last > 10):
 interval = now - start
 fps = self.frame / interval
 print "%f" % fps
 last = now
 self.close()
 pygame.quit()

This code is functionally very similar to the Java version presented earlier in this chap-
ter and the C++ version included in our example repository. Let’s take a closer look at
the various components.

CONSTRUCTION

In the constructor we initialize the Oculus SDK as a whole using the static method
initialize on the Hmd type:

 def __init__(self):
 ovr.Hmd.initialize()
 self.hmd = ovr.Hmd()
 self.hmdDesc = self.hmd.get_desc()

Next, we start the tracking sensors:

 self.hmd.configure_tracking()

Calls the rendering
mechanism, controls the
program lifetime, and
deals with user input.
Licensed to Mark Watson <nordickan@gmail.com>

292 CHAPTER 11 Using the Rift with Java and Python
We’ll need to know about where the display is on the desktop and we’ll need to know
the fields of view supported for each eye:

 self.fovPorts = (
 self.hmdDesc.DefaultEyeFov[0],
 self.hmdDesc.DefaultEyeFov[1]
)

The FOV ports are stored in a structure we’ll use later during rendering configuration.
But we also need to use them to construct the projection matrix for each eye:

 projections = map(
 lambda fovPort:
 (ovr.Hmd.get_perspective(
 fovPort, 0.01, 1000, True)),
 self.fovPorts
)
 self.projections = map(
 lambda pr:
 pr.toList(),
 projections)

The matrix as provided by the SDK is in a ctype structure. To pass it in to the OpenGL
functions, we flatten it to a Python tuple type, which is an immutable list of objects, in
this case floating-point values.

 Next we need to set up information about the textures we’ll use for offscreen
rendering:

 self.eyeTextures = [ovrGLTexture(), ovrGLTexture()]
 for eye in range(0, 2):
 size = self.hmd.get_fov_texture_size(
 eye, self.fovPorts[eye])
 eyeTexture = self.eyeTextures[eye]
 eyeTexture.API = ovr.ovrRenderAPI_OpenGL
 header = eyeTexture.Texture.Header;
 header.TextureSize = size
 vp = header.RenderViewport;
 vp.Size = size
 vp.Pos.x = 0
 vp.Pos.y = 0

Here we allocate textures based on the size of the FOV. The exact details of the fields
of view and the eye textures are covered in chapter 5.

CLEANING UP

Like Java, Python doesn’t have the concept of a guaranteed destructor. Instead we’ve
got a close method that we explicitly call when we’re exiting the primary loop. In it
we take care of cleaning up the OpenGL objects we’ve created:

 def close(self):
 glDeleteFramebuffers(2, self.fbo)
 glDeleteTextures(self.color)
 glDeleteRenderbuffers(2, self.depth)
Licensed to Mark Watson <nordickan@gmail.com>

293Using the Python bindings
More critically, we need to shut down our use of the Oculus SDK. This includes
destroying the Hmd instance, which stops the sensors, and then calling the overall SDK
shutdown function. It should be done specifically in this order, which is the reverse of
the order used to call the corresponding startup functions.

 self.hmd.destroy()
 self.hmd = None
 ovr.Hmd.shutdown()

Let’s move on now and look at how we get the output onto the Rift screen.

CREATING OUR OUTPUT WINDOW

Before we can see anything on the Rift screen (other than the desktop wallpaper, or
some lost and lonely windows that have wandered to the wrong display somehow) we
need to create a rendering surface.

 As stated, we’re using Pygame to create our display output. Interestingly, it
seems to use the conventions of another cross-platform rendering library called
SDL for positioning windows. Specifically it allows you to set the position of your
rendering surface by setting an environment variable to the coordinates you want,
like so:

 def create_window(self):
 import os
 os.environ['SDL_VIDEO_WINDOW_POS'] = "%d,%d" % (
 self.hmdDesc.WindowsPos.x,
 self.hmdDesc.WindowsPos.y)

INITIALIZING PYGAME

Having set the required values, we call (yet another) library initialization function and
then call the function that actually creates the window, in this case Pygame’s somewhat
confusingly named set_mode. We pass in both the resolution we want as well as a num-
ber of flags specifying that we want a hardware-accelerated OpenGL surface with dou-
ble buffering and no window decorations:

 pygame.init()
 pygame.display.set_mode(
 (
 self.hmdDesc.Resolution.w,
 self.hmdDesc.Resolution.h
),
 pgl.HWSURFACE | pgl.OPENGL | pgl.DOUBLEBUF | pgl.NOFRAME)

We’re taking a bit of a shortcut here. The resolution information provided by the SDK
is the native resolution of the device, not necessarily the current resolution. The proper
thing to do here is to iterate over all the displays available and find the one with a
desktop position equivalent to the WindowPos member of the HMD description, and
then query for its resolution. Doing this typically involves mechanisms that are platform-
specific. For the sake of brevity, we’ve skipped this step here.
Licensed to Mark Watson <nordickan@gmail.com>

294 CHAPTER 11 Using the Rift with Java and Python
 The last step in setting up is to retrieve its opened window and pass its reference
back to the Oculus SDK, attaching the OVR instance to the created frame:

 window_info = pygame.display.get_wm_info()
 window = c_void_p(window_info['window'])
 ovr.ovrHmd_AttachToWindow(self.hmd.hmd, window, 0, 0)

INITIALIZING OPENGL
Our init_gl method will be called almost immediately after the OpenGL surface has
been created, allowing us to complete the Oculus SDK setup steps that rely on the
presence of a rendering API.

 Specifically this means creating the offscreen rendering targets (framebuffers in
OpenGL) and calling the SDK-rendering configuration function, which creates a ver-
tex mesh used for distortion.

 We start off by allocating the OpenGL object names5 required for the framebuffers:

 def init_gl(self):
 self.fbo = glGenFramebuffers(2)
 self.color = glGenTextures(2)
 self.depth = glGenRenderbuffers(2)

For each eye we can now build the framebuffer proper. Additionally we can take the
texture IDs and put them in the Oculus structure to let the SDK know from where it’ll
pull the rendered scenes during distortion:

 for eye in range(0, 2):
 self.build_framebuffer(eye)
 self.eyeTextures[eye].OGL.TexId = np.asscalar(self.color[eye])

The call to build_framebuffer allows us to push out the OpenGL boilerplate for the
framebuffer construction. We won’t cover it in detail here, other than to say that you
need to ensure that both the color and depth attachments should use the same size
values as used in the TextureSize member of the per-eye texture structures.

 Next we call the SDK method to configure the distortion:

 rc = ovr.ovrRenderAPIConfig()
 header = rc.Header;
 header.API = ovr.ovrRenderAPI_OpenGL
 header.BackBufferSize = self.hmdDesc.Resolution
 header.Multisample = 1
 for i in range(0, 8):
 rc.PlatformData[i] = 0
 self.eyeRenderDescs = \
 self.hmd.configure_rendering(rc, self.fovPorts)

You may note that we’re not passing in any of the OVR distortion capability flags to the
configure_rendering call. Because Python supports default argument values (unlike

5 Yes, they’re only lowly integers. OpenGL refers to them as names.
Licensed to Mark Watson <nordickan@gmail.com>

295Using the Python bindings
Java), we’ve taken the opportunity to declare configure_rendering with reasonable
defaults. If you examine the declaration you’ll find it looks like this:

def configure_rendering(self, config, fovPorts,
 distortion_caps =
 ovrDistortionCap_TimeWarp |
 ovrDistortionCap_Vignette):

This enables us to use much more terse syntax for the call to configure_rendering,
assuming we’re satisfied with the defaults given. Refer to chapters 4 and 5 for a more
detailed discussion of the individual distortion capability flags and their meanings.

 The last step of our OpenGL setup is to capture the per-eye offsets from the eye
render descriptions retrieved from the Rift:

 self.eyeOffsets = [ovrVector3f(), ovrVector3f()]
 for eye in range(0, 2):
 self.eyeOffsets[eye] = \
 self.eyeRenderDescs[eye].HmdToEyeViewOffset

Our OpenGL initialization is now complete.

FRAME RENDERING

For all the setup and cleanup that we do, the core of the SDK functionality is con-
tained in the rendering loop. This loop is responsible for iterating over both eyes, and
for each of them rendering a scene from a given viewpoint.

 Our very first step is to capture the user’s current head pose for this frame. After
that, for SDK distortion to function, we must bookend the frame rendering with the
begin_frame and end_frame methods from our Hmd instance:

 def render_frame(self):
 self.frame += 1

 poses = self.hmd.get_eye_poses(self.frame, self.eyeOffsets)

 self.hmd.begin_frame(self.frame)
 for i in range(0, 2):
 eye = self.hmdDesc.EyeRenderOrder[i]
 # ...
 self.hmd.end_frame(poses, self.eyeTextures)

The remainder of our code from this function happens within that ellipsis. Note
that we don’t iterate directly over the eyes. Instead we iterate over the range [0, 1],
and for each value we fetch which eye should be rendered. Rendering the eyes in
the proper order can improve the perceived latency on the device, because on hard-
ware that refreshes the display from left to right or right to left instead of the much
more common top to bottom, the SDK knows which eye will be illuminated first. It’s
therefore in your best interest to render the eyes in the expected order. See chapter 5
for more details.

 Within the per-eye loop we’re responsible for setting the appropriate projection
and modelview matrices. The projection matrix is easy, because it’s provided to us
Licensed to Mark Watson <nordickan@gmail.com>

296 CHAPTER 11 Using the Rift with Java and Python
directly by the SDK and we stored it when we started up, so here we only need to
load it:

 glMatrixMode(GL_PROJECTION)
 glLoadMatrixf(self.projections[eye])

Note that we’re using Python’s older, “classic” OpenGL matrix stacks support rather
than a more modern implementation. It can be illustrative to provide the actual raw
order of operations required.

 We need to apply the position and orientation of the headset to the view of the
scene. The begin_eye_render method used to let the SDK know we’re starting render-
ing for the given eye provides us with a head pose value. Conveniently, this value will
automatically incorporate prediction based on the timing values recorded by the SDK.

 The OVR headpose structure has two distinct components: a position and an orien-
tation. We’ll convert each separately into matrices, and then concatenate the two
matrices to pass them as a single transform to OpenGL.

 First we’ll find the head orientation:

 rot = poses[eye].Orientation
 rot = quat(rot.toList())
 rot = rot.toMat4()

Next we’ll find the head position:

 pos = poses[eye].Position
 pos = vec3(pos.toList())
 pos = mat4(1.0).translate(pos)

The method quat() and the types vec3 and mat4 are from cgkit. As you can see, we’ve
used cgkit to black-box the mechanics of working with OVR’s quaternion and transla-
tion data.

 Lastly we construct the cumulative pose matrix, concatenating the translation
and rotation:

 pose = pos * rot
 self.eyeview = pose;

The variable self.eyeview communicates the head pose matrix back to the child
class, which will read this value to calculate the actual camera matrix at rendering
time. The subclass is responsible for taking eyeview and applying it to whatever cam-
era or modelview coordinate system it uses before rendering the scene.

 With the modelview and projection matrices fully set up, we can enable the frame-
buffer and render the scene itself to a texture:

 # Activate the offscreen framebuffer and render the scene
 glBindFramebuffer(GL_FRAMEBUFFER, self.fbo[eye])
 size = self.eyeTextures[eye].Textures.Header \
 .RenderViewport.Size
 glViewport(0, 0, size.w, size.h)
 self.render_scene()
 glBindFramebuffer(GL_FRAMEBUFFER, 0)
Licensed to Mark Watson <nordickan@gmail.com>

297Using the Python bindings
With the eye texture rendered, we complete the loop over the eyes. All that’s left is to
close our bookends with a final call:

self.hmd.end_frame(poses, self.eyeTextures)

This signals the SDK that the frame is complete and can be swapped to the display.
 Now let’s take a look at the main loop of our demo.

THE MAIN LOOP

Our run function is the only one (other than the implicit call to the constructor)
that needs to be called from outside this class. It performs the setup, and then ren-
ders frames until it’s told to quit. With the timing code removed, the loop is pretty
straightforward:

 def run(self):
 self.create_window()
 self.init_gl()
 self.running = True
 while self.running:
 self.update()
 self.render_frame()
 pygame.display.flip()
 self.close()
 pygame.quit()

And that’s it—our main loop is in place and this RiftApp implementation is ready to
fly. This base class provides a simple way to get up and running with Oculus Rift sup-
port in a Python application.

 Of course, you need to have a subclass that will render something of interest to the
user if you want to see RiftApp live in the Rift. So let’s check out our RiftDemo class.

11.2.5 The RiftDemo class

Our demo class is short and sweet—all the shorter for not including the implementa-
tion of draw_color_cube or the keyboard-handling code (but you can find all that in
the GitHub repository). Literally all this does is render a cube in space, nothing else,
as shown in the following listing.

#! /usr/bin/env python
import pygame
import pygame.locals as pgl
import oculusvr as ovr

from RiftApp import RiftApp
from cgkit.cgtypes import mat4, vec3
from OpenGL.GL import *

def draw_color_cube:
 ...

Listing 11.6 RiftDemo.py

draw_color_cube
removed for brevity
Licensed to Mark Watson <nordickan@gmail.com>

298 CHAPTER 11 Using the Rift with Java and Python

Rift
ex
Ri
class RiftDemo(RiftApp):
 def __init__(self):
 RiftApp.__init__(self)
 self.cube_size = self.hmd.get_float(
 ovr.OVR_KEY_IPD, ovr.OVR_DEFAULT_IPD)
 self.reset_camera()

 def init_gl(self):
 RiftApp.init_gl(self)
 glEnable(GL_DEPTH_TEST)
 glClearColor(0.1, 0.1, 0.1, 1)

 def update(self):
 ...

 def render_scene(self):
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

 cameraview = self.eyeview * self.camera
 glMatrixMode(GL_MODELVIEW)
 glLoadMatrixf(cameraview.inverse().toList())
 glMultMatrixf(self.camera.inverse().toList())

 draw_color_cube(self.cube_size)

RiftDemo().run();

We extend the base class constructor so we can grab the user’s interpupillary distance,
because we scale the colored cube to match the IPD.

 We also extend the base class’s init_gl method to set a clear color that isn’t quite
black. This is useful because it makes it easy to distinguish the region of the screen
where the distorted image has been rendered from the overall screen background
that has nothing rendered to it at all.

 Finally, we implement our render_scene method. Here we perform the standard
clearing of the buffer and draw our colored cube. The cube, rendered at half a meter
from the user with a width that’s exactly the same as the distance between the eyes, is a
valuable first test: it lets you tell at a glance if your matrix setup is correct. For more
details on the usefulness of this test scene, see chapter 5.

 The scene created should look like figure 11.3. A more complex example
would also include (at least) a floor and a skybox in order to provide users with a
greater sense of presence, as opposed to leaving them feeling like they’re floating
in a formless gray void. The details of making something fun is left as an exercise
to the reader.

11.3 Working with other languages
If you’re still looking to work with the Rift but Java, Python, and C/C++ aren’t suit-
able for your work, you’re not out of luck. We can’t cover examples of every potential

Demo
tends
ftApp.

Fetches the IPD, which we’ll
use to scale our cube.

Sets up OpenGL.

Keyboard-handling
code also removed
for brevity.

Renders the scene.
This will be called
once for each eye.

Loads the current camera
position and headpose
view transform.

Renders the
simple cube.

Serves as a
main() function.
Licensed to Mark Watson <nordickan@gmail.com>

299Summary
language you might want to use the Rift from, but bear in mind that to work with the
Rift from any language, you only need a couple of basic things:

■ A means of calling C functions
■ A means of calling a rendering API like OpenGL or Direct3D

For OpenGL, where C bindings are available, the second requirement is essentially a
reiteration of the first. In other words, if you can call C functions, you can produce a VR
application for the Oculus Rift.

 “Lisp in the Rift,” anybody?

11.4 Summary
In this chapter you learned that

■ You can develop for the Rift using Java or Python.
■ Working with the Rift in Java or Python still requires the use of the Oculus SDK.
■ For Python users, a library called PyOVR is available to interact with the Oculus

SDK. PyOVR is available at github.com/jherico/python-ovrsdk.
■ For Java users, the JOVR library is available to interact with the Oculus SDK.

JOVR is available at github.com/jherico/jovr and via Maven.
■ Both PyOVR and JOVR are open source libraries developed by the authors and

made available to developers to ease integration of their applications with the
Oculus SDK. Unlike the individual examples in this book, they’re intended to
be production ready.

■ Each library provides both direct access to the Oculus SDK C API functions as
well as a language-specific façade class to allow the use of the SDK functionality
in a more object-oriented fashion.
Licensed to Mark Watson <nordickan@gmail.com>

http://github.com/jherico/python-ovrsdk
http://github.com/jherico/jovr

 Case study:
a VR shader editor
Up to this point, our demos have been toy applications. The samples you’ve seen so
far are useful, but each has been designed to demonstrate a specific learning point
or technical feature. In this chapter we present a larger, more complicated case
study: we’re going to create a complete end-to-end application, to serve as an exam-
ple of the best practices that we’ve discussed so far and to illustrate the issues that
can come up in more advanced programs.

 To demonstrate the art of a fully formed VR app, we’ll adapt an existing applica-
tion into a VR context. We’ve chosen an application that’s heavily graphical in
nature but that runs on the web today and is strictly 2D. The application, Shadertoy
(www.shadertoy.com), is a web-based tool for editing OpenGL fragment shaders.
Shadertoy was created by Iñigo Quilez and Pol Jeremias.

This chapter covers
■ Creating a full-fledged VR application:

a case study
■ Putting what you’ve learned into practice
■ Integrating Rift functionality with a third-party

GUI framework
300

Licensed to Mark Watson <nordickan@gmail.com>

http://www.shadertoy.com

301The starting point: Shadertoy
In this chapter we’re giving that 2D app a new dimension: we’re going to build Shad-
ertoyVR (figure 12.1).

 We’ve chosen to create ShadertoyVR because it’s instructive, it’s a chance to learn
about some pretty nifty graphics stuff like raycasting, and its output looks awesome.
Above and beyond that, it’s a chance to build an app that lets you edit code in virtual
reality. If you’re a coder or if you’ve ever played one on TV, you know that writing code
in a 2D text window locked to your monitor is the bread and butter of every day. How
many times have you dreamed of having the code all around you? Now we’re finally
going to take coding into virtual reality. We’re bringing the day of the infinite desktop
that much closer.

12.1 The starting point: Shadertoy
Shadertoy is a rendering and programming site dedicated to graphics enthusiasts.
The site hosts an online application where users can edit OpenGL Shading Language
(GLSL) shader code (more on that later) and see their changes take immediate effect.
Users edit GLSL code in a standard text form and can see the resulting output ren-
dered, in real time, in another panel in the browser. Shadertoy uses the WebGL stan-
dard to run the shader code on the local GPU, so even though it’s running in the
browser it can leverage all the power of local accelerated hardware (figure 12.2).

Figure 12.1 Shadertoy and ShadertoyVR. The shader visible on the screen is Elevated by Iñigo Quilez.
Licensed to Mark Watson <nordickan@gmail.com>

302 CHAPTER 12 Case study: a VR shader editor
Shadertoy is driven by user-created content. Users can edit, save, upload and share
small fragment shaders, which produce an astounding range of visual effects. Shaders
can be driven by audio, video, and interactive inputs. Although some of the shaders
on Shadertoy.com produce only 2D effects, a hefty number of them have been
designed to render procedural 3D scenes, often animated.

 On Shadertoy.com, each program is a fragment shader. These shaders are small
programs written in the GLSL language. Most Shadertoy shaders use a technique
called raycasting to create the illusion of 3D perspective. If you’re interested in how
these short (typically, under 100 lines) programs can create amazing visual panora-
mas, check out the last section of this chapter.

Figure 12.2 The Shadertoy interface, showing the shader Clouds
Licensed to Mark Watson <nordickan@gmail.com>

http://Shadertoy.com
http://Shadertoy.com

303Making the jump from 2D to 3D
12.2 The destination: ShadertoyVR
We’re going to adapt Shadertoy to a VR context. The goal is to go from figure 12.3a
(the original web app) to figure 12.3b (the same shader, now sensitive to head
motion and ready to render to the Rift). The two figures are stills from the same
shader, but in figure 12.3b the image shows the familiar Rift oval distortions. Load-
ing a shader into the Rift isn’t the real challenge, though. Once we’ve got the basic
building blocks in place, we’re going to build what’s shown in figure 12.4: a live
text editor, completely contained inside the VR world, floating between the user
and the shader output.

 As we build this case study, you’ll see how a Rift app can insert the user into
homespun virtual scenes. We’ll explore the issues that arise when rebuilding a two-
dimensional interface inside a virtual space. The final result will be a VR application
that runs in the Rift, in which the user will be able to edit their code on the fly and see
the virtual worlds around them literally transform with the click of a button.

12.3 Making the jump from 2D to 3D
Now it’s time to start planning. Let’s begin with a few notes about how Shadertoy
works in 2D, with a particular eye to its user interface: all of the visual gadgets and wid-
gets that let users edit their shaders and select images and textures as inputs. Once the
goal is clear, we’ll cover the project-planning aspect of the task, and from there we’ll
dive into the real challenge: the technical implementation of the VR interface.

12.3.1 UI layout

The main workspace of Shadertoy.com presents users with a split-screen view of
their shader. On the left, their current work is shown in a WebGL window, running
live. This is where their virtual world appears, rendered entirely on the GPU by
WebGL. On the right, the user has an editing window in which to write a fragment
shader (figure 12.2).

Programming with shaders: GLSL
Programmable shaders are the core of modern computer graphics. Shaders are small
programs that are compiled and run on the GPU, capable of processing billions of
pixel operations per second. Although we haven’t called them out, each of our own
examples has included demo code written in GLSL as an integral part of our render-
ing engine.

All of the user programs on Shadertoy.com are shader programs, written in GLSL.
GLSL code tends to be succinct, to the point, and extremely focused on producing
nifty graphics effects. You don’t need to speak fluent GLSL to understand shaders—
actually, the language looks a lot like old C code—so feel free to browse.
Licensed to Mark Watson <nordickan@gmail.com>

http://Shadertoy.com
http://Shadertoy.com

304 CHAPTER 12 Case study: a VR shader editor
(a)

(b)

Figure 12.3 (a) Shadertoy; (b) ShadertoyVR
Licensed to Mark Watson <nordickan@gmail.com>

305Making the jump from 2D to 3D
Users can modify the code in the text editor on the right, press the Run button, and
immediately see the resulting output in the WebGL window. The website passes the
geometry of a quadrilateral to WebGL and executes its built-in vertex shader, chaining
into the user’s handmade fragment shader.

 The key to building a Shadertoy shader is that every pixel of the rectangle has a
unique 2D coordinate, and you can choose color by coordinate. In computer graphics
terms, this makes every shader a procedural texture. Your challenge is to find a way to
produce an interesting texture, even an entire virtual world, using only your skill at
assigning color to each pixel separately.

 We encourage you to check out the site. It’s easy to browse and play with the inter-
face, experimenting and exploring what the code can do.

12.3.2 User inputs

In addition to the vertex shader and the basic inputs provided by OpenGL, the
Shadertoy website provides a number of optional inputs that the fragment shader
can use in creating the output. These include the time since the shader started run-
ning, the resolution of the output window, and a set of customizable input channels
(figure 12.5).

 Most of the inputs are nonconfigurable, their value determined by the web appli-
cation alone. But each shader can have up to four channel inputs, the data for which is

Figure 12.4 A VR shader with the editing window up, rendering the Voxel Edges shader as a VR
environment
Licensed to Mark Watson <nordickan@gmail.com>

306 CHAPTER 12 Case study: a VR shader editor
user configurable. Shadertoy supports five kinds of channel inputs: keyboard, 2D tex-
tures, cubemap textures, audio, and video.

 The choice of channel inputs is made by clicking one of four buttons labeled
iChannel beneath the code editor window. Selecting one of these channel buttons,
the user is presented with a dialog (figure 12.6) from which they can select one of the

Figure 12.5 Shadertoy’s available shader inputs

Figure 12.6 Shadertoy.com’s channel selection screen
Licensed to Mark Watson <nordickan@gmail.com>

http://Shadertoy.com

307Making the jump from 2D to 3D
available channel inputs. The selected input becomes available to the running shader
immediately. The shader’s inputs will now include iChannel uniform values for the
chosen channel, populated with content data. This gives shaders access to video
inputs, backgrounds, textures, and even music.

12.3.3 Project planning

To create ShadertoyVR, we’re going to have to meet a series of key milestones. At the
end of the project, we’ll have a standalone app that reproduces the core functionality
of the Shadertoy website, in VR.

 The milestones are

1 Picking a subset of features to implement
2 Understanding how to port existing shaders designed for the website so that

they render properly in VR

3 Adapting the rendering mechanism from a 2D WebGL window to a VR
environment

4 Creating a functional editing interface inside the VR environment
5 Coping with the performance constraints of VR

The core of the challenge we face will be to implement a smooth, usable two-
dimensional user interface (the text-editing UI of the shader editor) in a virtual
environment that can execute the user’s shaders.

12.3.4 Picking our feature set

We begin by identifying the features of Shadertoy which we’ll be re-creating.

CRITICAL FEATURES

There are several features that are essential to the ShadertoyVR app’s function. These
critical path features include

■ Browsing preset shaders
■ Loading and running shaders
■ Saving new and modified shaders
■ Editing shaders and being able to see the result
■ Feedback on shader compilation success or failure
■ Supporting cubemap and 2D textures as channel inputs
■ Rendering the UI within the virtual environment

DESIRABLE FEATURES

Then we have the “nice-to-have” features. They’re not critical path because you can use
the application with or without them, but not having them can greatly diminish the
usability of the app. Both are specific to the editor window for the fragment shader:

■ Syntax highlighting
■ Line numbers
Licensed to Mark Watson <nordickan@gmail.com>

308 CHAPTER 12 Case study: a VR shader editor
If you’re accustomed to writing code in an editor that does syntax highlighting, plain
mono-colored text can make visually parsing a large block of code fairly tiresome.

 When compiling and running the shaders, if there’s an error it will be reported by
the OpenGL driver with the associated line number. Being able to look at the editor
and go directly to that line makes it much easier to debug the problem, and it sure
beats scrolling down through the editor counting lines manually.

 Fortunately, our choice of UI library ultimately makes adding both syntax high-
lighting and line numbers really simple. More on that in a moment.

DROPPED FEATURES

Shadertoy has additional features beyond these, which aren’t necessarily suitable for
adaptation to VR.

 For instance, the Shadertoy website lets you create audio shaders, where the out-
put is sound rather than a visual rendering. This is fairly cool and could perhaps even
lead to interesting experimentation with spatialized sound, but the integration of
audio into virtual reality is beyond the scope of this book.

 Additionally, the Shadertoy website lets you use five kinds of channel inputs. Cube-
maps and texture inputs are included in the application, as they’re on the critical path
(being used by many of the example shaders we’ve included as presets). But the
remaining three channel input types (audio, video, and keyboard) were dropped.

12.3.5 UI design

Implementing a functional UI within a VR environment can be a tricky business. As
we discussed in chapters 9 and 10, the less intrusive your UI, the more immersive
your application.

 In ShadertoyVR, our user will always be operating in one of three modes:

1 Editing their shader code
2 Working with (loading and saving) shader code and resources
3 Sitting back and looking around with a big grin as their virtual world unfolds

around them

So, for modes 1 and 2, we’re going to need an active UI. This calls for text panes, but-
tons, mouse interaction—the works. But for the third mode, we should heed the
advice from chapter 9 and reduce the UI as much as possible—or eliminate it com-
pletely. This means that our UI elements will be appearing and disappearing interac-
tively, as a function of the user’s activity.

COMFORTABLE UI SCALE

How big should the user interface be?
 Well, for one thing, the UI should be fairly simplistic and somewhat larger than

life. A UI in VR isn’t going to be nearly as legible as one on a conventional monitor,
because the “screen door” effect of visible pixels in the Rift degrades legibility signifi-
cantly. (Sorry, but it’s the truth, at least in 2015.) To ensure that the elements are read-
able, you should target a virtual display resolution that’s significantly smaller than the
Licensed to Mark Watson <nordickan@gmail.com>

309Making the jump from 2D to 3D
Rift resolution. For ShadertoyVR, all of the UI dialogs are designed around a resolu-
tion of 1280 × 720, and even this is somewhat extravagant. The reason we chose a res-
olution of that size is that we wanted the texture thumbnails for the channel inputs to
be discernible even when they’re all displayed on a single screen, as part of the selec-
tion dialog.

 Bear in mind that while the UI ends up being rendered offscreen at 1280 × 720,
when it’s finally rendered to the HMD display panel it’s not covering anywhere near
that many pixels, because it’s being scaled and distorted, as well as being shown on
each eye. For that reason we treat the UI design as we would if we were designing for
someone with poor eyesight, a sort of large-print book equivalent.1

 On the other hand, when writing a text editor, the larger the font the less text you
can see at once, which can hurt the utility of the application. So whereas for the fixed
elements like labels and buttons we’ve tended toward an almost cartoonish legibility,
for the editing window itself we’ve opted for “slightly larger than normal” while ensur-
ing that the user can customize this up or down to suit their particular desired balance
of comfort and utility.

UI BEHAVIOR

Another critical factor in presenting user interface elements is the behavior of the UI
window itself. It might be tempting to simply paste it in a fixed location relative to the
observer, commonly known as pinning. In a pinned UI, no matter how you move or
turn your head, the UI is always directly in front of you, so it can’t be missed. The Ocu-
lus Health and Safety Warning (HSW) is a great example of a “pinned” UI.

 Once you’re past the HSW, though, UI pinning should be strenuously avoided.
It’s disconcerting and even oppressive to have something stuck in your field of view
that doesn’t respond properly when you move your head. This can lead to simula-
tion sickness.

 You’ll note that even in conditions where it’s critical to have UI elements that must
be seen by the user, such as the HSW, the pinning is mitigated by making the element
translucent so that the scene can be perceived behind the UI element itself. That
helps retain head tracking and immersion as well.

 Another reason to avoid UI pinning is for legibility:

■ In a pinned UI, text at the edges of the field of view becomes difficult to read,
because the head can’t be turned to see it.

■ Sometimes you might need to have text elements positioned in regions of the
display that can hover on the edge of legibility due to pixels falling through the
resolution of the display. If a UI element is pinned to the user’s view, that text
always ends up on exactly the same pixels with every frame.

1 Alternatively, think of a program UI in the movies. Elements on the screen that are intended to be read by
the audience (instead of by the characters in the movie) tend to be almost comically oversized.
Licensed to Mark Watson <nordickan@gmail.com>

310 CHAPTER 12 Case study: a VR shader editor
Thankfully, the human visual system has a fantastic ability to re-create missing infor-
mation over time. In an unpinned UI, if you’re able to look at text and move your
head slightly, changing the pixels and subpixels to which the text is rendered, it
often becomes much easier to reconstruct the word shapes and comprehend what
you’re reading.2

 After all’s said and done, we’ve opted for a UI whose text field is 70 × 34, with over-
sized control widgets for clarity (figure 12.7). In the Rift, this feels like working on a
40-inch TV, positioned in space about a meter away.

