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Preface
OpenCV (Open source Computer Vision) is an open source library that contains more than 
500 optimized algorithms for image and video analysis. Since its introduction in 1999, it has 
been largely adopted as the primary development tool by the community of researchers and 
developers in computer vision. OpenCV was originally developed at Intel by a team led by 
Gary Bradski as an initiative to advance research in vision and promote the development of 
rich vision-based, CPU-intensive applications. After a series of beta releases, Version 1.0 was 
launched in 2006. A second major release occurred in 2009 with the launch of OpenCV 2 that 
proposed important changes, especially the new C++ interface that we use in this book. In 
2012, OpenCV reshaped itself as a nonprofit foundation (http://opencv.org/) that relies 
on crowdfunding for its future development.

This book is a new edition of OpenCV Computer Vision Application Programming Cookbook. 
All the programming recipes of the previous editions have been reviewed and updated. We 
also have added new content to provide readers with even better coverage of the essential 
functionalities of the library. This book covers many of the library's features and shows 
you how to use them to accomplish specific tasks. Our objective is not to provide detailed 
coverage of every option offered by the OpenCV functions and classes, but rather to give you 
the elements you need to build your applications from the ground up. In this book, we also 
explore fundamental concepts in image analysis, and we describe some of the important 
algorithms in computer vision.

This book is an opportunity for you to get introduced to the world of image and video analysis. 
However, this is just the beginning. The good news is that OpenCV continues to evolve and 
expand. Just consult the OpenCV online documentation at http://opencv.org/ to  
stay updated on what the library can do for you. You can also visit the author's website  
at www.laganiere.name for updated information about this Cookbook.
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What this book covers
Chapter 1, Playing with Images, introduces the OpenCV library and shows you how to build 
simple applications that can read and display images. It also introduces the basic OpenCV 
data structures.

Chapter 2, Manipulating Pixels, explains how an image can be read. It describes different 
methods for scanning an image in order to perform an operation on each of its pixels.

Chapter 3, Processing Color Images with Classes, consists of recipes that present various 
object-oriented design patterns that can help you build better computer vision applications.  
It also discusses the concept of colors in images.

Chapter 4, Counting the Pixels with Histograms, shows you how to compute image histograms 
and how they can be used to modify an image. Different applications based on histograms are 
presented, and they achieve image segmentation, object detection, and image retrieval.

Chapter 5, Transforming Images with Morphological Operations, explores the concept of 
mathematical morphology. It presents different operators and informs you how they can be 
used to detect edges, corners, and segments in images.

Chapter 6, Filtering the Images, teaches you the principle of frequency analysis and image 
filtering. It shows how low-pass and high-pass filters can be applied to images and presents 
the concept of derivative operators.

Chapter 7, Extracting Lines, Contours, and Components, focuses on the detection of 
geometric image features. It explains how to extract contours, lines, and connected 
components in an image.

Chapter 8, Detecting Interest Points, describes various feature-point detectors in images. 

Chapter 9, Describing and Matching Interest Points, explains how descriptors of interest 
points can be computed and used to match points between images.

Chapter 10, Estimating Projective Relations in Images, explores the projective relations 
that exist between two images of the same scene. It also describes the process of camera 
calibration and revisits the problem of matching feature points.

Chapter 11, Processing Video Sequences, provides you with a framework to read and  
write a video sequence and process its frames. It also shows you how it is possible to  
track feature points from frame to frame and how to extract the foreground objects  
moving in front of a camera.
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What you need for this book
This Cookbook is based on the C++ API of the OpenCV library. Therefore, it is assumed that 
you have some experience with the C++ language. In order to run the examples presented 
in the recipes and experiment with them, you need a good C++ development environment. 
Microsoft Visual Studio and Qt are two popular choices.

Who this book is for
This Cookbook is appropriate for novice C++ programmers who want to learn how to use the 
OpenCV library to build computer vision applications. It is also suitable for professional software 
developers who wish to be introduced to the concepts of computer vision programming. It can 
be used as a companion book for university-level computer vision courses. It is an excellent 
reference for graduate students and researchers of image processing and computer vision.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds  
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, folder names, filenames, file extensions, pathnames, dummy URLs, and user 
input are shown as follows: "Very conveniently, this check is encapsulated inside the create 
method of cv::Mat."

A block of code is set as follows:

  // use image with a Mat_ template
  cv::Mat_<uchar> im2(image);
   im2(50,100)= 0; // access to row 50 and column 100

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to  
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,  
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help  
you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from  
your account at http://www.packtpub.com. If you purchased this book elsewhere,  
you can visit http://www.packtpub.com/support and register to have the files  
e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you would report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on 
the errata submission form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded on our website, or 
added to any list of existing errata, under the Errata section of that title. Any existing errata can 
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.
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Playing with Images

In this chapter, we will get you started with the OpenCV library. You will learn how to perform 
the following tasks:

ff Installing the OpenCV library

ff Loading, displaying, and saving images

ff Exploring the cv::Mat data structure

ff Defining regions of interest

Introduction
This chapter will teach you the basic elements of OpenCV and will show you how to 
accomplish the most fundamental image processing tasks: reading, displaying, and saving 
images. However, before you can start with OpenCV, you need to install the library. This is a 
simple process that is explained in the first recipe of this chapter.

All your computer vision applications will involve the processing of images. This is why 
the most fundamental tool that OpenCV offers you is a data structure to handle images 
and matrices. It is a powerful data structure, with many useful attributes and methods. 
It also incorporates an advanced memory management model that greatly facilitates the 
development of applications. The last two recipes of this chapter will teach you how to use  
this important data structure of OpenCV.
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Installing the OpenCV library
OpenCV is an open source library for developing computer vision applications that run on 
Windows, Linux, Android, and Mac OS. It can be used in both academic and commercial 
applications under a BSD license that allows you to freely use, distribute, and adapt it.  
This recipe will show you how to install the library on your machine.

Getting ready
When you visit the OpenCV official website at http://opencv.org/, you will find the latest 
release of the library, the online documentation, and many other useful resources on OpenCV.

How to do it...
From the OpenCV website, go to the DOWNLOADS page that corresponds to the platform of 
your choice (Unix/Windows or Android). From there, you will be able to download the OpenCV 
package. You will then need to uncompress it, normally under a directory with a name that 
corresponds to the library version (for example, in Windows, you can save the uncompressed 
directory under C:\OpenCV2.4.9). Once this is done, you will find a collection of files 
and directories that constitute the library at the chosen location. Notably, you will find the 
sources directory here, which contains all the source files. (Yes, it is open source!) However, 
in order to complete the installation of the library and have it ready for use, you need to 
undertake an additional step: generating the binary files of the library for the environment of 
your choice. This is indeed the point where you have to make a decision on the target platform 
that you will use to create your OpenCV applications. Which operating system should you use? 
Windows or Linux? Which compiler should you use? Microsoft VS2013 or MinGW? 32-bit 
or 64-bit? The Integrated Development Environment (IDE) that you will use in your project 
development will also guide you to make these choices.

Note that if you are working under Windows with Visual Studio, the executable installation 
package will, most probably, not only install the library sources, but also install all of the 
precompiled binaries needed to build your applications. Check for the build directory;  
it should contain the x64 and x86 subdirectories (corresponding to the 64-bit and 32-bit 
versions). Within these subdirectories, you should find directories such as vc10, vc11, and 
vc12; these contain the binaries for the different versions of MS Visual Studio. In that case, 
you are ready to start using OpenCV. Therefore, you can skip the compilation step described  
in this recipe, unless you want a customized build with specific options.
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To complete the installation process and build the OpenCV binaries, you need to use the CMake 
tool, available at http://cmake.org. CMake is another open source software tool designed to 
control the compilation process of a software system using platform-independent configuration 
files. It generates the required makefiles or workspaces needed for compiling a software library 
in your environment. Therefore, you need to download and install CMake. You can then run it 
using the command line, but it is easier to use CMake with its GUI (cmake-gui). In the latter 
case, all you need to do is specify the folder containing the OpenCV library source and the one 
that will contain the binaries. You need to click on Configure in order to select the compiler of 
your choice and then click on Configure again.

www.allitebooks.com
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You are now ready to generate your project files by clicking on the Generate button. These 
files will allow you to compile the library. This is the last step of the installation process, which 
will make the library ready to be used under your development environment. For example, if 
you have selected Visual Studio, then all you need to do is to open the top-level solution file 
that CMake has created for you (most probably, the OpenCV.sln file). You then issue the 
Build Solution command in Visual Studio. To get both a Release and a Debug build, 
you will have to repeat the compilation process twice, one for each configuration. The bin 
directory that is created contains the dynamic library files that your executable will call at 
runtime. Make sure to set your system PATH environment variable from the control panel  
such that your operating system can find the dll files when you run your applications.

In Linux environments, you will use the generated makefiles by running your make utility 
command. To complete the installation of all the directories, you also have to run a Build 
INSTALL or sudo make INSTALL command.

However, before you build the libraries, make sure to check what the OpenCV installer has 
installed for you; the built library that you are looking for might already be there, which will 
save you the compilation step. If you wish to use Qt as your IDE, the There's more... section  
of this recipe describes an alternative way to compile the OpenCV project.
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How it works...
Since Version 2.2, the OpenCV library is divided into several modules. These modules are 
built-in library files located in the lib directory. Some of the commonly-used modules are  
as follows:

ff The opencv_core module that contains the core functionalities of the library,  
in particular, basic data structures and arithmetic functions

ff The opencv_imgproc module that contains the main image processing functions

ff The opencv_highgui module that contains the image and video reading and 
writing functions along with some user interface functions

ff The opencv_features2d module that contains the feature point detectors and 
descriptors and the feature point matching framework

ff The opencv_calib3d module that contains the camera calibration, two-view 
geometry estimation, and stereo functions

ff The opencv_video module that contains the motion estimation, feature tracking, 
and foreground extraction functions and classes

ff The opencv_objdetect module that contains the object detection functions  
such as the face and people detectors

The library also includes other utility modules that contain machine learning functions 
(opencv_ml), computational geometry algorithms (opencv_flann), contributed code 
(opencv_contrib), obsolete code (opencv_legacy), and gpu-accelerated code  
(opencv_gpu). You will also find other specialized libraries that implement higher-level 
functions, such as opencv_photo for computational photography and opencv_stitching 
for image-stitching algorithms. There is also a library module, called opencv_nonfree, which 
contains functions that have a potential limitation in use. When you compile your application, 
you will have to link your program with the libraries that contain the OpenCV functions you are 
using. Most likely, these will be the first three functions of the list given previously plus some 
of the others depending on the scope of your application.

All these modules have a header file associated with them (located in the include directory). 
A typical OpenCV C++ code will, therefore, start by including the required modules. For 
example (and this is the suggested declaration style):

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
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Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. 
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed 
directly to you.

You might see an OpenCV code starting with the following command:

#include "cv.h"

This is because it uses the old style, before the library was restructured into modules.  
Finally, note that OpenCV will be restructured in the future; so, if you download a more  
recent version than 2.4, you will probably not see the same module subdivision.

There's more...
The OpenCV website at http://opencv.org/ contains detailed instructions on how to 
install the library. It also contains a complete online documentation that includes several 
tutorials on the different components of the library.

Using Qt for OpenCV developments
Qt is a cross-platform IDE for C++ applications developed as an open source project.  
It is offered under the LPGL open source license as well as under a commercial (and paid) 
license for the development of proprietary projects. It is composed of two separate elements: 
a cross-platform IDE called Qt creator and a set of Qt class libraries and development tools. 
Using Qt to develop C++ applications has the following benefits:

ff It is an open source initiative developed by the Qt community, which gives you access 
to the source code of the different Qt components

ff It is a cross-platform IDE, meaning that you can develop applications that can run on 
different operating systems, such as Windows, Linux, Mac OS X, and so on

ff It includes a complete and cross-platform GUI library that follows an effective object-
oriented and event-driven model

ff Qt also includes several cross-platform libraries that help you to develop multimedia, 
graphics, databases, multithreading, web applications, and many other interesting 
building blocks useful for designing advanced applications

You can download Qt from http://qt-project.org/. When you install it, you will be 
offered the choice of different compilers. Under Windows, MinGW is an excellent alternative  
to the Visual Studio compilers.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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Compiling the OpenCV library with Qt is particularly easy because it can read CMake files. Once 
OpenCV and CMake have been installed, simply select Open File or Project... from the Qt menu 
and open the CMakeLists.txt file that you will find under the sources directory of OpenCV. 
This will create an OpenCV project that you build using the Build Project Qt command.

You might get a few warnings, but these are without consequences.

The OpenCV developer site
OpenCV is an open source project that welcomes user contributions. You can access the 
developer site at http://code.opencv.org. Among other things, you can access the 
currently developed version of OpenCV. The community uses Git as their version control 
system. You then have to use it to check out the latest version of OpenCV. Git is also a free 
and open source software system; it is probably the best tool you can use to manage your own 
source code. You can download it from http://git-scm.com/.

See also
ff My website (www.laganiere.name) also presents step-by-step instructions on  

how to install the latest versions of the OpenCV library

ff The There's more... section of the next recipe explains how to create an OpenCV 
project with Qt

www.laganiere.name
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Loading, displaying, and saving images
It is now time to run your first OpenCV application. Since OpenCV is about processing images, 
this task will show you how to perform the most fundamental operations needed in the 
development of imaging applications. These are loading an input image from a file, displaying  
an image on a window, applying a processing function, and storing an output image on a disk.

Getting ready
Using your favorite IDE (for example, MS Visual Studio or Qt), create a new console application 
with a main function that is ready to be filled.

How to do it...
The first thing to do is to include the header files, declaring the classes and functions you  
will use. Here, we simply want to display an image, so we need the core library that declares 
the image data structure and the highgui header file that contains all the graphical  
interface functions:

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

Our main function starts by declaring a variable that will hold the image. Under OpenCV 2, 
define an object of the cv::Mat class:

cv::Mat image; // create an empty image

This definition creates an image of the size 0 x 0. This can be confirmed by accessing the 
cv::Mat size attributes:

std::cout << "This image is " << image.rows << " x " 
          << image.cols << std::endl;

Next, a simple call to the reading function will read an image from the file, decode it, and 
allocate the memory:

image=  cv::imread("puppy.bmp"); // read an input image

You are now ready to use this image. However, you should first check whether the image has 
been correctly read (an error will occur if the file is not found, if the file is corrupted, or if it is 
not in a recognizable format). The validity of the image is tested using the following code:

if (image.empty()) {  // error handling
   // no image has been created…
   // possibly display an error message
   // and quit the application 
   …
}
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The empty method returns true if no image data has been allocated.

The first thing you might want to do with this image is to display it. You can do this using  
the functions of the highgui module. Start by declaring the window on which you want  
to display the images, and then specify the image to be shown on this special window:

// define the window (optional)
cv::namedWindow("Original Image");
// show the image 
cv::imshow("Original Image", image);

As you can see, the window is identified by a name. You can reuse this window to display 
another image later, or you can create multiple windows with different names. When you  
run this application, you will see an image window as follows:

Now, you would normally apply some processing to the image. OpenCV offers a wide selection 
of processing functions, and several of them are explored in this book. Let's start with a very 
simple one that flips an image horizontally. Several image transformations in OpenCV can be 
performed in-place, meaning that the transformation is applied directly on the input image 
(no new image is created). This is the case of the flipping method. However, we can always 
create another matrix to hold the output result, and that is what we will do:

cv::Mat result; // we create another empty image
cv::flip(image,result,1); // positive for horizontal
                          // 0 for vertical,                     
                          // negative for both
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The result is displayed on another window:

cv::namedWindow("Output Image"); // the output window
cv::imshow("Output Image", result);

Since it is a console window that will terminate when it reaches the end of the main function, 
we add an extra highgui function to wait for a user key before ending the program:

cv::waitKey(0); // 0 to indefinitely wait for a key pressed
                // specifying a positive value will wait for
                // the given amount of msec

You can then see that the output image is displayed on a distinct window, as shown in the 
following screenshot:

Finally, you will probably want to save the processed image on your disk. This is done using 
the following highgui function:

cv::imwrite("output.bmp", result); // save result

The file extension determines which codec will be used to save the image. Other popular 
supported image formats are JPG, TIFF, and PNG.
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How it works...
All classes and functions in the C++ API of OpenCV are defined within the cv namespace.  
You have two ways to access them. First, precede the main function's definition with the 
following declaration:

using namespace cv;

Alternatively, prefix all OpenCV class and function names with the namespace specification,  
that is, cv::, as we will do so in this book. The use of this prefix makes the OpenCV classes 
and functions easier to identify.

The highgui module contains a set of functions that allow you to easily visualize and 
interact with your images. When you load an image with the imread function, you also have 
the option to read it as a gray-level image. This is very advantageous since several computer 
vision algorithms require gray-level images. Converting an input color image on the fly as you 
read it will save you time and minimize your memory usage. This can be done as follows:

// read the input image as a gray-scale image
image=  cv::imread("puppy.bmp", CV_LOAD_IMAGE_GRAYSCALE);

This will produce an image made of unsigned bytes (unsigned char in C++) that OpenCV 
designates with the CV_8U defined constant. Alternatively, it is sometimes necessary to read 
an image as a 3-channel color image even if it has been saved as a gray-level image. This can 
be achieved by calling the imread function with a positive second argument:

// read the input image as a 3-channel color image
image=  cv::imread("puppy.bmp", CV_LOAD_IMAGE_COLOR);

This time, an image made of 3 bytes per pixel will be created, designated as CV_8UC3 
in OpenCV. Of course, if your input image has been saved as a gray-level image, all three 
channels will contain the same value. Finally, if you wish to read the image in the format in 
which it has been saved, then simply input a negative value as the second argument. The 
number of channels in an image can be checked by using the channels method:

std::cout << "This image has " 
          << image.channels() << " channel(s)";

Pay attention when you open an image with imread without specifying a full path (as we did 
here). In that case, the default directory will be used. When you run your application from 
the console, this directory is obviously the one of your executable file. However, if you run 
the application directly from your IDE, the default directory will most often be the one that 
contains your project file. Consequently, make sure that your input image file is located in the 
right directory.
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When you use imshow to display an image made up of integers (designated as CV_16U for 
16-bit unsigned integers, or as CV_32S for 32-bit signed integers), the pixel values of this 
image will be divided by 256 first, in an attempt to make it displayable with 256 gray shades. 
Similarly, an image made of floating points will be displayed by assuming a range of possible 
values between 0.0 (displayed as black) and 1.0 (displayed as white). Values outside this 
defined range are displayed in white (for values above 1.0) or black (for values below 1.0).

The highgui module is very useful to build quick prototypal applications. When you are ready 
to produce a finalized version of your application, you will probably want to use the GUI module 
offered by your IDE in order to build an application with a more professional look.

Here, our application uses both input and output images. As an exercise, you should rewrite 
this simple program such that it takes advantage of the function's in-place processing, that is, 
by not declaring the output image and writing it instead:

cv::flip(image,image,1); // in-place processing

There's more...
The highgui module contains a rich set of functions that help you to interact with your 
images. Using these, your applications can react to mouse or key events. You can also draw 
shapes and write text on images.

Clicking on images
You can program your mouse to perform specific operations when it is over one of the image 
windows you created. This is done by defining an appropriate callback function. A callback 
function is a function that you do not explicitly call but which is called by your application 
in response to specific events (here, the events that concern the mouse interacting with an 
image window). To be recognized by applications, callback functions need to have a specific 
signature and must be registered. In the case of the mouse event handler, the callback 
function must have the following signature:

void onMouse( int event, int x, int y, int flags, void* param);

The first parameter is an integer that is used to specify which type of mouse event has 
triggered the call to the callback function. The other two parameters are simply the pixel 
coordinates of the mouse location when the event occurred. The flags are used to determine 
which button was pressed when the mouse event was triggered. Finally, the last parameter  
is used to send an extra parameter to the function in the form of a pointer to any object.  
This callback function can be registered in the application through the following call:

cv::setMouseCallback("Original Image", onMouse, 
                     reinterpret_cast<void*>(&image));
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In this example, the onMouse function is associated with the image window called Original 
Image, and the address of the displayed image is passed as an extra parameter to the 
function. Now, if we define the onMouse callback function as shown in the following code, 
then each time the mouse is clicked, the value of the corresponding pixel will be displayed  
on the console (here, we assume that it is a gray-level image):

void onMouse( int event, int x, int y, int flags, void* param)  {

  cv::Mat *im= reinterpret_cast<cv::Mat*>(param);

  switch (event) {  // dispatch the event

    case CV_EVENT_LBUTTONDOWN: // left mouse button down event

      // display pixel value at (x,y)
      std::cout << "at (" << x << "," << y << ") value is: " 
        << static_cast<int>(
                  im->at<uchar>(cv::Point(x,y))) << std::endl;
      break;
  }
}

Note that in order to obtain the pixel value at (x,y), we used the at method of the cv::Mat 
object here; this has been discussed in Chapter 2, Manipulating Pixels. Other possible events 
that can be received by the mouse event callback function include CV_EVENT_MOUSEMOVE, 
CV_EVENT_LBUTTONUP, CV_EVENT_RBUTTONDOWN, and CV_EVENT_RBUTTONUP.

Drawing on images
OpenCV also offers a few functions to draw shapes and write text on images. The examples of 
basic shape-drawing functions are circle, ellipse, line, and rectangle. The following 
is an example of how to use the circle function:

cv::circle(image,             // destination image 
        cv::Point(155,110),   // center coordinate
        65,                   // radius  
        0,                    // color (here black)
        3);                   // thickness

The cv::Point structure is often used in OpenCV methods and functions to specify a pixel 
coordinate. Note that here we assume that the drawing is done on a gray-level image; this  
is why the color is specified with a single integer. In the next recipe, you will learn how to 
specify a color value in the case of color images that use the cv::Scalar structure. It is  
also possible to write text on an image. This can be done as follows:

www.allitebooks.com
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cv::putText(image,                  // destination image
        "This is a dog.",           // text
        cv::Point(40,200),          // text position
        cv::FONT_HERSHEY_PLAIN,     // font type
        2.0,                        // font scale
        255,                        // text color (here white)
        2);                         // text thickness

Calling these two functions on our test image will then result in the following screenshot:

Running the example with Qt
If you wish to use Qt to run your OpenCV applications, you will need to create project files. For 
the example of this recipe, here is how the project file (loadDisplaySave.pro) will look:

QT       += core
QT       -= gui

TARGET = loadDisplaySave
CONFIG   += console
CONFIG   -= app_bundle

TEMPLATE = app

SOURCES += loadDisplaySave.cpp
INCLUDEPATH += C:\OpenCV2.4.9\build\include
LIBS += -LC:\OpenCV2.4.9\build\x86\MinGWqt32\lib \
-lopencv_core249 \
-lopencv_imgproc249 \
-lopencv_highgui249
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This file shows you where to find the include and library files. It also lists the library 
modules that are used by the example. Make sure to use the library binaries compatible with 
the compiler that Qt is using. Note that if you download the source code of the examples of 
this book, you will find the CMakeLists files that you can open with Qt (or CMake) in order  
to create the associated projects.

See also
ff The cv::Mat class is the data structure that is used to hold your images  

(and obviously, other matrix data). This data structure is at the core of all  
OpenCV classes and functions; the next recipe offers a detailed explanation  
of this data structure.

ff You can download the source code of the examples of this book from  
https://github.com/laganiere/.

Exploring the cv::Mat data structure
In the previous recipe, you were introduced to the cv::Mat data structure. As mentioned, this 
is a key element of the library. It is used to manipulate images and matrices (in fact, an image 
is a matrix from a computational and mathematical point of view). Since you will be using this 
data structure extensively in your application developments, it is imperative that you become 
familiar with it. Notably, you will learn in this recipe that this data structure incorporates an 
elegant memory management mechanism, allowing efficient usage.

How to do it...
Let's write the following test program that will allow us to test the different properties of the 
cv::Mat data structure:

#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

// test function that creates an image
cv::Mat function() {
   // create image
   cv::Mat ima(500,500,CV_8U,50);
   // return it
   return ima;
}

int main() {

https://github.com/laganiere/
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  // define image windows
  cv::namedWindow("Image 1"); 
  cv::namedWindow("Image 2"); 
  cv::namedWindow("Image 3"); 
  cv::namedWindow("Image 4"); 
  cv::namedWindow("Image 5"); 
  cv::namedWindow("Image"); 

  // create a new image made of 240 rows and 320 columns
  cv::Mat image1(240,320,CV_8U,100);

  cv::imshow("Image", image1); // show the image
  cv::waitKey(0); // wait for a key pressed

  // re-allocate a new image
  image1.create(200,200,CV_8U);
  image1= 200;

  cv::imshow("Image", image1); // show the image
  cv::waitKey(0); // wait for a key pressed

  // create a red color image
  // channel order is BGR
  cv::Mat image2(240,320,CV_8UC3,cv::Scalar(0,0,255));

  // or:
  // cv::Mat image2(cv::Size(320,240),CV_8UC3);
  // image2= cv::Scalar(0,0,255);

  cv::imshow("Image", image2); // show the image
  cv::waitKey(0); // wait for a key pressed

  // read an image
  cv::Mat image3=  cv::imread("puppy.bmp"); 

  // all these images point to the same data block
  cv::Mat image4(image3);
  image1= image3;

  // these images are new copies of the source image
  image3.copyTo(image2);
  cv::Mat image5= image3.clone();
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  // transform the image for testing
  cv::flip(image3,image3,1); 

  // check which images have been affected by the processing
  cv::imshow("Image 3", image3); 
  cv::imshow("Image 1", image1); 
  cv::imshow("Image 2", image2); 
  cv::imshow("Image 4", image4); 
  cv::imshow("Image 5", image5); 
  cv::waitKey(0); // wait for a key pressed

  // get a gray-level image from a function
  cv::Mat gray= function();

  cv::imshow("Image", gray); // show the image
  cv::waitKey(0); // wait for a key pressed

  // read the image in gray scale
  image1= cv::imread("puppy.bmp", CV_LOAD_IMAGE_GRAYSCALE); 
  image1.convertTo(image2,CV_32F,1/255.0,0.0);

  cv::imshow("Image", image2); // show the image
  cv::waitKey(0); // wait for a key pressed

  return 0;
}

Run this program and take a look at the following images produced:
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How it works...
The cv::Mat data structure is essentially made up of two parts: a header and a data block. 
The header contains all the information associated with the matrix (size, number of channels, 
data type, and so on). The previous recipe showed you how to access some of the attributes 
of this structure contained in its header (for example, by using cols, rows, or channels). 
The data block holds all the pixel values of an image. The header contains a pointer variable 
that points to this data block; it is the data attribute. An important property of the cv::Mat 
data structure is the fact that the memory block is only copied when explicitly requested for. 
Indeed, most operations will simply copy the cv::Mat header such that multiple objects will 
point to the same data block at the same time. This memory management model makes your 
applications more efficient while avoiding memory leaks, but its consequences have to be 
understood. The examples of this recipe illustrate this fact.

By default, the cv::Mat objects have a zero size when they are created, but you can also 
specify an initial size as follows:

// create a new image made of 240 rows and 320 columns
cv::Mat image1(240,320,CV_8U,100);

In this case, you also need to specify the type of each matrix element; CV_8U here, which 
corresponds to 1-byte pixel images. The letter U means it is unsigned. You can also declare 
signed numbers by using the letter S. For a color image, you would specify three channels 
(CV_8UC3). You can also declare integers (signed or unsigned) of size 16 and 32 (for example, 
CV_16SC3). You also have access to 32-bit and 64-bit floating-point numbers (for example, 
CV_32F).

Each element of an image (or a matrix) can be composed of more than one value (for 
example, the three channels of a color image); therefore, OpenCV has introduced a simple 
data structure that is used when pixel values are passed to functions. It is the cv::Scalar 
structure, which is generally used to hold one value or three values. For example, to create a 
color image initialized with red pixels, you will write the following code:

// create a red color image
// channel order is BGR
cv::Mat image2(240,320,CV_8UC3,cv::Scalar(0,0,255));

Similarly, the initialization of the gray-level image could also have been done using this 
structure by writing cv::Scalar(100).

The image size also often needs to be passed to functions. We have already mentioned that  
the cols and rows attributes can be used to get the dimensions of a cv::Mat instance. The 
size information can also be provided through the cv::Size structure that simply contains  
the height and width of the matrix. The size() method allows you to obtain the current matrix 
size. This is the format that is used in many methods where a matrix size must be specified.
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For example, an image could be created as follows:

// create a non-initialized color image 
cv::Mat image2(cv::Size(320,240),CV_8UC3);

The data block of an image can always be allocated or re-allocated using the create method. 
When an image has been previously allocated, its old content is de-allocated first. For reasons 
of efficiency, if the new proposed size and type matches the already existing size and type, 
then no new memory allocation is performed:

// re-allocate a new image
// (only if size or type are different)
image1.create(200,200,CV_8U);

When no more references point to a given cv::Mat object, the allocated memory is 
automatically released. This is very convenient because it avoids the common memory leak 
problems often associated with dynamic memory allocation in C++. This is a key mechanism 
in OpenCV 2 that is accomplished by having the cv::Mat class implement reference counting 
and shallow copy. Therefore, when an image is assigned to another one, the image data (that 
is, the pixels) is not copied; both the images will point to the same memory block. This also 
applies to images passed by value or returned by value. A reference count is kept such that 
the memory will be released only when all the references to the image will be destructed or 
assigned to another image:

// all these images point to the same data block
cv::Mat image4(image3);
image1= image3;

Any transformation applied to one of the preceding images will also affect the other images. 
If you wish to create a deep copy of the content of an image, use the copyTo method. In that 
case, the create method is called on the destination image. Another method that produces  
a copy of an image is the clone method, which creates a new identical image as follows:

// these images are new copies of the source image
image3.copyTo(image2);
cv::Mat image5= image3.clone();

If you need to copy an image into another image that does not necessarily have the same  
data type, you have to use the convertTo method:

// convert the image into a floating point image [0,1]
image1.convertTo(image2,CV_32F,1/255.0,0.0);

In this example, the source image is copied into a floating-point image. The method includes 
two optional parameters: a scaling factor and an offset. Note that both the images must, 
however, have the same number of channels.
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The allocation model for the cv::Mat objects also allows you to safely write functions  
(or class methods) that return an image:

cv::Mat function() {

   // create image
   cv::Mat ima(240,320,CV_8U,cv::Scalar(100));
   // return it
   return ima;
}

We can also call this function from our main function as follows:

   // get a gray-level image
   cv::Mat gray= function();

If we do this, then the gray variable will now hold the image created by the function without 
extra memory allocation. Indeed, as we explained, only a shallow copy of the image will be 
transferred from the returned cv::Mat instance to the gray image. When the ima local 
variable goes out of scope, this variable is de-allocated, but since the associated reference 
counter indicates that its internal image data is being referred to by another instance  
(that is, the gray variable), its memory block is not released.

It's worth noting that in the case of classes, you should be careful and not return image class 
attributes. Here is an example of an error-prone implementation:

class Test {
   // image attribute
   cv::Mat ima;
  public:
     // constructor creating a gray-level image
     Test() : ima(240,320,CV_8U,cv::Scalar(100)) {}

     // method return a class attribute, not a good idea...
     cv::Mat method() { return ima; }
};

Here, if a function calls the method of this class, it obtains a shallow copy of the image 
attributes. If later this copy is modified, the class attribute will also be surreptitiously 
modified, which can affect the subsequent behavior of the class (and vice versa).  
To avoid these kinds of errors, you should instead return a clone of the attribute.

There's more...
When you are manipulating the cv::Mat class, you will discover that OpenCV also includes 
several other related classes. It will be important for you to become familiar with them.
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The input and output arrays
If you look at the OpenCV documentation, you will see that many methods and functions 
accept parameters of the cv::InputArray type as the input. This type is a simple proxy 
class introduced to generalize the concept of arrays in OpenCV, and thus avoid the duplication 
of several versions of the same method or function with different input parameter types. 
It basically means that you can supply a cv::Mat object or other compatible types as an 
argument. This class is just an interface, so you should never declare it explicitly in your code. 
It is interesting to know that cv::InputArray can also be constructed from the popular 
std::vector class. This means that such objects can be used as the input to OpenCV 
methods and functions (as long as it makes sense to do so). Other compatible types are the 
cv::Scalar and the cv::Vec; this later structure will be presented in the next chapter. 
There is also a cv::OutputArray proxy class that is used to designate the arrays returned 
by some methods or functions.

The old IplImage structure
With Version 2 of OpenCV, a new C++ interface has been introduced. Previously, C-like 
functions and structures were used (and can still be used). In particular, images were 
manipulated using the IplImage structure. This structure was inherited from the IPL library 
(that is, the Intel Image Processing library), now integrated with the IPP library (the Intel 
Integrated Performance Primitive library). If you use the code and libraries that have been 
created with the old C interface, you might need to manipulate those IplImage structures. 
Fortunately, there is a convenient way to convert an IplImage structure into a cv::Mat 
object, which is shown in the following code:

IplImage* iplImage = cvLoadImage("puppy.bmp");
cv::Mat image(iplImage,false);

The cvLoadImage function is the C-interface function to load images. The second parameter 
in the constructor of the cv::Mat object indicates that the data will not be copied (set this to 
true if you want a new copy; false is the default value, so it could have been omitted), that 
is, both IplImage and image will share the same image data. Here, you need to be careful 
to not create dangling pointers. For this reason, it is safer to encapsulate the IplImage 
pointer in the reference-counting pointer class provided by OpenCV 2:

cv::Ptr<IplImage> iplImage = cvLoadImage("puppy.bmp");

Otherwise, if you need to de-allocate the memory pointed out by your IplImage structure, 
you need to do it explicitly:

cvReleaseImage(&iplImage);

Remember that you should avoid using this deprecated data structure. Instead, always use  
the cv::Mat data structure.
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See also
ff The complete OpenCV documentation can be found at http://docs.opencv.org/

ff Chapter 2, Manipulating Pixels, will show you how to efficiently access and modify  
the pixel values of an image represented by the cv::Mat class

ff The next recipe, which will explain how to define a region of interest inside an image

Defining regions of interest
Sometimes, a processing function needs to be applied only to a portion of an image. OpenCV 
incorporates an elegant and simple mechanism to define a subregion in an image and 
manipulate it as a regular image. This recipe will teach you how to define a region of interest 
inside an image.

Getting ready
Suppose we want to copy a small image onto a larger one. For example, let's say we want to 
insert the following small logo in our test image:

To do this, a Region Of Interest (ROI) can be defined over which the copy operation can be 
applied. As we will see, the position of the ROI will determine where the logo will be inserted  
in the image.

How to do it...
The first step consists of defining the ROI. Once defined, the ROI can be manipulated as a 
regular cv::Mat instance. The key is that the ROI is indeed a cv::Mat object that points to 
the same data buffer as its parent image and has a header that specifies the coordinates of 
the ROI. Inserting the logo would then be accomplished as follows:

  // define image ROI at image bottom-right
  cv::Mat imageROI(image, 
              cv::Rect(image.cols-logo.cols, //ROI coordinates
                       image.rows-logo.rows,
                       logo.cols,logo.rows));// ROI size

  // insert logo
  logo.copyTo(imageROI);
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Here, image is the destination image, and logo is the logo image (of a smaller size).  
The following image is then obtained by executing the previous code:

How it works...
One way to define an ROI is to use a cv::Rect instance. As the name indicates, it describes 
a rectangular region by specifying the position of the upper-left corner (the first two 
parameters of the constructor) and the size of the rectangle (the width and height are given 
in the last two parameters). In our example, we used the size of the image and the size of the 
logo in order to determine the position where the logo would cover the bottom-right corner of 
the image. Obviously, the ROI should always be completely inside the parent image.

The ROI can also be described using row and column ranges. A range is a continuous 
sequence from a start index to an end index (excluding both). The cv::Range structure is 
used to represent this concept. Therefore, an ROI can be defined from two ranges; in our 
example, the ROI could have been equivalently defined as follows:

imageROI= image(cv::Range(image.rows-logo.rows,image.rows), 
                cv::Range(image.cols-logo.cols,image.cols));

In this case, the operator() function of cv ::Mat returns another cv::Mat instance that 
can then be used in subsequent calls. Any transformation of the ROI will affect the original 
image in the corresponding area because the image and the ROI share the same image data. 
Since the definition of an ROI does not include the copying of data, it is executed in a constant 
amount of time, no matter the size of the ROI.

If you want to define an ROI made of some lines of an image, the following call can be used:

cv::Mat imageROI= image.rowRange(start,end);
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Similarly, for an ROI made of some image columns, the following can be used:

cv::Mat imageROI= image.colRange(start,end);

There's more...
The OpenCV methods and functions include many optional parameters that are not discussed 
in the recipes of this book. When you wish to use a function for the first time, you should 
always take the time to look at the documentation to learn more about the possible options 
that this function offers. One very common option is the possibility to define image masks.

Using image masks
Some OpenCV operations allow you to define a mask that will limit the applicability of a given 
function or method, which is normally supposed to operate on all the image pixels. A mask 
is an 8-bit image that should be nonzero at all locations where you want an operation to be 
applied. At the pixel locations that correspond to the zero values of the mask, the image is 
untouched. For example, the copyTo method can be called with a mask. We can use it here 
to copy only the white portion of the logo shown previously, as follows:

// define image ROI at image bottom-right
imageROI= image(cv::Rect(image.cols-logo.cols,
                         image.rows-logo.rows,
                       logo.cols,logo.rows));
// use the logo as a mask (must be gray-level)
cv::Mat mask(logo);

// insert by copying only at locations of non-zero mask
logo.copyTo(imageROI,mask);

The following image is obtained by executing the previous code:
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The background of our logo was black (therefore, it had the value 0); therefore, it was easy 
to use it as both the copied image and the mask. Of course, you can define the mask of your 
choice in your application; most OpenCV pixel-based operations give you the opportunity to 
use masks.

See also
ff The row and col methods that will be used in the Scanning an image with neighbor 

access recipe of Chapter 2, Manipulating Pixels. These are a special case of the 
rowRange and colRange methods in which the start and end indexes are equal  
in order to define a single-line or single-column ROI.





2
Manipulating Pixels

In this chapter, we will cover the following recipes:

ff Accessing pixel values
ff Scanning an image with pointers
ff Scanning an image with iterators
ff Writing efficient image-scanning loops
ff Scanning an image with neighbor access
ff Performing simple image arithmetic
ff Remapping an image

Introduction
In order to build computer vision applications, you need to be able to access the image content 
and eventually modify or create images. This chapter will teach you how to manipulate the 
picture elements (also known as pixels). You will learn how to scan an image and process 
each of its pixels. You will also learn how to do this efficiently, since even images of modest 
dimensions can contain hundreds of thousands of pixels.

Fundamentally, an image is a matrix of numerical values. This is why, as we learned in Chapter 1,  
Playing with Images, OpenCV 2 manipulates them using the cv::Mat data structure. Each 
element of the matrix represents one pixel. For a gray-level image (a black-and-white image), 
pixels are unsigned 8-bit values where 0 corresponds to black and 255 corresponds to white. 
In the case of color images, three primary color values are required in order to reproduce 
the different visible colors. This is a consequence of the fact that our human visual system is 
trichromatic; three types of cone cells on our retinae convey the color information to our brain. 
This means that for a color image, three values must be associated to each pixel. In photography 
and digital imaging, the commonly used primary color channels are red, green, and blue.  
A matrix element is, therefore, made of a triplet of 8-bit values in this case.
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Note that even if 8-bit channels are generally sufficient, there are specialized applications 
where 16-bit channels are required (medical imaging, for example).

As we saw in the previous chapter, OpenCV also allows you to create matrices (or images) 
with pixel values of other types, for example, integer (CV_32U or CV_32S) and floating point 
(CV_32F) numbers. These are very useful to store, for example, intermediate values in some 
image-processing tasks. Most operations can be applied on matrices of any type; others 
require a specific type or work only with a given number of channels. Therefore, a good 
understanding of a function's or method's preconditions is essential in order to avoid  
common programming errors.

Throughout this chapter, we use the following color image as the input (refer to the book's 
graphics PDF to view this image in color):

Accessing pixel values
In order to access each individual element of a matrix, you just need to specify its row and 
column numbers. The corresponding element, which can be a single numerical value or a 
vector of values in the case of a multi-channel image, will be returned.
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Getting ready
To illustrate the direct access to pixel values, we will create a simple function that adds salt-
and-pepper noise to an image. As the name suggests, salt-and-pepper noise is a particular 
type of noise in which some randomly selected pixels are replaced by a white or a black pixel. 
This type of noise can occur in faulty communications when the value of some pixels is lost 
during the transmission. In our case, we will simply randomly select a few pixels and assign 
them a white color.

How to do it...
We create a function that receives an input image. This is the image that will be modified by 
our function. The second parameter is the number of pixels on which we want to overwrite 
white values:

void salt(cv::Mat image, int n) {

  int i,j;
  for (int k=0; k<n; k++) {

    // rand() is the random number generator
    i= std::rand()%image.cols;
    j= std::rand()%image.rows;

    if (image.type() == CV_8UC1) { // gray-level image

      image.at<uchar>(j,i)= 255; 

    } else if (image.type() == CV_8UC3) { // color image

      image.at<cv::Vec3b>(j,i)[0]= 255; 
      image.at<cv::Vec3b>(j,i)[1]= 255; 
      image.at<cv::Vec3b>(j,i)[2]= 255; 
    }
  }
}

The preceding function is made of a single loop that assigns n times the value 255  
to randomly selected pixels. Here, the pixel column i and row j are selected using a  
random number generator. Note that using the type method, we distinguish the two  
cases of gray-level and color images. In the case of a gray-level image, the number 255  
is assigned to the single 8-bit value. For a color image, you need to assign 255 to the  
three primary color channels in order to obtain a white pixel.
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You can call this function by passing it an image you have previously opened. Refer to the 
following code:

   // open the image
   cv::Mat image= cv::imread("boldt.jpg");

   // call function to add noise
   salt(image,3000);

   // display image
   cv::namedWindow("Image");
   cv::imshow("Image",image);

The resulting image will look as follows:

How it works...
The cv::Mat class includes several methods to access the different attributes of an image. 
The public member variables, cols and rows, give you the number of columns and rows in 
the image. For element access, cv::Mat has the at (int y, int x) method. However, the 
type returned by a method must be known at compile time, and since cv::Mat can hold 
elements of any type, the programmer needs to specify the return type that is expected.  
This is why the at method has been implemented as a template method. So, when you  
call it, you must specify the image element type as follows:

         image.at<uchar>(j,i)= 255;
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It is important to note that it is the programmer's responsibility to make sure that the type 
specified matches the type contained in the matrix. The at method does not perform any  
type conversion.

In color images, each pixel is associated with three components: the red, green, and blue 
channels. Therefore, a cv::Mat class that contains a color image will return a vector of three 
8-bit values. OpenCV has defined a type for such short vectors, and it is called cv::Vec3b. 
This is a vector of three unsigned characters. This explains why the element access to the 
pixels of a color pixel is written as follows:

         image.at<cv::Vec3b>(j,i)[channel]= value; 

The channel index designates one of the three color channels. OpenCV stores the channel 
values in the order blue, green, and red (blue is, therefore, channel 0).

Similar vector types also exist for 2-element and 4-element vectors (cv::Vec2b and 
cv::Vec4b) as well as for other element types. For example, for a 2-element float vector, the 
last letter of the type name would be replaced by an f, that is, cv::Vec2f. In the case of a short 
integer, the last letter is replaced with s, with i for an integer, and with d for a double precision 
floating point vector. All of these types are defined using the cv::Vec<T,N> template class, 
where T is the type and N is the number of vector elements.

As a last note, you might have been surprised by the fact that our image-modifying function 
uses a pass-by-value image parameter. This works because when images are copied, they still 
share the same image data. So, you do not have to necessarily transmit images by references 
when you want to modify their content. Incidentally, pass-by-value parameters often make 
code optimization easier for the compiler.

There's more...
The cv::Mat class has been made generic by defining it using C++ templates.

The cv::Mat_ template class
Using the at method of the cv::Mat class can sometimes be cumbersome because 
the returned type must be specified as a template argument in each call. In cases where 
the matrix type is known, it is possible to use the cv::Mat_ class, which is a template 
subclass of cv::Mat. This class defines a few extra methods but no new data attributes so 
that pointers or references to one class can be directly converted to another class. Among 
the extra methods, there is operator(), which allows direct access to matrix elements. 
Therefore, if image is a cv::Mat variable that corresponds to a uchar matrix, then you  
can write the following code:

  // use image with a Mat_ template
  cv::Mat_<uchar> im2(image);
  im2(50,100)= 0; // access to row 50 and column 100
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Since the type of the cv::Mat_ elements is declared when the variable is created, the 
operator() method knows at compile time which type is to be returned. Other than the  
fact that it is shorter to write, using the operator() method provides exactly the same  
result as the at method.

See also
ff The There's more… section of the Scanning an image with pointers recipe explains 

how to create a function with input and output parameters

ff The Writing efficient image-scanning loops recipe proposes a discussion on the 
efficiency of this method

Scanning an image with pointers
In most image-processing tasks, you need to scan all pixels of the image in order to perform a 
computation. Considering the large number of pixels that will need to be visited, it is essential 
that you perform this task in an efficient way. This recipe, and the next one, will show you 
different ways of implementing efficient scanning loops. This recipe uses the pointer arithmetic.

Getting ready
We will illustrate the image-scanning process by accomplishing a simple task: reducing the 
number of colors in an image.

Color images are composed of 3-channel pixels. Each of these channels corresponds to the 
intensity value of one of the three primary colors, red, green, and blue. Since each of these 
values is an 8-bit unsigned character, the total number of colors is 256x256x256, which 
is more than 16 million colors. Consequently, to reduce the complexity of an analysis, it is 
sometimes useful to reduce the number of colors in an image. One way to achieve this goal is 
to simply subdivide the RGB space into cubes of equal sizes. For example, if you reduce the 
number of colors in each dimension by 8, then you would obtain a total of 32x32x32 colors. 
Each color in the original image is then assigned a new color value in the color-reduced image 
that corresponds to the value in the center of the cube to which it belongs.

Therefore, the basic color reduction algorithm is simple. If N is the reduction factor, then divide 
the value by N (the integer division, therefore, the reminder is lost) for each pixel in the image 
and for each channel of this pixel. Then, multiply the result by N; this will give you the multiple 
of N just below the input pixel value. Just add N/2 and you obtain the central position of the 
interval between two adjacent multiples of N. If you repeat this process for each 8-bit channel 
value, then you will obtain a total of 256/N x 256/N x 256/N possible color values.
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How to do it...
The signature of our color reduction function will be as follows:

void colorReduce(cv::Mat image, int div=64);

The user provides an image and the per-channel reduction factor. Here, the processing  
is done in-place, that is, the pixel values of the input image are modified by the function.  
See the There's more… section of this recipe for a more general function signature with  
input and output arguments.

The processing is simply done by creating a double loop that goes over all pixel values  
as follows:

void colorReduce(cv::Mat image, int div=64) {

     int nl= image.rows; // number of lines
     // total number of elements per line
     int nc= image.cols * image.channels(); 
              
     for (int j=0; j<nl; j++) {

        // get the address of row j
        uchar* data= image.ptr<uchar>(j);

        for (int i=0; i<nc; i++) {

            // process each pixel ---------------------

            data[i]=    data[i]/div*div + div/2;

            // end of pixel processing ----------------

        } // end of line
     }
}

This function can be tested using the following code snippet:

   // read the image
   image= cv::imread("boldt.jpg");
   // process the image
   colorReduce(image,64);
   // display the image
   cv::namedWindow("Image");
   cv::imshow("Image",image);
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This will give you, for example, the following image (refer to the book's graphics PDF to view 
this image in color):

How it works...
In a color image, the first three bytes of the image data buffer give values of the upper-left 
pixel to the 3-color channel, the next three bytes are the values of the second pixel of the first 
row, and so on (remember that OpenCV uses, by default, the BGR channel order). An image 
of width W and height H would then require a memory block of WxHx3 uchars. However, for 
efficiency reasons, the length of a row can be padded with a few extra pixels. This is because 
some multimedia processor chips (for example, the Intel MMX architecture) can process 
images more efficiently when their rows are multiples of 4 or 8. Obviously, these extra pixels 
are not displayed or saved; their exact values are ignored. OpenCV designates the length of 
a padded row as the effective width. Obviously, if the image has not been padded with extra 
pixels, the effective width will be equal to the real image width. We have already learned that 
the cols and rows attributes give you the image's width and height; similarly, the step 
data attribute gives you the effective width in number of bytes. Even if your image is of a type 
other than uchar, the step data will still give you the number of bytes in a row. The size of 
a pixel element is given by the elemSize method (for example, for a 3-channel short integer 
matrix (CV_16SC3), elemSize will return 6). Recall that the number of channels in the 
image is given by the nchannels method (which will be 1 for a gray-level image and 3 for a 
color image). Finally, the total method returns the total number of pixels (that is, the matrix 
entries) in the matrix.

The number of pixel values per row is then given by the following code:

     int nc= image.cols * image.channels();
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To simplify the computation of the pointer arithmetic, the cv::Mat class offers a method 
that directly gives you the address of an image row. This is the ptr method. It is a template 
method that returns the address of row number j:

     uchar* data= image.ptr<uchar>(j);

Note that in the processing statement, we could have equivalently used the pointer arithmetic 
to move from column to column. So, we could have written the following code:

     *data= *data/div*div + div2; data++;

There's more...
The color reduction function presented in this recipe provides just one way of accomplishing 
this task. You could also use other color reduction formulas. A more general version of the 
function would also allow the specification of distinct input and output images. The image 
scanning can also be made more efficient by taking into account the continuity of the image 
data. Finally, it is also possible to use regular low-level pointer arithmetic to scan the image 
buffer. All of these elements are discussed in the following subsections.

Other color reduction formulas
In our example, color reduction is achieved by taking advantage of an integer division that 
floors the division result to the nearest lower integer as follows:

     data[i]= (data[i]/div)*div + div/2;

The reduced color could have also been computed using the modulo operator that brings  
us to the nearest multiple of div (the per-channel reduction factor) as follows:

     data[i]= data[i] – data[i]%div + div/2;

Another option would be to use bitwise operators. Indeed, if we restrict the reduction factor 
to a power of 2, that is, div=pow(2,n), then masking the first n bits of the pixel value would 
give us the nearest lower multiple of div. This mask would be computed by a simple bit shift 
as follows:

     // mask used to round the pixel value
     uchar mask= 0xFF<<n; // e.g. for div=16, mask= 0xF0

The color reduction would be given by the following code:

      *data &= mask;      // masking
      *data++ += div>>1;  // add div/2

In general, bitwise operations might lead to very efficient code, so they could constitute a 
powerful alternative when efficiency is a requirement.
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Having input and output arguments
In our color reduction example, the transformation is directly applied to the input image, 
which is called an in-place transformation. This way, no extra image is required to hold the 
output result, which could save on the memory usage when it is a concern. However, in some 
applications, the user might want to keep the original image intact. The user would then be 
forced to create a copy of the image before calling the function. Note that the easiest way to 
create an identical deep copy of an image is to call the clone method; for example, take a 
look at the following code:

   // read the image
   image= cv::imread("boldt.jpg");
   // clone the image
   cv::Mat imageClone= image.clone();
   // process the clone
   // orginal image remains untouched
   colorReduce(imageClone);
   // display the image result
   cv::namedWindow("Image Result");
   cv::imshow("Image Result",imageClone);

This extra overload can be avoided by defining a function that gives the user the option to either 
use or not use in-place processing. The signature of the method would then be as follows:

void colorReduce(const cv::Mat &image, // input image 
                 cv::Mat &result,      // output image
                 int div=64);

Note that the input image is now passed as a const reference, which means that this image 
will not be modified by the function. The output image is passed as a reference such that the 
calling function will see the output argument modified by this call. When in-place processing  
is preferred, the same image is specified as the input and output:

colorReduce(image,image);

If not, another cv::Mat instance can be provided; for example, take a look at the following code:

cv::Mat result;   
colorReduce(image,result);

The key here is to first verify whether the output image has an allocated data buffer with  
a size and pixel type that matches the one of the input image. Very conveniently, this check  
is encapsulated inside the create method of cv::Mat. This is the method that is to be  
used when a matrix must be reallocated with a new size and type. If, by chance, the matrix 
already has the size and type specified, then no operation is performed and the method 
simply returns without touching the instance.
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Therefore, our function should simply start with a call to create that builds a matrix  
(if necessary) of the same size and type as the input image:

     result.create(image.rows,image.cols,image.type());

The allocated memory block has a size of total()*elemSize(). The looping is then  
done with two pointers:

   for (int j=0; j<nl; j++) {

        // get the addresses of input and output row j
        const uchar* data_in= image.ptr<uchar>(j);
        uchar* data_out= result.ptr<uchar>(j);

        for (int i=0; i<nc*nchannels; i++) {

            // process each pixel ---------------------

            data_out[i]= data_in[i]/div*div + div/2;

            // end of pixel processing ----------------

        } // end of line
  }

In the case where the same image is provided as the input and output, this function becomes 
completely equivalent to the first version presented in this recipe. If another image is provided 
as the output, the function will work correctly irrespective of whether the image has or has not 
been allocated prior to the function call.

