
www.allitebooks.com

http://www.allitebooks.org

OpenJDK Cookbook

Over 80 recipes to build and extend your very own version
of Java platform using OpenJDK project

Alex Kasko

Stanislav Kobylyanskiy

Alexey Mironchenko

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

OpenJDK Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1240115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-840-5

www.packtpub.com

Cover image by Benoit Benedetti (benoit.benedetti@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Alex Kasko

Stanislav Kobylyanskiy

Alexey Mironchenko

Reviewers
Usman Saleem

Otávio Santana

Martin Toshev

Commissioning Editor
Aarthi Kumaraswamy

Acquisition Editor
Vinay Argekar

Content Development Editor
Athira Laji

Technical Editor
Mrunmayee Patil

Copy Editors
Shivangi Chaturvedi

Pranjali Chury

Jasmine Nadar

Merilyn Pereira

Project Coordinator
Harshal Ved

Proofreaders
Samuel Redman Birch

Ameesha Green

Paul Hindle

Kevin McGowan

Indexer
Hemangini Bari

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Alex Kasko is a participant in the OpenJDK project. He maintains unofficial OpenJDK
builds on his GitHub account and has 8 years' experience in enterprise and high-performance
programming. He works in an OpenJDK development team at Red Hat Inc.

Stanislav Kobylyanskiy is a software developer with years of Java experience. He started
his career with C++ and system programming in the late 90s with the Aelita software (now
DELL). After a few years, he switched to Java and then moved to telecom. At that time, he
joined T-Mobile, UK, to rebuild their Customer Service Web Portal, which lasted for about 4
years. Currently, he is with an investment bank where he is working on a strategic algorithmic
trading platform. He is continuously looking for new challenges and to extend his knowledge
of core Java technologies.

I want to say thank you to my family—my two lovely daughters, Alyssa and
Alexandra, and to my beloved wife, Natalia—for all their help and support in
everything I do.

Alexey Mironchenko is a software developer with experience in scalable enterprise
projects, involving Java EE, NoSQL databases, and various other frameworks. He has a
mathematical background with some COQ and Maxima experience, and his hobby is to
test cutting-edge technologies that are open source or in early access.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Usman Saleem is a seasoned software developer with special focus on Java, JEE,
PostgreSQL, and utilizing open source tools in software development in general. He has worked
with EnterpriseDB, OpenSCG, Red Hat, and Ventyx, Australia. He has taught object-oriented
programming and enterprise software development in several public and private sector
universities to undergraduate students. When he is not (re)writing his blog software, he likes
trying out various strength training workouts or playing Angry Birds with his son.

Usman has an MSc (CS) degree and holds RHCSA, SCWCD, SCBCD, SCJD, and SCJP
certifications. He maintains his blog at http://www.usmans.info.

Otávio Santana (@otaviojava) is a developer and enthusiast of open source. He is an
evangelist and practitioner of agile philosophy and polyglot development in Brazil. Otávio
is a JUG leader of JavaBahia and SouJava and a strong supporter of Java communities in
Brazil, where he also leads the BrasilJUGs initiative to incorporate Brazilian JUGs into joint
activities. He is a cocreator and is also responsible for the Linguagil Group—a merge of Java,
Ruby, Python, and Agile groups that promote agility across language-focused communities.
In the open source world, Otávio is a developer in OpenJDK and a creator of Apache Easy-
Cassandra. He has also helped in JBoss Weld, Hibernate, Apache Commons, and other
open source projects. Otávio is a very active speaker in Brazil, where he has participated in
the largest Java events in the country. As an international speaker, Otávio has presented in
JavaOne and the Cassandra tour events. Otávio is also a writer and has many articles and
even a book on JVM Internals. Otávio Santana actually means "make the future Java", working
in several Java Specification Request (JSR), JAR, as part of the Java Expert team. Otávio was
recently nominated and won JCP's Outstanding Adopt-a-JSR Participant of the Year award for
his very active role in several JSRs and OpenJDK.

www.allitebooks.com

http://www.usmans.info
http://www.allitebooks.org

Martin Toshev is a software engineer by profession and hobby. He has been working on a
number of large enterprise projects for different companies for the past 5 years using mostly
the Java technology stack. He has experience in the areas of social networking and J2EE
middleware and is a contributor to the OpenJDK platform.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started with OpenJDK	 7

Introduction	 7
Distinguishing OpenJDK from Oracle JDK	 9
Installing OpenJDK on Windows	 11
Configuring OpenJDK on Windows	 14
Installing OpenJDK on Linux	 16
Configuring OpenJDK on Linux	 18
Navigating through OpenJDK groups and projects	 21

Chapter 2: Building OpenJDK 6	 23
Introduction	 23
Preparing CA certificates	 24
Building OpenJDK 6 on Ubuntu Linux 12.04 LTS	 27
Setting up the minimum build environment for the most
compatible Linux builds	 30
Installing Cygwin for Windows builds	 32
Building 32-bit FreeType libraries for OpenJDK 6 on Windows	 34
Building 64-bit FreeType libraries for OpenJDK 6 on Windows	 36
Building 32-bit OpenJDK 6 on Windows 7 SP1	 38
Building 64-bit OpenJDK 6 on Windows 7 x64 SP1	 42

Chapter 3: Building OpenJDK 7	 45
Introduction	 45
Building OpenJDK 7 on Ubuntu Linux 12.04 LTS	 46
Building OpenJDK 7 on Mac OS X	 49
Building 32-bit FreeType libraries for OpenJDK 7 on Windows	 52
Building 64-bit FreeType libraries for OpenJDK 7 on Windows	 54

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Building 32-bit OpenJDK 7 on Windows 7 SP1	 55
Building 64-bit OpenJDK 7 on Windows 7 x64 SP1	 59
Preparing a standalone toolchain for 32- and 64-bit Windows' builds	 61

Chapter 4: Building OpenJDK 8	 65
Introduction	 65
Working with GNU Autoconf	 67
Building OpenJDK 8 Ubuntu Linux 12.04 LTS	 69
Using ccache to speed up the OpenJDK 8 build process	 72
Building OpenJDK 8 on Mac OS X	 73
Building OpenJDK 8 on Windows 7 SP1	 75

Chapter 5: Building IcedTea	 79
Introduction	 79
Building IcedTea 6	 80
Building IcedTea 7	 83
Building OpenJDK 7 with IcedTea patches	 85
Building IcedTea 7 with the NSS security provider	 87
Building IcedTea 6 with the SystemTap support	 88

Chapter 6: Building IcedTea with Other VM Implementations	 91
Introduction	 91
Configuring cross-compilation between ARM and x86	 92
Building IcedTea for ARM with integrated CACAO VM	 100
Porting JamVM to use OpenJDK	 102
Configuring Zero-assembler with the Shark compiler to use OpenJDK	 103
Building for MIPS and other architectures using OpenEmbedded recipes	 105

Chapter 7: Working with WebStart and the Browser Plugin	 109
Introduction	 109
Building the IcedTea browser plugin on Linux	 110
Using the IcedTea Java WebStart implementation on Linux	 113
Preparing the IcedTea Java WebStart implementation for Mac OS X	 115
Preparing the IcedTea Java WebStart implementation for Windows	 117

Chapter 8: Hacking OpenJDK	 119
Introduction	 119
Setting up the development environment with NetBeans	 120
Working with Mercurial forest	 125
Understanding OpenJDK 6 and 7 incremental builds	 127
Debugging Java code using NetBeans	 129
Debugging C++ code using NetBeans	 133
Using NetBeans to compile HotSpot	 135
Using HotSpot dev parameters	 136

iii

Table of Contents

Adding new intrinsic to HotSpot	 138
Building VisualVM from the source code	 146
Creating a plugin for VisualVM	 148
Getting benefits from the AdoptOpenJDK project	 162

Chapter 9: Testing OpenJDK	 165
Introduction	 165
Running tests using the downloaded or the built version of jtreg	 167
Building jtreg from the source	 169
Running the standard set of OpenJDK tests	 172
Writing your own test for jtreg	 175
Using jtreg in GUI mode	 178
Writing TestNG tests for jtreg	 180
Compiling JT Harness from the source code	 183
Building and running jcstress 	 186
Writing tests for jcstress 	 189
Creating a benchmark project using JMH	 193
Downloading the source and compiling JHM	 200

Chapter 10: Contributing to OpenJDK	 203
Introduction	 203
Becoming a contributor	 206
Generating a patch with webrev	 207
Backporting OpenJDK v9 patches to OpenJDK v8	 209
Understanding OpenJDK groups	 211
Understanding OpenJDK projects	 213
Suggesting new JSRs	 214
Suggesting new JEPs	 216

Chapter 11: Troubleshooting	 221
Introduction	 221
Navigating through the process workflow	 222
Submitting a defect to the OpenJDK bug systems	 224
Creating a patch using NetBeans	 226
Creating a code review	 228

Chapter 12: Working with Future Technologies	 231
Introduction	 231
Building OpenJDK 9 on Mac OS X using Clang	 233
Building OpenJDK 9 on Windows using MSYS	 234
Running and testing the early access preview of OpenJDK 9	 237
Using Jigsaw	 239
Building OpenJDK 9 with Graal	 243
Building OpenJDK 9 with Sumatra	 245

iv

Table of Contents

Chapter 13: Build Automation	 257
Introduction	 257
Installing VirtualBox	 258
Preparing SSH keys	 259
Preparing VirtualBox machines with Linux	 262
Preparing VirtualBox machines with Mac OS X	 264
Preparing VirtualBox machines with Windows	 266
Automating builds	 270
Building cross-platform installers	 274

Index	 277

Preface
OpenJDK is a unique project that opens numerous and exciting opportunities for people
who want to dive into the huge and complicated infrastructure behind the JVM. There is an
incredible amount of things to learn and to explore. Almost anyone can find something in it
as per their interest, starting from HTTP, Web, software dependency problems, and ending
with hardware-specific JIT optimization techniques, and concurrency challenges. Such variety
is very unique and it would be true to say that there is no other open source project that
can provide something similar. The other factor is that there are not so many other open
source projects on that scale; possibly only the Linux core. Such scale requires a non-trivial
organizational approach and, to be involved in that process, to see how it works, is a very
interesting insight.

This cookbook will lead you through steps to take you into the world of OpenJDK as smoothly
as possible. It starts by explaining how to download the source code and how to build the
different versions of OpenJDK, how to set it up on a machine, and what different options are
available. Then, you will learn how to set up the development environment (IDE) required for
editing and debugging C++ and Java source code, and how to start making changes. It will
go through some examples, which you may decide to change in various parts of OpenJDK.
Further, it will cover the tools available for testing, benchmarking, and ensuring that the
changes you have made are not breaking the existing functionality. As OpenJDK is a big
project with its own rules and processes, there will be a part covering the procedures that
are involved in making changes or fixing bugs, the lifecycle of projects, JSRs, JEPs, and
so on. At the end, there will be a section about future work that is planned to be included
in forthcoming releases; that part will be the most interesting section for anyone who is
interested in the future direction of OpenJDK and wants to try something new, which is
not yet available in the stable product.

In addition, this book contains many practical examples which should be useful to any
developer who is working with OpenJDK or any other Java technology. They are available
in simple form, which allows you to quickly copy and use them for your own project.

Preface

2

What this book covers
Chapter 1, Getting Started with OpenJDK, provides an overview of OpenJDK, explains what it
is, and covers the basic steps required to have OpenJDK running and properly configured on
the machine.

Chapter 2, Building OpenJDK 6, covers the steps required to build OpenJDK Version 6. This
build is very different from OpenJDK 7 and OpenJDK 8 and requires more manual work to
be done.

Chapter 3, Building OpenJDK 7, covers the steps required to build OpenJDK Version 7.
Building OpenJDK 7 is an easier and more enjoyable process, compared to OpenJDK 6.

Chapter 4, Building OpenJDK 8, covers the steps required to build OpenJDK Version 8.

Chapter 5, Building IcedTea, teaches you how to build a set of tools that are developed apart
from OpenJDK. These tools are replaced with some proprietary bits that are not available as
open source, which include a browser plugin, Java WebStart, and so on.

Chapter 6, Building IcedTea with Other VM Implementations, covers some interesting VM
projects, which also can benefit from the features provided by IcedTea, and how to build
that product using these VMs and non-x86 CPUs.

Chapter 7, Working with WebStart and the Browser Plugin, will cover the configuration and
installation of WebStart and browser plugin components, which are the biggest parts of
the IcedTea project.

Chapter 8, Hacking OpenJDK, covers some bits which are required to start digging into the
OpenJDK source code. Such things are the installation and setup of IDE, debugging, and
updating HotSpot source code. There are also some useful examples of what the developer
can do, for example, implementing your own intrinsic details.

Chapter 9, Testing OpenJDK, will go through an approach used in OpenJDK to test the source
code and, since writing code is not enough, we need to write high quality product on which
the code has to be tested. This chapter will also show you some examples to use the latest
available tools.

Chapter 10, Contributing to OpenJDK, explains how OpenJDK is changing and evolving, how
changes are executed, and what one needs to do to participate or to facilitate changes in
OpenJDK. Some of these changes, if they are big enough, can take years to appear in the
production version.

Chapter 11, Troubleshooting, teaches you about one of the most important parts of any
project: bug fixing. It is important to understand which tools and processes are involved.
In this chapter, we will cover some important steps, from submitting defects, to pushing
the fix into the shared repository.

Preface

3

Chapter 12, Working with Future Technologies, covers some future developments in OpenJDK.
As with any big project, OpenJDK has a roadmap with some exciting and promising projects
for the next releases. That is exactly what this chapter is about. It lists all the steps required to
download sources, build, and run some examples, where possible.

Chapter 13, Build Automation, provides some useful tips for automating the build process. It
will be useful for those developers who make frequent changes in OpenJDK or always want to
have the build with all the latest changes.

What you need for this book
Generally, you will need nothing except a machine connected to the Internet, preferably to run
Linux. If you are going to use a Windows machine, then you will need to install Cygwin.

There may also be additional specific requirements which come with each recipe separately.

Who this book is for
This book is for developers who want a deeper understanding of OpenJDK and want to start
making changes. This could be someone who has some cool ideas and wants to contribute or
who has found a bug that is tempting to fix. Also it will provide a good starting point to people
who want to make changes to the existing VM, for some reason. This could be for research or
tailoring VM for specific needs, like special hardware or some very specific requirements.

Overall, it will be useful to anyone who wants to simply have look inside OpenJDK, see what it
is, and how it works.

Sections
This book contains the following sections:

Getting ready
This section tells us what to expect in the recipe, and describes how to set up any software or
any preliminary settings needed for the recipe.

How to do it…
This section characterizes the steps to be followed for "cooking" the recipe.

Preface

4

How it works…
This section usually consists of a brief and detailed explanation of what happened in the
previous section.

There's more…
It consists of additional information about the recipe in order to make the reader more curious
about the recipe.

See also
This section may contain references to the recipe.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

private static int doUpdateBytes(int crc, byte[] b, int off, int len)
{
 return updateBytes(crc, b, off, len);
}

Any command-line input or output is written as follows:

update-java-alternatives --list

Preface

5

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Then click on Done."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

6

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Getting Started with

OpenJDK

In this chapter, we will cover the following topics:

ff Distinguishing OpenJDK from Oracle JDK

ff Installing OpenJDK on Windows

ff Configuring OpenJDK on Windows

ff Installing OpenJDK on Linux

ff Configuring OpenJDK on Linux

ff Navigating through OpenJDK groups and projects

Introduction
OpenJDK is now an official Java 7 reference implementation, and is now one for Java 8 as
well. This means that the most essential projects of the Java ecosystem are now open source.
This also means that OpenJDK can be installed in various ways—from building from source to
installing the binary package from the package manager, if any.

Sun's effort to release an open source JDK was the beginning of the project publicly stated in
2006, during the JavaOne conference. HotSpot was released under the GPLv2 license. The
complete source code of the Java Class Library (JCL) was released in May 2007 under the
GPL, except for several proprietary parts with GPL-incompatible licenses.

However, some proprietary parts (from 4 to 1 percent of the total code lines, depending on the
update number) were required in OpenJDK in a separate proprietary bundle in the OpenJDK 7
b53 update in April 2009.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with OpenJDK

8

One may think that the initial installation and configuration are quite simple and do not need
some sort of detailed explanation. In many ways, that's true; but there are some difficulties
along the way.

We will start by distinguishing OpenJDK from Oracle JDK. The latter is based on the former,
but not entirely. Each one has its own advantages and drawbacks. The primary OpenJDK
advantage is the fact that it's open source while Oracle JDK is always recommended and is
ready-to-use. Besides, OpenJDK 6 is the only maintainable Java 6 realization left, after the
Java 6 discontinuation.

Then we will cover the installation process for Windows and possible issues with some
Windows versions. After that, we will describe some typical profiles to configure an installed
instance of OpenJDK for various needs, such as a server instance and developer instance.

Then we will go in to more complicated matters, such as installing OpenJDK on various Linux
systems. There are at least two common ways to do it: the distribution-recommended way that
depends on the distribution itself, and another way, which is common for all Linux systems.

Linux configuration is more or less the same as that of Windows, but there are some differences
that need to be covered. The differences are, mainly, related to system philosophy, namely the
way it's done and then what exactly is done.

Then we will proceed to OpenJDK internal structures—in an introductory way. We will consider
OpenJDK projects that are already in use, and will learn how to use instruments that we will
need later. Also, we will briefly look at OpenJDK groups and find out what they are doing and
how they may influence OpenJDK's further evolution.

Last but not least, you will learn how to benefit from the Adopt OpenJDK program, which is
also a part of the OpenJDK community. Adopt OpenJDK is an effort to improve OpenJDK
usability readiness, test new language releases, and do whatever it needs to make OpenJDK
more useful and welcoming among users as well as developers.

This chapter is written with an introductory purpose, and does not cover some details that are
common to Oracle Java. However, it provides a necessary basis to work with.

We will use Java 7, as it is stable and the latest Java version available. All screenshots and
processes are assuming that we use Java 7, if another is not explicitly mentioned.

If you already have OpenJDK built and installed as default and you are aware of the differences
between OpenJDK and Oracle JDK, as well as of the existence of Adopt OpenJDK, you may skip
this chapter entirely.

Chapter 1

9

Distinguishing OpenJDK from Oracle JDK
Though OpenJDK is an official reference implementation for the Java platform, certain
Oracle-provided software are not open source. The most famous of them is the Java browser
plugin, but there are a lot more differences than just that. This recipe will show you how to
distinguish OpenJDK from Oracle JDK.

Getting ready
To follow this recipe, you will need an installed OpenJDK instance. It will be good if you have
an Oracle JDK instance as well, to feel the difference. Also, we will assume that you have a
Linux installation and an update-java-alternatives command installed and ready to
use. To know how to install OpenJDK on various systems, see the later recipes in this chapter.
To know how to switch the system Java version, if you do not have update-alternatives
installed (for Fedora, Gentoo, and so on), visit the Configuring OpenJDK on Linux recipe or
refer to your distribution documentation/forums.

How to do it...
Please take a look at the following procedures to know the difference between OpenJDK and
Oracle JDK:

1.	 We will open a terminal and type the following command:
update-java-alternatives --list

2.	 We will see a full list of installed Java implementations:
$ update-java-alternatives --list

java-1.6.0-openjdk-amd64 1061 /usr/lib/jvm/java-1.6.0-openjdk-
amd64

java-1.7.0-openjdk-amd64 1071 /usr/lib/jvm/java-1.7.0-openjdk-
amd64

java-6-oracle 1073 /usr/lib/jvm/java-6-oracle

java-7-oracle 1081 /usr/lib/jvm/java-7-oracle

java-8-oracle 1082 /usr/lib/jvm/java-8-oracle

3.	 Let's set Oracle Java as default. We will run the following command with root access:
update-java-alternatives --set java-7-oracle

Getting Started with OpenJDK

10

This command may produce errors such as "no alternatives
for apt". It's OK, just ignore them.

4.	 Then we will go to https://www.java.com/en/download/installed.
jsp?detect=jre and check our browser plugin version. We will see the activate
link (following the name of the activating entity).

We can see from the result of our actions that the Java browser plugin has
been installed.

5.	 Let's try to set OpenJDK as the default Java environment (the actual instance name
may differ in your case):
update-java-alternatives --set java-1.7.0-openjdk-amd64

6.	 Then we will go to our browser page and refresh it. It may be necessary to restart the
browser so that the changes can take effect, as shown in the following screenshot:

We can see that the plugin is not from the JDK itself but from a project named IcedTea.

IcedTea is an open source project, whose goal is to replace proprietary parts of the Java
ecosystem as much as possible. The plugin itself is from IcedTea-Web, an open source
implementation of the Java Web Start and Java browser plugins.

In most distributions, the IcedTea plugin is installed by default. But it is necessary to keep
in mind that it's an open source plugin, and definitely not a referenced one. This means that
its functionality might be slightly different from the Oracle plugin. It is also possible that some
features may not work.

How it works…
Oracle JDK still has some proprietary components, and the browser plugin is one example. All
we need in this chapter is to see the difference between the work of OpenJDK and Oracle JDK
components that are different.

https://www.java.com/en/download/installed.jsp?detect=jre
https://www.java.com/en/download/installed.jsp?detect=jre

Chapter 1

11

Also, the huge difference between OpenJDK and Oracle JDK lies in the license. OpenJDK is
open source, while Oracle JDK contains proprietary pieces, and thus it is licensed under the
Oracle binary license. The fact that OpenJDK is open source provides a whole new range of
benefits (and exciting discoveries) through the ability to study and modify its source code. It is
also worth mentioning that more than 90 percent of Oracle JDK is based on OpenJDK source
code. This means the OpenJDK quality is not compromised in any way. The browser plugin is
not the only thing that is missed in OpenJDK compared to Oracle JDK.

See also
ff In Chapter 5, Building IcedTea, there is a detailed explanation of how to build

IcedTea from source.

Installing OpenJDK on Windows
Windows is the most commonly used OS in the world, and many developers are using it as
their primary system. Despite its popularity, Windows doesn't have such strong support by the
OpenJDK development community, and installation of the product is not as easy as in Linux.
This recipe will cover the steps required to install OpenJDK on Windows.

This recipe provides an easy but decentralized way to install programs, although the most
recent versions provide package repositories of their own. However, on Windows, the only
official way to install an up-to-date OpenJDK is to build it from source.

Getting ready
To follow this recipe, we will need an installed Windows system. Windows 7 or Windows 8 will
be best, because Windows XP is already officially discontinued by Microsoft.

How to do it...
There is an official build of OpenJDK on Windows, but it exists for referential purposes only.
It is official and easy to install, but it doesn't have any security updates or improvements.
However, there are unofficial builds, maintained by Alex Casco. We will try to install OpenJDK
in both ways:

1.	 We will start with an official reference build. To get it, we need to go to
https://jdk7.java.net/java-se-7-ri/ and accept the license terms.
Then, download and run the installer.

https://jdk7.java.net/java-se-7-ri/

Getting Started with OpenJDK

12

Though the OpenJDK source code is licensed by an open license,
this official build is licensed by the Oracle Binary Code license and
by GPLv2. If you want to keep your OpenJDK open source, please
use one licensed by GPLv2.

2.	 Unpack the downloaded file in a location you prefer. Let's name it C:/OpenJDK.

3.	 Open the Windows command line by navigating to Start | Run, type cmd, and click on
the Run button.

4.	 Run the following command:
C:\OpenJDK\bin\java.exe -version

It will output the Java version information. The output should look like this:
openjdk version 1.7.0
OpenJDK Runtime Environment <build 1.7.0-b146>
OpenJDK Client VM <build 21.0-b16, mixed mode>

Congratulations! We've just installed the OpenJDK official binary.

How it works…
The reference implementation is the only available official binary build of OpenJDK. But it
lacks security and is used only for reference purposes. It is a simple archive that needs to
be unpacked to use it.

To bypass this unpleasantness and give Windows users an opportunity to install OpenJDK
as a binary without building it from source, one of the OpenJDK contributors established a
completely unofficial but very useful OpenJDK build set for various platforms.

Moreover, this binary build, unlike the official one, is open source and licensed over GPL. So
we can use it even in a completely open source environment without adding any proprietary
pieces that will possibly get us in trouble.

You will find an installer for Mac in those unofficial builds
as well.

There's more...
Though an official reference binary is outdated, there is an unofficial project that provides
OpenJDK builds from sources that are up to date.

Chapter 1

13

Now we will install OpenJDK 7 from unofficial builds:

1.	 Go to https://github.com/alexkasko/openjdk-unofficial-builds.

2.	 Select an appropriate build for Windows and download it.

3.	 Unpack it and run install.exe.

4.	 Click on the Run button when the preceding message appears.

5.	 Carefully read and accept the license and then click on Next.

6.	 Select the installation path in the next window. It will point to your home directory by
default, so be careful—such an installation may be available to no one but yourself.

7.	 If the target directory does not exist, let the installer create it.

https://github.com/alexkasko/openjdk-unofficial-builds

Getting Started with OpenJDK

14

8.	 Check the red highlighted checkboxes in the preceding screenshot only if you want to
set this JDK as default for all users in the system, not just for you. You may uncheck
the fourth box if you don't need this JDK to be default at all.

9.	 Then click on the Next button and wait until the installation is finished.

10.	 Then click on the Next button for the last time.

11.	 Then click on Done.

See also
Although the simplest way to install OpenJDK is to unpack binaries, manually or in an
automatic fashion, there is no doubt that working with the source code will give us more
flexibility at all possible levels.

To know more, read the following chapters:

ff Chapter 2, Building OpenJDK 6 up to Chapter 4, Building OpenJDK 8 to learn about
building OpenJDK from source

ff Chapter 6, Building IcedTea with Other VM Implementations to build OpenJDK using
other VMs

ff Chapter 13, Build Automation to work with future technologies, which will be
unavailable in binary form for quite some time

Configuring OpenJDK on Windows
Although the initial configuration is sufficient for most tasks, it may still be required to do some
configuration. In the case of OpenJDK, this is performed by setting system variables. Here we
will touch only on the case that often occurs when JDK is unpacked manually—how to set it
as default.

Getting ready
To follow this recipe, we will need an OpenJDK instance installed on our Windows system.
Windows 7 or Windows 8 will be best, because Windows XP is already officially discontinued
by Microsoft.

Chapter 1

15

How to do it...
At first, we need to install our OpenJDK implementation as the default Java instance. This is
often necessary for development:

1.	 In order to do so, we will go to Start | Control Panel | System | Advanced |
Environment Variables | User Variables (or System Variables for system-wide
configuration) and add the path to the Java executable to the PATH system variable,
as shown:

If there are other paths to other Java executables, we may need to
delete them as well, but it will be better to remember them, since
we may need to restore our old default Java settings.

2.	 If we were installing OpenJDK from unofficial builds, there may be no need to change
the PATH variable at all.

Getting Started with OpenJDK

16

3.	 To validate our newly configured variable, we will go to the Command Prompt and type
the following:
java -version

4.	 The expected output is the version of our newly installed build.

How it works…
In order to set a newly installed OpenJDK instance as the default JDK, we need to change the
system variable. After that change, our Java executables will be visible to the system.

There's more...
The same procedure is followed to set the CLASSPATH variable. It is not very necessary, and if
you are using other libraries such as GNU classpath, you probably know about it.

Installing OpenJDK on Linux
The Linux operating system allows for many internal tweaks, as well as for changes to the
system's source code. It is also known as a complicated OS, and not all distributions are
user-friendly. There are many people using it, and it's open source, such as OpenJDK itself.
The installation process varies between chosen distributions, and we will go through the
process for the three most-used package managers, as well as through the process that
will work for virtually all x86 Linux distributions.

Getting ready
To follow this recipe, you will need an installed Linux system. It will be better if it has the kernel
version 2.6 or higher, though OpenJDK is reported workable on 2.4 kernels as well. Also, if you
have the .deb, .rpm, or .ebuild package manager, the recommended way to install any
package is to install it using those.

How to do it...
When the installation of various packages is concerned, the process is dependent on our
Linux distribution.

For a Debian-based distribution:

1.	 Open a terminal and type:
apt-get install openjdk-7-jdk

Chapter 1

17

We should have root permissions or use sudo to gain
access to system files.

2.	 This will trigger the installation automatically. If we get an error message, indicating
that the package is not found, we should Google an appropriate name for an
OpenJDK package for our distribution.

For an RPM-based distribution, we'll need to first search for the package names, because
package names are varied between different distributions, as shown here:

yum search openjdk

You will see an output like this:

java-1.6.0-openjdk.x86_64 : OpenJDK Runtime Environment
java-1.6.0-openjdk-demo.x86_64 : OpenJDK Demos
java-1.6.0-openjdk-devel.x86_64 : OpenJDK Development Environment
java-1.6.0-openjdk-javadoc.x86_64 : OpenJDK API Documentation
java-1.6.0-openjdk-src.x86_64 : OpenJDK Source Bundle
java-1.7.0-openjdk.x86_64 : OpenJDK Runtime Environment
java-1.7.0-openjdk-demo.x86_64 : OpenJDK Demos
java-1.7.0-openjdk-devel.x86_64 : OpenJDK Development Environment
java-1.7.0-openjdk-javadoc.noarch : OpenJDK API Documentation
java-1.7.0-openjdk-src.x86_64 : OpenJDK Source Bundle

You may install all of the packages that have the desired version. Then, we will run another
command, using the package name we've just found:

yum install <a found package name>

This will also trigger an automatic download and installation.

If we have a Gentoo-based distribution, just type the following:

emerge openjdk-1.7

This will, depending on your distribution, unpack and install a binary package or, more
probably, automatically build this package from source.

There's more...
Aside from the recommended ways, there is a generic installation procedure. It is quite
simple, though it may do some damage to your operating system, so don't use it unless you
really know what you're doing:

1.	 This is the way to unpack the OpenJDK system and then install it yourself. To get
the builds, we will refer again to the unofficial build page, https://github.com/
alexkasko/openjdk-unofficial-builds.

www.allitebooks.com

https://github.com/alexkasko/openjdk-unofficial-builds
https://github.com/alexkasko/openjdk-unofficial-builds
http://www.allitebooks.org

Getting Started with OpenJDK

18

2.	 Then unpack the downloaded package into a folder and run the following command
from it:
java -jar ./install.jar

3.	 A GUI installer window will appear. Read and accept the license, choose the directory,
and allow OpenJDK to be created, if it does not exist, as shown:

4.	 Check the preceding checkbox if you want to make this installation the default one.
Then click on the Next button.

5.	 Wait for the installation to complete, and click on Next for the last time.

6.	 Then click on Done.

Configuring OpenJDK on Linux
Linux configuration profiles differ from the Windows ones, because those systems are working
with resources as well as with hardware in a slightly different fashion. Here, we will briefly
explain those differences and a way to overcome them. Moreover, different Linux distributions,
as always, have different ways to deal with the configuration. We will try to pass through the
most noticeable ones.

Chapter 1

19

Getting ready
To follow this recipe, you will need an OpenJDK instance installed on a Linux system. The deb,
rpm, or ebuild distributions will suite us really well, although we will see a method for generic
Linux configuration also.

Also, we will need the bash startup files to be installed properly.

In most Linux distributions, the generic way to configure anything that needs
root access is not recommended, and the results of such an approach tend
to vanish with each update. Usually, there are distribution-recommended
how-to's where the problem solution is described.

How to do it...
First let's check whether your bash startup files are installed. The simplest possible way is to
configure your OpenJDK using them. They are system-wide and easy to use, though there are
drawbacks in their usage, such as update conflicts:

1.	 Type the following line in your terminal:
cat /etc/profile

If the file exists and contains some kind of shell script, then your bash
startup file's setup is probably correct. If not, please set it up by following
your distribution instructions.

2.	 Then add the /etc/profile.d/openjdk.sh file.

3.	 In order to configure different things, write the following:
To set JAVA_HOME
JAVA_HOME=<youJDK installation directory>
export JAVA_HOME

To append JAVA_HOME to PATH
pathappend $JAVA_HOME/bin PATH

To adjust CLASSPATH directory
AUTO_CLASSPATH_DIR=<classpath dir>
pathprepend . CLASSPATH

for dir in `find ${AUTO_CLASSPATH_DIR} -type d 2>/dev/null`; do
 pathappend $dir CLASSPATH

Getting Started with OpenJDK

20

done

for jar in `find ${AUTO_CLASSPATH_DIR} -name "*.jar" 2>/dev/null`;
do
 pathappend $jar CLASSPATH
done

export CLASSPATH

The CLASSPATH env variable should be avoided as much as
possible. It is generally used by legacy Java applications mostly
configured for JDK 1.2 and below. Use -classpath with java
and javac commands instead.

The preceding code is quite simple—it just appends all JAR files to the classpath.

How it works…
This script is called during shell initialization, so whenever you perform shell initialization,
these variables will be exported. The variables are thus system-wide, so be careful while
playing with them, as they can cause your Java to fail permanently if you make some errors
in this file.

There's more...
On Linux, you can see the directory structure of the installed OpenJDK using the
tree command.

To do so, install the tree package (use your distribution's documentation if possible)
and type:

tree -L 1 <path-to-openjdk> -lah

You will see something like the following:

/usr/lib/jvm/java-7-openjdk-amd64
├── [22] ASSEMBLY_EXCEPTION -> jre/ASSEMBLY_EXCEPTION
├── [4.0K] bin
├── [41] docs -> ../../../share/doc/openjdk-7-jre-headless
├── [4.0K] include
├── [4.0K] jre

Chapter 1

21

├── [4.0K] lib
├── [4.0K] man
├── [20] src.zip -> ../openjdk-7/src.zip
└── [22] THIRD_PARTY_README -> jre/THIRD_PARTY_README

This is the first-level directory structure in which:

ff ASSEMBLY_EXCEPTION is about licensing, and so is THIRD_PARTY_README.

ff The docs folder is for various OpenJDK documentation (changelog, copyrights,
authors, and so on).

ff The include directory is to include paths (for JNI, for example).

ff The jre directory is where the Java Runtime is placed.

ff The lib directory is where various OpenJDK libraries are placed (such as Jigsaw or
CORBA support; mainly, it consists of all OpenJDK code).

ff The man command is a manual pages entry for OpenJDK. It contains OpenJDK
classes, javadocs, and other manual entries. It may be extremely useful in the
highly improbable event of Internet connection loss.

Navigating through OpenJDK groups and
projects

OpenJDK is not one huge project. It consists of a large number of subprojects, and is developed
by relatively small groups of developers. We will look at them and realize what is going on under
the hood of OpenJDK.

Getting ready
To follow this recipe, you will need an OpenJDK instance installed and an established Internet
connection. The recipe is more for the initial understanding of the process rather than for
practical use, so if you are familiar with these matters, don't hesitate to skip this recipe entirely.

How to do it...
We will see what OpenJDK consists of:

1.	 Go to http://openjdk.java.net/.

2.	 In the right column, there are overviews of groups as well as projects.

http://openjdk.java.net/

Getting Started with OpenJDK

22

3.	 We will select one of them to get through the process.

The process will be described in detail in Chapter 8,
Hacking OpenJDK.

4.	 Let the selected project be JDK9.

5.	 Go to the JDK9 project page at http://openjdk.java.net/projects/jdk9/.

There's not very much to see, because there is only the basic on-boarding information.
Most of the project business is in the bug tracker.

After we read the information about the project on an official site, we will go to JDK JIRA to see
what's happening here. We will go to the JDK9 part of JIRA at https://bugs.openjdk.
java.net/browse/JDK/fixforversion/14949.

Here we can see various issues related directly to JDK9 and see how the process is going.

How it works…
Groups are sets of developers who may work on different projects but in one large scope.
Developers participate in chosen projects, and projects are sponsored by groups.

To participate in a group and become a contributor, follow the
instructions at http://openjdk.java.net/contribute/.

There are four major types of projects:

ff Feature

ff Improvement

ff Replacement

ff Portability

For example, the JDK9 project is a featured one. The graphics rasterizer project is a replacement
one, while the Swing group is a whole group that is focused on the improvement of Swing.

Various ports' projects are obviously the portability ones.

See also
ff See Chapter 8, Hacking OpenJDK, Chapter 11, Troubleshooting, and

Chapter 13, Build Automation—they will suit you just well

ff Tails in Chapter 4, Building OpenJDK 8

http://openjdk.java.net/projects/jdk9/
https://bugs.openjdk.java.net/browse/JDK/fixforversion/14949
https://bugs.openjdk.java.net/browse/JDK/fixforversion/14949
http://openjdk.java.net/contribute/

2
Building OpenJDK 6

In this chapter, we will cover:

ff Preparing CA certificates

ff Building OpenJDK 6 on Ubuntu Linux 12.04 LTS

ff Setting up the minimum build environment for the most compatible Linux builds

ff Installing Cygwin for Windows builds

ff Building 32-bit FreeType libraries for OpenJDK 6 on Windows

ff Building 64-bit FreeType libraries for OpenJDK 6 on Windows

ff Building 32-bit OpenJDK 6 on Windows 7 SP1

ff Building 64-bit OpenJDK 6 on Windows 7 x64 SP1

Introduction
OpenJDK 6 is a free and open source implementation of the Java Platform, Standard Edition
Version 6. Currently, this project is actively maintained by the community with the leading role
held by Red Hat, Inc.

Among all Java Platform versions, Java 6 had the longest lifetime. Its Reference
Implementation Sun Java 6 was released in December 2006, and OpenJDK 7, the
Reference Implementation of the next version of the Java Platform, wasn't out until
July 2011. During these 5 years, a lot of applications were built on this platform version.

Also, during these years the authors of Reference Implementation, Sun Microsystems,
were acquired by the Oracle Corporation, and so the product was renamed Oracle Java. In
February 2013, Oracle ended public support for Oracle Java 6, but it didn't mean the end of
Java 6: Red Hat, Inc. took the leading role in OpenJDK 6 and now it continues to release new
versions on a regular basis.

Building OpenJDK 6

24

The OpenJDK 6 codebase differs greatly from both Oracle and Sun Java 6 and OpenJDK 7
codebases. It started as a fork of OpenJDK 7 build 20, and the first version that passed the
Java Compatibility Kit test suite was released before the general availability of OpenJDK 7. The
versioning scheme differs from the versioning of Oracle Java 6. Each release doesn't have an
update number and only has a build number, such as b01 and b02. At the time of writing this
book, the release from January 2014 is Version b30.

You can see the family tree of OpenJDK 6 in the following diagram:

Diagram reference: https://blogs.oracle.com/darcy/entry/openjdk_6_genealogy

OpenJDK 6 is supported on Linux, Windows, and Solaris operating systems. Only Windows and
Linux versions will be discussed further. For both Linux and Windows operating systems, x86
and x86_64 architectures are supported. To conform with the OpenJDK terminology, the i586
term will be used for x86 architecture and amd64 will be used for the x86_64 one. OpenJDK
6 does not support cross compilation, so the i586 operating system must be used to build
the i586 version, and the same is true for amd64. The build process for both architectures is
almost the same for the Linux version, but differs a lot for the Windows one.

Preparing CA certificates
Public-key cryptography is used widely on the Internet. When the web browser opens a
secured website, it checks the server-side certificate against the website domain name. To
perform such checks, all web browsers have a list of Certificate Authority (CA) certificates
that may be used to sign server-side certificates of websites. Such checks may be disabled
but they are a necessary part of secure web browsing, client banking, and so on.

Chapter 2

25

When website access is used by a Java program (for example, to download a file from a
secure site), programs such as the browser in the preceding example should check the site
certificate. Such a check is usually performed by the underlying SSL API implementation, and
with the browser, the list of CA certificates must be available to the OpenJDK runtime.

Such a list is stored in the openjdk_directory/jre/security/cacerts file in the
Java KeyStore (JKS) format. In official OpenJDK 6 tarballs, the cacerts file contains no
certificates. If runtime with such empty file is used to access a secured website, an obscure
exception will be thrown.

The following code snippet will cause the exception with the root cause:

new URL("https://github.com/").openStream().close();
Caused by: java.security.InvalidAlgorithmParameterException:
 the trustAnchors parameter must be non-empty
 at java.security.cert.PKIXParameters.setTrustAnchors
 (PKIXParameters.java:...
 at java.security.cert.PKIXParameters.<init>
 (PKIXParameters.java:120)
 at java.security.cert.PKIXBuilderParameters.<init>
 (PKIXBuilderParameters....
 at sun.security.validator.PKIXValidator.<init>
 (PKIXValidator.java:73)
 ... 47 more

Getting ready
To prevent such an exception, a proper cacerts file should be prepared. It may be used
during the OpenJDK build or added to the jre/security directory later. The list of CA
certificates should be obtained and converted to the JKS format. To download and convert the
CA list, we will need a recent version of the Ubuntu (or similar Linux-based) operating system
with cURL and keytool utilities installed. You will also need cat, awk, and csplit standard
utilities; these should be already installed as part of the coreutils package.

How to do it...
The following steps will help us to prepare CA certificates:

1.	 Install the cURL utility:
sudo apt-get install curl

2.	 Install the keytool utility as part of the prebuilt OpenJDK package:
sudo apt-get install openjdk-7-jdk

Building OpenJDK 6

26

3.	 Download the CA list used by the Firefox web browser, preconverted in the PEM
format from the cURL library website into the cacert.pem file:
curl -L http://curl.haxx.se/ca/cacert.pem -o cacert.pem

4.	 Split the cacert.pem file into multiple files with the cert_ prefix. Each file will
contain a single CA certificate:
cat cacert.pem | awk '/-----BEGIN CERTIFICATE-----/,
 /-----END CERTIFICATE-----/{ print $0; }'
 > cacert-clean.pem

csplit -k -f cert_ cacert-clean.pem "
 /-----BEGIN CERTIFICATE-----/" {*}

5.	 Create a JKS keystore and load all CA certificates there using keytool:
for CERT_FILE in cert_*; do

 ALIAS=$(basename ${CERT_FILE})

 echo yes | keytool -import -alias ${ALIAS}
 -keystore cacerts -storepass 'changeit'
 -file ${CERT_FILE} || :

done

6.	 Check the cacerts file's contents:
keytool -list -keystore cacerts -storepass 'changeit'

Now the cacerts file is ready to use.

How it works...
A list of CA certificates used by the Firefox web browser is freely available as part of the
open source security library from Mozilla called NSS. This list is available in text format at
http://mxr.mozilla.org/mozilla/source/security/nss/lib/ckfw/builtins/
certdata.txt. We have used the same file but preconverted it in to PEM format, which is
available at the cURL website.

The keytool utility understands certificates in the PEM format, but it can only load
certificates one-by-one, so the big PEM file is split beforehand. Also, the keytool utility
has strict requirements from the PEM files: no text content is allowed before /-----BEGIN
CERTIFICATE-----/ and after /-----END CERTIFICATE-----/ strings. The awk
utility is used to strip unneeded prefixes and postfixes.

Then the csplit utility is used to split the file using /-----BEGIN CERTIFICATE-----/
separators.

Next, the split files are loaded into the keystore one by one. The keystore is created on the first
certificate load.

http://mxr.mozilla.org/mozilla/source/security/nss/lib/ckfw/builtins/certdata.txt
http://mxr.mozilla.org/mozilla/source/security/nss/lib/ckfw/builtins/certdata.txt

Chapter 2

27

The changeit password is used for this keystore, which may be quite an unsecure choice for
the password. However, this does not matter for the cacerts file because the CA certificates
contain only public keys and need not be hidden behind the password.

There's more...
Most of this recipe is not specific to the Ubuntu operating system; any Unix-like environment
(for example, Cygwin on Windows) would suffice.

Bash scripts in this recipe can be replaced by any other scripting language such as
Python or PowerShell.

Instead of the CA list from Firefox, any other set of CA certificates may be used. Some CA
certificates may be removed, for example a particular CA certificate not trusted by the user,
or some additional CA certificates may be added, for example inner corporate CA certificates
to access a company's intranet resources.

See also
ff The source of the script used in this recipe is the obuildfactory project on GitHub

at https://github.com/hgomez/obuildfactory/blob/2075649116e32a5f
0bbf8fc7b2791769387eda92/openjdk7/macosx/build.sh#L54

ff The cURL utility manual at http://curl.haxx.se/docs/manpage.html

ff The keytool utility manual at http://docs.oracle.com/javase/6/docs/
technotes/tools/windows/keytool.html

Building OpenJDK 6 on Ubuntu Linux 12.04
LTS

The build process of OpenJDK relies heavily on Unix-like development tools. Linux-based
operating systems usually have top notch support for such tools, so building OpenJDK on
Linux can be simpler than on Windows. For major distributions such as Fedora or Ubuntu,
build toolchain and all dependencies are already included in distributions as packages and
can be installed easily.

Ubuntu 12.04 LTS was chosen for this book because it is one of the most popular Linux
distributions. For readers running other operating Ubuntu 12.04, virtual images may be
found online for the most popular virtualization tools, such as Oracle VirtualBox or VMware.

To build binaries for i586 and amd64 architectures, corresponding versions of Ubuntu
should be used. Build instructions are exactly the same for both architectures, so they
won't be mentioned further in this recipe.

www.allitebooks.com

https://github.com/hgomez/obuildfactory/blob/2075649116e32a5f0bbf8fc7b2791769387eda92/openjdk7/macosx/build.sh#L54
https://github.com/hgomez/obuildfactory/blob/2075649116e32a5f0bbf8fc7b2791769387eda92/openjdk7/macosx/build.sh#L54
http://curl.haxx.se/docs/manpage.html
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
http://www.allitebooks.org

Building OpenJDK 6

28

Getting ready
For this recipe, we will need a clean Ubuntu 12.04 (server or desktop version) running.

How to do it...
The following steps will help us to build OpenJDK:

1.	 Install prepackaged binaries of OpenJDK 6:
sudo apt-get install openjdk-6-jdk

2.	 Install GCC toolchain and build dependencies:
sudo apt-get build-dep openjdk-6

sudo apt-get install libmotif-dev

3.	 Download and decompress official OpenJDK 6 build 30 tarball:
mkdir openjdk-6-src-b30-21_jan_2014

cd openjdk-6-src-b30-21_jan_2014

wget https://java.net/projects/openjdk6/downloads/download/
openjdk-6-src-b30-21_jan_2014.tar.xz

tar xJf openjdk-6-src-b30-21_jan_2014.tar.xz

rm openjdk-6-src-b30-21_jan_2014.tar.xz

4.	 Open the jdk/make/javax/sound/jsoundalsa/Makefile file with your favorite
text editor and change line 68 from LDFLAGS += -lasound to:
OTHER_LDLIBS += -lasound

5.	 Create a new text file buildenv.sh with the following environment settings:
export LD_LIBRARY_PATH=
export CLASSPATH=
export JAVA_HOME=
export LANG=C
export ALT_BOOTDIR=/usr/lib/jvm/java-6-openjdk

6.	 Import the environment into the current shell session (note a dot and a space
before it):
. buildenv.sh

7.	 Start the build process from the openjdk-6-src-b30-21_jan_2014 directory:
make 2>&1 | tee make.log

Chapter 2

29

8.	 Wait for the build to finish, and try to run the newly built binaries:
cd build/linux-amd64/j2sdk-image/

./bin/java –version

openjdk version "1.6.0-internal"

OpenJDK Runtime Environment (build 1.6.0-internal-ubuntu_22_
jan_2014_13_12-b00)

OpenJDK 64-Bit Server VM (build 23.25-b01, mixed mode)

How it works...
Prepackaged binaries of OpenJDK 6 are required because some of the build steps are run
using the external Java runtime.

The build-dep command is used to install all the dependencies that are required to build
the specified package. As Ubuntu packaged OpenJDK 6 is quite close to the official OpenJDK
6, this command will install almost all of the required dependencies.

The libmotif-dev package is the only additional package required. It contains the Motif
GUI toolkit header files.

The jdk/make/javax/sound/jsoundalsa/Makefile file adjustment is required to
conform with the Ubuntu 12.04 GCC 4.6 toolchain. It is not required for the original GCC 4.2
toolchain and may not be required for more recent OpenJDK 6 official sources, because this
change is going to be included in OpenJDK 6 upstream.

The tee command is used to write output to the logfile and the screen simultaneously.

After a successful build on the amd64 platform, JDK files will be placed in build/linux-
amd64/j2sdk-image and JRE files will be placed in build/linux-amd64/j2re-image.
On the i586 platform, the build/linux-i586 path will be used instead.

There's more...
Javadoc generation takes a lot of time and is the most memory consuming step of the build.
It may be skipped with an additional environment variable:

export NO_DOCS=true

This build has generated a milestone tag and a build number b00. The predefined build
number and milestone may be set using additional environment variables:

export MILESTONE=ubuntu-build
export BUILD_NUMBER=b30

Building OpenJDK 6

30

The cacerts file may be provided during the build using an additional environment variable:

export ALT_CACERTS_FILE=path/to/cacerts

For amd64 builds, preinstalled Java provided by the ALT_BOOTDIR variable may be either
the amd64 or i586 build. The i586 binaries consume less memory and may be used for
amd64 builds on limited hardware.

The build process for OpenJDK 6 is effectively single-threaded; parallel builds (using make -j
N) are not supported for this version.

See also
ff The previous recipe Preparing CA certificates

ff The official build instructions for OpenJDK 6 at http://hg.openjdk.java.net/
jdk6/jdk6/raw-file/tip/README-builds.html

ff The source bundles of the current OpenJDK 6 version from Red Hat, Inc. at
https://java.net/projects/openjdk6/downloads

ff The source bundles of older versions of OpenJDK 6 from Oracle at
http://download.java.net/openjdk/jdk6/promoted/

ff The mailing list thread about problems with jsoundalsa on Ubuntu 12.04 noted
previously at http://mail.openjdk.java.net/pipermail/jdk6-dev/2014-
January/003222.html

Setting up the minimum build environment
for the most compatible Linux builds

OpenJDK 6 on Linux was developed for and most excessively tested with those GCC toolchains
available at that time. Modern Linux distributions have newer toolchains, for example, Ubuntu
12.04 has GCC 4.6. Newer toolchains may have more advanced optimizations and provide
slightly faster code, but older ones should be more stable for OpenJDK.

Oracle published the minimum build environment description for OpenJDK 6. It says:

"Building with the MBE will generate the most compatible bits that install on,
and run correctly on, the most variations of the same base OS and hardware
architecture."

We are going to build OpenJDK 6 on one of the minimum build environment platforms—
Debian Linux 5.0 Lenny. The build instructions are exactly the same for i586 and amd64
architectures, so they won't be mentioned further in this recipe.

The build steps are similar to the previous recipe so we'll concentrate on different steps.

http://hg.openjdk.java.net/jdk6/jdk6/raw-file/tip/README-builds.html
http://hg.openjdk.java.net/jdk6/jdk6/raw-file/tip/README-builds.html
https://java.net/projects/openjdk6/downloads
http://download.java.net/openjdk/jdk6/promoted/
http://mail.openjdk.java.net/pipermail/jdk6-dev/2014-January/003222.html
http://mail.openjdk.java.net/pipermail/jdk6-dev/2014-January/003222.html

Chapter 2

31

Getting ready
In this recipe, we will need Debian Lenny running. Installation images may be downloaded from
the Debian CDImage archive. Lenny may not be compatible with some of the hardware on newer
laptops, but should run fine with virtualization tools such as Oracle VirtualBox or VMware.

How to do it...
The following steps will help us to set up the minimum build environment:

1.	 Add archive repositories to the /etc/apt/sources.list file:
deb http://archive.kernel.org/debian-archive/debian
 lenny main contrib non-free

deb-src http://archive.kernel.org/debian-archive/debian
 lenny main contrib non-free

2.	 Install OpenJDK 6 binaries and build dependencies:
sudo apt-get install openjdk-6-jdk

sudo apt-get build-dep openjdk-6

sudo apt-get install libmotif-dev

3.	 Download and decompress Apache Ant:
wget http://archive.apache.org/dist/ant/binaries/apache-ant-1.8.4-
bin.tar.gz

tar xzf apache-ant-1.8.4-bin.tar.gz

4.	 Create a new text file buildenv.sh with environment settings, and import its
content into the current bash shell:
export LD_LIBRARY_PATH=

export CLASSPATH=

export JAVA_HOME=

export LANG=C

export ALT_BOOTDIR=/usr/lib/jvm/java-6-openjdk

export ANT_HOME=path/to/apache-ant-1.8.4/

export PATH=$ANT_HOME/bin:$PATH

. buildenv.sh

5.	 Download and decompress the official OpenJDK 6 build 30 tarball:
mkdir openjdk-6-src-b30-21_jan_2014

cd openjdk-6-src-b30-21_jan_2014

Building OpenJDK 6

32

wget https://java.net/projects/openjdk6/downloads/download/
openjdk-6-src-b30-21_jan_2014.tar.gz

tar xzf openjdk-6-src-b30-21_jan_2014.tar.gz

rm openjdk-6-src-b30-21_jan_2014.tar.gz

6.	 Start the build process from the openjdk-6-src-b30-21_jan_2014 directory:
make 2>&1 | tee make.log

7.	 Wait for the build to finish.

How it works...
Archive repository setup is required because the official Lenny repositories are no longer available.

A newer version of Apache Ant is required because the bundled Version 1.7.0 in Lenny is too
old and OpenJDK 6 requires Ant 1.7.1 or higher.

There's more...
Other older Linux distributions such as Ubuntu 8.04 or Fedora 9 also may be used as the
minimum build environment.

See also
ff The Building OpenJDK 6 on Ubuntu Linux 12.04 LTS recipe

ff The official build instructions for OpenJDK, 6 with the description of minimum build
platforms, at http://hg.openjdk.java.net/jdk6/jdk6/raw-file/tip/
README-builds.html#MBE

ff The Debian CDImages archive at http://cdimage.debian.org/cdimage/
archive/

Installing Cygwin for Windows builds
Like most of the other cross-platform open source projects, OpenJDK uses Unix-like tools for
the build process. Tools such as gmake, awk, and cpio are ubiquitous for the Unix and Linux
world and may be found on almost any Unix-like platform. However, these tools are based on
Unix process behavior, and that becomes a problem when we want to run them on Windows.

