
www.allitebooks.com

http://www.allitebooks.org

OpenStack Essentials

Demystify the cloud by building your own private

OpenStack cloud

Dan Radez

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

OpenStack Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2015

Production reference: 1190515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-708-5

www.packtpub.com

Cover image by Bartosz Chucherko (chucherko@gmx.com)

www.allitebooks.com

www.packtpub.com
www.packtpub.com
http://www.allitebooks.org

Credits

Author

Dan Radez

Reviewers

Will Foster

Mostafa A. Hamid

Alvaro Lopez Ortega

Clay Shelor

Acquisition Editors

Sam Wood

Purav Motiwalla

Content Development Editor

Rohit Singh

Technical Editor

Siddhesh Patil

Copy Editor

Sarang Chari

Project Coordinator

Mary Alex

Proofreaders

Stephen Copestake

Sais Editing

Indexer

Mariammal Chettiyar

Production Coordinator

Alwin Roy

Cover Work

Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

Dan Radez joined the OpenStack community in 2012 in an operator role. His
experience has centered around installing, maintaining, and integrating OpenStack
clusters. He has been extended offers internationally to present OpenStack content to
a range of experts. Dan's other experience includes web application programming,
systems release engineering, virtualization product development, and network
function virtualization. Most of these roles have had an open source community
focus to them. In his spare time, Dan enjoys spending time with his wife and three
boys, training for and racing triathlons, and tinkering with electronics projects.

I would like to thank Packt Publishing for giving me the opportunity
to write my irst book. A big thank you goes to my wife for her
encouragement and support throughout the time I was writing
this book. She takes excellent care of me and my kids. Thanks also
to Chris Alfonso for referring Packt's inquiry to me and for his
hospitality during the month my family ransacked his house. I'd
also like to thank my friends and colleagues, Clay Shelor, Alvero
Lopez Ortega, and Will Foster. These gentlemen provided feedback
and reviews invaluable to my content being properly written and
coherent for your consumption. Finally, I'd like to thank the Lord for
the life and breath given to His creation for the purpose of His glory.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Will Foster is originally from Raleigh, North Carolina. He attended The Citadel,
The Military College of South Carolina, in 1996, to pursue a degree in english. He
was a performing member of the Summerall Guards, the elite close order Prussian
drill unit, as well as a cadet oficer within the Tango Company class of 2000. He also
holds a degree in technical writing from Appalachian State University and is a Red
Hat Certiied Engineer.

Since 2000, Will has been working as a UNIX/Linux systems administrator
involved in mission-critical, customer-facing production business environments.
A lifelong skateboard enthusiast, Will had a brief stint as a snowboard instructor
during 2000-2001.

Will has been working at Red Hat since 2007 as a senior systems
administrator / DevOps engineer managing enterprise IT storage and core
infrastructure. Currently, he works in the OpenStack deployment team. This
team designs, architects, and builds laboratories and infrastructure to test and
vet real-world customer deployments and cloud scenarios. They also collaborate
with the upstream development community and partners to improve and build
upon the OpenStack platform.

Will currently resides in Dublin, Ireland, and works in the same development
operations deployment team as the author, Dan Radez.

www.allitebooks.com

http://www.allitebooks.org

Mostafa A. Hamid is an information systems engineer from State University
of New York (SUNY), Potsdam. He is a Certiied Information Systems Security
Professional (CISSP), Rational Uniied Process (RUP) architect, and has a Linux
Professional Institute Certiication (LPIC). Besides these, he has certiications in
JavaScript, PHP, Backbone.js, and ethical hacking from SUNY Potsdam. He is also a
certiied Java programmer from American University, Cairo.

Mostafa has worked with Manon Systems. He has also worked as a technical support
engineer for United Systems, TP-LINK, and Hilton Worldwide. He was employed as
an ICT teacher at MOIS and is currently working as a software developer at Wassaq.
Mostafa has contributed to PHP classes and was nominated for an award. He
currently contributes to United Nations, Launchpad.net, and Stackoverlow.org.

I would like to thank Manon Niazi, whom I met in college—she
means a lot to me, the Deutschlander; my mother and my family
for their help at home; Mary Alex for her coordination of the project
activities; Siddhesh Patil for his assistance and instructions on the
technical part; and all the employees at Packt Publishing—thank you
everyone for giving me an opportunity to review this book. Special
thanks to the author of this book, Dan Radez. The reviewing process
was a cherishable experience.

Alvaro Lopez Ortega is a well-known leader in the open source community.
He is member of the GNU project and a contributor to OpenStack. He's also a former
GNOME developer and OpenSolaris core contributor. He is a veteran speaker at
open source conferences worldwide.

Currently, Alvaro works as an engineering manager for OpenStack R&D at Red
Hat. During 15 years of his professional career, Alvaro held several leader positions
with technology companies around the open source ecosystem, including product
strategy engineering management at Canonical and OpenSolaris technical lead at
Sun Microsystems.

www.allitebooks.com

http://www.allitebooks.org

Clay Shelor has worked as an English teacher, in network operations, and as a
team leader doing IT staff augmentation. He loves to gather information, put the
pieces together, implement a project, and then write about it for others to learn.
When not at work, he enjoys time with the family, reading, music, and tug of war
with the family dog.

Many thanks to Dan Radez for sharing his lifework with me and
allowing me to come along for the ride on this project. Dan is
exemplary in his work and a great friend. A big thank you goes to
Mary Alex for the encouragement to keep me going.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers, and more
For support iles and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub iles available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print, and bookmark content

• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

[i]

Table of Contents

Preface v

Chapter 1: Architecture and Component Overview 1

OpenStack architecture 1

Dashboard 2

Keystone 2

Glance 4

Neutron 5

Nova 5

Cinder 6

Swift 7

Ceilometer 7

Heat 7

Summary 8

Chapter 2: RDO Installation 9

Installing RDO using Packstack 10

Preparing nodes for installation 11

Installing Packstack and generating an answer ile 12
Summary 17

Chapter 3: Identity Management 19

Services and endpoints 19

Hierarchy of users, tenants, and roles 20
Creating a user 21
Creating a tenant 22
Granting a role 22
Logging in with the new user 23

Interacting with Keystone in the dashboard 24

Endpoints in the dashboard 26

Summary 27

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 4: Image Management 29

Glance as a registry of images 29

Downloading and registering an image 30
Using the web interface 32

Building an image 34
Summary 36

Chapter 5: Network Management 37

Networking and Neutron 37

Network fabric 38
Open vSwitch coniguration 38

VLAN 39
GRE tunnels 39
VXLAN tunnels 40

Creating a network 40

Web interface management 42

External network access 46

Preparing a network 46

Creating an external network 50
Web interface external network setup 51

Summary 54

Chapter 6: Instance Management 55

Managing lavors 55
Managing key pairs 56

Launching an instance 58

Managing loating IP addresses 59
Managing security groups 60

Communicating with the instance 61

Launching an instance using the web interface 62

Summary 67

Chapter 7: Block Storage 69
Use case 69

Creating and using block storage 69

Attaching the block storage to an instance 70

Managing Cinder volumes in the web interface 72

Backing storage 75
Cinder types 75

GlusterFS setup 76

Summary 79

Table of Contents

[iii]

Chapter 8: Object Storage 81

Use case 81

Architecture of a Swift cluster 81

Creating and using object storage 82

Object ile management in the web interface 83
Using object storage on an instance 85

Ring iles 86
Creating ring iles 86

Summary 88

Chapter 9: Telemetry 89

Understanding the data store 89

Deinitions of Ceilometer's coniguration terms 90
Pipelines 90
Meters 90
Samples 91
Statistics 91
Alarms 92

Graphing the data 93

Summary 96

Chapter 10: Orchestration 97

About orchestration 97

Writing templates 97

The AWS CloudFormation format 98
The Heat Orchestration Template (HOT) format 99

Launching a stack 99

Autoscaling instances with Heat 102

LBaaS setup 102
Web interface 110

Summary 113

Chapter 11: Scaling Horizontally 115

Scaling compute nodes 115

Installing more control and networking 117

Scaling control and network services 119

Load-balancing keystone 119

Additional Keystone tuning 122
Glance load balancing 122

Scaling other services 124

High availability 124

Highly available database and message bus 126

Summary 126

Table of Contents

[iv]

Chapter 12: Monitoring 127

Monitoring deined 127
Installing Nagios 128

Adding Nagios host checks 128
Nagios commands 129

Monitoring methods 131

Non-OpenStack service checks 133

Monitoring control services 134

Monitoring network services 137

Monitoring compute services 139

Summary 140

Chapter 13: Troubleshooting 141

The debug command line option 141

Tail the server logs 142

Troubleshooting Keystone and authentication 143

Troubleshooting Glance image management 145

Troubleshooting Neutron networking 145

Troubleshooting Nova launching instances 149

Troubleshooting post-boot metadata 150

Troubleshooting console access 152

Troubleshooting Cinder block storage 152

Troubleshooting Swift object storage 153

Troubleshooting Ceilometer Telemetry 153

Troubleshooting Heat orchestration 153

Getting more help 154

Summary 154

Index 155

[v]

Preface
The cloud has risen in popularity and function in the past few years. Storing data
and consuming computing resources on a third party's hardware reduces the
overhead of operations by keeping the number of people and owned assets low. For
a small company, this could be an opportunity to expand operations, whereas for
a large company, this could help to streamline costs. The cloud not only abstracts
the management of the hardware that an end user consumes, it also creates an on-
demand provisioning capability that was previously not available to consumers.
Traditionally, provisioning new hardware or virtualized hardware was a fairly
manual process that would often lead to a backlog of requests, thus stigmatizing this
way of provisioning resources as a slow process.

The cloud grew in popularity mostly as a public offering in the form of services
accessible to anyone on the Internet and operated by a third party. This paradigm
has implications for how data is handled and stored and requires a link that travels
over the public Internet for a company to access the resources they are using. These
implications translate into questions of security for some use cases. As the adoption
of the public cloud increased in demand, a private cloud was birthed as a response to
addressing these security implications. A private cloud is a cloud platform operated
without a public connection, inside a private network. By operating a private cloud,
the speed of on-demand visualization and provisioning could be achieved without
the risk of operating over the Internet, paying for some kind of private connection to
a third party, or the concern of private data being stored by a third-party provider.

Enter OpenStack, a cloud platform. OpenStack began as a joint project between
NASA and Rackspace. It was originally intended to be an open source alternative
that has compatibility with the Amazon Elastic Compute Cloud (EC2) cloud offering.
Today, OpenStack has become a key player in the cloud platform industry. It is in
its ifth year of release, and it continues to grow and gain adoption both in its open
source community and the enterprise market.

Preface

[vi]

In this book, we will explore the components of OpenStack. Today, OpenStack offers
virtualization of compute, storage, networking, and many other resources. We will
walk though installation, use, and troubleshooting of each of the pieces that make
up an OpenStack installation. By the end of this book, you should not only recognize
OpenStack as a growing and maturing cloud platform, but also have gained
conidence in setting up and operating your own OpenStack cluster.

What this book covers
Chapter 1, Architecture and Component Overview, outlines a list of components that
make up an OpenStack installation and what they do. The items described in this
chapter will be the outline for most of the rest of the book.

Chapter 2, RDO Installation, is a step-by-step walkthrough to install OpenStack using
the RDO distribution.

Chapter 3, Identity Management, is about Keystone, the OpenStack component that
manages identity and authentication within OpenStack. The use of Keystone on the
command line and through the web interface is covered in this chapter.

Chapter 4, Image Management, is about Glance, the OpenStack component that stores
and distributes disk images for instances to boot from. The use of Glance on the
command line and through the web interface is covered in this chapter.

Chapter 5, Network Management, talks about Neutron, the OpenStack component
that manages networking resources. The use of Neutron on the command line and
through the web interface is covered in this chapter.

Chapter 6, Instance Management, discusses Nova, the OpenStack component that
manages virtual machine instances. The use of Nova on the command line and
through the web interface is covered in this chapter.

Chapter 7, Block Storage, talks about Cinder, the OpenStack component that manages
block storage. The use of Cinder on the command line and through the web interface
is covered in this chapter.

Chapter 8, Object Storage, discusses Swift, the OpenStack component that manages
object storage. The use of Swift on the command line and through the web interface
is covered in this chapter.

Chapter 9, Telemetry, discusses Ceilometer, the OpenStack component that collects
telemetry data. Swift's command-line usage and basic graph generation are
discussed in this chapter.

Preface

[vii]

Chapter 10, Orchestration, is about Heat, the OpenStack component that can
orchestrate resource creation within an OpenStack cloud. The templates used to
launch stacks will be reviewed. The use of Heat on the command line and through
the web interface is covered in this chapter.

Chapter 11, Scaling Horizontally, discusses building OpenStack to be run on off-the-
shelf hardware. Ways to expand an OpenStack cloud's capacity are also covered in
this chapter.

Chapter 12, Monitoring, introduces one option to use to monitor your cloud's health,
considering the fact that there are a large number of moving parts to a running
OpenStack cloud.

Chapter 13, Troubleshooting, says that things break and OpenStack is no exception.
Each component that has been covered is revisited to offer some tips on how to
troubleshoot your cloud when something is not working the way it is expected to.

What you need for this book
You will need to have basic skills on a Linux command line, a computer (physical or
virtualized) to run an installation on, and an Internet connection to access OpenStack
installation resources. Exercises in this book will work off a Fedora installation
and will use three computers. While three are used as an example, an all-in-one
installation of OpenStack on a single machine is also a very practical deployment to
use to learn OpenStack.

Who this book is for
This book is for those that are interested in learning more about OpenStack as a
cloud platform. This book starts at the beginner's level and is intended as a getting-
started guide. Understand that it starts at the beginning of OpenStack and assumes a
basic knowledge of system administration and virtualization.

Conventions
In this book, you will ind a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Preface

[viii]

Code words in text, database table names, folder names, ilenames, ile extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The keystonerc_admin ile thus becomes much more than just a storage place for
the user's credentials."