Efficient scanning of continuous images
We previously explained that, for efficiency reasons, an image can be padded with extra pixels 
at the end of each row. However, it is interesting to note that when the image is unpadded, it 
can also be seen as a long one-dimensional array of WxH pixels. A convenient cv::Mat method 
can tell us whether the image has been padded or not. This is the isContinuous method that 
returns true if the image does not include padded pixels. Note that we could also check the 
continuity of the matrix by writing the following test:

// check if size of a line (in bytes)
// equals the number of columns times pixel size in bytes
image.step == image.cols*image.elemSize();
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To be complete, this test should also check whether the matrix has only one line; in which 
case, it is continuous by definition. Nevertheless, always use the isContinuous method to 
test the continuity condition. In some specific processing algorithms, you can take advantage 
of the continuity of the image by processing it in one single (longer) loop. Our processing 
function would then be written as follows:

void colorReduce(cv::Mat &image, int div=64) {

     int nl= image.rows; // number of lines
     int nc= image.cols * image.channels(); 

     if (image.isContinuous()) 
     {
        // then no padded pixels
        nc= nc*nl; 
        nl= 1;  // it is now a long 1D array
     }

     // this loop is executed only once
     // in case of continuous images
     for (int j=0; j<nl; j++) { 

          uchar* data= image.ptr<uchar>(j);

          for (int i=0; i<nc; i++) {

            // process each pixel ---------------------
                
            data[i]= data[i]/div*div + div/2;

            // end of pixel processing ----------------

          } // end of line                   
     }
}

Now, when the continuity test tells us that the image does not contain padded pixels, we 
eliminate the outer loop by setting the width to 1 and the height to WxH. Note that there  
is also a reshape method that could have been used here. You would write the following  
in this case:

     if (image.isContinuous()) 
     {
        // no padded pixels
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        image.reshape(1,   // new number of channels
                      1); // new number of rows
     }

     int nl= image.rows; // number of lines
     int nc= image.cols * image.channels(); 

The reshape method changes the matrix dimensions without requiring any memory copying 
or reallocation. The first parameter is the new number of channels and the second one is the 
new number of rows. The number of columns is readjusted accordingly.

In these implementations, the inner loop processes all image pixels in a sequence. This 
approach is mainly advantageous when several small images are scanned simultaneously 
into the same loop.

Low-level pointer arithmetics
In the cv::Mat class, the image data is contained in a memory block of unsigned chars.  
The address of the first element of this memory block is given by the data attribute that 
returns an unsigned char pointer. So, to start your loop at the beginning of the image,  
you could have written the following code:

uchar *data= image.data;

Moving from one row to the next could have been done by moving your row pointer using the 
effective width as follows:

data+= image.step;  // next line

The step method gives you the total number of bytes (including the padded pixels) in a line. 
In general, you can obtain the address of the pixel at row j and column i as follows:

// address of pixel at (j,i) that is &image.at(j,i)     
data= image.data+j*image.step+i*image.elemSize();    

However, even if this would work in our example, it is not recommended that you proceed  
this way.

See also
ff The Writing efficient image-scanning loops recipe in this chapter proposes a 

discussion on the efficiency of the scanning methods presented here



Manipulating Pixels

44

Scanning an image with iterators
In object-oriented programming, looping over a data collection is usually done using iterators. 
Iterators are specialized classes that are built to go over each element of a collection, hiding 
how the iteration over each element is specifically done for a given collection. This application 
of the information-hiding principle makes scanning a collection easier and safer. In addition, 
it makes it similar in form no matter what type of collection is used. The Standard Template 
Library (STL) has an iterator class associated with each of its collection classes. OpenCV then 
offers a cv::Mat iterator class that is compatible with the standard iterators found in the 
C++ STL.

Getting ready
In this recipe, we again use the color reduction example described in the previous recipe.

How to do it...
An iterator object for a cv::Mat instance can be obtained by first creating a 
cv::MatIterator_ object. As is the case with cv::Mat_, the underscore indicates  
that this is a template subclass. Indeed, since image iterators are used to access the  
image elements, the return type must be known at the time of compilation. The iterator  
is then declared as follows:

     cv::MatIterator_<cv::Vec3b> it;

Alternatively, you can also use the iterator type defined inside the Mat_ template class  
as follows:

     cv::Mat_<cv::Vec3b>::iterator it;

You then loop over the pixels using the usual begin and end iterator methods, except that 
these ones are, again, template methods. Consequently, our color reduction function is now 
written as follows:

void colorReduce(cv::Mat &image, int div=64) {

     // obtain iterator at initial position
     cv::Mat_<cv::Vec3b>::iterator it= 
               image.begin<cv::Vec3b>();
     // obtain end position
     cv::Mat_<cv::Vec3b>::iterator itend= 
               image.end<cv::Vec3b>();

     // loop over all pixels
     for ( ; it!= itend; ++it) {
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        // process each pixel ---------------------

       (*it)[0]= (*it)[0]/div*div + div/2;
       (*it)[1]= (*it)[1]/div*div + div/2;
       (*it)[2]= (*it)[2]/div*div + div/2;

        // end of pixel processing ----------------
     }
}

Remember that the iterator here returns a cv::Vec3b instance because we are processing a 
color image. Each color channel element is accessed using the dereferencing operator [].

How it works...
Working with iterators always follows the same pattern no matter what kind of collection  
is scanned.

First, you create your iterator object using the appropriate specialized class, which in our 
example is cv::Mat_<cv::Vec3b>::iterator (or cv::MatIterator_<cv::Vec3b>).

You then obtain an iterator initialized at the starting position (in our example, the upper-left 
corner of the image). This is done using a begin method. With a cv::Mat instance, you obtain 
it as image.begin<cv::Vec3b>(). You can also use arithmetic on the iterator. For example, 
if you wish to start at the second row of an image, you can initialize your cv::Mat iterator at 
image.begin<cv::Vec3b>()+image.cols. The end position of your collection is obtained 
similarly but using the end method. However, the iterator thus obtained is just outside your 
collection. This is why your iterative process must stop when it reaches the end position. You can 
also use arithmetic on this iterator; for example, if you wish to stop before the last row, your final 
iteration would stop when the iterator reaches image.end<cv::Vec3b>()-image.cols.

Once your iterator is initialized, you create a loop that goes over all elements until the end is 
reached. A typical while loop will look like the following code: 

     while (it!= itend) { 

        // process each pixel ---------------------
         

        // end of pixel processing ----------------

        ++it;
     }

The ++ operator is the one that is to be used to move to the next element. You can also specify 
the larger step size. For example, it+=10 would process the image every 10 pixels.
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Finally, inside the processing loop, you use the dereferencing operator * in order to access 
the current element, using which, you can read (for example, element= *it;) or write (for 
example, *it= element;). Note that it is also possible to create constant iterators that you 
use if you receive a reference to const cv::Mat or if you wish to signify that the current loop 
does not modify the cv::Mat instance. These are declared as follows:

     cv::MatConstIterator_<cv::Vec3b> it;

Or, they are declared as follows:

     cv::Mat_<cv::Vec3b>::const_iterator it;

There's more...
In this recipe, the start and end positions of the iterator were obtained using the begin 
and end template methods. As we did in the first recipe of this chapter, we could have also 
obtained them using a reference to a cv::Mat_ instance. This would avoid the need to 
specify the iterator type in the begin and end methods since this one is specified when  
the cv::Mat_ reference is created.

     cv::Mat_<cv::Vec3b> cimage(image);
     cv::Mat_<cv::Vec3b>::iterator it= cimage.begin();
     cv::Mat_<cv::Vec3b>::iterator itend= cimage.end();

See also
ff The Writing efficient image-scanning loops recipe proposes a discussion on the 

efficiency of iterators when scanning an image.

ff Also, if you are not familiar with the concept of iterators in object-oriented programming 
and how they are implemented in ANSI C++, you should read a tutorial on STL iterators. 
Simply search the Web with the keywords "STL Iterator" and you will find numerous 
references on the subject.

Writing efficient image-scanning loops
In the previous recipes of this chapter, we presented different ways of scanning an  
image in order to process its pixels. In this recipe, we will compare the efficiency of  
these different approaches.

When you write an image-processing function, efficiency is often a concern. When you  
design your function, you will frequently need to check the computational efficiency of  
your code in order to detect any bottleneck in your processing that might slow down  
your program.



Chapter 2

47

However, it is important to note that unless necessary, optimization should not be done  
at the price of reducing the program clarity. Simple code is indeed always easier to debug  
and maintain. Only code portions that are critical to a program's efficiency should be  
heavily optimized.

How to do it...
In order to measure the execution time of a function or a portion of code, there exists a  
very convenient OpenCV function called cv::getTickCount(). This function gives you 
the number of clock cycles that have occurred since the last time you started your computer. 
Since we want the execution time of a code portion given in seconds, we use another method, 
cv::getTickFrequency(). This gives us the number of cycles per second. The usual pattern 
to be used in order to obtain the computational time of a given function (or portion of code) 
would then be as follows:

const int64 start = cv::getTickCount();
colorReduce(image); // a function call
// elapsed time in seconds
double duration = (cv::getTickCount()-start)/
                               cv::getTickFrequency();

How it works...
The execution times of the different implementations of the colorReduce function from this 
chapter are reported here. The absolute runtime numbers would differ from one machine to 
another (here, we used a 2.40 GHz machine equipped with a 64-bit Intel Core i7). It is rather 
interesting to look at their relative difference. These results are also dependent on the specific 
compiler that is used to produce the executable file. Our tests report the average time to reduce 
the colors of an image that has a resolution of 4288 x 2848 pixels.

First, we compare the three ways of computing the color reduction as presented in the There's 
more... section of the Scanning an image with pointers recipe. It is interesting to observe that 
the formula that uses the bitwise operator is much faster than the others at 9.5ms. The one 
using the integer division is at 26ms. The version based on the modulo operator is, however, 
at 33 ms. This represents a factor of more than 3 between the fastest and the slowest! It is 
therefore important to take the time to identify the most efficient way of computing a result  
in an image loop, as the net impact can be very significant.

When an output image that needs to be reallocated is specified instead of in-place 
processing, the execution time becomes 29 ms. The extra duration represents the  
overhead for memory allocation.
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In a loop, you should avoid repetitive computations of values that could be precomputed 
instead. This consumes time, obviously. For example, you take the following inner loop of  
the color reduction function:

 int nc= image.cols * image.channels();
 uchar div2= div>>1; 
 
 for (int i=0; i<nc; i++) {

Then, you replace it with the following one:

 for (int i=0; i<image.cols * image.channels(); i++) {
 // . . .
 *data++ += div>>1;

The preceding code is a loop where you need to compute the total number of elements in 
a line and the div>>1 result again and again; you will obtain a runtime of 52 ms, which is 
significantly slower than the original version at 26 ms. Note, however, that some compilers 
might be able to optimize these kinds of loops and still obtain efficient code.

The version of the color reduction function that uses iterators, as shown in the Scanning an 
image with iterators recipe, gives slower results at 52 ms. The main objective of iterators is  
to simplify the image-scanning process and make it less prone to errors.

For completeness, we also implemented a version of the function that uses the at method  
for pixel access. The main loop of this implementation would then simply read as follows:

for (int j=0; j<nl; j++) {
  for (int i=0; i<nc; i++) {

    // process each pixel ---------------------
                 
    image.at<cv::Vec3b>(j,i)[0]=
               image.at<cv::Vec3b>(j,i)[0]/div*div + div/2;
    image.at<cv::Vec3b>(j,i)[1]=    
              image.at<cv::Vec3b>(j,i)[1]/div*div + div/2;
    image.at<cv::Vec3b>(j,i)[2]=    
              image.at<cv::Vec3b>(j,i)[2]/div*div + div/2;

    // end of pixel processing ----------------

  } // end of line
}

This implementation is much slower when a runtime of 53 ms is obtained. This method should 
then be used only for the random access of image pixels but never when scanning an image.
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A shorter loop with few statements is generally more efficiently executed than a longer loop 
over a single statement even if the total number of elements processed is the same. Similarly, 
if you have N different computations to apply to a pixel, apply all of them in one loop rather 
than writing N successive loops, one for each computation. 

We also performed the continuity test that produces one loop in the case of continuous 
images instead of the regular double loop over lines and columns. For a very large image, like 
the one we used in our tests, this optimization is not significant (25 ms instead of 26 ms), but 
in general, it is always a good practice to use this strategy, since it can lead to a significant 
gain in speed.

There's more…
Multithreading is another way to increase the efficiency of your algorithms, especially since 
the advent of multicore processors. OpenMP and the Intel Threading Building Blocks (TBB) 
are two popular APIs that are used in concurrent programming to create and manage your 
threads. In addition, C++11 now offers built-in support for threads.

See also
ff The Performing simple image arithmetic recipe presents an implementation of  

the color-reduction function (described in the There's more... section) that uses  
the OpenCV 2 arithmetic image operators and has a runtime of 25 ms.

ff The Applying look-up tables to modify image appearance recipe of Chapter 4, 
Counting the Pixels with Histograms describes an implementation of the color-
reduction function based on a look-up table. The idea is to precompute all intensity 
reduction values that lead to a runtime of 22 ms.

Scanning an image with neighbor access
In image processing, it is common to have a processing function that computes a value at 
each pixel location based on the value of the neighboring pixels. When this neighborhood 
includes pixels of the previous and next lines, you then need to simultaneously scan several 
lines of the image. This recipe shows you how to do it.

Getting ready
To illustrate this recipe, we will apply a processing function that sharpens an image. It is 
based on the Laplacian operator (which will be discussed in Chapter 6, Filtering the Images). 
It is indeed a well-known result in image processing that if you subtract the Laplacian from  
an image, the image edges are amplified, thereby giving a sharper image.
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This sharpened value is computed as follows:

sharpened_pixel= 5*current-left-right-up-down;

Here, left is the pixel that is immediately on the left-hand side of the current one, up is the 
corresponding one on the previous line, and so on.

How to do it...
This time, the processing cannot be accomplished in-place. Users need to provide an output 
image. The image scanning is done using three pointers, one for the current line, one for the 
line above, and another one for the line below. Also, since each pixel computation requires 
access to the neighbors, it is not possible to compute a value for the pixels of the first and 
last row of the image as well as the pixels of the first and last column. The loop can then be 
written as follows:

void sharpen(const cv::Mat &image, cv::Mat &result) {

   // allocate if necessary
  result.create(image.size(), image.type()); 
  int nchannels= image.channels(); // get number of channels

   // for all rows (except first and last)
  for (int j= 1; j<image.rows-1; j++) { 

    const uchar* previous= 
        image.ptr<const uchar>(j-1);     // previous row
    const uchar* current= 
        image.ptr<const uchar>(j);       // current row
    const uchar* next= 
        image.ptr<const uchar>(j+1);     // next row

    uchar* output= result.ptr<uchar>(j); // output row

    for (int i=nchannels; i<(image.cols-1)*nchannels; i++) {

       *output++= cv::saturate_cast<uchar>(
                  5*current[i]-current[i-nchannels]-
                  current[i+nchannels]-previous[i]-next[i]); 
    }
  }

  // Set the unprocessed pixels to 0
  result.row(0).setTo(cv::Scalar(0));
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  result.row(result.rows-1).setTo(cv::Scalar(0));
  result.col(0).setTo(cv::Scalar(0));
  result.col(result.cols-1).setTo(cv::Scalar(0));
}

Note how we wrote the function such that it would work on both gray-level and color  
images. If we apply this function on a gray-level version of our test image, the following  
result is obtained:

How it works...
In order to access the neighboring pixels of the previous and next row, you must simply define 
additional pointers that are jointly incremented. You then access the pixels of these lines inside 
the scanning loop.

In the computation of the output pixel value, the cv::saturate_cast template function  
is called on the result of the operation. This is because it often happens that a mathematical 
expression applied on pixels leads to a result that goes outside the range of the permitted 
pixel values (that is, below 0 or over 255). The solution is then to bring the values back inside 
this 8-bit range. This is done by changing negative values to 0 and values over 255 to 255. 
This is exactly what the cv::saturate_cast<uchar> function is doing. In addition, if the 
input argument is a floating point number, then the result is rounded to the nearest integer. 
You can obviously use this function with other types in order to guarantee that the result will 
remain within the limits defined by this type.
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Border pixels that cannot be processed because their neighborhood is not completely defined 
need to be handled separately. Here, we simply set them to 0. In other cases, it could be 
possible to perform a special computation for these pixels, but most of the time, there is no 
point in spending time to process these very few pixels. In our function, these border pixels 
are set to 0 using two special methods. The first one is row and its dual is col. They return a 
special cv::Mat instance composed of a single-line ROI (or a single-column ROI) as specified 
in a parameter (remember, we discussed region of interest in the previous chapter). No copy is 
made here because if the elements of this 1D matrix are modified, they will also be modified 
in the original image. This is what we do when the setTo method is called. This method 
assigns a value to all elements of a matrix. Take a look at the following statement:

   result.row(0).setTo(cv::Scalar(0));

The preceding statement assigns the value of 0 to all pixels of the first line of the result image. 
In the case of a 3-channel color image, you would use cv::Scalar(a,b,c) to specify the 
three values to be assigned to each channel of the pixel.

There's more...
When a computation is done over a pixel neighborhood, it is common to represent this with a 
kernel matrix. This kernel describes how the pixels involved in the computation are combined 
in order to obtain the desired result. For the sharpening filter used in this recipe, the kernel 
would be as follows:

0 -1 0
-1 5 -1
0 -1 0

Unless stated otherwise, the current pixel corresponds to the center of the kernel. The value in 
each cell of the kernels represents a factor that multiplies the corresponding pixel. The result 
of the application of the kernel on a pixel is then given by the sum of all these multiplications. 
The size of the kernel corresponds to the size of the neighborhood (here, 3 x 3). Using this 
representation, it can be seen that, as required by the sharpening filter, the four horizontal and 
vertical neighbors of the current pixel are multiplied by -1, while the current one is multiplied  
by 5. Applying a kernel to an image is more than a convenient representation; it is the basis  
for the concept of convolution in signal processing. The kernel defines a filter that is applied  
to the image.
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Since filtering is a common operation in image processing, OpenCV has defined a special 
function that performs this task: the cv::filter2D function. To use this, you just need to 
define a kernel (in the form of a matrix). The function is then called with the image and the 
kernel, and it returns the filtered image. Using this function, it is therefore, easy to redefine 
our sharpening function as follows:

void sharpen2D(const cv::Mat &image, cv::Mat &result) {

   // Construct kernel (all entries initialized to 0)
   cv::Mat kernel(3,3,CV_32F,cv::Scalar(0));
   // assigns kernel values
   kernel.at<float>(1,1)= 5.0;
   kernel.at<float>(0,1)= -1.0;
   kernel.at<float>(2,1)= -1.0;
   kernel.at<float>(1,0)= -1.0;
   kernel.at<float>(1,2)= -1.0;

   //filter the image
   cv::filter2D(image,result,image.depth(),kernel);
}

This implementation produces exactly the same result as the previous one (and with the same 
efficiency). If you input a color image, then the same kernel will be applied to all three channels. 
Note that it is particularly advantageous to use the filter2D function with a large kernel, as it 
uses, in this case, a more efficient algorithm.

See also
ff Chapter 6, Filtering the Images, provides more explanations on the concept of  

image filtering
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Performing simple image arithmetic
Images can be combined in different ways. Since they are regular matrices, they can be 
added, subtracted, multiplied, or divided. OpenCV offers various image arithmetic operators, 
and their use is discussed in this recipe.

Getting ready
Let's work with a second image that we will combine to our input image using an arithmetic 
operator. The following represents this second image:

How to do it...
Here, we add two images. This is useful when we want to create some special effects or 
to overlay information over an image. We do this by calling the cv::add function, or more 
precisely here, the cv::addWeighted function, since we want a weighted sum as follows:

   cv::addWeighted(image1,0.7,image2,0.9,0.,result);
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The operation results in a new image, as seen in the following screenshot:

How it works...
All binary arithmetic functions work the same way. Two inputs are provided and a third 
parameter specifies the output. In some cases, weights that are used as scalar multipliers in 
the operation can be specified. Each of these functions comes in several flavors; cv::add is 
a good example of a function that is available in many forms:

   // c[i]= a[i]+b[i];
   cv::add(imageA,imageB,resultC); 
   // c[i]= a[i]+k;
   cv::add(imageA,cv::Scalar(k),resultC); 
   // c[i]= k1*a[1]+k2*b[i]+k3; 
   cv::addWeighted(imageA,k1,imageB,k2,k3,resultC);
   // c[i]= k*a[1]+b[i]; 
   cv::scaleAdd(imageA,k,imageB,resultC);

For some functions, you can also specify a mask:

   // if (mask[i]) c[i]= a[i]+b[i];
   cv::add(imageA,imageB,resultC,mask);
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If you apply a mask, the operation is performed only on pixels for which the mask value is  
not null (the mask must be 1-channel). Have a look at the different forms of cv::subtract, 
cv::absdiff, cv::multiply, and cv::divide functions. Bit-wise operators (operators 
applied to each individual bit of the pixels' binary representation) are also available: 
cv::bitwise_and, cv::bitwise_or, cv::bitwise_xor, and cv::bitwise_not.  
The cv::min and cv::max operators, which find the per-element maximum or minimum 
pixel value, are also very useful.

In all cases, the cv::saturate_cast function (see the preceding recipe) is always used  
to make sure that the results stay within the defined pixel value domain (that is, to avoid 
overflow or underflow).

The images must have the same size and type (the output image will be reallocated if it  
does not match the input size). Also, since the operation is performed per-element, one of  
the input images can be used as the output.

Several operators that take a single image as the input are also available: cv::sqrt, 
cv::pow, cv::abs, cv::cuberoot, cv::exp, and cv::log. In fact, there exists an 
OpenCV function for almost any operation you have to apply on image pixels.

There's more...
It is also possible to use the usual C++ arithmetic operator on the cv::Mat instances or on 
the individual channels of cv::Mat instances. The two following subsections explain how to 
do this.

Overloaded image operators
Very conveniently, most arithmetic functions have their corresponding operator overloaded in 
OpenCV 2. Consequently, the call to cv::addWeighted can be written as follows:

result= 0.7*image1+0.9*image2;

The preceding code is a more compact form that is also easier to read. These two ways of 
writing the weighted sum are equivalent. In particular, the cv::saturate_cast function  
will still be called in both cases.

Most C++ operators have been overloaded. Among them are the bitwise operators &, |, ^, 
and ~; the min, max, and abs functions. The comparison operators <, <=, ==,!=, >, and >= 
have also been overloaded, and they return an 8-bit binary image. You will also find the m1*m2 
matrix multiplication (where m1 and m2 are both cv::Mat instances), the m1.inv() matrix 
inversion, the m1.t() transpose, the m1.determinant() determinant, the v1.norm() 
vector norm, the v1.cross(v2) cross-product, the v1.dot(v2) dot product, and so on. 
When this makes sense, you also have the corresponding compound assignment operator 
defined (the += operator, as an example).
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In the Writing efficient image-scanning loops recipe, we presented a color-reduction function 
that was written using loops that scan the image pixels to perform some arithmetic operations 
on them. From what we learned here, this function could be rewritten simply using arithmetic 
operators on the input image as follows:

     image=(image&cv::Scalar(mask,mask,mask))
                  +cv::Scalar(div/2,div/2,div/2);

The use of cv::Scalar is due to the fact that we are manipulating a color image. Performing 
the same test as we did in the Writing efficient image-scanning loops recipe, we obtain an 
execution time of 53 ms. Using the image operators makes the code so simple, and the 
programmer so productive, that you should consider their use in most situations.

Splitting the image channels
You'll sometimes want to process the different channels of an image independently.  
For example, you might want to perform an operation only on one channel of the image. 
You can, of course, achieve this in an image-scanning loop. However, you can also use the 
cv::split function that will copy the three channels of a color image into three distinct 
cv::Mat instances. Suppose we want to add our rain image to the blue channel only.  
The following is how we would proceed:

   // create vector of 3 images
   std::vector<cv::Mat> planes;
   // split 1 3-channel image into 3 1-channel images
   cv::split(image1,planes);
   // add to blue channel
   planes[0]+= image2;
   // merge the 3 1-channel images into 1 3-channel image
   cv::merge(planes,result);

The cv::merge function performs the inverse operation, that is, it creates a color image from 
three 1-channel images.

Remapping an image
In the recipes of this chapter, you learned how to read and modify the pixel values of an 
image. The last recipe will teach you how to modify the appearance of an image by moving  
its pixels. The pixel values are not changed by this process; it is rather the position of each 
pixel that is remapped to a new location. This is useful in order to create special effects on  
an image or to correct image distortions caused, for example, by a lens.
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How to do it...
In order to use the OpenCV remap function, you simply have to first define the map to be used 
in the remapping process. Second, you have to apply this map on an input image. Obviously, 
it is the way you define your map that will determine the effect that will be produced. In our 
example, we define a transformation function that will create a wavy effect on the image:

// remapping an image by creating wave effects
void wave(const cv::Mat &image, cv::Mat &result) {

  // the map functions
  cv::Mat srcX(image.rows,image.cols,CV_32F);
  cv::Mat srcY(image.rows,image.cols,CV_32F);

  // creating the mapping
  for (int i=0; i<image.rows; i++) {
    for (int j=0; j<image.cols; j++) {

      // new location of pixel at (i,j)
      srcX.at<float>(i,j)= j; // remain on same column
                // pixels originally on row i are now
                // moved following a sinusoid
      srcY.at<float>(i,j)= i+5*sin(j/10.0);
    }
  }

  // applying the mapping
  cv::remap(image, result, srcX, srcY, cv::INTER_LINEAR);
}

The result is as follows:
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How it works...
The objective of remapping is to produce a new version of an image in which pixels have 
changed in position. To construct this new image, we need to know what the original position 
for each pixel in the destination image in the source image is. The mapping function that is 
needed is therefore the one that will give us the original pixel positions as a function of the new 
pixel positions. This is called backward mapping because the transformation describes how the 
pixels of the new images are mapped back to the original image. In OpenCV, backward mapping 
is described using two maps: one for the x-coordinates and one for the y-coordinates. They are 
both represented by floating point cv::Mat instances:

  // the map functions
  cv::Mat srcX(image.rows,image.cols,CV_32F); // x-map
  cv::Mat srcY(image.rows,image.cols,CV_32F); // y-map

The size of these matrices will define the size of the destination image. The value of the (i,j) 
pixel of the destination image can then be read in the source image using the following line  
of code:

  ( srcX.at<float>(i,j) , srcY.at<float>(i,j) )

For example, a simple image flip effect like the one we demonstrated in Chapter 1, Playing 
with Images, can be created by the following maps:

  // creating the mapping
  for (int i=0; i<image.rows; i++) {
    for (int j=0; j<image.cols; j++) {

      // horizontal flipping
      srcX.at<float>(i,j)= image.cols-j-1;
      srcY.at<float>(i,j)= i;
    }
  }

To generate the resulting image, you simply call the OpenCV remap function:

  // applying the mapping
  cv::remap(image,             // source image
            result,            // destination image
            srcX,              // x map
            srcY,              // y map
            cv::INTER_LINEAR); // interpolation method
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It is interesting to note that the two maps contain floating-point values. Consequently, a 
pixel in the destination can map back to a non-integral value (that is, a location between 
pixels). This is very convenient because this allows us to define the mapping function of our 
choice. For instance, in our remapping example, we used a sinusoidal function to define 
our transformation. However, this also means that we have to interpolate the value of virtual 
pixels in between real pixels. There exist different ways of performing pixel interpolation, 
and the last parameter of the remap function allows us to select the method that will be 
used. Pixel interpolation is an important concept in image processing; this subject will be 
discussed in Chapter 6, Filtering the Images.

See also
ff The There's more... section of the Filtering images using low-pass filters recipe  

of Chapter 6, Filtering the Images, explains the concept of pixel interpolation

ff The Calibrating a camera recipe of Chapter 10, Estimating Projective Relations  
in Images, uses remapping to correct lens distortions in an image

ff The Computing a homography between two images recipe of Chapter 10,  
Estimating Projective Relations in Images, uses perspective image warping  
to build an image panorama
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Processing Color 

Images with Classes

In this chapter, we will cover the following recipes:

ff Using the Strategy pattern in an algorithm design

ff Using a Controller design pattern to communicate with processing modules

ff Converting color representations

ff Representing colors with hue, saturation, and brightness

Introduction
Good computer vision programs begin with good programming practices. Building a bug-free 
application is just the beginning. What you really want is an application that you and the 
programmers working with you will be able to easily adapt and evolve as new requirements 
come in. This chapter will show you how to make the best use of some of the object-oriented 
programming principles in order to build good quality software programs. In particular, we 
will introduce a few important design patterns that will help you build applications with 
components that are easy to test, maintain, and reuse.

Design patterns are a well-known concept in software engineering. Basically, a design pattern 
is a sound, reusable solution to a generic problem that occurs frequently in software designing. 
Many software patterns have been introduced and well documented. Good programmers should 
build a working knowledge of these existing patterns.

This chapter also has a secondary objective. It will teach you how to play with image colors. 
The example used throughout this chapter will show you how to detect the pixels of a given 
color, and the last two recipes will explain how to work with different color spaces.
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Using the Strategy pattern in an  
algorithm design

The objective of the Strategy design pattern is to encapsulate an algorithm in a class.  
This way, it becomes easier to replace a given algorithm by another one or to chain several 
algorithms together in order to build a more complex process. In addition, this pattern 
facilitates the deployment of an algorithm by hiding as much of its complexity as possible 
behind an intuitive programming interface.

Getting ready
Let's say we want to build a simple algorithm that will identify all of the pixels in an image  
that have a given color. For this, the algorithm has to accept an image and a color as input 
and will return a binary image showing the pixels that have the specified color. The tolerance 
with which we want to accept a color will be another parameter to be specified before running 
the algorithm.

How to do it…
Once an algorithm has been encapsulated in a class using the Strategy design pattern, it can  
be deployed by creating an instance of this class. Typically, the instance will be created when the 
program is initialized. At the time of construction, the class instance will initialize the different 
parameters of the algorithm with their default values such that it will immediately be ready to  
be used. The algorithm's parameter values can also be read and set using appropriate methods. 
In the case of an application with a GUI, these parameters can be displayed and modified using 
different widgets (text fields, sliders, and so on) so that a user can easily play with them.

We will show you the structure of a Strategy class in the next section; let's start with an 
example on how it can be deployed and used. Let's write a simple main function that will  
run our proposed color detection algorithm:

int main()
{
   // 1. Create image processor object
   ColorDetector cdetect;

   // 2. Read input image
   cv::Mat image= cv::imread("boldt.jpg");
   if (image.empty())
      return 0;
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   // 3. Set input parameters
   cdetect.setTargetColor(230,190,130); // here blue sky

   cv::namedWindow("result");

   // 4. Process the image and display the result
   cv::imshow("result",cdetect.process(image));

   cv::waitKey();

   return 0;
}

Running this program to detect a blue sky in the colored version of the Castle image 
presented in the previous chapter produces the following output:

Here, a white pixel indicates a positive detection of the sought color, and black  
indicates negative.

Obviously, the algorithm we encapsulated in this class is relatively simple (as we will see  
next, it is composed of just one scanning loop and one tolerance parameter). The Strategy 
design pattern becomes really powerful when the algorithm to be implemented is more 
complex, has many steps, and includes several parameters.
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How it works…
The core process of this algorithm is easy to build. It is a simple scanning loop that goes over 
each pixel, comparing its color with the target color. Using what we learned in the Scanning  
an image with iterators recipe of the previous chapter, this loop can be written as follows:

     // get the iterators
     cv::Mat_<cv::Vec3b>::const_iterator it= 
                           image.begin<cv::Vec3b>();
     cv::Mat_<cv::Vec3b>::const_iterator itend= 
                           image.end<cv::Vec3b>();
     cv::Mat_<uchar>::iterator itout= result.begin<uchar>();

     // for each pixel
     for ( ; it!= itend; ++it, ++itout) {

            // compute distance from target color
            if (getDistanceToTargetColor(*it)<=maxDist) {
                 *itout= 255;
            } else {
                 *itout= 0;
            }
    }

The cv::Mat variable's image refers to the input image, while result refers to the  
binary output image. Therefore, the first step consists of setting up the required iterators.  
The scanning loop then becomes easy to implement. The distance between the current pixel 
color and the target color is evaluated on each iteration in order to check whether it is within 
the tolerance parameter defined by maxDist. If that is the case, the value 255 (white) is then 
assigned to the output image; if not, 0 (black) is assigned. To compute the distance to the 
target color, the getDistanceToTargetColor method is used. There are different ways to 
compute this distance. One could, for example, calculate the Euclidean distance between the 
three vectors that contain the RGB color values. To keep this computation simple, we simply 
sum the absolute differences of the RGB values (this is also known as the city-block distance) 
in our case. Note that in modern architecture, a floating-point Euclidean distance can be faster 
to compute than a simple city-block distance; this is also something to take into consideration 
in your design. Also, for more flexibility, we write the getDistanceToTargetColor method 
in terms of a getColorDistance method, as follows:

// Computes the distance from target color.
int getDistanceToTargetColor(const cv::Vec3b& color) const {
  return getColorDistance(color, target);
}
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// Computes the city-block distance between two colors.
int getColorDistance(const cv::Vec3b& color1, 
                     const cv::Vec3b& color2) const {
  return abs(color1[0]-color2[0])+
                abs(color1[1]-color2[1])+
                abs(color1[2]-color2[2]);
}

Note how we used cv::Vec3d to hold the three unsigned char that represent the RGB  
values of a color. The target variable obviously refers to the specified target color, and  
as we will see, it is defined as a member variable in the class algorithm that we will define.  
Now, let's complete the definition of the processing method. Users will provide an input  
image, and the result will be returned once the image scanning is completed:

cv::Mat ColorDetector::process(const cv::Mat &image) {

     // re-allocate binary map if necessary
     // same size as input image, but 1-channel
     result.create(image.size(),CV_8U);
     // processing loop above goes here
      ...

     return result;
}

Each time this method is called, it is important to check if the output image that contains 
the resulting binary map needs to be reallocated to fit the size of the input image. This is why 
we use the create method of cv::Mat. Remember that this method will only proceed to 
reallocation if the specified size or depth do not correspond to the current image structure.

Now that we have the core processing method defined, let's see what additional methods 
should be added in order to deploy this algorithm. We have previously determined what input 
and output data our algorithm requires. Therefore, we will first define the class attributes that 
will hold this data:

class ColorDetector {

  private:

     // minimum acceptable distance
     int maxDist; 

     // target color
     cv::Vec3b target;

     // image containing resulting binary map
     cv::Mat result;
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In order to create an instance of the class that encapsulates our algorithm (which we have 
named ColorDetector), we need to define a constructor. Remember that one of the 
objectives of the Strategy design pattern is to make algorithm deployment as easy as possible. 
The simplest constructor that can be defined is an empty one. It will create an instance of 
the class algorithm in a valid state. We then want the constructor to initialize all the input 
parameters to their default values (or the values that are known to generally give a good 
result). In our case, we decided that a distance of 100 is generally an acceptable tolerance 
parameter. We also set the default target color. We chose black for no particular reason.  
The idea is to make sure we always start with predictable and valid input values:

     // empty constructor
     // default parameter initialization here
     ColorDetector() : maxDist(100), target(0,0,0) {}

At this point, a user who creates an instance of our class algorithm can immediately call  
the process method with a valid image and obtain a valid output. This is another objective 
of the Strategy pattern, that is, to make sure that the algorithm always runs with valid 
parameters. Obviously, the users of this class will want to use their own settings. This is  
done by providing the user with the appropriate getters and setters. Let's start with the  
color tolerance parameter:

     // Sets the color distance threshold.
     // Threshold must be positive, 
     // otherwise distance threshold is set to 0.
     void setColorDistanceThreshold(int distance) {

        if (distance<0)
           distance=0;
        maxDist= distance;
     }

     // Gets the color distance threshold
     int getColorDistanceThreshold() const {

        return maxDist;
     }

Note how we first check the validity of the input. Again, this is to make sure that our algorithm 
will never be run in an invalid state. The target color can be set in a similar manner as follows:

     // Sets the color to be detected
     void setTargetColor(uchar blue, 
                         uchar green, 
                         uchar red) {
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       // BGR order
       target = cv::Vec3b(blue, green, red);
     }

       // Sets the color to be detected
     void setTargetColor(cv::Vec3b color) {

     target= color;
     }

       // Gets the color to be detected
     cv::Vec3b getTargetColor() const {

       return target;
     }

This time it is interesting to note that we have provided the user with two definitions of the 
setTargetColor method. In the first version of the definition, the three color components 
are specified as three arguments, while in the second version, cv::Vec3b is used to hold  
the color values. Again, the objective is to facilitate the use of our class algorithm. The user 
can simply select the setter that best fits their needs.

There's more…
This recipe introduced you to the idea of encapsulating an algorithm in a class using the 
Strategy design pattern. The example algorithm used in this recipe consisted of identifying 
the pixels of an image that has a color sufficiently close to a specified target color. This 
computation could have been done otherwise. Also, the implementation of a Strategy  
design pattern could be complemented using function objects.

Computing the distance between two color vectors
To compute the distance between two color vectors, we used the following simple formula:

return abs(color[0]-target[0])+
       abs(color[1]-target[1])+
       abs(color[2]-target[2]);

However, OpenCV includes a function to compute the Euclidean norm of a vector. 
Consequently, we could have computed our distance as follows:

return static_cast<int>(
   cv::norm<int,3>(cv::Vec3i(color[0]-target[0],
                             color[1]-target[1],
                             color[2]-target[2])));
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A very similar result would then be obtained using this definition of the getDistance method. 
Here, we use cv::Vec3i (a 3-vector array of integers) because the result of the subtraction is 
an integer value.

It is also interesting to recall from Chapter 2, Manipulating Pixels, that the OpenCV matrix and 
vector data structures include a definition of the basic arithmetic operators. Consequently, one 
could have proposed the following definition for the distance computation:

return static_cast<int>(
   cv::norm<uchar,3>(color-target)); // wrong!

This definition may look right at the first glance; however, it is wrong. This is because all these 
operators always include a call to saturate_cast (see the Scanning an image with neighbor 
access recipe in the previous chapter) in order to ensure that the results stay within the domain 
of the input type (here, it is uchar). Therefore, in the cases where the target value is greater 
than the corresponding color value, the value 0 will be assigned instead of the negative value 
that one would have expected. A correct formulation would then be as follows:

   cv::Vec3b dist;
   cv::absdiff(color,target,dist);
   return cv::sum(dist)[0];

However, using two function calls to compute the distance between two 3-vector arrays  
is inefficient.

Using OpenCV functions
In this recipe, we used a loop with iterators in order to perform our computation. Alternatively, 
we could have achieved the same result by calling a sequence of OpenCV functions. The color 
detection method will then be written as follows:

  cv::Mat ColorDetector::process(const cv::Mat &image) {
  
         cv::Mat output;
         // compute absolute difference with target color
         cv::absdiff(image,cv::Scalar(target),output);
         // split the channels into 3 images
         std::vector<cv::Mat> images;
         cv::split(output,images);
         // add the 3 channels (saturation might occurs here)
         output= images[0]+images[1]+images[2];
         // apply threshold
         cv::threshold(output,  // input image
                       output,  // output image
                       maxDist, // threshold (must be < 256)
                       255,     // max value
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         cv::THRESH_BINARY_INV); // thresholding mode
  
         return output;
   }

This method uses the absdiff function that computes the absolute difference between 
the pixels of an image and, in this case, a scalar value. Instead of a scalar value, another 
image can be provided as the second argument to this function. In the latter case, a pixel-
by-pixel difference will be applied; consequently, the two images must be of the same size. 
The individual channels of the difference image are then extracted using the split function 
(discussed in the There's more… section of the Performing simple image arithmetic recipe 
of Chapter 2, Manipulating Pixels) in order to be able to add them together. It is important to 
note that the result of this sum may sometimes be greater than 255, but because saturation 
is always applied, the result will be stopped at 255. The consequence is that with this version, 
the maxDist parameter must also be less than 256; this should be corrected if you consider 
this behavior unacceptable. The last step is to create a binary image by using the threshold 
function. This function is commonly used to compare all the pixels with a threshold value (the 
third parameter), and in the regular thresholding mode (cv::THRESH_BINARY), it assigns the 
defined maximum value (the fourth parameter) to all the pixels greater than threshold and 0. 
Here, we used the inverse mode (cv::THRESH_BINARY_INV) in which the defined maximum 
value is assigned to the pixels that have a value lower than or equal to the threshold. Of 
interest are also the cv::THRESH_TOZERO_INV and cv::THRESH_TOZERO_INV modes, 
which leave the pixels greater than or lower than the threshold unchanged.

Using the OpenCV functions is always a good idea. You can then quickly build complex 
applications and potentially reduce the number of bugs. The result is often more efficient 
(thanks to the optimization efforts invested by the OpenCV contributors). However, when  
many intermediate steps are performed, you may find that the resulting method consumes 
more memory.

The functor or function object
Using the C++ operator overloading, it is possible to create a class for which its instances 
behave as functions. The idea is to overload the operator() method such that a call to the 
processing method of a class behaves exactly like a simple function call. The resulting class 
instance is called a function object or a functor. Often, a functor includes a full constructor 
such that it can be used immediately after being created. For example, you can add the 
following constructor to your ColorDetector class:

  // full constructor
  ColorDetector(uchar blue, uchar green, uchar red, 
                int maxDist=100): maxDist(maxDist) { 

    // target color
    setTargetColor(blue, green, red);
  }
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Obviously, you can still use the setters and getters that have been defined previously.  
The functor method can be defined as follows:

  cv::Mat operator()(const cv::Mat &image) {

    // color detection code here …
  }

To detect a given color with this functor method, simply write the following code snippet:

ColorDetector colordetector(230,190,130,  // color
                                    100); // threshold
cv::Mat result= colordetector(image);   // functor call

As you can see, the call to the color detection method now looks like a function call. As a matter 
of fact, the colordetector variable can be used as if it were the name of a function.

See also
ff The policy-based class design, introduced by A. Alexandrescu, is an interesting variant 

of the Strategy design pattern in which algorithms are selected at compile time

ff The Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma 
et al, Addison-Wesley, 1994, is one of the classic books on the subject

Using a Controller design pattern to 
communicate with processing modules

As you build more complex applications, you will need to create multiple algorithms that can 
be combined together in order to accomplish some advanced tasks. Consequently, to properly 
set up the application and have all the classes communicate together will become more and 
more complex. It then becomes advantageous to centralize the control of the application in a 
single class. This is the idea behind the Controller design pattern. A Controller is a particular 
object that plays a central role in an application, and we will explore this in this recipe.

Getting ready
Using your favorite IDE, create a simple dialog-based application with two buttons; one button 
to select an image, and another button to start the processing, shown as follows:
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Here, we use the ColorDetector class of the previous recipe.

How to do it…
The role of the Controller class is to first create the classes required to execute the 
application. Here, there is only one class, but in a more complex application, several  
classes would be created. In addition, we need two member variables in order to hold  
a reference to the input and output results:

class ColorDetectController {

  private:

   // the algorithm class
   ColorDetector *cdetect;

   cv::Mat image;   // The image to be processed
   cv::Mat result;  // The image result

  public:

   ColorDetectController() { 

        //setting up the application
        cdetect= new ColorDetector();
   }
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Here, we chose to use a dynamic allocation for our class; you can also simply declare a class 
variable. You then need to define all of the setters and getters that a user would need to control 
the application:

     // Sets the color distance threshold
     void setColorDistanceThreshold(int distance) {

        cdetect->setColorDistanceThreshold(distance);
     }

     // Gets the color distance threshold
     int getColorDistanceThreshold() const {

        return cdetect->getColorDistanceThreshold();
     }

     // Sets the color to be detected
     void setTargetColor(unsigned char red, 
        unsigned char green, unsigned char blue) {	
             cdetect->setTargetColor(blue,green,red);
     }

     // Gets the color to be detected
     void getTargetColor(unsigned char &red, 
        unsigned char &green, unsigned char &blue) const {

        cv::Vec3b color= cdetect->getTargetColor();

        red= color[2];
        green= color[1];
        blue= color[0];
     }

     // Sets the input image. Reads it from file.
     bool setInputImage(std::string filename) {

        image= cv::imread(filename);

        return !image.empty();
     }

     // Returns the current input image.
     const cv::Mat getInputImage() const {

        return image;
     }
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You also need a method, which will be invoked, to start the process:

     // Performs image processing.
     void process() {

        result= cdetect->process(image);
     }

Moreover, you will need a method to obtain the result of the processing:

     // Returns the image result from the latest processing.
     const cv::Mat getLastResult() const {

        return result;
     }

Finally, it is important to clean up everything when the application terminates (and the 
Controller class is released):

     // Deletes processor objects created by the controller.
     ~ColorDetectController() {

        delete cdetect; // release memory of dynamically
     }                  // allocated class instance

How it works…
Using the previously mentioned Controller class, a programmer can easily build  
an interface for an application that will execute your algorithm. There is no need for  
the programmer to understand how all the classes are connected together or to find  
out which methods in which class must be called to have everything running properly.  
All this is done by the Controller class. The only requirement is to create an instance  
of the Controller class.

The setters and getters that are defined in the Controller class are the ones that are 
required to deploy your algorithm. Most often, these methods simply call the corresponding 
ones in the appropriate class. The simple example used here includes only one class algorithm, 
but in general, several class instances will be involved. Therefore, the role of Controller is to 
redirect the request to the appropriate class (in object-oriented programming, this mechanism  
is called delegation). Another objective of the Controller pattern is to simplify the interface for  
the application classes. As an example of such simplification, consider the setTargetColor 
and getTargetColor methods. Both use uchar to set and get the color of interest.  
This eliminates the necessity for the application programmer to know anything about the 
cv::Vec3b class.
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In some cases, the Controller also prepares the data provided by the application programmer. 
This is what we did in the case of the setInputImage method, in which the image that 
corresponds to the given filename is loaded in the memory. The method returns true or 
false depending on whether the loading operation was successful (an exception could  
also have been thrown to handle this situation).

Finally, the process method is the one that runs the algorithm. This method does not  
return a result, and another method must be called in order to get the result of the latest 
processing performed.

Now, to create a very basic dialog-based application using this controller, just add a 
ColorDetectController member variable to the dialog class (called colordetect  
here). As an example, using the MS Visual Studio framework, the Open button callback 
method of an MFC dialog would look as follows:

// Callback method of "Open" button.
void OnOpen()
{
    // MFC widget to select a file of type bmp or jpg
    CFileDialog dlg(TRUE, _T("*.bmp"), NULL,
     OFN_FILEMUSTEXIST|OFN_PATHMUSTEXIST|OFN_HIDEREADONLY,
     _T("image files (*.bmp; *.jpg) 
         |*.bmp;*.jpg|All Files (*.*)|*.*||"),NULL);

    dlg.m_ofn.lpstrTitle= _T("Open Image");

    // if a filename has been selected
    if (dlg.DoModal() == IDOK) {

      // get the path of the selected filename
      std::string filename= dlg.GetPathName();  

      // set and display the input image
      colordetect.setInputImage(filename);
      cv::imshow("Input Image",colordetect.getInputImage());
    }
}

The second button executes the Process method and displays the result as follows:

// Callback method of "Process" button.
void OnProcess()
{
   // target color is hard-coded here
   colordetect.setTargetColor(130,190,230);
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   // process the input image and display result
   colordetect.process();
   cv::imshow("Output Result",colordetect.getLastResult());
}

Obviously, a more complete application would include additional widgets in order to allow the 
user to set the algorithm parameters.

There's more…
When you build an application, always take the time to structure it such that it will be easy to 
maintain and evolve. There exist a number of architectural patterns that can help you meet 
this objective.

The Model-View-Controller architecture
The Model-View-Controller (MVC) architecture has the objective to produce an application 
that clearly separates the application logic from the user interface. As the name suggests,  
the MVC pattern involves three main components.

The Model contains information concerning the application. It holds all the data that is 
processed by the application. When new data is produced, it will inform the Controller (often 
asynchronously), which in turn will ask the view to display the new results. Often, the Model 
will group together several algorithms, possibly implemented following the Strategy pattern.  
All these algorithms are a part of the Model.

The View corresponds to the user interface. It is composed of the different widgets that 
present the data to the user and allow the user to interact with the application. One of  
its roles is to send the commands issued by the user to the Controller. When new data  
is available, it refreshes itself in order to display the new information.

The Controller is the module that bridges the View and the Model together. It receives 
requests from the View and relays them to the appropriate methods in the model. It is also 
informed when the Model changes its state; consequently, the Controller asks the View to 
refresh in order to display this new information.

Under the MVC architecture, the user interface calls the Controller methods. It does not 
contain any application data and does not implement any application logic. Consequently,  
it is easy to substitute an interface with another one. The designer of the GUI does not need 
to understand the functioning of the application. Reciprocally, the application logic can be 
modified without the GUI being affected.
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Converting color representations
The earlier recipes taught you how to encapsulate an algorithm into a class. This way, the 
algorithm becomes easier to use through a simplified interface. Encapsulation also permits 
you to modify an algorithm's implementation without impacting the classes that use it. 
This principle is illustrated in the next recipe, where we will modify the ColorDetector 
class algorithm in order to use another color space. Therefore, this recipe will also be an 
opportunity to introduce color conversions with OpenCV.

Getting ready
The RGB color space is based on the use of the red, green, and blue additive primary colors. 
These have been selected because when they are combined together, they can produce a wide 
gamut of different colors. In fact, the human visual system is also based on the trichromatic 
perception of colors, with cone cell sensitivity located around the red, green, and blue spectrum. 
It is often the default color space in digital imagery because that is the way they are acquired. 
Captured light goes through the red, green, and blue filters. Additionally, in digital images, the 
red, green, and blue channels are adjusted such that when combined in equal amounts, a  
gray-level intensity is obtained, that is, from black (0,0,0) to white (255,255,255).

Unfortunately, computing the distance between the colors using the RGB color space is not the 
best way to measure the similarity between two given colors. Indeed, RGB is not a perceptually 
uniform color space. This means that two colors at a given distance might look very similar, 
while two other colors separated by the same distance might look very different.

To solve this problem, other color representations that have the property of being perceptually 
uniform have been introduced. In particular, the CIE L*a*b* is one such color model. By 
converting our images to this representation, the Euclidean distance between an image pixel 
and the target color will then be a meaningful measure of the visual similarity between the 
two colors. In this recipe, we will show you how to modify the previous application in order to 
work with CIE L*a*b*.

How to do it…
Conversion of images between different color spaces is easily done through the use of the 
cv::cvtColor OpenCV function. Let's convert the input image to the CIE L*a*b* color 
space at the beginning of the process method:

cv::Mat ColorDetector::process(const cv::Mat &image) {

     // re-allocate binary map if necessary
     // same size as input image, but 1-channel
     result.create(image.rows,image.cols,CV_8U);
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     // Converting to Lab color space 
     cv::cvtColor(image, converted, CV_BGR2Lab);

     // get the iterators of the converted image 
     cv::Mat_<cv::Vec3b>::iterator it= 
                 converted.begin<cv::Vec3b>();
     cv::Mat_<cv::Vec3b>::iterator itend= 
                 converted.end<cv::Vec3b>();
     // get the iterator of the output image 
     cv::Mat_<uchar>::iterator itout= result.begin<uchar>();

     // for each pixel
     for ( ; it!= itend; ++it, ++itout) {
     …

The converted variable contains the image after color conversion. In the ColorDetector 
class, it is defined as a class attribute:

class ColorDetector {

  private:
     // image containing color converted image
     cv::Mat converted;

You also need to convert the input target color. You can do this by creating a temporary image 
that contains only one pixel. Note that you need to keep the same signature as in the earlier 
recipes, that is, the user continues to supply the target color in RGB:

     // Sets the color to be detected
     void setTargetColor(unsigned char red, 
           unsigned char green, unsigned char blue) {

         // Temporary 1-pixel image
         cv::Mat tmp(1,1,CV_8UC3);
         tmp.at<cv::Vec3b>(0,0)= cv::Vec3b(blue, green, red);

         // Converting the target to Lab color space 
         cv::cvtColor(tmp, tmp, CV_BGR2Lab);

         target= tmp.at<cv::Vec3b>(0,0);
     }

If the application of the preceding recipe is compiled with this modified class, it will now 
detect the pixels of the target color using the CIE L*a*b* color model.
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How it works…
When an image is converted from one color space to another, a linear or nonlinear 
transformation is applied on each input pixel to produce the output pixels. The pixel type of 
the output image will match the one of the input image. Even if you work with 8-bit pixels most 
of the time, you can also use a color conversion with floating-point images (in which case, 
the pixel values are generally assumed to vary between 0 and 1.0) or with integer images 
(with pixels generally varying between 0 and 65535). However, the exact domain of the pixel 
values depends on the specific color space and destination image type. For example, with 
the CIE L*a*b* color space, the L channel, which represents the brightness of each pixel, 
varies between 0 and 100, and it is rescaled between 0 and 255 in the case of the 8-bit 
images. The a and b channels correspond to the chromaticity components. These channels 
contain information about the color of a pixel, independent of its brightness. Their values 
vary between -127 and 127; for 8-bit images, 128 is added to each value in order to make 
it fit within the 0 to 255 interval. However, note that the 8-bit color conversion will introduce 
rounding errors that will make the transformation imperfectly reversible.