Cygwin is a set of free and open source tools being developed by Red Had, Inc. and
provides limited support for the Unix-like environment in Windows. It is required to
build OpenJDK on Windows.

http://hg.openjdk.java.net/jdk6/jdk6/raw-file/tip/README-builds.html#MBE
http://hg.openjdk.java.net/jdk6/jdk6/raw-file/tip/README-builds.html#MBE
http://cdimage.debian.org/cdimage/archive/
http://cdimage.debian.org/cdimage/archive/

Chapter 2

33

OpenJDK requires Cygwin i586 for both i586 and amd64 builds. The installation procedure
is the same for both Windows 7 SP1 i586 and Windows 7 SP1 amd64 so we won't mention
architecture further in this recipe.

Getting ready
To install and successfully use Cygwin, we'll need a clean installation of Windows 7 SP1
without antivirus software running.

How to do it...
The following steps will help us to install Cygwin:

1.	 Download setup-x86.exe from the http://cygwin.com/ website.

2.	 Run the installer and choose http://mirrors.kernel.org as a packages' mirror.

3.	 Choose the additional packages:
Devel/binutils
Interpreters/m4
Utils/cpio
Archive/zip
Archive/unzip
System/procps

4.	 Perform the installation into the directory with the path in ASCII letters or numbers
without spaces.

How it works...
Any antivirus software (or similar software that may scan the memory of other applications) is
prohibited because it may interfere with Cygwin. Cygwin uses complex techniques to simulate
the fork functionality of Unix on Windows. These techniques may not work with antivirus
scanners running.

Only the i586 version on Cygwin is supported to build OpenJDK. The amd64 Cygwin may or
may not work.

The Cygwin community hosts a lot of packages' mirrors worldwide. We use the https://www.
kernel.org/ mirror as one that should have the most complete set of prebuilt packages:

ff The binutils package is required for the ar utility. This is a special kind of archiver
that may be used to create and update static libraries

ff The m4 package is required to work with classic Unix macro processor scripts

http://cygwin.com/
http://mirrors.kernel.org
https://www.kernel.org/
https://www.kernel.org/

Building OpenJDK 6

34

ff The cpio utility is used as an archiver because it may be much faster than the more
popular tar utility in some environments

ff The procps package is required for the free utility, which is used to get information
about free and used memory

There's more...
OpenJDK 6 can also be built using commercial MKS toolkit. This method provides shorter
build times, but is not supported for OpenJDK 8 and above.

A Cygwin installation may be copied from one Windows box to another without installation.
This may be useful for builds on clean Windows boxes. Besides the usual windows binaries,
Cygwin uses special kinds of symlink files, for example, bin/awk actually points to bin/
gawk.exe. These symlinks may be crippled if loaded into or from version control systems
such as Git. This problem may be circumvented by replacing symlinks with copies of actual
binaries with symlink names: gawk.exe to awk.exe and so on.

See also
ff The official build instructions for OpenJDK 6 with the list of required Cygwin packages

at http://hg.openjdk.java.net/jdk6/jdk6/raw-file/tip/README-
builds.html#cygwin

ff The list of applications that may interfere with Cygwin at https://cygwin.com/
faq/faq.html#faq.using.bloda

ff The Cygwin user's guide at https://www.cygwin.com/cygwin-ug-net/
cygwin-ug-net.html

Building 32-bit FreeType libraries for
OpenJDK 6 on Windows

The majority of fonts used in modern software are encoded in vector format for proper scaling
support. There are multiple standards for vector fonts, for example, Metafont from Professor
Donald E. Knuth, Type1 from Adobe, TrueType from Apple and Microsoft, and OpenType from
Adobe and Microsoft.

Rasterization of vector fonts is a remarkably complex task and most desktop software (such
as web browsers or text processors) use third-party libraries to work with fonts.

Sun Microsystems licensed a third-party closed-source font library for use in Sun Java
implementations. Sources of this library could not be released to public along with the
initial release of OpenJDK. The Font Scaler Replacement Project was launched in the
early days of OpenJDK to adopt an open source font library instead.

http://hg.openjdk.java.net/jdk6/jdk6/raw-file/tip/README-builds.html#cygwin
http://hg.openjdk.java.net/jdk6/jdk6/raw-file/tip/README-builds.html#cygwin
https://cygwin.com/faq/faq.html#faq.using.bloda
https://cygwin.com/faq/faq.html#faq.using.bloda
https://www.cygwin.com/cygwin-ug-net/cygwin-ug-net.html
https://www.cygwin.com/cygwin-ug-net/cygwin-ug-net.html

Chapter 2

35

FreeType is a free and open source (under permissive license) font rasterization library.
It is used widely in open source desktop software. FreeType was chosen by the OpenJDK
team as a replacement for the closed-source font library and is now used by OpenJDK on
all supported platforms. Prebuilt static and dynamic FreeType libraries are required for
OpenJDK builds on Windows.

Getting ready
For this recipe we should have Windows 7 SP1 i586 running.

How to do it...
The following steps will help us in building FreeType:

1.	 Install Visual Studio.NET 2003 to the default installation path. Only Prerequisites and
Visual C++ components are required.

2.	 Download the FreeType 2.5.2 source tarball from http://freetype.org/ and
decompress it.

3.	 Open the file include\config\ftoption.h and uncomment:
#define FT_CONFIG_OPTION_SUBPIXEL_RENDERING

4.	 Change lines /* #define FT_EXPORT(x) extern x */ and /* #define FT_
EXPORT_DEF(x) x */ to:
#define FT_EXPORT(x) __declspec(dllexport) x
#define FT_EXPORT_DEF(x) __declspec(dllexport) x

5.	 Open the project file builds\windows\visualc\freetype.dsw in Visual Studio.
NET 2003.

6.	 Change Solution Configuration to Release Multithreaded and build the
solution. The freetype252MT.lib file will be placed into the objs directory.

7.	 Rename the file freetype.lib and save it for OpenJDK builds.

8.	 In Project Properties change Configuration Type to Dynamic Library (.dll) and build
the solution. The freetype.dll and freetype.exp files will be placed into the
objs\release_mt directory.

The directory with three result files will be denoted by the ALT_FREETYPE_LIB_PATH
environment variable during OpenJDK builds.

http://freetype.org/

Building OpenJDK 6

36

How it works...
The FT_CONFIG_OPTION_SUBPIXEL_RENDERING macro enables subpixel rendering
functionality in FreeType implementation.

The FT_EXPORT and FT_EXPORT_DEF macros should be adjusted with the calling conventions
for the current platform. We changed them to use Windows-specific calling conventions.

FreeType has no predefined project file for Visual Studio.NET 2003. Instead, we are using the
project file created for Visual Studio 6.

See also
ff The Building 64-bit FreeType libraries for OpenJDK 6 on Windows recipe

ff The FreeType official website http://freetype.org/

ff Professor Donald E. Knuth's interview covering Metafont and TrueType at
http://www.advogato.org/article/28.html

ff The OpenJDK: Font Scaler Replacement Project page at
http://openjdk.java.net/projects/font-scaler/

Building 64-bit FreeType libraries for
OpenJDK 6 on Windows

The FreeType build for Windows amd64 is similar to the i586 build but has a much more
complex configuration. Contrary to the i586 version, the amd64 library can be built with
freely available tools using Microsoft Visual Studio 2005 Express Edition with the Windows
Server 2003 SP1 Platform SDK.

Getting ready
For this recipe, we need to have Windows 7 SP1 amd64 running.

How to do it...
The following steps will help us in building FreeType:

1.	 Download the Visual Studio 2005 Express Edition from http://www.microsoft.
com/en-in/default.aspx and install it to the default location. The messages
about Windows 7 compatibility problems may be ignored.

2.	 Install VS80sp1-KB926748-X86-INTL and VS80sp1-KB932232-X86-ENU Visual
Studio updates.

http://freetype.org/
http://www.advogato.org/article/28.html
http://openjdk.java.net/projects/font-scaler/
http://www.microsoft.com/en-in/default.aspx
http://www.microsoft.com/en-in/default.aspx

Chapter 2

37

3.	 Download Windows Server 2003 SP1 Platform SDK from http://www.microsoft.
com/en-in/default.aspx and install it using the default installation path.
AMD-64 components are required for the build.

4.	 Perform steps 2, 3, and 4 from the previous recipe to download and adjust
FreeType sources.

5.	 From the Start menu go to Microsoft Platform SDK for Windows Server 2003 SP1 | Open
Build Environment Window | Windows Server 2003 64-bit Build Environment | Set Win Svr
2003 x64 Build Env (Retail).

6.	 From the cmd.exe window that appears, run (the administrator permissions warning
may be ignored):
>"C:\Program Files (x86)\Microsoft Visual Studio 8\Common7\IDE\
VCExpress.exe"

7.	 In the main menu navigate to Tools | Options | Projects and Solutions | VC++
Directories and adjust the following directories:
Executable files:

C:\Program Files\Microsoft Platform SDK\Bin\win64\x86\AMD64
C:\Program Files\Microsoft Platform SDK\Bin
C:\Windows\System32

Include files:

C:\Program Files\Microsoft Platform SDK\Include
C:\Program Files\Microsoft Platform SDK\Include\crt

Library files:

C:\Program Files\Microsoft Platform SDK\Lib\AMD64

8.	 Open the FreeType solution at this path freetype-2.5.2\builds\windows\
vc2005\freetype.sln.

9.	 In the menu, navigate to Project | Properties | Configuration Properties |
Configuration Manager and choose <New ...> under Active solution platform.

10.	 Type new platform x64 and choose Win32 from Copy settings from.

11.	 On the Configuration Manager form, navigate to Active solution configuration | LIB
Release Multithreaded and then go to Active solution platform | x64.

12.	 On the same form, in the grid for the FreeType project, navigate to Configuration |
Release multithreaded and leave the Win32 value under the Platform menu.

13.	 In the Configuration Properties menu, check whether Configuration Type is set to
Static Library (.lib).

www.allitebooks.com

http://www.microsoft.com/en-in/default.aspx
http://www.microsoft.com/en-in/default.aspx
http://www.allitebooks.org

Building OpenJDK 6

38

14.	 Navigate to Configuration Properties | C/C++ | Preprocessor and change the
WIN32 value in the Processor Definitions string to WIN64.

15.	 Run Build Solution under Build, the freetype252MT.lib library will be placed into
the freetype-2.5.2\objs\win32\vc2005 directory. Rename it to freetype.
lib, and save it for later.

16.	 In the Configuration Properties menu, change Configuration Type to Dynamic
Library (.dll) and choose Apply.

17.	 Navigate to Configuration Properties | Linker | Input and put bufferoverflowU.
lib into the Additional Dependencies field.

18.	 Navigate to Configuration Properties | Linker | Command Line and put /
MACHINE:AMD64 into the Additional options field.

19.	 Clean and build the solution. Target libraries freetype.dll and freetype.exp
will be placed into the freetype-2.5.2\objs\release_mt directory.

The directory with three result files will be denoted by the ALT_FREETYPE_LIB_PATH
environment variable during OpenJDK builds.

How it works...
Visual Studio 2005 Express does not support amd64 architecture, so the setup to use amd64
compilers from Windows SDK takes most of this recipe.

See also
ff The Building 32-bit FreeType libraries for OpenJDK 6 on Windows recipe

ff The FreeType official website http://freetype.org/

Building 32-bit OpenJDK 6 on
Windows 7 SP1

Windows builds are much more cumbersome than Linux ones. Despite that, GCC toolchain is
available on Windows. Through the MinGW project, OpenJDK uses official Microsoft compilers
from Visual Studio and Windows SDK. This brings a lot of complications because the Microsoft
toolchain doesn't work well with the Unix-like environment provided by Cygwin.

Visual Studio.NET 2003 is required to build i586 binaries. OpenJDK 6 on Windows i586 is
the only version in this book that cannot be built using freely available tools. VS 2003 was
chosen for OpenJDK 6 because it supports Windows 2000, which was critical at the time
of Sun Java 6's development.

http://freetype.org/

Chapter 2

39

Getting ready
For this recipe, we should have Windows 7 SP1 i586 running with no antivirus software
installed. Antivirus software is not allowed because it may interfere with the Cygwin runtime.

How to do it...
The following steps will help us to build OpenJDK 6:

1.	 Install Visual Studio.NET 2003 to the default installation path. Only the prerequisites
and the Visual C++.NET component are required.

2.	 Install or copy the preinstalled version of Cygwin to c:\cygwin.

3.	 Download and install Microsoft DirectX 9.0 SDK (Summer 2004) to the default
installation path. Note that this distribution is not available anymore from the
http://www.microsoft.com/en-in/default.aspx website. We can
download it from some other places online and check the file details:
name: dxsdk_sum2004.exe
size: 239008008 bytes
sha1sum: 73d875b97591f48707c38ec0dbc63982ff45c661

4.	 Download Platform Software Development Kit Redistributable: Microsoft Layer for
Unicode on Windows 95, 98, and Me Systems, 1.1.3790.0 from http://www.
microsoft.com/en-in/default.aspx and install it into the c:\unicows
directory.

5.	 Download unicows.lib from the openjdk-unofficial-builds GitHub project
and put this into the c:\unicows directory too.

6.	 Download the Apache Ant version 1.8.4 ZIP distribution from the http://apache.
org/ website and decompress it into the c:\ant directory.

7.	 Download GNU make utility binary from the http://www.cmake.org/ website
using http://www.cmake.org/files/cygwin/make.exe-cygwin1.7,
rename it to make.exe, and put it into the c:\make directory.

8.	 Create the c:\path_prepend directory and copy the find.exe and sort.exe
files from the Cygwin installation.

9.	 Download the prebuilt FreeType libraries from the openjdk-unofficial-builds
GitHub project (directory 6_32) and put the binaries into the c:\freetype directory
and header files into the c:\freetype\include directory.

10.	 Install OpenJDK 6 binaries or Oracle Java 6 into c:\jdk6.

11.	 Download the official OpenJDK 6 build 30 sources tarball from the https://java.
net/projects/openjdk6/downloads web page and decompress it into the
c:\sources directory (warning: the tarball does not include the root directory)

http://www.microsoft.com/en-in/default.aspx
http://www.microsoft.com/en-in/default.aspx
http://www.microsoft.com/en-in/default.aspx
http://apache.org/
http://apache.org/
http://www.cmake.org/
http://www.cmake.org/files/cygwin/make.exe-cygwin1.7
https://java.net/projects/openjdk6/downloads
https://java.net/projects/openjdk6/downloads

Building OpenJDK 6

40

12.	 In the sa.make file at hotspot\make\windows\makefiles, change line 100
from SA_CFLAGS = $(SA_CFLAGS) /ZI to:
SA_CFLAGS = $(SA_CFLAGS) /Zi

13.	 Create a build.bat batch file and write the following environment variables
settings there:
@echo off
set LD_LIBRARY_PATH=
set CLASSPATH=
set JAVA_HOME=
set PATH=c:/path_prepend;C:/WINDOWS/system32;C:/WINDOWS;C:/
WINDOWS/System32/Wbem;c:/make;c:/cygwin/bin;c:/jdk6/bin;c:/ant/bin
set ALT_BOOTDIR=c:/jdk6
set ALT_FREETYPE_LIB_PATH=c:/freetype
set ALT_FREETYPE_HEADERS_PATH=c:/freetype/include
set ALT_UNICOWS_LIB_PATH=c:/unicows
set ALT_UNICOWS_DLL_PATH=c:/unicows
call "C:/Program Files/Microsoft Visual Studio .NET 2003/Common7/
Tools/vsvars32.bat"
bash
echo Press any key to close window ...
pause > nul

14.	 Run build.bat from Windows Explorer. The cmd.exe window should appear with
bash launched.

15.	 From the bash Command Prompt run the following commands:
cd /cygdrive/c/sources
chmod –R 777
make > make.log 2>&1

16.	 Launch another Cygwin console and run the following commands:
cd /cygdrive/c/sources
tail -f make.log

17.	 Wait for the build to finish.

How it works...
Cygwin installation is covered in the Installing Cygwin for Windows builds recipe of this chapter.

Directories in the root of disk C are used here for brevity. Generally, arbitrary paths consisting
of ASCII letters or numbers and without spaces can be used.

Visual Studio 2003 is not officially supported on Windows 7. It warns about possible compatibility
problems and may have glitches in the GUI interface, but its command-line tools work fine and
the GUI interface is not needed for the OpenJDK build.

Chapter 2

41

The newer version of DirectX SDK may also be used.

Different GNU make versions may have different problems on Windows. This particular version
from the cmake project was tested on different Windows versions and works fine.

This recipe uses prebuilt FreeType 2.4.10 libraries from the openjdk-unofficial-builds
GitHub project. FreeType may be built from sources using Visual Studio 2003. Please see the
Building 32-bit FreeType libraries for OpenJDK 6 on Windows recipe in this chapter.

A patch for HotSpot serviceability Makefile file is required to circumvent the VS2003 bug
discovered after one of the recent security updates. This change is going to be upstreamed
into official OpenJDK 6 sources and may not be required for more recent source tarballs.

In environment settings, additional attention should be paid to the order of the contents
of the PATH variable order. The sort and find Cygwin utilities go at the start of the PATH
variable so they are not overshadowed by Windows utilities with the same name but a
different functionality. The make utility is going goes before Cygwin to not be so they are not
overshadowed by another version of make that may be included in the Cygwin installation.

The chmod 777 command is required to fix Cygwin file permissions that may cause errors in
later stages of the build.

The make output will be redirected to the make.log file. The 2>&1 statement ensures that
both stdout and stderr will be redirected.

The tail -f command allows us to watch the contents of the make.log file as they are
written during the build process.

The pause > nul command is added at the end of the batch file to prevent the cmd.exe
window from disappearing in the case of runtime errors.

There's more...
To build the most compatible binaries, the same recipe should be used, but the Windows
2000 operating system should be used instead of Windows 7.

In Windows 2000, the chmod 777 command is not required.

See also
ff The Installing Cygwin for Windows builds recipe

ff The Building OpenJDK 6 on Ubuntu Linux 12.04 LTS recipe, for information about
build tuning

ff The Building 32-bit FreeType libraries for OpenJDK 6 on Windows recipe

ff The Preparing CA certificates recipe

Building OpenJDK 6

42

ff The official build instructions for OpenJDK 6 at http://hg.openjdk.java.net/
jdk6/jdk6/raw-file/tip/README-builds.html

ff The mailing list thread about the Serviceability HotSpot patch at http://mail.
openjdk.java.net/pipermail/jdk6-dev/2013-December/003163.html

Building 64-bit OpenJDK 6 on Windows 7
x64 SP1

The amd64 build on Windows 7 is similar to the i586 build, but has additional complications.

Cygwin (at least the more common i586 version) works much worse on amd64 Windows.
Due to a much bigger address space size, Cygwin fork techniques work much slower and
are less reliable.

Visual Studio.NET 2003 does not support the amd64 architecture so the Windows Server
2003 SP1 Platform SDK is used instead.

Getting ready
For this recipe, we should have Windows 7 SP1 i586 running with no antivirus software
installed. Antivirus software is not allowed because it may interfere with the Cygwin runtime.

How to do it...
The following steps will help us to build OpenJDK:

1.	 Download the Windows Server 2003 SP1 Platform SDK from the Microsoft website
and install it using the default installation path. AMD-64 and MDAC (Microsoft Data
Access Services) components are required for the build.

2.	 Perform steps 2 to 11 from the Building 32-bit OpenJDK 6 on Windows 7 SP1 recipe
(for FreeType libraries use 6_64 directory).

3.	 Step 12 from the previous recipe is not required for the amd64 build and may
be skipped.

4.	 Create a build.bat batch file and write the following environment variables settings:
@echo off
set LD_LIBRARY_PATH=
set CLASSPATH=
set JAVA_HOME=
set PATH=C:/path_prepend;C:/WINDOWS/system32;C:/WINDOWS;C:/
WINDOWS/System32/Wbem;C:/make;C:/cygwin/bin;C:/jdk6/bin;C:/ant/bin
set ALT_BOOTDIR=c:/jdk6
set ALT_FREETYPE_LIB_PATH=c:/freetype

http://hg.openjdk.java.net/jdk6/jdk6/raw-file/tip/README-builds.html
http://hg.openjdk.java.net/jdk6/jdk6/raw-file/tip/README-builds.html
http://mail.openjdk.java.net/pipermail/jdk6-dev/2013-December/003163.html
http://mail.openjdk.java.net/pipermail/jdk6-dev/2013-December/003163.html

Chapter 2

43

set ALT_FREETYPE_HEADERS_PATH=c:/freetype/include
set ALT_UNICOWS_LIB_PATH=c:/unicows
set ALT_UNICOWS_DLL_PATH=c:/unicows
call "C:/Program Files/Microsoft Platform SDK"/SetEnv.cmd /X64 /
RETAIL
bash
echo Press any key to close window ...
pause > nul

5.	 Follow steps 14 to 17 from the previous recipe.

How it works...
Most of the notes from the i586 build are also valid for the amd64 build except those specific
to VS2003.

Patch to serviceability Makefile is not required because that part of Makefile is specific to
i586 builds.

There's more...
To build the most compatible binaries, the same recipe should be used, but the Windows
2003 Server amd64 operating system should be used instead of Windows 7.

In Windows 2003, the chmod 777 command is not required.

See also
ff The Installing Cygwin for Windows builds recipe

ff The Building OpenJDK 6 on Ubuntu Linux 12.04 LTS recipe, for information about
build tuning

ff The Building 64-bit FreeType libraries for OpenJDK 6 on Windows recipe

ff The Preparing CA certificates recipe

ff The official build instructions for OpenJDK 6 at http://hg.openjdk.java.net/
jdk6/jdk6/raw-file/tip/README-builds.html

http://hg.openjdk.java.net/jdk6/jdk6/raw-file/tip/README-builds.html
http://hg.openjdk.java.net/jdk6/jdk6/raw-file/tip/README-builds.html

3
Building OpenJDK 7

In this chapter, we will cover:

ff Building OpenJDK 7 on Ubuntu Linux 12.04 LTS

ff Building OpenJDK 7 on Mac OS X

ff Building 32-bit FreeType libraries for OpenJDK 7 on Windows

ff Building 64-bit FreeType libraries for OpenJDK 7 on Windows

ff Building 32-bit OpenJDK 7 on Windows 7 SP1

ff Building 64-bit OpenJDK 7 on Windows 7 x64 SP1

ff Preparing a standalone toolchain for 32- and 64-bit Windows builds

Introduction
OpenJDK 7 is a free and open source implementation of Java Platform, Standard Edition
Version 7. At the time of writing this book, it is the latest version of OpenJDK that was
ready for the production usage.

Initially, a lot of advanced changes were planned for OpenJDK 7, such as the modular VM and
lambda expression support, but due to various technical and organizational reasons, after
Sun Microsystems' acquisition by Oracle, most of the new features were postponed for the
next versions of OpenJDK. This expedited the release. It reached General Availability status
on 28 July 2011 and was the first OpenJDK version released as a Reference Implementation
for the Java platform.

The major updates to OpenJDK 7 numbered update 2, update 4, and update 6 were released
during the next year. After that, version numbering was changed and the next update 40,
which is the latest version at the time of writing, was released in September 2013. The
following update 60 was planned for May 2014 and the lifetime of OpenJDK 7 will end with
update 80 in early 2015.

Building OpenJDK 7

46

OpenJDK 7 release cycle differ from Oracle Java release cycles. Oracle Java updates are
released for regular security-related changes and for OpenJDK updates. Oracle security
changes are propagated to OpenJDK 7 (and to OpenJDK 6 where applicable) but OpenJDK
is not released immediately after that. Instead, releases are done on major changes and
cumulative security changes usually contain updated versions of HotSpot VM.

OpenJDK 7 is supported on Linux, Windows, Mac OS X, and Solaris operating systems. Only
Windows, Linux, and Mac OS X versions will be discussed further. For both Linux and Windows
operating systems, x86 and x86_64 architectures are supported. For Mac OS X only x86_64
is supported. To conform with OpenJDK terminology, the i586 term will be used for x86
architecture and amd64 will be used for the x86_64 one. OpenJDK 7 does not support
cross-compilation, so the i586 operating system must be used to build the i586 version
and the same is true for amd64. The build process for both architectures is almost the
same for Linux version, but differs greatly for the Windows one.

In this chapter, we will use sources from the official OpenJDK 7 update 40 tarball.

Building OpenJDK 7 on Ubuntu
Linux 12.04 LTS

This recipe is similar to recipe Building OpenJDK 6 on Ubuntu Linux 12.04 LTS from
Chapter 2, Building OpenJDK 6.

The build process of OpenJDK relies heavily on Unix-like development tools. Linux-based
operating systems usually have top notch support for such tools, so building OpenJDK on
Linux (and on Mac OS X) can be simpler than on Windows. For major distributions such
as Fedora or Ubuntu, the build toolchain and all the dependencies are already included
in distributions as packages and can be installed easily.

Ubuntu 12.04 LTS was chosen for this book because it is one of the most popular Linux
distributions. For readers running other operating systems, Ubuntu 12.04 virtual images may
be found online for the most popular virtualization tools, such as Oracle VirtualBox or VMware.

To build binaries for i586 and amd64 architectures, corresponding versions of Ubuntu should
be used. The build instructions are exactly the same for both architectures so they won't be
mentioned further in this recipe.

Getting ready
For this recipe, we will need clean Ubuntu 12.04 (server or desktop version) running.

Chapter 3

47

How to do it...
The following instructions will help us to build OpenJDK 7:

1.	 Install the prepackaged binaries of OpenJDK 6:
sudo apt-get install openjdk-6-jdk

2.	 Install the GCC toolchain and build dependencies:
sudo apt-get build-dep openjdk-6

3.	 Download and decompress the official OpenJDK 7 update 40 archive (results will be
placed into the openjdk directory):
wget http://download.java.net/openjdk/jdk7u40/
 promoted/b43/openjdk-7u40-fcs-src-b43-26_aug_2013.zip

unzip -q openjdk-7u40-fcs-src-b43-26_aug_2013.zip

4.	 Create a new text file buildenv.sh with the following environment settings:
export LD_LIBRARY_PATH=
export CLASSPATH=
export JAVA_HOME=
export LANG=C
export ALT_BOOTDIR=/usr/lib/jvm/java-6-openjdk

5.	 Import the environment into the current shell session (note a dot and a space
before it):
. buildenv.sh

6.	 Start the build process from the openjdk directory:
make 2>&1 | tee make.log

7.	 Wait for the build to finish, and try to run the newly built binaries:
cd build/linux-amd64/j2sdk-image/

./bin/java –version

openjdk version "1.7.0-internal"

OpenJDK Runtime Environment (build 1.7.0-internal-
 ubuntu_2014_02_08_08_56-b00)

OpenJDK 64-Bit Server VM (build 24.0-b56, mixed mode)

www.allitebooks.com

http://www.allitebooks.org

Building OpenJDK 7

48

How it works...
The prepackaged binaries of OpenJDK 6 are required because some of the build steps are run
using the external Java runtime.

The build-dep command is used to install all the dependencies that are required to build
the specified package. As Ubuntu packaged OpenJDK 6 is quite close to the official OpenJDK
6, this command will install almost all the required dependencies.

After a successful build on the amd64 platform, JDK files will be placed into build/linux-
amd64/j2sdk-image and JRE files will be placed into build/linux-amd64/j2re-image.
On the i586 platform, the build/linux-i586 path will be used instead. An additional
package of Server JRE that contains JDK without demos and samples will be placed into the
j2sdk-server-image directory.

There's more...
The Javadoc generation takes a lot of time and is the most memory consuming step of the
build. It may be skipped with an additional environment variable:

export NO_DOCS=true

Contrary to previous version, OpenJDK 7 supports parallel (multicore) native library
compilation. The following environment variables may be used for the jdk and
hotspot modules respectively:

PARALLEL_COMPILE_JOBS=N
HOTSPOT_BUILD_JOBS=N

This build has generated a milestone tag and build number b00. Predefined build numbers
and milestones may be set using additional environment variables:

export MILESTONE=ubuntu-build
export BUILD_NUMBER=b30

The cacerts file may be provided during the build, using additional environment variable:

export ALT_CACERTS_FILE=path/to/cacerts

For amd64 builds preinstalled Java provided by variable ALT_BOOTDIR may be either the
amd64 or i586 build. The i586 binaries consume less memory and may be used for amd64
builds on limited hardware.

OpenJDK 7 has the same minimum build requirements on Linux as the previous version,
so Debian 5.0 Lenny may be used to build the most compatible version.

Chapter 3

49

See also
ff The Preparing CA certificates recipe from Chapter 2, Building OpenJDK 6

ff The Building OpenJDK 6 on Ubuntu Linux 12.04 LTS recipe from Chapter 2,
Building OpenJDK 6

ff The Setting up the minimum build environment for the most compatible Linux builds
recipe from Chapter 2, Building OpenJDK 6

ff The official build instructions for OpenJDK 7 at http://hg.openjdk.java.net/
jdk7u/jdk7u/raw-file/tip/README-builds.html

Building OpenJDK 7 on Mac OS X
OpenJDK 7 supports the Mac OS X platform as a first class citizen and building it using the
proper version of toolchain is almost as easy as on Linux.

Historically, Java had first class support on Mac OS X. JDK was based on Sun codebase but
built by Apple and integrated fully into their operating system environment. Up to Mac OS X
10.4 Tiger, graphical user interface applications written using the standard Swing toolkit had
access to most of the Cocoa native interface features. Applications written in Java were very
close to native ones, while still being cross-platform.

But with the next releases, the level of Java support went down. Starting from Mac OS X 10.5
Leopard, newer Cocoa features became unsupported for Java. Release of Apple Java 6 was
postponed (comparing to Sun releases for other platforms) for more than a year. Java 6 was
released in December 2006 but was not available for Mac OS X users until April 2008. Finally
in October 2010, Apple officially announced discontinuation of Java support. Apple Java 6 is
still being updated with security updates and may be installed on Mac OS X 10.9 Mavericks
(the latest version at the time of writing) but no future Java versions will be released by Apple.

Third-party open source Java distributions existed for Mac OS X. The most notable is the
SoyLatte—X11-based port of the FreeBSD Java 1.6 patchset to Mac OS X Intel machines.
SoyLatte predated OpenJDK, was licensed under Java Research License, and supported
Java 6 builds. Now it is part of the OpenJDK BSD-Port project.

Currently the official latest stable Java version for Mac OS X is Oracle Java 7 which matches
closely with OpenJDK. In this recipe, we will build an OpenJDK 7 update 40 on Mac OS X
10.7.5 Lion. This operating system version was chosen because 10.7.3 is the official minimum
build requirement platform that should provide the most compatible binaries for Mac OS X,
and 10.7.5 matches it quite closely, but may run on newer Intel Ivy Bridge processors and
may also be virtualized relatively easily using popular virtualization tools such as Oracle
VirtualBox or VMware.

http://hg.openjdk.java.net/jdk7u/jdk7u/raw-file/tip/README-builds.html
http://hg.openjdk.java.net/jdk7u/jdk7u/raw-file/tip/README-builds.html

Building OpenJDK 7

50

Getting ready
For this recipe, we will need clean Mac OS X 10.7.5 Lion running.

How to do it...
The following procedures will help us to build OpenJDK 7:

1.	 Download Xcode 3.4.2 for Lion (March 22, 2012) from https://developer.
apple.com/xcode/ (an Apple developer's account is required, registration is free)
and install it.

2.	 Download the Command Line Tools for Xcode—late March 2012 (March 21, 2012)
using the same download link mentioned previously and install it.

3.	 Run this command from the terminal to set up the command line tools:
sudo xcode-select -switch /Applications/Xcode.app/Contents/
Developer/

4.	 Navigate to Applications | Utilities and run X11.app to install it as an
additional download.

5.	 Install the JDK 7—Oracle distribution, or prebuilt OpenJDK binaries may be used.

6.	 Download Apache Ant 1.8.4 from http://archive.apache.org/dist/ant/
binaries/ and decompress it.

7.	 Download the source archive openjdk-7u40-fcs-src-b43-26_aug_2013.zip
from http://download.java.net/openjdk/jdk7u40/promoted/b43/
and decompress it.

8.	 Create a new text file buildenv.sh with the following environment settings:
export LD_LIBRARY_PATH=
export CLASSPATH=
export JAVA_HOME=
export LANG=C
export ANT_HOME=path/to/ant
export PATH=path/to/ant/bin:$PATH
export ALT_BOOTDIR=path/to/jdk7

9.	 Import the environment into the current terminal session (note a dot and a space
before it):
. buildenv.sh

10.	 Start the build process from the openjdk directory:
make 2>&1 | tee make.log

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
http://archive.apache.org/dist/ant/binaries/
http://archive.apache.org/dist/ant/binaries/
http://download.java.net/openjdk/jdk7u40/promoted/b43/

Chapter 3

51

11.	 Wait for the build to finish, and try to run the newly built binaries:
cd build/macosx-x86_64/j2sdk-image/
./bin/java –version
openjdk version "1.7.0-internal"
OpenJDK Runtime Environment (build 1.7.0-internal-
obf_2014_02_07_21_32-b00)
OpenJDK 64-Bit Server VM (build 24.0-b56, mixed mode)

How it works...
As well as the Xcode Command Line Tools that are used for the main part of the native source,
Xcode itself is also required to build platform specific code.

OpenJDK on Mac OS X is moving away from using the X11 server, but it is still required for
Version 7 builds. Mac OS X 10.7 Lion has X11 preinstalled, it just needs to be run once to
be configured for the build.

Apple JDK6 may be used instead of OpenJDK7, but it requires additional configuration.

The Apache Ant build tool is required for some modules of the build.

There's more...
This recipe uses the official Apple builds of GCC (and G++) Version 4.2 as compilers. After
that version, official Apple support for GCC was discontinued for licensing reasons. Clang—the
open source compiler initially developed by Apple—is the default and preferred compiler in
newer versions of Mac OS X. While newer versions of OpenJDK support Clang on Mac OS X,
Version 7 still requires GCC.

OpenJDK 7 could be built on Mac OS X 10.8 Mountain Lion using the same steps. The only
addition is that the X11 server should be installed separately using the XQuartz project.

Newer versions of Xcode and recent updates of Mac OS X 10.9 Mavericks may break the
OpenJDK builds. If builds using newer OS / toolchain are desired, it is better to check the
current situation with the build and proposed solutions on OpenJDK mailing lists.

See also
ff The Preparing CA certificates recipe from Chapter 2, Building OpenJDK 6

ff The Building OpenJDK 6 on Ubuntu Linux 12.04 LTS recipe from Chapter 2, Building
OpenJDK 6 for information about build tuning

ff The official build instructions for Mac OS X on OpenJDK Wikipedia at https://
wikis.oracle.com/display/OpenJDK/Mac+OS+X+Port

https://wikis.oracle.com/display/OpenJDK/Mac+OS+X+Port
https://wikis.oracle.com/display/OpenJDK/Mac+OS+X+Port

Building OpenJDK 7

52

Building 32-bit FreeType libraries for
OpenJDK 7 on Windows

The majority of fonts used in modern software are encoded in vector format for proper scaling
support. There are multiple standards for vector fonts, for example Metafont from Professor
Donald E. Knuth, Type1 from Adobe, TrueType from Apple and Microsoft, and OpenType from
Adobe and Microsoft.

Rasterization of vector fonts is a remarkably complex task and most desktop software (such
as web browsers or text processors) use third-party libraries to work with fonts.

Sun Microsystems licensed a third-party closed source font library for use in Sun Java
implementation. The sources for this library could not be released to the public along with the
initial release of OpenJDK. The Font Scaler Replacement Project was launched in the early
days of OpenJDK to adopt the open source font library instead.

FreeType is a free and open source (under permissive license) font rasterization library. It is
widely used in open source desktop software. FreeType was chosen by the OpenJDK team as
a replacement for the closed source font library and is now used by OpenJDK on all supported
platforms. Prebuilt static and dynamic FreeType libraries are required for OpenJDK builds
on Windows.

FreeType may be built for OpenJDK 7 using the same Microsoft Windows SDK for Windows
7 and .NET Framework 4 (Version 7.1) that we will use for both i586 and amd64 OpenJDK
builds. We will use the freely available Visual Studio 2010 Express Edition to configure the
build settings for the FreeType project.

Getting ready
For this recipe, we should have Windows 7 SP1 i586 running.

How to do it...
The following procedure will help us to build FreeType:

1.	 Download Microsoft .NET Framework 4 from the Microsoft website and install it.

2.	 Download Microsoft Windows SDK for Windows 7 and .NET Framework 4 (Version 7.1)
from the Microsoft website and install it to the default location with image filename
GRMSDK_EN_DVD.iso.

3.	 Download Visual Studio 2010 Express Edition from the Microsoft website and install
it to the default location. Only the Visual C++ component is required.

4.	 Download the FreeType 2.5.2 sources tarball from http://freetype.org/ and
decompress it.

http://freetype.org/

Chapter 3

53

5.	 Open the file include\config\ftoption.h and uncomment line 95:
#define FT_CONFIG_OPTION_SUBPIXEL_RENDERING

6.	 Change lines 269 and 271 from /* #define FT_EXPORT(x) extern x
/ and / #define FT_EXPORT_DEF(x) x */ to #define FT_EXPORT(x)
__declspec(dllexport) x and #define FT_EXPORT_DEF(x) __
declspec(dllexport) x.

7.	 Open the solution builds\windows\vc2010\freetype.sln in Visual Studio.

8.	 In the main menu, go to Project | Properties | Configuration Properties and choose
Windows7.1 SDK in the Platform Toolset field.

9.	 On the main screen choose Release Multithreaded as the Solution Configuration.

10.	 Run build, and the freetype252MT.lib library will be placed into the freetype\
objs\win32\vc2010 directory; rename it to freetype.lib, and save it for
later use.

11.	 In the main menu, go to Project | Properties | Configuration Properties,
change Configuration Type to Dynamic Library (.dll), and build the solution. The
freetype252MT.dll and freetype252MT.exp files will be placed into the objs\
release_mt directory. Rename these files freetype.dll and freetype.exp and
use them with the previously generated freetype.lib during the OpenJDK build.

How it works...
FreeType for i586 may be built using Visual Studio's own toolset, but we used the Windows
SDK7.1 toolset to ensure compatibility with the OpenJDK build that uses the same toolset.

The FT_CONFIG_OPTION_SUBPIXEL_RENDERING macro enables subpixel rendering
functionality in FreeType implementation.

The FT_EXPORT and FT_EXPORT_DEF macros should be adjusted with the calling conventions
for the current platform. We changed them to use Windows-specific calling conventions.

See also
ff The Building 64-bit FreeType libraries for OpenJDK 7 on Windows recipe

ff The FreeType official website at http://freetype.org/

ff Professor Donald E. Knuth's interview covering Metafont and TrueType at
http://www.advogato.org/article/28.html

ff The OpenJDK: Font Scaler Replacement Project page at http://openjdk.java.
net/projects/font-scaler/

http://freetype.org/
http://www.advogato.org/article/28.html
http://openjdk.java.net/projects/font-scaler/
http://openjdk.java.net/projects/font-scaler/

Building OpenJDK 7

54

Building 64-bit FreeType libraries for
OpenJDK 7 on Windows

The FreeType build for Windows amd64 is similar to the i586 build from the previous recipe.
Only different steps will be written in this recipe. Please refer to the previous recipe, Building
32-bit FreeType libraries for OpenJDK 7 on Windows for more detailed instructions.

Getting ready
For this recipe, we should have Windows 7 SP1 amd64 running.

How to do it...
The following procedures will help us in building FreeType:

1.	 Download Microsoft .NET Framework 4 (Version 7.1), Microsoft Windows SDK for
Windows 7 and Visual Studio 2010 Express Edition from the Microsoft website, and
install them to default locations. The amd64 version of the SDK from the GRMSDKX_
EN_DVD.iso file should be used.

2.	 Follow steps 4 to 9 from the previous recipe to download and adjust the FreeType
sources and configure the project in Visual Studio.

3.	 On the main screen choose x64 as the Solution Platform.

4.	 Follow steps 10 and 11 from the previous recipe. Libraries will be placed into the
freetype\builds\windows\vc2010\x64\Release Multithreaded directory.

How it works...
FreeType amd64 cannot be built using the Express Edition of Visual Studio 2010. The
Professional Edition or the Windows SDK toolset should be used. As we will use Windows
SDK 7.1 for OpenJDK builds, we are also using it for appropriate FreeType builds.

See also
ff The Building 32-bit FreeType libraries for OpenJDK 7 on Windows recipe

Chapter 3

55

Building 32-bit OpenJDK 7 on
Windows 7 SP1

The OpenJDK 7 build process on the Windows platform has undertaken major improvements
in comparison to Version 6. Despite that, the build environment setup is still much more
complex than on Linux and Mac OS X. Much of the complexity of the build comes from its
usage of a Unix-like build environment through Cygwin tools.

The official compiler requirement for i586 builds is Microsoft Visual Studio C++ 2010
Professional Edition. The Express Edition of Visual Studio 2010 also may be used for the
i586 build. While this edition is free (as in "free beer") it has an evaluation period of 30 days
and requires registration after that. While registration is also free, this requirement may be
problematic for some usage scenarios (for example, automated build services).

Instead of Visual Studio 2010, we will use Microsoft Windows SDK Version 7.1 for
Windows 7. This SDK is also available for free from the Microsoft website and may be
used without registration. It uses the same compiler as Visual Studio 2010 Express. It
contains only Command Line Tools (no GUI) but may be used as an external toolset from
Visual Studio 2010 if GUI is desired.

Getting ready
For this recipe, we should have Windows 7 SP1 i586 running with no antivirus software
installed. Antivirus software is not allowed because it may interfere with Cygwin runtime.

How to do it...
The following procedure will help us to build OpenJDK:

1.	 Download Microsoft .NET Framework 4 from the Microsoft website and install it.

2.	 Download the Microsoft Windows SDK for Windows 7 from the Microsoft website
and install it to the default location. The .NET Development and Common Utilities
components are not required.

3.	 Download and install the Microsoft DirectX 9.0 SDK (Summer 2004) to the
default installation path. Note that this distribution is not available any more
on the Microsoft website. It may however be downloaded from other places.
The file details are as follows:
name: dxsdk_sum2004.exe
size: 239008008 bytes
sha1sum: 73d875b97591f48707c38ec0dbc63982ff45c661

4.	 Install or copy a preinstalled version of Cygwin to c:\cygwin.

Building OpenJDK 7

56

5.	 Create the c:\path_prepend directory and copy into it find.exe and sort.exe
files from the Cygwin installation.

6.	 Download GNU make utility binary from http://www.cmake.org/ using
http://www.cmake.org/files/cygwin/make.exe-cygwin1.7, rename
it to make.exe, and put it in the c:\make directory.

7.	 Download the Apache Ant Version 1.8.4 zip distribution from http://apache.org/
and decompress it to the c:\ant directory.

8.	 Download the prebuilt FreeType libraries from the openjdk-unofficial-builds
GitHub project (directory 7_32) and put the binaries into the c:\freetype\lib
directory and the header files into the c:\freetype\include directory.

9.	 Install the OpenJDK 6 binaries or Oracle Java 6 into c:\jdk6.

10.	 Download the official OpenJDK 7 update 40 source archive from the
http://download.java.net/openjdk/jdk7u40/promoted/b43/
web page and decompress it to the c:\sources directory.

11.	 Create the build.bat batch file and write the following environment variables settings:
@echo off
rem clear variables
set LD_LIBRARY_PATH=
set CLASSPATH=
set JAVA_HOME=
rem ALT_* variables
set ALT_BOOTDIR=C:/jdk7
set ALT_FREETYPE_LIB_PATH=C:/freetype/lib
set ALT_FREETYPE_HEADERS_PATH=C:/freetype/include
set NO_DOCS=true
rem set compiler environment manually
set WINDOWSSDKDIR=C:/Program Files/Microsoft SDKs/Windows/v7.1/
set VSDIR=C:/Program Files/Microsoft Visual Studio 10.0/
set VS100COMNTOOLS=%VSDIR%/Common7/Tools
set Configuration=Release
set WindowsSDKVersionOverride=v7.1
set ToolsVersion=4.0
set TARGET_CPU=x86
set CURRENT_CPU=x86
set PlatformToolset=Windows7.1SDK
set TARGET_PLATFORM=WIN7
set LIB=%VSDIR%/VC/Lib;%WINDOWSSDKDIR%/Lib
set LIBPATH=%VSDIR%/VC/Lib
rem set path

http://www.cmake.org/
http://www.cmake.org/files/cygwin/make.exe-cygwin1.7
http://apache.org/
http://download.java.net/openjdk/jdk7u40/promoted/b43/

Chapter 3

57

set PATH=C:/path_prepend;%VSDIR%/Common7/
IDE;%VS100COMNTOOLS%;%VSDIR%/VC/Bin;%VSDIR%/VC/Bin/
VCPackages;%WINDOWSSDKDIR%/Bin;C:/WINDOWS/system32;C:/WINDOWS;C:/
WINDOWS/System32/Wbem;C:/make;C:/cygwin/bin;C:/jdk7/bin;C:/ant/bin
set INCLUDE=%VSDIR%/VC/INCLUDE;%WINDOWSSDKDIR%/
INCLUDE;%WINDOWSSDKDIR%/INCLUDE/gl;
bash
echo Press any key to close window ...
pause > nul

12.	 Run build.bat from Windows Explorer. The cmd.exe window should appear with
bash launched.

13.	 From the bash Command Prompt run the following commands:
cd /cygdrive/c/sources
chmod –R 777 .
make > make.log 2>&1

14.	 Launch another Cygwin console and run the following commands:
cd /cygdrive/c/sources
tail -f make.log

15.	 Wait for the build to finish.

How it works...
Cygwin installation is covered in the Installing Cygwin for Windows builds recipe in Chapter 2,
Building OpenJDK 6.

Directories in the root of disk C are used here for brevity. Generally, arbitrary paths consist of
ASCII letters or numbers and no spaces may be used.

A newer version of the DirectX SDK also may be used.

Different GNU make versions might have different problems on Windows. This particular
version from the cmake project was tested on different Windows versions and works fine.

This recipe uses prebuilt FreeType 2.4.10 libraries from the openjdk-unofficial-builds
GitHub project. FreeType may be built from sources using the same Windows SDK 7.1
toolchain. Please see the Building 32-bit FreeType libraries for OpenJDK 7 on Windows
recipe in this chapter.

In the environment settings, additional attention should be paid to the order of the PATH
variable content. Sort and find Cygwin utilities should go at start of the PATH variable to avoid
being overshadowed by the Windows' utilities with the same name but different functionality.
Make goes before Cygwin to avoid being overshadowed by another version of make that may
be included in the Cygwin installation.

www.allitebooks.com

http://www.allitebooks.org

Building OpenJDK 7

58

The chmod 777 command is required to fix Cygwin file permissions that may cause errors
later stages of the build.

The make output will be redirected to the make.log file. The 2>&1 statement ensures that
both stdout and stderr will be redirected.

The tail -f command allows us to watch the contents of the make.log file as they are
written during the build process.

The pause > nul command is added at the end of the batch file to prevent the cmd.exe
window disappearing in the case of runtime errors.

There's more...
To build the most compatible binaries, the same recipe should be used, but the Windows XP
operating system should be used instead of Windows 7.

In Windows XP, the chmod 777 command is not required.

The tee command may be used instead of > and tail to write the build log to file and
console simultaneously.

The SetEnv.Cmd script from Windows SDK may be used (with proper flags) to set the
compiler environment instead of setting variables manually.

Visual Studio 2010 Express or Professional edition may be used instead of Windows SDK 7.1.

Prebuilt OpenJDK 7 or Oracle Java 7 may be used as the boot JDK instead of 6.

See also
ff The Building 32-bit OpenJDK 6 on Windows 7 SP1 recipe from Chapter 2,

Building OpenJDK 6

ff The Installing Cygwin for Windows builds recipe from Chapter 2, Building OpenJDK 6

ff The Building OpenJDK 6 on Ubuntu Linux 12.04 LTS recipe from Chapter 2,
Building OpenJDK 6 for information about build tuning

ff The Building 32-bit FreeType libraries for OpenJDK 7 on Windows recipe from
this chapter

ff The Preparing CA certificates recipe from this chapter

ff The official build instructions for OpenJDK 7 at http://hg.openjdk.java.net/
jdk7u/jdk7u/raw-file/tip/README-builds.html

http://hg.openjdk.java.net/jdk7u/jdk7u/raw-file/tip/README-builds.html
http://hg.openjdk.java.net/jdk7u/jdk7u/raw-file/tip/README-builds.html

Chapter 3

59

Building 64-bit OpenJDK 7 on
Windows 7 x64 SP1

The amd64 build in Windows 7 is similar to the i586 build, but has additional complications.

Cygwin (at least the more common i586 version) works much worse on amd64 Windows.
Due to the much bigger address space size, Cygwin fork techniques work much slower
and are less reliable.

Visual Studio 2010 Express Edition does not support amd64 architecture, so Microsoft Windows
SDK version 7.1 for Windows 7 or the Professional Edition of Visual Studio should be used.

Getting ready
For this recipe, we should have Windows 7 SP1 amd64 running with no antivirus software
installed. Antivirus software is not allowed because it may interfere with Cygwin runtime.

How to do it...
The following procedures will help us to build OpenJDK:

1.	 Follow steps 1 to 10 from the previous recipe, Building 32-bit OpenJDK 7 on
Windows 7 SP1, using the amd64 version of the Windows SDK and the FreeType
libraries from the 7_64 directory.

2.	 Create a build.bat batch file and write the following environment
variables settings there:
@echo off
rem clear variables
set LD_LIBRARY_PATH=
set CLASSPATH=
set JAVA_HOME=
rem ALT_* variables
set ALT_BOOTDIR=C:/jdk7
set ALT_FREETYPE_LIB_PATH=C:/freetype/lib
set ALT_FREETYPE_HEADERS_PATH=C:/freetype/include
set NO_DOCS=true
rem set compiler environment manually
set WINDOWSSDKDIR=C:/Program Files/Microsoft SDKs/Windows/v7.1/
set VSDIR=C:/Program Files (x86)/Microsoft Visual Studio 10.0/
set VS100COMNTOOLS=%VSDIR%/Common7/Tools
set Configuration=Release
set WindowsSDKVersionOverride=v7.1
set ToolsVersion=4.0

Building OpenJDK 7

60

set TARGET_CPU=x64
set CURRENT_CPU=x64
set PlatformToolset=Windows7.1SDK
set TARGET_PLATFORM=WIN7
set LIB=%VSDIR%/VC/Lib/amd64;%WINDOWSSDKDIR%/Lib/x64
set LIBPATH=%VSDIR%/VC/Lib/amd64
rem set path
set PATH=C:/path_prepend;%VSDIR%/Common7/
IDE;%VS100COMNTOOLS%;%VSDIR%/VC/Bin/x86_amd64;%VSDIR%/VC/
Bin;%VSDIR%/VC/Bin/VCPackages;%WINDOWSSDKDIR%/Bin;C:/WINDOWS/
system32;C:/WINDOWS;C:/WINDOWS/System32/Wbem;C:/make;C:/cygwin/
bin;C:/jdk7/bin;C:/ant/bin
set INCLUDE=%VSDIR%/VC/INCLUDE;%WINDOWSSDKDIR%/
INCLUDE;%WINDOWSSDKDIR%/INCLUDE/gl;
bash
echo Press any key to close window ...
pause > nul

3.	 Follow steps 12 to 15 from the previous recipe.

How it works...
The amd64 build is similar to the i586 build, but can be much slower because Cygwin works
slower on a 64-bit OS.

The build can be done using either the i586 or amd64 boot JDK, the only difference is amd64
requires more memory (not less than 1024MB).

For additional details, please see the How it works... section of the previous recipe Building
32-bit OpenJDK 7 on Windows 7 SP1.

There's more...
To build the most compatible binaries, the same recipe should be used, but the
Windows 2003 Server amd64 operating system should be used instead of Windows 7.

In Windows 2003, the chmod 777 command is not required.

A prebuilt OpenJDK 7 or Oracle Java 7 may be used as the boot JDK instead of 6.

See also
ff The Building 32-bit OpenJDK 7 on Windows 7 SP1 recipe from this chapter

ff The Building 64-bit OpenJDK 6 on Windows 7 x64 SP1 recipe from Chapter 2,
Building OpenJDK 6

Chapter 3

61

ff The Installing Cygwin for Windows builds recipe from Chapter 2, Building OpenJDK 6

ff The Building OpenJDK 6 on Ubuntu Linux 12.04 LTS recipe from Chapter 2, Building
OpenJDK 6, for information about build tuning

ff The Building 64-bit FreeType libraries for OpenJDK 7 on Windows recipe from
this chapter

ff The Preparing CA certificates recipe from Chapter 2, Building OpenJDK 6

ff The official build instructions for OpenJDK 7 at http://hg.openjdk.java.net/
jdk7u/jdk7u/raw-file/tip/README-builds.html

Preparing a standalone toolchain for 32- and
64-bit Windows' builds

In the previous recipes in this chapter, we built OpenJDK 7 for Windows using Windows SDK
Version 7.1. This SDK requires installation prior to using it. The installation process requires
.NET Framework 2 (to run the installer, included in Windows 7) and .NET Framework 4.
Installation of these components may be very time consuming in some usage scenarios. For
example, to automated builds it may be desirable to use completely clean Windows images for
the builds. Besides being slow, the .NET Framework and SDK installers are graphical tools and
may be hard to script for automatic installation.

In this recipe, we will create a set of files and an environment script that can be used to build
OpenJDK 7 i586 and amd64 on completely clean Windows installations (with corresponding
architecture) without installing any tools through GUI installers. Such a set of files may be put
under the version control system to be checked out prior to the build.

Getting ready
For this recipe, we should have two clean images of Windows 7 SP1. One of them should have
the i586 architecture and other should have the amd64 architecture.

How to do it...
The following procedure will help us to prepare a standalone toolchain:

1.	 Download the Microsoft Windows SDK for Windows 7 i586 (GRMSDK_EN_DVD.iso)
from the Microsoft website and install it on the i586 Windows instance in the default
location. The .NET Development and Common Utilities components are
not required.

2.	 Create a toolchain directory. We will put various tools and libraries there and will
refer to this directory as <toolchain>.

