
[1]

www.allitebooks.com

http://www.allitebooks.org

OpenCV 3.0 Computer Vision
with Java

Create multiplatform computer vision desktop and
web applications using the combination of OpenCV
and Java

Daniel Lélis Baggio

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

OpenCV 3.0 Computer Vision with Java

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1270715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-397-2

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Daniel Lélis Baggio

Reviewers
Ngoc Dao

Dileep Kumar Kotha

Domenico Luciani

Sebastian Montabone

Commissioning Editor
Kunal Parikh

Acquisition Editor
Harsha Bharwani

Content Development Editor
Nikhil Potdukhe

Technical Editor
Parag Topre

Copy Editors
Sarang Chari

Sonia Mathur

Swati Priya

Neha Vyas

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Daniel Lélis Baggio started his work in computer vision through medical image
processing at Instituto do Coração (InCor), which is a heart institute in São Paulo,
Brazil, where he worked with intravascular ultrasound (IVUS) image segmentation.
After this, he focused on GPGPU and ported that algorithm to work with NVIDIA's
CUDA. He also dived into the topic of six degrees of freedom (6DoF), head tracking
through a project called EHCI (http://code.google.com/p/ehci/) with the
Natural User Interface group.

He is also the author of Mastering OpenCV with Practical Computer Vision Projects,
Packt Publishing.

www.allitebooks.com

http://code.google.com/p/ehci/
http://www.allitebooks.org

Acknowledgment

I'd first like to thank God for all the opportunities He has given me as well as
for giving me our happy family.

I'd certainly like to thank Professor Sergio Furuie for introducing me to this
wonderful world of computer vision. I'd also like to thank Professor Carlos
Henrique Forster for his courses on the subject.

A big thanks goes to all the reviewers of this book, who took their time to put
constructive and interesting corrections to its contents.

I would also like to thank the people from Packt Publishing—especially Parag
Topre, Nikhil Potdukhe, Sriram Neelakantan, Harsha Bharwani, Sageer Parkar,
and Nadeem Bagban—without whom, this book would never have been finished.
I would also like to thank them for their patience.

I would like to thank my parents, who brought me into this world and educated me.
I also thank my brother for always being there for me.

I dedicate this book to my children, who will always be part of my heart.

I'd also like to thank my wife for supporting me day and night in our life's journey.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ngoc Dao studied computer vision at the Computer Vision and Image Media Lab
of the University of Tsukuba, Japan. He has created several high-speed and scalable
image matching server systems using Scala, Akka, and MongoDB with OpenCV's
Java binding. These systems can scale multiple machines and have successfully been
used with many iOS and Android apps.

Other than computer vision, Ngoc is also interested in real-time distributed systems
and web frameworks. He is the main author of Xitrum, which is an open source
async and clustered web framework for Scala (http://xitrum-framework.github.
io). He presented this framework at the Scala Matsuri 2014 conference in Tokyo
(http://scalamatsuri.org/en/program/index.html).

I would like to thank Professor Yuichi Ohta, Professor Yoshinari
Kameda, and Professor Kitahara Itaru at the University of Tsukuba.
They taught me a lot about computer vision.

Dileep Kumar Kotha currently works as a senior software engineer at a telecom
firm in Bangalore, India. He is an undergraduate in computer science from the
National Institute of Technology, Rourkela, 2012 batch. He started working on
image processing during his summer internship at the prestigious IIT Kharagpur
and has continued working with OpenCV on Linux machines ever since. Currently,
he successfully manages a blog on OpenCV for beginners, which you can find at
http://opencvuser.blogspot.in/.

I would like to thank Packt Publishing for giving me the opportunity
to review this book and Judie for bearing the delays in the
completion of my reviews.

www.allitebooks.com

http://xitrum-framework.github.io
http://xitrum-framework.github.io
http://scalamatsuri.org/en/program/index.html
http://opencvuser.blogspot.in/
http://www.allitebooks.org

Domenico Luciani is a passionate 22-year-old programmer. He currently works
as a software engineer for some companies and is studying computer science at the
University of Palermo, Italy.

He is a computer vision enthusiast and loves security and often pentests too; he
also takes part in bounty programs for many companies. He has worked with many
technologies in the past, such as MongoDB, Node.js, PHP, PostgreSQL, and C. He
makes many Node.js modules that he successfully publishes on the NPM website.
He collaborated as a reviewer on a published BDD test using a JavaScript book. He
studies the Go language (golang) just for fun.

He owns a Raspberry Pi. He loves writing code using vim and manages it with Git.
He also writes tests and collaborates with various open source projects on the Web.

In his free time, he likes running and playing Parkour. You can find out more about
him at http://dlion.it.

Sebastian Montabone is a computer engineer with a master's of science degree
in computer vision. He has worked in areas, such as intelligent IP cameras for
automated surveillance, data mining, 3D sensors, game development, and
embedded devices.

He is the author of Beginning Digital Image Processing: Using Free Tools for
Photographers, Apress. He has also written scientific articles and a computer vision
video course OpenCV Computer Vision Application Programming, Packt Publishing.

You can visit his blog at www.samontab.com, where he shares his current projects
with the world.

www.allitebooks.com

http://dlion.it
www.samontab.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

To all the readers, without whom this book would not have a reason for existing

[i]

Table of Contents
Preface v
Chapter 1: Setting Up OpenCV for Java 1

Getting OpenCV for Java development 2
Building OpenCV from the source code 2
The Java OpenCV project in Eclipse 7
The NetBeans configuration 10
A Java OpenCV simple application 13
Building your project with Ant 14
The Java OpenCV Maven configuration 17

Creating a Windows Java OpenCV Maven project
pointing to the Packt repository 17
Creating a Java OpenCV Maven project pointing to a local repository 24

Summary 25
Chapter 2: Handling Matrices, Files, Cameras, and GUIs 27

Basic matrix manipulation 27
Pixel manipulation 30
Loading and displaying images from files 32
Displaying an image with Swing 33
Capturing a video from a camera 37
Video playback 41
Swing GUI's integration with OpenCV 42
Summary 45

Chapter 3: Image Filters and Morphological Operators 47
Smoothing 48

Averaging 48
Gaussian 50
Median filtering 51
Bilateral filtering 52

Table of Contents

[ii]

Morphological operators 53
Flood filling 58
Image pyramids 62
Thresholding 65
Summary 69

Chapter 4: Image Transforms 71
The Gradient and Sobel derivatives 72
The Laplace and Canny transforms 73
The line and circle Hough transforms 75
Geometric transforms – stretch, shrink, warp, and rotate 77
Discrete Fourier Transform and Discrete Cosine Transform 79
Integral images 83
Distance transforms 86
Histogram equalization 87
References 89
Summary 90

Chapter 5: Object Detection Using Ada Boost and
Haar Cascades 91

The boosting theory 91
AdaBoost 92

Cascade classifier detection and training 96
Detection 97
Training 98
References 101
Summary 101

Chapter 6: Detecting Foreground and Background
Regions and Depth with a Kinect Device 103

Background subtraction 104
Frame differencing 105
Averaging a background method 106
The mixture of Gaussians method 109
Contour finding 111
Kinect depth maps 116

The Kinect setup 118
The driver setup 118
The OpenCV Kinect support 120

The Kinect depth application 123
Summary 125

Table of Contents

[iii]

Chapter 7: OpenCV on the Server Side 127
Setting up an OpenCV web application 127

Creating a Maven-based web application 128
Adding OpenCV dependencies 130
Running the web application 132
Importing the project to Eclipse 133

Mixed reality web applications 135
Image upload 136

Image processing 139
The response image 141

Summary 142
Index 145

[v]

Preface
Living in times when self-driving vehicles are becoming a reality might trigger
curious minds as to how could computers' incipient vision works. Having a face
recognized for access control, getting our pictures automatically organized by a
subject or person, and having characters automatically recognized from paper scans
are tasks that have become common in our lives. All these aforementioned actions
have been enlisted in the so-called study area of computer vision.

As a scientific discipline, the theory behind systems that can extract information
from images can be described as computer vision, and it has been adopted to extract
valuable measurements from medical images, as well as to help humans delineate
the boundaries of important image areas in the so-called semi-automatic procedures.

In the context of providing a simple-to-use computer vision infrastructure to help
people rapidly build sophisticated vision applications, an open source library was
created: OpenCV. It was designed for real-time applications and is written in C++,
containing several hundred computer vision algorithms.

Although OpenCV had its debut alpha release back in January 1999, it was only in
February 2013 that it officially supported desktop Java through bindings. As this
is one of the most popular introductory teaching languages adopted in computer
science departments as well as K-12 computer-related courses, it is important to
have a good reference for how to build vision apps in a Java environment.

This book covers the basic OpenCV computer vision algorithms and their integration
with Java. As the Swing GUI widget toolkit is widely adopted to build GUIs in
Java, in this book, you will benefit from the chapters that deal with this topic as
well as come to know how to set up your development environment that deals with
native code bindings. Besides, operations such as stretching, shrinking, warping,
and rotating, as well as finding edges, lines, and circles are all covered through
interesting and practical sample projects in this book.

Preface

[vi]

As the Kinect device has become a great tool for background segmentation, we have
covered it in this chapter as well.

Another hot topic that is commonly explored with computer vision is machine
learning, and in this book, you will find useful information to create your own object
tracker and to use OpenCV's built-in face tracker as well.

Since Java has been widely used for web applications, we have covered computer
vision applications on the server side as well, explaining the details of image
uploading and integration with OpenCV.

By the end of this book, you will have a solid background in how to use Java with
OpenCV from setup to server side; a brief explanation of the basic computer vision
topics are covered in the book. Also, you'll get the source code of several complete
projects from which you can extend and add your own functionality.

What this book covers
Chapter 1, Setting Up OpenCV for Java, covers the setting up of a library and
development environment. This chapter covers Eclipse and NetBeans IDEs,
as well as explaining the Ant and Maven build tools configuration.

Chapter 2, Handling Matrices, Files, Cameras, and GUIs, shows how to access matrices at
the pixel level as well as how to load and display images from files and web cameras.
It also covers the Swing widget toolkit support and how to work with OpenCV.

Chapter 3, Image Filters and Morphological Operators, deals with the process of
removing noise from images as well as morphological operators. It also explains
image pyramids and topics such as flood fill and image thresholding.

Chapter 4, Image Transforms, explains important transformations to find edges,
such as the Gradient and Sobel filters. Additionally, it also explains line and circle
Hough transforms, which are used to identify not only straight but also radial lines.
The Discrete Fourier analysis and some distance transforms are also explained in
this chapter.

Chapter 5, Object Detection Using Ada Boost and Haar Cascades, demonstrates how to
create your own classifier to find some objects, as well as how to use the famous
face detection classifier.

Preface

[vii]

Chapter 6, Detecting Foreground and Background Regions and Depth with a Kinect Device,
explores the important problem of extracting your background. Furthermore, it
explains how to use a Kinect device to retrieve depth information.

Chapter 7, OpenCV on the Server Side, explains how to set up a web server application
with OpenCV.

What you need for this book
If you are a Java developer, student, researcher, or hobbyist wanting to create
computer vision applications in Java then this book is for you. If you are an
experienced C/C++ developer who is used to working with OpenCV, you
will also find this book very useful for migrating your applications to Java.

All you need is basic knowledge of Java, with no prior understanding of computer
vision required, as this book will give you clear explanations and examples of
the basics.

Who this book is for
If you are a C/C++ developer, student, researcher, or hobbyist wanting to create
computer vision applications in Java, then this book is for you. If you are an
experienced C/C++ developer who is used to working with OpenCV, you will also
find this book very useful to migrate your applications to Java.

All you need is a basic knowledge of Java. No prior understanding of computer
vision is required, as this book will give you clear explanations and examples of
the basics.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Another way to get the source code is by using the git tool."

www.allitebooks.com

http://www.allitebooks.org

Preface

[viii]

A block of code is set as follows:

<manifest>
 <addClasspath>true</addClasspath>
 <classpathPrefix>lib/</classpathPrefix>
 <mainClass>com.mycompany.app.App</mainClass>
</manifest>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

imageView.addMouseListener(new MouseAdapter()
{
 public void mousePressed(MouseEvent e)
 {
 Core.circle(image,new Point(e.getX(),e.getY()),20, new
Scalar(0,0,255), 4);
 updateView(image);
 }
});

Any command-line input or output is written as follows:

sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config
libavcodec-dev libavformat-dev libswscale-dev python-dev python-numpy
libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev
libdc1394-22-dev ant

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " Go to
Window | Preferences, and type classpath variables in the search box."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[ix]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/3972OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/3792OS_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/3792OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[x]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Setting Up OpenCV for Java
I'm sure you want to start developing astonishing computer vision applications.
You must have heard of a nice C/C++ computer vision library called OpenCV to
help you do so. But in case you would like to develop the applications using your
knowledge of Java programming, we have good news for you. Since the release of
OpenCV 2.4.4 in January 2013, Java bindings have been officially developed. So you
can use them not only for desktop Java, but also for Scala development.

This chapter will set you up for OpenCV development right away. As Java
developers are mostly used to working with tools such as Eclipse, NetBeans,
Apache Ant, and Maven, we will cover the details of creating a simple OpenCV
application using the environment that the Java developers are more used to.

In this chapter, we will do the following:

• Get OpenCV with desktop Java support
• Discuss Java Native Interface (JNI) details
• Configure Eclipse and NetBeans for OpenCV
• Create Apache Ant and Maven OpenCV projects

By the end of this chapter, the user should have an OpenCV for Java installation
running on his OS which can easily be linked to Eclipse, NetBeans, Apache Ant, or
Maven, the most used tools and building systems for Java.

Setting Up OpenCV for Java

[2]

Getting OpenCV for Java development
The first thing to notice when working with OpenCV for Java development is that
OpenCV is a C++ library that should be compiled with operating system- specific
compilers. The native code that would be generated is platform-dependent. So, the
native Linux code won't run in Windows, neither will the Android native code run
in OSX. This sounds very different from the bytecode generated for Java, which is
executed by an interpreter in any platform. In order to get the native code running in
a Java Virtual Machine (JVM), one needs the so called Java Native Interface (JNI).
This way, the native code will be required for each platform that your application is
going to be run on.

It is important to understand that JNI is a native programming interface. It allows the
Java code that runs inside a JVM to interoperate with the applications and libraries
written in programming languages such as C, C++, and assembly. Since it bridges
the gap between Java and other languages, it needs to convert datatypes from
these languages, as well as to create some boilerplate code. Curious readers should
refer to the gen_java.py script, located in the modules/java/generator folder,
which automates most of this work. Lucky Windows users get compiled binaries,
which means source C++ OpenCV code, compiled with Windows compilers into
native code that runs only on Windows, from OpenCV packages. Users from other
operating systems will need to build binaries from the source code, although one can
make that in Windows as well. In order to download compiled binaries, we should
get version 2.4.4 or higher of the OpenCV Windows package from the OpenCV
SourceForge repository, which is located at http://sourceforge.net/projects/
opencvlibrary/files/.

Notice that the prebuilt files needed for Java development are located
at opencv/build/java/. For instance, if you are working with
version 3.0.0 OpenCV, you should see files containing the Java interface
in opencv-300.jar and in the x86 and x64 native dynamic libraries,
which contains the Java bindings in x86/opencv_java300.dll and
x64/opencv_java300.dll.

Building OpenCV from the source code
In this section, we are mostly interested in generating all the OpenCV Java class
files contained in a JAR file as well as the native dynamic library for Java OpenCV.
This is a self-contained library that works with JNI and is required to run a Java
OpenCV application.

http://sourceforge.net/projects/opencvlibrary/files/
http://sourceforge.net/projects/opencvlibrary/files/

Chapter 1

[3]

In case you are working with Linux or OSX, or if you want to build from the source
in Windows, then to get the latest features committed in OpenCV, you should use
the source code. You can visit the OpenCV download page at http://opencv.org/
downloads.html and choose the appropriate link for your distribution.

Another way to get the source code is by using the git tool. Appropriate instructions
for installing it can be found at http://git-scm.com/downloads. When using git,
use the following commands:

git clone git://github.com/Itseez/opencv.git

cd opencv

git checkout 3.0.0-rc1

mkdir build

cd build

These commands will access the OpenCV developers' repository and download
the most updated code from branch 3.0.0-rc1, which is the release candidate
for version 3.0.0.

In either method of obtaining the source code, you will need building tools in order
to make binaries. The required packages are as follows:

• CMake 2.6 or higher: This is a cross-platform and an open source building
system. You can download it from http://www.cmake.org/cmake/
resources/software.html.

• Python 2.6 or later with python-dev and python-numpy: This is the Python
language that is used to run Java building scripts. You can download Python
from http://www.python.org/getit/ and download the packages from
http://sourceforge.net/projects/numpy/files/NumPy.

• C/C++ compilers: These compilers are required to generate the native
code. In Windows, you can install Microsoft Visual Studio Community or
Express, which are free, from http://www.visualstudio.com/downloads/.
Also, these compilers work with the Visual Studio Professional edition
and the versions above 2010 should work fine. You can also make it work
with MinGW, which can be downloaded from http://sourceforge.net/
projects/mingw/files/Installer/. In Linux, you are advised to use the
Gnu C Compiler (GCC) with a simple sudo apt-get install build-
essential command in Ubuntu or Debian, for instance. In case you work
with the Mac, you should use XCode.

http://opencv.org/downloads.html
http://opencv.org/downloads.html
http://git-scm.com/downloads
http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html
http://www.python.org/getit/
http://sourceforge.net/projects/numpy/files/NumPy
http://www.visualstudio.com/downloads/
http://sourceforge.net/projects/mingw/files/Installer/
http://sourceforge.net/projects/mingw/files/Installer/

Setting Up OpenCV for Java

[4]

• Java Developer Kit (JDK): JDK is required to generate the JAR files, which
will be required for every Java OpenCV program. Recommended versions
begin from Oracle, JDK 6, 7, or 8, which can be downloaded from http://
www.oracle.com/technetwork/java/javase/downloads/index-
jsp-138363.html. Please follow the operating system-specific instructions in
the link in order to install it.

• Apache Ant: This is a pure Java build tool. Look for binary distributions
at http://ant.apache.org/bindownload.cgi. Make sure you set the
ANT_HOME variable correctly as pointed out in the installation instructions at
http://ant.apache.org/manual/index.html.

In order to install these software in a Linux distribution such as Ubuntu or Debian,
the user should issue the following command:

sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config
libavcodec-dev libavformat-dev libswscale-dev python-dev python-numpy
libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev
libdc1394-22-dev ant

Once you have installed all these packages, you will be ready to build the library.
Make sure you are in the build directory, as you should be, if you have followed
the preceding Git instructions. In case you downloaded the source file from OpenCV
downloads, the parent folder of your build should have CMakeLists.txt as well as
the 3rdparty, apps, cmake, data, doc, include, modules, platforms, samples, and
test folders.

CMake is a build tool and it will generate your compiler-specific solution files. You
should then use your compiler to generate the binary files. Make sure you are in the
build directory, as this should follow the last cd build command. If you are using
Linux, run the following commands:

cmake -DBUILD_SHARED_LIBS=OFF

If you are using Windows, run the following command:

cmake -DBUILD_SHARED_LIBS=OFF -G "Visual Studio 10"

Notice that it is important to use the DBUILD_SHARED_LIBS=OFF flag, because it will
instruct CMake to build OpenCV on a set of static libraries. This way, it will compile
a single dynamic link library for Java without dependencies on other libraries. This
makes it easier to deploy your Java projects.

If you are using other compilers in Windows, type cmake –help
and it will show all the generators available.

http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/index.html

Chapter 1

[5]

In case you want to use MinGW makefiles, just change the CMake command to the
following command:

cmake -DBUILD_SHARED_LIBS=OFF -G "MinGW Makefiles"

One of the key points to watch for when generating project files through CMake is
that java is one of the modules that is going to be built. You should see a screen as
shown in the following screenshot:

In case you can't see java as one of the to-be-built modules, like in the following
screenshot, you should look for a couple of things, such as whether Ant is correctly
configured. Also make sure that you have set the ANT_HOME environment variable
and that Python is correctly configured. Check if NumPy is installed by simply
typing numpy import * in a Python shell and check for any errors:

In case you are in doubt about the Python and Java installations, slide down to check
their configurations. They should be similar to the next screenshot:

Setting Up OpenCV for Java

[6]

Once everything has been correctly configured, it is time to start compiling the
sources. In order to do so in Windows, type the following:

msbuild /m OpenCV.sln /t:Build /p:Configuration=Release /v:m

Notice that you might get an error saying, 'msbuild' is not recognized as
an internal or external command, operable program or batch file.
This occurs when you haven't set the msbuild path. In order to set it right, open
Visual Studio and in the Tools menu, click Visual Studio Command Prompt. This
will yield a fully working command prompt with access to msbuild. Refer to the
following screenshot for clearer directions:

In case you are using newer Visual Studio versions, press the Windows key and type
VS2012 Command Prompt. This should set up your environment variables.

In order to start building in Linux, simply type the following command:

make -j8

The preceding command will compile the OpenCV library with Java support. Notice
that the -j8 flag tells make to run in parallel with eight job threads, which makes the
build theoretically faster.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

Chapter 1

[7]

The entire process will last for some minutes before generating a JAR file that
contains the Java interfaces, which is located at bin/opencv-300.jar. The native
dynamic link library containing Java bindings is generated at lib/libopencv_
java300.so or bin/Release/opencv_java300.dll, depending on your operating
system. These files will be used when we create our first OpenCV application.

For more details on how to compile OpenCV for your platform,
look for http://docs.opencv.org/doc/tutorials/
introduction/table_of_content_introduction/
table_of_content_introduction.html.

Congratulations! You are now halfway to becoming a great developer using OpenCV!

The Java OpenCV project in Eclipse
Using OpenCV in any IDE is pretty simple. It is as simple as adding OpenCV JAR,
that is, opencv-300.jar to your classpath. But, as it relies on the native code, you
need to point out the dynamic link libraries—so for Linux, .dll for Windows, and
dylib for MacOsX.

1. In Eclipse, go to File | New | Java Project.

www.allitebooks.com

http://docs.opencv.org/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html
http://docs.opencv.org/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html
http://docs.opencv.org/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html
http://www.allitebooks.org

Setting Up OpenCV for Java

[8]

2. Give the new project a descriptive name, such as SimpleSample.
Select the project in the Package Explorer, go to the Project menu and
click on Properties. On the Java Build Path tab, go to the Libraries tab,
and click on the Add Library… button on the right-hand side, as shown
in the following screenshot:

3. Select User Library in the Add Library dialog, and then click Next.
4. Now, click on the User Libraries… button.
5. Click on New…. Name your library appropriately, for example,

opencv-3.0.0. It's time to reference the JAR files.
6. Click on Add JARs….

Chapter 1

[9]

7. Select the opencv-300.jar file in your filesystem; it should be in the
opencv\build\java folder. Then, point to the native library location
expanding your JAR as in the following screenshot:

8. Now, select Native library location by clicking on the Edit… button on the
right-hand side of the window and set your native libraries' location folder,
for example, opencv\build\java\x64\.

9. Now that OpenCV is properly configured, just select it in your Add library
dialog by pressing Finish.

Setting Up OpenCV for Java

[10]

Notice that your project now points to the OpenCV JAR. You can also browse the
main classes from the Package Explorer, as seen in the following screenshot:

After the The NetBeans configuration section, a source code to create a simple OpenCV
application can be found.

The NetBeans configuration
In case you are more comfortable working with NetBeans, the configuration process
is pretty much like Eclipse:

1. Select File | New Project.... On the Projects tab, select Java Application and
click on Next. Give the new project an appropriate name and click on Finish.

Chapter 1

[11]

2. Now, right-click on your Libraries folder and click on Add Library...,
as shown in the following screenshot:

Setting Up OpenCV for Java

[12]

3. As we haven't gone through this process before, a library for OpenCV won't
exist. Click on the Create... button on the right-hand side of the pane. It will
open a dialog asking for the library name—name it as OpenCV—and the
Library type, for which you should leave the default option Class Libraries.
In the next screen, on the Classpath tab, click Add JAR/Folder... like in the
next screenshot:

4. Now point to your library, which is where the opencv-300.jar file is
present—usually in opencv/build/java/. As your library is properly
configured, select it in the Add Library dialog.

5. The last detail to provide is the path for the libraries' native files. Right-click
on your project name in the Projects tab and select Properties. Go to the
Run item on the tree and under VM Options, set the library path by typing
-Djava.library.path=C:\Users\baggio\Downloads\opencv\build\
java\x64 in the text box.