Most commonly used color spaces are available. It is just a question of providing the  
right color space conversion code to the OpenCV function (for CIE L*a*b*, this code is  
CV_BGR2Lab). Among these is YCrCb, which is the color space used in a JPEG compression. 
To convert a color space from BGR to YCrCb, the code will be CV_BGR2YCrCb. Note that 
all the conversions that involve the three regular primary colors, red, green, and blue, are 
available in the RGB and BGR order.

The CIE L*u*v* color space is another perceptually uniform color space. You can convert 
from BGR to CIE L*u*v by using the CV_BGR2Luv code. Both L*a*b* and L*u*v* use the 
same conversion formula for the brightness channel but use a different representation for 
the chromaticity channels. Also, note that since these two color spaces distort the RGB 
color domain in order to make it perceptually uniform, these transformations are nonlinear 
(therefore, they are costly to compute).

There is also the CIE XYZ color space (with the CV_BGR2XYZ code). It is a standard color space 
used to represent any perceptible color in a device-independent way. In the computation of the 
L*u*v and L*a*b color spaces, the XYZ color space is used as an intermediate representation. 
The transformation between RGB and XYZ is linear. It is also interesting to note that the Y 
channel corresponds to a gray-level version of the image.

HSV and HLS are interesting color spaces because they decompose the colors into their  
hue and saturation components plus the value or luminance component, which is a more 
natural way for humans to describe colors.

You can also convert color images to a gray-level intensity. The output will be a  
one-channel image:

         cv::cvtColor(color, gray, CV_BGR2Gray);



Chapter 3

79

It is also possible to do the conversion in another direction, but the three channels of the 
resulting color image will then be identically filled with the corresponding values in the  
gray-level image.

See also
ff The Using the mean shift algorithm to find an object recipe in Chapter 4,  

Counting the Pixels with Histograms, uses the HSV color space in order to  
find an object in an image.

ff Many good references are available on the color space theory. Among them,  
the following is a complete reference: The Structure and Properties of Color  
Spaces and the Representation of Color Images, E. Dubois, Morgan and  
Claypool Publishers, 2009.

Representing colors with hue, saturation, 
and brightness

In this chapter, we played with image colors. We used different color spaces and tried to 
identify image areas that have a specific color. The RGB color space, for instance, was 
considered, and although it is an effective representation for the capture and display of 
colors in electronic imaging systems, this representation is not very intuitive. This is not the 
way humans think about colors. We talk about colors in terms of their tint, brightness, or 
colorfulness (that is, whether it is a vivid or pastel color). The phenomenal color spaces 
based on the concept of hue, saturation, and brightness were introduced to help users to 
specify the colors using properties that are more intuitive to them. In this recipe, we will 
explore the concepts of hue, saturation, and brightness as a means to describe colors.

How to do it…
The conversion of a BGR image into a phenomenal color space is done using the 
cv::cvtColor function that was explored in the previous recipe. Here, we will use  
the CV_BGR2HSV conversion code:

    // convert into HSV space
    cv::Mat hsv;
    cv::cvtColor(image, hsv, CV_BGR2HSV);
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We can go back to the BGR space using the CV_HSV2BGR code. We can visualize each  
of the HSV components by splitting the converted image channels into three independent 
images, as follows:

    // split the 3 channels into 3 images
    std::vector<cv::Mat> channels;
    cv::split(hsv,channels);
    // channels[0] is the Hue
    // channels[1] is the Saturation
    // channels[2] is the Value

Since we are working on 8-bit images, OpenCV rescales the channel values to cover the 0 to 
255 range (except for the hue, which is rescaled between 0 and 180 as it will be explained  
in the next section). This is very convenient as we are able to display these channels as  
gray-level images. The value channel of the castle image will then look as follows:
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The same image in the saturation channel will look as follows:

Finally, the image with the hue channel is as follows:

These images are interpreted in the next section.
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How it works…
The phenomenal color spaces have been introduced because they correspond to the way 
humans tend to naturally organize colors. Indeed, humans prefer to describe colors with 
intuitive attributes such as tint, colorfulness, and brightness. These three attributes are the 
basis of most phenomenal color spaces. Hue designates the dominant color; the names that 
we give to colors (such as green, yellow, blue, and red) correspond to the different hue values. 
Saturation tells us how vivid the color is; pastel colors have low saturation, while the colors of 
the rainbow are highly saturated. Finally, brightness is a subjective attribute that refers to the 
luminosity of a color. Other phenomenal color spaces use the concept of color value or color 
lightness as a way to characterize the relative color intensity.

These color components try to mimic the intuitive human perception of colors. In consequence, 
there is no standard definition for them. In the literature, you will find several different definitions 
and formulae of the hue, saturation, and brightness. OpenCV proposes two implementations 
of phenomenal color spaces: the HSV and the HLS color spaces. The conversion formulas are 
slightly different, but they give very similar results.

The value component is probably the easiest to interpret. In the OpenCV implementation of 
the HSV space, it is defined as the maximum value of the three BGR components. It is a very 
simplistic implementation of the brightness concept. For a definition that matches the human 
visual system better, you should use the L channel of the L*a*b* or L*u*v* color spaces.

To compute the saturation, OpenCV uses a formula based on the minimum and maximum 
values of the BGR components:

max(R,G,B) min(R,G,B)s
max(R,G,B)

−
=

The idea is that a grayscale color in which the three R, G, and B components are all equal 
will correspond to a perfectly desaturated color; therefore, it will have a saturation value of 0. 
Saturation is then a value between 0 and 1.0. For 8-bit images, saturation is rescaled to a 
value between 0 and 255, and when displayed as a gray-level image, brighter areas correspond 
to the colors that have a higher saturation color. For example, from the saturation image in the 
previous section, it can be seen that the blue of the water is more saturated than the light blue 
pastel color of the sky, as expected. The different shades of gray have, by definition, a saturation 
value equal to zero (because, in this case, all the three BGR components are equal). This can 
be observed on the different roofs of the castle, which are made of a dark gray stone. Finally, in 
the saturation image, you may have noticed some white spots located at areas that correspond 
to very dark regions of the original image. These are a consequence of the used definition for 
saturation. Indeed, because saturation measures only the relative difference between the 
maximum and minimum BGR values, a triplet such as (1,0,0) gives a perfect saturation of  
1.0, even if this color would be seen as black. Consequently, the saturation values measured  
at dark regions are unreliable and should not be considered.
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The hue of a color is generally represented by an angle value between 0 and 360, with the red 
color at 0 degree. In the case of an 8-bit image, OpenCV divides this angle by two to fit within 
the single byte range. Therefore, each hue value corresponds to a given color tint independent 
of its brightness and saturation. For example, both the sky and the water have the same hue 
value, approximately 200 degrees (intensity, 100), which corresponds to the blue shade; the 
green color of the trees in the background has a hue of around 90 degrees. It is important to 
note that hue is less reliable when evaluated for colors that have a very low saturation.

The HSB color space is often represented by a cone, where each point inside corresponds to a 
particular color. The angular position corresponds to the hue of the color, the saturation is the 
distance from the central axis, and the brightness is given by the height. The tip of the cone 
corresponds to the black color for which the hue and saturation are undefined.

B

S
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Interesting effects can be created by playing with the HSV values. Several color effects 
that can be created using photo editing software are accomplished by this color space. For 
example, you may decide to modify an image by assigning a constant brightness to all the 
pixels of an image without changing the hue and saturation. This can be done as follows:

  // convert into HSV space
  cv::Mat hsv;
  cv::cvtColor(image, hsv, CV_BGR2HSV);
  // split the 3 channels into 3 images
  std::vector<cv::Mat> channels;
  cv::split(hsv,channels);
  // Value channel will be 255 for all pixels
  channels[2]= 255;  
  // merge back the channels
  cv::merge(channels,hsv);
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  // reconvert to BGR
  cv::Mat newImage;
  cv::cvtColor(hsv,newImage,CV_HSV2BGR);

This gives the following screenshot, which now looks like a drawing (see the book's graphic 
bundle to view this image in color):

There's more…
The HSV color space can also be very convenient to use when you want to look for objects of 
specific colors.

Using colors for detection – skin tone detection
Color information can be very useful for the initial detection of specific objects. For example, 
the detection of road signs in a driver-assistance application could rely on the colors of 
standard signs in order to quickly extract potential road sign candidates. The detection of skin 
color is another example in which the detected skin regions could be used as an indicator of 
the presence of a human in an image; this approach is very often used in gesture recognition 
where skin tone detection is used to detect hand positions.
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In general, to detect an object using color, you first need to collect a large database of image 
samples that contain the object captured from different viewing conditions. These will be used 
to define the parameters of your classifier. You also need to select the color representation that 
you will use for classification. For skin tone detection, many studies have shown that skin color 
from the diverse ethnical groups clusters well in the hue-saturation space. For this reason, we 
will simply use the hue and saturation values to identify the skin tones in the following image 
(see the book's graphic bundle to view this image in color):

Therefore, we have defined a function that classifies the pixels of an image as skin or non-skin 
simply based on an interval of values (the minimum and maximum hue, and the minimum and 
maximum saturation):

void detectHScolor(const cv::Mat& image,  // input image 
  double minHue, double maxHue,  // Hue interval 
  double minSat, double maxSat,  // saturation interval
  cv::Mat& mask) {               // output mask

  // convert into HSV space
  cv::Mat hsv;
  cv::cvtColor(image, hsv, CV_BGR2HSV);

  // split the 3 channels into 3 images
  std::vector<cv::Mat> channels;
  cv::split(hsv, channels);
  // channels[0] is the Hue
  // channels[1] is the Saturation
  // channels[2] is the Value
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  // Hue masking
  cv::Mat mask1; // under maxHue
  cv::threshold(channels[0], mask1, maxHue, 255,
  cv::THRESH_BINARY_INV);
  cv::Mat mask2; // over minHue
  cv::threshold(channels[0], mask2, minHue, 255,
  cv::THRESH_BINARY);

  cv::Mat hueMask; // hue mask
  if (minHue < maxHue)
      hueMask = mask1 & mask2;
  else // if interval crosses the zero-degree axis
      hueMask = mask1 | mask2;

  // Saturation masking
  // under maxSat
  cv::threshold(channels[1], mask1, maxSat, 255,
  cv::THRESH_BINARY_INV);
  // over minSat
  cv::threshold(channels[1], mask2, minSat, 255,
  cv::THRESH_BINARY);

  cv::Mat satMask; // saturation mask
  satMask = mask1 & mask2;

  // combined mask
  mask = hueMask&satMask;
}

Having a large set of skin (and non-skin) samples at our disposal, we could have used a 
probabilistic approach in which the likelihood of observing a given color in the skin class 
versus that of observing the same color in the non-skin class. Here, we empirically defined  
an acceptable hue-saturation interval for our test image (remember that the 8-bit version  
of the hue goes from 0 to 180 and saturation goes from 0 to 255):

  // detect skin tone
  cv::Mat mask;
  detectHScolor(image, 
        160, 10, // hue from 320 degrees to 20 degrees 
        25, 166, // saturation from ~0.1 to 0.65
        mask);

  // show masked image
  cv::Mat detected(image.size(), CV_8UC3, cv::Scalar(0, 0, 0));
  image.copyTo(detected, mask);
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The following detection image is obtained as the result:

Note that, for simplicity, we have not considered color saturation in the detection. In practice, 
excluding the colors with a high saturation would have reduced the possibility of the wrong 
detection of bright reddish colors as skin. Obviously, a reliable and accurate detection of skin 
color would require a much more elaborate analysis that would have to be based on a large 
number of skin samples. It is also very difficult to guarantee good detection across different 
images because many factors influence the color rendering in photography, such as white 
balancing and lighting conditions. Nevertheless, as shown in this chapter, only using hue 
information as an initial detector gives us acceptable results.





4
Counting the Pixels 

with Histograms

In this chapter, we will cover the following recipes:

ff Computing the image histogram

ff Applying look-up tables to modify the image appearance

ff Equalizing the image histogram

ff Backprojecting a histogram to detect the specific image content

ff Using the mean shift algorithm to find an object

ff Retrieving similar images using the histogram comparison

ff Counting pixels with integral images

Introduction
An image is composed of pixels of different values (colors). The distribution of pixel values 
across an image constitutes an important characteristic of that image. This chapter introduces 
the concept of image histograms. You will learn how to compute a histogram and how to use it to 
modify an image's appearance. Histograms can also be used to characterize an image's content 
and detect specific objects or textures in an image. Some of these techniques will be presented 
in this chapter.
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Computing the image histogram
An image is made of pixels, and each of them have different values. For example, in a 1-channel 
gray-level image, each pixel has a value between 0 (black) and 255 (white). Depending on the 
picture content, you will find different amounts of each gray shade laid out inside the image.

A histogram is a simple table that gives you the number of pixels that have a given value in 
an image (or sometimes, a set of images). The histogram of a gray-level image will, therefore, 
have 256 entries (or bins). Bin 0 gives you the number of pixels that have the value 0, bin 1 
gives you the number of pixels that have the value 1, and so on. Obviously, if you sum all of 
the entries of a histogram, you should get the total number of pixels. Histograms can also 
be normalized such that the sum of the bins equals 1. In this case, each bin gives you the 
percentage of pixels that have this specific value in the image.

Getting started
The first three recipes of this chapter will use the following image:

How to do it...
Computing a histogram with OpenCV can be easily done by using the cv::calcHist function. 
This is a general function that can compute the histogram of multiple channel images of any 
pixel value type and range. Here, we will make this simpler to use by specializing a class for the 
case of 1-channel gray-level images. For other types of images, you can always directly use the 
cv::calcHist function, which offers you all the flexibility required. The next section will explain 
each of its parameters.
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For now, our specialized class looks as follows:

// To create histograms of gray-level images
class Histogram1D {

  private:

    int histSize[1];         // number of bins in histogram
    float hranges[2];        // range of values
    const float* ranges[1];  // pointer to the value ranges
    int channels[1];         // channel number to be examined

  public:

  Histogram1D() {

    // Prepare default arguments for 1D histogram
    histSize[0]= 256;   // 256 bins
    hranges[0]= 0.0;    // from 0 (inclusive)
    hranges[1]= 256.0;  // to 256 (exclusive)
    ranges[0]= hranges; 
    channels[0]= 0;     // we look at channel 0
  }

With the defined member variables, computing a gray-level histogram can then be 
accomplished using the following method:

  // Computes the 1D histogram.
  cv::Mat getHistogram(const cv::Mat &image) {

    cv::Mat hist;

    // Compute histogram
    cv::calcHist(&image, 
      1,         // histogram of 1 image only
      channels,  // the channel used
      cv::Mat(), // no mask is used
      hist,      // the resulting histogram
      1,         // it is a 1D histogram
      histSize,  // number of bins
      ranges     // pixel value range
    );

    return hist;
  }
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Now, your program simply needs to open an image, create a Histogram1D instance, and call 
the getHistogram method:

   // Read input image
   cv::Mat image= cv::imread("group.jpg",
                             0); // open in b&w

   // The histogram object
   Histogram1D h;

   // Compute the histogram
   cv::Mat histo= h.getHistogram(image);

The histo object here is a simple one-dimensional array with 256 entries. Therefore, you can 
read each bin by simply looping over this array:

   // Loop over each bin
   for (int i=0; i<256; i++) 
      cout << "Value " << i << " = " << 
                   histo.at<float>(i) << endl;  

With the image shown at the start of this chapter, some of the displayed values would read  
as follows:

...
Value 7 = 159
Value 8 = 208
Value 9 = 271
Value 10 = 288
Value 11 = 340
Value 12 = 418
Value 13 = 432
Value 14 = 472
Value 15 = 525
...

It is obviously difficult to extract any intuitive meaning from this sequence of values. For this 
reason, it is often convenient to display a histogram as a function, for example, using bar 
graphs. The following methods create such a graph:

// Computes the 1D histogram and returns an image of it.
cv::Mat getHistogramImage(const cv::Mat &image, 
                             int zoom=1){

  // Compute histogram first
  cv::Mat hist= getHistogram(image);
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  // Creates image
  return getImageOfHistogram(hist, zoom);
}

// Create an image representing a histogram (static method)
static cv::Mat getImageOfHistogram
                  (const cv::Mat &hist, int zoom) {
  // Get min and max bin values
  double maxVal = 0;
  double minVal = 0;
  cv::minMaxLoc(hist, &minVal, &maxVal, 0, 0);

  // get histogram size
  int histSize = hist.rows;

  // Square image on which to display histogram
  cv::Mat histImg(histSize*zoom, 
                   histSize*zoom, CV_8U, cv::Scalar(255));

  // set highest point at 90% of nbins (i.e. image height)
  int hpt = static_cast<int>(0.9*histSize);

  // Draw vertical line for each bin 
  for (int h = 0; h < histSize; h++) {

    float binVal = hist.at<float>(h);
    if (binVal>0) {
      int intensity = static_cast<int>(binVal*hpt / maxVal);
      cv::line(histImg, cv::Point(h*zoom, histSize*zoom),
        cv::Point(h*zoom, (histSize - intensity)*zoom), 
             cv::Scalar(0), zoom);
    }
  }

  return histImg;
}

Using the getImageOfHistogram method, you can obtain an image of the histogram 
function in the form of a bar graph that is drawn using lines:

   // Display a histogram as an image
   cv::namedWindow("Histogram");
   cv::imshow("Histogram",
               h.getHistogramImage(image));
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The result is the following image:

From the preceding histogram, it can be seen that the image exhibits a large peak of mid-gray  
level values and a good quantity of darker pixels. Coincidentally, these two groups mostly 
correspond to, respectively, the background and foreground of the image. This can be verified 
by thresholding the image at the transition between these two groups. A convenient OpenCV 
function can be used for this, namely the cv::threshold function that was introduced in the 
previous chapter. Here, to create our binary image, we threshold the image at the minimum 
value just before it increases toward the high peak of the histogram (gray value 60):

cv::Mat thresholded; // output binary image
cv::threshold(image,thresholded,
            60,    // threshold value
            255,   // value assigned to 
                   // pixels over threshold value
          cv::THRESH_BINARY); // thresholding type
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The resulting binary image clearly shows you the background/foreground segmentation:

How it works...
The cv::calcHist function has many parameters to permit its use in many contexts,  
which are as follows:

void calcHist(const Mat* images, int nimages, 
  const int* channels, InputArray mask, OutputArray hist, 
  int dims, const int* histSize, const float** ranges, 
  bool uniform=true, bool accumulate=false )

Most of the time, your histogram will be one of a single 1-channel or 3-channel image. 
However, the function allows you to specify a multiple-channel image distributed over several 
images. This is why an array of images is input into this function. The sixth parameter, dims, 
specifies the dimensionality of the histogram, for example, 1 for a 1D histogram. Even if you 
are analyzing a multichannel image, you do not have to use all its channels in the computation 
of the histogram. The channels to be considered are listed in the channel array that has the 
specified dimensionality. In our class implementation, this single channel is the channel 0 by 
default. The histogram itself is described by the number of bins in each dimension (this is the 
histSize array of integers) and by the minimum (inclusive) and maximum (exclusive) values 
in each dimension (given by the ranges array of 2-element arrays). It is also possible to 
define a non-uniform histogram; in which case, you need to specify the limits of each bin.
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As with many OpenCV functions, a mask can be specified, indicating which pixels you  
want to include in the count (all pixels for which the mask value is 0 are then ignored).  
Two additional optional parameters can be specified, both of which are Boolean values.  
The first one indicates whether the histogram is uniform or not (uniform is the default).  
The second allows you to accumulate the result of several histogram computations. If this  
last parameter is true, then the pixel count of the image will be added to the current values 
found in the input histogram. This is useful when you want to compute the histogram of a 
group of images.

The resulting histogram is stored in a cv::Mat instance. Indeed, the cv::Mat class can  
be used to manipulate general N-dimensional matrices. Recall from Chapter 2, Manipulating 
Pixels, that this class has defined the at method for matrices of dimension 1, 2, and 3. This is 
why we were able to write the following code when accessing each bin of the 1D histogram in 
the getHistogramImage method:

         float binVal = hist.at<float>(h);

Note that the values in the histogram are stored as float values.

There's more...
The Histogram1D class presented in this recipe has simplified the cv::calcHist 
function by restricting it to a 1D histogram. This is useful for gray-level images, but what 
about color images?

Computing histograms of color images
Using the same cv::calcHist function, we can compute histograms of multichannel 
images. For example, a class that computes histograms of color BGR images can be  
defined as follows:

class ColorHistogram {

  private:

    int histSize[3];        // size of each dimension
    float hranges[2];       // range of values
    const float* ranges[3]; // ranges for each dimension
    int channels[3];        // channel to be considered

  public:

  ColorHistogram() {

    // Prepare default arguments for a color histogram
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    // each dimension has equal size and range
    histSize[0]= histSize[1]= histSize[2]= 256;
    hranges[0]= 0.0;    // BRG range from 0 to 256
    hranges[1]= 256.0;
    ranges[0]= hranges; // in this class,  
    ranges[1]= hranges; // all channels have the same range
    ranges[2]= hranges; 
    channels[0]= 0;    // the three channels 
    channels[1]= 1; 
    channels[2]= 2; 
  }

In this case, the histogram will be three-dimensional. Therefore, we need to specify a range 
for each of the three dimensions. In the case of our BGR image, the three channels have the 
same [0,255] range. With the arguments thus prepared, the color histogram is computed  
by the following method:

  // Computes the histogram.
  cv::Mat getHistogram(const cv::Mat &image) {

    cv::Mat hist;

    // BGR color histogram
    hranges[0]= 0.0;    // BRG range
    hranges[1]= 256.0;
    channels[0]= 0;    // the three channels 
    channels[1]= 1; 
    channels[2]= 2; 

    // Compute histogram
    cv::calcHist(&image, 
      1,          // histogram of 1 image only
      channels,   // the channel used
      cv::Mat(),  // no mask is used
      hist,       // the resulting histogram
      3,          // it is a 3D histogram
      histSize,   // number of bins
      ranges      // pixel value range
    );

    return hist;
  }
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A three-dimensional cv::Mat instance is returned. When a histogram of 256 bins is selected, 
this matrix has (256)^3 elements, which represents more than 16 million entries. In many 
applications, it would be better to reduce the number of bins in the computation of the 
histogram. It is also possible to use the cv::SparseMat data structure that is designed to 
represent large sparse matrices (that is, matrices with very few nonzero elements) without 
consuming too much memory. The cv::calcHist function has a version that returns 
one such matrix. It is, therefore, simple to modify the previous method in order to use 
cv::SparseMatrix:

  // Computes the histogram.
  cv::SparseMat getSparseHistogram(const cv::Mat &image) {

    cv::SparseMat hist(3,        // number of dimensions
                      histSize, // size of each dimension
                   CV_32F);

    // BGR color histogram
    hranges[0]= 0.0;    // BRG range
    hranges[1]= 256.0;
    channels[0]= 0;     // the three channels 
    channels[1]= 1; 
    channels[2]= 2; 

    // Compute histogram
    cv::calcHist(&image, 
      1,         // histogram of 1 image only
      channels,  // the channel used
      cv::Mat(), // no mask is used
      hist,      // the resulting histogram
      3,         // it is a 3D histogram
      histSize,  // number of bins
      ranges     // pixel value range
    );

    return hist;
  }

Obviously, it is also possible to illustrate the color distribution in an image by showing the 
individual R, G, and B histograms.

See also
ff The Backprojecting a histogram to detect specific image content recipe later in this 

chapter makes use of color histograms in order to detect specific image content
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Applying look-up tables to modify the  
image appearance

Image histograms capture the way a scene is rendered using the available pixel intensity 
values. By analyzing the distribution of the pixel values over an image, it is possible to use  
this information to modify and possibly improve an image. This recipe explains how we can 
use a simple mapping function, represented by a look-up table, to modify the pixel values  
of an image. As we will see, look-up tables are often defined from histogram distributions.

How to do it...
A look-up table is a simple one-to-one (or many-to-one) function that defines how pixel values 
are transformed into new values. It is a 1D array with, in the case of regular gray-level images, 
256 entries. Entry i of the table gives you the new intensity value of the corresponding gray 
level, which is as follows:

         newIntensity= lookup[oldIntensity];

The cv::LUT function in OpenCV applies a look-up table to an image in order to produce a 
new image. We can add this function to our Histogram1D class:

   static cv::Mat applyLookUp(
    const cv::Mat& image,     // input image
    const cv::Mat& lookup) {  // 1x256 uchars

      // the output image
      cv::Mat result;

      // apply lookup table
      cv::LUT(image,lookup,result);

      return result;
   }

How it works...
When a look-up table is applied on an image, it results in a new image where the pixel intensity 
values have been modified as prescribed by the look-up table. A simple transformation could be 
the following:

   // Create an image inversion table
   int dim(256);
   cv::Mat lut(1, // 1 dimension
      &dim,       // 256 entries
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      CV_8U);     // uchar

   for (int i=0; i<256; i++) {
      
      lut.at<uchar>(i)= 255-i;
   }

This transformation simply inverts the pixel intensities, that is, intensity 0 becomes 255,  
1 becomes 254, and so on. Applying such a look-up table on an image will produce the 
negative of the original image. On the image of the previous recipe, the result is seen here:

There's more...
Look-up tables are useful for any application in which all pixel intensities are given a new 
intensity value. The transformation, however, has to be global, that is, all pixels of each 
intensity value must undergo the same transformation.

Stretching a histogram to improve the image contrast
It is possible to improve an image's contrast by defining a look-up table that modifies the 
original image's histogram. For example, if you observe the histogram of the previous image 
shown in the first recipe, it is easy to notice that the full range of possible intensity values  
is not used (in particular, for this image, the brighter intensity values have not been used).  
We can, therefore, stretch the histogram in order to produce an image with an expanded 
contrast. To do so, the procedure uses a percentile threshold that defines the percentage  
of pixels that should be black and white in the stretched image.
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We must, therefore, find the lowest (imin) and the highest (imax) intensity values such that 
we have the required minimum number of pixels below or above the specified percentile. The 
intensity values can then be remapped such that the imin value is repositioned at intensity 
0 and the imax value is assigned the value of 255. The in-between i intensities are simply 
linearly remapped as follows:

255.0*(i-imin)/(imax-imin);

Consequently, the complete image stretch method would look as follows:

   cv::Mat stretch(const cv::Mat &image, int minValue=0) {

      // Compute histogram first
      cv::Mat hist= getHistogram(image);

      // find left extremity of the histogram
      int imin= 0;
      for( ; imin < histSize[0]; imin++ ) {
         // ignore bins with less than minValue entries
         if (hist.at<float>(imin) > minValue)
            break;
      }
      
      // find right extremity of the histogram
      int imax= histSize[0]-1;
      for( ; imax >= 0; imax-- ) {

         // ignore bins with less than minValue entries
         if (hist.at<float>(imax) > minValue)
            break;
      }
   
      // Create lookup table
      int dim(256);
      cv::Mat lookup(1,  // 1 dimension
            &dim,        // 256 entries
            CV_8U);      // uchar

      // Build lookup table
      for (int i=0; i<256; i++) {
      
         // stretch between imin and imax
         if (i < imin) lookup.at<uchar>(i)= 0;
         else if (i > imax) lookup.at<uchar>(i)= 255;
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         // linear mapping
      else lookup.at<uchar>(i)= 
        cvRound(255.0*(i-imin)/(imax-imin));
      }

      // Apply lookup table
      cv::Mat result;
      result= applyLookUp(image,lookup);

      return result;
   }

Note the call to our applyLookUp method once this method has been computed. Also, in 
practice, it could be advantageous to not only ignore bins with the 0 value, but also entries 
with negligible count, for example, less than a given value (defined here as minValue).  
The method is called as follows:

  // setting 1% of pixels at black and 1% at white
  cv::Mat streteched = h.stretch(image,0.01f);

The resulting stretched image is as follows:
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The expanded histogram then looks as follows:

Applying a look-up table on color images
In Chapter 2, Manipulating Pixels, we defined a color-reduction function that modifies the BGR 
values of an image in order to reduce the number of possible colors. We did this by looping 
through the image's pixels and applying the color-reduction function on each of them. In fact, 
it would be much more efficient to precompute all color reductions and then modify each pixel 
by using a look-up table. This is indeed very easy to accomplish from what we learned in this 
recipe. The new color-reduction function would then be written as follows:

void colorReduce(cv::Mat &image, int div=64) {
  
    // creating the 1D lookup table
    cv::Mat lookup(1,256,CV_8U);
      
    // defining the color reduction lookup
    for (int i=0; i<256; i++) 
      lookup.at<uchar>(i)= i/div*div + div/2;

    // lookup table applied on all channels
    cv::LUT(image,lookup,image);
}
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The color-reduction scheme is correctly applied here because when a one-dimensional look-
up table is applied to a multichannel image, then the same table is individually applied to all 
channels. When a look-up table has more than one dimension, then it must be applied to an 
image with the same number of channels.

See also
ff The next recipe shows you another way to improve the image contrast

Equalizing the image histogram
In the previous recipe, we showed you how the contrast of an image can be improved by 
stretching a histogram so that it occupies the full range of the available intensity values. 
This strategy indeed constitutes an easy fix that can effectively improve an image. However, 
in many cases, the visual deficiency of an image is not that it uses a too-narrow range of 
intensities. Rather, it is that some intensity values are used more frequently than others.  
The histogram shown in the first recipe of this chapter is a good example of this phenomenon. 
The middle-gray intensities are indeed heavily represented, while darker and brighter pixel 
values are rather rare. In fact, you would think that a good-quality image should make 
equal use of all available pixel intensities. This is the idea behind the concept of histogram 
equalization, that is, making the image histogram as flat as possible.

How to do it...
OpenCV offers an easy-to-use function that performs histogram equalization. It is called  
as follows:

      cv::equalizeHist(image,result);

After applying it on our image, the following screenshot is the result:
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This equalized image has the following histogram:

Of course, the histogram cannot be perfectly flat because the look-up table is a global  
many-to-one transformation. However, it can be seen that the general distribution of the 
histogram is now more uniform than the original one.

How it works...
In a perfectly uniform histogram, all bins would have an equal number of pixels. This implies 
that 50 percent of the pixels should have an intensity lower than 128, 25 percent should have 
an intensity lower than 64, and so on. This observation can be expressed using the rule that 
in a uniform histogram, p% of the pixels must have an intensity value lower than or equal to 
255*p%. The rule used to equalize a histogram is that the mapping of intensity i should be  
at the intensity that corresponds to the percentage of pixels that have an intensity value  
below i. Therefore, the required look-up table can be built from the following equation:

lookup.at<uchar>(i)=   
        static_cast<uchar>(255.0*p[i]/image.total());

Here, p[i] is the number of pixels that have an intensity lower than or equal to i. The p[i] 
function is often referred to as a cumulative histogram, that is, it is a histogram that contains 
the count of pixels lower than or equal to a given intensity instead of containing the count of 
pixels that have a specific intensity value. Recall that image.total() returns the number  
of pixels in an image, so p[i]/image.total() is a percentage of pixels.

Generally, the histogram equalization greatly improves the image's appearance. However, 
depending on the visual content, the quality of the result can vary from image to image.
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Backprojecting a histogram to detect 
specific image content

A histogram is an important characteristic of an image's content. If you look at an image area 
that shows a particular texture or a particular object, then the histogram of this area can be 
seen as a function that gives the probability that a given pixel belongs to this specific texture 
or object. In this recipe, you will learn how the concept of histogram backprojection can be 
advantageously used to detect specific image content.

How to do it...
Suppose you have an image and you wish to detect specific content inside it (for example, in 
the following image, the clouds in the sky). The first thing to do is to select a region of interest 
that contains a sample of what you are looking for. This region is the one inside the rectangle 
drawn on the following test image:

In our program, the region of interest is obtained as follows:

   cv::Mat imageROI;
   imageROI= image(cv::Rect(216,33,24,30)); // Cloud region

You then extract the histogram of this ROI. This is easily accomplished using the 
Histogram1D class defined in the first recipe of this chapter as follows:

   Histogram1D h;
   cv::Mat hist= h.getHistogram(imageROI);
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By normalizing this histogram, we obtain a function that gives us the probability that a pixel of 
a given intensity value belongs to the defined area as follows:

   cv::normalize(histogram,histogram,1.0);

Backprojecting a histogram consists of replacing each pixel value in an input image with 
its corresponding probability value read in the normalized histogram. An OpenCV function 
performs this task as follows:

  cv::calcBackProject(&image,
            1,          // one image
            channels,   // the channels used, 
                        // based on histogram dimension
            histogram,  // the histogram we are backprojecting
            result,     // the resulting back projection image
            ranges,     // the ranges of values
            255.0       // the scaling factor is chosen 
            // such that a probability value of 1 maps to 255
       );

The result is the following probability map, with probabilities belonging to the reference area 
ranging from bright (low probability) to dark (high probability):

If we apply a threshold on this image, we obtain the most probable "cloud" pixels:

cv::threshold(result, result, threshold, 
                      255, cv::THRESH_BINARY);
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The result is shown in the following screenshot:

How it works...
The preceding result is disappointing because, in addition to the clouds, other areas have 
been wrongly detected as well. It is important to understand that the probability function 
has been extracted from a simple gray-level histogram. Many other pixels in the image share 
the same intensities as the cloud pixels, and pixels of the same intensity are replaced with 
the same probability value when backprojecting the histogram. One solution to improve the 
detection result would be to use the color information. However, in order to do this, we need  
to modify the call to cv::calBackProject.

The cv::calBackProject function is similar to the cv::calcHist function. The first 
parameter specifies the input image. You then need to list the channel numbers you wish 
to use. The histogram that is passed to the function is, this time, an input parameter; its 
dimension should match the one of the channel list array. As with cv::calcHist, the  
ranges parameter specifies the bin boundaries of the input histogram in the form of an  
array of float arrays, each specifying the range (minimum and maximum values) of each 
channel. The resulting output is an image, which is the computed probability map. Since  
each pixel is replaced by the value found in the histogram at the corresponding bin position, 
the resulting image has values between 0.0 and 1.0 (assuming a normalized histogram  
has been provided as input). A last parameter allows you to optionally rescale these values  
by multiplying them by a given factor.
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There's more...
Let's now see how we can use the color information in the histogram backprojection algorithm.

Backprojecting color histograms
Multidimensional histograms can also be backprojected onto an image. Let's define a class 
that encapsulates the backprojection process. We first define the required attributes and 
initialize the data as follows:

class ContentFinder {

  private:

  // histogram parameters
  float hranges[2];
   const float* ranges[3];
   int channels[3];

  float threshold;           // decision threshold
  cv::Mat histogram;         // input histogram 

  public:

  ContentFinder() : threshold(0.1f) {

    // in this class, all channels have the same range
    ranges[0]= hranges;  
    ranges[1]= hranges; 
    ranges[2]= hranges; 
  }

Next, we define a threshold parameter that will be used to create the binary map that shows 
the detection result. If this parameter is set to a negative value, the raw probability map will 
be returned. Refer to the following code:

   // Sets the threshold on histogram values [0,1]
   void setThreshold(float t) {

      threshold= t;
   }

   // Gets the threshold
   float getThreshold() {

      return threshold;
   }
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The input histogram is normalized (this is, however, not required) as follows:

   // Sets the reference histogram
   void setHistogram(const cv::Mat& h) {

      histogram= h;
      cv::normalize(histogram,histogram,1.0);
   }

To backproject the histogram, you simply need to specify the image, the range (we assumed 
here that all channels have the same range), and the list of channels used. Refer to the 
following code:

  // All channels used, with range [0,256[
  cv::Mat find(const cv::Mat& image) {

    cv::Mat result;

    hranges[0]= 0.0;   // default range [0,256[
    hranges[1]= 256.0;
    channels[0]= 0;    // the three channels 
    channels[1]= 1; 
    channels[2]= 2; 

    return find(image, hranges[0], hranges[1], channels);
  }

  // Finds the pixels belonging to the histogram
  cv::Mat find(const cv::Mat& image, 
                float minValue, float maxValue, 
                int *channels) {

    cv::Mat result;

    hranges[0]= minValue;
    hranges[1]= maxValue;

    // histogram dim matches channel list
    for (int i=0; i<histogram.dims; i++)
        this->channels[i]= channels[i];

    cv::calcBackProject(&image,
            1,         // we only use one image at a time
            channels,  // vector specifying what histogram 
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            // dimensions belong to what image channels
            histogram,    // the histogram we are using
            result,       // the back projection image
            ranges,       // the range of values, 
                          // for each dimension
            255.0         // the scaling factor is chosen such 
            // that a histogram value of 1 maps to 255
       );
    }

    // Threshold back projection to obtain a binary image
    if (threshold>0.0)
      cv::threshold(result, result, 
                255.0*threshold, 255.0, cv::THRESH_BINARY);

    return result;
  }

Let's now use a BGR histogram on the color version of the image we used previously  
(see the book's website to see this image in color). This time, we will try to detect the blue  
sky area. We will first load the color image, define the region of interest, and compute the  
3D histogram on a reduced color space as follows:

  // Load color image
  ColorHistogram hc;
  cv::Mat color= cv::imread("waves2.jpg");

  // extract region of interest
  imageROI= color(cv::Rect(0,0,100,45)); // blue sky area

  // Get 3D colour histogram (8 bins per channel)
  hc.setSize(8); // 8x8x8
  cv::Mat shist= hc.getHistogram(imageROI);

Next, you compute the histogram and use the find method to detect the sky portion of the 
image as follows:

  // Create the content finder
  ContentFinder finder;
  // set histogram to be back-projected
  finder.setHistogram(shist);
  finder.setThreshold(0.05f);

  // Get back-projection of color histogram
  Cv::Mat result= finder.find(color);
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The result of the detection on the color version of the image in the previous section is seen here:

The BGR color space is generally not the best one to identify color objects in an image.  
Here, to make it more reliable, we reduced the number of colors before computing the 
histogram (remember that the original BGR space counts more than 16 million colors).  
The histogram extracted represents the typical color distribution for a sky area. Try to 
backproject it on another image. It should also detect the sky portion. Note that using a 
histogram built from multiple sky images should increase the accuracy of this detection.

Note that in this case, computing a sparse histogram would have been better in terms of 
memory usage. You should be able to redo this exercise using cv::SparseMat this time. 
Also, if you are looking for a bright-colored object, using the hue channel of the HSV color space 
would probably be more efficient. In other cases, the use of the chromaticity components of a 
perceptually uniform space (such as L*a*b*) might constitute a better choice.

See also
ff The next recipe uses the HSV color space to detect an object in an image. This is one 

of the many alternative solutions you can use in the detection of some image content.
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Using the mean shift algorithm to find  
an object

The result of a histogram backprojection is a probability map that expresses the probability that 
a given piece of image content is found at a specific image location. Suppose we now know the 
approximate location of an object in an image; the probability map can be used to find the exact 
location of the object. The most probable location will be the one that maximizes this probability 
inside a given window. Therefore, if we start from an initial location and iteratively move around, 
it should be possible to find the exact object location. This is what is accomplished by the mean 
shift algorithm.

How to do it...
Suppose we have identified an object of interest—here, a baboon's face—as shown in the 
following screenshot (refer to the book's graphics PDF to view this image in color):

This time, we will describe this object by using the hue channel of the HSV color space. This 
means that we need to convert the image into an HSV one and then extract the hue channel 
and compute the 1D hue histogram of the defined ROI. Refer to the following code:

   // Read reference image
   cv::Mat image= cv::imread("baboon1.jpg");
   // Baboon's face ROI
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   cv::Mat imageROI= image(cv::Rect(110,260,35,40));
   // Get the Hue histogram
   int minSat=65;
   ColorHistogram hc;
   cv::Mat colorhist= 
            hc.getHueHistogram(imageROI,minSat);

As can be seen, the hue histogram is obtained using a convenient method that we have 
added to our ColorHistogram class as follows:

  // Computes the 1D Hue histogram with a mask.
  // BGR source image is converted to HSV
  // Pixels with low saturation are ignored
  cv::Mat getHueHistogram(const cv::Mat &image, 
                             int minSaturation=0) {

    cv::Mat hist;

    // Convert to HSV colour space
    cv::Mat hsv;
    cv::cvtColor(image, hsv, CV_BGR2HSV);

    // Mask to be used (or not)
    cv::Mat mask;

    if (minSaturation>0) {
    
      // Spliting the 3 channels into 3 images
      std::vector<cv::Mat> v;
      cv::split(hsv,v);

      // Mask out the low saturated pixels
      cv::threshold(v[1],mask,minSaturation,255,
                                 cv::THRESH_BINARY);
    }

    // Prepare arguments for a 1D hue histogram
    hranges[0]= 0.0;    // range is from 0 to 180
    hranges[1]= 180.0;
    channels[0]= 0;     // the hue channel 

    // Compute histogram
    cv::calcHist(&hsv, 
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      1,        // histogram of 1 image only
      channels, // the channel used
      mask,     // binary mask
      hist,     // the resulting histogram
      1,        // it is a 1D histogram
      histSize, // number of bins
      ranges    // pixel value range
    );

    return hist;
  }

The resulting histogram is then passed to our ContentFinder class instance as follows:

   ContentFinder finder;
   finder.setHistogram(colorhist);

Let's now open a second image where we want to locate the new baboon's face position.  
This image needs to be converted to the HSV space first, and then we backproject the 
histogram of the first image. Refer to the following code:

   image= cv::imread("baboon3.jpg");
   // Convert to HSV space
   cv::cvtColor(image, hsv, CV_BGR2HSV);
   // Get back-projection of hue histogram
   int ch[1]={0};
   finder.setThreshold(-1.0f); // no thresholding
   cv::Mat result= finder.find(hsv,0.0f,180.0f,ch);

Now, from an initial rectangular area (that is, the position of the baboon's face in the initial 
image), the cv::meanShift algorithm of OpenCV will update the rect object at the new 
baboon's face location. Refer to the following code:

   // initial window position
   cv::Rect rect(110,260,35,40);

   // search object with mean shift
   cv::TermCriteria criteria(cv::TermCriteria::MAX_ITER,
                             10,0.01);
   cv::meanShift(result,rect,criteria);
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The initial (red) and new (green) face locations are displayed in the following screenshot (refer 
to the book's graphics PDF to view this image in color):

How it works...
In this example, we used the hue component of the HSV color space in order to characterize 
the object we were looking for. We made this choice because the baboon's face has a very 
distinctive pink color; consequently, the pixels' hue should make the face easily identifiable. 
The first step, therefore, is to convert the image to the HSV color space. The hue component 
is the first channel of the resulting image when the CV_BGR2HSV flag is used. This is an 8-bit 
component that varies from 0 to 180 (with cv::cvtColor, the converted image is of the 
same type as the source image). In order to extract the hue image, the 3-channel HSV image 
is split into three 1-channel images using the cv::split function. The three images are put 
into a std::vector instance, and the hue image is the first entry of the vector (that is, at 
index 0).

When using the hue component of a color, it is always important to take its saturation into 
account (which is the second entry of the vector). Indeed, when the saturation of a color is 
low, the hue information becomes unstable and unreliable. This is due to the fact that for 
low-saturated color, the B, G, and R components are almost equal. This makes it difficult to 
determine the exact color that is represented. Consequently, we decided to ignore the hue 
component of colors with low saturation. That is, they are not counted in the histogram  
(using the minSat parameter that masks out pixels with saturation below this threshold  
in the getHueHistogram method).
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The mean shift algorithm is an iterative procedure that locates the local maxima of a 
probability function. It does this by finding the centroid, or weighted mean, of the data point 
inside a predefined window. The algorithm then moves the window center to the centroid 
location and repeats the procedure until the window center converges to a stable point. 
The OpenCV implementation defines two stopping criteria: a maximum number of iterations 
and a window center displacement value below which the position is considered to have 
converged to a stable point. These two criteria are stored in a cv::TermCriteria instance. 
The cv::meanShift function returns the number of iterations that have been performed. 
Obviously, the quality of the result depends on the quality of the probability map provided 
on the given initial position. Note that here, we used a histogram of colors to represent an 
image's appearance; it is also possible to use histograms of other features to represent the 
object (for example, a histogram of edge orientation).

See also
ff The mean shift algorithm has been largely used for visual tracking. Chapter 11, 

Processing Video Sequences, will explore the problem of object tracking in  
more detail

ff The mean shift algorithm has been introduced in the article Mean Shift: A robust 
approach toward feature space analysis by D. Comaniciu and P. Meer in IEEE 
transactions on Pattern Analysis and Machine Intelligence, volume 24, number 5, 
May 2002

ff OpenCV also offers an implementation of the CamShift algorithm, which is an 
improved version of the mean shift algorithm in which the size and the orientation  
of the window can change.

Retrieving similar images using the 
histogram comparison

Content-based image retrieval is an important problem in computer vision. It consists of 
finding a set of images that present content that is similar to a given query image. Since we 
have learned that histograms constitute an effective way to characterize an image's content,  
it makes sense to think that they can be used to solve the content-based retrieval problem.

The key here is to be able to measure the similarity between two images by simply comparing 
their histograms. A measurement function that will estimate how different, or how similar, two 
histograms are will need to be defined. Various such measures have been proposed in the past, 
and OpenCV proposes a few of them in its implementation of the cv::compareHist function.
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How to do it...
In order to compare a reference image with a collection of images and find the ones that are the 
most similar to this query image, we created an ImageComparator class. This class contains a 
reference to a query image and an input image, together with their histograms. In addition, since 
we will perform the comparison using color histograms, the ColorHistogram class is used  
as follows:

class ImageComparator {

  private:

    cv::Mat refH;       // reference histogram
    cv::Mat inputH;     // histogram of input image

    ColorHistogram hist; // to generate the histograms
    int nBins; // number of bins used in each color channel

  public:

    ImageComparator() :nBins(8) {

  }

To get a reliable similarity measure, the histogram should be computed over a reduced 
number of bins. Therefore, the class allows you to specify the number of bins to be used  
in each BGR channel. Refer to the following code:

  // Set number of bins used when comparing the histograms
  void setNumberOfBins( int bins) {

    nBins= bins;
  }

The query image is specified using an appropriate setter that also computes the reference 
histogram as follows:

  // compute histogram of reference image
  void setReferenceImage(const cv::Mat& image) {

    hist.setSize(nBins);
    refH= hist.getHistogram(image);
  }
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Finally, a compare method compares the reference image with a given input image.  
The following method returns a score that indicates how similar the two images are:

  // compare the images using their BGR histograms
  double compare(const cv::Mat& image) {

    inputH= hist.getHistogram(image);

    return cv::compareHist(refH,inputH,CV_COMP_INTERSECT);
  }

The preceding class can be used to retrieve images that are similar to a given query image. 
The following code is initially provided to the class instance:

   ImageComparator c;
   c.setReferenceImage(image);

Here, the query image we used is the color version of the beach image shown in the 
Backprojecting a histogram to detect specific image content recipe earlier in the chapter.  
This image was compared to the following series of images. The images are shown in order 
from the most similar to the least similar, as follows:
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How it works...
Most histogram comparison measures are based on bin-by-bin comparisons. This is why it is 
important to work with a reduced number of histogram bins when measuring the similarity of 
two color histograms. The call to cv::compareHist is straightforward. You just input the two 
histograms and the function returns the measured distance. The specific measurement method 
you want to use is specified using a flag. In the ImageComparator class, the intersection 
method is used (with the CV_COMP_INTERSECT flag). This method simply compares, for each 
bin, the two values in each histogram and keeps the minimum one. The similarity measure, 
then, is the sum of these minimum values. Consequently, two images that have histograms  
with no colors in common would get an intersection value of 0, while two identical histograms 
would get a value that is equal to the total number of pixels.

The other available methods are the Chi-Square measure (the CV_COMP_CHISQR flag)  
that sums the normalized square difference between the bins, the correlation method  
(the CV_COMP_CORREL flag) that is based on the normalized cross-correlation operator  
used in signal processing to measure the similarity between two signals, and the 
Bhattacharyya measure (the CV_COMP_BHATTACHARYYA flag) that is used in statistics  
to estimate the similarity between two probabilistic distributions.

See also
ff The OpenCV documentation provides a description of the exact formulas used in  

the different histogram comparison measures.

ff Earth Mover Distance is another popular histogram comparison method. It is 
implemented in OpenCV as the cv::EMD function. The main advantage of this 
method is that it takes into account the values found in adjacent bins to evaluate  
the similarity of two histograms. It is described in the article The Earth Mover's 
Distance as a Metric for Image Retrieval by Y. Rubner, C. Tomasi, and L. J. Guibas  
in Int. Journal of Computer Vision, Volume 40, Number 2., 2000, pp. 99-121.

Counting pixels with integral images
In the previous recipes, we learned that a histogram is computed by going through all the pixels 
of an image and cumulating a count of how often each intensity value occurs in this image. We 
have also seen that sometimes, we are only interested in computing our histogram in a certain 
area of the image. In fact, having to cumulate a sum of pixels inside an image's subregion is a 
common task in many computer vision algorithms. Now, suppose you have to compute several 
such histograms over multiple regions of interest inside your image. All these computations 
could rapidly become very costly. In such a situation, there is a tool that can drastically improve 
the efficiency of counting pixels over image subregions: the integral image.
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Integral images have been introduced as an efficient way of summing pixels in image regions 
of interest. They are widely used in applications that involve, for example, computations over 
sliding windows at multiple scales.

This recipe will explain the principle behind integral images. Our objective here is to show  
how pixels can be summed over a rectangle region by using only three arithmetic operations. 
Once we have learned this concept, the There's more... section of this recipe will show you  
two examples where integral images can be advantageously used.

How to do it...
This recipe will play with the following picture, in which a region of interest showing a girl on 
her bike is identified:

Integral images are useful when you need to sum pixels over several image areas. Normally, if 
you wish to get the sum of all pixels over a region of interest, you would write the following code:

  // Open image
  cv::Mat image= cv::imread("bike55.bmp",0);
  // define image roi (here the girl on bike)
  int xo=97, yo=112;
  int width=25, height=30;
  cv::Mat roi(image,cv::Rect(xo,yo,width,height));
  // compute sum
  // returns a Scalar to work with multi-channel images
  cv::Scalar sum= cv::sum(roi);
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The cv::sum function simply loops over all the pixels of the region and accumulates the sum. 
Using an integral image, this can be achieved using only three additive operations. However, 
first you need to compute the integral image as follows:

  // compute integral image
  cv::Mat integralImage;
  cv::integral(image,integralImage,CV_32S);

As will be explained in the next section, the same result can be obtained using this simple 
arithmetic expression on the computed integral image as follows:

  // get sum over an area using three additions/subtractions
  int sumInt= integralImage.at<int>(yo+height,xo+width)
            -integralImage.at<int>(yo+height,xo)
            -integralImage.at<int>(yo,xo+width)
            +integralImage.at<int>(yo,xo);

Both approaches give you the same result. However, computing the integral image is costly, 
since you have to loop over all the image pixels. The key is that once this initial computation 
is done, you will need to add only four pixels to get a sum over a region of interest no matter 
what the size of this region is. Integral images then become advantageous to use when 
multiple such pixel sums have to be computed over multiple regions of different sizes.

How it works...
In the previous section, you were introduced to the concept of integral images through a brief 
demonstration of the magic behind them, that is, how they can be used to cheaply compute 
the sum of pixels inside rectangular regions. To understand how they work, let's now define 
what an integral image is. An integral image is obtained by replacing each pixel with the value 
of the sum of all the pixels located inside the upper-left quadrant delimitated by this pixel. 
The integral image can be computed by scanning the image once, as the integral value of a 
current pixel is given by the integral value of the previously discussed pixel plus the value of 
the cumulative sum of the current line. The integral image is therefore a new image containing 
pixel sums. To avoid overflows, this image is usually an image of int values (CV_32S) or float 
values (CV_32F). For example, in the following figure, pixel A in this integral image would 
contain the sum of the pixels contained inside the upper-left corner area, which is identified 
with a double-hatched pattern. Refer to the following figure:
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Once the integral image has been computed, any summation over a rectangular region can  
be easily obtained through four pixel accesses, and here is why. Considering the preceding 
figure again, we can see that the sum of the pixels inside the region delimitated by the 
pixels A, B, C, and D can be obtained by reading the integral value at pixel D, from which you 
subtract the values of the pixels over B and to the left-hand side of C. However, by doing so, 
you have subtracted twice the sum of pixels located in the upper-left corner of A; this is why 
you have to re-add the integral sum at A. Formally, then, the sum of pixels inside A, B, C, and 
D is given by A-B-C+D. If we use the cv::Mat method to access pixel values, this formula 
translates to the following:

      // window at (xo,yo) of size width by height
      return (integralImage.at<cv::Vec<T,N>>
                                        (yo+height,xo+width)
            -integralImage.at<cv::Vec<T,N>>(yo+height,xo)
            -integralImage.at<cv::Vec<T,N>>(yo,xo+width)
            +integralImage.at<cv::Vec<T,N>>(yo,xo));

The complexity of this computation is, therefore, constant, no matter what the size of the 
region of interest is. Note that for simplicity, we used the at method of the cv::Mat class, 
which is not the most efficient way to access pixel values (see Chapter 2, Manipulating Pixels). 
This aspect will be discussed in the There's more... section of this recipe, which presents two 
applications that benefit from the efficiency of the integral image concept.