Building OpenJDK 7

62

3.	 Copy the SDK files from the C:\Program Files\Microsoft SDKs\Windows\
v7.1 to <toolchain>\winsdk71\sdk directory.

4.	 Copy the Visual Studio files shipped with the SDK from the C:\Program Files\
Microsoft Visual Studio 10.0 to <toolchain>\winsdk71\vs2010e
directory.

5.	 Download the Microsoft Windows SDK for Windows 7 amd64 (GRMSDKX_EN_DVD.
iso) from the Microsoft website and install it on the amd64 Windows instance in the
default location. The .NET Development and Common Utilities components
are not required.

6.	 Copy the C:\Program Files\Microsoft SDKs\Windows\v7.1\Bin\x64
directory from the SDK amd64 installation to the <toolchain>\winsdk71\sdk/
Bin/x64 directory.

7.	 Download and install the Microsoft DirectX 9.0 SDK (Summer 2004) to the default
installation path on the i586 Windows instance. Note that this distribution is not
available anymore on the Microsoft website. It may be downloaded from another
place online, and the file details are as follows:
name: dxsdk_sum2004.exe
size: 239008008 bytes
sha1sum: 73d875b97591f48707c38ec0dbc63982ff45c661

8.	 Copy files from the C:\Program Files\Microsoft DirectX 9.0 SDK
(Summer 2004) directory to the <toolchain>\directx directory.

9.	 On the Windows i586 instance copy the files from the C:\Windows\System32
directory to the <toolchain>\msvcr/7_32 directory:
msvcp100.dll
msvcr100.dll
msvcr100_clr0400.dll

10.	 On the Windows amd64 instance copy the same files as on the previous step (they
should have the amd64 architecture) to the <toolchain>\msvcr\7_64 directory.

11.	 Create an env_32.bat file with the following environment configuration that may be
used for i586 builds:
set TOOLCHAIN=<toolchain>
set VS=%TOOLCHAIN%/winsdk71/vs2010e
set WINSDK=%TOOLCHAIN%/winsdk71/sdk
set ALT_COMPILER_PATH=%VS%/VC/Bin
set ALT_WINDOWSSDKDIR=%WINSDK%
set ALT_MSVCRNN_DLL_PATH=%TOOLCHAIN%/msvcr/7_32
set ALT_DXSDK_PATH=%TOOLCHAIN%/directx
set WINDOWSSDKDIR=%WINSDK%
set VS100COMNTOOLS=%VS%/Common7/Tools
set Configuration=Release

Chapter 3

63

set WindowsSDKVersionOverride=v7.1
set ToolsVersion=4.0
set TARGET_CPU=x86
set CURRENT_CPU=x86
set PlatformToolset=Windows7.1SDK
set TARGET_PLATFORM=XP
set LIB=%VS%/VC/Lib;%WINSDK%/Lib
set LIBPATH=%VS%/VC/Lib
set PATH=%VS%/Common7/IDE;%VS%/Common7/Tools;%VS%/VC/Bin;%VS%/VC/
Bin/VCPackages;%WINSDK%/Bin;C:/WINDOWS/system32;C:/WINDOWS;C:/
WINDOWS/System32/Wbem;%TOOLCHAIN%/msvcr/7_32
set INCLUDE=%VS%/VC/INCLUDE;%WINSDK%/INCLUDE;%WINSDK%/INCLUDE/gl;

12.	 Create an env_64.bat file with the following environment configuration that may be
used for amd64 builds:
set TOOLCHAIN=...
set VS=%TOOLCHAIN%/winsdk71/vs2010e
set WINSDK=%TOOLCHAIN%/winsdk71/sdk
set ALT_COMPILER_PATH=%VS%/VC/Bin/x86_amd64
set ALT_WINDOWSSDKDIR=%WINSDK%
set ALT_MSVCRNN_DLL_PATH=%TOOLCHAIN%/msvcr/7_64
set ALT_DXSDK_PATH=%TOOLCHAIN%/directx
set WINDOWSSDKDIR=%WINSDK%
set VS100COMNTOOLS=%VS%/Common7/Tools
set Configuration=Release
set WindowsSDKVersionOverride=v7.1
set ToolsVersion=4.0
set TARGET_CPU=x64
set CURRENT_CPU=x64
set PlatformToolset=Windows7.1SDK
set TARGET_PLATFORM=XP
set LIB=%VS%/VC/Lib/amd64;%WINSDK%/Lib/x64
set LIBPATH=%VS%/VC/Lib/amd64
set PATH=%VS%/Common7/IDE;%VS%/Common7/Tools;%VS%/VC/Bin/
x86_amd64;%VS%/VC/Bin;%VS%/VC/Bin/VCPackages;%WINSDK%/Bin;C:/
WINDOWS/System32;C:/WINDOWS;C:/WINDOWS/System32/wbem;%LIBS_DIR%/
msvcr/7_64;%TOOLCHAIN%/msvcr/7_32;%VS%/Common7/IDE
set INCLUDE=%VS%/VC/INCLUDE;%WINSDK%/INCLUDE;%WINSDK%/INCLUDE/gl;

13.	 Add the toolchain directory to the source control repository. This file set is a standalone
toolchain and may be used to build both the i586 and amd64 versions of OpenJDK 7
(and OpenJDK 8) on clean Windows images with corresponding architectures.

Building OpenJDK 7

64

How it works...
The process in this recipe is quite straightforward: collect the installed files that are to be
copied later on clean Windows images and prepare the environment for them.

One possible problem is that, while the Microsoft linker tool link.exe from the Windows
SDK 7.1 does not require .NET 4 runtime to link native binaries, it requires the .NET shared
library, msvcr100_clr0400.dll (see step 7 of this recipe). This library must be found in
PATH, otherwise the build will fail at the HotSpot VM link stage with an unclear error.

There's more...
The OpenJDK configuration not specific to the Microsoft toolchain (Cygwin, FreeType, and so
on) was removed from the environment files in this recipe for brevity. It should be added back
to the environment files to perform the OpenJDK builds.

The result standalone toolchain is not specific to OpenJDK and may be used to build other
software on Windows.

See also
ff The Building 32-bit OpenJDK 7 on Windows 7 SP1 recipe and the Building 64-bit

FreeType libraries for OpenJDK 7 on Windows recipe from this chapter. They can
be adjusted to use the standalone toolchain from this recipe

ff A question from http://stackoverflow.com/ about the linker dependencies
on .NET4 runtime at http://stackoverflow.com/questions/13571628/
compiling-c-code-using-windows-sdk-7-1-without-net-
framework-4-0

http://stackoverflow.com/
http://stackoverflow.com/questions/13571628/compiling-c-code-using-windows-sdk-7-1-without-net-framework-4-0
http://stackoverflow.com/questions/13571628/compiling-c-code-using-windows-sdk-7-1-without-net-framework-4-0
http://stackoverflow.com/questions/13571628/compiling-c-code-using-windows-sdk-7-1-without-net-framework-4-0

4
Building OpenJDK 8

In this chapter, we will cover:

ff Working with GNU Autoconf

ff Building OpenJDK 8 on Ubuntu Linux 12.04 LTS

ff Using ccache to speed up the OpenJDK 8 build process

ff Building OpenJDK 8 on Mac OS X

ff Building OpenJDK 8 on Windows 7 SP1

Introduction
The Java 8 specification brings a lot of innovations to the Java platform. Besides new language
features such as functional interfaces and Lamda expression support, and library features
such as streams and a new date/time API, OpenJDK 8 has a new build system. As this chapter
is about building OpenJDK, we will explore the last innovation in depth.

For a long time, the Sun Java and OpenJDK build system grew around the release process.
Requirements from the release engineers always came before the developers' requirements,
and developers' requirements for the build process differ greatly from release ones. For the
release preparation, the build process must be stable. Release builds are usually built from
scratch, they always include the whole project and speed, and environment configuration
complexities are not issues for them. On the contrary, partial, incremental, and fast as
possible builds are required as air for the development. Also, build scripts must be as clean
and manageable as possible to allow easy changes and fine tuning.

Building OpenJDK 8

66

Up to the time when OpenJDK 7 was released, the build process had all the following
misfeatures of the huge cross-platform project, listed as follows:

ff Complex environment setup

ff No reliable incremental builds

ff Broken support for parallel builds

ff No support for compilation cache

ff Unreasonably slow builds in some parts

ff Different types of build scripts (some for GNU, some for Apache Ant)

ff Implicit compilation of Java sources with limited source list selection abilities

ff Too-strict checks for the environment (required for release, but encumbering in the
non-standard environment)

ff Drops of additional binary components

ff Dependency on specific versions of build tools

ff No support for cross-compilation

Public access to the build caused by the appearance of the OpenJDK project triggered the
evolution of the build system to become more developer and "casual builder" friendly. In the
timeline of OpenJDK 7, the build process has undergone some cleanup, the builds became
easier but fundamental issues stayed the same.

At last, a huge effort was made during the OpenJDK 8 development. The build system was
completely rewritten, with major parts of it rewritten from scratch. Besides the cleanup
and restructuring of the Makefiles and the removal of Apache Ant, the main problems were
addressed: speed, multicore support, partial and incremental builds, cross–compilation,
and a much easier environment setup.

The latter improvement was largely caused by the introduction of the prebuild step that
prepares the project for the current environment. This build configuration step is performed
using the GNU Autoconf build system. We will explore it more closely in the following recipe.

OpenJDK 8 is supported on Linux, Windows, Mac OS X, and Solaris operating systems. Only
Windows, Linux, and Mac OS X versions will be discussed further. On both Linux and Windows
operating systems, x86 and x86_64 architectures are supported. On Mac OS X, only x86_64
is supported.

Processor architecture configuration is changed in OpenJDK 8. Previously the x86 architecture
was named i586 and x86_64 was named amd64. But now the x86 and x86_64 names are
used as is. Also, due to the cross-compilation support, x86 versions can be built on x86_64
operating systems with minor configuration changes. So in this chapter, we will focus on
x86_64 and will mention x86 builds where required.

Chapter 4

67

Working with GNU Autoconf
GNU Autoconf, or simply the GNU build system, is a suite of build tools designed to assist in
making source code packages portable across multiple Unix-like systems.

Autoconf contains multiple build-related tools and generally acts as a Makefile generator.
Makefile templates are processed in the configure build step using environment information
and configuration options specified by the user.

The Autoconf system is quite complex and there exists some controversy about its usage
in modern projects. For some projects it may be too old, too complex, and too directed
towards Unix-like systems compared to the cost of other platforms. But for OpenJDK, the
highly cross-platform project that already heavily relies on Unix-like tools, autotool adoption
for the configure build step is well justified.

The Autoconf system uses GNU make for the actual build step, but in contrast to the make
tool, the whole Autoconf package is less portable, and a particular build setup may have
restrictions on required versions of the Autoconf packages. Fortunately, this burden can be
moved from developers to build system engineers. For the build configuration step, Autoconf
generates a standalone shell script. Such a script, usually named configure, can not only
be used without other build system tools, but also run in limited Unix-like environments such
as Cygwin on the Windows platform.

In OpenJDK, the configure script is prepared beforehand and added to the source code tarball,
so the build process does not require any of the autotools' build tools besides GNU make.

In this recipe, we will explore the OpenJDK 8 build configuration with different options.

Getting ready
For this recipe, you will need an operating system with a Unix-like environment: Linux, Mac
OS X, or Windows with Cygwin installed. Please see the Installing Cygwin for Windows builds
recipe from Chapter 2, Building OpenJDK 6 about installing Cygwin.

How to do it...
The following procedures will help us to configure the OpenJDK 8 build environment:

1.	 Install the JDK 7 from Oracle or the prebuilt OpenJDK binaries.

2.	 Download and decompress the official OpenJDK 8 source code archive (this archive
was not available at the time of writing this book).

Building OpenJDK 8

68

3.	 Run the build configuration script with the --help option:
bash ./configure --help

You can now see the list of available configuration options. Let's try some of them.

4.	 Run the following command to directly specify the JDK to use as the boot JDK during
the build:
bash ./configure --with-boot-jdk=path/to/jdk

5.	 Run the following command to take the default restrictions off the included
cryptographic algorithm implementation:
bash ./configure –-enable-unlimited-crypto

6.	 Run the following command to not generate debug symbols during the build and not
include them in target distribution:
bash ./configure --disable-debug-symbols --disable-zip-debug-info

7.	 Run the following command to force bundle the FreeType libraries with OpenJDK on
all platforms:
bash ./configure --enable-freetype-bundling

8.	 Run the following command to specify CA certificates to the keystore file. Please
see the Preparing CA certificates recipe about preparing such a file in Chapter 2,
Building OpenJDK 6:
bash ./configure --with-cacerts-file=path/to/cacerts

9.	 Run the following command to specify the milestone and build number for the build
instead of the generated ones:
bash ./configure –with-milestone=my-milestone --with-build-
number=b42

How it works...
In OpenJDK, the configure script is not marked as executable by default due to the OpenJDK
source repository policy. So bash is used explicitly to run the script in this recipe.

The configure script prepares the build configuration in the build directory. It performs a lot
of checks and writes the environment-specific details, and the user provides options in the form
of environment variables. These variables will be read automatically during the actual build.

There's more...
OpenJDK supports a lot of options; most of the options may be specified to configure the
script simultaneously.

Chapter 4

69

See also
ff The following recipes in this chapter for actually building of OpenJDK 8

ff The official website of GNU Autoconf project at http://www.gnu.org/software/
autoconf/

ff The mailing list thread with a discussion about adopting Autoconf at
http://mail.openjdk.java.net/pipermail/build-infra-dev/2011-
August/000030.html

Building OpenJDK 8 Ubuntu Linux 12.04 LTS
This recipe is similar to the recipe Building OpenJDK 7 on Ubuntu Linux 12.04 LTS from
Chapter 3, Building OpenJDK 7.

The build process of OpenJDK relies heavily on Unix-like development tools. Linux-based
operating systems usually have top notch support for such tools, so building OpenJDK on
Linux (and on Mac OS X) can be simpler than on Windows. For major distributions such
as Fedora or Ubuntu, the build toolchain and all the dependencies are already included in
distributions as packages and can be installed easily.

Ubuntu 12.04 LTS was chosen for this book because it is one of the most popular Linux
distributions. For readers running other operating systems, Ubuntu 12.04 virtual images may
be found online for the most popular virtualization tools like Oracle VirtualBox or VMware.

To build binaries for x86 and x86_64 architectures, corresponding versions of Ubuntu should
be used. The build instructions are exactly the same for both architectures so they won't be
mentioned further in this recipe. OpenJDK 8 supports cross-compilation, so the x86 version
may be built on the x86_64 operating system. But such cross-compilation requires non-trivial
library configurations and we will not use it in this recipe.

The minimum build environment that should produce the most compatible OpenJDK 8
binaries on Linux is Oracle Linux 6.4 amd64 with GCC Version 4.7. We will configure
Ubuntu 12.04 to use GCC 4.7 to be close to the minimum build environment.

Getting ready
For this recipe, we will need clean Ubuntu 12.04 (server or desktop version) running.

http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/autoconf/
http://mail.openjdk.java.net/pipermail/build-infra-dev/2011-August/000030.html
http://mail.openjdk.java.net/pipermail/build-infra-dev/2011-August/000030.html

Building OpenJDK 8

70

How to do it...
The following procedures will help us to build OpenJDK 8:

1.	 Install the prepackaged binaries of OpenJDK 7:
sudo apt-get install openjdk-7-jdk

2.	 Install the GCC toolchain and build dependencies:
sudo apt-get build-dep openjdk-7

3.	 Add an additional packages repository:
sudo add-apt-repository ppa:ubuntu-toolchain-r/test

sudo apt-get update

4.	 Install the C and C++ compilers, Version 4.7:
sudo apt-get install gcc-4.7

sudo apt-get install g++-4.7

5.	 Go to the /usr/bin directory and set up default compiler-symbolic links:
sudo rm gcc

sudo ln -s gcc-4.7 gcc

sudo rm g++

sudo ln -s g++-4.7 g++

6.	 Download and decompress the official OpenJDK 8 source code archive (this archive
was not available at the time of writing this book)

7.	 Run the autotools configuration script:
bash ./configure

8.	 Start the build:
make all 2>&1 | tee make_all.log

9.	 Run the build binaries:
cd build/linux-x86_64-normal-server-release/images/
./bin/java -version
openjdk version "1.8.0-internal"
OpenJDK Runtime Environment (build 1.8.0-internal-
ubuntu_2014_02_22_08_51-b00)
OpenJDK 64-Bit Server VM (build 25.0-b69, mixed mode)

10.	 Go back to the source's root and build the compact profile's images:
make profiles 2>&1 | tee make_profiles.log

Chapter 4

71

11.	 Check the profiles images in the build/linux-x86_64-normal-server-
release/images directory:
j2re-compact1-image
j2re-compact2-image
j2re-compact3-image

How it works...
The prepackaged binaries of OpenJDK 7 are required because some of the build steps are run
using the external Java runtime.

The build-dep command is used to install all the dependencies that are required to
build the specified package. As Ubuntu packaged OpenJDK 6 is quite close to the official
OpenJDK 6, this command will install almost all the required dependencies.

Ubuntu 12.04 does not have the GCC 4.7 compilers in a default packages repository,
so additional repository configuration is required.

There's more...
Default GCC 4.6 compilers also may be used to build OpenJDK 8.

OpenJDK 8 supports cross-compiling x86 binaries on a x86_64 host platform. But the
build-dep -a i386 openjdk-7 command to install all the required x86 dependencies
won't work (some of the x86 dependencies are not installable on x86_64 OS) and manual
dependencies installation may be non-trivial. It may be easier to build x86 binaries on a
separate instance of x86 Ubuntu 12.04 using exactly the same steps from this recipe.

See also
ff The Working with GNU Autoconf recipe from this chapter

ff The Preparing CA certificates recipe from Chapter 2, Building OpenJDK 6

ff The official instructions about building OpenJDK 8 at http://hg.openjdk.java.
net/jdk8u/jdk8u/raw-file/2f40422f564b/README-builds.html

ff Unofficial instructions about building OpenJDK 8 packages for Linux distributions at
https://github.com/hgomez/obuildfactory/wiki/How-to-build-and-
package-OpenJDK-8-on-Linux

http://hg.openjdk.java.net/jdk8u/jdk8u/raw-file/2f40422f564b/README-builds.html
http://hg.openjdk.java.net/jdk8u/jdk8u/raw-file/2f40422f564b/README-builds.html
https://github.com/hgomez/obuildfactory/wiki/How-to-build-and-package-OpenJDK-8-on-Linux
https://github.com/hgomez/obuildfactory/wiki/How-to-build-and-package-OpenJDK-8-on-Linux

Building OpenJDK 8

72

Using ccache to speed up the OpenJDK 8
build process

Besides the Java source code, the OpenJDK source repository contains a lot of native C
and C++ source code. Native code compilation is much longer than Java and may take a
lot of time. During development, the same code may be compiled multiple times with minor
changes. Intermediate binary results for parts of the code may be completely equal between
the compilations, but usually parts of the code are recompiled even if no changes are added
in those parts. It is natural to expect a more clever approach to code recompiling from modern
advanced compilation/linking toolchains.

The ccache tool provides such cleverness for native compilation. This tool caches the output
of C/C++ compilation so that the next time, the same compilation can be avoided and
the results can be taken from the cache. This can greatly speed up recompiling time. The
detection is done by hashing different kinds of information that should be unique for the
compilation, and then using the hash sum to identify the cached output.

OpenJDK 8 supported ccache on Linux and Mac OS X but did not support Windows at the time
of writing this book.

In this recipe, we will set up ccache for the OpenJDK 8 build on Ubuntu 12.04.

Getting ready
For this recipe, we will need Ubuntu 12.04 (server or desktop version) set up to build
OpenJDK 8 (please see the previous recipe).

How to do it...
The following procedure will help us in enabling ccache:

1.	 Install the ccache package:
sudo apt-get install ccache

2.	 Reconfigure the project, running the following command from the OpenJDK 8
source directory:
bash ./configure

3.	 Check this line in the configure script output:
ccache status: installed and in use

Chapter 4

73

How it works...
In OpenJDK 8, the configure script checks the cache availability and automatically enables
its use during further builds.

There's more...
For product-like builds when result binaries are going to be used in production, it may be safer
to reconfigure the project disabling ccache with the --disable-ccache option.

See also
ff The previous recipe Building OpenJDK 8 on Ubuntu Linux 12.04 LTS from this chapter

ff The official website of ccache at http://ccache.samba.org/

Building OpenJDK 8 on Mac OS X
OpenJDK 8 supports Mac OS X platform as a first class citizen and building it (using a proper
version of toolchain) is almost as easy as on Linux.

Historically, Java had first class support on Mac OS X. JDK was based on the Sun code
base but built by Apple and integrated finely into operating system environment. Up to
Mac OS X 10.4 Tiger, graphical user interface applications written using the standard
Swing toolkit had access to most of the Cocoa native interface features. Applications
written in Java were felt to be very close to native ones, while still being cross-platform.

However, for the next releases, the level of Java support went down. Starting from Mac OS
X 10.5 Leopard, newer Cocoa features became unsupported for Java. The release of Apple
Java 6 was postponed (comparing to Sun releases for other platforms) for more than a year.
Java 6 was released in December 2006 but was not available for Mac OS X users until April
2008. Finally, in October 2010, Apple officially announced its decision to discontinue Java
support. Apple Java 6 is still being updated with security updates and may be installed on Mac
OS X 10.9 Mavericks (the latest version at the time of writing this book) but no following Java
versions will be released by Apple.

Third-party open source Java distributions do exist for Mac OS X. The most notable one is
the SoyLatte X11-based port of the FreeBSD Java 1.6 patch set to Mac OS X Intel machines.
SoyLatte predated OpenJDK, was licensed under the Java Research license and supported
Java 6 builds. Now it is part of the OpenJDK BSD Port project.

Full support for Mac OS X on a par with other platforms was added in OpenJDK 7 and was
continued in OpenJDK 8.

http://ccache.samba.org/

Building OpenJDK 8

74

Getting ready
For this recipe, we will need clean Mac OS X 10.7.5 Lion (or any later version that supports
Xcode 4) running.

How to do it...
The following procedures will help us to build OpenJDK 8:

1.	 Download Xcode 4.6.2 for Lion (April 15, 2013) from https://developer.apple.
com/xcode/ (an Apple developer's account is required, registration is free) and
install it.

2.	 Download the Command Line Tools for Xcode, April 2013 (April 15, 2013) using the
same download link as mentioned in the previous point, and install it.

3.	 Run this command from the terminal to set up the Command Line Tools:
sudo xcode-select -switch /Applications/Xcode.app/Contents/
Developer/

4.	 Navigate to Applications | Utilities and run X11.app to set up the X-server.

5.	 Install the JDK 7 Oracle distribution, or prebuilt OpenJDK binaries can be used.

6.	 Download and decompress the official OpenJDK 8 source code archive (this archive is
not available at the time of writing this book).

7.	 Run the autotools configuration script:
bash ./configure –-with-boot-jdk=path/to/jdk7

8.	 Start the build:
make all 2>&1 | tee make_all.log

9.	 Run the built binaries:
cd build/macosx-x86_64-normal-server-release/images/j2sdk-image

./bin/java -version

openjdk version "1.8.0-internal"

OpenJDK Runtime Environment (build 1.8.0-internal-
obf_2014_02_20_19_08-b00)

OpenJDK 64-Bit Server VM (build 25.0-b69, mixed mode)

How it works...
Despite the Xcode Command Line Tools that are used for the main part of the native source,
Xcode itself is also required to build the platform specific code.

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

Chapter 4

75

OpenJDK on Mac OS X is moving from using the X11 server, but it is still required for Version 8
builds. Mac OS X 10.7 Lion has X11 preinstalled, it just needs to be run once to be configured
for the build.

There's more...
This recipe uses the official Apple builds of GCC (and G++) Version 4.2 as compilers. After that
version official Apple support for GCC was discontinued for licensing reasons. Clang—the open
source compiler initially developed by Apple—is the default and preferred compiler in newer
versions of Mac OS X.

Despite the initial developers' plans, OpenJDK 8 still requires GCC and cannot be built using
Clang. This is the reason for using Version 4 of Xcode and not Version 5, which does not ship
GCC at all. At the time of writing this book, Xcode 5 and Clang support was being added to the
OpenJDK 9 project. Such support may be backported to OpenJDK 8 later; if you want to build
Version 8 with Clang, it is best to check the OpenJDK mailing lists for up-to-date information.

On Mac OS X 10.8 Mountain Lion, a 10.9 Mavericks X11 server should be installed separately
using the XQuartz project.

See also
ff The Working with GNU Autoconf recipe from this chapter

ff The Preparing CA certificates recipe from Chapter 2, Building OpenJDK 6

ff Official instructions about building OpenJDK 8 at http://hg.openjdk.java.net/
jdk8u/jdk8u/raw-file/2f40422f564b/README-builds.html

ff Unofficial instructions about building OpenJDK 8 packages for Mac OS X at
https://github.com/hgomez/obuildfactory/wiki/Building-and-
Packaging-OpenJDK8-for-OSX

Building OpenJDK 8 on Windows 7 SP1
The OpenJDK 8 build process on Windows platform included major improvements compared
to Version 7. Despite that, the build environment setup is still much more complex than on
Linux and Mac OS X. Much of the complexity of the build comes from its usage of a Unix-like
build environment through Cygwin tools.

http://hg.openjdk.java.net/jdk8u/jdk8u/raw-file/2f40422f564b/README-builds.html
http://hg.openjdk.java.net/jdk8u/jdk8u/raw-file/2f40422f564b/README-builds.html
https://github.com/hgomez/obuildfactory/wiki/Building-and-Packaging-OpenJDK8-for-OSX
https://github.com/hgomez/obuildfactory/wiki/Building-and-Packaging-OpenJDK8-for-OSX

Building OpenJDK 8

76

The official compiler requirement for i586 builds is Microsoft Visual Studio C++ 2010
Professional Edition. The Express Edition of Visual Studio 2010 may also be used for the x86
build. For x86_64 builds, instead of Visual Studio 2010 Professional Edition, we will use the
Microsoft Windows SDK Version 7.1 for Windows 7. This SDK is available for free from the
Microsoft website. It uses the same compiler as Visual Studio 2010 Express. It contains only
the Command Line Tools (no GUI) but may be used as an external toolset from Visual Studio
2010 if GUI is desired.

Getting ready
For this recipe, we should have Windows 7 SP1 amd64 running with no antivirus software
installed. Antivirus software is not allowed because it may interfere with Cygwin runtime.

How to do it...
The following procedure will help us to build OpenJDK 8:

1.	 Download Microsoft .NET Framework 4 from the Microsoft website and install it.

2.	 Download the amd64 version of the Microsoft Windows SDK for Windows 7 (the
GRMSDKX_EN_DVD.iso file) from the Microsoft website and install it to the
default location. The .NET Development and Common Utilities
components are not required.

3.	 Download Visual Studio 2010 Express Edition from the Microsoft website and install
it to the default location. Only the Visual C++ component is required.

4.	 Download and install the Microsoft DirectX 9.0 SDK (summer 2004) to the default
installation path. Note that this distribution is not available any more on the Microsoft
website. It may be downloaded from another place online, and the file details are
as follows:
name: dxsdk_sum2004.exe
size: 239008008 bytes
sha1sum: 73d875b97591f48707c38ec0dbc63982ff45c661

5.	 Install or copy the preinstalled version of Cygwin to c:\cygwin.

6.	 Create a c:\path_prepend directory and copy to it the find.exe and sort.exe
files from the Cygwin installation.

7.	 Download the GNU make utility binary from the http://www.cmake.org/ website
using http://www.cmake.org/files/cygwin/make.exe-cygwin1.7, rename
it to make.exe, and put it into the c:\make directory.

8.	 Download the prebuilt FreeType libraries from the openjdk-unofficial-builds
GitHub project (directory 7_64) and put binaries into the c:\freetype\lib
directory and header files into the c:\freetype\include directory.

http://www.cmake.org/
http://www.cmake.org/files/cygwin/make.exe-cygwin1.7

Chapter 4

77

9.	 Install the OpenJDK 7 binaries or Oracle Java 7 into c:\jdk7.

10.	 Download the official OpenJDK 8 source code archive (this archive was not available
at the time of writing this book) and decompress it into the c:\sources directory.

11.	 Write the following command into the build.bat text file:
@echo off

set PATH=C:/path_prepend;C:/WINDOWS/system32;C:/WINDOWS;C:/
make;C:/cygwin/bin;C:/jdk7/bin

bash

echo Press any key to close window ...

pause > nul

12.	 Run build.bat from Windows Explorer. The cmd.exe window should appear with
bash launched.

13.	 From the bash Command Prompt run the following commands:
cd /cygdrive/c/sources

bash ./configure \

 --with-boot-jdk=c:/jdk7 \

 --with-freetype=c:/freetype \

chmod –R 777 .

make > make.log 2>&1

14.	 Launch another Cygwin console and run the following commands:
cd /cygdrive/c/sources

tail -f make.log

15.	 Wait for the build to finish.

16.	 Run the following build binaries:
cd build/windows-x86_64-normal-server-release/images/j2sdk-image

./bin/java -version

 openjdk version "1.8.0-internal"

 OpenJDK Runtime Environment (build 1.8.0-internal-
 obf_2014_02_22_17_13-b00)

 OpenJDK 64-Bit Server VM (build 25.0-b69, mixed mode)

Building OpenJDK 8

78

How it works...
Cygwin installation is covered in the recipe Installing Cygwin for Windows builds in Chapter 2,
Building OpenJDK 6. Directories in the root of disk C are used here for brevity. Generally,
arbitrary paths consisting of ASCII letters or numbers without spaces can be used. Newer
version of DirectX SDK also can be used.

Different GNU make versions may have different problems on Windows. This particular version
from the cmake project was tested on different Windows versions and works fine.

This recipe uses prebuilt FreeType 2.4.10 libraries from the openjdk-unofficial-builds
GitHub project. FreeType may be built from sources using the same Windows SDK 7.1 toolchain.

The make output will be redirected to the make.log file. The 2>&1 statement ensures that
both stdout and stderr will be redirected.

The tail -f command allows us to watch the contents of the make.log file as they are
written during the build process.

The pause > nul command added at the end of the batch file prevents the cmd.exe
window from disappearing in the case of runtime errors.

There's more...
The --with-target-bits=32 configure option can be used to build i586 binaries on
the amd64 operating system. In this case, the x86 version of the FreeType libraries should
be specified by the --with-freetype option and Express Edition of Visual Studio 2010
should be installed.

The tee command may be used instead of > and tail to write the build log to the file and
console simultaneously.

See also
ff The Working with GNU Autoconf recipe from this chapter

ff The Preparing CA certificates recipe from Chapter 2, Building OpenJDK 6

ff The Installing Cygwin for Windows builds recipe from Chapter 2, Building OpenJDK 6

ff The Building 64-bit FreeType libraries for OpenJDK 7 on Windows recipe from
Chapter 3, Building OpenJDK 7

ff Official instructions about building OpenJDK 8 at http://hg.openjdk.java.net/
jdk8u/jdk8u/raw-file/2f40422f564b/README-builds.html

http://hg.openjdk.java.net/jdk8u/jdk8u/raw-file/2f40422f564b/README-builds.html
http://hg.openjdk.java.net/jdk8u/jdk8u/raw-file/2f40422f564b/README-builds.html

5
Building IcedTea

In this chapter, we will cover the following topics:

ff Building IcedTea 6

ff Building IcedTea 7

ff Building OpenJDK 7 with IcedTea patches

ff Building IcedTea 7 with NSS security provider

ff Building IcedTea 6 with SystemTap support

Introduction
IcedTea is a build and integration project for OpenJDK launched by Red Hat in June 2007.
It allows users to build OpenJDK using free software tools. It also provides alternative
open source implementations of the Java browser plugin and Java Web Start as part
of the IcedTea-Web subproject.

Given the current state of the OpenJDK project itself, it is not easy to understand the full value of
the IcedTea project. Some features of OpenJDK, which seem standard now, like the absence of
binary components and an advanced build system, were pioneered in the IcedTea project.

The IcedTea project was started by Red Hat and the GNU classpath in 2007, soon after the
Sun Java source code was published under an open source license. The main goal was to
create a free Java package to include in GNU/Linux distributions. Popular distributions (such
as Fedora or Arch) have strict requirements for included software. Generally speaking, the
full source code must be available under the open source license, and binaries must be built
using the free software build tools. At the time of the release, some OpenJDK modules (for
example, font- and sound-related modules) were available in binary form only, and only a
proprietary Sun Java compiler could be used for the build.

Building IcedTea

80

IcedTea incorporated the GNU Autoconf build system. This made it possible to use the GNU
Compiler for Java to compile OpenJDK code and replace the binary modules with open
source implementations. In 2008, the IcedTea 6 binaries in the Fedora 9 distribution
passed the Java Technology Compatibility Kit test suite successfully and became a
fully compatible Java 6 implementation.

One distinguishable feature of the IcedTea project is bootstrap builds. Bootstrap mode means
that the build process runs twice. First, the OpenJDK with some patches is built using the
GNU Compiler for Java (GCJ) and then, the newly built binaries are used as the compiler for
the resulting production build. In the early days of IcedTea, this process was the only way to
ensure that no non-free binary parts were included (or accidentally leaked) into the resulting
binaries from the non-free Sun Java compiler. Such bootstrapping with another compiler is a
common procedure for free software. Besides preventing binary leaks, such a procedure can
also be used to prevent possible malicious compiler bookmarks. For recent IcedTea versions,
GCJ is not required for the built and prebuilt OpenJDK binaries, and can be used as the boot
JDK without the full bootstrap process.

IcedTea is more open to new and experimental features than OpenJDK. It allows you to use
alternative virtual machine implementations (such as Zero, Shark, and JamVM) and also
supports cross-compiling for additional architectures (such as ARM, MIPS), which are not
supported by OpenJDK.

IcedTea also provides more tight integration with an operating system. Originally, Sun Java
distributions for Linux were made to be as self-contained as possible. Implementation of many
standard features such as image processing support (PNG, JPG, GIF), compressing (ZIP), and
cryptographic algorithms (elliptic curve-based ones) were included in the OpenJDK code base.
These allow better portability but restrict users with older and possibly less secure versions of
the open source libraries. Modern Linux distributions have advanced package management
tools to control and update the common dependencies between packages. IcedTea has
introduced the support for using some libraries from the host operating system, instead of
using the versions included with OpenJDK.

Building IcedTea 6
The IcedTea project, historically, had a lot of changes in it compared to vanilla OpenJDK 6
source code. The number of changes went down eventually, as some of them were included in
the main OpenJDK 6 source tree. Some of the changes, such as NIO2 API support (taken from
OpenJDK 7), were experimental and were removed.

The changes are stored in the IcedTea source tree in the form of patches (different files) and
not as changesets in a separate branch. This can confuse users who are not experienced with
class Unix/Linux patch techniques and tools. The different files are stored in the patches
directory and are applied to the OpenJDK source tree during the configure build step.

Chapter 5

81

Contrary to OpenJDK 8, the GNU Autoconf build system is not integrated tightly into the
IcedTea build process. The Autoconf configure step prepares the environment for building
the OpenJDK sources and the standard (slightly patched) OpenJDK makefiles are run on
the Autoconf make step.

In this recipe, we will build IcedTea 6 on Ubuntu 12.04 LTS amd64.

Getting ready
For this recipe, we will need a clean Ubuntu 12.04 (server or desktop version) running.

How to do it...
The following procedures will help you to build IcedTea 6:

1.	 Install the prepackaged binaries of OpenJDK 6:
sudo apt-get install openjdk-6-jdk

2.	 Install the GCC toolchain and build dependencies:
sudo apt-get build-dep openjdk-6

sudo apt-get install libmotif-dev

3.	 Download and decompress the appropriate icedtea6* source code tarball from
http://icedtea.wildebeest.org/download/source/:
wget http://icedtea.wildebeest.org/download/source/icedtea6-
1.13.1.tar.xz

tar xJvf icedtea6-1.13.1.tar.xz

4.	 Configure the build specifying the preinstalled OpenJDK path and disable the
system's LCMS2 support:
./configure \

--with-jdk-home=/usr/lib/jvm/java-6-openjdk-amd64 \

--disable-system-lcms

5.	 Start the build:
make

6.	 Wait for the build to finish.

http://icedtea.wildebeest.org/download/source/

Building IcedTea

82

How it works...
Prepackaged binaries of OpenJDK 6 are required because some of the build steps are run
using the external Java runtime.

The build-dep command is used to install all the dependencies that are required to build
the specified package. As Ubuntu-packaged OpenJDK 6 is quite close to the official OpenJDK
6, this command will install almost all the required dependencies.

The libmotif-dev package is the additional package that is required, and contains the
Motif GUI toolkit header files.

In the configuration step, IcedTea checks the environment and prepares adjustments to the
OpenJDK sources that are to be applied in build step.

In build step, the official OpenJDK 6 sources are downloaded and then adjusted in accordance
with the build configuration. After that, the usual OpenJDK 6 build is run. Then, it is run for the
second time using the results of the first build as a bootstrap JDK. The resulting binaries are
produced by the second build.

Recent versions of IcedTea require the color management library LCMS Version 2.5 or higher.
As such a version is not available in Ubuntu 12.04 repositories, we use LCMS bundled with
OpenJDK sources.

There's more...
IcedTea has a much more flexible configuration compared to OpenJDK. Some of the options
will be explored in later recipes in this chapter.

See also
ff Chapter 2, Building OpenJDK 6

ff The Working with GNU Autoconf recipe from Chapter 4, Building OpenJDK 8

ff The IcedTea project website at http://icedtea.classpath.org/wiki/Main_
Page

ff The acceptance speech Reflections on Trusting Trust by Ken Thompson during the
ACM A.M. Turing Award 1983, which can be found at http://cm.bell-labs.com/
who/ken/trust.html.

http://icedtea.classpath.org/wiki/Main_Page
http://icedtea.classpath.org/wiki/Main_Page

Chapter 5

83

Building IcedTea 7
During the long years of development of OpenJDK 7, the build process was cleaned up and
improved significantly. Many changes (such as replacing the binary plugins with open source
components) were included in the main OpenJDK source tree after "soaking" in between other
experimental changes in IcedTea.

Due to these changes, the IcedTea 7 source tree contains much fewer patches for OpenJDK 7
compared to its predecessor. Similar to IcedTea 6, Autoconf configure step applies patches
and prepares the environment, and the make step runs the original OpenJDK 7 makefiles.

Source patches are mostly used for compatibility with platform Linux libraries (zlib, libpng,
and so on) instead of ones contained in the source tree. Makefile patches, besides this task,
are also used to change the Java launcher—version switch output. Many applications use
these outputs to determine the version of JRE they run on. Besides the version number format,
one notable change is that in Oracle the Java version line starts with the java version
<version number> string, whereas the vanilla OpenJDK version line starts with openjdk
version <version number>. While the version number can be modified using environment
variables, this prefix cannot be modified. To achieve better compatibility with existing
applications, IcedTea uses the makefile patch to change this prefix from openjdk to java.

In this recipe, we will build IcedTea 7 on Ubuntu 12.04 LTS.

Getting ready
For this recipe, we will need a clean Ubuntu 12.04 (server or desktop version) running.

How to do it...
The following procedures will help you to build Iced Tea 7:

1.	 Install the prepackaged binaries of OpenJDK 6:
sudo apt-get install openjdk-6-jdk

2.	 Install the GCC toolchain and build dependencies:
sudo apt-get build-dep openjdk-6

3.	 Download and decompress the appropriate icedtea-2* source code tarball from
http://icedtea.wildebeest.org/download/source/:
http://icedtea.wildebeest.org/download/source/icedtea-2.4.5.tar.xz

tar xJvf icedtea-2.4.5.tar.xz

http://icedtea.wildebeest.org/download/source/

Building IcedTea

84

4.	 Configure the build, specifying the preinstalled OpenJDK path, and disable the
system's LCMS2 support:
./configure \

--with-jdk-home=/usr/lib/jvm/java-6-openjdk-amd64 \

--disable-system-lcms

5.	 Start the build:
make

6.	 Wait for the build to finish.

How it works...
The prepackaged binaries of OpenJDK 6 are required because some of the build steps are run
using the external Java runtime.

The build-dep command is used to install all the dependencies that are required to build
the specified package.

In the build step, the official OpenJDK 6 sources are downloaded and then adjusted in
accordance with the build configuration. After that, the usual OpenJDK 6 build is run. Then,
the OpenJDK 6 build is run a second time using the results of the first build as a bootstrap
JDK. The resulting binaries are produced by the second build.

Recent versions of IcedTea require the color management library LCMS Version 2.5 or higher.
As such a version is not available in Ubuntu 12.04 repositories, we used the LCMS bundled
with OpenJDK sources.

There's more...
IcedTea has a much more flexible configuration compared to OpenJDK. Some of the options
will be explored in the later recipes in this chapter.

See also
ff Chapter 3, Building OpenJDK 7

ff The Working with GNU Autoconf recipe from Chapter 4, Building OpenJDK 8

ff IcedTea project website at http://icedtea.classpath.org/wiki/Main_Page

http://icedtea.classpath.org/wiki/Main_Page

Chapter 5

85

Building OpenJDK 7 with IcedTea patches
IcedTea 7 has a much shorter release cycle compared to OpenJDK 7. IcedTea releases roughly
correspond to Oracle Java security releases and contain the same security patches where
applicable, so, IcedTea 7 can be used to build up-to-date OpenJDK 7 builds on Windows and
Mac OS X platforms.

Performing full IcedTea 7 builds on a non-Linux platform might be difficult because the build
configuration step expects Linux as a host platform. Instead of this, the IcedTea project can
be used to patch OpenJDK sources on Linux, and then the patched sources can be built on
other platforms using the usual OpenJDK 7 build steps.

Getting ready
For this recipe, we will need a clean Ubuntu 12.04 (server or desktop version) running.

How to do it...
The following procedures will help you to prepare the OpenJDK 7 source code with
IcedTea patches:

1.	 Install the prepackaged binaries of OpenJDK 6:
sudo apt-get install openjdk-6-jdk

2.	 Install the GCC toolchain and build dependencies:
sudo apt-get build-dep openjdk-6

3.	 Download and decompress the appropriate icedtea-2* source code tarball from
http://icedtea.wildebeest.org/download/source/:
http://icedtea.wildebeest.org/download/source/icedtea-2.4.5.tar.xz

tar xJvf icedtea-2.4.5.tar.xz

4.	 Run the configuration script to enable the use of the libraries bundled with
OpenJDK sources:
./configure \
--with-jdk-home=path/to/openjdk7 \
--with-rhino=path/to/rhino-1.7.4.jar \
--disable-bootstrap \
--disable-system-zlib \
--disable-system-jpeg \
--disable-system-png \
--disable-system-gif \

http://icedtea.wildebeest.org/download/source/

Building IcedTea

86

--disable-system-lcms \
--disable-system-pcsc \
--disable-compile-against-syscalls \
--disable-nss

5.	 Start the build process:
make

6.	 During the build, the patched OpenJDK 7 source will be put into the openjdk
directory. Copy this directory to a Windows or Mac OS X machine.

7.	 Build the patched sources using the usual OpenJDK 7 build process, with the
additional environment variables:
export FT2_CFLAGS='-I$(FREETYPE_HEADERS_PATH) -I$(FREETYPE_
HEADERS_PATH)/freetype2'

export DISABLE_INTREE_EC=true

How it works...
IcedTea 7 contains a set of patches that are applied (depending on configuration options)
at the start of the build process. In this recipe, we do not want to build IcedTea itself, but we
want to collect patched IcedTea sources to build them later, on another platform using the
usual build process for OpenJDK 7, as described in Chapter 3, Building OpenJDK 7.

There's more...
Applying patches is performed in the early stages of the build. It is not necessary to wait for
the IcedTea build to end: the build process can be interrupted after the patches are applied.

See also
ff The Building IcedTea 7 recipe in this chapter

ff Chapter 3, Building OpenJDK 7

ff The Working with GNU Autoconf recipe from Chapter 4, Building OpenJDK 8

ff IcedTea project website at http://icedtea.classpath.org/wiki/Main_Page

http://icedtea.classpath.org/wiki/Main_Page

Chapter 5

87

Building IcedTea 7 with the NSS security
provider

OpenJDK supports pluggable modules for cryptography service implementation. Widely
used modern cryptographic algorithms (such as ciphers, paddings, and so on) are usually
available on multiple platforms. Different platforms can have different native implementations
of these algorithms. These implementations can be more performant than OpenJDK
internal ones because they can rely on the details of the platform they run on. Also, platform
implementations can be used as bridges to the facilities of hardware crypto-devices such as
smartcards or eTokens. OpenJDK pluggable crypto-providers allow you to use a wide range of
cryptographic implementations through a single Java API interface.

Network Security Services (NSS) is an open source cryptography library that was developed
for the Netscape web browser and is currently maintained by the Mozilla Foundation. NSS
provides implementation of a wide range of cryptographic algorithms that support Transport
Layer Security (TLS) and S/MIME and is used in the Firefox web browser, besides other
software. NSS also has support for hardware crypto-devices (smartcards/eTokens).

IcedTea 7 can be built with support for NSS as a crypto-provider.

Getting ready
For this recipe, we will need a clean Ubuntu 12.04 (server or desktop version) running.

How to do it...
The following procedures will help you to build IcedTea 7 with NSS:

1.	 Install the prepackaged binaries of OpenJDK 6:
sudo apt-get install openjdk-6-jdk

2.	 Install the GCC toolchain and build dependencies:
sudo apt-get build-dep openjdk-6

3.	 Download and decompress the appropriate icedtea-2* source code tarball from
http://icedtea.wildebeest.org/download/source/:
http://icedtea.wildebeest.org/download/source/icedtea-2.4.5.tar.xz

tar xJvf icedtea-2.4.5.tar.xz

http://icedtea.wildebeest.org/download/source/

Building IcedTea

88

4.	 Run the configuration script and enable the NSS crypto-provider:
./configure --with-jdk-home=/usr/lib/jvm/java-6-openjdk-amd64

--disable-system-lcms

--enable-nss

5.	 Start the build:
make

6.	 Wait for the build to finish.

How it works...
OpenJDK supports pluggable cryptography implementations using unified service-provider
interfaces. IcedTea 7 allows you to delegate cryptographic tasks to the platform NSS library.

See also
ff The Building IcedTea 7 recipe from this chapter

ff Chapter 3, Building OpenJDK 7

ff The Working with GNU Autoconf recipe from Chapter 4, Building OpenJDK 8

ff The Mozilla NSS developer documentation at https://developer.mozilla.
org/en-US/docs/Mozilla/Projects/NSS

Building IcedTea 6 with the SystemTap
support

Applications running on modern operating systems usually communicate with the underlying
OS kernel through system calls (syscalls) or through an intermediate platform API. Some
operating systems provide advanced tracing tools to monitor the applications running, and for
troubleshooting. Such tools (such as dtrace on Oracle Solaris) allow the user to intercept
all application activity, syscalls, Unix signals processing, and so on, to diagnose performance
and functional problems.

For proper support of tracing tools, applications should have probe-points (or tracepoints)
compiled into their binaries.

SystemTap is a tracing tool and a scripting language for Linux-based operating systems.
IcedTea 6 can be built with SystemTap support.

Getting ready
For this recipe, we will need a clean Ubuntu 12.04 (server or desktop version) running.

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS

Chapter 5

89

How to do it...
The following procedures will help you to build IcedTea 6 with SystemTap:

1.	 Install the prepackaged binaries of OpenJDK 6:
sudo apt-get install openjdk-6-jdk

2.	 Install GCC toolchain and build dependencies:
sudo apt-get build-dep openjdk-6

sudo apt-get install libmotif-dev

3.	 Download and decompress the appropriate icedtea6* source code tarball from
http://icedtea.wildebeest.org/download/source/:
wget http://icedtea.wildebeest.org/download/source/icedtea6-
1.13.1.tar.xz

tar xJvf icedtea6-1.13.1.tar.xz

4.	 Configure the build, specifying the preinstalled OpenJDK path and disable the
system's LCMS2 support:
./configure \

--with-jdk-home=/usr/lib/jvm/java-6-openjdk-amd64 \

--disable-system-lcms

--enable-systemtap

5.	 Start the build:
make

6.	 Wait for the build to finish.

There's more...
We built IcedTea 6 with the support of JVM user space markers. These markers allow
SystemTap to probe various JVM events including the loading of classes, just-in-time
translation of method, and garbage collection.

See also
ff The Building IcedTea 6 recipe from this chapter

ff Chapter 2, Building OpenJDK 6

ff The Working with GNU Autoconf recipe from Chapter 4, Building OpenJDK 8

ff The SystemTap project website at https://sourceware.org/systemtap/

http://icedtea.wildebeest.org/download/source/
https://sourceware.org/systemtap/

6
Building IcedTea

with Other VM
Implementations

In this chapter, we will cover the following topics:

ff Configuring cross-compilation between ARM and x86

ff Building IcedTea for ARM with integrated CACAO VM

ff Porting JamVM to use OpenJDK

ff Configuring Zero assembler with the Shark compiler to use OpenJDK

ff Building MIPS and other architectures using OpenEmbedded recipes

Introduction
Though various x86-compatible platforms are widespread and common to use, there are
other architectures to think about. Java language itself is designed to be as cross-platform, as
possible. In an x86-compatible world, it means that Java will work equally well and predictable
for the vast majority of operating systems. Where more architectures are concerned, it should
work on a great number of them.

The ARM architecture is the second architecture among the most popular ones. It gives a
great balance between power saving and performance, and is used mostly in embedded and
portable devices. There are several operating systems, supporting ARM, such as various Linux
distributions, Android, Symbian, MeeGo, and many Windows releases.

Building IcedTea with Other VM Implementations

92

In this chapter, we will speak about building IcedTea on ARM, using virtual Java machines,
which are not official and aren't parts of the OpenJDK community. They are built for different
purposes—academic, performance, and so on.

Unfortunately, these days, the only operating system that works with ARM and OpenJDK both,
is Linux. Nuances of building IcedTea on Linux differ from distribution to distribution, though
the main idea and philosophy is the same.

In this chapter, we will try to use as many different distribution-based examples and device
nuances, as possible, though the most thoroughly tested ones will be the following pairs:

ff Raspberry Pi and Raspbian

ff Nexus 7 and Ubuntu touch

This chapter will also cover a topic of cross-compilation with an x86-based system, because
one may probably need a faster compilation that ARM processors are capable of, especially
in the case of small computers of the Raspberry Pi class.

We will have three VMs in this chapter: ZeroVM, CACAO VM, and Jam VM. However, only the
Zero assembler is a member of an OpenJDK project. The Zero assembler is an effort to get
rid of platform-specific assembler languages and to build an interpreter-only virtual machine.
It will make porting any Java executable to any operating system a remarkably easy task,
but with a significant performance impact because of the absence of JIT. However, there
is Shark, a JIT-compiler for Zero, which uses LLVM to compile the Zero-assembler to the
platform-specific code. It's obvious, though, that Shark works only for architectures that
are supported by LLVM itself.

JamVM is also famous because of its really small size, which is, depending on architectures,
between 200 and 250 kilobytes. In this space, it implements the full JVM specification,
published by Oracle, known as blue book.

Configuring cross-compilation between ARM
and x86

Though many of the recent ARM devices have great performance and the same core numbers,
as their desktop fellows, there are always those whose performance is not sufficient enough
to do complicated work in a reasonable amount of time. Don't want to be bored by endless
hours of compilation? Use OpenEmbedded builds. OpenEmbedded is a build framework to
create Linux distributions and can cross-compile for a large variety of architectures.

Chapter 6

93

Getting ready
We will need a real or emulated ARM device with Linux installed on it. The following recipes
are primarily for the deb-based distributions, but the general idea remains the same for any
ARM-based device that runs Linux kernel with GNU-based tools.

Also, we will need another device with Linux, or Windows with Cygwin installed, to do the main
compilation job.

This recipe also assumes that you will use the deb-based distributions. If you are using the
ebuild-based distributions, use their own cross-compile tools. In the rpm-based distributions,
the process is quite similar.

How to do it...
First, we need to make use of the OpenEmbedded project. OpenEmbedded is a project whose
goal is to build a platform-specific environment and build various known packages. Take a
look at the following procedure to build various packages using the OpenEmbedded project:

1.	 In order to use it, we will install some packages:
sudo apt-get install git g++ gawk zip diffstat texi2html texinfo
subversion chrpath libgl1-mesa-dev libglu1-mesa-dev libsdl1.2-dev

2.	 After that, we need to get an OpenEmbedded environment:
git clone git://git.openembedded.org/openembedded-core oe-core

3.	 Then, we need to create three more projects in the oe-core directory:
cd oe-core

4.	 Moving ahead, let's clone some layers into our root directory:
git clone git://git.openembedded.org/bitbake bitbake

git clone git://git.openembedded.org/meta-openembedded

git clone https://github.com/woglinde/meta-java.git

5.	 Finally, initialize an OpenEmbedded environment:
. ./oe-init-build-env

Now we have a fully operational OpenEmbedded environment. All we have to do is to
configure our build. There are two ways to do it: by editing the config files manually or
through the Hob GUI.