Chapter 1

[13]

Make sure you change the given path to the one where your OpenCV installation
is, and that it points to the folder where the native libraries are, that is, opencv_
java300.dll in Windows, or libopencv_java300.so in Linux. Now, add the
SimpleSample class code in your project, as pointed. Run the sample and make
sure that you don't get any errors.

A Java OpenCV simple application
It's time to create a simple application that will show that we can now compile and
execute Java code with OpenCV. Create a new Java class containing a Main method
and paste the code given as follows. It simply creates a 5 x 10 OpenCV matrix, sets
some of its rows and columns, and prints the result to the standard output.

Make sure you load the correct dynamic link libraries through a call to System.
loadlibrary("opencv_java300"). Since, you might want to change the library
version later, a better approach would be to use the Core.NATIVE_LIBARAY_NAME
constant, which will output the correct library name. You can also find this file in the
code repository for chapter1 of this book, under ant/src.

import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.CvType;
import org.opencv.core.Scalar;

class SimpleSample {

 static{ System.loadLibrary(Core.NATIVE_LIBRARY_NAME); }

 public static void main(String[] args) {

Setting Up OpenCV for Java

[14]

 System.out.println("Welcome to OpenCV " + Core.VERSION);
 Mat m = new Mat(5, 10, CvType.CV_8UC1, new Scalar(0));
 System.out.println("OpenCV Mat: " + m);
 Mat mr1 = m.row(1);
 mr1.setTo(new Scalar(1));
 Mat mc5 = m.col(5);
 mc5.setTo(new Scalar(5));
 System.out.println("OpenCV Mat data:\n" + m.dump());
 }

}

According to Oracle's documentation, it states that, class can have any number of static
initialization blocks. And they can appear anywhere in the class body. The runtime system
guarantees that static initialization blocks are called in the order that they appear in the
source code.

You should make sure that any calls to the OpenCV library are preceded by a single
System.loadLibrary call, in order to load the dynamic libraries. Otherwise, you
will receive an java.lang.UnsatisfiedLinkError: org.opencv.core.Mat.n_
Mat(IIIDDDD)J error. This generally occurs in a static block.

If everything goes well, you should see the following output in the console:

Welcome to OpenCV 3.0.0-rc1

OpenCV Mat: Mat [5*10*CV_8UC1, isCont=true, isSubmat=false,
nativeObj=0x2291b70, dataAddr=0x229bbd0]

OpenCV Mat data:

[0, 0, 0, 0, 0, 5, 0, 0, 0, 0;

 1, 1, 1, 1, 1, 5, 1, 1, 1, 1;

 0, 0, 0, 0, 0, 5, 0, 0, 0, 0;

 0, 0, 0, 0, 0, 5, 0, 0, 0, 0;

 0, 0, 0, 0, 0, 5, 0, 0, 0, 0]

Building your project with Ant
If you want to rely on Apache Ant for building instead of using an IDE, a build.
xml file is provided in the OpenCV samples. You can find this file in this chapter's
repository as well. The following are its contents:

<project name="SimpleSample" basedir="." default="rebuild-run">
 <property name="src.dir" value="src"/>
 <property name="lib.dir" value="${ocvJarDir}"/>

Chapter 1

[15]

 <path id="classpath">
 <fileset dir="${lib.dir}" includes="**/*.jar"/>
 </path>
 <property name="build.dir" value="build"/>
 <property name="classes.dir" value="${build.dir}/classes"/>
 <property name="jar.dir" value="${build.dir}/jar"/>
 <property name="main-class" value="${ant.project.name}"/>

 <target name="clean">
 <delete dir="${build.dir}"/>
 </target>

 <target name="compile">
 <mkdir dir="${classes.dir}"/>
 <javac includeantruntime="false" srcdir="${src.dir}"
destdir="${classes.dir}" classpathref="classpath"/>
 </target>

 <target name="jar" depends="compile">
 <mkdir dir="${jar.dir}"/>
 <jar destfile="${jar.dir}/${ant.project.name}.jar"
basedir="${classes.dir}">
 <manifest>
 <attribute name="Main-Class" value="${main-class}"/>
 </manifest>
 </jar>
 </target>

 <target name="run" depends="jar">
 <java fork="true" classname="${main-class}">
 <sysproperty key="java.library.path" path="${ocvLibDir}"/>
 <classpath>
 <path refid="classpath"/>
 <path location="${jar.dir}/${ant.project.name}.jar"/>
 </classpath>
 </java>
 </target>

 <target name="rebuild" depends="clean,jar"/>

 <target name="rebuild-run" depends="clean,run"/>

</project>

Setting Up OpenCV for Java

[16]

This is a basic build.xml Ant file that defines tasks such as cleaning, compiling, and
packing a .jar file, running, rebuilding, and rebuild-running. It expects your source
code to be in a sibling folder called src. Make sure that the SimpleSample.java
source code provided earlier is inside this directory.

Compiling and running the project using Ant is easy. Simply type the following:

ant -DocvJarDir=path/to/dir/containing/opencv-300.jar -DocvLibDir=path/
to/dir/containing/opencv_java300/native/library

In case you have downloaded and extracted pre-built binaries, use the following
command instead:

ant -DocvJarDir=X:\opencv3.0.0\opencv\build\java -DocvLibDir=X:\
opencv3.00\opencv\build\java\x64

A successful run of Ant build.xml will look like the following screenshot:

The provided build.xml file can be reused for building your Java OpenCV
applications. In order to use it, make sure that the project name matches your main
class name. If your main class is inside the package com.your.company, and it's
called MainOpenCV, you should change the first line of build.xml from <project
name="SimpleSample" basedir="." default="rebuild-run"> to <project
name="com.your.company.MainOpenCV" basedir="." default="rebuild-run">.

Chapter 1

[17]

You can also hardcode the ocvJarDir and ocvLibDir properties so you won't have
to type them while invoking Ant. For ocvJarDir, simply change the <property
name="lib.dir" value="${ocvJarDir}"/> command to <property
name="lib.dir" value="X:\opencv2.47\opencv\build\java"/>.

The Java OpenCV Maven configuration
Apache Maven is a more complex build automation tool, primarily used for Java
projects. It describes not only how software is built, but also how it depends on
other libraries. Its projects are configured through a Project Object Model, named
pom.xml. Maven dependencies are usually located in Maven 2 Central Repository.
In case they aren't found there, you will need to add other repositories. You can
also create a local repository and add your own dependencies there. At the time of
writing this book, there were no public dependencies for Java OpenCV. So we will
cover not only the process of installing the Java OpenCV Maven dependencies in a
local repository but also how to use this book's Maven repository for the Windows
builds of OpenCV 3.0.0 version. In case OpenCV developers host public Maven
repositories, minor changes will be required. You will only need to find out the
official OpenCV JAR groupId, artifactId, and version and put them in your
pom.xml.

In order to make your project dependent on any library, you only need to provide
three fields in your pom.xml. They are groupId, artifactId, and version. The
recommended way to make your project depend on libraries that are not hosted in
the Central Maven Repository, is to install them using a simple command, like mvn
install:install-file -Dfile=non-maven-proj.jar -DgroupId=some.group
-DartifactId=non-maven-proj -Dversion=1 -Dpackaging=jar.

We will show you how to use the Packt repository for window builds in the next
section and then we will give you the details on how to install them on your local
repository, in case you need it.

Creating a Windows Java OpenCV Maven
project pointing to the Packt repository
This section shows how to create a basic Maven project and how to customize it so
that it adds OpenCV dependencies. Besides this, it will generate an Eclipse project so
that the readers can easily generate a project in Windows. A major advantage here is
that there is no need to build or download the OpenCV library manually.

www.allitebooks.com

http://www.allitebooks.org

Setting Up OpenCV for Java

[18]

Although the Maven learning curve might be a little tougher than straightaway
creating your project in your favorite IDE, it pays off in the long term span. The
best part of using Maven is that you won't need to install OpenCV at all since all
dependencies, including native files, are automatically downloaded. We'll show
you how to do it in the following simple steps:

1. Build a project from an archetype: Create an empty folder for your project.
Let's name it as D:\mvnopencv. In that folder, type the following command:
mvn archetype:generate -DgroupId=com.mycompany.app
-DartifactId=my-opencv-app -DarchetypeArtifactId=maven-archetype-
quickstart -DinteractiveMode=false

Let's break it down into parts. The mvn archetype:generate command
tells Maven to run the generate goal command from the archetype plugin.
From the documentation, we see that generate goal creates a Maven
project from an archetype; it asks the user to choose an archetype from
the archetype catalog, and retrieves it from the remote repository. Once
retrieved, it is processed to create a working Maven project. This way, we
deduce that the -DarchetypeArtifactId=maven-archetype-quickstart
parameter is the selected archetype. This will generate a Java project with the
following structure:

my-opencv-app
|-- pom.xml
`-- src
 |-- main
 | `-- java
 | `-- com
 | `-- company
 | `-- app
 | `-- App.java
 `-- test
 `-- java
 `-- com
 `-- company
 `-- app
 `-- AppTest.java

Note that the -DgroupId=com.mycompany.app
-DartifactId=my-opencv-app properties will fill
pom.xml and provide a part of the project tree.

Chapter 1

[19]

2. Add OpenCV dependencies: Since this is a project generated from a general
Maven archetype, we should customize it so that it will look like a Java
OpenCV project. In order to do that, we will need to add our dependencies.
Open the generated pom.xml file in D:\mvnopencv\my-opencv-app. We
should first add the Java OpenCV dependencies. Since they don't exist in the
Maven central repository at the time of writing this book, you will also need
to point to an online repository. We have provided native files for Windows
x86 and Windows 64-bits. In order to add the Packt Maven repository,
simply add the following lines to your pom.xml file:
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/maven-v4_0_0.xsd">

 <repositories>
 <repository>
 <id>javaopencvbook</id>
 <url>https://raw.github.com/JavaOpenCVBook/code/maven2/</
url>
 </repository>
 </repositories>

 <modelVersion>4.0.0</modelVersion>
…
</project>

Now, also add the OpenCV dependencies. In order to compile your code,
you will only need to add the OpenCV JAR dependency. In case you also
want to execute it, you will need the Windows natives as well. These have
been packed inside opencvjar-runtime-3.0.0-natives-windows-x86.
jar for 32-bit architectures. For 64-bit architectures, these are packed inside
opencvjar-runtime-3.0.0-natives-windows-x86_64.jar. Near the
junit dependencies, add the following:
<dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.javaopencvbook</groupId>
 <artifactId>opencvjar</artifactId>
 <version>3.0.0</version>

Setting Up OpenCV for Java

[20]

 </dependency>
 <dependency>
 <groupId>org.javaopencvbook</groupId>
 <artifactId>opencvjar-runtime</artifactId>
 <version>3.0.0</version>
 <classifier>natives-windows-x86_64</classifier>
 </dependency>
</dependencies>

Notice the classifier property set to opencvjar-runtime. It is set to natives-
windows-x86_64. This is the value you should use for a 64-bit platform. In
case you want it for a 32-bit platform, just use natives-windows-x86.

3. Configure build plugins: The opencvjar-runtime dependencies only
include files such as .dll, .so, and so on. These files will be extracted to
your target while executing the mvn package command. But, this will
only happen if you add maven-nativedependencies-plugin. Besides,
it is also important that you copy all the JAR libraries to your /lib folder
when creating your distributable JAR. This will be dealt with by the maven-
dependency-plugin. The last detail is to point your main class when
creating a JAR, which is performed by maven-jar-plugin. All the build
plugin configurations should be added as follows:
<build>
 <plugins>
 <plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 <classpathPrefix>lib/</classpathPrefix>
 <mainClass>com.mycompany.app.App</mainClass>
 </manifest>
 </archive>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.1</version>
 <executions>
 <execution>
 <id>copy-dependencies</id>
 <phase>package</phase>

Chapter 1

[21]

 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 <configuration>
 <outputDirectory>${project.build.directory}/lib</
outputDirectory>
 <overWriteReleases>false</overWriteReleases>
 <overWriteSnapshots>false</overWriteSnapshots>
 <overWriteIfNewer>true</overWriteIfNewer>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>com.googlecode.mavennatives</groupId>
 <artifactId>maven-nativedependencies-plugin</artifactId>
 <version>0.0.7</version>
 <executions>
 <execution>
 <id>unpacknatives</id>
 <phase>generate-resources</phase>
 <goals>
 <goal>copy</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

You can see the final pom.xml file in the chapter1/maven-sample directory
in this chapter's sample code.

4. Create a package: Now, you should check if everything's correct by making a
package. Simply type the following command:
mvn package

The preceding should download all the plugins and dependencies, compile
your App.java file from the archetype, generate your my-opencv-app-
1.0-SNAPSHOT.jar in the target folder, as well as copy all the dependent
libraries to your target/lib folder; check for the junit, opencvjar, and
opencvjar-runtime JARs. Also, the native libraries are extracted to the
target /natives folder, so opencv_java300.dll can be found there. Your
compiled classes can also be found in the target /classes folder. The other
generated folders are related to your tests.

Setting Up OpenCV for Java

[22]

5. Customize your code: Now, we will change the source file to use the simple
OpenCV functions. Navigate to D:\mvnopencv\my-opencv-app\src\
main\java\com\mycompany\app and edit the App.java file. Simply add the
following code:
package com.mycompany.app;

import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.CvType;
import org.opencv.core.Scalar;

public class App
{
 static{ System.loadLibrary(Core.NATIVE_LIBRARY_NAME); }

 public static void main(String[] args) {
 System.out.println("Welcome to OpenCV " + Core.VERSION);
 Mat m = new Mat(5, 10, CvType.CV_8UC1, new Scalar(0));
 System.out.println("OpenCV Mat: " + m);
 Mat mr1 = m.row(1);
 mr1.setTo(new Scalar(1));
 Mat mc5 = m.col(5);
 mc5.setTo(new Scalar(5));
 System.out.println("OpenCV Mat data:\n" + m.dump());
 }
}

It is the same code from SimpleSample that we just put in the App class.
Now we just need to run it. Remember to recompile it by running the
following command:
mvn package

6. Execute your code: Execute the generated JAR, pointing the native files in the
/native folder through the -Djava.library.path property. This should be
as simple as typing the following:
D:\mvnopencv\my-opencv-app>java -Djava.library.path=target\
natives -jar target\my-opencv-app-1.0-SNAPSHOT.jar

Well done! Now you should have the same output as when running the
SimpleSample class. In case you want to execute your project through a
.bat file, simply type the preceding command in a file called run.bat, for
instance, and save it in the D:\mvnopencv\my-opencv-app folder.

Chapter 1

[23]

7. Generate an Eclipse project: Now, you will be able to take advantage of
some Maven features such as creating an Eclipse project by simply typing
the following command:
mvn eclipse:eclipse

In order to get the project inside Eclipse, open your workspace and then go to File |
Import.... Then, choose Existing Projects into Workspace, click on Next | Browse...
in the Select root directory radio button, and browse to D:\mvnopencv\my-opencv-
app. It should recognize this folder as an Eclipse project. Then simply click on Finish.

In case you want to run your project now, beware that there are two warnings here.
Eclipse does not recognize Maven by default. So, you will have an error telling
you that "The project cannot be built until build path errors are
resolved", "Unbound classpath variable: 'M2_REPO/org/javaopencvbook/
opencvjar/3.0.0/opencvjar-3.0.0.jar' in project 'my-opencv-app'".

This error simply means that your M2_REPO variable isn't defined. Go to Window |
Preferences, and type classpath variables in the search box. Selecting it in the tree
will bring you the tab to define this variable. Click on New... and the New Variable
Entry dialog box will appear. In the Name input, call it M2_REPO and in the Path
input, choose Folder... and browse to your Maven repository. This should be located
in a folder similar to C:/Users/baggio/.m2/repository. Click on Ok, and then Ok
again in the Preferences dialog box. It will ask for a full rebuild. Click on Yes, and
then the error should be gone.

If you try to run your App.java class by right-clicking Run As | Java Application,
it should give you the following exception: Exception in thread "main" java.lang.
UnsatisfiedLinkError: no opencv_java300 in java.library.path.

It only means that Eclipse hasn't found your native files. Fixing it is as easy as
expanding your project and locating the Referenced Libraries | opencvjar-3.0.0.jar.
Right-click it and choose Properties. Select Native Library at the left and in the
Location path, click Workspace..., my-opencv-app | target | natives. Remember
that this folder will only exist if you have previously run the mvn package
command. Run the App class again and it should work.

Setting Up OpenCV for Java

[24]

Creating a Java OpenCV Maven project
pointing to a local repository
The same instructions given in the previous section apply here. The only differences
are that you will not need to add any additional repository to your pom.xml since
they will be located in your local repository, and that you must install and create all
the JARs in the Packt' repository in your machine. We assume that you have already
obtained the opencv-300.jar and the native files required for your architecture, that
is, if you are in Linux, you have opencv_java300.so already compiled.

In order to put your artifacts in a local repository, you must use the goal install-
file from the install plugin. Firstly, you should install the opencv jar file. It
should be in your build directory, in a folder that will look like D:\opencv\build\
bin. In that folder, type in the following command:

mvn install:install-file -Dfile=opencvjar-3.0.0.jar -DgroupId=opencvjar
-DartifactId=opencvjar -Dversion=3.0.0 -Dpackaging=jar

Make sure you use the same groupId and artifactId when referring to it in your
pom.xml dependencies. Now, in order to install the native files, almost the same
procedure will be used. Instead of installing the native file itself, it is advisable to
convert it to a .jar file before installation. If you are using Linux, simply create
a ZIP file from the opencv_java300.so and rename it as opencv_java300.jar.
In fact, a JAR file is a ZIP file that obeys some standards. After you have created
your JAR file, it is time to install it in your local Maven repository. Simply type
the following command:

mvn install:install-file -Dfile=opencvjar -runtime-natives-linux-x86.
jar -DgroupId=opencvjar -DartifactId=opencvjar-runtime -Dversion=3.0.0
-Dpackaging=jar -Dclassifier=natives-linux-x86

Notice the natives-linux-x86 classifier. This is important for the dependencies to
specify their architecture. After typing it, you should have both the dependencies
installed. Now, simply update your pom.xml file to refer to groupId opencvjar
instead of org.javaopencvbook. Following the instructions from the previous
section should make you ready to use Maven from your local repository.

Chapter 1

[25]

Summary
This chapter provided several different approaches for setting up OpenCV for Java,
that is, by either installing compiled binaries or compiling it from the source. It also
pointed to instructions for making the main configurations in Eclipse and NetBeans
IDE as well as for using building tools such as Ant and Maven. The user should be
ready to easily start using OpenCV in his/her Java projects.

The next chapter will go deeper into OpenCV and address basic tasks such as
handling images through matrices, reading image files, retrieving frames from
a webcam, and creating nice Swing GUIs for your computer vision applications.

[27]

Handling Matrices, Files,
Cameras, and GUIs

This chapter will enable you to perform basic operations required in computer
vision, such as dealing with matrices, opening files, capturing videos from a
camera, playing videos, and creating GUIs for prototype applications.

In this chapter, the following topics will be covered:

• Basic matrix manipulation
• Pixel manipulation
• How to load and display images from files
• How to capture a video from a camera
• Video playback
• Swing GUI's integration with OpenCV

By the end of this chapter, you should be able to get this computer vision application
started by loading images and creating nice GUIs to manipulate them.

Basic matrix manipulation
From a computer vision background, we can see an image as a matrix of numerical
values, which represents its pixels. For a gray-level image, we usually assign values
ranging from 0 (black) to 255 (white) and the numbers in between show a mixture of
both. These are generally 8-bit images. So, each element of the matrix refers to each
pixel on the gray-level image, the number of columns refers to the image width, as
well as the number of rows refers to the image's height. In order to represent a color
image, we usually adopt each pixel as a combination of three basic colors: red, green,
and blue. So, each pixel in the matrix is represented by a triplet of colors.

www.allitebooks.com

http://www.allitebooks.org

Handling Matrices, Files, Cameras, and GUIs

[28]

It is important to observe that with 8 bits, we get 2 to the power of eight
(28), which is 256. So, we can represent the range from 0 to 255, which
includes, respectively the values used for black and white levels in 8-bit
grayscale images. Besides this, we can also represent these levels as
floating points and use 0.0 for black and 1.0 for white.

OpenCV has a variety of ways to represent images, so you are able to customize the
intensity level through the number of bits considering whether one wants signed,
unsigned, or floating point data types, as well as the number of channels. OpenCV's
convention is seen through the following expression:

CV_<bit_depth>{U|S|F}C(<number_of_channels>)

Here, U stands for unsigned, S for signed, and F stands for floating point. For
instance, if an 8-bit unsigned single-channel image is required, the data type
representation would be CV_8UC1, while a colored image represented by 32-bit
floating point numbers would have the data type defined as CV_32FC3. If the number
of channels is omitted, it evaluates to 1. We can see the ranges according to each bit
depth and data type in the following list:

• CV_8U: These are the 8-bit unsigned integers that range from 0 to 255
• CV_8S: These are the 8-bit signed integers that range from -128 to 127
• CV_16U: These are the 16-bit unsigned integers that range from 0 to 65,535
• CV_16S: These are the 16-bit signed integers that range from -32,768 to 32,767
• CV_32S: These are the 32-bit signed integers that range from -2,147,483,648 to

2,147,483,647
• CV_32F: These are the 32-bit floating-point numbers that range from

-FLT_MAX to FLT_MAX and include INF and NAN values
• CV_64F: These are the 64-bit floating-point numbers that range from

-DBL_MAX to DBL_MAX and include INF and NAN values

You will generally start the project from loading an image, but it is important to
know how to deal with these values. Make sure you import org.opencv.core.
CvType and org.opencv.core.Mat. Several constructors are available for matrices
as well, for instance:

Mat image2 = new Mat(480,640,CvType.CV_8UC3);
Mat image3 = new Mat(new Size(640,480), CvType.CV_8UC3);

Chapter 2

[29]

Both of the preceding constructors will construct a matrix suitable to fit an image
with 640 pixels of width and 480 pixels of height. Note that width is to columns as
height is to rows. Also pay attention to the constructor with the Size parameter,
which expects the width and height order. In case you want to check some of the
matrix properties, the methods rows(), cols(), and elemSize() are available:

System.out.println(image2 + "rows " + image2.rows() + " cols " +
image2.cols() + " elementsize " + image2.elemSize());

The output of the preceding line is:

Mat [480*640*CV_8UC3, isCont=true, isSubmat=false, nativeObj=0xceeec70,
dataAddr=0xeb50090]rows 480 cols 640 elementsize 3

The isCont property tells us whether this matrix uses extra padding when
representing the image, so that it can be hardware-accelerated in some platforms;
however, we won't cover it in detail right now. The isSubmat property refers to fact
whether this matrix was created from another matrix and also whether it refers to the
data from another matrix. The nativeObj object refers to the native object address,
which is a Java Native Interface (JNI) detail, while dataAddr points to an internal
data address. The element size is measured in the number of bytes.

Another matrix constructor is the one that passes a scalar to be filled as one of its
elements. The syntax for this looks like the following:

Mat image = new Mat(new Size(3,3), CvType.CV_8UC3, new Scalar(new
double[]{128,3,4}));

This constructor will initialize each element of the matrix with the triple {128, 3,
4}. A very useful way to print a matrix's contents is using the auxiliary method
dump() from Mat. Its output will look similar to the following:

[128, 3, 4, 128, 3, 4, 128, 3, 4;

 128, 3, 4, 128, 3, 4, 128, 3, 4;

 128, 3, 4, 128, 3, 4, 128, 3, 4]

It is important to note that while creating the matrix with a specified size and type, it
will also immediately allocate memory for its contents.

Handling Matrices, Files, Cameras, and GUIs

[30]

Pixel manipulation
Pixel manipulation is often required for one to access pixels in an image. There
are several ways to do this and each one has its advantages and disadvantages.
A straightforward method to do this is the put(row, col, value) method. For
instance, in order to fill our preceding matrix with values {1, 2, 3}, we will use
the following code:

for(int i=0;i<image.rows();i++){
 for(int j=0;j<image.cols();j++){
 image.put(i, j, new byte[]{1,2,3});
 }
}

Note that in the array of bytes {1, 2, 3}, for our matrix, 1 stands
for the blue channel, 2 for the green, and 3 for the red channel, as
OpenCV stores its matrix internally in the BGR (blue, green, and
red) format.