A block of code is set as follows:

export OS_USERNAME=danradez

export OS_TENANT_NAME=danradez

export OS_PASSWORD=supersecret

export OS_AUTH_URL=http://192.168.123.101:5000/v2.0/

export PS1='[\u@\h \W(keystone_danradez)]\$ '

Any command-line input or output is written as follows:

mylaptop$ ssh root@192.168.122.101

control# yum update -y

control# yum install -y http://rdo.fedorapeople.org/rdo-release.rpm

control# packstack --gen-answer-file myanswers.txt

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "When you
click on the Create Project button, the Create User form will show up again with all
your original data illed in for you and the new tenant's name populated for you."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

Preface

[ix]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are veriied, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search ield. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Preface

[x]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Architecture and

Component Overview
OpenStack has a very modular design, and because of this design, there are lots
of moving parts. It's overwhelming to start walking through installing and using
OpenStack without understanding the internal architecture of the components that
make up OpenStack. In this chapter, we'll look at these components. Each component
in OpenStack manages a different resource that can be virtualized for the end user.
Separating each of the resources that can be virtualized into separate components
makes the OpenStack architecture very modular. If a particular service or resource
provided by a component is not required, then the component is optional to an
OpenStack deployment. Let's start by outlining some simple categories to group
these services into.

OpenStack architecture
Logically, the components of OpenStack can be divided into three groups:

• Control

• Network

• Compute

The control tier runs the Application Programming Interfaces (API) services, web
interface, database, and message bus. The network tier runs network service agents
for networking, and the compute node is the virtualization hypervisor. It has services
and agents to handle virtual machines. All of the components use a database and/
or a message bus. The database can be MySQL, MariaDB, or PostgreSQL. The
most popular message buses are RabbitMQ, Qpid, and ActiveMQ. For smaller
deployments, the database and messaging services usually run on the control node,
but they could have their own nodes if required.

www.allitebooks.com

http://www.allitebooks.org

Architecture and Component Overview

[2]

In a simple multi-node deployment, each of these groups is installed onto a separate
server. OpenStack could be installed on one node or two nodes, but a good baseline
for being able to scale out later is to put each of these groups on their own node. An
OpenStack cluster can also scale far beyond three nodes, and we'll look at scaling
beyond this basic deployment in Chapter 11, Scaling Horizontally.

Now that a base logical architecture of OpenStack is deined, let's look at what
components make up this basic architecture. To do that, we'll irst touch on the web
interface and then work towards collecting the resources necessary to launch an
instance. Finally, we will look at what components are available to add resources to a
launched instance.

Dashboard
The OpenStack dashboard is the web interface component provided with OpenStack.
You'll sometimes hear the terms dashboard and Horizon used interchangeably.
Technically, they are not the same thing. This book will refer to the web interface
as the dashboard. The team that develops the web interface maintains both the
dashboard interface and the Horizon framework that the dashboard uses.

More important than getting these terms right is understanding the commitment
that the team that maintains this code base has made to the OpenStack project. They
have pledged to include support for all the oficially accepted components that are
included in OpenStack. Visit the OpenStack website (http://www.openstack.org/)
to get an oficial list of OpenStack components.

The dashboard cannot do anything that the API cannot do. All the actions that are
taken through the dashboard result in calls to the API to complete the task requested
by the end user. Throughout this book, we will examine how to use the web interface
and the API clients to execute tasks in an OpenStack cluster. Next, we will discuss
both the dashboard and the underlying components that the dashboard makes calls
to when creating OpenStack resources.

Keystone
Keystone is the identity management component. The irst thing that needs to
happen while connecting to an OpenStack deployment is authentication. In its most
basic installation, Keystone will manage tenants, users, and roles and be a catalog of
services and endpoints for all the components in the running cluster.

http://www.openstack.org/

Chapter 1

[3]

Everything in OpenStack must exist in a tenant. A tenant is simply a grouping of
objects. Users, instances, and networks are examples of objects. They cannot exist
outside of a tenant. Another name for a tenant is project. On the command line, the
term tenant is used. In the web interface, the term project is used.

Users must be granted a role in a tenant. It's important to understand this
relationship between the user and a tenant via a role. In Chapter 3, Identity
Management, we will look at how to create the user and tenant and how to associate
the user with a role in a tenant. For now, understand that a user cannot log in to the
cluster unless they are members of a tenant. Even the administrator has a tenant.
Even the users the OpenStack components use to communicate with each other have
to be members of a tenant to be able to authenticate.

Keystone also keeps a catalog of services and endpoints of each of the OpenStack
components in the cluster. This is advantageous because all of the components have
different API endpoints. By registering them all with Keystone, an end user only
needs to know the address of the Keystone server to interact with the cluster. When a
call is made to connect to a component other than Keystone, the call will irst have to
be authenticated, so Keystone will be contacted regardless.

Within the communication to Keystone, the client also asks Keystone for the address
of the component the user intended to connect to. This makes managing the endpoints
easier. If all the endpoints were distributed to the end users, then it would be a
complex process to distribute a change in one of the endpoints to all of the end users.
By keeping the catalog of services and endpoints in Keystone, a change is easily
distributed to end users as new requests are made to connect to the components.

By default, Keystone uses username/password authentication to request a token
and Public Key Infrastructure (PKI) tokens for subsequent requests. The token has a
user's roles and tenants encoded into it. All the components in the cluster can use the
information in the token to verify the user and the user's access. Keystone can also
be integrated into other common authentication systems instead of relying on the
username and password authentication provided by Keystone. In Chapter 3, Identity
Management, each of these resources will be explored. We'll walk through creating a
user and a tenant and look at the service catalog.

Architecture and Component Overview

[4]

Glance
Glance is the image management component. Once we're authenticated, there are a
few resources that need to be available for an instance to launch. The irst resource
we'll look at is the disk image to launch from. Before a server is useful, it needs
to have an operating system installed on it. This is a boilerplate task that cloud
computing has streamlined by creating a registry of pre-installed disk images to boot
from. Glance serves as this registry within an OpenStack deployment. In preparation
for an instance to launch, a copy of a selected Glance image is irst cached to the
compute node where the instance is being launched. Then, a copy is made to the
ephemeral disk location of the new instance. Subsequent instances launched on
the same compute node using the same disk image will use the cached copy of the
Glance image.

The images stored in Glance are sometimes called sealed-disk images. These images
are disk images that have had the operating system installed but have had things
such as Secure Shell (SSH) host key, and network device MAC addresses removed.
This makes the disk images generic, so they can be reused and launched repeatedly
without the running copies conlicting with each other. To do this, the host-speciic
information is provided or generated at boot. The provided information is passed in
through a post-boot coniguration facility called cloud-init.

The images can also be customized for special purposes beyond a base operating
system install. If there was a speciic purpose for which an instance would be
launched many times, then some of the repetitive coniguration tasks could be
performed ahead of time and built into the disk image. For example, if a disk image
was intended to be used to build a cluster of web servers, it would make sense
to install a web server package on the disk image before it was used to launch an
instance. It would save time and bandwidth to do it once before it is registered with
Glance instead of doing this package installation and coniguration over and over
each time a web server instance is booted.

There are quite a few ways to build these disk images. The simplest way is to do
a virtual machine install manually, make sure that the host-speciic information is
removed, and include cloud-init in the built image. Cloud-init is packaged in most
major distributions; you should be able to simply add it to a package list. There
are also tools to make this happen in a more autonomous fashion. Some of the
more popular tools are virt-install, Oz, and appliance-creator. The most important
thing about building a cloud image for OpenStack is to make sure that cloud-init
is installed. Cloud-init is a script that should run post boot to connect back to the
metadata service. An example build of a disk image will be done in Chapter 4, Image
Management, when Glance is covered in greater detail.

Chapter 1

[5]

Neutron
Neutron is the network management component. With Keystone, we're
authenticated, and from Glance, a disk image will be provided. The next resource
required for launch is a virtual network. Neutron is an API frontend (and a set of
agents) that manages the Software Deined Networking (SDN) infrastructure for
you. When an OpenStack deployment is using Neutron, it means that each of your
tenants can create virtual isolated networks. Each of these isolated networks can be
connected to virtual routers to create routes between the virtual networks. A virtual
router can have an external gateway connected to it, and external access can be given
to each instance by associating a loating IP on an external network with an instance.
Neutron then puts all coniguration in place to route the trafic sent to the loating
IP address through these virtual network resources into a launched instance. This
is also called Networking as a Service (NaaS). NaaS is the capability to provide
networks and network resources on demand via software.

By default, the OpenStack distribution we will install uses Open vSwitch to
orchestrate the underlying virtualized networking infrastructure. Open vSwitch
is a virtual managed switch. As long as the nodes in your cluster have simple
connectivity to each other, Open vSwitch can be the infrastructure conigured to
isolate the virtual networks for the tenants in OpenStack. There are also many
vendor plugins that would allow you to replace Open vSwitch with a physical
managed switch to handle the virtual networks. Neutron even has the capability
to use multiple plugins to manage multiple network appliances. As an example,
Open vSwitch and a vendor's appliance could be used in parallel to manage virtual
networks in an OpenStack deployment. This is a great example of how OpenStack is
built to provide lexibility and choice to its users.

Networking is the most complex component of OpenStack to conigure and maintain.
This is because Neutron is built around core networking concepts. To successfully
deploy Neutron, you need to understand these core concepts and how they interact
with one another. In Chapter 5, Network Management, we'll spend time covering these
concepts while building the Neutron infrastructure for an OpenStack deployment.

Nova
Nova is the instance management component. An authenticated user who has access
to a Glance image and has created a network for an instance to live on is almost
ready to tie all of this together and launch an instance. The last resources that are
required are a key pair and a security group. A key pair is simply an SSH key pair.
OpenStack will allow you to import your own key pair or generate one to use. When
the instance is launched, the public key is placed in the authorized_keys ile so that
a password-less SSH connection can be made to the running instance.

Architecture and Component Overview

[6]

Before that SSH connection can be made, the security groups have to be opened
to allow the connection to be made. A security group is a irewall at the cloud
infrastructure layer. The OpenStack distribution we'll use will have a default security
group with rules to allow instances to communicate with each other within the same
security group, but rules will have to be added for Internet Control Message Protocol
(ICMP), SSH, and other connections to be made from outside the security group.

Once there's an image, network, key pair, and security group available, an instance
can be launched. The resource's identiiers are provided to Nova, and Nova looks
at what resources are being used on which hypervisors, and schedules the instance
to spawn on a compute node. The compute node gets the Glance image, creates the
virtual network devices, and boots the instance. During the boot, cloud-init should
run and connect to the metadata service. The metadata service provides the SSH
public key needed for SSH login to the instance and, if provided, any post-boot
coniguration that needs to happen. This could be anything from a simple shell script
to an invocation of a coniguration management engine.

In Chapter 6, Instance Management, we'll walk through each of the pieces of Nova and
see how to conigure them so that instances can be launched and communicated with.

Cinder
Cinder is the block storage management component. Volumes can be created and
attached to instances. Then, they are used on the instances as any other block device
would be used. On the instance, the block device can be partitioned and a ile system
can be created and mounted. Cinder also handles snapshots. Snapshots can be taken
of the block volumes or of instances. Instances can also use these snapshots as a
boot source.

There is an extensive collection of storage backends that can be conigured as the
backing store for Cinder volumes and snapshots. By default, Logical Volume
Manager (LVM) is conigured. GlusterFS and Ceph are two popular software-based
storage solutions. There are also many plugins for hardware appliances.

In Chapter 7, Block Storage, we'll take a look at creating and attaching volumes to
instances, taking snapshots, and coniguring additional storage backends to Cinder.

Chapter 1

[7]

Swift
Swift is the object storage management component. Object storage is a simple content-
only storage system. Files are stored without the metadata that a block ilesystem has.
These are simply containers and iles. The iles are simply content. Swift has two layers
as part of its deployment: the proxy and the storage engine. The proxy is the API layer.
It's the service that the end user communicates with. The proxy is conigured to talk
to the storage engine on the user's behalf. By default, the storage engine is the Swift
storage engine. It's able to do software-based storage distribution and replication.
GlusterFS and Ceph are also popular storage backends for Swift. They have similar
distribution and replication capabilities to those of Swift storage.

In Chapter 8, Object Storage, we'll work with object content and the coniguration
involved in setting up an alternative storage backend for Swift.

Ceilometer
Ceilometer is the telemetry component. It collects resource measurements and is able
to monitor the cluster. Ceilometer was originally designed as a metering system for
billing users. As it was being built, there was a realization that it would be useful for
more than just billing and turned into a general-purpose telemetry system.

Ceilometer meters measure the resources being used in an OpenStack deployment.
When Ceilometer reads a meter, it's called a sample. These samples get recorded on a
regular basis. A collection of samples is called a statistic. Telemetry statistics will give
insights into how the resources of an OpenStack deployment are being used.

The samples can also be used for alarms. Alarms are nothing but monitors that
watch for a certain criterion to be met. These alarms were originally designed for
Heat autoscaling. We'll look more at getting statistics and setting alarms in Chapter 9,
Telemetry. Let's inish listing out OpenStack components by talking about Heat.

Heat
Heat is the orchestration component. Orchestration is the process of launching
multiple instances that are intended to work together. In orchestration, there is a ile,
known as a template, used to deine what will be launched. In this template, there can
also be ordering or dependencies set up between the instances. Data that needs to be
passed between the instances for coniguration can also be deined in these templates.
Heat is also compatible with AWS CloudFormation templates and implements
additional features in addition to the AWS CloudFormation template language.

Architecture and Component Overview

[8]

To use Heat, one of these templates is written to deine a set of instances that needs
to be launched. When a template launches a collection of instances, it's called a stack.
When a stack is spawned, the ordering and dependencies, shared conlagration data,
and post-boot coniguration are coordinated via Heat.

Heat is not coniguration management. It is orchestration. It is intended to coordinate
launching the instances, passing coniguration data, and executing simple post-boot
coniguration. A very common post-boot coniguration task is invoking an actual
coniguration management engine to execute more complex post-boot coniguration.
In Chapter 10, Orchestration, we'll explore creating a Heat template and launching a
stack using Heat.

Summary
The list of components that have been covered is not the full list. This is just a small
subset to get you started with using and understanding OpenStack. Now that we
have introduced the OpenStack components, we will illustrate how they work
together as a running OpenStack installation. To illustrate an OpenStack installation,
we irst need to install one. In the next chapter, we will use the RDO OpenStack
distribution with its included installer to get OpenStack installed so that we can
begin to investigate these components in more detail.

[9]

RDO Installation
We looked at the components that make up an OpenStack installation in the previous
chapter; let's now take a look at what's involved in installing and coniguring these
components. In this chapter, we'll walk through the installation and coniguration of
a community-supported distribution of OpenStack called RDO using an installation
tool called Packstack.

Manual installation and coniguration of OpenStack involves installing, coniguring,
and registering each of the components we covered in the previous chapter and also
multiple databases and a messaging system. It's a very involved, repetitive, error-
prone, and sometimes-confusing process. Fortunately, there are a few distributions
that include tools to automate this installation and coniguration process.