Building IcedTea with Other VM Implementations

94

Configuring OpenEmbedded build manually
You will need to edit two configuration files: the first configuration file is for Java layer and the
second is generic and easy to include this layer in the build, as shown in the following steps:

1.	 First, edit the conf/local.conf file.

2.	 We will set JamVM as a preferred virtual machine:
PREFERRED_PROVIDER_virtual/java-native = "jamvm-native"

3.	 Set other versions as you wish (Version 1.8.11, for example):
PREFERRED_PROVIDER_virtual/javac-native = "ecj-bootstrap-native"

PREFERRED_VERSION_cacaoh-native = "<version_number>"

PREFERRED_VERSION_icedtea6-native = "<version_number>"

4.	 We will need an ARM build, so we will select a qemu-arm machine as the
target machine:
MACHINE ?= "qemuarm"

5.	 We will also need to mention how many compilation processes can be in
progress together:
PARALLEL_MAKE = "-j 2"

6.	 Also, we can reconfigure a number of threads for one compiling package.
For a Quad-core computer, it will be 2:
BB_NUMBER_THREADS = "2"

7.	 Then, we will edit the conf/bblayers.conf file.

8.	 The following parameter is a version of the file format. It means that there was
3 incompatible formats before this:
LCONF_VERSION = "4"

9.	 We will then set layers to command OpenEmbedded system on what exactly to build:
BBFILES ?= ""

BBLAYERS = " \

 /home/user/oe-core/meta \

 /home/user/oe-core/meta-openembedded/meta-oe \

 /home/user/oe-core/meta-java \

"

Chapter 6

95

Using the Hob utility to configure the OpenEmbedded build
Hob is a graphical UI for BitBake. Please take a look at the following procedures to use the
Hob utility to configure the OpenEmbedded build:

1.	 Let's run a hob executable from a build directory:
hob

This can be done only after an environment initialization. You will have a command
not found message otherwise.
No command 'hob' found, did you mean:

 Command 'bob' from package 'python-sponge' (universe)

 Command 'hoz' from package 'hoz' (universe)

 Command 'tob' from package 'tob' (universe)

 Command 'hnb' from package 'hnb' (universe)

hob: command not found

2.	 A starting screen will appear as shown:

3.	 First, we will select a virtual machine. For ARM processors, the most convenient is the
qemu-arm machine.

4.	 After that, we will need to select two additional layers. One is the meta-oe layer and
the second is meta-java.

While the meta-java folder is in the root folder of OpenEmbedded,
the path to meta-oe is meta-openembedded/meta-oe/.

Building IcedTea with Other VM Implementations

96

5.	 When a machine is chosen, the tool will parse all recipes and compute all
dependencies needed. Then, the window should look like this:

6.	 Then select a recipe. Here is one Java-related recipe: java-test-image. Although, it
would be better not to choose it and choose core-image-basic instead.

You can try to assemble your image from scratch. You can
select the package you want and dependencies will be
automatically calculated.

Chapter 6

97

You can choose in an advanced configuration section, exactly what the output will be. You can
even get it in a .deb form, as shown:

1.	 You need to edit recipes and add openjdk-7-jre to them as shown:

Also, you can add some dependencies that are necessary for the build.

Building IcedTea with Other VM Implementations

98

2.	 When all is ready, press the Build packages button and the following screen will appear:

If something goes wrong, the Issues tab will not be empty.

After the build
You will need to copy the build output from the tmp-eglibc folder to your ARM device.

How it works…
OpenEmbedded is a stack of cross-compile recipes for various tools that needs a lot of time
for compilation. OpenEmbedded will create a root filesystem from scratch. Then it will build
the packages that you want to be built. OpenEmbedded provides a bunch of abstraction
layers, from the developer to the core layer. These layers include recipes and tools to build
an environment and a target project.

So, after a performed configuration, the tool will build an environment and then some projects
in it.

Chapter 6

99

There's more...
Building OpenEmbedded recipes is not a trivial task. It often needs some problem solving
skills. It's not unusual when your build, that literally takes hours to pass, is interrupted with
some errors even when you are trying to build a stock Java-test image.

Though the basics of recipe-building and correcting will be given in the following recipes,
we can provide a roadmap to deal with some problems right here, in this section.

Some cases, which were found and overcome by authors,
will be found in Chapter 8, Hacking OpenJDK.

Configure problems – when a header file is not found
Though the building process is similar to creating a well-maintained Linux repository from
scratch, it's not so simple. It's a task of building the whole thing from source, and some
header movement in some minor package maybe a major problem that is fatal to your build,
as shown:

1.	 So, it's a dependency problem. At first, try to find out, do you need the package,
which header is not found, at all.

2.	 If so, find out whether you can disable it through the standard ./configure
properties (those which are specified before make).

3.	 If you can, you're lucky. Just find a recipe for your package and edit the .bb or .inc
file. For OpenJDK, it's openjdk-7-common.inc.

4.	 Add (or remove) the desired ./configure property to (or from) EXTRA_OECONF.
Don't forget the screening \. If you need that dependency or cannot disable it, it's
another matter.

5.	 First, consider switching to an older/newer version of the .bb files. It may solve some
problems, but can easily add to them as well.

6.	 If this is impossible or will not help, try to find a patch to the source and apply it.

Fetch problems – where your package is not accessible through
any mirror available
First, try to check whether all the mirrors that are used are permanently offline. If not, just wait
for a bit while one of those becomes accessible.

Building IcedTea with Other VM Implementations

100

Compile problems – where a compile error occurs
There is always a solution to this kind of problem, which is searchable through the Internet.

It may be a wrong dependency version or even a major compilation issue that slipped away
from the maintainer's eye. The solution is to patch your build using some known patches or
even your own patch, or change the source parameter of the package.

Parsing problems – where your recipes cannot be parsed
It is not a common problem but it was encountered, for example, in the openjdk-7 branch of
the meta-java repository. Often it doesn't mean that something is completely broken. Check
the indicated lines of recipe files for missing \, partial comments, and other minor formatting
issues. If the problem still appears, consider changing your current branch.

Building IcedTea for ARM with integrated
CACAO VM

This recipe promises to be quite simple, because the integration of CACAO VM is already a
part of IcedTea itself. It will not require any patching or other complicated things.

Getting ready
We may need a real or emulated ARM device, which has Linux and any Java environment
installed. We need Java to perform a javac compilation, which is a necessary part of the
IcedTea building process.

How to do it...
We will download IcedTea, unpack it, and build it with the specified parameters, that's all.

1.	 First, let's get the latest IcedTea source from the server:
wget http://icedtea.wildebeest.org/download/source/icedtea-
<icedtea_version>.tar.gz

It will download an archive.

2.	 Perform a checksum check if required.

3.	 Let's unpack an archive and copy it into the icedtea directory:
tar -xzf icedtea-XXXX

cd icedtea-XXXX

4.	 Then, you might have to install some dependency packages needed to make
your IcedTea.

Chapter 6

101

5.	 The given packages are those that were missing on the authors' machine during the
first build:
sudo apt-get install zip gawk xsltproc libjpeg8-dev libgif-dev
libpng-dev liblcms2-dev libgtk2-dev cups libcups2-dev libc6-dev
libattr1-dev alsa-ocaml-dev

6.	 Then, we will make a link for build configuration to find the Java home directory:
sudo ln -s /usr/lib/jvm/java-7-openjdk-armhf/ /usr/lib/jvm/java-
1.7.0-openjdk

If you have a distribution-recommended way to change
the default Java home directory, please follow it instead.

7.	 Then we will enable the CACAO VM in our configuration. Also, we will configure
the newly built IcedTea to use the CACAO VM not only as the build configuration,
but as a default:
 ./configure --enable-cacao --with-icedtea —with-icedtea-
home=<your_openjdk_home>

8.	 When running configure, you probably will encounter errors with messages
indicating that some program or library is missing. It's okay, you just need to
install them using your package manager.

9.	 After doing that, we will build IcedTea using just one simple command:
make

It is a long process, even using cross-compilation, so it's best to have a cup of tea or something.

How it works…
IcedTea is now supporting CACAO VM as a build configuration just out of the box. We will only
need to enable this option to configure and add missing dependencies. Normally, IcedTea
uses a ZeroVM on ARM, but without Shark JIT compilation. Under the hood, however, it literally
applies hundreds of patches and uses an amount of memory that is not acceptable on
embedded devices.

There's more...
Since you may experience some difficulties with building IcedTea on some devices, you may
need to use cross-compiling the way we used it before.

You may need just to set a variable to the local configuration file:

 PREFERRED_PROVIDER_virtual/java-native = "cacao-native"

Building IcedTea with Other VM Implementations

102

Porting JamVM to use OpenJDK
Another Zero HotSpot alternative for non-JIT supported platforms is JamVM—an extremely
small VM, which is the smallest among those supporting the blue book specification
(one that was published in the book form) for Java VMs.

Getting ready
We may need a real or emulated ARM device that has Linux and any Java environment
installed. We need Java to perform a javac compilation, which is a necessary part of
IcedTea building process.

How to do it...
Though JamVM patches may be applied manually, we will use the more simple way:

1.	 First, let's clone the source from the repository:
git clone git://git.berlios.de/jamvm

2.	 Then we configure it to use OpenJDK as Java runtime libraries:
./autogen.sh –with-java-runtime-library=openjdk

3.	 Then we will actually build it from source using the make command:
make && make install

4.	 Next, we need to copy libjvm to lib:
cp libjvm.so /usr/local/jamvm/lib.

5.	 Then let's copy the OpenJDK contents:
cd /usr/lib/jvm

cp -r java-7-openjdk jamvm-openjdk

cp /usr/local/jamvm/lib/libjvm.so jamvm-openjdk/jre/lib/armv6/
server

6.	 Then, let's run our compiled Java:
/usr/lib/jvm/jamvm-openjdk/jre/bin/java -version

7.	 We will see the output like this:
java version "1.7.0_20"

OpenJDK Runtime Environment (IcedTea7 1.9.5) (7b20-1.9.5-0ubuntu1)

JamVM (build 1.7.0-devel, inline-threaded interpreter)

Chapter 6

103

There's more
Also, the Jam M support is a part of an OpenEmbedded Java layer. In order to add it, you will
remove the ZeroVM support and add a JamVM support. It's a simple task, though you may
experience errors during configuration and building.

Also, you can run whatever Java program you choose with JamVM, even if your IcedTea build is
not configured to use it.

Just type the following:

java -jamvm <other parameters and program name>

Configuring Zero-assembler with the Shark
compiler to use OpenJDK

Zero-assembler HotSpot port is the default Java VM for all newly-built OpenJDK instances
on ARM prior to Java 8. It is the default Java VM for quite a few JIT-unsupported platforms.
However, there is an effort to bring JIT power to it, named Shark.

Getting ready
We may need a real or emulated ARM device, which has Linux and any Java environment
installed. We need Java to perform a javac compilation, which is a necessary part of the
IcedTea building process.

How to do it...
1.	 Let's download an IcedTea source.

wget http://icedtea.wildebeest.org/download/source/icedtea-
<icedtea_version>.tar.gz

It will download an archive.

2.	 Then, you can check a checksum.

3.	 Let's unpack it and copy it into the icedtea directory:
tar -xzf icedtea-XXXX

cd icedtea-XXXX

4.	 Then, you may need to install some dependency packages needed to make
your IcedTea.

Building IcedTea with Other VM Implementations

104

The following packages are those that were missing on my machine during my
first build.
sudo apt-get install zip gawk xsltproc libjpeg8-dev libgif-dev
libpng-dev liblcms2-dev libgtk2-dev cups libcups2-dev libc6-dev
libattr1-dev alsa-ocaml-dev

5.	 Then, we will make a link for the build configuration to find the Java home directory:
sudo ln -s /usr/lib/jvm/java-7-openjdk-armhf/ /usr/lib/jvm/java-
1.7.0-openjdk

If you have a distribution-recommended way to change
the default Java home directory, please follow it instead.

6.	 Then we will enable Zero-Shark in our configuration. Also, we will configure the newly
built IcedTea to use Shark VM not only as the build, but as the default:
 ./configure --enable-zero --enable-shark --with-icedtea —with-
icedtea-home=<your_openjdk_home>

When running configure, you probably will encounter errors with messages
indicating that some program or library is missing. It's okay, you just need to install
them using your package manager.

7.	 After doing that, we will build IcedTea using just one simple command:
make

How it works…
Normally, IcedTea uses a ZeroVM on ARM but without Shark JIT-compilation. All we need to do
is to command it to use ZeroVM and Shark JIT compiler.

Shark is a project that uses a famous list of LLVM-supported platforms to enable JIT support
on all of them, which is quite impressive. It may not be as fast as native JIT but something is
better than nothing.

On ARM, there is a workable OpenJDK that uses JIT-compilation in
HotSpot out of the box. However, it's only in the early-access mode and
since it's JDK 8, this support will not be ported any prior to it.

Chapter 6

105

The LLVM project's goal is to achieve the cross-platform compilation across as many languages
and platforms as possible. It uses frontend and backend transforms to provide a flexibility of
their tools as shown in the following figure:

Languages Intermediate bytecode Architectures

Because of this structure, LLVM can be used to compile the Java class methods' code to an
intermediate language and then to a native code. It leaves the simplest features as reflection
and so on to the VM.

There's more
Also, you could always cross-compile IcedTea with Zero-Shark support. In order to do so, refer
to the last recipe in this chapter.

Building for MIPS and other architectures
using OpenEmbedded recipes

When ARM-based devices are widespread and popular, there are always other architectures.
The great power of Java is its cross-platformness, so let's try to have builds for some
other architecture.

Getting ready
You will need an Internet connection and Linux or Windows with Cygwin installed on your
computer. Also, from the author's experience, you will need at least 4GB RAM.

For a comfortable build, it's recommended to have a powerful hardware and a fast HDD.

Also, you may experience some lags or even OOM-kills during build, so make sure that all your
data is saved.

Also, you will need an OpenEmbedded project configured, as described in the first recipe of
this chapter.

Building IcedTea with Other VM Implementations

106

How to do it...
First, we will see how to add architectures and software to OpenEmbedded:

1.	 Open your browser, and go to http://layers.openembedded.org/
layerindex/branch/master/layers/.

You will find a list of architectures supported and a list of software that you
can install.

2.	 Do a Git clone of the repositories containing the code that you need (such as
meta-asus or meta-htc).

3.	 Then prepare your build environment and open the Hob GUI as shown:

4.	 Select the machine from the drop-down list.

5.	 Then, you will probably need to set some architecture-specific ./configure options.
In order to do that, you will need to change a bitbake file, adding or correcting the
EXTRA_OECONF variable. Don't forget to add trailing \s.

How it works…
The main goal of this project is to create the repository and distribution from scratch, with
precompiled images and dependencies. It consists of metadata, called the .bb files, and
many dependencies between them.

If this project is not running very smoothly, and you may need to make some changes in order
to make your way through. A .bb file is a file of the following structure:

#A description of this recipe.
 DESCRIPTION = ""
#A homepage, if any

http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/

Chapter 6

107

 HOMEPAGE = ""
#A license
 LICENSE = ""
#Dependecies
 DEPENDS = ""
#URI of the sources
 SRC_URI = " \
 "
 # SRC_URI could also point to a git repository, eg:
 # SRC_URI = "git://host:port/path/to/repo.git;branch=win;protocol=ssh
;user=username"

 # any .patch files included here will be auto-magically applied,
increasing the -p level until it sticks.
 # SRC_URI = "file://some.patch"

#package revision. This is a really important thing, you will change
it each time when you update the recipe.
 PR = "r0"

#checksums for tarball packages
 SRC_URI[md5sum] = ""
 SRC_URI[sha256sum] = ""
 S = "${WORKDIR}/CHANGEME-${PV}"

#Action which will be performed on oe_configure stage
 do_configure () {
 ./configure --prefix=${prefix}
 }

#Action which will be performed on oe_make stage
 do_compile () {
 make
 }

 #Action which will be performed on install stage
do_install () {
 DESTDIR=${D} oe_runmake install
 }

This is a plain recipe template and you can add whatever dependency you want through it.
Also, you can add patches into the recipe directory or even add sources to it.

Building IcedTea with Other VM Implementations

108

There's more...
You always can build OpenJDK on other architectures using a standard HotSpot Zero port. It is
fully interpretable and it can make your programs run very slowly, but it's better than nothing.
Just follow the standard procedure:

./configure

make

This approach has its downsides, because most of the architectures aside from Intel and
ARM are embedded, so you will not be able to make something fast, or even make it at all.
For example, on Raspberry Pi with a newly-built Raspbian and 512 Mb RAM, building IcedTea
will randomly crash because of lack of memory, even with large swapfiles.

7
Working with WebStart
and the Browser Plugin

In this chapter, we will cover the following topics:

ff Building the IcedTea browser plugin on Linux

ff Using the IcedTea Java WebStart implementation on Linux

ff Preparing the IcedTea Java WebStart implementation for Mac OS X

ff Preparing the IcedTea Java WebStart implementation for Windows

Introduction
For a long time, for end users, the Java applets technology was the face of the whole Java world.
For a lot of non-developers, the word Java itself is a synonym for the Java browser plugin that
allows running Java applets inside web browsers. The Java WebStart technology is similar to
the Java browser plugin but runs remotely on loaded Java applications as separate applications
outside of web browsers.

The OpenJDK open source project does not contain the implementations for the browser plugin
nor for the WebStart technologies. The Oracle Java distribution, otherwise matching closely to
OpenJDK codebases, provided its own closed source implementation for these technologies.

The IcedTea-Web project contains free and open source implementations of the browser
plugin and WebStart technologies. The IcedTea-Web browser plugin supports only
GNU/Linux operating systems and the WebStart implementation is cross-platform.

Working with WebStart and the Browser Plugin

110

While the IcedTea implementation of WebStart is well-tested and production-ready, it has
numerous incompatibilities with the Oracle WebStart implementation. These differences
can be seen as corner cases; some of them are:

ff Different behavior when parsing not well-formed JNLP descriptor files: The Oracle
implementation is generally more lenient for malformed descriptors.

ff Differences in JAR (re)downloading and caching behavior: The Oracle
implementation uses caching more aggressively.

ff Differences in sound support: This is due to differences in sound support between
Oracle Java and IcedTea on Linux. Linux historically has multiple different sound
providers (ALSA, PulseAudio, and so on) and IcedTea has more wide support for
different providers, which can lead to sound misconfiguration.

The IcedTea-Web browser plugin (as it is built on WebStart) has these incompatibilities too.
On top of them, it can have more incompatibilities in relation to browser integration. User
interface forms and general browser-related operations such as access from/to JavaScript
code should work fine with both implementations. But historically, the browser plugin was
widely used for security-critical applications like online bank clients. Such applications usually
require security facilities from browsers, such as access to certificate stores or hardware
crypto-devices that can differ from browser to browser, depending on the OS (for example,
supports only Windows), browser version, Java version, and so on. Because of that, many
real-world applications can have problems running the IcedTea-Web browser plugin on Linux.

Both WebStart and the browser plugin are built on the idea of downloading (possibly
untrusted) code from remote locations, and proper privilege checking and sandboxed
execution of that code is a notoriously complex task. Usually reported security issues
in the Oracle browser plugin (most widely known are issues during the year 2012) are
also fixed separately in IcedTea-Web.

Building the IcedTea browser plugin
on Linux

The IcedTea-Web project is not inherently cross-platform; it is developed on Linux and for
Linux, and so it can be built quite easily on popular Linux distributions. The two main parts
of it (stored in corresponding directories in the source code repository) are netx and plugin.

NetX is a pure Java implementation of the WebStart technology. We will look at it more
thoroughly in the following recipes of this chapter.

Chapter 7

111

Plugin is an implementation of the browser plugin using the NPAPI plugin architecture that
is supported by multiple browsers. Plugin is written partly in Java and partly in native code
(C++), and it officially supports only Linux-based operating systems. There exists an opinion
about NPAPI that this architecture is dated, overcomplicated, and insecure, and that modern
web browsers have enough built-in capabilities to not require external plugins. And browsers
have gradually reduced support for NPAPI. Despite that, at the time of writing this book, the
IcedTea-Web browser plugin worked on all major Linux browsers (Firefox and derivatives,
Chromium and derivatives, and Konqueror).

We will build the IcedTea-Web browser plugin from sources using Ubuntu 12.04 LTS amd64.

Getting ready
For this recipe, we will need a clean Ubuntu 12.04 running with the Firefox web browser installed.

How to do it...
The following procedure will help you to build the IcedTea-Web browser plugin:

1.	 Install prepackaged binaries of OpenJDK 7:
sudo apt-get install openjdk-7-jdk

2.	 Install the GCC toolchain and build dependencies:
sudo apt-get build-dep openjdk-7

3.	 Install the specific dependency for the browser plugin:
sudo apt-get install firefox-dev

4.	 Download and decompress the IcedTea-Web source code tarball:
wget http://icedtea.wildebeest.org/download/source/icedtea-web-
1.4.2.tar.gz

tar xzvf icedtea-web-1.4.2.tar.gz

5.	 Run the configure script to set up the build environment:
./configure

6.	 Run the build process:
make

7.	 Install the newly built plugin into the /usr/local directory:
sudo make install

Working with WebStart and the Browser Plugin

112

8.	 Configure the Firefox web browser to use the newly built plugin library:
mkdir ~/.mozilla/plugins

cd ~/.mozilla/plugins

ln -s /usr/local/IcedTeaPlugin.so libjavaplugin.so

9.	 Check whether the IcedTea-Web plugin has appeared under Tools | Add-ons | Plugins.

10.	 Open the http://java.com/en/download/installed.jsp web page to verify
that the browser plugin works.

How it works...
The IcedTea browser plugin requires the IcedTea Java implementation to be compiled
successfully. The prepackaged OpenJDK 7 binaries in Ubuntu 12.04 are based on IcedTea, so
we installed them first. The plugin uses the GNU Autconf build system that is common between
free software tools. The xulrunner-dev package is required to access the NPAPI headers.

The built plugin may be installed into Firefox for the current user only without requiring
administrator privileges. For that, we created a symbolic link to our plugin in the place
where Firefox expects to find the libjavaplugin.so plugin library.

There's more...
The plugin can also be installed into other browsers with NPAPI support, but installation
instructions can be different for different browsers and different Linux distributions.

As the NPAPI architecture does not depend on the operating system, in theory, a plugin can
be built for non-Linux operating systems. But currently, no such ports are planned.

See also
ff The Using the IcedTea Java WebStart implementation on Linux recipe

ff The Preparing the IcedTea Java WebStart implementation for Mac OS X recipe

ff The Preparing the IcedTea Java WebStart implementation for Windows recipe

ff Chapter 5, Building IcedTea

ff The Working with GNU Autoconf recipe from Chapter 4, Building OpenJDK 8

ff The IcedTea-Web project website at http://icedtea.classpath.org/wiki/
IcedTea-Web

ff The NetX project website at http://jnlp.sourceforge.net/netx/

ff The Java WebStart developers guide at http://docs.oracle.com/javase/6/
docs/technotes/guides/javaws/

http://java.com/en/download/installed.jsp
http://icedtea.classpath.org/wiki/IcedTea-Web
http://icedtea.classpath.org/wiki/IcedTea-Web
http://jnlp.sourceforge.net/netx/
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/

Chapter 7

113

ff The NPAPI project site at https://wiki.mozilla.org/NPAPI

ff Details on NPAPI support in different browsers at http://www.firebreath.org/
display/documentation/Browser+Plugins+in+a+post-NPAPI+world

Using the IcedTea Java WebStart
implementation on Linux

On the Java platform, the JVM needs to perform the class load process for each class it wants
to use. This process is opaque for the JVM and actual bytecode for loaded classes may come
from one of many sources. For example, this method allows the Java Applet classes to be
loaded from a remote server to the Java process inside the web browser. Remote class loading
also may be used to run remotely loaded Java applications in standalone mode without
integration with the web browser. This technique is called Java WebStart and was developed
under Java Specification Request (JSR) number 56.

To run the Java application remotely, WebStart requires an application descriptor file that
should be written using the Java Network Launching Protocol (JNLP) syntax. This file is used
to define the remote server to load the application form along with some metainformation.
The WebStart application may be launched from the web page by clicking on the JNLP link,
or without the web browser using the JNLP file obtained beforehand. In either case, running
the application is completely separate from the web browser, but uses a sandboxed security
model similar to Java Applets.

The OpenJDK project does not contain the WebStart implementation; the Oracle Java
distribution provides its own closed-source WebStart implementation. The open source
WebStart implementation exists as part of the IcedTea-Web project. It was initially based on
the NETwork eXecute (NetX) project. Contrary to the Applet technology, WebStart does not
require any web browser integration. This allowed developers to implement the NetX module
using pure Java without native code. For integration with Linux-based operating systems,
IcedTea-Web implements the javaws command as shell script that launches the netx.jar
file with proper arguments.

In this recipe, we will build the NetX module from the official IcedTea-Web source tarball.

Getting ready
For this recipe, we will need a clean Ubuntu 12.04 running with the Firefox web browser installed.

https://wiki.mozilla.org/NPAPI
http://www.firebreath.org/display/documentation/Browser+Plugins+in+a+post-NPAPI+world
http://www.firebreath.org/display/documentation/Browser+Plugins+in+a+post-NPAPI+world

Working with WebStart and the Browser Plugin

114

How to do it...
The following procedure will help you to build a NetX module:

1.	 Install prepackaged binaries of OpenJDK 7:
sudo apt-get install openjdk-7-jdk

2.	 Install the GCC toolchain and build dependencies:
sudo apt-get build-dep openjdk-7

3.	 Download and decompress the IcedTea-Web source code tarball:
wget http://icedtea.wildebeest.org/download/source/icedtea-web-
1.4.2.tar.gz

tar xzvf icedtea-web-1.4.2.tar.gz

4.	 Run the configure script to set up a build environment excluding the browser plugin
from the build:
./configure –disable-plugin

5.	 Run the build process:
make

6.	 Install the newly-built plugin into the /usr/local directory:
sudo make install

7.	 Run the WebStart application example from the Java tutorial:
javaws http://docs.oracle.com/javase/tutorialJWS/samples/

deployment/dynamictree_webstartJWSProject/dynamictree_webstart.
jnlp

How it works...
The javaws shell script is installed into the /usr/local/* directory. When launched with
a path or a link to the JNLP file, javaws launches the netx.jar file, adding it to the boot
classpath (for security reasons) and providing the JNLP link as an argument.

See also
ff The Preparing the IcedTea Java WebStart implementation for Mac OS X recipe

ff The Preparing the IcedTea Java WebStart implementation for Windows recipe

ff The Building the IcedTea browser plugin on Linux recipe

ff The Working with GNU Autoconf recipe from Chapter 4, Building OpenJDK 8

Chapter 7

115

ff The IcedTea-Web project website at http://icedtea.classpath.org/wiki/
IcedTea-Web

ff The NetX project website at http://jnlp.sourceforge.net/netx/

ff The Java WebStart developers guide at http://docs.oracle.com/javase/6/
docs/technotes/guides/javaws/

Preparing the IcedTea Java WebStart
implementation for Mac OS X

The NetX WebStart implementation from the IcedTea-Web project is written in pure Java, so it
can also be used on Mac OS X. IcedTea-Web provides the javaws launcher implementation
only for Linux-based operating systems. In this recipe, we will create a simple implementation
of the WebStart launcher script for Mac OS X.

Getting ready
For this recipe, we will need Mac OS X Lion with Java 7 (the prebuilt OpenJDK or Oracle one)
installed. We will also need the netx.jar module from the IcedTea-Web project, which can
be built using instructions from the previous recipe.

How to do it...
The following procedure will help you to run WebStart applications on Mac OS X:

1.	 Download the JNLP descriptor example from the Java tutorials at http://docs.
oracle.com/javase/tutorialJWS/samples/deployment/dynamictree_
webstartJWSProject/dynamictree_webstart.jnlp.

2.	 Test that this application can be run from the terminal using netx.jar:
java -Xbootclasspath/a:netx.jar net.sourceforge.jnlp.runtime.Boot
dynamictree_webstart.jnlp

3.	 Create the wslauncher.sh bash script with the following contents:
#!/bin/bash

if ["x$JAVA_HOME" = "x"] ; then

 JAVA="$(which java 2>/dev/null)"

else

 JAVA="$JAVA_HOME"/bin/java

fi

if ["x$JAVA" = "x"] ; then

 echo "Java executable not found"

http://icedtea.classpath.org/wiki/IcedTea-Web
http://icedtea.classpath.org/wiki/IcedTea-Web
http://jnlp.sourceforge.net/netx/
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/
http://docs.oracle.com/javase/tutorialJWS/samples/deployment/dynamictree_webstartJWSProject/dynamictree_webstart.jnlp
http://docs.oracle.com/javase/tutorialJWS/samples/deployment/dynamictree_webstartJWSProject/dynamictree_webstart.jnlp
http://docs.oracle.com/javase/tutorialJWS/samples/deployment/dynamictree_webstartJWSProject/dynamictree_webstart.jnlp

Working with WebStart and the Browser Plugin

116

 exit 1

fi

if ["x$1" = "x"] ; then

 echo "Please provide JNLP file as first argument"

 exit 1

fi

$JAVA -Xbootclasspath/a:netx.jar net.sourceforge.jnlp.runtime.Boot
$1

4.	 Mark the launcher script as executable:
chmod 755 wslauncher.sh

5.	 Run the application using the launcher script:
./wslauncher.sh dynamictree_webstart.jnlp

How it works...
The next.jar file contains a Java application that can read JNLP files and download and
run classes described in JNLP. But for security reasons, next.jar cannot be launched
directly as an application (using the java -jar netx.jar syntax). Instead, netx.jar
is added to the privileged boot classpath and is run specifying the main class directly. This
allows us to download applications in sandbox mode.

The wslauncher.sh script tries to find the Java executable file using the PATH and JAVA_
HOME environment variables and then launches specified JNLP through netx.jar.

There's more...
The wslauncher.sh script provides a basic solution to run WebStart applications from the
terminal. To integrate netx.jar into your operating system environment properly (to be able
to launch WebStart apps using JNLP links from the web browser), a native launcher or custom
platform scripting solution may be used. Such solutions lay down the scope of this book.

See also
ff The Using the IcedTea Java WebStart implementation on Linux recipe

ff The Building OpenJDK 7 on Mac OS X recipe from Chapter 3, Building OpenJDK 7

ff The IcedTea-Web project website at http://icedtea.classpath.org/wiki/
IcedTea-Web

ff The NetX project website at http://jnlp.sourceforge.net/netx/

http://icedtea.classpath.org/wiki/IcedTea-Web
http://icedtea.classpath.org/wiki/IcedTea-Web
http://jnlp.sourceforge.net/netx/

Chapter 7

117

ff The Java WebStart developers guide at http://docs.oracle.com/javase/6/
docs/technotes/guides/javaws/

ff Apple Inc. support article about enabling WebStart on Apple Java at
http://support.apple.com/kb/HT5559

Preparing the IcedTea Java WebStart
implementation for Windows

The NetX WebStart implementation from the IcedTea-Web project is written in pure Java, so it
can also be used on Windows; we also used it on Linux and Mac OS X in previous recipes in
this chapter. In this recipe, we will create a simple implementation of the WebStart launcher
script for Windows.

Getting ready
For this recipe, we will need a version of Windows running with Java 7 (the prebuilt OpenJDK
or Oracle one) installed. We will also need the netx.jar module from the IcedTea-Web
project, which can be built using instructions from the previous recipe in this chapter.

How to do it...
The following procedure will help you to run WebStart applications on Windows:

1.	 Download the JNLP descriptor example from the Java tutorials:
http://docs.oracle.com/javase/tutorialJWS/samples/deployment/
dynamictree_webstartJWSProject/dynamictree_webstart.jnlp

2.	 Test that this application can be run from the Command Prompt using netx.jar:
java -Xbootclasspath/a:netx.jar net.sourceforge.jnlp.runtime.Boot
dynamictree_webstart.jnlp

3.	 Create a batch file, wslauncher.bat, with the following contents:
@echo off

if "%JAVA_HOME%" == "" goto noJavaHome

if not exist "%JAVA_HOME%\bin\javaw.exe" goto noJavaHome

set "JAVA=%JAVA_HOME%\bin\javaw.exe"

if "%1" == "" goto noJnlp

start %JAVA% -Xbootclasspath/a:netx.jar net.sourceforge.jnlp.
runtime.Boot %1

exit /b 0

:noJavaHome

http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/
http://support.apple.com/kb/HT5559

Working with WebStart and the Browser Plugin

118

echo The JAVA_HOME environment variable is not defined correctly

exit /b 1

:noJnlp

echo Please provide JNLP file as first argument

exit /b 1

4.	 Run the application using the launcher script:
wslauncher.bat dynamictree_webstart.jnlp

How it works...
The netx.jar module must be added to the boot classpath as it cannot be run directly
because of security reasons.

The wslauncher.bat script tries to find the Java executable using the JAVA_HOME
environment variable and then launches specified JNLP through netx.jar.

There's more...
The wslauncher.bat script may be registered as a default application to run the JNLP files.
This will allow you to run WebStart applications from the web browser. But the current script
will show the batch window for a short period of time before launching the application. It also
does not support looking for Java executables in the Windows Registry. A more advanced
script without those problems may be written using Visual Basic script (or any other native
scripting solution) or as a native executable launcher. Such solutions lay down the scope of
this book.

See also
ff The Preparing the IcedTea Java WebStart implementation for Mac OS X recipe

ff The Building 64-bit OpenJDK 7 on Windows 7 x64 SP1 recipe from Chapter 3,
Building OpenJDK 7

ff The IcedTea-Web project website at http://icedtea.classpath.org/wiki/
IcedTea-Web

ff The NetX project website at http://jnlp.sourceforge.net/netx/

ff The Java WebStart developers guide at http://docs.oracle.com/javase/6/
docs/technotes/guides/javaws/

ff Articles on ActiveX technology from Microsoft that is similar to NPAPI at http://
msdn.microsoft.com/en-us/library/aa751968%28v=vs.85%29.aspx

http://icedtea.classpath.org/wiki/IcedTea-Web
http://icedtea.classpath.org/wiki/IcedTea-Web
http://jnlp.sourceforge.net/netx/
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/
http://msdn.microsoft.com/en-us/library/aa751968%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa751968%28v=vs.85%29.aspx

8
Hacking OpenJDK

In this chapter we will cover:

ff Setting up the development environment with NetBeans

ff Working with Mercurial forests

ff Understanding OpenJDK 6 and 7 incremental builds

ff Debugging Java code using NetBeans

ff Debugging C++ code using NetBeans

ff Using NetBeans to compile HotSpot

ff Using HotSpot dev parameters

ff Adding new intrinsic to HotSpot

ff Building VisualVM from the source code

ff Creating a plugin for VisualVM

ff Getting benefits from the AdoptOpenJDK project

Introduction
The real beauty of OpenJDK is its open nature, which means that developers can not only use
it to run an application, but also change it to their needs or contribute to its development. The
availability of the source code and ease of access to it opens huge opportunities to individuals
who have special requirements, or just want to learn more about the way JVM works internally
and want to adapt it for any special requirements. This chapter will help you to get into it
and provide some recipes to make the process of setting up the required development
environment as easy as possible.

Hacking OpenJDK

120

At first, it will cover how to set up the development environment and which tools are required
to get started. It will cover the IDE setup, and some tweaks required to launch JVM and start
debugging. The next step is to make changes and rebuild the code, and the latter is going to
be slightly different from the normal build described in Chapter 5, Building IcedTea, Chapter 6,
Building IcedTea with Other VM Implementations, and Chapter 7, Working with WebStart and
the Browser Plugin. The rest of that section dedicated to will be useful techniques which can
be used to debug changes.

This chapter assumes that the reader has a reasonable knowledge of C++ and Java. Any
knowledge of JVM is ideal, as the reader should know what JIT is and how it works.

Most of the recipes in the JIT section are independent and can be executed separately, so the
reader just can pick what he/she needs and proceed with it.

Setting up the development environment
with NetBeans

This recipe will cover the steps required to install, run, and set up the project in NetBeans IDE.
NetBeans is an open source IDE for developing, primarily in Java. It also has rich support for
C++ and that makes it a good tool for OpenJDK development which uses both languages. This
recipe uses NetBeans IDE v.7.

Getting ready
Download the latest version of the NetBeans All bundle for your platform from
http://www.netbeans.org/downloads. The All bundle must have C/C++ and
Java support in the same IDE. It is also necessary to have the OpenJDK code checked
out and available on the machine.

Make sure that everything is set up for the OpenJDK build and it can be executed without
errors. How to do that is described in Chapter 2, Building OpenJDK 6, Chapter 3, Building
OpenJDK 7, and Chapter 4, Building OpenJDK 8.

How to do it...
We will install and configure the NetBeans IDE that is used in the OpenJDK project as the
standard one.

1.	 First we need to install the NetBeans IDE. This is a very simple process which
consists of a few simple steps. Run the downloaded executable and at the bottom
of the first screen, select the Customize button. This will show following window:

Chapter 8

121

Ensure that Base IDE, Java SE, C/C++, and Features on Demand are selected. The
rest are optional and not required to run and debug OpenJDK, but there is no harm in
installing that functionality.

2.	 After the setup, all plugins you should update to the latest version. Updates are
available via the Help/Check for updates menu item.

3.	 When NetBeans is set up, it is required to make a slight change to its configuration.

OpenJDK is a big project and its memory requirements are bigger than the ones
defined in the default settings. To increase the memory available for IDE:

1.	 Go to the $HOME/.netbeans/NETBEANS_VERSION/etc folder (on
Windows $HOME is %HOMEPATH%).

2.	 If the folder doesn't exist, create it.

Hacking OpenJDK

122

3.	 Then, if that folder doesn't have the netbeans.conf file, copy it from the
Netbeans installation directory, which is located in the etc folder.

4.	 Open the file with any text editor and locate the netbeans_default_
options parameter which it should look similar to this:
netbeans_default_options="-J-client -J-Xss2m -J-Xms32m
-J-XX:PermSize=32m -J-Dapple.laf.useScreenMenuBar=true
-J-Dapple.awt.graphics.UseQuartz=true -J-Dsun.java2d.
noddraw=true -J-Dsun.java2d.dpiaware=true -J-Dsun.zip.
disableMemoryMapping=true"

4.	 When the parameter is located, add -J-Xmx2g, or, if that option is already present,
update it to a value not less than 2G (2 gigabytes). This will increase the memory
available to JDK to 2G. Restart your IDE if it was running before in order to apply
that change.

It is worth adding that, because of the large memory requirement of
Netbeans IDE, It's recommended to run it on a system that is capable of
providing nothing less than 2 GB of memory to the process. Basically, it
means that it should be a machine with a 64-bit OS and about 4 to 6 GB
of RAM.

5.	 Now Netbeans IDE is ready for the project to be set up. Run it and go to File | New
Project on the dialog box and select C/C++ Project with Existing Sources:

Chapter 8

123

6.	 Then press Next and, on the following dialog box, select the folder with the root of
OpenJDK sources:

You can always obtain your OpenJDK code by typing hg clone
http://hg.openjdk.java.net/jdk6/jdk6 && ./
get_source.sh

7.	 Press Finish and Netbeans will attempt to clean and build the project. Clean, most
probably, will execute without problems, but build will not work because it requires
some environment setup, which we will do later on.

After trying to build the project, Netbeans will spend a fair bit of time (minutes)
scanning sources and building indexes. This would be a good time to have some coffee.

Hacking OpenJDK

124

8.	 The next step is to configure Netbeans to build the project. As already mentioned, the
build script requires some environment setup. The following is a simple bash script
which can be used to create an appropriate environment:
#!/bin/sh

export LANG=C

export ALT_BOOTDIR=/usr/lib/jvm/java

./jdk/make/jdk_generic_profile.sh

make $*

9.	 In the root folder of the OpenJDK source tree, create a file build.sh and save this
script in that folder.

10.	 Then navigate to the Run | Set project configuration | Customize menu item
and, in the tree on the left-hand side, select Build | Make. There you will see
the following dialog:

Chapter 8

125

11.	 As shown in the screenshot, set the Build Command and Clean Command
variables to execute your ./build.sh with the debug_build and clean
commands, respectively.

12.	 If the product version of OpenJDK is required, then just create another configuration
with product_build and the parameter for build.sh.

See also
Netbeans is not the only available IDE which supports both Java and C++. There are other
IDEs which are similarly capable. One example is the Eclipse IDE which is also a powerful
multiplatform IDE written in Java, and has similar functionality.

Working with Mercurial forest
Mercurial is a cross-platform version control system. It was designed to work with big
projects and large amounts of code, which undoubtedly are present in the OpenJDK
project. The OpenJDK official repository is a Mercurial.

The Forest plugin is the one used for various OpenJDK subprojects to merge and coexist. It
works with nested Mercurial repositories, which normally are regarded as isolated. The main
idea is to propagate changes from the root repository to the nested ones.

The main purpose of it is to allow a developer to work with the code, which is a minor part of a
full OpenJDK project repository, without needing to make any changes to the whole repository
(change a revision number, for example).

Getting ready
First of all, we will need to install Mercurial itself. On Windows it can be done by going
to the official Mercurial site and downloading it from http://mercurial.selenic.com/
wiki/Download.

For Linux distributions, there are, usually, Mercurial versions in their official repositories.

For example, on Debian and Debian-inherited distributions, Mercurial installs as follows:

sudo apt-get install mercurial

If you have any problems with a Mercurial installation, refer to the official site or to your Linux
distribution resources.

Hacking OpenJDK

126

How to do it...
Let's explain it with a simple, non Java-related example. We will assume that a Mercurial
instance already exists in the OS. Since Mercurial has a command line tool, we will use a
command line for everything.

1.	 Let's create two repositories:
mkdir repo-one

cd repo-one

hg init

echo "hello" > hello.txt

hg ci -m"init one"

cd ..

mkdir repo-two

cd repo-two

hg init

echo "hello" > hello.txt

hg ci -m"init two"

cd ..

2.	 We will need to locate the .hgrc file:
locate hgrc

3.	 Let's copy the forest.py file from https://bitbucket.org/gxti/hgforest/
src.

4.	 Then let's edit your .hgrc file:
[extensions]

forest = patch/to/forest.py

We now have a brand new fclone command in our repository.

1.	 Let's copy the first repository into the second one:
hg clone repo-one repo-two/one

The repo-two repository isn't an integral part of repo-one, it only lays inside it.

2.	 Let's clone a repo-two repository and attach repo-one to it, using the fclone
command:
hg fclone repo-two wc-two

We've just copied repo-two, including repo-two/one.

https://bitbucket.org/gxti/hgforest/src
https://bitbucket.org/gxti/hgforest/src

Chapter 8

127

3.	 Let's make some changes to repo-two/hello.txt and repo-two/one/hello.
txt:
echo some >> repo-two/hello.txt && echo some1 >> repo-two/hello.
txt

4.	 We will commit each change using a separate command:
cd wc-two/ && ls

hg ci -m"edited hello.txt"

cd one/

hg ci -m"edited hello.txt"

cd ..

5.	 Let's push a result back to repo-two:
 hg fpush

We will have two changed files in repo-one.

6.	 Let's push one of them further to repo-two:
cd ../repo-two

hg fpush

7.	 Now, the changes from repo-two/one are propagated to repo-one.

How it works…
Mercurial is a relatively simple control system. It is vastly extendable with different plugins,
which are configured through the .hgrc file.

The Mercurial forest plugin propagates changes in nested repositories to the root ones,
and synchronizes the parent repository content with a nested one.

Understanding OpenJDK 6 and 7
incremental builds

The process of OpenJDK compilation is very time consuming. It is very boring, especially
when one is developing a small part of the whole project, which needs full recompilation
for testing purposes. To do it in a simple way and to compile only the necessary parts, there
are incremental builds.

Hacking OpenJDK

128

Getting ready
We need to download the OpenJDK (6 or 7) source code. You may need libmotif installed.
Windows users may need to install Cygwin.

How to do it...
We will see how OpenJDK is built incrementally, avoiding adding any nasty bugs.

1.	 First, let's build OpenJDK for the first time:
make all

2.	 This will take some time, so have a cup of tea.

3.	 Then, we will build it for the second time:
make all

4.	 You can see from the input that nothing was actually built.

5.	 Then, let's insignificantly change some source file (for example,
cardTableModRefBS.cpp).

6.	 Let's make OpenJDK again, but this time we will grep the output:
make all | grep -i .cpp

7.	 We see that, in the output, only two files are actually compiled, hotspot/src/
share/vm/memory/cardTableModRefBS.cpp and hotspot/src/share/vm/
runtime/vm_version.cpp.

How it works…
The build program checks the files that were updated and compiles only those which were
updated after the last compiler run. However, if any .hpp files are modified, the build will
be performed in clean mode, for example, no optimization will be performed.

There's more…
Weird things tend to happen while using incremental builds. The probability of such things is
increased proportionally with build times.

Chapter 8

129

There are, basically, two ways to perform a clean build:

ff One cleans all files, and compilation from scratch becomes necessary:
make clean && make all

ff The second is to specify parameters, which will force the clean mode of the build.

Debugging Java code using NetBeans
Obviously, when someone is writing any code, some debugging is required. It is no surprise
that NetBeans, as a high-standard IDE, provides some tools to do that. This recipe will show
how to debug the Java code using NetBeans.

Getting ready
You will need to install NetBeans and set up a development environment, as described
previously in the chapter.

How to do it...
We will use NetBeans to debug our own OpenJDK Java code. We will need to rebuild OpenJDK
with debug symbols, and configure NetBeans to make debugging possible:

1.	 First, let's make our OpenJDK instance with debug symbols:
bash ./configure --enable-debug

make all CONF=linux-x86_64-normal-server-fastdebug

2.	 Let's ensure that a debuggable version is built:
./build/linux-x86_64-normal-server-fastdebug/jdk/bin/java -version

openjdk version "1.8.0-internal-fastdebug"

OpenJDK Runtime Environment (build 1.8.0-internal-fastdebug-
dsmd_2014_03_27_05_34-b00)

OpenJDK 64-Bit Server VM (build 25.0-b70-fastdebug, mixed mode)

3.	 Now we have a debuggable OpenJDK. Let's set it as the default for NetBeans.

4.	 Let's open the etc/netbeans.conf file in your NetBeans installation path.

5.	 We will change one line:
netbeans_jdkhome="<path_to_jdkhome>"

6.	 After that, we will launch NetBeans and ensure that our JDK is loaded correctly.

Hacking OpenJDK

130

7.	 We will select Tools | Java Platforms, and the following screen will appear:

8.	 Let's try to debug the java.lang.String class. We will set our breakpoints to
an unavoidable part of this class—to one of the constructors, as shown in the
following screenshot:

Chapter 8

131

9.	 This set of breakpoints is sufficient to hook up virtually every Java executable ever
launched. But, if we decide to push things forward and attach a debugger, we will
get an error message:
Not able to submit breakpoint LineBreakpoint String.java
: 138, reason: No source root found for URL 'file:/home/
dsmd/00experimental/java_build/jdk8intr/jdk8/jdk/src/share/
classes/java/lang/String.java'. Verify the setup of project
sources.

Invalid LineBreakpoint String.java : 138

10.	 To avoid this, we need to specify our Java sources directly to NetBeans. Our project is
a C++ project, and it tends to ignore the Java files.

11.	 The result for the String class will be as shown in the following screenshot:

12.	 Then, just launch some Java executable, that uses strings:
build/linux-x86_64-normal-server-fastdebug/jdk/bin/java -Xdebug
-Xrunjdwp:transport=dt_socket,address=8998,server=y -jar /path/to/
jar.jar

Hacking OpenJDK

132

13.	 Attach the Java debugger, as shown:

14.	 Enjoy, you can now see OpenJDK from the inside, in motion:

How it works…
It's just a debugger with a few simple nuances.

Chapter 8

133

There's more...
In some Linux distributions, you can install debug versions of OpenJDK with sources provided
in a ZIP file. These sources are automatically picked up by NetBeans.

Debugging C++ code using NetBeans
If you plan to make changes to HotSpot or any other C++ part of OpenJDK, then it is certain
that you will need to do some step-by-step debugging of the code. This recipe will explain how
to set up NetBeans IDE for that purpose.

Getting ready
To get started, there are only a few things required—downloaded Open JDK sources and
installed NetBeans IDE. It is assumed that the OpenJDK project is already set up and
can build sources.

How to do it...
1.	 The first step is to set up an executable that will run. Go to Run | Set project

configuration / Customize and then Build | Make, and set build/linux-amd64-
debug/hotspot/outputdir/linux_amd64_compiler2/jvmg/gamma as the build
result, as shown in the following screenshot:

Hacking OpenJDK

134

2.	 Then select the Run option on the tree on the left had side and set Run Command
as "${OUTPUT_PATH}" –version:

3.	 The –version flag here is just the simplest thing you can run—get the Java version.
You can later change it to whatever you want, for example, to run a Java program.

4.	 The next step is to set up some environment variables required for Java to run. This
can be done by setting them up in the Environment section as shown in the following
dialog. Set LD_LIBRARY_PATH to build/linux-amd64-debug/hotspot/
outputdir/linux_amd64_compiler2/jvmg and JAVA_HOME to build/linux-
amd64-debug/j2sdk-server-image.

5.	 Now it's all ready to debug. To check that it works, set a breakpoint in hotspot/
src/share/tools/launcher/java.c somewhere at the beginning of the main
function and go to Debug | Debug Main Project or use the shortcut Ctrl + F5.

Chapter 8

135

How it works…
Careful readers may have noticed that Debug used gamma JVM launcher, instead of java,
which is used when you run Java normally. This is to simplify things; gamma is the lightweight
version of java, it doesn't perform checks which are not necessary for debugging purposes.

Using NetBeans to compile HotSpot
When doing HotSpot development, it is very annoying to wait for a complete OpenJDK build
to be executed. So, it makes sense to exclude other parts and compile just what we are
interested in, that is, the HotSpot part. This recipe will explain how to do that.

Getting ready
The only prerequisite for this recipe is the availability of source code on the machine, and
Netbeans installed, with an OpenJDK project created.

How to do it...
This is a very simple recipe to follow. If you have already completed Setting up development
environment with NetBeans, the only thing which is required to be done is to change the
argument hotspot_build and add another argument DEBUG_NAME=debug, the whole
build command line should look like this:

build.sh hotspot-build DEBUG_NAME=debug

Hacking OpenJDK

136

The Build/Make screen of the Project Properties dialog in that case will look like this:

How it works…
Luckily, there are targets created in the make configuration which only built the HotSpot bit.
These targets can be located in the ./make/hotspot-rules.gmk file.

The debug command which creates the non-optimized version or the HotSpot, is not the only
option for the DEBUG_NAME variable. The fastdebug command is the other option in which
build will create an optimized version with assertions. When DEBUG_NAME is not set, the
product version of HotSpot is built.

Using HotSpot dev parameters
HotSpot has other options, which may significantly change its behavior. Here we will make use
of some of these options, which are used only on the dev versions of OpenJDK.

Chapter 8

137

Getting ready
We will need to compile a dev OpenJDK version, in order to use the dev options.

How to do it...
We will use parameters that are available in the developer version of OpenJDK. In the
production builds, they are disabled or set as constant values.

To make use of these parameters, we will run Java as follows:

java - -XX:<optionName>

Here is a list of some usable dev options:

ff InlineUnsafeOps: This option will, if enabled, inline native memory operations
from sun.misc.Unsafe. It may offer some performance improvements in
some cases.

ff DieOnSafepointTimeout: This option will kill the process if the safepoint is not
reached, but the timeout is exceeded. It is disabled by default.

ff ZapResourceArea: This option will zap freed resource / arena space with
0xABABABAB. It is true in debug mode, but is deselected in production VMs. It may
be used for really paranoid security reasons, though it has some performance impact.

ff ZapJNIHandleArea: This option will zap freed JNI handle space with 0xFEFEFEFE.
It only has a debug value.

ff ZapUnusedHeapArea: This option will zap unused heap space with 0xBAADBABE. It
may be used for security reasons.

ff Verbose: This option prints additional debugging information from other modes. It is
the main logging option of the dev HotSpot.

ff UsePrivilegedStack: This option enables the security JVM functions. It is
true by default, but in dev mode, you still have the opportunity to run HotSpot
with disabled security.

ff MemProfiling: This option writes memory usage profiling to logfile. It is false by
default, and can be run for some memory profiling issues.

ff VerifyParallelOldWithMarkSweep: This option will use the MarkSweep GC
code to verify phases of the parallel old. It may be used for debugging purposes
when changing the JVM memory handling mechanism.

ff ScavengeWithObjectsInToSpace: This option is really interesting. Java uses
two-space GC, where survivor space is concerned, and this options allows scavenges
to occur when to_space contains objects. Also, when doing so, it clears an unused
area, if ZapUnusedHeapArea is enabled.

Hacking OpenJDK

138

ff FullGCALot: This option forces full GC at every Nth exit from the runtime system
(N=FullGCALotInterval). It may be a very expensive operation, but some
developers may build it into JDKs for desktop use. It may be cheaper than to use
swap space to absorb endless megabytes from the overgrown heap.

ff AdaptiveSizePolicyReadyThreshold: This option is the number of collections
before adaptive sizing is started. The default is 5, but it may make sense to make
it 1 on desktop systems since the biggest bottleneck of those is the swap space,
especially if several Java programs are running simultaneously on one machine.

ff EagerInitialization: This option eagerly initializes classes if possible. It is
false by default, so maybe it is unsafe to turn it on. But the idea seems good,
especially on server machines.

ff GuaranteedSafepointInterval: This option guarantees a safepoint (at least)
every few milliseconds (0 means none). The default is 1000. It may be used to tweak
the stop-the-world state problem. The bigger the option value, the longer these stops
will be; and if we make the value too small, we will have too many unnecessary stops.

ff MaxTrivialSize: This option is the maximum bytecode size of a trivial method to
be inline. It is 6 by default. It is similar to the C++ compiler inline options, but for the
bytecode compiler.

ff MinInliningThreshold: This option is the minimal invocation count a method
needs to have to be inline. It is 250 by default.

ff SharedOptimizeColdStartPolicy: This option is the reordering policy for
SharedOptimizeColdStart. The 0 value favors the classload-time locality, 1 uses
a balanced policy, and 2 favors runtime locality.

The default is 2 and it is rarely necessary to change it, but in some cases it will make sense to
make it 1 if your application has too many classes that may load after the application starts.

Adding new intrinsic to HotSpot
Intrinsic is a function whose implementation is handled specially by a compiler. Typically, it
means that the function call is replaced by automatically generated instructions. This is very
similar to the inline functions, but the compiler knows more about intrinsics as they are part
of the compiler itself, so it can use them more wisely.

Intrinsics are usually more performance-oriented than native functions because there is no
JNI overhead.

Chapter 8

139

Getting ready
To get started, all we need is an installed NetBeans IDE for code editing and OpenJDK
sources. The user should be able to read C++ code and a little knowledge of assembly
would be beneficial.