There's more...
Integral images are used whenever multiple pixel summations must be performed. In this 
section, we will illustrate the use of integral images by introducing the concept of adaptive 
thresholding. Integral images are also useful for the efficient computation of histograms  
over multiple windows. This is also explained in this section.
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Adaptive thresholding
Applying a threshold on an image in order to create a binary image could be a good way to 
extract the meaningful elements of an image. Suppose that you have the following image  
of a book:

Since you are interested in analyzing the text in this image, you apply a threshold to this image 
as follows:

  // using a fixed threshold 
  cv::Mat binaryFixed;
  cv::threshold(image,binaryFixed,70,255,cv::THRESH_BINARY);
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You obtain the following result:

In fact, no matter what value you choose for the threshold, in some parts of the image, you 
get missing text, whereas in other parts, the text disappears under the shadow. To overcome 
this problem, one possible solution consists of using a local threshold that is computed from 
each pixel's neighborhood. This strategy is called adaptive thresholding, and it consists 
of comparing each pixel with the mean value of the neighboring pixels. Pixels that clearly 
differ from their local mean will then be considered as outliers and will be cut off by the 
thresholding process.

Adaptive thresholding, therefore, requires the computation of a local mean around every pixel. 
This requires multiple image window summations that can be computed efficiently through 
the integral image. Consequently, the first step is to compute the following integral image:

  // compute integral image
  cv::Mat iimage;
  cv::integral(image,iimage,CV_32S);
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Now we can go through all the pixels and compute the mean over a square neighborhood.  
We could use our IntegralImage class to do so, but this one uses the inefficient at  
method for pixel access. This time, let's get efficient by looping over the image using the 
pointers as we learned in Chapter 2, Manipulating Pixels. This loop looks as follows:

  int blockSize= 21; // size of the neighborhood
  int threshold=10;  // pixel will be compared 
                      // to (mean-threshold)

  // for each row
  int halfSize= blockSize/2;
    for (int j=halfSize; j<nl-halfSize-1; j++) {

      // get the address of row j
      uchar* data= binary.ptr<uchar>(j);
      int* idata1= iimage.ptr<int>(j-halfSize);
      int* idata2= iimage.ptr<int>(j+halfSize+1);

      // for pixel of a line
      for (int i=halfSize; i<nc-halfSize-1; i++) {
 
        // compute sum
        int sum= (idata2[i+halfSize+1]-
                     idata2[i-halfSize]-
                 idata1[i+halfSize+1]+
                     idata1[i-halfSize])/
                        (blockSize*blockSize);

        // apply adaptive threshold
        if (data[i]<(sum-threshold))
          data[i]= 0;
        else
          data[i]=255;
      }
    }

In this example, a neighborhood of size 21 x 21 is used. To compute each mean, we need to 
access the four integral pixels that delimitate the square neighborhood: two located on the 
line pointed by idata1 and two on the line pointed by idata2. The current pixel is compared 
to the computed mean, from which we subtract a threshold value (here, set to 10); this is to 
make sure that rejected pixels clearly differ from their local mean. The following binary image 
is then obtained:
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Clearly, this is a much better result than the one we got using a fixed threshold. Adaptive 
thresholding is a common image-processing technique. As such, it is also implemented in 
OpenCV as follows:

cv::adaptiveThreshold(image,          // input image
        binaryAdaptive,               // output binary image
        255,                          // max value for output
        cv::ADAPTIVE_THRESH_MEAN_C,   // method
        cv::THRESH_BINARY,            // threshold type
        blockSize,                    // size of the block
        threshold);                   // threshold used

This function call produces exactly the same result as the one we obtained using our integral 
image. In addition, instead of using the local mean for thresholding, this function allows you to 
use a Gaussian weighted sum (the method flag would be ADAPTIVE_THRESH_GAUSSIAN_C) 
in this case. It is interesting to note that our implementation is slightly faster than the 
cv::adaptiveThreshold call.

Finally, it is worth mentioning that we can also write an adaptive thresholding procedure by 
using the OpenCV image operators. This would be done as follows:

  cv::Mat filtered;
  cv::Mat binaryFiltered;
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  cv::boxFilter(image,filtered,CV_8U,
                 cv::Size(blockSize,blockSize));
  filtered= filtered-threshold;
  binaryFiltered= image>= filtered;

Image filtering will be covered in Chapter 6, Filtering the Images.

Visual tracking using histograms
As we learned in the previous recipes, a histogram constitutes a reliable global representation 
of an object's appearance. In this recipe, we will demonstrate the usefulness of integral images 
by showing you how we can locate an object in an image by searching for an image area that 
presents a histogram similar to a target object. We accomplished this in the Using the mean 
shift algorithm to find an object recipe by using the concepts of histogram backprojection and 
local search through mean shift. This time, we will find our object by performing an explicit 
search for regions of similar histograms over the full image.

In the special case where an integral image is used on a binary image made of 0 and 1 values, 
the integral sum gives you the number of pixels that have a value of 1 inside the specified 
region. We will exploit this fact in this recipe to compute the histogram of a gray-level image.

The cv::integral function also works for multichannel images. You can take advantage of 
this fact to compute histograms of image subregions using integral images. You simply need 
to convert your image into a multichannel image made of binary planes; each of these planes 
is associated to a bin of your histogram and shows you which pixels have a value that falls into 
this bin. The following function creates such multiplane images from a gray-level one:

// convert to a multi-channel image made of binary planes
// nPlanes must be a power of 2
void convertToBinaryPlanes(const cv::Mat& input, 
                           cv::Mat& output, int nPlanes) {

    // number of bits to mask out
    int n= 8-static_cast<int>(
      log(static_cast<double>(nPlanes))/log(2.0));
    // mask used to eliminate least significant bits
    uchar mask= 0xFF<<n; 

    // create a vector of binary images
    std::vector<cv::Mat> planes;
    // reduce to nBins by eliminating least significant bits
    cv::Mat reduced= input&mask;

    // compute each binary image plane
    for (int i=0; i<nPlanes; i++) {
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      // 1 for each pixel equals to i<<shift
      planes.push_back((reduced==(i<<n))&0x1);
    }

    // create multi-channel image
    cv::merge(planes,output);
}

The integral image computations can also be encapsulated into one convenient template 
class as follows:

template <typename T, int N>
class IntegralImage {

    cv::Mat integralImage;

  public:

    IntegralImage(cv::Mat image) {

    // (costly) computation of the integral image
    cv::integral(image,integralImage,cv::DataType<T>::type);
    }

    // compute sum over sub-regions of any size 
    // from 4 pixel accesses
    cv::Vec<T,N> operator()(int xo, int yo, 
                             int width, int height) {

    // window at (xo,yo) of size width by height
    return (integralImage.at<cv::Vec<T,N>>
                                       (yo+height,xo+width)
        -integralImage.at<cv::Vec<T,N>>(yo+height,xo)
        -integralImage.at<cv::Vec<T,N>>(yo,xo+width)
        +integralImage.at<cv::Vec<T,N>>(yo,xo));
    }

};

We now want to find where the girl on the bicycle, whom we identified in the previous image, 
is in a subsequent image. Let's first compute the histogram of the girl in the original image. 
We can accomplish this using the Histogram1D class we built in a previous recipe of this 
chapter. Here, we produce a 16-bin histogram as follows:

  // histogram of 16 bins
  Histogram1D h;
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  h.setNBins(16);
  // compute histogram over image roi 
  cv::Mat refHistogram= h.getHistogram(roi);

The preceding histogram will be used as a referential representation to locate the target object 
(the girl on her bike) in a subsequent image.

Suppose that the only information we have is that the girl is moving more or less horizontally 
over the image. Since we will have many histograms to compute at various locations, we 
compute the integral image as a preliminary step. Refer to the following code:

  // first create 16-plane binary image
  cv::Mat planes;
  convertToBinaryPlanes(secondIimage,planes,16);
  // then compute integral image
  IntegralImage<float,16> intHistogram(planes);

To perform the search, we loop over a range of possible locations and compare the current 
histogram with the referential one. Our goal is to find the location with the most similar 
histogram. Refer to the following code:

  double maxSimilarity=0.0;
  int xbest, ybest;
  // loop over a horizontal strip around girl 
  // location in initial image
  for (int y=110; y<120; y++) {
    for (int x=0; x<secondImage.cols-width; x++) {
  
      // compute histogram of 16 bins using integral image
      histogram= intHistogram(x,y,width,height);
      // compute distance with reference histogram
      double distance= cv::compareHist(refHistogram, 
                                histogram, CV_COMP_INTERSECT);
      // find position of most similar histogram
      if (distance>maxSimilarity) {

        xbest= x;
        ybest= y;
        maxSimilarity= distance;
      }
    }
  }
  // draw rectangle at best location
  cv::rectangle(secondImage,
                 cv::Rect(xbest,ybest,width,height),0));
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The location with the most similar histogram is then identified as the following:

The white rectangle represents the search area. Histograms of all windows that fit inside this 
area have been computed. We kept the window size constant, but it could have been a good 
strategy to also search for slightly smaller or larger windows in order to take into account the 
eventual changes in scale. Note that in order to limit the complexity of this computation, the 
number of bins in the histograms to be computed should be kept low. In our example, we 
reduced this to 16 bins. Consequently, plane 0 of this multiplane image contains a binary 
image that shows you all pixels that have a value between 0 and 15, while plane 1 shows you 
pixels with values between 16 and 31, and so on.

The search for an object consisted of computing the histograms of all windows of the given 
size over a predetermined range of pixels. This represents the computation of 3200 different 
histograms that have been efficiently computed from our integral image. All the histograms 
returned by our IntegralImage class are contained in a cv::Vec object (because of the 
use of the at method). We then use the cv::compareHist function to identify the most 
similar histogram (remember that this function, like most OpenCV functions, can accept  
either the cv::Mat or cv::Vec object through the convenient cv::InputArray generic 
parameter type).
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See also
ff Chapter 8, Detecting Interest Points, will present the SURF operator that also relies on 

the use of integral images

ff The article Robust Fragments-based Tracking using the Integral Histogram by A. Adam, 
E. Rivlin, and I. Shimshoni in the proceedings of the Int. Conference on Computer Vision 
and Pattern Recognition, 2006, pp. 798-805, describes an interesting approach that 
uses integral images to track objects in an image sequence



5
Transforming Images 

with Morphological 
Operations

In this chapter, we will cover the following recipes:

ff Eroding and dilating images using morphological filters

ff Opening and closing images using morphological filters

ff Detecting edges and corners using morphological filters

ff Segmenting images using watersheds

ff Extracting distinctive regions using MSER

ff Extracting foreground objects with the GrabCut algorithm

Introduction
Mathematical morphology is a theory that was developed in the 1960s for the analysis 
and processing of discrete images. It defines a series of operators that transform an image 
by probing it with a predefined shape element. The way this shape element intersects 
the neighborhood of a pixel determines the result of the operation. This chapter presents 
the most important morphological operators. It also explores the problems of image 
segmentation and feature detection using algorithms based on morphological operators.
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Eroding and dilating images using 
morphological filters

Erosion and dilation are the most fundamental morphological operators. Therefore, we will 
present these in the first recipe. The fundamental component in mathematical morphology 
is the structuring element. A structuring element can be simply defined as a configuration of 
pixels (the square shape in the following figure) on which an origin is defined (also called an 
anchor point). Applying a morphological filter consists of probing each pixel of the image using 
this structuring element. When the origin of the structuring element is aligned with a given 
pixel, its intersection with the image defines a set of pixels on which a particular morphological 
operation is applied (the nine shaded pixels in the following figure). In principle, the structuring 
element can be of any shape, but most often, a simple shape such as a square, circle, or 
diamond with the origin at the center is used (mainly for efficiency reasons), as shown in the 
following figure:

Getting ready
As morphological filters often work on binary images, we will use the binary image that was 
created through thresholding in the first recipe of the previous chapter. However, since the 
convention is to have the foreground objects represented by high (white) pixel values and the 
background objects by low (black) pixel values in morphology, we have negated the image.
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In morphological terms, the following image is said to be the complement of the image that 
was created in the previous chapter:

How to do it...
Erosion and dilation are implemented in OpenCV as simple functions, which are cv::erode 
and cv::dilate. Their usage is straightforward:

   // Read input image
   cv::Mat image= cv::imread("binary.bmp");

   // Erode the image
   cv::Mat eroded;  // the destination image
   cv::erode(image,eroded,cv::Mat());

   // Dilate the image
   cv::Mat dilated;  // the destination image
   cv::dilate(image,dilated,cv::Mat());
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The two images produced by these function calls are seen in the following screenshots. The 
first screenshot shows erosion:

The second screenshot shows the dilation result:
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How it works...
As with all the other morphological filters, the two filters of this recipe operate on the set of 
pixels (or the neighborhood) around each pixel as defined by the structuring element. Recall 
that when applied to a given pixel, the anchor point of the structuring element is aligned with 
this pixel location, and all the pixels that intersect the structuring element are included in 
the current set. Erosion replaces the current pixel with the minimum pixel value found in the 
defined pixel set. Dilation is the complementary operator, and it replaces the current pixel 
with the maximum pixel value found in the defined pixel set. Since the input binary image 
contains only black (0) and white (255) pixels, each pixel is replaced by either a white or  
black pixel.

A good way to picturize the effect of these two operators is to think in terms of background 
(black) and foreground (white) objects. With erosion, if the structuring element when placed at 
a given pixel location touches the background (that is, one of the pixels in the intersecting set 
is black), then this pixel will be sent to the background. In the case of dilation, if the structuring 
element on a background pixel touches a foreground object, then this pixel will be assigned a 
white value. This explains why the size of the objects has been reduced (the shape has been 
eroded) in the eroded image. Note how some of the small objects (which can be considered as 
"noisy" background pixels) have also been completely eliminated. Similarly, the dilated objects 
are now larger, and some of the "holes" inside them have been filled. By default, OpenCV uses 
a 3 x 3 square structuring element. This default structuring element is obtained when an empty 
matrix (that is, cv::Mat()) is specified as the third argument in the function call, as it was 
done in the preceding example. You can also specify a structuring element of the size (and 
shape) you want by providing a matrix in which the nonzero element defines the structuring 
element. In the following example, a 7 x 7 structuring element is applied:

   cv::Mat element(7,7,CV_8U,cv::Scalar(1));
   cv::erode(image,eroded,element);
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The effect is much more destructive in this case, as shown in the following screenshot:

Another way to obtain the same result is to repetitively apply the same structuring element on 
an image. The two functions have an optional parameter to specify the number of repetitions:

   // Erode the image 3 times.
   cv::erode(image,eroded,cv::Mat(),cv::Point(-1,-1),3);

The argument cv::Point(-1,-1) means that the origin is at the center of the matrix 
(default); it can be defined anywhere on the structuring element. The image that is obtained 
will be identical to the image we obtained with the 7 x 7 structuring element. Indeed, eroding 
an image twice is similar to eroding an image with a structuring element dilated with itself. 
This also applies to dilation.

Finally, since the notion of background/foreground is arbitrary, we can make the following 
observation (which is a fundamental property of the erosion/dilation operators). Eroding the 
foreground objects with a structuring element can be seen as a dilation of the background 
part of the image. In other words, we can make the following observations:

ff The erosion of an image is equivalent to the complement of the dilation of the 
complement image

ff The dilation of an image is equivalent to the complement of the erosion of the 
complement image



Chapter 5

139

There's more...
Note that even though we applied our morphological filters on binary images here, these filters 
can be applied on gray-level or even color images with the same definitions.

Also, note that the OpenCV morphological functions support in-place processing. This means 
that you can use the input image as the destination image, as follows:

   cv::erode(image,image,cv::Mat());

OpenCV will create the required temporary image for you for this to work properly.

See also
ff The Opening and closing images using morphological filters recipe applies  

the erosion and dilation filters in cascade to produce new operators

ff The Detecting edges and corners using morphological filters recipe applies 
morphological filters on gray-level images

Opening and closing images using 
morphological filters

The previous recipe introduced you to the two fundamental morphological operators: dilation 
and erosion. From these, other operators can be defined. The next two recipes will present 
some of them. The opening and closing operators are presented in this recipe.

How to do it...
In order to apply higher-level morphological filters, you need to use the cv::morphologyEx 
function with the appropriate function code. For example, the following call will apply the 
closing operator:

   cv::Mat element5(5,5,CV_8U,cv::Scalar(1));
   cv::Mat closed;
   cv::morphologyEx(image,closed,cv::MORPH_CLOSE,element5);
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Note that we used a 5 x 5 structuring element to make the effect of the filter more apparent.  
If we use the binary image of the preceding recipe as input, we will obtain an image similar  
to what's shown in the following screenshot:

Similarly, applying the morphological opening operator will result in the following screenshot:

The preceding image is obtained from the following code:

   cv::Mat opened;
   cv::morphologyEx(image,opened,cv::MORPH_OPEN,element5);
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How it works...
The opening and closing filters are simply defined in terms of the basic erosion and dilation 
operations. Closing is defined as the erosion of the dilation of an image. Opening is defined 
as the dilation of the erosion of an image.

Consequently, one can compute the closing of an image using the following calls:

   // dilate original image
   cv::dilate(image,result,cv::Mat());
   // in-place erosion of the dilated image
   cv::erode(result,result,cv::Mat()); 

The opening filter can be obtained by reverting these two function calls. While examining 
the result of the closing filter, it can be seen that the small holes of the white foreground 
objects have been filled. The filter also connects several adjacent objects together. Basically, 
any holes or gaps that are too small to completely contain the structuring element will be 
eliminated by the filter.

Reciprocally, the opening filter eliminated several small objects from the scene. All the  
objects that were too small to contain the structuring element have been removed.

These filters are often used in object detection. The closing filter connects the objects 
erroneously fragmented into smaller pieces together, while the opening filter removes the 
small blobs introduced by the image noise. Therefore, it is advantageous to use them in a 
sequence. If our test binary image is successively closed and opened, we obtain an image 
that shows only the main objects in the scene, as shown in the following screenshot. You can 
also apply the opening filter before the closing filter if you wish to prioritize noise filtering, but 
this will be at the price of eliminating some fragmented objects.
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Note that applying the same opening (and similarly the closing) operator on an image  
several times has no effect. Indeed, as the holes have been filled by the first opening filter  
an additional application of the same filter will not produce any other changes to the image.  
In mathematical terms, these operators are said to be idempotent.

See also
The opening and closing operators are often used to clean up an image before extracting  
its connected components as explained in the Extracting the components' contours recipe  
of Chapter 7, Extracting Lines, Contours, and Components.

Detecting edges and corners using 
morphological filters

Morphological filters can also be used to detect specific features in an image. In this recipe, 
we will learn how to detect contours and corners in a gray-level image.

Getting ready
In this recipe, the following image will be used:
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How to do it...
The edges of an image can be detected by using the appropriate filter of the 
cv::morphologyEx function. Refer to the following code:

// Get the gradient image using a 3x3 structuring element
cv::Mat result;
cv::morphologyEx(image,result,
                         cv::MORPH_GRADIENT,cv::Mat());

// Apply threshold to obtain a binary image
int threshold= 40;
cv::threshold(result, result, 
                    threshold, 255, cv::THRESH_BINARY);

The following image is obtained as the result:

In order to detect corners using morphology, we now define a class named MorphoFeatures 
as follows:

class MorphoFeatures {

  private:

     // threshold to produce binary image
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    int threshold;
    // structuring elements used in corner detection
    cv::Mat_<uchar> cross;
    cv::Mat_<uchar> diamond;
    cv::Mat_<uchar> square;
    cv::Mat_<uchar> x;

The detection of corners using morphological corners is a bit complex since it requires the 
successive application of several different morphological filters. This is a good example of 
the use of nonsquare structuring elements. Indeed, this requires four different structuring 
elements shaped as a square, diamond, cross, and X-shape to be defined in the constructor 
(all these structuring elements have a fixed 5 x 5 dimension for simplicity):

MorphoFeatures() : threshold(-1), 
      cross(5, 5), diamond(5, 5), square(5, 5), x(5, 5) {
  
      // Creating the cross-shaped structuring element
      cross <<
        0, 0, 1, 0, 0,
        0, 0, 1, 0, 0,
        1, 1, 1, 1, 1,
        0, 0, 1, 0, 0,
        0, 0, 1, 0, 0;
      // Similarly creating the other elements

In the detection of corner features, all these structuring elements are applied in a cascade to 
obtain the resulting corner map:

cv::Mat getCorners(const cv::Mat &image) {

   cv::Mat result;

   // Dilate with a cross   
   cv::dilate(image,result,cross);

   // Erode with a diamond
   cv::erode(result,result,diamond);

   cv::Mat result2;
   // Dilate with a X   
   cv::dilate(image,result2,x);

   // Erode with a square
   cv::erode(result2,result2,square);



Chapter 5

145

   // Corners are obtained by differencing
   // the two closed images
   cv::absdiff(result2,result,result);

   // Apply threshold to obtain a binary image
   applyThreshold(result);

   return result;
}

The corners are then detected on an image by using the following code:

// Get the corners
cv::Mat corners;
corners= morpho.getCorners(image);

// Display the corner on the image
morpho.drawOnImage(corners,image);
cv::namedWindow("Corners on Image");
cv::imshow("Corners on Image",image);

In the image, the detected corners are displayed as circles, as shown in the following screenshot:
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How it works...
A good way to understand the effect of morphological operators on a gray-level image is to 
consider an image as a topological relief in which the gray levels correspond to elevation 
(or altitude). Under this perspective, the bright regions correspond to mountains, while the 
dark areas correspond to the valleys of the terrain. Also, since edges correspond to a rapid 
transition between the dark and bright pixels, these can be pictured as abrupt cliffs. If an 
erosion operator is applied on such a terrain, the net result will be to replace each pixel by 
the lowest value in a certain neighborhood, thus reducing its height. As a result, cliffs will be 
"eroded" as the valleys expand. Dilation has the exact opposite effect; that is, cliffs will gain 
terrain over the valleys. However, in both cases, the plateaux (that is, the area of constant 
intensity) will remain relatively unchanged.

These observations lead to a simple way to detect the edges (or cliffs) of an image. This can 
be done by computing the difference between the dilated and eroded images. Since these two 
transformed images differ mostly at the edge locations, the image edges will be emphasized 
by the subtraction. This is exactly what the cv::morphologyEx function does when the 
cv::MORPH_GRADIENT argument is inputted. Obviously, the larger the structuring element is, 
the thicker the detected edges will be. This edge detection operator is also called the Beucher 
gradient (the next chapter will discuss the concept of an image gradient in more detail). Note 
that similar results can also be obtained by simply subtracting the original image from the 
dilated one or the eroded image from the original. The resulting edges would be thinner.

Corner detection is a bit more complex since it uses four different structuring elements. 
This operator is not implemented in OpenCV, but we present it here to demonstrate how the 
structuring elements of various shapes can be defined and combined. The idea is to close the 
image by dilating and eroding it with two different structuring elements. These elements are 
chosen such that they leave straight edges unchanged, but because of their respective effects, 
the edges at corner points will be affected. Let's use the simple following image made of a  
single white square to better understand the effect of this asymmetrical closing operation:
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The first square is the original image. When dilated with a cross-shaped structuring element, 
the square edges expand, except at the corner points where the cross shape does not hit 
the square. This is the result illustrated by the square in the middle. This dilated image is 
then eroded by a structuring element that has a diamond shape. This erosion brings back 
most edges to their original position but pushes the corners even further since they were not 
dilated. The rightmost square is then obtained, which (as it can be seen) has lost its sharp 
corners. The same procedure is repeated with the X-shaped and square-shaped structuring 
elements. These two elements are the rotated versions of the previous elements and will 
consequently capture the corners at a 45-degree orientation. Finally, differencing the two 
results will extract the corner features.

See also
ff The Applying directional filters to detect edges recipe in Chapter 6, Filtering the 

Images describes the other filters that perform edge detection

ff Chapter 8, Detecting Interest Points, presents different operators that perform  
corner detection

ff The article, The Morphological gradients, J.-F. Rivest, P. Soille, and S. Beucher, 
ISET's symposium on electronic imaging science and technology, SPIE, Feb. 1992, 
discusses the concept of morphological gradients in more detail

ff The article, A modified regulated morphological corner detector, F.Y. Shih,  
C.-F. Chuang, and V. Gaddipati, Pattern Recognition Letters, volume 26, issue 7,  
May 2005, gives more information on morphological corner detection

Segmenting images using watersheds
The watershed transformation is a popular image processing algorithm that is used to quickly 
segment an image into homogenous regions. It relies on the idea that when the image is seen 
as a topological relief, the homogeneous regions correspond to relatively flat basins delimited 
by steep edges. As a result of its simplicity, the original version of this algorithm tends to  
over-segment the image, which produces multiple small regions. This is why OpenCV proposes 
a variant of this algorithm that uses a set of predefined markers that guide the definition of 
the image segments.
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How to do it...
The watershed segmentation is obtained through the use of the cv::watershed function. 
The input for this function is a 32-bit signed integer-marker image in which each nonzero pixel 
represents a label. The idea is to mark some pixels of the image that are known to belong to 
a given region. From this initial labeling, the watershed algorithm will determine the regions to 
which the other pixels belong. In this recipe, we will first create the marker image as a gray-level 
image and then convert it into an image of integers. We have conveniently encapsulated this 
step into a WatershedSegmenter class. Refer to the following code:

class WatershedSegmenter {

  private:

     cv::Mat markers;

  public:

     void setMarkers(const cv::Mat& markerImage) {

      // Convert to image of ints
      markerImage.convertTo(markers,CV_32S);
     }

     cv::Mat process(const cv::Mat &image) {

      // Apply watershed
      cv::watershed(image,markers);

      return markers;
     }

The way these markers are obtained depends on the application. For example, some 
preprocessing steps might have resulted in the identification of some pixels that belong to an 
object of interest. The watershed would then be used to delimitate the complete object from that 
initial detection. In this recipe, we will simply use the binary image used throughout this chapter 
in order to identify the animals of the corresponding original image (this is the image shown at 
the beginning of Chapter 4, Counting the Pixels with Histograms). Therefore, from our binary 
image, we need to identify the pixels that belong to the foreground (the animals) and the pixels 
that belong to the background (mainly the grass). Here, we will mark the foreground pixels with 
the label 255 and the background pixels with the label 128 (this choice is totally arbitrary; any 
label number other than 255 will work). The other pixels, that is, the ones for which the labeling 
is unknown are assigned the value 0.
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As of now, the binary image includes too many white pixels that belong to the various parts of 
the image. We will then severely erode this image in order to retain only the pixels that belong  
to the important objects:

   // Eliminate noise and smaller objects
   cv::Mat fg;
   cv::erode(binary,fg,cv::Mat(),cv::Point(-1,-1),4);

The result is the following image:

Note that a few pixels that belong to the background (forest) are still present. Let's keep them. 
Therefore, they will be considered to correspond to an object of interest. Similarly, we also select 
a few pixels of the background by a large dilation of the original binary image:

   // Identify image pixels without objects
   cv::Mat bg;
   cv::dilate(binary,bg,cv::Mat(),cv::Point(-1,-1),4);
   cv::threshold(bg,bg,1,128,cv::THRESH_BINARY_INV);
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The resulting black pixels correspond to the background pixels. This is why the thresholding 
operation assigns the value 128 to these pixels immediately after the dilation. The following 
image is obtained:

These images are combined to form the marker image as follows:

   // Create markers image
   cv::Mat markers(binary.size(),CV_8U,cv::Scalar(0));
   markers= fg+bg;

Note how we used the overloaded operator + here in order to combine the images.  
The following image will be used as the input to the watershed algorithm:
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In this input image, the white areas belong, for sure, to the foreground objects, the gray areas 
are a part of the background, and the black areas have an unknown label. The segmentation 
is then obtained as follows:

   // Create watershed segmentation object
   WatershedSegmenter segmenter;

   // Set markers and process
   segmenter.setMarkers(markers);
   segmenter.process(image);

The marker image is then updated such that each zero pixel is assigned one of the input 
labels, while the pixels that belong to the found boundaries have a value -1. The resulting 
image of the labels is as follows:
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The boundary image will be similar to the following screenshot:

How it works...
As we did in the preceding recipes, we will use the topological map analogy in the description 
of the watershed algorithm. In order to create a watershed segmentation, the idea is to 
progressively flood the image starting at level 0. As the level of "water" progressively increases 
(to levels 1, 2, 3, and so on), catchment basins are formed. The size of these basins also 
gradually increases and, consequently, the water of two different basins will eventually merge. 
When this happens, a watershed is created in order to keep the two basins separate. Once the 
level of water has reached its maximal level, the sets of these created basins and watersheds 
form the watershed segmentation.

As expected, the flooding process initially creates many small individual basins. When all of 
these are merged, many watershed lines are created, which results in an over-segmented 
image. To overcome this problem, a modification to this algorithm has been proposed in  
which the flooding process starts from a predefined set of marked pixels. The basins created 
from these markers are labeled in accordance with the values assigned to the initial marks. 
When two basins having the same label merge, no watersheds are created, thus preventing 
over-segmentation. This is what happens when the cv::watershed function is called. The 
input marker image is updated to produce the final watershed segmentation. Users can input 
a marker image with any number of labels and pixels of unknown labeling left to value 0.  
The marker image is chosen to be an image of a 32-bit signed integer in order to be able  
to define more than 255 labels. It also allows the special value, -1, to be assigned to the 
pixels associated with a watershed. This is returned by the cv::watershed function.
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To facilitate the display of the result, we have introduced two special methods. The first 
method returns an image of the labels (with watersheds at value 0). This is easily done 
through thresholding, as follows:

     // Return result in the form of an image
     cv::Mat getSegmentation() {
        
      cv::Mat tmp;
      // all segment with label higher than 255
      // will be assigned value 255
      markers.convertTo(tmp,CV_8U);

      return tmp;
     }

Similarly, the second method returns an image in which the watershed lines are assigned the 
value 0, and the rest of the image is at 255. This time the cv::convertTo method is used 
to achieve this result, as follows:

     // Return watershed in the form of an image
     cv::Mat getWatersheds() {
   
      cv::Mat tmp;
      // Each pixel p is transformed into
      // 255p+255 before conversion
      markers.convertTo(tmp,CV_8U,255,255);

      return tmp;
     }

The linear transformation that is applied before the conversion allows the -1 pixels to be 
converted into 0 (since -1*255+255=0).

Pixels with a value greater than 255 are assigned the value 255. This is due to the saturation 
operation that is applied when signed integers are converted into unsigned characters.
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There's more...
Obviously, the marker image can be obtained in many different ways. For example, users 
can be interactively asked to paint areas on the objects and the background of a scene. 
Alternatively, in an attempt to identify an object located at the center of an image, one can 
also simply input an image with the central area marked with a certain label and the border  
of the image (where the background is assumed to be present) marked with another label. 
This marker image can be created as follows:

// Identify background pixels
cv::Mat imageMask(image.size(),CV_8U,cv::Scalar(0));
cv::rectangle(imageMask,cv::Point(5,5),
     cv::Point(image.cols-5,
               image.rows-5),cv::Scalar(255),3);
// Identify foreground pixels 
// (in the middle of the image)
cv::rectangle(imageMask,
     cv::Point(image.cols/2-10,image.rows/2-10),
     cv::Point(image.cols/2+10,image.rows/2+10),
     cv::Scalar(1),10);

If we superimpose this marker image on a test image, we will obtain the following image:
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The following is the resulting watershed image:

See also
ff The article, The viscous watershed transform, C. Vachier and F. Meyer, Journal of 

Mathematical Imaging and Vision, volume 22, issue 2-3, May 2005, gives more 
information on the watershed transform

ff The last recipe of this chapter, Extracting foreground objects with the GrabCut 
algorithm, presents another image segmentation algorithm that can also segment  
an image into background and foreground objects

Extracting distinctive regions using MSER
In the previous recipe, you learned how an image can be segmented into regions by 
gradually flooding it and creating watersheds. The maximally stable extremal regions 
(MSER) algorithm uses the same immersion analogy in order to extract meaningful  
regions in an image. These regions will also be created by flooding the image level by  
level, but this time, we will be interested in the basins that remain relatively stable for 
a period of time during the immersion process. It will be observed that these regions 
correspond to some distinctive parts of the scene objects pictured in the image.
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How to do it...
The basic class to compute the MSER of an image is cv::MSER. An instance of this class 
can be created by using the default empty constructor. In our case, we chose to initialize it 
by specifying a minimum and maximum size for the detected regions in order to limit their 
number. Then, our call will be as follows:

// basic MSER detector
cv::MSER mser(5, // delta value for extremal region detection
            200, // min acceptable area 
          1500); // max acceptable area

Now, the MSER can be obtained by a call to a functor, specifying the input image and an 
appropriate output data structure, as follows:

  // vector of point sets
  std::vector<std::vector<cv::Point>> points;
  // detect MSER features
  mser(image, points);

The result is a vector of regions represented by the pixel points that compose each of them.  
In order to visualize the results, we create a blank image on which we will display the detected 
regions in different colors (which are randomly chosen). This is done as follows:

  // create white image
  cv::Mat output(image.size(),CV_8UC3);
  output= cv::Scalar(255,255,255);
  
  // random number generator
  cv::RNG rng;

  // for each detected feature
  for (std::vector<std::vector<cv::Point>>::
            iterator it= points.begin();
         it!= points.end(); ++it) {

    // generate a random color
    cv::Vec3b c(rng.uniform(0,255),
               rng.uniform(0,255),
               rng.uniform(0,255));

    // for each point in MSER set
    for (std::vector<cv::Point>::
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                 iterator itPts= it->begin();
              itPts!= it->end(); ++itPts) {

      //do not overwrite MSER pixels
      if (output.at<cv::Vec3b>(*itPts)[0]==255) {

        output.at<cv::Vec3b>(*itPts)= c;
      }
    }
  }

Note that the MSER form a hierarchy of regions. Therefore, to make all of these visible,  
we have chosen to not overwrite the small regions when they are included in larger ones.  
If the MSER are detected on the following image:
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Then, the resulting image will be (refer to the book's graphics PDF to view this image in color) 
as follows:

These are the raw results of the detection. Nevertheless, it can be observed how this operator 
has been able to extract some meaningful regions (for example, the building's windows) from 
this image.

How it works...
MSER uses the same mechanism as the watershed algorithm; that is, it proceeds by gradually 
flooding the image from level 0 to level 255. As the level of water increases, you can observe 
that the sharply delimitated darker areas form the basins that have a relatively stable shape 
for a period of time (recall that under the immersion analogy, the water levels correspond to 
the intensity levels). These stable basins are the MSER. These are detected by considering the 
connected regions at each level and measuring their stability. This is done by comparing the 
current area of a region with the area it previously had when the level was down by a value 
of delta. When this relative variation reaches a local minimum, the region is identified as a 
MSER. The delta value that is used to measure the relative stability is the first parameter in 
the constructor of the cv::MSER class; its default value is 5. In addition, to be considered, 
the size of a region must be within a certain predefined range. The acceptable minimum and 
maximum region sizes are the next two parameters of the constructor. We must also ensure 
that the MSER is stable (the fourth parameter), that is, the relative variation of its shape is 
small enough. The stable regions can be included in the larger regions (called parent regions).
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To be valid, a parent MSER must be sufficiently different from its child; this is the diversity 
criterion, and it is specified by the fifth parameter of the cv::MSER constructor. In the 
example used in the previous section, the default value for these last two parameters  
were used. (The default values are 0.25 for the maximum allowable variation of a MSER  
and 0.2 for the minimum diversity of a parent MSER.)

The output of the MSER detector is a vector of point sets. Since we are generally more 
interested in a region as a whole rather than its individual pixel locations, it is common  
to represent a MSER by a simple geometrical shape that describes the MSER location and 
size. A bounding ellipse is a commonly used representation. In order to obtain these ellipses, 
we will make use of two convenient OpenCV functions. The first is the cv::minAreaRect 
function that finds the rectangle of minimum area that binds all the points in a set. This 
rectangle is described by a cv::RotatedRect instance. Once this bounding rectangle is 
found, it is possible to draw the inscribed ellipse on the image by using the cv::ellipse 
function. Let's encapsulate this complete process in one class. The constructor of this class 
basically repeats the one of the cv::MSER class. Refer to the following code:

class MSERFeatures {

  private:

    cv::MSER mser;        // mser detector
    double minAreaRatio;  // extra rejection parameter

  public:

    MSERFeatures(
           // aceptable size range
           int minArea=60, int maxArea=14400,
           // min value for MSER area/bounding-rect area 
           double minAreaRatio=0.5,
           // delta value used for stability measure 
           int delta=5, 
           // max allowed area variation
           double maxVariation=0.25, 
           // min size increase between child and parent
           double minDiversity=0.2):
           mser(delta,minArea,maxArea,
           maxVariation,minDiversity), 
           minAreaRatio(minAreaRatio) {}

One extra parameter (minAreaRatio) has been added to eliminate the MSER for which the 
bounding rectangle has an area that differs greatly from the one of the MSER it represents. 
This is to remove the less interesting elongated shapes.
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The list of representative bounding rectangles is computed by the following method:

// get the rotated bounding rectangles 
// corresponding to each MSER feature
// if (mser area / bounding rect area) < areaRatio, 
// the feature is rejected
void getBoundingRects(const cv::Mat &image, 
                      std::vector<cv::RotatedRect> &rects) {

  // detect MSER features
  std::vector<std::vector<cv::Point>> points;
  mser(image, points);

  // for each detected feature
  for (std::vector<std::vector<cv::Point>>::
            iterator it= points.begin();
         it!= points.end(); ++it) {
           
        // Extract bouding rectangles
        cv::RotatedRect rr= cv::minAreaRect(*it);
    
        // check area ratio
        if (it->size() > minAreaRatio*rr.size.area())
        rects.push_back(rr);
  }
}

The corresponding ellipses are drawn on the image using the following method:

// draw the rotated ellipses corresponding to each MSER
cv::Mat getImageOfEllipses(const cv::Mat &image,
            std::vector<cv::RotatedRect> &rects, 
            cv::Scalar color=255) {

  // image on which to draw
  cv::Mat output= image.clone();

  // get the MSER features
  getBoundingRects(image, rects);

  // for each detected feature
  for (std::vector<cv::RotatedRect>::
            iterator it= rects.begin();
         it!= rects.end(); ++it) {
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        cv::ellipse(output,*it,color);
  }

  return output;
}

The detection of the MSER is then obtained as follows:

  // create MSER feature detector instance
  MSERFeatures mserF(200, // min area 
                    1500, // max area
                    0.5); // ratio area threshold
                          // default delta is used

  // the vector of bounding rotated rectangles
  std::vector<cv::RotatedRect> rects;

  // detect and get the image
  cv::Mat result= mserF.getImageOfEllipses(image,rects);

By applying this function to the previously used image, we will get the following image:

Comparing this result with the previous result should convince you that this later representation 
is easier to interpret. Note how the child and parent MSER are often represented by very similar 
ellipses. In some cases, it would then be interesting to apply a minimum variation criterion on 
these ellipses in order to eliminate these repeated representations.
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See also
ff The Computing components' shape descriptors recipe in Chapter 7, Extracting  

Lines, Contours, and Components will show you how to compute other properties  
of connected point sets

ff Chapter 8, Detecting Interest Points, will explain how to use MSER as an interest 
point detector

Extracting foreground objects with the 
GrabCut algorithm

OpenCV proposes the implementation of another popular algorithm for image segmentation: 
the GrabCut algorithm. This algorithm is not based on mathematical morphology, but we have 
presented it here since it shows some similarities in its use with the watershed segmentation 
algorithm presented earlier in this chapter. GrabCut is computationally more expensive than 
watershed, but it generally produces more accurate results. It is the best algorithm to use 
when you want to extract a foreground object in a still image (for example, to cut and paste  
an object from one picture to another).

How to do it...
The cv::grabCut function is easy to use. You just need to input an image, and label  
some of its pixels as belonging to the background or to the foreground. Based on this  
partial labeling, the algorithm will then determine a foreground/background segmentation 
for the complete image.

One way to specify a partial foreground/background labeling for an input image is by defining 
a rectangle inside which the foreground object is included:

   // define bounding rectangle
   // the pixels outside this rectangle
   // will be labeled as background 
   cv::Rect rectangle(5,70,260,120);
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All the pixels outside this rectangle will then be marked as the background. In addition to the 
input image and its segmentation image, calling the cv::grabCut function requires the 
definition of two matrices, which will contain the models built by the algorithm as follows:

   cv::Mat result; // segmentation (4 possible values)
   cv::Mat bgModel,fgModel; // the models (internally used)
   // GrabCut segmentation
   cv::grabCut(image,    // input image
            result,      // segmentation result
            rectangle,   // rectangle containing foreground 
            bgModel,fgModel, // models
            5,           // number of iterations
            cv::GC_INIT_WITH_RECT); // use rectangle

Note how we specified that we are using the bounding rectangle mode using the cv::GC_
INIT_WITH_RECT flag as the last argument of the function (the next section will discuss the 
other available mode). The input/output segmentation image can have one of the following 
four values:

ff cv::GC_BGD: This is the value for the pixels that certainly belong to the background 
(for example, pixels outside the rectangle in our example)

ff cv::GC_FGD: This is the value for the pixels that certainly belong to the foreground 
(there are none in our example)

ff cv::GC_PR_BGD: This is the value for the pixels that probably belong to  
the background

ff cv::GC_PR_FGD: This is the value for the pixels that probably belong to the foreground 
(that is, the initial value for the pixels inside the rectangle in our example)
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We get a binary image of the segmentation by extracting the pixels that have a value equal  
to cv::GC_PR_FGD. Refer to the following code:

   // Get the pixels marked as likely foreground
   cv::compare(result,cv::GC_PR_FGD,result,cv::CMP_EQ);
   // Generate output image
   cv::Mat foreground(image.size(),CV_8UC3,
                      cv::Scalar(255,255,255));
   image.copyTo(foreground,// bg pixels are not copied
                result);

To extract all the foreground pixels, that is, with values equal to cv::GC_PR_FGD or  
cv::GC_FGD, it is possible to check the value of the first bit, as follows:

   // checking first bit with bitwise-and
   result= result&1; // will be 1 if FG 

This is possible because these constants are defined as values 1 and 3, while the other two 
(cv::GC_BGD and cv::GC_PR_BGD) are defined as 0 and 2. In our example, the same result 
is obtained because the segmentation image does not contain the cv::GC_FGD pixels (only 
the cv::GC_BGD pixels have been inputted).

Finally, we obtain an image of the foreground objects (over a white background) by the 
following copy operation with a mask:

   // Generate output image
   cv::Mat foreground(image.size(),CV_8UC3,
             cv::Scalar(255,255,255)); // all white image
   image.copyTo(foreground,result); // bg pixels not copied

The following image is obtained as the result:
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How it works...
In the preceding example, the GrabCut algorithm was able to extract the foreground objects 
by simply specifying a rectangle inside which these objects (the four animals) were contained. 
Alternatively, one could also assign the values cv::GC_BGD and cv::GC_FGD to some 
specific pixels of the segmentation image, which are provided as the second argument of the 
cv::grabCut function. You would then specify GC_INIT_WITH_MASK as the input mode flag. 
These input labels could be obtained, for example, by asking a user to interactively mark a few 
elements of the image. It is also possible to combine these two input modes.

Using this input information, the GrabCut algorithm creates the background/foreground 
segmentation by proceeding as follows. Initially, a foreground label (cv::GC_PR_FGD) is 
tentatively assigned to all the unmarked pixels. Based on the current classification, the 
algorithm groups the pixels into clusters of similar colors (that is, K clusters for the background 
and K clusters for the foreground). The next step is to determine a background/foreground 
segmentation by introducing boundaries between the foreground and background pixels. This 
is done through an optimization process that tries to connect pixels with similar labels, and 
that imposes a penalty for placing a boundary in the regions of relatively uniform intensity. This 
optimization problem can be efficiently solved using the Graph Cuts algorithm, a method that 
can find the optimal solution of a problem by representing it as a connected graph on which 
cuts are applied in order to compose an optimal configuration. The obtained segmentation 
produces new labels for the pixels. The clustering process can then be repeated, and a new 
optimal segmentation is found again, and so on. Therefore, the GrabCut algorithm is an iterative 
procedure that gradually improves the segmentation result. Depending on the complexity of the 
scene, a good solution can be found in more or less number of iterations (in easy cases, one 
iteration would be enough).

This explains the argument of the function where the user can specify the number of 
iterations to be applied. The two internal models maintained by the algorithm are passed 
as an argument of the function (and returned). Therefore, it is possible to call the function 
with the models of the last run again if one wishes to improve the segmentation result by 
performing additional iterations.

See also
ff The article, GrabCut: Interactive Foreground Extraction using Iterated Graph Cuts  

in ACM Transactions on Graphics (SIGGRAPH) volume 23, issue 3, August 2004,  
C. Rother, V. Kolmogorov, and A. Blake describes the GrabCut algorithm in detail.
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Filtering the Images

In this chapter, we will cover the following recipes:

ff Filtering images using low-pass filters

ff Filtering images using a median filter

ff Applying directional filters to detect edges

ff Computing the Laplacian of an image

Introduction
Filtering is one of the fundamental tasks in signal and image processing. It is a process aimed 
at selectively extracting certain aspects of an image that are considered to convey important 
information in the context of a given application. Filtering removes noise in images, extracts 
interesting visual features, allows image resampling, and so on. It finds its roots in the general 
Signals and Systems theory. We will not cover this theory in detail here. However, this chapter 
will present some of the important concepts related to filtering and will show you how filters 
can be used in image-processing applications. But first, let's begin with a brief explanation of 
the concept of frequency domain analysis.

When we look at an image, we observe how the different gray-levels (or colors) are  
distributed over the image. Images differ from each other because they have a different 
gray-level distribution. However, there exists another point of view under which an image can 
be analyzed. We can look at the gray-level variations that are present in an image. Some 
images contain large areas of almost constant intensity (for example, a blue sky) while in 
other images, the gray-level intensities vary rapidly over the image (for example, a busy scene 
crowded with many small objects). Therefore, observing the frequency of these variations in 
an image constitutes another way of characterizing an image. This point of view is referred 
to as the frequency domain, while characterizing an image by observing its gray-level 
distribution is referred to as the spatial domain.
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The frequency domain analysis decomposes an image into its frequency content from the 
lowest to the highest frequencies. Areas where the image intensities vary slowly contain only 
low frequencies, while high frequencies are generated by rapid changes in intensities. Several 
well-known transformations exist, such as the Fourier transform or the Cosine transform, 
which can be used to explicitly show the frequency content of an image. Note that since an 
image is a two-dimensional entity, it is made of both vertical frequencies (variations in the 
vertical directions) and horizontal frequencies (variations in the horizontal directions).

Under the frequency domain analysis framework, a filter is an operation that amplifies certain 
bands of frequencies of an image while blocking (or reducing) other image frequency bands.  
A low-pass filter is, therefore, a filter that eliminates the high-frequency components of an 
image and reciprocally, a high-pass filter eliminates the low-pass components. This chapter 
will present some filters that are frequently used in image processing and will explain their 
effect when applied on an image.

Filtering images using low-pass filters
In this first recipe, we will present some very basic low-pass filters. In the introductory section 
of this chapter, we learned that the objective of such filters is to reduce the amplitude of the 
image variations. One simple way to achieve this goal is to replace each pixel by the average 
value of the pixels around it. By doing this, the rapid intensity variations will be smoothed out 
and thus replaced by a more gradual transition.

How to do it...
The objective of the cv::blur function is to smooth an image by replacing each pixel with 
the average pixel value computed over a rectangular neighborhood. This low-pass filter is 
applied as follows:

   cv::blur(image,result,
            cv::Size(5,5)); // size of the filter
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This kind of filter is also called a box filter. Here, we applied it by using a 5x5 filter in order to 
make the filter's effect more visible. Take a look at the following screenshot:

The result of the filter being applied on the preceding image is the following screenshot:
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In some cases, it might be desirable to give more importance to the closer pixels in the 
neighborhood of a pixel. Therefore, it is possible to compute a weighted average in which 
nearby pixels are assigned a larger weight than ones that are further away. This can be 
achieved by using a weighted scheme that follows a Gaussian function (a "bell-shaped" 
function). The cv::GaussianBlur function applies such a filter and it is called as follows:

cv::GaussianBlur(image,
        result, cv::Size(5,5), // size of the filter
        1.5);   // parameter controlling 
                // the shape of the Gaussian

The result is then shown in the following screenshot:

How it works...
A filter is said to be linear if its application corresponds to replacing a pixel with a weighted sum 
of neighboring pixels. This is the case of the mean filter in which a pixel is replaced by the sum 
of all pixels in a rectangular neighborhood and divided by the size of this neighborhood (to get 
the average value). This is like multiplying each neighboring pixel by 1 over the total number of 
pixels and summing all of these values. The different weights of a filter can be represented using 
a matrix that shows the multiplying factors associated with each pixel position in the considered 
neighborhood. The central element of the matrix corresponds to the pixel on which the filter is 
currently applied. Such a matrix is sometimes called a kernel or a mask. For a 3x3 mean filter, 
the corresponding kernel would be as follows:

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9
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The cv::boxFilter function filters an image with a square kernel made of many 1 only.  
It is similar to the mean filter but without dividing the result by the number of coefficients.

Applying a linear filter then corresponds to moving a kernel over each pixel of an image and 
multiplying each corresponding pixel by its associated weight. Mathematically, this operation 
is called a convolution and can formally be written as follows:

( , ) ( , ) ( , )out in
i j

I x y I x i y j K i j= − −∑∑

The preceding double summation aligns the current pixel at (x,y) with the center of the K kernel, 
which is assumed to be at coordinate (0,0).

Looking at the output images produced in this recipe, it can be observed that the net effect of a 
low-pass filter is to blur or smooth the image. This is not surprising since this filter attenuates the 
high-frequency components that correspond to the rapid variations visible on an object's edge.

In the case of a Gaussian filter, the weight associated with a pixel is proportional to its distance 
from the central pixel. Recall that the 1D Gaussian function has the following form:

2 2/2( ) xG x Ae σ−=

The normalizing coefficient A is chosen such that the different weights sum to one. The σ 
(sigma) value controls the width of the resulting Gaussian function. The greater this value  
is, the flatter the function will be. For example, if we compute the coefficients of the 1D 
Gaussian filter for the interval [-4, 0, 4] with σ = 0.5, we obtain the following coefficients:

[0.0 0.0 0.00026 0.10645 0.78657 0.10645 0.00026 0.0 0.0]

For σ=1.5, these coefficients are as follows:

[0.00761 0.036075 0.10959 0.21345 0.26666 
 0.21345 0.10959 0.03608 0.00761 ]

Note that these values were obtained by calling the cv::getGaussianKernel function  
with the appropriate σ value:

cv::Mat gauss= cv::getGaussianKernel(9, sigma,CV_32F);
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The symmetrical bell shape of the Gaussian function makes it a good choice for filtering.  
Refer to the following screenshot:

Pixels farther from the center have a lower weight, which makes the pixel-to-pixel transitions 
smoother. This contrasts with the flat mean filter where pixels far away can cause sudden 
changes in the current mean value. In terms of frequencies, this implies that the mean filter 
does not remove all the high frequency components.

To apply a 2D Gaussian filter on an image, one can simply apply a 1D Gaussian filter on the 
image lines first (to filter the horizontal frequencies), followed by the application of another 1D 
Gaussian filter on the image columns (to filter the vertical frequencies). This is possible because 
the Gaussian filter is a separable filter (that is, the 2D kernel can be decomposed into two 1D 
filters). The cv::sepFilter2D function can be used to apply a general separable filter. It 
is also possible to directly apply a 2D kernel using the cv::filter2D function. In general, 
separable filters are faster to compute than non-separable ones because they require less 
multiplication operations.