One such distribution is the RDO distribution. RDO, as a name, doesn't oficially
mean anything. It's just the name of Red Hat's community-supported distribution
of OpenStack. Red Hat takes the upstream OpenStack code, packages its RPMs
with several installation options, and provides documentation, forums, IRC, and
other resources for the RDO community to use and support each other in running
OpenStack on RPM-based systems. There are no modiications to the upstream
OpenStack code in the RDO distribution. The RDO project packages the code
that is in each of the upstream releases of OpenStack. This means that we'll use
an open source, community-supported distribution of vanilla OpenStack for our
example installation. RDO can be run on any RPM-based system, Fedora will be
used for the operating system, and Packstack will be used for the install tool for this
demonstrative installation. CentOS or other RPM Linux distributions should also
work ine.

Other installation options available with RDO include
staypuft, a plugin for the foreman and triple-o, which is short
for OpenStack-on-OpenStack.

RDO Installation

[10]

Installing RDO using Packstack
Packstack is an install tool for OpenStack intended for demonstration and proof of
concept deployments. The other two installation tools mentioned are intended for
longer term installations that need to be managed and maintained and are outside
the scope of what we will accomplish in this book. Packstack uses SSH to connect to
each of the nodes and invokes a puppet run (speciically a puppet apply) on each of
the nodes to install and conigure OpenStack.

RDO website: http://openstack.redhat.com

RDO Quickstart: http://openstack.redhat.com/Quickstart

RDO Quickstart gives instructions to install RDO using Packstack in three
simple steps:

1. Update the system and install the RDO release rpm as follows:

sudo yum update -y

sudo yum install -y http://rdo.fedorapeople.org/rdo-release.rpm

2. Install Packstack as shown in the following command:

sudo yum install -y openstack-packstack

3. Run Packstack as shown in the following command:

sudo packstack --allinone

Downloading the example code

You can download the example code iles from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the lies
e-mailed directly to you.

The all in one installation method works well if you only have one server. It is a
recommended way to get OpenStack running quickly; that's exactly what Packstack is
for—building a deployment, tearing it down, and doing it again. In reality, however, a
cluster will usually need more than one compute node to host all the instances that end
users will spawn. Under the hood, the coniguration of Neutron is slightly different
for an all-in-one single-server installation as compared to a multinode installation.
So, instead of boxing our example installation into a single server from the start as
Quickstart does, we will work though a multinode installation.

http://openstack.redhat.com
http://openstack.redhat.com/Quickstart

Chapter 2

[11]

Don't avoid doing an all-in-one installation; it really is as simple as
the steps make it out to be, and there is value in getting an OpenStack
installation done quickly. Getting an all-in-one installation is
something that can be done easily, and it will be more beneicial for
us to cover a multinode installation here.

The environment we will work through here will be useful in Chapter 11, Scaling
Horizontally, to demonstrate adding compute nodes to OpenStack when scaling is
covered. Packstack can do this multinode installation; it will just take additional
coniguration to pass to Packstack before the installation starts.

Compute nodes are the hypervisor nodes where the instances run.
Neutron is the networking component.

Preparing nodes for installation
Before working on the extra coniguration, let's deine the architecture for our
demonstration cloud. Let's use three nodes, one for each of our logical categories of
OpenStack that were deined earlier:

• A control node

• A network node

• A compute node

Each node will have two network interfaces. The eth0 interface on each node
will be in the 192.168.123.0/24 subnet, and the eth1 interface will be in the
192.168.122.0/24 subnet. We will assign IPs as shown in the following
two paragraphs.

The 192.168.122.0/24 subnet represents the public network that the nodes are
connected to, and the 192.168.123.0/24 subnet represents the private network.
These networks represent the physical network that will carry communication in
and out of the OpenStack cluster. In reality, more than two networks should exist. A
recommended architecture still has the internal or data network for communication
within OpenStack. The networking trafic for the instances and the storage trafic
would also have their own segregated networks requiring four interfaces on each
node for a more complete deployment. Our example will only use two networks to
simplify the installation.

www.allitebooks.com

http://www.allitebooks.org

RDO Installation

[12]

Make sure that your nodes have several CPUs and a minimum of 4 to 6 GB of RAM,
and install CentOS or Fedora or another RPM-based Linux distribution of your
choice. This will allow you to install OpenStack and launch a few small instances. If
you're running low on resources, you could merge the control and network nodes
into one node and initially run a two-node cluster.

Installing Packstack and generating an

answer ile
Now that we have an architecture deined for installation, let's take a look at the
extra coniguration that will be passed into Packstack using an answer ile. The
Packstack command has a parameter that can be passed to generate an initial
answer ile for you. This ile is simply a text ile full of key-value pairs that are
initially generated with all the default values used for the all-in-one installation. The
all-in-one installation actually generates the same ile and uses it to complete the
installation. To get started, log in to your control node. Set up the RDO repository,
install Packstack, and generate a new answer ile as follows:

mylaptop$ ssh root@192.168.122.101

control# yum update -y

control# yum install -y http://rdo.fedorapeople.org/rdo-release.rpm

control# packstack --gen-answer-file myanswers.txt

When you edit the generated ile, you'll see an extensive list of key-value pairs that
conigure all the different OpenStack components.

Now that you have a Packstack ile generated, let's start walking through
customizing it. The irst thing to notice is that Packstack has illed in all the HOST
coniguration options with an IP address. If the 192.168.123.101 address was not
used, search and replace all of these values to ensure that the 123 network will be
used. Here's the command to accomplish this:

control# sed -i 's/192.168.122.101/192.168.123.101/g' myanswers.txt

Next, we will update some of the sample host values to relect the architecture just
mapped out. Set the Neutron HOST values to the Neutron host IP address and the
compute HOST value to the computer host. Also, update the Horizon HOST value
to use the public IP of the host. This ensures that things get conigured properly to
expose the web interface on the public network. Here's how we accomplish this:

CONFIG_NEUTRON_SERVER_HOST=192.168.123.102

CONFIG_NEUTRON_L3_HOSTS=192.168.123.102

CONFIG_NEUTRON_DHCP_HOSTS=192.168.123.102

Chapter 2

[13]

CONFIG_NEUTRON_METADATA_HOSTS=192.168.123.102

CONFIG_NOVA_COMPUTE_HOSTS=192.168.123.103

CONFIG_HORIZON_HOST=192.168.122.101

For networking to work properly in a multinode coniguration, there are extra
coniguration options needed. We'll use Virtual Extensible LAN (VXLAN)
tunneling. Update these coniguration options to specify the VXLAN coniguration:

CONFIG_NEUTRON_OVS_TENANT_NETWORK_TYPE=vxlan

CONFIG_NEUTRON_OVS_TUNNEL_RANGES=1:1000

CONFIG_NEUTRON_OVS_TUNNEL_IF=eth0

Finally, two of the components we'll cover are not installed by default in Packstack,
so we will enable these as follows:

CONFIG_SWIFT_INSTALL=y

CONFIG_HEAT_INSTALL=y

Now that the extra hosts are conigured, the extra components are added, and the
networking coniguration is updated, this ile needs to be fed into Packstack to
execute the installation. Packstack is invoked using the --answer-file parameter
with the answer ile as the argument value; here's how:

control# packstack --answer-file myanswers.txt

It's important to note here that when Packstack is run with this option, it is an
idempotent run. So, if something fails in the Packstack run, you can correct it and
rerun Packstack. All the other ways of invoking Packstack, all-in-one included, are
not idempotent; only --answer-file is. This is very important because when a new
answer ile is generated, all new passwords get generated too. Consequently, if a
previous Packstack run set up something that used one of the generated passwords,
then using a newly generated answer ile with new passwords will never succeed.

Let's look at how a successful Packstack run will look. When you execute Packstack
and pass the answer ile, the irst section will ensure connectivity to the nodes and
then generate manifest entries. There are a large number of lines in the output
referring to these manifest entries, so the output here has been truncated. Where you
see {XYZ} in this output, you can assume that you'll see the line repeated for all the
different items that need manifests for installation. Manifest entries are iles that are
full of puppet classes. The manifest iles are coniguration deinitions that will invoke
puppet modules on the nodes when the puppet is run on them.

RDO Installation

[14]

Next in this output, you will see pairs of lines that read Applying {IP_ADDRESS}_
{XYZ}.pp and {IP_ADDRESS}_{XYZ}.pp [DONE]. Each of the IP addresses in the
answer ile will be associated with the different items that need to be installed and
conigured for the OpenStack installation. When each of these tasks gets started, an
Applying message is printed, and when each inishes, a [DONE] message is printed.
Finally, if everything went successfully, a success message will be provided with any
information important to the completed installation. Here's the output summary:

control# packstack --answer-file myanswers.txt

Welcome to Installer setup utility

Packstack changed given value y to required value n

Installing:

Clean Up [DONE]

Setting up ssh keys [DONE]

Discovering hosts' details [DONE]

Adding {XYZ} manifest entries [DONE]

Preparing servers [DONE]

Installing Dependencies [DONE]

Copying Puppet modules and manifests [DONE]

Applying 192.168.123.103_{XYZ}.pp

Applying 192.168.123.101_{XYZ}.pp

Applying 192.168.123.102_{XYZ}.pp

Applying 192.168.122.101_{XYZ}.pp

192.168.123.102_{XYZ}.pp: [DONE]

192.168.123.103_{XYZ}.pp: [DONE]

192.168.123.101_{XYZ}.pp: [DONE]

192.168.122.101_{XYZ}.pp: [DONE]

Applying Puppet manifests [DONE]

Finalizing [DONE]

 **** Installation completed successfully ******

Chapter 2

[15]

Additional information:

 * Time synchronization installation was skipped. Please note that
unsynchronized time on server instances might be problem for some
OpenStack components.

 * Did not create a cinder volume group, one already existed

 * File /root/keystonerc_admin has been created on OpenStack client host
192.168.123.101. To use the command line tools you need to source the
file.

 * To access the OpenStack Dashboard browse to http://192.168.122.101/
dashboard .

Please, find your login credentials stored in the keystonerc_admin in
your home directory.

 * To use Nagios, browse to http://192.168.123.101/nagios username :
nagiosadmin, password : 918aa228abe04e6d

 * Because of the kernel update the host 192.168.123.103 requires reboot.

 * Because of the kernel update the host 192.168.123.101 requires reboot.

 * Because of the kernel update the host 192.168.123.102 requires reboot.

 * Because of the kernel update the host 192.168.122.101 requires reboot.

 * The installation log file is available at: /var/tmp/
packstack/20140528-003206-reQmjV/openstack-setup.log

* The generated manifests are available at: /var/tmp/packstack/20140528-
003206-reQmjV/manifests

This installation run required a reboot of the nodes because of a kernel update.
If this is indicated, make sure to do the reboot. In some cases, you may have got a
new kernel that has added support for network namespaces required by the
advanced networking.

As part of the Packstack run, a ile named keystonerc_admin is created on the
control node with the administrative user's credentials. Cat this ile to see its contents
and get credentials to log in, as follows:

control# cat ~/keystonerc_admin

export OS_USERNAME=admin

export OS_TENANT_NAME=admin

export OS_PASSWORD=1ef82c52e0bd46d5

export OS_AUTH_URL=http://192.168.123.101:5000/v2.0/

export PS1='[\u@\h \W(keystone_admin)]\$ '

RDO Installation

[16]

Now that you have an OpenStack installation and the credentials to log in, open
your web browser and go to the IP address you used for your CONFIG_HORIZON_
HOST coniguration parameter. The demonstration installation coniguration values
would expose the web server as shown in the following screenshot of the page at
http://192.168.122.101/.

Use the admin user and the generated password that came from the keystonerc_
admin ile to log in. If all went properly, you would be presented with the OpenStack
dashboard web interface. Here's a screenshot of the hypervisor list showing the
single hypervisor in the cluster built in this chapter:

Chapter 2

[17]

Summary
Using Packstack, we now have OpenStack installed and running. Now that
OpenStack is installed and running and you've logged in to the dashboard interface,
let's walk through each of the components discussed in Chapter 1, Architecture and
Component Overview, and you will learn how to use each of them. In the next chapter,
we will take a look at Keystone to manage users, tenants, and roles used in managing
identities within the OpenStack cluster.

[19]

Identity Management
In the previous chapter, we installed OpenStack using RDO. Now that OpenStack
is ready for use, we will begin to investigate what was installed and how to use it,
starting with identity management. Keystone is the identity management component
in OpenStack. In this chapter, we will look at service registration and the relationship
of users with tenants and the role of a user in a tenant.

Services and endpoints
Each of the components in an OpenStack cluster is registered with Keystone.
Each of the services has endpoints and each of the services has a user. A service in
Keystone is a record of another OpenStack component that will need to be contacted
to manage virtual resources. Endpoints are the URLs to contact these services. Let's
look at this on the command line. Remember the keystonerc_admin ile? You'll
need the information in that ile to authenticate and interact with OpenStack. The
information is as follows:

control# cat keystonerc_admin

export OS_USERNAME=admin

export OS_TENANT_NAME=admin

export OS_PASSWORD=1ef82c52e0bd46d5

export OS_AUTH_URL=http://192.168.123.101:5000/v2.0/

export PS1='[\u@\h \W(keystone_admin)]\$ '

control# keystone --os-username admin --os-tenant-name admin \
--os-password 1ef82c52e0bd46d5 --os-auth-url \
http://192.168.123.101:5000/v2.0/ service-list

Identity Management

[20]

Manually entering Keystone arguments is a real challenge and prone to error. The
keystonerc_admin ile thus becomes much more than just a storage place for the
user's credentials. If you source the ile, then those values are automatically placed
in the shell's environment. OpenStack's Python clients know to look at the shell's
environment to get these values when they aren't passed as arguments. For example,
execute the service-list command again with the keystonerc ile sourced,
as follows:

control# source keystonerc_admin

control# keystone service-list

As you will see, it is much more manageable to issue this command and subsequent
commands now. This list shows all the components that are registered with this
OpenStack cluster. Now list the endpoints as follows:

control# keystone endpoint-list

The hashes in the service_id column will match the hashes from the service-list
command you just executed. Each of the services has a public, private, and admin
endpoint URL. These are used by the components and API clients to know how to
connect to the different components. An end user or a component within the cluster
can always ask Keystone for the endpoint of a component to connect to. This makes
it manageable to update the endpoint and be certain that new clients are connecting
to the correct endpoint. The only endpoint that needs to be known ahead of time is
the Keystone endpoint. Registration of a service and a set of endpoints only allows
us to know about a service and how to connect to it. Each of these services also has
a user. The services' users are used for inter-component communication. Each of the
services authenticate with Keystone to communicate with each other.