12.3.6 Windowing and UI libraries

The next challenge we faced in this migration project was choosing a UI windowing
toolkit that could give us the windowing features we need: the ability to open and
close windows inside our OpenGL app, with text on clickable buttons, nifty draggable
scrollbars, and so on. That’s not a level of UI feature support that GLFW provides.
Obviously we didn’t want to write a new UI library from scratch,3 so we needed to use
something else that would support rendering the UI elements we needed, either to
supplement GLFW or replace it altogether.

2 The VR mode of the game Elite Dangerous is an example of this. For a spaceship-based game, it involves quite
a bit of reading through lines and lines of text, much of which would be much harder to read if it were pinned.

3 Well, maybe a little…

Figure 12.7 The code editor interface in action. The text window is 70 characters wide by 34 lines
tall, with channel inputs on the left and feedback settings on the right. Control buttons—Play, Load,
Save—are all slightly “cartoonishly” oversized for clarity.
Licensed to Mark Watson <nordickan@gmail.com>

311Making the jump from 2D to 3D
 We had a few main requirements for our choice of UI library:

■ We had to be able to create the kinds of UI elements we needed for our imple-
mentation. This mostly consisted of labels, images, and buttons, but we also
needed a text editor window.

■ We needed the UI library to be able to either natively target an OpenGL texture
as its output, or at the very least allow us to convert the UI surface into a 2D
image so that we could copy it to an OpenGL texture at will.

■ We needed to be able to take mouse and keyboard input we would receive in
the primary OpenGL output window (displaying a Rift distorted image) and
inject that directly into our UI elements.

■ The UI also needed to be responsive. It’s no good if putting on the headset
and interacting with the UI makes you feel like you’re working with a PC from
1985.4

There’s no lack of libraries for developing windowed UIs in an abstract fashion, and
we looked at quite a few to accomplish what we needed.

 The first point was pretty easy. It’s hard to find a UI library that won’t do labels, but-
tons, images, and text windows. If it doesn’t it’s not really a UI library.

 The second two points were tougher. Most UI libraries focus on the windowing
abstraction, on the assumption that the primary goal is to display a window or win-
dows within the conventional desktop metaphor. They assume that their output will
ultimately be some platform-native window, and that their input will be platform-
native events, typically translated into some library-specific event wrapper. In other
words, most UI libraries are intended to smooth out issues with developing cross-
platform applications, not eject UI from the desktop metaphor altogether.

FINDING THE RIGHT UI LIBRARY

For C/C++ applications, the most popular and mature UI frameworks are probably Qt
(qt-project.org), GTK+ (www.gtk.org), and wxWidgets (www.wxwidgets.org). We also
considered writing the application in Java, in which case we could have used Swing,
AWT, or SWT.

 There are, alas, very few libraries that specifically target OpenGL as a “native” out-
put option, though they do exist. libRocket (librocket.com) and CEGUI (cegui.org.uk)
are two. Each lets you create a UI, interact with that interface by injecting mouse and
keyboard input via well-documented functions, and render the resulting UI state to a
variety of backend renderers. Both support OpenGL and Direct3D as renderers.
libRocket aims to allow clients to create interfaces based on HTML/CSS. CEGUI allows
clients to either create interfaces programmatically or use a layout tool to write cus-
tom XML files that can be inflated into UI objects at runtime.

 Unfortunately, neither libRocket nor CEGUI has any mechanism for fetching input
events from the underlying platforms. Rather, both rely on the application using them

4 Unless that’s what your virtual world is, of course—in which case, that’s super cool. Can you port Thexder?
Licensed to Mark Watson <nordickan@gmail.com>

http://librocket.com
http://qt-project.org
http://www.gtk.org
http://www.wxwidgets.org
http://cegui.org.uk

312 CHAPTER 12 Case study: a VR shader editor
to intercept such events, translate them, and forward them on to the library via a set of
methods designed for this purpose. Nor do these libraries deal with window creation
or OpenGL context creation. Using either would have meant extending our GLFW
application framework in order to take the GLFW keyboard and mouse events we
receive, translate them into the corresponding library events, and call the library
injection functions. This isn’t necessarily bad, but it can be laborious.

 Ultimately we chose to use Qt for our UI library.

CHOOSING QT

Qt meets our requirements pretty well:

■ Required UI elements—Qt provides a vast array of UI components as well as pro-
grammatic and declarative mechanisms for designing UIs.

■ Offscreen rendering—Qt supports offscreen rendering of UIs through a couple of
mechanisms. For instance, you can convert any Qt QWidget (Qt’s abstraction for
both windows and controls) directly into a QImage, which can then be copied to
an OpenGL texture.

■ Input injection—QQuickRenderControl is specifically designed to allow it to
receive forwarded input events from another Qt component. In this case, we
use the OpenGL rendering window to receive events and forward them on to
the offscreen UI.

■ Performance—In our testing, Qt’s UI behaves smoothly and well, even when ren-
dered offscreen and overlaid into the Rift.

Aside from meeting our needs, Qt has a lot more going for it. It’s extremely mature,
widely used, well documented, and actively developed. It continues to add new fea-
tures while for the most part maintaining compatibility with previously written appli-
cations (not really a concern from our point of view, but hey). And we liked that it
supports CMake.

 One caveat: Using Qt means not using GLFW. Both Qt and GLFW want to handle
input from the native platform, so they can’t be used concurrently in a given applica-
tion. But this is more of a blessing than a curse, because it forces us to consider how
the Rift might interact with additional underlying platforms and cope with some of the
corresponding challenges.

12.4 Implementation
In this section, we’ll cover the issues we faced implementing the application, and
we’ll focus on the key points that were the most challenging. We’re not going to
walk through the app line by line as we do for other demos in this book; even
though we’ve scoped down the feature set, the hefty body of code of our Shader-
toyVR app is far too much to list and annotate here, and besides, most of the code is
specific to the framework we’re using. If you’d like to browse the source code to
ShadertoyVR, it’s all on our GitHub repository. For this section, code snippets will be
included where appropriate.
Licensed to Mark Watson <nordickan@gmail.com>

313Implementation

Plat
sp

v
acc

the
w
h

Equi
to in

in Ri
 As we were doing our research for this chapter, we built several versions of Shader-
toyVR, learning from each iteration as it evolved. We assumed that the toughest chal-
lenge would be the obvious one—running the shaders in VR, with distortion and
binocular viewpoints. Very early in development, we already had a prototype app that
could load a fragment shader and render it as a VR environment. We patted ourselves5

on the back and thought we were most of the way there. Unfortunately, it turned out
that replicating the basic rendering functionality of the original website was the easi-
est part of writing the application. The hardest part would be implementing the UI.

12.4.1 Supporting the Rift in Qt

Using Qt precluded the use of GLFW, so we needed to create a class that would allow us to
do our Rift rendering in Qt. Because of the way we built up to the full RiftApp in chap-
ters 3 through 5, it’s built on top of RiftGlfwApp and GlfwApp, and therefore inextricably
linked with GLFW. Rather than duplicate that kind of structure to create another class
that was mostly the same code but inextricably linked to Qt, we wanted to extract every-
thing that was “Rifty” from RiftApp and put it into a new class that was as free as possible
from the notion of the underlying library tasked with creating the rendering context.

ABSTRACTING RIFT RENDERING AWAY FROM THE GLFW LIBRARY

Our new class, RiftRenderingApp, shown in the following listing, contains much of
the same code that’s in RiftApp, without the specifics of window creation and position-
ing. It focuses on the abstraction of Rift initialization and distortion using OpenGL,
without delving into the implementation.

class RiftRenderingApp : public RiftManagerApp {
 ovrEyeType currentEye{ovrEye_Count};
 FramebufferWrapperPtr eyeFramebuffers[2];
 unsigned int frameCount{ 0 };

protected:
 ovrPosef eyePoses[2];
 ovrTexture eyeTextures[2];
 ovrVector3f eyeOffsets[2];
 glm::mat4 projections[2];
 bool eyePerFrameMode{false};
 ovrEyeType lastEyeRendered{ ovrEye_Count };

private:
 virtual void * getNativeWindow() = 0;

protected:
 virtual void initializeRiftRendering();
 virtual void drawRiftFrame() final;

5 Brad, really. Mr. Davis did all the heavy lifting on the code for ShadertoyVR.

Listing 12.1 Abstracting our Rift base class

Derives from
RiftManagerApp.

Data we need to
perform Rift
distortion and
head tracking.

Supports “single eye
per frame” rendering.

form-
ecific
pure

irtual
ess to
native
indow
andle.

valent
itGl()

ftApp.

Calls the Oculus SDK
distortion bookend functions
and iterates over each eye.
Licensed to Mark Watson <nordickan@gmail.com>

314 CHAPTER 12 Case study: a VR shader editor
 virtual void perEyeRender() {};
 virtual void perFrameRender() {};

public:
 RiftRenderingApp();
 virtual ~RiftRenderingApp();
};

The implementation of this class largely mirrors code from the RiftApp class. The dif-
ference is that although RiftApp relied on preexisting functionality in its GlfwApp
base class to accomplish its task, RiftRenderingApp will expect classes deriving from it
to know when to call the initialization and drawing functions.

 The new breakdown of functions deserves some explanation. In our earlier exam-
ples, it was sufficient to simply encapsulate all our rendering into a renderScene()
method. But in our Shadertoy application we have to do a bit of rendering work to
composite the most recent UI view with the mouse cursor and composite it into a sin-
gle texture. There’s no reason to do this twice per frame, because the results should
be the same. (In fact, we want to ensure that they are.) As we discovered while working
on this app, it’s valuable to have a method in which to update all of the resources
that you might want to use during the rendering of each eye. In our case this is the
UI texture, but it might easily be any sort of work that results in updating an offscreen
texture that will then be used within the rendering cycle. So we’ve broken up render-
Scene() into two functions:

■ perFrameRender()is called once per frame as the name suggests. We still want
any rendering work here to be accounted for in the Oculus timing mechanisms,
so it’s called after the SDK frame-begin method ovrHmd_BeginFrame(). The
default implementation does nothing, so if you have no work you need to do
once per frame you can ignore it.

■ perEyeRender()replaces the old renderScene() method directly and is called
inside the per-eye loop as in our previous examples.

We’ve added support for rendering only a single eye per frame, with the addition of
the eyePerFrameMode Boolean member, which acts as a toggle, and the lastEye-
Rendered member, which remembers the previously rendered eye, so that we alter-
nate between them on each frame. Our main drawing function ends up looking like
the following listing.

void RiftRenderingApp::drawRiftFrame() {
 ++frameCount;
 ovrHmd_BeginFrame(hmd, frameCount);
 MatrixStack & mv = Stacks::modelview();
 MatrixStack & pr = Stacks::projection();

 perFrameRender();
 ovrPosef fetchPoses[2];
 ovrHmd_GetEyePoses(hmd, frameCount,
 eyeOffsets, fetchPoses, nullptr);

Listing 12.2 drawRiftFrame(), our core rendering-engine loop

We’ve renamed renderScene()
to perEyeRender().

Calls tasks once
per frame.

Performs all work that
should only be done
once per frame.
Licensed to Mark Watson <nordickan@gmail.com>

315Implementation
 for (int i = 0; i < 2; ++i) {
 ovrEyeType eye = currentEye =
 hmd->EyeRenderOrder[i];
 if (eye == lastEyeRendered) {
 continue;
 }
 lastEyeRendered = eye;

 eyePoses[eye] = fetchPoses[eye];

 Stacks::withPush(pr, mv, [&] {
 pr.top() = projections[eye];
 glm::mat4 eyePose = ovr::toGlm(eyePoses[eye]);
 mv.preMultiply(glm::inverse(eyePose));

 eyeFramebuffers[eye]->Bind();
 perEyeRender();
 });

 if (eyePerFrameMode) {
 break;
 }
 }

 if (endFrameLock) {
 endFrameLock->lock();
 }
 ovrHmd_EndFrame(hmd, eyePoses, eyeTextures);
}

Rendering only a single eye per frame is effective for performance enhancement and
latency reduction, at the cost of smooth parallax VR. It can be very useful for debug-
ging VR shader scenes.

 Eye-per-frame mode isn’t suitable for every application. It’s particularly useful in
applications that don’t have a lot of motion relative to the viewer, or a lot of depth infor-
mation. For instance, an astronomy program that lets you look at the sky and zoom in
on regions of it would be an excellent candidate, because the scenery is essentially at an
infinite distance. You don’t (usually) get per-eye parallax with solar systems. The time-
warping provided by the SDK can compensate for any changes in head rotation between
the time a given eye was rendered and the time it was displayed.

 In this application, because the scene might or might not contain something that
equates to motion of the viewpoint, and might or might not have any depth, we pro-
vide the option for the user to toggle eye-per-frame mode on and off as appropriate
for both the shader and their comfort level. For a shader that has no depth and no
motion, there’s very little benefit to rendering both eyes every frame, which allows the
user to increase the amount of work their shader can do per frame.

 But RiftRenderingApp is just a framework for interacting with the SDK with place-
holders for rendering. It doesn’t know how to deal with input or output, or how to
create a window or OpenGL context. Because we’re working with Qt in this example,
let’s examine how a class can integrate the Qt window with our framework class to cre-
ate something more useful.

Skips if we’re in
eye-per-frame
mode.

Tracks the most recently
rendered eye.

Updates current eye pose.

If we’re in eye-
per-frame mode,
we’re done.
Licensed to Mark Watson <nordickan@gmail.com>

316 CHAPTER 12 Case study: a VR shader editor

Qt’s

w

BINDING THE RIFT CODE TO A QT IMPLEMENTATION

Qt contains a variety of ways to represent some sort of onscreen window. Even for
OpenGL windows, at least three classes are available: QGLWidget, QOpenGLWindow, and
QWindow. Although the classes with GL directly in their name look inviting, they’re
tougher to work with for our purposes than QWindow.

 Both QGLWidget and QOpenGLWindow are convenience classes, which are designed
to take much of the burden of dealing with OpenGL away from the user. But they do
so in ways that interfere with the way we want to interact with the Oculus SDK. It’s
possible to use a QGLWidget to act as a Rift output window, but only by overriding
some of the event handler and manually disabling the buffer swapping. QOpenGL-
Window is supposed to be a more modern replacement for QGLWidget, but it has
even greater restrictions on how you can interact with GL, such as the inability to dis-
able buffer swapping.

 QWindow is the best choice for integrating Rift functionality with Qt, so that’s what
we’ve used. QWindow has no events for rendering to the window, instead leaving it up
to the developer to directly control when and how anything is rendered to the window
surface. Given that the Oculus SDK wants to control buffer swapping, and we want to
do our rendering in a distinct thread, this is ideal for our example. Our resulting class
looks like the following listing.

class QRiftWindow : public QWindow,
 protected RiftRenderingApp {
 Q_OBJECT

 QOpenGLContext * m_context;

 bool shuttingDown { false };
 LambdaThread renderThread;
 TaskQueueWrapper tasks;

public:
 QRiftWindow();
 virtual ~QRiftWindow();

 void start();
 void stop();
 void queueRenderThreadTask(Lambda task);

 void * getNativeWindow() {
 return (void*)winId();
 }

private:
 virtual void renderLoop();

protected:
 virtual void setup();
};

Listing 12.3 QRiftWindow, our QWindow GUI class

Derives from both QWindow
and RiftRenderingApp

Allows the class to use the Qt
signals and slots functionalityOpenGL

context
rapper

class

Methods related
to creating a
rendering
thread

Provides access to the native
window handle through the
winId() method

Rendering loop method

Initialization method for setup
Licensed to Mark Watson <nordickan@gmail.com>

317Implementation
One thing that’s of particular note in listing 12.3 is all the code related to dealing with
threads. For this you have to understand a bit about how Qt works. Every Qt-based
application (that has some sort of UI) has a single object of type QGuiApplication or
some type derived from it. This class doesn’t represent any onscreen UI, but it’s
responsible for dealing with all the input events from the underlying OS as well as
passing messages between Qt components. All of this happens on the thread on which
the QGuiApplication instance was created and executed. Qt gets very cranky if you try
to use objects on one thread from another without first calling a special function to
move “ownership” of the object to the target thread.

 To ensure the best rendering performance independent of what might occur on
the main thread, our rendering loop needs to be on its own thread. LambdaThread
encapsulates our rendering thread by calling renderLoop() on our instance. The
start() and stop() methods allow the application code to control the lifetime of
that thread.

 When we write a new class derived from QRiftWindow and handle events such as a
keyboard or mouse event, those events will be handled by the main thread, the one in
which QGuiApplication is running its event-processing loop. In the example of
changing the rendering resolution, we need to ensure that this happens between
frames. Thus we have a container tasks for actions to be executed on the rendering
thread, and a method queueRenderThreadTask for putting actions on that task queue
from other threads (typically the main event-handling thread).

 This is perhaps more complex than it needs to be; choosing a simple or advanced
threading model is a function of the performance demands of your software. It’s not
strictly required that you perform rendering on its own thread. You could do so directly
on the main thread in response to a given timer event, but this has potential down-
sides because other events being processed could potentially block your renders, caus-
ing you to miss your next frame, resulting in twitches and jumps within the headset.
The last thing you want is for a particularly complicated software effect—something
subtle, like a big explosion—to stagger your rendering rate because your renders and
events are competing for the same thread.

 Bear in mind that because you can’t run a tight event loop on the main thread (the
Qt application is already doing that) you have to deal with a different kind of com-
plexity to ensure that you receive draw events frequently enough to meet your
required frame rate while at the same time ensuring you don’t starve the ordinary
event processing. This is particularly true when using the Oculus SDK because the end
frame call will wind up blocking until the swap buffer call has been made.

 Now that you’ve seen the basic layout of the class, let’s look at the most important
parts of the implementation: the creation of the window and the render loop.

CREATING THE RIFT WINDOW

The creation of the window and its OpenGL context, then attaching the window to the
Rift can all happen in the constructor, as you see in the next listing.

Licensed to Mark Watson <nordickan@gmail.com>

318 CHAPTER 12 Case study: a VR shader editor

Sets
thre
will r

rende
(D
st
t

Ma
w

S
size

w

res
of t
QRiftWindow::QRiftWindow() {
 setSurfaceType(QSurface::OpenGLSurface);

 QSurfaceFormat format;
 format.setDepthBufferSize(16);
 format.setStencilBufferSize(8);
 format.setVersion(3, 3);
 format.setProfile(
 QSurfaceFormat::OpenGLContextProfile::CoreProfile);
 setFormat(format);

 m_context = new QOpenGLContext;
 m_context->setFormat(format);
 m_context->create();

 renderThread.setLambda([&] { renderLoop(); });

 bool directHmdMode = false;
 ON_WINDOWS([&] {
 directHmdMode = (0 ==
 (ovrHmdCap_ExtendDesktop & hmd->HmdCaps));
 });

 setFlags(Qt::FramelessWindowHint);

 show();

 if (directHmdMode) {
 QRect geometry = getSecondaryScreenGeometry(
 ovr::toGlm(hmd->Resolution));
 setFramePosition(geometry.topLeft());
 } else {
 setFramePosition(
 QPoint(hmd->WindowsPos.x, hmd->WindowsPos.y));
 }
 resize(hmd->Resolution.w, hmd->Resolution.h);

 if (directHmdMode) {
 void * nativeWindowHandle = (void*)(size_t)winId();
 if (nullptr != nativeWindowHandle) {
 ovrHmd_AttachToWindow(hmd, nativeWindowHandle,
 nullptr, nullptr);
 }
 }
}

Most of this code is boilerplate Rift setup (just like the GLFW version) or boilerplate
Qt prep. The getSecondaryScreenGeometry() function is a helper we’ve created to
iterate over all the windows. It attempts to find a good nonprimary window on which
to place the output (if we’re in direct mode) and falls back on the primary monitor if

Listing 12.4 QRiftWindow constructor

Tells Qt we’re going to use
OpenGL for rendering.

Sets up the OpenGL
format including
version and profile.

Creates the
OpenGL context. up the

ad that
un the
r loop.
oesn’t

art the
hread.)

Detects whether the
Rift is in direct mode.

Removes window
borders.

kes the
indow

visible.
If we’re in direct mode, moves
the window to a secondary
monitor (if possible).

If we’re not in direct
mode, puts the window
on the monitor
corresponding to the Rift.ets the

 of the
indow
to the

olution
he Rift

Calls the SDK function to
attach the Rift display to
the window.
Licensed to Mark Watson <nordickan@gmail.com>

319Implementation

Called
the
thre

contr
lif

rend

In

Doe
work

mu
done o

rend
t

bet
fr
no such window exists. As described in chapter 4, this is mostly handy for develop-
ment so that the Rift window doesn’t obscure your development environment.

 Although in earlier applications the position of the onscreen window didn’t really
matter, in ShadertoyVR it definitely does. Eventually we’ll be taking mouse events that
are received by the onscreen window and forwarding them to our offscreen UI. That’s
why it’s important that the entire onscreen window be physically on the screen. If the
window is half-on and half-off the screen, you’ll be able to see the whole thing in
the Rift but you won’t be able to use any of the virtual UI elements that correspond to
half of the physical window that’s offscreen, because your mouse can’t get to those
parts of the physical window.

 One last item of note is the use of the QWindow::winId() member. The Oculus
SDK needs native window handles for Direct mode to function, and most windowing
abstraction libraries will have some kind of function that lets you get at the native
identifier. With GLFW we had to use a special header and special preprocessor defines
to enable it, but with Qt, it’s a basic member on QWindow, which is handy.

 There’s not else much particularly new or interesting here. Everything else is
either well covered in the Qt documentation or is something we’ve covered in chap-
ters 4 or 5.

THE RENDERING LOOP

This brings us to the rendering loop and the functions used to control the rendering
thread, shown in the following listing. The loop itself looks very similar to the run()
method on our GlfwApp class.

void QRiftWindow::start() {
 m_context->doneCurrent();
 m_context->moveToThread(&renderThread);
 renderThread.start();
 renderThread.setPriority(QThread::HighestPriority);
}

void QRiftWindow::renderLoop() {
 m_context->makeCurrent(this);
 setup();
 while (!shuttingDown) {
 if (QCoreApplication::hasPendingEvents())
 QCoreApplication::processEvents();
 tasks.drainTaskQueue();
 m_context->makeCurrent(this);
 drawRiftFrame();
 }
 m_context->doneCurrent();
 m_context->moveToThread(QApplication::instance()->thread());
}

Listing 12.5 ShadertoyVR’s main rendering loop

 from
 main
ad to
ol the
etime
of the
ering
loop

Moves our OpenGL context
to the rendering thread, as
mandated by Qt

Starts the thread
and sets its priority

Sets the OpenGL context
current for this thread

itializes
the Rift Processes events that have

occurred on this thread

s any
 that
st be
n the
ering

hread
ween
ames

Calls our RiftRenderingApp parent
class’s frame rendering method
Licensed to Mark Watson <nordickan@gmail.com>

320 CHAPTER 12 Case study: a VR shader editor

ren
void QRiftWindow::stop() {
 if (!shuttingDown) {
 shuttingDown = true;
 renderThread.wait();
 }
}

12.4.2 Offscreen rendering and input processing

The two biggest challenges we face in our design are offscreen rendering and input
processing:

■ Offscreen rendering is essential in our composited design. The ability to create off-
screen UI elements that respond to user input and can be efficiently rendered
within the VR environment is a key part of building a quality application.

■ Input processing is critical to any app that interacts with the user. ShadertoyVR is no
exception. We need to guarantee that mouse and keyboard events are pro-
cessed smoothly, without UI delay, to ensure an ongoing sense of immersion.

Our approach is one possible implementation for one framework, so we’re not going
to dive into the guts in too much detail. The fine points are closely tied to the specifics
of Qt, as opposed to the Rift.

 That said, we do want to cover a few more general concepts when dealing with ren-
dering UI elements offscreen for use in a VR application.

RENDER UI IN A SEPARATE THREAD

We’ve probably all had to deal from time to time with an unresponsive UI. It can be
frustrating. But in VR it can be more than frustrating; it can ruin the entire experi-
ence. As you’ll recall from chapters 6 and 10, if the virtual environment suddenly
freezes because the UI hit some kind of snag, it can be disconcerting or even nau-
sea inducing.

 If your UI ends up suffering from lag, you need to ensure that that lag remains
confined to the UI within the VR scene, not the scene as a whole. So do all your UI ren-
dering in a thread that’s distinct from the VR rendering.

 In our code, we’ve already punted the VR rendering to its own thread, so it’s easy
for us to follow this advice by keeping all the UI rendering work on the main thread.
This is straightforward because all of the Qt events to refresh the UI already arrive on
the main thread.

RENDER UI DIRECTLY TO YOUR RENDERING API
Our initial approach to offscreen UI was to render the UI to a buffer with Qt and then
convert that to an image and copy the image down to the GPU. The plan was to use
Qt’s built-in ability to render any window to a QImage or QPixmap, which are Qt’s
abstractions for various kinds of 2D images. Then for each image we’d convert it into
an OpenGL texture.

Called from the main thread
to control the lifetime of the
rendering loopEnsures that

stop() is
idempotent

Blocks
for the

derloop
to exit
Licensed to Mark Watson <nordickan@gmail.com>

321Dealing with performance issues
 We discovered that this approach was barely functional. It meant that we were con-
suming a hefty fraction of the CPU-to-GPU bandwidth moving image data over the bus
every frame. This was wasteful, but worse, it introduced stutters in the VR environ-
ment, because there’s no way to schedule or prioritize the work of independent
OpenGL contexts running on multiple threads.

 We saw significantly better results with QQuickRenderControl. Based on its perfor-
mance, we believe the rendering mechanism underlying QQuickRenderControl is
either using OpenGL calls directly to create the UI elements or is extremely efficient
about transferring only the dirty elements of a UI when a render occurs. The end
result is that Qt provides an OpenGL texture that we can use directly, rather than a
large 2D bitmap we have to inefficiently copy to the GPU.

 The upshot is that we’re using a shared OpenGL context (see the accompanying
sidebar).

12.5 Dealing with performance issues
As we discussed in chapter 6, the performance of your application is critical for a
good experience, and our Shadertoy application is no exception. Furthermore,
because of the computational intensity of some of the shaders, there’s little doubt
that we’ll be forced to use techniques from both chapters 6 and 10 to keep the app
running smoothly.

 Remember, the goal is always to hit or exceed your device’s target framerates.
On the dev kit models of the Rift, that’s 60 Hz and 75 Hz for the DK1 and DK2,
respectively.

Shared OpenGL contexts
In OpenGL a shared context is one that’s created with a previous context listed as a
sibling. The two contexts each have their own state and their own default framebuffer,
but they can share many of the other data that OpenGL processes, in particular tex-
tures. A texture created on one context can be rendered in the other. But it’s still
up to the developer of an application to ensure that objects are properly synchro-
nized so that, for instance, one thread isn’t writing to a texture while another thread
is reading it.

OpenGL provides a variety of methods to enable developers to do this kind of syn-
chronization, such as the ability to force commands to complete, or to set up a syn-
chronization object that’s signaled once all the commands executed before its
creation are complete. We use both techniques in ShadertoyVR.

Some developers feel that using a shared context risks instability and extra code, but
most modern OpenGL libraries (GLFW and Qt included) make creating a shared con-
text no more difficult than creating a normal one. As for stability, with modern multi-
threaded rendering drivers, creating shared contexts within your application isn’t
much different from having multiple OpenGL applications running at once, which is
no stability risk at all.
Licensed to Mark Watson <nordickan@gmail.com>

322 CHAPTER 12 Case study: a VR shader editor
FINDING YOUR TARGET AND REACTING WHEN YOU’RE NOT HITTING IT
In an ideal world you’d always hit your desired frame rate, and if you saw that it was
dropping or was about to drop you’d take action. Unfortunately, even with the tools in
the Oculus SDK it can be tricky to determine exactly when you need to respond to per-
formance issues.

 You’ll be able to calculate the frame rate you’re getting within your application,
but because the SDK doesn’t report at what refresh rate the Rift is currently being run,
there’s no easy way of knowing if the frame rate you’re getting is the one you need.

 It’s not all gloom. In practice, there are only a few rates that it’s likely to be, deter-
mined by the hardware capabilities of the Rift. Additionally, if you detect the user is
running in Direct HMD mode, you know that they actually can’t modify the refresh
rate, so you need only a hardcoded mapping of the Rift model to native refresh rate.

 Once you know your target frame rate, there comes the question of what to do
when you find you’re not hitting it. If, conceptually, you have only one dial then it’s
obvious what dial to turn. But if there are multiple things you can change to increase
or decrease the rendering load, it’s harder to determine what to do when your frame
rate drops. For our application we’ve sidestepped the issue by exposing both the cur-
rent performance (the actual frame rate) and the means for changing it directly to
our users.

 This isn’t mere cowardice or laziness.6 Because we’re creating what amounts to a
development tool for which the workload per frame can be literally anything, it’s criti-
cal that we leave it up to the user to determine which of the available performance-
tuning options provide the best experience for the shader they’re developing.

EYE-PER-FRAME MODE AND TIMEWARP

If we see that the renderer isn’t hitting the required performance (typically visible as
jumping in the edges of objects as you turn your head), then one way to reduce the
load is to only render a single eye on each frame, alternating between eyes. This
instantly halves the overall rendering load. You can see in our previous code samples
that we’ve built in support for rendering a single eye per frame.

 As mentioned before, how effective and comfortable this is depends largely on the
content you’re rendering. For images that involve little or no binocular depth and
that include limited angular motion, the technique works very well. If your shader
gives the sensation of hovering over a mountain range in a hot air balloon, the visible
difference between rendering one eye per frame and two eyes per frame is negligible.
But if your shader immerses the viewer in the illusion of skiing down a forested moun-
tain slope with trees whizzing past, then the shortcomings of eye-per-frame mode will
be more than apparent.

 Eye-per-frame mode can be particularly effective when used with the Rift’s time-
warp feature, which you saw in chapter 6. Timewarp will adjust positions of the textures

6 OK, not just mere cowardice or laziness.
Licensed to Mark Watson <nordickan@gmail.com>

323Dealing with performance issues
of each eye at render-time to keep their placement consistent with the user’s head
motion, even if what’s being rendered to that eye is from a previous frame.

 Because the rendered scene can vary so much, as can a particular user’s comfort
level with a given amount of depth cue disparity, the option to turn eye-per-frame
mode on and off is left as an exercise for the user.

DYNAMIC FRAMEBUFFER SCALING

Dynamic framebuffer scaling, first explored in chapter 6, is superbly applicable to frame
rate control in ShadertoyVR. We make quite a small number of draw calls per frame,
with all of the complexity being in the fragment shader. The number of times the frag-
ment shader is run per frame is directly proportional to the number of pixels being
rendered, so reducing the offscreen framebuffer size almost always translates into a
proportional increase in rendering performance.

 In ShadertoyVR we’ve made the option to change the offscreen framebuffer size
available to our users as keyboard shortcuts that will increase or decrease the per-
centage of the offscreen framebuffer used for rendering to any value between 1%
and 100%.

 That said, giving the user the ability to scale down the resolution of the rendered
shader until it’s a blurry mess presents us with a new issue.