It would be worth checking that SSE4.2 (an extended instruction set with six new commands,
mostly for character searching and comparison) is supported by the CPU (the CRC32
command used in our example is from that command set). It was introduced with Core i7 Intel
chips back in 2009, so if you are using an Intel CPU, it should be present. The first time it was
introduced for AMD was as Bulldozer chips back in 2011, so you should have relatively recent
chips to support it. If your CPU is not compatible with that command, do not worry. The recipe
is applicable to any intrinsics you may want to introduce; there is no difference, apart from the
actual implementation of the code you want to intrinsify.

How to do it...
Adding new intrinsics is not a simple process. Follow these instructions carefully. Ensure you
compile the code after every step; doing so may save some time.

The instruction which we are going to intrinsify is the CRC32 calculation, which is
implemented by java.util.zip.CRC32.

To start, let's make a small amendment to the Java class that is responsible for the CRC32
calculation. We are going to add a method which will be intrinsified by HotSpot. Open the
jdk/src/share/classes/java/util/zip/CRC32.java file and add a new method
doUpdateBytes:

private static int doUpdateBytes(int crc, byte[] b, int off, int len)
{
 return updateBytes(crc, b, off, len);
}

That implementation just makes a call to the currently used updateBytes native method.
That's the only change in Java. The rest is going to be the C++ internals of the HotSpot.

Open the hotspot/src/share/vm/precompiled/precompiled.hpp file and add the
following line into it:

#include "smmintrin.h"

The smmintrin.h file contains GCC intrinsics, which are going to be used by our
implementation of the CRC32 function.

Hacking OpenJDK

140

Then, as we are using SSE4.2 instructions, we need to inform the compiler. To do so, open the
hotspot/make/linux/makefiles/gcc.make file (assuming you are making the build on
Linux), and locate the line consisting of CFLAGS += -fno-rtti. Just after that line, add the
-msse4.2 flag, so it will look like this:

CFLAGS += -fno-rtti # locate that line
CFLAGS += -msse4.2 # add this new line here

Now we are ready to implement our CRC32 function in C++. In the hotspot/src/cpu/x86/
vm/ folder, create the CRC32Calc class and the static_calcCrc32 static method. Here is
the CRC32Calc.hpp file with the class declaration:

#ifndef CRC32CALC_HPP
#define CRC32CALC_HPP

class CRC32Calc {
public:
 CRC32Calc() {};
 virtual ~CRC32Calc() {};

 static int static_calcCrc32(int crc, const char* data, int
dataOffset, int dataLen);
};
#endif /* CRC32CALC_HPP */

The CRC32Calc.cpp file with its implementation is as shown:

#include "CRC32Calc.hpp"
#include "precompiled.hpp"
int CRC32Calc::static_calcCrc32(int crc, const char* data, int
dataOffset, int dataLen) {
 const int dataSize = dataLen - dataOffset;
 int result = crc;
 int uints32 = (int)(dataSize / sizeof(int));
 int units8 = dataSize % sizeof(int);

 const int* pUint32 = (const int*)data;
 while (uints32--) {
 result = ::_mm_crc32_u32(result, *pUint32);
 pUint32++;
 }

 const char* pUnit8 = (const char*)pUint32;
 while (units8--) {

Chapter 8

141

 result = ::_mm_crc32_u8(result, *pUnit8);
 pUnit8++;
 }

 return result;
}

The following instructs HotSpot how to intrinsify our method.

Locate hotspot/src/share/vm/classfile/vmSymbols.hpp. That is the file which
contains the declaration of all intrinsics and add the following definition to it:

do_class(java_util_zip_crc32, "java/util/zip/CRC32")
\
do_intrinsic(_crc32_doUpdateBytes, java_util_zip_crc32, doUpdateBytes_
name, int_byteArray_int_int_signature, F_R) \
do_name(doUpdateBytes_name,
"doUpdateBytes") \
do_signature(int_byteArray_int_int_signature, "(I[BII)I"
) \

This is the declaration of intrinsics which maps the Java method with the code which will
replace it in the runtime. Be careful when adding it. It is based on macros, which means, if
there is a typo or any other mistake, it will be very hard to figure out where the problem is.

The next step is to define which code we are going to generate for the intrinsic. We are not
going to be very smart here, as this is just an exercise to see how the functionality works.
So all our assembler is going to do is generate a call to the C function. Add the following into
hotspot/src/cpu/x86/vm/stubGenerator_x86_64.cpp and hotspot/src/cpu/
x86/vm/stubGenerator_x86_32.cpp:

#include "CRC32Calc.hpp"

Now it's a bit tricky and requires some low-level code. We are going to tell HotSpot how
to generate the assembly for our method. To do so, add the generator method into
the StubGenerator class which is declared in both hotspot/src/cpu/x86/vm/
stubGenerator_x86_64.cpp and hotspot/src/cpu/x86/vm/stubGenerator_
x86_32.cpp for x86_64 and x86 architectures respectively. The code for the method is
as follows:

 // Arguments:
 //
 // Inputs:
 // c_rarg0 - input crc
 // c_rarg1 - byte array with data for calculation
 // c_rarg2 - offset in the input array

Hacking OpenJDK

142

 // c_rarg3 - number of data bytes after offset
 //
 // Output:
 // eax - result crc
 address generate_crc32_doUpdateBytes() {
 __ align(CodeEntryAlignment);
 StubCodeMark mark(this, "StubRoutines", "crc32_doUpdateBytes");
 address start = __ pc();

 __ enter(); // required for proper stackwalking of RuntimeStub
frame
 __ pusha();
 // no need to put params in regr - they are already there
 // after this call rax should already have required return value
 __ call_VM_leaf(CAST_FROM_FN_PTR(address, CRC32Calc::static_
calcCrc32), 4);
 __ popa();

 __ leave(); // required for proper stackwalking of RuntimeStub
frame
 return start;
 }

Now we need a variable which will contain the address of the generated method. To do
so, add the following static member declaration to hotspot/src/share/vm/runtime/
stubRoutines.hpp:

static address _crc32_doUpdateBytes;

To the same file, add the following method, which just returns the value of the
declared variable:

static address crc32_doUpdateBytes() { return _crc32_doUpdateBytes; }

Then, in hotspot/src/share/vm/runtime/stubRoutines.cpp, assign a default value
to _crc32_doUpdateBytes:

address StubRoutines::_crc32_doUpdateBytes = NULL;

Then, in both hotspot/src/cpu/x86/vm/stubGenerator_x86_64.cpp and hotspot/
src/cpu/x86/vm/stubGenerator_x86_32.cpp, locate the generate_all method and
assign the following value to the variable _crc32_doUpdateBytes:

StubRoutines::_crc32_doUpdateBytes = generate_crc32_doUpdateBytes();

Chapter 8

143

The next step is to add the method which creates a descriptor. The descriptor is the definition
of our function—how many arguments it takes, which types of arguments it accepts, and
so on. The first step is to add the method declaration into the OptoRuntime class in the
hotspot/src/share/vm/opto/runtime.hpp file:

static const TypeFunc* crc32_Type();

This will be the function which creates the type information for our method call—it describes
the arguments and returns the parameters. After implementation it creates an array of types
of input parameters and the type of the return value. Place it in the hotspot/src/share/
vm/opto/runtime.cpp file:

const TypeFunc* OptoRuntime::crc32_Type() {
 // create input type (domain): int, pointer, int, int
 int num_args = 4;
 int argcnt = num_args;
 const Type** fields = TypeTuple::fields(argcnt);
 int argp = TypeFunc::Parms;
 fields[argp++] = TypeInt::INT; // crc
 fields[argp++] = TypePtr::NOTNULL; // data
 fields[argp++] = TypeInt::INT; // offset
 fields[argp++] = TypeInt::INT; // len
 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt,
fields);

 // create return value
 fields = TypeTuple::fields(1);
 fields[TypeFunc::Parms+0] = TypeInt::INT;

 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);

 return TypeFunc::make(domain, range);
}

Now we will implement the method that will inline the code in the runtime. In the
hotspot/src/share/vm/opto/library_call.cpp file, locate the definition of the
LibraryCallKit class, and add the following method declaration:

bool inline_crc32();

Also, in the same file, add the implementation:

bool LibraryCallKit::inline_crc32() {
 address stubAddr = StubRoutines::crc32_doUpdateBytes();
 const char *stubName = "crc32_doUpdateBytes";

Hacking OpenJDK

144

 Node* inputCrc = argument(0);
 Node* in_data = argument(1);
 Node* offset = argument(2);
 Node* len = argument(3);

 // Call the stub.
 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::crc32_Type(),
 stubAddr, stubName, TypePtr::BOTTOM,
 inputCrc, in_data, offset, len);

 return true;
}

Finally tell HotSpot that we indeed want to intrinsify our method call and make a call to the
inlining method inline_crc32.

To tell HotSpot that we want to intrinsify the method, Compile::make_vm_intrinsic
method in the file hotspot/src/share/vm/opto/library_call.cpp has to return
a non-null pointer to CallGenerator. To do so, add the following line into the switch(id)
switch statement in that method:

 case vmIntrinsics::_crc32_doUpdateBytes:
 break;

It is not strictly required to have that case and break, the default works just well; but it makes
it more explicit that we are using intrinsics for the CRC32 calculation method.

Then, to make a call to the inlining method, in the same hotspot/src/share/vm/opto/
library_call.cpp file, locate LibraryCallKit::try_to_inline, find switch
(intrinsic_id()), and add the following line of code:

case vmIntrinsics:: _crc32_doUpdateBytes: return inline_crc32();
new line.

How it works…
To check whether the method was intrinsified, use the -XX:+PrintCompilation
and -XX:+PrintInlining Java arguments. To see what the intrinsics are
compiled into, use -XX:+PrintAssembly (this should be prepended by
-XX:+UnlockDiagnosticsVMOptions when running on the product build).

Chapter 8

145

There's more…
To see if SSE4.2 is supported, just compile and run the following code:

// This is Linux version
#include <cpuid.h>T
#include <stdio.h>
void main () {
 unsigned int eax, ebx, ecx, edx;
 __get_cpuid(1, &eax, &ebx, &ecx, &edx);
 if (ecx & bit_SSE4_2)
 printf ("SSE4.2 is supported\n");
 return;
}

// And this is the version for windows
#include <intrin.h>
int _tmain(int argc, _TCHAR* argv[])
{
 int cpuInfo[4] = { -1 };
 __cpuid(cpuInfo, 1);
 bool bSSE42Extensions = (cpuInfo[2] & 0x100000) || false;
 if (bSSE42Extensions) {
 printf("SSE4.2 is supported\n");
 }
 return 0;
}

There are lots of intrinsic methods. See library_call.cpp and vmSymbols.hpp:

ff Object.getClass gives one or two instructions.

ff Class.isInstance and Class.isAssignableFrom are as cheap as instances
of bytecodes when the operands are constants, and otherwise no more expensive
than aastore type checks.

ff Most single-bit class queries are cheap and even constant-foldable.

ff Reflective array creation is about as cheap as the newarray or anewarray
instructions.

ff Object.clone is cheap and shares code with Arrays.copyOf (after Java6).

Java is not the only language which uses intrinsics they are also widely used in C++ for
SSE operations.

Interestingly, _mm_crc32_u32 and _mm_crc32_u8 are intrinsics themselves, known by the
GCC or MS compiler, which are directly replaced by assembly instructions in the compiled code.

Hacking OpenJDK

146

Building VisualVM from the source code
VisualVM is an open source project which is not a part of OpenJDK. It is a powerful tool which
is helpful to anyone who uses applications based on JDK. It allows us to monitor parameters
of the system, browse heap dumps, create thread dumps, and so on. As the tool is open
source, it is possible to get the source code and customize it as required, or simply just to see
how it works. This recipe will go through the steps which are required to download the source
code and build VisualVM from it.

Getting ready
This recipe requires a machine with Subversion and Ant installed. Also, as VisualVM is a
graphical application, a graphical environment is required to run it. It is possible to perform
a build without launching the application.

How to do it...
The first step is to get the source code:

1.	 Create a folder for the sources, for example, /home/user/visualvm.

2.	 Go to the newly created folder and, assuming you need sources from the trunk,
run the following command:
svn checkout https://svn.java.net/svn/visualvm~svn/trunk

3.	 This will create the trunk folder with sources in the current directory.

To start, we need to download the NetBeans Platform binaries. The version needed depends
on the version of VisualVM we are going to build. In this example, we will use trunk, the
current development version which requires NetBeans Platform v.8; but as that may change,
it is recommended to consult the page for the appropriate version using the link http://
visualvm.java.net/build.html. These binaries are available directly from the VisualVM
website, not from the NetBeans website. For this example, the URL is https://java.net/
projects/visualvm/downloads/download/dev/nb80_visualvm_27062014.zip.
When the file is downloaded, unpack it into the trunk/visualvm folder, as shown:

1.	 Now, execute Ant to run the build.
ant build-zip

2.	 When the build is complete, we should see something similar to the following output
in the command prompt:
BUILD SUCCESSFUL

Total time: 34 seconds

http://visualvm.java.net/build.html
http://visualvm.java.net/build.html
https://java.net/projects/visualvm/downloads/download/dev/nb80_visualvm_27062014.zip
https://java.net/projects/visualvm/downloads/download/dev/nb80_visualvm_27062014.zip

Chapter 8

147

This indicates that the build was successful. This step is not required if we just need
to run VisualVM, as Ant will also run the build target; but if there is no need to run,
and just build is required, this step can be useful.

3.	 To run VisualVM, run the following command:
ant run

4.	 If the application is not built yet, then Ant will build it first and then run it. As VisualVM
is a GUI application, we will see the following screen:

This is the landing screen of VisualVM. The fact that we can see it means that the application
is built and works properly. The zipped archive file with the distribution can be found in the
visualvm/dist folder.

See also
ff More information about VisualVM build is available on the home page http://

visualvm.java.net/build.html. Each version has a different page, as build
instructions vary from version to version. For example, each build may require a
slightly different version of the Netbeans platform.

http://visualvm.java.net/build.html
http://visualvm.java.net/build.html

Hacking OpenJDK

148

Creating a plugin for VisualVM
VisualVM is just an application which has a predefined and limited set of features. It is a
framework, which means that it is possible to extend it. The way in which VisualVM provides
for extension is via the plugin API which allows us to create new plugins which are then
available through the application. Such plugins can do various things, but are mostly used to
provide new ways of monitoring or controlling the JVM applications.

Getting ready
The current (at the time of writing) trunk version of VisualVM requires the NetBeans platform
and IDE v.8. So we need to ensure that the current version of the platform is available on
the machine. If there is any doubt, check the page with VisualVM trunk build instructions
at http://visualvm.java.net/build/build.html.

How to do it...
Let's start with what we are going to monitor. It seems like the simplest thing we can do
is to build a component which will tick the data that we can read. For example, look at
the following class:

package org.openjdk.cookbook;

import javax.management.MBeanServer;
import javax.management.ObjectName;
import java.lang.management.ManagementFactory;

public class SleepProbe implements SleepProbeMBean {
 private volatile long lastSleepSampleMs = 100;

 public static void main(String[] args) throws Exception {
 MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();
 ObjectName name = new ObjectName("org.openjdk.
cookbook:type=SleepProbe");
 SleepProbe mbean = new SleepProbe();
 mbean.start();
 mbs.registerMBean(mbean, name);
 System.out.println("Started MBean");
 Thread.sleep(Long.MAX_VALUE);
 }

 @Override

http://visualvm.java.net/build/build.html

Chapter 8

149

 public long getActualSleepTime() {
 return lastSleepSample;
 }

 public void start() {
 new Thread(new Runnable() {
 @Override
 public void run() {
 while (!Thread.currentThread().isInterrupted()) {
 try {
 final long start = System.nanoTime();
 Thread.sleep(100);
 final long end = System.nanoTime();
 lastSleepSampleMs = (long)((double)(end-
start))/1000000;
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 break;
 }
 }
 }
 }).start();
 }
}

This code sleeps for 100 ms and measures how long it actually slept. The value is not going
to be exact, but will be about 100. It publishes the last measurement of the sleep time via the
lastSleepSample variable which is available via the SleepProbeMBean interface:

package org.openjdk.cookbook;
public interface SleepProbeMBean {
 public long getActualSleepTime();
}

Hacking OpenJDK

150

This class and interface should be put into a separate project, so you can run them
independently of the VirtualVM plugin project:

1.	 To start, we need to create a plugin project in IDE. Launch the IDE, go to File | New
Project and select NetBeans Platform Application from the project type:

Chapter 8

151

2.	 On the next screen, select VisualVM as the NetBeans Platform (if it is not available,
see further instructions), the project name, and the location, as shown:

3.	 If VisualVM is not available in the list of platforms, then click on the Manage icon
and, in the displayed dialog, add a new platform by pointing it to the folder with the
VisualVM distribution, as shown in the following screenshot:

Hacking OpenJDK

152

4.	 In this example, the distribution was built from source (see the Building VisualVM
from the source code recipe). Press Next and then Finish.

5.	 Now just complete the wizard and you will have a new empty project with some
properties and build script.

6.	 Note that there is a known bug in some versions of NetBeans (https://netbeans.
org/bugzilla/show_bug.cgi?id=242564), which is causing problem with
dependencies and which will not allow us to add the required dependencies later.
To work around this, right click on the project and then click on Properties. On the
Project Properties dialog, select Libraries:

7.	 Uncheck JavaFX wrapper under the platform component. Ensure that all the other
checkboxes are checked, including profiles and visualvm nodes.

https://netbeans.org/bugzilla/show_bug.cgi?id=242564
https://netbeans.org/bugzilla/show_bug.cgi?id=242564

Chapter 8

153

8.	 Now we need to create a module for our plugin. Right click on the Modules item in
the project tree and select Add New…:

9.	 Name it as SamplingModule and press Next. On the next screen, put net.
cookbook.openjdk as Code Name Base and press on Finish. This will
create an empty module where we will need to add some components.

Hacking OpenJDK

154

10.	 The next step is to add the dependencies to the module. Right click on the module
and select Properties, then go to Libraries | Module Dependencies, and click on
Add Dependency. On the Add Module Dependency dialog, put VisualVM into the
Filter field as shown:

11.	 Select VisualVM-Application, VisualVM-Core, and VisualVM-Tools (not visible on the
screenshot), then click on OK.

12.	 The next step is to add the installer and some source code. To do so, right click on the
newly created module and go to New | Other. This will show the dialog with the option
to select the file type. Click on Installer/Activator and click on Next, as shown:

Chapter 8

155

13.	 Then just complete the wizard by clicking on Finish. This will create a class with the
name Installer in the package net.cookbook.openjdk. For now, leave that
class as it is, we will update it later in the recipe.

14.	 The next step is to create a component which will draw a graph for us. To do so, we
will create a simple panel which will refresh itself every half a second with a new
sample from the sampler MBean. In the net.cookbook.openjdk package, create
a new class and name it as SamplingGraphPanel:
package net.cookbook.openjdk;

import com.sun.tools.visualvm.application.Application;
import com.sun.tools.visualvm.tools.jmx.*;
import java.awt.*;
import java.util.LinkedList;
import javax.management.*;
import javax.swing.JPanel;
import org.openide.util.Exceptions;

public class SamplingGraphPanel extends JPanel implements Runnable
{
 private static final int MAX_DATA_POINTS = 20;

Hacking OpenJDK

156

 private static final int MAX_VALUE = 110;
 private static final int GAP = 30;

 private final LinkedList<Long> samples = new
LinkedList<Long>();
 private final Application application;
 private Thread refreshThread;

 public SamplingGraphPanel(Application application) {
 this.application = application;
 this.setBackground(Color.black);
 }

 @Override
 public void paintComponent(Graphics gr) {
 super.paintComponent(gr);

 Graphics2D g2 = (Graphics2D)gr;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

 final double xScale = ((double) getWidth()-2*GAP)/
(samples.size()-1);
 final double yScale = ((double) getHeight()-2*GAP)/(MAX_
VALUE-1);

 Stroke oldStroke = g2.getStroke();
 g2.setColor(Color.green);
 g2.setStroke(new BasicStroke(3f));
 for (int i = 0; i < samples.size()-1; ++i) {
 final int x1 = (int) (i * xScale + GAP);
 final int y1 = (int) ((MAX_VALUE-samples.
get(i))*yScale+GAP);
 final int x2 = (int) ((i+1) * xScale + GAP);
 final int y2 = (int) ((MAX_VALUE - samples.get(i+1)) *
yScale + GAP);
 g2.drawLine(x1, y1, x2, y2);
 }
 }

public void start() {
 refreshThread = new Thread(this);
 refreshThread.start();

Chapter 8

157

 }

 public void stop() {
 if (refreshThread != null) {
 refreshThread.interrupt();
 refreshThread = null;
 }
 }

 @Override
 public void run() {
 JmxModel jmx = JmxModelFactory.
getJmxModelFor(application);
 MBeanServerConnection mbsc = null;
 if (jmx != null && jmx.getConnectionState() == JmxModel.
ConnectionState.CONNECTED) {
 mbsc = jmx.getMBeanServerConnection();
 }

 try {
 while (mbsc != null && !Thread.currentThread().
isInterrupted()) {
 if (samples.size() == MAX_DATA_POINTS) {
 samples.remove();
 }
 Long val = (Long)mbsc.getAttribute(new
ObjectName("org.openjdk.cookbook:type=SleepProbe"),
"ActualSleepTime");
 samples.add(val);
 repaint();
 try {
 Thread.sleep(500);
 } catch (InterruptedException e) { break; }
 }
 } catch (Exception e) {
 Exceptions.printStackTrace(e);
 }
 }
}

Hacking OpenJDK

158

15.	 This class will read a value from the MBean implements on the first step of this
receipt every 500ms, and add the value to the list with samples. Then it refreshes
the graph, which gets repainted. Fundamentally, that code is just a Java Swing code,
which can be run in any application. The only VisualVM-specific bit here is some
helper classes used to get MBean from the Application object.

16.	 Now, in SamplingModule, create a class which will be responsible for showing
the data. Name it SamplingView and put it into the net.cookbook.openjdk
package, as shown below:
package net.cookbook.openjdk;

import com.sun.tools.visualvm.application.Application;
import com.sun.tools.visualvm.core.ui.DataSourceView;
import com.sun.tools.visualvm.core.ui.components.
DataViewComponent;
import javax.swing.*;
import org.openide.util.Utilities;

public class SamplingView extends DataSourceView {
 private DataViewComponent dvc;
 private SamplingGraphPanel panel;
 public static final String IMAGE_PATH = "net/cookbook/openjdk/
icon.png";

 public SamplingView(Application application) {
 super(application,"Sampling Application", new
ImageIcon(Utilities.loadImage(IMAGE_PATH, true)).getImage(), 60,
false);
 }

 protected DataViewComponent createComponent() {
 //Data area for master view:
 JEditorPane generalDataArea = new JEditorPane();
 generalDataArea.setBorder(BorderFactory.
createEmptyBorder(14, 8, 14, 8));

 panel = new SamplingGraphPanel(SamplingProvider.
getSleepProbeInstance((Application)getDataSource()));
DataViewComponent.MasterView masterView = new DataViewComponent.
MasterView("Sampling Overview", null, generalDataArea);
 DataViewComponent.MasterViewConfiguration
masterConfiguration = new DataViewComponent.
MasterViewConfiguration(false);
 dvc = new DataViewComponent(masterView,
masterConfiguration);
 //Add detail views to the component:

Chapter 8

159

 dvc.addDetailsView(new DataViewComponent.
DetailsView("Sampling Graph", null, 10, panel, null),
DataViewComponent.TOP_LEFT);

 return dvc;
 }

 @Override
 protected void removed() {
 super.removed();
 panel.stop();
 }
}

17.	 It is important that the file referenced by IMAGE_PATH actually exists, otherwise the
plugin will not start and will fail with an exception. The simplest way you can do this is
to download any of available free icons from the Internet, for example at https://
www.iconfinder.com/icons/131715/download/png/32 and put it into the
same package folder as the SamplingView class.

18.	 The next step is to create a provider which will create the view instance and identify
that the application we are connected to is supported by the plugin. In the net.
cookbook.openjdk package, create a class with the name SamplingProvider
and with the following implementation:
package net.cookbook.openjdk;

import com.sun.tools.visualvm.application.Application;
import com.sun.tools.visualvm.core.ui.*;
import com.sun.tools.visualvm.tools.jmx.*;
import javax.management.*;
import org.openide.util.Exceptions;

public class SamplingProvider extends DataSourceViewProvider<Appli
cation> {
 private static DataSourceViewProvider instance = new
SamplingProvider();
 @Override
 public boolean supportsViewFor(Application application) {
 boolean result = false;
 JmxModel jmx = JmxModelFactory.
getJmxModelFor(application);
 if (jmx != null && jmx.getConnectionState() == JmxModel.
ConnectionState.CONNECTED) {
 MBeanServerConnection mbsc = jmx.
getMBeanServerConnection();
 if (mbsc != null) {

https://www.iconfinder.com/icons/131715/download/png/32
https://www.iconfinder.com/icons/131715/download/png/32

Hacking OpenJDK

160

 try {
 mbsc.getObjectInstance(new ObjectName("org.
openjdk.cookbook:type=SleepProbe"));
 result = true; // no exception - bean found
 }catch (InstanceNotFoundException e) {
 // bean not found, ignore
 } catch (Exception e1) {
 Exceptions.printStackTrace(e1);
 }
 }
 }
 return result;
 }

 @Override
 protected DataSourceView createView(Application application) {
 return new SamplingView(application);
 }

 static void initialize() {
 DataSourceViewsManager.sharedInstance().
addViewProvider(instance, Application.class);
 }

 static void unregister() {
 DataSourceViewsManager.sharedInstance()
 .removeViewProvider(instance);
 }

 public static Object getSleepProbeInstance(Application
application) {
 ObjectInstance instance = null;
 JmxModel jmx = JmxModelFactory.
getJmxModelFor(application);
 if (jmx != null && jmx.getConnectionState() == JmxModel.
ConnectionState.CONNECTED) {
 MBeanServerConnection mbsc = jmx.
getMBeanServerConnection();
 if (mbsc != null) {
 try {
 instance = mbsc.getObjectInstance(new
ObjectName("org.openjdk.cookbook:type=SleepProbe"));
 } catch (InstanceNotFoundException e) {
 // bean not found, ignore
 } catch (Exception e) {

Chapter 8

161

 Exceptions.printStackTrace(e);
 }
 }
 }
 return instance;
 }
}

19.	 The main methods of this class are supportsViewFor and createView.
The createView method is small and easy, it just creates a view instance
and passes through the application so that the view can get data out of it. The
supportsViewFor class is slightly bigger, but it doesn't really match. It connects to
the given application via JMX and tries to get the instance of MBean which our plugin
is interested in. If MBean is not there, it means that the application is not supported
and the method returns false.

20.	 Now it is time to see how the plugin works. To do this, first start the application created
on the first step of this receipt. Then right-click on SamplingModule and select Run.
This will start VisualVM with our plugin. From the list of processes in VisualVM, select
our process and click on the Sampling Application tab. There you will see our graph
showing slight changes in the sleep time as shown in the following screenshot:

After following these steps, it should not be a problem for the reader to extend this example
and use it for any kind of monitoring applications that he/she wants in VisualVM.

Hacking OpenJDK

162

See also
There is some documentation available on the VisualVM website, which helps with creating
the plugin for VisualVM and which covers, in more detail, some classes which are used in this
receipt, at http://visualvm.java.net/api-quickstart.html.

It is also worth having a look at existing plugins source code and some samples available.
These can be found in <code_root>/plugins and <code_root>/samples respectively.
For instructions on how to download the source code, please see the Building VisualVM from
the source code recipe.

Getting benefits from the AdoptOpenJDK
project

AdoptOpenJDK is a program, initially developed by a small group of enthusiasts, but which
became part of an official OpenJDK community. Some of the purposes are to clarify and
simplify OpenJDK building, installation, and usage, but there is still more. It provides build
automation, a report generator, build testing, and more. We will cover some basic features
that will be useful for everyone.

Getting ready
To follow this recipe, we will need an OpenJDK instance installed, and an Internet
connection established.

How to do it...
AdoptOpenJDK is a very helpful and a very sophisticated project set with quite a few different
subprojects. Many of them concern testing and evangelism, so we could not include them
here as recipes.

Visualizing JIT logs
There is a project named Jitwatch in AdoptOpenJDK. Its purpose is to visualize JIT compiler
logs. It helps to find some of our project's performance deficiencies and inspect a native
assembly output, as it's just fun after all. Have a look at the following points:

1.	 First, let's download an executable jar http://www.chrisnewland.com/
images/jitwatch.jar.

2.	 In order to analyze an executable, we will need to run it with the following switches:
-XX:+UnlockDiagnosticVMOptions -XX:+TraceClassLoading
-XX:+LogCompilation -XX:+PrintAssembly

http://visualvm.java.net/api-quickstart.html
 http://www.chrisnewland.com/images/jitwatch.jar
 http://www.chrisnewland.com/images/jitwatch.jar

Chapter 8

163

The UnlockDiagnosticVMOptions parameter gives access to other diagnostic
options, such as SharedOptimizeColdStart, PauseAtStartup, and so on.

The LogCompilation logs compilation activity in detail to hotspot.log or
LogFile, which is yet another VM option.

The TraceClassLoading parameter lets JVM ensure that all loaded classes are
visible, even the ones without any JIT-compiled code related to them.

The PrintAssembly parameter lets us see the assembler output of the JIT
compilation. It uses hsdis, a HotSpot disassembler, which is a part of OpenJDK.

3.	 Start the analyzer:
 java -jar ./jitwatch.jar

You will see the following screen:

4.	 Open your hotspot.log and, then press Start.

Enjoy the experience.

Securing your javadocs
1.	 We will try to eliminate a javadoc vulnerability (CVE-2013-1571) that seems to exist in

Java releases before 7u22.

2.	 To do that, we will need to clone a repository, such as:
git clone https://github.com/AdoptOpenJDK/JavadocUpdaterTool.git
&& cd JavadocUpdaterTool

Build the project
mvn clean install

Hacking OpenJDK

164

3.	 We will try to scan a directory for potential vulnerabilities. We will run the following
command from the directory in which the JavadocPatchTool.jar file is located:
java -jar JavadocPatchTool.jar -R -C <directory>

If the tool finds any applicable HTML files, it will print out a list of such files.

4.	 To fix a single applicable file, we will run the following command:

java -jar JavadocPatchTool.jar <path>

Here, <path> is the path to the directory which contains the applicable file.

5.	 To fix all the applicable files in the tree, run the following command:

java -jar JavadocPatchTool.jar -R <path_to_tree>

To learn about more benefits from the AdoptOpenJDK
project, visit the appropriate page at https://java.net/
projects/adoptopenjdk/pages/Benefits.

How it works…
JIT log visualizer is no more than a tool to process logs generated by OpenJDK. But it is a very
useful tool that may significantly improve performance.

Java is used in various projects that need security, so the vulnerability in javadocs has an
impact on those who still use Java 6 and are unable to change it to Java 7. So the tool that
fixes it with no transitions in the technology is really invaluable.

There's more...
There are many more projects in AdoptOpenJDK. Most of them are evangelist or testing ones;
thus, they are slightly beyond the scope of this book.

However, you can always find them on various AdoptOpenJDK sites. There is no need to
mention all of them in this book, they are tightly linked. In order to find them, it is sufficient
to just look around.

https://java.net/projects/adoptopenjdk/pages/Benefits
https://java.net/projects/adoptopenjdk/pages/Benefits

9
Testing OpenJDK

In this chapter, we will cover the following topics:

ff Running tests using the downloaded or the built version of jtreg
ff Building jtreg from the source
ff Running the standard set of OpenJDK tests
ff Writing your own test for jtreg
ff Using jtreg in GUI mode
ff Writing TestNG tests for jtreg
ff Compiling JT Harness from the source code
ff Building and running jcstress
ff Writing tests for jcstress
ff Creating a benchmark project using JMH
ff Downloading the source and compiling JMH

Introduction
Back in 1997, when JDK 1.1 was completed and JDK 1.2 had just started, there was an
obvious problem—JDK had to be tested somehow and there had to be a tool for it. This is
the moment when jtreg appeared as the regression test harness. At that time, there were
not many testing frameworks for Java. In fact, there was not even much software written in
Java. So choices were very limited and the only reasonable option was the framework that
was being used at that time for the Java Compatibility Kit (JCK). Its name was JavaTest.
But, as JCK tests were very different from what a JDK regression test is supposed to do, the
framework required some adaptation and that is when jtreg appeared. At the moment, even
though many years have passed since 1997, jtreg still remains the primary tool for running
unit and regression tests in OpenJDK. Since its introduction in OpenJDK, more than 10,000
tests have been created that run using the jtreg framework.

Testing OpenJDK

166

As a testing tool, jtreg might look a little unusual for modern developers who are used to
tools such as jUnit and TestNG. The main reason jtreg looks different is because it has a
long history. It appeared before jUnit in 1997, which appeared sometime around 2000.
At that time, especially when technology was so young, three years was a long period. It
seems possible that the other contributing factor was that jtreg for a long time remained a
proprietary tool and, as it was doing its job, there was no need to change it. Also, it was not
open to the wide open source community, who could have changed its shape over time. The
other reason that contributes to its difference when compared to the current classical tools is
that it provides some special features that are not usually available in testing frameworks, but
are required to do testing on JDK. These features include running a test in a separate instance
(or for some tests, even several instances) of JVM with a specific set of parameters, testing
Java applets (remember them?), running shell scripts as tests, running GUI tests which require
user interaction, and so on. This is a pretty big set of additional features, which is enough to
justify building a separate framework for it.

Having said all that, it would not be fair to say that jtreg is some old-fashioned tool that is
stuck in the 1990s and does not attempt to change itself to be closer to the modern way of
building frameworks for software testing. It has been integrated with testing frameworks such
as TestNG and provides a way to create tests that are based on that framework. However,
the majority of tests in JDK are still just classes with a main method that are executed by the
framework. Though, to be fair, such an approach has its benefits since it allows one to run
individual tests without any framework. There are also some tests that are just batch files and
there is an ongoing effort to get rid of them.

As a tool that evolved from JavaTest, jtreg inherited compatibility with its framework. This
compatibility has been now isolated into a separate project called Java Test Harness
(JT Harness). This is a framework for running, building, and deploying tests suites. It also
provides a GUI to manage and execute the test suites.

In this chapter, you will learn enough to be a confident jtreg user and know how to use JT
Harness. You will find out how to build jtreg and JT Harness from the source code, how to run
tests, and how to write your own tests. The chapter covers only plain Java and TestNG tests, as
they are the most useful ones for OpenJDK developers. This chapter does not cover the usage
of shell tests, as their usage is not considered a good practice and they were created to work
around JVM limitations that existed a few years back. At the current moment, all OpenJDK
contributors are encouraged to replace the shell tests with the Java version, wherever possible.

Chapter 9

167

Running tests using the downloaded or the
built version of jtreg

The simplest way to get started with jtreg is to just download it, unpack it, and run some tests.
In this recipe, we will do exactly that, without doing any additional things such as building it
from the source code or trying to create our own tests.

Getting ready
For this recipe, nothing much is really required—just the Internet connection, a machine with
an installed or built OpenJDK, and the OpenJDK source code. In a Windows environment,
Cygwin has to be installed in your machine.

How to do it...
The following are a few simple steps to get a set of tests executed by jtreg:

1.	 If jtreg is not yet available on the machine, go to the official page of jtreg (https://
adopt-openjdk.ci.cloudbees.com/job/jtreg/lastSuccessfulBuild/
artifact/) and download the latest available version of jtreg. The other option
is to build it from the source code. To do this, follow the instructions in the Building
Jtreg from the source recipe that is covered later in this chapter. After you have either
downloaded jtreg or built it using the source code, proceed to the next step.

2.	 Unpack the downloaded archive to a folder.

3.	 In the root folder of the OpenJDK source tree, create a shell script with the name,
run_test.sh. This script will be used to run jtreg:
#!/bin/sh

export JT_JAVA=/etc/alternatives/java_sdk_1.7.0_openjdk/

/home/user/openjdk/jtreg/bin/jtreg -jdk:$JT_JAVA -agentvm
-automatic -verbose:summary -w build/jtreg/work -r build/jtreg/
report hotspot/test/compiler/5091921

The only thing here that needs to be changed is the JT_JAVA environment variable
that has to point to the version of OpenJDK that is higher or equal to 1.5.

4.	 After running the script, you will see the output as shown:
[user@localhost jdk7u_clean]$./run_test.sh

Passed: compiler/5091921/Test5091921.java

Passed: compiler/5091921/Test6186134.java

Passed: compiler/5091921/Test6196102.java

https://adopt-openjdk.ci.cloudbees.com/job/jtreg/lastSuccessfulBuild/artifact/
https://adopt-openjdk.ci.cloudbees.com/job/jtreg/lastSuccessfulBuild/artifact/
https://adopt-openjdk.ci.cloudbees.com/job/jtreg/lastSuccessfulBuild/artifact/

Testing OpenJDK

168

Passed: compiler/5091921/Test6357214.java

Passed: compiler/5091921/Test6559156.java

Passed: compiler/5091921/Test6753639.java

Passed: compiler/5091921/Test6850611.java

Passed: compiler/5091921/Test6890943.java

Passed: compiler/5091921/Test6897150.java

Passed: compiler/5091921/Test6905845.java

Passed: compiler/5091921/Test6931567.java

Passed: compiler/5091921/Test6935022.java

Passed: compiler/5091921/Test6959129.java

Passed: compiler/5091921/Test6985295.java

Passed: compiler/5091921/Test6992759.java

Passed: compiler/5091921/Test7005594.java

Passed: compiler/5091921/Test7020614.java

Test results: passed: 17

5.	 After the test, run the HTML report that is generated by jtreg. This is available in the
folder specified by the -r parameter.

How it works…
As you can see, the shell script that is used to run jtreg is simple and there are only a few
points that need to be clarified. These are the JT_JAVA environment variables and the
command line arguments of jtreg.

JT_JAVA is one of the two environment variables used by the jtreg shell script. JT_JAVA
specifies the version of Java that will be used to run the framework, but not the tests. In this
recipe, for the sake of simplicity, we used the same version of Java to run jtreg and the tests.

The jtreg command line arguments are all described in detail on the jtreg webpage (http://
openjdk.java.net/jtreg/command-help.html), so we will cover just a few of them
that are used in this recipe:

ff -jdk: This argument will generate the JDK that will be used to run tests. Basically,
it is the version of Java which is tested by the test run. In our example, we used the
version that was installed on the machine. If you want to use the version that was
built from the source, the variable should be changed appropriately to point to the
output of the build.

Chapter 9

169

ff -agentvm: This is the mode when jtreg uses the pool of reusable JVMs to run the
tests. When a test requires a separate JVM for the run, that JVM is not created, but
it is borrowed from the pool of reusable instances. If any parameter is not specified,
jtreg will recreate a JVM for each test and this will significantly slow down the test run.

ff -verbose:summary: This argument specifies the output mode. The summary
parameter means that it will print just the status and the test name.

ff -automatic: This argument means that only the automatic tests that do not require
user intervention will be run.

ff -w: This argument provides the location of the working directory. This will be used to
store class files, and so on.

ff -r: This argument provides the reporting directory in which reports are to be stored.
To see the report, open the <reporting directory>/html/report.html
file in any browser.

See also
ff The complete list of command line options is available at http://openjdk.java.

net/jtreg/command-help.html.

ff Some might find it useful to run tests only for a specific bug and, for that, the
bug:<bug_id> command-line option can be used. The tests' logfiles can be found in
the working directory (specified by the -w parameter or in JTwork if that parameter
is not defined). Logfiles are in text format with a .jtr extension. These files contain
the test output along with the command line and an exception, if thrown, and are very
useful for troubleshooting.

Building jtreg from the source
Apart from downloading jtreg as a binary package, there is also an option to download the
source code and build jtreg from the source. This can be beneficial for developers who might
want to make changes in the source code or get the latest fix that has not yet been released
as a binary package.

Getting ready
You will need an Internet connection, a machine capable of running make and batch files
(Linux or Cygwin), and an installed Mercurial.

Testing OpenJDK

170

How to do it...
The following simple steps will show you how to get the jtreg source code and make the build:

1.	 Download the sources from http://hg.openjdk.java.net/code-tools/
jtreg. To do this, just execute the following command that will clone the jtreg source
tree in the local folder, jtreg:
[user@localhost tmp]$ hg clone http://hg.openjdk.java.net/code-
tools/jtreg

destination directory: jtreg

requesting all changes

adding changesets

adding manifests

adding file changes

added 85 changesets with 1239 changes to 602 files

updating to branch default

586 files updated, 0 files merged, 0 files removed, 0 files
unresolved

After the execution of the command, the current directory can be found in the new
jtreg folder with all the jtreg sources.

2.	 If there is no Ant software installed on the machine, install it using yum (or any other
packaging tool), or simply download it from http://ant.apache.org/ and then
unpack it. If you are using a Linux machine, you also have an option to install it by
running yum or any other similar tool that can be found at http://ant.apache.
org/ and then unpack it.

3.	 Download the latest available version of JT Harness, which is available at https://
jtharness.java.net/. Unpack it in the jtreg/lib folder.

4.	 jtreg requires JUnit, but not the latest version. The version has to be earlier than
4.11. The simplest way to get it would be to download the version from Maven central
at http://mvnrepository.com/artifact/junit/junit/4.5. A jtreg build
requires just the JAR file. Put this file in the jtreg/lib folder.

5.	 To make things slightly more exciting, a jtreg build also requires another testing
framework—TestNG v.6.8. This can be downloaded from http://testng.org/
doc/download.html.

Note that the required version is the version for Ant users. To make things
simpler, just use the link, http://testng.org/testng-6.8.zip. Unpack the
downloaded archive in the jtreg/lib folder.

Chapter 9

171

6.	 The next dependency is JavaHelp. This seems to be available only via a direct link
at http://download.java.net/javadesktop/javahelp/javahelp2_0_05.
zip. Unpack it in the jtreg/lib folder.

7.	 And then, finally, the last dependency, that is Xalan, the XML transformation
library. The required version is 2.7.1, which can be downloaded from one of the
websites listed at http://www.apache.org/dyn/closer.cgi/xml/xalan-j.
Follow the same procedure that you did with the other libraries and unpack it in the
jtreg/lib folder.

8.	 Now, it is time to write the script that will execute the build. Put the following script
code into the make.sh file of the jtreg folder, created in the first step:
#!/bin/sh

export JDK15HOME= /etc/alternatives/java_sdk_1.7.0_openjdk/

export JAVAHELP_HOME=/home/user/openjdk/jtreg/lib/jh2.0/javahelp

export ANTHOME=/usr/share/ant

export JTHARNESS_HOME=/home/user/openjdk/jtreg/lib/jharness4.4.1

export JUNIT_JAR=/home/user/openjdk/jtreg/lib/junit4.5/junit-
4.5.jar

export TESTNG_HOME=/home/user/openjdk/jtreg/lib/testng-6.8

export TESTNG_JAR=/home/user/openjdk/jtreg/lib/testng-6.8/testng-
6.8.jar

export XALANHOME=/home/user/openjdk/jtreg/lib/xalan-j_2_7_1

make -C make

As you can see, the script is simple and it is only required to set the environment
variables. Not much explanation is required, as all the variable names are pretty self-
explanatory. So, just assign appropriate values that are relevant for your machine
setup. All the variables are mandatory and have to be defined to run the framework.

9.	 The final step is to just run that script:

[user@localhost jtreg]$./make.sh

After the build, which should take just a few seconds, the resulting JAR file can be
found in the build/images/jtreg/ folder. This folder will contain a fully workable
and self-sufficient jtreg distribution:

[user@localhost jtreg]$ ls -l build/images/jtreg/

total 60

drwxrwxr-x. 2 user user 4096 May 3 21:27 bin

-rw-rw-r--. 1 user user 994 May 3 21:23 COPYRIGHT

drwxrwxr-x. 3 user user 4096 May 3 21:23 doc

Testing OpenJDK

172

drwxrwxr-x. 4 user user 4096 May 3 21:27 legal

drwxrwxr-x. 2 user user 4096 May 3 21:27 lib

-rw-rw-r--. 1 user user 19241 May 3 21:27 LICENSE

drwxrwxr-x. 3 user user 4096 May 3 21:23 linux

-rw-rw-r--. 1 user user 3790 May 3 21:27 README

-rw-rw-r--. 1 user user 72 May 3 21:27 release

drwxrwxr-x. 3 user user 4096 May 3 21:23 solaris

drwxrwxr-x. 3 user user 4096 May 3 21:23 win32

Running the standard set of OpenJDK tests
This recipe is not much different from the one that describes a simple test execution. However,
it will focus on how to run JDK tests. This knowledge might be required if someone is making
changes to HotSpot or to any other part of OpenJDK.

Standard tests are available only in three root folders for JDK7 and in four folders for JDK8.
These are hotspot, jdk, langtools, and nashorn (for jdk8 only). Although tests are not
available for other areas such as CORBA, JDBC, JAXP, and so on, it doesn't mean that they are
not tested at all. It just means that tests for them are not part of OpenJDK, that is, they are
not provided by vendors.

The way tests are organized varies with the dependency of the area they are testing, for
example, hotspot and langtools are mostly grouped by functional areas they are testing
and, then, by bugs (by their numbers). The jdk folder is mostly organized by the package
name, as this set of tests covers the Java APIs.

Keep in mind that some tests might fail, but it does not mean that something is particularly
wrong with OpenJDK. It just means that there are some situations when it is rather hard to
create a test that can pass in any environment. For example, there can be tests that need a
special network configuration or some other sort of special environment, which might not be
set up on the machine.

There is a set of tests that are known to fail and there is usually a good reason for that. The
most obvious example is a test that covers some known problem, but whose fix is not going
to happen soon. These tests are listed in jdk/test/ProblemList.txt or marked with a @
ignore tag. These tests should usually be excluded from the standard test run.

Getting ready
As we will be running tests for OpenJDK, it is required to have relevant sources available on
the machine. The machine should also be set up for the OpenJDK build, as we will be using
OpenJDK make files to execute the test run.

Chapter 9

173

jtreg should be downloaded and unpacked in a folder on the machine so that it is ready for
the test run.

Some OpenJDK tests are shell scripts, so you will need to use either a Linux machine or, in the
case of a Windows machine, Cygwin with support for the Bourne shell, even though Cygwin
is not recommended, as there is a chance that some shell tests will not run properly on it.

How to do it...
One of the most convenient ways to run tests is to run them separately for each area, such
as hotspot, jdk, and so on. As the aim of this recipe is to just explain the concept, we will
be using the jdk tests, which are just a subset of all the tests available in OpenJDK, but the
same pattern can be applied to all the other areas as well. Follow the given steps:

1.	 In the OpenJDK source root folder, create a file with the name, run_jdk_lang_
tests.sh and the following content:
#!/bin/sh

export JTREG_HOME=/home/user/openjdk/jtreg/build/images/jtreg/

export JT_HOME=/home/user/openjdk/jtreg/build/images/jtreg/

export PRODUCT_HOME=/home/stas/openjdk/jdk7u_clean/build/linux-
amd64/j2sdk-image/

cd jdk/test

make TESTDIRS=java/lang

The JTREG_HOME and JT_HOME environment variables are both the same and
should point to a folder with jtreg. Unfortunately, there are places in make files where
both these variables are used.

PRODUCT_HOME points to a JDK in the test. It is not strictly required to point it to
a version of JDK that was just built from the source, but there is also no sense in
executing tests on a version that one can't change.

TESTDIRS points to a subset of tests to run. Obviously, the wider that subset, the
more tests will be executed and the longer it will take to run. So usually it makes
sense to limit this subset to something reasonable, unless there is a need to do a
regression test after making big changes.

2.	 Now let's run the script. It will execute tests in the jdk folder and output hundreds of
lines like these:
TEST: java/lang/StringBuilder/Insert.java

 build: 1.112 seconds

 compile: 1.112 seconds

Testing OpenJDK

174

 main: 0.161 seconds

TEST RESULT: Passed. Execution successful

--

3.	 When it's all finished, the make script will report something as shown:
Summary:

TEST STATS: name= run=383 pass=383 fail=0 excluded=4

EXIT CODE: 0

EXIT CODE: 0

Testing completed successfully

The preceding output tells us how many tests were executed, how many failed, how many
passed, and so on. Now, when all the tests that we were interested in are run, the results can
be found in the jdk/build/linux-amd64/testoutput/JTreport folder. There will be
standard jtreg text and HTML report files that can be viewed using any web browser.

There's more...
If someone came to a point where there was a need to run an OpenJDK test, there is a good
chance that there would be a situation when the tests had to be updated or extended. In that
case, it is important to have a good understanding of what is going on inside these tests and
what is the exact reason for each of them to exist. Mostly, that information is available in the
@bug and @summary tags. It is highly recommended to pay attention to their content and put
in some effort to see how they correlate with actual test code.

Most of the tests contain additional information in the @bug and @summary tags. It is
important to refer to these tags to understand the reason for the test. For example, when
you run tests, it is not uncommon to see an output like the following:

--

TEST: java/lang/invoke/7157574/Test7157574.java

 build: 1.194 seconds

 compile: 1.193 seconds

 main: 0.199 seconds

TEST RESULT: Passed. Execution successful

It means that this is the test for the bug with ID 7157574, which can actually be found in the
JDK bug tracking system at https://bugs.openjdk.java.net/browse/JDK-7157574.
And, when one takes a look at the test, the following information will be in the header:

/* @test

 * @bug 7157574

Chapter 9

175

 * @summary method handles returned by reflective lookup API sometimes
have wrong receiver type

 *

 * @run main Test7157574

 */

This header has a reference to the bug that this test is testing and, in the summary section, it
explains exactly what this test is doing. Also, when you look at the source of a test, it is quite
common to see that it contains a very detailed explanation of the problem and the way that
the problem is being tested.

Writing your own test for jtreg
If you are going to add a new feature to OpenJDK or fix a bug, it is really a good idea to
have a test case to cover the change in functionality and to ensure that the implementation
change doesn't break anything. This recipe will help you to get some understanding of the
process and create a simple test. You will find that writing your own test case for jtreg is not a
complicated task, but it can be slightly unusual in some respects.

Getting ready
All that is required for this recipe is an installed jtreg and the OpenJDK sources. The latter is
required only because this recipe assumes that the newly created test is for OpenJDK.

How to do it...
Writing tests for jtreg can be a little unusual, but when you get used to the pattern it is actually
quite easy. To begin, just follow the steps. Keep in mind that all the paths are given relative to
the OpenJDK source root:

1.	 Go to the root folder of OpenJDK and create the jdk/test/demo/SampleTest.
java file first:
/* @test
 * @summary Test to ensure that computer wasn't moved to the past
 * @compile SampleTimeProvider.java
 * @run main SampleTest
 * @run main/othervm SampleTest
 */
public class SampleTest {
 public static void main(String[] args) {
 long currentTime = new SampleTimeProvider().
getCurrentTime();

Testing OpenJDK

176

 if (currentTime < 0) {
 throw new RuntimeException("It can't be 1969!");
 }
 }
}

2.	 Then, create the jdk/test/demo/SampleTimeProvider.java file as follows:
public class SampleTimeProvider {
 public long getCurrentTime() {
 return System.currentTimeMillis();
 }
}

3.	 Now, create a script file with the name, run_jtreg.sh in the source root folder of
JDK and run it:
#!/bin/sh

export JT_JAVA=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.60-
2.4.7.0.fc20.x86_64

/home/user/openjdk/jtreg/build/images/jtreg/bin/jtreg -jdk:$JT_
JAVA -agentvm -automatic -verbose:summary -w build/jtreg/work -r
build/jtreg/report -exclude:./jdk/test/ProblemList.txt jdk/test/
demo/SampleTest.java

4.	 The output should be as follows:
[user@localhost jdk7u]$./run_jtreg.sh

Directory "build/jtreg/work" not found: creating

Directory "build/jtreg/report" not found: creating

Passed: demo/SampleTest.java

Test results: passed: 1

Report written to /home/user/openjdk/jdk7u/build/jtreg/report/
html/report.html

Results written to /home/user/openjdk/jdk7u/build/jtreg/work

As you can see, only one test was run and the run was successful. So, writing a
simple test case is a very simple task.

5.	 Now, the final step. After all the tests have been run, let's look at the test result
whose path was provided in the output of jtreg. Let's open report/html/repost.
html in a web browser and take a look at what's there:

Chapter 9

177

Here, we can see that only one test, demo/SampleTest.java, was executed and it
was the one that passed.

How it works…
Some explanation is required to find out what actually happened. The test itself is in the
SampleTest.java file. jtreg knows that the file contains the test by the presence of the @
test tag in the class header comments. Without that tag, jtreg will not consider it as a test.

The only purpose of the @summary tag is to give a summary description for the test.
This description will also be used in logs and reports. It is very important to have a good,
readable description for that tag. Also, if a test is for a bug, it is necessary to have the
@bug tag populated with an appropriate bug number.

Testing OpenJDK

178

The next tag, @compile, has a reference to another file, which is required to be compiled
to run the test. The only reason for the existence of SampleTimeProvider.java is to
show how to use the @compile tag. It is very unusual for Java to do things like this. Usually,
everything is compiled and then things are picked from the classpath, but this is the way
Java works.

The @run tag tells the harness how to run the test. As can be seen from the test class, this
parameter can be defined several times, which means that the test will also be executed
several times and each time it will be run with a configuration defined by the associated run
tag. In our example, there are two runs, one in the same VM and the other in a new instance
of VM, which is specified by the othervm parameter. If this tag is not defined, then, by default,
jtreg assumes that it is @run main ClassName.

Note that a test fails if it runs for longer than 2 minutes (120 seconds) and can be overwritten
by @run main/timeout=xxx.

Usually, a test indicates its failure by throwing an exception. A test from this recipe will throw
RuntimeException when its conditions are not met.

jtreg requires the TEST.ROOT file to be created in the tests' root folder. Without that file, it
will not execute any test. Luckily for us, JDK already has the required file with the appropriate
content, so there is no need for us to worry about it.