Hierarchy of users, tenants, and roles
A user is granted a role in a tenant. A tenant is simply a grouping of resources. A
user can have a role in multiple tenants. Without a role in a tenant, a user cannot
create virtual resources in an OpenStack cluster. A user is useless without a role in
a tenant. All virtual resources created in OpenStack must exist in a tenant. Virtual
resources are the virtual infrastructure that OpenStack manages. Among others,
instances, networks, storage, and disk images must exist in a tenant. Recall the
services that were just introduced; they all have a user that has a role in a tenant. If
you list the users and tenants in your OpenStack installation, you will see a user for
each of the components installed in the installed cluster. Then, list one of the user
roles in the services tenant. Let's use Nova as an example; here's the output summary
after you hit the following commands:

Chapter 3

[21]

control# keystone user-list

control# keystone tenant-list

control# keystone user-role-list --user nova --tenant services

+---------------+-------+--------------------+--------------------+
| id | name | user_id | tenant_id |
+---------------+-------+--------------------+--------------------+
| {role_id} | admin | {user_id} | {tenant_id} |
+---------------+-------+--------------------+--------------------+

Now recall that when we authenticated the admin user earlier, the admin user was
authenticating to itself. A common convention for creating tenant names is to use
the same name as that of the user that will be using it unless it is used by a group. If
there are multiple users that have roles in a tenant, a more descriptive name is used
for the tenant's name. Take the admin and services tenants as examples of using the
user's name or a more descriptive name. There are multiple users in the services
tenant. It's a tenant for all the users of services. There is only one user that uses the
admin tenant—the admin user. Each user that will use an OpenStack deployment
will need a user to log in and a tenant to operate out of. Let's walk through creating a
user and tenant and giving that user a role in the tenant.

Creating a user
We will start by creating a user. There are a handful of subcommands for user
management. Run the Keystone client without any arguments and look through the
list of subcommands that start with user-. To create a user, use the user-create
subcommand as follows:

control# keystone user-create --name danradez

A user now exists that has my irst and last name as its username. There are other
properties that can be set when a user is created. Use the help in the command-line
client to get more information about these properties, as follows:

control# keystone help user-create

All of OpenStack's command-line clients use this syntax convention to display help.
In any of the component's clients, you can use the subcommand help and pass it
the subcommand's name that you want help on, and a list of arguments and their
descriptions will be displayed. An e-mail or a password could have been set when the
user was created. Except for passwords, all these properties can also be updated using
the user-update subcommand. Let's update the new user's e-mail as an example:

control# keystone user-update --email danradez@example.com danradez

www.allitebooks.com

http://www.allitebooks.org

Identity Management

[22]

Here, the new user has been updated to have an e-mail address. To set a password
for this, the user uses the user-password-update subcommand, as follows:

control# keystone user-password-update danradez --pass supersecret

In this example, the --pass argument was given; the client can be left to prompt you
for the password.

Creating a tenant
Now that we have a user, we need a tenant for the user to store some virtual
resources. Similar to the subcommands for user management, all the subcommands
for tenant management begin with tenant-. The following tenant-create
subcommand will create a new tenant for the new user:

control# keystone tenant-create --name danradez

In this example, the tenant is created using the convention mentioned earlier, with
the username as the name of the tenant. A tenant also has a description property;
use keystone help tenant-create or keystone help tenant-update to get the
syntax to set the tenant's description.

Granting a role
Now that we have a user and a tenant, they need to be associated with each other.
To do this, the user, the tenant, and a role need to be passed to the user-role-add
command. Before this is executed, using the role-list command, get role_id of
the member, as shown in the following code:

control# keystone role-list

control# keystone user-role-add --user danradez --tenant danradez \ -
-role {member_role_id}

This long command associates the user, the tenant, and the role with each other. This
association can now be displayed using the user-role-list subcommand used
earlier, as follows:

control# keystone user-role-list --user danradez --tenant danradez

That command will show you that the new user was granted the member role in the
new tenant. Now that we have a new user that has a role in a tenant, we can use this
user's password to make command-line API calls in the same way it was done with
the admin user.

Chapter 3

[23]

Logging in with the new user
The easiest way to start using the new user is to make a copy of an existing
keystonerc ile, update the values in it, and source the ile. We conveniently already
have an existing keystonerc ile that was used for the admin user. Make a copy of it
and edit it so that its contents have values respective to your new user, as follows:

control# cp keystonerc_admin keystonerc_danradez

Here are the contents of the new ile:

export OS_USERNAME=danradez

export OS_TENANT_NAME=danradez

export OS_PASSWORD=supersecret

export OS_AUTH_URL=http://192.168.123.101:5000/v2.0/

export PS1='[\u@\h \W(keystone_danradez)]\$ '

AUTH_URL here is pointing to the internal URL; the public URL is also a ine choice
for this value.

Remember to use Keystone's service-list and endpoint-list
commands if you want to use a different Keystone endpoint. Next,
we must source the new keystonerc ile. A simple authentication
veriication is to issue a token-get command. If it returns an excessive
amount of content, then you have received the contents of a Public Key
Infrastructure (PKI) token for the user. If you get an error, it means that
authentication failed.

The following commands encapsulate the discussion in the preceding paragraph:

control# source keystonerc_danradez

control# keystone token-get

Once you are able to authenticate, you can start to build your virtual infrastructure as a
non-administrative user and create more accounts for other non-administrative users.

Identity Management

[24]

Interacting with Keystone in the

dashboard
Now that we have worked through managing Keystone resources on the command
line, let's take a look at how to do the same through the web interface. Log in as the
admin user, select the Admin menu, and then select the identity submenu. Here,
you'll see menu options to manage projects and users. A project and a tenant are
the same. You'll see tenant used on the command line and project used in the web
interface. Go ahead and select the Users menu. You'll see the same list of users from
the Keystone user-list command on the command line. In the web interface,
tenants can be created inline of a user creation. Select the Create User button in the
top-right corner of the user management panel. Fill in the form as appropriate:

Before you can create the user, you'll have to select a project. If there isn't one that
you want to add the new user to in the existing list, you can create one. Click the
button next to the project selection dropdown. A Create Project form will show up
as follows; ill this one in as appropriate:

Chapter 3

[25]

When you click on the Create Project button, the Create User form will show
up again with all your original data illed in for you and the new tenant's name
populated for you:

Identity Management

[26]

Now the user can be created. Click on Create User, and you're ready to start using
the user's login and the new tenant. Remember that you can select an existing tenant
instead of creating a new one. This just gives multiple users access to the resources
in a tenant.

Endpoints in the dashboard
We've looked at user management in the dashboard; now let's look at service
and endpoints in the web interface. The dashboard doesn't provide a way to add
or update services and endpoints. This is something reserved for the command
line because it's usually done once and doesn't need more management. The
dashboard does provide a slightly better display of the services and endpoints than
the command line does. Click on the Project menu and the Access and Security
submenu. There will be a set of tabs to select from across the top of the screen, as
shown in the following screenshot. Select API Access. Does this look familiar?

Chapter 3

[27]

Summary
In this chapter, we looked at managing services, endpoints, users, tenants, and roles
through both the command line and the dashboard. Now that we have created
users and given them tenants to manage virtual resources, let's start collecting the
resources needed to launch an instance. The irst resource that is needed before an
instance can be launched is a disk image for that instance to launch from. In the next
chapter, we will look at Glance, the image management component, and how to
import and build images to launch instances.

[29]

Image Management
In the preceding chapter, we looked at how identities are managed in OpenStack and
how to authenticate to an OpenStack cluster. In this chapter, we will start to gather
the resources necessary to launch an instance. The irst resource we will work with
is the image that an instance will use as its disk image when it is launched. Glance is
the image management component in OpenStack. In this chapter, we'll look at how
to register images with the image registry and how to build a custom cloud image.

Glance as a registry of images
At launch, a generic virtual machine requires a prebuilt disk image to boot from—
some kind of storage that holds the operating system using which the virtual
machine will run. Traditionally, a new virtual machine is created with a form of
installation media accessible to it. This could take the form of an ISO, optical device,
or maybe some form of network-accessible media. Whatever media is provided, an
operating system installation is the next step in this scenario. One of the purposes
of cloud computing is to be able to quickly create disposable virtual instances. The
tasks of running an operating system installation and spawning a virtual machine
fast are polar opposites of each other. Cloud computing has removed the need for a
per-instance operating system installation by creating what has come to be known
as cloud images. Cloud images are simply pre-installed bootable disk images that
have been sealed. A sealed disk image is a sparse ile containing ile system and
an underlying operating system that has had its identiiable host-speciic metadata
removed. Host-speciic items include things such as SSH host keys, MAC addresses,
static IP addresses, persistent udev rules, and any other identiiers that would
conlict if used by two of the same servers. Do you see where this is going? These
images are imported into the Glance registry and then copied out to the compute
nodes for the instances to launch with. We are going to irst look at downloading a
prebaked image and registering it with Glance. Then, we'll look at what's needed to
build your own custom image.

Image Management

[30]

Downloading and registering an image
If you search the Internet for cloud image, you'll most likely get a link to a place to
download a disk image from and import into Glance; most of the major distributions
out there have one already built and ready to go for you. In general, they are
distributed as qcow2 or raw images, and for the vast majority of cases, either of them
will work ine. You'll have to research them on your own to decide whether one or
the other its your use case better. There's also a test distribution, which is extra-super
small, called CirrOS. If you visit http://download.cirros-cloud.net download the
.img ile from the latest version is available.

Don't use CirrOS for anything other than testing. It is built
with libraries that make it insecure for anything other than
demonstration and testing.

To demonstrate using Glance, we will use the Fedora qcow cloud image downloaded
from https://getfedora.org/; let's start with the command line. To interact
with Glance, you'll need to be sure that you've sourced a keystonerc ile; refer to
Chapter 3, Identity Management, if you need a refresher on this. You will just get an
authentication error message if a keystonerc ile is not currently sourced. Go ahead
and list the images registered in Glance, as shown in the following command:

control# glance image-list

This should return nothing since there aren't any images in Glance yet.

It is important to note here that this command would only list the
images in the tenant to which the user is authenticating.

If you have sourced your keystone_admin ile, you would list the Glance images in
the admin tenant. If you sourced your non-admin user's keystonerc ile, you would
get the Glance images for that user's tenant. If you're authenticating as the admin
user and want to see all tenants' Glance images, you can pass the following argument
to see them all:

control# glance image-list --all-tenants

http://download.cirros-cloud.net

Chapter 4

[31]

If this should still return nothing, let's upload an image to Glance so that there's
an image in Glance for us to list. To do this, use the image-create command.
It is important to understand that you are not creating the disk image with this
command. You need to have an already built image. This image-create command is
creating a record of the image you're uploading in the Glance registry:

control# glance image-create --name Fedora --is-public true --disk-
format qcow2 --container-format bare --file Fedora-x86_64-disk.qcow2

You will notice that you can give your image a name other than the ilename of the
ile that is being uploaded. The disk format and the container format are speciic
to the image ile format that is being uploaded. There are other options for these
parameters that you can read about in the Glance documentation at http://docs.
openstack.org/cli-reference/content/glanceclient_commands.html.

The public lag sets whether this image can be used across all tenants or is private
to the tenant it is uploaded to. Now use the image-list command to list the image
you just uploaded. Two images can have the same name; however, two images
cannot have the same ID. There is also an argument that will protect the image from
deletion and indicate that the image is protected (--is-protected). Administrators
can't delete an image that is protected without irst turning the protected property
to false. Let's use the image-update command to set the image as protected. The
following command captures the discussion in this paragraph:

control# glance image-update --is-protected true Fedora

In that example, the image's name was used to set the image as protected. It was
mentioned that two images can have the same name; if they do, then the image's ID
will have to be used instead of the image name. The properties for the images can be
passed to image-create or image-update. Now that we've worked through using
the command line to register a disk image with Glance, let's take a look at using the
web interface.

www.allitebooks.com

http://docs.openstack.org/cli-reference/content/glanceclient_commands.html
http://docs.openstack.org/cli-reference/content/glanceclient_commands.html
http://www.allitebooks.org

Image Management

[32]

Using the web interface
Next, let's use the web interface to add an image to the Glance image registry. Images
can be managed by administrators and non-privileged users. On the command line,
an image was added as the administrator. In the web interface, we will use the non-
privileged user you have created. The following are the steps to add an image to the
Glance image registry:

1. Log in to your web interface using the user you created in Chapter 3, Identity
Management. Then, select Images from the menu. The following screenshot
shows the Images page:

2. Once you are logged in, click on the Create An Image button and ill out the
form that appears (as shown in the following screenshot). All the options that
were available on the command line are available in the web form.

Chapter 4

[33]

3. Once the ile has been uploaded and registered, it will show up in the list of
images, as shown in the following screenshot:

4. If you log back in as the admin user, you'll see all the imported images listed
in the Images list under the admin menu. As the administrator, you can also
pass the --all-tenants argument on the command line to see all the images
that have been uploaded to the Glance registry.

Image Management

[34]

Building an image
Now that we've looked at getting a disk image into Glance, let's investigate how
a cloud image is built. A cloud image is just a sealed disk image with cloud-init
included. A sealed disk image is a ile that has an operating system installed in it and
has had all the host-speciic items removed from it. Cloud-init is a post-boot process
that checks the metadata service of OpenStack and asks for post-boot commands that
should be run on the launched instance. We'll see cloud-init's use cases in Chapter 6,
Instance Management, and Chapter 10, Orchestration; for now, we'll just make sure it's
included in the cloud image we build. To build the image, we'll use virt-install.
There are quite a few other options. If you're familiar with a different disk image-
building tool, use that if you like. This is just one example of how to build one of
these images. Go ahead and make sure virt-install is installed. The following
command accomplishes this:

build-host# yum install -y virt-install httpd

Httpd was installed here too because we need a web server to serve the kickstart.
Apache is not needed if you have an alternate web server to serve your kickstart.
An automated Fedora install is accomplished via the kickstart. A great place to get a
baseline kickstart is from the collection of kickstarts at https://git.fedorahosted.
org/cgit/cloud-kickstarts.git/tree/generic/ that Fedora uses to build
cloud images.