SCALING TEXTURE IN THE VR SCENE, NOT THE UI
As we drive down the number of pixels we render, the quality of the scene goes down
as well, blurring the image. But whereas reducing the sharpness of the VR scene ren-
dered by the user’s fragment shader is permissible, reducing the quality of the UI is
not. Degrading the legibility of text is pretty much unacceptable.

 The solution is to scale the VR scene without scaling the UI. In chapter 6, you
learned how to render the entire scene to a subsection of the predistortion offscreen
framebuffer and then tell the SDK to use that subsection rather than the whole tex-
ture. To apply the technique here, we need to tweak that process slightly. We still ren-
der the VR scene to a smaller area, but this time we do so to a second offscreen
framebuffer.

 Our renderScene() method is shown in the following listing.

 void renderScene() {
 Context::Clear().DepthBuffer().ColorBuffer();

 shaderFramebuffer->Bound([&] {
 oria::viewport(renderSize());
 renderSkybox();
 });
 oria::viewport(textureSize());

Listing 12.6 Compositing the VR scene and the UI

Renders the VR scene to
an offscreen buffer

Ensures we target the full
SDK-specified offscreen
texture size
Licensed to Mark Watson <nordickan@gmail.com>

324 CHAPTER 12 Case study: a VR shader editor
 Stacks::withIdentity([&] {
 shaderFramebuffer->color.Bind(Texture::Target::_2D);
 oria::renderGeometry(plane, planeProgram, LambdaList({ [&] {
 Uniform<vec2>(*planeProgram,
 "UvMultiplier").Set(vec2(texRes));
 } }));
 });

 if (uiVisible) {
 GLuint currentUiTexture = ...
 if (currentUiTexture) {
 MatrixStack & mv = Stacks::modelview();
 mv.withPush([&] {
 mv.translate(vec3(0, 0, -1));
 Texture::Active(0);
 glBindTexture(GL_TEXTURE_2D, currentUiTexture);
 oria::renderGeometry(uiShape, uiProgram);
 });
 }
 }
 ...
 }

Here we see the use of an additional offscreen framebuffer shaderFramebuffer, plus
the use of the renderSize() and textureSize() methods. textureSize() reports the
size of the texture that the SDK recommends for submitting rendered images to be
distorted. renderSize() reports the same size after scaling by the texRes value.

 Once we’ve rendered the VR scene to shaderFramebuffer, we grab the resulting
texture and re-render it to the offscreen framebuffer where we’re constructing the
texture that will eventually be sent to the SDK. This original framebuffer isn’t shown
here but is implicitly set by the frame-drawing method that calls renderScene() once
for each eye. The only caveat here is that you have to ensure that this framebuffer is
preserved before shaderFramebuffer is bound and restored after it’s unbound. In
our example this is done implicitly by the FramebufferWrapper::Bound() method
called on shaderFramebuffer.

 Having rendered the VR shader at a potentially lower-than-full resolution, we now
check if the UI is active and we have a valid UI texture, and if so draw the UI elements
on top of the scene. The UI remains as sharp and crisp as if the GPU weren’t over-
loaded. The cost of all these additional compositing and rendering operations is triv-
ial compared to the cost of the intensive user shader.

 This concludes our analysis of the design and implementation of ShadertoyVR. We
hope you’ve found it educational and inspirational. Now let’s shift gears and look at
how the GPU can spin simple code into awesome worlds.

12.6 Building virtual worlds on the GPU
We’ve alluded to the virtual worlds that people have created on Shadertoy.com, and
the VR environments we plan to wrap around our user in with ShadertoyVR. But where
do these immersive 3D scenes come from? In this section we’re going to set the Rift

Re-renders
the VR
scene to
the full
offscreen
texture
size

Renders the UI

Renders the UI
to a floating
rectangle one
meter away
from the user
Licensed to Mark Watson <nordickan@gmail.com>

http://Shadertoy.com

325Building virtual worlds on the GPU
aside for a bit and discuss one of the oldest techniques in computer graphics, which
remains one of the most exciting and current techniques today: raycasting.

12.6.1 Raycasting: building 3D scenes one pixel at a time

How can a complete 3D scene be created by a shader program, whose only output is the
color of a given pixel? Well, every image is made of pixels. We only need to figure out
what color a pixel would be, if the pixel were part of an image of a 3D scene. Compute
that color and render it and voilà —you’ve got a 3D scene (or at least a picture of one).

 To achieve this colorful effect, most of the 3D scene shaders on Shadertoy.com use a
technique called raycasting (see the accompanying sidebar). In essence, the idea of ray-
casting is that at each pixel of the image, you’re going to find a mathematical ray that
starts at the camera eye and passes through the pixel. You’ll then cast the ray forward,
into the scene, and whatever it hits determines the color of the pixel (figure 12.8).

Figure 12.8 Raycasting in action. After choosing a ray origin (the camera eye) and computing the
direction from the origin through the center of each pixel, we choose the color of the pixel based
on the object in the scene hit by the ray. (Image © Neil Dodgson, University of Cambridge, England.
Used with permission.)
Licensed to Mark Watson <nordickan@gmail.com>

http://Shadertoy.com

326 CHAPTER 12 Case study: a VR shader editor
DESCRIBING THE RAYCAST WORLD

Techniques for describing virtual scenes diverge radically, and we could easily devote
an entire book to the subject. All such techniques, however, can be summarized as
“figure out what the ray hits.”

 Broadly speaking, they usually break down into two types of techniques:

■ Ray tracing—The shiny, reflective scenes where light and shadows try to be photo-
realistic; scenes are often limited by the number of elements shown.

■ Ray marching—The procedural or voxel worlds, often seemingly infinite, some-
times smooth, sometimes blocky; not so big on the reflective surfaces.

You’ll find examples of both at Shadertoy.com. If you’d like to learn more, check out
the following sidebar and the relevant reference sources in appendix C.

These algorithms depend on only two key inputs:

■ The origin of the ray
■ The direction of the ray

Raycasting, ray tracing, and ray marching
Raycasting is the general term for the technique where you start with a ray origin and
direction, determine what object or objects in a scene the ray hits, and compute an
output color from the intersection. How this determination is performed and how you
define the scene objects are details of implementation, which vary based on the spe-
cific technique.

Ray tracing and ray marching are specific ways of implementing raycasting. Both are
sometimes used in conjunction with algorithms that recursively generate more rays,
such as for computing shadows, reflections, and transparencies.

Ray tracing is the term most commonly used for a broad class of implementations
that represent rays as abstract mathematical models of partially infinite lines; math-
ematical expressions of primitives, written in computer code, are used to test for ray/
primitive intersection. For instance, to test if a ray hits a sphere, you’d check (a) if
the line of the ray passes within one radius of the center of the sphere, and (b) if it
does so in the direction the ray has been fired. Ray tracing methods can be combined
with other techniques to create extremely complicated models, such as Constructive
Solid Geometry—a method that allows shapes to be added to or subtracted from
each other.

Ray marching, on the other hand, uses an iterative approach: the ray is “marched”
along its direction of travel until it hits something. This has the advantage that there’s
less demand for a purely mathematical model and more for discrete data structures.
Ray marching is very well suited to rendering implicit surfaces, and many of the Shad-
ertoy shaders are in this category. Most voxel renderers, such as Minecraft, use ray
marching to quickly find which block is the first block per pixel hit by a ray. Ray marching
tends to be less computationally expensive, but it can also produce less realistic out-
put, depending on the fine-tuning of the size of each step of the march.
Licensed to Mark Watson <nordickan@gmail.com>

http://Shadertoy.com

327Building virtual worlds on the GPU

Co

coord
into

[

X
exte

the ri
the c

ex
abo

c

The origin of the ray is straightforward: it’s the current position in 3D space of the
camera, from which you’ll render your scene. On Shadertoy.com, this is typically hard-
coded in the fragment shader, for speed and clarity.

 Computing the ray direction takes slightly more math, but not too much more.

12.6.2 Finding the ray direction in 2D

In a shader running on Shadertoy.com, locked into a single WebGL window, comput-
ing the ray origin and direction can be somewhat involved.

 As part of the input parameters to the fragment shader, the shader will know the
current pixel’s 2D screen position, which is available in GLSL as the automatic variable
gl_FragCoord.xy. In combination with the resolution of the window, you can com-
pute the relative location of the pixel within the window; by combining the pixel’s
position with your knowledge of the chosen position of the camera eye and a fixed dis-
tance from the camera to the pixel plane, you can compute the origin and direction
of each pixel’s ray. Code that achieves this result can be found in the vast majority of
the shaders on the Shadertoy site that create 3D scenes of some kind. Code in Shader-
toy shaders that computes the view direction typically looks something like the follow-
ing listing.

vec2 q = gl_FragCoord.xy / iResolution.xy;
vec2 p = -1.0 + 2.0 * q;
p.x *= iResolution.x / iResolution.y;

const vec3 cameraOrigin = vec3(0, 1, 5);
const vec3 lookAt = vec3(0, 0, 0);
const vec3 cameraUp = vec3(0, 1, 0);

vec3 dir = normalize(lookAt - cameraOrigin);
vec3 xAxis = normalize(cross(cameraUp, dir));
vec3 yAxis = normalize(cross(dir, xAxis));
vec3 rayDirection =
 normalize(p.x * xAxis + p.y * yAxis + dir);

The key outputs here are two variables: cameraOrigin, which represents our ray ori-
gin, and rayDirection, which represents the vector from the eye toward the pixel.

 In this snippet, lookAt represents the target we’re looking at and cameraUp is
the up direction. This code starts by finding the relative position of the pixel on the
screen. We start with the location of the output fragment (in pixel coordinates) stored
in gl_FragCoord.xy and the resolution of the window stored in iResolution.xy.
Dividing one by the other gives us q, which is the relative position of the pixel on the

Listing 12.7 (GLSL) Finding ray direction from camera position and a point to look at

Finds the coordinates of the pixel
relative to the lower-left corner of
the viewport

nverts
the

inates
range
-1, 1]

Corrects coordinates for
window aspect ratio

Chooses ray origin (eye position)
and center of camera focus

View axis: the line from the camera
to [0, 0] at the center of the screen

 axis:
nds to
ght of
amera

Y axis:
tends
ve the
amera

Finds the ray direction
for this specific pixel
Licensed to Mark Watson <nordickan@gmail.com>

http://Shadertoy.com
http://Shadertoy.com

328 CHAPTER 12 Case study: a VR shader editor
screen, with (0, 0) in the lower-left corner and (1, 1) in the upper-right. This is then
converted to p, using multiplication and addition to move the origin of the scene to the
center of the rendering window. The upper-right is still (1, 1), but the lower-left is now
(-1, -1), and (0, 0) is the exact center of the window. Finally, the X coordinate is modi-
fied to account for the aspect ratio of the screen.

 The next step is to build the three columns of a basis matrix that’ll represent a
camera transformation. This transform is sometimes called the “world to camera”
transform, or more colloquially, the “lookat” matrix. (Because it’s what you tell the
camera to…never mind, you get it.) A lookat matrix can be used to transform points
in geometry so that they’re in the correct location relative to your camera position
and orientation; in other words, points move from world coordinates to camera coor-
dinates. Lookat functions take three inputs: an eye position, a target or center, and a
vector representing the up direction. The calculations of dir, xAxis, and yAxis pro-
duce three 3-dimensional vectors, which together make up the nine elements of a 3 × 3
orientation matrix.

 We conclude by applying the camera orientation matrix to the 3D vector that rep-
resents this pixel. Here we take p, a 2D vector, and turn it into a 3D vector by append-
ing the constant 1, the distance from the eye to the viewing place. So at the center of
the screen, the resulting input vector is (0, 0, 1), on the positive Z axis.

 The last line of listing 12.7 might not look like a matrix multiplication at first, but
that’s what it is: the product of the matrix whose columns are the three computed vec-
tors, with the vector form of position p,

[xAxis.x yAxis.x dir.x] [p.x] [p.x * xAxis.x + p.y * yAxis.x + dir.x]
[xAxis.y yAxis.y dir.y] * [p.y] = [p.x * xAxis.y + p.y * yAxis.y + dir.y]
[xAxis.z yAxis.y dir.y] [1] [p.x * xAxis.z + p.y * yAxis.z + dir.z]

…which simplifies to the GLSL expression:

rayDirection = normalize(p.x * xAxis + p.y * yAxis + dir)

This is the vector from the eye towards the pixel in world space.

12.6.3 Finding the ray direction in VR

The classic ray direction calculations demonstrated in listing 12.7 required baking
in a fixed field of view and then computing the ray direction based on the position
of the pixel on the screen. By contrast, when using the Rift, the field of view can
change depending on the particular model of the headset you’re using, and the
projection matrix is typically asymmetrical, so we can’t hardcode those constants
into the GLSL code. Plus, of course, the user moves their head. All of this means that
the simple hardcoded mathematics employed by the classic Shadertoy.com shaders
must be adjusted.

 This is where work we’ve already done for the Rift can be reused, leveraging a sim-
ple technique: the skybox.
Licensed to Mark Watson <nordickan@gmail.com>

http://Shadertoy.com

329Building virtual worlds on the GPU

dire
ou
 The ray direction is actually the same direction value we’d use in creating a skybox
effect. For a skybox, you typically draw a unit cube around the camera, with the center
of the cube exactly at the viewpoint. The orientation of the viewpoint is taken from
the camera orientation in the application, composed with the user’s head pose (orien-
tation only). The vertex shader then passes the vertices of the cube as inputs to the
fragment shader. When the vertices are interpolated, each instance of the fragment
shader receives as input a vector representing the direction from the camera to the
pixel being rendered.

 In a typical skybox, the interpolated direction vector is used as the lookup for
fetching a color from a cubemap texture, but it also works perfectly as the ray direc-
tion we need for our shaders—so perfectly, in fact, that we’re going to modify the
existing set of standard inputs by adding two more fragment shader input variables,
iPos and iDir, shown in the following listing. Then we’re going to pass in the values
of iPos and iDir from outside the fragment shader.

uniform vec3 iPos;
in vec3 iDir;

The value of iPos is easily chosen: it’s the user’s head pose position for the current
eye, as reported by the Rift. We’ll update this uniform for each eye of every frame.

 The value of iDir is slightly more subtle, but it’s deliciously elegant. We want to
compute a ray direction from the origin of a box centered on the user, to every pixel
on the Rift’s screen, rotated by the user’s head orientation. The easiest way to do that
is to let OpenGL do it for us! When the vertex shader outputs are interpolated across
the polygons of our scene geometry—a skybox cube—the interpolated values of iDir
will smoothly interpolate the position of every pixel in the view. The next listing
shows our ShadertoyVR vertex shader.

uniform mat4 Projection = mat4(1);
uniform mat4 ModelView = mat4(1);

layout(location = 0) in vec3 Position;

out vec3 iDir;

void main() {
 iDir = Position;
 gl_Position = Projection
 * ModelView * vec4(Position, 1);
}

Listing 12.8 (GLSL) New standard inputs added to the code of the ShadertoyVR shaders

Listing 12.9 (GLSL) default.vs, the ShadertoyVR vertex shader

The per-eye head position,
read directly from the Rift

The vertex position in
the vertex shader.

The classic orientation
and camera matrices.

Vertex coordinates of our geometry
(the corners of a unit cube).

Ray
ction
tput.

iDir will interpolate every
pixel of the cube’s faces.

Outputs the 3D perspective-
transformed position of the vertex.
Licensed to Mark Watson <nordickan@gmail.com>

330 CHAPTER 12 Case study: a VR shader editor
The goal of this vertex shader is to generate ray directions for consumption by the cur-
rent fragment shader. Just as in a classic 2D raycaster, where you’d interpolate the ray
direction across all of the pixels of a plane (check out figure 12.8 again), here too
we’ll interpolate our ray direction. But where in 2D we interpolated across only a sin-
gle rectangle, in 3D we’ll render a cube centered on the origin; in doing so, the out-
puts of our vertex shader will be interpolated across every pixel of the faces of a cube. By
orienting that cube as a function of head pose, we can ensure that no matter where you
look, you’ll always see a sweep of ray directions radiating straight out from your point of
view. And the best part is we don’t have to do any of the interpolation manually. Just like
in the original WebGL app, we can let the rendering pipeline handle interpolating the
vertex outputs into fragment inputs. The final result is that our new variable, iDir, will
correctly interpolate the full set of ray directions to render our scene.

 You may wonder, what about the camera projection? In listing 12.7 the distance
from the camera to the plane of projection was defined to be 1. The aspect ratio was
handled by directly multiplying the pixel coordinate p’s X value with the aspect ratio
of the window.

 In our application the camera projection distance is implicit in the processing that
generates iDir. As we render a skybox around the user’s viewpoint, the GPU processes
the projection matrix (provided by the Oculus SDK) and the camera orientation (built
from the user’s head pose) in the vertex shader. By the time we get to the user’s frag-
ment shader, the value it receives for iDir is already the ray direction. There’s no lon-
ger any need for the fragment shader to handle camera projection or aspect ratios at
all; the Rift effectively subsumes these concerns.

12.6.4 Handling the ray origin: stereopsis and head tracking

Because we’re creating 3D scenes, we want to provide a stereoscopic view on the scene
and provide head tracking, just as we would with any other VR application. No sweat!
We’re already using the orientation component of the head pose as part of the skybox-
derived direction calculations. For the eye offset, we take the position component of
the head pose (which when using the Oculus SDK will include the eye position offset)
and provide it as iPos.

 Note that this doesn’t mean we need to discard any existing ray origin calculation
inside the shader. This is important because many of the Shadertoy shaders animate
the camera, causing it to move over time to, for instance, fly over a mountain range.
Instead of just replacing the existing ray origin code, we add our head pose positional
value to it. Literally—just add iPos to the camera position value.

 One warning, though: now that we’re using the Rift’s eye offset parameters, we’re
assuming that we’re working in meters. (Remember, the Rift’s unit of choice is the
meter.) If you set out to modify another author’s Shadertoy shader, you may find that
assumption doesn’t hold in the other developer’s code. In fact, most of the shaders
we’ve encountered don’t determine a length unit at all, but rather use hardcoded val-
ues intended to make the effect look good on the small WebGL output window.
Licensed to Mark Watson <nordickan@gmail.com>

331Building virtual worlds on the GPU
 The Rift’s positional data can easily be scaled up or down to produce a desired
effect. For instance, in one of our example shaders, Elevated, you appear to be mov-
ing across a mountain range. Adding the iPos value at its normal scale produces very
little effect, because the scenery is all intended to look very distant, and thus would
have minimal parallax.

 But if we scale up the iPos value by a factor of 300,

ro += iPos * 300.0;

then instead of flying over mountains, it feels very much like you’re hovering over a
small scale model of a mountain range. Some of this effect comes from binocular par-
allax, but a significant part comes from the responsiveness of the viewpoint to small
movements of your head. If you can lean forward to peek at a peak, the mountain
feels very small in comparison to your sense of your own scale.

 Modifying the ray origin by scaling iPos is strictly optional. If your intent is to
make the user feel as if they’re flying high above the earth, the difference between
providing an offset between the eyes of less than 10 cm and providing no offset is neg-
ligible, so how you treat the iPos value is a matter of the effect you’re trying to impart.

12.6.5 Adapting an existing Shadertoy shader to run in ShadertoyVR

We’re now ready to adapt an existing shader to run in ShadertoyVR. All that will
require is that we make appropriate use of iDir and iPos; the rest of the (virtual)
world will take care of itself.

 Here’s the original camera code of Iñigo Quilez’s demo Elevated, in which the view-
point flies over a perpetual procedurally generated mountain range of rocky terrain.

// camera position
vec3 ro = camPath(time);
vec3 ta = camPath(time + 3.0);
ro.y = terrain3(ro.xz) + 11.0;
ta.y = ro.y - 20.0;
float cr = 0.2*cos(0.1*time);

// camera2world transform
mat3 cam = setCamera(ro, ta, cr);

// camera ray
vec3 rd = cam * normalize(vec3(s.xy,2.0));

Quilez computes ro and rd, his variables for ray origin and ray direction. The height
value of ro is clamped to the height of his terrain map function.

 The next listing shows our modified version of the same code, adapted to run in
ShadertoyVR.

Listing 12.10 (GLSL snippet) Original camera code for Elevated
Licensed to Mark Watson <nordickan@gmail.com>

332 CHAPTER 12 Case study: a VR shader editor
// camera position
vec3 ro = camPath(time) + iPos;
ro.y = max(terrain3(ro.xz) + 11.0, 150.0);

// camera ray
vec3 rd = normalize(iDir);

As you can see, we’ve replaced Quilez’s code for finding ro and rd with the values of
our own new inputs, iPos and iDir. And we’ve preserved the height map feature,
where the camera never drops below the virtual terrain beneath it (figure 12.9).

 Simple!

12.7 Summary
In this chapter, we covered:

■ Our case study of adapting a 2D WebGL app into a fully VR environment
■ How to design a GUI UI for VR that meets the needs of a preexisting 2D UI
■ How to integrate complex UI elements into a VR application
■ The art of using framebuffer scaling to address performance constraints when

GPU load exceeds the capabilities of your hardware
■ Understanding raycasting and implementing it in a GLSL shader

Listing 12.11 (GLSL snippet) Camera code for Elevated, adapted for ShadertoyVR

Figure 12.9 Elevated running in ShadertoyVR
Licensed to Mark Watson <nordickan@gmail.com>

Augmenting virtual reality
Augmented reality (AR) is the use of computers to digitally enhance your view of the
real world. AR isn’t science fiction; it’s real today. Examples include the heads-up
display overlaid on a fighter pilot’s cockpit, glasses that project a map of your
planned route on a tiny screen near your eye, or mobile phone games that show
the room you’re standing in with extra ghosts and goblins added on. AR is rapidly
becoming one of the most active fields in the computing industry, because it’s such
an open-ended challenge with so much potential to improve day-to-day life. Espe-
cially as mobile phones become ubiquitous, the potential for digitally enhancing
the everyday world seems limitless.

 All of that said, this chapter is not about AR. This chapter is about VR, and how
you can augment it with information from the real world.

This chapter covers
■ Combining real and virtual inputs inside the Rift
■ Exploring panorama images in VR
■ Using webcams to bring live 3D stereo video

into the Rift
■ Using the Leap Motion SDK to capture hand

poses in real time
333

Licensed to Mark Watson <nordickan@gmail.com>

334 CHAPTER 13 Augmenting virtual reality
 Just as there’s tremendous potential in allowing computing devices to mediate our
views of the world, there’s also tremendous potential—far more, in a sense—in allow-
ing the real world to intrude into the necessarily isolated virtual space of the Rift. Vir-
tual worlds divorced from our own have their place, but virtual worlds intermeshed
with reality will play a vital role in the adoption of VR to come. A virtual space from
which we can still interact with those left behind in the mundane world is far more
compelling than an isolated bubble of high-polycount special effects. In this chapter
we’ll explore some (relatively simple) ways to bring the real world into VR.

 To begin to get a sense of what’s possible with augmented VR, let’s list just a few of
the digital inputs that are now available:

■ Live audio and video streams from TV, media servers, video chats, and webcams
■ Immersive photography, such as the panoramic shots and photo spheres cap-

tured by smartphones
■ Live raw data feeds, such as public streams of airline flight trackers
■ Local sensor hardware added to your environment, or even to the Rift itself,

such as the Leap Motion
■ Local GIS data, which can be used to build a virtual map of actual geography
■ Location signals from the user (IP geocoding on desktops, GPS on mobile

devices)

In this chapter we’re going to do a deep dive into just a few of these technologies.
We’ve chosen to explore immersive photography, live video streams, and the Leap
Motion as our examples, because together they demonstrate the core principles of
aligning external and internal data into a seamless whole in VR. As you explore these
examples, pay special attention to the code at the interface between real and unreal;
much of the challenge here will come from the mathematics and the interweaving of
these multiple systems.

13.1 Real-world images for VR: panoramic photography
These days, high-resolution cameras in our pockets are commonplace; high-resolu-
tion cameras backed by processors more powerful than the entire American lunar
landing program, no less. One of the rather neat things that we can do with these
high-powered cameras is generate panoramas and photo spheres, advanced forms of digi-
tal images that are stitched together from a series of smaller, simpler images. These
assembled pictures are tagged with metadata that describes how the image is to be
rendered in cylindrical or spherical projection.

 Panorama photos could almost have been designed with VR in mind. On a conven-
tional screen, in a flat photo app, viewing these laterally expansive images can be diffi-
cult or unappealing. Head-tracking radically changes the experience. It’s very natural,
and naturally immersive, for our eyes to track over the same space that the camera
originally traveled, looking to and fro to absorb a wider scene than a conventional
monitor could display.
Licensed to Mark Watson <nordickan@gmail.com>

335Real-world images for VR: panoramic photography
13.1.1 Panorama photos

Panorama is the name used for a relatively large class of stitched-together imagery, and
panoramas can be generated in a number of ways. The most common by far is to use a
camera to take a series of pictures while slowly rotating your point of view laterally by a
short turn, typically from left to right (although that’s not required). As the camera
rotates it will capture a series of views sweeping a scene, much wider than a single pho-
tograph. The series of images is then stitched together by detecting overlapping
image portions from one to the next. On mobile phones, the stitching is even easier,
because the phone’s accelerometer can be queried to detect the movement of the
camera.

 Panoramas can be rendered as a single wide frame, as in figure 13.1. Alternatively,
in 3D they can be texture-mapped onto a cylinder, as in figure 13.2.

 Most panorama image viewers scroll sideways along the image instead of using a
cylindrical projection. Cylindrical projection would introduce distortion, as you can
see, even though it shows the correct perspective effect for images captured by turn-
ing in place. You can see in figure 13.2 that the image distortion is visibly reduced—
look at the road on the right, which runs straight along the front of the Piazza. In the
unmodified horizontal panorama, the edge of the road bows in; in the cylindrical pro-
jection it’s much closer to straight.

Figure 13.1 Panorama of the Piazza del Campo, Sienna, Italy

Figure 13.2 Cylindrical projection of the horizontal panorama. Note how the road (far right) has
become straighter under projection.
Licensed to Mark Watson <nordickan@gmail.com>

336 CHAPTER 13 Augmenting virtual reality
13.1.2 Photo spheres

Photo spheres (developers.google.com/photo-sphere) are an image annotation format
developed by Google for storing spherical images within conventional flat images.
Photo spheres use the XMP (Extensible Metadata Platform) standard (www.adobe.com/
devnet/xmp.html) to encode information within an image. XMP is an open standard
that can be used to attach XML data to image files; XMP readers are available for most
programming languages.

 Photo spheres are ideally suited for the Rift because, unlike panoramas, the photo
sphere is truly three-dimensional. The viewer can look up and down as well as side-to-
side. Photo spheres support a rather nifty set of attributes that describe the orienta-
tion of the camera at the time of capture: you can specify Pose Heading, Pose Pitch,
and Pose Roll attributes. These attributes indicate which way you were facing in com-
pass degrees, how high up or down you were looking, and how tilted your camera was
at the time of image capture. Cumulatively, this is sufficient to uniquely describe a 3D
pose anywhere on earth except the North or South Pole.1 This in turn means that
later, when you’re viewing a captured photo sphere, the display software can re-create
the original setting and orientation.

 When a photo sphere is captured, as with a panorama, multiple images are
stitched together in software to produce a larger rectangle of pixel data. The stitching
process, combined with the phone’s own orientation sensors, allows the determina-
tion of the “footprint” that the image pixels occupy within the larger 360°×180°
sphere of all possible headings. This is encoded as image metadata describing the left,
right, top, and bottom extents of the image within the dimensions of the greater
rectangle. Figure 13.3 shows an example of a photo sphere of the Piazza del Campo;
compare it to the panoramic sample in figure 13.1, captured at the same site. The
embedded image shows the characteristic distortion of a spherical projection, and
contains numerical data indicating its embedding within the complete sphere.

 These fields mean that the viewer can load an image and then embed it into a
larger texture buffer, creating a texture that spans the full sphere and that only has
pixels where pixels are valid, as shown in figure 13.4.

 Code that renders photo spheres onto texture-mapped OpenGL spheres is rela-
tively straightforward. Porting that code from a conventional display to the Rift is in
many ways even simpler. All you need to do is place the wearer’s viewpoint inside the
sphere in the scene; the user turning their head will take care of the rest.

 One caveat to bear in mind is that for once, parallax isn’t your friend. A photo
sphere is a single image captured from a single point in space; there is only one “eye”
doing the capturing, even though the image itself was stitched from many separate
frames. Picture a single eye, rotating in all directions: that means no binocular paral-
lax. Instead, every pixel of the photo sphere is effectively at the same distance from
the viewer. This means that you should treat a photo sphere as much more akin to an

1 That’s okay. We hear they’re cold this time of year.
Licensed to Mark Watson <nordickan@gmail.com>

http://developers.google.com/photo-sphere
http://www.adobe.com/devnet/xmp.html
http://www.adobe.com/devnet/xmp.html

337Real-world images for VR: panoramic photography
environmental cubemap than an actual sphere in space; infinitely large, infinitely
clear, infinitely far away in all directions.

 Practically speaking, this means that when rendering your photo sphere in the
Rift, you either should make the sphere very large, or trim the translational compo-
nent out of your eye pose matrices while you’re rendering the photo sphere. If you
preserve only the orientational component, then it won’t swing around as the user
moves their head.

G ano:FullPanoImageWidthPixelsP

G ano: ImageWidthPixelsP CroppedArea

G ano:CroppedAreaLeftPixelsP

G ano:CroppedAreaTopPixelsP

G

a
n
o
:

I
m
a
g
e

P

C
r
o
p
p
e
d
A
r
e
a

H
e
i
g
h
t
h
P
i
x
e
l
s

G

a
n
o
:

u
l
l
P
a
n
o
I
m
a
g
e

P

F

H
e
i
g
h
t
P
i
x
e
l
s

Figure 13.3 Metadata fields of the Google photo sphere image format

Figure 13.4 Wrapping a partial photo texture onto a sphere. The image used here is a photo sphere
taken of the same plaza as the panorama shot in figure 13.1.
Licensed to Mark Watson <nordickan@gmail.com>

338 CHAPTER 13 Augmenting virtual reality
13.1.3 Photo spheres…in space!

Our photo sphere demo has three steps:

1 Loading the image and retrieving its XMP data
2 Embedding the image into the 360° × 180° panorama of the sphere
3 Rendering the actual sphere

Each step is pretty straightforward.
 To begin, you need to parse out the metadata encoded into the image. A number

of open source and for-pay products are available to do this, as well as numerous soft-
ware libraries. In most cases their features boil down to “given an image, give me a
key-value pair mapping that I can use to look up the fields I want.” For example, the
open source project Exiv2 (www.exiv2.org) produces the output shown in the follow-
ing listing.