With OpenCV, the Gaussian filter to be applied on an image is specified by providing both the 
number of coefficients (the third parameter, which is an odd number) and the value of σ (the 
fourth parameter) to cv::GaussianBlur. You can also simply set the value of σ and let 
OpenCV determine the appropriate number of coefficients (you then input a value of 0 for  
the filter size). The opposite is also possible, where you input a size and a value of 0 for σ.  
The σ value that best fits the given size will be determined.
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There's more...
Low-pass filters are also used when an image is resized; this section explains why.  
The resizing of an image might also require interpolating pixel value; this aspect is  
also discussed in this section.

Downsampling an image
You might think that you can reduce the size of an image by simply eliminating some of  
the columns and rows of the image. Unfortunately, the resulting image will not look very  
nice. The following figure illustrates this fact by showing you a test image that is reduced  
by a factor of 4 with respect to its original size by simply keeping 1 of every 4 columns and 
rows. Note that to make the defects in this image more apparent, we zoom in on the image  
by displaying it with pixels that are two times larger (the next section explains how this can  
be done). Refer to the following screenshot:

Clearly, one can see that the image quality has degraded. For example, the oblique edges  
of the castle's roof in the original image now appear as a staircase on the reduced image. 
Other jagged distortions are also visible on the textured parts of the image (the brick walls,  
for instance).



Filtering the Images

174

These undesirable artifacts are caused by a phenomenon called spatial aliasing that occurs 
when you try to include high-frequency components in an image that is too small to contain 
them. Indeed, smaller images (that is, images with fewer pixels) cannot represent fine textures 
and sharp edges as nicely as the higher resolution images (think of the difference between 
high-definition TV versus conventional TV). Since fine details in an image correspond to high 
frequencies, we need to remove these higher frequency components in an image before 
reducing its size. We learned in this recipe that this can be done through a low-pass filter. 
Consequently, to reduce the size of an image by 4 without adding annoying artifacts, you  
must first apply a low-pass filter to the original image before throwing away columns and  
rows. Here is how you would do this using OpenCV:

  // first remove high frequency component
  cv::GaussianBlur(image,image,cv::Size(11,11),2.0);
  // keep only 1 of every 4 pixels
  cv::Mat reduced2(image.rows/4,image.cols/4,CV_8U);
  for (int i=0; i<reduced2.rows; i++)
    for (int j=0; j<reduced2.cols; j++)
      reduced2.at<uchar>(i,j)= image.at<uchar>(i*4,j*4);

The resulting image is as follows:

Of course, some of the fine details of the image have been lost, but globally, the visual quality 
of the image is better preserved than in the previous case.

A special OpenCV function also performs image reduction. This is the cv::pyrDown function:

cv::Mat reducedImage;  // to contain reduced image
cv::pyrDown(image,reducedImage); // reduce image size by half
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The preceding function uses a 5x5 Gaussian filter to low-pass the image before reducing it 
by a factor of two. The reciprocal cv::pyrUp function that doubles the size of an image also 
exists. It is interesting to note that in this case, the upsampling is done by inserting the 0 values 
between every two columns and rows and then by applying the same 5x5 Gaussian filter (but 
with the coefficients multiplied by 4) on the expanded image. Obviously, if you downsize an 
image and then upsize it, you will not recover the exact original image. What was lost during 
the downsizing process cannot be recovered. These two functions are used to create image 
pyramids. This is a data structure made of stacked versions of an image at different sizes (here, 
each level is 2 times smaller than the previous level, but the reduction factor can be less, for 
example, 1.2) that is often built for efficient image analysis. For example, if you want to detect 
an object in an image, the detection can be first accomplished on the small image at the top of 
the pyramid, and as you locate the object of interest, you can refine the search by moving to the 
lower levels of the pyramid that contains the higher resolution versions of the image.

Note that there is also a more general cv::resize function that allows you to specify the 
size you want for the resulting image. You simply call it by specifying a new size that could  
be smaller or larger than the original image:

cv::Mat resizedImage;  // to contain resized image
cv::resize(image,resizedImage,
     cv::Size(image.cols/4,image.rows/4)); // 1/4 resizing

It is also possible to specify resizing in terms of scale factors. In this case, an empty size 
instance is given as an argument followed by the desired scale factors:

cv::resize(image,resizedImage,
           cv::Size(), 1.0/4.0, 1.0/4.0); // 1/4 resizing

A last parameter allows you to select the interpolation method that is to be used in the 
resampling process. This is discussed in the following section.

Interpolating pixel values
When an image is resized by a factional factor, it becomes necessary to perform some pixel 
interpolation in order to produce new pixel values at locations that fall in between the existing 
ones. General image remapping, as discussed in the Remapping an image recipe of Chapter 2, 
Manipulating Pixels, is another situation where pixel interpolation is required.

The most basic approach to perform interpolation is to use a nearest neighbor strategy.  
The new grid of pixels that must be produced is placed on top of the existing image, and  
each new pixel is assigned the value of its closest pixel in the original image. In the case of 
image upsampling (that is, when using a new grid denser than the original one), this implies 
that more than one pixel of the new grid will receive its value from the same original pixel.
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For example, if we rescale the reduced image of the previous section by 3 using nearest 
neighbor interpolation (which is done by using the interpolation flag cv::INTER_NEAREST), 
we obtain the following code:

  cv::resize(reduced, newImage, 
               cv::Size(), 3, 3,cv::INTER_NEAREST);

The result is shown in the following screenshot:

In this case, the interpolation corresponds to simply multiplying the size of each pixel by 3 
(this is how we produced the images of the previous section). A better approach consists of 
interpolating a new pixel value by combining the values of several neighboring pixels. Hence, 
we can linearly interpolate a pixel value by considering the four pixels around it, as illustrated 
by the following figure:
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This is done by first vertically interpolating two pixel values to the left- and right-hand side of 
the added pixel. Then, these two interpolated pixels (drawn in gray in the preceding figure) are 
used to horizontally interpolate the pixel value at the desired location. This bilinear interpolation 
scheme is the default approach used by cv::resize (that can also be explicitly specified by 
the flag cv::INTER_LINEAR):

  cv::resize(reduced2, newImage, 
               cv::Size(), 3, 3, cv::INTER_LINEAR);

The following is the result:

There also exist other approaches that can produce superior results. With bicubic 
interpolation, a neighborhood of 4x4 pixels is considered to perform the interpolation. 
However, since the approach uses more pixels and implies the computation of cubic  
terms, it is slower than bilinear interpolation.

See also
ff The There's more… section of the Scanning an image with neighbor access recipe in 

Chapter 2, Manipulating Pixels, introduces the cv::filter2D function. This function 
lets you apply a linear filter to an image by inputting the kernel of your choice.
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Filtering images using a median filter
The first recipe of this chapter introduced the concept of linear filters. Non-linear filters  
also exist and can be advantageously used in image processing. One such filter is the  
median filter that we present in this recipe.

Since median filters are particularly useful in order to combat salt-and-pepper noise  
(or salt-only, in our case), we will use the image we created in the first recipe of  
Chapter 2, Manipulating Pixels, and that is reproduced here:

How to do it...
The call to the median filtering function is done in a way that is similar to the other filters:

   cv::medianBlur(image,result,5); // size of the filter
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The resulting image is as follows:

How it works...
Since the median filter is not a linear filter, it cannot be represented by a kernel matrix. 
However, it also operates on a pixel's neighborhood in order to determine the output pixel 
value. The pixel and its neighborhood form a set of values and, as the name suggests, the 
median filter will simply compute the median value of this set, and the current pixel is then 
replaced with this median value (the median of a set is the value at the middle position  
when the set is sorted).
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This explains why the filter is so efficient in eliminating the salt-and-pepper noise. Indeed,  
when an outlier black or white pixel is present in a given pixel neighborhood, it is never selected 
as the median value (rather, it is the maximal or minimal value), so it is always replaced by a 
neighboring value. In contrast, a simple mean filter would be greatly affected by such noise  
as it can be observed in the following image that represents the mean filtered version of our 
salt-and-pepper corrupted image:

Clearly, the noisy pixels shifted the mean value of neighboring pixels. As a result, the noise is 
still visible even if it has been blurred by the mean filter.

The median filter also has the advantage of preserving the sharpness of the edges. However, it 
washes out the textures in uniform regions (for example, the trees in the background). Because 
of the visual impact it has on images, the median filter is often used to create special effects 
in photo-editing software tools. You should test it on a color image to see how it can produce 
cartoon-like images.

Applying directional filters to detect edges
The first recipe of this chapter introduced the idea of linear filtering using kernel matrices.  
The filters that were used had the effect of blurring an image by removing or attenuating 
its high-frequency components. In this recipe, we will perform the opposite transformation, 
that is, amplifying the high-frequency content of an image. As a result, the high-pass filters 
introduced here will perform edge detection.
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How to do it...
The filter that we will use here is called the Sobel filter. It is said to be a directional filter, 
because it only affects the vertical or the horizontal image frequencies depending on which 
kernel of the filter is used. OpenCV has a function that applies the Sobel operator on an 
image. The horizontal filter is called as follows:

  cv::Sobel(image,    // input
           sobelX,    // output
           CV_8U,     // image type
           1, 0,      // kernel specification
           3,         // size of the square kernel 
           0.4, 128); // scale and offset

Vertical filtering is achieved by the following (and very similar to the horizontal filter) call:

  cv::Sobel(image,    // input
           sobelY,    // output
           CV_8U,     // image type
           0, 1,      // kernel specification
           3,         // size of the square kernel 
           0.4, 128); // scale and offset

Several integer parameters are provided to the function, and these will be explained in 
the next section. Note that these have been chosen to produce an 8-bit image (CV_8U) 
representation of the output.

The result of the horizontal Sobel operator is as follows:
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Since, as it will be seen in the next section, the kernels of the Sobel operator contain both 
positive and negative values, the result of the Sobel filter is generally computed in a 16-bit 
signed integer image (CV_16S). To make the results displayable as an 8-bit image, as shown in 
the preceding figure, we used a representation in which a zero value corresponds to gray-level 
128. Negative values are represented by darker pixels, while positive values are represented by 
brighter pixels. The vertical Sobel image is as follows:

If you are familiar with photo-editing software, the preceding images might remind you of the 
image emboss effect, and indeed, this image transformation is generally based on the use  
of directional filters.

The two results (vertical and horizontal) can then be combined to obtain the norm of the  
Sobel filter:

   // Compute norm of Sobel
   cv::Sobel(image,sobelX,CV_16S,1,0);
   cv::Sobel(image,sobelY,CV_16S,0,1);
   cv::Mat sobel;
   //compute the L1 norm
   sobel= abs(sobelX)+abs(sobelY);
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The Sobel norm can be conveniently displayed in an image using the optional rescaling 
parameter of the convertTo method in order to obtain an image in which zero values 
correspond to white, and higher values are assigned darker gray shades:

   // Find Sobel max value
   double sobmin, sobmax;
   cv::minMaxLoc(sobel,&sobmin,&sobmax);
   // Conversion to 8-bit image
   // sobelImage = -alpha*sobel + 255
   cv::Mat sobelImage;
   sobel.convertTo(sobelImage,CV_8U,-255./sobmax,255);

The result can be seen in the following screenshot:
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Looking at this image, it is now clear why these kind of operators are called edge detectors. 
It is then possible to threshold this image in order to obtain a binary map that shows you the 
image contour. The following snippet creates the image that follows it:

   cv::threshold(sobelImage, sobelThresholded, 
                      threshold, 255, cv::THRESH_BINARY);

How it works...
The Sobel operator is a classic edge-detection linear filter that is based on two simple  
3x3 kernels that have the following structure:

-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

If we view the image as a two-dimensional function, the Sobel operator can then be seen as a 
measure of the variation of the image in the vertical and horizontal directions. In mathematical 
terms, this measure is called a gradient, and it is defined as a 2D vector that is made from the 
function's first derivatives in two orthogonal directions:
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Therefore, the Sobel operator gives you an approximation of the image gradient by differencing 
pixels in the horizontal and vertical directions. It operates on a window around the pixel of 
interest in order to reduce the influence of noise. The cv::Sobel function computes the result 
of the convolution of the image with a Sobel kernel. Its complete specification is as follows:

   cv::Sobel(image,  // input
             sobel,  // output
             image_depth,   // image type
             xorder,yorder, // kernel specification
             kernel_size,   // size of the square kernel 
             alpha, beta);  // scale and offset

Therefore, you decide whether you wish to have the result written in an unsigned characters, 
a signed integer, or a floating point image. Of course, if the result falls outside of the domain 
of the image pixel, saturation will be applied. This is where the last two parameters can be 
useful. Before storing the result in the image, the result can be scaled (multiplied) by alpha 
and an offset, beta, can be added. This is how, in the previous section, we generated an 
image for which the Sobel value 0 was represented by the mid-gray level 128. Each Sobel 
mask corresponds to a derivative in one direction. Therefore, two parameters are used to 
specify the kernel that will be applied, the order of the derivative in the x, and the y directions. 
For instance, the horizontal Sobel kernel is obtained by specifying 1 and 0 for the xorder 
and yorder parameters, and the vertical kernel will be generated with 0 and 1. Other 
combinations are also possible, but these two are the ones that will be used most often (the 
case of second-order derivatives is discussed in the next recipe). Finally, it is also possible to 
use kernels of a size that is larger than 3x3. Values 1, 3, 5, and 7 are possible choices for the 
kernel size. A kernel of size 1 corresponds to a 1D Sobel filter (1x3 or 3x1). See the following 
There's more… section to learn why using a larger kernel might be useful.

Since the gradient is a 2D vector, it has a norm and a direction. The norm of the gradient 
vector tells you what the amplitude of the variation is, and it is normally computed as a 
Euclidean norm (also called L2 norm):
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However, in image processing, this norm is often computed as the sum of the absolute values. 
This is called the L1 norm, and it gives values that are close to the L2 norm but at a lower 
computational cost. This is what we did in this recipe:

   //compute the L1 norm
   sobel= abs(sobelX)+abs(sobelY);

The gradient vector always points in the direction of the steepest variation. For an image,  
this means that the gradient direction will be orthogonal to the edge, pointing in the darker  
to brighter direction. Gradient angular direction is given by the following formula:

( ) arctan /I Igrad I
y x

 ∂ ∂
∠ = − ∂ ∂ 

Most often, for edge detection, only the norm is computed. However, if you require both the 
norm and the direction, then the following OpenCV function can be used:

   // Sobel must be computed in floating points
   cv::Sobel(image,sobelX,CV_32F,1,0);
   cv::Sobel(image,sobelY,CV_32F,0,1);
   // Compute the L2 norm and direction of the gradient
   cv::Mat norm, dir;   
   cv::cartToPolar(sobelX,sobelY,norm,dir);

By default, the direction is computed in radians. Just add true as an additional argument in 
order to have them computed in degrees.

A binary edge map has been obtained by applying a threshold on the gradient magnitude. 
Choosing the right threshold is not an obvious task. If the threshold value is too low, too many 
(thick) edges will be retained, while if we select a more severe (higher) threshold, then broken 
edges will be obtained. As an illustration of this trade-off situation, compare the preceding 
binary edge map with the following, which is obtained using a higher threshold value:
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One way to get the best of both lower and higher thresholds is to use the concept of hysteresis 
thresholding. This will be explained in the next chapter where we introduce the Canny operator.

There's more...
Other gradient operators also exist. We present some of them in this section. It is also possible to 
apply a Gaussian smoothing filter before applying a derivative filter. This makes it less sensitive 
to noise, as explained in this section.

Gradient operators
To estimate the gradient at a pixel location, the Prewitt operator defines the following kernels:

-1 0 1
-1 0 1
-1 0 1

-1 -1 -1
0 0 0
1 1 1
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The Roberts operator is based on these simple 2x2 kernels:

1 0
0 -1

0 1
-1 0

The Scharr operator is preferred when more accurate estimates of the gradient orientation 
are required:

-3 0 3
-10 0 10
-3 0 3

-3 -10 -3
0 0 0
3 10 3

Note that it is possible to use the Scharr kernels with the cv::Sobel function by calling it 
with the CV_SCHARR argument:

   cv::Sobel(image,sobelX,CV_16S,1,0, CV_SCHARR);

Or, equivalently, you can call the cv::Scharr function:

   cv::Scharr(image,scharrX,CV_16S,1,0,3);

All of these directional filters try to estimate the first-order derivative of the image function. 
Therefore, high values are obtained at areas where large intensity variations in the filter 
direction are present, while flat areas produce low values. This is why filters that compute 
image derivatives are high-pass filters.

Gaussian derivatives
Derivative filters are high-pass filters. As such, they tend to amplify noise and small highly-
contrasted details in an image. In order to reduce the impact of these higher frequency 
elements, it is a good practice to first smooth the image before applying a derivative filter.  
You might think that this would be done in two steps, which are smoothing the image and  
then computing the derivative. However, a closer look at these operations reveals that it is 
possible to combine these two steps into one with a proper choice of the smoothing kernel. 
We learned previously that the convolution of an image with a filter can be expressed as a 
summation of terms. Interestingly, a well-known mathematical property is that the derivative 
of a summation of terms is equal to the summation of the terms' derivative.
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Consequently, instead of applying the derivative on the result of the smoothing, it is possible 
to derivate the kernel and then convolute it with the image. Since the Gaussian kernel is 
continuously derivable, it represents a particularly appropriate choice. This is what is done 
when you call the cv::sobel function with different kernel sizes. The function will compute a 
Gaussian derivative kernel with different σ values. As an example, if we select the 7x7 Sobel 
filter (that is kernel_size=7) in the x direction, the following result is obtained:

If you compare this image with the one shown earlier, it can be seen that many fine details 
have been removed, giving them more emphasis on the more significant edges. Note that we 
now have a band-pass filter, the higher frequencies being removed by the Gaussian filter and 
the lower frequencies being removed by the Sobel filter.

See also
ff The Detecting image contours with the Canny operator recipe in Chapter 7, Extracting 

Lines, Contours, and Components, shows you how to obtain a binary edge map using 
two different threshold values
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Computing the Laplacian of an image
The Laplacian is another high-pass linear filter that is based on the computation of the  
image derivatives. As it will be explained, it computes second-order derivatives to measure  
the curvature of the image function.

How to do it...
The OpenCV function, cv::Laplacian, computes the Laplacian of an image. It is very similar 
to the cv::Sobel function. In fact, it uses the same basic function, cv::getDerivKernels, 
in order to obtain its kernel matrix. The only difference is that there are no derivative order 
parameters since these ones are, by definition, second order derivatives.

For this operator, we will create a simple class that will encapsulate some useful operations 
related to the Laplacian. The basic methods are as follows:

class LaplacianZC {

  private:
    // laplacian
    cv::Mat laplace;
    // Aperture size of the laplacian kernel
    int aperture;

  public:

     LaplacianZC() : aperture(3) {}

     // Set the aperture size of the kernel
     void setAperture(int a) {
        aperture= a;
     }

     // Compute the floating point Laplacian
     cv::Mat computeLaplacian(const cv::Mat& image) {

        // Compute Laplacian
        cv::Laplacian(image,laplace,CV_32F,aperture);
        return laplace;
     }
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The computation of the Laplacian is done here on a floating point image. To get an image of 
the result, we perform a rescaling, as shown in the previous recipe. This rescaling is based on 
the Laplacian maximum absolute value, where value 0 is assigned gray-level 128. A method  
of our class allows the following image representation to be obtained:

     // Get the Laplacian result in 8-bit image 
     // zero corresponds to gray level 128
     // if no scale is provided, then the max value will be
     // scaled to intensity 255
     // You must call computeLaplacian before calling this
     cv::Mat getLaplacianImage(double scale=-1.0) {
        if (scale<0) {
           double lapmin, lapmax;
           // get min and max laplacian values
           cv::minMaxLoc(laplace,&lapmin,&lapmax);
           // scale the laplacian to 127
           scale= 127/ std::max(-lapmin,lapmax);
        }

        // produce gray-level image
        cv::Mat laplaceImage;
        laplace.convertTo(laplaceImage,CV_8U,scale,128);
        return laplaceImage;
     }

Using this class, the Laplacian image computed from a 7x7 kernel is obtained as follows:

   // Compute Laplacian using LaplacianZC class
   LaplacianZC laplacian;
   laplacian.setAperture(7); // 7x7 laplacian
   cv::Mat flap= laplacian.computeLaplacian(image);
   laplace= laplacian.getLaplacianImage();
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The resulting image is as follows:

How it works...
Formally, the Laplacian of a 2D function is defined as the sum of its second derivatives:

2 2

2 2( ) I Ilaplace I
x y
∂ ∂

= +
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In its simplest form, it can be approximated by the following 3x3 kernel:

0 1 0
1 -4 1
0 1 0 

As for the Sobel operator, it is also possible to compute the Laplacian using larger kernels, 
and since this operator is even more sensitive to image noise, it is desirable to do so (unless 
computational efficiency is a concern). Since these larger kernels are computed using the 
second derivatives of the Gaussian function, the corresponding operator is often called 
Laplacian of Gaussian (LoG). Note that the kernel values of a Laplacian always sum up to 0. 
This guarantees that the Laplacian will be zero in areas of constant intensities. Indeed, since the 
Laplacian measures the curvature of the image function, it should be equal to 0 on flat areas.
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At first glance, the effect of the Laplacian might be difficult to interpret. From the definition 
of the kernel, it is clear that any isolated pixel value (that is, a value that's very different from 
its neighbors) will be amplified by the operator. This is a consequence of the operator's high 
sensitivity to noise. However, it is more interesting to look at the Laplacian values around an 
image edge. The presence of an edge in an image is the result of a rapid transition between 
areas of different gray-level intensities. Following the evolution of the image function along 
an edge (for example, caused by a transition from dark to bright), one can observe that the 
gray-level ascension necessarily implies a gradual transition from a positive curvature (when 
the intensity values start to rise) to a negative curvature (when the intensity is about to reach 
its high plateau). Consequently, a transition between a positive and a negative Laplacian 
value (or reciprocally) constitutes a good indicator of the presence of an edge. Another way 
to express this fact is to say that edges will be located at the zero-crossings of the Laplacian 
function. We will illustrate this idea by looking at the values of a Laplacian in a small window 
of our test image. We select one that corresponds to an edge created by the bottom part of 
the roof of one of the castle's tower. A white box has been drawn in the following image to 
show you the exact location of this region of interest:
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Now, looking at the Laplacian values (7x7 kernel) inside this window, we have the  
following figure:

If, as illustrated, you carefully follow the zero-crossings of the Laplacian (located between 
pixels of different signs), you obtain a curve that corresponds to the edge that is visible in  
the image window. In the preceding figure, we drew dotted lines along the zero-crossings  
that correspond to the edge of the tower that is visible in the selected image window. This 
implies that, in principle, you can even detect the image edges at sub-pixel accuracy.

Following the zero-crossing curves in a Laplacian image is a delicate task. However,  
a simplified algorithm can be used to detect the approximate zero-crossing locations.  
This one proceeds by first thresholding the Laplacian at 0 such that it obtains a partition 
between the positive and negative values. The contours between these two partitions then 
correspond to our zero-crossings. Therefore, we use a morphological operation to extract 
these contours, that is, we subtract the dilated image from the Laplacian image (this is the 
Beucher gradient presented in the Detecting edges and corners using morphological filters 
recipe in Chapter 5, Transforming Images with Morphological Operations). This algorithm is 
implemented by the following method, which generates a binary image of zero-crossings:

    // Get a binary image of the zero-crossings
    // laplacian image should be CV_32F
    cv::Mat getZeroCrossings(cv::Mat laplace) {

      // threshold at 0
      // negative values in black
      // positive values in white
      cv::Mat signImage;
      cv::threshold(laplace,signImage,0,255,cv::THRESH_BINARY);

      // convert the +/- image into CV_8U
      cv::Mat binary;
      signImage.convertTo(binary,CV_8U);
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      // dilate the binary image of +/- regions
      cv::Mat dilated;
      cv::dilate(binary,dilated,cv::Mat());
  
      // return the zero-crossing contours
      return dilated-binary;
    }

The result is the following binary map:

As you can see, the zero-crossings of the Laplacian detect all edges. No distinction is made 
between strong edges and weaker edges. We also mentioned that the Laplacian is very 
sensitive to noise. Finally, some of these edges are due to compression artifacts. All these 
factors explain why so many edges are detected by the operator. In practice, the Laplacian 
is only used in conjunction with other operators to detect edges (for example, edges can 
be declared at zero-crossing locations of strong gradient magnitude). We will also learn in 
Chapter 8, Detecting Interest Points, that the Laplacian and other second-order operators  
are very useful in order to detect interest points at multiple scales.
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There's more...
The Laplacian is a high-pass filter. It is possible to approximate it by using a combination of 
low-pass filters. But before that, let's have a word about image enhancement, which is a topic 
we already discussed in Chapter 2, Manipulating Pixels.

Enhancing the contrast of an image using the Laplacian
The contrast of an image can be enhanced by subtracting its Laplacian from it. This is what 
we did in the Scanning an image with neighbor access recipe of Chapter 2, Manipulating 
Pixels, where we introduced the kernel:

0 -1 0
-1 5 -1
0 -1 0

This is equal to 1 minus the Laplacian kernel (that is, the original image minus its Laplacian).

Difference of Gaussians
The Gaussian filter presented in the first recipe of this chapter extracts the low frequencies of  
an image. We learned that the range of frequencies that are filtered by a Gaussian filter depend 
on the parameter σ, which controls the width of the filter. Now, if we subtract the two images  
that result from the filtering of an image by two Gaussian filters of different bandwidths, then  
the resulting image will be composed of those higher frequencies that one filter has preserved, 
and not the other. This operation is called Difference of Gaussians (DoG) and is computed  
as follows:

  cv::GaussianBlur(image,gauss20,cv::Size(),2.0);
  cv::GaussianBlur(image,gauss22,cv::Size(),2.2);

  // compute a difference of Gaussians 
  cv::subtract(gauss22, gauss20, dog, cv::Mat(), CV_32F);

  // Compute the zero-crossings of DoG 
  zeros= laplacian.getZeroCrossings(dog);
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In addition, we also compute the zero-crossings of the DoG operator and we obtain the 
following screenshot:

In fact, it can be demonstrated that with the proper choice of σ values, DoG operators can 
constitute a good approximation of LoG filters. Also, if you compute a series of difference of 
Gaussians from consecutive pair values in an increasing sequence of σ values, you obtain 
a scale-space representation of the image. This multiscale representation is useful, for 
example, for scale-invariant image feature detection, as it will be explained in Chapter 8, 
Detecting Interest Points.

See also
ff The Detecting scale-invariant features recipe in Chapter 8, Detecting Interest Points 

uses the Laplacian and DoG for the detection of scale-invariant features





7
Extracting Lines, 

Contours, and 
Components

In this chapter, we will cover the following recipes:

ff Detecting image contours with the Canny operator

ff Detecting lines in images with the Hough transform

ff Fitting a line to a set of points

ff Extracting the components' contours

ff Computing components' shape descriptors

Introduction
In order to perform content-based analysis of an image, it is necessary to extract meaningful 
features from the collection of pixels that constitute the image. Contours, lines, blobs, and so 
on, are fundamental image primitives that can be used to describe the elements contained in 
an image. This chapter will teach you how to extract some of these important image features.
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Detecting image contours with the Canny 
operator

In the previous chapter, we learned how it is possible to detect the edges of an image. In 
particular, we showed you that by applying a threshold on the gradient magnitude, a binary 
map of the main edges of an image can be obtained. Edges carry important visual information 
since they delineate the image elements. For this reason, they can be used, for example, 
in object recognition. However, simple binary edge maps suffer from two main drawbacks. 
First, the edges that are detected are unnecessarily thick; this makes the object's limit more 
difficult to identify. Second, and more importantly, it is often impossible to find a threshold 
that is sufficiently low in order to detect all important edges of an image and is, at the same 
time, sufficiently high in order to not include too many insignificant edges. This is a trade-off 
problem that the Canny algorithm tries to solve.

How to do it...
The Canny algorithm is implemented in OpenCV by the cv::Canny function. As will be 
explained, this algorithm requires the specification of two thresholds. The call to the function 
is, therefore, as follows:

   // Apply Canny algorithm
   cv::Mat contours;
   cv::Canny(image,    // gray-level image
             contours, // output contours
             125,      // low threshold
             350);     // high threshold

Take a look at the following screenshot:
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When the algorithm is applied on the preceding screenshot, the result is as follows:

Note that in order to obtain an image like the one shown in the preceding screenshot, we had 
to invert the black and white values since the normal result represents contours by nonzero 
pixels. The displayed image, then, is simply 255-contours.

How it works...
The Canny operator is generally based on the Sobel operator that was presented in Chapter 6, 
Filtering the Images, although other gradient operators can also be used. The key idea here is 
to use two different thresholds in order to determine which point should belong to a contour:  
a low and a high threshold.
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The low threshold should be chosen in a way that it includes all edge pixels that are considered 
to belong to a significant image contour. For example, using the low-threshold value specified 
in the example of the preceding section and applying it on the result of a Sobel operator, the 
following edge map is obtained:

As can be seen, the edges that delineate the road are very well defined. However, because  
a permissive threshold was used, more edges than what is ideally needed are also detected. 
The role of the second threshold, then, is to define the edges that belong to all important 
contours. It should exclude all edges considered as outliers. For example, the Sobel edge  
map that corresponds to the high threshold used in our example is as follows:
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We now have an image that contains broken edges, but the ones that are visible certainly 
belong to the significant contours of the scene. The Canny algorithm combines these two edge 
maps in order to produce an optimal map of contours. It operates by keeping only the edge 
points of the low-threshold edge map for which a continuous path of edges exists, linking 
those edge points to an edge that belongs to the high-threshold edge map. Consequently, 
all edge points of the high-threshold map are kept, while all isolated chains of edge points 
in the low-threshold map are removed. The solution that is obtained constitutes a good 
compromise, allowing good quality contours to be obtained as long as appropriate threshold 
values are specified. This strategy, based on the use of two thresholds to obtain a binary map, 
is called hysteresis thresholding, and can be used in any context where a binary map needs 
to be obtained from a thresholding operation. However, this is done at the cost of higher 
computational complexity.

In addition, the Canny algorithm uses an extra strategy to improve the quality of the edge map. 
Prior to the application of the hysteresis thresholding, all edge points for which the gradient 
magnitude is not a maximum in the gradient direction are removed. Recall that the gradient 
orientation is always perpendicular to the edge. Therefore, the local maximum of the gradient 
in this direction corresponds to the point of maximum strength of the contour. This explains 
why thin edges are obtained in the Canny contour maps.

See also
ff The classic article by J. Canny, A computational approach to edge detection, IEEE 

Transactions on Pattern Analysis and Image Understanding, vol. 18, issue 6, 1986

Detecting lines in images with the Hough 
transform

In our human-made world, planar and linear structures abound. As a result, straight lines  
are frequently visible in images. These are meaningful features that play an important role  
in object recognition and image understanding. The Hough transform is a classic algorithm 
that is often used to detect these particular features in images. It was initially developed 
to detect lines in images and, as we will see, it can also be extended to detect other simple 
image structures.

Getting ready
With the Hough transform, lines are represented using the following equation:

cos sinx yρ θ θ= +
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The ρ parameter is the distance between the line and the image origin (the upper-left corner), 
and θ is the angle of the perpendicular to the line. Under this representation, the lines visible 
in an image have a θ angle between 0 and π radians, while the ρ radius can have a maximum 
value that equals the length of the image diagonal. Consider, for example, the following set  
of lines:

A vertical line such as line 1 has a θ angle value equal to zero, while a horizontal line  
(for example, line 5) has its θ value equal to π/2. Therefore, line 3 has an angle θ equal  
to π/4, and line 4 is at 0.7π approximately. In order to be able to represent all possible  
lines with θ in the [0, π] interval, the radius value can be made negative. This is the case  
of line 2, which has a θ value equal to 0.8π with a negative value for ρ.

How to do it...
OpenCV offers two implementations of the Hough transform for line detection. The basic version 
is cv::HoughLines. Its input is a binary map that contains a set of points (represented by 
nonzero pixels), some of which are aligned to form lines. Usually, this is an edge map obtained, 
for example, from the Canny operator. The output of the cv::HoughLines function is a 
vector of the cv::Vec2f elements, each of them being a pair of floating point values, which 
represents the parameters of a detected line, (ρ, θ). The following is an example of using this 
function where we first apply the Canny operator to obtain the image contours and then detect 
the lines using the Hough transform:

   // Apply Canny algorithm
   cv::Mat contours;
   cv::Canny(image,contours,125,350);
   // Hough transform for line detection
   std::vector<cv::Vec2f> lines;
   cv::HoughLines(test,lines,
        1,PI/180,  // step size
        60);       // minimum number of votes
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Parameters 3 and 4 correspond to the step size for the line search. In our example, the 
function will search for lines of all possible radii by steps of 1 and all possible angles by 
steps of π/180. The role of the last parameter will be explained in the next section. With 
this particular choice of parameter values, 15 lines are detected on the road image of the 
preceding recipe. In order to visualize the result of the detection, it is interesting to draw these 
lines on the original image. However, it is important to note that this algorithm detects lines in 
an image and not line segments, since the endpoints of each line are not given. Consequently, 
we will draw lines that traverse the entire image. To do this, for a vertically-oriented line, we 
calculate its intersection with the horizontal limits of the image (that is, the first and last rows) 
and draw a line between these two points. We proceed similarly with horizontally-oriented 
lines but using the first and last columns. Lines are drawn using the cv::line function. Note 
that this function works well even with point coordinates outside the image limits. Therefore, 
there is no need to check whether the computed intersection points fall within the image. 
Lines are then drawn by iterating over the line vector as follows:

   std::vector<cv::Vec2f>::const_iterator it= lines.begin();
   while (it!=lines.end()) {

      float rho= (*it)[0];   // first element is distance rho
      float theta= (*it)[1]; // second element is angle theta
      
      if (theta < PI/4. 
           || theta > 3.*PI/4.) { // ~vertical line
      
         // point of intersection of the line with first row
         cv::Point pt1(rho/cos(theta),0);        
         // point of intersection of the line with last row
         cv::Point pt2((rho-result.rows*sin(theta))/
                                  cos(theta),result.rows);
         // draw a white line
         cv::line( image, pt1, pt2, cv::Scalar(255), 1); 

      } else { // ~horizontal line

         // point of intersection of the 
         // line with first column
         cv::Point pt1(0,rho/sin(theta));        
         // point of intersection of the line with last column
         cv::Point pt2(result.cols,
                 (rho-result.cols*cos(theta))/sin(theta));
         // draw a white line
         cv::line(image, pt1, pt2, cv::Scalar(255), 1); 
      }

      ++it;
   }
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The following result is obtained:

As can be seen, the Hough transform simply looks for an alignment of edge pixels across the 
image. This can potentially create some false detections due to incidental pixel alignments or 
multiple detections when several lines pass through the same alignment of pixels.

To overcome some of these problems, and to allow line segments to be detected (that is,  
with endpoints), a variant of the transform has been proposed. This is the Probabilistic Hough 
transform, and it is implemented in OpenCV as the cv::HoughLinesP function. We use it 
here to create our LineFinder class that encapsulates the function parameters:

class LineFinder {

  private:

     // original image
     cv::Mat img;

     // vector containing the endpoints 
     // of the detected lines
     std::vector<cv::Vec4i> lines;

     // accumulator resolution parameters
     double deltaRho;
     double deltaTheta;

     // minimum number of votes that a line 
     // must receive before being considered
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     int minVote;

     // min length for a line
     double minLength;

     // max allowed gap along the line
     double maxGap;

  public:

     // Default accumulator resolution is 1 pixel by 1 degree
     // no gap, no minimum length
     LineFinder() : deltaRho(1), deltaTheta(PI/180), 
                    minVote(10), minLength(0.), maxGap(0.) {}

Take a look at the corresponding setter methods:

     // Set the resolution of the accumulator
     void setAccResolution(double dRho, double dTheta) {

        deltaRho= dRho;
        deltaTheta= dTheta;
     }

     // Set the minimum number of votes
     void setMinVote(int minv) {

        minVote= minv;
     }

     // Set line length and gap
     void setLineLengthAndGap(double length, double gap) {

        minLength= length;
        maxGap= gap;
     }

With the preceding method, the method that performs Hough line segment detection is  
as follows:

     // Apply probabilistic Hough Transform
     std::vector<cv::Vec4i> findLines(cv::Mat& binary) {

        lines.clear();
        cv::HoughLinesP(binary,lines,



Extracting Lines, Contours, and Components

208

                        deltaRho, deltaTheta, minVote, 
                        minLength, maxGap);

        return lines;
     }

This method returns a vector of cv::Vec4i, which contains the start and endpoint 
coordinates of each detected segment. The detected lines can then be drawn on an  
image with the following method:

     // Draw the detected lines on an image
     void drawDetectedLines(cv::Mat &image, 
                cv::Scalar color=cv::Scalar(255,255,255)) {
   
        // Draw the lines
        std::vector<cv::Vec4i>::const_iterator it2= 
                                           lines.begin();
   
        while (it2!=lines.end()) {
      
           cv::Point pt1((*it2)[0],(*it2)[1]);        
           cv::Point pt2((*it2)[2],(*it2)[3]);

           cv::line( image, pt1, pt2, color);
      
           ++it2;   
        }
     }

Now, using the same input image, lines can be detected with the following sequence:

   // Create LineFinder instance
   LineFinder finder;

   // Set probabilistic Hough parameters
   finder.setLineLengthAndGap(100,20);
   finder.setMinVote(60);

   // Detect lines and draw them
   std::vector<cv::Vec4i> lines= finder.findLines(contours);
   finder.drawDetectedLines(image);
   cv::namedWindow("Detected Lines with HoughP");
   cv::imshow("Detected Lines with HoughP",image);
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The preceding code gives the following result:

How it works...
The objective of the Hough transform is to find all lines in a binary image that pass through a 
sufficient number of points. It proceeds by considering each individual pixel point in the input 
binary map and identifying all possible lines that pass through it. When the same line passes 
through many points, it means that this line is significant enough to be considered.

The Hough transform uses a two-dimensional accumulator in order to count how many 
times a given line is identified. The size of this accumulator is defined by the specified step 
sizes (as mentioned in the preceding section) of the (ρ, θ) parameters of the adopted line 
representation. To illustrate the functioning of the transform, let's create a 180 by 200 matrix 
(corresponding to a step size of π/180 for θ and 1 for ρ):

   // Create a Hough accumulator
   // here a uchar image; in practice should be ints
   cv::Mat acc(200,180,CV_8U,cv::Scalar(0));

This accumulator is a mapping of different (ρ, θ) values. Therefore, each entry of this matrix 
corresponds to one particular line. Now, if we consider one point, let's say one at coordinate 
(50,30), then it is possible to identify all lines that pass through this point by looping over  
all possible θ angles (with a step size of π/180) and computing the corresponding (rounded)  
ρ value:

   // Choose a point
   int x=50, y=30;
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   // loop over all angles
   for (int i=0; i<180; i++) {

      double theta= i*PI/180.;

      // find corresponding rho value 
      double rho= x*std::cos(theta)+y*std::sin(theta);
      // j corresponds to rho from -100 to 100
      int j= static_cast<int>(rho+100.5);

      std::cout << i << "," << j << std::endl;

      // increment accumulator
      acc.at<uchar>(j,i)++;
   }

The entries of the accumulator corresponding to the computed (ρ, θ) pairs are then 
incremented, signifying that all of these lines pass through one point of the image (or, to 
say it another way, each point votes for a set of possible candidate lines). If we display the 
accumulator as an image (inverted and multiplied by 100 to make the count of 1 visible),  
we obtain the following:

The preceding curve represents the set of all lines that pass through the considered point. 
Now, if we repeat the same exercise with, let's say, point (30,10), we now have the  
following accumulator:
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As can be seen, the two resulting curves intersect at one point: the point that corresponds to the 
line that passes through these two points. The corresponding entry of the accumulator receives 
two votes, indicating that two points pass through this line. If the same process is repeated for 
all points of a binary map, then points aligned along a given line will increase a common entry 
of the accumulator many times. At the end, you just need to identify the local maxima in this 
accumulator that receives a significant number of votes in order to detect the lines (that is, 
point alignments) in the image. The last parameter specified in the cv::HoughLines function 
corresponds to the minimum number of votes that a line must receive to be considered as 
detected. For example, we lower this value at 50, as follows:

   cv::HoughLines(test,lines,1,PI/180,50);

As a result of the previous code, more lines will be accepted for the example of the preceding 
section, as shown in the following screenshot:

The Probabilistic Hough transform adds a few modifications to the basic algorithm. First, 
instead of systematically scanning the image row-by-row, points are chosen in random order 
in the binary map. Whenever an entry of the accumulator reaches the specified minimum 
value, the image is scanned along the corresponding line and all points that pass through it 
are removed (even if they have not voted yet). This scanning also determines the length of the 
segments that will be accepted. For this, the algorithm defines two additional parameters. One 
is the minimum length for a segment to be accepted, and the other is the maximum pixel gap 
that is permitted to form a continuous segment. This additional step increases the complexity 
of the algorithm, but this is partly compensated by the fact that fewer points will be involved  
in the voting process as some of them are eliminated by the line-scanning process.



Extracting Lines, Contours, and Components

212

There's more...
The Hough transform can also be used to detect other geometrical entities. In fact, any entity 
that can be represented by a parametric equation is a good candidate for the Hough transform.

Detecting circles
In the case of circles, the corresponding parametric equation is as follows:

This equation includes three parameters (the circle radius and center coordinates), which 
means that a three-dimensional accumulator would be required. However, it is generally found 
that the Hough transform becomes less reliable as the dimensionality of its accumulator 
increases. Indeed, in this case, a large number of entries of the accumulator will be incremented 
for each point and, as a consequence, the accurate localization of local peaks becomes more 
difficult. Different strategies have been proposed in order to overcome this problem. The strategy 
used in the OpenCV implementation of the Hough circle detection uses two passes. During the 
first pass, a two-dimensional accumulator is used to find candidate circle locations. Since the 
gradient of points on the circumference of a circle should point in the direction of the radius, 
for each point, only the entries in the accumulator along the gradient direction are incremented 
(based on predefined minimum and maximum radius values). Once a possible circle center 
is detected (that is, has received a predefined number of votes), a 1D histogram of a possible 
radius is built during the second pass. The peak value in this histogram corresponds to the 
radius of the detected circles.

The cv::HoughCircles function that implements the preceding strategy integrates both 
the Canny detection and the Hough transform. It is called as follows:

   cv::GaussianBlur(image,image,cv::Size(5,5),1.5);
   std::vector<cv::Vec3f> circles;
   cv::HoughCircles(image, circles, CV_HOUGH_GRADIENT, 
      2,   // accumulator resolution (size of the image / 2) 
      50,  // minimum distance between two circles
      200, // Canny high threshold 
      100, // minimum number of votes 
      25, 100); // min and max radius

Note that it is always recommended that you smooth the image before calling the 
cv::HoughCircles function in order to reduce the image noise that could cause several 
false circle detections. The result of the detection is given in a vector of cv::Vec3f 
instances. The first two values are the circle center coordinates and the third is the radius.
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The CV_HOUGH_GRADIENT argument was the only option available at the time of writing this 
book. It corresponds to the two-pass circle detection method. The fourth parameter defines 
the accumulator resolution. It is a divider factor; specifying a value of 2, for example, makes 
the accumulator half the size of the image. The next parameter is the minimum distance in 
pixels between two detected circles. The other parameter corresponds to the high threshold of 
the Canny edge detector. The low-threshold value is always set at half this value. The seventh 
parameter is the minimum number of votes that a center location must receive during the first 
pass to be considered as a candidate circle for the second pass. Finally, the last two parameters 
are the minimum and maximum radius values for the circles to be detected. As can be seen,  
the function includes many parameters that make it difficult to tune.

Once the vector of detected circles is obtained, these circles can be drawn on the  
image by iterating over the vector and calling the cv::circle drawing function with  
the found parameters:

   std::vector<cv::Vec3f>::
          const_iterator itc= circles.begin();
   
   while (itc!=circles.end()) {
      
     cv::circle(image, 
        cv::Point((*itc)[0], (*itc)[1]), // circle centre
        (*itc)[2],       // circle radius
        cv::Scalar(255), // color 
        2);              // thickness
      
     ++itc;   
   }

The following is the result obtained on a test image with the chosen arguments:
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See also
ff The article Gradient-based Progressive Probabilistic Hough Transform by C. Galambos, 

J. Kittler, and J. Matas, IEE Vision Image and Signal Processing, vol. 148 no 3, pp.  
158-165, 2002, is one of the numerous references on the Hough transform and 
describes the probabilistic algorithm implemented in OpenCV

ff The article Comparative Study of Hough Transform Methods for Circle Finding,  
Image and Vision Computing, vol. 8 no 1, pp. 71-77, 1990, by H.K. Yuen, J. Princen,  
J. Illingworth, and J Kittler, describes different strategies for circle detection using  
the Hough transform

Fitting a line to a set of points
In some applications, it could be important to not only detect lines in an image, but also to 
obtain an accurate estimate of the line's position and orientation. This recipe will show you 
how to find the line that best fits a given set of points.

How to do it...
The first thing to do is to identify points in an image that seem to be aligned along a straight 
line. Let's use one of the lines we detected in the preceding recipe. The lines detected using 
cv::HoughLinesP are contained in std::vector<cv::Vec4i> called lines. To extract 
the set of points that seem to belong to, let's say, the first of these lines, we can proceed 
as follows. We draw a white line on a black image and intersect it with the Canny image of 
contours used to detect our lines. This is simply achieved by the following statements:

   int n=0; // we select line 0 
   // black image
   cv::Mat oneline(contours.size(),CV_8U,cv::Scalar(0));
   // white line
   cv::line(oneline, 
            cv::Point(lines[n][0],lines[n][1]),
            cv::Point(lines[n][2],lines[n][3]),
            cv::Scalar(255),
            3); // line width
   // contours AND white line
   cv::bitwise_and(contours,oneline,oneline);

The result is an image that contains only the points that could be associated with the 
specified line. In order to introduce some tolerance, we draw a line of a certain thickness 
(here, 3). All points inside the defined neighborhood are, therefore, accepted. The following  
is the image that is obtained (inverted for better viewing):
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The coordinates of the points in this set can then be inserted in std::vector of the 
cv::Point objects (floating point coordinates, that is, cv::Point2f, can also be used)  
by the following double loop:

   std::vector<cv::Point> points;

   // Iterate over the pixels to obtain all point positions
   for( int y = 0; y < oneline.rows; y++ ) {    
      // row y
    
      uchar* rowPtr = oneline.ptr<uchar>(y);
    
      for( int x = 0; x < oneline.cols; x++ ) {
         // column x 

         // if on a contour
         if (rowPtr[x]) {

            points.push_back(cv::Point(x,y));
         }
      }
    }

The best fitting line is easily found by calling the cv::fitLine OpenCV function:

   cv::Vec4f line;
   cv::fitLine(points,line,
               CV_DIST_L2, // distance type
               0,          // not used with L2 distance 
               0.01,0.01); // accuracy
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The preceding code gives us the parameters of the line equation in the form of a unit-
directional vector (the first two values of cv::Vec4f) and the coordinates of one point  
on the line (the last two values of cv::Vec4f). For our example, these values are (0.83, 
0.55) for the directional vector and (366.1, 289.1) for the point coordinates. The last  
two parameters specify the requested accuracy for the line parameters.

In general, the line equation will be used in the calculation of some properties (calibration is  
a good example where precise parametric representation is required). As an illustration, and 
to make sure we calculated the right line, let's draw the estimated line on the image. Here,  
we simply draw an arbitrary black segment that has a length of 100 pixels and a thickness  
of 3 pixels:

   int x0= line[2];        // a point on the line
   int y0= line[3];
   int x1= x0+100*line[0]; // add a vector of length 100
   int y1= y0+100*line[1]; // using the unit vector
   // draw the line
   cv::line(image,cv::Point(x0,y0),cv::Point(x1,y1),
            0,3); // color and thickness

The result can be seen in the following screenshot:
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How it works...
Fitting lines to a set of points is a classic problem in mathematics. The OpenCV implementation 
proceeds by minimizing the sum of the distances from each point to the line. Several distance 
functions are proposed, and the fastest option is to use the Euclidean distance, which is 
specified by CV_DIST_L2. This choice corresponds to the standard least-squares line fitting. 
When outliers (that is, points that don't belong to the line) are included in the point set, other 
distance functions that give less influence to far points can be selected. The minimization is 
based on the M-estimator technique that iteratively solves a weighted least-squares problem 
with weights that are inversely proportional to the distance from the line.

Using this function, it is also possible to fit a line to a 3D point set. The input is, in this case,  
a set of cv::Point3i or cv::Point3f objects and the output is a std::Vec6f instance.

There's more...
The cv::fitEllipse function fits an ellipse to a set of 2D points. This returns a rotated 
rectangle (a cv::RotatedRect instance) inside which the ellipse is inscribed. In this case, 
you would write the following:

   cv::RotatedRect rrect= cv::fitEllipse(cv::Mat(points));
   cv::ellipse(image,rrect,cv::Scalar(0));

The cv::ellipse function is the one you would use to draw the computed ellipse.

Extracting the components' contours
Images generally contain representations of objects. One of the goals of image analysis is to 
identify and extract these objects. In object detection/recognition applications, the first step 
is often to produce a binary image that shows you where certain objects of interest could be 
located. No matter how this binary map is obtained (for example, from the histogram back 
projection we did in Chapter 4, Counting the Pixels with Histograms, or from motion analysis 
as we will learn in Chapter 11, Processing Video Sequences), the next step is to extract the 
objects that are contained in this collection of 1s and 0s.



Extracting Lines, Contours, and Components

218

Consider, for example, the image of buffaloes in a binary form that we manipulated in Chapter 5, 
Transforming Images with Morphological Operations, as shown in the following figure:

We obtained this image from a simple thresholding operation followed by the application of 
open and close morphological filters. This recipe will show you how to extract the objects of 
such images. More specifically, we will extract the connected components, that is, shapes 
made of a set of connected pixels in a binary image.

How to do it...
OpenCV offers a simple function that extracts the contours of the connected components  
of an image. This is the cv::findContours function:

   // the vector that will contain the contours
   std::vector<std::vector<cv::Point>> contours;
   cv::findContours(image, 
      contours, // a vector of contours 
      CV_RETR_EXTERNAL, // retrieve the external contours
      CV_CHAIN_APPROX_NONE); // all pixels of each contours

The input is obviously the binary image. The output is a vector of contours, each contour being 
represented by a vector of cv::Point objects. This explains why the output parameter is 
defined as a std::vector instance of the std::vector instances. In addition, two flags 
are specified. The first one indicates that only the external contours are required, that is, holes 
in an object will be ignored (the There's more… section will discuss the other options). The 
second flag is there to specify the format of the contour. With the current option, the vector 
will list all of the points in the contour. With the CV_CHAIN_APPROX_SIMPLE flag, only the 
endpoints for horizontal, vertical, or diagonal contours will be included. Other flags would give 
a more sophisticated chain approximation of the contours in order to obtain a more compact 
representation. With the preceding image, nine connected components are obtained as given 
by contours.size().
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Fortunately, there is a very convenient function that can draw the contours of those 
components on an image (here, a white image):

   // draw black contours on a white image
   cv::Mat result(image.size(),CV_8U,cv::Scalar(255));
   cv::drawContours(result,contours,
      -1, // draw all contours
       0, // in black
       2);// with a thickness of 2

If the third parameter of this function is a negative value, then all contours are drawn. 
Otherwise, it is possible to specify the index of the contour to be drawn. The result is  
shown in the following screenshot:

How it works...
The contours are extracted by a simple algorithm that consists of systematically scanning 
the image until a component is hit. From this starting point on the component, its contour 
is followed, marking the pixels on its border. When the contour is completed, the scanning 
resumes at the last position until a new component is found.
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The identified connected components can then be individually analyzed. For example, if some 
prior knowledge is available about the expected size of the objects of interest, it becomes 
possible to eliminate some of the components. Let's then use a minimum and a maximum 
value for the perimeter of the components. This is done by iterating over the vector of 
contours and eliminating the invalid components:

   // Eliminate too short or too long contours
   int cmin= 50;  // minimum contour length
   int cmax= 1000; // maximum contour length
   std::vector<std::vector<cv::Point>>::
              iterator itc= contours.begin();
   // for all contours
   while (itc!=contours.end()) {

      // verify contour size
      if (itc->size() < cmin || itc->size() > cmax)
         itc= contours.erase(itc);
      else 
         ++itc;
   }

Note that this loop could have been made more efficient since each erasing operation  
in a std::vector instance is O(N). However, considering the small size of this vector,  
the overall cost is not too high. This time, we draw the remaining contours on the original 
image and obtain the following result:

We were lucky enough to find a simple criterion that allowed us to identify all objects  
of interest in this image. In more complex situations, a more refined analysis of the 
components' properties is required. This is the object of the next recipe.
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There's more...
With the cv::findContours function, it is also possible to include all closed contours in the 
binary map, including the ones formed by holes in the components. This is done by specifying 
another flag in the function call:

   cv::findContours(image, 
      contours, // a vector of contours 
      CV_RETR_LIST, // retrieve all contours
      CV_CHAIN_APPROX_NONE); // all pixels of each contours

With this call, the following contours are obtained:

Notice the extra contours that were added in the background forest. It is also possible to  
have these contours organized into a hierarchy. The main component is the parent, holes  
in it are its children, and if there are components inside these holes, they become the  
children of the previous children, and so on. This hierarchy is obtained by using the  
CV_RETR_TREE flag, as follows:

   std::vector<cv::Vec4i> hierarchy;
   cv::findContours(image, 
      contours, // a vector of contours
      hierarchy, // hierarchical representation 
      CV_RETR_TREE, // retrieve all contours in tree format
      CV_CHAIN_APPROX_NONE); // all pixels of each contours
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In this case, each contour has a corresponding hierarchy element at the same index, made of 
four integers. The first two integers give you the index of the next and the previous contours of 
the same level, and the next two integers give you the index of the first child and the parent of 
this contour. A negative index indicates the end of a contour list. The CV_RETR_CCOMP flag is 
similar but limits the hierarchy at two levels.