It is okay to access pixels this way for small matrices. The only problem is the overhead
of JNI calls for big images. Remember that even a small 640 x 480 pixel image has
307,200 pixels and if we think about a colored image, it has 921,600 values in a matrix.
Imagine that it might take around 50ms to make an overloaded call for each of the
307,200 pixels. On the other hand, if we manipulate the whole matrix on the Java side
and then copy it to the native side in a single call, it will take around 13ms.

If you want to manipulate the pixels on the Java side, perform the following steps:

1. Allocate memory with the same size as the matrix in a byte array.
2. Put the image contents into that array (optional).
3. Manipulate the byte array contents.
4. Make a single put call, copying the whole byte array to the matrix.

A simple example that will iterate all image pixels and set the blue channel to zero,
which means that we will set to zero every element whose modulo is 3 equals zero,
that is {0, 3, 6, 9, …}, as shown in the following piece of code:

public void filter(Mat image){
 int totalBytes = (int)(image.total() * image.elemSize());
 byte buffer[] = new byte[totalBytes];
 image.get(0, 0,buffer);
 for(int i=0;i<totalBytes;i++){

Chapter 2

[31]

 if(i%3==0) buffer[i]=0;
 }
 image.put(0, 0, buffer);
}

First, we find out the number of bytes in the image by multiplying the total number
of pixels (image.total) with the element size in bytes (image.elemenSize). Then,
we build a byte array with that size. We use the get(row, col, byte[])method to
copy the matrix contents in our recently created byte array. Then, we iterate all bytes
and check the condition that refers to the blue channel (i%3==0). Remember that
OpenCV stores colors internally as {Blue, Green, Red}. We finally make another JNI
call to image.put, which copies the whole byte array to OpenCV's native storage.
An example of this filter can be seen in the following image, which was uploaded by
Mromanchenko, licensed under CC BY-SA 3.0:

Be aware that Java does not have any unsigned byte data type, so be careful
when working with it. The safe procedure is to cast it to an integer and use
the And operator (&) with 0xff. A simple example of this would be int
unsignedValue = myUnsignedByte & 0xff;. Now, unsignedValue can
be checked in the range of 0 to 255.

Handling Matrices, Files, Cameras, and GUIs

[32]

Loading and displaying images from files
Most computer vision applications need to retrieve images from some where. In
case you need to get them from files, OpenCV comes with several image file loaders.
Unfortunately, some loaders depend on codecs that sometimes aren't shipped with
the operating system, which might cause them not to load. From the documentation,
we see that the following files are supported with some caveats:

• Windows bitmaps: *.bmp, *.dib
• JPEG files: *.jpeg, *.jpg, *.jpe
• JPEG 2000 files: *.jp2
• Portable Network Graphics: *.png
• Portable image format: *.pbm, *.pgm, *.ppm
• Sun rasters: *.sr, *.ras
• TIFF files: *.tiff, *.tif

Note that Windows bitmaps, the portable image format, and sun raster formats
are supported by all platforms, but the other formats depend on a few details. In
Microsoft Windows and Mac OS X, OpenCV can always read the jpeg, png, and tiff
formats. In Linux, OpenCV will look for codecs supplied with the OS, as stated
by the documentation, so remember to install the relevant packages (do not forget the
development files, for example, "libjpeg-dev" in Debian* and Ubuntu*) to get the codec
support or turn on the OPENCV_BUILD_3RDPARTY_LIBS flag in CMake, as pointed
out in imread's official documentation.

The imread method is supplied to get access to images through files. Use
Imgcodecs.imread (name of the file) and check whether dataAddr() from the read
image is different from zero to make sure the image has been loaded correctly, that
is, the filename has been typed correctly and its format is supported.

A simple method to open a file could look like the one shown in the following code.
Make sure you import org.opencv.imgcodecs.Imgcodecs and org.opencv.core.
Mat:

public Mat openFile(String fileName) throws Exception{
 Mat newImage = Imgcodecs.imread(fileName);
 if(newImage.dataAddr()==0){
 throw new Exception ("Couldn't open file "+fileName);
 }
 return newImage;
}

Chapter 2

[33]

Displaying an image with Swing
OpenCV developers are used to a simple cross-platform GUI by OpenCV, which
was called as HighGUI, and a handy method called imshow. It constructs a window
easily and displays an image within it, which is nice to create quick prototypes. As
Java comes with a popular GUI API called Swing, we had better use it. Besides, no
imshow method was available for Java until its 2.4.7.0 version was released. On the
other hand, it is pretty simple to create such functionality. Refer to the reference code
in chapter2/swing-imageshow.

Let's break down the work in to two classes: App and ImageViewer. The App class
will be responsible for loading the file, while ImageViewer will display it. The
application's work is simple and will only need to use Imgcodecs's imread method,
which is shown as follows:

package org.javaopencvbook;

import java.io.File;
…
import org.opencv.imgcodecs.Imgcodecs;

public class App
{
 static{ System.loadLibrary(Core.NATIVE_LIBRARY_NAME); }

public static void main(String[] args) throws Exception {
 String filePath = "src/main/resources/images/cathedral.jpg";
 Mat newImage = Imgcodecs.imread(filePath);
 if(newImage.dataAddr()==0){
 System.out.println("Couldn't open file " + filePath);
 } else{
 ImageViewer imageViewer = new ImageViewer();
 imageViewer.show(newImage, "Loaded image");
 }
 }
}

Note that the App class will only read an example image file in the Mat object
and it will call the ImageViewer method to display it. Now, let's see how the
ImageViewer's show method works:

package org.javaopencvbook.util;

import java.awt.BorderLayout;
import java.awt.Dimension;

Handling Matrices, Files, Cameras, and GUIs

[34]

import java.awt.Image;
import java.awt.image.BufferedImage;

import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JScrollPane;
import javax.swing.UIManager;
import javax.swing.UnsupportedLookAndFeelException;
import javax.swing.WindowConstants;

import org.opencv.core.Mat;
import org.opencv.imgproc.Imgproc;

public class ImageViewer {
 private JLabel imageView;

 public void show(Mat image){
 show(image, "");
 }

 public void show(Mat image,String windowName){
 setSystemLookAndFeel();

 JFrame frame = createJFrame(windowName);

 Image loadedImage = toBufferedImage(image);
 imageView.setIcon(new ImageIcon(loadedImage));

 frame.pack();
 frame.setLocationRelativeTo(null);
 frame.setVisible(true);

 }

 private JFrame createJFrame(String windowName) {
 JFrame frame = new JFrame(windowName);
 imageView = new JLabel();
 final JScrollPane imageScrollPane = new JScrollPane(imageView);
 imageScrollPane.setPreferredSize(new Dimension(640, 480));
 frame.add(imageScrollPane, BorderLayout.CENTER);

Chapter 2

[35]

 frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
 return frame;
 }

 private void setSystemLookAndFeel() {
 try {
 UIManager.setLookAndFeel
(UIManager.getSystemLookAndFeelClassName());
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 } catch (InstantiationException e) {
 e.printStackTrace();
 } catch (IllegalAccessException e) {
 e.printStackTrace();
 } catch (UnsupportedLookAndFeelException e) {
 e.printStackTrace();
 }
 }

 public Image toBufferedImage(Mat matrix){
 int type = BufferedImage.TYPE_BYTE_GRAY;
 if (matrix.channels() > 1) {
 type = BufferedImage.TYPE_3BYTE_BGR;
 }
 int bufferSize = matrix.channels()*matrix.cols()*matrix.rows();
 byte [] buffer = new byte[bufferSize];
 matrix.get(0,0,buffer); // get all the pixels
 BufferedImage image = new BufferedImage(matrix.cols(),matrix.
rows(), type);
 final byte[] targetPixels = ((DataBufferByte) image.getRaster().
getDataBuffer()).getData();
 System.arraycopy(buffer, 0, targetPixels, 0, buffer.length);
 return image;
 }

}

Handling Matrices, Files, Cameras, and GUIs

[36]

Pay attention to the show and toBufferedImage methods. Show will try to set
Swing's look and feel to the default native look, which is cosmetic. Then, it will create
JFrame with JScrollPane and JLabel inside it. It will then call toBufferedImage,
which will convert an OpenCV Mat object to a BufferedImage AWT. This
conversion is made through the creation of a byte array that will store matrix
contents. The appropriate size is allocated through the multiplication of the number
of channels by the number of columns and rows. The matrix.get method puts all
the elements into the byte array. Finally, the image's raster data buffer is accessed
through the getDataBuffer() and getData() methods. It is then filled with a fast
system call to the System.arraycopy method. The resulting image is then assigned
to JLabel and then it is easily displayed. Note that this method expects a matrix
that is either stored as one channel's unsigned 8-bit or three channel's unsigned
8-bit. In case your image is stored as a floating point, you should convert it using
the following code before calling this method, supposing that the image you need to
convert is a Mat object called originalImage:

Mat byteImage = new Mat();
originalImage.convertTo(byteImage, CvType.CV_8UC3);

This way, you can call toBufferedImage from your converted byteImage property.

The image viewer can be easily installed in any Java OpenCV project and it will help
you to show your images for debugging purposes. The output of this program can be
seen in the next screenshot:

Chapter 2

[37]

Capturing a video from a camera
The process of capturing frames from a webcam is very complex and it involves
hardware details as well as heavy decoding or decompression algorithms.
Fortunately, OpenCV has wrapped it all in a simple, yet powerful class called
VideoCapture. This class not only grabs an image from a webcam, but also reads
video files. In case more advanced access to a camera is required, you may want to
use its specialized drivers.

You can think of a video stream as a series of pictures and you can retrieve each
image in Mat and process it as you like. In order to use the VideoCapture class to
capture a webcam stream, you need to instantiate it using the VideoCapture(int
device) constructor. Note that the constructor parameter refers to the camera index
in case you have several cameras. So, if you have one built-in camera and one USB
camera and you create a videocapture object, such as new VideoCapture(1), then
this object will refer to your built-in camera, while new VideoCapture(0) will refer
to your just-plugged-in USB camera or the other way around. Make sure the cameras
work in a manufacturer test application and check whether the camera's drivers are
also installed before you try to capture images in OpenCV.

After instantiating your VideoCapture class, check whether it is instantiated with
the isOpened() method. This will be false in case something went wrong while
accessing your camera. Unfortunately, there won't be much more info, so double-
check your drivers. Now that everything is working, call the read() method
to retrieve each captured frame in a loop. Note that this method combines the
VideoCapture grab() and retrieve() methods. The grab() method only captures
the next frame, which is fast, while the retrieve() method decodes and returns
the captured frame. These methods make more sense when synchronization is
important or when you use several cameras, as it will be easier to capture frames
that are as close as possible, firstly by calling grab() for all cameras and then calling
retrieve(). In case things go wrong while using the read() method, that is, the
camera gets disconnected, then the method returns false.

Another important point that you need to remember when using the VideoCapture
class is setting the desired camera resolution. This is possible through the set()
property setting method, which requires the Videoio.CAP_PROP_FRAME_WIDTH
and Videoio.CAP_PROP_FRAME_WIDTH parameters. In case you want a 640 x 480
resolution, you would have to make two calls, as follows:

VideoCapture capture = new VideoCapture(0);
capture.set(Videoio.CAP_PROP_FRAME_WIDTH,640);
capture.set(Videoio.CAP_PROP_FRAME_HEIGHT,480);

www.allitebooks.com

http://www.allitebooks.org

Handling Matrices, Files, Cameras, and GUIs

[38]

Before attempting to set the new resolutions, check your device's capabilities. If you
set a resolution the camera can't handle, this might hang the camera or fallback to a
resolution where it can capture an image.

The videocapture project available in this chapter's sample code shows how to
retrieve a webcam stream and display it in the screen pretty much like what happens
in the previous swing-imageshow example. In this project, the toBufferedImage
method has been refactored to an ImageProcessor class, which deals only with the
conversion from Mat—retrieved from the VideoCapture class—to BufferedImage,
which is required to display the image in Swing. The main class is also very simple;
it only builds a window, instantiates a VideoCapture class, sets its properties,
and goes to a main loop. This will grab a frame from the camera, convert it to
BufferedImage and display it in JLabel, as shown in the following code:

package org.javaopencvbook;

import java.awt.Image;
import java.io.File;

import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;

import org.javaopencvbook.utils.ImageProcessor;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.videoio.Videoio;
import org.opencv.videoio.VideoCapture;

public class App
{
 static{ System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
 }

 private JFrame frame;
 private JLabel imageLabel;

 public static void main(String[] args) {
 App app = new App();
 app.initGUI();
 app.runMainLoop(args);
 }

 private void initGUI() {

Chapter 2

[39]

 frame = new JFrame("Camera Input Example");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(400,400);
 imageLabel = new JLabel();
 frame.add(imageLabel);
 frame.setVisible(true);
 }

 private void runMainLoop(String[] args) {
 ImageProcessor imageProcessor = new ImageProcessor();
 Mat webcamMatImage = new Mat();
 Image tempImage;
 VideoCapture capture = new VideoCapture(0);
 capture.set(Videoio.CAP_PROP_FRAME_WIDTH,320);
 capture.set(Videoio.CAP_PROP_FRAME_HEIGHT,240);

 if(capture.isOpened()){
 while (true){
 capture.read(webcamMatImage);
 if(!webcamMatImage.empty()){
 tempImage= imageProcessor.toBufferedImage(webcamMatImage);
 ImageIcon imageIcon = new ImageIcon(tempImage, "Captured video");
 imageLabel.setIcon(imageIcon);
 frame.pack(); //this will resize the window to fit the image
 }
 else{
 System.out.println(" -- Frame not captured -- Break!");
 break;
 }
 }
 }
 else{
 System.out.println("Couldn't open capture.");
 }
 }
}

Handling Matrices, Files, Cameras, and GUIs

[40]

Note that calling frame.pack() will realize the captured frame size and fit the
window according to it. The following screenshot shows a successful execution
of the preceding code:

Be aware that when you open a VideoCapture device, it might not release the
process gracefully, so your Java application might still be running when you close
it. You might need to kill your process (according to your platform) as a last resort.
In Windows, this is as easy as opening the Task Manager, which you can open by
pressing CTRL + ALT + DEL and locating your Java process. To do this, OS X users
need to press CMD + ALT + ESC, while Linux users can just issue a kill command.
For troubleshooting, if you are having problems starting your capture device after
using it for a while, reconnecting your USB plug can make it work.

Chapter 2

[41]

Video playback
Another important I/O task in computer vision is being able to open and process a
video file. Fortunately, OpenCV can easily deal with videos through the VideoCapture
class. Instead of constructing it with a device number, as was done previously, we
need to create it with the file path. We can also use the empty constructor and make
the open(String filename) method responsible for pointing to the file.

The videoplayback project available in the chapter's source code has the same
structure as the swing-imageshow project, explained previously. It only differs
when you initialize the VideoCapture instance:

VideoCapture capture = new VideoCapture("src/main/resources/videos/
tree.avi");

We have also put a 50ms delay between each frame so that the whole video
doesn't play too fast. There is also code that you can use to manipulate
InterruptedException. Note that the video files won't play with the same velocity as
seen in a video player device. This is because the capture.read(webcamMatImage);
method is called as quickly as possible. You can also add delays to the code so that
it plays slower than the usual pace. Although it is not covered in this section, the
get method from the VideoCapture class when called with the CV_CAP_PROP_FPS
parameter should return the video frames per second, so that you can play it in the
original frame rate.

In case your video is not loaded, it might be an uninstalled codec issue. Try installing
it or looking for other codecs so that this bug is finished. Another option to do this
is to use tools to convert your video to supported codecs. It might also be the case
where the opencv_ffmpeg300 dynamic link library goes missing from your path
environmental variable. Try copying it to your project home folder or adding it to
your path variable. That should work. Make sure you point your java.library.path to
the folder that contains this library, in the same way you configured your projects to
find native OpenCV libraries, as described in Chapter 1, Setting Up OpenCV for Java.

Handling Matrices, Files, Cameras, and GUIs

[42]

Swing GUI's integration with OpenCV
It is important to have rich graphical user interfaces while debugging or
experimenting with computer vision projects, since some tasks might require a lot of
tuning. This way, dealing with sliders, buttons, labels, and mouse events should be
in the backpack of any computer vision researcher. Thankfully, you can work with all
of these components in a relatively easy way in Swing. In this section, we will cover
the most important parts of creating an application that loads an image and blurs it
at several levels through a slider. This application also makes use of mouse events to
highlight details in the image as well as a nice button to click and clear everything.
The next screenshot gives us a good idea of how the application works. The code can
be found in the opencv-gui project within the code bundle for this book.

Chapter 2

[43]

The code to load an image is not new to us and can be found in the Displaying
an image with Swing section. We will pay closer attention to the setupSlider(),
setupImage(), and setupButton() methods. Read the setupSlider method and
we will then cover it in detail later:

private void setupSlider(JFrame frame) {
JLabel sliderLabel = new JLabel("Blur level", JLabel.CENTER);
sliderLabel.setAlignmentX(Component.CENTER_ALIGNMENT);

int minimum = 0;
int maximum = 10;
int initial =0;
JSlider levelSlider = new JSlider(JSlider.HORIZONTAL,
minimum, maximum, initial);

levelSlider.setMajorTickSpacing(2);
levelSlider.setMinorTickSpacing(1);
levelSlider.setPaintTicks(true);
levelSlider.setPaintLabels(true);
levelSlider.addChangeListener(new ChangeListener() {

 public void stateChanged(ChangeEvent e) {
 JSlider source = (JSlider)e.getSource();
 int level = (int)source.getValue();
 Mat output = imageProcessor.blur(image, level);
 updateView(output);
 }
 });
frame.add(sliderLabel);
frame.add(levelSlider);
}

Note that a slider is simply a Jslider class and we need to set its minimum,
maximum, and initial values through the constructor. We also set whether it's a
vertical or horizontal slider. Some cosmetic details, such as the major and minor
tick spacing and whether to paint or not labels and ticks are also set. A key method
in the slider is its stateChanged listener provided by the anonymous class, which
implements the ChangeListener interface. This is basically what happens when the
user changes the slider. In our case, we will blur the image the number of times set
by the slider. This is done through our implemented ImageProcessor class, which
basically calls the Imgproc blur method, a very simple filter that only calculates the
mean of a number of neighbor pixels. The value addressed by the slider is obtained
through a call to source.getValue().

Handling Matrices, Files, Cameras, and GUIs

[44]

Another important task is being responsive to the mouse click events. This is
achieved by adding MouseListener to our JLabel image view. The following
is the setupImage method:

private void setupImage(JFrame frame) {
 JLabel mouseWarning = new JLabel("Try clicking on the image!",
JLabel.CENTER);
 mouseWarning .setAlignmentX(Component.CENTER_ALIGNMENT);
 mouseWarning.setFont(new Font("Serif", Font.PLAIN, 18));
 frame.add(mouseWarning);

 imageView = new JLabel();

 final JScrollPane imageScrollPane = new JScrollPane(imageView);
 imageScrollPane.setPreferredSize(new Dimension(640, 480));

 imageView.addMouseListener(new MouseAdapter()
 {
 public void mousePressed(MouseEvent e)
 {
 Imgproc.circle(image,new Point(e.getX(),e.getY()),20, new
Scalar(0,0,255), 4);
 updateView(image);
 }
 });

frame.add(imageScrollPane);
}

The mousePressed()method implemented in the preceding code is responsible
for answering all the mousedown events. We can get local coordinates through
the getX() and getY() event methods. Note that we call Imgproc.circle, which
is an OpenCV function that will draw a circle in the desired matrix, in the desired
position, and we can define its radius, color, and thickness.

The last GUI component explored in this example is a button that is created through
the JButton component, which implements the actionPerformed interface. As we
have previously stored the original image, it's easy to clear the image by just copying
the original one back:

private void setupButton(JFrame frame) {
 JButton clearButton = new JButton("Clear");
 clearButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent event) {

Chapter 2

[45]

 image = originalImage.clone();
 updateView(originalImage);
 }
});
clearButton.setAlignmentX(Component.CENTER_ALIGNMENT);
frame.add(clearButton);
}

Summary
Wow! A lot of details have been covered in this chapter, but we have finally grasped
the development of a complete application for computer vision. We touched on
the topic of core structure from OpenCV, which is the Mat class for basic pixel
manipulation, and its close relation to Swing's BufferedImage class. Besides this, we
covered important tasks such as opening image files and displaying them in a Swing
application. The important area of live video streaming has been covered with the
VideoCapture class, which shows you how to obtain frames from a webcam as well
as from video files. Finally, we created a rich graphical user interface application
with sliders, labels, buttons and by handling mouse events in Java.

The foundations of working with a Java OpenCV API have been set and we are
ready to go on to the next chapter, which will deal with core operators in image
processing, such as smoothing filters to remove noise, using morphological operators
to isolate elements, using bucket fill for segmentation, image pyramids, and the
essential task of thresholding. Be sure to check them out.

[47]

Image Filters and
Morphological Operators

After learning the basics of setting up OpenCV for Java and dealing with a graphical
user interface, it is time to explore some of the core operators in image processing.
Some of them come from signal processing and we call them filters, as they usually
help you to get away with noise from images. It is important to know that several
digital filters have their optical counterparts. Other operators play a useful role when
dealing with binary images, such as the morphological operators, which will help
you to isolate regions or glue some of them together. We will also cover, in detail, the
famous bucket fill tool, which is very useful in segmentation. When dealing with
large images, it is important to know how image pyramids can help you decrease
your image size without losing important information and by achieving performance.
We will finish this chapter with one of the simplest and most useful techniques for
segmentation, which is applying a threshold to separate regions as well as studying a
dynamic threshold that will not suffer much from lighting problems.

In this chapter, we will cover:

• Smoothing
• Morphological operators
• Flood filling
• Image pyramids
• Thresholding

By the end of this chapter, you will be able to perform several filtering procedures
over an image, such as removing noise, growing, shrinking and filling some areas,
as well as deciding whether some pixels fit or not in accordance with a given criteria.

www.allitebooks.com

http://www.allitebooks.org

Image Filters and Morphological Operators

[48]

Smoothing
Just like in one-dimensional signals, we are always susceptible to receiving some
noise in our images and we generally apply some preprocessing filters to them
before we perform our main work on the images. We can consider noise as a random
variation of color or brightness information that is not present in the imaged object,
which can take place undesirably due to a sensor and circuitry of a digital camera
or scanner. This section uses the ideas of low-pass filter kernels to smoothen our
images. These filters remove high frequency content, such as edges and noises,
although some techniques allow edges not to be blurred. We will cover the four
main image filters available in OpenCV: averaging, Gaussian, median filtering,
and bilateral filtering.

2D Kernel Convolution is a form of mathematical convolution. An
output image is calculated by sweeping each of the pixels of a given
image and applying a kernel operator to them, yielding an output pixel
for each resulting operation. For instance, the kernel operator can be a
3 x 3 matrix of 1s divided by 9. This way, each output pixel will be the
average value of the 9 neighbor pixels for each pixel in the input image,
yielding an average output image.

Averaging
Most of the blurring techniques will use a 2D kernel convolution to filter images. The
simplest idea is to have a 3 x 3 kernel that has a total of 9 pixels. Suppose we want to
have the average value of 9 pixels, we will only need to add them and divide by 9.
This is accomplished by the convolution with the following kernel:

In order to apply this transformation, we will use Imgproc's blur function. Its
syntax is as follows:

public static void blur(Mat src, Mat dst, Size ksize)

The parameters are, simply, the source image, destination, and the kernel size, which
is as simple as new Size(3.0, 3.0) for our 3 x 3 kernel. You can optionally add the
Point anchor parameter, shown as follows:

public static void blur(Mat src, Mat dst, Size ksize, Point anchor,
int borderType)

Chapter 3

[49]

The preceding line will let you position the anchor as well as an int borderType
integer variable outside the center point. This borderType parameter lets you define
how you want the behavior when part of the kernel is inside and outside the image.
Note that in the first row, the preceding kernel will look for values that will be on top
of the row, so OpenCV will need to extrapolate them. There are a few options available
to extrapolate borders. From the documentation, we have the following types of
borders, all available from Core constants, for instance: Core.BORDER_REPLICATE. For
example, consider | as one of the image borders and abcdefgh as pixel values:

BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh
BORDER_REFLECT: fedcba|abcdefgh|hgfedcb
BORDER_REFLECT_101: gfedcb|abcdefgh|gfedcba
BORDER_WRAP: cdefgh|abcdefgh|abcdefg
BORDER_CONSTANT: 000000|abcdefgh|0000000

The default value is Core.BORDER_DEFAULT that maps to Core.BORDER_REFLECT_101.
For more information on how to use this function, look for the source code of this
chapter's imageFilter project. The following is a screenshot of the main application,
which lets you try out each of these filters:

Image Filters and Morphological Operators

[50]

Note that this application also provides some simple Gaussian noise, whose
probability density function is equal to that of the normal distribution, to see
the benefits of each filter.