Exif.Image.Model Ascii 8 Nexus 5
Exif.Image.Orientation Short 1 (0)
Exif.Image.DateTimeOriginal Ascii 20 2014:06:20

16:05:51
Exif.Image.MeteringMode Short 1 (65535)
Exif.Image.ImageLength Short 1 2563
Exif.Image.DateTime Ascii 20 2014:06:20

16:05:51
Exif.Image.LightSource Short 1 Unknown
Exif.Image.ImageWidth Short 1 3119
Exif.Image.Make Ascii 4 LGE
Exif.Image.GPSTag Long 1 226
Exif.GPSInfo.GPSTimeStamp SRational 3 16:04:02
Exif.GPSInfo.GPSLatitudeRef Ascii 2 North
Exif.GPSInfo.GPSLongitude Rational 3 11deg 19' 52.237"
Exif.GPSInfo.GPSLongitudeRef Ascii 2 East
Exif.GPSInfo.GPSDateStamp Ascii 11 2014:06:20
Exif.GPSInfo.GPSProcessingMethod Undefined 1 0
Exif.GPSInfo.GPSLatitude Rational 3 43deg 19' 4.864"
Exif.GPSInfo.GPSAltitudeRef Byte 1 Above sea level
Exif.Image.ExifTag Long 1 411
Xmp.GPano.UsePanoramaViewer XmpText 4 True
Xmp.GPano.ProjectionType XmpText 15 equirectangular
Xmp.GPano.CroppedAreaImageHeightPixels XmpText 4 2563
Xmp.GPano.CroppedAreaImageWidthPixels XmpText 4 3119
Xmp.GPano.FullPanoHeightPixels XmpText 4 2900
Xmp.GPano.FullPanoWidthPixels XmpText 4 5800
Xmp.GPano.CroppedAreaTopPixels XmpText 3 334
Xmp.GPano.CroppedAreaLeftPixels XmpText 4 1314
Xmp.GPano.FirstPhotoDate XmpText 24 2014-06-

20T14:03:56.173Z
Xmp.GPano.LastPhotoDate XmpText 23 2014-06-

20T14:05:24.13Z
Xmp.GPano.SourcePhotosCount XmpText 2 25
Xmp.GPano.PoseHeadingDegrees XmpText 5 317.0

Listing 13.1 EXIF and XMP data retrieved from our sample image by Exiv2

Google
photo
sphere
fields

 b
Licensed to Mark Watson <nordickan@gmail.com>

http://www.exiv2.org

339Real-world images for VR: panoramic photography

Ret
the i

Op

image
mem

BGR fo

Conv
from B

mem
orde
to R

s

mem
a sh
ligh

Lo
t

of

s
nt
w.

e
ination
y the
ge’s
t
Xmp.GPano.LargestValidInteriorRectLeft XmpText 1 0
Xmp.GPano.LargestValidInteriorRectTop XmpText 1 0
Xmp.GPano.LargestValidInteriorRectWidth XmpText 4 3119
Xmp.GPano.LargestValidInteriorRectHeight XmpText 4 2563

The XMP data is structured XML, flattened here by the Exiv2 application. Reading this
data is a simple matter of parsing the string output.

 The Google photo sphere fields B identify the size of the true image (3119 × 2563)
inset into the larger total footprint of the panorama on a sphere (5800 × 2900) and
where to place the image within the footprint (1314 pixels from the left edge, 334
from the top).

 Once you’ve determined the dimensions of the image and the rectangular footprint
of the total sphere, your next task is to read the pixels from the image file and build a
larger texture map, whose dimensions are the total extent. Alternatively, instead of
building a larger texture map, you could use a smaller texture map and careful assign-
ment of texture coordinates to vertices—but using a larger rectangle is easier.

 There are many ways to load an image and embed it into a texture map. The fol-
lowing listing shows one approach, using the OpenCV image library (opencv.org).
We’ve trimmed out some of the extraneous parts, but the full code is on the book’s
GitHub repository.

gl::TexturePtr loadAndPositionPhotoSphereImage(
 const std::string & pathToImage,
 glm::uvec2 &fullPanoSize,
 glm::uvec2 &croppedImageSize,
 glm::uvec2 &croppedImagePos) {
 cv::Mat mat = cv::imread(pathToImage.c_str());
 cv::cvtColor(mat, mat, CV_BGR2RGB);
 uchar *out = (uchar*)malloc(fullPanoSize.x * fullPanoSize.y * 3);

 memset(out, 84, fullPanoSize.x * fullPanoSize.y * 3);
 for (unsigned int y = 0; y < croppedImageSize.y; y++) {
 int srcRow = y * croppedImageSize.x * 3;
 int destRow = (croppedImagePos.y + y) * (fullPanoSize.x * 3);

 memcpy(
 out + destRow + croppedImagePos.x,
 mat.datastart + srcRow,
 croppedImageSize.x * 3);
 }

 texture = GlUtils::getImageAsTexture(fullPanoSize, out);
 free(out);
 return texture;
}

Listing 13.2 Using OpenCV to load an image, and then embedding it into a texture

Retrieves the full panorama
size, the cropped image size,
and the cropped image position.

rieves
mage
data.
enCV
loads
s into
ory in
rmat.

erts
GR
ory

ring
GB.

Allocates 3
bytes per
pixel times
width time
height.

Clears
ory to
ade of
t gray.

ops over
he height
 the inset

image.

Calculate
the curre
source ro

Writes to th
current dest
row, offset b
cropped ima
vertical inse
position.

Copies all pixel
data from source
to destination.

Uses the GlUtils example
framework to copy the

RGB pixels into an
OpenGL texture.

Releases the
allocated buffer.
Licensed to Mark Watson <nordickan@gmail.com>

http://opencv.org

340 CHAPTER 13 Augmenting virtual reality
The output from loadAndPositionPhotoSphereImage() is an OpenGL texture buffer
bound to a texture ID in our GlUtils example framework. The image will be uni-
formly gray (RGB 84, 84, 84) except where the pixels of the panorama image have
been copied into place.

 OpenCV always loads images into memory in BGR ordering (Blue, Green, Red).
OpenGL uses an in-memory ordering of RGB (Red, Green, Blue), so we use the
OpenCV routine cv::cvtColor() to reverse the ordering of the bytes of each pixel.

 The last step is to render the photo sphere, which is stock OpenGL, shown next.

void renderScene() {
 static gl::GeometryPtr geometry = GlUtils::getSphereGeometry();
 static gl::TexturePtr texture =
 loadAndPositionPhotoSphereImage(filepath, /* ... */);

 glClear(GL_DEPTH_BUFFER_BIT);
 gl::MatrixStack & mv = gl::Stacks::modelview();
 mv.withPush([&]{
 mv.scale(50.0f);
 texture->bind();
 GlUtils::renderGeometry(geometry);
 texture->unbind();
 });
}

The GlUtils example methods handle all the heavy lifting here. Using the built-in
sphere geometry methods with their default texture mapping, you simply enlarge the
sphere to far enough out that the user’s head motion won’t affect the image; the final
result, shown in figure 13.5, is a Rift app that can take you to Sienna, or anywhere else
in the world your camera can take you!

13.2 Using live webcam video in the Rift
Panoramas that enclose us are fine for static imagery, but for truly interactive con-
tent, nothing beats a live video stream. Be it from a video feed, remote videoconfer-
encing, or a head-mounted webcam attached to the Rift, live video presents a
unique set of challenges and opportunities. The potential for telepresence and aug-
mented reality is striking.

 Mounting a webcam on the Rift turns the Rift from an opaque, isolating black
box into a pass-through video overlay that can integrate live computer graphics
onto a real-time view of the world. With pass-through video, your computer can do
live analysis of the scene around you and overlay that understanding in visual form
onto the image you see. Live video also raises the possibility of scene recognition,
gesture recognition, and contextual processing at unprecedented levels, as shown
in figure 13.6.

 In this section we’ll walk through a demo of how to take video from a webcam
mounted atop your Rift and bring that video feed into the headset, in VR. We’ll be

Listing 13.3 Rendering the photo sphere

Enlarges the sphere
to 50 meters across

Binds our image texture,
renders a stock textured
sphere, and unbinds
Licensed to Mark Watson <nordickan@gmail.com>

341Using live webcam video in the Rift
Figure 13.5 The Piazza del Campo, Sienna, Italy, as seen through the Oculus Rift

Figure 13.6 Live webcam imagery channeled into the Oculus Rift
Licensed to Mark Watson <nordickan@gmail.com>

342 CHAPTER 13 Augmenting virtual reality
using the OpenCV library again; it’s a terrific library for smoothing out the varieties
and vagaries of differing webcam standards. In brief, the steps for integrating live
video into a webcam are as follows:

1 Design your app to be multithreaded so that capturing the video stream and
rendering it can be as distinct as possible. This approach will help you avoid
frame rate bottlenecks.

2 Connect to your webcam(s) on a background thread.
3 On your foreground (graphics) thread, pull frames off the video thread and

convert them into OpenGL texture data.
4 Texture-map frame textures onto a target surface in the Rift, ideally a rectangle

whose aspect ratio matches that of your webcam.
5 If your webcam is mounted on your Rift, then you’ll want to apply prediction

to improve image tracking for your user and reduce the risk of simulation
sickness.

When integrating live video into the Rift, especially from a head-mounted webcam,
you must be aware of a few factors that don’t usually apply to video software:

■ Your display device (the Rift) has a ridiculously low tolerance for latency. This
will force design choices about when and how you capture video frames.

■ Not all webcams are created equal. Most are designed to deliver quality images
of central figures at a distance of a few feet; outside that range, image distortion
may occur.

■ If you stick a camera on your head, the image is going to jitter and move in
ways that your real vision never has. Image stabilization is a lot more impor-
tant in the Rift than outside it. You’ll need to take extra steps to avoid
unpleasant side effects.

13.2.1 Threaded frame capture from a live image feed

OpenCV makes the mechanics of capturing a stream of images from a webcam rela-
tively straightforward, which takes a lot of the complexity out of integrating live video
with the Rift. All the details of finding, opening, and pulling data from a webcam are
taken care of for you.

 It’ll be tempting to try to do your webcam capture on your rendering thread,
because that’s where it’s most convenient. Your rendering thread is going to be where
your OpenGL context is set up, making assignment to GL textures straightforward.
Unfortunately, most webcams operate at a default frame rate of 30 frames per second.
This means that when you request a frame, OpenCV will typically block for about 0.03
seconds while the webcam captures the image and returns it to you.

 Image retrieval therefore needs to be asynchronous, and pulling data from a
webcam, or other high-latency source, should always be done on a separate thread
from rendering.
Licensed to Mark Watson <nordickan@gmail.com>

343Using live webcam video in the Rift

O

at
th

a
is

l
mu
hol
as

the
is i

t

 With this in mind, we created the following listing, which shows one possible
implementation of a background thread dedicated to webcam capture.

struct CaptureData {
 cv::Mat image;
};

class WebcamHandler {

private:

 bool hasFrame{ false };
 bool stopped{ false };
 cv::VideoCapture videoCapture;
 CaptureData frame;
 std::thread captureThread;
 std::mutex mutex;

public:

 void startCapture() {
 videoCapture.open(0);
 if (!videoCapture.isOpened() || !videoCapture.read(frame.image)) {
 FAIL("Could not open video source ");
 }
 captureThread = std::thread(
 &WebcamHandler::captureLoop, this);
 }

 void captureLoop() {
 CaptureData captured;
 while (!stopped) {
 videoCapture.read(captured.image);
 cv::flip(captured.image.clone(), captured.image, 0);
 setResult(captured);
 }
 }

 void setResult(const CaptureData & newFrame) {
 std::lock_guard<std::mutex> guard(mutex);
 frame = newFrame;
 hasFrame = true;
 }

 bool getResult(CaptureData & out) {
 if (!hasFrame) {
 return false;
 }
 std::lock_guard<std::mutex> guard(mutex);
 out = frame;
 hasFrame = false;
 return true;
 }

Listing 13.4 WebcamHandler, background-threaded webcam frame capture

Background thread and a mutex
for control synchronization.

pens the
zeroeth
webcam

tached to
e system.

Forks our
background thread...

...so long
s stopped
 not true.

Captures a single frame from the
webcam. This is a blocking call,
typically taking around 33 ms.

Stores image
raster data
bottom-to-top.Records the

captured frame.Claims a
ock on a
tex and
ds it for
 long as
instance
n scope.

Stores the captured frame
and updates our state flag.

Returns false if a new
frame is not yet available.

Locks
access to
he stored

frame
variable.

Copies the stored image into the out matrix, clears
our state flag so that we don’t apply the same
update next render frame, and returns true.
Licensed to Mark Watson <nordickan@gmail.com>

344 CHAPTER 13 Augmenting virtual reality
 void stopCapture() {
 stopped = true;
 captureThread.join();
 videoCapture.release();
 }
};

The previous listing is a fairly standard implementation of a single-buffered producer/con-
sumer model of multithreading. Here the capture thread is the producer, and it’s tasked
with filling its internal buffer with webcam images as frequently as possible. The
methods startCapture() and stopCapture() use the standard C++ thread control
mechanisms to fork and terminate a process thread. The method getResult(out)
implements the producer pattern: if a new frame is available, it’s returned in the
passed output parameter.

 In the event that the image buffer isn’t consumed before another frame has been
captured, the capture thread will replace its buffer with the most recent data.

 Meanwhile, the rendering thread plays the role of consumer. Each time the ren-
dering thread is ready to render a frame, it’ll attempt to consume the available
image buffer; if it does, it’ll pass the texture image to OpenGL for display. The ren-
dering thread will use its update() method, which is called once per frame, to
attempt to retrieve image data from the capture thread and, if available, inform
OpenGL, as shown next.

class WebcamApp : public RiftApp {

protected:

 gl::Texture2dPtr texture;
 gl::GeometryPtr videoGeometry;
 WebcamHandler captureHandler;
 CaptureData captureData;

public:

 virtual ~WebcamApp() {
 captureHandler.stopCapture();
 }

 void initGl() {
 RiftApp::initGl();

 texture = GlUtils::initTexture();
 float aspectRatio = captureHandler.startCapture();
 videoGeometry = GlUtils::getQuadGeometry(aspectRatio);
 }

 virtual void update() {
 if (captureHandler.getResult(captureData)) {

Listing 13.5 WebcamApp, a frame in space showing a live webcam feed

To stop the thread, we set our state flag
and use Thread::join() to wait for the
background thread to terminate.

Reserves an OpenGL texture.
This will be the GPU buffer that
stores the webcam images.

Returns the aspect
ratio of the webcam’s
resolution.

Builds a quad
with the set
aspect ratio.

If there’s a new frame
available, then…
Licensed to Mark Watson <nordickan@gmail.com>

345Using live webcam video in the Rift
 texture->bind();
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8,
 captureData.cols, captureData.rows,
 0, GL_BGR, GL_UNSIGNED_BYTE,
 captureData.image.data);
 texture->unbind();
 }
 }

 virtual void renderScene() {
 glClear(GL_DEPTH_BUFFER_BIT);
 GlUtils::renderSkybox(Resource::IMAGES_SKY_CITY_XNEG_PNG);
 gl::MatrixStack & mv = gl::Stacks::modelview();

 mv.with_push([&]{
 mv.identity();
 mv.translate(glm::vec3(0, 0, -2));
 texture->bind();
 GlUtils::renderGeometry(videoGeometry);
 texture->unbind();
 });
 }
};

RUN_OVR_APP(WebcamApp);

This Rift app renders a frame hanging in space before the viewer, illustrated in fig-
ure 13.7.

...binds the texture
buffer and updates it
with glTexImage2D.

Binds the current texture to render a
frame in space, positioned 3 meters
ahead of the viewer.

Figure 13.7 Webcam imagery textured into the Rift
Licensed to Mark Watson <nordickan@gmail.com>

346 CHAPTER 13 Augmenting virtual reality
13.2.2 Image enhancement

For all your augmented reality needs, you have a number of options. The OpenCV
libraries stand out as a trove of easy-to-use, open source, computer vision algorithms.
Here are just a few of the things you can do with OpenCV, usually in real time:

■ Image smoothing, sharpening, and cleaning
– Remove noisy fuzz from static images or live video
– Boost image clarity

■ Edge detection, straight-line detection
– Highlight edges in view
– Draw the user’s attention to key image features

■ Image similarity matching, feature detection
– Track objects in view and target them for the user
– Follow moving objects in video
– Use template matching to identify previously seen objects in a scene

■ Pattern recognition
– Detect faces and highlight features
– OCR (Optical Character Recognition—real-time image-to-text translation)

We could easily spend whole chapters on computer vision, but that would distract
from the Rift, so we won’t wax too eloquent about image analysis here. But if you’re
looking to experiment with image enhancement, OpenCV is a great place to start.

 As a simple example, the following listing shows how to add edge detection to our
Rift app. The code is quite short, and it runs in real time on the capture thread.

cv::blur(captured.image, captured.image, cv::Size(3, 3));
cv::cvtColor(captured.image, captured.image, CV_BGR2GRAY);
cv::Canny(captured.image, captured.image, a, b);
cv::cvtColor(captured.image, captured.image, CV_GRAY2BGR);

This example consists of four steps:

1 Reduce image noise by smoothing with a 3 × 3 local filter.
2 Downsample from 24-bit pixels to 8-bit pixels. OpenCV’s edge detection oper-

ates best on 8-bit pixels.
3 Apply the Canny edge-filtering algorithm; a and b are constants defined by the

user, defining edge-detection fidelity. (a = 10 and b = 100 would be reasonable
sample values here.)

4 Upsample from 8-bit pixels to 24-bit pixels, shaded to shades of gray.

The end result is an image in which every pixel that differs strongly from its neighbors
has been replaced with a bright shade of white, and all regions of the image that are
similar to their immediate neighbors have been replaced with shades running to
black. This identifies those pixels that are most likely to be on features of interest.

Listing 13.6 Implementing Canny edge detection with OpenCV
Licensed to Mark Watson <nordickan@gmail.com>

347Using live webcam video in the Rift
Figure 13.8 shows edge detection in action. The image captured is the same view of
the room as that in figure 13.7 (except that the cat moved).

 The OpenCV website has a number of demos of cool tricks, like text recognition,
facial recognition, image differencing, and stitching. Give yourself a treat and spend
some time exploring what you can do with computer vision today.

13.2.3 Proper scaling: webcam aspect ratio
You may have noticed that the rectangular images shown in figures 13.6 and 13.7
weren’t square. Webcam images rarely are. Most webcams capture images in rectangu-
lar aspect ratios—typically wider than high, and nowadays, typically in HD resolutions.
That means that the geometry we’re texture-mapping—the quadrilateral that’s show-
ing our captured frames—needs to be rectangular as well. Because we’re already check-
ing our connection to the webcam by capturing a first frame in startCapture(), we can
enhance startCapture() a smidgen to return the aspect ratio of the webcam. That
will let us choose the right dimensions for our target geometry when it’s time to ren-
der. We’ll modify startCapture() as follows (new lines are shown in bold):

 float startCapture() {
 videoCapture.open(0);
 if (!videoCapture.isOpened() || !videoCapture.read(frame)) {
 FAIL("Could not open video source to capture first frame");
 }
 float aspectRatio = (float)frame.cols / (float)frame.rows;
 captureThread = std::thread(&WebcamHandler::captureLoop, this);
 return aspectRatio;
 }

Figure 13.8 The Canny edge-detection algorithm, implemented with OpenCV and piped into the Rift.
Licensed to Mark Watson <nordickan@gmail.com>

348 CHAPTER 13 Augmenting virtual reality
This way, we’re confident that the webcam’s image dimensions are available as we
launch the background thread.

13.2.4 Proper ranging: field of view

Another very nice optimization will be to position the textured quad at a distance
from the viewer, chosen such that it fills a field of view of the user that exactly matches
the field of view of the webcam. Every webcam has a field of view (FOV); they typically
vary from 45 to 70 degrees, but they can be much wider, especially if you’re using a
fisheye lens.

 To approximate your webcam’s FOV, level it horizontally and point it at an object
of known width at a known distance. Line your webcam up so that the object exactly
fills the view of the camera, with both ends equidistant from the lens, as in figure 13.9.

If you know the distance from the lens to the object and the width of the object as it
exactly fills your camera’s field of view, then trigonometry defines that is equal to the
tangent of half your object’s width over the distance: – tan(W/2)/D). Doubling
yields the horizontal field of view of the webcam.

 The same logic holds in our virtual scene. Given a chosen distance at which we
want to display our captured webcam imagery, we can use this equation to determine
the optimal width of the texture quad in virtual meters.

 Let’s say we want to position the texture quad at a distance of 10 meters from the
viewer, and our webcam has an FOV of 45°, or /8. An FOV of /8 means – /16.
Then the equation for the width of the quadrilateral would be W = 2 D atan() = 3.8
meters wide.

13.2.5 Image stabilization

Now let’s look at some of the problems that arise specifically when you strap a webcam
to your head. (What? It happens more often than you’d think.)

 The greatest challenge to immersive throughput of live, head-mounted video is
latency, but it can affect you in more ways than you might think. Raw camera-to-Rift
update latency is critical, obviously, but if you use the background-threaded approach
we’ve already covered, you should be able to minimize that, at least to within the limits
of the webcam itself. The other significant issue is going to come when you start to
move your head: image stabilization.

D

θ

W

Figure 13.9 Calculating , the FOV of your
webcam. D = Distance to known object, chosen so
that it exactly fills the webcam’s view. W = Width
of known object.
Licensed to Mark Watson <nordickan@gmail.com>

349Using live webcam video in the Rift
 To solve the image stability problem, we benefit from the sensors already at hand
(or rather, at head). The Rift is constantly capturing its own position and orientation
at a significantly higher rate than the webcam is capturing images. So it’s not too hard
to capture that pose information as we capture each frame. Doing so requires only
four changes (shown in bold) to our existing demo class:

1 Extend CaptureData to include an extra HMD pose field:

struct CaptureData {
 ovrPosef pose;
 cv::Mat image;
};

2 Add a reference to the HMD in the WebcamHandler:

class WebcamHandler {
 // ...
 CaptureData frame;
 ovrHmd hmd;
 // ...

 WebcamHandler(ovrHmd & hmd) : hmd(hmd) { }

3 Capture the current head pose in each call to captureLoop():

void captureLoop() {
 CaptureData captured;
 while (!stopped) {
 float captureTime = ovr_GetTimeInSeconds();
 ovrTrackingState tracking =
 ovrHmd_GetTrackingState(hmd, captureTime);
 captured.pose = tracking.HeadPose.ThePose;

 videoCapture.read(captured.image);
 cv::flip(captured.image.clone(), captured.image, 0);
 set(captured);
 }
}

4 Compute the differential latency matrix and apply it to the modelview stack:

glm::quat eyePose = Rift::fromOvr(getEyePose().Orientation);
glm::quat webcamPose = Rift::fromOvr(captureData.pose.Orientation);
glm::mat4 webcamDelta =
 glm::mat4_cast(glm::inverse(eyePose) * webcamPose);

mv.identity();
mv.preMultiply(webcamDelta);
mv.translate(glm::vec3(0, 0, -2));

Step 4 is where the interesting stuff happens. That’s where we compute the difference
between the current eye pose orientation and the head pose that we captured along-
side the webcam frame. Pushing the product of (eyePose-1 × webcamPose) onto the
modelview matrix stack is mathematically akin to subtracting the eyePose from
the webcamPose, and adding the difference to the modelview.
Licensed to Mark Watson <nordickan@gmail.com>

350 CHAPTER 13 Augmenting virtual reality
In other words, even though your head has moved, the picture stays in the same place
relative to the real world. As your head turns one way, the frame bumps a bit the other
way, so the pass-through image of the room around you, as seen through the webcam,
hangs more steadily in the virtual space in front of you. As your head turns more
quickly, the difference between the pose captured a few milliseconds earlier and the
pose captured on the instant grows; that larger difference swings the rendered posi-
tion of the textured quadrilateral further away from the direction of head travel, but
as head motion slows, the image returns to stable in front of the eyes. The perceived
stability of the image is dramatically improved (figure 13.10).

13.3 Stereo vision
A natural upgrade from sticking a webcam on your head is, well, sticking two webcams
on your head. Two webcams means you can show a unique view to each eye; you can
have stereo vision, inside the stereo view of the Rift. A number of developers have
experimented with using stereo webcams with the Rift, and a quick web search will
turn up everything from cheerful hobbyists to inventors who’ve attached stereo cam-
eras to flying quadcopter drones.

 One word of caution: the more stuff you attach to your Rift, the more you risk
occluding some of the IR LEDs, the built-in tracking lights that help the Rift’s infrared

Figure 13.10 This image was captured from live video in the Rift as an author’s head was turning
quickly to the right. To preserve persistence of the image in the user’s eyes, as the head turns, the
video frame slides in the opposite direction, holding the image pointing at the same place in the real
world; then as the webcam stream catches up to the user’s head motion, the frame will “catch up” and
settle in the center of the view again.
Licensed to Mark Watson <nordickan@gmail.com>

351Stereo vision
webcam track the headset. Blocking one or two IR LEDs isn’t the end of the world; the
Rift software can do remarkably well if a few are covered or blocked. But the more
LEDs you cover, the poorer the position capture and the rougher your VR experience.
So, for example, don’t use some big anchoring plate to cover the whole front of your
DK2; you’ll completely destroy positional tracking. If you have to anchor to the front
of the Rift, keep the anchor point small, and use a small webcam. If you have a larger
camera, set the webcam atop the Rift, where there are fewer LEDs and you’ll only risk
reducing fidelity when you’re looking down (a less common gesture).

13.3.1 Stereo vision in our example code

The code changes in our demo framework to switch from mono to stereo inputs are,
to be entirely honest, pretty trivial; we’ve listed them here, with the new code in bold.
Basically, instead of writing

 gl::Texture2dPtr texture;
 gl::GeometryPtr videoGeometry;
 WebcamHandler captureHandler;
 CaptureData captureData;

you write

 gl::Texture2dPtr texture[2];
 gl::GeometryPtr videoGeometry[2];
 WebcamHandler captureHandler[2];
 CaptureData captureData[2];

and add loops as appropriate to the setup, cleanup, and update methods.

Setup:

 void initGl() {
 RiftApp::initGl();

 for (int i = 0; i < 2; i++) {
 texture[i] = GlUtils::initTexture();
 float aspectRatio = captureHandler[i].startCapture(hmd,
 CAMERA_FOR_EYE[i]);
 videoGeometry[i] = GlUtils::getQuadGeometry(aspectRatio);
 }
 }

Cleanup:

 virtual ~WebcamApp() {
 for (int i = 0; i < 2; i++) {
 captureHandler[i].stopCapture();
 }
 }

Update:

 virtual void update() {
 for (int i = 0; i < 2; i++) {
 if (captureHandler[i].get(captureData[i])) {
Licensed to Mark Watson <nordickan@gmail.com>

352 CHAPTER 13 Augmenting virtual reality
 texture[i]->bind();
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8,
 captureData[i].image.cols, captureData[i].image.rows,
 0, GL_BGR, GL_UNSIGNED_BYTE,
 captureData[i].image.data);
 texture[i]->unbind();
 }
 }
 }

Those loops take care of the lion’s share of the upgrade to stereo vision. All that
remains is to select the correct view for the correct eye in our rendering method:

 texture[getCurrentEye()]->bind();
 GlUtils::renderGeometry(videoGeometry[getCurrentEye()]);
 texture[getCurrentEye()]->unbind();

One of the quirks of this demo that we can’t code in a portable manner is the fact that
everybody’s PC is different, particularly the order in which USB devices are plugged in
(especially if you’ve got multiple USB cameras attached). Happily, OpenCV handles
multithreaded requests to multiple webcams almost seamlessly. To simplify addressing
multiple cameras, we’ve introduced an extra array, which we used during setup in
initGl(); for one author’s home PC setup; that array looks like this:

 int CAMERA_FOR_EYE[2] = { 2, 1 };

That is to say, the left eye will be shown the output from the third webcam connected
to the PC, and the right eye will be shown the output from the second.2

13.3.2 Quirks of stereo video from inside the Rift

Unfortunately, adding stereo input to the Rift isn’t necessarily the best thing to do.
 For one thing, if you glue a pair of webcams to your head, it’s going to be a lot

like looking at the world through a laggy periscope. As you swing your head, your
point of view will move as though your eyes were much further from your neck than
usual. That can be a disorienting experience, not dissimilar to looking along the
length of a rocking boat, so you’re going to be much more vulnerable to motion
sickness and simulation sickness. That can get pretty rough! Don’t try to power
through it, either, because with sim sickness that can end pretty colorfully—if you’re
experimenting with live 3D stereo and you feel yourself becoming ill, ease out of VR
and take a break immediately.

 For another thing, our image stabilization code starts to get a little suspect at this
point. As written, we’re individually stabilizing each eye. That will give each eye a nice,
stable image without jitter or shakiness, which is great. But the two eyes will be seeing
images stabilized with head poses captured at two different times. So while the images
will be stable, the quads that display them will be moving independently, shaking in

2 The first webcam (index zero) is built into the laptop screen.
Licensed to Mark Watson <nordickan@gmail.com>

353The Leap Motion hand sensor
different directions. It’s not entirely clear what effect this is going to have on users,
but it’s probably not good.

13.4 The Leap Motion hand sensor
The Leap Motion (www.leapmotion.com) is a stereo depth-sensing device designed to
capture hand positions and gestures. The Leap was pioneered in 2008 by David Holz
and developed for production in 2010 by Holz and Michael Buckwald, in the hopes of
bringing the sci-fi future of gesture-controlled UIs into the real world. Holz and Buck-
wald had a vision of being able to sculpt 3D surfaces and control interactive software
in 3D, just like in the movies (see chapter 9).

 The Leap was originally intended to be placed on your desk, face up to the space
above your keyboard. You’d then move your hands through the air above your key-
board, gesturing to trigger behaviors on the PC. For example, waving your hand from
right to left could be configured as clicking the Back button on a web browser or clos-
ing the current application. Holding up a hand, index finger extended, and “tapping”
the air in the plane above the Leap would be interpreted as a mouse click. Essentially,
picture the gesture functionality of a laptop’s touchpad or a tablet’s touchscreen, but
without the pad or screen—all the interaction is in the space above your keyboard
(figure 13.11).

 The Leap is a very cool PC peripheral with a lot of potential that’s still being
explored. Leap Motion supports an App Store designed to encourage innovative uses
of their device, and there’s talk of embedding the sensor into laptops and tablets for
airborne control. But it wasn’t until the Oculus Rift came along that the VR applica-
tions of the Leap really opened up.

 Originally the Leap was meant to point straight up off the desk, but a simple
removable bracket (available by mail from Leap Motion, or you can 3D print your
own) attaches the Leap to the front of the Oculus Rift, pointing forward. By mounting
this lightweight hand sensor on the front of the Rift, you can now detect hand posi-
tions and gestures from within VR apps (figure 13.12).

Figure 13.11 The Leap
Motion Controller’s view
of your hands (source:
Leap API documentation)
Licensed to Mark Watson <nordickan@gmail.com>

http://www.leapmotion.com

354 CHAPTER 13 Augmenting virtual reality
The potential here is striking. One of the biggest problems with the Rift has always
been that it’s hard to reach the controls after you’ve strapped a big opaque square of
plastic to your noggin. But if you can see your real hands in virtual space, then that’s a
game-changer (figure 13.13).

 Through our innate sense of proprioception, seeing our real hands in a virtual
space dramatically reinforces the sense of immersion and presence. It’s also a major
leap forward (no pun intended) for the capability, flexibility, and intuitiveness of VR
interface design. As we covered in chapter 9, gestural interfaces have the potential to
be the most natural, instinctive, easy-to-learn, and easy-to-use interfaces ever devel-
oped for human-computer interaction.