See also
jtreg test cases are defined by the Javadoc tags and it is useful to be familiar with all
of them. The complete list of tags and information about each tag is available either
in the help file that can be accessed by running the jtreg command, –onlineHelp,
or online at http://openjdk.java.net/jtreg/tag-spec.html.

Using jtreg in GUI mode
jtreg is not only a command-line tool, but it also provides a relatively sophisticated graphical
interface that allows you to run an individual set of tests, prepare test runs, see results of the
run, and so on. This recipe will cover some basic features of UI that are enough for the user to
start using the tool.

Getting ready
All that is required for this recipe is an installed jtreg and the OpenJDK sources.

http://openjdk.java.net/jtreg/tag-spec.html

Chapter 9

179

How to do it...
1.	 Create the following script that will launch jtreg with a graphical UI:

#!/bin/sh

export JT_JAVA=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.60-
2.4.7.0.fc20.x86_64

/home/user/openjdk/jtreg/build/images/jtreg/bin/jtreg –g -jdk:$JT_
JAVA -agentvm -automatic -verbose:summary -w build/jtreg/work -r
build/jtreg/report -exclude:./jdk/test/ProblemList.txt jdk/test/

The parameter that tells jtreg to launch JT Harness UI is -g. After it is launched, jtreg
displays a window similar to the following one:

2.	 On the right-hand side of the preceding screenshot, you can see the results of
the latest test run. It knows where to pick them up from the –r parameter. In this
screenshot, you can also see the number of successful and failed tests, the total
number of executed tests, and some other stats.

Testing OpenJDK

180

3.	 On the left-hand side of the preceding screenshot, there is a tree with all the
available tests. This shows all the tests from the root of the test bundle, which is the
folder with the TEST.ROOT configuration file. The green folder icon indicates the tests
that ran successfully and the red one indicates the ones that failed.

4.	 To run a specific test from a set of tests, right-click on the individual test folder and
select the Execute these test item from the pop-up menu. This will trigger the test
run and a new report will be generated. For long running tests, there is a status
window, which is available via the Run Tests | Monitor Progress menu item:

How it works…
The UI that is used by jtreg does not actually belong to jtreg. It is provided by JT Harness and
jtreg just integrates it using the provided plugin system.

JT Harness provides a rich interface not only to run tests, but it also has a set of wizards to
create test configurations, various report conversion tools, an agent monitoring tool, and so
on. To get more information about all these features, refer to JT Harness online help, which
is available via the Help/Online Help menu item.

Writing TestNG tests for jtreg
jtreg also provides support to run TestNG test cases, which might be a more familiar
technique for many developers. There are some steps that need to be performed to make it
happen and this recipe will go through them.

Chapter 9

181

Getting ready
This recipe will require the OpenJDK source code and an installed version of jtreg. On a
Windows machine, it is also required to have Cygwin installed.

How to do it...
The following procedure should be more familiar to Java developers than writing a native jtreg
test, as TestNG is what most developers have heard of and used. Now, let's get to the practical
part and create a test. The paths are relative to the OpenJDK source root.

1.	 Relative to the OpenJDK root folder, create a folder with the name, jdk/test/
testng/org/demo. This is the folder where we are going to create our tests.

2.	 Create the file, jdk/test/testng/TEST.properties, relative to the OpenJDK
source root. Add the following line there:
TestNG.dirs=.

It is not strictly required to create the file, and it is also possible to define the property
in jdk/test/TEST.ROOT, which will work in the same way as our previous property.
However, in most cases, it is practical to have that file so that it can contain some
additional configuration that is specific to the set of TestNG tests, for example, the
lib.dirs property.

3.	 In the jdk/test/testng/org/mydemo folder, create the following file with the
name, MyTestNGTest.java:
package org.mydemo;

import org.testng.Assert;

import org.testng.annotations.Test;

public class MyTestNGTest {

 @Test

 public void testMoreNanosThanMillis() {

 final long nanos = System.nanoTime();

 final long millis = System.currentTimeMillis();

 Assert.assertTrue(nanos > millis);

 }

}

Testing OpenJDK

182

4.	 Now, in OpenJDK's source root folder, create the following bash script (fix the paths as
required to match the machine environment):
#!/bin/sh

export JT_JAVA=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.60-
2.4.7.0.fc20.x86_64

/home/user/openjdk/jtreg/build/images/jtreg/bin/jtreg -jdk:$JT_
JAVA -agentvm -automatic -verbose:summary -w build/jtreg/work -r
build/jtreg/report -exclude:./jdk/test/ProblemList.txt jdk/test/
testng

5.	 Then, give it a name, ./run_jtreg.sh, and make it executable (running chmod +x
./run_jterg.sh will do the job) and run it. The resulting output of the script should
look similar to the following:
[user@localhost jdk7u]$./run_jtreg.sh

Passed: testng/org/mydemo/MyTestNGTest.java

Test results: passed: 1

Report written to /home/user/openjdk/jdk7u/build/jtreg/report/
html/report.html

Results written to /home/user/openjdk/jdk7u/build/jtreg/work

And that's it. The test has been run and, as can be seen from the output, it has passed. The
result of the run can be seen by opening /home/user/openjdk/jdk7u/build/jtreg/
report/html/report.html in the browser application.

How it works…
The file named TEST.properties that is created in the folder with the tests root package,
requires a bit of explanation. This is the file that contains sets of configurations specific to the
TestNG tests in the folder where the file is located. For example, it can have a reference to
folders with libraries via the lib.dirs property. That is the path type property, which is the
same as TestNG.dirs, and such properties are space-separated lists of paths to some of
the folders or files. If the path in the list starts with /, then it is evaluated relative to a folder
with TEST.ROOT, otherwise it is evaluated from the directory containing TEST.properties.

See also
As it is possible to use the TestNG annotations within the test classes, it is worth checking the
TestNG website, which contains some documentation on this topic at http://testng.org/
doc/documentation-main.html.

http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html

Chapter 9

183

It is also possible to use the jtreg style tags and the TestNG style test together. In that case,
the test should be created as a normal jtreg test (see the Writing your own test for jtreg
recipe), using testng as the argument for @run, for example, @run testng SampleTest.
In this scenario, there is no need for TEST.properties and things like lib.dirs are
defined in the test source file via the jtreg tags, rather than in a separate configuration file.

Compiling JT Harness from the source code
JT Harness is a framework that allows you to execute different sets of tests. It is not necessary
to use it only with jtreg. Other testing frameworks can be integrated with it as well. This means
that it could be useful to have its source code to be able to build it from the source. This is
exactly what this recipe is going to explain.

Getting ready
You will need Internet access to download the source code and install the additional software
that is required for the build.

Ensure that Ant version 1.6.1 or later is installed on the machine. If not, then install it. The
How to do it... section depends on the OS you are using. For example, on Fedora, that will be:

yum install ant

On Windows, the simplest way would be to just download the distribution and add Ant's bin
folder to the PATH environment variable. The Ant distribution can be found at http://ant.
apache.org/. Keep in mind that, to make it work, the JAVA_HOME environment variable has
to contain the correct path of the Java distribution.

Ensure that Subversion is installed on the machine. In contrast to other tools, JT Harness
doesn't use the Mercurial repository for its source code. On Fedora, Subversion can be
installed by running yum:

yum install svn

On any other OS, it really depends on the OS. Check http://subversion.apache.org/ to
find out what is available.

How to do it...
Run the following command to check the source code:

svn checkout https://svn.java.net/svn/jtharness~svn/trunk jtharness

This command will create a folder with the name, jtharness, and download the source
code. In that folder, create another folder and name it, lib. Here we will put the libraries
required to build JT Harness.

http://ant.apache.org/
http://ant.apache.org/
http://subversion.apache.org/

Testing OpenJDK

184

Now download the following software (all paths are given relative to the jtharness folder):

1.	 JavaHelp seems to be available only via a direct link from http://download.
java.net/javadesktop/javahelp/javahelp2_0_05.zip. Unpack it into
lib/jh2.0.

2.	 Go to http://asm.ow2.org/ and download the ASM Java bytecode manipulation
library binaries version 3.1. Unpack the archive into lib/asm-3.1. This is required
only for compilation.

3.	 Next, the required library is Java Communications API. Go to http://
www.oracle.com/technetwork/java/javasebusiness/downloads/
java-archive-downloads-misc-419423.html and download Java
Communications API 3.0u1 or any other higher version that is available. Unpack
the archive into lib/commapi. This is required only for compilation.

4.	 Java Servlet APIs are only required for compilation. Probably the simplest way to
download them is to get the JAR from Maven Central. Go to http://search.
maven.org/ and search for javax.servlet servlet-api. Download the JAR
v.3.1.0 and put it directly into the lib folder.

5.	 The last one is JUnit, which is also only required for compilation. The recommended
version is 4.4. Go to http://junit.org/and click on the Download link to
download the appropriate version of the JAR file. Place it directly into the lib folder.

6.	 The next step is to get the sources. To do this, run the following command that will
get the latest sources from the trunk:
svn checkout https://svn.java.net/svn/jtharness~svn/trunk
jtharness

This will create the folder, jtharness, with two subfolders: www and code. The www
folder contains pages with links to the documentation and other useful information,
but we are really interested in the folder with the name code. It is actually not strictly
necessary to download www at all, but it doesn't do any harm either.

7.	 Go to the folder, jtharness/code/build, locate the file local.properties, and
edit it to set the following properties to point to the appropriate locations:

�� jhalljar: This provides the path to the JavaHelp jhalljar.jar file

�� jhjar: This property provides the path to the JavaHelp jhjar.jar file

�� jcommjar: This provides the path to comm.jar from the Java
Communications API

�� servletjar: This provides the path to the servlet-api.jar file from
Java Servlet API

�� bytecodelib: This provides a colon-separated path to the asm-3.1.jar
and asm-commons-3.1.jar files

�� junitlib: This provides the path to junit-4.4.jar from jUnit

http://download.java.net/javadesktop/javahelp/javahelp2_0_05.zip
http://download.java.net/javadesktop/javahelp/javahelp2_0_05.zip
http://asm.ow2.org/
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-misc-419423.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-misc-419423.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-misc-419423.html
http://search.maven.org/
http://search.maven.org/
http://junit.org/

Chapter 9

185

After the editing, the file should look similar to this:
#Please specify location of jhall.jar here - for compilation

jhalljar = /home/user/openjdk/jtharness/lib/jh2.0/javahelp/lib/
jhall.jar

needed only at runtime

jhjar = /home/user/openjdk/jtharness/lib/jh2.0/javahelp/lib/jh.jar

location of jar with implementation of java serial
communications API

jcommjar = /home/user/openjdk/jtharness/lib/commapi/jar/comm.jar

location of jar with servlet API implementation

servletjar = /home/user/openjdk/jtharness/lib/javax.servlet-api-
3.1.0.jar

bytecode library (BCEL or ASM)

these are not interchangable

bytecodelib = /home/user/openjdk/jtharness/lib/asm-3.1/lib/asm-
3.1.jar:/home/stas/openjdk/jtharness/lib/asm-3.1/lib/asm-commons-
3.1.jar

JUnit Library - Version 4 currently used to compile 3 and 4
support

junitlib = /home/user/openjdk/jtharness/lib/junit-4.4.jar

Please specify location where the build distribution (output)
will be created

BUILD_DIR = ../JTHarness-build

If it is required, the BUILD_DIR variable can be changed to a different folder but,
usually it is not necessary.

8.	 Now ensure that the current folder is jtharness/code/build and run Ant:
[stas@localhost build]$ ant

Buildfile: /home/user/openjdk/jtharness/code/build/build.xml

 …skipped…

BUILD SUCCESSFUL

Total time: 45 seconds

When build is finished

When the build is finished, the folder, jtharness/JTHarness-build/binaries,
contains the distribution of JT Harness.

Testing OpenJDK

186

See also
There are other targets available in the JT Harness build file that you may find useful:

ff run: This builds and runs JT Harness. This is not the only way to launch the
application. The other option is to run the following command from the source root
folder after the build:
java -jar JTHarness-build/binaries/lib/javatest.jar

ff clean: This just builds the distribution directory.

ff build: This builds JT Harness and then runs all the tests.

ff test: This just runs the test.

ff Javadoc: This generates the Javadoc API documentation.

ff build-examples: This builds the example test suites packaged with the source.
This target also automatically builds the core harness first.

Building and running jcstress
The Java Concurrency Stress Test (jcstress) is a set of tests for testing the correctness of the
Java concurrency support. This is a new tool that is mostly targeted to Java 8, which means that
not all the tests will run on previous versions of Java. As a new tool, jcstress is in its alpha phase
and changes for fixes and improvements are common, which means that whoever is working
with it is expected to update the source code and rebuild the tool relatively often.

Testing concurrency is not an easy task and it may or may not be easy to make such tests fail
even with incorrect code. This happens due to the nature of concurrent code, which might
work differently on different hardware configurations. Such variations arise from the number
of CPUs or the CPU architecture. Overall, this means that many tests in jcstress are uncertain
and they might require a long time before exposing potential problems.

Getting ready
You will need Internet access and the Mercurial repository to download the source code. As
jcstress requires Java 8 for compilation and to run the full set of tests, it has to be installed on
the machine and set as the current version. This means that the following commands should,
as illustrated next, show Java 1.8 as the major version:

[user@localhost]$ java -version

openjdk version "1.8.0_11"

OpenJDK Runtime Environment (build 1.8.0_11-b12)

Chapter 9

187

OpenJDK 64-Bit Server VM (build 25.11-b02, mixed mode)

[user@localhost jcstress]$ javac -version

javac 1.8.0_11

The build will also require Maven (one of the Java build tools) to be installed on the machine.
The installation of this tool depends on the OS. For example, on Fedora, this can be done by
running the following command as root:

[root@localhost ~]# yum install maven

On other OSs, the simplest way might be to download the binary from http://maven.
apache.org/download.cgi, unpack the archive, point M2_HOME to the root of the
unpacked folder and add M2_HOME/bin to the path.

How to do it…
Now it's time for action. The first few steps of this recipe will cover the build process and then
it will switch to run the actual tests:

1.	 The first step is to download the sources. Go to the folder where you want to store the
source code and run the following command:
[user@localhost ~]$ hg clone http://hg.openjdk.java.net/code-
tools/jcstress/ jcstress

When this command is run, Mercurial is downloaded along with the source code from
the remote repository and it is stored in the folder, jcstress.

2.	 Now, to build the tool, move to the folder jcstress and run the following command:
[user@localhost jcstress]$ mvn clean install -pl tests-custom –am

If successful, it should display something like this as the end:
[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 1:31.300s

[INFO] Finished at: Tue Jul 29 22:23:19 BST 2014

[INFO] Final Memory: 37M/410M

[INFO] --

This means that the build has done what it was supposed to do and the tests are
ready to be run.

http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi

Testing OpenJDK

188

3.	 To run all the tests, use the following command:
java -jar tests-custom/target/jcstress.jar

This will output thousands of lines like these:
(ETA: 00:39:58) (R: 1.36E+07) (T: 46/898) (F: 1/1) (I: 3/5)
[OK] o.o.j.t.atomicity.primitives.plain.VolatileCharAtomicityTest

(ETA: 00:40:05) (R: 1.36E+07) (T: 46/898) (F: 1/1)
(I: 3/5) [OK] o.o.j.t.atomicity.primitives.plain.
VolatileDoubleAtomicityTest

ETA is the estimated completion time, R is the runtime in nanoseconds, T is the test
number, F is the fork number, and I is the test iteration number. This is all followed
by the result (OK in this example) and the full name of the test class.

As you can see, the full standard set of tests run for approximately 40 minutes, and this might
be too much, so there is an option to select which test to run using the -t parameter. This is a
regular expression selected for the tests, for example:

[user@localhost jcstress]$ java -jar tests-custom/target/jcstress.jar -t
".*ByteBufferAtomicityTests.*"

This will only run tests which have ByteBufferAtomicityTests anywhere in their name.

When the tests are completed, it is time to have a look at the reports that are generated
and, by default, they are put into the ./results/ folder. There you can find the file, index.
html, which can be opened with any browser. The result will list all the tests and, if you click
on the tests, all the observer outputs. These outputs can be something that is expected, not
expected, or expected but somehow surprising to the user. This can result in the following
outcomes for a test:

ff FAILED: The test failed and the outcomes were not what was expected

ff ERROR: The test crashed

ff ACCEPTABLE: The test results matched the specifications

ff ACCEPTABLE_INTERESTING: This is the same as ACCEPTABLE, but it has
something to highlight

ff ACCEPTABLE_SPEC: This is the same as ACCEPTABLE, but some interesting
behavior is also observed that might not be otherwise expected

There's more...
It is recommended that you have a look at the other command-line options that are available
for jcstress. This information can be retrieved by running the following command:

[user@localhost jcstress]$ java -jar tests-custom/target/jcstress.jar –h

Chapter 9

189

jcstress has its own page at http://openjdk.java.net/, which has some very useful
information and links to the source and mailing list at http://openjdk.java.net/
projects/code-tools/jcstress/.

Writing tests for jcstress
The Java Concurrency Stress test is a wonderful tool that is used by JDK authors to ensure
that their concurrent code works correctly with regards to concurrency. Concurrent code is
hard to write and even harder to test. Most of their tests are probabilistic, require a lot of skill
to write, and might take many days running time and the appropriate hardware to exhibit the
fail behavior. Considering all this complexity, having a framework that can help with correct
test execution is a big advantage. This recipe will go through the steps that are required to
write your own tests for jcstress.

Getting ready
To follow this recipe, the only requirement is to have an environment that is capable of
compiling and running jcstress (see the Building and running jcstress recipe).

How to do it…
The following steps will lead you through the process of creating a test and running it
using jcstress:

1.	 To start, we will need a code to test. Let's pick the problem which, arguably, is the
most common cause of headaches in concurrency and is very easy to reproduce.
Data race sounds like a good candidate. We will make a class called CASValue
and implement it:
package org.openjdk.jcstress.tests;

public class CASValue {
 private int i = 0;
 public boolean cas(int expected, int newValue) {
 boolean res = false;
 if (i == expected) {
 i = newValue;
 res = true;
 }
 return res;
 }
}

http://openjdk.java.net/
http://openjdk.java.net/projects/code-tools/jcstress/
http://openjdk.java.net/projects/code-tools/jcstress/

Testing OpenJDK

190

This class implements a single operation which is supposed to perform the
compare-and-swap operation (see http://en.wikipedia.org/wiki/
Compare-and-swap). Without synchronization, it will not work correctly in a
multithreaded environment and should fail the test that we will create in the
next steps of this recipe.

2.	 In the source root folder of jcstress, create the file, tests-custom/src/main/
java/org/openjdk/jcstress/tests/CASValue.java, and put the source
code of the CASValue class in it.

3.	 Now it's time to write a test to see whether our implementation is wrong. The test
class will look like this:
package org.openjdk.jcstress.tests;

import org.openjdk.jcstress.annotations.*;
import org.openjdk.jcstress.infra.results.LongResult2;

public class CASValueTests {
 @State
 public static class S extends CASValue { }

 @JCStressTest
 @Description("Tests correctness of CASValue CAS operations.")
 @Outcome(id = "[5,2]", expect = Expect.ACCEPTABLE, desc = "T1
-> T2 execution.")
 @Outcome(id = "[1,10]", expect = Expect.ACCEPTABLE, desc = "T1
-> T2 execution.")
 public static class ValCas_ValCas {
 @Actor public void actor1(S s, LongResult2 r) {
 r.r1 = s.cas(0, 5) ? 5 : 1;
 }
 @Actor public void actor2(S s, LongResult2 r) {
 r.r2 = s.cas(0, 10) ? 10 : 2;
 }
 }
}

4.	 Save this file in the same folder as CASValue.java, that is, in tests-custom/
src/main/java/org/openjdk/jcstress/tests/, and give it the name,
CASValueTests.java.

5.	 The CASValueTests class is the container class for other classes within the test.
This is not strictly required, but it helps to keep the code clean. The ValCas_ValCas
class, which is annotated with @JCStressTest, is the test case class that contains
two actors—methods annotated with @Actor. These are the methods that will be run
in parallel by the test framework.

http://en.wikipedia.org/wiki/Compare-and-swap
http://en.wikipedia.org/wiki/Compare-and-swap

Chapter 9

191

6.	 The subclass S, annotated with @State, is the state that was shared among the
actors and, in this case, is the class under test. It extends our class, CASValue,
and is created solely to avoid adding the @State annotation on CASValue.

7.	 The @Outcome annotations specify the outcomes of the test. The outcomes can be
ACCEPTABLE, FORBIDDEN, ACCEPTABLE_INTERESTING, and ACCEPTABLE_SPEC.
These are defined by the expect attribute. The id attribute provides the list of
outcomes, whereas desc is just a description of the outcome. This test case specifies
that, for our test, the only valid outcomes for the values in LongResul2 are 5 and 2
and 1 and 10, which are the only expected ones if CAS works as expected. Any other
outcomes are forbidden and will cause the test case to fail, which is exactly what
we want.

8.	 Now it's time to compile the test. To do this, run the following command from the
source root directory of jcstress:
[user@localhost jcstress] mvn clean install -pl tests-custom –am

This will just run the build for the tests-custom project, which will compile the
classes that we have just created.

9.	 The next step is to run our test and see if it works:
[user@localhost jcstress] java -jar tests-custom/target/jcstress.
jar -t ".*CASValueTests.*"

The -t parameter in this command specifies that we only want to run the tests that
satisfy the .*CASValueTests.* regular expression.

As expected, the tests should fail, as the provided implementation does implement
the CAS operation correctly. The output should have several test outcomes similar to
this one:
(ETA: n/a) (R: 5.95E+08) (T: 1/1) (F: 1/1) (I: 1/5)
[FAILED] o.o.j.t.CASValueTests$ValCas_ValCas

Observed state Occurrences Expectation Interpretation

[5, 2] (3,230,666) ACCEPTABLE T1 -> T2 execution.

[1, 10] (2,613,825) ACCEPTABLE T2 -> T1 execution.

[5, 10] (7,609,449) FORBIDDEN Other cases are not expected.

It shows how many outputs of each outcome were observed. So far, the incorrect
outcome [5, 10] is the leader with 7,609,449 occurrences. This shows that the
test worked correctly and helped us to identify that we need to fix our implementation
on the CAS class.

Testing OpenJDK

192

10.	 Now let's fix our class and run the test again. The easiest, though not the most
efficient, way to fix the problem is to simply add the synchronized modifier to
our CAS method:
public class CASValue {

 private int i = 0;

 public synchronized boolean cas(int expected, int newValue) {

 boolean res = false;

 if (i == expected) {

 i = newValue;

 res = true;

 }

 return res;

 }

}

11.	 After changing the implementation, run the build again:
mvn clean install -pl tests-custom –am

12.	 Then, rerun the test:
java -jar tests-custom/target/jcstress.jar -t ".*CASValueTests.*"

13.	 Now, the test should not show any failures and report that the test runs were
successful:

(ETA: n/a) (R: 3.35E+08) (T: 1/1) (F: 1/1) (I: 1/5) [OK]
o.o.j.t.CASValueTests$ValCas_ValCas

(ETA: 00:00:02) (R: 1.69E+07) (T: 1/1) (F: 1/1) (I: 2/5) [OK]
o.o.j.t.CASValueTests$ValCas_ValCas

(ETA: 00:00:01) (R: 1.22E+07) (T: 1/1) (F: 1/1) (I: 3/5) [OK]
o.o.j.t.CASValueTests$ValCas_ValCas

(ETA: 00:00:00) (R: 1.07E+07) (T: 1/1) (F: 1/1) (I: 4/5) [OK]
o.o.j.t.CASValueTests$ValCas_ValCas

(ETA: now) (R: 1.00E+07) (T: 1/1) (F: 1/1) (I: 5/5) [OK]
o.o.j.t.CASValueTests$ValCas_ValCas

This shows that the change in the implementation worked and the implementation is correct
according to the test case.

Chapter 9

193

By following these steps, a developer can ensure that a concurrent code works as expected
according to the specification, as long as the tests and test cases are implemented and defined
correctly. However, keep in mind that concurrency is something that is hard to test, and an
implementation that works on one hardware can easily fail on other hardware. It means that it
is recommended to run these test on the widest possible range of configurations.

See also
This framework is built and maintained by Aleksey Shipilëv who has his own blog and also
delivers lectures in various conferences. We recommend that you visit his home page
(http://shipilev.net/), watch his videos on YouTube (for example, https://www.
youtube.com/watch?v=4p4vL6EhzOk), and read some of his papers. This will help you
to get tons of information on correct concurrency testing, concurrency in general, support for
concurrency in Java, and other related topics.

Creating a benchmark project using JMH
Micro benchmarking itself is not an easy topic, and doing it correctly using languages like Java
is a very difficult task. These difficulties arise from the way Java executes the code and the
infrastructure required by JVM. Just as things like JIT and GC may affect the results of micro
benchmarking heavily, to ensure that the result of each run is consistent and correct might
not be an easy task to accomplish. To help with this problem, there are several frameworks
that can help to ensure that the benchmark test runs properly. One of these frameworks is
Java Microbenchmark Harness (JMH), which is a part of OpenJDK. This recipe will explain
how developers can use this framework to benchmark his/her own code.

Getting ready
This recipe requires a machine with an Internet connection, Maven, Java SDK, and your
favorite IDE that has support for Maven projects.

How to do it…
The following steps will take you through the process of creating a benchmark project and
writing the benchmark, which can be used to analyze the performance of the code:

1.	 In the command line, run the following Maven command:
[user@localhost ~] mvn archetype:generate -DinteractiveMode=false
-DarchetypeGroupId=org.openjdk.jmh -DarchetypeArtifactId=jmh-
java-benchmark-archetype -DgroupId=org.benchmark
-DartifactId=mybenchmark -Dversion=1.0

http://shipilev.net/
https://www.youtube.com/watch?v=4p4vL6EhzOk
https://www.youtube.com/watch?v=4p4vL6EhzOk

Testing OpenJDK

194

2.	 After running this command, in the current directory, Maven will create a folder with
the name, mybenchmark, which will have the skeleton of the project. If all goes well,
the build should end with an output that is similar to the following:
[INFO] project created from Archetype in dir: /home/user/openjdk/
mybenchmark

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

[INFO] Total time: 9.188s

[INFO] Finished at: Sat Aug 02 20:16:01 BST 2014

[INFO] Final Memory: 11M/129M

[INFO] ---

3.	 Now, when the project is generated, we can start working with it and create our first
microbenchmark test. Open the generated project file (/home/user/openjdk/
mybenchmark/pom.xml) with your favorite IDE. Ensure that Maven is correctly
configured and all dependencies are downloaded correctly. Notice that there is
already a class created for the benchmark whose name is org.benchmark.
MyBenchmark. At the beginning, all it has is a single method where we will later put
the code we are going to test.

4.	 As an example, let's test something that is relatively simple but has some room
for improvement. A binary search is a good choice for this purpose. So, let's draft a
simple implementation and put it into the org.benchmark.BinarySearch1 class
as shown next:
package org.benchmark;
public class BinarySearch1 {
 public static int search(long[] arr, long value) {
 return search(arr, value, 0, arr.length-1);
 }

 private static int search(long[] arr, long value, int start,
int end) {
 if (end < start)
 return -1;

 int imid = start + ((end - start) / 2);
 if (arr[imid] > value)
 return search(arr, value, start, imid-1);
 else if (arr[imid] < value)
 return search(arr, value, imid+1, end);

Chapter 9

195

 else
 return imid;
 }

This is a very basic implementation, which will be fine for our experiment. If you are
not familiar with binary search or where to get more information about this algorithm,
visit the Wikipedia page at http://en.wikipedia.org/wiki/Binary_search_
algorithm.

5.	 Now, when the first draft of the implementation is ready, we will create a
microbenchmark for it. Put the following code into the org.benchmark.
MyBenchmark class:
package org.benchmark;

import org.openjdk.jmh.annotations.*;
import java.util.Arrays;
import java.util.concurrent.TimeUnit;

@State(value = Scope.Thread)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class MyBenchmark {
 private long[] data = new long[5000];

 @Setup
 public void setup() {
 for (int i = 0; i != data.length; ++i) {
 data[i]=(long)(Math.random()*Long.MAX_VALUE-1);
 }
 Arrays.sort(data);
 }

 @Benchmark
 public int testBinarySearch1 () {
 return BinarySearch1.search(data, Long.MAX_VALUE);
 }
}

This code requires some clarification. The @State annotation is required to tell JMH
that this class contains some data that is used by the tests, and that data in the
Scope.Thread scope means that it will not be shared between several threads.

http://en.wikipedia.org/wiki/Binary_search_algorithm
http://en.wikipedia.org/wiki/Binary_search_algorithm

Testing OpenJDK

196

The @BenchmarkMode(Mode.AverageTime) annotation says that what we want to
measure is the average time required to execute our test, which, by default, measures
throughput. The @OutputTimeUnit(TimeUnit.MICROSECONDS) annotation sets
timeunit. We need to define it, as the default is in seconds, which is a very big scale
for the benchmark.

The setup method is annotated with the @Setup annotation, which means that it
does some preparation for the tests and it will be called to initialize the data for
the test. It is similar to the @Before annotation from JUnit. Keep in mind that this
method is executed only once before running the test in the fork on JVM. It is not
executed before each test method is called. This means that the same test method
will work with the same data after each iteration.

The actual test is in the method annotated with @Benchmark that executes the code
that we are testing.

6.	 Now that everything is set up, run a test and find out how fast our code is. First, let's
build the project with our code and test it. To do this, go to the folder with the project
and run the following command:
[user@localhost mybenchmark] mvn clean install

7.	 Then, run the benchmark:
[user@localhost mybenchmark] java -jar target/benchmarks.jar
--wi=10 --i=5 --f=1 --jvmArgs=-server

Here wi defines the number of warmup iterations, i the number of test run
iterations, f says how many JVM forks to use, and jvmArgs are the parameters
for forked JVM.

The output for each of our test methods should look like this:
VM invoker: C:\Usres\User\jdk1.7.0\jre\bin\java.exe

VM options: -server

Warmup: 10 iterations, 1 s each

Measurement: 5 iterations, 1 s each

Threads: 1 thread, will synchronize iterations

Benchmark mode: Average time, time/op

Benchmark: org.benchmark.MyBenchmark.testBinarySearch1

Run progress: 0.00% complete, ETA 00:00:15

Fork: 1 of 1

Warmup Iteration 1: 74.562 ns/op

Warmup Iteration 2: 75.657 ns/op

Warmup Iteration 3: 79.575 ns/op

Chapter 9

197

Warmup Iteration 4: 75.718 ns/op

Warmup Iteration 5: 76.432 ns/op

Warmup Iteration 6: 75.965 ns/op

Warmup Iteration 7: 73.987 ns/op

Warmup Iteration 8: 75.677 ns/op

Warmup Iteration 9: 76.326 ns/op

Warmup Iteration 10: 77.050 ns/op

Iteration 1: 77.027 ns/op

Iteration 2: 75.870 ns/op

Iteration 3: 77.674 ns/op

Iteration 4: 81.460 ns/op

Iteration 5: 73.858 ns/op

Result: 77.178 ±(99.9%) 10.778 ns/op [Average]

 Statistics: (min, avg, max) = (73.858, 77.178, 81.460), stdev =
2.799

 Confidence interval (99.9%): [66.400, 87.956]

Run complete. Total time: 00:00:18

Benchmark Mode Samples Score Score
error Units

o.b.MyBenchmark.testBinarySearch1 avgt 5 77.178
10.778 ns/op

The output shows the runs executed for each fork and the final result. Here we can
see that, on average, our method takes 77.178 nanoseconds to run.

8.	 Now that we have the results, what to do with them? Generally, these results make
sense only when they are compared with something else. Let's try to make some
changes to the code and see whether it helps our implementation of binary search
to work faster. We can try to remove recursion and see how it's going to work. Create
another class with the name, org.benchmark.BinarySearch2, and put the
following implementation there:
package org.benchmark;
public class BinarySearch2 {
 public static int search(long[] arr, long value) {
 return search(arr, value, 0, arr.length-1);
 }
 private static int search(long[] arr, long value, int start,
int end) {

Testing OpenJDK

198

 while (end >= start) {
 int imid = start + ((end - start) / 2);
 if(arr[imid] == value)
 return imid;
 else if (arr[imid] < value)
 start = imid + 1;
 else
 end = imid - 1;
 }
 return -1;
 }
}

This is the iterative implementation, which doesn't use recursive calls.

9.	 Now let's update the benchmark class so that we can compare recursive and
iterative implementations:
package org.benchmark;

import org.openjdk.jmh.annotations.*;
import java.util.Arrays;
import java.util.concurrent.TimeUnit;

@State(value = Scope.Group)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class MyBenchmark {
 private long[] data = new long[500000];

 @Setup
 public void setup() {
 for (int i = 0; i != data.length; ++i) {
 data[i] = (long)(Math.random() * (Long.MAX_VALUE-1));
 }
 Arrays.sort(data);
 }

 @Benchmark
 @Group(value = "bsearch")
 public int testBinarySearch1() {
 return BinarySearch1.search(data, Long.MAX_VALUE);
 }

 @Benchmark

Chapter 9

199

 @Group(value = "bsearch")
 public int testBinarySearch2() {
 return BinarySearch2.search(data, Long.MAX_VALUE);
 }
}

The difference between this benchmark and the previous version is that this uses
the benchmarking groups that give us a simple comparison of our implementations.
The @State annotation now has to have the Group scope, otherwise the tests will
be using different data instances, which is not what we would want, as we want
algorithms to work in exactly the same conditions.

10.	 Now, rebuild the project:
[user@localhost mybenchmark] mvn clean install

11.	 Then, run the test again:
[user@localhost mybenchmark] java -jar target/benchmarks.jar
--wi=10 --i=5 --f=1 --jvmArgs=-server

The output is going to be slightly different from the previous one, because of the use
of groups. The main difference in which we are interested is going to be at the end of
the report:

Run complete. Total time: 00:00:18

Benchmark Mode Samples Score
Score error Units

o.b.MyBenchmark.bsearch avgt 5 66.929
1.663 ns/op

o.b.MyBenchmark.bsearch:testBinarySearch1 avgt 5 79.717
2.289 ns/op

o.b.MyBenchmark.bsearch:testBinarySearch2 avgt 5 54.141
1.209 ns/op

What we can see here is that, for this particular configuration (which includes
machine spec, version of JDK, OS, and so on), iterative implementation, which is
implemented by the method, testBinarySearch2(), is on average faster than the
recursive one, implemented by testBinarySearch1() (54.141 < 79.717).

After going through this recipe, you have learned how to run microbenchmark tests, how to
interpret results, and how to compare the performance of different implementations. Ensure
that you microbenchmark each hard task properly and remember that the results can vary
significantly on different machines, JVM versions, and so on.

Testing OpenJDK

200

There's more…
JMH is a flexible framework that provides flexibility to the way it can be used. For example,
if someone wants to run tests via the main method, without using benchmarks.jar, this
can be easily achieved. To do this, just add the following main method to MyBenchmark and
run it:

public static void main(String[] args) throws RunnerException {
 Options opt = new OptionsBuilder()
 .include(".*" + MyBenchmark.class.getSimpleName() + ".*")
 .warmupIterations(3)
 .measurementIterations(3)
 .forks(2)
 .build();
 new Runner(opt).run();
}

This example will give the same result as running the following command:

[user@localhost mybenchmark] java -jar target/benchmarks.jar --wi=3 --i=3
--f=2

We also recommend that you download the source code (see the Downloading source and
compiling JHM recipe). Have a look at the recipe and JavaDocs, as the JavaDocs are well
written and explain a lot about the framework.

See also
Similar to jcstress, this framework is also built and maintained by Aleksey Shipilëv who
has his own blog and also delivers lectures in various conferences. We recommend you
visit his home page (http://shipilev.net/), watch his videos on YouTube (for example,
https://www.youtube.com/watch?v=4p4vL6EhzOk), and read some of his papers.

Downloading the source and compiling JHM
Similar to all other OpenJDK tools and projects, there is an option to download the source of
the JHM and build it yourself. This might be required if a framework requires customization
and an extension fix. Luckily the process is very easy and straightforward.

Getting ready
This recipe requires a machine with an Internet connection that is capable of running
Mercurial and Maven. Basically, the requirements are the same as that for compiling
and running jcstress (see the Building and running jcstress recipe).

http://shipilev.net/
https://www.youtube.com/watch?v=4p4vL6EhzOk

Chapter 9

201

How to do it…
The following steps will lead you through the process of downloading the source code and
building JHM:

1.	 To start, let's run the following command to download the source files:
hg clone http://hg.openjdk.java.net/code-tools/jmh/ jmh

This command will download the source files and put them into the jmh folder.

2.	 The next step is to build the source code. The build requires Maven to be installed on
the machine. Change the current folder to jmh and run the following command:
mvn clean install –DskipTests

This command should generate an output similar to the following:
[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

[INFO] Total time: 3:14.052s

[INFO] Finished at: Sat Aug 02 19:43:39 BST 2014

[INFO] Final Memory: 38M/176M

[INFO] ---

This means that the build was successful.

3.	 Now, the final step is to change your benchmark project to use the version of
JHM that was just built. Assuming the project references of the JHM version are
by properties, just change the version of the JHM dependency in your project to
1.0-SNAPHOT:
<properties>

 ...

 <jmh.version>0.9.3</jmh.version>

</properties>

How it works…
When you run Maven with the install target, it will put the newly built version of the artefact
in the local repository. In this case, the version is 1.0-SNAPSHOT. When another project has
dependency on that version, Maven will pick the version from the local repository and use it.

10
Contributing to

OpenJDK

In this chapter, we will cover the following topics:

ff Becoming a contributor

ff Generating a patch with webrev

ff Backporting OpenJDK v9 patches to OpenJDK v8

ff Understanding OpenJDK groups

ff Understanding OpenJDK projects

ff Suggesting new JSRs

ff Suggesting new JEPs

Introduction
The OpenJDK community consists of lots of people who have different roles and
responsibilities in a project. Such a structure evolved as a consequence of the scale of the
project and its significance, otherwise it wouldn't be controllable and you wouldn't be able
to progress further. The way in which OpenJDK is managed and structured can be described
in two hierarchies: one is functional and the other is governance. These two hierarchies
intercept, but not much. The only role which is present in both is JDK Lead, which is an
OpenJDK member appointed by Oracle to manage the Java release project.

Contributing to OpenJDK

204

Functional hierarchy controls the change and development process. It defines the relationship
between all the community members who are involved in proposing and making changes in
OpenJDK. On the whole, it can be represented by the structure shown in the following figure:

A participant can be anyone who has participated in an OpenJDK project and this can be any
type of participation. For example, it can be a discussion on the mailing list or creating a patch
to fix a bug. Any participant can sign the Oracle Contributor Agreement (OCA) and become
a contributor.

A contributor can work on any of the OpenJDK projects and be the project author if the project
lead approves it. The project author can't push code into the repository and has to ask one of
the project committers to do that. After an author gains the trust of the committers, he or she
can be elected to become one of them. All code changes have to be approved before they go
into the repository. This task is done by the project reviewers who are experienced committers
and have a lot of authority. Some projects might not have the project reviewer's role.

Chapter 10

205

Also, a contributor can become an OpenJDK member and participate in the OpenJDK groups.
To become an OpenJDK member, the contributor needs to demonstrate a history of significant
contribution and should be elected by the votes of the existing OpenJDK members. Being a
member allows one to become an OpenJDK group member by joining one or more groups.
Group members are nominated by existing group members so, to join a group, a member
must have some history of contribution to that group. It is worth adding that the order of
membership can be reversed—a contributor can be elected to become a group member
and this can then become the route to be an OpenJDK member.

Each OpenJDK group is responsible for the area of JDK. For example, there is a Swing Group,
Security Group, and so on. Each group has a group lead and group members. A group can
sponsor projects, for example, as already mentioned, the Swing Group is a sponsor for
projects such as OpenJFX and Swing Application Framework. As we mentioned earlier, any
contributor can work on a sponsored project. The contributor is not required to be an Open
JDK member or a group member to do this.

The governance structure is represented by the Governing Board, which consists of several
roles, as follows:

ff Chair: This role is appointed by Oracle. This person is the lead of the
Governing Board.

ff Vice Chair: This role is appointed by IBM

ff OpenJDK Lead: This role is appointed by Oracle. This person also leads the Java
Release project.

ff Two At-Large members: These two members are chosen by a vote of the
OpenJDK members.

The governing board's responsibility is to define new processes or refine existing ones, and
update and support the Bylaws. The Governing Board is empowered to resolve procedural
disputes within community, but it is not an executive body. The latter means that it has no
direct authority over the technical or release decisions. Interestingly, the Governing Board
and also the OpenJDK group can also sponsor projects.

For those who are interested in the details of the hierarchy of OpenJDK roles, groups, projects,
and their relationships, it is worth taking a look at the bylaws (http://openjdk.java.
net/bylaws), which cover all these things in detail.

http://openjdk.java.net/bylaws
http://openjdk.java.net/bylaws

Contributing to OpenJDK

206

Becoming a contributor
Becoming a participant is very easy. The only thing that is required is to be interested in
OpenJDK and, as a minimum, participate in discussions on mailing lists. Participants can
ask OpenJDK members to add code into the code base, but they can't do it themselves.
Contributors, however, have a more involved role, These people can submit patches and have
more influence on the project.

Getting ready
To get ready to follow this recipe is easy; all that is required is a desire to become a
participant. It is important to understand that it is not a quick process and can easily take
several weeks or even months. So, be patient and do not give up.

As preparing a patch requires running the Kron shell script, a machine needs to have that
shell installed. If a Windows machine is used, then Cygwin is required on the system.

How to do it...
The next steps will describe how to become a participant of OpenJDK. Keep in mind that this
is not a deterministic process and, in practice, it might either need a few additional steps or
some of the following steps might not be required:

1.	 The first step is to become visible to other members of the OpenJDK community. This
can be achieved by participating in the discussions on mailing lists, and it would be
good to suggest a couple of small fixes and ask one of the OpenJDK members or
contributors to submit them. This will show that you are interested in OpenJDK and
how to contribute to it.

2.	 Then, create an account in Java.net by filling the form at https://java.net/
people/new. This account is needed for Java.net, OpenJDK bug tracking, and
the source repository.

3.	 The next step is to sign the Oracle Contribution Agreement (OCA). It needs to be
downloaded from http://www.oracle.com/technetwork/oca-405177.pdf.
Read the agreement carefully and understand it, before signing it. Luckily, it is just
one page long. Then, sign it and e-mail the scan to oracle-ca_us@oracle.com.
It might take a couple of weeks to receive a response. So, if the stipulated time has
passed and you still haven't heard back, then it is worth sending a reminder.

4.	 Once you get back the OCA response from Oracle, it's time to find out what your
contribution is going to be. Probably, the easiest thing is to find a bug and work on
a fix for it. Bugs can be found on the OpenJDK JIRA at https://bugs.openjdk.
java.net/. Pick something that is not assigned to anyone. Be sure to choose
something that will not require interface changes or any significant development.

Java.net
https://java.net/people/new
https://java.net/people/new
Java.net
http://www.oracle.com/technetwork/oca-405177.pdf
https://bugs.openjdk.java.net/
https://bugs.openjdk.java.net/

Chapter 10

207

5.	 Before doing the actual work, it would be a good idea to discuss the bug and the
proposed fix on the mailing list for the appropriate project. It is recommended to use
the format, <bugid>: <bug_description> as the subject, for example, JDK-
8042253: StressRedefine tests timeout.

6.	 Carry out a fix. It is good idea to do the jtreg regression test for any work that was
done in the scope of the fix.

7.	 Generate a patch for review using webrev:[user@localhost hotspot]$ ksh
../make/scripts/webrev.ksh. Make sure that the generated webrev.zip file
is available for the relevant community. For example, it can be put on a file hosting
with public access. Regular contributors prefer to use cr.openjdk.java.net
for this purpose. For more details about webrev, see the Generating a patch with
webrev recipe.

8.	 To post a patch, use the format RFR <bugid>: <bug_description>, as the
subject for the mailing list. For example, RFR JDK-8042253 StressRedefine
tests timeout, where RFR refers to Request for Review. Give the description of
the patch and provide a link to the webrev file generated in the previous step.

9.	 A review always means that there will be some cleanup, code changes, more tests,
and so on. Carry out the updates, update webrev, and notify other members that
changes have been made. Be ready since the process might need several iterations.

10.	 Once everyone agrees that the fix is of a good quality, the sponsor will push the
fix into the repository. At this stage, you might be asked to produce a changeset.
Note that this step can take several weeks to execute.

See also
ff Some additional information on the code review process is available at

http://openjdk.java.net/guide/codeReview.html. There is also
documentation available on the change process as a whole. It is worth having
a look at it at http://openjdk.java.net/guide/changePlanning.html.

Generating a patch with webrev
Doing any update in a software product normally requires some kind of review process. The
code should not be submitted into a repository unless someone else has already looked at it.
In OpenJDK, the tool for this purpose is webrev, which allows you to create code reviews that
can be shared with other members of the community.

http://openjdk.java.net/guide/codeReview.html
http://openjdk.java.net/guide/changePlanning.html

Contributing to OpenJDK

208

Getting ready
Webrev is a Korn shell script, which means that Korn shell must be installed on the
machine before you can use it. On a Linux machine, run yum install ksh or an equivalent
command. On a Windows machine, ensure that ksh in included in the Cygwin installation.

Apart from the environment set up to create the patch review, some changes must be made in
the source code as well. As an easy example, we can just modify some comments in a file, as
discussed next. Open the file, hotspot/src/os/linux/vm/jvm_linux.cpp and update
the header or just add a comment.

How to do it...
As webdev is a shell script, start by launching your shell and follow the given steps. It is
assumed that the current folder is jdk source root and the amended file is hotspot/src/
os/linux/vm/jvm_linux.cpp:

1.	 First, change the current folder to hostpot; it's not strictly required, but it will make
the webrev script do less work:
cd ./hostpot

2.	 Run the webrev script:
[user@localhost hotspot]$ ksh ../make/scripts/webrev.ksh

 SCM detected: mercurial

 No outgoing, perhaps you haven't commited.

 Workspace: /home/user/openjdk/jdk7u/hotspot

 Compare against:
 http://hg.openjdk.java.net/jdk7u/jdk7u/hotspot

 Output to: /home/user/openjdk/jdk7u_clean/hotspot/webrev

 Output Files:

 src/os/linux/vm/jvm_linux.cpp

 patch cdiffs udiffs sdiffs frames old new

 index.html: grep: /home/user/.hgrc:
 No such file or directory

Done.

Output to: /home/user/openjdk/jdk7u/hotspot/webrev

As can be seen from the output, it detected that jvm_linux.cpp was changed and
generated review files which were put in the hotspot/webrev folder.

3.	 Now, in the hotspot folder, locate the webrev.zip file and make it available to
anyone who is interested in the changes that you have just made. This file will have
the same content as the webrev folder.

Chapter 10

209

How it works…
As you have already noticed, webrev is just a shell script and, if you need to see how it works,
then it should be relatively easy to do so. All it does is scan your disk for changes and compare
them with the parent Mercurial forest. Then, based on the comparison, it generates various
reports and a patch file. Finally, all the files are packed into a ZIP file, which is easy to share
with other community members or with anyone who just wants to have a look at the change.

There's more...
Webrev has some command options which are displayed if you enter a command, which it
doesn't understand. For example, try to run this:

[stas@localhost hotspot]$ ksh ../make/scripts/webrev.ksh ?

This will print all the available command-line options and environment variables that can
affect the execution of the script.

See also
ff More information and several examples are available on the openjdk.java.net

website at http://openjdk.java.net/guide/webrevHelp.html

ff The overall OpenJDK code review process is described at http://openjdk.java.
net/guide/codeReview.html

Backporting OpenJDK v9 patches to
OpenJDK v8

In the scope of one of the initiatives for the improvement of the source code structure
(https://bugs.openjdk.java.net/browse/JDK-8051619) there are some significant
changes in the way how the source files are located in OpenJDK v9. It means that if someone
is making a patch for OpenJDK v9 and wants these changes to be applied to OpenJDK v8,
he/she has to follow a special procedure. That procedure will do the required transformation
in the path of changed files.

Getting ready
We need a computer which can run bash shell, that is, a Linux or Windows computer with
Cygwin and the source code of OpenJDK v9 and OpenJDK v8.

openjdk.java.net
http://openjdk.java.net/guide/webrevHelp.html
http://openjdk.java.net/guide/codeReview.html
http://openjdk.java.net/guide/codeReview.html
https://bugs.openjdk.java.net/browse/JDK-8051619

Contributing to OpenJDK

210

How to do it…
Following these steps, a developer can learn how to port changes from OpenJDK v9 to
OpenJDK v8:

1.	 There is a special script that was created to help to port patches from OpenJDK v9
to OpenJDK v8. This script is located in common/bin/unshuffle_patch.sh. Run
this script with the --help argument to see its usage:
[user@localhost jdk9]$ common/bin/unshuffle_patch.sh --help

Usage: common/bin/unshuffle_patch.sh [-h|--help] [-v|--verbose]
<repo> <input_patch> <output_patch>

where:

<repo> is one of: corba, jaxp, jaxws, jdk, langtools,
nashorn

 [Note: patches from other repos do not need
updating]

<input_patch> is the input patch file, that needs shuffling/
unshuffling

<output_patch> is the updated patch file

If you can see the help output, it means that the script is available and should just
work fine.

2.	 Now. just make the required change in the source tree, commit the code, and generate
a patch. For our example, we will edit the Sockets.java file. Just add a new line with
a few comments in it as shown:
[user@localhost jdk9]$ vi ./jdk/src/java.base/share/classes/jdk/
net/Sockets.java

now commit the change:

[user@localhost jdk9]$ cd jdk

[user@localhost jdk]$ hg commit

3.	 Next, get the revision number of the changeset:
[user@localhost jdk]$ hg log -l 1

changeset: 11063:9742f66b011

tag: tip

user: User <user@user.org>

date: Sun Dec 14 21:16:27 2014 +0000

summary: test commit

Chapter 10

211

4.	 Now, export the changeset that we just created to a patch file in an extended
GIT format:
[user@localhost jdk]$ hg export -r 11063 --git > 11064.patch

5.	 Then, run the script to make the patch compatible with the OpenJDK 8 source
code tree:
[user@localhost jdk]$../common/bin/unshuffled_patch.sh jdk 11063.
patch 11063_updated.patch

6.	 Finally, change the current folder to the jdk directory in the jdk8u source root, copy
the updated patch to it, and apply it:
[user@localhost jdk]$ cp ../../jdk9/jdk9/11063_updated.patch ./

[user@localhost jdk]$ hg import 11063_updated.patch

And that's it. Now all that is required is to commit the changes and then follow the normal
process of making the changes in OpenJDK.

See also
ff To get some more information and to be up-to-date with the changes in the utilities,

it is recommended that you visit its home page at http://cr.openjdk.java.
net/~chegar/docs/portingScript.html

Understanding OpenJDK groups
OpenJDK groups look at wide areas of OpenJDK and define what projects are required
to support these areas. For example, the Compiler Group's sponsored project Coin added
new language features in JDK7, and the HotSpot Group's sponsored project Graal makes
VM functionality available via a set of APIs. The groups usually have a much longer life
than the projects and do not appear and disappear very often.

Getting ready
All that is required is a computer with access to the Internet, a web browser, and
some patience.

http://cr.openjdk.java.net/~chegar/docs/portingScript.html
http://cr.openjdk.java.net/~chegar/docs/portingScript.html

Contributing to OpenJDK

212

How to do it…
The following steps demonstrate documentation and some examples of groups on OpenJDK.
They'll also show what groups are, how they are managed, created, and what they do:

1.	 To become familiar with the definition of groups in OpenJDK, go to http://
openjdk.java.net/groups/. There is information about various processes
and procedures required to support groups and to make them function well. These
procedures include the following topics:

�� Proposing a new group.

�� Nominating a contributor to become a group member.

�� Nominating a group member to become an OpenJDK member

�� Nominating a group lead

2.	 Each group has some web content that is available publically. It can be found on the
left-hand side of http://openjdk.java.net/, under Groups. Usually the content
on a group's page has a relatively standard structure and contains information such
as the introduction, a list of specifications supported by the group, documentation,
some guidelines on how to contribute, where to find the source code, and so on. Also,
there are links to the mailing lists, blogs, and contact details. As an example, take a
look at the JMX Group webpage at http://openjdk.java.net/groups/jmx/.

3.	 We also recommended that you have a look at the list of projects and see which
groups they belong to. This will give some idea about the relationship between
groups and projects. The list of projects can be found on the left-hand side of
http://openjdk.java.net/ under Groups.

See also
It is worth spending some time exploring http://openjdk.java.net/ to see what is
available and which groups exist. As we have already mentioned, group creation doesn't
happen very often and no new groups have been created since 2007. The last one was the
Conformance Group, which was proposed in September 2007. You can find the proposal
e-mail in the mailing list archive at http://mail.openjdk.java.net/pipermail/
announce/2007-September.txt. See the last message in that file.

http://openjdk.java.net/groups/
http://openjdk.java.net/groups/
http://openjdk.java.net/
http://openjdk.java.net/groups/jmx/
http://openjdk.java.net/
http://openjdk.java.net/
http://mail.openjdk.java.net/pipermail/announce/2007-September.txt
http://mail.openjdk.java.net/pipermail/announce/2007-September.txt

Chapter 10

213

Understanding OpenJDK projects
OpenJDK projects aim to deliver some kind of an artefact, which can be a source code,
documentation, or something else. Projects are sponsored by one or more OpenJDK groups.
By their nature, projects are much more short-lived than groups and often can cover the
implementation of JEPs or JSRs.

How to do it…
This recipe takes you through some sources of information that are available about OpenJDK
projects and gives some high-level information about them:

1.	 Similar to OpenJDK Groups, there is a web page that gives some definitions about the
projects and defines how they function. This page is available at http://openjdk.
java.net/projects/. Among the list of procedures, you will find the following:

�� Becoming an Author

�� Appointing a Contributor to be an Author

�� Nominating a Contributor or Author to be a Committer

�� Nominating a Committer to be a Reviewer

�� Proposing a New Project

2.	 Very similar to groups, each project also has its own page on http://openjdk.
java.net/. The list of projects and the links to their pages can be found on the
left-hand side of the website under Projects. The project page is not very informative,
but might have a link to a wiki, which usually contains lots of information.