Computing components' shape descriptors
A connected component often corresponds to the image of an object in a pictured scene.  
To identify this object, or to compare it with other image elements, it can be useful to perform 
some measurements on the component in order to extract some of its characteristics. In this 
recipe, we will look at some of the shape descriptors available in OpenCV that can be used to 
describe the shape of a connected component.

How to do it...
Many OpenCV functions are available when it comes to shape description. We will apply some 
of them on the components that we have extracted in the preceding recipe. In particular, we will 
use our vector of four contours corresponding to the four buffaloes we previously identified. In 
the following code snippets, we compute a shape descriptor on the contours (contours[0]  
to contours[3]) and draw the result (with a thickness of 2) over the image of the contours 
(with a thickness of 1). This image is shown at the end of this section.

The first one is the bounding box, which is applied to the bottom-right component:

  // testing the bounding box 
  cv::Rect r0= cv::boundingRect(contours[0]);
  // draw the rectangle
  cv::rectangle(result,r0, 0, 2);

The minimum enclosing circle is similar. It is applied on the upper-right component:

   // testing the enclosing circle 
   float radius;
   cv::Point2f center;
   cv::minEnclosingCircle(contours[1],center,radius);
   // draw the circle
   cv::circle(result,center,
              static_cast<int>(radius),cv::Scalar(0),2);
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The polygonal approximation of a component's contour is computed as follows  
(on the left-hand side component):

   // testing the approximate polygon
   std::vector<cv::Point> poly;
   cv::approxPolyDP(contours[2],poly,5,true);
   // draw the polygon
   cv::polylines(result, poly, true, 0, 2);

Notice the polygon drawing function, cv::polylines. This operates similarly to the other 
drawing functions. The third Boolean parameter is used to indicate whether the contour is 
closed or not (if yes, the last point is linked to the first one).

The convex hull is another form of polygonal approximation (on the second component from 
the left):

   // testing the convex hull
   std::vector<cv::Point> hull;
   cv::convexHull(contours[3],hull);
   // draw the polygon
   cv::polylines(result, hull, true, 0, 2);

Finally, the computation of the moments is another powerful descriptor (the center of mass  
is drawn inside all components):

   // testing the moments
   // iterate over all contours
   itc= contours.begin();
   while (itc!=contours.end()) {

      // compute all moments
      cv::Moments mom= cv::moments(cv::Mat(*itc++));

      // draw mass center
      cv::circle(result,
         // position of mass center converted to integer
         cv::Point(mom.m10/mom.m00,mom.m01/mom.m00),
         2,cv::Scalar(0),2); // draw black dot
   }
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The resulting image is as follows:

How it works...
The bounding box of a component is probably the most compact way to represent and 
localize a component in an image. It is defined as the upright rectangle of minimum size  
that completely contains the shape. Comparing the height and width of the box gives you  
an indication about the vertical or horizontal dimension of the object (for example, one could  
use a height-to-width ratio in order to distinguish the image of a car from one of a pedestrian). 
The minimum enclosing circle is generally used when only the approximate component size 
and location is required.

The polygonal approximation of a component is useful when one wants to manipulate 
a more compact representation that resembles the component's shape. It is created by 
specifying an accuracy parameter, giving you the maximal acceptable distance between 
a shape and its simplified polygon. It is the fourth parameter in the cv::approxPolyDP 
function. The result is a vector of cv::Point, which corresponds to the vertices of the 
polygon. To draw this polygon, we need to iterate over the vector and link each point with  
the next one by drawing a line between them.

The convex hull, or convex envelope, of a shape is the minimal convex polygon that 
encompasses a shape. It can be visualized as the shape that an elastic band would take  
if placed around the component. As can be seen, the convex hull contour will deviate from  
the original one at the concave locations of the shape contour.
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These locations are often designated as convexity defects, and a special OpenCV function is 
available to identify them: the cv::convexityDefects function. It is called as follows:

  std::vector<cv::Vec4i> defects;
  cv::convexityDefects(contour, hull, defects);

The contour and hull arguments are, respectively, the original and the convex hull 
contours (both represented with std::vector<cv::Point> instances). The output is  
a vector of four integer elements. The first two integers are the indices of the points on the 
contour, delimitating the defect; the third integer corresponds to the farthest point inside  
the concavity, and finally, the last integer corresponds to the distance between this farthest 
point and the convex hull.

Moments are commonly used mathematical entities in the structural analysis of shapes. 
OpenCV has defined a data structure that encapsulates all computed moments of a shape. 
It is the object returned by the cv::moments function. Together, the moments represent 
a compact description of the shape of an object. They are commonly used, for example, 
in character recognition. We simply use this structure to obtain the mass center of each 
component that is computed from the first three spatial moments here.

There's more...
Other structural properties can be computed using the available OpenCV functions. The 
cv::minAreaRect function computes the minimum enclosed rotated rectangle (this was 
used in Chapter 5, Transforming Images with Morphological Operations, in the Extracting 
distinctive regions using MSER recipe). The cv::contourArea function estimates the  
area of (the number of pixels inside) a contour. The cv::pointPolygonTest function 
determines whether a point is inside or outside a contour, and cv::matchShapes  
measures the resemblance between two contours. All these property measures can be 
advantageously combined in order to perform more advanced structural analysis.

Quadrilateral detection
The MSER features presented in Chapter 5, Transforming Images with Morphological 
Operations, constitutes an efficient tool to extract shapes in an image. Considering the MSER 
result obtained in this preceding chapter, we will now build an algorithm to detect quadrilateral 
components in an image. In the case of the current image, this detection will allow us to identify 
the building's windows. A binary version of the MSER image is easily obtained as follows:

  // create a binary version
  components= components==255;
  // open the image (white background)
  cv::morphologyEx(components,components,
                    cv::MORPH_OPEN,cv::Mat(),
                    cv::Point(-1,-1),3);
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In addition, we cleaned the image with a morphological filter. The image is then as follows:

The next step is to obtain the contours:

  //invert image (background must be black)
  cv::Mat componentsInv= 255-components;
  // Get the contours of the connected components
  cv::findContours(componentsInv, 
    contours, // a vector of contours 
    CV_RETR_EXTERNAL, // retrieve the external contours
    CV_CHAIN_APPROX_NONE); 

Finally, we go over all the contours and roughly approximate them with a polygon:

  // white image
  cv::Mat quadri(components.size(),CV_8U,255);

  // for all contours
  std::vector<std::vector<cv::Point>>::iterator 
                              it= contours.begin();
  while (it!= contours.end()) {
    poly.clear();
    // approximate contour by polygon
    cv::approxPolyDP(*it,poly,10,true);
  
    // do we have a quadrilateral?
    if (poly.size()==4) {
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          // draw it
      cv::polylines(quadri, poly, true, 0, 2);
    }
    ++it;
  }

The quadrilaterals are those polygons that have four edges. The detected ones are  
the following:

To detect rectangles, you can simply measure the angles between adjacent edges and reject 
the quadrilaterals that have angles that deviate too much from 90 degrees.





8
Detecting Interest 

Points

In this chapter, we will cover the following recipes:

ff Detecting corners in an image

ff Detecting features quickly

ff Detecting scale-invariant features

ff Detecting FAST features at multiple scales

Introduction
In computer vision, the concept of interest points—also called keypoints or feature points—
has been largely used to solve many problems in object recognition, image registration, visual 
tracking, 3D reconstruction, and more. This concept relies on the idea that instead of looking 
at the image as a whole, it could be advantageous to select some special points in the image 
and perform a local analysis on them. This approach works well as long as a sufficient number 
of such points are detected in the images of interest and these points are distinguishing and 
stable features that can be accurately localized.

Because they are used for analyzing image content, feature points should ideally be detected 
at the same scene or object location no matter from which viewpoint, scale, or orientation the 
image was taken. View invariance is a very desirable property in image analysis and has been 
the object of numerous studies. As we will see, different detectors have different invariance 
properties. This chapter focuses on the keypoint extraction process itself. The next two 
chapters will then show you how interest points can be put to work in different contexts  
such as image matching or image geometry estimation.
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Detecting corners in an image
When searching for interesting feature points in images, corners come out as an interesting 
solution. They are indeed local features that can be easily localized in an image, and in addition, 
they should abound in scenes of man-made objects (where they are produced by walls, doors, 
windows, tables, and so on). Corners are also interesting because they are two-dimensional 
features that can be accurately localized (even at sub-pixel accuracy), as they are at the junction 
of two edges. This is in contrast to points located on a uniform area or on the contour of an 
object and points that would be difficult to repeatedly localize precisely on other images of 
the same object. The Harris feature detector is a classical approach to detecting corners in an 
image. We will explore this operator in this recipe.

How to do it...
The basic OpenCV function that is used to detect Harris corners is called cv::cornerHarris 
and is straightforward to use. You call it on an input image, and the result is an image of floats 
that gives you the corner strength at each pixel location. A threshold is then applied on this 
output image in order to obtain a set of detected corners. This is accomplished with the  
following code:

   // Detect Harris Corners
   cv::Mat cornerStrength;
   cv::cornerHarris(image,      // input image
                cornerStrength, // image of cornerness
                3,              // neighborhood size
                3,              // aperture size
                0.01);          // Harris parameter

   // threshold the corner strengths
   cv::Mat harrisCorners;
   double threshold= 0.0001; 
   cv::threshold(cornerStrength,harrisCorners,
                 threshold,255,cv::THRESH_BINARY);
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Here is the original image:

The result is a binary map image shown in the following screenshot, which is inverted for 
better viewing (that is, we used cv::THRESH_BINARY_INV instead of cv::THRESH_BINARY 
to get the detected corners in black):
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From the preceding function call, we observe that this interest point detector requires several 
parameters (these will be explained in the next section) that might make it difficult to tune. 
In addition, the corner map that is obtained contains many clusters of corner pixels that 
contradict the fact that we would like to detect well-localized points. Therefore, we will try  
to improve the corner-detection method by defining our own class to detect Harris corners.

The class encapsulates the Harris parameters with their default values and corresponding 
getter and setter methods (which are not shown here):

class HarrisDetector {

  private:

     // 32-bit float image of corner strength
     cv::Mat cornerStrength;
     // 32-bit float image of thresholded corners
     cv::Mat cornerTh;
     // image of local maxima (internal)
     cv::Mat localMax;
     // size of neighborhood for derivatives smoothing
     int neighbourhood; 
     // aperture for gradient computation
     int aperture; 
     // Harris parameter
     double k;
     // maximum strength for threshold computation
     double maxStrength;
     // calculated threshold (internal)
     double threshold;
     // size of neighborhood for non-max suppression
     int nonMaxSize; 
     // kernel for non-max suppression
     cv::Mat kernel;

  public:

     HarrisDetector() : neighbourhood(3), aperture(3), 
                        k(0.01), maxStrength(0.0), 
                        threshold(0.01), nonMaxSize(3) {
     
        // create kernel used in non-maxima suppression
        setLocalMaxWindowSize(nonMaxSize);
     }
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To detect the Harris corners on an image, we proceed with two steps. First, the Harris values 
at each pixel are computed:

     // Compute Harris corners
     void detect(const cv::Mat& image) {
   
        // Harris computation
        cv::cornerHarris(image,cornerStrength,
                neighbourhood,// neighborhood size
                aperture,     // aperture size
                k);           // Harris parameter
   
        // internal threshold computation 
        cv::minMaxLoc(cornerStrength,
             0&maxStrength);

        // local maxima detection
        cv::Mat dilated;  // temporary image
        cv::dilate(cornerStrength,dilated,cv::Mat());
        cv::compare(cornerStrength,dilated,
                    localMax,cv::CMP_EQ);
     }

Next, the feature points are obtained based on a specified threshold value. Since the  
range of possible values for Harris depends on the particular choices of its parameters,  
the threshold is specified as a quality level that is defined as a fraction of the maximal 
Harris value computed in the image:

     // Get the corner map from the computed Harris values
     cv::Mat getCornerMap(double qualityLevel) {

        cv::Mat cornerMap;

        // thresholding the corner strength
        threshold= qualityLevel*maxStrength;
        cv::threshold(cornerStrength,cornerTh,
                      threshold,255,cv::THRESH_BINARY);

        // convert to 8-bit image
        cornerTh.convertTo(cornerMap,CV_8U);
   
        // non-maxima suppression
        cv::bitwise_and(cornerMap,localMax,cornerMap);

        return cornerMap;
     }
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This method returns a binary corner map of the detected features. The fact that the detection 
of the Harris features has been split into two methods allows us to test the detection with a 
different threshold (until an appropriate number of feature points are obtained) without the 
need to repeat costly computations. It is also possible to obtain the Harris features in the  
form of a std::vector of cv::Point:

     // Get the feature points from the computed Harris values
     void getCorners(std::vector<cv::Point> &points, 
                     double qualityLevel) {

        // Get the corner map
        cv::Mat cornerMap= getCornerMap(qualityLevel);
        // Get the corners
        getCorners(points, cornerMap);
     }

     // Get the feature points from the computed corner map
     void getCorners(std::vector<cv::Point> &points, 
                     const cv::Mat& cornerMap) {
           
        // Iterate over the pixels to obtain all features
        for( int y = 0; y < cornerMap.rows; y++ ) {
    
           const uchar* rowPtr = cornerMap.ptr<uchar>(y);
    
           for( int x = 0; x < cornerMap.cols; x++ ) {

              // if it is a feature point
              if (rowPtr[x]) {

                 points.push_back(cv::Point(x,y));
              }
           } 
        }
     }

This class also improves the detection of the Harris corners by adding a non-maxima 
suppression step, which will be explained in the next section. The detected points can  
now be drawn on an image using the cv::circle function, as demonstrated by the  
following method:

     // Draw circles at feature point locations on an image
     void drawOnImage(cv::Mat &image, 
        const std::vector<cv::Point> &points, 
        cv::Scalar color= cv::Scalar(255,255,255), 
        int radius=3, int thickness=1) {
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        std::vector<cv::Point>::const_iterator it= 
                                       points.begin();

        // for all corners
        while (it!=points.end()) {

           // draw a circle at each corner location
           cv::circle(image,*it,radius,color,thickness);
           ++it;
        }
     }

Using this class, the detection of the Harris points is accomplished as follows:

   // Create Harris detector instance
   HarrisDetector harris;
   // Compute Harris values
   harris.detect(image);
   // Detect Harris corners
   std::vector<cv::Point> pts;
   harris.getCorners(pts,0.02);
   // Draw Harris corners
   harris.drawOnImage(image,pts);

This results in the following image:
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How it works...
To define the notion of corners in images, the Harris feature detector looks at the average 
change in directional intensity in a small window around a putative interest point. If we 
consider a displacement vector, (u,v), the average intensity change is given by the following:

( )( )2, ( , y)R I x u y v I x≈ + + −∑

The summation is over a defined neighborhood around the considered pixel (the size of this 
neighborhood corresponds to the third parameter in the cv::cornerHarris function). This 
average intensity change can then be computed in all possible directions, which leads to the 
definition of a corner as a point for which the average change is high in more than one direction. 
From this definition, the Harris test is performed as follows. We first obtain the direction of the 
maximal average intensity change. Next, we check whether the average intensity change in the 
orthogonal direction is high as well. If this is the case, then we have a corner.

Mathematically, this condition can be tested by using an approximation of the preceding 
formula using the Taylor expansion:
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This is then rewritten in the matrix form:
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This matrix is a covariance matrix that characterizes the rate of intensity change in all directions. 
This definition involves the image's first derivatives that are often computed using the Sobel 
operator. This is the case with the OpenCV implementation, which is the fourth parameter of 
the function that corresponds to the aperture used for the computation of the Sobel filters. It 
can be shown that the two eigenvalues of the covariance matrix give you the maximal average 
intensity change and the average intensity change for the orthogonal direction. Then, if these 
two eigenvalues are low, we are in a relatively homogenous region. If one eigenvalue is high and 
the other is low, we must be on an edge. Finally, if both eigenvalues are high, then we are at a 
corner location. Therefore, the condition for a point to be accepted as a corner is that it must 
have the smallest eigenvalue of the covariance matrix at a higher point than a given threshold.

The original definition of the Harris corner algorithm uses some properties of the eigen 
decomposition theory in order to avoid the cost of explicitly computing the eigenvalues.  
These properties are as follows:

ff The product of the eigenvalues of a matrix is equal to its determinant

ff The sum of the eigenvalues of a matrix is equal to the sum of the diagonal of the 
matrix (also known as the trace of the matrix)

It then follows that we can verify whether the eigenvalues of a matrix are high by computing 
the following score:

2( ) ( )Det C kTrace C−

One can easily verify that this score will indeed be high only if both eigenvalues are high too.  
This is the score that is computed by the cv::cornerHarris function at each pixel location. 
The value of k is specified as the fifth parameter of the function. It could be difficult to determine 
what would be the best value for this parameter. However, in practice, it has been seen that a 
value in the range of 0.05 and 0.5 generally gives good results.

To improve the result of the detection, the class described in the previous section adds an 
additional non-maxima suppression step. The goal here is to exclude Harris corners that are 
adjacent to others. Therefore, to be accepted, the Harris corner must not only have a score 
higher than the specified threshold, but it must also be a local maximum. This condition is 
tested by using a simple trick that consists of dilating the image of the Harris score in our 
detect method:

        cv::dilate(cornerStrength,dilated,cv::Mat());
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Since the dilation replaces each pixel value with the maximum in the defined neighborhood, 
the only points that will not be modified are the local maxima. This is what is verified by the 
following equality test:

        cv::compare(cornerStrength,dilated, 
                    localMax,cv::CMP_EQ);

The localMax matrix will therefore be true (that is, non-zero) only at local maxima locations. 
We then use it in our getCornerMap method to suppress all non-maximal features (using the 
cv::bitwise_and function).

There's more...
Additional improvements can be made to the original Harris corner algorithm. This section 
describes another corner detector found in OpenCV, which expands the Harris detector to 
make its corners more uniformly distributed across the image. As we will see, this operator 
has an implementation for the feature detector in the OpenCV 2 common interface.

Good features to track
With the advent of floating-point processors, the mathematical simplification introduced  
to avoid eigenvalue decomposition has become negligible, and consequently, the detection  
of Harris corners can be made based on the explicitly computed eigenvalues. In principle,  
this modification should not significantly affect the result of the detection, but it avoids  
the use of the arbitrary k parameter. Note that two functions exist that allow you to  
explicitly get the eigenvalues (and eignevectors) of the Harris covariance matrix; these  
are cv::cornerEigenValsAndVecs and cv::cornerMinEigenVal.

A second modification addresses the problem of feature point clustering. Indeed, in spite of 
the introduction of the local maxima condition, interest points tend to be unevenly distributed 
across an image, showing concentrations at highly textured locations. A solution to this 
problem is to impose a minimum distance between two interest points. This can be achieved 
using the following algorithm. Starting from the point with the strongest Harris score (that 
is, with the largest minimum eigenvalue), only accept interest points if they are located at, 
at least, a given distance from the already accepted points. This solution is implemented in 
OpenCV in the cv::goodFeaturesToTrack function, which is thus named because the 
features it detects can be used as a good starting set in visual tracking applications. This is 
called as follows:

   // Compute good features to track
   std::vector<cv::Point2f> corners;
   cv::goodFeaturesToTrack(image,  // input image
      corners, // corner image
      500,     // maximum number of corners to be returned
      0.01,    // quality level
      10);     // minimum allowed distance between points
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In addition to the quality-level threshold value and the minimum tolerated distance between 
interest points, the function also uses a maximum number of points that can be returned  
(this is possible since points are accepted in the order of strength). The preceding function 
call produces the following result:

This approach increases the complexity of the detection, since it requires the interest points 
to be sorted by their Harris score, but it also clearly improves the distribution of the points 
across the image. Note that this function also includes an optional flag that requests Harris 
corners to be detected using the classical corner score definition (using the covariance matrix 
determinant and trace).

The feature detector's common interface
OpenCV 2 has introduced a common interface for its different interest point detectors. This 
interface allows easy testing of different interest point detectors within the same application.

The interface defines a cv::Keypoint class that encapsulates the properties of each 
detected feature point. For the Harris corners, only the position of the keypoints and its 
response strength is relevant. The Detecting scale-invariant features recipe will discuss  
the other properties that can be associated with a keypoint.
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The cv::FeatureDetector abstract class basically imposes the existence of a detect 
operation with the following signatures:

   void detect( const Mat& image, vector<KeyPoint>& keypoints,
                const Mat& mask=Mat() ) const;

   void detect( const vector<Mat>& images,
                vector<vector<KeyPoint> >& keypoints,
                const vector<Mat>& masks=
                                   vector<Mat>() ) const;

The second method allows interest points to be detected in a vector of images. The class also 
includes other methods that can read and write the detected points in a file.

The cv::goodFeaturesToTrack function has a wrapper class called cv::GoodFeature
sToTrackDetector, which inherits from the cv::FeatureDetector class. It can be used 
in a way that is similar to what we did with our Harris corners class, as follows:

   // vector of keypoints
   std::vector<cv::KeyPoint> keypoints;
   // Construction of the Good Feature to Track detector 
  cv::Ptr<cv::FeatureDetector> gftt= 
     new cv::GoodFeaturesToTrackDetector(
     500,  // maximum number of corners to be returned
     0.01, // quality level
     10);  // minimum allowed distance between points
  // point detection using FeatureDetector method
  gftt->detect(image,keypoints);

The result is the same as the one obtained previously, since the same function is ultimately 
called by the wrapper. Note how we used the OpenCV 2 smart pointer class (cv::Ptr) that, 
as explained in Chapter 1, Playing with Images, automatically releases the pointed object 
when the reference count drops to zero.

See also
ff The classic article that describes the Harris operator by C. Harris and M.J. Stephens, 

A combined corner and edge detector, Alvey Vision Conference, pp. 147–152, 1988

ff The article by J. Shi and C. Tomasi, Good features to track, Int. Conference  
on Computer Vision and Pattern Recognition, pp. 593-600, 1994, introduces  
these features
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ff The article by K. Mikolajczyk and C. Schmid, Scale and Affine invariant interest  
point detectors, International Journal of Computer Vision, vol 60, no 1, pp. 63-86, 
2004, proposes a multi-scale and affine-invariant Harris operator

Detecting features quickly
The Harris operator proposed a formal mathematical definition for corners (or more generally, 
interest points) based on the rate of intensity changes in two perpendicular directions. Although 
this constitutes a sound definition, it requires the computation of the image derivatives, which  
is a costly operation, especially considering the fact that interest point detection is often just  
the first step in a more complex algorithm.

In this recipe, we present another feature point operator, called FAST (Features from 
Accelerated Segment Test). This one has been specifically designed to allow quick detection 
of interest points in an image; the decision to accept or not to accept a keypoint is based on 
only a few pixel comparisons.

How to do it...
Using the OpenCV 2 common interface for feature point detection makes the deployment  
of any feature point detectors easy. The detector presented in this recipe is the FAST detector.  
As the name suggests, it has been designed to be quick in order to compute the following:

   // vector of keypoints
   std::vector<cv::KeyPoint> keypoints;
   // Construction of the Fast feature detector object 
   cv::Ptr<cv::FeatureDetector> fast= 
   new cv::FastFeatureDetector(
     40); // threshold for detection
   // feature point detection 
   fast->detect(image,keypoints);

Note that OpenCV also proposes a generic function to draw keypoints on an image:

   cv::drawKeypoints(image,    // original image
      keypoints,               // vector of keypoints
      image,                   // the output image
      cv::Scalar(255,255,255), // keypoint color
      cv::DrawMatchesFlags::DRAW_OVER_OUTIMG); //drawing flag
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By specifying the chosen drawing flag, the keypoints are drawn over the input image,  
thus producing the following output result:

An interesting option is to specify a negative value for the keypoint color. In this case,  
a different random color will be selected for each drawn circle.

How it works...
As in the case with the Harris point detector, the FAST feature algorithm derives from the 
definition of what constitutes a corner. This time, this definition is based on the image intensity 
around a putative feature point. The decision to accept a keypoint is taken by examining a circle 
of pixels centered at a candidate point. If an arc of contiguous points of a length greater than 
3/4 of the circle perimeter in which all pixels significantly differ from the intensity of the center 
point (being all darker or all brighter) is found, then a keypoint is declared.

This is a simple test that can be computed quickly. Moreover, in its original formulation, the 
algorithm uses an additional trick to further speed up the process. Indeed, if we first test four 
points separated by 90 degrees on the circle (for example, top, bottom, right, and left points), 
it can be easily shown that in order to satisfy the condition expressed previously, at least three 
of these points must all be brighter or darker than the central pixel.
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If this is not the case, the point can be rejected immediately, without inspecting additional 
points on the circumference. This is a very effective test, since in practice, most of the image 
points will be rejected by this simple 4-comparison test.

In principle, the radius of the circle of examined pixels could have been a parameter of 
the method. However, it has been found that in practice, a radius of 3 gives you both good 
results and high efficiency. There are, then, 16 pixels that need to be considered on the 
circumference of the circle, shown as follows:

The four points used for the pretest are the 1, 5, 9, and 13 pixels, and the required number 
of contiguous darker or brighter points is 12. However, it has been observed that by reducing 
the length of the contiguous segment to 9, better repeatability of the detected corners across 
images is obtained. This variant is often designated as the FAST-9 corner detector, and this is 
the one that is used by OpenCV. Note that there exists a cv::FASTX function that proposes 
another variant of the FAST detector.

To be considered as being significantly darker or brighter, the intensity of a point must differ 
from the intensity of the central pixel by at least a given amount; this value corresponds to 
the threshold parameter specified in the function call. The larger this threshold is, the fewer 
corner points will be detected.

As for Harris features, it is often better to perform non-maxima suppression on the corners 
that have been found. Therefore, a corner strength measure needs to be defined. Several 
alternatives measures to this can considered, and the one that has been retained is the 
following. The strength of a corner is given by the sum of the absolute difference between  
the central pixel and the pixels on the identified contiguous arc. Note that the algorithm is  
also available through a direct function call:

  cv::FAST(image,     // input image 
         keypoints,   // output vector of keypoints
         40,          // threshold
         false);      // non-max suppression? (or not)



Detecting Interest Points

244

However, because of its flexibility, the use of the cv::FeatureDetector interface  
is recommended.

This algorithm results in very fast interest point detection and is therefore the feature of 
choice when speed is a concern. This is the case, for example, in real-time visual tracking  
or object-recognition applications where several points must be tracked or matched in a  
live video stream.

There's more...
To improve the detection of feature points, additional tools are offered by OpenCV. Indeed,  
a number of class adapters are available in order to better control the way the keypoints  
are extracted.

Adapted feature detection
If you wish to better control the number of detected points, a special subclass of the 
cv::FeatureDetector class, called cv::DynamicAdaptedFeatureDetector,  
is available. This allows you to specify the number of interest points that can be detected  
as an interval. In the case of the FAST feature detector, this is used as follows:

  cv::DynamicAdaptedFeatureDetector fastD(
    new cv::FastAdjuster(40), // the feature detector
    150,   // min number of features
    200,   // max number of features
    50);   // max number of iterations
  fastD.detect(image,keypoints); // detect points

The interest points will then be iteratively detected. After each iteration, the number of 
detected points is checked and the detector threshold is adjusted accordingly in order to 
produce more or less points; this process is repeated until the number of detected points 
fit into the specified interval. A maximum number of iterations is specified in order to avoid 
that the method spends too much time on multiple detections. For this method to be 
implemented in a generic way, the used cv::FeatureDetector class must implement the 
cv::AdjusterAdapter interface. This class includes a tooFew method and a tooMany 
method, both of which modify the internal threshold of the detector in order to produce more 
or less keypoints. There is also a good predicate method that returns true if the detector 
threshold can still be adjusted. Using a cv::DynamicAdaptedFeatureDetector class  
can be a good strategy to obtain an appropriate number of feature points; however, you  
must understand that there is a performance price that you will have to to pay for this  
benefit. Moreover, there is no guarantee that you will indeed obtain the requested number  
of features within the specified number of iterations.



Chapter 8

245

You probably noticed that we passed an argument, which is the address of a dynamically 
allocated object, to specify the feature detector that will be used by the adapter class. You 
might wonder whether you have to release the allocated memory at some point in order to 
avoid memory leaks. The answer is no, and this is because the pointer is transferred to a 
cv::Ptr<FeatureDetector> parameter that automatically releases the pointed object.

Grid adapted feature detection
A second useful class adapter is the cv::GridAdaptedFeatureDetector class. As the 
name suggests, it allows you to define a grid over the image. Each cell of this grid is then 
constrained to contain a maximum number of elements. The idea here is to spread the set of 
detected keypoints over the image in a better manner. When detecting keypoints in an image, 
it is indeed common to see a concentration of interest points in a specific textured area. This 
is the case, for example, of the two towers of the church image on which a very dense set of 
FAST points have been detected. This class adapter is used as follows:

  cv::GridAdaptedFeatureDetector fastG(
    new cv::FastFeatureDetector(10), // the feature detector
    1200,  // max total number of keypoints
    5,     // number of rows in grid
    2);    // number of cols in grid
  fastG.detect(image,keypoints);

The class adapter simply proceeds by detecting feature points on each individual cell  
using the provided cv::FeatureDetector object. A maximum total number of points  
is also specified. Only the strongest points in each cell are kept in order to not exceed the 
specified maximum.

Pyramid adapted feature detection
The cv::PyramidAdaptedFeatureDetector adapter proceeds by applying the feature 
detector on an image pyramid. The results are combined in the output vector of keypoints. 
This is called as follows:

  cv::PyramidAdaptedFeatureDetector fastP(
    new cv::FastFeatureDetector(60), // the feature detector
    3);    // number of levels in the pyramid
  fastP.detect(image,keypoints);
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The coordinates of each point are specified in the original image coordinates. In addition,  
the special size attribute of the cv::Keypoint class is set such that points detected at  
half the original resolution are attributed a size that is twice the size of  the detected points  
in the original image. There is a special flag in the cv::drawKeypoints function that will 
draw the keypoints with a radius that is equal to the keypoint's size attribute.

See also
ff The article by E. Rosten and T. Drummond, Machine learning for high-speed  

corner detection, In European Conference on Computer Vision, pp. 430-443,  
2006, describes the FAST feature algorithm and its variants in detail
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Detecting scale-invariant features
The view invariance of feature detection was presented as an important concept in the 
introduction of this chapter. While orientation invariance, which is the ability to detect the same 
points even if an image is rotated, has been relatively well handled by the simple feature point 
detectors that have been presented so far, the invariance to scale changes is more difficult to 
achieve. To address this problem, the concept of scale-invariant features has been introduced in 
computer vision. The idea here is to not only have a consistent detection of keypoints no matter 
at which scale an object is pictured, but to also have a scale factor associated with each of the 
detected feature points. Ideally, for the same object point featured at two different scales on 
two different images, the ratio of the two computed scale factors should correspond to the ratio 
of their respective scales. In recent years, several scale-invariant features have been proposed, 
and this recipe presents one of them, the SURF features. SURF stands for Speeded Up Robust 
Features, and as we will see, they are not only scale-invariant features, but they also offer the 
advantage of being computed very efficiently.

How to do it...
The SURF feature detector is implemented in OpenCV in the cv::SURF function. It is also 
possible to use this through cv::FeatureDetector as follows:

  // Construct the SURF feature detector object
  cv::Ptr<cv::FeatureDetector> detector =  
    new cv::SURF(2000.); // threshold
  // Detect the SURF features
  detector->detect(image,keypoints);

To draw these features, we again use the cv::drawKeypoints OpenCV function with the 
DRAW_RICH_KEYPOINTS flag such that we can visualize the associated scale factor:

   // Draw the keypoints with scale and orientation information
   cv::drawKeypoints(image,      // original image
      keypoints,                 // vector of keypoints
      featureImage,              // the resulting image
      cv::Scalar(255,255,255),   // color of the points
      cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS); //flag
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The resulting image with the detected features is then as follows:

As explained in the previous recipe, the size of the keypoint circles resulting from the use  
of the DRAW_RICH_KEYPOINTS flag is proportional to the computed scale of each feature. 
The SURF algorithm also associates an orientation with each feature to make them invariant 
to rotations. This orientation is illustrated by a radial line inside each drawn circle.
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If we take another picture of the same object but at a different scale, the feature-detection 
result is as follows:

By carefully observing the detected keypoints on the two images, it can be seen that the 
change in the size of corresponding circles is often proportional to the change in scale.  
As an example, consider the bottom part of the upper-right window of the church. In both 
images, a SURF feature has been detected at that location, and the two corresponding  
circles (of different sizes) contain the same visual elements. Of course, this is not the  
case for all features, but as we will discover in the next chapter, the repeatability rate  
is sufficiently high to allow good matching between the two images.
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How it works...
In Chapter 6, Filtering the Images, we learned that the derivatives of an image can be 
estimated using Gaussian filters. These filters make use of a σ parameter, which defines the 
aperture (size) of the kernel. As we saw, this σ parameter corresponds to the variance of the 
Gaussian function used to construct the filter, and it then implicitly defines a scale at which 
the derivative is evaluated. Indeed, a filter that has a larger σ value smoothes out the finer 
details of the image. This is why we can say that it operates at a coarser scale.

Now, if we compute, for instance, the Laplacian of a given image point using Gaussian filters 
at different scales, then different values are obtained. Looking at the evolution of the filter 
response for different scale factors, we obtain a curve that eventually reaches a maximum value 
at a σ value. If we extract this maximum value for two images of the same object taken at two 
different scales, the ratio of these two σ maxima will correspond to the ratio of the scales at 
which the images were taken. This important observation is at the core of the scale-invariant 
feature extraction process. That is, scale-invariant features should be detected as the local 
maxima in both the spatial space (in the image) and the scale space (as obtained from the 
derivative filters applied at different scales).

SURF implements this idea by proceeding as follows. First, to detect the features, the Hessian 
matrix is computed at each pixel. This matrix measures the local curvature of a function and 
is defined as follows:
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The determinant of this matrix gives you the strength of this curvature. The idea, therefore, 
is to define corners as image points with high local curvature (that is, high variation in more 
than one direction). Since it is composed of second-order derivatives, this matrix can be 
computed using Laplacian of Gaussian kernels of a different scale, such as σ. This Hessian 
then becomes a function of three variables, which are H(x,y,σ). Therefore, a scale-invariant 
feature is declared when the determinant of this Hessian reaches a local maximum in both 
spatial and scale space (that is, 3x3x3 non-maxima suppression needs to be performed). 
Note that in order to be considered as a valid point, this determinant must have a minimum 
value as specified by the first parameter in the constructor of the cv::SURF class.
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However, the calculation of all of these derivatives at different scales is computationally  
costly. The objective of the SURF algorithm is to make this process as efficient as possible. 
This is achieved by using approximated Gaussian kernels that involve only few integer 
additions. These have the following structure:

The kernel on the left-hand side is used to estimate the mixed second derivatives, while the 
one on the right-hand side estimates the second derivative in the vertical direction. A rotated 
version of this second kernel estimates the second derivative in the horizontal direction. The 
smallest kernels have a size of 9x9 pixels, corresponding to σ≈1.2. To obtain a scale-space 
representation, kernels of increasing size are successively applied. The exact number of filters 
that are applied can be specified by additional parameters of the SURF class. By default, 12 
different sizes of kernels are used (going up to size 99x99). Note that the fact that integral 
images are used guarantees that the sum inside each lobe of each filter can be computed by 
using only three additions independent of the size of the filter.

Once the local maxima are identified, the precise position of each detected interest point is 
obtained through interpolation in both scale and image space. The result is then a set of feature 
points that are localized at sub-pixel accuracy and to which a scale value is associated.

There's more...
The SURF algorithm has been developed as an efficient variant of another well-known scale-
invariant feature detector called SIFT (Scale-Invariant Feature Transform).

The SIFT feature-detection algorithm
SIFT also detects features as local maxima in the image and scale space but uses the 
Laplacian filter response instead of the Hessian determinant. This Laplacian is computed at 
different scales (that is, increasing values of σ) using the difference of Gaussian filters, as 
explained in Chapter 6, Filtering the Images. To improve efficiency, each time the value of σ 
is doubled, the size of the image is reduced by two. Each pyramid level corresponds to an 
octave, and each scale is a layer. There are typically three layers per octave.
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The following figure illustrates a pyramid of two octaves in which the four Gaussian-filtered 
images of the first octave produce three DoG layers:

OpenCV has a class that detects these features, and it is called in a way that is similar to the 
SURF one:

  // Construct the SIFT feature detector object
  detector = new cv::SIFT();
  // Detect the SIFT features
  detector->detect(image,keypoints);

Here, we use all the default arguments to construct the detector, but you can specify the 
number of desired SIFT points (the strongest ones are kept), the number of layers per octave, 
and the initial value for σ. The result is similar to the one obtained with SURF:
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However, since the computation of the feature point is based on floating-point kernels, SIFT is 
generally considered to be more accurate in terms of feature localization in regards to space 
and scale. For the same reason, it is also more computationally expensive, although this 
relative efficiency depends on each particular implementation.

As a final remark, you might have noticed that the SURF and SIFT classes have been placed  
in a nonfree package of the OpenCV distribution. This is because these algorithms have  
been patented, and as such, their use in commercial applications might be subject to  
licensing agreements.

See also
ff The Computing the Laplacian of an image recipe in Chapter 6, Filtering the  

Images, gives you more details on the Laplacian-of-Gaussian operator and  
the use of the difference of Gaussians

ff The Describing local intensity patterns recipe in Chapter 9, Describing and  
Matching Interest Points, explains how these scale-invariant features can be 
described for robust image matching

ff The article SURF: Speeded Up Robust Features by H. Bay, A. Ess, T. Tuytelaars  
and L. Van Gool in Computer Vision and Image Understanding, vol. 110, No. 3,  
pp. 346-359, 2008, describes the SURF feature algorithm

ff The pioneering work by D. Lowe, Distinctive Image Features from Scale Invariant 
Features in International Journal of Computer Vision, Vol. 60, No. 2, 2004,  
pp. 91-110, describes the SIFT algorithm

Detecting FAST features at multiple scales
FAST has been introduced as a quick way to detect keypoints in an image. With SURF and 
SIFT, the emphasis was on designing scale-invariant features. More recently, new interest 
point detectors have been introduced with the objective of achieving both fast detection and 
invariance to scale changes. This recipe presents the Binary Robust Invariant Scalable 
Keypoints (BRISK) detector. It is based on the FAST feature detector that we described in a 
previous recipe of this chapter. Another detector, called ORB (Oriented FAST and Rotated 
BRIEF), will also be discussed at the end of this recipe. These two feature point detectors 
constitute an excellent solution when fast and reliable image matching is required. They are 
especially efficient when they are used in conjunction with their associated binary descriptors, 
as will be discussed in Chapter 9, Describing and Matching Interest Points.
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How to do it...
Following what we did in the previous recipes, the detection of keypoints with BRISK uses  
the cv::FeatureDetector abstract class. We first create an instance of the detector,  
and then the detect method is called on an image:

  // Construct the BRISK feature detector object
  detector = new cv::BRISK();
  // Detect the BRISK features
  detector->detect(image,keypoints);

The image result shows you the keypoints that are detected at multiple scales:

How it works...
BRISK is not only a feature point detector; the method also includes a procedure that 
describes  the neighborhood of each detected keypoint. This second aspect will be the  
subject of the next chapter. We describe here how the quick detection of keypoints at  
multiple scales is performed using BRISK.
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In order to detect interest points at different scales, the method first builds an image pyramid 
through two down-sampling processes. The first process starts from the original image size 
and downscales it by half at each layer (or octave). Secondly, in-between layers are created by 
down-sampling the original image by a factor of 1.5, and from this reduced image, additional 
layers are generated through successive half-sampling.

The FAST feature detector is then applied on all the images of this pyramid. Keypoint extraction 
is based on a criterion that is similar to the one used by SIFT. First, an acceptable interest point 
must be a local maximum when comparing its strength with one of its eight spatial neighbors. 
If this is the case, the point is then compared with the scores of the neighboring points in the 
layers above and below; if its score is higher in scale as well, then it is accepted as an interest 
point. A key aspect of BRISK resides in the fact that the different layers of the pyramid have 
different resolutions. The method requires interpolation in both scale and space in order to 
locate each keypoint precisely. This interpolation is based on the FAST keypoint scores. In space, 
the interpolation is performed on a 3 x 3 neighborhood. In scale, it is computed by fitting a 1D 
parabola along the scale axis through the current point and its two neighboring local keypoints 
in the layers above and below; this keypoint localization in scale is illustrated in the preceding 
figure. As a result, even if the FAST keypoint detection is performed at discrete image scales,  
the resulting detected scales associated with each keypoint are continuous values.

The cv::BRISK class proposes two optional parameters to control the detection of the 
keypoints. The first parameter is a threshold value that accepts FAST keypoints, and the 
second parameter is the number of octaves that will be generated in the image pyramid:

  // Construct another BRISK feature detector object
  detector = new cv::BRISK(
    20,  // threshold for FAST points to be accepted
    5);  // number of octaves
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There's more...
BRISK is not the only multiscale, fast detector that is proposed in OpenCV. The ORB feature 
detector can also perform efficient keypoint detection.

The ORB feature-detection algorithm
ORB stands for Oriented FAST and Rotated BRIEF. The first part of this acronym refers to  
the keypoint detection part, while the second part refers to the descriptor that is proposed  
by ORB. Here, we focus here on the detection method; the descriptor will be presented in  
the next chapter.

As with BRISK, ORB first creates an image pyramid. This one is made of a number of layers 
in which each layer is a down-sampled version of the previous one by a certain scale factor 
(typically, 8 scales and 1.2 scale factor reduction; these are parameters in the cv::ORB 
function). The strongest N keypoints are then accepted where the keypoint score is defined  
by the Harris cornerness measure that was defined in the first recipe of this chapter  
(authors of this method found the Harris score to be a more reliable measure).

An original aspect of the ORB detector resides in the fact that an orientation is associated 
with each detected interest point. As we will see in the next chapter, this information will be 
useful to align the descriptors of  keypoints detected in different images. In the Computing 
components' shape descriptors recipe of Chapter 7, Extracting Lines, Contours, and 
Components, we introduced the concept of image moments and in particular, we showed 
you how the centroid of a component can be computed from its first three moments. ORB 
proposes that we use the orientation of the centroid of a circular neighborhood around the 
keypoint. Since, FAST keypoints, by definition, always have a decentered centroid, the angle  
of the line that joins the central point and the centroid will always be well defined.

The ORB features are detected as follows:

  // Construct the ORB feature detector object
  detector = new cv::ORB(200, // total number of keypoints
                        1.2, // scale factor between layers
                   8);  // number of layers in pyramid
  // Detect the ORB features
  detector->detect(image,keypoints);
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This call produces the following result:

As can be seen, since the keypoints are independently detected on each pyramid layer,  
the detector tends to repeatedly detect the same feature point at different scales.

See also
ff The Describing keypoints with binary features recipe in Chapter 9, Describing and 

Matching Interest Points, explains how simple binary descriptors can be used for 
efficient robust matching of these features

ff The article BRISK: Binary Robust Invariant Scalable Keypoint by S. Leutenegger,  
M. Chli and R. Y. Siegwart in IEEE International Conference on Computer Vision,  
pp. 2448--2555, 2011, describes the BRISK feature algorithm

ff The article ORB: an efficient alternative to SIFT or SURF by E. Rublee, V. Rabaud, 
K. Konolige and G. Bradski in IEEE International Conference on Computer Vision, 
pp.2564-2571, 2011, describes the ORB feature algorithm





9
Describing  

and Matching  
Interest Points

In this chapter, we will cover the following recipes:

ff Matching local templates

ff Describing local intensity patterns

ff Describing keypoints with binary features

Introduction
In the previous chapter, we learned how to detect special points in an image with the objective 
of subsequently performing local image analysis. These keypoints are chosen to be distinctive 
enough such that if a keypoint is detected on the image of an object, then the same point is 
expected to be detected in other images depicting the same object. We also described some 
more sophisticated interest point detectors that can assign a representative scale factor and/
or an orientation to a keypoint. As we will see in this recipe, this additional information can be 
useful to normalize scene representations with respect to viewpoint variations.

In order to perform image analysis based on interest points, we now need to build rich 
representations that uniquely describe each of these keypoints. This chapter looks at the 
different approaches that have been proposed to extract descriptors from interest points. 
These descriptors are generally 1D or 2D vectors of binary, integer, or floating-point numbers 
that describe a keypoint and its neighborhood. A good descriptor should be distinctive enough 
to uniquely represent each keypoint of an image; it should be robust enough to have the same 
points represented similarly in spite of possible illumination changes or viewpoint variations. 
Ideally, it should also be compact to facilitate processing operations.
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One of the most common operations accomplished with keypoints is image matching. The 
objective of performing this task could be, for example, to relate two images of the same 
scene or to detect the occurrence of a target object in an image. Here, we will study some 
basic matching strategies, a subject that will be further discussed in the next chapter.

Matching local templates
Feature point matching is the operation by which one can put in correspondence points from 
one image to points from another image (or points from an image set). Image points should 
match when they correspond to the image of the same scene element (or the object point)  
in the real world.

A single pixel is certainly not sufficient to make a decision on the similarity of two keypoints. 
This is why an image patch around each keypoint must be considered during the matching 
process. If two patches correspond to the same scene element, then one might expect 
their pixels to exhibit similar values. A direct pixel-by-pixel comparison of pixel patches is 
the solution presented in this recipe. This is probably the simplest approach to feature 
point matching, but as we will see, it is not the most reliable one. Nevertheless, in several 
situations, it can give good results.

How to do it...
Most often, patches are defined as squares of odd sizes centered at the keypoint position. 
The similarity between two square patches can then be measured by comparing the 
corresponding pixel intensity values inside the patches. A simple Sum of Squared Differences 
(SSD) is a popular solution. The feature matching strategy then works as follows. First, the 
keypoints are detected in each image. Here, let's use the FAST detector:

  // Define keypoints vector
  std::vector<cv::KeyPoint> keypoints1;
  std::vector<cv::KeyPoint> keypoints2;
  // Define feature detector
  cv::FastFeatureDetector fastDet(80);
  // Keypoint detection
  fastDet.detect(image1,keypoints1);
  fastDet.detect(image2,keypoints2);

We then define a rectangle of the size 11x11 that will be used to define patches around  
each keypoint:

  // Define a square neighborhood
  const int nsize(11); // size of the neighborhood
  cv::Rect neighborhood(0, 0, nsize, nsize); // 11x11
  cv::Mat patch1;
  cv::Mat patch2;
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The keypoints in one image are compared with all the keypoints in the other image. For each 
keypoint of the first image, the most similar patch in the second image is identified. This 
process is implemented using two nested loops, as shown in the following code:

// For all keypoints in first image
// find best match in second image
cv::Mat result;
std::vector<cv::DMatch> matches;

//for all keypoints in image 1
for (int i=0; i<keypoints1.size(); i++) {
  
  // define image patch
  neighborhood.x = keypoints1[i].pt.x-nsize/2;
  neighborhood.y = keypoints1[i].pt.y-nsize/2;

  // if neighborhood of points outside image, 
  // then continue with next point
  if (neighborhood.x<0 || neighborhood.y<0 ||
      neighborhood.x+nsize >= image1.cols || 
          neighborhood.y+nsize >= image1.rows)
      continue;

  //patch in image 1
  patch1 = image1(neighborhood);

  // reset best correlation value;
  cv::DMatch bestMatch;

  //for all keypoints in image 2
  for (int j=0; j<keypoints2.size(); j++) {

      // define image patch
      neighborhood.x = keypoints2[j].pt.x-nsize/2;
      neighborhood.y = keypoints2[j].pt.y-nsize/2;

      // if neighborhood of points outside image, 
      // then continue with next point
      if (neighborhood.x<0 || neighborhood.y<0 ||
        neighborhood.x + nsize >= image2.cols ||
             neighborhood.y + nsize >= image2.rows)
          continue;
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      // patch in image 2
      patch2 = image2(neighborhood);

      // match the two patches                  
         cv::matchTemplate(patch1,patch2,result,
                           CV_TM_SQDIFF_NORMED);

      // check if it is a best match
      if (result.at<float>(0,0) < bestMatch.distance) {

        bestMatch.distance= result.at<float>(0,0);
        bestMatch.queryIdx= i;
        bestMatch.trainIdx= j;
      }
    }

    // add the best match
    matches.push_back(bestMatch);
}

Note the use of the cv::matchTemplate function, which we will describe in the next section, 
that computes the patch similarity score. When a potential match is identified, this match is 
represented through the use of a cv::DMatch object. This object stores the index of the two 
matching keypoints as well as the similarity score.

The more similar the two image patches are, the higher the probability that these patches 
correspond to the same scene point. This is why it is a good idea to sort the resulting match 
points by their similarity scores:

  // extract the 25 best matches
  std::nth_element(matches.begin(),
                    matches.begin()+25,matches.end());
  matches.erase(matches.begin()+25,matches.end());

You can then simply retain the matches that pass a given similarity threshold. Here,  
we chose to keep only the N best matching points (we use N=25 to facilitate the  
visualization of the matching results).



Chapter 9

263

Interestingly, there is an OpenCV function that can display the matching results  
by concatenating the two images and joining each corresponding point by a line.  
The function is used as follows:

  // Draw the matching results
  cv::Mat matchImage;
  cv::drawMatches(image1,keypoints1,          // first image
                   image2,keypoints2,         // second image
                   matches,                   // vector of matches
                   cv::Scalar(255,255,255),   // color of lines
                   cv::Scalar(255,255,255));  // color of points

Here is the resulting match result:

How it works...
The results obtained are certainly not perfect, but a visual inspection of the matched image 
points shows a number of successful matches. It can also be observed that the repetitive 
structures of the building cause some confusion. Also, since we tried to match all the points 
in the left image with the ones in the right image, we obtained cases where a point in the right 
image was matched with multiple points in the left image. This is an asymmetrical matching 
situation that can be corrected by, for example, keeping only the match with the best score for 
each point in the right image.
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To compare the image patches from each image, here we used a simple criterion, that is, a 
pixel-per-pixel sum of the squared difference specified using the CV_TM_SQDIFF flag. If we 
compare the point (x,y) of image I

1
 with a putative match at (x',y') in image I

2
, then  

the similarity measure is given as follows:
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Here, the sum of the (i,j) point provides the offset to cover the square template centered  
at each point. Since the difference between adjacent pixels in similar patches should be 
small, the best-matching patches should be the ones with the smallest sum. This is what is 
done in the main loop of the matching function; that is, for each keypoint in one image, we 
identify the keypoint in the other image that gives the lowest sum of the squared difference. 
We can also reject matches for which this sum is over a certain threshold value. In our case, 
we simply sort them from the most similar to the least similar ones.

In our example, the matching was done with square patches of size 11x11. A larger 
neighborhood creates more distinctive patches, but it also makes them more sensitive  
to local scene variations.

Comparing two image windows from a simple sum of square differences will work relatively 
well as long as the two images show the scene from similar points of views and similar viewing 
conditions. Indeed, a simple lighting change will increase or decrease all the pixel intensities 
of a patch, resulting in a large square difference. To make matching more invariant to lighting 
changes, other formulae that could be used to measure the similarity between two image 
windows exist. OpenCV offers a number of these. A very useful formula is the normalized  
sum of square differences (the CV_TM_SQDIFF_NORMED flag):
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Other similarity measures are based on the concept of correlation, defined in the signal 
processing theory as follows (with the CV_TM_CCORR flag):
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This value will be maximal when two patches are similar.
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The identified matches are stored in a vector of the cv::DMatch instances. Essentially,  
the cv::DMatch data structure contains the first index that refers to an element in the first 
vector of keypoints and the second index that refers to the matching feature in the second 
vector of keypoints. It also contains a real value that represents the distance between the 
two matched descriptors. This distance value is used in the definition of operator< when 
comparing two cv::DMatch instances.