Figure 13.12 An Oculus Rift DK2 with the
Leap Motion mounted on a removable
bracket attached to the faceplate. The
Leap can be popped out of the bracket
holder and doesn’t block the Rift’s IR LEDs.

Figure 13.13 The Leap supports pass-through video, blending your hands with virtual overlay and 3D
stereo imagery. The video is IR only, so this is “night vision” of your hands. (Source: LeapMotion.com.)
Licensed to Mark Watson <nordickan@gmail.com>

http://LeapMotion.com

355The Leap Motion hand sensor
13.4.1 Developing software for the Leap Motion and the Rift

The Leap Motion has been designed for indie developers from day one, and its SDK is
one of the most well documented and clearly designed that it’s been our pleasure to
work with. It’s also constantly being enhanced and developed as the Leap Motion
team improves and expands on its ability to recognize an airborne human hand. With
that in mind, we’re going to present sample code here for a very simple interactive
application combining the Leap and the Rift.

 It should be emphasized that the code shown here (and on our GitHub reposi-
tory) was written against the Leap SDK 2.1.6. Leap’s SDK support for the Rift is still in
active beta, so anything committed to print today is unlikely to work without update
in, say, a year’s time.

 Let’s begin with the basics. The Leap consists of a pair of IR cameras and an IR
LED. The IR LED shines brightly out of the top of the Leap, and the IR light bounces
off objects near the Leap to be captured by the cameras. The cameras use conven-
tional depth-estimation algorithms based on feature-matching to estimate the dis-
tance from the Rift to features in the scene.

Based on the depth estimates formed by comparing the images from the Leap’s two
cameras, the Leap uses built-in software that has been highly optimized to try to detect
the hands in the space in front of it. As a general rule, there aren’t many things that
are shaped like hands that aren’t hands, so the Leap usually does a pretty good job. By
assuming that a hand has five fingers3 and the conventional arrangement of ligaments
and tendons, the Leap can often even estimate the position of digits that it can’t see.

Lighting conditions and the Leap
The Leap’s reliance on IR light for its image capture is a mixed blessing. On the one
hand, it means that the Leap can be used effectively in low light. On the other hand,
it means that the Rift and the Leap collide a bit in that both rely on IR light for their
data, and it means that the Leap is vulnerable to unusually bright lighting conditions.
If you’re working on integrating the two, you may find that optimal lighting conditions
are hard to achieve.

The Leap’s approach to depth-sensing is different from that of, for example, the
Microsoft Kinect, which projects an active grid of IR data into the scene and then
detects the distortion of the grid on objects in the near view. The use of an IR lamp
instead of a more expensive projector means that the Leap can be manufactured at
lower cost, but it also means that it’ll sometimes suffer greater issues with accuracy.

Interestingly this also means that the Leap can be used as a pretty good night-vision
camera!

3 Not necessarily a safe assumption, as evidenced by the 1987 landmark case Montoya vs. Rugen.
Licensed to Mark Watson <nordickan@gmail.com>

356 CHAPTER 13 Augmenting virtual reality
 The Leap SDK reports hand data in terms of the position of the palm of the hand
and the bones of each finger. Each finger is defined as having four bones, each of
which can then be described independently in terms of position, orientation, and
length. (For simplicity’s sake, the thumb is considered a finger with four bones, even
though most real human thumbs lack the metacarpal bone found in the other four
fingers. The thumb’s “metacarpal” is reported as a zero-length bone.)

 The Leap also offers limited support for detecting the arm above the wrist, com-
bining camera imaging with medical reasoning based on the visible portions of the
hands. Hands are far easier to detect with the Leap’s depth-sensing technology than
arms are, because arms are comparatively devoid of distinguishing features.

The Leap SDK contains numerous examples of how to make best use of the anatomi-
cal and mathematical data made available through the Leap API.

13.4.2 The Leap, the Rift, and their respective coordinate systems

The Leap’s coordinate system was originally designed for a device sitting face-up on
your desk. That coordinate system won’t change when the Leap is attached to the
faceplate of the Rift, but the device itself will be rotated forward 90° (figure 13.14).

 The challenge is to map from the Leap’s rotated coordinate system into the Rift’s
own basis. In the Rift, the flexibility of OpenGL means that your coordinate system is

The Leap’s head-mounted display mode
When using the Leap with the Rift, the Leap SDK recommends that you “hint” to the
Leap that it’s oriented vertically, on your face, instead of horizontally, on your desk.
This tells the Leap to choose hand-detection heuristics more predisposed to detect-
ing the back of the hand than the front, because it’ll be seeing the hand from behind
instead of below.

The C++ command to pass the appropriate hint to the Leap is as follows:

controller.setPolicy(Leap::Controller::PolicyFlag::POLICY_OPTIMIZE_HMD);

+X

+Y

+Z

+Y

+X

+Z

Figure 13.14 The Leap’s coordinate system, as reported when the Leap is on a desk (left)
and when it’s on the Rift (right)
Licensed to Mark Watson <nordickan@gmail.com>

357The Leap Motion hand sensor
up to you, but most commonly we choose to place the camera looking down the nega-
tive Z axis, with positive X to the right and positive Y proceeding vertically upward.
Using these axes, we need to execute the following basis transform (figure 13.15):

Leap +X Rift -X [1 0 0] [-1 0 0]
Leap +Y Rift –Z [0 1 0] [0 0 -1]
Leap +Z Rift -Y [0 0 1] [0 -1 0]

We’ll implement this basis rotation with the following code, which will convert the
Leap’s Vector type into the GLM vec3 type:

glm::vec3 leapToRift(Leap::Vector & vec) {
 return glm::vec3(-vec.x, -vec.z, -vec.y);
}

We also need to consider the units of the two devices, and the position of the Leap on the
front of the Rift. OpenGL units are traditionally meters, and as we apply Rift concepts like
the IPD and the player height, the choice of meters becomes fixed. The Leap, on the
other hand, reports its values in millimeters. The Leap’s origin is the Leap peripheral
itself, which is positioned about 7 centimeters ahead of the viewer. In the Rift’s frame of
reference, those 7 centimeters are along the negative Z axis. So to convert from Leap to
Rift, we must divide all Leap positions by 1000 and then subtract 0.07 meters,

glm::vec3 leapToRiftPosition(Leap::Vector & vec) {
 return leapToRift(vec) / 1000.0f + glm::vec3(0, 0, -0.070);
}

taking us from millimeters to meters, and from the center of the Leap to the center of
the Rift.

13.4.3 Demo: integrating Leap and Rift

In this demo we’re going to build a simple interactive scene in which the user can
drag a sphere from place to place on the XY plane by waving their hand (figure 13.16).
When the wearer extends their index finger, the sphere becomes interactive; when
touched, it follows the tip of the finger.

+Y

+X

-Z

+X

+Y

+Z

Leap Rift

Figure 13.15 Transformation from Leap coordinates to Rift coordinates
Licensed to Mark Watson <nordickan@gmail.com>

358 CHAPTER 13 Augmenting virtual reality
Clearly this could be a more complex and interactive application, but our focus here
is on the synergy between Leap and Rift, not on the many potential uses of the pair-
ing. The Leap website contains a host of more advanced and fascinating demos.

 The Leap supports both event-driven and threaded data access models, making it
very accessible to different styles of software development. We’re going to use the
threaded API, and as you’ll see this means that our access to the Leap is virtually iden-
tical to our access to webcam data in the previous examples in this chapter.

 For clarity, we’ve split the code for our Leap demo into three parts, listings 13.6,
13.7, and 13.8:4

■ Listing 13.7 shows the LeapHandler class, which implements the producer/con-
sumer pattern we used earlier.

■ Listing 13.8 shows the LeapApp class, which captures Leap and Rift data and
implements the drag operation.

■ Listing 13.9 shows the rendering and graphics support methods that use Leap
frame data to model the pose of a human hand.

4 In reading these code listings, take them with a grain of salt. The Leap SDK is in beta and under active devel-
opment, so the code we present here may (and probably will) cease to be accurate after printing. Be sure to
check out developer.leapmotion.com and our GitHub repository for the latest updates.

Figure 13.16 The user’s hands can interact with the scene.
Licensed to Mark Watson <nordickan@gmail.com>

http://developer.leapmotion.com

359The Leap Motion hand sensor
struct CaptureData {
 glm::mat4 leapPose;
 Leap::Frame frame;
};

class LeapHandler : public Leap::Listener {

private:

 bool hasFrame{ false };
 std::thread captureThread;
 std::mutex mutex;
 CaptureData frame;
 ovrHmd hmd;
 Leap::Controller controller;

public:

 LeapHandler(ovrHmd & hmd) : hmd(hmd) {
 }

 void startCapture() {
 controller.addListener(*this);
 }

 void stopCapture() {
 controller.removeListener(*this);
 }

 void set(const CaptureData & newFrame) {
 std::lock_guard<std::mutex> guard(mutex);
 frame = newFrame;
 hasFrame = true;
 }

 bool get(CaptureData & out) {
 std::lock_guard<std::mutex> guard(mutex);
 if (!hasFrame) {
 return false;
 }
 out = frame;
 hasFrame = false;
 return true;
 }

 void onConnect(const Leap::Controller & controller) {
 controller.setPolicy(
 Leap::Controller::PolicyFlag::POLICY_OPTIMIZE_HMD);
 }

 void onFrame(const Leap::Controller & controller) {
 CaptureData frame;

 frame.frame = controller.frame();
 frame.leapPose = Rift::fromOvr(
 ovrHmd_GetTrackingState(hmd, 0.0).HeadPose.ThePose);

Listing 13.7 LeapDemo, part one: LeapHandler, the producer/consumer model

Holds a Leap::Frame
object

Inherits handlers to
capture Controller
and Frame state

Most thread logic
and state remains
unchanged

Entry point to Leap
state and callbacks

Registers this Listener with the
Leap::Controller to receive
onConnect() and onFrame events

 b

On shutdown, removes this
Listener from the Leap::Controller

 c

Locks the mutex, and
captures a copy of
the frame state

Locks the mutex, returns
a copy of the frame state,
and clears local state

Hints to the Leap
SDK that it should
expect to see the
backs of hands
more often than
the front

 d

Captures current
state: the Leap’s
hand position(s)
and the Rift’s
head pose
Licensed to Mark Watson <nordickan@gmail.com>

360 CHAPTER 13 Augmenting virtual reality
 set(frame);
 }
};

We begin by modifying our CaptureData class to contain a Frame of data from the
Leap and a head pose captured from the Rift. A Frame is the principal data class in
the Leap SDK, and its methods give access to hand position and orientation and all
finger data.

struct CaptureData {
 glm::mat4 leapPose;
 Leap::Frame frame;
};

“But wait,” you say. “Why bother with the Rift’s head pose?” (the glm::mat4 leapPose).
It would be great if things were as simple as this:

1 The Leap tells you where your hands are.
2 The Rift renders your virtual hands.

Alas, life’s not that easy, because here’s what really happens:

1 The Leap tells you where your hands are, from its point of view.
2 Your head moves and turns, moving and turning the Rift.
3 The Leap doesn’t know it’s moved, because it has no accelerometers, so it

thinks your hands have moved.
4 The Rift renders the world, from its point of view—which isn’t the same as the

Leap’s.
5 Hilarity ensues.

In short, we have to transform incoming hand position and orientation data from the
Leap’s frame of reference to the Rift’s. Because we capture hand data at a specific
instant in time, we need to correlate that with the matching head pose of the Rift.
CaptureData becomes the binding of frame data to basis transform.

 This way, if you hold your hand up before your face and rotate your head, keeping
your hand fixed in space, the virtual hand will remain at the same point in virtual space
as well. The Leap will see the hand swinging away, but the updated transform on the Rift
will cancel that out. We’ll read this data in the method renderScene(), in listing 13.9.

 Most of the rest of the code in listing 13.7 should look familiar from earlier in this
chapter; we’ve built the same scaffolding of producer/consumer model, using a
mutex to ensure that no race conditions corrupt our data. The differences between
this listing and the earlier webcam versions come in where we handle our connection
to the Leap.

 When we start the handler up or shut it down, we need to connect to and discon-
nect from the Leap with calls to controller.addListener B and controller
.removeListener() c. When the Leap SDK finds the Leap hardware, it will call our
callback method, onConnect().
Licensed to Mark Watson <nordickan@gmail.com>

361The Leap Motion hand sensor
 In onConnect() we give the Leap an important hint d:

 controller.setPolicy(Leap::Controller::PolicyFlag::POLICY_OPTIMIZE_HMD);

This line tells the Leap SDK to expect to see the backs of hands more often than
the fronts.

 That may sound like a pretty spurious thing to say, but it’s critical for effective func-
tion in the Leap. The Leap uses heavily heuristic algorithms to improve its processing
speed. Sometimes that can mean sacrificing accuracy, but speed of capture is critical.
There’s a fair analog to the technical challenges of the Rift here, in miniature:
through proprioception, we have a strong sense of where our hands are, how our fin-
gers are flexed, and so on. Our fingers are extremely deft and we can position them
with great precision, so the challenge of the Leap is not only to detect the hands and
fingers but to do so fast enough that there’s never a visible disconnect between real
motion and virtual position.

 (Hey, at least there’s no risk of making the user nauseous if you don’t read their
hand position correctly.)

NOTE A heuristic algorithm is one that trades precision and accuracy for fast,
flexible results, typically by solving problems through contextually guided
experimentation and adaption rather than strict procedural analysis. Heuris-
tic algorithms are less dependable than classic computing, but are often capa-
ble of producing answers to “softer” problems more quickly than would be
possible through a rigorous insistence on correctness and precision.

In the case of the Leap, specifying the current context (“we expect to see the
back of the user’s hand”) helps the Leap to choose image analysis parameters
to most quickly interpret its stereo camera imagery. For example, it will know
that the fingers are most likely to curl away from its point of view, not toward it.

Once we’ve set up our connection to the Leap SDK, the actual capture is easy. We over-
ride their API method onFrame():

void onFrame(const Leap::Controller & controller) {
 CaptureData frame;
 frame.frame = controller.frame();
 frame.leapPose = Rift::fromOvr(
 ovrHmd_GetTrackingState(hmd, 0.0).HeadPose.ThePose);
 set(frame);
}

The method onFrame() is called from the Leap’s listening thread each time a new
hand pose is available. When onFrame() is called, we capture a complete copy of the
current hand settings. Then we capture the current pose of the Rift, storing them in
our CaptureData structure.

 It would be elegant if we could take advantage of timewarp here. We know that
there’s going to be a brief lag between the instant when we capture the frame, here,
and the instant when we render the positioned hand in listing 13.8. We could pass in a
Licensed to Mark Watson <nordickan@gmail.com>

362 CHAPTER 13 Augmenting virtual reality

le
es it...

e
d
ed
positive time delta in our call to ovrHmd_GetTrackingState(); the Rift would return
its predicted head pose a few milliseconds from now. Unfortunately, the Leap SDK
doesn’t (currently) offer such a predictive feature, so there’d be no way to make a sim-
ilar request to the Leap. For our demo, we opted to keep the two devices in lockstep
without prediction.

 One interesting possibility for the future is that by analyzing the past several frames
of the Leap’s motion, it may be possible to build a coarse prediction function for fin-
ger and palm positions. We are far, far more sensitive to our own head pose than to
hand pose, and it’s possible that even a limited extrapolation from recent velocity
could be an effective predictor of hand pose a frame or two in advance. Future
research topic, anybody?

 This covers connecting to the Leap. Next up is reading back the data we’ve cap-
tured and putting it to good use, shown here.

class LeapApp : public RiftApp {

 const float BALL_RADIUS = 0.05f;

protected:

 LeapHandler captureHandler;
 ShapeWrapperPtr sphere;
 ProgramPtr program;
 CaptureData latestFrame;
 glm::vec3 ballCenter;

public:

 LeapApp() : captureHandler(hmd) {
 captureHandler.startCapture();
 ballCenter = glm::vec3(0, 0, -0.25);
 }

 virtual ~LeapApp() {
 captureHandler.stopCapture();
 }

 void initGl() {
 RiftApp::initGl();
 program = oria::loadProgram(
 Resource::SHADERS_LIT_VS,
 Resource::SHADERS_LITCOLORED_FS);
 sphere = oria::loadSphere(
 {"Position", "Normal"}, program);
 ovrhmd_EnableHSWDisplaySDKRender(hmd, false); #C
 }

 virtual void update() {
 if (captureHandler.get(latestFrame)) {
 Leap::HandList hands = latestFrame.frame.hands();
 for (int iHand = 0; iHand < hands.count(); iHand++) {

Listing 13.8 LeapDemo, part two: LeapApp data capture and interaction

Begins Leap and
Rift pose capture

 b

Ends pose
capture

 c

initializes OpenGL, loads
our standard lit shader
and geometry, and disables
the HSW pop-up

 d

If new frame data is availab
from the Leap, then captur

 e

…and examines it to se
if it contains a valid han
with index finger extend
Licensed to Mark Watson <nordickan@gmail.com>

363The Leap Motion hand sensor

tion
he
e

d
 Leap::Hand hand = hands[iHand]; #F
 Leap::Finger finger = hand.fingers()[1]; #F
 if (hand.isValid() && finger.isExtended()) { #F
 moveBall(finger);
 }
 }
 }
 }

 void moveBall(Leap::Finger finger) {
 glm::vec3 riftCoords =
 leapToRiftPosition(finger.tipPosition());
 riftCoords = glm::vec3(
 latestFrame.leapPose * glm::vec4(riftCoords, 1));
 if (glm::length(riftCoords - ballCenter) <= BALL_RADIUS) {
 ballCenter.x += (riftCoords.x - ballCenter.x) / 4;
 ballCenter.y += (riftCoords.y - ballCenter.y) / 4;
 }
 }

As you can see, the Leap’s Hand and Finger APIs are very clean and easy to follow.
After we’ve done the standard setup B, c, d, the interesting data processing hap-
pens in update(). If the capture thread has delivered a new frame e, we loop over
the Hands in the frame, checking each for an extended index finger. The index finger
is finger [1] in the Hand’s Finger array.

 If we find an extended index finger, then it’s time to get our E.T. on. The method
moveBall() converts from Leap coordinates to world coordinates f by transforming
into Rift coordinates, then to the world basis. The method leapToRiftPosition()
exchanges basis axes and converts from millimeters to meters, adding the offset neces-
sary to compensate for the Leap stuck 7 cm ahead of the center of the user’s eyes
when wearing the Rift. We then multiply by the Rift head pose that we captured along-
side the Leap hand data. This transforms from coordinates that are relative to the cur-
rent heading of the Rift, to world coordinates.

 Now we can test the distance in world coordinates from the fingertip position to
the sphere. If the two points are close enough (less than BALL_RADIUS), then we
update the ball’s position by adding a fraction of the intervening distance to its cur-
rent position. The ball will now follow the user’s fingertip until the user moves too
quickly, or closes their hand.

 This covers our update loop and using sensor data to move the ball; all that
remains is the actual rendering, shown in the following listing.

 virtual void renderScene() {
 glClear(GL_DEPTH_BUFFER_BIT);
 GlUtils::renderSkybox(Resource::IMAGES_SKY_CITY_XNEG_PNG);
 gl::MatrixStack & mv = gl::Stacks::modelview();

 mv.with_push([&]{
 mv.transform(latestFrame.leapPose);

Listing 13.9 LeapDemo, part three: rendering

If so, moves the ball toward
the tip of the finger

Converts the
fingertip’s
position to world
coordinates

 f

Compares the posi
of the fingertip to t
center of the spher

Clears the screen an
renders a skybox.

Rendering of hands and fingers takes
place with the Rift-to-world transform
on the modelview stack.
Licensed to Mark Watson <nordickan@gmail.com>

364 CHAPTER 13 Augmenting virtual reality

E

in

finge
retr

it
t

he
e’s
ift
s.

Con
le
m

T
t

one’s
sform
he
 Leap::HandList hands = latestFrame.frame.hands();
 for (int iHand = 0; iHand < hands.count(); iHand++) {
 if (hands[iHand].isValid()) {
 drawHand(mv, hands[iHand]);
 }
 }
 });

 GlUtils::draw3dLine(
 glm::vec3(ballCenter.x, -1000, ballCenter.z),
 glm::vec3(ballCenter.x, 1000, ballCenter.z));
 GlUtils::draw3dLine(
 glm::vec3(-1000, ballCenter.y, ballCenter.z),
 glm::vec3(1000, ballCenter.y, ballCenter.z));
 drawSphere(ballCenter, BALL_RADIUS);
 }

 void drawHand(const Leap::Hand & hand) {
 drawSphere(leapToRiftPosition(hand.wristPosition()), 0.02f);
 for (int f = 0; f < hand.fingers().count(); f++) {
 Leap::Finger finger = hand.fingers()[f];
 if (finger.isValid()) {
 drawFinger(finger, hand.isLeft());
 }
 }
 }

 void drawFinger(const Leap::Finger & finger, bool isLeft) {
 MatrixStack & mv = Stacks::modelview();
 for (int b = 0; b < 4; b++) {
 mv.withPush([&] {
 Leap::Bone bone = finger.bone((Leap::Bone::Type) b);
 glm::vec3 riftCoords = leapToRiftPosition(bone.center());
 float length = bone.length() / 1000;

 mv.translate(riftCoords);
 mv.transform(leapBasisToRiftBasis(bone.basis(), isLeft));
 mv.scale(glm::vec3(0.01, 0.01, length));
 oria::renderColorCube();
 });
 }
 }

 void drawSphere(glm::vec3 & pos, float radius) {
 MatrixStack & mv = Stacks::modelview();
 mv.withPush([&]{
 mv.translate(pos);
 mv.scale(radius);
 oria::renderGeometry(sphere, program);
 });
 }

 glm::mat4 leapBasisToRiftBasis(
 Leap::Matrix & mat, bool isLeft) {

Loops over and
renders each
valid Hand.

Renders our
manipulation target,
a ball floating in
virtual space.

Renders a
sphere at
the wrist

joint.

Loops over
all Fingers.

Renders each valid Finger.
We need to know whether
this is a left or right hand.

Models the fingers and thumb of the
hand as an array of four bones.

ach finger’s
basis is

dependent
of the

others.

r.bone(i)
ieves the
h bone in
he finger.

Converts t
finger bon
center to R
coordinate

verts bone
ngth from
illimeters

to meters.

ranslates to
he center of

the bone.

Uses the b
basis tran
to orient t
cube.

The finger bone
model is a scaled
and stretched
cube.

Renders
the cube.

drawSphere()
encapsulates rendering a
simple sphere at a given
point and radius.

leapBasisToRiftBasis()
converts a Leap::Matrix
to a glm::Matrix.
Licensed to Mark Watson <nordickan@gmail.com>

365The Leap Motion hand sensor
 glm::vec3 x = leapToRift(mat.transformDirection(
 Leap::Vector(isLeft ? -1 : 1, 0, 0)));
 glm::vec3 y = leapToRift(mat.transformDirection(
 Leap::Vector(0, 1, 0)));
 glm::vec3 z = leapToRift(mat.transformDirection(
 Leap::Vector(0, 0, 1)));
 return glm::mat4x4(glm::mat3x3(x, y, z));
 }

 glm::vec3 leapToRift(Leap::Vector & vec) {
 return glm::vec3(-vec.x, -vec.z, -vec.y);
 }

 glm::vec3 leapToRiftPosition(Leap::Vector & vec) {
 return leapToRift(vec) / 1000.0f + glm::vec3(0, 0, -0.070);
 }
};

RUN_OVR_APP(LeapApp);

We begin with what’s become our standard rendering preamble: clearing the dis-
play and rendering a skybox around our scene. Even in such a simple example as
this, where our scene is a sphere floating in nothingness, the skybox is important
for a Rift app because it gives context for head tracking. Without the skybox
responding to head motion, it’s hard to gauge the position and size of the floating
interactive sphere.

 We’ll render the skybox and the sphere in world coordinates; no hidden complex-
ities there. But we do need to be slightly more careful when we render the hands,
because remember: they’re being captured and framed from the point of view of the
Leap, which is attached to your face. So before we can render hands, we need to
change our current working basis from world coordinates to Rift coordinates; that
way, when we render Rift-coordinate hand positions, they’ll appear (to our point of
view) in world positions.

 To do so, we push the latest captured Rift head pose onto the modelview stack:

 mv.transform(latestFrame.leapPose);

We capture and update this pose at every update to the Leap frame data. Each hand is
rendered as a sphere set at the wrist, attached to five chains of stretched cubes to form
the fingers. We use our support methods to convert from the Leap’s basis to the Rift’s,
and to rotate and position each wrist and each bone of the hands.

 The fingers of the hand are stored in a Leap Frame as a chain of four bones.
Each bone has its own center and rotational basis. The method bone.basis() returns
the basis for each bone, which we can convert into a rotation-only basis by applying
it to the three orthonormal basis vectors, X [1, 0, 0], Y [0, 1, 0], and Z [0, 0, 1].
Conveniently, the Leap::Matrix class has a simple method for applying a basis
transform to a direction: transformDirection(). So building our local rotation

Converts both hands
to a right-handed
coordinate system.
Licensed to Mark Watson <nordickan@gmail.com>

366 CHAPTER 13 Augmenting virtual reality
matrix expressing the Leap’s rotations in Rift coordinates is a simple matter of build-
ing the matrix:

glm::vec3 x = leapToRift(mat.transformDirection(Leap::Vector(1, 0, 0)));
glm::vec3 y = leapToRift(mat.transformDirection(Leap::Vector(0, 1, 0)));
glm::vec3 z = leapToRift(mat.transformDirection(Leap::Vector(0, 0, 1)));
// Resulting 3x3 matrix: glm::mat3x3(x, y, z))

There’s one interesting gotcha, though. It appears that the Leap reports the frame of
the left hand in a left-handed basis but the right hand in a right-handed basis. To com-
pensate for this, when building the Rift-space matrix that describes the orientation of
each bone of each finger, we negate the X axis of the Leap source basis. So we change
the first line of the previous code snippet to

glm::vec3 x = leapToRift(mat.transformDirection(
 Leap::Vector(isLeft ? -1 : 1, 0, 0)));

which ensures that all Rift-space matrices are in the same handedness.
 The last methods of this snippet are code you’ve already seen:

 glm::vec3 leapToRift(Leap::Vector & vec) {
 return glm::vec3(-vec.x, -vec.z, -vec.y);
 }

which exchanges axes to convert from Leap space to Rift space, and

 glm::vec3 leapToRiftPosition(Leap::Vector & vec) {
 return leapToRift(vec) / 1000.0f + glm::vec3(0, 0, -0.070);
 }

which scales input coordinates from millimeters to meters and offsets the Leap value
to account for the Leap itself being anchored 7 cm ahead of the center of the user’s
eyes in the Rift.

13.5 Summary
In this chapter you learned how to

■ Load, examine, and display panoramic and photo sphere images, to create a
wraparound virtual scene from photos of the real world

■ Blend live webcam video into your virtual world
■ Use two webcams to create stereo reality in the Rift
■ Virtually model your hands using the Leap Motion stereo sensing peripheral
■ Use basis transforms to migrate data from the Leap to the Rift
Licensed to Mark Watson <nordickan@gmail.com>

appendix A
Setting up the Rift in a

development environment

Getting the Rift set up for use is well documented in the Oculus Rift Development Kit
Instruction Manual that comes with the kit, and if you follow those instructions,
you should be able to get the Rift up and running as a user. But if you’re planning
on using the Rift in a development environment, you may find that the setup you
want to use while you develop for the Rift isn’t the same as it would be for simply
using the Rift. For example, while using the Rift, you’ll probably prioritize perfor-
mance over ease of switching between applications. For development, it may be
better to take a performance hit in exchange for being able to see both the out-
put and the debugger at the same time. What works best for you depends on your
needs and preferences.

This appendix covers
■ Selecting a display mode
■ Configuring the displays in your OS
■ Configuring the Rift for your use
■ Verifying your setup and troubleshooting
■ Working without a Rift
367

Licensed to Mark Watson <nordickan@gmail.com>

368 APPENDIX A Setting up the Rift in a development environment
 When it comes to setting up your development environment, we expect that you may
need to make the most choices around selecting the display mode you want to use.

A.1 Selecting a display mode: Direct HMD Access or
Extended Desktop mode
Prior to SDK 0.4, the Rift was seen by your computer as simply another monitor and
setting up the Rift required configuring the Rift display in your OS. With the release of
the DK2 and the 0.4.x version of the software, Oculus introduced a runtime compo-
nent that runs on your computer as a service. This service allowed applications to be
displayed directly on the Rift without the Rift display becoming part of the desktop
(eliminating the need to configure the Rift display in your OS). Unfortunately, as of
this writing, this direct display mechanism is unstable and not available on all plat-
forms. Fortunately, Oculus provides an easy way to continue to use the Rift as if it were
simply another monitor.

 To select your display mode, with the Rift connected to your computer and
turned on, run the OculusConfigUtil that was installed with the runtime and select
Tools > Rift Display Mode. You should then see the Rift Display Mode selection
panel (figure A.1).

If you plan on running applications built with Oculus SDK 0.3 or earlier on a DK1, you
should select DK1 Legacy App Support, but otherwise, this option isn’t too vital. For
applications built on 0.4 or later, you have the choice between two display modes:
Direct HMD Access from Apps and Extend the Desktop to the HMD. Table A.1 shows
the pros and cons of each mode.

Figure A.1 The Rift Display Mode selection panel
Licensed to Mark Watson <nordickan@gmail.com>

369Configuring the displays in your OS for Extended Desktop mode
If it’s available to you and it works on your hardware, we recommend the Direct HMD
Access mode. But because of the instability of Direct HMD mode, particularly on
OpenGL, for our examples you may need to use Extended Desktop mode. To use
Extended Desktop mode, your next step is to configure your displays in your OS.

A.2 Configuring the displays in your OS for Extended
Desktop mode
If you’re using Extended Desktop mode, with the Rift connected to your computer
and powered on, it should be automatically recognized as an additional monitor. By
default most operating systems will end up creating an additional screen for output to
that monitor.

Table A.1 Rift display modes: pros and cons

Display mode Advantages Disadvantages

Direct HMD Access
from Apps

Better performance

Provides an option to mirror the Rift
display on your desktop so that you
can see what’s on the Rift without
wearing the Rift

No need to configure displays in
your OS

Not currently supported for Mac OS
or Linux.

Unstable.

Extend Desktop to
the HMD

Only option for Mac OS, Linux

Stable

Requires display configuration.

There’s a portion of the desktop where
you can “lose” windows or your mouse.

You can’t normally see what’s displayed
on the Rift without wearing the Rift.