Gaussian
The idea behind Gaussian is the same as average filtering except for the fact that
instead of using the same weight for each of the pixels, a two-dimensional Gaussian
function is used for the kernel that gives the highest weightage to the pixel in the
center. The following graph displays the behavior of a 2D Gaussian curve:

In order to use this function, employ the following basic signature:

public static void GaussianBlur(Mat src,
 Mat dst,
 Size ksize,
 double sigmaX [, double sigmaY])

Chapter 3

[51]

The Mat src and Mat dst parameters are straightforward since they describe the
input and output images. The Size ksize parameter describes the kernel's width and
height. Hence, if you want to set its size, this parameter must be positive and odd, so
that the kernel can be symmetrical and have a center. In case you set the parameter to
zero, the size will be calculated from double sigmaX. Sigma is its standard deviation,
which is roughly half width at half max of the Gaussian value, which means that it is
half the width of the Gaussian value when its height is half the highest Gaussian value.
Optionally, you can also provide the fifth parameter as sigmaY, which is the standard
deviation for the y axis. In case you don't use this parameter, sigmaY will be equal
to sigmaX. Also, if both sigmaX, and sigmaY are zero, they are computed from the
kernel's width and height. The getGaussianKernel function returns all the Gaussian
coefficients in case they are required. A sixth parameter can also be given to the
GaussianBlur function, which is how borders will behave. This parameters works just
like the int borderType parameter from the Averaging section.

An example of how to use GaussianBlur can be taken from the sample
imageFilter project from this chapter:

Imgproc.GaussianBlur(image, output, new Size(3.0, 3.0), 0);

The preceding line sets sigma to 0 and makes the function calculate it from the
kernel's size by using the following formula:

sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8

Here, ksize is the kernel's aperture size, which would be 3 for our example.

Median filtering
Another idea to make a filter is to select the median pixel in a kernel instead of the
mean value, which is to select the pixel that would be in the middle of a line of
intensity-sorted pixels. This is accomplished by using the following function:

public static void medianBlur(Mat src,
 Mat dst,
 int ksize)

The Mat src and dst parameters are the input and output images, respectively,
while int ksize is the kernel's aperture size, which must be odd and greater than 1.

Sometimes, the image noise is very high and it can appear as large isolated outlier
points, which would cause a noticeable average shift. In order to overcome these
problems, a median filter can be used to ignore these outliers.

Image Filters and Morphological Operators

[52]

Bilateral filtering
While median, Gaussian, and averaging filters tend to smoothen noise and edges,
the main advantage of using bilateral filtering is the fact that it will preserve them,
since they present important information, such as, the boundary of a cell in some
medical imaging, which should not be filtered out. The tricky part of this filter is that
it considers both the spatial distance and pixel intensity difference when calculating
the average, which means that it will not include pixels that have intensity
differences above a given threshold when calculating the output image. Note the
effect of bilateral filtering in a marble checkboard using the imageFilter sample
project from this chapter:

The right-hand image shows a filtered marble while preserving the edges, something
that does not happen when you use other filters. One of the drawbacks of this method
is that soft texture details tend to be removed, like in the white square of the third line
and second column of the previous image. The function signature is as follows:

public static void bilateralFilter(Mat src, Mat dst, int d,
 double sigmaColor,
 double sigmaSpace,
 [int borderType])

Chapter 3

[53]

While Mat src and Mat dst are the input and output images, respectively, the int d
parameter is the diameter of the considered neighborhood. If it is non-positive, the
diameter will be calculated from the sigmaSpace parameter. The filter sigma in color
space is defined by the double sigmaColor parameter, which means that for higher
values, farther colors in the neighborhood will be considered when calculating the
output color of a pixel, creating a watercolor effect. Double sigmaSpace is the sigma
value in the coordinate space, which means that as long as colors are not skipped
because of sigmaColor, they will have pretty much the same average component
as in Gaussian. Remember that the watercolor effect can be very useful as a first
step when segmenting images. If you need control over the border type, the
int borderType parameter can be added as the last one, like in the previous filters.

When considering intensity differences to calculate the new average value of a pixel,
another Gaussian function is used. Note that because of this additional step, bilateral
filtering should be used with smaller kernel sizes (for instance, 5) when dealing
with real-time images, while a kernel of size 9 might be good enough for offline
applications. Note that when using a 3 x 3 neighborhood for a kernel of size 3, only
9 pixels are verified in the convolution of each pixel. On the other hand, when using
a kernel of size 9, 9 x 9 pixels are verified, which makes the algorithm search for
around 81 pixels. This could take 9 times longer.

Morphological operators
Some image operations are called morphological operations, since they change the
shape of an underlying object. We will discuss erosion and dilation, which are some
very useful morphological transformations in this section as well as some derived
transformations. They usually appear in the context of isolating elements, removing
noise, and joining distanced elements in an image.

These operators work through the convolution of a given kernel with the image. This
kernel is described with an anchor point, which is the one that is probed against a
region of pixels, depending on its shape:

Image Filters and Morphological Operators

[54]

The preceding image shows a bright region on the image, which we will call A. Note
that the complement region is completely dark. Our kernel is made of a 3 x 3 block
with an anchor at its center, described as B. The C region is the result of applying
the erosion morphological transformation over the image. Note that this operation
takes place when you scan each pixel of the image, center the kernel anchor on each
of these pixels, and then retrieve the local minimum over the kernel area. Note that
erosion will reduce the bright areas.

The opposite operation is called dilation and the difference between these two is
that in dilation, instead of computing the local minimum over the kernel area it
will compute the local maximum over that area. This operation will expand a
bright region of 3 x 3 square blocked kernels.

In order to get a better picture of how these operators work, a good idea is to try the
morphology project from this chapter's source code. It is basically OpenCV's official
C++ morphology2 example translated to Java with some minor GUI enhancements.
Note that in case of multichannel images, each channel is processed independently.
The following screenshot shows the running application:

Chapter 3

[55]

Note that our kernel bounding box is 2 times the kernel size slider parameter plus 1,
so, if the kernel size parameter is selected as 1, we will have a 3 x 3 kernel bounding
box. We also described our example in terms of a square kernel, but it could be of
any shape, so the shape parameter is also there for us to choose from. In order to
create these kernels easily, Imgproc's getStructuringElement function is used. This
function will take the kernel's shape, its size, and zero indexed anchor position as
its parameters. The kernel shape can be Imgproc.CV_SHAPE_RECT (for rectangles),
Imgproc.CV_SHAPE_ELLIPSE (for ellipses), or Imgproc.CV_SHAPE_CROSS (for a
cross-shaped kernel).

We have put all image operations in the ImageProcessor class, which we will
highlight in the following code:

public Mat erode(Mat input, int elementSize, int elementShape){
 Mat outputImage = new Mat();
 Mat element = getKernelFromShape(elementSize, elementShape);
 Imgproc.erode(input,outputImage, element);
 return outputImage;
}

public Mat dilate(Mat input, int elementSize, int elementShape) {
 Mat outputImage = new Mat();
 Mat element = getKernelFromShape(elementSize, elementShape);
 Imgproc.dilate(input,outputImage, element);
 return outputImage;
}

public Mat open(Mat input, int elementSize, int elementShape) {
 Mat outputImage = new Mat();
 Mat element = getKernelFromShape(elementSize, elementShape);
 Imgproc.morphologyEx(input,outputImage, Imgproc.MORPH_OPEN,
element);
 return outputImage;
}

public Mat close(Mat input, int elementSize, int elementShape) {
 Mat outputImage = new Mat();
 Mat element = getKernelFromShape(elementSize, elementShape);
 Imgproc.morphologyEx(input,outputImage, Imgproc.MORPH_CLOSE,
element);
 return outputImage;
}

private Mat getKernelFromShape(int elementSize, int elementShape) {
 return Imgproc.getStructuringElement(elementShape, new
Size(elementSize*2+1, elementSize*2+1), new Point(elementSize,
elementSize));
}

Image Filters and Morphological Operators

[56]

As all our methods create a kernel in the same way, we have extracted the
getKernelFromShape method, which will simply call the getStructuringElement
function with the size described in the preceding code. As we have a custom kernel,
we will call the overloaded Imgproc.erode function with the input image, output
image, and kernel as a third parameter. The following screenshot is a result of the
erosion function over a given input image:

Note that this operator is frequently used to remove speckle noise from an image, as
it will be eroded to nothing, while larger regions that contain important information
will practically not be affected. Note that smoothing filters will not completely
remove speckle noise as they tend to decrease its amplitude. Also pay attention
that these operations are sensitive to kernel size, so a size adjustment and some
experimenting is required. We can also check out the result of applying dilation in
the following screenshot:

Chapter 3

[57]

Note that besides making areas thicker, the dilate morphological transformation
is also very useful in searching for connected components, which are large regions
of similar pixel intensity. It might be necessary when a large region is broken into
smaller ones because of shadows, noise, or other effects, as can be seen in the lower
part of the image in the preceding screenshot. Applying dilation will make them link
together to a bigger element.

We also derived morphological transformations, which are open and close. Open
is defined by erosion followed by a dilation, while in a close operation, the dilation
happens first. The following is a screenshot of an open transform:

Image Filters and Morphological Operators

[58]

This operation is generally used while counting regions from a binary image. For
example, we might use it to separate regions that are too near each other before
counting them. Note that in the bottom part of our example, only larger areas have
survived the operation while preserving the non-connectedness between the large
areas that were apart. On the other hand, we can see the effects of applying the close
operation to the same image, as shown in the following screenshot:

Check whether this tends to connect nearby regions. Depending on the kernel
size, it might be useful in connected component algorithms to reduce segments
generated by noise. Unlike erosion and dilation, both open and close morphological
transformations tend to preserve the areas of their regions of interest.

Flood filling
Another very important algorithm for segmentation is flood fill, also known as region
growing. Most of you who have already worked with popular computer graphic
programs, such as Microsoft Paint or GIMP will have probably used the bucket fill
or paint bucket tool, which fills an area with a color. Although it might look like a
very simple algorithm at first sight, it has a very interesting implementation and has
several parameters that can make it work well to segment images.

Chapter 3

[59]

The idea behind the algorithm is to check for connected components, which are the
areas with similar color or brightness, starting from a given point—the so-called
seed point—and then examining this particular point's neighbors. These can include
either 4 (north, south, east, and west) or 8 neighbors (north, north-east, east, south-
east, south, south-west, west, and north-west) that check for a condition and then
recursively, call the same procedure on each of the neighbors in case they have passed
that condition. It will, naturally, add that point to the given connected component
in case the condition is true. We generally seek for pixels that are either like the
seed point or like their neighbor points, depending on which mode of flood fill will
operate. We call it a fixed range when pixels are compared against the seed point and
we call it a floating range when pixels are compared against neighbor pixels. This
condition also accepts lower difference loDiff and higher difference upDiff parameters,
which enter in the condition according to the src(x',y') – loDiff < src (x,y) < src(x',y') +
upDiff equation. In this equation, src(x,y) is the value of the pixel at the x, y coordinates
that are tested to check whether it belongs to the same domain as the seed point,
while src(x',y') is the value of one of the pixels that is already known to belong to that
component in case of a grayscale image operating in a floating range. In case we have
a fixed range flood fill, the equation turns into src(seed.x,seed.y) – loDiff < src (x,y) <
src(seed.x,seed.y) + upDiff, where seed.x and seed.y are the seed's coordinates. Also note
that in case of a colored image, each of the pixel's components are tested against the
condition, while loDiff and highDiff are tridimensional scalars. All in all, a new pixel
will be added to the domain in case its brightness or color is close enough to one of its
neighbors that already belongs to the connected component in case of a floating range
flood fill or close enough to the seed's properties in the case of a fixed range one.

The flood fill's signature is as follows:

public static int floodFill(Mat image,
 Mat mask,
 Point seedPoint,
 Scalar newVal,
 Rect rect,
 Scalar loDiff,
 Scalar upDiff,
 int flags)

Image Filters and Morphological Operators

[60]

The Mat image parameter is the input/output Mat containing the image to perform
the flood fill, while Mat mask is a single channel 8-bit mat 2 rows taller and 2 columns
wider than Mat image, for performance reasons. The Point seedpoint parameter
contains the coordinates of the seed point, while Rect rect is an output rectangle
with the smallest bounding box that contains the segmented area. The Scalar loDiff
and upDiff parameters are discussed in the preceding condition. The int flags
parameter contains options for the operating mode of the algorithm. The source code
containing a façade class for the floodFill method is available in the floodfill
project in this chapter. The following is a screenshot of the application:

Chapter 3

[61]

On the left-hand side of the preceding screenshot, there is a JLabel like the one
explained in Chapter 2, Handling Matrices, Files, Cameras, and GUIs, used to load
images, but this one has MouseListener that sends the captured clicks to the
FloodFillFacade class. On the right-hand side of the preceding screenshot, the
mask is shown in case the Mask radio button is turned on. The algorithm operation
mode is chosen through the Range radio buttons, which will be relative (checks
the conditions against neighbors), fixed (the condition is probed against the seed),
or null (when loDiff and hiDiff are both zero). A radio button for connectivity is
also available for 4 or 8 neighbors, while the lower and upper thresholds refer to the
loDiff and hiDiff parameters, respectively.

While most fields from FloodFillFacade are just getters and setters, the flag
configuration is something that you need to pay attention to. Note that a façade is just
an object that creates a simplified interface to a larger part of code, making it easier to
use. Here are some important pieces of FloodFillFacade:

public class FloodFillFacade {

 public static final int NULL_RANGE = 0;
 public static final int FIXED_RANGE = 1;
 public static final int FLOATING_RANGE = 2;
 private boolean colored = true;
 private boolean masked = true;
 private int range = FIXED_RANGE;
 private Random random = new Random();
 private int connectivity = 4;
 private int newMaskVal = 255;
 private int lowerDiff = 20;
 private int upperDiff = 20;

 public int fill(Mat image, Mat mask, int x, int y) {
 Point seedPoint = new Point(x,y);

 int b = random.nextInt(256);
 int g = random.nextInt(256);
 int r = random.nextInt(256);
 Rect rect = new Rect();

 Scalar newVal = isColored() ? new Scalar(b, g, r) : new
Scalar(r*0.299 + g*0.587 + b*0.114);

 Scalar lowerDifference = new Scalar(lowerDiff,lowerDiff,lowerDi
ff);
 Scalar upperDifference = new Scalar(upperDiff,upperDiff,upperDi
ff);

Image Filters and Morphological Operators

[62]

 if(range == NULL_RANGE){
 lowerDifference = new Scalar (0,0,0);
 upperDifference = new Scalar (0,0,0);
 }
 int flags = connectivity + (newMaskVal << 8) +
 (range == FIXED_RANGE ? Imgproc.FLOODFILL_FIXED_RANGE : 0);
 int area = 0;
 if(masked){
 area = Imgproc.floodFill(image, mask, seedPoint, newVal, rect,
lowerDifference, upperDifference, flags);
 }
 else{
 area = Imgproc.floodFill(image, new Mat(), seedPoint, newVal,
rect, lowerDifference, upperDifference, flags);
 }
 return area;
 }
...
}

Here, firstly, newVal is created as the new color that is to be filled in the connected
component. Java random classes are used to generate the color and in case it's a
grayscale image, it is converted to grayscale. Then, we set the lowerDifference and
higherDifference scalars, which will be used in accordance with the equations
described previously. Then, the flags variable is defined. Note that connectivity is
set on lower bits, while newMaskVal is shifted to the left 8 times. This parameter is
the color used to fill the mask in case it's being used. Then, in case a fixed range is
required for flood fill, its flag is set. We are then able to chose from the masked or
unmasked version of flood fill. Pay attention to new Mat(), which is passed when
does not use a mask. Observe that the seedPoint parameter is built from the given
coordinates from our MouseListener.

Image pyramids
Image pyramids are simply a collection of images obtained by downsampling
an original image, so that each image is one-fourth the area of its predecessor. It
is mainly used in image segmentation, since it can generate a very meaningful
representation of the image in low resolution, so that a time consuming algorithm
can run on it. This makes it easy for us to map this result back to a higher resolution
image in the pyramid and makes it possible to refine the results there. Besides, an
approximation to a Laplacian, by means of difference of Gaussians, can be generated.
Note that a Laplacian image is the one that will show its edges.

Chapter 3

[63]

In order to produce the downsample image, which we will call the layer i+1 in
the Gaussian pyramid (Gi+1), we first convolve Gi with a Gaussian kernel, just
like in Gaussian filtering, followed by removing every even numbered row and
column. Then, we yield an image with one quarter of the area of the above layer.
Averaging before downsampling is important because this way, information from
odd numbered columns and rows gets captured. The function to get a downsampled
image has the following signature:

public static void pyrDown(Mat src, Mat dst ,[Size dstsize, int
borderType])

The Mat src and Mat dst parameters are the input and output images. Note that
the output image will have a width of (src.width+1)/2 and a height of (src.
height+1)/2, where / denotes an integer division. You should be careful when
working with odd dimensions, since an upsampled image generated from a
downsampled one will not have the same dimensions. Take for instance, an 11 x 11
image. When you use pyrDown, it will become a 6 x 6 image. In case you upsample it,
it will become a 12 x 12 image, so you can't add or subtract it from the original image.
Note that when using pyrDown, a 5 x 5 Gaussian kernel is used. In case you want,
the pyrDown function is overloaded with the Size dstsize and int borderType
properties. The dstsize property will allow you to define the output image size, but
you must satisfy the following conditions:

|dstsize.width * 2 – src.cols| < 2
|dstsize.height * 2 – src.rows| < 2

This means that you won't have much freedom when deciding the output image
size. Also, borderType follows the same considerations as those are given in the
Smoothing section.

On the other hand, the pyrUp function will upsample an image and then blur it.
First, it will inject zero rows and columns on even locations and then, it convolve
with the same kernel from the pyramid down operation. Note that pyrDown is a
transformation that loses information, so pyrUp won't be able to recover the original
image. Its usage is as follows:

public static void pyrUp(Mat src, Mat dst)

Also, its parameters are just like the pyrDown parameters.

In case you want to build the Laplacian, just note that it can be achieved by using the
following equation:

Image Filters and Morphological Operators

[64]

UP is the upsampling operation and ⊗G5 is the convolution with a 5 x 5 Gaussian
kernel. Since pyrUp has already been implemented as an upsampling followed by a
Gaussian blurring, all we need to do is downsample the original image, upsample it,
and then subtract it from the original image. This can be accomplished by using the
following code, as it appears in this chapter's imagePyramid sample:

Mat gp1 = new Mat();
Imgproc.pyrDown(image, gp1);
Imgproc.pyrUp(gp1, gp1);
Core.subtract(image, gp1, gp1);

In the preceding code, we assume that image is the image we are working on. Be careful
when upsampling and then subtracting an image, since if the original image dimension
is odd, they will have different dimensions. The Core.subtract function simply
subtracts one image from another, as shown in the following screenshot:

Chapter 3

[65]

In order to see some code working with pyramids, consider checking out this
chapter's imagePyramid project. The preceding screenshot shows the application
running the Laplacian filter. Also, play with the buttons to get a feeling of how
pyramids work.

Thresholding
One of the simplest methods of segmenting a grayscale image is using the threshold
technique. It will basically set pixels below a given value as belonging to the
interested object and the other pixels as not being part of it. Although it might suffer
from illumination issues as well as problems that arise from variation inside the
object, this can be enough when segmenting text in a page scan for OCR or to find a
checkboard when calibrating the camera. Besides, some more interesting approaches,
such as the adaptive threshold, can also yield good results in images that suffer from
non-homogeneous lightning.

Basic thresholding is accomplished by means of Imgproc's threshold function,
whose signature is as follows:

public static double threshold(Mat src,
 Mat dst,
 double thresh,
 double maxval,
 int type)

The Mats src and dst parameters are the input and output matrices, while
thresh is the level used to threshold the image. double maxval is only used in the
Binary and Binary_Inv modes and this will be explained in the following table.
The type are Imgproc's constants used to describe the thresholding type, as in the
following table, when tested in the next condition, the source pixel value is greater
than the given threshold:

Thresholding type Output when true Output when false
CV_THRESH_BINARY maxval 0

CV_THRESH_BINARY_INV 0 maxval

CV_THRESH_BINARY threshold source value

CV_TOZERO source value 0

CV_TOZERO_INV 0 source value

Image Filters and Morphological Operators

[66]

The following diagram will help you to easily understand the preceding table:

Threshold to Zero, Inverted

Threshold to Zero

Truncate

Threshold Binary, Inverted

Value and Threshold Level

Threshold Binary

When thresholding, it is important to experiment with several values using,
for instance, a slider bar. The sample project threshold from this chapter
makes it really easy to change the function's arguments and test the results.
A screenshot of the project is shown as follows:

Chapter 3

[67]

Note that although the apple might pose a simple problem for segmentation, when
applying the binary thresholding method, the apple is almost completely identified,
except for the lighting spot above the middle line, which clearly has pixels above the
205 level, since they are almost pure white, which would be the 255 level. Besides,
the shadow area under the apple is also identified as belonging to it. Aside from
these minor problems, it is simple to use and will generally be part of one of the steps
in any computer vision application.

Another interesting approach to this type of segmentation is related to the use of a
dynamic threshold value. Instead of using a given value, the threshold is calculated
as a mean of a square block around each pixel minus a given constant. This method
is implemented in OpenCV through the adaptiveThreshold function, which has the
following signature:

public static void adaptiveThreshold(Mat src,
 Mat dst,
 double maxValue,
 int adaptiveMethod,
 int thresholdType,
 int blockSize,
 double C)

Image Filters and Morphological Operators

[68]

The Mat src and dst parameters are the input and output matrices,
respectively. Maxvalue is used the same way as the ordinary threshold function,
which is described in the preceding section. The adaptive method can either be
ADAPTIVE_THRESH_MEAN_C or ADAPTIVE_THRESH_GAUSSIAN_C. The first one will
calculate the mean as the pixel value sum divided by the number of pixels in the
block, while the latter will use Gaussian weighting for the average. BlockSize is the
square blockSize by the blockSize region used for the mean whose value must
be odd and greater than 1. The C constant is the value subtracted from the mean to
compose the dynamic threshold. Note the result obtained for the same image with
the adaptive threshold using blocksize of 13 and a constant C of 6:

Note that the shadow area is now much better, although the irregular texture
from the apple can cause other problems. The sample code uses a binary and
ADAPTIVE_THRESH_MEAN_C adaptive thresholding, but changing it for Gaussian
is just a matter of changing the type parameter.

Chapter 3

[69]

Summary
This chapter explained the theory and practice of basic image processing operations
that will be required in any computer vision project. We started with filters that work
with simple average or using a Gaussian weighting as well as a median and discussed
the interesting bilateral filter, which maintains edges. Then, we explored the important
morphological operators, such as erosion, dilation, opening, and closing, which appear
in the context of isolating elements, removing noise, and joining distanced elements
in an image. We followed this with the well-known paint bucket operation through
flood filling. Then, we explored time and processing saving image pyramids, which
make segmentation faster in higher levels by decreasing the image area to one quarter
in each layer. We finally explained the important image segmentation technique called
thresholding and tested the adaptive thresholding as well.

In the next chapter, we will focus on important image transforms, which will allow us
to find edges, lines, and circles in images. Then, you will learn stretch, shrink, warp,
and rotate operations, which will be followed by the Fourier transform, which is a nice
tool to change image from the spatial domain to the frequency domain. Finally, we will
check out integral images, which boost some face-tracking algorithms.

[71]

Image Transforms
This chapter covers the methods to change an image into an alternate representation
of data in order to cover important problems of computer vision and image
processing. Some examples of these methods are artifacts that are used to find image
edges as well as transforms that help us find lines and circles in an image. In this
chapter, we have covered stretch, shrink, warp, and rotate operations. A very useful
and famous transform is Fourier, which transforms signals between the time domain
and frequency domain. In OpenCV, you can find the Discrete Fourier Transform
(DFT) and Discrete Cosine Transform (DCT). Another transform that we've covered
in this chapter is related to integral images that allow rapid summing of sub regions,
which is a very useful step in tracking faces algorithm. Besides this, you will also get
to see distance transform and histogram equalization in this chapter.