These could even be adapted to build a different rpm-based distribution cloud
image. Pull down one of those kickstart iles and place it in /var/www/html/. Also,
make sure that Apache is running. Issue the following command to accomplish this:

build-host# service httpd start

Now that we have something to build with and a kickstart to deine what should be
built, let's kick off a cloud image build, as follows:

build-host# qemu-img create -f qcow2 my_cloudimage.img 10G

build-host# sudo virt-install -n my_cloud_image -r 2048 --vcpus=2 \

 --network=default --graphics=spice --noautoconsole \

 --noreboot -v --disk=path=my_cloudimage.img,format=qcow2 \

 -l http://dl.fedoraproject.org/pub/linux/releases/20/Fedora/x86_64/os/
\

 -x "ks=http://192.168.122.1/my_kickstart_file.ks"

https://git.fedorahosted.org/cgit/cloud-kickstarts.git/tree/generic/
https://git.fedorahosted.org/cgit/cloud-kickstarts.git/tree/generic/

Chapter 4

[35]

The irst command creates an empty qcow2 formatted disk image. The second line
spawns a virtual machine in libvirt named my_cloud_image with 2 GB of RAM
and 2 vCPUs using the default libvirt network. The virtual machine boots using
the kernel and the RAM disk in the install tree from the dl.fedoraproject.org
URL. The ks= option is a kernel parameter. In this example, the kernel pulled from
dl.fedoraproject.org knows how to pull down the kickstart being served from
the local Apache instance on the libvirt network's gateway IP address. Once the
installation is complete, the virtual machine can be torn down and the disk image
that you created is now an installed cloud image. A inal optional step is to sparsify
the disk image. There is plenty of documentation on the Internet that can explain
what it means to sparsify a disk image better than I can. Use your Internet-searching
expertise to read more about what this command does and its beneits. To reiterate,
this is optional and will not prevent the inal image from being useful. Issue the
following command to sparsify the disk image:

build-host# virt-sparsify --compress my_cloudimage.img
sparsified.qcow2

If you sparsiied, the resulting sparsiied disk image is what is imported into
Glance. If you didn't sparsify, then just import the resulting disk image from virt-
installer. Note that the sparsify command used the .img extension and the .qcow2
extension. You can use these interchangeably. All the commands you run on these
disk images don't really care what the ile extension is as they inspect the contents of
the disk image to complete their operations.

control# glance image-create --name Fedora --is-public true --disk-format
qcow2 --
container-format bare --file sparsified.qcow2

Now, let's be frank here. All that really happened was that an operating system was
installed into a standard qcow2 disk image with cloud-init included in the package
list and the host's networking was set to DHCP. That means that if you want to do
this manually instead of using virt-install, you could absolutely launch a virtual
machine and do a manual install. Then, make sure that cloud-init is installed and just
before you shut down the machine, run commands to set the networking to DHCP
and seal the image; somewhat like this:

cloud-image# cat > /etc/sysconfig/network-scripts/ifcfg-eth0 << EOF

DEVICE="eth0"

ONBOOT="yes"

BOOTPROTO="dhcp"

TYPE="Ethernet"

dl.fedoraproject.org
dl.fedoraproject.org

Image Management

[36]

EOF

cloud-image# rm -f /etc/ssh/ssh_host*

cloud-image# rm /etc/udev/rules.d/70-persistent-net.rules

cloud-image# halt –p

The udev rule may not actually exist, but it doesn't hurt to make sure it's not there.
What these commands do is remove any host-speciic identiication. The MAC
address and ID are removed from the networking device coniguration and the SSH
host keys are removed. They're regenerated on boot if they don't exist, and the udev
network persistence coniguration is removed, which is also regenerated on boot if
it's needed. This list is not exclusive. In the unlikely event that you come across other
host-speciic things, you should make sure that they are removed to make the image
generic. However, on a fresh basic Fedora install, this list should work well to seal
the image. Once you've run these commands and shut down the virtual machine, the
disk image is ready to be imported into Glance. If you boot the virtual machine back
up outside of OpenStack, you will have to partially reseal the image as some of the
things you just deleted will be regenerated when you boot up using the disk image
again. This does not apply to instances you boot in OpenStack. This only applies to
manually spawning a virtual machine using the disk image outside of OpenStack.
Once the image has been imported into Glance, OpenStack will handle things
properly and not taint the Glance image. The imported image will be stored in the
Glance registry and copied out to the compute nodes using which the instances will
run. The instances will run using copies of the original disk images stored in Glance.

Summary
In this chapter, we looked at adding images to the Glance image registry for you to
learn how to get a prebaked Glance image and how to build your own Glance image.
With a disk image stored in Glance, there is now a disk that the instances can copy
and use to boot from the time they are spawned. Now that we have created users
and stored disk images to launch with, the inal resource that needs to be created
before we launch an OpenStack instance is a virtual network. In the next chapter, we
will use Neutron to create a virtual network fabric for an instance to be connected to.

[37]

Network Management
In the previous chapter, we prepared to launch an instance by importing disk
images into Glance. The next preparation required for launching an instance is to
create a virtual network for the instance to use. Neutron is the network management
component in OpenStack. In this chapter, we'll look at how to create virtual networks
and routers for the OpenStack instances to use. We will also look at some of the
underlying plumbing that is used to support the virtual networks.

Networking and Neutron
As I was learning Neutron networking and started to present my experiences
to audiences, I coined a phrase that I continue to stand by: Networking is hard.
Networking is the most complex component in OpenStack and for good reason.
This is because networking is a complex part of computing. It takes time and hard
work to understand networking. It's often left to the network administrators and
neglected by others. Hats off to you network administrators. I spent seven years of
my professional career avoiding learning some of the core concepts of networking
and leaving it to the folks that did networking. OpenStack is where it caught up
with me and bowled me over. To administer an OpenStack cloud that uses Neutron
networking, you have to understand some of the core concepts used in networking.
As we work through the rest of this book, I'll make sure to explain these concepts
as we come across them so that if you're not a networking guru, you will hopefully
come out on the other side with an understanding that will equip you to administer
your cloud well.

Network Management

[38]

Using Neutron, you enable what's referred to as per-tenant networking. This means
that virtual isolated networks can be created in tenants. These networks only have
routes to each other if you create them. These networks only have routes to the
outside world if you create them, and there is next to nothing assumed about what
an instance should be able to do on a network. This is important because it isolates
the instances in different tenants from each other. It is a security risk for an instance
in tenant A to have access to an instance in tenant B by default. So then, the default is
for instances in the same network to have access to each other only until the network
is conigured differently. OpenStack was designed this way so that you would gain
this security out of the box.

Network fabric
Neutron itself is an API that has a modular plugin architecture. The plugins interface
with a networking fabric and manage that fabric for you. A networking fabric is
just a fancy term for the underlying networking infrastructure and architecture that
transports the data within a network. What this means is that Neutron by itself is
kind of like a television remote by itself. Until the remote has a television that it can
interface with and control, it's just a paperweight that your two-year-old likes to
spend time developing his ine motor skills with by pushing the buttons over and
over. Similarly, until Neutron has a networking fabric tied to it that it can manage for
you, it is basically useless.

There is a broad collection of vendors that have written plugins for Neutron to allow
you to manage their compatible networking appliances. If you have a preferred
networking vendor, ask them about their support for Neutron. Investigating vendor
support and coniguration is beyond the scope of this book. Luckily, there is an
open source virtual networking project that can meet the needs of our OpenStack
networking installation.

Open vSwitch coniguration
By default, the RDO installation you ran back in Chapter 2, RDO Installation, installed
Open vSwitch, or OVS for short, and conigured the Neutron Open vSwitch plugin
for you. Open vSwitch is virtual-networking software that allows you to create
virtual switches on your nodes and ties the virtual switches on your nodes together
by way of a conigured transport. A conigured transport is a deined method for the
virtual switches to talk to each other. As trafic comes out of an instance, it travels
through these connections between each of the virtual switches. There are three
common methods for coniguring OVS, which are explained here.

Chapter 5

[39]

VLAN
Virtual Local Area Network (VLAN) is the most complex to set up. This is because
the hardware switch that carries your trafic must be conigured properly to carry
the VLAN tagging that is assigned to the trafic. When the network trafic is traveling
through one of the virtual networks, it is assigned a VLAN tag, which is simply a
numeric identiier. If the switch does not support this identiier to be attached to the
trafic, it will not be carried from one virtual switch to another virtual switch, and the
network separation is then lost. The beneit of this method is its eficiency. Because
the VLAN tag is the only metadata being carried and is already a part of the packets
being transferred, there is no additional overhead to using this method and it will
provide you with the best performance.

GRE tunnels
Generic Routing Encapsulation (GRE) doesn't necessarily require special
coniguration in the physical switch connecting your nodes. This is because it
encapsulates the trafic. Each node must have a direct established connection to
every other node. This connection is a tunnel that hides the trafic being sent from
the physical switch transporting it. This makes initial setup much easier, but it also
comes with its own complexity. When networking trafic is transferred, it's divided
into packets—just chunks of the network data being sent. This packet size by default
is 1,500 bytes. This default size is known as the Maximum Transmission Unit
(MTU). The data being sent in a packet can be smaller than the MTU. The complexity
comes in because to encapsulate or to identify a packet as a GRE packet, an extra
header has to be added to each packet. If the data being transferred in the packet
together with the GRE header is less than the MTU, then the packet passes through
without any trouble. If the packet's data and the header are larger than the MTU,
then fragmentation occurs. Fragmentation means that it takes two packets to transfer
one packet worth of data, and there is extra communication that has to happen to get
the packets fragmented. In short , fragmentation is very bad for network load and
throughput. Everything has an MTU. There are two ways to accommodate the GRE
header, which are as follows:

• Lower the instance's MTU: If every instance boots with an MTU set on its
network device that is low enough that when the GRE header is added, it
doesn't exceed 1,500 bytes, then the rest of the network fabric can happily
function at the default 1,500 MTU.

Network Management

[40]

• Enable jumbo frames: This is the better, but more involved, option to
configure. For the purpose of this book, we'll define jumbo frames as
setting the MTU higher than the default 1,500 bytes. Using jumbo frames is
preferable to modifying the instance's MTU because you have control over
setting up jumbo frames. You will not have control over every instance
that boots in your OpenStack cloud. You can try to use DHCP to send an
MTU value for the instance to use, but not all operating systems will honor
this value sent via DHCP. Jumbo frames have to be set up anywhere a
GRE encapsulated packet will travel—mainly OVS and the physical switch
connecting your OpenStack nodes.

VXLAN tunnels
VXLAN functions much like GRE. It's a tunnel that encapsulates the trafic by adding
a header. The main difference is that it operates more like User Datagram Protocol
(UDP) instead of like TCP. This eliminates some of the overhead of connection made
between the nodes in your OpenStack cluster and is generally regarded as a more
eficient tunneling approach than GRE. VXLAN requires the same accommodations
for handling its headers that GRE does.

For simplicity's sake, we will lower the instance's MTU size to work around the
header MTU size conlict in this book. We will do this by coniguring DHCP to send
a DHCP option to the instances telling them to use an MTU of 1,450. The header will
it comfortably in the 50 bytes of space we've created for it, and the packets will low
normally through the rest of the network that has GRE or VXLAN encapsulation.
Be aware that this is not a 100 percent foolproof method. If the instance's operating
system does not support accepting the DHCP option to lower the MTU, there is a
chance that communication will not be established fully with the instance via its
network device.

Creating a network
Now that we've explored some of the intricacies of what's happening under the hood,
let's actually use Neutron to create a network by performing the following steps:

1. Log in to your control node and source your keystonerc ile; use the non-
administrative user for this. The command to create a virtual network is:

control# neutron net-create internal

control# neutron subnet-create internal 192.168.37.0/24

Chapter 5

[41]

That's it. You just created a virtual network. I know that for the length of the
introduction we just covered, that was pretty anticlimactic. Note that when
you create the subnet, you're adding it to the network named internal that
you just created. The final argument to the subnet-create command is the
Classless Inter-Domain Routing (CIDR) notation. I'm not going to spend
time on the CIDR notation here. You'll have to search the internet for an
explanation of it. There are plenty of good ones. Also, search for the CIDR
calculator; there are plenty of CIDR calculators on the Internet too.

Here are a couple of examples of CIDR calculators:

• http://jodies.de/ipcalc

• http://www.subnet-calculator.com/cidr.php

In a CIDR calculator, you can type in the CIDR mentioned earlier and it
will give you the usable IP range that it signifies. The CIDR that I've used,
192.168.37.0/24, identifies a range of IP addresses from 192.168.37.1 to
192.168.37.254 with 192.168.37.255 as the broadcast address. This means
that we can allocate IP addresses in this range for things on our network.

2. Next, let's list the network that we just created; you can also list the subnet.
Here's how:

control# neutron net-list

control# neutron subnet-list

The subnet could have been created with a name. If it was, we could have
updated it by referring to its name. Since one wasn't passed, the subnet's ID
will have to be used as follows:

control# neutron subnet-create internal 192.168.37.0/24 –name
internal_subnet

3. Let's update the subnet by adding a Domain Name System (DNS) name
server. The properties of a subnet and a network can be passed at the time of
creation or updated later. Refer to the Neutron command-line help for more
details. Here's how we update the subnet by adding a DNS name:

control# neutron subnet-update {subnet-id-hash} --dns-
nameservers list=true 8.8.8.7 8.8.8.8

www.allitebooks.com

http://www.allitebooks.org

Network Management

[42]

In Chapter 3, Image Management, we mentioned cloud-init. Cloud-init is
the service that runs when an instance is booted and connects back to
169.254.169.254 to get metadata. SSH keys and post-boot scripts are two
examples of what can be provided via metadata. This IP address is provided
by a Neutron router and proxies the call from cloud-init to the metadata
service. In that case, we need a router.

4. Let's create one and add the internal network as an interface to it:

control# neutron router-create my_router

control# neutron router-interface-add my_router {subnet-id-
hash}

Here again, had we passed the --name argument and given the subnet a
name, we could have used that name instead of the subnet ID. Now that
the router has been created and attached to the subnet, the instances on this
network will be able to talk to the metadata service on boot.

Web interface management
The web interface lets you create the network and subnet in the same dialog. Perform
the following steps to obtain a network and a router:

1. Log in as your non-administrative user, select the Network menu, select the
Networks submenu, and click on the Create Network button in the top-right
corner, as shown here:

Chapter 5

[43]

2. After you have illed in the network name, go to the next dialog screen and
ill in the subnet information, as shown in the following screenshot:

3. On the inal dialog box add the DNS entries, as shown in the
following screenshot:

Network Management

[44]

4. When you've completed illing in the dialog, you'll end up with a network
and a subnet that's associated with the network, as shown in the following
screenshot:

5. Next, create the router. Select Routers from the Network menu, and click
on Create Router in the top-right corner of the page, as shown in the
following screenshot:

6. Once you've illed in the router name, click on Create Router, as shown in
the following screenshot:

7. Next, click on the router's name and click on the Add interface button in the
top-right corner, as shown in the following screenshot:

Chapter 5

[45]

8. Select the subnet on the network you created and add it as an interface to the
router. Once the router has been created, there will be a success message in
the upper-right corner, as shown in the following screenshot:

Now that we have a network and a router available, an instance can be launched and
attached to the network. When the launched instance runs cloud-init, it will be able
to connect to the metadata service via the router. We'll launch the irst instance when
we get to Chapter 6, Instance Management. Before we do that, we have a little more
networking to set up.