Clarifying the terminology: “display” is an overloaded term
Before we get into the various setups, we should clarify terminology. “Display” is a
pretty overloaded term, so let’s avoid it and talk about screens and monitors. For our
purposes, a monitor is a physical device that you connect to your computer and that’s
capable of displaying an image. Monitors have a physical size and, in the case of LCD
displays, a native resolution measured in pixels horizontally by pixels vertically. Your
computer almost certainly has one or more monitors physically connected to it. The
Rift headset is, or rather contains, a monitor. A screen, on the other hand, is an
abstraction by your OS, and is (one of) the area(s) to which it will render windows.
Because a modern OS can render the same screen to multiple monitors, the relation-
ship between the two can be fuzzy. You could have two monitors, but only one screen.
Probably the most common use of this is connecting laptops to external display
devices such as projectors so that you can give a presentation, but this kind of setup
is also valuable if you’re developing for specialized display hardware, such as the Rift.
Licensed to Mark Watson <nordickan@gmail.com>

370 APPENDIX A Setting up the Rift in a development environment
To configure your displays and decide how to map screens to your available monitors,
use your OS’s display configuration panels:

■ Windows—In Control Panel, select Displays, or in Windows 8, start typing Display
in the Start screen until the Display Settings item appears and select it.

■ Mac OS—Under the Apple menu, select System Preferences > Displays.
■ Linux—Use the display panel for your chosen desktop environment or use the

xrandr command-line tool.1

When you connect the Rift, you’ll have two physical monitors and two virtual screens,
as seen in figure A.2.

 This is termed extending your display, because you’re effectively extending the bor-
ders within which your OS can display output. In most cases the Rift should be set as
the extended portion of the display and the main monitor as the primary display.

1 Linux has an interesting advantage here. Its display settings are much more configurable and flexible than
the other desktop OSes, allowing you to place one monitor inside the output window of another, meaning
you get the benefits of cloning (seeing the Rift output both on the device and a conventional monitor) with-
out the drawback of having your normal monitor locked to the same display resolution as the Rift. The per-
formance impact of this isn’t well explored, but it’s certainly handy for development and debugging.

Figure A.2 Display configuration panel with the Rift configured to extend your display
Licensed to Mark Watson <nordickan@gmail.com>

371Configuring the displays in your OS for Extended Desktop mode
Your other option is to clone (or mirror) your display, where the output of one screen
gets sent to both the Rift and your monitor. In this setup, you still have two monitors
but only one screen, as seen in figure A.3.

Using the Rift as the primary display?
Using the Rift as your primary display isn’t a realistic option. Looking through the Rift
presents each eye with an image of a different portion of the desktop. Selecting any-
thing or even figuring out on which half the mouse pointer is located is nigh impossible.

But it’s important to note that some Unity applications will only run on the primary
display. For those applications to run, you’ll need to set the Rift as the primary display
before running the application. You can configure the primary display in your operat-
ing system’s Display configuration panel.

Because working with the desktop isn’t really possible when looking through the Rift,
you should first make sure the Display configuration panel and the application you
want to launch are situated such that they’ll be at least partially on the extended por-
tion of the display. That way, you’ll still have easy access to them after switching the
Rift to be the main display.

Figure A.3 Display configuration panel with the Rift configured to clone (mirror) another monitor
Licensed to Mark Watson <nordickan@gmail.com>

372 APPENDIX A Setting up the Rift in a development environment
For both configurations, whether you’re cloning a display or extending your desktop,
the resolution of the display should be set to that of the Rift. Which configuration you
choose is a matter of taste; there are advantages and disadvantages to both.

A.2.1 Extending or cloning (mirroring): which should you choose?

To help you decide which configuration is right for you, table A.2 summarizes the
pros and cons of configuring the Rift as an extended display or as a cloned (mir-
rored) display.

The big advantage of extending your desktop is performance. Using the latency
testing hardware available from Oculus VR on a DK1, we found that the latency
between rendering a frame on the computer and having the pixels on the display
panel change in response was about 20 ms when running in extended mode versus
50 ms when running in cloned mode. If you’re measuring performance to speed up
your game or fight motion sickness, that kind of latency differential can have a sig-
nificant impact.

Table A.2 Extended vs. cloned: pros and cons

Display configuration Advantages Disadvantages

Extended Better performance

Resolution can be optimized
for the Rift without affecting
your primary display.

There’s a portion of the desktop where you
can “lose” windows or your mouse.

On some systems, when you extend
the desktop to the Rift, the Rift is set
by default as the primary display, making
your system almost impossible to use.

Cloned (Mirrored) You can see your entire desk-
top. There’s no portion of the
desktop where you can “lose”
windows or your mouse.

You can preview Rift graphics
and show them to others, in
the iconic “two ovals” view.

Performance can suffer.

Screen tearing (visual artifacts in the dis-
play caused by showing information from
two or more frames in a single screen
draw) may occur.

You may see significant twitches or jumps
in animation, particularly if the frame rate
falls below 70 fps. You can set the refresh
rate to 60 Hz to minimize this issue, but
you’ll see blurring.

Depending on your display driver, you
may not be able to clone the Rift DK2
monitor, because it reports the resolution
as 1080 × 1920 rather than 1920 ×
1080. Some systems aren’t able to
clone a monitor that’s rotated with one
that’s not.
Licensed to Mark Watson <nordickan@gmail.com>

373Improving your development environment
 There are two downsides to extending your desktop, both of which can be quite
bothersome:

■ Your computer treats the additional area as potential space on which to display
non-Rift content (other windows). Non-Rift-specific content displayed on the
Rift and nowhere else is extremely difficult to interact with, by the very nature
of the Rift display. Each eye only sees half of the overall display and some por-
tions of the display aren’t visible at all as long as the Rift lenses are in place.

■ You can’t see what’s being displayed when you run your application unless you
put on the headset. It can be helpful to you, as a developer, to see what’s being
displayed on the Rift while someone else is user-testing your software.

Using a cloned (mirrored) display means that there’s no portion of your desktop where
you can lose your mouse or windows, and it allows you to see what’s being displayed on
the Rift without having the Rift on yourself. Cloning has some downsides as well:

■ As we mentioned earlier, performance suffers.
■ The OS can only assign a screen a single resolution. The native resolutions of

the Rift headsets (at least for the DK1 and DK2) aren’t typical for modern moni-
tors, so you’ll have to make a choice between sacrificing some of your non-Rift
monitor’s resolution to target the native resolution of the Rift monitor, or using
the non-Rift monitor’s native resolution and allowing the Rift to scale the image
to fit its display panel. Attempting to clone or split with another monitor that
has lower resolution than the Rift is definitely not recommended.

■ A screen can have only a single refresh rate. The refresh rate is the frequency with
which the screen can be updated to show a new image; when two displays are
cloning each other, we’d like them to be updated in rigid lockstep. Unfortu-
nately, in many cases, even with a common refresh rate the two monitors won’t
be in perfect sync. This can be problematic because rendering systems such as
OpenGL and Direct3D use the period after a monitor has finished updating one
frame but before it begins the next, a period known as the vertical blanking inter-
val, to change the image. This ensures that you never see the top of one image
and the bottom of another at the same time (a display artifact known as tearing).
But with cloned monitors, the vertical blanking interval isn’t necessarily going
to occur at exactly the same time, so on one of the screens tearing is likely to
occur, and it’s often difficult or impossible to control which one.

A.3 Improving your development environment
Whether you clone the display or you extend the display, you won’t be able to see your
development environment and your output at the same time. As developers, we prefer
to use two monitors in addition to the Rift because it allows us to see our development
environment and our output at the same time. The downside of this setup is that it’s
not necessarily easy to achieve. The foremost issue is that not every video card will
drive three monitors. Although triple monitor support is becoming more common,
Licensed to Mark Watson <nordickan@gmail.com>

374 APPENDIX A Setting up the Rift in a development environment
it’s by no means ubiquitous and it’s almost unheard of in laptops. If your hardware
limits you to only two monitors, there are a number of approaches you can take to add
another monitor.

A.3.1 Fix it

If you have the budget and the space in your PC, you can always upgrade your video
card. Both AMD and NVIDIA have entry-level graphics cards supporting triple-monitor
output, so you should be able to solve the problem for less than $150.

A.3.2 Fix it cheaply

If a new video card isn’t in your budget, or your hardware doesn’t support it (such as
on a laptop), there’s another approach to adding support for another monitor: the
USB video adapter. These currently run in the $50 range and are suitable for use with
most laptops. If your laptop has a USB3 port, give that adapter some extra bandwidth.
USB video adapters love extra bandwidth.

 Regrettably, USB video adapters aren’t typically suitable for 3D graphics, at least not
the kind employed in working with the Rift. What they are suitable for is displaying
your desktop and/or development environment. By making a monitor connected to a
USB adapter your primary display and displaying Visual Studio or Xcode or Eclipse on
it, you can leave your more powerful video card and its connected monitors (presum-
ably including the Rift) free to render the graphically intense output you create.

 Using a USB video adapter leaves you free to choose between cloning and extend-
ing your displays, with the caveat that you should probably clone only those displays
connected to the same underlying video card. So in the case of a laptop development
environment, you’d want to clone a screen to the laptop monitor and connect the Rift
through the laptop’s built-in external display port.

 One caveat: As of this writing the most popular external USB video adapter chipset,
manufactured by DisplayLink (www.displaylink.com), works well with Extended Desk-
top mode but has conflicts with Direct HMD mode. If you’re experiencing issues run-
ning in Direct HMD mode on a system that has the DisplayLink drivers installed, try
switching to Extended mode. In testing, that worked well for us.

A.3.3 Clone it with a gadget

There’s another approach to cloning the display: a signal splitter. Due to the conver-
gence of TV and computer monitor connectors, HDMI splitters are readily available
and can be used to clone a single signal from your computer to both a conventional
monitor and the Rift. As far as your computer is concerned, there’s only a single mon-
itor to deal with, but the signal goes to both pieces of hardware.

NOTE Depending on your display driver the Rift DK2 monitor may report its
resolution as 1080 × 1920 rather than 1920 × 1080. We aren’t aware of any con-
sumer-level HDMI splitters that are able to clone a monitor that’s rotated with
one that’s not. For this reason, cloning may only be useful for DK1 owners.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.displaylink.com

375Configuring the Rift for your use
Fortunately, because their primary market is AV equipment owners, HDMI splitters are
commodity hardware and therefore cheaply available. Unfortunately, using an HDMI
splitter has a huge drawback: it interferes with the EDID information coming from the
connected displays. All modern TVs, projectors, and computer monitors alike have a
data structure known as Extended Display Identification Data (EDID). EDID encodes
certain information about the device, chiefly the resolutions it supports, but also
information about the model and manufacturer of the device. The EDID information
is read by other devices that these displays are connected to over HDMI or DVI.

 The Oculus SDK uses the EDID information from the Rift monitor to identify which
of the various monitors attached to the system is actually a Rift. Splitters, on the other
hand, usually either report the EDID of only one of the displays or the other. Or, and
this is even worse, sometimes they’ll construct an entirely new EDID out of some com-
bination of the elements from the connected devices. Trying to find documentation
on what a given splitter will do before you buy it is usually futile, and devices that
either provide good documentation or configurability in this regard end up costing as
much as, if not more than, a new video card.

 HDMI splitters face the same disadvantages related to resolution and refresh rate as
described in the section on cloning your display.

A.3.4 Remote development

A fourth option is to dedicate an entire PC to the Rift. It’s quite reasonable to develop
on one computer, deploy code or compiled binaries to another, and run there. This
will naturally introduce latency around network file transfers and seamless transitions
from developing to testing, but if you have a spare PC lying around and its GPU is up
to the job, go for it.

 The biggest downside to a two-computer development rig is that a lot of little ele-
ments of the software development process are going to get more complicated.
Debugging, for one: you’re going to need to learn to connect your IDE debugger to a
remote process on a second system. In some contexts that can be straightforward (in
Linux, it’s practically the default), but not all operating systems are so forgiving of hav-
ing remote processes hooking into an executing binary. We’re not saying that it can’t
be done—we’re just saying it’s not trivial.

A.4 Configuring the Rift for your use
Before you begin using the Rift, it’s well worth your time to take a moment to config-
ure the Rift for your personal use. To configure the Rift, you should adjust the headset
for a perfect fit and create a user profile. Both will contribute to a much more com-
fortable Rift experience.

ADJUSTING THE HEADSET FOR A PROPER FIT

The Rift is reasonably comfortable to wear, but it’s worth taking a few minutes to
adjust the headset for a proper fit. A proper fit will reduce fatigue and will help pre-
vent motion sickness.
Licensed to Mark Watson <nordickan@gmail.com>

376 APPENDIX A Setting up the Rift in a development environment
■ Select and install the correct lenses for your eyesight—You can wear the Rift with
glasses, but it decreases your field of view and most people find it more com-
fortable not to wear them. In addition, it’s possible to scratch the Rift lenses
with your glasses, so this is something to avoid if you can. The Rift DK2 comes
with two pairs of lenses, referred to as A and B lenses. Use the A lenses if
you’re farsighted or don’t require any vision correction, and use the B lenses
if you’re nearsighted. The Rift DK1 comes with three pairs of lenses, referred
to as A, B, and C lenses. Use the A lenses if you’re farsighted or don’t require
any vision correction, the B lenses if you’re moderately nearsighted, and the
C lenses if you’re very nearsighted. See the Oculus Rift Development Kit Instruc-
tion Manual that comes with the kits for information on how to change out
the lenses.

■ Adjust the distance between the lenses and your eyes—Use a coin to turn the adjust-
ment wheels on the side of the headset to set the distance of the lenses as close
to your eyes as possible, but not so close your eyelashes hit them. To adjust the
distance, turn the adjustment wheel toward the lenses to bring the lens closer to
your eye and turn the adjustment wheel toward the display to move the lens far-
ther away. Both lenses must be adjusted to the same distance.

■ Adjust the straps for a snug fit—The straps should fit snugly around your head but
not be too tight. Also, try not to have barrettes or hair bands in between the
straps and your head.

The next step is to create a user profile. Your profile will take into account which
lenses you’re using and where you have set the lens adjustment wheel.

A.4.1 Create a user profile

The Rift takes into account certain physical characteristics of the user, such as height
and the distance between the eyes, when rendering content. Although the default set-
tings provide a reasonable experience, we recommend that you create a profile with
your own information for the best possible experience. To create a profile, with the
Rift connected and powered on, run the Oculus Configuration Utility, as seen in fig-
ure A.4.

 To create a profile, click the + next to the user name pull-down list. Select the
lenses you’re using, specify where you have the lens adjustment wheel, and enter your
gender and height. You can also click Advanced to enter additional information.

 With the headset ready and a profile created, the next step is to make sure your
setup is working correctly.

A.5 Verifying your setup and troubleshooting
To verify your setup, there are two demo applications we suggest running: first is the
demo scene that can be accessed from the Oculus Configuration Utility (the Desk
Demo) and second, the OculusWorldDemo (also known as Tuscany) that comes with the
Licensed to Mark Watson <nordickan@gmail.com>

377Verifying your setup and troubleshooting
Oculus SDK. The Desk Demo shows off the positional tracking and provides a view that
can help you make sure that you have the positional camera in a good location. The
downside to this demo is that you can’t move about in the scene. The Tuscany demo
gives you an opportunity to see what it’s like to navigate in a VR world.

 To run the Desk Demo, run the Oculus Configuration Utility and select Show Demo
Scene. You’ll be presented with the Oculus Health and Safety Warning, which after
reading, you can dismiss by pressing any key. You can then begin the demo by clicking
Start. You’re then presented with a desk scene (figure A.5).

 You may need to select Recenter from the menu panel in front of the desk to be at
the desk. If you don’t see the menu panel, press the spacebar or turn around until you
see it. At this point, we recommend that you turn camera bounds on to make sure that
you’re located within the camera’s tracking bounds (figure A.6).

 Getting the camera into the right spot may take a bit of fiddling. But once the
camera is in the right place, we suggest you try a navigable scene (OculusWorldDemo),
to get a feel for what it’s like to move around. A link to the OculusWorldDemo execut-
able file can be found in the root of the Oculus SDK installation. This demo puts you

Figure A.4 The Oculus
Configuration Utility user
profile setup
Licensed to Mark Watson <nordickan@gmail.com>

378 APPENDIX A Setting up the Rift in a development environment
Figure A.5 The Desk Demo run from the Oculus Configuration Utility

Figure A.6 The desk scene with camera bounds turned on
Licensed to Mark Watson <nordickan@gmail.com>

379Verifying your setup and troubleshooting
inside an old Tuscan villa, as shown in figure A.7. You can move around and explore
the environment using the A, S, W, D keys (on a QWERTY keyboard) and mouse con-
trols, or a connected game controller such as an Xbox gamepad.

 Make sure you see the demo running on the Rift display and on any additional dis-
plays cloning the Rift. With the headset on, move your head and look around to
ensure that head tracking is being correctly registered.

 For either demo, if you aren’t seeing the display and/or the demo isn’t head track-
ing, here are some things to check:

■ Make sure you have powered on the Rift. For the DK2, use the power button on
the headset and check that the power indicator light is blue. The indicator light
glows blue when the headset is powered on and receiving a video signal and
orange when the headset is on but not receiving a video signal. For the DK1, use
the power button on the control box and check for the blue light in the Oculus
eye logo.

■ Check all of the Rift’s cables. It’s easy to forget to plug one of them in. You can
look at the Oculus Configuration Utility to see if the Rift and positional camera
have been detected.

■ If only one eye is displaying, or you see a white square for one of the eyes, check
to see that you’re running the Rift using the correct resolution. This can also

Figure A.7 OculusWorldDemo (Tuscany) screen shot
Licensed to Mark Watson <nordickan@gmail.com>

380 APPENDIX A Setting up the Rift in a development environment
happen if you’re in windowed mode and some other pop-up is covering the
other eye.

If this is your first time using the Rift, you may experience some motion sickness. For
advice on dealing with motion sickness—and especially, for our advice that you not try
to just “power through” the queasiness—please refer to section 1.6.

A.6 Developing without a Rift
One concern we often hear is that the Rift is still a work in progress and the DevKits
can be hard to come by. If you’re interested in building your game or app for the Rift
but don’t want to wait for your development kit from Oculus (or pay the 200%
markup that some resellers are asking for kits on eBay!), then you may be working
without a headset. Never fear: you can do it.

 Remember, the Rift is really two discrete devices in one: the tracker and the dis-
play. Both are accessed through the Oculus Rift SDK. The tracker will send streams of
packets as messages, instances of OVR::Message, that you’d normally read directly
from the device via the SDK. We discuss the mechanics of this in detail in chapter 2.
The display is also identified through the SDK, and once you’ve targeted the preferred
video device, you’ll need to render images to that device with exactly the correct
aspect ratio and optical distortion. Chapter 4 delves into those optical details.

 Without a Rift, you can still use the SDK. You can build and link your code against
the SDK’s libraries without an actual headset at the other end of the wires. You won’t
get any packets and you won’t find the display (of course), but the SDK libraries will
still load and run. For that matter, you don’t need to have found a Rift display to show
video; as discussed earlier, any screen will do while you’re developing. If you’re doing
it right, you’ll see the Rift’s split-screen rounded images on your normal monitor.

 Another approach is recording a Rift for offline use. If you’re a small development
team and you’ve only got one DK among a few of you, a useful trick is to record the
packets streaming from the Rift while one user wears it, and then “play back” those
packets from disk for other developers. You can simulate how your software will
respond to the quaternions indicating a user looking up, down, and around by feed-
ing the packets back into your app as though they’d just come in fresh off the wire,
without actually having the wire. In essence you simulate having a Rift.

 Another option is to use Unity, a popular game engine. Unity’s support for the Rift
continues to evolve, and it can easily be used to develop for the Rift, even when you
don’t have a headset. See chapters 7 and 8 for more on Unity.
Licensed to Mark Watson <nordickan@gmail.com>

appendix B
Mathematics and
software patterns

for 3D graphics

This appendix isn’t a mathematics textbook; there’s a vast field out there dedicated
to linear algebra and matrices, which these few pages couldn’t possibly hope to
contain. Here we’ll touch only on concepts directly related to computer graphics
and the Rift, and we’ll do so fleetingly. For more depth, please check out the refer-
ences in appendix C, online, or at your local library.

This appendix covers
■ Coordinate systems, what they mean, and how

they’re best expressed in code and matrix form
■ Fundamentals of matrix linear algebra, with a

focus on concepts that are key to 3D computer
graphics

■ Methods for representing rotations
■ Examples of software design patterns common

in 3D graphics: scene graphs, matrix stacks,
and the modelview matrix stack
381

Licensed to Mark Watson <nordickan@gmail.com>

382 APPENDIX B Mathematics and software patterns for 3D graphics
B.1 Coordinate systems
Within any virtual environment, somewhere there’s a position [0, 0, 0]. We refer to
this as the origin and all other frames of reference are defined relative to this point.
The origin may be anywhere—anchored to the user’s screen or at the virtual center of
a virtual world. In a virtual environment, there’s really no “there” there, so the origin
can be literally anywhere you want.

 If an object is defined in coordinates that are relative to the origin, then we say that
it’s defined in world coordinates.

 Frequently, we want to be able to describe the relative positions of vertices in an
object without relying on their absolute position in world coordinates. In such cases
it’s common to use a frame of reference that’s specific to the object, which we call local
coordinates (see figure B.1). Local coordinates are defined in terms of world coordi-
nates by an orientation and a position (and sometimes more), which are bound to the
object. In local coordinates, the vertices are defined relative to a local center and a
local trio of X, Y, and Z axes; these form the local frame of reference. The position
and orientation of the local frame of reference can now be changed freely without
ever changing the [X, Y, Z] values of the vertices defined within that frame.

 To define the conversion from local coordinates to world coordinates, it’s common
to capture the orientation and position together as a four-by-four matrix, which is called
the transform of the object. When each vertex defined in local coordinates is multi-
plied by the object’s transform, the resulting point is the position of that vertex in
world coordinates.

 In computer graphics it’s common to refer to other standard frames of reference
beyond world and local, such as camera coordinates, in which all geometry is defined

Y world

X world

Z world

Y local

Z local X local

(0, 0, 0)
world

Figure B.1 A model of the Rift
with local axes, positioned at the
origin of a local coordinate system,
in the context of the world
coordinate system
Licensed to Mark Watson <nordickan@gmail.com>

383Introduction to matrices
relative to the camera, and screen coordinates, in which all geometry has been trans-
formed into perspective projection for rendering to the screen.

B.2 Introduction to matrices
A matrix1 in 3D computer graphics today is a rectangular array of real numbers, typically
a two-dimensional 4 × 4 grid.2 Matrices are one of the core concepts in modern graphics
and are used by virtually every 3D platform on the market. The term matrix has many
uses and many meanings, across mathematics and beyond, but this appendix will focus
explicitly on the mainstream, contemporary, computer graphics usage of matrices. So,
for our limited purposes, matrices are 4 × 4 arrays of floats or doubles.

 Here’s an example of a matrix:

 [1 0 0 0]
 [0 1 0 0]
 [0 0 1 0]
 [0 0 0 1]

This is what we call the identity matrix : a 4 × 4 grid of numbers that has much the same
effect in matrix math as the number 1 does in conventional math. (If we multiply any
other matrix by the identity matrix, the result will always be the other matrix.)

 The mathematical properties of matrices include the following:

■ Matrices support many of the same operations as real numbers:
– Addition
– Subtraction
– Multiplication with another matrix
– Multiplication with a vector
– Inversion (1 / x)

■ Matrix multiplication is associative:

(A • B) • C = A • (B • C)

■ Matrix multiplication is not commutative:

A • B B • A

■ The formula for matrix-vector multiplication is as follows:3

[A B C D] [Q] [AQ + BR + CS + DT]
[E F G H] • [R] = [EQ + FR + GS + HT]
[I J K L] [S] [IQ + JR + KS + LT]
[M N O P] [T] [MQ + NR + OS + PT]

1 “Unfortunately, no one can be told what the Matrix is. You have to see it for yourself.”
2 …wait, we just did.
3 In GLSL, the OpenGL shader language, these lines of additions and multiplications could simply be written as
 vec4 V; // GLSL vector, length 4
 mat4 M; // GLSL matrix, 4x4
 vec4 W = M * V; // W is set to M times V

which demonstrates that GLSL’s primitive vec4 and mat4 types for vectors and matrices take a lot of the hard
work out of matrix mathematics!
Licensed to Mark Watson <nordickan@gmail.com>

384 APPENDIX B Mathematics and software patterns for 3D graphics
B.3 Matrix transforms
A transform is a recipe for converting locations in space from one frame of reference to
another, usually expressed in a 4 × 4 matrix. Computer graphics is home to many such
transforms, such as perspective and projection.

 When you’re building a scene out of 3D geometry, three transforms are espe-
cially useful:

■ Translation—Motion in space. A translation will linearly add to the X, Y, and Z
coordinates of a point.

■ Rotation—A change in orientation that preserves the location of the origin.
■ Scale—A change in size on one or more of the three axes. You can scale an

object on any of the three axes independently, which is convenient for trans-
forming primitives into more advanced shapes, such as stretching a sphere into
an ellipsoid.

Each of the core transforms is easily expressed by a 4 × 4 matrix, as shown in table B.1.

B.4 Representing rotation
In addition to matrix transforms, mathematicians and software developers have devel-
oped several other methods of representing orientation. Although a 4 × 4 matrix rep-
resentation is convenient because it can be concatenated with other transforms, it
doesn’t lend itself to easy inspection or interpolation.

■ If the primary interaction with an orientation is direct user control, such as in
an airplane, then orientation is typically stored in Euler angles.

■ If the primary interaction with an orientation is smooth transition from one ori-
entation to another, such as by traveling a great circle arc around a sphere, then
orientation is typically stored in quaternions.

Table B.1 Common matrix transforms

[1 0 0 x]
[0 1 0 y]
[0 0 1 z]
[0 0 0 1]
Translation by vector [x, y, z]

[x 0 0 0]
[0 y 0 0]
[0 0 z 0]
[0 0 0 1]
Scale by vector [x, y, z]

[1 0 0 0]
[0 cos -sin 0]
[0 sin cos 0]
[0 0 0 1]
Rotation by around X

[cos 0 sin 0]
[0 1 0 0]
[-sin 0 cos 0]
[0 0 0 1]
Rotation by around Y

[cos -sin 0 0]
[sin cos 0 0]
[0 0 1 0]
[0 0 0 1]
Rotation by around Z

[(cos)+x2(1-cos) y(1-cos)-z(sin) xz(1-cos)+y(sin) 0]
[xy(1-cos)+z(sin) (cos)+y2(1-cos) yz(1-cos)-x(sin) 0]
[xz(1-cos)-y(sin) yz(1-cos)+x(sin) (cos)+z2(1-cos) 0]
[0 0 0 1]
Rotation by around arbitrary unit axis [x, y, z]
Licensed to Mark Watson <nordickan@gmail.com>

385Representing rotation
■ If the goal is to interpolate from one point on the unit sphere to another point
on the unit sphere, then the technique of spherical linear interpolation (“slerp”)
may be used without an explicit rotation representation.

B.4.1 Euler angles

Euler angles represent an orientation as the combination of roll, pitch, and yaw (fig-
ure B.2). These values are defined relative to a stable initial orientation—that is,
local coordinates:

■ Roll is rotation about the local Z axis.
■ Pitch is rotation about the local Y axis.
■ Yaw is rotation about the local X axis.

Euler angles are excellent for representing orientation in a
way that’s easy to understand. They’re also handy for writ-
ing code that converts from one coordinate system to
another, which might have a different “handedness” or
which might swap the purpose of the Y and Z axes. Many sys-
tems that are grounded more in cartography than graphics
will represent vertical translations with the Z axis rather
than the Y axis.

 To convert from Euler angles to a matrix, the three scalar values are converted to
rotations about their respective axes. The rotation matrices are then concatenated
together with matrix multiplication. When calculating the matrix form, bear in mind
that all three angles are defined in local coordinates. Each rotation changes the axes
of the other two.

 There are six possible orderings of the three rotation matrices; the ordering roll-
pitch-yaw is common. Using the matrices given in table B.1,

roll = (rotation about Z);
pitch = (rotation about (Roll • Y));
yaw = (rotation about (Pitch • Raw • Z));
Cumulative orientation matrix = yaw • pitch • roll;

B.4.2 Quaternions

Quaternions4 are four-dimensional mathematical constructs that use a combination
of real and imaginary floating-point numbers to express an oriented frame of refer-
ence. Quaternions are handy for storing and expressing rotation transformations in
a basis-independent, handedness-independent manner, and lend themselves well
to interpolation.

4 This appendix speaks specifically to unit quaternions, quaternions of unit length. In computer graphics, when
working with quaternions, it’s extremely common to assume unit length.

Pitch

Roll

Yaw

Figure B.2 The classic
Euler angles: roll, pitch,
and yaw
Licensed to Mark Watson <nordickan@gmail.com>

386 APPENDIX B Mathematics and software patterns for 3D graphics
 A quaternion is typically written as

Q = w + x i + y j + z k

where i, j, and k are independent imaginary vectors. The parameter w is a real scalar,
and so the quaternion itself is a four-dimensional entity.

 The rotation by angle around unit vector (x, y, z) can be written as a quaternion:

Q = cos (/2) + sin (/2) (x i + y j + z k)

The unit quaternion Q = w + x i + y j + z k can be written as a 4 × 4 rotation matrix:

[1–2y2–2z2 2xy-2zw 2xz+2yw 0]
[2xy+2zw 1-2x2-2z2 2yz-2xw 0]
[2xz-2yw 2yz+2xw 1-2x2-2y2 0]
[0 0 0 1]

Quaternions have interesting mathematical properties, such as the fact that unlike
normal 3D vectors, you can multiply two quaternions to get a third. But the multiplica-
tion operation on quaternions isn’t commutative—that is, AB BA. (This makes
sense: matrices have the same trait.) But where a matrix is stored in 9 or 16 floats, a
quaternion uses only 4 and is always invertible.

B.4.3 Spherical linear interpolation (“slerp”)

Spherical linear interpolation, sometimes written more succinctly as “slerp,” is a
method for achieving constant-speed linear interpolation between two points on the
unit sphere. Slerp is useful for operations such as swinging a virtual camera around a
fixed point in space.

 Given two points P1, P2, both on the unit sphere, find the angle between the
vectors from the origin to P1 and P2. The operation slerp(P1, P2, t) is then
defined to be

As t goes from 0 to 1, this will smoothly linearly interpolate a point around the unit
sphere, following the shortest path.

 Note that slerp can’t be used if the two points P1 and P2 are exactly opposite
each other across the unit sphere (P1 = –P2) because this will yield = 0. If is zero,
sin(0) = 0 will yield a divide by zero in the slerp expression.

 Slerp can also be used for interpolating between quaternions. If interpolating
quaternions, slerp will return a smooth linear rotation from one quaternion to another.
This can be very effective for camera transition effects, such as smoothly reorienting
from one fixed camera position to another.

slerp P1, P2, t 1 t– sin
sin

-------------------------------P1 + t sin
sin
-----------------P2=
Licensed to Mark Watson <nordickan@gmail.com>

387The scene graph software design pattern
B.5 The scene graph software design pattern
Every virtual environment is founded in the world basis, but most objects have their
own local coordinate systems. In many scenes, objects are positioned and oriented rel-
ative to other objects, not to the world at large. This introduces the concept of coordi-
nate systems that are defined relative to other coordinate systems, which are in turn
themselves relative to yet more coordinate systems.5

 The scene graph design pattern is a common software design pattern often found in
3D applications that display scenes of nested objects. A scene graph stores and
accesses all objects in the scene through a directed tree data structure, in which each
node is associated with a matrix transform. When rendering an object at a node, its
vertices are transformed by the concatenated multiplication of all of the transforms of
all of the nodes above it in the tree.