We will cover the following topics:

• Gradients and sobel derivatives
• The Laplace and canny transforms
• The line and circle Hough transforms
• Geometric transforms: stretch, shrink, warp, and rotate
• Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)
• Integral images
• Distance transforms
• Histogram equalization

By the end of this chapter, you will have learned a handful of transforms that will
enable you to find edges, lines, and circles in images. Besides, you will be able
to stretch, shrink, warp, and rotate images as well as you will be able to change
the domain from the spatial domain to the frequency domain. Other important
transforms used for face tracking will be covered in this chapter as well. Finally,
distance transforms and histogram equalization will also be explored in detail.

Image Transforms

[72]

The Gradient and Sobel derivatives
A key building block in computer vision is finding edges and this is closely related
to finding an approximation to derivatives in an image. From basic calculus, it is
known that a derivative shows the variation of a given function or an input signal
with some dimension. When we find the local maximum of the derivative, this will
yield regions where the signal varies the most, which for an image might mean
an edge. Hopefully, there's an easy way to approximate a derivative for discrete
signals through a kernel convolution. A convolution basically means applying some
transforms to every part of the image. The most used transform for differentiation
is the Sobel filter [1], which works for horizontal, vertical, and even mixed partial
derivatives of any order.

In order to approximate the value for the horizontal derivative, the following sobel
kernel matrix is convoluted with an input image:

1 0 1
2 0 2
1 0 1

x xG T
− +
 = − ∗
 −

This means that, for each input pixel, the calculated value of its upper-right neighbor
plus twice its right neighbor, plus its bottom-right neighbor, minus its upper-left
neighbor, minus its left neighbor, minus its left-bottom neighbor will be calculated,
yielding a resulting image. In order to use this operator in OpenCV, you can call
Imgproc's Sobel function according to the following signature:

public static void Sobel(Mat src, Mat dst, int ddepth, int dx,int
dy)

The src parameter is the input image and dst is the output. Ddepth is the output
image's depth and when this is assigned as -1, this has the same depth as the source.
The dx and dy parameters will inform us about the order in each of these directions.
When setting dy to 0 and dx to 1, the kernel that we've used is the one mentioned
in the preceding matrix. The example project kernels from this chapter shows a
customizable look of these operators, as shown in the following screenshot:

Chapter 4

[73]

The Laplace and Canny transforms
Another quite useful operator to find edges is the Laplacian transformation. Instead
of relying on the first order derivatives, OpenCV's Laplacian transformation
implements the discrete operator for the following function:

()
2 2

2 2

f fLaplace f
x y
∂ ∂

= +
∂ ∂

Image Transforms

[74]

The matrix can be approximated to the convolution with the following kernel when
using finite difference methods and a 3x3 aperture:

0 1 0
1 4 1
0 1 0

 −

The signature for the preceding function is as follows:

Laplacian(Mat source, Mat destination, int ddepth)

While source and destination matrices are simple parameters, ddepth is the depth
of the destination matrix. When you set this parameter to -1, it will have the same
depth as the source image, although you might want more depth when you apply
this operator. Besides this, there are overloaded versions of this method that receive
an aperture size, a scale factor, and an adding scalar.

Besides using the Laplacian method, you can also use the Canny algorithm, which
is an excellent approach that was proposed by computer scientist John F. Canny,
who optimized edge detection for low error rate, single identification, and correct
localization. In order to fulfill it, the Canny algorithm applies a Gaussian to filter the
noise, calculates intensity gradients through sobel, suppresses spurious responses,
and applies double thresholds followed by a hysteresis that suppresses the weak
and unconnected edges. For more information, check this paper [2]. The method's
signature is as follows:

Canny(Mat image, Mat edges, double threshold1, double threshold2, int
apertureSize, boolean L2gradient)

The image parameter is the input matrix, edges is the output image, threshold1
is the first threshold for the hysteresis procedure (values smaller than this will be
ignored), and threshold2 is the high threshold for hysteresis (values higher than
this will be considered as strong edges, while the smaller values and the ones higher
than the low threshold will be checked for connection with strong edges). The
aperture size is used for the Sobel operator when calculating the gradient and the
boolean informs us which norm to use for the gradient. You can also check out the
source code to use this operator in the kernel's project sample in this chapter.

Chapter 4

[75]

The line and circle Hough transforms
In case you need to find straight lines or circles in an image, you can use Hough
transforms, as they are very useful. In this section, we will cover OpenCV methods
to extract them from your image.

The idea behind the original Hough line transform is that any point in a binary
image could be part of a set of lines. Suppose each straight line could be
parameterized by the y = mx + b line equation, where m is the line slope and b is the
y axis intercept of this line. Now, we could iterate the whole binary image, storing
each of the m and b parameters and checking their accumulation. The local maximum
points of the m and b parameters would yield equations of straight lines that mostly
appeared in the image. Actually, instead of using the slope and y axis interception
point, we use the polar straight line representation.

Since OpenCV not only supports the standard Hough transform, but also the
progressive probabilistic Hough transform for which the two functions are Imgproc.
HoughLines and Imgproc.HoughLinesP, respectively. For detailed information, refer
to [3]. These functions' signatures are explained as follows:

HoughLines(Mat image, Mat lines, double rho, double theta, int
threshold)
HoughLinesP(Mat image, Mat lines, double rho, double theta, int
threshold)

The hough project from this chapter shows an example of the usage of them. The
following is the code to retrieve lines from Imgproc.HoughLines:

Mat canny = new Mat();
Imgproc.Canny(originalImage, canny, 10, 50, aperture, false);
image = originalImage.clone();
Mat lines = new Mat();
Imgproc.HoughLines(canny, lines, 1, Math.PI/180, lowThreshold);

Note that we need to apply the Hough transform over an edge image; therefore, the
first two lines of the preceding code will take care of this. Then, the original image is
cloned for display and a Mat object is created in the fourth line in order to keep the
lines. In the last line, we can see the application of HoughLines.

Image Transforms

[76]

The third parameter in Imgproc.HoughLines refers to the distance resolution
of the accumulator in pixels, while the fourth parameter is the angle resolution
of the accumulator in radians. The fifth parameter is the accumulator threshold,
which means that only the lines with more than the specified amount of votes will
be returned. The lowThreshold variable is tied to the scale slider in the example
application for the user to experiment with it. It is important to observe that the
lines are returned in the lines matrix, which has two columns in which each line
returns the rho and theta parameters of the polar coordinates. These coordinates
refer to the distance between the top-left corner of the image and the line rotation
in radians, respectively. Following this example, you will find out how to draw the
lines from the returned matrix. You can see the working of the Hough transform in
the following screenshot:

Chapter 4

[77]

Besides having the standard Hough transform, OpenCV also offers a probabilistic
Hough line transform as well as a circular version. Both the implementations are
explored in the same Hough sample project, and the following screenshot shows
the working of the circular version:

Geometric transforms – stretch, shrink,
warp, and rotate
While working with images and computer vision, it is very common that you will
require the ability to preprocess an image using known geometric transforms, such
as stretching, shrinking, rotation, and warping. The latter is the same as nonuniform
resizing. These transforms can be realized through the multiplication of source
points with a 2 x 3 matrix and they get the name of affine transformations while
turning rectangles in parallelograms. Hence, they have the limitation of requiring the
destination to have parallel sides. On the other hand, a 3 x 3 matrix multiplication
represents perspective transforms. They offer more flexibility since they can
map a 2D quadrilateral to another. The following screenshot shows a very useful
application of this concept.

Image Transforms

[78]

Here, we will find out which is the perspective transform that maps the side of a
building in a perspective view to its frontal view:

Note that the input to this problem is the perspective photograph of the building,
which is seen on the left-hand side of the preceding image, as well as the four corner
points of the highlighted quadrilateral shape. The output is to the right and shows
what a viewer would see if he/she looks at the side of the building.

Since affine transforms are a subset of perspective transformations, we will focus on
the latter ones here. The code available for this example is in the warps project of this
chapter. The main method used here is warpPerspective from Imgproc. It applies
a perspective transformation to an input image. Here is the method signature for the
warpPerspective method:

public static void warpPerspective(Mat src, Mat dst, Mat M, Size
dsize)

The Mat src parameter is, naturally, the input image, which is the left-hand
side image in the preceding screenshot, while dst Mat is the image on the
right-hand side; make sure you initialize this parameter before using the method.
The not-so-straightforward parameter here is Mat M, which is the warping matrix.
In order to calculate it, you can use the getPerspectiveTransform method from
Imgproc as well. This method will calculate the perspective matrix from two sets
of the four correlated 2D points, the source and destination points. In our example,
the source points are the ones that are highlighted on the left-hand side of the
screenshot, while the destination points are the four corner points of the image to the
right. These points can be stored through the MatOfPoint2f class, which stores the
Point objects. The getPerspectiveTransform method's signature is as follows:

public static Mat getPerspectiveTransform(Mat src, Mat dst)

Chapter 4

[79]

Mat src and Mat dst are the same as the MatOfPoint2f class mentioned
previously, which is a subclass of Mat.

In our example, we added a mouse listener to retrieve points clicked by the user. A
detail to be kept in mind is that these points are stored in the order: top-left, top-right,
bottom-left, and bottom-right. In the example application, the currently modified point
can be chosen through four radio buttons above the images. The act of clicking and
dragging listeners has been added to the code, so both approaches work.

Discrete Fourier Transform and Discrete
Cosine Transform
When dealing with image analysis, it would be very useful if you could change
an image from the spatial domain, which is the image in terms of its x and y
coordinates, to the frequency domain—the image decomposed in its high and low
frequency components—so that you would be able to see and manipulate frequency
parameters. This could come in handy in image compression because it is known
that human vision is not much sensitive to high frequency signals as it is to low
frequency signals. In this way, you could transform an image from the spatial
domain to the frequency domain and remove high frequency components, reducing
the required memory to represent the image and hence compressing it. An image
frequency can be pictured in a better way by the next image.

In order to change an image from the spatial domain to the frequency domain, the
Discrete Fourier Transform can be used. As we might need to bring it back from the
frequency domain to the spatial domain, another transform, which is the Inverse
Discrete Fourier Transform, can be applied.

The formal definition of DFT is as follows:

() ()
1 1 2

0 0
, ,

k i l jN N i
N N

i i
F k l f i j e

π − − − +

= =

= ∑∑

The f(i,j) value is the image in the spatial domain and F(k,l) is the image in the
frequency domain. Note that F(k,l) is a complex function, which means that it has
a real and an imaginary part. This way, it will be represented by two OpenCV Mat
objects or by Mat with two channels. The easiest way to analyze a DFT is by plotting
its magnitude and taking its logarithm, since values for the DFT can be in different
orders of magnitude.

Image Transforms

[80]

For instance, this is a pulse pattern, which is a signal that can come from zero,
represented as black, to the top, represented as white, on its left, and its Fourier
transform magnitude with the applied logarithm to its right:

Looking back at the preceding DFT transform, we can think of F(k,l) as the value
that would be yielded by multiplying each point of the spatial image with a base
function, which is related to the frequency domain, and by summing the products.
Remember that base functions are sinusoidal and they have increasing frequencies.
This way, if some of the base functions oscillate at the same rate as the signal, it
will be able to sum up to a big number, which will be seen as a white dot on the
Fourier Transform image. On the other hand, if the given frequency is not present
in the image, the oscillation and multiplication with the image will result in a small
number, which won't be noticed in the Fourier Transform image.

Another thing to observe from the equation is that F(0,0) will yield a base function
that is always 1. This way, F(0,0) will simply refer to the sum of all the pixels of
the spatial image. We can also check whether F(N-1, N-1) corresponds to the base
function related to the highest frequency in the image. Note that the previous image
basically has a DC component, which would be the image mean and it could be
checked from the white dot in the middle of the Discrete Fourier transform image.
Besides, the image to the left could be seen as a series of pulses and hence it would
have a frequency in the x axis, which can be noticed by the two dots near the central
point in the Fourier Transform image to the right. Nonetheless, we will need to use
multiple frequencies to approximate the pulse shape. In this way, more dots can
be seen in the x-axis of the image to the right. The following screenshot gives more
insight and helps you understand the Fourier analysis:

Chapter 4

[81]

Now, we will again check the DC level at the center of the DFT image, to the right,
as a bright central dot. Besides, we can also check multiple frequencies in a diagonal
pattern. An important piece of information that can be retrieved is the direction of
spatial variation, which is clearly seen as bright dots in the DFT image.

It is time to work on some code now. The following code shows you how to make
room to apply the DFT. Remember, from the preceding screenshot, that the result of
a DFT is complex. Besides, we need them stored as floating point values. This way,
we first convert our 3-channel image to gray and then to a float. After this, we put
the converted image and an empty Mat object into a list of mats, combining them into
a single Mat object through the use of the Core.merge function, shown as follows:

Mat gray = new Mat();
Imgproc.cvtColor(originalImage, gray, Imgproc.COLOR_RGB2GRAY);
Mat floatGray = new Mat();
gray.convertTo(floatGray, CvType.CV_32FC1);

List<Mat> matList = new ArrayList<Mat>();
matList.add(floatGray);
Mat zeroMat = Mat.zeros(floatGray.size(), CvType.CV_32F);
matList.add(zeroMat);
Mat complexImage = new Mat();
Core.merge(matList, complexImage);

Now, it's easy to apply an in-place Discrete Fourier Transform:

Core.dft(complexImage,complexImage);

Image Transforms

[82]

In order to get some meaningful information, we will print the image, but first, we
have to obtain its magnitude. In order to get it, we will use the standard way that we
learned in school, which is getting the square root of the sum of the squares of the
real and complex parts of numbers.

Again, OpenCV has a function for this, which is Core.magnitude, whose signature
is magnitude(Mat x, Mat y, Mat magnitude), as shown in the following code:

List<Mat> splitted = new ArrayList<Mat>();
Core.split(complexImage,splitted);
Mat magnitude = new Mat();
Core.magnitude(splitted.get(0), splitted.get(1), magnitude);

Before using Core.magnitude, just pay attention to the process of unpacking a DFT
in the splitted mats using Core.split.

Since the values can be in different orders of magnitude, it is important to get the
values in a logarithmic scale. Before doing this, it is important to add 1 to all the
values in the matrix just to make sure we won't get negative values when applying
the log function. Besides this, there's already an OpenCV function to deal with
logarithms, which is Core.log:

Core.add(Mat.ones(magnitude.size(), CvType.CV_32F), magnitude,
magnitude);
Core.log(magnitude, magnitude);

Now, it is time to shift the image to the center, so that it's easier to analyze its
spectrum. The code to do this is simple and goes like this:

int cx = magnitude.cols()/2;
int cy = magnitude.rows()/2;
Mat q0 = new Mat(magnitude,new Rect(0, 0, cx, cy));
Mat q1 = new Mat(magnitude,new Rect(cx, 0, cx, cy));
Mat q2 = new Mat(magnitude,new Rect(0, cy, cx, cy));
Mat q3 = new Mat(magnitude ,new Rect(cx, cy, cx, cy));
Mat tmp = new Mat();
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);

q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);

Chapter 4

[83]

As a last step, it's important to normalize the image, so that it can be seen in a
better way. Before we normalize it, it should be converted to CV_8UC1:

magnitude.convertTo(magnitude, CvType.CV_8UC1);
Core.normalize(magnitude, magnitude,0,255, Core.NORM_MINMAX, CvType.
CV_8UC1);

When using the DFT, it's often enough to calculate only half of the DFT when you
deal with real-valued data, as is the case with images. This way, an analog concept
called the Discrete Cosine Transform can be used. In case you want it, it can be
invoked through Core.dct.

Integral images
Some face recognition algorithms, such as OpenCV's face detection algorithm make
heavy use of features like the ones shown in the following image:

Image Transforms

[84]

These are the so-called Haar-like features and they are calculated as the sum of pixels
in the white area minus the sum of pixels in the black area. You might find this type
of a feature kind of odd, but when training it for face detection, it can be built to be
an extremely powerful classifier using only two of these features, as depicted in the
following image:

In fact, a classifier that uses only the two preceding features can be adjusted to detect
100 percent of a given face training database with only 40 percent of false positives.
Taking out the sum of all pixels in an image as well as calculating the sum of each
area can be a long process. However, this process must be tested for each frame in
a given input image, hence calculating these features fast is a requirement that we
need to fulfill.

First, let's define an integral image sum as the following expression:

() ()sum , ,
x X y Y

X Y image x y
< <

= ∑∑

For instance, if the following matrix represents our image:

0 2 4
6 8 10
12 14 16

A

 =

Chapter 4

[85]

An integral image would be like the following:

0 0 0 0
0 0 2 6

SumA=
0 6 16 30
0 18 42 72

The trick here follows from the following property:

() () () () ()
1 2 1 2

, sum 2, 2 sum 1 1, 2 sum 2, 1 1 sum 1 1, 1 1
x x x y y y

image x y x y x y x y x y
≤ ≤ ≤ ≤

= − − − − + − −∑ ∑

This means that in order to find the sum of a given rectangle bounded by the
points (x1,y1), (x2,y1), (x2,y2), and (x1,y2), you just need to use the integral
image at the point (x2,y2), but you also need to subtract the points (x1-1,y2) from
(x2,y1-1). Also, since the integral image at (x1-1, y1-1) has been subtracted
twice, we just need to add it once.

The following code will generate the preceding matrix and make use of
Imgproc.integral to create the integral images:

Mat image = new Mat(3,3 ,CvType.CV_8UC1);
Mat sum = new Mat();
byte[] buffer = {0,2,4,6,8,10,12,14,16};
image.put(0,0,buffer);
System.out.println(image.dump());
Imgproc.integral(image, sum);
System.out.println(sum.dump());

The output of this program is like the one shown in the preceding matrices for A and
Sum A.

It is important to verify that the output is a 4 x 4 matrix because of the initial row and
column of zeroes, which are used to make the computation efficient.

Image Transforms

[86]

Distance transforms
Simply put, a distance transform applied to an image will generate an output image
whose pixel values will be the closest distance to a zero-valued pixel in the input
image. Basically, they will have the closest distance to the background, given a
specified distance measure. The following screenshot gives you an idea of what
happens to the silhouette of a human body:

Human silhouette by J E Theriot

This transform can be very useful in the process of getting the topological skeleton of
a given segmented image as well as to produce blurring effects. Another interesting
application of this transform is in the segmentation of overlapping objects, along
with a watershed.

Generally, the distance transform is applied to an edge image, which results from a
Canny filter. We are going to make use of Imgproc's distanceTransform method,
which can be seen in action in the distance project, which you can find in this
chapter's source code. Here are the most important lines of this example program:

protected void processOperation() {
 Imgproc.Canny(originalImage, image, 220, 255, 3, false);

Chapter 4

[87]

 Imgproc.threshold(image, image, 100, 255,
 Imgproc.THRESH_BINARY_INV);
 Imgproc.distanceTransform(image, image, Imgproc.CV_DIST_L2, 3);
 image.convertTo(image, CvType.CV_8UC1);
 Core.multiply(image, new Scalar(20), image);

 updateView();
}

Firstly, a Canny edge detector filter is applied to the input image. Then, a threshold
with THRESH_BINARY_INV converts the edges to black and beans to white. Only
then, the distance transform is applied. The first argument is the input image, the
second one is the output matrix, and the third argument specifies how distances
are calculated. In our example, CVDIST_L2 means Euclidean, while other distances,
such as CVDIST_L1 or CVDIST_L12, among others exist. Since the output of
distanceTtransform is a single channel 32 bit Float image, a conversion is required.
Finally, we apply Core.multiply to increase the contrast.

The following screenshot gives you a good idea of the whole process:

Histogram equalization
The human visual system is very sensitive to contrast in images, which is the
difference in the color and brightness of different objects. Besides, the human eye
is a miraculous system that can feel intensities at the 1016 light levels [4]. No wonder
some sensors could mess up the image data.

Image Transforms

[88]

When analyzing images, it is very useful to draw their histograms. They simply
show you the lightness distribution of a digital image. In order to do that, you need
to count the number of pixels with the exact lightness and plot that as a distribution
graph. This gives us a great insight into the dynamic range of an image.

When a camera picture has been captured with a very narrow light range, it gets
difficult to see the details in the shadowed areas or other areas with poor local
contrast. Fortunately, there's a technique to spread frequencies for uniform intensity
distribution, which is called histogram equalization. The following image shows
the same picture with their respective histograms before and after the histogram
equalization technique is applied:

Chapter 4

[89]

Note that the light values, located at the rightmost part of the upper histogram, are
rarely used, while the middle range values are too tied. Spreading the values along
the full range yields better contrast and details can be more easily perceived by this.
The histogram equalized image makes better use of intensities that generate better
contrast. In order to accomplish this task, a cumulative distribution can be used
to remap the histogram to something that resembles a uniform distribution. Then,
it's just a matter of checking where the points from the original histogram would
be mapped to the uniform distribution through the use of a cumulative Gaussian
distribution, for instance.

Now, the good part is that all these details have been wrapped in a simple call to
OpenCV's equalizeHist function. Here is the sample from the histogram project
in this chapter:

protected void processOperation() {
 Imgproc.cvtColor(originalImage, grayImage, Imgproc.COLOR_RGB2GRAY);
 Imgproc.equalizeHist(grayImage, image);
 updateView();
}

This piece of code simply converts the image to a single channel image; however,
you can use equalizeHist on a color image as long as you treat each channel
separately. The Imgproc.equalizeHist method outputs the corrected image
following the previously mentioned concept.

References
1. A 3x3 Isotropic Gradient Operator for Image Processing presented at a talk at the

Stanford Artificial Project in 1968, by I. Sobel and G. Feldman.
2. A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and

Machine Intelligence, by Canny, J.
3. Robust Detection of Lines Using the Progressive Probabilistic Hough Transform,

CVIU 78 1, by Matas, J. and Galambos, C., and Kittler, J.V. pp 119-137 (2000).
4. Advanced High Dynamic Range Imaging: Theory and Practice, CRC Press, by

Banterle, Francesco; Artusi, Alessandro; Debattista, Kurt; Chalmers, Alan.

Image Transforms

[90]

Summary
This chapter covered the key aspects of computer vision's daily use. We started with
the important edge detectors, where you gained the experience of how to find them
through the Sobel, Laplacian, and Canny edge detectors. Then, we saw how to use
the Hough transforms to find straight lines and circles. After that, the geometric
transforms stretch, shrink, warp, and rotate were explored with an interactive
sample. We then explored how to transform images from the spatial domain to the
frequency domain using the Discrete Fourier analysis. After that, we showed you
a trick to calculate Haar-like features fast in an image through the use of integral
images. We then explored the important distance transforms and finished the
chapter by explaining histogram equalization to you.

Now, be ready to dive into machine learning algorithms, as we will cover how to
detect faces in the next chapter. Also, you will learn how to create your own object
detector and understand how supervised learning works in order to better train your
classification trees.

[91]

Object Detection Using Ada
Boost and Haar Cascades

This chapter shows a very interesting feature of OpenCV—detecting faces in an
image or a video stream. In the latter case, we call it face tracking. In order to do so,
this chapter dives into machine-learning algorithms, specifically supervised learning
with boosting. We will cover the Viola-Jones classifier and its theory as well as the
details on how to use the face-trained classifiers that are bundled with OpenCV.

In this chapter, we will be covering the following topics:

• The boosting theory
• Viola-Jones classifier
• Detecting faces
• Learning new objects

By the end of this chapter, you will be able to understand the theory behind face
classifiers through boosting, and the Viola-Jones classifier. You will also know how
to use straightforward face classifiers. Besides, you will be able to create your own
object classifier for different objects.

The boosting theory
The problem of detecting a face in an image can be posed in a simpler way. We could
iterate the whole image through several smaller windows and create a classifier that
will tell whether a window is a face or not. The windows that correctly identify the
face will be the coordinates of face detection.

Object Detection Using Ada Boost and Haar Cascades

[92]

Now, what exactly is a classifier and how can it be built? In machine learning,
the problem of classification has been deeply explored and it is posed as the
identification of which of the set of categories a given observation belongs to,
based on a previously trained set of known category memberships. This could be
something like if a given image belongs to the banana, apple, or grape category, for
instance, in a fruit classification application. In the case of face detection, there are
two categories—face and non-face.

This section describes a meta-algorithm, which is basically a templated algorithm
to create a strong classifier using a set of weak learners. These weak learners are
classifiers based on some features that although not able to divide the whole set
in the two categories, they do a good job for some of the sets. Let's say that a weak
learner could be a classifier that looks for a mustache in order to tell whether a given
face is of a man. Even if it might not find all men in the set, it will do a good job for
the ones who have mustaches.