3.	 As an example of how projects are created, we can look at the proposal for the project
Sumatra, which can be found at http://mail.openjdk.java.net/pipermail/
announce/2012-September/000135.html. This thread also contains the voting
results and, therefore, the decision to create that project.

See also
ff As usual, it is recommended that you spend some time exploring http://openjdk.

java.net/ to see which projects are available.

http://openjdk.java.net/projects/
http://openjdk.java.net/projects/
http://openjdk.java.net/
http://openjdk.java.net/
http://mail.openjdk.java.net/pipermail/announce/2012-September/000135.html
http://mail.openjdk.java.net/pipermail/announce/2012-September/000135.html
http://openjdk.java.net/
http://openjdk.java.net/

Contributing to OpenJDK

214

Suggesting new JSRs
A Java Specification Request (JSR) is the request for a change to the specifications of the Java
language, APS, JVM, and so on. Such changes are governed by the Java Community Process
(JCP), where every member of the community can register and participate in the review.

This recipe is written as if you were submitting a JSR, but keep in mind that JSRs are not usually
submitted by a single individual, but by a group of experts who come out with a proposal. The
group has a Spec Lead who submits the JSR. So, this recipe is more about giving you a high-level
understanding of the process, helping you to see how JSRs work, and what it is all about. To get
some deeper insight, see the resources provided in the See also section.

In the following recipe, it can be seen that being a spec lead for JSR is not only a technical
position, but it also involves doing lots of work with people and requires one to possess a good
amount of soft and leadership skills. The leader has to push the project forward and has to
be capable of handling difficult situations. There can be cases when some members of group
of experts, for some reason, can't participate any more, or there is clash of personalities. The
other possible situation is when the JSR itself faces complicated questions and is challenged
by the other community members. Such questions have to be answered clearly and with
enough knowledge and passion for people to believe that it's worth going forward and
including that JSR into the JDK.

Getting ready
As this is a more procedural recipe, all that is required is a computer with access to the
Internet and a web browser.

How to do it...
The following steps, on a high-level, go through the stages of a JSR lifecycle, starting from the
idea and finishing with the actual implemented change:

1.	 As a start, it would be good to create a JCP account. This is required to submit a JSR
proposal and to participate in any part of a JCP. The process is very simple. Just go to
https://jcp.org/en/home/index and follow the steps in the registration link.

2.	 It is good idea to explore the site and see what's already available there. The list of all
JSRs is available at https://www.jcp.org/en/jsr/all. Since the whole list can
have too much information, there are options to filter JSRs by their stage in the approval
process (https://www.jcp.org/en/jsr/stage), by technology (https://www.
jcp.org/en/jsr/tech), by committee (https://www.jcp.org/en/jsr/ec), or
by the platform (https://www.jcp.org/en/jsr/platform). There is also a list
of JSRs by the ballot results, where you can find the results of voting for each year at
https://www.jcp.org/en/jsr/vote_summary.

https://jcp.org/en/home/index
https://www.jcp.org/en/jsr/all
https://www.jcp.org/en/jsr/stage
https://www.jcp.org/en/jsr/tech
https://www.jcp.org/en/jsr/tech
https://www.jcp.org/en/jsr/ec
https://www.jcp.org/en/jsr/platform
https://www.jcp.org/en/jsr/vote_summary

Chapter 10

215

3.	 If your proposal is something worth doing, then, similar to all OpenJDK change
processes, describe the proposal on the relevant mailing list. This will ensure that the
whole thing makes sense and helps to improve the quality of the material. As a spec
lead, you need to have followers, that is, a group of experts who will participate in the
JCR and push it forward. Such people can be found on mailing lists, relevant forums,
or can be anyone who has the right mindset to participate and feels that your idea is
worth doing.

4.	 To make an actual submission, fill the Java Specification Request Proposal, which is
available at https://jcp.org/en/jsr/proposal. After submission, the JSR has
to go through the JSR Approval Ballot, which will determine whether the initial JSR
submission should be approved.

5.	 In the next stage, the group has to start working as a team, push the proposal
forward, discuss it, and answer questions from other members of the community. It
would be a good idea to have regular team calls, and regular face-to-face discussions
can also be beneficial. This stage is probably the most important one, as it forms the
precise shape of the JSR.

6.	 All discussions have to be publically available and the expert group that has proposed
the JSR has to publically answer all the raised questions. This also means that there
has to be a publically available archive of all the communication on the matter.

7.	 When all the responses for all the comments and questions have been received and
the JSR is updated accordingly, it is ready for the final submission. The spec lead is
responsible for completion and submitting the Technology Compatibly Kit (TCK) and
the Reference Implementation (RI). If a JSR is targeted to several environments,
then it might be required to submit a TCK and RI for each platform. The submission
has to follow the process described in the Final Release section of the JCP 2 process
at https://jcp.org/en/procedures/jcp2#4.

8.	 After the final successful approval ballot, the spec lead will become the maintenance
lead and the JSR will move to the maintenance stage. For details, see the Maintenance
section of JCP 2 process at https://jcp.org/en/procedures/jcp2#5.

See also
As the whole process is governed by JCP, it would be a good idea for you to go through the
document at https://jcp.org/en/procedures/jcp2, which describes the latest
version of the process. At the time of writing, the latest version was 2.9.

On the JCP website at https://jcp.org/en/resources/speclead_life, there is a
good article about being a spec lead that has some good insights and advice. It covers almost
all the aspects of the role, starting from the submission of a JSR, and ending with building a
team and communicating with people. It is definitely worth reading.

https://jcp.org/en/jsr/proposal
https://jcp.org/en/procedures/jcp2#4
https://jcp.org/en/procedures/jcp2#5
https://jcp.org/en/procedures/jcp2
https://jcp.org/en/resources/speclead_life

Contributing to OpenJDK

216

As part of the JSR process, one is required to submit the Technology Compatibility Kit (TCK).
This is the suite of tests that are designed to ensure that a particular implementation is
compliant with the JSR. This piece can be considered as one of the most complicated parts
of the JSR application. The most common tool to implement the set of tests is JT Harness,
but there are also some cases where the TCK might be implemented based on JUnit or TestNG.

The next revision of JCP is going to update some of the current process. This revision
is covered by JSR 358. To get more information about it, visit its home page at https://
java.net/projects/jsr358/pages/Home and the JRS page at https://jcp.org/
en/jsr/detail?id=358.

Suggesting new JEPs
JEP is the abbreviation for JDK Enhancement Proposal. It means a relatively big change in
OpenJDK that requires significant implementation effort, but it doesn't imply changes in the
Java specification. The definition of JEP is covered in JEP 1 JDK Enhancement-Proposal &
Roadmap Process which explains the details of definition of JEP, the process and the required
documentation. As defined in JEP 1 (http://openjdk.java.net/jeps/1), JEP has to
meet at least one of the following criteria:

ff It requires two or more weeks of engineering effort

ff It makes a significant change to the JDK, or to the processes and the infrastructure
by which it is developed

ff It is in high demand by the developers or the customers

This recipe will cover the definition of JEPs, their lifecycle, and how to find the latest
information about them. It will also go through steps that are required for the creation
of a JEP. Such an approach will allow you to get a good understanding of the process
and see what JEPs are.

Getting ready
This recipe doesn't require any special tools. All you need is this book and, preferably, a
computer with a web browser.

https://java.net/projects/jsr358/pages/Home
https://java.net/projects/jsr358/pages/Home
https://jcp.org/en/jsr/detail?id=358
https://jcp.org/en/jsr/detail?id=358
http://openjdk.java.net/jeps/1

Chapter 10

217

How to do it...
To start with, it is a good idea to have a look at what has already been submitted as JEPs. To
get the full list of JEPs, just go to http://openjdk.java.net/jeps/. There, you can find
the complete list of JEPs with their status, name, and some more information about them.
Here is an example of what you can see there:

http://openjdk.java.net/jeps/

Contributing to OpenJDK

218

As you can see from the list, the table of JEPs has several columns, which give a brief
overview and some additional information. For example, the first column is the type of the JEP,
P stands for Process, F for Feature, and so on. It is not that hard to find out the meaning of
specific values if you click on JEP and have a look at its header:

Assuming that we have something completely new that is not in the list, and which definitely
has to become a part of OpenJDK:

1.	 The next step is to read through JEP 1: JDK Enhancement-Proposal & Roadmap
Process, which is available at http://openjdk.java.net/jeps/1. This covers
the process and some mechanics of the process.

2.	 The next step is to do some more reading. JEP 2: JEP Template contains the template
of the JEP. This template has to be filled in with the proposal details. The details will
cover the overview, testing, dependencies, and so on. It is worthwhile looking at other
JEP examples to fill the template. There is also a sample draft, available at http://
cr.openjdk.java.net/~mr/jep/draft-mcimadamore-inference-01.md.

http://openjdk.java.net/jeps/1
http://cr.openjdk.java.net/~mr/jep/draft-mcimadamore-inference-01.md
http://cr.openjdk.java.net/~mr/jep/draft-mcimadamore-inference-01.md

Chapter 10

219

3.	 Before attempting to publish a JEP, it would be a good idea to submit the proposal to
the appropriate OpenJDK mailing lists for discussion. This will help you to produce a
high quality proposal.

4.	 When the proposal is ready for submission, send it to jep-submit@openjdk.
java.net. After this, assuming that the proposal has adequate quality, it will be
available in the repository (http://hg.openjdk.java.net/jep/jeps) and the
webpage which was mentioned in step 1 of this recipe.

5.	 After this, there will be several rounds of updates and discussions, which might
eventually result in the JEP being approved and having its status changed to
Candidate. This means that it is accepted for inclusion and has a good chance
of being funded for one of the next versions. It would be worth mentioning that a
JEP can also be rejected, which means that it was decided that it was not worth
implementing at all.

6.	 When a JEP is transferred to the status Funded, it means that the group or area lead
is happy to fund it. This means that the actual implementation can now be initiated
and will be included in one of the future versions.

How it works…
As was already mentioned earlier, the detailed process is described in JEP 1: JDK
Enhancement-Proposal & Roadmap Process. Similar to all OpenJDK changes, this
process requires lots of involvement from the community and OpenJDK members.

See also
ff JEP 1: JDK Enhancement-Proposal & Roadmap Process at http://openjdk.

java.net/jeps/1

ff JEP 2: JEP Template at http://openjdk.java.net/jeps/2

ff It would be good for you to take a look at some exciting discussions of JEP on mailing
lists at http://mail.openjdk.java.net/pipermail/jdk9-dev/2014-
May/000781.html.

ff There is a JEP at http://cr.openjdk.java.net/~mr/jep/jep-2.0-02.html
that suggests some changes in the existing process. The current state is Draft, but
eventually most of the proposals will be applied to the current process.

http://hg.openjdk.java.net/jep/jeps
http://openjdk.java.net/jeps/1
http://openjdk.java.net/jeps/1
http://openjdk.java.net/jeps/2
http://mail.openjdk.java.net/pipermail/jdk9-dev/2014-May/000781.html
http://mail.openjdk.java.net/pipermail/jdk9-dev/2014-May/000781.html
http://cr.openjdk.java.net/~mr/jep/jep-2.0-02.html

11
Troubleshooting

In this chapter, we will cover the following topics:

ff Navigating through the process workflow

ff Submitting a defect to the OpenJDK bug systems

ff Creating a patch using NetBeans

ff Creating a code review

Introduction
OpenJDK's openness is its most valuable feature in our fast-paced world. We can be sure that
it will never vanish and be forgotten when it is needed. If its support is discontinued, we can
support it ourselves. We could fix bugs independently, since the code is open.

However, OpenJDK, as well as the Oracle Java implementation, still contains a lot of issues.
Some of them are security issues and should be fixed as soon as possible. Some of the issues
may be almost invisible or even valuable only for a virtually nonexistent percent of customers.
They might never be fixed in production JDK, but everyone has an opportunity to try to do it for
himself/herself.

OpenJDK in the past used a Bugzilla bug tracker to track bugs. Bugzilla is a well-known, but
morally outdated project, initially written in 1998 by Terry Weissman. It was open source from
the beginning, and it is used even now by thousands of people around the world. It is very
simple and easy to use.

However, some time ago, the OpenJDK foundation decided to switch from Bugzilla to JIRA, a
proprietary but powerful bug tracking system mostly written in Java. JIRA provides support for
different types of workflow, such as Scrum, Kanban, and custom Agile workflows, as well as
incorporating all the Bugzilla features.

Troubleshooting

222

Sometimes there are opportunities to enlarge the OpenJDK functionality and create a
fully-functioning JSR prototype to contribute to OpenJDK development with great benefits
to your projects. Sometimes you need to switch to other implementations, such as GNU
classpath, or even merge some solutions into your specific version.

In this chapter, we will see how the process workflow is organized, what steps are needed to
be followed, and how to cope with the community process. Also, we will see how to submit a
bug, and create a patch on it.

Navigating through the process workflow
The knowledge of process workflows, and of how things are done in complex projects
like OpenJDK, is critical for a developer. In this recipe, we will explain how things are
done while contributing to OpenJDK. We will explain how the work is organized, and
how the team co-operates.

Getting ready
We will need an Internet connection and a browser.

How to do it...
We will go through the OpenJDK process workflow and see what to do to contribute to
OpenJDK. There are a few initial steps to be followed before you start with the workflow:

1.	 Firstly, you need to become a contributor. To do so, you need to sign an Oracle
Contributor Agreement, and e-mail it to Oracle.

You may find these links useful:
How to become a contributor at http://openjdk.java.
net/contribute/

Know what is discussed at http://mail.openjdk.java.net/
mailman/listinfo

2.	 Then you need to find something interesting to work with.

3.	 Now, you are free to discuss and submit patches using the JIRA bug tracking system.

http://openjdk.java.net/contribute/
http://openjdk.java.net/contribute/

Chapter 11

223

Let's suppose that you've found a bug:

1.	 When the bug is found, check whether it's already in JIRA.

2.	 Click on Issues and search for issues. You will see the following screen:

3.	 In the highlighted section, you can see a filter panel. Use it in combination with the
keyword search. Also, notice the Switch to Advanced link in the right corner.

4.	 If the bug is not present already in JIRA, create a JIRA issue.

JIRA is a commonly used bug tracker tool. You can find how to
add issues at https://confluence.atlassian.com/
display/JIRA/.

5.	 If you don't know how to resolve the issue, this is the successful ending of your
involvement here. The OpenJDK team will be grateful to know all usable information
about this problem. If you have anything to add, you are welcome to post information
in comments.

6.	 However, if you feel that you can resolve the issue, comment on it and indicate
that you are working on the solution. In some circumstances, you need to wait until
the JIRA ticket is assigned to you. Individual workflows use different approaches in
this regards.

7.	 Then, resolve the solution and create the patch.

The patch creating process is described in the Creating a patch using NetBeans
recipe in this chapter. you will also find some useful information about building,
debugging, and editing OpenJDK code in Chapter 8, Hacking OpenJDK.

https://confluence.atlassian.com/display/JIRA/
https://confluence.atlassian.com/display/JIRA/

Troubleshooting

224

8.	 If you are a committer (for example, you have the commit right to the OpenJDK
repository), you are free to create a code review using webrev (use information from
https://bitbucket.org/adoptopenjdk/betterrev to learn how to create
a code review). When it is approved, you may commit your changes to the repository
and mark your issue as resolved.

9.	 If you are not a committer, you can also create a webrev review, but the commit
process differs slightly. You might push your code changes to the Bitbucket
repository along with a pull request. It is described in detail in the Creating a
code review recipe. Read more about the OpenJDK testing process in Chapter 9,
Testing OpenJDK.

How it works…
OpenJDK has an established workflow, which can differ from one project to another.
In all cases, though there are rules of teamwork, one should follow them in order to
make the work productive.

Under the hood of this process, there are other team members whose function is to review
and test the changes.

Submitting a defect to the OpenJDK bug
systems

This recipe will show you how to submit a defect to OpenJDK bug systems. This bug system
is used by people who do not have developer access to OpenJDK. For OpenJDK developers,
there is JIRA.

How to do it...
We will consider the necessary steps to submit a defect to OpenJDK.

First, we will describe some prerequisites to fill a bug report:

1.	 First, do a quick search for bugs. It is possible that a similar or even identical bug has
already been created. Even if you have something more to say on the subject, please
do it in the existing topic without creating a new one.

2.	 Then, think about the defect's reproducibility. There is a need to describe in detail
how to reproduce your defect and cases in which it can and cannot be reproduced.

3.	 Also, you can make and add logs, traces, and other debug information.

https://bitbucket.org/adoptopenjdk/betterrev

Chapter 11

225

Please include the fullest possible logs, without cutouts. Even
one string in the log may be critical.

4.	 Also, you may include screenshots along with your logs, especially when you are
describing an UI issue.

5.	 Try to include as much system information as possible. For example, for the Sumatra
project, even your graphics card driver version may be helpful.

If we need to report an issue without referring to code pieces to describe it generally and not
specifically, we can fill the standard bug report as shown here:

1.	 Fill the fields as shown in the following screenshot:

2.	 Then click on Continue.

You will then be required to provide some information to receive the feedback from the team:

Troubleshooting

226

How it works…
The OpenJDK project has a bug report system for non-developers to which you can submit
your changes where it's convenient. However, it has a JIRA bug tracker, which is used by
developers to work in more complex ways with various bugs.

Creating a patch using NetBeans
This section will show you how to create a patch of the OpenJDK project using NetBeans.

Getting ready
You will need a configured development environment. It is preferable that you use NetBeans
since NetBeans is a standard tool for developing and debugging OpenJDK.

How to do it...
We will do a simple patch creation with Mercurial and NetBeans by following these steps:

1.	 Open the OpenJDK project with NetBeans.

2.	 Make some changes in the project code as shown:

Chapter 11

227

3.	 Then, follow the chain of context menus, as shown in the preceding screenshot.

4.	 Click on the OK button.

5.	 Your patch will be saved to the specified directory. Later, you can apply patches using
the Apply Diff Patch item in the Mercurial context menu.

How it works
NetBeans calls a program that exports a diff (your uncommitted changes versus the head
revision in the repository) to a file that can be read and applied when needed.

See also...
Also, diffs between different divisions can also be exported. To do that, simply click on
the highlighted item:

Troubleshooting

228

Creating a code review
OpenJDK uses webrev as the code review tool. The process of creating a code review and
handling lies on the shoulders of the AdoptOpenJDK community, which developed a web
tool called Betterrev. Review Board along with the Mercurial plugin can be used as well.
It automatically generates code reviews, synchronizes with Oracle repository, and performs
other useful tasks.

Getting ready
We will need a computer capable of building OpenJDK and which can handle a large amount
of code. Also, we will need a development environment installed, as described in Chapter 8,
Hacking OpenJDK. We will also need Internet access.

How to do it...
We will create a code review using the Betterrev tool, by following the given steps:

1.	 First, let's clone a repository from Bitbucket.

2.	 Go to the Betterrev Bitbucket at https://bitbucket.org/adoptopenjdk/
betterrev/src:

https://bitbucket.org/adoptopenjdk/betterrev/src
https://bitbucket.org/adoptopenjdk/betterrev/src

Chapter 11

229

3.	 Fork it, using the highlighted button:

4.	 Specify the repository name in the Name field, and add a description if needed.

5.	 Check the This is a private repository checkbox if you want to make your
repository private.

6.	 Click on the Fork repository button.

7.	 You will see the following screen for a while. It will take some time, but don't worry,
all is going well.

8.	 Make changes that has to be reviewed in the code.

9.	 Commit them to your local repository.

Troubleshooting

230

10.	 Perform a pull request as shown:

Betterrev will automatically generate a review for your issue.

12
Working with Future

Technologies

In this chapter, we will cover the following topics:

ff Building OpenJDK 9 on Mac OS X using Clang

ff Building OpenJDK 9 on Windows using MSYS

ff Running and testing the early access preview of OpenJDK 9

ff Using Jigsaw

ff Building OpenJDK 9 with Graal

ff Building OpenJDK 9 with Sumatra

Introduction
Java is often criticized because of some degree of conservatism, where major language
changes are concerned. However, the recent Java 8 release has done a lot to relieve the
worry that Java will remain conservative and frozen in time.

However, there are more changes coming. Java 9 is believed to support some long-awaited
features that will possibly take it to a completely new market and level of programming.

In the past, annotations support and generics have caused a revolution in Java programming.
The way of thinking was changed, and, while nothing completely new was added to the way
Java operates in the low-level design, the high-level design and programming techniques were
undoubtedly changed. The result was, for example, a rise in annotation-based frameworks
and simpler programming as a whole.

Working with Future Technologies

232

Java 8 has been released with lambda expressions support, type annotations, and parameter
reflection for public use. But it was possible to use it since late 2012, at least. It was possible
to have all this functionality, to write programs with all these features, to have fun with testing
new technologies, well before the official release date. Some enterprise developers consider
modern Java as unstable and slightly unpredictable even after the release. However, each
programmer, who was interested in the new technologies' testing and support and who
contributes to it, was able to test and try OpenJDK 8 when it was at development stage.

What is the situation with OpenJDK 9 early access previews were released immediately after
the Java 8 release. So we can now try OpenJDK 9. Of course, it is still unstable and doesn't
even pass some regression tests, but it is going to change.

What are the main differences between OpenJDK 8 and 9?

There are three main features:

ff The First is the long awaited elimination of type erasure. With new refined generics, it
will be possible to determine which type is used in a collection or map, or a tuple—on
every generic reference. For all Java programmers this is going to be a major relief.

ff The second feature is intended to bring the Java platform a new ally—the whole might
of a GPU will now be in the hands of a programmer, using only standard features
without a scrap of native code. It will be explained further in this chapter.

ff And a third one is Graal, the project that exposes Java VM APIs to the end user. It is a
great breakthrough since it is possible to change the way Java operates on the fly.

There is more to be done; Java 9 will also contain less GC types without a drop in performance.

Be aware, underscore (_) will not be a legal identifier name
in Java 9, so prepare your code in time. Find more details at
http://openjdk.java.net/jeps/213.

Also, for those who work with money transactions and financial analytics, there is another Java
9 feature—JSR 354, the Money API. It will implement the ISO-4217 standard currencies along
with some additional ones. Currency arithmetics will also be introduced.

To test the Java Money API, build the source code from https://github.
com/JavaMoney/jsr354-api. However, this is a Maven project that
meets the JSR requirements, and is not a part of the OpenJDK project.

http://openjdk.java.net/jeps/213
https://github.com/JavaMoney/jsr354-api
https://github.com/JavaMoney/jsr354-api

Chapter 12

233

Building OpenJDK 9 on Mac OS X using
Clang

At the time of writing, the OpenJDK 9 project was still quite similar to OpenJDK 8. So most of
the information about building OpenJDK 9 can be found in Chapter 4, Building OpenJDK 8.

One point that differentiates OpenJDK 9 from OpenJDK 8 is the usage of the Clang compiler
on Mac OS X. Starting with Xcode Version 5, Clang became the official compiler on Mac OS X
instead of GCC. There were plans to use it as an official compiler for OpenJDK 8 on Mac OS X
but that switch was postponed to OpenJDK 9.

In this recipe, we will build the current codebase of OpenJDK 9 using Xcode 5 and the
Clang compiler.

Getting ready
For this recipe, we will need a clean Mac OS X 10.8 Mountain Lion or 10.9 Mavericks running
with Mercurial source control tools installed.

How to do it...
The following procedure will help us to build OpenJDK 9:

1.	 Download Xcode 5 from https://developer.apple.com/xcode/ (an Apple
developer's account is required, registration is free) and install it.

2.	 Download the Command Line Tools for the corresponding minor version of Xcode
using the same download link mentioned previously, and install it.

3.	 Run the following command from the terminal to set up the Command Line Tools:
sudo xcode-select -switch /Applications/Xcode.app/Contents/
Developer/

4.	 Install JDK 8—Oracle distribution, or prebuilt OpenJDK binaries may be used.

5.	 Obtain the source code from the Mercurial repository:
hg checkout http://hg.openjdk.java.net/jdk9/jdk9/

bash ./get_source.sh

6.	 Run the autotools configuration script:
bash ./configure –-with-boot-jdk=path/to/jdk8

7.	 Start the build:
make all 2>&1

https://developer.apple.com/xcode/

Working with Future Technologies

234

8.	 The built binaries will be put into the following directory:
build/macosx-x86_64-normal-server-release/images/j2sdk-image

How it works...
Xcode 5 uses the Clang compiler by default and OpenJDK 9 already has all the adjustments
required for switching compiler from GCC to Clang.

There's more...
With the older versions of OpenJDK 9, the installation of the X11 server may be required.
The X11 server can be installer from the XQuartz project.

See also
ff Building OpenJDK 8 on Mac OS X recipe from Chapter 4, Building OpenJDK 8

Building OpenJDK 9 on Windows using MSYS
The Windows operating system has a long history of different tools providing a Unix-like
environment. Tools such as Microsoft POSIX subsystem, Interix, Windows Services for UNIX,
MKS Toolkit, Cygwin, MinGW/MSYS, and so on, existed during the various periods of Windows
history and provided different levels of Unix compliance.

The three latter tools are most relevant to OpenJDK builds. MKS Toolkit was used for internal
builds in Sun Microsystems because it provided better speed than Cygwin. Support for MKS
Toolkit was discontinued with OpenJDK 7. Cygwin, that we described in detail in Chapter 2,
Building OpenJDK 6, was used as the main and only tool to build OpenJDK 7 and 8.

MSYS (short form for minimal system) is a part of the MinGW (Minimalist GNU for Windows)
project. The MinGW project was started as a fork of Cygwin with the goal to provide closer
integration with Windows API for the cost of lower level Unix support. MinGW-based
applications are standalone native Windows applications and do not require the cygwin.dll
library. Among other things, this can bring better speed for some applications using Windows
API through MinGW instead of emulated Unix calls (like fork) through Cygwin. Applications
should be changed accordingly, though.

The MSYS project provides a minimalistic shell environment and also provides first-class
support for running GNU Autoconf based builds. Actually running Autoconf's configure
scripts efficiently was one of the goals of MSYS. In some cases, the configure scripts
can be extremely slow in Cygwin because of extensive use of new processes spawning.

Due to better speed in OpenJDK builds, MSYS support was restored in OpenJDK 9 as a
second supported environment along with Cygwin.

Chapter 12

235

In this recipe, we will build OpenJDK 9 on Windows 7 using MSYS instead of Cygwin. At the
time of writing, OpenJDK 9 was still in development and we have used the latest available
source code.

Getting ready
For this recipe, we will need Windows 7 (32- or 64-bit) running.

How to do it...
The following procedure will help us to build OpenJDK 9:

1.	 Download Microsoft .NET Framework 4 from the Microsoft website and install it.

2.	 Download Microsoft Windows SDK for Windows 7 (the GRMSDKX_EN_DVD.iso
file) from the Microsoft website and install it to the default location. The .NET
Development and Common Utilities components are not required.

3.	 Download Visual Studio 2010 Express and install it (C++ variant) to the
default location.

4.	 Download and install Microsoft DirectX 9.0 SDK (Summer 2004) to the default
installation path. Note that this distribution is not available on the Microsoft website
anymore. It may be downloaded elsewhere online, the file details are as follows:
name: dxsdk_sum2004.exe

size: 239008008 bytes

sha1sum: 73d875b97591f48707c38ec0dbc63982ff45c661

5.	 Download the prebuilt FreeType libraries from the openjdk-unofficial-builds
GitHub project (directory 7_64) and put the binaries into the c:\freetype\lib
directory and the header files into the c:\freetype\include directory.

6.	 Install the OpenJDK 8 binaries or Oracle Java 8 into c:\jdk8.

7.	 Download and install the Mercurial SCM tool from the mercurial.selenic.com
website.

8.	 Clone the current development forest of OpenJDK 9 to the C:\openjdk directory:
hg clone http://hg.openjdk.java.net/jdk9/jdk9/

9.	 Download the mingw-get utility (mingw-get-setup.exe) from http://mingw.
org/ and install it to the C:\MinGW path.

10.	 Run the cmd.exe shell and navigate to the directory.

mercurial.selenic.com
http://mingw.org/
http://mingw.org/

Working with Future Technologies

236

11.	 Run the following command to revert the installed version of MSYS from the latest
one to 1.0.17:
mingw-get install --reinstall --recursive msys-core=1.0.17-1

12.	 Run the following commands to install all required MSYS packages:
mingw-get install msys-zip

mingw-get install msys-unzip

mingw-get install msys-diffutils

mingw-get install msys-file

mingw-get install msys-mktemp

mingw-get install msys-tar

mingw-get install msys-xargs

mingw-get install msys-findutils

mingw-get install msys-make

13.	 Run the MSYS shell using the C:\MinGW\msys\1.0\msys.bat file.

14.	 Navigate to the c/openjdk directory and download the source code for all OpenJDK
subrepositories with the following command:
bash ./get_source.sh

15.	 Add a path for the JDK 8 binaries in the PATH variable:
export PATH=/c/jdk8/bin:$PATH

16.	 Change the filesystem permissions for all source files:
chmod -R 777 .

17.	 Run the configure script specifying path to the FreeType binaries:
./configure --with-freetype=/c/freetype

18.	 Start the build process writing the output to the screen and logfile simultaneously:
make | tee make.log

19.	 Wait for the build to finish.

How it works...
At the time of writing, OpenJDK 9 code uses the same toolchain as OpenJDK 8, so the
environment setup is similar.

We use Version 1.0.17 of MSYS because the regression related to multicores support
appeared in the 1.0.18 Version. This regression is not fixed at the time of writing but will most
likely be fixed in the following versions.

Chapter 12

237

The mingw-get utility is a package manager that allows us to install or update the required
MSYS packages.

See also
ff The Installing Cygwin for Windows builds recipe from Chapter 2, Building OpenJDK 6

ff The Building OpenJDK 8 on Windows 7 SP1 recipe from Chapter 4, Building
OpenJDK 8

ff The OpenJDK bug related to the restoration of MSYS support in OpenJDK 9 at
https://bugs.openjdk.java.net/browse/JDK-8022177

ff The OpenJDK mailing list thread about the regression in MSYS 1.0.18 at
http://mail.openjdk.java.net/pipermail/build-dev/2014-
August/012917.html

ff The MSYS website at http://www.mingw.org/wiki/msys

ff Information about Windows service for Unix at http://technet.microsoft.
com/en-us/library/bb496506.aspx

ff The MKS Toolkit website at http://mkssoftware.com/

ff The Cygwin website at http://cygwin.com/

Running and testing the early access
preview of OpenJDK 9

We will get the newest OpenJDK code available and will test for feature availability. Don't
hesitate to try new features, they may be available in the newer releases. Since the OpenJDK
9 release, it will remain the fastest way to give OpenJDK 9 a test. Hopefully, upon the release,
the same thing will work for OpenJDK 10.

Getting ready
You will need an Internet connection. Aside from that, nothing is needed.

How to do it...
We will download, unpack, and run the latest publicly available full OpenJDK build:

1.	 Open the page https://jdk9.java.net/.

https://bugs.openjdk.java.net/browse/JDK-8022177
http://mail.openjdk.java.net/pipermail/build-dev/2014-August/012917.html
http://mail.openjdk.java.net/pipermail/build-dev/2014-August/012917.html
http://www.mingw.org/wiki/msys
http://technet.microsoft.com/en-us/library/bb496506.aspx
http://technet.microsoft.com/en-us/library/bb496506.aspx
http://mkssoftware.com/
http://cygwin.com/
https://jdk9.java.net/

Working with Future Technologies

238

2.	 Download the early access preview, as shown:

3.	 Run an installer.

4.	 You can find out how to install OpenJDK from an archive in Chapter 1, Getting Started
with OpenJDK of this book.

Test some interesting features that are already included in the early access JDK. Look at the
following code:

 DatagramSocket socket = new DatagramSocket(4445);

 System.out.println(socket.supportedOptions());

When executed, you may expect it to return the following string, or something similar:

[SO_SNDBUF, SO_RCVBUF, SO_REUSEADDR, IP_TOS]

Although there are some minor improvements and a lot of bug fixes, there are not yet any
major changes in the early access preview.

How it works...
In the source repository on http://hg.openjdk.java.net/jdk9/jdk9, there are
tags, such as jdk9-b<build number>, which are automatically built into the early access
releases. Although there are no nightly builds, you can always build them from source, if you
have lots of time and a machine that's powerful enough to start with.

http://hg.openjdk.java.net/jdk9/jdk9

Chapter 12

239

Don't forget to update your once installed releases—there will be really major and exciting
changes, including those explained next. Sooner or later, developers will come out with Java 9
full, and then there will be time to test it before it becomes production ready.

There's more...
You can also build OpenJDK 9 from source:

1.	 Clone the source code repository hg clone at http://hg.openjdk.java.net/
jdk9/jdk9

2.	 Get the source code of the OpenJDK subprojects:
chmod 755 ./get_source.sh && ./get_source.sh

cd jigsaw

3.	 Then configure the OpenJDK instance to be built:
chmod 755 ./configure.sh && ./configure.sh

4.	 And, finally, do the build itself:
Make

5.	 The final strings of your output will look like this:

Finished building OpenJDK for target 'default'

Using Jigsaw
Jigsaw is the brand-new modular system for Java. It brings to mind some existing products, such
as Maven or Gradle, but its most interesting feature is the possibility of the modularization of the
JDK itself. Jigsaw will allow, upon its full completion, to modularize even some features that was
thought as unseparable, such as HotSpot binaries.

Jigsaw incorporates proposals about the Java modular system. Modularity means scalability—
from small, embedded devices that need only basic functionality and have poor performance,
to full-scale data centers with dozens of machines. Some of these goals have already been
reached—but Jigsaw presents a universal way to resolve dependencies on all platforms,
starting from Java itself.

http://hg.openjdk.java.net/jdk9/jdk9
http://hg.openjdk.java.net/jdk9/jdk9

Working with Future Technologies

240

Several JEPs are part of Jigsaw:

ff JEP 200: This makes the JDK itself modular

ff JEP 201: This makes the source code modular

ff JEP 220: This makes the runtime Java images modular, so they can be loaded in
parts

Some information about the progress of the JEPs are found at the following JIRA links:

ff https://bugs.openjdk.java.net/browse/JDK-8051619

ff https://bugs.openjdk.java.net/browse/JDK-8051618

ff https://bugs.openjdk.java.net/browse/JDK-8061971

Also, the core of Jigsaw is JSR 376—the Java platform Module System.

Getting ready
You will need Internet access. Also, some experience with Maven, or similar software is
desired. Any knowledge about how the build systems work from the inside will be appreciated.

How to do it...
The following procedure will teach you how to build Jigsaw-enabled Java:

1.	 First, let's clone a source repo hg clone from http://hg.openjdk.java.net/
jigsaw/jigsaw.

2.	 Then, let's get the source code of the OpenJDK subprojects:
chmod 755 ./get_source.sh && ./get_source.sh

cd jigsaw

3.	 Then configure the OpenJDK instance to be built:
chmod 755 ./configure && ./configure

4.	 And, finally, do the build itself:
make all

Finished building OpenJDK for target 'default'

Congratulations, you've built Jigsaw-enabled Java.

https://bugs.openjdk.java.net/browse/JDK-8051619
https://bugs.openjdk.java.net/browse/JDK-8051618
https://bugs.openjdk.java.net/browse/JDK-8061971
http://hg.openjdk.java.net/jigsaw/jigsaw
http://hg.openjdk.java.net/jigsaw/jigsaw

Chapter 12

241

Now, we will do some tests:

1.	 Let's consider the simple helloworld1 program:
package me.dsmd.jigsawsample
import me.dsmd.helloworldstrings.Strings
public class Main{
 public void main(String [] args){
 System.out.println(Strings.helloworld1());
 }
}

2.	 It has one class, which is imported from a yet nonexistent package.

3.	 Let's create it.
package me.dsmd.helloworldstrings
public class Strings{
 public String helloworld1(){
 return "Hello World";
 }
}

Now, we will try to link it using Jigsaw.

Jigsaw stores the module declaration in the file named module-info.java.

1.	 Let's create it for those two packages as follows:
module me.dsmd.jigsawsample @ 1.0{

 requires me.dsmd.helloworldstrings

 class me.dsmd.jigsawsample.Main

}

module me.dsmd.helloworldstrings @ 0.1 {

 class me.dsmd.helloworldstrings.Strings

}

These files are to be placed in the root directory of a package.

2.	 Let's consider a situation when all those modules are placed in the same directory
named src:
.

├── modules

└── src

 ├── me.dsmd.helloworldstrings

Working with Future Technologies

242

 │ ├── me

 │ │ └── dsmd

 │ │ └── helloworldstrings

 │ │ └── Strings.java

 │ └── module-info.java

 └── me.dsmd.jigsawsample

 ├── me

 │ └── dsmd

 │ └── jigsawsample

 │ └── Main.java

 └── module-info.java

3.	 Then, let's compile them with javac from your jigsaw build:
javac -verbose -d modules -modulepath modules -sourcepath \ `find
src -name '*.java'`

How it works...
Jigsaw is a modular system that gives Java its very own build system. Similar systems were
spawned in the Java world long ago, but they lacked the core support. They were never able
to bring the modular support advantages to Java's own features. Of course, there are some
downsides as well. The Write once, run everywhere slogan is not so applicable as it was before.

We use the newly built OpenJDK commands to create, install, and export modules. Those
commands are still under heavy development, but the specification is already written so,
hopefully, nothing will significantly change before the production-access release.

There's more...
You also can install a module as a library. To do so, run the following command:

ff To create a module library:
$ jmod -L lib1 create

This creates a module library lib1.

ff To install some modules to the library:
$ jmod -L lib1 install modules module1 module2

This will install your modules under the system parent in the library lib1.

Chapter 12

243

Currently, there is no way to remove the module from the library. Maybe, there will not be
any in the release either. For now, the simplest way to remove a module from the library is to
delete it physically from the repository:

rm -rf lib1/module1

Also, you can run a module, if it contains a standard entry point:

java -L lib1 -m module1

The new -m option is also contained only in the Jigsaw-enabled
Java command. As of now (June 2014) it is not contained in
any public early access preview.

As a next feature, you can export a module as a file by performing the following command:

jpkg -m modules/module1 jmod module1

The module1@<module version>.jmod file will be created. It will contain the exported,
ready-to-use module.

Building OpenJDK 9 with Graal
As described in the project page, Graal is:

A quest for the JVM to leverage its own J.

Upon completion of this project, JVM functions will be exposed via Java APIs, so the end user
will be able to have access to the most low-level manipulation. It will be possible to write a
Java compiler in Java, for example. Now, we will try to give it a test.

There is also Truffle, a framework that allows you to build your own language using Graal VM.
It builds upon a notion of an abstract syntax tree (AST), and the process, in fact, is really
simple. To have a better look, see the following link:

https://cesquivias.github.io/blog/2014/10/13/writing-a-language-in-
truffle-part-1-a-simple-slow-interpreter/

Getting ready
You will need an Internet connection. Also, it's recommended to read the chapters about
building OpenJDK.

https://cesquivias.github.io/blog/2014/10/13/writing-a-language-in-truffle-part-1-a-simple-slow-interpreter/
https://cesquivias.github.io/blog/2014/10/13/writing-a-language-in-truffle-part-1-a-simple-slow-interpreter/

Working with Future Technologies

244

How to do it...
Have a look at the following procedure to build OpenJDK with Graal:

1.	 First, clone a source repository:
hg clone http://hg.openjdk.java.net/graal/graal

cd graal

export EXTRA_JAVA_HOMES=/usr/lib/jvm/java-1.7.0-openjdk

./mx.sh build

2.	 Enter a selection value, upon which vm graal will be built. Unfortunately, it will not
be built without modification against the OpenJDK 9-ea preview:
./mx.sh build

[1] /usr/lib/jvm/java-1.7.0-openjdk

[2] /usr/lib/jvm/java-1.6.0-openjdk-amd64

[3] /usr/lib/jvm/java-6-oracle

[4] /usr/lib/jvm/jdk1.9.0

[5] /usr/lib/jvm/java-7-oracle

[6] /usr/lib/jvm/java-8-oracle

[7] /usr/lib/jvm/java-6-openjdk-amd64

[8] /usr/lib/jvm/java-7-openjdk-amd64

[9] /usr/lib/jvm/java-1.7.0-openjdk-amd64

[10] <other>

3.	 Then choose which VM will be executed. There are two types of VM. In a nutshell,
server vm will use the default hotspot compilation, using Graal itself only for
explicit Graal API calls, while graal VM will compile everything through Graal.
The first option is much more suitable for production VMs, while the second is
favorable for testing purposes.
Please select the VM to be executed from the following:

[1] server - Normal compilation is performed with a tiered system
(C1

 + C2), Truffle compilation is performed with Graal. Use this
for

 optimal Truffle performance.

[2] graal - Normal compilation is performed with a tiered system
(C1 +

 Graal), Truffle compilation is performed with Graal.

Chapter 12

245

4.	 Then, make a cup of tea, the process may take several dozen minutes.

5.	 Then, if you want to initialize your IDE project , run ./mx.sh ideinit.

6.	 Then, open your favorite IDE and open a resulting project. It will be shown here
with IntelliJ Idea:

7.	 Explore various tests.

How it works...
The Graal enabled VM will expose Java APIs to the end user.

There's more...
In Chapter 8, Hacking OpenJDK, we added new intrinsics to the HotSpot, using the crc32
calculation as an example. In the Graal project, there is a similar test, which tests the compiled
substitution of the CRC32#updateByteBuffer method. It is contained in the com.oracle.
graal.hotspot.jdk8.test package. Run it, and enjoy the performance change.

Building OpenJDK 9 with Sumatra
For a long time, Java was considered as a primarily backend tool, due to its cross-platform
vectoring. Only J2ME was capable of achieving long-term superiority in the mobile segment.
But now it's going to change. Project Sumatra has the aim of delivering GPU-calculation
standards to the Java guys.

Working with Future Technologies

246

Getting ready
You will probably need a GPU that supports CUDA and OpenGL, or a HSAIL simulator running
(because on-board GPUs do not support native GPU languages).

How to do it...
Sumatra developers are making wide use of the Graal project, described earlier. The build
consists of two stages. Firstly, the Sumatra JDK is built, like a normal OpenJDK build, as shown:

make

Building OpenJDK for target 'default' in configuration 'linux-x86_64-
normal-server-release'

Starting langtools

Finished langtools (build time 00:00:03)

Starting hotspot

Finished hotspot (build time 00:00:01)

Starting corba

Finished corba (build time 00:00:00)

Starting jaxp

Finished jaxp (build time 00:00:01)

Starting jaxws

Finished jaxws (build time 00:00:02)

Starting jdk

Finished jdk (build time 00:00:21)

----- Build times -------

Start 2014-07-06 00:17:24

End 2014-07-06 00:17:52

00:00:00 corba

00:00:01 hotspot

Chapter 12

247

00:00:01 jaxp

00:00:02 jaxws

00:00:21 jdk

00:00:03 langtools

00:00:28 TOTAL

Finished building OpenJDK for target 'default'

The second stage consists of building a Graal JDK on top of the Sumatra JDK. It may be tricky,
but hopefully it will work:

1.	 Clone a repository hg clone http://hg.openjdk.java.net/sumatra/
sumatra-dev/:
chmod 755 configure && ./configure

2.	 Get the source code:
chmod 755 get_source.sh && ./get_source.sh

3.	 Then make the source code:
make

4.	 Export JAVA_HOME to the newly built OpenJDK instance:
export JAVA_HOME=<path-to-sumatra-dev>/build/linux-<your-arch>-
normal-server-release/images/j2sdk-image

5.	 Build the HSAIL-enabled grail:
/mx.sh --vmbuild product --vm server build

Congratulations! You have a Sumatra-enabled VM.

Let's do a little test. Consider a code from an official sample:

package simple;

import java.util.stream.IntStream;

public class Simple {

 public static void main(String[] args) {
 final int length = 8;
 int[] ina = new int[length];
 int[] inb = new int[length];

http://hg.openjdk.java.net/sumatra/sumatra-dev/
http://hg.openjdk.java.net/sumatra/sumatra-dev/

Working with Future Technologies

248

 int[] out = new int[length];

 // Initialize the input arrays - this is offloadable
 IntStream.range(0, length).parallel().forEach(p -> {
 ina[p] = 1;
 inb[p] = 2;
 });

 // Sum each pair of elements into out[] - this is offloadable
 IntStream.range(0, length).parallel().forEach(p -> {
 out[p] = ina[p] + inb[p];
 });

 // Print results - this is not offloadable since it is
 // calling native code etc.
 IntStream.range(0, length).forEach(p -> {
 System.out.println(out[p] + ", " + ina[p] + ", " +
inb[p]);
 });
 }
}

It contains two off-loadable lambdas. We will try to make them run in parallel, using
the HSA API.

1.	 First, set JAVA_HOME to the Graal JDK:
export JAVA_HOME=/path/to/graal/jdk1.8.0-internal/product/

2.	 Then clone the OKRA HSA interface:
git clone https://github.com/HSAFoundation/Okra-Interface-to-HSA-
Device.git

3.	 Make it runnable:
export PATH=$PATH:/path/to/okra/dist/bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/okra/dist/bin

4.	 Run the example with and without offloading.

5.	 You will get the following code in your terminal:

$JAVA_HOME/bin/java -server -esa -XX:+TraceGPUInteraction -Dcom.
amd.sumatra.offload.immediate=true -G:Log=CodeGen simple.Simple

...

[HSAIL] library is libokra_x86_64.so

Chapter 12

249

[GPU] registered initialization of Okra (total initialized: 2)

[CUDA] Ptx::get_execute_kernel_from_vm_address

[thread:1] scope:

 [thread:1] scope: GraalCompiler

 [thread:1] scope: GraalCompiler.CodeGen

 Nothing to do here

 Nothing to do here

 Nothing to do here

 version 0:95: $full : $large;

// static method HotSpotMethod<Simple.lambda$main$0(int[], int[],
int)>

kernel &run (

 align 8 kernarg_u64 %_arg0,

 align 8 kernarg_u64 %_arg1

) {

 ld_kernarg_u64 $d0, [%_arg0];

 ld_kernarg_u64 $d1, [%_arg1];

 workitemabsid_u32 $s0, 0;

@L0:

 cmp_eq_b1_u64 $c0, $d1, 0; // null test

 cbr $c0, @L1;

@L2:

 ld_global_s32 $s1, [$d1 + 12];

 cmp_ge_b1_u32 $c0, $s0, $s1;

 cbr $c0, @L8;

@L3:

 cmp_eq_b1_u64 $c0, $d0, 0; // null test

 cbr $c0, @L4;

@L5:

 ld_global_s32 $s1, [$d0 + 12];

 cmp_ge_b1_u32 $c0, $s0, $s1;

 cbr $c0, @L7;

@L6:

 cvt_s64_s32 $d2, $s0;

 mul_s64 $d2, $d2, 4;

Working with Future Technologies

250

 add_u64 $d0, $d0, $d2;

 st_global_s32 1, [$d0 + 16];

 cvt_s64_s32 $d0, $s0;

 mul_s64 $d0, $d0, 4;

 add_u64 $d1, $d1, $d0;

 st_global_s32 2, [$d1 + 16];

 ret;

@L1:

 mov_b32 $s0, -6155;

@L9:

 ret;

@L4:

 mov_b32 $s0, -4363;

 brn @L9;

@L8:

 mov_b32 $s0, -6683;

 brn @L9;

@L7:

 mov_b32 $s0, -4891;

 brn @L9;

};

[HSAIL] heap=0x00007f4c9801de38

[HSAIL] base=0x05a00000, capacity=209190912

External method:simple.Simple.lambda$main$0([I[II)V

installCode0: ExternalCompilationResult

[HSAIL] sig:([I[II)V args length=2, _parameter_count=3

[HSAIL] static method

[HSAIL] HSAILKernelArguments::do_array, _index=0, 0x82b20888, is a
[I

[HSAIL] HSAILKernelArguments::do_array, _index=1, 0x82b208b8, is a
[I

[HSAIL] HSAILKernelArguments::not pushing trailing int

 [thread:1] scope: GraalCompiler

 [thread:1] scope: GraalCompiler.CodeGen

 Nothing to do here

Chapter 12

251

 Nothing to do here

 Nothing to do here

 version 0:95: $full : $large;

// static method HotSpotMethod<Simple.lambda$main$1(int[], int[],
int[], int)>

kernel &run (

 align 8 kernarg_u64 %_arg0,

 align 8 kernarg_u64 %_arg1,

 align 8 kernarg_u64 %_arg2

) {

 ld_kernarg_u64 $d0, [%_arg0];

 ld_kernarg_u64 $d1, [%_arg1];

 ld_kernarg_u64 $d2, [%_arg2];

 workitemabsid_u32 $s0, 0;

@L0:

 cmp_eq_b1_u64 $c0, $d0, 0; // null test

 cbr $c0, @L1;

@L2:

 ld_global_s32 $s1, [$d0 + 12];

 cmp_ge_b1_u32 $c0, $s0, $s1;

 cbr $c0, @L12;

@L3:

 cmp_eq_b1_u64 $c0, $d2, 0; // null test

 cbr $c0, @L4;

@L5:

 ld_global_s32 $s1, [$d2 + 12];

 cmp_ge_b1_u32 $c0, $s0, $s1;

 cbr $c0, @L11;

@L6:

 cmp_eq_b1_u64 $c0, $d1, 0; // null test

 cbr $c0, @L7;

@L8:

 ld_global_s32 $s1, [$d1 + 12];

 cmp_ge_b1_u32 $c0, $s0, $s1;

 cbr $c0, @L10;

Working with Future Technologies

252

@L9:

 cvt_s64_s32 $d3, $s0;

 mul_s64 $d3, $d3, 4;

 add_u64 $d1, $d1, $d3;

 ld_global_s32 $s1, [$d1 + 16];

 cvt_s64_s32 $d1, $s0;

 mul_s64 $d1, $d1, 4;

 add_u64 $d2, $d2, $d1;

 ld_global_s32 $s2, [$d2 + 16];

 add_s32 $s2, $s2, $s1;

 cvt_s64_s32 $d1, $s0;

 mul_s64 $d1, $d1, 4;

 add_u64 $d0, $d0, $d1;

 st_global_s32 $s2, [$d0 + 16];

 ret;

@L1:

 mov_b32 $s0, -7691;

@L13:

 ret;

@L4:

 mov_b32 $s0, -6411;

 brn @L13;

@L10:

 mov_b32 $s0, -5403;

 brn @L13;

@L7:

 mov_b32 $s0, -4875;

 brn @L13;

@L12:

 mov_b32 $s0, -8219;

 brn @L13;

@L11:

 mov_b32 $s0, -6939;

 brn @L13;

};

Chapter 12

253

[HSAIL] heap=0x00007f4c9801de38

[HSAIL] base=0x05a00000, capacity=209190912

External method:simple.Simple.lambda$main$1([I[I[II)V

installCode0: ExternalCompilationResult

[HSAIL] sig:([I[I[II)V args length=3, _parameter_count=4

[HSAIL] static method

[HSAIL] HSAILKernelArguments::do_array, _index=0, 0x82b208f8, is a
[I

[HSAIL] HSAILKernelArguments::do_array, _index=1, 0x82b20888, is a
[I

[HSAIL] HSAILKernelArguments::do_array, _index=2, 0x82b208b8, is a
[I

[HSAIL] HSAILKernelArguments::not pushing trailing int

3, 1, 2

3, 1, 2

3, 1, 2

3, 1, 2

3, 1, 2

3, 1, 2

3, 1, 2

3, 1, 2

How it works...
Sumatra runs on top of the Graal project. Since all operations with GPU are implemented on
the VM level, Sumatra uses Graal to gain access to them. Sumatra features are at the heavy
development stage, and they are subject to various unpredictable changes.

But the end user can use some of them, even now, to gain a new level of Java productivity at
the expense of some compatibility and standardization.

There's more...
In the Graal suite, there is a possibility to test the Sumatra HSAIL feature.