 For example, if the geometry of a hand is defined by its transformation relative to
the arm, and the arm in turn is described relative to the body, then the assembly of all
elements in the scene could be expressed in a scene graph. Figure B.3 shows the
hand, arm, and torso of a robot.

The cumulative transform of a leaf node is the concatenation by matrix multiplication
of its transform with the ordered concatenation of each previous parent in the tree:

ThandToWorld = Trobot • Ttorso • Tarm • Thand

Recalling that matrix multiplication is associative, this means that the vector product
of applying the cumulative transform to geometry defined at the level of a leaf node
(such as to find V, the world coordinates representation of vertex coordinate Vhand) can
be expanded as follows:

V = ThandToWorld • Vhand
 = Trobot • Ttorso • Tarm • Thand • Vhand
 = Trobot • (Ttorso • (Tarm • (Thand • Vhand)))

5 “It’s turtles, all the way down.”

Robot

Arm

Hand

Leg ...

...

Arm

......

Torso

Figure B.3 A scene graph.
Each node can store geometry
and a 4 × 4 matrix transform.
Licensed to Mark Watson <nordickan@gmail.com>

388 APPENDIX B Mathematics and software patterns for 3D graphics
where

Vhand is in hand local coordinates;
Thand • Vhand is in arm local coordinates;
Tarm • (Thand • Vhand) is in torso local coordinates;
Ttorso • (Tarm • (Thand • Vhand)) is in robot local coordinates; and
Trobot • (Ttorso • (Tarm • (Thand • Vhand))) is in world coordinates.

B.6 The matrix stack software design pattern
A common software design pattern associated with implementations of scene graphs
is the matrix stack. A matrix stack is a data structure whose behavior is modeled on that
of a classic stack, modified to simplify the most common use cases of matrix math.

 The API of a matrix stack typically consists of the following methods:

■ void push(Matrix)—Pushes a new matrix onto the top of the stack, setting its
value to be equal to the matrix product of the current top of the stack times the
new entry.

■ Matrix pop()—Removes the topmost element of the stack.
■ Matrix peek()—Returns the current topmost element of the stack or the iden-

tity matrix if the stack is empty.

The matrix stack differs from a conventional stack in its push() operation. Where a
conventional stack’s push() operation will insert a new value verbatim at the top of
the data structure, the push() operation of the matrix stack computes the product
of the current top of the stack times the new parameter received and inserts the prod-
uct of the two at the top of the data structure.

 Matrix stacks are an especially useful design pattern when geometry is defined
relative to other scene elements, and they’re frequently used in conjunction with
scene graphs.

 The real selling point of the matrix stack design pattern is that it caches the prod-
ucts of matrices that will be used more than once. In the robot example given earlier,
if the robot had four arms, the product of (Trobot • Ttorso) would only need to be com-
puted once.

push(Trobot); // Stack = Trobot
push(Ttorso); // Stack = Trobot • Ttorso
for each arm do
 push(Tarm); // Stack = Trobot • Ttorso • Tarm
 render arm;
 pop(); // Stack = Trobot • Ttorso
pop(Ttorso);
push...

B.7 The modelview software design pattern
You can consider your camera—the viewpoint from which you’ll be rendering your
virtual scene—as though it were an element in your scene, just like any other scene
Licensed to Mark Watson <nordickan@gmail.com>

389The modelview software design pattern
object. You can store a local-to-world transform for the camera, which if applied to
[0, 0, 0] (the local center of the camera, from its own point of view) returns the cam-
era’s position in world coordinates.

 A common design pattern among those who’ve chosen scene graphs and matrix
stacks is to redefine the ultimate origin of the world from global coordinates to
coordinates that are relative to the camera by redefining the world as being cen-
tered on the camera instead of the world origin. In this approach, all geometry, all
positions, and all spatial relationships are entirely defined from the point of view of
the viewer; the universe centers on the user. In other words, the world really does
revolve around you.

 In a matrix stack framework, this is quite simple to implement: instead of the
bottommost matrix on the stack being an identity matrix, it can be a world-to-
camera transformation that transforms from the world basis to the camera basis. This
isn’t actually the transform of the camera itself but rather its inverse. You don’t want
your camera in your scene; you want to shift the whole world around as if the camera
were the origin (without the constraint of keeping the camera always at the actual
origin). The use of a matrix to hold both the (inverse) transformation of the view as
well as the transformations of all the models stacked above it in the scene is the ori-
gin of the term modelview matrix. In this pattern you’ll often see references to the
current modelview matrix, which refers to the particular matrix that’s currently at the top
of the stack.

 Until the release of version 3.3, OpenGL provided an API for maintaining and
manipulating matrix stacks, including a stack explicitly dedicated to the role of mod-
elview stack. This stack approach was deprecated in 3.3 and removed entirely in 4.3,
once the standardization of shaders meant that the implementation of local-to-world-
to-camera transformations had become the responsibility of the individual software
author. Today many applications reproduce the old matrix stack functionality or use
a library that does so, because it was a marvelously convenient way of working with
nested models and frames of reference. This book is no exception; our example
code uses the GLM library to store and manipulate matrices, and our Stacks class
includes the method Stacks::modelview(), which returns a static singleton model-
view matrix instance.
Licensed to Mark Watson <nordickan@gmail.com>

appendix C
Suggested books

and resources

There is a tremendous wealth of resources available today, online and on paper,
about virtual reality, 3D graphics, user interface design, and the host of other topics
we’ve touched on in this book. In this appendix we’ve listed just a few of the
sources that we found educational and inspiring. We’ve also included a shortlist of
some of the earliest and most influential Rift demos.

Books, research papers, and websites

3D graphics programming

■ Fundamentals of Computer Graphics, by P. Shirley, M. Ashikhmin, and
S. Marschner (A. K. Peters/CRC Press, 2009)

■ Computer Graphics: Principles and Practice, by J. D. Foley, A. van Dam, S. K.
Feiner, and J. F. Hughes (Addison-Wesley Professional, 2013)

OpenGL

■ The OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 4.3,
by D. Shreiner, G. Sellers, J. M. Kessenich, and B. M. Licea-Kane (Addison-
Wesley Professional, 2013)

■ OpenGL SuperBible, by G. Sellers, R. S. Wright, and N. Haemel (Addison-Wes-
ley Professional, 2013)

■ OpenGL Insights, by P. Cozzi and C. Riccio (A. K. Peters/CRC Press, 2012)
■ Shadertoy—shadertoy.com
390

Licensed to Mark Watson <nordickan@gmail.com>

http://www.amazon.com/s/ref=dp_byline_sr_book_4?ie=UTF8&field-author=Bill+M.+Licea-Kane&search-alias=books&text=Bill+M.+Licea-Kane&sort=relevancerank
http://shadertoy.com

391Books, research papers, and websites
■ Anton’s OpenGL 4 Tutorials—antongerdelan.net/opengl
■ The GPU Gems series, by various authors (Addison Wesley)

Developing for the Rift

■ Oculus Best Practices Guide—developer.oculus.com/documentation

Motion sickness/simulator sickness

■ Textbook of Maritime Medicine, by the Norwegian Centre for Maritime Medicine
(2013). See chapter 20, “Motion Sickness” (textbook.ncmm.no).

■ Validating an Efficient Method to Quantify Motion Sickness, by B. Keshavarz and
H. Hecht (2011). Human Factors: The Journal of the Human Factors and Ergonomics
Society 53.4: 415–26.

■ Simulator Sickness Questionnaire, by R. S. Kennedy, N. E. Lane, K. S. Berbaum,
and M. G. Lilienthal (1993). The International Journal of Aviation Psychology 3(3):
203–20.

■ Motion Sickness Susceptibility Questionnaire Revised and Its Relationship to
Other Forms of Sickness, by J. F. Golding (1998). Brain Research Bulletin, 47(5):
507–16.

UI design for VR

■ 3D User Interfaces: New Directions and Perspectives, by D. A. Bowman,
S. Coquillart, B. Froehlich, M. Hirose…and W. Stuerzlinger. (2008). IEEE Com-
puter Graphics and Applications 28(6): 20–36.

■ Design and Evaluation of Mouse Cursors in a Stereoscopic Desktop Environ-
ment, by L. Schemali and E. Eisemann (2014). 3D User Interfaces (3DUI), 2014
IEEE Symposium (pp. 67-70). IEEE. Recorded talk is available at vimeo.com/
91489021.

■ Developing Virtual Reality Games and Experiences—www.gdcvault.com/play/
1020714. Presented at GDC 2014.

■ Egocentric Object Manipulation in Virtual Environments: Empirical Evaluation
of Interaction Techniques, by I. Poupyrev, S. Weghorst, M. Billinghurst, and
T. Ichikawa (1998). Computer Graphics Forum, 17(3): 41–52.

■ Kinect Hand Detection, by G. Gallagher—video.mit.edu/watch/kinect-hand-
detection-12073

■ Make It So: Interaction Design Lessons from Science Fiction, by N. Shedroff and
C. Noessel (Rosenfeld Media, 2012)

■ Lessons learned porting Team Fortress 2 to virtual reality—media.steampow-
ered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf
Licensed to Mark Watson <nordickan@gmail.com>

http://antongerdelan.net\opengl
https://developer.oculus.com/documentation
http://textbook.ncmm.no/
http://vimeo.com/91489021
http://vimeo.com/91489021
http://www.gdcvault.com/play/1020714
http://www.gdcvault.com/play/1020714
http://video.mit.edu/watch/kinect-hand-detection-12073
http://media.steampowered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf
http://media.steampowered.com/apps/valve/2013/Team_Fortress_in_VR_GDC.pdf
http://video.mit.edu/watch/kinect-hand-detection-12073

392 APPENDIX C Suggested books and resources
■ Pointing at 3D Target Projections with One-Eyed and Stereo Cursors, by
R. J. Teather and W. Stuerzlinger. (2013). ACM Conference on Human Factors in
Computing Systems: 159–68.

■ Pointing to the future of UI, by J. Underkoffler (2010). Talk given at TED,
www.ted.com/talks/john_underkoffler_drive_3d_data_with_a_gesture.

■ Selection Using a One-Eyed Cursor in a Fish Tank VR Environment, by C. Ware
and K. Lowther. (1997). ACM Transactions on Computer-Human Interaction Journal,
4(4): 309–22.

■ Usability Engineering, by J. Nielsen (Morgan Kaufmann, 1993)
■ VR Lessons Learned: A Post-mortem published by Marauder Interactive about Enemy

StarFighter—enemystarfighter.com/blog/2013/9/5/vr-lessons-learned
■ Marvel’s Agents of S.H.I.E.L.D – T.R.A.C.K.S. (season 1, episode 13). The clip

with the holotable is available at www.youtube.com/watch?v=SeiJ2jHyy7U.
■ World Builder, by B. Branit (2007)—www.youtube.com/watch?v=VzFpg271sm8

Unity

■ Unity official site: unity3d.com
■ Unity documentation, tutorials, and training: unity3d.com/learn
■ Unity in Action, by J. Hocking (Manning, 2015)

Demos, games, and apps

VR demos, games, and applications worth a view

■ Tuscany, by Oculus—share.oculusvr.com/app/oculus-tuscany-demo
■ Team Fortress 2—www.teamfortress.com
■ EVE Online—www.eveonline.com
■ Don’t Let Go!, by Skydome Studios—share.oculus.com/app/dont-let-go
■ Chicken Walk, by Mechabit Ltd.—share.oculusvr.com/app/chicken-walk
■ GiganotosaurusVR, by Meld Media—share.oculusvr.com/app/meld-media---

giganotosaurusvr
■ Jerry’s Place, by Greg Miller—jerrysplacevr.com
■ Private Eye—privateeyevr.com/
■ Shadow Projection—globalgamejam.org/2014/games/shadow-projection-oculus-rift
■ Spaceflight VR—share.oculusvr.com/app/space-flight-vr
■ Strike Suit Zero—strikesuitzero.com/
■ Technolust, by Iris Productions—irisproductions.ca/technolust/
■ Titans of Space, by DrashVR—www.crunchywood.com
■ Trial of the Rift Drifter, by Aldin Dynamics—share.oculusvr.com/app/trial-of-the-

rift-drifter
Licensed to Mark Watson <nordickan@gmail.com>

http://www.ted.com/talks/john_underkoffler_drive_3d_data_with_a_gesture
http://enemystarfighter.com/blog/2013/9/5/vr-lessons-learned
https://www.youtube.com/watch?v=SeiJ2jHyy7U
https://www.youtube.com/watch?v=VzFpg271sm8
http://unity3d.com/
http://unity3d.com/learn
https://share.oculusvr.com/app/oculus-tuscany-demo
http://www.teamfortress.com
http://www.eveonline.com
https://share.oculus.com/app/dont-let-go
https://share.oculusvr.com/app/chicken-walk
https://share.oculusvr.com/app/meld-media---giganotosaurusvr
https://share.oculusvr.com/app/meld-media---giganotosaurusvr
http://jerrysplacevr.com
http://privateeyevr.com/
http://globalgamejam.org/2014/games/shadow-projection-oculus-rift
https://share.oculusvr.com/app/space-flight-vr
http://strikesuitzero.com/
http://irisproductions.ca/technolust/
http://www.crunchywood.com
https://share.oculusvr.com/app/trial-of-the-rift-drifter
https://share.oculusvr.com/app/trial-of-the-rift-drifter

393Demos, games, and apps
Oculus Share

A number of demos can be found on Oculus Share (share.oculusvr.com). Oculus Share
is the official Oculus developer portal where you can upload games, tech demos, and
experiments. It’s well worth keeping an eye on this site; new content is added regularly.
Licensed to Mark Watson <nordickan@gmail.com>

https://share.oculusvr.com

appendix D
Glossary

This appendix contains a glossary of terms common to virtual reality development.

6DOF A common abbreviation for “six degrees of freedom,” referring to
devices able to move and sense position on the three rotation axes (yaw,
pitch, roll) and the three spatial axes (X, Y, Z).

AUGMENTED REALITY The nascent field of using computing devices to
extend and enhance data about the real world around us. Glasses that
overlay information about what the user is looking at, or Tony Stark’s
heads-up display in the movie Iron Man, are typical examples.

AUGMENTED VIRTUAL REALITY The use of the visual motifs of augmented
reality in a virtual reality context, such as a HUD inside a video game. Well
suited to the blending of real-world video and other streaming content
into a Rift application.

BARREL DISTORTION The mathematical inverse of a pincushion distortion.
In a barrel distortion, lines that are normally straight curve outward.

CHROMATIC ABERRATION A type of distortion caused by lenses that fail to
bend light of different frequencies by the same amount. Blue light will be
bent at a greater angle than green light, and green at a greater angle than
red. This is the property that gives a prism the ability to split a white beam
of light into a spectrum.

COLLIMATED LIGHT Light whose rays have been aligned in parallel, such
as in a laser. Because it doesn’t converge, collimated light is described as
“converging at infinity.” The Oculus Rift uses high-quality lenses to colli-
mate the light from its screen.
394

Licensed to Mark Watson <nordickan@gmail.com>

395Glossary
COORDINATE SYSTEM In a three-dimensional coordinate system, three coor-
dinates [X, Y, Z] locate a point by its distance from an origin [0,0,0] where
three orthogonal axes meet. In the initial frame of reference of the Rift and
in OpenGL graphics, the X axis typically measures left-to-right, the Y axis
typically measures height or elevation, and the Z axis typically measures
back-to-front.

CUTSCENE A long-standing device used in games to convey story without
direct interaction from the player. In cut scenes the player stops playing and
watches a little movie inside the game—maybe a snippet of film with real
actors, or a rendered CGI animation, or even prerecorded animations in the
engine of the game itself; there are many styles.

EULER ANGLES A trio of angles representing roll, pitch, and yaw. In conjunc-
tion with a fixed ordering of evaluation, these values describe the orientation
of a frame of reference.

HEAD POSE In VR applications, the head pose is a combination of the orien-
tation and position of the head relative to some fixed coordinate system.

HMD Head-mounted display.

IMMERSION The art and technology of surrounding the user with a virtual
context, such that there’s world all around you.

INTERPUPILLARY DISTANCE (IPD) The distance between the pupils of the eyes.

LATENCY An interval in time between two correlated events. In the Oculus
Rift, latency is the interval between the time when a user moves their head
and the time when the view is updated to reflect the change. The term motion-
to-photons is also used.

LOCAL COORDINATES Coordinates that are relative to the origin and frame of
reference of the current object.

MATRIX In computer graphics, a matrix is a rectangular array of numbers,
most commonly 4 × 4.

MATRIX STACK A data structure whose behavior is modeled on that of a clas-
sic stack, modified to simplify the most common use cases of matrix math.
Commonly used in the context of a scene graph or hierarchical model.

MODELVIEW MATRIX A matrix that determines the position and orientation of
the virtual camera in 3D space. It can also be used to position individual items
within the scene relative to the camera.

MOTION SICKNESS The symptoms of discomfort people feel when experienc-
ing a mismatch between actual motion and what their body expects. In tradi-
tional motion sickness, such as you might get from riding in a car or boat,
motion is felt but not seen.
Licensed to Mark Watson <nordickan@gmail.com>

396 APPENDIX D Glossary
ORIGIN The position at coordinates [0, 0, 0]. All other positions are defined
relative to this point. Every frame of reference has an origin.

PARALLAX The apparent change in an object’s position when viewed from
two different angles (such as when the object, or the viewer, is in motion).

PINCUSHION DISTORTION The distortion that happens when you magnify an
image using a lens. In a pincushion distortion, lines that are normally straight
curve inward.

PITCH Rotation on the X axis. When using the Rift, this is when you tilt your
head forward (look toward the ground) or back (look to the sky).

PRESENCE The visceral reaction to a convincing immersion experience:
when immersion is so good that the body reacts instinctively to the virtual
world as though it’s the real one.

PROJECTION MATRIX A matrix that’s responsible for mapping points in 3D
space into perspective, such that they can then be projected onto a plane (the
display panel) to produce a 2D image that appears 3D. A projection matrix
implicitly defines a view frustum with a given field of view, as well as the aspect
ratio of the output display panel.

PROPRIOCEPTION The sense of the relative position of parts of the body, as
well as the strength of effort currently being exerted.

QUATERNION A four-dimensional mathematical construct that can be used to
represent a three-dimensional rotation transformation. Quaternions can be
difficult to work with, but they’re a more efficient means of storing an arbi-
trary rotation than a rotation matrix; a quaternion needs four floating-point
values whereas the matrix needs nine or sixteen.

ROLL Rotation on the Z axis. When using the Rift, this is when you tilt your
head to the left or right, toward one shoulder.

ROTATION MATRIX A 3 × 3 or 4 × 4 matrix that describes a change of orienta-
tion, without altering position or scale, which preserves the relative angles
between vectors.

SCALE MATRIX A 3 × 3 or 4 × 4 matrix that describes a change of size, without
altering position or orientation. If the scale is uniform—that is, all three axes
are scaled to the same degree—then the scale will preserve the relative angles
between vectors; alternatively you can scale an object on any of the three axes
independently.

SCENE GRAPH A software design pattern often found in 3D applications
that display scenes of nested objects. A scene graph stores and accesses all
objects in the scene through a directed tree data structure, in which each
node is associated with a matrix transform and may be associated with scene
element geometry.
Licensed to Mark Watson <nordickan@gmail.com>

397Glossary
SIMULATOR SICKNESS Another name for motion sickness specifically triggered
by being in a simulated or VR environment.

STEREOSCOPY A method of provoking the illusion of depth in a binocular
view by transmitting different images to each eye.

STRABISMUS A disorder in which your eyes don’t line up. This misalignment
can result in stereoblindness (the inability to see in 3D using stereo vision) or
double vision. This disorder is also known colloquially as being cross-eyed
or wall-eyed.

TRANSFORM A recipe for converting locations in space from one frame of ref-
erence to another, usually expressed in a 4 × 4 matrix.

TRANSLATION MATRIX A 4 × 4 matrix that expresses motion in space. A transla-
tion will add to the X, Y, and Z coordinates of a point, while preserving the
relative angles between vectors.

VECTION A type of self-movement illusion that can occur if a moving object
takes up the majority of a user’s view, and the user interprets the situation as
self-movement that they didn’t initiate. A classic example of vection is when
someone is at a train station and a nearby train moves. They see the train
move and interpret that as though they’re moving.

VERGENCE The simultaneous movement of both eyes to achieve binocular
vision.

VIEW FRUSTUM The region of space in the modeled world that may appear
on the screen; this is the field of view of the notional camera. Typically shaped
like a truncated pyramid.

VIRTUAL REALITY (VR) A computer-generated environment that can simulate
physical presence in places in the real world or imagined worlds.

VR SICKNESS Another name for motion sickness specifically triggered by
being in a VR environment.

WORLD COORDINATES A frame of reference defined relative to the global origin.

YAW Rotation on the Y axis. When using the Rift, this is when you turn your
head to your left or right.
Licensed to Mark Watson <nordickan@gmail.com>

index
Numerics

3Dconnexion SpaceMouse 220–221
6DOF (six degrees of freedom) 20, 39, 394

A

AaaaaAAaaaAAAaaAAAAaCULUS!!! 243
accelerometer 67
accommodation 106
acupressure 28
Agents of S.H.I.E.L.D. 224
animation 218–220
anti-aliasing 183–184
AR (augmented reality)

defined 394
images

panorama 334–335
photo spheres 336–340

live webcam video
field of view 348
image enhancement 346–347
image stabilization 348–350
overview 340–342
scaling for 347–348
threaded frame capture from 342–345

stereo vision 350–353
asymmetrical projection matrix 115
attention, getting 201, 233–234
audio cues 201
augmented reality. See AR
augmented virtual reality 334
avatars

creating for everyone 248–250
providing body for 245–246

B

barrel distortion 88, 394
basis transforms 389
BeAnotherLab 7
binocular parallax 106
body, character 245–246
breaks, encouraging 250

C

Call of Duty games 196–197, 201
camera

perceived height 212
purpose of 40
user control of

avoid changing camera position
233

avoid changing field of view 233
avoid stopping head tracking 235
cutscenes and 235–236
getting user attention 201, 233–234
head tracking matching what user

does 232–233
zooming and context 234

CameraPose property 58
Canny edge-filtering algorithm 346
canvas

creating world space canvas 166
positioning 167–168
setting size 167

CEGUI library 311
CenterEyeAnchor object 174–175
cgkit library 287, 296
channel inputs 305
398

Licensed to Mark Watson <nordickan@gmail.com>

INDEX 399
characters
animations 218–220
controller 154–156
creating body for 245–246

Chekhov’s Gun 202
Chicken Walk 243, 392
chromatic aberration 87, 394
Cloned mode 256, 372
Cloudhead Games 238–239
cockpit HUDs 193–194, 241
collimated light 13, 83–85
collisions 176–178
color usage 242
configuration, of the Rift 375–376
context

first-person 215–218
immersion and 215
zooming and 234

convergence 106, 195
coordinate systems 382–383
create() method 276
createDebug() method 276
crosshair in Team Fortress 2 210–214
cues, audio 201
cutscenes

in conventional video 200–201
overview 199–200
user control of camera and 235–236
in virtual environment 201–202

cylindrical projection 335

D

dead zone 213
DeltaSeconds 133
demos 253, 392
dependencies, JOVR 269
depth cues 106, 205, 207–208
design patterns

matrix stack software design pattern 388
modelview software design pattern 388
scene graph software design pattern

387
design, UI

aspect ratio and 191
blending 192–193
building game menu into in-world

screen 196–197
cockpit HUDs 193–194
data on demand 194–195
fantasy world settings 197
floating widgets 190
in-world screens 195–196
pinned widgets 190

Desk Demo 377

development environment
display modes 368–369
Extended Desktop mode

configuration options for 372–373
overview 369–372

general discussion 26
IDEs 263
outputting to 3 displays 373–375
programming language options 29
Python 287
Rift configurations 375–376
without Rift hardware 145, 380
Unity 144
verifying setup using demo applications

376–380
Direct HMD mode

creating OpenGL window for 77–79
development environment setup

368–369
extended vs. cloned 73, 255
overview 34–35, 51
version 0.4.4 SDK bug and 79
Windows development and 162

display, outputting to
creating OpenGL window

choosing display mode 74
Direct HMD mode 77–79
extended desktop mode 74–76

development environment setup
368–369

display modes comparison 73
frame rendering process 85–87
full screen vs. windowed 79–80
RiftGlfwApp boilerplate class 80
testing display modes 255–257
unique considerations for Rift display

each eye sees distinct half of display
panel 81–83

how lenses affect view 83–85
overview 80–81

DisplayLink USB displays 73
distortion correction

example code 90–99
rendering frames 97–99
SDK distortion setup 94–97, 117
SDK platform-specific types 93
SDK texture setup 93–94
setting up OpenGL 93

SDK distortion correction 90
types of distortion 88–90

DK1 kit
control box 16
headset 14
lenses 16
overview 14
Licensed to Mark Watson <nordickan@gmail.com>

INDEX400
DK2 kit
headset 10–12
lenses 12–13
overview 9–10
positional camera 13–14

Don’t Let Go! 7, 217, 249, 252–253, 392
Doom 207
double buffering 47, 67
Dreadhalls 253
drift correction

overview 67
utilizing 70

dynamic framebuffer scaling 128, 135–140, 323

E

Eclipse 263, 268
EDID (Extended display identification data) 375
emotional response 252
Ender’s Game 224
environment, virtual 146
ergonomics

avoid making user roll eyes 244–245
limiting head movement 243
text readability 245

error messages 204
Euler angles 41, 43, 385
EVE Online 189, 392
exiting applications 44
Extended desktop mode 51

configuration options for 372–373
creating OpenGL window for 74–76
development environment setup 368–369
Direct HMD mode vs. 73
overview 369–372
testing using 255

Extended display identification data. See EDID
Extensible Metadata Platform. See XMP
eye box 84
EyeScanoutSeconds 133
eyestrain

3D displays and 230
avoid making user roll eyes 244–245
headaches and 229
text readability 245

eye-to-neck distance 247

F

fatigue
avoid making user roll eyes 244–245
limiting head movement 243
text readability 245

field of view. See FOV
finalize methods 278

finishFrame() method 281
first-person perspective 215–218, 252–253
first-person shooter. See FPS (first-person shooter)
FirstPersonController.cs script 154
flickering objects 146, 229, 242
flight simulators 4
floating widgets 190
FOV (field of view)

avoiding change to 233
maximization of 23–24
Rift creation of 21–23
for webcam video 348

FPS (first-person shooter) 195
FPS (frames per second) 180
fragment shaders 302
frame rate

determining target for 322
performance requirements 126–127
quality and 180

frame rendering
process overview 85–87
using Java 281–284
using Python 295–297

framebuffer 135–140
FrameBufferWrapperPtr class 118
frames per second. See FPS (frames per second)
full screen 79–80, 150, 161

G

gamepad 209
gaze-tracking 214
gender considerations 247, 249
gestural interfaces 224–227
GetString() method 160
GiganotosaurusVR 251, 392
GLamour project 270
GLFW library 45, 95
GlfwApp base class 45–47
GLSL (OpenGL Shading Language) 303
GPU (graphics processing unit) 17
GTK+ 311
GUI (graphical user interface) 165

H

hardware
DK1

control box 16
headset 14
lenses 16
overview 14

DK2
headset 10–12
lenses 12–13
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 401
hardware (continued)
overview 9–10
positional camera 13–14

GPU 17
Hawken 194
HDMI splitters 374
head bob 238
head pose 17, 395
head tracking

avoiding locking 235
drift correction

overview 67
utilizing 70

enabling 56–57, 121–123
example using

applying orientation to rendered scene
65–66

enabling sensor 64
getting orientation 65
locating headset 64
overview 61–64

integrating 3D rendering with
adding stereoscopy 106–112
creating scene 102–104
enhanced data for each eye 114–116
modelview offset 120
Oculus texture description 118–120
offscreen framebuffer targets 117–118
overview 112–114
projection matrix 120
Rift rendering loop and 121
sample scene in monoscopic 3D 104–105
sample scene in stereoscopic 3D 110
setting up SDK for distortion rendering 117
user settings 116

interacting with objects
selecting objects 174–176
setting up objects for detection 173–174
using collision to set down objects 176–178

matching what user does with 232–233
overview 20–21, 56
prediction 67–70
receiving data

anytime tracking 57
ovrTrackingState 58–59
rendering tracking 59

resetting tracker orientation 57
headaches 27, 150, 229
head-mounted display. See HMD
HeadPose property 58
headset

adjusting for proper fit 375–376
in DK1 kit 14
in DK2 kit 10–12

heads-up display. See HUD

Health and Safety warning. See HSW
height (player) 247
HMD (head-mounted display) 3, 36
HmdToEyeViewOffset 115
homebrew 263–264
Homeworld 192
horizon line 241
HSW (Health and Safety warning) 150, 178–179
HUD (heads-up display)

augmented VR 193
cockpit 193–194

human variation
correcting for strabismus 248
creating avatars for everyone 248–250
encouraging breaks from gameplay 250
encouraging use of user profile 250
overview 246–247
using profile data 247–248

I

IDE (integrated development environment) 263
identity matrix 383
illness. See motion sickness
image stabilization 348–350
images, captured

panorama 334–335
photo spheres 336–340

immersion
camera control by user

avoiding changing camera position 233
avoiding changing field of view 233
avoiding stopping head tracking 235
cutscenes and 235–236
getting user attention 233–234
head tracking matching what user does

232–233
zooming and context 234

context and 215
defined 5, 395
field of view

maximization of 23–24
Rift creation of 21–23

intensity of VR experience 251–252
movement

avoiding backstepping and spinning 238
avoiding head bob 238
using caution with extreme actions 239
using real-world speeds 238

psychological responses to first-person
perspective 252–253

rendering 24–26
sound and 245
UI for 171
world design
Licensed to Mark Watson <nordickan@gmail.com>

INDEX402
immersion (continued)
avoiding changing horizon line 241
avoiding flickering and high-contrast

flashing 242
avoiding large moving objects 241–242
limiting uneven surfaces 240–241
providing static reference points 241
scale 240
using darker textures 242

See also augmented virtual reality
See also presence

IMU (inertial measurement unit) 10, 39
init_gl method 294
initGl() method 279
Initialize() method 276
input methods

crosshair in Team Fortress 2 210–214
fetching tracker data 43–44
mouse and gamepad 209
overview 39–42
reporting tracker data 44
reserving pointer to device manager 42–43
Rift as 214–215

integrated development environment. See IDE
interaction

exiting 44
getting input

fetching tracker data 43–44
overview 39–42
reporting tracker data 44
reserving pointer to device manager

42–43
GlfwApp base class 45–47
rendering output

creating OpenGL window 51
finding and connecting to Rift 50
overview 47–50
rendering two rectangles, one for each

eye 51–52
interactive objects 206–207
interpupillary distance. See IPD
in-world screens

building game menu into 196–197
UI design considerations 195–196

IPD (interpupillary distance) 81, 115, 247,
395

Iron Man 193, 224
isKinematic option 174

J

Java
overview 262–263
RiftDemo class 284–286

Java Native Access. See JNA

Java Native Interface. See JNI
Jerry’s Place 240, 392
jMonkeyEngine library 264, 283
JNA (Java Native Access) 263–264
JNAerator tool 265
JNI (Java Native Interface) 263–264
Jocular-examples project

example dependencies 269–270
overview 268
POM file 268–269

JOVR library
binary files for 268
Oculus C API vs. 267–268
overview 264–267

L

latency 67, 121, 126, 129
Leap Motion 221

coordinate system for 356–357
example application using 357
overview 353–355
software development for 355–356

Lego Indiana Jones 206
lenses

adjusting 376
distortion correction

example code 90–99
rendering frames 97–99
SDK distortion correction 90
SDK distortion setup 94–97
SDK platform-specific types 93
SDK texture setup 93–94
setting up OpenGL 93
type of distortion introduced 88–90

in DK1 kit 16
in DK2 kit 12–13

LeveledCameraPose property 58
libfreenect library 224
libRocket library 311
lighting 355
Lightweight Java OpenGL (LWJGL) 270
Linux 261

Direct HMD mode support 73
display configuration in 370

live webcam video
field of view 348
image enhancement 346–347
image stabilization 348–350
overview 340–342
scaling for 347–348
stereo vision using 350–353
threaded frame capture from 342–345

local coordinates 382, 395
lookat matrix 328
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 403
M

Mac OS X 370
Machine to Be Another 249
magnetometer 67
massively multiplayer online role-playing games.