When we drew the matches in the previous section, we wanted to limit the number of lines  
to make the results more readable. Therefore, we only displayed the 25 matches that had  
the lowest distance. To do this, we used the std::nth_element function that positions  
the Nth element in a sorted order at the Nth position, with all the smaller elements placed 
before this element. Once this is done, the vector is simply purged of its remaining elements.

There's more...
The cv::matchTemplate function is at the heart of our feature matching method. We used 
it here in a very specific way, which is to compare two image patches. However, this function 
has been designed to be used in a more generic way.

Template matching
A common task in image analysis is to detect the occurrence of a specific pattern or object in 
an image. This can be done by defining a small image of the object, a template, and searching 
for a similar occurrence in a given image. In general, the search is limited to a region of 
interest inside which we think the object can be found. The template is then slid over this 
region, and a similarity measure is computed at each pixel location. This is the operation 
performed by the cv::matchTemplate function. The input is a template image of a small 
size and an image over which the search is performed. The result is a cv::Mat function 
of floating-point values that correspond to the similarity score at each pixel location. If the 
template is of the size MxN and the image is of the size WxH, then the resulting matrix will 
have a size of W-N+1xH-N+1. In general, you will be interested in the location of the highest 
similarity; so, the typical template matching code will look as follows (assuming that the target 
variable is our template):

// define search region
cv::Mat roi(image2, 
  // here top half of the image
  cv::Rect(0,0,image2.cols,image2.rows/2)); 
      
// perform template matching
cv::matchTemplate(
  roi,    // search region
  target, // template
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  result, // result
  CV_TM_SQDIFF); // similarity measure

// find most similar location
double minVal, maxVal;
cv::Point minPt, maxPt;
cv::minMaxLoc(result, &minVal, &maxVal, &minPt, &maxPt);

// draw rectangle at most similar location
// at minPt in this case
cv::rectangle(roi, 
   cv::Rect(minPt.x, minPt.y, target.cols , target.rows), 
   255);

Remember that this is a costly operation, so you should limit the search area and use a 
template having a size of only a few pixels.

See also
ff The next recipe, Describing local intensity patterns, describes the cv::BFMatcher 

class that implements the matching strategy that was used in this recipe

Describing local intensity patterns
The SURF and SIFT keypoint detection algorithms, discussed in Chapter 8, Detecting Interest 
Points, define a location, an orientation, and a scale for each of the detected features. The scale 
factor information is useful to define the size of a window of analysis around each feature point. 
Thus, the defined neighborhood would include the same visual information no matter what the 
scale of the object to which the feature belongs has been pictured. This recipe will show you 
how to describe an interest point's neighborhood using feature descriptors. In image analysis, 
the visual information included in this neighborhood can be used to characterize each feature 
point in order to make each point distinguishable from the others. Feature descriptors are 
usually N-dimensional vectors that describe a feature point in a way that is invariant to change 
in lighting and to small perspective deformations. Generally, descriptors can be compared  
using simple distance metrics, for example, the Euclidean distance. Therefore, they constitute  
a powerful tool that can be used in feature matching applications.
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How to do it...
OpenCV 2 proposes a general interface to compute the descriptors of a list of keypoints. It is 
called cv::DescriptorExtractor, and we will use it in a way similar to the way we used 
the cv::FeatureDetector interface in the previous chapter. In fact, most feature-based 
methods include both a detector and a descriptor component; that's why classes such as 
cv::SURF and cv::SIFT implement both these interfaces. This means that you have to 
create only one object to detect and describe keypoints. Here is how you can proceed if  
you want to match two images:

  // Define feature detector
  // Construct the SURF feature detector object
  cv::Ptr<cv::FeatureDetector> detector = new cv::SURF(1500.);

  // Keypoint detection
  // Detect the SURF features
  detector->detect(image1,keypoints1);
  detector->detect(image2,keypoints2);

  // SURF includes both the detector and descriptor extractor
  cv::Ptr<cv::DescriptorExtractor> descriptor = detector;

  // Extract the descriptor
   cv::Mat descriptors1;
   cv::Mat descriptors2;
   descriptor->compute(image1,keypoints1,descriptors1);
   descriptor->compute(image2,keypoints2,descriptors2);

For SIFT, you will simply create a cv::SIFT() object instead. The result is a matrix (that is, a 
cv::Mat instance) that will contain as many rows as the number of elements in the keypoint 
vector. Each of these rows is an N-dimensional descriptor vector. In the case of the SURF 
descriptor, it has a default size of 64, and for SIFT, the default dimension is 128. This vector 
characterizes the intensity pattern surrounding a feature point. The more similar the two 
feature points, the closer their descriptor vectors should be.
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These descriptors will now be used to match our keypoints. Exactly as we did in the previous 
recipe, each feature descriptor vector in the first image is compared to all the feature 
descriptors in the second image. The pair that obtains the best score (that is, the pair with the 
lowest distance between the two descriptor vectors) is then kept as the best match for that 
feature. This process is repeated for all the features in the first image. Very conveniently, this 
process is implemented in OpenCV in the cv::BFMatcher class, so we do not need to re-
implement the double loops that we previously built. This class is used as follows:

   // Construction of the matcher 
   cv::BFMatcher matcher(cv::NORM_L2);
   // Match the two image descriptors
   std::vector<cv::DMatch> matches;
   matcher.match(descriptors1,descriptors2, matches);

This class is a subclass of the cv::DescriptorMatcher class that defines the common 
interface for different matching strategies. The result is a vector of the cv::DMatch instances.

With the current Hessian threshold for SURF, we obtained 90 keypoints for the first image 
and 80 for the second. The brute-force approach will then produce 90 matches. Using the 
cv::drawMatches class as in the previous recipe produces the following image:
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As can be seen, several of these matches correctly link a point on the left-hand side with its 
corresponding point on the right-hand side. You might notice some errors; some of these are 
due to the fact that the observed building has a symmetrical facade, which makes some of 
the local matches ambiguous. For SIFT, with the same number of keypoints, we obtained the 
following match result:

How it works...
Good feature descriptors must be invariant to small changes in illumination and viewpoint and 
to the presence of image noise. Therefore, they are often based on local intensity differences. 
This is the case for the SURF descriptors, which locally apply the following simple kernels 
around a keypoint:
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The first kernel simply measures the local intensity difference in the horizontal direction 
(designated as dx), and the second measures this difference in the vertical direction 
(designated as dy). The size of the neighborhood used to extract the descriptor vector is 
generally defined as 20 times the scale factor of the feature (that is, 20σ). This square region 
is then split into 4x4 smaller square subregions. For each subregion, the kernel responses 
(dx and dy) are computed at 5x5 regularly-spaced locations (with the kernel size being 2σ). 
All of these responses are summed up as follows in order to extract four descriptor values  
for each subregion:

| | | |dx dy dx dy  ∑ ∑ ∑ ∑

Since there are 4x4=16 subregions, we have a total of 64 descriptor values. Note that in order 
to give more importance to the neighboring pixels, that is, values closer to the keypoint, the 
kernel responses are weighted by a Gaussian centered at the keypoint location (with σ=3.3).

The dx and dy responses are also used to estimate the orientation of the feature. These 
values are computed (with a kernel size of 4σ) within a circular neighborhood of radius 6σ 
at locations regularly spaced by intervals of σ. For a given orientation, the responses inside 
a certain angular interval (π/3) are summed, and the orientation giving the longest vector is 
defined as the dominant orientation.

SIFT is a richer descriptor that uses an image gradient instead of simple intensity differences. 
It also splits the square neighborhood around each keypoint into 4x4 subregions (it is also 
possible to use 8x8 or 2x2 subregions). Inside each of these regions, a histogram of gradient 
orientations is built. The orientations are discretized into 8 bins, and each gradient orientation 
entry is incremented by a value proportional to the gradient magnitude. This is illustrated by 
the following figure, inside which each star-shaped arrow set represents a local histogram of  
a gradient orientation:
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These 16 histograms of 8 bins each concatenated together then produce a descriptor of 
128 dimensions. Note that as for SURF, the gradient values are weighted by a Gaussian filter 
centered at the keypoint location in order to make the descriptor less sensitive to sudden 
changes in gradient orientations at the perimeter of the defined neighborhood. The final 
descriptor is then normalized to make the distance measurement more consistent.

With SURF and SIFT features and descriptors, scale-invariant matching can be achieved.  
Here is an example that shows the SURF match result for two images at different scales  
(here, the 50 best matches have been displayed):

There's more...
The match result produced by any matching algorithm always contains a significant number  
of incorrect matches. In order to improve the quality of the match set, there exist a number  
of strategies. Two of them are discussed here.
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Cross-checking matches
A simple approach to validate the matches obtained is to repeat the same procedure a 
second time, but this time, each keypoint of the second image is compared with all the 
keypoints of the first image. A match is considered valid only if we obtain the same pair 
of keypoints in both directions (that is, each keypoint is the best match of the other). The 
cv::BFMatcher function gives the option to use this strategy. It is indeed included as  
a flag; when set to true, it forces the function to perform the reciprocal match cross-check:

   // Construction of the matcher with cross-check 
   cv::BFMatcher matcher2(cv::NORM_L2, // distance measure
                         true);       // cross-check flag

The improved match results are as shown in the following screenshot (in the case of SURF):

The ratio test
We have already noted that repetitive elements in scene objects create unreliable results 
because of the ambiguity in matching visually similar structures. What happens in such cases 
is that a keypoint will match well with more than one other keypoint. Since the probability of 
selecting the wrong correspondence is high, it might be preferable to reject a match in this case.

To use this strategy, we then need to find the best two matching points of each keypoint. This 
can be done by using the knnMatch method of the cv::DescriptorMatcher class. Since 
we want only two best matches, we specify k=2.
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  // find the best two matches of each keypoint
    std::vector<std::vector<cv::DMatch>> matches2;
    matcher.knnMatch(descriptors1,descriptors2, matches2, 
                 2); // find the k best matches

The next step is to reject all the best matches with a matching distance similar to that of their 
second best match. Since knnMatch produces a std::vector class of std::vector (this 
second vector is of size k), we do this by looping over each keypoint match and perform a ratio 
test (this ratio will be one if the two best distances are equal). Here is how we can do it:

// perform ratio test
double ratio= 0.85;
std::vector<std::vector<cv::DMatch>>::iterator it;
for (it= matches2.begin(); it!= matches2.end(); ++it) {

  //   first best match/second best match
  if ((*it)[0].distance/(*it)[1].distance < ratio) {
    // it is an acceptable match
    matches.push_back((*it)[0]);
  }
}
// matches is the new match set

The initial match set made up of 90 pairs is now reduced to 23 pairs; a good proportion  
of these are now correct matches:
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Distance thresholding
An even simpler strategy consists of rejecting matches for which the distance between 
their descriptors is too high. This is done using the radiusMatch method of the 
cv::DescriptorMatcher class:

// radius match
float maxDist= 0.4;
std::vector<std::vector<cv::DMatch>> matches2;
matcher.radiusMatch(descriptors1, descriptors2, matches2, 
                  maxDist); // maximum acceptable distance
                             // between the 2 descriptors

The result is again a std::vector class of std::vector because the method will retain 
all the matches with a distance smaller than the specified threshold. This means that a 
given keypoint might have more than one matching point in the other image. Conversely, 
other keypoints will not have any matches associated with them (the corresponding inner 
std::vector class will then have a size of 0). This time, the initial match set of 90 pairs is 
reduced to 37 pairs as shown in the following screenshot:

Obviously, you can combine all these strategies in order to improve your matching results.
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See also
ff The Detecting scale-invariant features recipe in Chapter 8, Detecting Interest  

Points, presents the associated SURF and SIFT feature detectors and provides  
more references on the subject

ff The Matching images using random sample consensus recipe in Chapter 10, 
Estimating Projective Relations in Images, explains how to use the image and the 
scene geometry in order to obtain a match set of even better quality

ff The Matching feature points in stereo pairs: A comparative study of some matching 
strategies article by E. Vincent and R. Laganière in Machine, Graphics and Vision,  
pp. 237-260, 2001, describes other simple matching strategies that could be used  
to improve the quality of the match set

Describing keypoints with binary features
In the previous recipe, we learned how to describe a keypoint using rich descriptors extracted 
from the image intensity gradient. These descriptors are floating-point vectors that have a 
dimension of 64, 128, or sometimes even longer. This makes them costly to manipulate. In 
order to reduce the memory and computational load associated with these descriptors, the 
idea of using binary descriptors has been recently introduced. The challenge here is to make 
them easy to compute and yet keep them robust to scene and viewpoint changes. This recipe 
describes some of these binary descriptors. In particular, we will look at the ORB and BRISK 
descriptors for which we presented their associated feature point detectors in Chapter 8, 
Detecting Interest Points.

How to do it...
Owing to the nice generic interface on top of which the OpenCV detectors and the descriptors 
module are built, using a binary descriptor such as ORB is no different from using descriptors 
such as SURF and SIFT. The complete feature-based image matching sequence is as follows:

// Define keypoints vector
std::vector<cv::KeyPoint> keypoints1, keypoints2;
// Construct the ORB feature detector object
cv::Ptr<cv::FeatureDetector> detector = 
  new cv::ORB(100); // detect approx 100 ORB points  
// Detect the ORB features
detector->detect(image1,keypoints1);
detector->detect(image2,keypoints2);
// ORB includes both the detector and descriptor extractor
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cv::Ptr<cv::DescriptorExtractor> descriptor = detector;
// Extract the descriptor
cv::Mat descriptors1, descriptors2;
descriptor->compute(image1,keypoints1,descriptors1);
descriptor->compute(image2,keypoints2,descriptors2);
// Construction of the matcher 
cv::BFMatcher matcher(
     cv::NORM_HAMMING); // always use hamming norm
                        // for binary descriptors
// Match the two image descriptors
std::vector<cv::DMatch> matches;
matcher.match(descriptors1,descriptors2, matches);

The only difference resides in the use of the Hamming norm (the cv::NORM_HAMMING flag) 
that measures the distance between two binary descriptors by counting the number of bits 
that are dissimilar. On many processors, this operation is efficiently implemented by using  
an exclusive OR operation, followed by a simple bit count.

The following screenshot shows the result of the matching:

Similar results will be obtained with another popular binary feature detector/descriptor: 
BRISK. In this case, the cv::DescriptorExtractor instance is created by the new 
cv::BRISK(40) call. As we learned in the previous chapter, its first parameter is a  
threshold that controls the number of detected points.
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How it works...
The ORB algorithm detects oriented feature points at multiple scales. Based on this result, 
the ORB descriptor extracts a representation of each keypoint by using simple intensity 
comparisons. In fact, ORB builds on a previously proposed descriptor called BRIEF. This 
later creates a binary descriptor by simply selecting a random pair of points inside a defined 
neighborhood around the keypoint. The intensity values of the two pixel points are then 
compared, and if the first point has a higher intensity, then the value 1 is assigned to the 
corresponding descriptor bit value. Otherwise, the value 0 is assigned. Repeating this test  
on a number of random pairs generates a descriptor that is made up of several bits; typically, 
128 to 512 bits (pairwise tests) are used.

This is the scheme used by ORB. Then, the decision to be made is which set of point pairs 
should be used to build the descriptor. Indeed, even if the point pairs are randomly chosen, 
once they have been selected, the same set of binary tests must be performed to build the 
descriptor of all the keypoints in order to ensure consistency of the results. To make the 
descriptor more distinctive, intuition tells us that some choices must be better than others. 
Also, the fact that the orientation of each keypoint is known introduces some bias in the 
intensity pattern distribution when this one is normalized with respect to this orientation  
(that is, when the point coordinates are given relative to this keypoint orientation). From  
these considerations and the experimental validation, ORB has identified a set of 256 point 
pairs with high variance and minimal pairwise correlation. In other words, the selected binary 
tests are the ones that have an equal chance of being 0 or 1 over a variety of keypoints and 
also those that are as independent from each other as possible.

In addition to the parameters that control the feature detection process, the cv::ORB 
constructor includes two parameters related to its descriptor. One parameter is used to 
specify the patch size inside which the point pairs are selected (the default is 31x31). The 
second parameter allows you to perform tests with a triplet or quadruplet of points instead of 
the default point pairs. Note that it is highly recommended that you use the default settings.

The descriptor of BRISK is very similar. It is also based on pairwise intensity comparisons with 
two differences. First, instead of randomly selecting the points from the 31x31 points of the 
neighborhood, the chosen points are selected from a sampling pattern of a set of concentric 
circles (made up of 60 points) with locations that are equally spaced. Second, the intensity  
at each of these sample points is a Gaussian-smoothed value with a σ value proportional to 
the distance from the central keypoint. From these points, BRISK selects 512 point pairs.

There's more...
Several other binary descriptors exist, and interested readers should take a look at the 
scientific literature to learn more on this subject. Since it is also available in OpenCV,  
we will describe one additional descriptor here.
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FREAK
FREAK stands for Fast Retina Keypoint. This is also a binary descriptor, but it does not have 
an associated detector. It can be applied on any set of keypoints detected, for example, SIFT, 
SURF, or ORB.

Like BRISK, the FREAK descriptor is also based on a sampling pattern defined on concentric 
circles. However, to design their descriptor, the authors used an analogy of the human eye. 
They observed that on the retina, the density of the ganglion cells decreases with the increase 
in the distance to the fovea. Consequently, they built a sampling pattern made of 43 points in 
which the density of a point is much greater near the central point. To obtain its intensity, each 
point is filtered with a Gaussian kernel that has a size that also increases with the distance to 
the center.

In order to identify the pairwise comparisons that should be performed, an experimental 
validation has been performed by following a strategy similar to the one used for ORB. By 
analyzing several thousands of keypoints, the binary tests with the highest variance and 
lowest correlation are retained, resulting in 512 pairs.

FREAK also introduces the idea of performing the descriptor comparisons in cascade. That 
is, the first 128 bits representing coarser information (corresponding to the tests performed 
at the periphery on larger Gaussian kernels) are performed first. Only if the compared 
descriptors pass this initial step will the remaining tests be performed.

Using the keypoints detected with ORB, we extract the FREAK descriptors by simply creating 
the cv::DescriptorExtractor instance as follows:

cv::Ptr<cv::DescriptorExtractor> descriptor =
   new cv::FREAK(); // to describe with FREAK  

The match result is as follows:
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The following figure illustrates the sampling pattern used for the three descriptors presented 
in this recipe:

The first square is the ORB descriptor in which point pairs are randomly selected on a square 
grid. Each pair of points linked by a line represent a possible test to compare the two pixel 
intensities. Here, we show only 8 such pairs; the default ORB uses 256 pairs. The middle square 
corresponds to the BRISK sampling pattern. Points are uniformly sampled on the shown circles 
(for clarity, we only identify the points on the first circle here). Finally, the third square shows the 
log-polar sampling grid of FREAK. While BRISK has a uniform distribution of points, FREAK has 
a higher density of points closer to the center. For example, in BRISK, you find 20 points on the 
outer circle, while in the case of FREAK, its outer circle includes only 6 points.

See also
ff The Detecting FAST features at multiple scales recipe in Chapter 8, Detecting Interest 

Points, presents the associated BRISK and ORB feature detectors and provides more 
references on the subject

ff The BRIEF: Computing a Local Binary Descriptor Very Fast article by E. M. Calonder, 
V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and P. Fua in IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 2012, describes the BRIEF feature 
descriptor that inspires the presented binary descriptors

ff The FREAK: Fast Retina Keypoint article by A.Alahi, R. Ortiz, and P. Vandergheynst in 
IEEE Conference on Computer Vision and Pattern Recognition, 2012, describes the 
FREAK feature descriptor
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Estimating Projective 

Relations in Images

In this chapter, we will cover the following recipes:

ff Calibrating a camera

ff Computing the fundamental matrix of an image pair

ff Matching images using a random sample consensus

ff Computing a homography between two images

Introduction
Images are generally produced using a digital camera, which captures a scene by projecting 
light going through its lens onto an image sensor. The fact that an image is formed by the 
projection of a 3D scene onto a 2D plane implies the existence of important relationships 
between a scene and its image and between different images of the same scene. Projective 
geometry is the tool that is used to describe and characterize, in mathematical terms, the 
process of image formation. In this chapter, we will introduce you to some of the fundamental 
projective relations that exist in multiview imagery and explain how these can be used in 
computer vision programming. You will learn how matching can be made more accurate 
through the use of projective constraints and how a mosaic from multiple images can be 
composited using two-view relations. Before we start the recipes, let's explore the basic 
concepts related to scene projection and image formation.
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Image formation
Fundamentally, the process used to produce images has not changed since the beginning  
of photography. The light coming from an observed scene is captured by a camera through  
a frontal aperture; the captured light rays hit an image plane (or an image sensor) located  
at the back of the camera. Additionally, a lens is used to concentrate the rays coming from  
the different scene elements. This process is illustrated by the following figure:

Object

Light

Lens

Image Plane

di do

f

Here, do is the distance from the lens to the observed object, di is the distance from the lens 
to the image plane, and f is the focal length of the lens. These quantities are related by the 
so-called thin lens equation:

1 1 1
f do di
= +

In computer vision, this camera model can be simplified in a number of ways. First, we can 
neglect the effect of the lens by considering that we have a camera with an infinitesimal 
aperture since, in theory, this does not change the image appearance. (However, by doing 
so, we ignore the focusing effect by creating an image with an infinite depth of field.) In this 
case, therefore, only the central ray is considered. Second, since most of the time we have 
do>>di, we can assume that the image plane is located at the focal distance. Finally, we 
can note from the geometry of the system that the image on the plane is inverted. We can 
obtain an identical but upright image by simply positioning the image plane in front of the 
lens. Obviously, this is not physically feasible, but from a mathematical point of view, this 
is completely equivalent. This simplified model is often referred to as the pin-hole camera 
model, and it is represented as follows:
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hif

Light

Object

ho

do

From this model, and using the law of similar triangles, we can easily derive the basic 
projective equation that relates a pictured object with its image:

hohi f
do

=

The size (hi) of the image of an object (of height ho) is therefore inversely proportional to its 
distance (do) from the camera, which is naturally true. In general, this relation describes where 
a 3D scene point will be projected on the image plane given the geometry of the camera.

Calibrating a camera
From the introduction of this chapter, we learned that the essential parameters of a camera 
under the pin-hole model are its focal length and the size of the image plane (which defines the 
field of view of the camera). Also, since we are dealing with digital images, the number of pixels 
on the image plane (its resolution) is another important characteristic of a camera. Finally, 
in order to be able to compute the position of an image's scene point in pixel coordinates, we 
need one additional piece of information. Considering the line coming from the focal point that 
is orthogonal to the image plane, we need to know at which pixel position this line pierces the 
image plane. This point is called the principal point. It might be logical to assume that this 
principal point is at the center of the image plane, but in practice, this point might be off by  
a few pixels depending on the precision at which the camera has been manufactured.
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Camera calibration is the process by which the different camera parameters are obtained. One 
can obviously use the specifications provided by the camera manufacturer, but for some tasks, 
such as 3D reconstruction, these specifications are not accurate enough. Camera calibration 
will proceed by showing known patterns to the camera and analyzing the obtained images. 
An optimization process will then determine the optimal parameter values that explain the 
observations. This is a complex process that has been made easy by the availability of  
OpenCV calibration functions.

How to do it...
To calibrate a camera, the idea is to show it a set of scene points for which their 3D positions 
are known. Then, you need to observe where these points project on the image. With the 
knowledge of a sufficient number of 3D points and associated 2D image points, the exact 
camera parameters can be inferred from the projective equation. Obviously, for accurate results, 
we need to observe as many points as possible. One way to achieve this would be to take one 
picture of a scene with many known 3D points, but in practice, this is rarely feasible. A more 
convenient way is to take several images of a set of some 3D points from different viewpoints. 
This approach is simpler but requires you to compute the position of each camera view in 
addition to the computation of the internal camera parameters, which fortunately is feasible.

OpenCV proposes that you use a chessboard pattern to generate the set of 3D scene points 
required for calibration. This pattern creates points at the corners of each square, and since 
this pattern is flat, we can freely assume that the board is located at Z=0, with the X and Y 
axes well-aligned with the grid. In this case, the calibration process simply consists of showing 
the chessboard pattern to the camera from different viewpoints. Here is one example of a 6x4 
calibration pattern image:
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The good thing is that OpenCV has a function that automatically detects the corners of  
this chessboard pattern. You simply provide an image and the size of the chessboard  
used (the number of horizontal and vertical inner corner points). The function will return  
the position of these chessboard corners on the image. If the function fails to find the  
pattern, then it simply returns false:

    // output vectors of image points
    std::vector<cv::Point2f> imageCorners;
    // number of inner corners on the chessboard
    cv::Size boardSize(6,4);
    // Get the chessboard corners
    bool found = cv::findChessboardCorners(image, 
                                 boardSize, imageCorners);

The output parameter, imageCorners, will simply contain the pixel coordinates of the 
detected inner corners of the shown pattern. Note that this function accepts additional 
parameters if you need to tune the algorithm, which are not discussed here. There is also  
a special function that draws the detected corners on the chessboard image, with lines 
connecting them in a sequence:

    //Draw the corners
    cv::drawChessboardCorners(image, 
                    boardSize, imageCorners, 
                    found); // corners have been found

The following image is obtained:
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The lines that connect the points show the order in which the points are listed in the vector of 
detected image points. To perform a calibration, we now need to specify the corresponding 3D 
points. You can specify these points in the units of your choice (for example, in centimeters or 
in inches); however, the simplest is to assume that each square represents one unit. In that 
case, the coordinates of the first point would be (0,0,0) (assuming that the board is located 
at a depth of Z=0), the coordinates of the second point would be (1,0,0), and so on, the 
last point being located at (5,3,0). There are a total of 24 points in this pattern, which is too 
small to obtain an accurate calibration. To get more points, you need to show more images 
of the same calibration pattern from various points of view. To do so, you can either move the 
pattern in front of the camera or move the camera around the board; from a mathematical 
point of view, this is completely equivalent. The OpenCV calibration function assumes that 
the reference frame is fixed on the calibration pattern and will calculate the rotation and 
translation of the camera with respect to the reference frame.

Let's now encapsulate the calibration process in a CameraCalibrator class. The attributes 
of this class are as follows:

class CameraCalibrator {

    // input points:
    // the points in world coordinates
    std::vector<std::vector<cv::Point3f>> objectPoints;
    // the point positions in pixels
    std::vector<std::vector<cv::Point2f>> imagePoints;
    // output Matrices
    cv::Mat cameraMatrix;
    cv::Mat distCoeffs;
    // flag to specify how calibration is done
    int flag;

Note that the input vectors of the scene and image points are in fact made of std::vector of 
point instances; each vector element is a vector of the points from one view. Here, we decided  
to add the calibration points by specifying a vector of the chessboard image filename as input:

// Open chessboard images and extract corner points
int CameraCalibrator::addChessboardPoints(
         const std::vector<std::string>& filelist, 
         cv::Size & boardSize) {

   // the points on the chessboard
   std::vector<cv::Point2f> imageCorners;
   std::vector<cv::Point3f> objectCorners;

   // 3D Scene Points:
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   // Initialize the chessboard corners 
   // in the chessboard reference frame
   // The corners are at 3D location (X,Y,Z)= (i,j,0)
   for (int i=0; i<boardSize.height; i++) {
      for (int j=0; j<boardSize.width; j++) {
         objectCorners.push_back(cv::Point3f(i, j, 0.0f));
      }
    }

    // 2D Image points:
    cv::Mat image; // to contain chessboard image
    int successes = 0;
    // for all viewpoints
    for (int i=0; i<filelist.size(); i++) {
        // Open the image
        image = cv::imread(filelist[i],0);
        // Get the chessboard corners
        bool found = cv::findChessboardCorners(
                        image, boardSize, imageCorners);
        // Get subpixel accuracy on the corners
        cv::cornerSubPix(image, imageCorners, 
                  cv::Size(5,5), 
                  cv::Size(-1,-1), 
         cv::TermCriteria(cv::TermCriteria::MAX_ITER +
                          cv::TermCriteria::EPS, 
                  30,     // max number of iterations 
                  0.1));  // min accuracy

        //If we have a good board, add it to our data
        if (imageCorners.size() == boardSize.area()) {
            // Add image and scene points from one view
            addPoints(imageCorners, objectCorners);
            successes++;
        }
    }
   return successes;
}

The first loop inputs the 3D coordinates of the chessboard, and the corresponding image points 
are the ones provided by the cv::findChessboardCorners function. This is done for all 
the available viewpoints. Moreover, in order to obtain a more accurate image point location, 
the cv::cornerSubPix function can be used, and as the name suggests, the image points 
will then be localized at a subpixel accuracy. The termination criterion that is specified by the 
cv::TermCriteria object defines the maximum number of iterations and the minimum 
accuracy in subpixel coordinates. The first of these two conditions that is reached will stop the 
corner refinement process.
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When a set of chessboard corners have been successfully detected, these points are added 
to our vectors of the image and scene points using our addPoints method. Once a sufficient 
number of chessboard images have been processed (and consequently, a large number of 3D 
scene point / 2D image point correspondences are available), we can initiate the computation 
of the calibration parameters as follows:

// Calibrate the camera
// returns the re-projection error
double CameraCalibrator::calibrate(cv::Size &imageSize)
{
   //Output rotations and translations
    std::vector<cv::Mat> rvecs, tvecs;

   // start calibration
   return 
     calibrateCamera(objectPoints, // the 3D points
               imagePoints,  // the image points
               imageSize,    // image size
               cameraMatrix, // output camera matrix
               distCoeffs,   // output distortion matrix
               rvecs, tvecs, // Rs, Ts 
               flag);        // set options
}

In practice, 10 to 20 chessboard images are sufficient, but these must be taken from different 
viewpoints at different depths. The two important outputs of this function are the camera matrix 
and the distortion parameters. These will be described in the next section.

How it works...
In order to explain the result of the calibration, we need to go back to the figure in the 
introduction, which describes the pin-hole camera model. More specifically, we want to 
demonstrate the relationship between a point in 3D at the position (X,Y,Z) and its image  
(x,y) on a camera specified in pixel coordinates. Let's redraw this figure by adding a  
reference frame that we position at the center of the projection as seen here:
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Note that the y axis is pointing downward to get a coordinate system compatible with the 
usual convention that places the image origin at the upper-left corner. We learned previously 
that the point (X,Y,Z) will be projected onto the image plane at (fX/Z,fY/Z). Now, if we 
want to translate this coordinate into pixels, we need to divide the 2D image position by the 
pixel's width (px) and height (py), respectively. Note that by dividing the focal length given 
in world units (generally given in millimeters) by px, we obtain the focal length expressed in 
(horizontal) pixels. Let's then define this term as fx. Similarly, fy =f/py is defined as the 
focal length expressed in vertical pixel units. Therefore, the complete projective equation is  
as follows:

0
xf Xx u
Z

= +

0
yf Yy v
Z

= +

Recall that (u0,v0) is the principal point that is added to the result in order to move the origin 
to the upper-left corner of the image. These equations can be rewritten in the matrix form 
through the introduction of homogeneous coordinates, in which 2D points are represented by 
3-vectors and 3D points are represented by 4-vectors (the extra coordinate is simply an arbitrary 
scale factor, S, that needs to be removed when a 2D coordinate needs to be extracted from a 
homogeneous 3-vector).
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Here is the rewritten projective equation:
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The second matrix is a simple projection matrix. The first matrix includes all of the camera 
parameters, which are called the intrinsic parameters of the camera. This 3x3 matrix is one 
of the output matrices returned by the cv::calibrateCamera function. There is also a 
function called cv::calibrationMatrixValues that returns the value of the intrinsic 
parameters given by a calibration matrix.

More generally, when the reference frame is not at the projection center of the camera,  
we will need to add a rotation vector (a 3x3 matrix) and a translation vector (a 3x1 matrix). 
These two matrices describe the rigid transformation that must be applied to the 3D points 
in order to bring them back to the camera reference frame. Therefore, we can rewrite the 
projection equation in its most general form:
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Remember that in our calibration example, the reference frame was placed on the chessboard. 
Therefore, there is a rigid transformation (made of a rotation component represented by the 
matrix entries r1 to r9 and a translation represented by t1, t2, and t3) that must be computed 
for each view. These are in the output parameter list of the cv::calibrateCamera function. 
The rotation and translation components are often called the extrinsic parameters of the 
calibration, and they are different for each view. The intrinsic parameters remain constant 
for a given camera/lens system. The intrinsic parameters of our test camera obtained from 
a calibration based on 20 chessboard images are fx=167, fy=178, u0=156, and v0=119. 
These results are obtained by cv::calibrateCamera through an optimization process aimed 
at finding the intrinsic and extrinsic parameters that will minimize the difference between the 
predicted image point position, as computed from the projection of the 3D scene points, and  
the actual image point position, as observed on the image. The sum of this difference for all  
the points specified during the calibration is called the re-projection error.
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Let's now turn our attention to the distortion parameters. So far, we have mentioned that 
under the pin-hole camera model, we can neglect the effect of the lens. However, this is only 
possible if the lens that is used to capture an image does not introduce important optical 
distortions. Unfortunately, this is not the case with lower quality lenses or with lenses that 
have a very short focal length. You may have already noted that the chessboard pattern shown 
in the image that we used for our example is clearly distorted—the edges of the rectangular 
board are curved in the image. Also, note that this distortion becomes more important as we 
move away from the center of the image. This is a typical distortion observed with a fish-eye 
lens, and it is called radial distortion. The lenses used in common digital cameras usually 
do not exhibit such a high degree of distortion, but in the case of the lens used here, these 
distortions certainly cannot be ignored.

It is possible to compensate for these deformations by introducing an appropriate distortion 
model. The idea is to represent the distortions induced by a lens by a set of mathematical 
equations. Once established, these equations can then be reverted in order to undo the 
distortions visible on the image. Fortunately, the exact parameters of the transformation that 
will correct the distortions can be obtained together with the other camera parameters during 
the calibration phase. Once this is done, any image from the newly calibrated camera will be 
undistorted. Therefore, we have added an additional method to our calibration class:

// remove distortion in an image (after calibration)
cv::Mat CameraCalibrator::remap(const cv::Mat &image) {

   cv::Mat undistorted;

   if (mustInitUndistort) { // called once per calibration
    
    cv::initUndistortRectifyMap(
      cameraMatrix,  // computed camera matrix
      distCoeffs,    // computed distortion matrix
      cv::Mat(),     // optional rectification (none) 
      cv::Mat(),     // camera matrix to generate undistorted
      image.size(),  // size of undistorted
      CV_32FC1,      // type of output map
      map1, map2);   // the x and y mapping functions

    mustInitUndistort= false;
   }

   // Apply mapping functions
   cv::remap(image, undistorted, map1, map2, 
      cv::INTER_LINEAR); // interpolation type

   return undistorted;
}
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Running this code results in the following image:

As you can see, once the image is undistorted, we obtain a regular perspective image.

To correct the distortion, OpenCV uses a polynomial function that is applied to the image  
points in order to move them at their undistorted position. By default, five coefficients are 
used; a model made of eight coefficients is also available. Once these coefficients are 
obtained, it is possible to compute two cv::Mat mapping functions (one for the x coordinate 
and one for the y coordinate) that will give the new undistorted position of an image point on 
a distorted image. This is computed by the cv::initUndistortRectifyMap function, and 
the cv::remap function remaps all the points of an input image to a new image. Note that 
because of the nonlinear transformation, some pixels of the input image now fall outside the 
boundary of the output image. You can expand the size of the output image to compensate for 
this loss of pixels, but you will now obtain output pixels that have no values in the input image 
(they will then be displayed as black pixels).
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There's more...
More options are available when it comes to camera calibration.

Calibration with known intrinsic parameters
When a good estimate of the camera's intrinsic parameters is known, it could be advantageous 
to input them in the cv::calibrateCamera function. They will then be used as initial values 
in the optimization process. To do so, you just need to add the CV_CALIB_USE_INTRINSIC_
GUESS flag and input these values in the calibration matrix parameter. It is also possible to 
impose a fixed value for the principal point (CV_CALIB_FIX_PRINCIPAL_POINT), which can 
often be assumed to be the central pixel. You can also impose a fixed ratio for the focal lengths 
fx and fy (CV_CALIB_FIX_RATIO); in which case, you assume the pixels of the square shape.

Using a grid of circles for calibration 
Instead of the usual chessboard pattern, OpenCV also offers the possibility to calibrate  
a camera by using a grid of circles. In this case, the centers of the circles are used as 
calibration points. The corresponding function is very similar to the function we used to  
locate the chessboard corners:

      cv::Size boardSize(7,7);
      std::vector<cv::Point2f> centers;
      bool found = cv:: findCirclesGrid(
                          image, boardSize, centers);

See also
ff The Computing a homography between two images recipe in this chapter will 

examine the projective equation in special situations

ff The A flexible new technique for camera calibration article by Z. Zhang  in IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no 11, 2000,  
is a classic paper on the problem of camera calibration
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Computing the fundamental matrix of an 
image pair

The previous recipe showed you how to recover the projective equation of a single camera. 
In this recipe, we will explore the projective relationship that exists between two images that 
display the same scene. These two images could have been obtained by moving a camera at 
two different locations to take pictures from two viewpoints or by using two cameras, each  
of them taking a different picture of the scene. When these two cameras are separated by  
a rigid baseline, we use the term stereovision.

Getting ready
Let's now consider two cameras observing a given scene point, as shown in the following figure:

epipolar line

e’

X

l’
x

e

We learned that we can find the image x of a 3D point X by tracing a line joining this 3D point 
with the camera's center. Conversely, the scene point that has its image at the position x on 
the image plane can be located anywhere on this line in the 3D space. This implies that if 
we want to find the corresponding point of a given image point in another image, we need 
to search along the projection of this line onto the second image plane. This imaginary line 
is called the epipolar line of point x. It defines a fundamental constraint that must satisfy 
two corresponding points; that is, the match of a given point must lie on the epipolar line 
of this point in the other view, and the exact orientation of this epipolar line depends on 
the respective position of the two cameras. In fact, the configuration of the epipolar line 
characterizes the geometry of a two-view system.
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Another observation that can be made from the geometry of this two-view system is that all 
the epipolar lines pass through the same point. This point corresponds to the projection of 
one camera's center onto the other camera. This special point is called an epipole.

Mathematically, the relationship between an image point and its corresponding epipolar line 
can be expressed using a 3x3 matrix as follows:
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In projective geometry, a 2D line is also represented by a 3-vector. It corresponds to the set of 
2D points, (x',y'), that satisfy the equation l1'x'+ l2'y'+ l3'=0 (the prime superscript denotes 
that this line belongs to the second image). Consequently, the matrix F, called the fundamental 
matrix, maps a 2D image point in one view to an epipolar line in the other view.

How to do it...
The fundamental matrix of an image pair can be estimated by solving a set of equations  
that involve a certain number of known matched points between the two images. The 
minimum number of such matches is seven. In order to illustrate the fundamental matrix 
estimation process and using the image pair from the previous chapter, we can manually 
select seven good matches. These will be used to compute the fundamental matrix using  
the cv::findFundamentalMat OpenCV function, as shown in the following screenshot:
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If we have the image points in each image as the cv::keypoint instances (for example, 
if they were detected using a keypoint detector as in Chapter 8, Detecting Interest 
Points), they first need to be converted into cv::Point2f in order to be used with 
cv::findFundamentalMat. An OpenCV function can be used to this end:

   // Convert keypoints into Point2f
   std::vector<cv::Point2f> selPoints1, selPoints2;
   std::vector<int> pointIndexes1, pointIndexes2;
   cv::KeyPoint::convert(keypoints1,selPoints1,pointIndexes1);
   cv::KeyPoint::convert(keypoints2,selPoints2,pointIndexes2);

The two vectors selPoints1 and selPoints2 contain the corresponding points in the two 
images. The keypoint instances are keypoints1 and keypoints2. The pointIndexes1 
and pointIndexes2 vectors contain the indexes of the keypoints to be converted. The call  
to the cv::findFundamentalMat function is then as follows:

   // Compute F matrix from 7 matches
   cv::Mat fundamental= cv::findFundamentalMat(
      selPoints1,    // 7 points in first image
      selPoints2,    // 7 points in second image
      CV_FM_7POINT); // 7-point method

One way to visually verify the validity of the fundamental matrix is to draw the epipolar lines 
of some selected points. Another OpenCV function allows the epipolar lines of a given set of 
points to be computed. Once these are computed, they can be drawn using the cv::line 
function. The following lines of code accomplish these two steps (that is, computing and 
drawing epipolar lines in the image on the right from the points in the image on the left):

   // draw the left points corresponding epipolar 
   // lines in right image 
   std::vector<cv::Vec3f> lines1; 
   cv::computeCorrespondEpilines(
      selPoints1,  // image points 
      1,           // in image 1 (can also be 2)
      fundamental, // F matrix
      lines1);     // vector of epipolar lines

   // for all epipolar lines
   for (vector<cv::Vec3f>::const_iterator it= lines1.begin();
       it!=lines1.end(); ++it) {
          // draw the line between first and last column
          cv::line(image2,
            cv::Point(0,-(*it)[2]/(*it)[1]),
            cv::Point(image2.cols,-((*it)[2]+
                      (*it)[0]*image2.cols)/(*it)[1]),
                      cv::Scalar(255,255,255));
   }
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The result can be seen in the following screenshot:

Remember that the epipole is at the intersection of all the epipolar lines, and it is the 
projection of the other camera's center. This epipole is visible in the preceding image. Often, 
the epipolar lines intersect outside the image boundaries. In the case of our example, it is at 
the location where the first camera would be visible if the two images were taken at the same 
instant. Note that the results can be quite instable when the fundamental matrix is computed 
from seven matches. Indeed, substituting one match for another could lead to a significantly 
different set of epipolar lines.

How it works...
We previously explained that for a point in one image, the fundamental matrix gives the 
equation of the line on which its corresponding point in the other view should be found.  
If the corresponding point of a point p (expressed in homogenous coordinates) is p' and  
if F is the fundamental matrix between the two views, then since p' lies on the epipolar  
line Fp, we have the following equation:

' 0Tp Fp =
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This equation expresses the relationship between two corresponding points and is known 
as the epipolar constraint. Using this equation, it becomes possible to estimate the entries 
of the matrix using known matches. Since the entries of the F matrix are given up to a scale 
factor, there are only eight entries to be estimated (the ninth can be arbitrarily set to 1). Each 
match contributes to one equation. Therefore, with eight known matches, the matrix can be 
fully estimated by solving the resulting set of linear equations. This is what is done when you 
use the CV_FM_8POINT flag with the cv::findFundamentalMat function. Note that in  
this case, it is possible (and preferable) to input more than eight matches. The obtained  
over-determined system of linear equations can then be solved in a mean-square sense.

To estimate the fundamental matrix, an additional constraint can also be exploited. 
Mathematically, the F matrix maps a 2D point to a 1D pencil of lines (that is, lines that 
intersect at a common point). The fact that all these epipolar lines pass through this unique 
point (that is, the epipole) imposes a constraint on the matrix. This constraint reduces the 
number of matches required to estimate the fundamental matrix to seven. Unfortunately, in 
this case, the set of equations become nonlinear with up to three possible solutions (in this 
case, cv::findFundamentalMat will return a fundamental matrix of the size 9x3, that is, 
three 3x3 matrices stacked up). The seven-match solution of the F matrix estimation can be 
invoked in OpenCV by using the CV_FM_7POINT flag. This is what we did in the example of  
the preceding section.

Lastly, we would like to mention that the choice of an appropriate set of matches in the image 
is important to obtain an accurate estimation of the fundamental matrix. In general, the 
matches should be well distributed across the image and include points at different depths  
in the scene. Otherwise, the solution will become unstable or degenerate configurations.  
In particular, the selected scene points should not be coplanar as the fundamental matrix  
(in this case) becomes degenerated.

See also
ff Multiple View Geometry in Computer Vision, Cambridge University Press, 2004, R. 

Hartley and A. Zisserman, is the most complete reference on projective geometry  
in computer vision

ff The next recipe explains how a fundamental matrix can be robustly estimated from  
a larger match set

ff The Computing a homography between two images recipe explains why a fundamental 
matrix cannot be computed when the matched points are coplanar or are the result of 
a pure rotation
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Matching images using a random sample 
consensus

When two cameras observe the same scene, they see the same elements but under different 
viewpoints. We have already studied the feature point matching problem in the previous 
chapter. In this recipe, we come back to this problem, and we will learn how to exploit the 
epipolar constraint between two views to match image features more reliably.

The principle that we will follow is simple: when we match feature points between two images, 
we only accept those matches that fall on the corresponding epipolar lines. However, to be able 
to check this condition, the fundamental matrix must be known, but we need good matches  
to estimate this matrix. This seems to be a chicken-and-egg problem. However, in this recipe,  
we propose a solution in which the fundamental matrix and a set of good matches will be  
jointly computed.

How to do it...
The objective is to be able to compute a fundamental matrix and a set of good matches 
between two views. To do so, all the found feature point correspondences will be validated 
using the epipolar constraint introduced in the previous recipe. To this end, we have created  
a class that encapsulates the different steps of the proposed robust matching process:

class RobustMatcher {
  private:
    // pointer to the feature point detector object
    cv::Ptr<cv::FeatureDetector> detector;
    // pointer to the feature descriptor extractor object
    cv::Ptr<cv::DescriptorExtractor> extractor;
    int normType;
    float ratio; // max ratio between 1st and 2nd NN
    bool refineF; // if true will refine the F matrix
    double distance; // min distance to epipolar
    double confidence; // confidence level (probability)

  public:
    RobustMatcher(std::string detectorName, // specify by name
                   std::string descriptorName) 
      : normType(cv::NORM_L2), ratio(0.8f), 
          refineF(true), confidence(0.98), distance(3.0) {    

      // construct by name
      if (detectorName.length()>0) {
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      detector= cv::FeatureDetector::create(detectorName); 
      extractor= cv::DescriptorExtractor::
                           create(descriptorName);
      }
    }

Note how we used the create methods of the cv::FeatureDetector and 
cv::DescriptorExtractor interfaces so that a user can select the create methods 
by their names. Note that the create methods can also be specified using the defined 
setFeatureDetector and setDescriptorExtractor setter methods.

The main method is our match method that returns matches, detected keypoints,  
and the estimated fundamental matrix. The method proceeds in four distinct steps  
(explicitly identified in the comments of the following code) that we will now explore:

// Match feature points using RANSAC
// returns fundamental matrix and output match set
cv::Mat match(cv::Mat& image1, cv::Mat& image2, // input images 
    std::vector<cv::DMatch>& matches,           // output matches
    std::vector<cv::KeyPoint>& keypoints1,      // output keypoints
    std::vector<cv::KeyPoint>& keypoints2) { 
        
    // 1. Detection of the feature points
    detector->detect(image1,keypoints1);
    detector->detect(image2,keypoints2);

    // 2. Extraction of the feature descriptors
    cv::Mat descriptors1, descriptors2;
    extractor->compute(image1,keypoints1,descriptors1);
    extractor->compute(image2,keypoints2,descriptors2);

    // 3. Match the two image descriptors
    //    (optionnally apply some checking method)
   
    // Construction of the matcher with crosscheck 
    cv::BFMatcher matcher(normType,   //distance measure
                            true);    // crosscheck flag
    // match descriptors
    std::vector<cv::DMatch> outputMatches;
    matcher.match(descriptors1,descriptors2,outputMatches);

    // 4. Validate matches using RANSAC
    cv::Mat fundaental= ransacTest(outputMatches, 
                              keypoints1, keypoints2, matches);
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    // return the found fundamental matrix
    return fundamental;
  }

The first two steps simply detect the feature points and compute their descriptors.  
Next, we proceed to feature matching using the cv::BFMatcher class, as we did in  
the previous chapter. We use the crosscheck flag to obtain matches of better quality.

The fourth step is the new concept introduced in this recipe. It consists of an additional 
filtering test that will this time use the fundamental matrix in order to reject matches that  
do not obey the epipolar constraint. This test is based on the RANSAC method that can 
compute the fundamental matrix even when outliers are still present in the match set  
(this method will be explained in the next section):

// Identify good matches using RANSAC
// Return fundamental matrix and output matches
cv::Mat ransacTest(const std::vector<cv::DMatch>& matches,
                   const std::vector<cv::KeyPoint>& keypoints1, 
                   const std::vector<cv::KeyPoint>& keypoints2,
                   std::vector<cv::DMatch>& outMatches) {

// Convert keypoints into Point2f  
  std::vector<cv::Point2f> points1, points2;    
  for (std::vector<cv::DMatch>::const_iterator it= 
  matches.begin(); it!= matches.end(); ++it) {

       // Get the position of left keypoints
       points1.push_back(keypoints1[it->queryIdx].pt);
       // Get the position of right keypoints
       points2.push_back(keypoints2[it->trainIdx].pt);
    }

  // Compute F matrix using RANSAC
  std::vector<uchar> inliers(points1.size(),0);
  cv::Mat fundamental= cv::findFundamentalMat(
      points1,points2, // matching points
      inliers,      // match status (inlier or outlier)  
      CV_FM_RANSAC, // RANSAC method
      distance,     // distance to epipolar line
      confidence);  // confidence probability
  
  // extract the surviving (inliers) matches
  std::vector<uchar>::const_iterator itIn= inliers.begin();
  std::vector<cv::DMatch>::const_iterator itM= matches.begin();
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  // for all matches
  for ( ;itIn!= inliers.end(); ++itIn, ++itM) {
    if (*itIn) { // it is a valid match
      outMatches.push_back(*itM);
    }
  }
  return fundamental;
}

This code is a bit long because the keypoints need to be converted into cv::Point2f before 
the F matrix computation. Using this class, the robust matching of an image pair is then easily 
accomplished by the following calls:

  // Prepare the matcher (with default parameters)
  RobustMatcher rmatcher("SURF"); // we use SURF features here
  // Match the two images
  std::vector<cv::DMatch> matches;
  std::vector<cv::KeyPoint> keypoints1, keypoints2;
  cv::Mat fundamental= rmatcher.match(image1,image2,
                           matches, keypoints1, keypoints2);

This results in 62 matches that are shown in the following screenshot:

Interestingly, almost all these matches are correct, even if a few false matches remain; these 
accidently fell on the corresponding epipolar lines of the computed fundamental matrix.
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How it works...
In the preceding recipe, we learned that it is possible to estimate the fundamental matrix 
associated with an image pair from a number of feature point matches. Obviously, to be exact, 
this match set must be made up of only good matches. However, in a real context, it is not 
possible to guarantee that a match set obtained by comparing the descriptors of the detected 
feature points will be completely exact. This is why a fundamental matrix estimation method 
based on the RANSAC (RANdom SAmpling Consensus) strategy has been introduced.

The RANSAC algorithm aims at estimating a given mathematical entity from a data set that 
may contain a number of outliers. The idea is to randomly select some data points from the 
set and perform the estimation only with these. The number of selected points should be the 
minimum number of points required to estimate the mathematical entity. In the case of the 
fundamental matrix, eight matched pairs is the minimum number (in fact, it could be seven 
matches, but the 8-point linear algorithm is faster to compute). Once the fundamental matrix 
is estimated from these eight random matches, all the other matches in the match set are 
tested against the epipolar constraint that derives from this matrix. All the matches that fulfill 
this constraint (that is, matches for which the corresponding feature is at a short distance 
from its epipolar line) are identified. These matches form the support set of the computed 
fundamental matrix.

The central idea behind the RANSAC algorithm is that the larger the support set, the higher 
the probability that the computed matrix is the right one. Conversely, if one (or more) of the 
randomly selected matches is a wrong match, then the computed fundamental matrix will 
also be incorrect, and its support set is expected to be small. This process is repeated a 
number of times, and in the end, the matrix with the largest support will be retained as the 
most probable one.

Therefore, our objective is to pick eight random matches several times so that eventually we 
select eight good ones, which should give us a large support set. Depending on the number of 
wrong matches in the entire data set, the probability of selecting a set of eight correct matches 
will differ. We, however, know that the more selections we make, the higher our confidence 
will be that we have at least one good match set among those selections. More precisely, if we 
assume that the match set is made of w% inliers (good matches), then the probability that we 
select eight good matches is w%. Consequently, the probability that a selection contains at least 
one wrong match is (1-w). If we make k selections, the probability of having one random set 
that contains good matches only is 1-(1-w)k. This is the confidence probability, c, and we 
want this probability to be as high as possible since we need at least one good set of matches in 
order to obtain the correct fundamental matrix. Therefore, when running the RANSAC algorithm, 
one needs to determine the number of k selections that need to be made in order to obtain a 
given confidence level.
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When using the cv::findFundamentalMat function with the CV_FM_RANSAC method, two 
extra parameters are provided. The first parameter is the confidence level, which determines 
the number of iterations to be made (by default, it is 0.99). The second parameter is the 
maximum distance to the epipolar line for a point to be considered as an inlier. All the matched 
pairs in which a point is at a greater distance from its epipolar line than the distance specified 
will be reported as an outlier. The function also returns std::vector of the character value, 
indicating that the corresponding match in the input set has been identified as an outlier (0) or 
as an inlier (1).