AdaBoost
AdaBoosting, from Adaptive Boosting, is not actually an algorithm, but it's a
meta-algorithm that will help us with building a classifier. Its main mission is to build
a great classifier out of weak classifiers, which are just better by chance. Its final form
is a weighted combination of the given classifiers, as given in the following equation:

() () () ()()1 1 2 2 T TH x sign h x h x h xα α α= + + +K

The sign operator will return +1 when the expression in parenthesis is positive, and
-1 otherwise. Note that it is a binary classifier that yields yes or no, or it could be does
belong or does not belong, or simply +1 or -1. So, tα is the weight assigned to the given
classifier ()th x for a given input x in a set of T classifiers.

For instance, in a group of people, one wants to know whether any given person p is
a man or woman. Let's say we have some weak classifiers, which are good guesses,
such as:

• 1h : If the height is greater than 5 feet and 9 inches (~175 cm), then the person
is a male or else female. Of course, there are several women taller than men,
but on an average, men are taller.

• 2h : If a person has long hair, then the person is a female or else male. Again,
there are several long haired men, but, on an average, women usually have
longer hair.

• 3h : If a person has a beard, then the person is a male or else female. Here, we
can misclassify shaved men.

Chapter 5

[93]

Let's say we have this random set of people:

Name/Feature Height (h1) Hair (h2) Beard (h3) Gender (f(x))
Katherine 1.69 Long Absent Female
Dan 1.76 Short Absent Male
Sam 1.80 Short Absent Male
Laurent 1.83 Short Present Male
Sara 1.77 Short Absent Female

Classifier h1 will correctly classify three people, while h2 will get it right for four
people, and h3 will work for three people. We would then select h2, which was the
best, for the one that minimizes the weighted error, and set its alpha. We would then
increase weight for wrongly classified data (Sara) and decrease weight for all the
others (Katherine, Dan, Sam, and Laurent). We would then look for the best classifier
on the new distribution. Now that Sara is on the spot, either h2 or h3 would be
selected, depending on the error, since h1 gets Sara wrong with a higher weight. We
would then continue for the T weak classifiers, in our case 3.

The algorithm for AdaBoost goes like this:

Object Detection Using Ada Boost and Haar Cascades

[94]

Fortunately, OpenCV already implements boosting. The following example can be
found in the boost project from Chapter 5, and it shows how to deal with the Boost
class, with the preceding example. We first create a 5 x 3 matrix called data. This
matrix stores our training dataset, and will be used by Boost to create a classifier.
Then, we feed the matrix just like in the preceding table. The first column is the
height. Hair and beard are given values one or zero. When the hair is short, we put
zero, when it's long, we put one. In case the beard is present, its value is one or else
zero. These values are set using the Mat's put function. Note that the fact of being
a man or a woman does not go into the data matrix since it is actually the output
we want for our classifier. This way, a 5 x 1 column matrix responses is created. It
simply stores zero for female and one for male.

Then, a Boost class is instantiated, and we set parameters for the training through
the CvBoostParams its setters. We have set the boost type to be Discrete Adaboost
using the setBoostType method, passing Boost.DISCRETE as a parameter. Other
variants of boosting are known as Real AdaBoost, LogitBoost, and Gentle AdaBoost.
The setWeakCount method sets the number of weak classifiers used. In our case, it
was 3. The next setting tells that if the number of samples in a node is less than this
parameter, then the node will not be split. Actually, the default value is 10, and it
won't work with such a small dataset, so it is set to 4 so that it will work with this
dataset. It is important to note that Boost derives from DTrees, which is decision-trees
related. That's why, it uses the node terminology.

After parameters are set, the boost classifier is trained using the data and responses
matrices through the train method. Here follows this method signature:

public boolean train(Mat trainData, int tflag, Mat responses)

This is the trainData training matrix with the features, and the responses matrix is
the one with classification data. The tflag parameter will tell whether the features
are put in rows or columns.

After that, predicting is a simple matter of creating a new row matrix with the input
parameters for height, hair size, and beard presence, and passing it to the Boost
predict function. Its output will classify the input as male or female:

public class App
{
 static{ System.loadLibrary(Core.NATIVE_LIBRARY_NAME); }

 public static void main(String[] args) throws Exception {

 Mat data = new Mat(5, 3, CvType.CV_32FC1, new Scalar(0));

 data.put(0, 0, new float[]{1.69f, 1, 0});

Chapter 5

[95]

 data.put(1, 0, new float[]{1.76f, 0, 0});
 data.put(2, 0, new float[]{1.80f, 0, 0});
 data.put(3, 0, new float[]{1.77f, 0, 0});
 data.put(4, 0, new float[]{1.83f, 0, 1});

 Mat responses = new Mat(5, 1, CvType.CV_32SC1, new Scalar(0));

 responses.put(0,0, new int[]{0,1,1,0,1});

 Boost boost = Boost.create();
 boost.setBoostType(Boost.DISCRETE);
 boost.setWeakCount(3);
 boost.setMinSampleCount(4);

 boost.train(data, Ml.ROW_SAMPLE, responses);

 //This will simply show the input data is correctly classified

 for(int i=0;i<5;i++){
 System.out.println("Result = " + boost.predict(data.row(i)));
 }

 Mat newPerson = new Mat(1,3,CvType.CV_32FC1, new Scalar(0));
 newPerson.put(0, 0, new float[]{1.60f, 1,0});
 System.out.println(newPerson.dump());
 System.out.println("New (woman) = " + boost.predict(newPerson));

 newPerson.put(0, 0, new float[]{1.8f, 0,1});
 System.out.println("New (man) = " + boost.predict(newPerson));

 newPerson.put(0, 0, new float[]{1.7f, 1,0});
 System.out.println("New (?) = " + boost.predict(newPerson));

 }
}

Object Detection Using Ada Boost and Haar Cascades

[96]

Cascade classifier detection and training
One might be wondering how OpenCV could detect faces as this would be a very
straightforward task for a couple-of-month old baby, and it looks quite complicated
to tell a computer how to accomplish it. We will divide the problem in two parts—
object detection, which is applying a classifier and retrieving the object position when
the classifier says so, and training a new classifier to learn new objects that should be
mostly rigid.

OpenCV Cascade Classifier initially implemented a face-detection technique known
as the Viola-Jones detector, first developed by Paul Viola and Michael Jones, which
uses the so-called Haar-like features, named after Alfréd Haar wavelets. These
features are based on thresholds of sums and differences of rectangular regions of
raw image values. Later, this classifier also enabled the use of Local Binary Patterns
(LBP) features, which are integer values in contrast to Haar-like features; this results
in faster training times, but similar quality.

Although using a cascade classifier in OpenCV is quite straightforward, it is
important to know how it works to understand the usage boundaries. As a thumb
rule, it should work fine on objects that are consistently textured and mostly rigid.
The cascade classifier is presented with a set of size and histogram equalized images
that are labeled as either containing or not containing an interest object. The classifier
iterates through several smaller windows that cover the whole image, so it will tend
to rarely find an object. For instance, group pictures will have faces in just a couple of
coordinates, while the rest of the image should be labeled as not having a face. Since
it should maximize rejection, the OpenCV cascade classifier uses a form of AdaBoost
classifier organized as a rejection cascade, which means non-object patches should be
dropped as early as possible.

Features thresholds can be used as weak classifiers to build a strong classifier using
AdaBoost, as we have learned in this chapter. After we calculate a feature, we can
decide on this question: Is this value above or below a given threshold? If the answer
is true, the object is a face, for instance, or else it is not. We generally use a single
feature for this decision, but this number can be set in training. Using AdaBoost,
we build the classifier as a weighted sum of the weak classifiers like this:

()1 1 2 2 n nF sign w f w f w f= + + +K

Chapter 5

[97]

Here, if is the function associated to each feature i, which returns +1 in case the
feature value is above some threshold and -1 in case it is below. Boosting is used
to correctly quantify each of the weights iw related to the features. The Viola-Jones
classifier builds each node of the tree as the signal of a weighted sum, like in the
function F. Once this function is set, it yields a node for the Viola-Jones classifier,
and all the surviving data from higher up in the cascade is then used to train the
next node and so on. The final tree looks similar to this:

FN

Not face

Not face

Not face

Face

F2

F1

Detection
OpenCV already comes with several previously-trained cascades that are ready
to be used. Among them, we can find front and profile face detectors as well as eye,
body, mouth, nose, lower-body, and upper-body detectors. In this section, we will
cover how to use them. The complete source can be found in the project cascade in
this chapter.

The following code shows how to load a trained cascade:

private void loadCascade() {
 String cascadePath = "src/main/resources/cascades/lbpcascade_
frontalface.xml";
 faceDetector = new CascadeClassifier(cascadePath);
}

Most of the action happens in the class CascadeClassifier, from the objdetect
package. This class wraps cascade loading and object detection. The constructor with
strings already loads the cascade from the given path. In case you want to postpone
the cascade name, you can use the empty constructor and the load method.

Object Detection Using Ada Boost and Haar Cascades

[98]

The runMainLoop method, which is not shown here, will simply grab an image
from the webcam and pass it to detectAndDrawFace, which will put the initialized
classifier to work. The following is the detectAndDrawFace method:

private void detectAndDrawFace(Mat image) {
 MatOfRect faceDetections = new MatOfRect();
 faceDetector.detectMultiScale(image, faceDetections);
 for (Rect rect : faceDetections.toArray()) {
 Core.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x
+ rect.width, rect.y + rect.height), new Scalar(0, 255, 0));
 }
}

Firstly, we instantiate the faceDetections object, which is a MatOfRect container
(a special container for Rect). Then, we run the detectMultiScale method, passing
the received image and the MatOfRect as parameters. This is where the cascade
detector is run. The algorithm will scan the image using a sliding window, running
the cascade classifier for each of the windows. It will also run this procedure with
different scales of the image. By default, it will reduce the image scale by 1.1 for each
attempt. In case at least three detections happen, also by default, in three different
scales, the coordinate is considered a hit, and it will be a part of the faceDetections
array, added to the width and height of the detected object.

The for loop simply iterates through the returned rectangles and draws them in
green over the original image.

Training
Although OpenCV is already packaged with several cascade classifiers, there might be
a need for detecting some particular object, or class of object, of your choice. Creating
a custom cascade classifier is not straightforward since it requires thousands of images
from which all the variance should be removed. For instance, if a classifier for faces
is being created, all the images should have their eyes aligned. In this section, we will
describe the process of creating a cascade classifier using OpenCV.

In order to train a cascade, some tools have been provided in OpenCV. They can be
found in the opencv/build/x86/vc11/bin directory. The opencv_createsamples
and opencv_traincascade executables are used for preparing a training dataset of
positive samples and for generating the cascade classifier, respectively.

In order to give a good idea of the process, we have included files from UIUC
Image Database for Car Detection, collected by Shivani Agarwal, Aatif Awan, and
Dan Roth. These files are available in the cardata directory from Chapter 5. The
following instructions rely on being at this folder to work.

Chapter 5

[99]

Positive samples – pictures that contain the target image
Negative samples are the arbitrary images that must not contain
the object that is intended to be detected.

To create your own cascade classifier, gather hundreds of pictures of the target,
making sure that these pictures show enough variance to give a good idea of the
class of the object being detected.

Then, use the opencv_createsamples tool to prepare a training dataset of positive
and test samples. This yields a binary file with the .vec extension, which contains
positive samples generated from a given marked up dataset. No distortion is
applied; they are only resized to target samples' size and stored in the vec-file
output. The reader should issue the following command:

opencv_createsamples -info cars.info -num 550 -w 48 -h 24 -vec cars.
vec.

The preceding command will read file cars.info, which contains, in each line,
the path to an image followed by a number n. This number is the quantity of object
instances present in the image. Following this, there are n coordinates of the object
bounding rectangle (x, y, width, height). These are the examples of valid lines:

images/image1.jpg 1 90 100 45 45
images/image2.jpg 2 200 300 50 50 100 30 25 25

The parameters -w and -h give the width and height of the output samples that we
want to be generated. This should be kept small enough so that in the image we are
searching for object in the later object detection, the size of the object in the image
will be greater than this size. The -num parameter tells the number of these samples.

In order to create a classifier for a given .vec file, use the opencv_traincascade
tool. This application will read positive samples from the file given through the -vec
parameter as well as some negative samples from a file given by the -bg parameter.
The negative samples file simply points to an image in each of the lines, which are
arbitrary ones and must not contain the object that is intended to be detected. In
order to use this tool, issue the following command:

opencv_traincascade -data data -vec cars.vec -bg cars-neg.info -numPos
500 -numNeg 500 -numStages 10 -w 48 -h 24 -featureType LBP

Object Detection Using Ada Boost and Haar Cascades

[100]

The parameters -numPos and -numNeg are used to specify the number of positive
and negative samples used in training for every classifier stage, while -numStages
specifies the number of cascade stages to be trained. The last -featureType parameter
sets which type of feature is to be used and can be selected from Haar-like features or
LBP. As stated before, LBP features are integer values in contrast to Haar features, so
detection and training will be much faster with LBP, but their quality can be the same,
depending on the training. More parameters can be used to fine-tune the training, such
as the false alarm rate, maximum tree depth, and minimal hit rate. The reader should
refer to documentation for these settings. Now, regarding the training time, even on
fast machines, it can take from a couple of hours to a few days. But, if you don't want
to wait for final results, and are impatient to check how the classifier would work, you
can get the intermediate classifier XML file using the following command:

convert_cascade --size="48x24" haarcascade haarcascade-inter.xml

Here 48 and 24 are the width and height for minimum possible detection and are
similar to –w and –h in the opencv_traincascade command.

Once you have issued the previous command, a file called cascade.xml is created
in the folder passed as the -data parameter. Other files created in this folder can be
safely deleted after training has been succeeded. Now, it can be loaded and used
through the CascadeClassifier class, just as described in the preceding Detection
section. Simply use this file instead of the lbpcascade_frontalface.xml file given
in that example.

The following screenshot shows one correct detection of a toy car using the trained
cascade as well as one wrong detection, which is a false positive:

Chapter 5

[101]

References
Refer to the video, OpenCV Tutorial: Training your own detector, Packt Publishing,
(https://www.packtpub.com/application-development/opencv-computer-
vision-application-programming-video) by Sebastian Montabone.

Summary
This chapter has provided the reader with several interesting concepts. We have
covered a solid background on the boosting theory as well as working on a
practical example. Then, we also covered OpenCV's Viola-Jones cascade classifier,
and a hands-on approach was applied in order to use a classifier through the
CascadeClassifier class. After that, we covered a complete, real-world example
for creating a new car classifier, which can be adapted for any mostly rigid object
of your preference.

In the next chapter, we will study and practice the field of background subtraction
using pure image-processing methods through frame differencing and averaging
background, and the interesting Kinect device for depth maps.

https://www.packtpub.com/application-development/opencv-computer-vision-application-programming-video
https://www.packtpub.com/application-development/opencv-computer-vision-application-programming-video

[103]

Detecting Foreground and
Background Regions and

Depth with a Kinect Device
In the field of video security applications, one often needs to notice the differences
between frames because that's where the action happens. In other fields, it is also
very important to isolate the objects from the background. This chapter shows
several techniques to achieve this goal, comparing their strengths and weaknesses.
Another completely different approach for detecting foreground or background
regions is using a depth device like a Kinect. This chapter also deals with how to
accomplish this goal with this device.

In this chapter, we will be covering:

• Background subtraction
• Frame differencing
• Averaging background method
• Mixture of Gaussian's method
• Contour finding
• Kinect depth maps

By the end of this chapter, you will have several approaches solving the problem of
finding foreground/background regions, either through direct image processing or
using a depth-compatible device such as a Kinect.

Detecting Foreground and Background Regions and Depth with a Kinect Device

[104]

Background subtraction
When working with surveillance cameras, it's easy to see that most of the frame
keeps still, while the moving objects, the ones we are interested in, are the areas
that vary most over time. Background subtraction is defined as the approach used
to detect moving objects from static cameras, also known as foreground detection,
since we're mostly interested in the foreground objects.

In order to perform some valuable background subtraction, it is important to account
for varying luminance conditions, taking care always to update our background
model. Although some techniques extend the idea of background subtraction beyond
its literal meaning, such as the mixture of Gaussian approach, they are still named
like this.

In order to compare all the solutions in the following sections, we will come up with
a useful interface, which is called VideoProcessor. This interface is made of a simple
method called process. The whole interface is given in the following piece of code:

public interface VideoProcessor {
 public Mat process(Mat inputImage);
}

Note that we will implement this interface in the following background processors
so that we can easily change them and compare their results. In this context, Mat
inputImage refers to the current frame in the video sequence being processed.

All the code related to background subtraction can be found in the background
project, available in the chapter6 reference code.

Our main application consists of two windows. One of them simply plays back the
input video or the webcam stream, while the other one shows the output of applying
a background subtractor that implements the VideoProcessor interface. This way,
our main loop looks pretty much like the following code:

while (true){
 capture.read(currentImage);
 if(!currentImage.empty()){
 foregroundImage = videoProcessor.process(currentImage);
 ... update Graphical User Interfaces ...
 Thread.sleep(10);
 }
}

Chapter 6

[105]

Note that upon successful image retrieval, we pass it to our VideoProcessor and
update our windows. We also sleep for 10 ms so that the video playback will not
look like a fast forward. This 10 ms delay is not the recorded frame delay and it is
used because the focus here is not to play back at the same speed as the original
file. In order to try the different subtraction approaches, we simply change the
instantiation of our VideoProcessor class.

Frame differencing
It should be straightforward to think of a simple background subtraction in order
to retrieve foreground objects. A simple solution could look similar to the following
line of code:

Core.absdiff(backgroundImage,inputImage , foregroundImage);

This function simply subtracts each pixel of backgroundImage from inputImage
and writes its absolute value in foregroundImage. As long as we have initialized
the background to backgroundImage and we have that clear from objects, this could
work as a simple solution.

Here follows the background subtraction video processor code:

public class AbsDifferenceBackground implements VideoProcessor {
 private Mat backgroundImage;

 public AbsDifferenceBackground(Mat backgroundImage) {
 this.backgroundImage = backgroundImage;
 }

 public Mat process(Mat inputImage) {
 Mat foregroundImage = new Mat();
 Core.absdiff(backgroundImage,inputImage , foregroundImage);
 return foregroundImage;
 }

}

The main method, process, is really simple. It only applies the absolute difference
method. The only detail to remember is to initialize the background image in the
constructor, which should correspond to the whole background being free from the
foreground objects.

Detecting Foreground and Background Regions and Depth with a Kinect Device

[106]

We can see the output of applying ordinary background subtraction in the following
image; it is important to check that the moving leaves in the background are not
correctly removed since this is a weak background modeling. Also, remember to
move the Video Playback Example window as it might be covering the Background
Removal Example window:

Averaging a background method
The problem with the background subtractor from the previous section is that the
background will generally change due to illumination and other effects. Another fact
is that the background may not be readily available, or the concept of background
can change, for instance, when someone leaves a luggage in a video surveillance
application. The luggage might be a foreground object for the first frames, but
afterwards, it should be forgotten.

An interesting algorithm to deal with these problems uses the running average
concept. Instead of always using the first frame as a clear background, it will update
it constantly by calculating a moving average of it. Consider the following equation,
which will be executed, updating each pixel from the old average and considering
each pixel from the recently acquired image:

() 11t t tu u pα α−= − +

Note that tp is the new pixel value; 1tu − is the value of the average background at
time t-1, which would be the last frame; tu is the new value for the background;
and α is the learning rate.

Chapter 6

[107]

Fortunately, OpenCV already has the accumulateWeighted function, which
performs the last equation for us. Now let's see how the average background process
is implemented in the RunningAverageBackground class as we check its process
method as follows:

public Mat process(Mat inputImage) {
 Mat foregroundThresh = new Mat();
 // Firstly, convert to gray-level image, yields good results with
performance
 Imgproc.cvtColor(inputImage, inputGray, Imgproc.COLOR_BGR2GRAY);
 // initialize background to 1st frame, convert to floating type
 if (accumulatedBackground.empty())
 inputGray.convertTo(accumulatedBackground, CvType.CV_32F);

 // convert background to 8U, for differencing with input image
 accumulatedBackground.convertTo(backImage,CvType.CV_8U);
 // compute difference between image and background
 Core.absdiff(backImage,inputGray,foreground);

 // apply threshold to foreground image
 Imgproc.threshold(foreground,foregroundThresh, threshold,255,
Imgproc.THRESH_BINARY_INV);

 // accumulate background
 Mat inputFloating = new Mat();
 inputGray.convertTo(inputFloating, CvType.CV_32F);
 Imgproc.accumulateWeighted(inputFloating, accumulatedBackground,lear
ningRate, foregroundThresh);

 return negative(foregroundThresh);
}

private Mat negative(Mat foregroundThresh) {
 Mat result = new Mat();
 Mat white = foregroundThresh.clone();
 white.setTo(new Scalar(255.0));
 Core.subtract(white, foregroundThresh, result);
 return result;
}

Detecting Foreground and Background Regions and Depth with a Kinect Device

[108]

First, we convert the input image to gray level since we will store the average
background like this, although we could make it with three channels. Then, if the
accumulated background hasn't been started, we will have to set it to the first input
image in the floating point format. Then we subtract the recently acquired frame
from the accumulated background, which yields our foreground image, which we
later threshold in order to remove small illumination or noisy changes.

Note that this time we use Imgproc.THRESH_BINARY_INV, which turns every pixel
above the given threshold black, yielding black pixels for the foreground objects and
white pixels for the background.

This way, we can use this image as a mask for updating only background pixels
when using the acccumulateWeighted method later. On the following line, we only
convert inputImage to inputFloating so that we can have it in the floating point
format. We then use accumulateWeighted to apply our commented equation for the
running average. Finally, we invert the image and return our foreground objects as
white pixels.

We can see a better modeling of the moving leaves on the background in the
following image. Although thresholding makes it harder to compare these results
with simple background subtraction, it is clear that lots of moving leaves have been
removed. Besides, a good part of the hand has also been swept away. A careful
tuning of the threshold parameter can be used for better results as shown in the
following screenshot:

Chapter 6

[109]

The mixture of Gaussians method
Although we can get very good results with the previous idea, some more advanced
methods have been proposed in literature. A great approach, proposed by Grimson
in 1999, is to use not just one running average, but more averages so that if a pixel
fluctuates between the two orbit points, these two running averages are calculated. If
it does not fit any of them, it is considered foreground.

Besides, Grimson's approach also keeps the variance of the pixels, which is a measure
of how far a set of numbers is spread out, taken from statistics. With a mean and a
variance, a Gaussian model can be calculated and a probability can be measured to be
taken into consideration, yielding a Mixture of Gaussians model (MOG). This can be
very useful when branches and leaves are moving in the background.

Unfortunately, Grimson's method suffers from slow learning in the beginning and it
can not distinguish between the moving shadows and moving objects. Therefore, an
improved technique has been published by KaewTraKulPong and Bowden to tackle
these problems. This one is implemented in OpenCV and it is quite straightforward
to use it by means of the BackgroundSubtractorMOG2 class.

In order to show how effective is the mixture of Gaussians approach, we have
implemented a BackgroundSubtractorMOG2-based VideoProcessor. Its entire
code is as follows:

public class MixtureOfGaussianBackground implements VideoProcessor {
 privateBackgroundSubtractorMOG2 mog= org.opencv.video.Video.
 createBackgroundSubtractorMOG2();
 private Mat foreground = new Mat();
 private double learningRate = 0.01;

 public Mat process(Mat inputImage) {
 mog.apply(inputImage, foreground, learningRate);
 return foreground;
 }
}

Note that we only need to instantiate the BackgroundSubtractorMOG2 class and
use the apply method, passing the input frame, the output image, and a learning
rate that will tell how fast it should learn the new background. Besides the factory
method without parameters, another one exists with the following signature:

Video.createBackgroundSubtractorMOG2 (int history, double
varThreshold, boolean detectShadows)

Detecting Foreground and Background Regions and Depth with a Kinect Device

[110]

Here, history is the length of the history, varThreshold is the threshold on the
squared Mahalanobis distance between the pixel and the model to decide whether a
pixel is well described by the background model, and if detectShadows is true, the
algorithm will detect and mark the shadows. If we do not set parameters by using
the empty constructor, the following values are used by default:

• defaultHistory = 500;

• varThreshold = 16;

• detectShadows = true;

Try playing with these values in order to look for better results when making
background subtraction.