Network Management

[46]

External network access
Every tenant will have at least one network to launch instances on, which will be
built as we have just built a network. Whenever a new tenant is created, the steps that
have just been performed will need to be performed for that new tenant. All tenants
will share a network that provides external access to the outside world. Let's work
through creating this external network.

Preparing a network
Earlier, we discussed how Neutron is an a API layer that manages virtual
networking resources. The preparation for external network access will be different
for different Neutron plugins. Talk to your networking vendor for your speciic
implementation. In general, what's being accomplished by this preparation is the
connection of the networking node to a set of externally routeable IP addresses.
External just means external to the OpenStack cluster. These may be a pool within
your company's 10.0.0.0/8 network or a pool of IPs public to the Internet.
The tenant network IP addresses are not publicly routeable. The loating IP
addresses allocated from the external network will be public and mapped to the
tenant IP addresses on the instances to provide access to the instances outside of
your OpenStack deployment. This is accomplished using the Network Address
Translation (NAT) rules.

In future versions of Packstack, part of this process may already be
completed for you. If you ind some of it already completed by your
installation, just use this section to gain an understanding of what has
been done for you.

Since we are using Open vSwitch for this deployment, let's take a look at how to set
up OVS. Let's start by looking at the virtual switches deined on the networking node
as follows:

network# ovs-vsctl show

a621d2b2-a4cb-4cbd-8d4a-f3e802125445

 Bridge br-int

 Port patch-tun

 Interface patch-tun

 type: patch

 options: {peer=patch-int}

 Port br-int

 Interface br-int

 type: internal

 Bridge br-tun

Chapter 5

[47]

 Port patch-int

 Interface patch-int

 type: patch

 options: {peer=patch-tun}

 Port br-tun

 Interface br-tun

 type: internal

 Port "vxlan-2"

 Interface "vxlan-2"

 type: vxlan

 options: {in_key=flow, local_ip="192.168.123.102",
out_key=flow, remote_ip="192.168.123.103"}

 Bridge br-ex

 Port br-ex

 Interface br-ex

 type: internal

 ovs_version: "2.0.1"

In this output, you can see three bridges. You can think of these exactly as you
would think of a switch—as a network appliance that has a bunch of places to plugin
Ethernet cables into. A port is just something plugged into one of these virtual
switches. Each of these virtual switches has a port to itself; br-int is patched to br-
tun and br-tun is patched to br-int. You can see the VXLAN tunnel established
between the network node and the compute node on br-tun. Br-ex is just a switch
that's not plugged into anything right now. Br-int is known as the integration
bridge and is used for local attachments to OVS. Br-tun is the tunnel bridge used to
establish tunnels between nodes, and br-ex is the external bridge, which is what we
need to focus on.

The network node has interfaces for its actual network devices, which are probably
eth0 and eth1, or em1 and em2 depending on your distribution and device. What
needs to happen is for the device on your network node that can route to the
external pool of IP addresses to be plugged into br-ex. It is important when this
happens to make sure that trafic lowing through the Ethernet device on the node
communicates with OVS and not directly with the host itself. To make sure this
happens, the IP address associated with the Ethernet device must be moved off
the device and onto the OVS br-ex. To do this, we will create a network device
coniguration for br-ex and let Linux networking bring up this OVS device and
the physical Ethernet device. Then, OVS will be used to bridge these two devices
together. This is not a traditional Linux networking bridge; it is attaching the
physical device to an OVS switch as a port.

Network Management

[48]

Let's walk through what this looks like.

Control node Networking node Compute node

eth0 192.168.123.101 192.168.123.102 192.168.123.103

eth1 192.168.122.101 192.168.122.102 192.168.122.103

First, look at the IP coniguration and the coniguration ile for our nodes in the
following table. Start by recalling the networking coniguration deined in Chapter
2, RDO Installation. In this example, 192.168.122.0/24 is the external IP pool and
192.168.123.0/24 is the internal subnet for the OpenStack nodes to communicate.
That means that the VXLAN tunnels will be established over 192.168.123.0/24, as
we saw in the OVS output, and the external loating IP addresses will be allocated
from 192.168.122.0/24. The network coniguration ile for eth1 should look
something like this:

network# cat /etc/sysconfig/network-scripts/ifcfg-eth1

DEVICE=eth1

BOOTPROTO=static

NM_CONTROLLED=no

ONBOOT=yes

IPADDR=192.168.122.100

NETMASK=255.255.255.0

GATEWAY=192.168.122.1

DNS1=192.168.122.1

A ile for br-ex will not exist. A simple way to create one is to copy the ile of eth1,
as shown in the following command, because almost all of the coniguration needed
for br-ex is already in that ile:

network# cd /etc/sysconfig/network-scripts/

network# cp ifcfg-eth1 ifcfg-br-ex

Chapter 5

[49]

To complete the device coniguration preparation, remove all of the IP addresses
from the ile of eth1 and update the device name in the ile of br-ex. The inal result
will look like this:

network# cat ifcfg-eth1

DEVICE=eth1

BOOTPROTO=static

NM_CONTROLLED=no

ONBOOT=yes

network# cat ifcfg-br-ex

DEVICE=br-ex

BOOTPROTO=static

NM_CONTROLLED=no

ONBOOT=yes

IPADDR=192.168.122.100

GATEWAY=192.168.122.1

NETMASK=255.255.255.0

DNS1=192.168.122.1

When networking is restarted, eth1 will be brought up and operate at layer 2 only,
and br-ex will be brought up ready to communicate on layer 3. If you are not
familiar with the difference between layer 2 and layer 3, layer 2 is communication at
the MAC address level and layer 3 is communication at the IP address level. The last
piece of this puzzle is associating them together with OVS. When eth1 gets plugged
in as a port to br-ex in OVS, OVS will take control of the interface and trafic
traveling on it will be interrupted until the devices are restarted. I am usually SSHed
into a machine over my external device. To avoid this loss in connectivity, you can
perform the following OVS command and the network restart in the same line; SSH
will do a reconnect, and it will appear as though you never lost connection:

network# ovs-vsctl add-port br-ex eth1 && service network restart

Restarting network (via systemctl): [OK]

network#

In the irst command, you are adding the eth1 port to the br-ex bridge or just
plugging eth1 into br-ex. When the prompt comes back, it means you have
successfully prepared the underlying network infrastructure in OVS for an external
OpenStack network.

Network Management

[50]

Creating an external network
Now that OVS has connectivity to the externally routeable IP pool that will be
managed by OpenStack, it's time to tell OpenStack about this set of resources it
can manage. Because an external network is a general purpose resource, it must be
created by the administrator.

Go ahead and source your keystonerc_admin ile on your control node so that
you can create the external network as a privileged user. Then, create the external
network, as shown in the following commands:

control# neutron net-create --tenant-id services ext --
router:external=True --shared

control# neutron subnet-create --tenant-id services ext
192.168.122.0/24 --disable-dhcp --allocation_pool
start=192.168.122.2,end=192.168.122.99 --allocation-pool
start=192.168.122.110,end=192.168.122.254

You'll notice a few things here. First, the tenant that the network and subnet are
created in is the services tenant. As mentioned in Chapter 3, Identity Management,
everything is a member of a tenant. General purpose resources like these are no
exception. They are put into the services tenant because users don't have access to
networks in this tenant directly, so they would not have the ability to create instances
and attach them directly to the external network. Things would not work if that was
done because the underlying virtual networking infrastructure is not structured to
allow this to work properly. Second, the network is marked as external and shared.
Third, note the allocation pools; the nodes are 101, 102, and 103. So I've left out the IP
addresses 100–109. This way, OpenStack won't allocate the IP addresses assigned to
the nodes. Finally, DHCP is disabled. If DHCP was not disabled, OpenStack would
try to start and attach a dnsmasq service for the external network. This should not
happen because there may be a DHCP service running external to OpenStack that
would conlict with the one that would have started if DHCP was enabled on the
external network.

The inal step to make this network accessible to the instances that will be launched
on a tenant network is setting the tenant router's gateway to the external network.
Let's do that for the router created earlier, as shown in the following command:

control# neutron router-gateway-set my_router ext

Chapter 5

[51]

Web interface external network setup
Previously, there was preparation done to tie eth1 and br-ex together. This
preparation must be done on the command line. Because it is external coniguration
to OpenStack, it cannot be completed through the OpenStack web interface. You
can, however, complete the external network creation through the web interface by
performing the following steps:

1. Start by logging in to the web interface at the Admin user to create the
external network and subnet. Select the Networks submenu from the Admin
menu and click on Create Network. Give the network a name and lag it as
external and shared. This step is encapsulated in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Network Management

[52]

2. Once you have created the network, select the network by its name and click
on Create Subnet, as shown in the following screenshot:

3. Fill out the form with the network information for the external pool of
IP addresses. Make sure the correct gateway is speciied. The following
screenshot captures this step:

4. Move to the Subnet Detail dialog and make sure that you uncheck Enable
DHCP. Fill in the allocation pool if necessary. This is only necessary when
creating an external network as the administrative user. This step is amply
illustrated in the following screenshot:

Chapter 5

[53]

5. Once the subnet and network are created, log out of the admin account and
log back in as the non-privileged user, as shown in the following screenshot:

Network Management

[54]

6. Select the Routers menu options from the Network menu, click on Set
Gateway, and select the external network you just created, as shown in the
following screenshot:

7. Once the router's gateway is set to the external network, everything will be
in place to assign a loating IP address to an instance once it's launched, as
shown in the following screenshot:

Summary
In this chapter, we looked at creating networks, subnets, routers, and the preparation
involved in using an external network with Open vSwitch. Using these resources, the
necessary virtual networking fabric has been created for an instance to be launched
on. Now that we have created virtual networks for the instances to attach to, let's get
into launching instances. In the next chapter, we will do what we have been working
towards—launch an instance. We will use Nova to launch an instance from the
image that was imported and attach it to these virtual networking resources.

[55]

Instance Management
In the past few chapters, we collected resources that laid the foundation to launch an
instance. We have created a tenant—a place for our resources to live in. We added a
disk image that the instance will use as its boot device. We created a network for the
instance. Now, it is time to launch the instance. Nova is the instance management
component in OpenStack. In this chapter, we will look at managing:

• Flavors

• Key pairs

• Instances

• Floating IPs

• Security groups

Managing lavors
When an instance is launched, there has to be a deinition of the amount of resources
that will be allocated to the instance. In OpenStack, this is deined by what are called
lavors. A lavor deines the quantum of virtual CPUs, RAM, and disk space that an
instance will use when it launches. When Packstack installed your system earlier,
it created a few lavors for you. Let's take a look at those. Go ahead and source a
keystonerc ile. If you don't have one sourced, then list the lavors, as follows:

control# nova flavor-list

You can create your own lavors if these don't it your needs exactly. There's nothing
magical about the ones that Packstack has created. They have been created close to
what the rest of the cloud industry uses. We're not going to get too deep into lavors;
we'll just use the preconigured lavors that you have just listed.

Instance Management

[56]

Managing key pairs
As a cloud image is a copy of an already existing disk image with an operating
system already installed, the root users are generally disabled, and if the root
password is set, it is usually not distributed. To overcome the inability to
authenticate without a password, OpenStack uses SSH key pairs. If you remember,
in Chapter 4, Image Management, we discussed the need for cloud-init to be installed
in a cloud image. Then, in Chapter 5, Network Management, we discussed how cloud-
init would connect to the metadata service via the IP address provided by the router.
One of the primary roles of this process is to pull down the public SSH key that
will be used for authentication. OpenStack provides a facility for you to manage
your SSH key pairs so that you can select which will be used when you launch an
instance. Let's start by generating a new key pair and listing it, as shown in the
following commands:

control# nova keypair-add my_keypair

-----BEGIN RSA PRIVATE KEY-----

{ truncated private key content }

-----END RSA PRIVATE KEY-----

control# nova keypair-list

This has generated an SSH public/private key pair and listed the record of the key
pair. The content that has been put on standard output should end up in a ile in
your home directory's SSH directory with a mode of 600. OpenStack has generated
the key pair, given you the private key, and stored the public key to place on a future
running instance. You could always redirect the output to a ile so that you don't
have to copy and paste. This is an alternative way to generate that key pair. The
only difference is that the private key ends up in a ile instead of being printed in the
terminal. Issue the following command to accomplish this:

control# nova keypair-add another_keypair > another.key

Once you have a ile that contains the private key, for example, the other key ile
just created, you can drop this ile into your ~/.ssh directory with a mode of 600.
Then, that ile is referenced to log in to a running instance that has the respective
public key.

Chapter 6

[57]

SSH key pairs are not anything speciic to OpenStack. They are very commonly
used in the Linux world. OpenStack supports the importing of an already existing
public key. Let's walk through generating an SSH key pair outside of OpenStack and
importing the public key into OpenStack, as shown in the following commands:

laptop$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/dradez/.ssh/id_rsa):
/home/dradez/.ssh/openstack.rsa

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in
/home/dradez/.ssh/openstack.rsa.

Your public key has been saved in
/home/dradez/.ssh/openstack.rsa.pub.