To do so, run the following code:

./mx.sh --vm server unittest -XX:+TraceGPUInteraction -XX:+GPUOffload
-G:Log=CodeGen hsail.test.IntAddTest

Working with Future Technologies

254

The output should look like the following (for Linux Mint 15, or for other distributions\OS,
results may slightly differ):

 [HSAIL] library is libokra_x86_64.so

[HSAIL] using _OKRA_SIM_LIB_PATH_=/tmp/okraresource.
dir_2488167353114811077/libokra_x86_64.so

[GPU] registered initialization of Okra (total initialized: 2)

[CUDA] Ptx::get_execute_kernel_from_vm_address

JUnit version 4.8

.[thread:1] scope:

 [thread:1] scope: GraalCompiler

 [thread:1] scope: GraalCompiler.CodeGen

 Nothing to do here

 Nothing to do here

 Nothing to do here

 version 0:95: $full : $large;

// static method HotSpotMethod<IntAddTest.run(int[], int[], int[], int)>

kernel &run (

 align 8 kernarg_u64 %_arg0,

 align 8 kernarg_u64 %_arg1,

 align 8 kernarg_u64 %_arg2

) {

 ld_kernarg_u64 $d0, [%_arg0];

 ld_kernarg_u64 $d1, [%_arg1];

 ld_kernarg_u64 $d2, [%_arg2];

 workitemabsid_u32 $s0, 0;

@L0:

 cmp_eq_b1_u64 $c0, $d0, 0; // null test

 cbr $c0, @L1;

@L2:

 ld_global_s32 $s1, [$d0 + 12];

 cmp_ge_b1_u32 $c0, $s0, $s1;

 cbr $c0, @L12;

@L3:

 cmp_eq_b1_u64 $c0, $d2, 0; // null test

 cbr $c0, @L4;

@L5:

Chapter 12

255

 ld_global_s32 $s1, [$d2 + 12];

 cmp_ge_b1_u32 $c0, $s0, $s1;

 cbr $c0, @L11;

@L6:

 cmp_eq_b1_u64 $c0, $d1, 0; // null test

 cbr $c0, @L7;

@L8:

 ld_global_s32 $s1, [$d1 + 12];

 cmp_ge_b1_u32 $c0, $s0, $s1;

 cbr $c0, @L10;

@L9:

 cvt_s64_s32 $d3, $s0;

 mul_s64 $d3, $d3, 4;

 add_u64 $d1, $d1, $d3;

 ld_global_s32 $s1, [$d1 + 16];

 cvt_s64_s32 $d1, $s0;

 mul_s64 $d1, $d1, 4;

 add_u64 $d2, $d2, $d1;

 ld_global_s32 $s2, [$d2 + 16];

 add_s32 $s2, $s2, $s1;

 cvt_s64_s32 $d1, $s0;

 mul_s64 $d1, $d1, 4;

 add_u64 $d0, $d0, $d1;

 st_global_s32 $s2, [$d0 + 16];

 ret;

@L1:

 mov_b32 $s0, -7691;

@L13:

 ret;

@L4:

 mov_b32 $s0, -6411;

 brn @L13;

@L10:

 mov_b32 $s0, -5403;

 brn @L13;

@L7:

Working with Future Technologies

256

 mov_b32 $s0, -4875;

 brn @L13;

@L12:

 mov_b32 $s0, -8219;

 brn @L13;

@L11:

 mov_b32 $s0, -6939;

 brn @L13;

};

[HSAIL] heap=0x00007f95b8019cc0

[HSAIL] base=0x05a00000, capacity=210763776

External method:com.oracle.graal.compiler.hsail.test.IntAddTest.
run([I[I[II)V

installCode0: ExternalCompilationResult

[HSAIL] sig:([I[I[II)V args length=3, _parameter_count=4

[HSAIL] static method

[HSAIL] HSAILKernelArguments::do_array, _index=0, 0x82b21970, is a [I

[HSAIL] HSAILKernelArguments::do_array, _index=1, 0x82b477f0, is a [I

[HSAIL] HSAILKernelArguments::do_array, _index=2, 0x82b479e0, is a [I

[HSAIL] HSAILKernelArguments::not pushing trailing int

Time: 0.153

OK (1 test)

The completion of this test will mean that the HSAIL functions are working OK, so the
cutting-edge Java already benefits from your GPU.

13
Build Automation

In this chapter, we will cover:

ff Installing VirtualBox

ff Preparing SSH keys

ff Preparing VirtualBox machines with Linux

ff Preparing VirtualBox machines with Mac OS X

ff Preparing VirtualBox machines with Windows

ff Automating builds

ff Building cross-platform installers

Introduction
Automated builds are widely used in cross-platform software development. Build farm with
build machines for each supported operating systems is required to build projects remotely
and run tests on all platforms. With the rising popularity of software virtualization tools, it
became possible to deploy a virtual build farm using a single physical machine.

Besides the build environment in each OS, the essential part of an automated build is
the communication between the master machine and the build machines. The following
communication jobs might be required:

ff The master should prepare and start the build machine

ff The master should send the source code directly to the build machine or fire sources
fetching process from the build machine itself

ff The master should start the build process

ff The build machine should send build logs to the master during the build

Build Automation

258

ff The build machine should send result binaries to the master

ff The master should shut down the build machine

In this chapter, we will prepare the OpenJDK build environment for Windows, Linux, and Mac
OS X. This task can be done using a high-level build automation (or Continuous Integration)
tool. However, such tools can be limited in functionality and inflexible for our task. While all
such tools should do similar jobs (as listed previously), different tools can have different
configurations and peculiarities, and the knowledge of one tool can be less useful for another.
Also, such tools bring in an additional level of complexity with possible tool-specific problems.

You will learn how to perform build automation using the most basic tools for a better
understanding of the process. The bash shell is already used for OpenJDK builds on all
platforms (natively on Linux/Mac and through Cygwin on Windows), so we will use bash scripts
for setting up and starting to build virtual machines. For communication (sending commands
and data), we will use the SSH protocol; implementation for this is usually preinstalled on
Unix-like operating systems and can also be installed on Windows. For virtualization, we will
use the popular VirtualBox tool from Oracle.

Installing VirtualBox
VirtualBox is a popular virtualization toolbox from Oracle Corporation that allows us to run
virtual instances of other operating systems on top of the host operating system. In this
recipe, we will install VirtualBox and configure host network interfaces. Such a configuration
will allow us to connect from host to guest and back during the automated builds.

Getting ready
For this recipe, we will require the Ubuntu 12.04 amd64 operating system running.

How to do it...
The following procedure will help you to install VirtualBox:

1.	 Download the installation package from the VirtualBox website
(https://www.virtualbox.org/) and install it.

2.	 Install the virtual network interface package:
sudo apt-get install uml-utilities

3.	 Create a virtual interface tap0 that will be used for connections to and from the
guest machine:
sudo tunctl -t tap0 -u your_username

https://www.virtualbox.org/

Chapter 13

259

4.	 Configure the interface tap0:
sudo ifconfig tap0 192.168.42.2 up dstaddr 192.168.42.1 netmask
255.255.255.0

5.	 Create an arbitrary VirtualBox machine using GUI forms.

6.	 Navigate to Settings | Network form and check whether the tap0 network interface
is available in the interfaces drop-down list when the Bridged Adapter mode is used.

How it works...
VirtualBox supports different networking options for guest machines. One of them—Bridged
Adapter—allows us to connect from host to guest and back using static IP addresses. To set
up this mode on the host side, we need an additional virtual network interface with a separate
address. The tunctl utility that comes as part of the uml-utilities package allows us to
create a virtual interface such as tap0.

There's more...
Multiple virtual interfaces can be created with different addresses to run multiple virtual
machines simultaneously. Mac OS X can be used as a host machine, the tuntaposx kernel
extensions are required to use the tunctl utility.

See also
ff The Oracle VirtualBox user manual at https://www.virtualbox.org/manual/

UserManual.html

Preparing SSH keys
In this chapter, we will use virtual machines to build OpenJDK. During the build source
code, control commands, logs, and result binaries should be sent between host and virtual
machines. We will use the ubiquitous Secure Shell (SSH) protocol and its most popular
implementation OpenSSH for these tasks.

SSH allows us to send data between the machines and run the commands remotely. When
the client performs an SSH connection, it should be authenticated against the server. Besides
the user/password authentication, OpenSSH also supports authentication using asymmetric
cryptography (RSA or similar) keys. With SSH keys configured, a client can connect to server
without manual intervention. This eases the scripting for copying multiple files or running
remote tasks.

In this recipe, we will prepare a set of public and private keys and use these on all virtual
machines and on the host machine during the build.

https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html

Build Automation

260

Getting ready
For this recipe, we will need a Unix-like operating system running with an OpenSSH server and
client installed. For example, the Ubuntu 12.04 operating system can be used.

How to do it...
The following procedure will help us to install VirtualBox:

1.	 Generate client RSA keys pairs for the host and guest machines:
ssh-keygen -q -P "" -t rsa -f vmhost__id_rsa

ssh-keygen -q -P "" -t rsa -f vmguest__id_rsa

2.	 Generate server RSA key pairs for the host and guest machines:
ssh-keygen -q -P "" -t rsa -f vmhost__ssh_host_rsa_key

ssh-keygen -q -P "" -t rsa -f vmguest__ssh_host_rsa_key

3.	 Create a new user on the host machine that will be used to manage builds, and login
under this user:
sudo adduser packt

4.	 Run VirtualBox and configure networking as described in the previous recipe,
Installing VirtualBox, with the 192.168.42.2 host IP address and the
192.168.42.1 guest IP address.

5.	 Create a user with the same name on the guest machine and login under this user:
sudo adduser packt

6.	 Check whether the ping command works successfully from host to guest and back
from guest to host:
ping 192.168.42.1

 PING 192.168.42.2 (192.168.42.2) 56(84) bytes of data.

 64 bytes from 192.168.42.2: icmp_req=1 ttl=64 time=0.181 ms

 ...

7.	 On the host machine, set up the client keys:
cp vmhost__id_rsa.pub ~/.ssh/id_rsa.pub

cp vmhost__id_rsa ~/.ssh/id_rsa

chmod 600 ~/.ssh/id_rsa

Chapter 13

261

8.	 On the guest machine, set up server keys:
sudo rm -rf /etc/ssh/ssh_host_*

sudo cp vmguest__ssh_host_rsa_key.pub /etc/ssh/ssh_host_rsa_key.
pub

sudo cp vmguest__ssh_host_rsa_key /etc/ssh/ssh_host_rsa_key

sudo chmod 600 /etc/ssh/ssh_host_rsa_key

9.	 On the guest machine, set up the host client public key:
cp vmhost__id_rsa.pub ~/.ssh/authorized_keys2

10.	 On the host machine, try to connect to the guest and confirm the new guest
server key:
ssh packt@192.168.42.1

11.	 On the host machine, save the obtained fingerprint of the guest server key:
cp ~/.ssh/known_hosts vmhost__known_hosts

12.	 On the host machine, check whether we can now connect from host to guest without
any passwords or additional confirmations:
ssh packt@192.168.42.1

13.	 Repeat steps 7 to 11, swapping host and guest sides to set up connections from
guest to host.

14.	 Save the following keys for use later during the builds:

�� vmhost__id_rsa: This is the host client private key

�� vmhost__id_rsa.pub: This is the host client public key

�� vmhost__ssh_host_rsa_key: This is the host server private key

�� vmhost__ssh_host_rsa_key.pub: This is the host server public key

�� vmhost__known_hosts: This is the guest server key fingerprint to be used
on the host

�� vmguest__id_rsa: This is the guest client private key

�� vmguest__id_rsa.pub: This is the guest client private key

�� vmguest__ssh_host_rsa_key: This is the guest server private key

�� vmguest__ssh_host_rsa_key.pub: This is the guest server public key

�� vmguest__known_hosts: This is the host server key fingerprint to be used
on guest

Build Automation

262

How it works...
The ssh-keygen command generates a pair of asymmetric cryptography (in our example,
RSA) keys.

SSH supports passwordless authentication based on keys. We prepared the set of keys
that can be loaded to host and guest side (for all guest machines) to allow seamless
connections from host to guest and back. So, now we can a call script on the host machine
that will connect (or send files) to the guest and will be able to connect back to the host from
the same guest session.

All keys are deliberately generated with an empty passphrase to allow connections without
manual passphrase input.

There's more...
Connections over SSH are secure and this can be useful if you want to perform builds using
remote machines instead of local virtual ones. If security is not required, then other protocols
can be used. They do not require authentication or a keys setup, for example, some custom
protocol over HTTP with support for commands and sending files.

The DSA or ECDSA keys can be used instead of the RSA keys.

A shell automation tool like expect can be used to set up automated connections with
passwords instead of client keys.

See also
ff The Installing VirtualBox recipe

ff The OpenSSH manual on key generation that is available at https://www.
virtualbox.org/manual/UserManual.html

Preparing VirtualBox machines with Linux
Many Linux-based operating systems have decent support for virtualization using VirtualBox.
They also usually have an OpenSSH client and server preinstalled or available in the main
packages repository.

In this recipe, we will set up an Ubuntu Linux virtual machine that can be used for automated
OpenJDK builds.

https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html

Chapter 13

263

Getting ready
For this recipe, we will require the Ubuntu 12.04 amd64 operating system with VirtualBox
installed and a virtual network interface configured.

How to do it...
The following procedure will help us to prepare the Linux virtual machine:

1.	 Prepare the SSH keys as described in the recipe Preparing SSH keys.

2.	 Download the Ubuntu 12.04 server amd64 image from the Ubuntu website
(http://www.ubuntu.com/).

3.	 In VirtualBox, create a virtual machine instance using the IDE storage controller and
default values for other settings.

4.	 Install Ubuntu on to the virtual machine, set up networking as described in the recipe,
Installing VirtualBox, and boot the virtual machine.

5.	 Create a user with the same name on the host machine, and login under this user:
sudo adduser packt

6.	 Set up the client keys:
cp vmguest__id_rsa.pub ~/.ssh/id_rsa.pub

cp vmguest__id_rsa ~/.ssh/id_rsa

chmod 600 ~/.ssh/id_rsa

7.	 Set up the server keys:
sudo rm -rf /etc/ssh/ssh_host_*

sudo cp vmguest__ssh_host_rsa_key.pub /etc/ssh/ssh_host_rsa_key.
pub

sudo cp vmguest__ssh_host_rsa_key /etc/ssh/ssh_host_rsa_key

sudo chmod 600 /etc/ssh/ssh_host_rsa_key

8.	 Set up the host client public key:
cp vmhost__id_rsa.pub ~/.ssh/authorized_keys2

9.	 Set up the host key fingerprint:
cp vmguest__known_hosts ~/.ssh/known_hosts

10.	 Check whether the connection from host to guest and back works seamlessly:
ssh packt@192.168.42.1

11.	 Complete the manual build of OpenJDK using the recipe, Building OpenJDK 8 Ubuntu
Linux 12.04 LTS, from Chapter 4, Building OpenJDK 8.

http://www.ubuntu.com/

Build Automation

264

How it works...
In this recipe, we created a virtual machine instance with Ubuntu Linux and configured SSH
keys to enable seamless automated connections to it.

The manual build was done on this VM to be ensure all environment the is correct.

There's more...
Other Linux-based OSs can be used instead of Ubuntu 12.04. Other protocols/tools can be
used for interaction between the host and guest machine instead of OpenSSH.

See also
ff The Building OpenJDK 8 Ubuntu Linux 12.04 LTS recipe from Chapter 4, Building

OpenJDK 8

ff The Installing VirtualBox recipe

ff The Preparing SSH keys recipe

ff The Oracle VirtualBox user manual at https://www.virtualbox.org/manual/
UserManual.html

Preparing VirtualBox machines with
Mac OS X

Modern versions of the Mac OS X operating system support run in a virtualized environment
using VirtualBox. Instructions to prepare the Mac OS X image for virtualization might differ
vastly depending on the Mac OS X version and the host operating system. Exact instructions
lie outside the scope of this book and can be found on the Internet.

Please note that running a guest Mac OS X on a non-Mac host operating system can violate
your end user license agreement with Apple Inc., it's better to consult your lawyer about this.

Mac OS X has an OpenSSH client and server preinstalled.

Getting ready
For this recipe, we will require a ready-to-use Mac OS X image (for VirtualBox-VDI) Version 10.7
or later.

https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html

Chapter 13

265

How to do it...
The following procedure will help us to prepare the Mac OS X virtual machine:

1.	 Prepare SSH keys as described in the Preparing SSH keys recipe in this chapter.

2.	 In VirtualBox, create a virtual machine instance using at least 2048 RAM, PIIX3
Chipset, disabled UEFI, single CPU, and IDE storage controller.

3.	 Set up networking as described in the Installing VirtualBox recipe in this chapter and
boot the virtual machine.

4.	 Create a user with the same name on the host machine and login under this user.

5.	 Set up the client keys:
cp vmguest__id_rsa.pub ~/.ssh/id_rsa.pub

cp vmguest__id_rsa ~/.ssh/id_rsa

chmod 600 ~/.ssh/id_rsa

6.	 Set up the server keys:
sudo rm -rf /etc/ssh_host_*

sudo cp vmguest__ssh_host_rsa_key.pub /etc/ssh_host_rsa_key.pub

sudo cp vmguest__ssh_host_rsa_key /etc/ssh_host_rsa_key

sudo chmod 600 /etc/ssh_host_rsa_key

7.	 Set up the host client public key:
cp vmhost__id_rsa.pub ~/.ssh/authorized_keys2

8.	 Set up the host key fingerprint:
cp vmguest__known_hosts ~/.ssh/known_hosts

9.	 Check whether the connection from host to guest and back works seamlessly:
ssh packt@192.168.42.1

10.	 Complete the manual build of OpenJDK using the Building OpenJDK 8 on Mac OS X
recipe from Chapter 4, Building OpenJDK 8.

How it works...
In this recipe, we created a virtual machine instance with Mac OS X and configured SSH keys
to enable seamless automated connections to it.

The manual build was done on this VM to ensure that the environment setup was correct.

Build Automation

266

There's more...
In some Mac OS X versions, the preinstalled OpenSSH might not support the ECDSA SSH keys.
This won't prevent us from finishing this recipe as we have used the RSA SSH keys. However,
if you want to use ECDSA keys you can update the OpenSSH installation relatively easily using
the Homebrew packaging system and its system duplicates repository, homebrew/dupes.

Other protocols/tools can be used for interaction between the host and the guest machine
instead of OpenSSH.

See also
ff The Building OpenJDK 8 on Mac OS X recipe from Chapter 4, Building OpenJDK 8

ff The Installing VirtualBox recipe

ff The Preparing SSH keys recipe

ff The Oracle VirtualBox user manual at https://www.virtualbox.org/manual/
UserManual.html

Preparing VirtualBox machines with
Windows

Popular virtualization tools have very good support for virtualizing Windows. The VirtualBox
setup for Windows can be easier than with Mac OS X. However, the SSH protocol is less
popular on Windows than on Unix-like operating systems, and the SSH server's setup on
Windows might be complex.

In this recipe, you will learn how to set up a Windows virtual machine for automated builds. A
set of in-depth instructions about configuration of free SSH servers on Windows will constitute
a significant part of the recipe.

Getting ready
For this recipe, we will require a Windows 7 virtual machine VirtualBox image.

How to do it...
The following procedure will help us to prepare the Windows virtual machine:

1.	 Prepare the SSH keys as described in the Preparing SSH keys recipe in this chapter.

https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html

Chapter 13

267

2.	 Download the Copssh SSH server implementation Version 3.1.4. Unfortunately, it was
removed from public downloads by the authors, but still can be found on the Internet
with these file details:
Copssh_3.1.4_Installer.exe

size: 5885261 bytes

sha1: faedb8ebf88285d7fe3e141bf5253cfa70f94819

3.	 Install Copssh into any Windows instance using the default installation parameters
and copy the installed files somewhere for later usage.

4.	 In VirtualBox, create a virtual machine instance using the IDE storage controller and
the default values for other settings.

5.	 Set up networking as described in the Installing VirtualBox recipe in this chapter and
boot the virtual machine.

6.	 Create a user with the same name on the host machine and login under this user (we
will use the name packt).

7.	 Download Windows Server 2003 Resource Kit Tools from the Microsoft website and
extract ntrights, instsrv, and srvany utilities from it.

8.	 Copy the extracted Copssh files into the c:\ssh directory.

9.	 Set up users and rights for the SSH service using the following script:
net user sshd sshd /ADD

net user SvcCOPSSH SvcCOPSSH /ADD

net localgroup Administrators SvcCOPSSH /add

ntrights +r SeTcbPrivilege -u SvcCOPSSH

ntrights +r SeIncreaseQuotaPrivilege -u SvcCOPSSH

ntrights +r SeCreateTokenPrivilege -u SvcCOPSSH

ntrights +r SeServiceLogonRight -u SvcCOPSSH

ntrights +r SeAssignPrimaryTokenPrivilege -u SvcCOPSSH

ntrights +r SeDenyInteractiveLogonRight -u SvcCOPSSH

ntrights +r SeDenyNetworkLogonRight -u SvcCOPSSH

10.	 Generate internal Copssh login and password information, and register Copssh as a
Windows service:
c:\copssh\bin\mkpasswd -l > c:\obf\copssh\etc\passwd

c:\copssh\bin\cygrunsrv.exe --install OpenSSHServer --args "-D"
--path /bin/sshd --env "CYGWIN=binmode ntsec tty" -u SvcCOPSSH -w
SvcCOPSSH

11.	 Install the Cygwin tools and run the bash shell.

Build Automation

268

12.	 Set up the client keys:
cp vmguest__id_rsa.pub /cygdrive/c/ssh/home/packt/.ssh/id_rsa.pub

cp vmguest__id_rsa /cygdrive/c/ssh/home/packt/.ssh/id_rsa

chmod 600 /cygdrive/c/ssh/home/packt/.ssh/id_rsa

13.	 Set up the server keys:
rm -rf /cygdrive/c/ssh/etc/ssh_host_*

cp vmguest__ssh_host_rsa_key.pub /cygdrive/c/ssh/etc/ssh_host_rsa_
key.pub

cp vmguest__ssh_host_rsa_key /cygdrive/c/ssh/etc/ssh_host_rsa_key

chmod 600 /cygdrive/c/ssh/etc/ssh_host_rsa_key

14.	 Set up the host client public key:
cp vmhost__id_rsa.pub /cygdrive/c/ssh/home/packt/.ssh/authorized_
keys2

15.	 Set up the host key fingerprint:
cp vmguest__known_hosts /cygdrive/c/ssh/home/packt/.ssh/known_
hosts

16.	 Check whether the connection from host to guest and back works seamlessly:
ssh packt@192.168.42.1

17.	 Register the Windows service that will be used to start the build process using the
instsrv and srvany utilities:
instsrv.exe packt_build c:\path\to\srvany.exe

reg add "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
packt_build\Parameters" /v Application /t reg_sz /d "C:\packt\
build.bat"

18.	 Configure the service to avoid starting automatically on OS boot:
sc config obf_build start= demand

19.	 Complete the manual build of OpenJDK using the Building OpenJDK 8 on Windows 7
SP1 recipe from Chapter 4, Building OpenJDK 8.

How it works...
In this recipe, we created a virtual machine instance with Windows and configured the SSH
server to enable seamless automated connections to it.

Binaries of Copssh SSH server Version 3.1.4 were released by the authors as free software
under the terms of GNU General Public License Version 3. This means that we can publish or
use unchanged binaries for any purposes without additional licensing limitations.

Chapter 13

269

Copssh uses the Cygwin environment and the OpenSSH server under the hood. It also
provides integration with the Windows user rights system.

Authorization roles given to the SvcCOPSSH user are required to support the SSH
key authentication.

We used Cygwin to set up key files to support the proper setting of Cygwin file rights.

Copssh uses parts of the old version of the Cygwin environment and we need the additional
full Cygwin installation for the OpenJDK build process. Different Cygwin versions running on
the same machine might interfere with each other causing errors. Although during heavy
use of such a setup, I never observed any problems, it is better to keep this point in mind
for instances of cryptic Cygwin/Copssh errors/crashes.

Two additional Windows users for the SSH server (sshd and SvcCOPSSH) are used internally
by Copssh.

The ntrighs utility was used to assign additional roles to the SvcCOPSSH user. This utility is
not officially supported in the newer versions of Windows but should work fine anyway.

Windows service registration will be required for automated builds to start the actual build
process over an SSH connection. For a proper environment setup, the build process on
Windows should be started from the cmd.exe shell (usually running a batch file). It cannot
be started directly from the SSH session that works in the guest Windows machine inside the
Cygwin environment. The instsrv and ntrighs utilities allowed us to create a Windows
service that will run the batch file (that in turn will start the actual build process) on a path
preconfigured in the registry. This packt_build service can be started from the SSH session
using the net start command, effectively starting the build process.

The Manual build was done on this VM to ensure that the environment setup was correct.

There's more...
Other SSH servers can be used in theory, although I am not aware of other free (as in "free
speech") SSH server implementations for Windows, which support key authentication.

Other protocols/tools can be used for interaction between the host and guest machine
instead of OpenSSH.

See also
ff The Building OpenJDK 8 on Windows 7 SP1 recipe from Chapter 4, Building OpenJDK 8

ff The Installing Cygwin for Windows builds recipe from Chapter 2, Building OpenJDK 6

ff The Installing VirtualBox recipe

ff The Preparing SSH keys recipe

Build Automation

270

ff The Oracle VirtualBox user manual at https://www.virtualbox.org/manual/
UserManual.html

ff The Copssh website at https://www.itefix.net/copssh

Automating builds
This recipe joins together all the previous recipes in this chapter. Prepared virtual machine
images and SSH with key authentication will allow us to build OpenJDK in fully automated
mode using simple bash scripts without additional tools.

Getting ready
For this recipe, we will require a Linux or Mac OS host machine running.

How to do it...
The following procedure will help us to prepare the Windows virtual machine:

1.	 Prepare SSH keys as described in the Preparing SSH keys recipe in this chapter.

2.	 Set up the VirtualBox installation and its network settings as described in the
Installing VirtualBox recipe in this chapter.

3.	 Prepare the virtual machine images as described in the previous recipes in this chapter.

4.	 For each VM image, prepare a list of environment variables, which will be used by the
build script (for example, Windows):
export VM_ADDRESS=192.168.42.1

export VM_NAME=jdk7-windows-amd64

export VM_OSTYPE=Windows7_64

export VM_MEMORY=1780

export VM_IOAPIC=on

export VM_NICTYPE=82545EM

export VM_MACADDR=auto

export VM_OBF_DIR=/cygdrive/c/packt

export VM_START_BUILD="net start obf_build >> build.log 2>&1"

export VM_SHUTDOWN="shutdown /L /T:00 /C /Y"

export VM_IDE_CONTROLLER=PIIX4

5.	 Add the snippets from the following steps (steps 6 to 12) to the main build script.

https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html
https://www.itefix.net/copssh

Chapter 13

271

6.	 Create a virtual machine instance using the VBoxManage utility:
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

VBoxManage createvm --name "$VM_NAME" --register --basefolder
"$SCRIPT_DIR"/target >> "$SCRIPT_DIR"/build.log 2>&1

VBoxManage modifyvm "$VM_NAME" --ostype "$VM_OSTYPE" >> "$SCRIPT_
DIR"/build.log 2>&1

VBoxManage modifyvm "$VM_NAME" --memory "$VM_MEMORY" >> "$SCRIPT_
DIR"/build.log 2>&1

VBoxManage modifyvm "$VM_NAME" --nic1 bridged --bridgeadapter1
tap0 >> "$SCRIPT_DIR"/build.log 2>&1

VBoxManage modifyvm "$VM_NAME" --nictype1 "$VM_NICTYPE" >>
"$SCRIPT_DIR"/build.log 2>&1

VBoxManage modifyvm "$VM_NAME" --macaddress1 "$VM_MACADDR" >>
"$SCRIPT_DIR"/build.log 2>&1

VBoxManage modifyvm "$VM_NAME" --cpus 1 >> "$SCRIPT_DIR"/build.log
2>&1

VBoxManage modifyvm "$VM_NAME" --audio none >> "$SCRIPT_DIR"/
build.log 2>&1

VBoxManage modifyvm "$VM_NAME" --usb off >> "$SCRIPT_DIR"/build.
log 2>&1

VBoxManage modifyvm "$VM_NAME" --vrde on

VBoxManage modifyvm "$VM_NAME" --ioapic "$VM_IOAPIC" >> "$SCRIPT_
DIR"/build.log 2>&1

VBoxManage modifyvm "$VM_NAME" --mouse usbtablet >> "$SCRIPT_DIR"/
build.log 2>&1

VBoxManage modifyvm "$VM_NAME" --keyboard usb >> "$SCRIPT_DIR"/
build.log 2>&1

VBoxManage setextradata global GUI/SuppressMessages
remindAboutAutoCapture,remindAboutMouseIntegrationOn,
showRuntimeError.warning.HostAudioNotResponding,
remindAboutGoingSeamless,remindAboutInputCapture,
remindAboutGoingFullscreen,
remindAboutMouseIntegrationOff,confirmGoingSeamless,
confirmInputCapture,remindAboutPausedVMInput,
confirmVMReset,confirmGoingFullscreen,
remindAboutWrongColorDepth >> "$SCRIPT_DIR"/build.log 2>&1

VBoxManage storagectl "$VM_NAME" --name "IDE" --add ide >>
"$SCRIPT_DIR"/build.log 2>&1

VBoxManage internalcommands sethduuid "$SCRIPT_DIR"/target/$VM_
NAME.vdi >> "$SCRIPT_DIR"/build.log 2>&1

Build Automation

272

VBoxManage storageattach "$VM_NAME" --storagectl "IDE" --port 0
--device 0 --type hdd --medium "$SCRIPT_DIR"/target/"$VM_NAME".vdi
>> "$SCRIPT_DIR"/build.log 2>&1

VBoxManage storagectl "$VM_NAME" --name "IDE" --controller "$VM_
IDE_CONTROLLER"

7.	 Start up the virtual machine instance:
VBoxManage startvm "$VM_NAME" --type headless >> "$SCRIPT_DIR"/
build.log 2>&1

ssh "$VM_ADDRESS" "ls" > /dev/null 2>&1

while [$? -ne 0]; do

echo "Waiting for VM ..."

 sleep 10

 ssh "$VM_ADDRESS" "ls" > /dev/null 2>&1

done

echo "VM started"

8.	 Enable remote logging back to the host machine over SSH:
ssh "$VM_ADDRESS" "cd "$VM_OBF_DIR" && echo 'Starting build' >
build.log"

nohup ssh "$VM_ADDRESS" "tail -f "$VM_OBF_DIR"/build.log | ssh
192.168.42.2 'cat >> "$SCRIPT_DIR"/build.log'" >> "$SCRIPT_DIR"/
build.log 2>&1 &

LOGGER_PID="$!"

9.	 Copy the OpenJDK sources into the build VM and start the build:
scp "$SCRIPT_DIR"/openjdk.zip "$VM_ADDRESS":"$VM_OBF_DIR"

ssh "$VM_ADDRESS" "cd "$VM_OBF_DIR" && unzip -q openjdk.zip >>
build.log 2>&1"

ssh "$VM_ADDRESS" "cd "$VM_OBF_DIR" && "$VM_START_BUILD""

10.	 Poll the build machine periodically looking for the build_finished.flag file that
should be created after the build is finished:
ssh "$VM_ADDRESS" "if [! -f "$VM_OBF_DIR"/build_finished.flag];
then exit 1; else exit 0; fi" > /dev/null 2>&1

while [$? -ne 0]; do

 echo "Waiting for build ..."

 sleep 300

ssh "$VM_ADDRESS" "if [! -f "$VM_OBF_DIR"/build_finished.flag];
then exit 1; else exit 0; fi" > /dev/null 2>&1

done

Chapter 13

273

11.	 Copy the build results, stop the logger, shut down the virtual machine instance, and
unregister it from VirtualBox:
scp -r "$VM_ADDRESS":"$VM_OBF_DIR"/dist/* "$SCRIPT_DIR"/dist

kill -9 $LOGGER_PID >> "$SCRIPT_DIR"/build.log 2>&1

ssh "$VM_ADDRESS" "$VM_SHUTDOWN" >> "$SCRIPT_DIR"/build.log 2>&1
|| true

sleep 15

VBoxManage controlvm "$VM_NAME" poweroff > /dev/null 2>&1 || true

VBoxManage unregistervm "$VM_NAME" >> "$SCRIPT_DIR"/build.log

12.	 To start the build with the chosen virtual machine image, use the
following commands:
. windows_amd64.env # please not the dot before the command

nohup build.sh >> build.log 2>&1 &

echo "$!" > .pid

tail -F "$SCRIPT_DIR"/build.log

13.	 After the build is finished, the OpenJDK binaries will be copied back to the
host machine.

How it works...
We use the low-level VBoxManage tool to manipulate virtual machine instances for better
control over this process.

To ensure that the virtual machine instance actually starts, we poll it periodically over SSH
and stop polling after the first successful connection.

For remote logging, we run the tail -f process on the build machine that sends its output
back to the host machine immediately over SSH. We start this process with a connection from
the host machine in the background using the nohup utility and write the host process pid to
the .pid file to kill the process after the build.

We use scp to copy sources to a build machine and commands over SSH to decompress the
sources and start the build.

After the build is started, we poll the build machine periodically over SSH to look for the
build_finished.flag file that should be created by the build script on the build machine.

After the build is finished, we copy OpenJDK binaries back to the host machine and shut down
the virtual machine instance gracefully before unregistering it.

Build Automation

274

Different virtual machine configuration and environment options are listed in the .env file for
each virtual machine image. We use the "dot first" syntax to import variables from the env file
to the current shell. This allows us to use a generic build script for all virtual machine images.

There's more...
This recipe can be seen as a basic example of build automation. Different commands, tools,
and protocols can be used to achieve the same goal.

The build_finished.flag file (with custom content) can also be used to end the build
prematurely after the error.

See also
ff The Installing VirtualBox recipe

ff The Preparing SSH keys recipe

ff The Preparing VirtualBox machines with Linux recipe

ff The Preparing VirtualBox machines with Mac OS X recipe

ff The Preparing VirtualBox machines with Windows recipe

ff Chapter 4, Building OpenJDK 8

ff The Oracle VirtualBox user manual at https://www.virtualbox.org/manual/
UserManual.html

Building cross-platform installers
When cloud services became the ubiquitous way to install desktop software, classic GUI
installers became almost obsolete. Cloud package repositories or stores can be much
more convenient to install and, in the first place, update the desktop application.

At the same time, GUI installers are still widely used for various free and commercial
applications. Especially for cross-platform applications, GUI installers should show the same
behavior on all supported platforms despite not being fully native on those platforms. Some
applications require complex environment changes at the time of installation, for example,
registering themselves as Windows services or setting environment variables.

In this recipe, we will prepare a cross-platform installer for OpenJDK that will work on all
supported platforms (Windows, Linux, and Mac OS X). We will use a popular open-source
installation tool, IzPack, written in Java.

https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html

Chapter 13

275

Getting ready
For this recipe we will require the OpenJDK binaries (to wrap into the installer).

How to do it...
The following procedure will help us in preparing the installer:

1.	 Download IzPack compiler Version 4.3.5 from the IzPack website (http://izpack.
org/) and install it.

2.	 Download the sample installation config file from the documentation section of
the Izpack website.

3.	 Move the jre directory from the OpenJDK image one level up, next to the openjdk
directory.

4.	 Add the jre directory to the installer configuration as a "loose" pack using the
following configuration snippet:
<pack name="OpenJDK RE" required="yes" loose="true">
 <description>OpenJDK Runtime Environment</description>
 <file src="jre" targetdir="$INSTALL_PATH"/>
</pack>

5.	 Add the openjdk directory (that now does not contain JRE) as a normal pack:
<pack name="OpenJDK DK" required="no">
 <description>OpenJDK Development Kit</description>
 <fileset dir="openjdk" targetdir="$INSTALL_PATH"/>
 <file src="uninstall" targetdir="$INSTALL_PATH"/>
</pack>

6.	 Adjust labels, GUI forms, locale, and icons as you like.

7.	 Run the IzPack compiler:
./izcomp/bin/compile ./config.xml -h ./izcomp -o installer.jar

8.	 Put the generated install.jar and jre directory in the openjdk-installer
directory.

9.	 Add the bash/batch script to the openjdk-installer directory which will allow us
to run the installer using the relative path to the jre directory:
./jre/bin/java -jar install.jar

10.	 Compress the openjdk-installer directory—it now contains the
OpenJDK installer.

http://izpack.org/
http://izpack.org/

Build Automation

276

How it works...
The main feature of our installer is that the installer itself runs on the same version of Java
that it will install. The loose="true" configuration in the JRE pack instructs the installer to
find this pack on a relative path outside of the main installation .jar file, without duplicating
the contents of the jre directory.

There's more...
The IzPack installer supports a lot of configuration options, we highlighted only the basic
one in this recipe. Besides the GUI and installation forms customizations, the one feature
that can be useful, especially for OpenJDK, is running scripts at installation time. We can
prepare scripts to adjust the environment and add them to the corresponding packs using
the executable configuration element. On simple Unix-like operating systems, such scripts can
simply append the PATH variable changes to ~/.bashrc or ~/.bash_profile files. On
Windows, utilities such as pathman, setx, and reg can be used to adjust the environment
variables or the Windows Registry.

Instead of running scripts at the time of installation, you can extend the IzPack itself (adding
new forms, and so on) and perform environment registration directly from Java code.

See also
ff Chapter 2, Building OpenJDK 6

ff Chapter 3, Building OpenJDK 7

ff Chapter 4, Building OpenJDK 8

ff The IzPack installer website at http://izpack.org/

http://izpack.org/

Index
Symbols
32-bit FreeType libraries

building, for OpenJDK 7 on Windows 52, 53
building, for OpenJDK 6 on Windows 34, 35

32-bit OpenJDK 6
building, on Windows 7 SP1 38-40

32-bit OpenJDK 7
building, on Windows 7 SP1 55-57

64-bit FreeType libraries
building, for OpenJDK 7 on Windows 54
building, for OpenJDK 6 on Windows 36, 38

64-bit OpenJDK 6
building, on Windows 7 x64 SP1 42, 43

64-bit OpenJDK 7
building, on Windows 7 x64 SP1 59, 60

@bug tag 177
@compile tag 178
@run tag 178
@summary tag 177
@test tag 177

A
abstract syntax tree (AST) 243
AdoptOpenJDK project

about 162
benefits 162
javadocs, securing 163, 164
JIT logs, visualizing 162, 163

amd64 24, 46
Ant

URL 170
architectures

building, OpenEmbedded
recipes used 105-107

Autoconf. See GNU Autoconf

B
benchmark project

creating, JMH used 193-200
Betterrev 228
bootstrap builds 80
build automation

performing 270-274
build-dep command 71, 82, 84
bylaws

URL 205

C
C++ code

debugging, NetBeans used 133-135
CA certificates

preparing 24-26
URL, for list 26

ccache tool
about 72
used, for speeding OpenJDK 8

build process 72
Certificate Authority certificates. See CA

certificates
chmod 777 command 58
Clang

used, for building OpenJDK 9 on
Mac OS X 233, 234

code review
creating 228-230

contributor
becoming 206, 207

cross-compilation, between ARM and x86
configuring 92, 93

cross-platform installers
building 274-276

278

custom test
writing, for jtreg 175-177

Cygwin
installing, for Windows builds 32, 33

D
debug command 136
defect

submitting, to OpenJDK
bug systems 224-226

development environment
setting up, with NetBeans 120-125

dev options
AdaptiveSizePolicyReadyThreshold 138
DieOnSafepointTimeout 137
EagerInitialization 138
FullGCALot 138
GuaranteedSafepointInterval 138
InlineUnsafeOps 137
MaxTrivialSize 138
MemProfiling 137
MinInliningThreshold 138
ScavengeWithObjectsInToSpace 137
SharedOptimizeColdStartPolicy 138
UsePrivilegedStack 137
Verbose 137
VerifyParallelOldWithMarkSweep 137
ZapJNIHandleArea 137
ZapResourceArea 137
ZapUnusedHeapArea 137

dev parameters, HotSpot
using 136, 137

F
fastdebug command 136
file local.properties

bytecodelib 184
jcommjar 184
jhalljar 184
jhjar 184
junitlib 184
servletjar 184

FreeType
about 35, 52
building 35
URL 35, 52

FT_CONFIG_OPTION_SUBPIXEL_RENDERING
macro 53

FT_EXPORT_DEF macro 53
FT_EXPORT macro 53

G
General Availability status 45
GNU Autoconf

about 67
working with 67, 68

GNU Compiler for Java (GCJ) 80
governance structure, Governing Board

Chair role 205
OpenJDK Lead role 205
two At-Large members 205
Vice Chair role 205

Graal
used, for building OpenJDK 9 243-245

H
Hob utility

about 95
used, for configuring OpenEmbedded

build 95-98
HotSpot

compiling, NetBeans used 135, 136
dev parameters, using 136, 137
intrinsic, adding 138-144

I
i586 term 24, 46
IcedTea

about 79, 80
building for ARM, with integrated

CACAO VM 100, 101
icedtea-2* source code tarball

URL 83
IcedTea 6

building 80-82
building, with SystemTap support 88, 89

icedtea6* source code tarball
URL 81

IcedTea 7
building 83, 84
building, with NSS security provider 87, 88

279

IcedTea Java WebStart implementation
preparing, for Mac OS X 115, 116
preparing, for Windows 117, 118
using, on Linux 113, 114

IcedTea patches
OpenJDK 7, building with 85, 86

IcedTea-Web browser plugin
about 110
building, on Linux 110-112

IcedTea-Web project 109
intrinsic

about 138
adding, to HotSpot 138-144

J
JamVM

about 102
porting 102, 103

Java Class Library (JCL) 7
Java code

debugging, NetBeans used 129-133
Java Community Process (JCP) 214
Java Compatibility Kit (JCK) 165
Java Concurrency Stress Test. See jcstress
Java KeyStore (JKS) format 25
Java Microbenchmark Harness. See JMH
Java Money API

URL 232
Java Network Launching Protocol (JNLP)

syntax 113
Java Specification Request. See JSRs
JavaTest 165
Java Test Harness. See JT Harness
Java WebStart technology 109
jcstress

about 186
building 186, 187
running 188
tests, writing for 189-193

JDK9
project page, URL 22

JDK bug tracking system
URL 174

JDK Lead 203
JEPs

about 216

suggesting 216-219
JEPs, Jigsaw

JEP 200 240
JEP 201 240
JEP 220 240

JHM
compiling 201

Jigsaw
about 239, 242
building 240, 241
module, installing as library 242
using 239

JIRA
about 223
URL 223

JIT log visualizer 164
Jitwatch

about 162
executable jar, URL 162

JMH
about 193
used, for creating benchmark

project 193-200
JMX Group webpage

URL 212
JSRs

about 113
suggesting 214-216

JT Harness
about 183
compiling, from source code 183-185
URL 170

JT_JAVA 168
jtreg

about 165
building, from source 169-171
custom test, writing for 175-177
TestNG tests, writing for 180-182
URL 167
used, for running tests 167-169
using, in GUI mode 178-180

jtreg command line arguments
-agentvm 169
-automatic 169
-jdk 168
-r 169
-verbose:summary 169

280

-w 169
URL 168

JUnit
URL 170

L
libmotif-dev package 82
Linux

IcedTea browser plugin, building on 110-112
IcedTea Java WebStart implementation,

using 113, 114
OpenJDK, configuring 18-21
OpenJDK, installing 16-18
VirtualBox machines, preparing with 262-264

LogCompilation parameter 163

M
Mac OS X

IcedTea Java WebStart implementation,
preparing for 115, 116

OpenJDK 7, building 49-51
OpenJDK 8, building 73-75
OpenJDK 9, building 233, 234
VirtualBox machines,

preparing with 264, 265
Mercurial

about 125
installing 125
URL 125
working with 125-127

minimum build environment
setting up 30, 31

MIPS
building, OpenEmbedded recipes used 105

MSYS
about 234
used, for building OpenJDK 9 on

Windows 234-236

N
NetBeans

used, for compiling HotSpot 135, 136
used, for creating patch 226, 227
used, for debugging C++ code 133-135
used, for debugging Java code 129-133

used, for setting up development
environment 120-125

NetBeans All bundle
URL 120

NETwork eXecute (NetX)
about 110, 113
module, building 113

Network Security Services (NSS) 87
NetX next.jar file 116
NSS security provider

IcedTea 7, building with 87, 88
ntrighs utility 269

O
OpenEmbedded

about 92, 93
architectures, adding 106
build, configuring 94
build, configuring with Hob utility 95-98
compile problems 100
configure problems 99
fetch problems 99
parsing problems 100
software, adding 106
using 93
working 98

OpenJDK
about 7, 8
configuring, on Linux 18-21
configuring, on Windows 14-16
defect, submitting to bug systems 224-226
distinguishing, from Oracle JDK 9-11
groups 21, 22, 211, 212
installing, from unofficial builds 12
installing, on Linux 16-18
installing, on Windows 11-14
projects 21, 22, 213
URL 21

OpenJDK 6
about 23, 24
building, on Ubuntu Linux 12.04 LTS 27-30
family tree 24
incremental builds 127, 128

OpenJDK 7
32-bit FreeType libraries, building on

Windows 52, 53

281

64-bit FreeType libraries, building on
Windows 54

about 45, 46
building, on Mac OS X 49-51
building, on Ubuntu Linux 12.04 LTS 46-48
building, with IcedTea patches 85, 86
incremental builds 127, 128

OpenJDK 8
about 66
build environment, configuring 67, 68
build process, speeding with ccache 72
building, on Mac OS X 73-75
building, on Windows 7 SP1 75-78
versus OpenJDK 9 232

OpenJDK 8 Ubuntu Linux 12.04 LTS
building 69-71

OpenJDK 9
building, from source 239
building on Mac OS X, Clang used 233, 234
building on Windows, MSYS used 234-237
building, with Graal 243-245
building, with Sumatra 245-256
early access preview, running 237, 238
early access preview, testing 238, 239
versus OpenJDK 8 232

OpenJDK community
about 203
contributor, becoming 206, 207

OpenJDK v9 patches
backporting, to OpenJDK v8 209, 211

OpenSSH 259
Oracle Contributor Agreement (OCA)

about 204
URL 206

Oracle JDK
OpenJDK, distinguishing from 9-11

Oracle VirtualBox user manual
URL 259

P
patch

creating, NetBeans used 226, 227
generating, with webrev 207, 209

pause > nul command 58, 78
plugin, VisualVM

creating 148-161

PrintAssembly parameter 163
process workflow

navigating through 222-224
project author 204
public-key cryptography 24

R
Reference Implementation (RI) 215

S
Secure Shell (SSH) protocol 259
SetEnv.Cmd script 58
Shark 104
source code, JHM

building 201
downloading 200

ssh-keygen command 262
SSH keys

preparing 259-262
vmguest__id_rsa 261
vmguest__id_rsa.pub 261
vmguest__known_hosts 261
vmguest__ssh_host_rsa_key 261
vmguest__ssh_host_rsa_key.pub 261
vmhost__id_rsa 261
vmhost__id_rsa.pub 261
vmhost__known_hosts 261
vmhost__ssh_host_rsa_key 261
vmhost__ssh_host_rsa_key.pub 261

standalone toolchain, for 32- and 64-bit
Windows' builds

preparing 61-64
standard tests, OpenJDK

about 172
running 172-174

Sumatra
about 253
used, for building OpenJDK 9 245-248

system calls (syscalls) 88
SystemTap support

IcedTea 6, building with 88, 89

T
tail -f command 58, 78
Technology Compatibility Kit (TCK) 216

282

tee command 58
TestNG tests

writing, for jtreg 180-182
TestNG v.6.8

URL 170
tests

running, jtreg used 167, 168
TraceClassLoading parameter 163
Transport Layer Security (TLS) 87
troubleshooting

code review, creating 228-230
defect, submitting to OpenJDK bug

systems 224-226
patch, creating with NetBeans 226, 227
process workflow, navigating

through 222-224
Truffle 243

U
Ubuntu

URL 263
Ubuntu Linux 12.04 LTS

OpenJDK 6, building on 27-30
OpenJDK 7, building on 46-48

UnlockDiagnosticVMOptions parameter 163

V
VirtualBox

about 258
installing 258, 259
machines, preparing with Linux 262-264
machines, preparing with Mac OS X 264, 265
machines, preparing with Windows 266-268

Visual Studio 2005 Express Edition
about 38
URL 36

VisualVM
building, from source code 146, 147
plugin, creating 148-161

W
webrev

used, for generating patch 207-209
Windows

32-bit FreeType libraries,

building for OpenJDK 6 34, 35
32-bit FreeType libraries,

building for OpenJDK 7 52, 53
64-bit FreeType libraries,

building for OpenJDK 6 36, 37
64-bit FreeType libraries,

building for OpenJDK 7 54
IcedTea Java WebStart implementation,

preparing for 117, 118
OpenJDK 9, building 234-236
OpenJDK, configuring 14-16
OpenJDK, installing 11-14
VirtualBox machines, preparing with 266-268

Windows 7 SP1
32-bit OpenJDK 6, building 38-41
32-bit OpenJDK 7, building 55-57
OpenJDK 8, building 75-78

Windows 7 x64 SP1
64-bit OpenJDK 6, building 42, 43
64-bit OpenJDK 7, building 59, 60

Windows builds
Cygwin, installing 32, 33

Windows Server 2003 SP1 Platform SDK
URL 37

wslauncher.sh script 116

X
Xalan

URL 171
Xcode 5

URL 233

Z
Zero-assembler HotSpot port

about 103
configuring, with Shark compiler 103-105

Thank you for buying
OpenJDK Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant Web Scraping
with Java
ISBN: 978-1-84969-688-3 Paperback: 72 pages

Build simple scrapers or vast armies of Java-based bots
to untangle and capture the Web

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Get your Java environment up and running.

3.	 Gather clean, formatted web data into your
own database.

4.	 Learn how to work around crawler-resistant
websites and legally subvert security measures.

Java EE 7 Developer
Handbook
ISBN: 978-1-84968-794-2 Paperback: 634 pages

Develop professional applications in Java EE 7 with this
essential reference guide

1.	 Learn about local and remote service endpoints,
containers, architecture, synchronous and
asynchronous invocations, and remote
communications in a concise reference.

2.	 Understand the architecture of the Java EE
platform and then apply the new Java EE 7
enhancements to benefit your own
business-critical applications.

3.	 Learn about integration test development on
Java EE with the Arquillian framework and the
Gradle build system.

Please check www.PacktPub.com for information on our titles

Java EE 7 with GlassFish 4
Application Server
ISBN: 978-1-78217-688-6 Paperback: 348 pages

A practical guide to install and configure the GlassFish 4
application server and develop Java EE 7 applications to
be deployed to this server

1.	 Install and configure GlassFish 4.

2.	 Covers all major Java EE 7 APIs and includes new
additions such as JSON Processing.

3.	 Packed with clear, step-by-step instructions,
practical examples, and straightforward
explanations.

Learning JavaScriptMVC
ISBN: 978-1-78216-020-5 Paperback: 124 pages

Learn to build well-structured JavaScript web
applications using JavaScriptMVC

1.	 Install JavaScriptMVC in three different ways,
including installation using Vagrant and Chef.

2.	 Document your JavaScript codebase and generate
searchable API documentation.

3.	 Test your codebase and application as well as
learn how to integrate tests with the continuous
integration tool—Jenkins.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with OpenJDK
	Introduction
	Distinguishing OpenJDK from Oracle JDK
	Installing OpenJDK on Windows
	Configuring OpenJDK on Windows
	Installing OpenJDK on Linux
	Configuring OpenJDK on Linux
	Navigating through OpenJDK groups and projects

	Chapter 2: Building OpenJDK 6
	Introduction
	Preparing CA certificates
	Building OpenJDK 6 on Ubuntu Linux 12.04 LTS
	Setting up the minimum build environment for the most compatible Linux builds
	Installing Cygwin for Windows builds
	Building 32-bit FreeType libraries for OpenJDK 6 on Windows
	Building 64-bit FreeType libraries for OpenJDK 6 on Windows
	Building 32-bit OpenJDK 6 on
Windows 7 SP1
	Building 64-bit OpenJDK 6 on Windows 7 x64 SP1

	Chapter 3: Building OpenJDK 7
	Introduction
	Building OpenJDK 7 on Ubuntu
Linux 12.04 LTS
	Building OpenJDK 7 on Mac OS X
	Building 32-bit FreeType libraries for OpenJDK 7 on Windows
	Building 64-bit FreeType libraries for OpenJDK 7 on Windows
	Building 32-bit OpenJDK 7 on
Windows 7 SP1
	Building 64-bit OpenJDK 7 on
Windows 7 x64 SP1
	Preparing a standalone toolchain for 32- and 64-bit Windows' builds

	Chapter 4: Building OpenJDK 8
	Introduction
	Working with GNU Autoconf
	Building OpenJDK 8 Ubuntu Linux 12.04 LTS
	Using ccache to speed up the OpenJDK 8 build process
	Building OpenJDK 8 on Mac OS X
	Building OpenJDK 8 on Windows 7 SP1

	Chapter 5: Building IcedTea
	Introduction
	Building IcedTea 6
	Building IcedTea 7
	Building OpenJDK 7 with IcedTea patches
	Building IcedTea 7 with the NSS security provider
	Building IcedTea 6 with the SystemTap support

	Chapter 6: Building IcedTea with Other VM Implementations
	Introduction
	Configuring cross-compilation between ARM and x86
	Building IcedTea for ARM with integrated CACAO VM
	Porting JamVM to use OpenJDK
	Configuring Zero-assembler with the Shark compiler to use OpenJDK
	Building for MIPS and other architectures using OpenEmbedded recipes

	Chapter 7: Working with WebStart and the Browser Plugin
	Introduction
	Building the IcedTea browser plugin
on Linux
	Using the IcedTea Java WebStart implementation on Linux
	Preparing the IcedTea Java WebStart implementation for Mac OS X
	Preparing the IcedTea Java WebStart implementation for Windows

	Chapter 8: Hacking OpenJDK
	Introduction
	Setting up the development environment with NetBeans
	Working with Mercurial forest
	Understanding OpenJDK 6 and 7 incremental builds
	Debugging Java code using NetBeans
	Debugging C++ code using NetBeans
	Using NetBeans to compile HotSpot
	Using HotSpot dev parameters
	Adding new intrinsic to HotSpot
	Building VisualVM from the source code
	Creating a plugin for VisualVM
	Getting benefits from the AdoptOpenJDK project

	Chapter 9: Testing OpenJDK
	Introduction
	Running tests using the downloaded or the built version of jtreg
	Building jtreg from the source
	Running the standard set of OpenJDK tests
	Writing your own test for jtreg
	Using jtreg in GUI mode
	Writing TestNG tests for jtreg
	Compiling JT Harness from the source code
	Building and running jcstress
	Writing tests for jcstress
	Creating a benchmark project using JMH
	Downloading the source and compiling JHM

	Chapter 10: Contributing to OpenJDK
	Introduction
	Becoming a contributor
	Generating a patch with webrev
	Backporting OpenJDK v9 patches to OpenJDK v8
	Understanding OpenJDK groups
	Understanding OpenJDK projects
	Suggesting new JSRs
	Suggesting new JEPs

	Chapter 11: Troubleshooting
	Introduction
	Navigating through the process workflow
	Submitting a defect to the OpenJDK bug systems
	Creating a patch using NetBeans
	Creating a code review

	Chapter 12: Working with Future Technologies
	Introduction
	Building OpenJDK 9 on Mac OS X using Clang
	Building OpenJDK 9 on Windows using MSYS
	Running and testing the early access preview of OpenJDK 9
	Using Jigsaw
	Building OpenJDK 9 with Graal
	Building OpenJDK 9 with Sumatra

	Chapter 13: Build Automation
	Introduction
	Installing VirtualBox
	Preparing SSH keys
	Preparing VirtualBox machines with Linux
	Preparing VirtualBox machines with
Mac OS X
	Preparing VirtualBox machines with Windows
	Automating builds
	Building cross-platform installers

	Index