In the preceding screenshot, we can clearly see a great background removal result
with very little customization. Although some leaves still account for noise in the
removed background result, we can see a good amount of the hand being correctly
identified as foreground. A simple open morphological operator can be applied to
remove some of the noise, as seen in the following screenshot:

Chapter 6

[111]

Contour finding
When dealing with the binary images removed from the background, it is important
to transform pixels into useful information, such as by grouping them into an object
or making it very clear for the user to see. In this context, it is important to know the
concept of connected components, which are a set of connected pixels in a binary
image, and OpenCV's function used to find its contours.

In this section, we will examine the findContours function, which extracts contours
of connected components in an image as well as a helper function that will draw
contours in an image, which is drawContours. The findContours function is
generally applied over an image that has gone through a threshold procedure
as well as some canny image transformation. In our example, a threshold is used.

The findContours function has the following signature:

public static void findContours(Mat image,
 java.util.List<MatOfPoint> contours,
 Mat hierarchy,
 int mode,
 int method)

Detecting Foreground and Background Regions and Depth with a Kinect Device

[112]

It is implemented using Suzuki's algorithm described in his paper Topological
structural analysis of digitized binary images by border following. The first parameter
is the input image. Make sure you work on a copy of your target image since this
function alters the image. Also, beware that the 1 pixel border of the image is not
considered. The contours that are found are stored in the list of MatOfPoints.
This is simply a structure that stores points in a matrix.

Mat hierarchy is an optional output vector that is set for each contour found. They
represent 0-based indices of the next and previous contours at the same hierarchical
level, the first child contour, and the parent contour, represented in the hierarcy[i]
[0], hierarcy[i][1], hierarcy[i][2], and hierarcy[i][3] elements, respectively
for a given i contour. If there aren't contours corresponding to those values, they will
be negative.

The mode parameter deals with how the hierarchical relationships are established.
If this is not interesting to you, you can set it as Imgproc.RETR_LIST. When
retrieving the contours, the method parameter controls how they are approximated.
If Imgproc.CHAIN_APPROX_NONE is set, all the contour points are stored. On the
other hand, when using Imgproc.CHAIN_APPROX_SIMPLE for this value, horizontal,
vertical, and diagonal lines are compressed by using only their endpoints. Other
approximations are available as well.

In order to draw the obtained contours outline or fill them, Imgproc's drawContours
is used. This function has the following signature:

public static void drawContours(Mat image,
 java.util.List<MatOfPoint> contours,
 int contourIdx,
 Scalar color)

Mat image is simply the destination image, while the list of MatOfPoint contours
is the one obtained while calling findContours. The contourIdx property is the
one intended to be drawn, while color is the desired color for drawing. Overloaded
functions are also available in which the user can choose the thickness, line type,
hierarchy max level, and an offset.

When deciding on which contours are interesting, a useful function to help in that
decision is to find the contour area. OpenCV implements this function through
Imgproc.contourArea. This function can be found in the chapter6 source code's
sample connected project. This application takes an image as input, runs a threshold
over it and then uses it for finding the contours. Several options are available for
testing the functions discussed in this section, such as whether it is filling the contour
or painting the contour according to the area found. The following is a screenshot of
this application:

Chapter 6

[113]

When dealing with contours, it is also important to draw shapes around them in
order to make measures or highlight what is found. The sample application also
offers some code with instructions on how to draw a bounding box, circle, or convex
hull around the contour. Let's take a look at the main drawContours() function,
which is called upon pressing the button:

protected void drawContours() {
 Mat contourMat = binary.clone();
 List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
 int thickness = (fillFlag.equals(onFillString))?-1:2;

 Imgproc.findContours(contourMat, contours, new Mat(),
 Imgproc.CHAIN_APPROX_NONE,Imgproc.CHAIN_APPROX_SIMPLE);

Detecting Foreground and Background Regions and Depth with a Kinect Device

[114]

 for(int i=0;i<contours.size();i++){
 MatOfPoint currentContour = contours.get(i);
 double currentArea = Imgproc.contourArea(currentContour);

 if(currentArea > areaThreshold){
 Imgproc.drawContours(image, contours, i, new Scalar(0,255,0),
thickness);
 if(boundingBoxString.equals(enclosingType)){
 drawBoundingBox(currentContour);
 }
 else if (circleString.equals(enclosingType)){
 drawEnclosingCircle(currentContour);
 }
 else if (convexHullString.equals(enclosingType)){
 drawConvexHull(currentContour);
 }
 }
 else{
 Imgproc.drawContours(image, contours, i, new Scalar(0,0,255),
thickness);
 }
 }
 updateView();
}

We firstly clone our target binary image, so we won't change it. Then, we initialize
the MatOfPoint structure and define the thickness flag. We then run findContours,
ignoring the output hierarchy matrix. It is time to iterate the contours in the for
loop. We use the Imgproc.contourArea helper function for an area estimate. Based
on that, if it is the previous areaThreshold defined by the slider, it is drawn as green
using the drawContours function or else it is drawn as red. An interesting part of the
code are the shape drawing functions, which are described as follows:

private void drawBoundingBox(MatOfPoint currentContour) {
 Rect rectangle = Imgproc.boundingRect(currentContour);
 Imgproc.rectangle(image, rectangle.tl(), rectangle.br(), new
Scalar(255,0,0),1);
}

private void drawEnclosingCircle(MatOfPoint currentContour) {
 float[] radius = new float[1];
 Point center = new Point();

 MatOfPoint2f currentContour2f = new MatOfPoint2f();
 currentContour.convertTo(currentContour2f, CvType.CV_32FC2);

Chapter 6

[115]

 Imgproc.minEnclosingCircle(currentContour2f, center, radius);
 Imgproc.circle(image, center, (int) radius[0], new Scalar(255,0,0));
}

private void drawConvexHull(MatOfPoint currentContour) {
 MatOfInt hull = new MatOfInt();
 Imgproc.convexHull(currentContour, hull);

 List<MatOfPoint> hullContours = new ArrayList<MatOfPoint>();
 MatOfPoint hullMat = new MatOfPoint();
 hullMat.create((int)hull.size().height,1,CvType.CV_32SC2);

 for(int j = 0; j < hull.size().height ; j++){
 int index = (int)hull.get(j, 0)[0];
 double[] point = new double[] {
 currentContour.get(index, 0)[0], currentContour.get(index, 0)[1]
 };
 hullMat.put(j, 0, point);
 }
 hullContours.add(hullMat);
 Imgproc.drawContours(image, hullContours, 0, new Scalar(128,0,0),
2);
}

Drawing a bounding box is simple; it is just a matter of calling Imgproc.
boundingRect() in order to identify the shape's surrounding rectangle. Then,
the Imgproc's rectangle function method is called to draw the rectangle itself.

Drawing the enclosing circle is also easy due to the existence of the
minEnclosingCircle function. The only caveat is converting MatOfPoint to
MatOfPoint2f, which is accomplished by calling Contour's convertTo. The
Imgproc's circle function deals with drawing it.

Finding the convex hull is a rather important problem from a computational
geometry perspective. It can be seen as putting an elastic band around a set of
points and checking the final shape it takes. Fortunately, OpenCV also deals with
this problem through the Imgproc's convexHull function. Note that in the first and
the second line of drawConvexHull in the preceding code, MatOfInt is created, and
convexHull is called, passing the current contour and this matrix as parameters. This
function will return convex hull indexes in MatOfInt. We can draw lines ourselves,
based on the coordinates of these indexes from the original contour. Another idea is to
use the OpenCV's drawContour function. In order to do this, you need to build a new
contour. This is done in the following lines in the code until drawContour is called.

Detecting Foreground and Background Regions and Depth with a Kinect Device

[116]

Kinect depth maps
From the beginning of this chapter until now, we have focused on the background
subtraction approaches that try to model the background of the scene using ordinary
cameras and then on applying frame differencing.

Although the Kinect is reported to work with Linux and OSX, this
section deals only with Windows setup on OpenCV 2.4.7 version.

In this section, we will take a different approach. We will set how far we want our
objects to be considered foreground and background, which means removing the
background by selecting a depth parameter. Unfortunately, this can not be done
using a single ordinary camera in a single shot, so we will need a sensor that tells us
the depth of objects or try to determine depth from stereo, which is not in the scope
of this chapter. Thanks to both gamers and several efforts from all around the world,
this device has become a commodity and it is called a Kinect. Some attempts can be
made to use two cameras and try to get depth from stereo, but the results might not
be as great as the ones with the Kinect sensor. Here is how it looks:

Chapter 6

[117]

What makes the Kinect really different from an average camera is that it includes an
infrared emitter and an infrared sensor that are able to project and sense a structured
light pattern. It also contains an ordinary VGA camera so that the depth data can
be merged into it. The idea behind the structured light is that when projecting a
known pattern of pixels on to the objects, the deformation of this pattern allows the
computer vision systems to calculate the depth and surface information from them. If
a camera capable of registering infrared is used to record the emitted Kinect pattern,
an image similar to the following can be seen:

Although it might look like a random set of points, they are actually pseudo-random
patterns that have been previously generated. These patterns can be identified
and a disparity to depth relationship can be calculated, inferring the depth. More
information can be acquired when studying structured light concepts if it is required.

One should be aware of the implications this method has. As it relies on active
infrared projection, some outdoor effects, such as direct sunlight will confuse the
sensors, so outdoor use is not recommended. Users should also be aware that the
depth range is from 0.8 meters to 4.0 meters (roughly from 2.6 feet to 13.1 feet). Some
shadows related to the IR projection can also make the results not look as great as
they should, and cause some noise in the images. Despite all these issues, it is one of
the best results available for the near field background removal.

Detecting Foreground and Background Regions and Depth with a Kinect Device

[118]

The Kinect setup
Using a Kinect should be straightforward, but we need to consider two important
aspects. First we need to be sure that all the device driver softwares are correctly
installed for using them. Then we need to check whether OpenCV has been compiled
with Kinect support. Unfortunately, if you have downloaded precompiled binaries
of version 2.4.7 from http://sourceforge.net/projects/opencvlibrary/
files/, as described in the beginning of Chapter 1, Setting Up OpenCV for Java the
out-of-the-box support is not included. We will briefly describe the setup instructions
in the upcoming sections.

It is important to note that not only the Xbox 360 Kinect device is commercialized,
but also the Kinect for Windows. Currently, if you are creating commercial
applications with the Kinect, you should go with the Kinect for Windows,
although the Xbox 360 Kinect works with the provided drivers.

The driver setup
OpenCV Kinect support relies on OpenNI and PrimeSensor Module for OpenNI. An
OpenNI framework is an open source SDK used for the development of 3D sensing
middleware libraries and applications. Unfortunately, OpenNI.org site was available
only until April 23rd, 2014, but the OpenNI source code is available on Github at
https://github.com/OpenNI/OpenNI and https://github.com/OpenNI/OpenNI2.
We will focus on using version 1.5.7.10 in this section.

Although instructions for building the binaries are readily available, we can use
installers provided in the code repository of this book.

After installing the OpenNI library, we will need to install the Kinect drivers. These
are available at https://github.com/avin2/SensorKinect/, and installers are
specifically at https://github.com/avin2/SensorKinect/tree/unstable/Bin.

http://sourceforge.net/projects/opencvlibrary/files/
http://sourceforge.net/projects/opencvlibrary/files/
OpenNI.org
https://github.com/OpenNI/OpenNI
https://github.com/OpenNI/OpenNI2
https://github.com/avin2/SensorKinect/
https://github.com/avin2/SensorKinect/tree/unstable/Bin

Chapter 6

[119]

When plugging your Xbox 360 Kinect device into Windows, you should see the
following screenshot in your Device Manager:

Make sure all of the three Kinect devices—Audio, Camera, and Motor—show
appropriately.

One caveat that can happen is that if users forget to plug the power
supply for the XBox 360 Kinect device, only Kinect Motor might show
up since there isn't enough energy for the all three of them. Also,
you won't be able to retrieve frames in your OpenCV application.
Remember to plugin your power supply, and you should be fine.

Detecting Foreground and Background Regions and Depth with a Kinect Device

[120]

The OpenCV Kinect support
After ensuring that the OpenNI and Kinect drivers have been correctly installed,
you need to check for the OpenCV Kinect support. Fortunately, OpenCV offers
quite a useful function to check that. It is called Core.getBuildInformation().
This function shows important information about which options have been enabled
during the OpenCV compilation. In order to check for Kinect support, simply
output the result of calling this function to the console by using System.out.
println(Core.getBuildInformation()); and look for the video I/O section
which looks like the following:

It means OpenNI and Kinect support has not been enabled.

1. Now, according to Chapter 1, Setting Up OpenCV for Java, instead of typing:
cmake -DBUILD_SHARED_LIBS=OFF ..

Remember to add the WITH_OPENNI flag, as given in the following line
of code:
cmake -DBUILD_SHARED_LIBS=OFF .. -D WITH_OPENNI

Chapter 6

[121]

Instead of the preceding code, make sure you tick this option when using
CMake's GUI. Check for an output similar to the following screenshot:

Make sure you point the OPENNI paths to your OpenNI correct installation
folder. Rebuild the library, and now your opencv_java247.dll will be built
with Kinect support.

Detecting Foreground and Background Regions and Depth with a Kinect Device

[122]

2. Now try checking your Core.getBuildInformation() again. The
availability of OpenNI will be demonstrated in your Java console,
as given in the following lines:
 Video I/O:
 Video for Windows: YES
 DC1394 1.x: NO
 DC1394 2.x: NO
 FFMPEG: YES (prebuilt binaries)
 codec: YES (ver 55.18.102)
 format: YES (ver 55.12.100)
 util: YES (ver 52.38.100)
 swscale: YES (ver 2.3.100)
 gentoo-style: YES
 OpenNI: YES (ver 1.5.7, build 10)
 OpenNI PrimeSensor Modules: YES (C:/Program Files (x86)/
PrimeSense/Sensor/Bin/XnCore.dll)
 PvAPI: NO
 GigEVisionSDK: NO
 DirectShow: YES
 Media Foundation: NO
 XIMEA: NO

An alternative approach is using our configured Maven repository. We have added a
runtime dependency to the book Maven repository, only available for Windows x86,
which is very easy to configure. Simply follow the Java OpenCV Maven configuration
section from Chapter 1, Setting Up OpenCV for Java, and then, instead of adding the
ordinary OpenCV dependency, opencvjar-runtime, use the following dependency:

<dependency>
 <groupId>org.javaopencvbook</groupId>
 <artifactId>opencvjar-kinect-runtime</artifactId>
 <version>2.4.7</version>
 <classifier>natives-windows-x86</classifier>
</dependency>

The complete POM file can be accessed in this chapter's Kinect project source code.

Be sure you check for some caveats, such as not mixing 32 bit and 64 bit drivers and
libraries as well as Java runtime. If this is the case, you might receive Can't load IA
32-bit .dll on a AMD 64-bit platform, for instance. Another source of problems is
forgetting to plugin the power supply for Kinect XBox 360, which will cause it to
load only Kinect Motor.

Chapter 6

[123]

Now that we are sure that the OpenNI and Kinect Drivers have been correctly
installed as well as the OpenCV's OpenNI support, we are ready to move on
to the next section.

The Kinect depth application
The application focuses on the depth-sensing information from the Kinect as well
as on the OpenCV API for OpenNI depth sensor, which means it won't cover some
well-known Kinect features such as skeletal tracking (which puts nodes in important
body parts like head, heap center, shoulder, wrists, hands, knees, feet, and others),
gesture tracking, microphone recording, or tilting the device. Although we will just
cover depth sensing, it is one of the most fantastic features of the Kinect.

The basic idea behind this application is to segment an image from its depth
information and combine it with a background image. We will capture an RGB
frame from the Kinect device and retrieve its depth map. From a slider, you can
choose how much depth you want for the segmentation. Based on that, a mask is
generated through simple thresholding. The combined RGB frame and depth are
now used to overlay a background image, resulting in an effect similar to chroma
key compositing, but without the need for a green screen background, of course.
This process can be seen in the following screenshot:

Detecting Foreground and Background Regions and Depth with a Kinect Device

[124]

We should notice that in OpenCV version 2.4.7, the Java API does not support the
Kinect depth sensing, but this is built on top of VideoCapture, so just some minor
modifications related to constants will be required. For the sake of simplicity, these
constants are in the main App class, but they should be refactored to a class that
only deals with the OpenNI constants. Please look for the project kinect from this
chapter in order to check for source code.

In order to work with depth-sensing images, we will need to follow these
simple guidelines:

VideoCapture capture = new VideoCapture(CV_CAP_OPENNI);
capture.grab();
capture.retrieve(depthMap, CV_CAP_OPENNI_DEPTH_MAP);
capture.retrieve(colorImage, CV_CAP_OPENNI_BGR_IMAGE);

We will use the same VideoCapture class as the one used in Chapter 2, Handling
Matrices, Files, Cameras, and GUIs, for webcam input, with the same interface, passing
the constant CV_CAP_OPENNI for telling it to retrieve frames from the Kinect. The
difference here is that instead of using the read method,we will break this step in
grabbing the frame and then retrieving either the depth image or the captured frame.
Note that this is done by firstly calling the grab method and then the retrieve
method, passing CV_CAP_OPENNI_DEPTH_MAP and CV_CAP_OPENNI_BGR_IMAGE as
parameters. Make sure you send it to different matrices. Note that all these constants
are extracted from the highgui_c.h file, which is located in the opencv\modules\
highgui\include\opencv2\highgui path from OpenCV's source code tree. We will
only work with the disparity map and RGB images from the Kinect, but one can also
use the CV_CAP_OPENNI_DEPTH_MAP constant for receiving the depth values in mm as
a CV_16UC1 matrix, or CV_CAP_OPENNI_POINT_CLOUD_MAP for a point cloud map in a
CV_32FC3 matrix in which the values are XYZ coordinates in meters.

Our main loop consists of the following code:

while(true){
 capture.grab();
 capture.retrieve(depthMap, CV_CAP_OPENNI_DISPARITY_MAP);
 disparityImage = depthMap.clone();
 capture.retrieve(colorImage, CV_CAP_OPENNI_BGR_IMAGE);
 workingBackground = resizedBackground.clone();
 Imgproc.threshold(disparityImage, disparityThreshold, gui.
getLevel(), 255.0f, Imgproc.THRESH_BINARY);
 maskedImage.setTo(new Scalar(0,0,0));
 colorImage.copyTo(maskedImage,disparityThreshold);
 maskedImage.copyTo(workingBackground,maskedImage);
 renderOutputAccordingToMode(disparityImage, disparityThreshold,
 colorImage, resizedBackground, workingBackground, gui);
}

Chapter 6

[125]

First, we invoke the grab method to get the next frame from the Kinect. Then, we
retrieve depth map and color images. As we have previously loaded our background
in resizedBackground, we just clone it to workingBackground. Following this, we
threshold our disparity image according to our slider level. This will make pixels
farther away from our desired depth go black, while the ones we still want become
white. It is time to clear our mask and combine it with the colored image.

Summary
This chapter has really covered several areas that deal with background removal as
well as some details that arise from this problem, such as the need to use connected
components to find their contours. Firstly, the problem of background removal itself
was established. Then, a simple algorithm such as frame differencing was analyzed.
After that, more interesting algorithms, such as averaging background and mixture
of Gaussian (MOG) were covered.

After using algorithms to deal with background removal problems, an insight
about connected components was explored. Core OpenCV algorithms such as
findContours and drawContours were explained. Some properties of contours
were also analyzed, such as their area as well as convex hulls.

The chapter finished with complete explanations of how to use the Kinect's depth
sensor device as a background removal tool, for OpenCV 2.4.7. After depth
instructions on the device setup, a complete application was developed, making it
clear to deal with the depth sensing sensors API.

Well, now it's time to jump from desktop applications to web apps in the next
chapter. There, we'll cover details on how to set up an OpenCV-based web
application, deal with image uploads, and create a nice augmented reality
application based on the Tomcat web server. It is going to be fun, just watch
out for Einstein's screenshots.

[127]

OpenCV on the Server Side
As the Internet gets more and more interactive, a subject of great interest is how
to deal with image processing on the server side that enables you to create web
applications dealing with OpenCV. As Java is among the languages of choice when
developing web apps, this chapter shows the entire architecture of an application
that lets users upload an image and add a fedora hat on top of detected faces using
techniques learned throughout the book.

In this chapter, we will cover the following topics:

• Setting up an OpenCV web application
• Mixed reality
• Image uploading
• Dealing with HTTP requests

By the end of this chapter you will know how to create a complete web application
with image processing, obtain input from the user, process the image on the server
side, and return the processed image to the user.

Setting up an OpenCV web application
Since this chapter covers the development of a web application using Java OpenCV,
it is important to address a couple of differences when going to the server side. The
first thing is to tell the web container, generally Tomcat, Jetty, JBoss, or Websphere,
about the location of native libraries. Other details deal with loading the native code.
This should happen as soon as the web server goes up and should not occur again.

OpenCV on the Server Side

[128]

The advantages of using the web architecture are significant. As certain
image-processing tasks are compute intensive, they could easily drain the
device's battery in no time, so, taking them to a more robust hardware on the
cloud would relieve local processing. Besides that, there's no need for users to
install anything more than the web browser, and the updates happening on the
server side are also very handy.

On the other hand, there are a few drawbacks. If, instead of hosting the web
application on the administrator infrastructure, one intends to host it on Java servers
online, it should be clear whether it allows native code to be run or not. At the time
of writing, Google's App Engine does not allow it, but it is easy to set up a Linux
server on Amazon EC2 or Google's Compute Engine that smoothly runs it although
this won't be covered in this book. Another thing to be considered is that several
computer vision applications need to be run in real time, even at the rate of 20 frames
per second, for instance, which would be impractical in a web architecture, due to
long upload times, and this type of application should be run locally.

In order to create our web application, we will go through the following steps:

1. Creating a Maven-based web application.
2. Adding OpenCV dependencies.
3. Running the web application.
4. Importing the project to Eclipse.

In the following sections, we will cover these steps in detail.

Creating a Maven-based web application
There are several ways to create web applications in Java. Spring MVC, Apache
Wicket, and Play Framework are all great options among others. Also, on top
of these frameworks, we can put JavaServer Faces, PrimeFaces, or RichFaces as
component-based user interfaces for these web applications. For this chapter though,
instead of addressing all these technologies, the approach will be to only use servlets
for you to choose your frameworks. You should notice that a servlet is simply a Java
class used to extend the capabilities of a server, and this is generally used to process
or store data that was submitted through an HTML form. The servlet API has been
around since 1997, so it has been exhaustively used, and there are several books
and samples about it. Although this chapter focuses on Servlet 2.x for simplicity,
we need to be aware that the API is synchronous and that it might be better to use
an asynchronous one, such as Servlet 3.x, for applications that will receive several
clients together.

Chapter 7

[129]

Although any IDE can easily generate a web application through a wizard—such as
going to Eclipse and navigating to File | New | Project… | Web | Dynamic Web
Project—we'll focus on starting it with the help of Maven since we can easily get native
dependencies. As long as it has been installed correctly according to instructions in
Chapter 1, Setting Up OpenCV for Java, Maven can set up a web application through the
use of a prototype. This is achieved through the following command:

mvn archetype:generate -DgroupId=com.mycompany.app -DartifactId=my-webapp
-DarchetypeArtifactId=maven-archetype-webapp -DinteractiveMode=false

This command will call the generate goal from the archetype plugin. Think of
archetype as a project template. This Maven plugin will generate a web application
from a template because we have set archetypeArtifactId as maven-archetype-
webapp through the -DarchetypeArtifactId=maven-archetype-webapp option.
The other option, DartifactId=my-webapp, will simply set the folder name of the
web application as defined in this option, while groupId is Maven's universally
unique identifier for a project.

Note that the following structure will be created:

The preceding is a simple structure for a web application. You should pay attention to
the web.xml file, which is used for mapping servlets, as well as index.jsp, which is a
simple Java Server Page file. By now you should be able to run this web application in
Tomcat, for instance, with little effort. Simply type the following command:

cd my-webapp

mvn tomcat:run

OpenCV on the Server Side

[130]

Now, if the you access the address http://localhost:8080/my-webapp/, the
following response should be seen in the browser:

Notice that it means that we have successfully created a web project, we are running
it through a Tomcat web container, and it is available through localhost server, in
port 8080, through the name my-webapp. The Hello World! message can be seen in
index.jsp. In the following section, you are going to customize the pom file in order
to add OpenCV dependencies.