The key fingerprint is:

4f:62:ee:b9:0f:97:35:f7:8a:91:37:84:0b:b9:cb:05 dradez@laptop

dradez@laptop:~$ ls -l /home/dradez/.ssh/openstack*

-rw-------. 1 dradez dradez 1675 /home/dradez/.ssh/openstack.rsa

-rw-r--r--. 1 dradez dradez 411
/home/dradez/.ssh/openstack.rsa.pub

As illustrated, on my laptop, I have generated a public/private key pair. The private
key has a mode of 600, and the public key is the ile that will be imported into
OpenStack. In the OpenStack cluster, we're using the control node to interact with
the cluster. Copy the public key to your control node so that it can be imported, and
import it into Nova, as shown in the following command:

control# nova keypair-add --pub_key openstack.rsa.pub keypair_name

Instance Management

[58]

You can also manage key pairs in the web interface. In the Compute menu, select
the Access & Security submenu. On this page, there will be a Key Pairs tab. You can
click on Create Key Pair or Import Key Pair to manage key pairs through the web
interface instead of on the command line. The following screenshot captures how we
can manage key pairs in the web interface:

Launching an instance
At this point, there has been what may seem like an excessive amount of
groundwork laid to get to launching an instance. We now have a tenant for the
instance to live in, an image using which it can run, a network for it to live in, and a
key pair to authenticate with. These are all the necessary resources to create in order
to launch an instance, and now that these resources have been created, they can be
reused for future instances that will be launched. Without further delay, let's launch
the irst instance in this OpenStack environment as follows:

control# nova boot --flavor 2 --image Fedora --key-name openstack --
nic net-id={network id} ""My First Instance""

This launches an instance using the small lavor, the key pair we just imported,
the Fedora image from Chapter 4, Image Management, and the tenant network from
Chapter 5, Network Management. This instance will go through a few different states
before it's ready to use. You can see the current state of your instances by listing
them as follows:

control# nova list

This command will list the instances in your tenant. Once the instance boot process
completes, the instance will settle in an active state. The irst time an instance boots,
it will take an extra minute or two because the image ile has to be copied from
Glance to the hypervisor. Successive instance launches should happen in less than a
minute. Administrative users also have the ability to see all instances. If the admin's
keystonerc ile is sourced, pass the –all-tenants option to see all instances, as
shown in the following command:

Chapter 6

[59]

control# nova list --all-tenants

Initially, the only communication you have with the instance is getting console logs
or connecting to the console via Nova, as follows:

control# nova console-log ""My First Instance""

control# nova get-vnc-console ""My First Instance"" novnc

The irst command will print the console log of the instance if it's available. This is
useful to help debug why an instance won't start or to ind out if it got an IP address
from DHCP. The second command will give you a URL that can be loaded into your
browser to give you a VNC console to the running instance.

Managing loating IP addresses
Now that an instance is running, the next step is to communicate with it in a fashion
other than with the console through a web browser. In the instance list you just
saw, an IP address on the tenant network will be listed once it's been assigned. The
IP address that's initially assigned to the instance is not a routeable IP address; to
communicate with the instance, you will need to assign a loating IP address from
the external network. The loating IP address will be mapped to the tenant network
IP address, and you will be able to communicate with the instance by way of the
loating IP address.

Before a loating IP address can be associated with an instance, it needs to be
allocated to your tenant. Floating IP addresses are managed through Neutron,
as follows:

control# neutron floatingip-create external

This allocates a loating IP address to the tenant. List it so that you can get its details,
as follows:

control# neutron floatingip-list

Use the ID of the allocated IP address to assign it to the port of the running instance.
To do that, you'll have to ind the port ID of your instance. Use the IP address
assigned to the instance from the list of instances to cross reference with a list of
ports. Then, associate the loating IP address ID with the port ID, as follows:

control# neutron port-list | grep {ip address}

control# neutron floatingip-associate {floating ip id} {port id}

When the association is complete, you will see the loating IP address listed next to
the tenant network IP address for your instance.

Instance Management

[60]

Managing security groups
At this point, you may think that you should be able to connect to your instance. Not
quite yet. There is a layer of security built into OpenStack called security groups.
Security groups are tenant-level irewalls. You can deine multiple security groups;
you can even assign multiple security groups to a running instance. A security group
named default is created for each tenant when the tenant is created. Let's list that
default group:

control# neutron security-group-list

To see the rules deined in a security group, list the rules. This command lists all the
rules in the tenant. If you want to see the rules for a speciic security group, you'll
have to ilter out the security group you are interested in; grep is a good tool for this.
Here are the commands to accomplish this:

control# neutron security-group-rule-list

control# neutron security-group-rule-list | grep sec_group_name

As illustrated, the default rules added to the default security group are pretty basic
and restrict all incoming trafic from the outside. Ingress is incoming trafic, and only
incoming trafic from within the security group itself is allowed. Egress is outgoing
trafic; all outgoing trafic is allowed by default. Let's add a few rules to allow some
external trafic to connect to the instance:

control# neutron security-group-rule-create --protocol tcp --port-
range-min 22 --port-range-max 22 --remote-ip-prefix 0.0.0.0/0 default

This rule will allow all incoming SSH trafic on port 22 to be passed to instances
in the default security group. If you try to do this with the admin's keystonerc
sourced, you'll get a message indicating that multiple security groups named default
were found. This is because the admin user can see everyone's security group, so
you'll have to use the security group ID instead. Let's add a rule to allow us to ping
the host too:

control# neutron security-group-rule-create --protocol icmp --remote-
ip-prefix 0.0.0.0/0 default

As mentioned earlier, you can also have more than one security group. You can
create a new security group with Neutron's security-group-create command,
as follows:

control# neutron security-group-create new_secgroup

Chapter 6

[61]

Then, other rules could be added to the group, for example, a rule to allow access to
port 80 for web trafic:

control# neutron security-group-rule-create --protocol tcp --port-
range-min 80 --port-range-max 80 --remote-ip-prefix 0.0.0.0/0
new_secgroup

Now, when an instance is launched, the option --security-groups could be
passed. The value given to it could be default or new_secgroup or default, new_
secgroup. The respective trafic would be allowed based on what combination of
security groups was assigned to the new instance being booted. If you don't pass this
option, the default security group will automatically be the group assigned to the
new instance.

Communicating with the instance
The instance we booted was assigned the default security group. Edits made to a
security group are immediately applied to the instances operating in them. We just
added the ping and SSH rules to allow incoming trafic to the instances running in
the default security group, so you should be able to ping and SSH to the instance you
launched. Here's the output summary:

laptop# ping -c 3 192.168.122.3

PING 192.168.122.3 56(84) bytes of data.

64 bytes from 192.168.122.3: icmp_seq=1 ttl=64 time=0.040 ms

64 bytes from 192.168.122.3: icmp_seq=2 ttl=64 time=0.041 ms

64 bytes from 192.168.122.3: icmp_seq=3 ttl=64 time=0.040 ms

--- 192.168.122.3 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 1999ms

rtt min/avg/max/mdev = 0.040/0.040/0.041/0.005 ms

laptop# ssh fedora@192.168.122.3

The authenticity of host '' 192.168.122.3 (192.168.122.3)'' can''t be
established.

RSA key fingerprint is 83:d8:f4:7e:01:db:4e:50:8a:bd:f6:dc:77:2c:31:d7.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ''192.168.122.3'' (RSA) to the list of
known hosts.

[fedora@test ~]$

Instance Management

[62]

Launching an instance using the web

interface
Now that we've booted an instance on the command line, let's take a look at doing
the same thing in the web interface:

1. Go ahead and log in to the web interface as the non-administrative user you
created in Chapter 3, Identity Management.

2. Under the Compute menu, select Instances and then click on the Launch
Instance button.

3. In the Launch Instance dialog, ill in a name for the instance, choose a lavor,
and select Boot from image as the boot source, as shown in the following
screenshot.

4. Select the image you uploaded in Chapter 4, Image Management.

5. Select the next tab, Access & Security. This view should already be illed
in for you. This is the view in which you can select a different SSH key pair
and select a combination of security groups for the instance. The following
screenshot is a view of the Access & Security tab:

Chapter 6

[63]

6. Next, select the Networking tab. In this view, if you have only one tenant
network deined, it will be automatically added to the selected networks. If
you have more than one network, you will have to add one to the selected
networks. More than one network can be added to the selected networks.
Each will be added to your instance as a virtual network interface and each
interface will DHCP to a separate DHCP service to get its IP address. The
following screenshot is a view of the Networking tab:

Instance Management

[64]

7. Go ahead and launch the instance; the web interface will poll OpenStack
to keep you informed of the progress of the launching instance. You can
watch the instance's progress as it launches. The polling will update the web
interface as the state changes. This screenshot captures a still of the launching
instance on the web interface:

8. Click on the instance's name; there is a Log tab and a Console tab. The
Console tab will load the URL that was displayed by the get-vnc-console
command executed in Launching an Instance section. Here's a screenshot of
this page:

9. The next step is to associate a loating IP address with the instance. You
can use the button that is displayed before the instance is activated. Once
the instance is activated, you can ind the associated loating IP option in
the More menu on the instance. Select Associate to associate the loating IP
address with the instance:

Chapter 6

[65]

10. Remember that a loating IP irst needs to be allocated to a project before
it can be associated with an instance. Click on the + button next to the IP
address selection box. The following screenshot captures the instructions
in this step:

Instance Management

[66]

11. Click on Allocate IP to allocate an IP to your project. Then, complete the
association with the running instance, as shown in the following screenshot:

12. Once the loating IP has been associated, it will show up in the IP address
box next to the instance. This is not an auto-update piece of information. You
will have your browser's refresh button to refresh the page to see the update.
The following screenshot captures this step:

13. The inal step is to open up the security groups. Click on the Access &
Security menu, select the Security Groups tab, and click on the Manage
Rules button. In the top-right corner, click on the Add Rule button.

Chapter 6

[67]

14. Fill out the form for ICMP, as shown in the following screenshot:

15. Repeat this for SSH and for any other port you need opened up.

Summary
In this chapter, we looked at managing lavors, key pairs, instances, security groups,
and loating IP addresses. Now that we have a running OpenStack instance, let's
attach some virtual storage to it. A running instance's storage is ephemeral by
design. This means that any data stored in the instance's local disk is lost upon the
instance's termination. In the next chapter, we will attach a virtual block storage
device to the running instance. This storage will persist after an instance that it is
attached to is terminated.

[69]

Block Storage
Cinder is the block storage component in OpenStack. In the previous chapter, all the
necessary resources were collected to launch an instance. Now that this instance is
running, let's look at the use case for block storage and the process of attaching
block storage to the OpenStack instance. Then, we will take a look at the storage
engine used to store these block devices and the other options available for the
backing store.

Use case
OpenStack instances run on ephemeral disks—disks that only exist for the life of the
instance. When an instance is terminated, the disk is discarded. This is a problem if
there is any information that requires persistence. Block storage is one type of storage
that can be used to persist data beyond the termination of an OpenStack instance.

Using Cinder, users can create block devices on demand and present them to
running instances. The instances see this as a normal, everyday block device—as if
an extra hard drive was plugged into the machine. The extra drive can be used as
any other block device by creating partitions and ile systems on it. Let's look now at
how to create and present a block storage device using cinder.

Creating and using block storage
Creating a block device is as simple as specifying the size and an optional name for
the block device being created.

Create two volumes, one with a display name and another without:

control# cinder create 1

control# cinder create 1 --display_name data_vol

Block Storage

[70]

These two commands created two virtual block devices that are 1 GB of storage
space each. To see the two devices, use Cinder's list command:

control# cinder list

The two volumes will be listed with information about them. As with the
components already covered, the --all-tenants option can be passed as an
administrative user to see a list of all volumes that are in Cinder:

control# cinder list --all-tenants

When volumes are created, they cycle through a progression of states that indicate
the status of the new block device. When the status reaches Available, it is ready to be
attached to an instance.

Attaching the block storage to

an instance
The virtual storage device we just created is not much good to us unless it is attached
to an instance that can make use of it. Luckily for us, we just launched an OpenStack
instance and logged in to it. Perform the following steps to attach the block storage to
an instance:

1. Start by listing the existing block devices on the instance that was started:

instance# ls /dev/vd*

/dev/vda /dev/vda1

The boot device for this instance is vda.

2. Now use Nova to attach the volume you just created to the instance you have
running. When you list the devices on the instance again, you will see the
Cinder volume show up as vdb:

control# nova volume-attach instance_name {volume-id}

instance# ls /dev/vd*

/dev/vda /dev/vda1 /dev/vdb

3. Now that we have a new block device on the instance, we treat it just as we
would any other block device. Make a partition, create a ile system, mount
it, and read and write to it. The output from the following commands will be
truncated for brevity:

instance# fdisk /dev/vdb

Command (m for help): n

Chapter 7

[71]

Partition type:

 p primary (0 primary, 0 extended, 4 free)

 e extended

Select (default p): p

Partition number (1-4, default 1): 1

First sector (2048-2097151, default 2048):

Last sector, +sectors or +size{K,M,G,T,P} (2048-2097151,
default 2097151):

Created a new partition 1 of type 'Linux' and of size 1023
MiB.

Command (m for help): w

The partition table has been altered.

instance# mkfs -t ext4 /dev/vdb1

Writing superblocks and filesystem accounting information:
done

control# mount /dev/vdb1 /mnt

control# echo "test" > /mnt/test

control# cat /mnt/test

test

4. For the sake of an example, let's unmount the device and detach it from the
running instance:

instance# umount /mnt

control# nova volume-detach instance_name {volume-id}

instance# ls /dev/vd*

/dev/vda /dev/vda1

In these steps, we showed that only vda exists on the instance. Next, we attached
the volume and showed you how the instance sees it as vdb. Then, we partitioned,
mounted, and wrote to the ile system. Finally, the device was unmounted and
detached, and it was shown that vdb has been removed.

Block Storage

[72]

Managing Cinder volumes in the web

interface
Now that we have used the command line to manage Cinder volumes, let's take a
look at using the web interface to accomplish the same thing:

1. Log in to the web interface as your non-administrative user and select the
Volumes submenu from the Compute menu.

2. In the top-right corner, click on the Create Volume button.

3. Fill in the name and size and click on Create Volume on the form.

4. The web interface will update itself as the volume status changes. Once it
becomes available, click on the More menu on the volume page and select
Edit Attachments. In this dialog, the volume will be connected to the
running instance. The following screenshot captures this step:

Chapter 7

[73]

5. In the Attachments dialog, select the instance to attach the volume to and
click on the Attach Volume button, as shown in the following screenshot:

Block Storage

[74]

6. Once again, the web interface will get updated as the status of the volume
changes. The volume's status will become In-Use when it is attached to the
instance and ready for the initial partitioning and ile system creation. The
following screenshot encapsulates this step:

7. To detach the volume, open the Edit Attachments dialog in the More menu
and click on Detach Volume. The status of the volume will return to Available
once the detach process is complete. The following screenshot captures this
step aptly:

Chapter 7

[75]

Backing storage
Now that you have seen how to use Cinder, you may be wondering where that
volume that was created was stored. The cloud may be a facade of endless resources,
but the reality is that there are actual physical resources that have to back the virtual
resources of the cloud. By default, Cinder is conigured to use LVM as its backing
store. Packstack will look for a volume group named cinder-volumes conigured
on the node running the cinder-volume service. If one does not exist, Packstack
will create a virtual disk and mount it as a loopback device to use as the physical
volume to create a cinder-volumes volume group. The volume you just created was
a logical volume in the cinder-volumes volume group. This is not an ideal place
to store a virtual storage resource for anything more than a demonstration. Using
a virtual disk mounted as a loopback device has very poor performance and will
quickly become a bottleneck under load.