The more good matches you have in your initial match set, the higher the probability that 
RANSAC will give you the correct fundamental matrix. This is why we applied the crosscheck 
filter when matching the feature points. You could have also used the ratio test presented in 
the previous recipe in order to further improve the quality of the final match set. It is just a 
question of balancing the computational complexity, the final number of matches, and the 
required level of confidence that the obtained match set will contain only exact matches.

There's more...
The result of the robust matching process presented in this recipe is an estimate of the 
fundamental matrix computed using the eight selected matches that have the largest  
support and the set matches included in this support set. Using this information, it is  
possible to refine these results in two ways.

Refining the fundamental matrix
Since we now have a match set of good quality, as a last step, it might be a good idea to use 
all of them to re-estimate the fundamental matrix. We already mentioned that there exists a 
linear 8-point algorithm to estimate this matrix. We can, therefore, obtain an over-determined 
system of equations that will solve the fundamental matrix in a least-squares sense. This step 
can be added at the end of our ransacTest function:

    if (refineF) {
      // The F matrix will 
      // be recomputed with all accepted matches

      // Convert keypoints into Point2f 
      points1.clear();
      points2.clear();
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      for (std::vector<cv::DMatch>::
                  const_iterator it= outMatches.begin();
         it!= outMatches.end(); ++it) {

         // Get the position of left keypoints
         points1.push_back(keypoints1[it->queryIdx].pt);

         // Get the position of right keypoints
         points2.push_back(keypoints2[it->trainIdx].pt);
      }

      // Compute 8-point F from all accepted matches
      fundamental= cv::findFundamentalMat(
        points1,points2, // matching points
        CV_FM_8POINT); // 8-point method solved using SVD
    }

The cv::findFundamentalMat function indeed accepts more than 8 matches by solving 
the linear system of equations using singular value decomposition.

Refining the matches
We learned that in a two-view system, every point must lie on the epipolar line of its 
corresponding point. This is the epipolar constraint expressed by the fundamental matrix. 
Consequently, if you have a good estimate of a fundamental matrix, you can use this epipolar 
constraint to correct the obtained matches by forcing them to lie on their epipolar lines. This 
can be easily done by using the cv::correctMatches OpenCV function:

  std::vector<cv::Point2f> newPoints1, newPoints2;  
  // refine the matches
  correctMatches(fundamental,            // F matrix
                points1, points2,        // original position
                newPoints1, newPoints2); // new position

This function proceeds by modifying the position of each corresponding point such that it 
satisfies the epipolar constraint while minimizing the cumulative (squared) displacement.
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Computing a homography between two 
images

The second recipe of this chapter showed you how to compute the fundamental matrix of an 
image pair from a set of matches. In projective geometry, another very useful mathematical 
entity also exists. This one can be computed from multiview imagery and, as we will see, is a 
matrix with special properties.

Getting ready
Again, let's consider the projective relation between a 3D point and its image on a camera, 
which we introduced in the first recipe of this chapter. Basically, we learned that this equation 
relates a 3D point with its image using the intrinsic properties of the camera and the position 
of this camera (specified with a rotation and a translation component). If we now carefully 
examine this equation, we realize that there are two special situations of particular interest. 
The first situation is when two views of a scene are separated by a pure rotation. It can then 
be observed that the fourth column of the extrinsic matrix will be made up of 0s (that is, the 
translation is null):
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As a result, the projective relation in this special case becomes a 3x3 matrix. A similarly 
interesting situation also occurs when the object we observe is a plane. In this specific  
case, we can assume that the points on this plane will be located at Z=0, without the  
loss of generality. As a result, we obtain the following equation:
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This zero coordinate of the scene points will then cancel the third column of the projective 
matrix, which will then again become a 3x3 matrix. This special matrix is called a homography, 
and it implies that, under special circumstances (here, a pure rotation or a planar object),  
a point is related to its image by a linear relation of the following form:
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Here, H is a 3x3 matrix. This relation holds up to a scale factor represented here by the  
s scalar value. Once this matrix is estimated, all the points in one view can be transferred  
to a second view using this relation. Note that as a side effect of the homography relation,  
the fundamental matrix becomes undefined in these cases.

How to do it...
Suppose that we have two images separated by a pure rotation. This happens, for example, 
when you take pictures of a building or a landscape by rotating yourself; as you are sufficiently 
far away from your subject, the translational component is negligible. These two images 
can be matched using the features of your choice and the cv::BFMatcher function. Then, 
as we did in the previous recipe, we will apply a RANSAC step that will this time involve the 
estimation of a homography based on a match set (which obviously contains a good number 
of outliers). This is done by using the cv::findHomography function, which is very similar  
to the cv::findFundamentalMat function:

// Find the homography between image 1 and image 2
std::vector<uchar> inliers(points1.size(),0);
cv::Mat homography= cv::findHomography(
  points1, points2, // corresponding points
  inliers,   // outputed inliers matches 
  CV_RANSAC, // RANSAC method
  1.);       // max distance to reprojection point
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Recall that a homography exists (instead of a fundamental matrix) because our two images are 
separated by a pure rotation. The images are shown here. We also displayed the inlier keypoints 
as identified by the inliers argument of the function. Refer to the following screenshot:

The second image is shown as follows:
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The resulting inliers that comply with the found homography have been drawn on these 
images using the following loop:

   // Draw the inlier points
   std::vector<cv::Point2f>::const_iterator itPts=  
                                            points1.begin();
   std::vector<uchar>::const_iterator itIn= inliers.begin();
   while (itPts!=points1.end()) {

      // draw a circle at each inlier location
      if (*itIn) 
          cv::circle(image1,*itPts,3,
                    cv::Scalar(255,255,255));
      ++itPts;
      ++itIn;
   }

The homography is a 3x3 invertible matrix; therefore, once it has been computed, you can 
transfer image points from one image to the other. In fact, you can do this for every pixel of an 
image. Consequently, you can transfer a complete image to the point of view of a second image. 
This process is called image mosaicking, and it is often used to build a large panorama from 
multiple images. An OpenCV function that does exactly this is given as follows:

   // Warp image 1 to image 2
   cv::Mat result;
   cv::warpPerspective(image1,  // input image
      result,                   // output image
      homography,               // homography
      cv::Size(2*image1.cols,
                 image1.rows)); // size of output image

Once this new image is obtained, it can be appended to the other image in order to expand 
the view (since the two images are now from the same point of view):

   // Copy image 1 on the first half of full image
   cv::Mat half(result,cv::Rect(0,0,image2.cols,image2.rows));
   image2.copyTo(half); // copy image2 to image1 roi
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The following image is the result:

How it works...
When two views are related by a homography, it becomes possible to determine where a given 
scene point on one image is found on the other image. This property becomes particularly 
interesting for the points in one image that fall outside the image boundaries of the other. 
Indeed, since the second view shows a portion of the scene that is not visible in the first image, 
you can use the homography in order to expand the image by reading the color value of the 
additional pixels in the other image. That's how we were able to create a new image that is an 
expansion of our second image in which extra columns were added to the right-hand side.

The homography computed by cv::findHomography is the one that maps the points 
in the first image to the points in the second image. This homography can be computed 
from a minimum of four matches, and the RANSAC algorithm is again used here. Once the 
homography with the best support is found, the cv::findHomography method refines it 
using all the identified inliers.

Now, in order to transfer the points of image 1 to image 2, what we need is, in fact, inverse 
homography. This is exactly what the cv::warpPerspective function is doing by default; 
that is, it uses the inverse of the homography provided as the input to get the color value 
of each point of the output image (this is what we called backward mapping in Chapter 2, 
Manipulating Pixels). When an output pixel is transferred to a point outside the input image,  
a black value (0) is simply assigned to this pixel. Note that a cv::WARP_INVERSE_MAP flag 
can be specified as the optional fifth argument in cv::warpPerspective if you want to  
use direct homography instead of the inverted one during the pixel transfer process.
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There's more...
A homography also exists between two images of a plane. We can then make use of this to 
recognize a planar object in an image.

Detecting planar targets in an image
Suppose you want to detect the occurrence of a planar object in an image. This object could 
be a poster, painting, signage, book cover (as in the following example), and so on. Based on 
what we learned in this chapter, the strategy would consist of detecting feature points on this 
object and to try and match them with the feature points in the image. These matches would 
then be validated using a robust matching scheme similar to the one we used in the previous 
recipe, but this time based on a homography.

Let's define a TargetMatcher class very similar to our RobustMatcher class:

class TargetMatcher {

  private:

    // pointer to the feature point detector object
    cv::Ptr<cv::FeatureDetector> detector;
    // pointer to the feature descriptor extractor object
    cv::Ptr<cv::DescriptorExtractor> extractor;
    cv::Mat target; // target image
    int normType;
    double distance; // min reprojection error

Here, we simply add a target attribute that represents the reference image of the 
planar object to be matched. The matching methods are identical to the ones of the 
RobustMatcher class, except that they include cv::findHomography instead of 
cv::findFundamentalMat in the ransacTest method. We also added a method  
to initiate target matching and find the position of the target:

  // detect the defined planar target in an image
  // returns the homography 
  // the 4 corners of the detected target
  // plus matches and keypoints
  cv::Mat detectTarget(const cv::Mat& image, 
    // position of the target corners (clock-wise)
    std::vector<cv::Point2f>& detectedCorners,       
    std::vector<cv::DMatch>& matches,
    std::vector<cv::KeyPoint>& keypoints1,
    std::vector<cv::KeyPoint>& keypoints2) {
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    // find a RANSAC homography between target and image
    cv::Mat homography= match(target,image,matches, 
                                keypoints1, keypoints2);
    // target corners
    std::vector<cv::Point2f> corners;  
    corners.push_back(cv::Point2f(0,0));
    corners.push_back(cv::Point2f(target.cols-1,0));
    corners.push_back(cv::Point2f(target.cols-1,target.rows-1));
    corners.push_back(cv::Point2f(0,target.rows-1));

    // reproject the target corners
    cv::perspectiveTransform(corners,detectedCorners,
                                      homography);
    return homography;
  }

Once the homography has been found by the match method, we define the four corners of 
the target (that is, the four corners of its reference image). These are then transferred to the 
image using the cv::perspectiveTransform function. This function simply multiplies 
each point in the input vector by the homography matrix. This gives us the coordinates of 
these points in the other image. Target matching is then performed as follows:

// Prepare the matcher 
TargetMatcher tmatcher("FAST","FREAK");
tmatcher.setNormType(cv::NORM_HAMMING);

// definition of the output data
std::vector<cv::DMatch> matches;
std::vector<cv::KeyPoint> keypoints1, keypoints2;
std::vector<cv::Point2f> corners;
// the reference image
tmatcher.setTarget(target); 
// match image with target
tmatcher.detectTarget(image,corners,matches,
                            keypoints1,keypoints2);
// draw the target corners on the image
cv::Point pt= cv::Point(corners[0]);
cv::line(image,cv::Point(corners[0]),cv::Point(corners[1]),
               cv::Scalar(255,255,255),3);
cv::line(image,cv::Point(corners[1]),cv::Point(corners[2]),
               cv::Scalar(255,255,255),3);
cv::line(image,cv::Point(corners[2]),cv::Point(corners[3]),
               cv::Scalar(255,255,255),3);
cv::line(image,cv::Point(corners[3]),cv::Point(corners[0]),
               cv::Scalar(255,255,255),3);
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Using the cv::drawMatches function, we display the results as follows:

You can also use homographies to modify the perspectives of planar objects. For example, 
if you have several pictures from different points of view of the flat facade of a building, 
you can compute the homography between these images and build a large mosaic of the 
facade by wrapping the images and assembling them together, as we did in this recipe. A 
minimum of four matched points between two views are required to compute a homography. 
The cv::getPerspectiveTransform function allows such a transformation from four 
corresponding points to be computed.

See also
ff The Remapping an image recipe in Chapter 2, Manipulating Pixels, discusses  

the concept of backward mapping

ff The Automatic panoramic image stitching using invariant features article by  
M.Brown and D.Lowe in International Journal of Computer Vision,74, 1, 2007, 
describes the complete method to build panoramas from multiple images





11
Processing Video 

Sequences

In this chapter, we will cover the following recipes:

ff Reading video sequences

ff Processing the video frames

ff Writing video sequences

ff Tracking feature points in a video

ff Extracting the foreground objects in a video

Introduction
Video signals constitute a rich source of visual information. They are made of a sequence of 
images, called frames, that are taken at regular time intervals (specified as the frame rate, 
generally expressed in frames per second) and show a scene in motion. With the advent 
of powerful computers, it is now possible to perform advanced visual analysis on video 
sequences—sometimes at rates close to, or even faster than, the actual video frame rate.  
This chapter will show you how to read, process, and store video sequences.

We will see that once the individual frames of a video sequence have been extracted, the 
different image processing functions presented in this book can be applied to each of them. 
In addition, we will also look at a few algorithms that perform a temporal analysis of the video 
sequence, compare adjacent frames to track objects, or cumulate image statistics over time 
in order to extract foreground objects.
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Reading video sequences
In order to process a video sequence, we need to be able to read each of its frames. OpenCV 
has put in place an easy-to-use framework that can help us perform frame extraction from 
video files or even from USB or IP cameras. This recipe shows you how to use it.

How to do it...
Basically, all you need to do in order to read the frames of a video sequence is create an 
instance of the cv::VideoCapture class. You then create a loop that will extract and read 
each video frame. Here is a basic main function that displays the frames of a video sequence:

int main()
{
  // Open the video file
  cv::VideoCapture capture("bike.avi");
  // check if video successfully opened
  if (!capture.isOpened())
    return 1;

  // Get the frame rate
  double rate= capture.get(CV_CAP_PROP_FPS);

  bool stop(false);
  cv::Mat frame; // current video frame
  cv::namedWindow("Extracted Frame");

  // Delay between each frame in ms
  // corresponds to video frame rate
  int delay= 1000/rate;

  // for all frames in video
  while (!stop) {

    // read next frame if any
    if (!capture.read(frame))
      break;

    cv::imshow("Extracted Frame",frame);

    // introduce a delay
    // or press key to stop
    if (cv::waitKey(delay)>=0)
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      stop= true;
  }

  // Close the video file.
  // Not required since called by destructor
  capture.release();
  return 0;
}

A window will appear on which the video will play as shown in the following screenshot:

How it works...
To open a video, you simply need to specify the video filename. This can be done by providing 
the name of the file in the constructor of the cv::VideoCapture object. It is also possible 
to use the open method if the cv::VideoCapture object has already been created. Once 
the video is successfully opened (this can be verified through the isOpened method), it is 
possible to start the frame extraction. It is also possible to query the cv::VideoCapture 
object for information associated with the video file by using its get method with the 
appropriate flag. In the preceding example, we obtained the frame rate using the CV_CAP_
PROP_FPS flag. Since it is a generic function, it always returns a double even if another type 
would be expected in some cases. For example, the total number of frames in the video file 
would be obtained (as an integer) as follows:

long t= static_cast<long>(
              capture.get(CV_CAP_PROP_FRAME_COUNT));
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Have a look at the different flags that are available in the OpenCV documentation in order  
to find out what information can be obtained from the video.

There is also a set method that allows you to input parameters into the cv::VideoCapture 
instance. For example, you can request to move to a specific frame using the CV_CAP_PROP_
POS_FRAMES flag:

// goto frame 100
double position= 100.0; 
capture.set(CV_CAP_PROP_POS_FRAMES, position);

You can also specify the position in milliseconds using CV_CAP_PROP_POS_MSEC, or you  
can specify the relative position inside the video using CV_CAP_PROP_POS_AVI_RATIO 
(with 0.0 corresponding to the beginning of the video and 1.0 to the end). The method returns 
true if the requested parameter setting is successful. Note that the possibility to get or set a 
particular video parameter largely depends on the codec that is used to compress and store 
the video sequence. If you are unsuccessful with some parameters, that could be simply due 
to the specific codec you are using.

Once the captured video is successfully opened, the frames can be sequentially obtained by 
repetitively calling the read method as we did in the example of the previous section. One 
can equivalently call the overloaded reading operator:

capture >> frame;

It is also possible to call the two basic methods:

capture.grab();
capture.retrieve(frame);

Also note how, in our example, we introduced a delay in displaying each frame. This is done 
using the cv::waitKey function. Here, we set the delay at a value that corresponds to the 
input video frame rate (if fps is the number of frames per second, then 1000/fps is the 
delay between two frames in milliseconds). You can obviously change this value to display the 
video at a slower or faster speed. However, if you are going to display the video frames, it is 
important that you insert such a delay if you want to make sure that the window has sufficient 
time to refresh (since it is a process of low priority, it will never refresh if the CPU is too busy). 
The cv::waitKey function also allows us to interrupt the reading process by pressing any 
key. In such a case, the function returns the ASCII code of the key that is pressed. Note that 
if the delay specified to the cv::waitKey function is 0, then it will wait indefinitely for the 
user to press a key. This is very useful if someone wants to trace a process by examining the 
results frame by frame.

The final statement calls the release method, which will close the video file. However, this 
call is not required since release is also called by the cv::VideoCapture destructor.
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It is important to note that in order to open the specified video file, your computer must have 
the corresponding codec installed; otherwise, cv::VideoCapture will not be able to decode 
the input file. Normally, if you are able to open your video file with a video player on your 
machine (such as Windows Media Player), then OpenCV should also be able to read this file.

There's more...
You can also read the video stream capture of a camera that is connected to your computer (a 
USB camera, for example). In this case, you simply specify an ID number (an integer) instead of  
a filename to the open function. Specifying 0 for the ID will open the default installed camera.  
In this case, the role of the cv::waitKey function that stops the processing becomes essential, 
since the video stream from the camera will be infinitely read.

Finally, it is also possible to load a video from the Web. In this case, all you have to do is 
provide the correct address, for example:

  cv::VideoCapture capture("http://www.laganiere.name/bike.avi");

See also
ff The Writing video sequences recipe in this chapter has more information on  

video codecs.

ff The http://ffmpeg.org/ website presents a complete open source and  
cross-platform solution for audio/video reading, recording, converting, and streaming. 
The OpenCV classes that manipulate video files are built on top of this library.

Processing the video frames
In this recipe, our objective is to apply some processing function to each of the frames of a 
video sequence. We will do this by encapsulating the OpenCV video capture framework into 
our own class. Among other things, this class will allow us to specify a function that will be 
called each time a new frame is extracted.

How to do it...
What we want is to be able to specify a processing function (a callback function) that will 
be called for each frame of a video sequence. This function can be defined as receiving 
a cv::Mat instance and outputting a processed frame. Therefore, in our framework, the 
processing function must have the following signature to be a valid callback:

void processFrame(cv::Mat& img, cv::Mat& out);
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As an example of such a processing function, consider the following simple function that 
computes the Canny edges of an input image:

void canny(cv::Mat& img, cv::Mat& out) {
  // Convert to gray
  if (img.channels()==3)
    cv::cvtColor(img,out,CV_BGR2GRAY);
  // Compute Canny edges
  cv::Canny(out,out,100,200);
  // Invert the image
  cv::threshold(out,out,128,255,cv::THRESH_BINARY_INV);
}

Our VideoProcessor class encapsulates all aspects of a video-processing task. Using 
this class, the procedure will be to create a class instance, specify an input video file, attach 
the callback function to it, and then start the process. Programmatically, these steps are 
accomplished using our proposed class, as follows:

  // Create instance
  VideoProcessor processor;
  // Open video file
  processor.setInput("bike.avi");
  // Declare a window to display the video
  processor.displayInput("Current Frame");
  processor.displayOutput("Output Frame");
  // Play the video at the original frame rate
  processor.setDelay(1000./processor.getFrameRate());
  // Set the frame processor callback function
  processor.setFrameProcessor(canny);
  // Start the process
  processor.run();

If this code is run, then two windows will play the input video and the output result at  
the original frame rate (a consequence of the delay introduced by the setDelay method).  
For example, considering the input video for which a frame is shown in the previous recipe, 
the output window will look as follows:
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How it works...
As we did in other recipes, our objective was to create a class that encapsulates the common 
functionalities of a video-processing algorithm. As one might expect, the class includes several 
member variables that control the different aspects of the video frame processing:

class VideoProcessor {

  private:

  // the OpenCV video capture object
  cv::VideoCapture capture;
  // the callback function to be called 
  // for the processing of each frame
  void (*process)(cv::Mat&, cv::Mat&);
  // a bool to determine if the 
  // process callback will be called
  bool callIt;
  // Input display window name
  std::string windowNameInput;
  // Output display window name
  std::string windowNameOutput;
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  // delay between each frame processing
  int delay;
  // number of processed frames 
  long fnumber;
  // stop at this frame number
  long frameToStop;
  // to stop the processing
  bool stop;

The first member variable is the cv::VideoCapture object. The second attribute is the 
process function pointer that will point to the callback function. This function can be 
specified using the corresponding setter method:

    // set the callback function that 
    // will be called for each frame
    void setFrameProcessor(
      void (*frameProcessingCallback)
        cv::Mat&, cv::Mat&)) {

          process= frameProcessingCallback;
    }

The following method opens the video file:

    // set the name of the video file
    bool setInput(std::string filename) {

      fnumber= 0;
      // In case a resource was already 
      // associated with the VideoCapture instance
      capture.release();
      // Open the video file
      return capture.open(filename);
   }

It is generally interesting to display the frames as they are processed. Therefore, two methods 
are used to create the display windows:

    // to display the input frames
    void displayInput(std::string wn) {

      windowNameInput= wn;
      cv::namedWindow(windowNameInput);
    }

    // to display the processed frames
    void displayOutput(std::string wn) {
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      windowNameOutput= wn;
      cv::namedWindow(windowNameOutput);
    }

The main method, called run, is the one that contains the frame extraction loop:

    // to grab (and process) the frames of the sequence
    void run() {

      // current frame
      cv::Mat frame;
      // output frame
      cv::Mat output;

      // if no capture device has been set
      if (!isOpened())
        return;

      stop= false;

      while (!isStopped()) {

        // read next frame if any
        if (!readNextFrame(frame))
          break;

        // display input frame
        if (windowNameInput.length()!=0) 
          cv::imshow(windowNameInput,frame);

        // calling the process function
        if (callIt) {

          // process the frame
          process(frame, output);
          // increment frame number
          fnumber++;

          } else { // no processing
            output= frame;
          }

          // display output frame
          if (windowNameOutput.length()!=0) 
            cv::imshow(windowNameOutput,output);
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          // introduce a delay
          if (delay>=0 && cv::waitKey(delay)>=0)
            stopIt();

          // check if we should stop
          if (frameToStop>=0 && 
            getFrameNumber()==frameToStop)
              stopIt();
        }
      }

      // Stop the processing
      void stopIt() {

        stop= true;
      }

      // Is the process stopped?
      bool isStopped() {

        return stop;
      }

      // Is a capture device opened?
      bool isOpened() {

        capture.isOpened();
      }

      // set a delay between each frame
      // 0 means wait at each frame
      // negative means no delay
      void setDelay(int d) {

        delay= d;
      }

This method uses a private method that reads the frames:

    // to get the next frame 
    // could be: video file or camera
    bool readNextFrame(cv::Mat& frame) {

      return capture.read(frame);
    }
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The run method proceeds by first calling the read method of the cv::VideoCapture 
OpenCV class. There is then a series of operations that are executed, but before each  
of them is invoked, a check is made to determine whether it has been requested. The 
input window is displayed only if an input window name has been specified (using the 
displayInput method); the callback function is called only if one has been specified  
(using setFrameProcessor). The output window is displayed only if an output window  
name has been defined (using displayOutput); a delay is introduced only if one has  
been specified (using setDelay method). Finally, the current frame number is checked  
if a stop frame has been defined (using stopAtFrameNo).

One might also wish to simply open and play the video file (without calling the callback 
function). Therefore, we have two methods that specify whether or not we want the  
callback function to be called:

    // process callback to be called
    void callProcess() {

      callIt= true;
    }

    // do not call process callback
    void dontCallProcess() {

      callIt= false;
    }

Finally, the class also offers us the possibility to stop at a certain frame number:

    void stopAtFrameNo(long frame) {

      frameToStop= frame;
    }

    // return the frame number of the next frame
    long getFrameNumber() {

      // get info of from the capture device
      long fnumber= static_cast<long>(
        capture.get(CV_CAP_PROP_POS_FRAMES));
      return fnumber; 
    }

The class also contains a number of getter and setter methods that are basically just a 
wrapper over the general set and get methods of the cv::VideoCapture framework.
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There's more...
Our VideoProcessor class is there to facilitate the deployment of a video-processing 
module. Few additional refinements can be made to it.

Processing a sequence of images
Sometimes, the input sequence is made of a series of images that are individually stored  
in distinct files. Our class can be easily modified to accommodate such input. You just  
need to add a member variable that will hold a vector of image filenames and its 
corresponding iterator:

    // vector of image filename to be used as input
    std::vector<std::string> images; 
    // image vector iterator
    std::vector<std::string>::const_iterator itImg;

A new setInput method is used to specify the filenames to be read:

    // set the vector of input images
    bool setInput(const std::vector<std::string>& imgs) {

      fnumber= 0;
      // In case a resource was already 
      // associated with the VideoCapture instance
      capture.release();

      // the input will be this vector of images
      images= imgs;
      itImg= images.begin();

      return true;
    }

The isOpened method becomes as follows:

    // Is a capture device opened?
    bool isOpened() {

      return capture.isOpened() || !images.empty();
    }
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The last method that needs to be modified is the private readNextFrame method that  
will read from the video or from the vector of filenames, depending on the input that has  
been specified. The test is that if the vector of image filenames is not empty, then that is 
because the input is an image sequence. The call to setInput with a video filename  
clears this vector:

    // to get the next frame 
    // could be: video file; camera; vector of images
    bool readNextFrame(cv::Mat& frame) {

      if (images.size()==0)
        return capture.read(frame);

      else {

          if (itImg != images.end()) {

            frame= cv::imread(*itImg);
            itImg++;
            return frame.data != 0;

          } else

            return false;
      }
    }

Using a frame processor class
In an object-oriented context, it might make more sense to use a frame processing class 
instead of a frame processing function. Indeed, a class would give the programmer much 
more flexibility in the definition of a video-processing algorithm. We can, therefore, define  
an interface that any class that wishes to be used inside the VideoProcessor will need  
to implement:

// The frame processor interface
class FrameProcessor {

  public:
  // processing method
  virtual void process(cv:: Mat &input, cv:: Mat &output)= 0;
};
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A setter method allows you to input a FrameProcessor instance to the VideoProcessor 
framework and assign it to the added member variable frameProcessor that is defined as  
a pointer to a FrameProcessor object:

    // set the instance of the class that 
    // implements the FrameProcessor interface
    void setFrameProcessor(FrameProcessor* frameProcessorPtr)
    {

      // invalidate callback function
      process= 0;
      // this is the frame processor instance 
      // that will be called
      frameProcessor= frameProcessorPtr;
      callProcess();
    }

When a frame processor class instance is specified, it invalidates any frame processing 
function that could have been set previously. The same obviously applies if a frame 
processing function is specified instead. The while loop of the run method is modified  
to take into account this modification:

        while (!isStopped()) {

          // read next frame if any
          if (!readNextFrame(frame))
            break;

          // display input frame
          if (windowNameInput.length()!=0) 
            cv::imshow(windowNameInput,frame);

          // ** calling the process function or method **
          if (callIt) {

            // process the frame
            if (process) // if call back function
              process(frame, output);
            else if (frameProcessor) 
              // if class interface instance
              frameProcessor->process(frame,output);
            // increment frame number
            fnumber++;
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          } else {

            output= frame;
          }
           // display output frame
           if (windowNameOutput.length()!=0)
             cv::imshow(windowNameOutput,output);
           // introduce a delay
           if (delay>=0 && cv::waitKey(delay)>=0)
             stopIt();
           // check if we should stop
           if (frameToStop>=0 && getFrameNumber()==frameToStop)
             stopIt();
        }

See also
ff The Tracking feature points in a video recipe in this chapter gives you an  

example of how to use the FrameProcessor class interface.

Writing video sequences
In the previous recipes, we learned how to read a video file and extract its frames. This recipe 
will show you how to write frames and, therefore, create a video file. This will allow us to 
complete the typical video-processing chain: reading an input video stream, processing its 
frames, and then storing the results in a new video file.

How to do it...
Writing video files in OpenCV is done using the cv::VideoWriter class. An instance is 
constructed by specifying the filename, the frame rate at which the generated video should 
play, the size of each frame, and whether or not the video will be created in color:

writer.open(outputFile, // filename
    codec,          // codec to be used 
    framerate,      // frame rate of the video
    frameSize,      // frame size
    isColor);       // color video?

In addition, you must specify the way you want the video data to be saved. This is the codec 
argument; this will be discussed at the end of this recipe.
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Once the video file is opened, frames can be added to it by repetitively calling the  
write method:

writer.write(frame); // add the frame to the video file

Using the cv::VideoWriter class, our VideoProcessor class introduced in the  
previous recipe can easily be expanded in order to give it the ability to write video files.  
A simple program that will read a video, process it, and write the result to a video file  
would then be written as follows:

    // Create instance
    VideoProcessor processor;

    // Open video file
    processor.setInput("bike.avi");
    processor.setFrameProcessor(canny);
    processor.setOutput("bikeOut.avi");
    // Start the process
    processor.run();

Proceeding as we did in the preceding recipe, we also want to give the user the possibility to 
write the frames as individual images. In our framework, we adopt a naming convention that 
consists of a prefix name followed by a number made of a given number of digits. This number 
is automatically incremented as frames are saved. Then, to save the output result as a series 
of images, you would change the preceding statement with this one:

    processor.setOutput("bikeOut",  //prefix
    ".jpg",     // extension
    3,          // number of digits
    0)// starting index

Using the specified number of digits, this call will create the bikeOut000.jpg, 
bikeOut001.jpg, and bikeOut002.jpg files, and so on.

How it works...
Let's now describe how to modify our VideoProcessor class in order to give it the ability  
to write video files. First, a cv::VideoWriter variable member must be added to our  
class (plus a few other attributes):

class VideoProcessor {

  private:

  ...
  // the OpenCV video writer object
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  cv::VideoWriter writer;
  // output filename
  std::string outputFile;
  // current index for output images
  int currentIndex;
  // number of digits in output image filename
  int digits;
  // extension of output images
  std::string extension;

An extra method is used to specify (and open) the output video file:

    // set the output video file
    // by default the same parameters than 
    // input video will be used
    bool setOutput(const std::string &filename, int codec=0,  
      double framerate=0.0, bool isColor=true) {

      outputFile= filename;
      extension.clear();

      if (framerate==0.0) 
        framerate= getFrameRate(); // same as input

      char c[4];
      // use same codec as input
      if (codec==0) { 
        codec= getCodec(c);
      }

      // Open output video
      return writer.open(outputFile, // filename
      codec,          // codec to be used 
      framerate,      // frame rate of the video
      getFrameSize(), // frame size
      isColor);       // color video?
    }

A private method, called the writeNextFrame method, handles the frame writing procedure 
(in a video file or as a series of images):

    // to write the output frame 
    // could be: video file or images
    void writeNextFrame(cv::Mat& frame) {
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      if (extension.length()) { // then we write images

        std::stringstream ss;
        // compose the output filename
        ss << outputFile << std::setfill('0') << std::setw(digits)  
          << currentIndex++ << extension;
        cv::imwrite(ss.str(),frame);

      } else { // then write to video file 
        writer.write(frame);
      }
    }

For the case where the output is made of individual image files, we need an additional  
setter method:

    // set the output as a series of image files
    // extension must be ".jpg", ".bmp" ...
    bool setOutput(const std::string &filename, // prefix
      const std::string &ext, // image file extension 
      int numberOfDigits=3,   // number of digits
      int startIndex=0) {     // start index

      // number of digits must be positive
      if (numberOfDigits<0)
        return false;

      // filenames and their common extension
      outputFile= filename;
      extension= ext;

      // number of digits in the file numbering scheme
      digits= numberOfDigits;
      // start numbering at this index
      currentIndex= startIndex;

      return true;
    }

Finally, a new step is then added to the video capture loop of the run method:

        while (!isStopped()) {

          // read next frame if any
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          if (!readNextFrame(frame))
            break;

          // display input frame
          if (windowNameInput.length()!=0) 
            cv::imshow(windowNameInput,frame);

          // calling the process function or method
          if (callIt) {

            // process the frame
            if (process)
              process(frame, output);
            else if (frameProcessor) 
              frameProcessor->process(frame,output);
            // increment frame number
            fnumber++;

          } else {

            output= frame;
          }

          // ** write output sequence **
          if (outputFile.length()!=0)
            writeNextFrame(output);

          // display output frame
          if (windowNameOutput.length()!=0) 
            cv::imshow(windowNameOutput,output);
         
          // introduce a delay
          if (delay>=0 && cv::waitKey(delay)>=0)
            stopIt();

          // check if we should stop
          if (frameToStop>=0 && getFrameNumber()==frameToStop)
            stopIt();
        }
      }
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There's more...
When a video is written to a file, it is saved using a codec. A codec is a software module that is 
capable of encoding and decoding video streams. The codec defines both the format of the file 
and the compression scheme that is used to store the information. Obviously, a video that has 
been encoded using a given codec must be decoded with the same codec. For this reason,  
four-character codes have been introduced to uniquely identified codecs. This way, when a 
software tool needs to write a video file, it determines the codec to be used by reading the 
specified four-character code.

The codec four-character code
As the name suggests, the four-character code is made up of four ASCII characters that can 
also be converted into an integer by appending them together. Using the CV_CAP_PROP_
FOURCC flag of the get method of an opened cv::VideoCapture instance, you can obtain 
this code of an opened video file. We can define a method in our VideoProcessor class to 
return the four-character code of an input video:

    // get the codec of input video
    int getCodec(char codec[4]) {

      // undefined for vector of images
      if (images.size()!=0) return -1;

      union { // data structure for the 4-char code
        nt value;
        char code[4]; } returned;

      // get the code
      returned.value= static_cast<int> 
        (capture.get(CV_CAP_PROP_FOURCC));

      // get the 4 characters
      codec[0]= returned.code[0];
      codec[1]= returned.code[1];
      codec[2]= returned.code[2];
      codec[3]= returned.code[3];

      // return the int value corresponding to the code
      return returned.value;
    }
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The get method always returns a double value that is then casted into an integer. This 
integer represents the code from which the four characters can be extracted using a union 
data structure. If we open our test video sequence, then we have the following statements:

  char codec[4];
  processor.getCodec(codec);
  std::cout << "Codec: " << codec[0] << codec[1] << codec[2] <<  
    codec[3] << std::endl;

From the preceding statements, we obtain the following:

Codec : XVID

When a video file is written, the codec must be specified using its four-character code. This 
is the second parameter in the open method of the cv::VideoWriter class. You can use, 
for example, the same one as the input video (this is the default option in our setOutput 
method). You can also pass the value -1 and the method will pop up a window that will ask 
you to select one codec from the list of available codecs, as shown here:

The list you will see on this window corresponds to the list of installed codecs on your machine. 
The code of the selected codec is then automatically sent to the open method.

See also
ff The https://www.xvid.com/ website offers you an open source video codec 

library based on the MPEG-4 standard for video compression. Xvid also has a 
competitor called DivX, which offers proprietary but free codec and software tools.
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Tracking feature points in a video
This chapter is about reading, writing, and processing video sequences. The objective is to be 
able to analyze a complete video sequence. As an example, in this recipe, you will learn how to 
perform temporal analysis of the sequence in order to track feature points as they move from 
frame to frame.

How to do it...
To start the tracking process, the first thing to do is to detect the feature points in an initial 
frame. You then try to track these points in the next frame. Obviously, since we are dealing 
with a video sequence, there is a good chance that the object on which the feature points 
are found has moved (this motion can also be due to camera movement). Therefore, you 
must search around a point's previous location in order to find its new location in the next 
frame. This is what accomplishes the cv::calcOpticalFlowPyrLK function. You input 
two consecutive frames and a vector of feature points in the first image; the function returns 
a vector of new point locations. To track points over a complete sequence, you repeat this 
process from frame to frame. Note that as you follow the points across the sequence, you will 
unavoidably lose track of some of them such that the number of tracked feature points will 
gradually reduce. Therefore, it could be a good idea to detect new features from time to time.

We will now take benefit of the framework we defined in the previous recipes and we will 
define a class that implements the FrameProcessor interface introduced in the Processing 
the video frames recipe of this chapter. The data attributes of this class include the variables 
that are required to perform both the detection of feature points and their tracking:

class FeatureTracker : public FrameProcessor {

  cv::Mat gray;         // current gray-level image
  cv::Mat gray_prev;      // previous gray-level image
  // tracked features from 0->1
  std::vector<cv::Point2f> points[2]; 
  // initial position of tracked points
  std::vector<cv::Point2f> initial;   
  std::vector<cv::Point2f> features;  // detected features
  int max_count;     // maximum number of features to detect
  double qlevel;    // quality level for feature detection
  double minDist;   // min distance between two points
  std::vector<uchar> status; // status of tracked features
  std::vector<float> err;    // error in tracking

  public:

  FeatureTracker() : max_count(500), qlevel(0.01), minDist(10.) {}
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Next, we define the process method that will be called for each frame of the sequence. 
Basically, we need to proceed as follows. First, feature points are detected if necessary.  
Next, these points are tracked. You reject points that you cannot track or you no longer  
want to track. You are now ready to handle the successfully tracked points. Finally, the  
current frame and its points become the previous frame and points for the next iteration.  
Here is how to do this:

  void process(cv:: Mat &frame, cv:: Mat &output) {

    // convert to gray-level image
    cv::cvtColor(frame, gray, CV_BGR2GRAY); 
    frame.copyTo(output);

    // 1. if new feature points must be added
    if(addNewPoints())
    {
      // detect feature points
      detectFeaturePoints();
      // add the detected features to 
      // the currently tracked features
      points[0].insert(points[0].end(),features.begin(), 
        features.end());
      initial.insert(initial.end(),features.begin(), 
        features.end());
    }

    // for first image of the sequence
    if(gray_prev.empty())
      gray.copyTo(gray_prev);

    // 2. track features
    cv::calcOpticalFlowPyrLK(gray_prev, gray, // 2 consecutive  
      images
    points[0], // input point positions in first image
    points[1], // output point positions in the 2nd image
    status,    // tracking success
    err);      // tracking error

    // 3. loop over the tracked points to reject some
    int k=0;
    for( int i= 0; i < points[1].size(); i++ ) {

      // do we keep this point?
      if (acceptTrackedPoint(i)) {
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        // keep this point in vector
        initial[k]= initial[i];
        points[1][k++] = points[1][i];
      }
    }

    // eliminate unsuccesful points
    points[1].resize(k);
    initial.resize(k);

    // 4. handle the accepted tracked points
    handleTrackedPoints(frame, output);

    // 5. current points and image become previous ones
    std::swap(points[1], points[0]);
    cv::swap(gray_prev, gray);
  }

This method makes use of four utility methods. It should be easy for you to change any of these 
methods in order to define a new behavior for your own tracker. The first of these methods 
detects the feature points. Note that we already discussed the cv::goodFeatureToTrack 
function in the first recipe of Chapter 8, Detecting Interest Points:

  // feature point detection
  void detectFeaturePoints() {

    // detect the features
    cv::goodFeaturesToTrack(gray, // the image 
      features,   // the output detected features
      max_count,  // the maximum number of features 
      qlevel,     // quality level
      minDist);   // min distance between two features
  }

The second method determines whether new feature points should be detected:

  // determine if new points should be added
  bool addNewPoints() {

    // if too few points
      return points[0].size()<=10;
  }
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The third method rejects some of the tracked points based on a criteria defined by the 
application. Here, we decided to reject points that do not move (in addition to those that 
cannot be tracked by the cv::calcOpticalFlowPyrLK function):

  // determine which tracked point should be accepted
  bool acceptTrackedPoint(int i) {

    return status[i] &&
    // if point has moved
    (abs(points[0][i].x-points[1][i].x)+(abs(points[0][i].y- 
      points[1][i].y))>2);
  }

Finally, the fourth method handles the tracked feature points by drawing all of the tracked 
points with a line that joins them to their initial position (that is, the position where they were 
detected the first time) on the current frame:

  // handle the currently tracked points
  void handleTrackedPoints(cv:: Mat &frame, cv:: Mat &output) {

    // for all tracked points
    for(int i= 0; i < points[1].size(); i++ ) {

      // draw line and circle
      cv::line(output, 
        initial[i],  // initial position 
        points[1][i],// new position 
        cv::Scalar(255,255,255));
        cv::circle(output, points[1][i], 3, cv::Scalar 
          (255,255,255),-1);
    }
  }

A simple main function to track feature points in a video sequence would then be written  
as follows:

int main()
{
  // Create video procesor instance
  VideoProcessor processor;

  // Create feature tracker instance
  FeatureTracker tracker;
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   // Open video file
   processor.setInput("../bike.avi");

  // set frame processor
  processor.setFrameProcessor(&tracker);

  // Declare a window to display the video
  processor.displayOutput("Tracked Features");

  // Play the video at the original frame rate
  processor.etDelayetDelay(1000./processor.getFrameRate());

  // Start the process
  processor.run();
}

The resulting program will show you the evolution of the moving tracked features over time. 
Here are, for example, two such frames at two different instants. In this video, the camera  
is fixed. The young cyclist is, therefore, the only moving object. Here is the result that is 
obtained after a few frames have been processed:
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A few seconds later, we obtain the following frame:

How it works...
To track feature points from frame to frame, we must locate the new position of a feature 
point in the subsequent frame. If we assume that the intensity of the feature point does not 
change from one frame to the next one, we are looking for a displacement (u,v) as follows:

( ) ( )1, ,t tI x y I x u y v+= + +

Here, It and It+1 are the current frame and the one at the next instant, respectively.  
This constant intensity assumption generally holds for small displacement in images  
that are taken at two nearby instants. We can then use the Taylor expansion in order  
to approximate this equation by an equation that involves the image derivatives:

( ) ( )1 , ,t t
I I II x u y v I x y u v
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This latter equation leads us to another equation (as a consequence of the constant intensity 
assumption that cancels the two intensity terms):

I I Iu v
x y t
∂ ∂ ∂

+ = −
∂ ∂ ∂

This well-known constraint is the fundamental optical flow constraint equation. This 
constraint is exploited by the so-called Lukas-Kanade feature-tracking algorithm that also 
makes an additional assumption that the displacement of all points in the neighborhood  
of the feature point is the same. We can, therefore, impose the optical flow constraint for  
all of these points with a unique (u,v) unknown displacement. This gives us more equations  
than the number of unknowns (2), and therefore, we can solve this system of equations in a 
mean-square sense. In practice, it is solved iteratively and the OpenCV implementation also 
offers us the possibility to perform this estimation at a different resolution in order to make 
the search more efficient and more tolerant to larger displacement. By default, the number  
of image levels is 3 and the window size is 15. These parameters can obviously be changed. 
You can also specify the termination criteria, which define the conditions that stop the 
iterative search. The sixth parameter of cv::calcOpticalFlowPyrLK contains the residual 
mean-square error that can be used to assess the quality of the tracking. The fifth parameter 
contains binary flags that tell us whether tracking the corresponding point was considered 
successful or not.

The preceding description represents the basic principles behind the Lukas-Kanade tracker. 
The current implementation contains other optimizations and improvements that make  
the algorithm more efficient in the computation of the displacement of a large number of 
feature points.

See also
ff Chapter 8, Detecting Interest Points, has a discussion on feature point detection.

ff The classic article by B. Lucas and T. Kanade, An Iterative Image Registration 
Technique with an Application to Stereo Vision in Int. Joint Conference in  
Artificial Intelligence, pp. 674-679, 1981, describes the original feature  
point tracking algorithm.

ff The article by J. Shi and C. Tomasi, Good Features to Track in IEEE Conference 
on Computer Vision and Pattern Recognition, pp. 593-600, 1994, describes an 
improved version of the original feature point tracking algorithm.
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Extracting the foreground objects in a video
When a fixed camera observes a scene, the background remains mostly unchanged. In this 
case, the interesting elements are the moving objects that evolve inside this scene. In order 
to extract these foreground objects, we need to build a model of the background, and then 
compare this model with a current frame in order to detect any foreground objects. This 
is what we will do in this recipe. Foreground extraction is a fundamental step in intelligent 
surveillance applications.

If we had an image of the background of the scene (that is, a frame that contains no 
foreground objects) at our disposal, then it would be easy to extract the foreground of  
a current frame through a simple image difference:

  // compute difference between current image and background
  cv::absdiff(backgroundImage,currentImage,foreground);

Each pixel for which this difference is high enough would then be declared as a foreground 
pixel. However, most of the time, this background image is not readily available. Indeed, it 
could be difficult to guarantee that no foreground objects are present in a given image, and 
in busy scenes, such situations might rarely occur. Moreover, the background scene often 
evolves over time because, for instance, the lighting condition changes (for example, from 
sunrise to sunset) or because new objects can be added or removed from the background.

Therefore, it is necessary to dynamically build a model of the background scene. This 
can be done by observing the scene for a period of time. If we assume that most often, 
the background is visible at each pixel location, then it could be a good strategy to simply 
compute the average of all of the observations. However, this is not feasible for a number  
of reasons. First, this would require a large number of images to be stored before computing 
the background. Second, while we are accumulating images to compute our average image, 
no foreground extraction will be done. This solution also raises the problem of when and 
how many images should be accumulated to compute an acceptable background model. 
In addition, the images where a given pixel is observing a foreground object would have an 
impact on the computation of the average background.

A better strategy is to dynamically build the background model by regularly updating it. This 
can be accomplished by computing what is called a running average (also called moving 
average). This is a way to compute the average value of a temporal signal that takes into 
account the latest received values. If pt is the pixel value at a given time t and μt-1 is the 
current average value, then this average is updated using the following formula:

( ) 11t t tpµ α µ α−= − +
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The α parameter is called the learning rate, and it defines the influence of the current value 
over the currently estimated average. The larger this value is, the faster the running average 
will adapt to changes in the observed values. To build a background model, one just has to 
compute a running average for every pixel of the incoming frames. The decision to declare a 
foreground pixel is then simply based on the difference between the current image and the 
background model.

How to do it...
Let's build a class that will learn about a background model using moving averages and that 
will extract foreground objects by subtraction. The required attributes are the following:

class BGFGSegmentor : public FrameProcessor {

  cv::Mat gray;         // current gray-level image
  cv::Mat background;   // accumulated background
  cv::Mat backImage;    // current background image
  cv::Mat foreground;   // foreground image
  // learning rate in background accumulation
  double learningRate;
  int threshold;        // threshold for foreground extraction

The main process consists of comparing the current frame with the background model and 
then updating this model:

  // processing method
  void process(cv:: Mat &frame, cv:: Mat &output) {

    // convert to gray-level image
    cv::cvtColor(frame, gray, CV_BGR2GRAY); 

    // initialize background to 1st frame
    if (background.empty())
      gray.convertTo(background, CV_32F);

    // convert background to 8U
    background.convertTo(backImage,CV_8U);

    // compute difference between image and background
    cv::absdiff(backImage,gray,foreground);
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    // apply threshold to foreground image        
    cv::threshold(foreground,output,threshold,255,cv:: 
      THRESH_BINARY_INV);

    // accumulate background
    cv::accumulateWeighted(gray, background,
      // alpha*gray + (1-alpha)*background
      learningRate,  // alpha 
      output);       // mask

    }

Using our video-processing framework, the foreground extraction program will be built  
as follows:

int main()
{
  // Create video procesor instance
  VideoProcessor processor;

  // Create background/foreground segmentor 
  BGFGSegmentor segmentor;
  segmentor.setThreshold(25);

   // Open video file
   processor.setInput("bike.avi");

  // set frame processor
  processor.setFrameProcessor(&segmentor);

  // Declare a window to display the video
  processor.displayOutput("Extracted Foreground");

  // Play the video at the original frame rate
  processor.setDelay(1000./processor.getFrameRate());

  // Start the process
  processor.run();
}
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One of the resulting binary foreground images that will be displayed is as follows:

How it works...
Computing the running average of an image is easily accomplished through the 
cv::accumulateWeighted function that applies the running average formula to each 
pixel of the image. Note that the resulting image must be a floating point image. This is why 
we had to convert the background model into a background image before comparing it with 
the current frame. A simple thresholded absolute difference (computed by cv::absdiff 
followed by cv::threshold) extracts the foreground image. Note that we then used the 
foreground image as a mask to cv::accumulateWeighted in order to avoid the updating  
of pixels declared as foreground. This works because our foreground image is defined as 
being false (that is, 0) at foreground pixels (which also explains why the foreground objects  
are displayed as black pixels in the resulting image).

Finally, it should be noted that, for simplicity, the background model that is built by our 
program is based on the gray-level version of the extracted frames. Maintaining a color 
background would require the computation of a running average in some color space. 
However, the main difficulty in the presented approach is to determine the appropriate  
value for the threshold that would give good results for a given video.
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There's more...
The preceding simple method to extract foreground objects in a scene works well for simple 
scenes that show a relatively stable background. However, in many situations, the background 
scene might fluctuate in certain areas between different values, thus causing frequent false 
foreground detections. These might be due to, for example, a moving background object 
(for example, tree leaves) or a glaring effect (for example, on the surface of water). Casted 
shadows also pose a problem since they are often detected as part of a moving object.  
In order to cope with these problems, more sophisticated background modeling methods  
have been introduced.

The Mixture of Gaussian method
One of these algorithms is the Mixture of Gaussian method. It proceeds in a way that is 
similar to the method presented in this recipe but adds a number of improvements.

First, the method maintains more than one model per pixel (that is, more than one running 
average). This way, if a background pixel fluctuates between, let's say, two values, two running 
averages are then stored. A new pixel value will be declared as the foreground only if it does 
not belong to any of the most frequently observed models. The number of models used is a 
parameter of the method and a typical value is 5.

Second, not only is the running average maintained for each model, but also for the running 
variance. This is computed as follows:

( ) ( )22 2
11t t t tpσ α σ α µ−= − + −

These computed averages and variances are used to build a Gaussian model from which the 
probability of a given pixel value to belong to the background can be estimated. This makes it 
easier to determine an appropriate threshold since it is now expressed as a probability rather 
than an absolute difference. Consequently, in areas where the background values have larger 
fluctuations, a greater difference will be required to declare a foreground object.

Finally, when a given Gaussian model is not hit sufficiently often, it is excluded as being part 
of the background model. Reciprocally, when a pixel value is found to be outside the currently 
maintained background models (that is, it is a foreground pixel), a new Gaussian model is 
created. If in the future this new model becomes a hit, then it becomes associated with  
the background.
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This more sophisticated algorithm is obviously more complex to implement than our simple 
background/foreground segmentor. Fortunately, an OpenCV implementation exists, called 
cv::BackgroundSubtractorMOG, and is defined as a subclass of the more general 
cv::BackgroundSubtractor class. When used with its default parameter, this class  
is very easy to use:

int main()
{
  // Open the video file
  cv::VideoCapture capture("bike.avi");
  // check if video successfully opened
  if (!capture.isOpened())
    return 0;
  // current video frame
  cv::Mat frame; 
  // foreground binary image
  cv::Mat foreground;
  cv::namedWindow("Extracted Foreground");
  // The Mixture of Gaussian object
  // used with all default parameters
  cv::BackgroundSubtractorMOG mog;
  bool stop(false);
  // for all frames in video
  while (!stop) {
    // read next frame if any
    if (!capture.read(frame))
      break;
    // update the background
    // and return the foreground
    mog(frame,foreground,0.01)
    // learning rate
    // Complement the image        
    cv::threshold(foreground,foreground, 
      128,255,cv::THRESH_BINARY_INV);
    // show foreground
    cv::imshow("Extracted Foreground",foreground);

    // introduce a delay
    // or press key to stop
    if (cv::waitKey(10)>=0)
      stop= true;
  }
}
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As it can be seen, it is just a matter of creating the class instance and calling the method that 
simultaneously updates the background and returns the foreground image (the extra parameter 
being the learning rate). Also note that the background model is computed in color here. The 
method implemented in OpenCV also includes a mechanism to reject shadows by checking 
whether the observed pixel variation is simply caused by a local change in brightness (if so,  
then it is probably due to a shadow) or whether it also includes some change in chromaticity.

A second implementation is also available and is simply called 
cv::BackgroundSubtractorMOG2. One of the improvements is that the number of 
appropriate Gaussian models per pixel to be used is now determined dynamically. You can 
use this in place of the previous one in the preceding example. You should run these different 
methods on a number of videos in order to appreciate their respective performances. In 
general, you will observe that cv::BackgroundSubtractorMOG2 is much faster.

See also
ff The article by C. Stauffer and W.E.L. Grimson, Adaptive Background Mixture Models 

for Real-Time Tracking, in Conf. on Computer Vision and Pattern Recognition, 1999, 
gives you a more complete description of the Mixture of Gaussian algorithm.
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