Adding OpenCV dependencies
Since the web application archetype has created a project structure for us, we are
going to add OpenCV dependencies for the generated pom.xml. If you open it,
you will see the following code:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.mycompany.app</groupId>
 <artifactId>my-webapp</artifactId>
 <packaging>war</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>my-webapp Maven Webapp</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>

Chapter 7

[131]

 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <finalName>my-webapp</finalName>
 </build>
</project>

Notice that the only dependency is on junit. Now add the following to the
dependencies tag:

<dependency>
 <groupId>org.javaopencvbook</groupId>
 <artifactId>opencvjar</artifactId>
 <version>3.0.0</version>
</dependency>

<dependency>
 <groupId>org.javaopencvbook</groupId>
 <artifactId>opencvjar-runtime</artifactId>
 <version>3.0.0</version>
 <classifier>natives-windows-x86</classifier>
</dependency>

<dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.0.1</version>
 <scope>provided</scope>
</dependency>

The first two dependencies, opencvjar and opencvjar-runtime, are the same
ones that have been discussed in Chapter 1, Setting Up OpenCV for Java. Now, the
dependency on javax.servlet-api refers to the servlet API version 3.0.1, which is
used to make files upload more easily. Besides using these dependencies, all other
configurations are mentioned in Chapter 1, Setting Up OpenCV for Java, such as adding
the JavaOpenCVBook repository, maven-jar-plugin, maven-dependency-plugin,
and maven-nativedependencies-plugin.

OpenCV on the Server Side

[132]

The only new plugin is tomcat7 as we would require it to use the file upload API
from servlet 3.0. In order to add the tomcat7 plugin, look for the <plugins>
section in pom.xml and add the following code:

<plugin>
 <groupId>org.apache.tomcat.maven</groupId>
 <artifactId>tomcat7-maven-plugin</artifactId>
 <version>2.2</version>
 <configuration>
 <port>9090</port>
 <path>/</path>
 </configuration>
</plugin>

Besides adding the ability to run tomcat7 from Maven, it will also configure port
9090 as the default port for our server, but you can use another one. The final pom.
xml file can be found in this chapter's source code project. Running an mvn package
command will show that everything's been fine in the project setup. In the next
section, we are going to check all the processes through a simple OpenCV call
from the .jsp file.

Running the web application
Now that all the dependencies have been set up, it should be straightforward to run
our web application. One detail should be noticed, though. Since our application
relies on native code, the opencv_java300.dll file, or the shared object, we should
put it in the Java library path prior to running the Tomcat server. There are several
approaches to doing this, depending on your deployment strategy, but a simple one
could be setting the path through the MAVEN_OPTS environment variable. You should
type the following command in the terminal:

set MAVEN_OPTS=-Djava.library.path=D:/your_path/my-webapp/target/natives

Chapter 7

[133]

Please remember to change your_path to the place you are setting up your project,
the parent folder of my-webapp. In order to check that the application server can
correctly load OpenCV native libraries, we are going to set up a simple servlet which
is able to output the correct installed version. Change the index.jsp file generated
in your my-webapp\src\main\webapp folder to the following code:

<html>
 <body>
 <h2>OpenCV Webapp Working!</h2>
 <%@ page import = "org.opencv.core.Core" %>
 Core.VERSION: <%= Core.VERSION %>
 </body>
</html>

Now, run your server typing mvn tomcat7:run. Try loading your application in
your web browser at the address http://localhost:9090, and you should see the
page outputting your loaded OpenCV version. Although this code doesn't really
load native libraries, since Core.VERSION can be retrieved from pure Java JAR,
it's not a good practice to mix business code—the one that really does your image
processing—with your presentation code, that is, the Java Server Page we just edited.
In order to deal with image processing, we are going to concentrate the code in a
servlet that only deals with it.

Importing the project to Eclipse
Now that the project is all set up with Maven, it should be easy to import it to
Eclipse. Simply issue the following Maven command:

mvn eclipse:eclipse -Dwtpversion=2.0

Remember to add the -Dwtpversion=2.0 flag to add support for WTP version
2.0, which is Eclipse's Web Tools platform. If you have not set up your M2_REPO as
explained in Chapter 1, Setting Up OpenCV for Java, a simple trick can automate it for
you. Type the following command:

mvn -Declipse.workspace="YOUR_WORKSPACE_PATH" eclipse:configure-workspace

The YOUR_WORKSPACE_PATH path should be changed to something similar to
C:\Users\baggio\workspace if that is where your Eclipse workspace is located.

OpenCV on the Server Side

[134]

In Eclipse, navigate through File | Import | General | Existing Projects into the
workspace and point to your my-webapp folder. Notice that your Eclipse should have
WTP support. In case you receive a Java compiler level does not match the
version of the installed Java project facet message, simply right-click it
and in the Quick Fix menu, choose Change Java Project Facet version to Java 1.8.
Now you can run it by right-clicking in your project, navigating to Run as | Run on
Server, selecting Apache | Tomcat v7.0 Server, and hitting Next. If you don't have
an existing Tomcat 7 installation, select Download and Install, as shown in the
next screenshot:

Select a folder for your Tomcat7 installation and click on Next and Finish. Now,
you can run your application directly from Eclipse, by right-clicking on your
project and clicking on Run as | Run on Server. In case you receive a "java.lang.
UnsatisfiedLinkError: no opencv_java300 in java.library.path", right-click your
project, "Run As ->Run Configurations..." and in the Arguments tab, in the VM
arguments text box, add the -Djava.library.path="C:\path_to_your\target\natives".
Click in "Apply" and restart your server by going to the Server tab and right-clicking
your Tomcat7 execution -> Restart.

Chapter 7

[135]

Mixed reality web applications
The web application we are going to develop draws Fedora hats on top of the
detected heads in a given image. In order to do this, the user uploads the image
through a simple form, and then it is converted to an OpenCV matrix in memory.
After conversion, a cascade classifier looking for faces is run over the matrix. A
simple scale and a translation are applied to estimate the hat's position and scale.
A transparent fedora image is then drawn on the specified position for each of the
detected faces. The result is then returned through HTTP by giving the mixed reality
picture to the user. Notice that all the processing happens on the server side, so the
client is only left to upload and download the image, which is very useful for clients
that rely on batteries, such as smartphones.

Mixed reality (MR), sometimes referred to as hybrid reality (encompassing both
augmented reality and augmented virtuality), refers to the merging of real and
virtual worlds to produce new environments and visualisations where physical
and digital objects co-exist and interact in real time. Not taking place only in
the physical world or the virtual world, but a mix of reality and virtual reality,
encompassing augmented reality and augmented virtuality.
Source: Fleischmann, Monika; Strauss, Wolfgang (eds.) (2001). Proceedings of
»CAST01//Living in Mixed Realities« Intl. Conf. On Communication of Art,
Science and Technology, Fraunhofer IMK 2001, 401. ISSN 1618–1379 (Print),
ISSN 1618–1387 (Internet).

This web application can be divided into a couple of simpler steps:

1. Image upload.
2. Image processing.
3. Response image.

The following sections will cover these steps in detail.

OpenCV on the Server Side

[136]

Image upload
Firstly, we are going to turn our dummy Java Server Page into a form that will require
the user to choose a local file, similar to the one seen in the following screenshot:

The following code shows the complete Java Server Page. Note the form element,
which states that it will call a post method being processed in the doPost part of the
servlet and requests that the web server to accept the data enclosed in the form for
storage. The enctype= "multipart/form-data" states that no characters are going
to be encoded, as can be seen in the "text/plain" encryption type, which converts
spaces to + symbols. Another important attribute is action="upload". It makes sure
that the data encoded in the form is sent to the "/upload" URL. The input element
with the type "file" simply works as a call to the operating system's file dialog, which
pops up and lets the user specify the file location. Finally, the input element with
the "submit" type deals with sending the request with form data when the button
is clicked:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title>File Upload</title>
</head>
<body>
<center>
 <h1>File Upload</h1>

Chapter 7

[137]

 <form method="post" action="upload"
 enctype="multipart/form-data">
 Select file to upload: <input type="file" name="file"
size="60" />

 <input type="submit" value="Upload" />
 </form>
</center>
</body>
</html>

When pressing the Submit button, a stream of bytes is sent to the server, which will
forward them to a servlet called Upload. Note that mapping from the /upload URL
to the Upload servlet happens in the /src/main/webapp/WEB-INF/web.xml file, as
shown in the following lines:

<web-app>
 <servlet>
 <servlet-name>Upload</servlet-name>
 <servlet-class>org.javaopencvbook.webapp.UploadServlet</servlet-
class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Upload</servlet-name>
 <url-pattern>/upload</url-pattern>
 </servlet-mapping>
</web-app>

Pay attention to the fact that, when the user hits the Submit button from the form,
the doPost method from the mapped servlet class, UploadServlet, is called. This
method is the core of this web application, and we are going to see it in detail in the
following code:

@Override
protected void doPost(HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException {
 System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

 loadCascade();

 Mat image = receiveImage(request);
 Mat overlay = loadOverlayImage();
 detectFaceAndDrawHat(image, overlay);
 writeResponse(response, image);
}

OpenCV on the Server Side

[138]

The main action in the doPost method starts by loading the OpenCV library, as seen
in the previous chapters, and then loading the cascade which will be used later for
face detection. For the sake of brevity, the initialization is made here, but in actual
code, you should use ServletContextListener in order to initialize it. Then, the
receiveImage method deals with receiving bytes from the upload and converting
it to an OpenCV matrix. So, the other methods take care of loading the fedora hat
image and detecting people's faces so that the overlay can be drawn through the
detectFaceAndDrawHat method. Finally, the writeResponse method answers the
request. We will cover receiveImage in more detail in the following code:

private Mat receiveImage(HttpServletRequest request) throws
IOException, ServletException {
 byte[] encodedImage = receiveImageBytes(request);
 return convertBytesToMatrix(encodedImage);
}

Note that receiveImage simply grabs bytes from an upload request in
receiveImageBytes and then converts them to a matrix. The following
is the code for receiveImageBytes:

private byte[] receiveImageBytes(HttpServletRequest request)
throws IOException, ServletException {
 InputStream is = (InputStream) request.getPart("file").
getInputStream();
 BufferedInputStream bin = new BufferedInputStream(is);
 ByteArrayOutputStream buffer = new ByteArrayOutputStream();
 int ch =0;
 while((ch=bin.read())!=-1) {
 buffer.write(ch);
 }
 buffer.flush();
 bin.close();
 byte[] encodedImage = buffer.toByteArray();
 return encodedImage;
}

Chapter 7

[139]

This is the default code to receive an upload. It accesses the "file" field from the form
and gets its stream through request.getPart("file").getInputStream(). Then,
a buffer is created, so all data from the input stream is written through the write()
method as long as there's data from the upload. The byte array is then returned
through the ByteArrayOutputStream class's toByteArray() method. Since what
we have received at this point is just a bunch of bytes, there is a need to decode the
image format and convert it to an OpenCV matrix. Fortunately, there's already a
method that does that, imdecode, from the Imgcodecs package, the signature of
which is as follows:

public static Mat imdecode(Mat buf, int flags)

The buf argument is a Mat buffer that we will create from the byte array, and
flags is an option used to convert the Mat buffer returned to grayscale or color,
for instance.

The complete code for the decoding can be seen in the following lines:

private Mat convertBytesToMatrix(byte[] encodedImage) {
 Mat encodedMat = new Mat(encodedImage.length,1,CvType.CV_8U);
 encodedMat.put(0, 0,encodedImage);
 Mat image = Imgcodecs.imdecode(encodedMat, Imgcodecs.CV_LOAD_IMAGE_
ANYCOLOR);
 return image;
}

Now it's done, we have received the user's image upload, and it is converted to our
well-known Mat class. It's now time to create the mixed reality.

Image processing
In this section, we are going to describe how to process the received image in order
to draw an image file on top of it. Now, a cascade classifier is run just as in the
previous chapter. It is important to pay attention to the XML cascade file location.
Throughout the code, we have used a helper function called getResourcePath,
and we have used the convention of storing all the resources in the src/main/
resources/ folder. This way, the helper function works in a manner similar to that
of the following code:

private String getResourcePath(String path) {
 String absoluteFileName = getClass().getResource(path).getPath();
 absoluteFileName = absoluteFileName.replaceFirst("/", "");
 return absoluteFileName;
}

OpenCV on the Server Side

[140]

Using this function, one can load a cascade through the following call:

private void loadCascade() {
 String cascadePath = getResourcePath("/cascades/lbpcascade_
frontalface.xml");
 faceDetector = new CascadeClassifier(cascadePath);
}

After the cascade has been correctly loaded, we are all set, and now it is time to
explain how the hat's position is estimated. When running the face classifier, we have
a good idea not only of the face's position, but also of the face's bounding rectangle.
We will use this width to estimate the width of the hat. We can suppose that the
width of the hat would be three times the face's bounding rectangle width. This way,
we still need to keep the hat's aspect ratio. This is done with a simple rule of three, as
shown here:

hat width 3 face width
original hat heighthat height hat width
original hat width

= ∗

= ∗

Now that the virtual hat's dimensions are defined, we still need to estimate its
location. From a couple of tests, we could infer that 60 percent above the face's
bounding rectangle should be fine for most of the pictures. Now, we have the hat's
dimensions and position. In the end, instead of using the hat's width as three times
the face's width, a value of 2.3 times the face's width seemed to work better. The
following code shows the math used to set the region of interest (ROI) to draw the
fedora as implemented in the method detectFaceAndDrawHat. A simple adjustment
is made to the hat's dimensions when it goes beyond the bounds.

double hatGrowthFactor = 2.3;
int hatWidth = (int) (rect.width *hatGrowthFactor);
int hatHeight = (int) (hatWidth * overlay.height() / overlay.width());
int roiX = rect.x - (hatWidth-rect.width)/2;
int roiY = (int) (rect.y - 0.6*hatHeight);
roiX = roiX<0 ? 0 : roiX;
roiY = roiY< 0? 0 :roiY;
hatWidth = hatWidth+roiX > image.width() ? image.width() -roiX :
hatWidth;

hatHeight = hatHeight+roiY > image.height() ? image.height() - roiY :
hatHeight;

Chapter 7

[141]

The following screenshot gives us an overview of the widths and the process of
drawing the fedora overlay:

It is time to draw the hat! This should be as simple as locating the hat's position in
the picture and copying the submatrix. We need to be careful, though, to correctly
draw transparent pixels and not draw outside the picture. Mat's copyTo method is
used to copy a submatrix into another one. This method also accepts a mask Mat
parameter, the nonzero elements of which indicate which matrix elements must
be copied. Notice that the hat image itself is passed as the mask parameter, and it
actually works because all transparent pixels are made zero in all channels and all
other pixels will have some value, working like a mask. The code to resize the fedora
and copy it to the main image is as follows:

Mat resized = new Mat();
Size size = new Size(hatWidth,hatHeight);
Imgproc.resize(overlay,resized, size);
Mat destinationROI = image.submat(roi);
resized.copyTo(destinationROI , resized);

The response image
We have successfully received an image and drawn hats over identified faces. Now,
it's time to send the result back to the user. We do this by setting the content type
of our response as image/jpeg, for instance. We then encode our response with the
same format as defined in our header—if it is jpeg, we will encode it in JPEG—and
write the bytes in our response servlet object:

private void writeResponse(HttpServletResponse response, Mat image)
throws IOException {
 MatOfByte outBuffer = new MatOfByte();
 Imgcodecs.imencode(".jpg", image, outBuffer);

 response.setContentType("image/jpeg");
 ServletOutputStream out;
 out = response.getOutputStream();
 out.write(outBuffer.toArray());
}

OpenCV on the Server Side

[142]

The input image and the output result appear in the following screenshot. Some
fedora hats are distributed to Einstein and his friends in our augmented reality web
application. The left-hand side photo is the uploaded image, while the right-hand
side photo shows the hats drawn over the detected faces. According to our loop, hats
will be drawn in the same order that detected faces are returned. This way, we can't
grant a correct Z-order, which is what hat is drawn on top of another although we
could try to infer it from face size. This is shown in the following images:

http://www.nobelprize.org/nobel_prizes/physics/laureates/1921/einstein-photo.html

Summary
In this chapter, we sent our computer vision applications to the server-side
world. We started covering the basics of a simple servlet-based web application
configuration using Maven, which provided us with a general application structure.
We then added OpenCV dependencies to our pom.xml configuration file as used
in a standard OpenCV desktop application. We then checked other runtime
configurations as we deployed our web server using Maven.

With every webapp configuration aspect solved, we moved on to the development
of our mixed reality application that explored the details of image uploading,
converting it to an OpenCV Mat object and then writing a response to our clients
with a processed image.

Chapter 7

[143]

It seems that all aspects of creating basic computer vision applications have been
covered now. We dealt with setting up OpenCV for Java and then learned how to
work with matrices. We then touched on the basics of creating Java Swing desktop
applications and worked with image-processing algorithms to filter, change image
morphology, and do essential thresholding. You also learned tools that are in every
computer vision researcher's toolkit, such as Hough transformations to find lines
and circles as well as special kernel convolution. We covered the important Fourier
transform and warp operations. We then dived into machine learning and used
handy OpenCV cascades, and you also learned how to create new object classifiers.
Besides this, we studied certain background removal approaches and tested the
incredible Kinect device to perform depth-based processing. We finally finished the
book with a complete server-side example, and now, you are ready to count on Java
for your own computer vision projects!

[145]

Index
Symbols
2D Kernel Convolution 48

A
AdaBoosting 92-94
affine transformations 77
Ant

used, for building project 14-17
Apache Ant

URL 4

B
background subtraction

about 104, 105
averaging 106-108

BGR (blue, green, and red) format 30
bilateral filtering 52, 53
boosting theory

about 91, 92
AdaBoost 92-94

bucket fill tool 47

C
camera

video, capturing from 37-40
canny transforms

and Laplace 73, 74
cascade classifier

custom cascade classifier, creating 99, 100
object detection 97, 98
training 98
using 96, 97

C/C++ compilers
URL 3

circle Hough transform
and line transform 75-77

CMake 2.6
URL 3

contours
searching 111-115

D
dependencies, OpenCV

adding, to web application 130-132
Discrete Adaboost 94
Discrete Cosine Transform (DCT)

and Discrete Fourier Transform
(DFT) 71, 79-83

distance transforms 86, 87

E
Eclipse

Java OpenCV project 7-10
web application, importing 133, 134

F
face tracking 91
files

images, displaying from 32
images, loading from 32

flood filling 58-62
foreground detection 104
frame

differencing 105, 106

[146]

G
Gentle AdaBoost 94
geometric transform 77-79
Gnu C Compiler (GCC)

URL 3
gradients

and sobel derivatives 72

H
Haar-like features 84
histogram equalization 88, 89

I
image pyramids 62-64
images

displaying, from files 32
displaying, with SwingC++ 33-36
loading, from files 32
processing 139-141
uploading 136-139

integral images 83-85

J
Java Developer Kit (JDK)

URL 4
Java development

OpenCV, getting for 2
Java Native Interface (JNI) 2, 29
Java OpenCV Maven configuration 17
Java OpenCV Maven project

pointing to Packt repository, creating 24
Java OpenCV project

in Eclipse 7-10
simple application 13, 14

Java Virtual Machine (JVM) 2

K
Kinect

about 103, 116
application, creating 123-125

drivers, setting up 118, 119
features 117
OpenCV support 120-123
setting up 118
URL, for drivers 118

Kinect Motor 119

L
Laplace

and canny transforms 73, 74
line transform

and circle Hough transform 75-77
Local Binary Patterns (LBP) 96
LogitBoost 94

M
matrix manipulation 27-29
Maven-based web application

creating 128-130
median filtering 51
mixed reality web applications 135
Mixture of Gaussians model (MOG)

about 109
using 110

morphological operations 53-58

N
NetBeans

configuring 10-13

O
OpenCV

building, from source code 2-6
download page, URL 3
getting, for Java development 2
support, for Kinect 120-123
Swing GUIs, integrating with 42-44
URL 7

OpenCV SourceForge repository
URL 2

OpenNI
URL 118

[147]

P
Packt repository, pointing to

Java OpenCV Maven project, creating 24
Windows Java OpenCV Maven project,

creating 17-23
pixel manipulation 30, 31
process 104
project

building, with Ant 14-16
Project Object Model 17
Python 2.6

URL 3

R
Real AdaBoost 94
region of interest (ROI) 140
response image

writing, for web application 141, 142

S
smoothing

about 48
averaging 48-50
bilateral filtering 52, 53
Gaussian 50, 51
median filtering 51

sobel derivatives
and gradients 72

SwingC++
used, for displaying image 33-36

Swing GUIs
integrating, with OpenCV 42-44

T
thresholding 65-68

V
video

capturing, from camera 37-40
playback 41

VideoProcessor 104
Viola-Jones detector 96

W
web application

executing 132, 133
image, processing 139-141
image, uploading 136-139
importing, to Eclipse 133, 134
Maven-based web application,

creating 128-130
OpenCV dependencies, adding 130-132
response image, writing 141, 142
setting up 127, 128

Windows Java OpenCV Maven project
pointing to Packt repository, creating 17-23

Thank you for buying
OpenCV 3.0 Computer Vision with Java

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant OpenCV Starter
ISBN: 978-1-78216-881-2 Paperback: 56 pages

Get started with OpenCV using practical,
hands-on projects

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Step by step installation of OpenCV in
Windows and Linux.

3. Examples and code based on real-life
implementation of OpenCV to help the reader
understand the importance of this technology.

4. Codes and algorithms with detailed
explanations.

Instant OpenCV for iOS
ISBN: 978-1-78216-384-8 Paperback: 96 pages

Learn how to build real-time computer vision
applications for the iOS platform using the
OpenCV library

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Build and run your OpenCV code on iOS.

3. Become familiar with iOS fundamentals and
make your application interact with the GUI,
camera, and gallery.

4. Build your library of computer vision effects,
including photo and video filters.

Please check www.PacktPub.com for information on our titles

Mastering OpenCV with Practical
Computer Vision Projects
ISBN: 978-1-84951-782-9 Paperback: 340 pages

Step-by-step tutorials to solve common real-world
computer vision problems for desktop or mobile, from
augmented reality and number plate recognition to
face recognition and 3D head tracking

1. Allows anyone with basic OpenCV experience
to rapidly obtain skills in many computer
vision topics, for research or commercial use.

2. Each chapter is a separate project covering
a computer vision problem, written by a
professional with proven experience on
that topic.

OpenCV 2 Computer Vision
Application Programming
Cookbook
ISBN: 978-1-84951-324-1 Paperback: 304 pages

Over 50 recipes to master this library of programming
functions for real-time computer vision

1. Teaches you how to program computer vision
applications in C++ using the different features
of the OpenCV library.

2. Demonstrates the important structures and
functions of OpenCV in detail with complete
working examples.

3. Describes fundamental concepts in computer
vision and image processing.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgment
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up OpenCV for Java
	Getting OpenCV for Java development
	Building OpenCV from the source code
	Java OpenCV project in Eclipse
	NetBeans configuration
	A Java OpenCV simple application
	Building your project with Ant
	Java OpenCV Maven configuration
	Creating a Windows Java OpenCV Maven project pointing to the Packt repository
	Creating a Java OpenCV Maven project pointing to a local repository

	Summary

	Chapter 2: Handling Matrices, Files, Cameras, and GUIs
	Basic matrix manipulation
	Pixel manipulation
	Loading and displaying images from files
	Displaying an image with Swing
	Capturing a video from a camera
	Video playback
	Swing GUI's integration with OpenCV
	Summary

	Chapter 3: Image Filters and Morphological Operators
	Smoothing
	Averaging
	Gaussian
	Median filtering
	Bilateral filtering

	Morphological operators
	Flood filling
	Image pyramids
	Thresholding
	Summary

	Chapter 4: Image Transforms
	The Gradient and Sobel derivatives
	The Laplace and Canny transforms
	The line and circle Hough transforms
	Geometric transforms – stretch, shrink, warp, and rotate
	Discrete Fourier Transform and Discrete Cosine Transform
	Integral images
	Distance transforms
	Histogram equalization
	References
	Summary

	Chapter 5: Object Detection Using Ada Boost and Haar Cascades
	Boosting theory
	AdaBoost

	Cascade classifier detection and training
	Detection
	Training
	References
	Summary

	Chapter 6: Detecting Foreground and Background Regions and Depth with a Kinect Device
	Background subtraction
	Frame differencing
	Averaging background method
	The mixture of Gaussians method
	Contour finding
	Kinect depth maps
	Kinect setup
	Driver setup
	OpenCV Kinect support

	The Kinect depth application

	Summary

	Chapter 7: OpenCV on the Server Side
	Setting up an OpenCV web application
	Creating a Maven-based web application
	Adding OpenCV dependencies
	Running the web application
	Importing the project to Eclipse

	Mixed reality web applications
	Image upload

	Image processing
	The response image

	Summary

	Index