See MMORPGs
mathematics

coordinate systems 382–383
matrices 383–384
rotation

Euler angles 385
overview 384–385
quaternions 385–386
spherical linear interpolation 386

matrices
defined 395
overview 383
transforms 384

matrix stacks 61, 388
Maven 263, 268
mavennatives plugin 263
Maximize On Play setting 150, 161
meathook avatars in Team Fortress 2 219–220
menus 169, 196–197
Microsoft Kinect 221–222, 355
Microsoft Windows 370
migraine headaches 229
Minority Report 222, 224
Mirrored mode 183, 372
MMORPGs (massively multiplayer online role-

playing games) 206
modelview matrix 86, 123, 389, 395
modelview offset 120
modelview software design pattern 388
modelviewOffset matrices 108
monitors vs. screens 369
monoscopic 3D 104–105
motion parallax 106
motion sickness 27–29, 154

camera control by user
avoid changing camera position 233
avoid changing field of view 233
avoid stopping head tracking 235
cutscenes and 235–236
getting user attention 233–234
head tracking matching what user

does 232–233
zooming and context 234

content and
intensity of VR experience

251–252
psychological responses to first-person

perspective 252–253
defined 395, 397

ergonomics
avoid making user roll eyes 244–245
limiting head movement 243
text readability 245

experimentation and 253
giving user comfortable start 231–232
human variation and

correcting for strabismus 248
creating avatars for everyone 248–250
encouraging breaks from gameplay 250
encouraging use of user profile 250
overview 246–247
using profile data 247–248

movement
avoid backstepping and spinning 238
avoiding head bob 238
using caution with extreme actions 239
using real-world speeds 238

overview 229
providing character body 245–246
resources for 391
sound usage and 245
starting with solid foundation 231
testing for potential of

overview 254
user base for tests 254–255
using different display modes 255–257
using Simulator Sickness Questionnaire 254

world design
avoid changing horizon line 241
avoiding flickering and high-contrast

flashing 242
avoiding large moving objects 241–242
limiting uneven surfaces 240–241
providing static reference points 241
scale 240
using darker textures 242

mouse input 209
MouseLook script 157
movement

avoid backstepping and spinning 238
avoiding head bob 238
using caution with extreme actions 239
using real-world speeds 238

N

native resolution 75
natural user interface. See NUI
navigation. See movement
neck strain 243
NextFrameSeconds 133
Nintendo Wii 222
NUI (natural user interface) 20
NumPy library 287
Licensed to Mark Watson <nordickan@gmail.com>

INDEX404
O

object-oriented. See OO
OCR (Optical Character Recognition) 346
oculomotor cues 106
Oculus player controller prefab

adding OVRPlayerController prefab to
scene 149

OVRPlayerController prefab components
152–153

Unity editor workflow 150–153
Oculus Rift. See Rift
Oculus runtime 34–35
Oculus Share 393
Oculus stereo camera prefab

adding character controller 154–155
adding OVRCameraRig prefab to character

controller 155–156
changing MouseLook script 157
creating scene 154
overview 153–154
OVRCameraRig prefab components

157–160
OculusConfigUtil tool 368
offscreen framebuffer targets 117–118
offscreen rendering 320–321
onDestroy() method 278
onFrame() method 361
OO (object-oriented) 267
OpenCV library 339–340, 342, 346–347,

352
OpenGL

creating window 51
choosing display mode 74
Direct HMD mode 77–79
extended desktop mode 74–76

full screen vs. windowed 79–80
initialization

using Java 279–280
using Python 294–295

resources for 390–391
shared contexts 321
See also Lightweight Java OpenGL
See also OpenGL Shading Language (GLSL)

OpenGL Shading Language. See GLSL
Optical Character Recognition. See OCR
orientation

applying to rendered scene 65–66
getting 65
resetting 57

OS X 261
OVR_CAPI_D3D.h header file 93
OVR_CAPI_GL.h header file 93
ovr_Initialize() function 36–38
ovr_Shutdown() function 37

OVRCameraRig prefab
adding to character controller 155–156
components of 157–160

ovrD3D10TextureData 120
ovrD3D11TextureData 120
ovrD3D9TextureData 120
ovrDistortionCap_Vignette flag 97
ovrFrameTiming structure 132
ovrGLConfigData structure 95
ovrGLTextureData 93, 120
ovrHmd_BeginFrame() function 121, 314
ovrHmd_ConfigureRendering() function 117
ovrHmd_ConfigureTracking() function 56
ovrHmd_EndFrame() function 121
ovrHmd_GetEyePoses() function 56, 59–60, 68,

79, 121, 124
ovrHmd_GetTrackingState() function 56–57, 60,

68, 362
ovrHmd_RecenterPose() function 56–57
ovrHmdCap_ExtendDesktop flag 73–74
OVRPlayerController prefab

adding to scene 149
components of 152–153

ovrTexture structure 93
ovrTextureHeader type 93
ovrTrackingState 58–59

P

panorama photos 334–335
parallax 208, 336
performance

anti-aliasing 183–184
Direct HMD Access and 369
dynamic framebuffer scaling 135–140
frame rate requirements 126–127
mirroring display and 183
preventing issues 127–128
quality and frame rates 180
timewarp 181–182

limitations of 132
overview 129–130
running ahead 132–134
running behind 134–135
sample frame rendering timeline 130–132
using in code 130

perspective 207
photo spheres 336–340
pincushion distortion 88
pinned UI 309
pinned widgets 190
pitch 41, 45
pixelsPerDisplayPixel parameter 118
POMs (project object models) 268
predicted orientation 122
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 405
prediction
head tracking and 123
overview 67–70
utilizing 70

prefabs 144
preprogrammed character animation

218
presence 5

See also augmented virtual reality
See also immersion

Private Eye 234, 237, 392
procedural textures for raycasting 305
profile data

accounting for human variation
using 247–248

encouraging use of 250
programmable shaders 303
project object models. See POMs
projection field 115
projection matrix 86, 120
proprioception 215, 251
Proton Pulse 243
psychological responses 252–253
pygame library 287
PyOpenGL library 287
Python 29

development environment for 287
overview 286–287
PyOVR 287
pyovr-examples project 287
RiftApp class

cleaning up 292–293
code for 287–291
construction 291–292
creating output window 293
frame rendering 295–297
initializing OpenGL 294–295
initializing Pygame 293–294
main loop 297

RiftDemo class 297–298

Q

QGLWidget class 316
QOpenGLWindow class 316
Qt

abstracting Rift rendering 313–315
binding Rift code to Qt implementation

316–317
creating Rift window 317–319
rendering loop 319

Quake 207
quat() method 296
quaternions 43, 59, 385–386, 396
QWindow class 316

R

rate of turn 68
ray marching 326
ray tracing 326
raycasting

finding ray direction in 2D 327–328
finding ray direction in VR 328–330
overview 325–327
ray origin 330–331

Razer Hydra 222
readability, text 169
real-life scale 145–146
Rear Window 237
recentering the user 179–180
Rect transforms 166, 169
reference points 241
rendering

adding stereoscopy 106–112
creating OpenGL window 51
creating scene 102–104
enhanced data for each eye 114–116
finding and connecting to Rift 50
integrating with head tracking

modelview matrix 123
overview 121–123
prediction and 123

modelview offset 120
Oculus texture description 118–120
offscreen framebuffer targets 117–118
overview 24–26, 47–50, 112–114
process for rendering frames 85–87
projection matrix 120
rectangles for each eye 51–52
Rift rendering loop and 121
setting up SDK for distortion rendering 117
ShadertoyVR application 320–321
user settings 116

renderSize() method 324
Resolution property 75
responsive triggers 201
Rift

conventional applications 18
defined 4
development without hardware 380
display considerations

each eye sees distinct half of display
panel 81–83

how lenses affect view 83–85
overview 80–81

head tracking 20–21
immersive views

field of view 21–23
field of view maximization 23–24
rendering 24–26
Licensed to Mark Watson <nordickan@gmail.com>

INDEX406
Rift (continued)
as input method 214–215
overview 17–18
reasons to support 4–5
Rift applications 18
uses for 5–9

Rift SDK (software development kit)
example using 35–36
initializing 36
managing HMD 38–39
Oculus runtime 34–35

RiftApp class
Java

buffer swapping and message processing 281
class declaration 274
constructor 276–278
frame rendering 281–284
Hmd handle helper method 276
OpenGL context and window creation

278–279
OpenGL initialization 279–280
overview 270–274
variable declarations 275–276

Python
cleaning up 292–293
code for 287–291
construction 291–292
creating output window 293
frame rendering 295–297
initializing OpenGL 294–295
initializing Pygame 293–294
main loop 297

RiftDemo class
Java 284–286
Python 297–298

RiftGlfwApp boilerplate class 80
roll 41
rotation 43

Euler angles 385
overview 384–385
quaternions 385–386
spherical linear interpolation 386

rotation matrix 396
RUN_APP macro 36
RUN_OVR_APP macro 37

S

scale
avoiding motion sickness 240
real-life 145–146
for textures 323–324
as transform 384
for webcam video 347–348

ScanoutMidpointSeconds 133

scene graph software design pattern 387, 396
screen tearing 256
screen vs. monitor 369
screen, lack of 189, 191
Second Life 191
sensors in the Rift 121–123
ShadertoyVR application

off-screen rendering 320–321
overview 303
performance

determining target frame rate 322
dynamic framebuffer scaling 323
eye-per-frame mode and timewarp 322–323
scaling texture in scene 323–324

planning
feature set 307–308
project milestones 307
UI design 308–310
UI layout 303–305
UI libraries 310–312
user inputs 305–307

raycasting
finding ray direction in 2D 327–328
finding ray direction in VR 328–330
overview 325–327
ray origin 330–331

Rift support in Qt
abstracting Rift rendering 313–315
binding Rift code to Qt implementation

316–317
creating Rift window 317–319
rendering loop 319

Shadertoy.com and 301–302, 331
Shadow Projection 195, 218, 234, 245, 392
shape-from-shading 208
shared contexts 321
shot/countershot conversations 200
Simulator Sickness Questionnaire. See SSQ
simulator sickness. See motion sickness
six degrees of freedom. See 6DOF
Sixense TrueMotion 223
skybox effect 329
software development kit. See SDK
solid objects 205–206
sound 245
Spaceflight VR 216–217, 392
spherical linear interpolation 386
splash scenes 180
SSQ (Simulator Sickness Questionnaire) 254
Standalone

ShadertoyVR application
determining target frame rate 322
dynamic framebuffer scaling 323
eye-per-frame mode and timewarp 322–323
scaling texture in scene 323–324
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 407
static reference points 241
STEM System 223–224
stereo vision 350–353
stereoblindness 248
stereoscopy 106–112
story, integrating 200
Strabismus 248, 397
Strike Suit Zero 191, 392
supportedSensorCaps parameter 57
System Shock 204

T

Team Fortress 2 7, 392
crosshair in 210–214
meathook avatars of 219–220

Technolust 236, 392
testing motion sickness potential

overview 254
user base for tests 254–255
using different display modes 255–257
using Simulator Sickness Questionnaire 254

texRes value 138
text readability 245
texture usage 242
TextureSize parameter 119
textureSize() method 324
ThisFrameSeconds 133
timewarp 121

eye-per-frame mode and 322–323
limitations of 132
overview 129–130
performance and 181–182
running ahead 132–134
running behind 134–135
sample frame rendering timeline 130–132
using in code 130

TimewarpPointSeconds 133
Titans of Space 5, 241, 244, 249, 392
Tower Eiffel 5
tracking

fetching 43–44
receiving data

anytime tracking 57
ovrTrackingState 58–59
rendering tracking 59
use cases 60–61

reporting 44
tracking devices

3Dconnexion SpaceMouse 220–221
Leap Motion 221
Microsoft Kinect 221–222
Razer Hydra 222
STEM System 223–224
Virtuix Omni 222

transformations 103
transforms, matrix 382, 384
transitions 210
translation 384
Trial of the Rift Drifter 236–237, 392
Tron 207
turn rate 68
Tuscany demo 216, 240, 376, 379, 392

U

UI (user interface)
character animations 218–220
cutscenes

in conventional video 200–201
overview 199–200
in virtual environment 201–202

design considerations
aspect ratio and 191
best practices 203–204
blending 192–193
building game menu into in-world

screen 196–197
cockpit HUDs 193–194
data on demand 194–195
depth clues 207–208
fantasy world settings 197
floating widgets 190
interactive objects 206–207
in-world screens 195–196
objects making contact with others 204–205
pinned widgets 190
solid objects 205–206
teaching users 202–203

design resources 391–392
first-person context 215–218
general discussion 187–190
gestural interfaces 224–227
input methods

crosshair in Team Fortress 2 210–214
as intermediary 209–210
mouse and gamepad 209
Rift as 214–215

planning ShadertoyVR application
design 308–310
layout 303–305
libraries for 310–312

Rift-friendly
adding GUI elements 168–170
creating world space canvas 166
immersive-style GUI 171
overview 165–166
positioning canvas 167–168
setting canvas size 167
toggling visibility 170–171
Licensed to Mark Watson <nordickan@gmail.com>

INDEX408
UI (user interface) (continued)
tracking devices

3Dconnexion SpaceMouse 220–221
Leap Motion 221
Microsoft Kinect 221–222
Razer Hydra 222
STEM System 223–224
Virtuix Omni 222

user switching from desktop to VR and
198–199

Unity applications 29
building application 161
example scene 146–147
importing Oculus Unity 4 Integration

package 147–149
knowing when HSW has been dismissed

178–179
Oculus player controller prefab

adding OVRPlayerController prefab to
scene 149

OVRPlayerController prefab
components 152–153

Unity editor workflow 150–153
Oculus stereo camera prefab

adding character controller 154–155
adding OVRCameraRig prefab to character

controller 155–156
changing MouseLook script 157
creating scene 154
overview 153–154
OVRCameraRig prefab components

157–160
overview 143–145
performance

anti-aliasing 183–184
mirroring display and 183
quality and frame rates 180
timewarp 181–182

recentering user avatar 179–180
resources for 392
Rift-friendly UI

adding GUI elements 168–170
creating world space canvas 166
immersive-style GUI 171
overview 165–166
positioning canvas 167–168
setting canvas size 167
toggling visibility 170–171

splash scenes 180
using head tracking to interact with objects

selecting objects 174–176
setting up objects for detection 173–174
using collision to set down objects 176–178

using player data from user profile 160–161
using real-life scale 145–146

USB video adapters 374
useGravity option 173
user interface. See UI
user profiles

creating for development 376
using player data from 160–161

UX (user experience) 193

V

vergence 230, 397
vertical sync. See v-sync
vertigo 27
vestibulo-ocular reflex 233
view matrix 86
viewports 51
vignette effect 97
virtual reality. See VR
Virtuix Omni 222
visibility, UI 170–171
visualization 103
VR (virtual reality)

defined 397
popularity of 4
presence 5
See also augmented virtual reality
See also immersion
See also presence

VR sickness. See motion sickness
v-sync (vertical sync) 127, 129

W

webcam
field of view 348
image enhancement 346–347
image stabilization 348–350
overview 340–342
scaling for 347–348
stereo vision using 350–353
threaded frame capture from 342–345

widgets, UI 190
windowed vs. full screen 79–80
World Builder 224
world coordinates 382
world design

avoid changing horizon line 241
avoiding flickering and high-contrast

flashing 242
avoiding large moving objects 241–242
limiting uneven surfaces 240–241
providing static reference points 241
scale 240
using darker textures 242

World of Warcraft 197–198
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 409
world space 165
wxWidgets 311

X

Xbox One 221
XMP (Extensible Metadata Platform) 336
xrandr command 370

Y

yaw 41

Z

zooming 234
Licensed to Mark Watson <nordickan@gmail.com>

For ordering information go to www.manning.com

Unity in Action
Multiplatform game development in C# with Unity 5
by Joseph Hocking

ISBN: 9781617292323
352 pages, $44.99
June 2015

C# in Depth, Third Edition
by Jon Skeet

ISBN: 9781617291340
616 pages, $49.99
September 2013

D3.js in Action
by Elijah Meeks

ISBN: 9781617292118
352 pages, $44.99
February 2015

Arduino in Action
by Martin Evans, Joshua Noble,

and Jordan Hochenbaum

ISBN: 9781617290244
368 pages, $39.99
May 2013

RELATED MANNING TITLES

Licensed to Mark Watson <nordickan@gmail.com>

http://manning.com/hocking/
http://manning.com/skeet3/
http://manning.com/meeks/
http://manning.com/mevans/
http://manning.com/hocking/
http://manning.com/skeet3/
http://manning.com/meeks/
http://manning.com/mevans/
http://www.manning.com

Davis ● Bryla ● Benton

V
irtual reality has long been the domain of researchers
and developers with access to specialized hardware and
proprietary tools. With the appearance of the Oculus Rift

VR headset, the game has changed. Using standard program-
ming tools and the intuitive Oculus SDKs, you can deliver
powerful immersive games, simulations, and other virtual
experiences that fi nally nail the feeling of being in the middle
of the action.

Oculus Rift in Action teaches you how to create 3D games and
other virtual reality experiences for the Oculus Rift. You’ll
explore the Rift hardware through examples of real applica-
tions using the Oculus SDK and both the Oculus C API and
the Unity 3D graphics engine. Along the way, you’ll get
practical guidance on how to use the Rift’s sensors to produce
fl uid VR experiences.

What’s Inside
● Creating immersive VR
● Integrating the Rift with the Unity3D SDK
● Implementing the mathematics of 3D
● Avoiding motion-sickness triggers

Experience with C++, C#, or another OO language is
assumed.

Brad Davis is an active VR developer who maintains a great
set of example Rift applications on Github. Karen Bryla is a
freelance developer and writer. Alex Benton is a lecturer in
3D graphics at the University of Cambridge and a software
engineer at Google.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/oculus-rift-in-action

$54.99 / Can $63.99 [INCLUDING eBOOK]

Oculus Rift IN ACTION

GAME DEVELOPMENT/VIRTUAL REALITY

M A N N I N G

“A complete and grounded
overview.”

—From the Foreword by Philip
Rosedale, Creator of Second Life

“Not just a must-read,
it’s a must-use! You’ll want it

constantly at hand when
working with the
 Oculus Rift.”

—Jose San Leandro, ACM S.L.

“Excellent style, clear and
 understandable examples.”

—Dr. Çağatay Çatal
Istanbul Kültür University

“The best way to dive
 deeper into VR.”—George Freeman

Founder, Mazepuncher LLC

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	How this book is organized
	What this book doesn’t do
	Code conventions and downloads
	SDK version
	Required tools: Git, CMake, and a build environment
	Required libraries
	Checking out the example code and creating the project files

	about the authors
	author online
	about the cover illustration
	Part 1—Getting started
	1 Meet the Oculus Rift
	1.1 Why support the Rift?
	1.1.1 The call of virtual reality
	1.1.2 But what about the Rift?

	1.2 How is the Rift being used today?
	1.3 Get to know the Rift hardware
	1.3.1 The DK2
	1.3.2 The DK1
	1.3.3 The GPU

	1.4 How the Rift works
	1.4.1 Using head tracking to change the point of view
	1.4.2 Rendering an immersive view

	1.5 Setting up the Rift for development
	1.6 Dealing with motion sickness
	1.7 Development paths
	1.8 Summary

	Part 2—Using the Oculus C API
	2 Creating your first Rift interactions
	2.1 SDK interfaces
	2.1.1 Oculus runtime
	2.1.2 Oculus SDK

	2.2 Working with the SDK
	2.2.1 SDK management
	2.2.2 Managing the HMD

	2.3 Getting input from the head tracker
	2.3.1 Reserving a pointer to the device manager and locating the headset
	2.3.2 Fetching tracker data
	2.3.3 Reporting tracker data to the console
	2.3.4 Exiting and cleaning up
	2.3.5 Understanding the output

	2.4 A framework for demo code: the GlfwApp base class
	2.5 Rendering output to the display
	2.5.1 The constructor: accessing the Rift
	2.5.2 Creating the OpenGL window
	2.5.3 Rendering two rectangles, one for each eye

	2.6 What’s next?
	2.7 Summary

	3 Pulling data out of the Rift: working with the head tracker
	3.1 The head tracker API
	3.1.1 Enabling and resetting head tracking
	3.1.2 Receiving head tracker data

	3.2 Receiving and applying the tracker data: an example
	3.2.1 Initial setup and binding
	3.2.2 Fetching orientation
	3.2.3 Applying the orientation to the rendered scene

	3.3 Additional features: drift correction and prediction
	3.3.1 Drift correction
	3.3.2 Prediction
	3.3.3 Using drift correction and prediction

	3.4 Summary

	4 Sending output to the Rift: working with the display
	4.1 Targeting the Rift display
	4.1.1 Extended vs. Direct HMD mode
	4.1.2 Creating the OpenGL window: choosing the display mode
	4.1.3 Creating the OpenGL window: Extended Desktop mode
	4.1.4 Creating the OpenGL window: Direct HMD mode
	4.1.5 Full screen vs. windowed: extensions with glfwCreateWindow()
	4.1.6 Dispensing with the boilerplate

	4.2 How the Rift display is different: why it matters to you
	4.2.1 Each eye sees a distinct half of the display panel
	4.2.2 How the lenses affect the view

	4.3 Generating output for the Rift
	4.4 Correcting for lens distortion
	4.4.1 The nature of the distortion
	4.4.2 SDK distortion correction support
	4.4.3 Example of distortion correction

	4.5 Summary

	5 Putting it all together: integrating head tracking and 3D rendering
	5.1 Setting the scene
	5.2 Our sample scene in monoscopic 3D
	5.3 Adding stereoscopy
	5.3.1 Verifying your scene by inspection

	5.4 Rendering to the Rift
	5.4.1 Enhanced data for each eye
	5.4.2 Improved user settings
	5.4.3 Setting up the SDK for distortion rendering
	5.4.4 The offscreen framebuffer targets
	5.4.5 The Oculus texture description
	5.4.6 Projection and modelview offset
	5.4.7 The Rift’s rendering loop

	5.5 Enabling sensors
	5.5.1 Implications of prediction
	5.5.2 Getting your matrices in order

	5.6 Summary

	6 Performance and quality
	6.1 Understanding VR performance requirements
	6.2 Detecting and preventing performance issues
	6.3 Using timewarp: catching up to the user
	6.3.1 Using timewarp in your code
	6.3.2 How timewarp works
	6.3.3 Limitations of timewarp

	6.4 Advanced uses of timewarp
	6.4.1 When you’re running early
	6.4.2 When you’re running late

	6.5 Dynamic framebuffer scaling
	6.6 Summary

	Part 3—Using Unity
	7 Unity: creating applications that run on the Rift
	7.1 Creating a basic Unity project for the Rift
	7.1.1 Use real-life scale for Rift scenes
	7.1.2 Creating an example scene

	7.2 Importing the Oculus Unity 4 Integration package
	7.3 Using the Oculus player controller prefab: getting a scene on the Rift, no scripting required
	7.3.1 Adding the OVRPlayerController prefab to your scene
	7.3.2 Doing a test run: the Unity editor workflow for Rift applications
	7.3.3 The OVRPlayerController prefab components

	7.4 Using the Oculus stereo camera prefab: getting a scene on the Rift using your own character controller
	7.4.1 The OVRCameraRig prefab components

	7.5 Using player data from the user’s profile
	7.5.1 Ensuring the user has created a profile

	7.6 Building your application as a full screen standalone application
	7.7 Summary

	8 Unity: tailoring your application for the Rift
	8.1 Creating a Rift-friendly UI
	8.1.1 Using the Unity GUI tools to create a UI
	8.1.2 Creating an in-world UI

	8.2 Using Rift head tracking to interact with objects
	8.2.1 Setting up objects for detection
	8.2.2 Selecting and moving objects
	8.2.3 Using collision to put the selected object down

	8.3 Easing the user into VR
	8.3.1 Knowing when the health and safety warning has been dismissed
	8.3.2 Re-centering the user’s avatar
	8.3.3 Creating splash scenes

	8.4 Quality and performance considerations
	8.4.1 Measuring quality: looking at application frame rates
	8.4.2 Using timewarp
	8.4.3 (Not) Mirroring to the display
	8.4.4 Using the Unity project quality settings

	8.5 Summary

	Part 4—The VR user experience
	9 UI design for VR
	9.1 New UI paradigms for VR
	9.1.1 UI conventions that won’t work in VR and why
	9.1.2 Can your world tell your story?
	9.1.3 Getting your user from the desktop to VR
	9.1.4 Cutscenes

	9.2 Designing 3D user interfaces
	9.2.1 Criteria for a good UI
	9.2.2 Guidelines for 3D scene and UI design
	9.2.3 The mouse is mightier than the sword
	9.2.4 Using the Rift as an input device

	9.3 Animations and avatars
	9.3.1 Cockpits and torsos: context in the first person
	9.3.2 Character animations

	9.4 Tracking devices and gestural interfaces
	9.4.1 Beyond the gamepad
	9.4.2 Gestural interfaces

	9.5 Summary

	10 Reducing motion sickness and discomfort
	10.1 What does causing motion sickness and discomfort mean?
	10.2 Strategies and guidelines for creating a comfortable VR environment
	10.2.1 Start with a solid foundation for your VR application
	10.2.2 Give your user a comfortable start
	10.2.3 The golden rule of VR comfort: the user is in control of the camera
	10.2.4 Rethink your camera work: new approaches for favorite techniques
	10.2.5 Make navigation as comfortable as possible: character movement and speed
	10.2.6 Design your world with VR constraints in mind
	10.2.7 Pay attention to ergonomics: eyestrain, neck strain, and fatigue
	10.2.8 Use sound to increase immersion and orient the user to action
	10.2.9 Don’t forget your user: give the player the option of an avatar body
	10.2.10 Account for human variation
	10.2.11 Help your users help themselves
	10.2.12 Evaluate your content for use in the VR environment
	10.2.13 Experiment as much as possible

	10.3 Testing your VR application for motion sickness potential
	10.3.1 Use standardized motion and simulator sickness questionnaires
	10.3.2 Test with a variety of users and as many as you can
	10.3.3 Test with new users
	10.3.4 Test with users who have set their personal profile
	10.3.5 Test in stages
	10.3.6 Test in different display modes

	10.4 Summary

	Part 5—Advanced Rift integrations
	11 Using the Rift with Java and Python
	11.1 Using the Java bindings
	11.1.1 Meet our Java binding: JOVR
	11.1.2 The Jocular-examples project
	11.1.3 The RiftApp class
	11.1.4 The RiftDemo class

	11.2 Using the Python bindings
	11.2.1 Meet our Python binding: PyOVR
	11.2.2 Development environment
	11.2.3 The pyovr-examples project
	11.2.4 The RiftApp class
	11.2.5 The RiftDemo class

	11.3 Working with other languages
	11.4 Summary

	12 Case study: a VR shader editor
	12.1 The starting point: Shadertoy
	12.2 The destination: ShadertoyVR
	12.3 Making the jump from 2D to 3D
	12.3.1 UI layout
	12.3.2 User inputs
	12.3.3 Project planning
	12.3.4 Picking our feature set
	12.3.5 UI design
	12.3.6 Windowing and UI libraries

	12.4 Implementation
	12.4.1 Supporting the Rift in Qt
	12.4.2 Offscreen rendering and input processing

	12.5 Dealing with performance issues
	12.6 Building virtual worlds on the GPU
	12.6.1 Raycasting: building 3D scenes one pixel at a time
	12.6.2 Finding the ray direction in 2D
	12.6.3 Finding the ray direction in VR
	12.6.4 Handling the ray origin: stereopsis and head tracking
	12.6.5 Adapting an existing Shadertoy shader to run in ShadertoyVR

	12.7 Summary

	13 Augmenting virtual reality
	13.1 Real-world images for VR: panoramic photography
	13.1.1 Panorama photos
	13.1.2 Photo spheres
	13.1.3 Photo spheres…in space!

	13.2 Using live webcam video in the Rift
	13.2.1 Threaded frame capture from a live image feed
	13.2.2 Image enhancement
	13.2.3 Proper scaling: webcam aspect ratio
	13.2.4 Proper ranging: field of view
	13.2.5 Image stabilization

	13.3 Stereo vision
	13.3.1 Stereo vision in our example code
	13.3.2 Quirks of stereo video from inside the Rift

	13.4 The Leap Motion hand sensor
	13.4.1 Developing software for the Leap Motion and the Rift
	13.4.2 The Leap, the Rift, and their respective coordinate systems
	13.4.3 Demo: integrating Leap and Rift

	13.5 Summary

	Appendix A—Setting up the Rift in a development environment
	A.1 Selecting a display mode: Direct HMD Access or Extended Desktop mode
	A.2 Configuring the displays in your OS for Extended Desktop mode
	A.2.1 Extending or cloning (mirroring): which should you choose?

	A.3 Improving your development environment
	A.3.1 Fix it
	A.3.2 Fix it cheaply
	A.3.3 Clone it with a gadget
	A.3.4 Remote development

	A.4 Configuring the Rift for your use
	A.4.1 Create a user profile

	A.5 Verifying your setup and troubleshooting
	A.6 Developing without a Rift

	Appendix B—Mathematics and software patterns for 3D graphics
	B.1 Coordinate systems
	B.2 Introduction to matrices
	B.3 Matrix transforms
	B.4 Representing rotation
	B.4.1 Euler angles
	B.4.2 Quaternions
	B.4.3 Spherical linear interpolation (“slerp”)

	B.5 The scene graph software design pattern
	B.6 The matrix stack software design pattern
	B.7 The modelview software design pattern

	Appendix C—Suggested books and resources
	Books, research papers, and websites
	3D graphics programming
	OpenGL
	Developing for the Rift
	Motion sickness/simulator sickness
	UI design for VR
	Unity

	Demos, games, and apps
	VR demos, games, and applications worth a view
	Oculus Share

	Appendix D—Glossary
	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