If there is a cinder-volumes group, then Packstack will simply use it. If you use
this environment for more than demonstration, make sure that this volume group
exists physically on the disk and not as a virtual loopback device. Tearing down and
recreating a volume group and its associated physical volume is outside the scope
of this book. It should be suficient to explain that if the cinder-volumes volume
group disappears, Cinder will throw an error upon trying to interact with it. When
it reappears, things will all work properly again. In that case, it is safe to delete all
Cinder volumes using Cinder, tear down the cinder-volumes volume group and
the associated physical volume, and rebuild it with physical disk architecture in lieu
of a loopback disk architecture. If you use LVM as the backing store for Cinder, it
will look for a volume group named cinder-volumes, and the volumes that Cinder
creates will live as logical volumes in that volume group.

Cinder types
There are many different types of storage that can be used to back Cinder. LVM is
an easy choice although software-deined solutions, such as GlusterFS and Ceph,
are also very popular. Another option would be to engage your favorite hardware
storage vendor as you ask them about their support for Cinder storage. When
multiple backing storage solutions are used in Cinder, they are deined and referred
to as types. To demonstrate this, let's keep the LVM storage available and add
another backing store option as a second Cinder type to our OpenStack cluster.
To do this, we'll add the GlusterFS software-deined storage solution as an
alternative to a Cinder type.

Block Storage

[76]

GlusterFS setup
Conveniently enough, a simple GlusterFS installation is not extremely complicated
to set up. Assume three rpm-based Linux nodes named gluster1, gluster2, and
gluster3 with an sdb drive attached for use by a GlusterFS storage cluster. The ile
system XFS is recommended although an ext4 ile system will work ine in some
cases. Research the pros and cons of each ile system related to GlusterFS before you
deploy a production GlusterFS storage cluster. Create a partition and a ile system
on the sdb disk. We'll begin our demonstration for this book with mounting the disk
and creating and starting the GlusterFS volumes. The following steps should be
performed on each of the GlusterFS nodes:

1. Start by preparing the host and installing GlusterFS:

mkdir -p /export/sdb1 && mount /dev/sdb1 /export/sdb1

echo "/dev/vdb1 /export/vdb1 ext4 defaults 0 0" >>
/etc/fstab

yum install -y glusterfs{,-server,-fuse,-geo-replication}

2. The following commands should be run only on one node as they propagate
across the GlusterFS storage cluster via the Gluster services:

service glusterd start

gluster peer probe gluster2

gluster peer probe gluster3

gluster volume create openstack-cinder rep 3 transport tcp
gluster1:/export/vdb1 gluster2:/export/vdb1

gluster3:/export/vdb1

gluster volume start openstack-cinder

gluster volume status

The last command should show you the Gluster volume you just created
and the bricks that are being used to store the GlusterFS volume openstack-
cinder. What these commands set up is a three-node Gluster installation
where each node is a replica. That means that all the data lives on all three
nodes. Now that we have GlusterFS storage available, let's configure Cinder
to know about it and present it to the end user as a backing storage option for
Cinder volumes.

Now that GlusterFS is set up, we need to tell Cinder about setting up the Cinder
volume types. Let's conigure Cinder to use GlusterFS as a backing store:

1. Start by editing /etc/cinder/cinder.conf; make sure that the enable_
backends option is deined with the following values and that the respective
coniguration sections are deined in the ile:

Chapter 7

[77]

enabled_backends=my_lvm,my_glusterfs

[my_lvm]

volume_group = cinder-volumes

volume_driver = cinder.volume.drivers.lvm.LVMISCSIDriver

volume_backend_name = LVM

[my_glusterfs]
volume_driver = cinder.volume.drivers.glusterfs.GlusterfsDriver

glusterfs_shares_config = /etc/cinder/shares.conf

glusterfs_sparsed_volumes = false

volume_backend_name = GLUSTER

The my_lvm definition preserves the existing LVM setup that has already
been used to create a Cinder volume. The my_glusterfs section defines
options to attach to the GlusterFS storage we have just configured. You
will also need to edit the /etc/cinder/shares.conf file. This file defines
the connection information to the GlusterFS nodes. Reference the first and
second Gluster nodes in the shares.conf file. It contains the following line:

gluster1:/openstack-cinder -o backupvolfile-
server=gluster2:/openstack-cinder.

2. Next, you'll need to restart the Cinder services to read the new conigurations
added to the cinder.conf ile:
control# service openstack-cinder-scheduler restart

control# service openstack-cinder-volume restart

control# mount | grep cinder

gluster1:openstack-cinder on /var/lib/cinder/... type
fuse.glusterfs

gluster2:openstack on /var/lib/cinder/... type fuse.glusterfs

3. The mount command shown here just veriies that Cinder has automatically
mounted the Cinder volumes deined. If you don't see the Cinder volumes
mounted, then something has gone wrong. In that case, check the Cinder logs
and the Gluster logs for errors to troubleshoot why Cinder couldn't mount
the Gluster volume. At this point, the backing stores have been deined, but
there is no end user coniguration that has been exposed. To present the end
user with this new coniguration, Cinder type deinitions must be created
through the API:

control# cinder type-create lvm

control# cinder type-key lvm set volume_backend_name=LVM

control# cinder type-create glusterfs

control# cinder type-key glusterfs set
volume_backend_name=GLUSTER

Block Storage

[78]

control# cinder type-list

4. Now there are two types available that can be speciied when a new volume
is created. Further, when you list volumes that are in Cinder, they will have
a volume type corresponding to which backing store is being used for each
volume:

control# cinder-create --volume-type glusterfs 1

control# cinder list

5. The next time you create a new volume in the web interface, the two types
will be available for selection on the volume creation dialog. The original lvm
backing store is available and GlusterFS has been added too. This is shown in
the following screenshot:

Chapter 7

[79]

Summary
In this chapter, we looked at creating Cinder volumes and adding an additional
storage type deinition. Cinder block storage is just one virtual storage option
available. In the next chapter, we will take a look at the Swift object storage system
to compare the storage options available to OpenStack instances. Cinder offers
block storage that attaches directly to the instances. Swift offers an API-based object
storage system. Each storage offering has its advantages and disadvantages and is
chosen to meet speciic needs in different use cases. It is important to know how each
of these works so that you can make an informed decision about which is right for
you when the time comes to choose a storage solution.

[81]

Object Storage
In the previous chapter, we looked at managing block storage with Cinder. Block
storage attaches directly to the instances, and the operating system on the instance
writes to the ile system. Object storage is an alternative storage option. Object
storage is a simple form of storage that handles ile operations on the instances by
way of API calls. Swift is the object storage component in OpenStack. In this chapter,
we're going to take a deeper look at what object storage is, how to use it, and some
options available to use as the backend storage engine.

Use case
Object storage works by using a client to send and receive iles to and from the object
store. The iles are stored with very little metadata and are treated as a whole entity.
The object server does not work in partial pieces of an object the way block storage
would work with ile blocks. It is a very simple storage method focused on storing
and retrieving the contents of the iles with minimal overhead to the operating
system while interacting with the storage server. The power of the Swift object
storage engine is its robust software-deined storage backend. The Swift storage
engine has distribution and replication capabilities across its storage nodes. First,
let's take a look at the client side of using Swift, and later, we will look at the backend
storage engine.

Architecture of a Swift cluster
Swift has a proxy layer and a storage layer. These layers are associated with each
other by way of the ring. The ring is a catalog of the objects that are being stored in
the cluster and where they are being stored. This information is replicated to every
storage node to improve the performance of the cluster. The proxy layer is a service
that presents an API interface to end users and communicates with the storage layer on
behalf of the end user. The storage layer is not generally communicated with directly.

Object Storage

[82]

By default, Swift uses the Swift storage engine for its storage backend. The Swift
storage is a storage engine designed speciically for the Swift object storage cluster that
is distributed in nature and able to be replicated. The Swift storage engine has a few
subcomponents to it: the account server, the object server, and the container server.

Swift can also be backed by storage engines other than the Swift storage engine.
There are a few other storage solutions that have integration with Swift.

Each object stored in Swift is associated with a container, and containers are owned
by an account. These associations are stored in the ring; there is a separate ring ile
for each of the accounts, containers, and objects.

Creating and using object storage
The two main concepts when using Swift are containers and objects. Containers are
groups of iles that contain objects. Objects are simply iles and must exist inside
of a container. On the Swift command line, you cannot create an empty container.
A container is created when the irst object is uploaded to it. Make sure that your
keystonerc ile is sourced, and start by uploading a ile to a container. Let's use the
packstack.txt ile used for installation as an example ile to upload:

control# swift upload my_container packstack.txt

control# swift list

control# swift list my_container

You will notice that the list command is used to list both containers and objects. If
you don't pass any arguments to the list command, you will get a list of containers. If
you pass a container as an argument, you will get a list of the objects in that container.
Next, upload the same ile, but use its absolute path to upload it, as follows:

control# swift upload my_container /root/packstack.txt

control# swift list my_container

Note how the ile gets named when you use the absolute ile path. It is important
here to understand that the way the object is named is not a directory structure. The
ilename just has a slash in it. Be aware that if you address a ile in a subfolder when
you upload it, the path to the ile being uploaded will be included in the name of the
object that is created to store the uploaded object.

Chapter 8

[83]

Object ile management in the web
interface
Now, let's take a look at managing containers and objects in the web interface. Once
you have logged in, open the Object Store menu and select the Containers submenu.
Click on the Create Container button. The following screenshot captures this step:

Now, you will be presented with the following screenshot:

Object Storage

[84]

Once you have a container created, upload an object to the container, as shown in the
following screenshot:

Both the ilenames and object names are illed in when the web interface is used to
upload a document. The object does not automatically take the ilename as it does on
the command line. These actions are amply illustrated in the following screenshot:

Chapter 8

[85]

Earlier, we looked at using a path that would include a slash in the object name. In
the web interface, this is called a pseudo-folder. The following screenshot shows us
how this is done:

Once a pseudo-folder is created, it can be opened and any object uploaded would
then be named with a preix of the selected pseudo-folder's name.

Using object storage on an instance
Now that we have seen how to get iles in and out of Swift, let's look at installing the
necessary client libraries on an instance to be able to interact with object storage on
the instance. We will need to have the Swift client installed so that the same Swift
commands that were run on the control node's command line can be executed on
an instance. In this cluster, Swift is using Keystone for authentication. Swift can
also use other authentication. It has a built-in authentication system and can also be
used with other common authentication systems. Since Swift is conigured to use
Keystone for authentication, the Keystone client will also need to be installed. Let's
install those clients now:

instance# yum install -y openstack-swiftclient openstack-keystoneclient

Once those are installed, you will need to create a keystonerc ile to source. Here's
how we go about this:

instance# cat > ~/keystonerc_danradez << EOF

export OS_USERNAME=danradez

Object Storage

[86]

export OS_TENANT_NAME=danradez

export OS_PASSWORD=password

export OS_AUTH_URL=http://192.168.122.101:5000/v2.0/

export PS1='[\u@\h \W(keystone_danradez)]\$ '

EOF

Now, execute the Swift commands to list containers and objects, and create and upload
them using the same commands as was previously done from the control node.

Ring iles
Ring iles are a kind of catalog of the iles that are stored within the Swift storage
engine and where within the storage cluster they are stored. As content is written to
the Swift object storage cluster, these ring iles are updated across the storage cluster
and on the proxy server. When alternative storage backends are used in place of the
Swift object storage engine, they mock the ring ile system that the proxy expects
and map this ring ile system to its storage engine. Because the Swift proxy service
always expects a set of ring iles to operate, it is important to know how these are
generated and installed. Learning how to set up ring iles for the Swift object storage
engine will teach you the basics that will translate into object storage backed by
alternative storage engines.

There are various ring iles that must all be generated and copied to each of the
servers that will use the ring iles. These include the account, container, and object
rings. To generate these rings, each of the devices on each of the storage servers
need to be added to the ring iles, and the iles need to be rebalanced before they are
copied. In our example installation in Chapter 2, RDO Installation, Packstack did the
setting up for us. This example is intended to give you an idea of how ring iles are
generated for future interactions you may have with generating these ring iles.

Creating ring iles
Let's use an example architecture that will include three storage nodes and one device
on each of the nodes. If the IP addresses 192.168.123.11, 192.168.123.12, and
192.168.123.13 were the storage nodes and if each of them had a partition on a
second drive named sdb1, then these three devices across the servers would be added
to a new set of ring iles using the swift-ring-builder command. First, create the
ring iles; this can be done on any of the storage nodes, and then the ring iles will be
copied to the other nodes. Here's how we use the swift-ring-builder command:

storage-node$ swift-ring-builder account.builder create 12 3 24

storage-node$ swift-ring-builder container.builder create 12 3 24

storage-node$ swift-ring-builder object.builder create 12 3 24

Chapter 8

[87]

Here, you see a create command for each of the types of ring iles. The three numbers
behind the create command are the part power (12), replica count (3), and minimum
part hours (24). There are partitions created within the Swift storage engine that
help Swift to distribute the storage properly. The number of partitions is equal to 2
raised to the part power (12). In this example, 2^12 means that 4,096 partitions will
be created in each ring. The replica count is how many copies of each item will be
stored; it is recommended that you use three here. The minimum part hours is the
minimum number of hours before a partition can be moved in succession. Swift
recommends 24 as a good value for the minimum part hours. For more information
on these values, search the Internet for Swift preparing the rings and you should ind
the oficial Swift documentation that goes into greater detail on how to choose values
for these properties. Next, add the devices to the rings using the Swift ring builder
command again. Here's how we go about it:

storage-node$ swift-ring-builder account.builder add z1-
192.168.123.11:6002/sdb1 100

storage-node$ swift-ring-builder account.builder add z1-
192.168.123.12:6002/sdb1 100

storage-node$ swift-ring-builder account.builder add z1-
192.168.123.13:6002/sdb1 100

storage-node$ swift-ring-builder account.builder rebalance

storage-node$ swift-ring-builder container.builder add z1-
192.168.123.11:6001/sdb1 100

storage-node$ swift-ring-builder container.builder add z1-
192.168.123.12:6001/sdb1 100

storage-node$ swift-ring-builder container.builder add z1-
192.168.123.13:6001/sdb1 100

storage-node$ swift-ring-builder container.builder rebalance

storage-node$ swift-ring-builder object.builder add z1-
192.168.123.11:6000/sdb1 100

storage-node$ swift-ring-builder object.builder add z1-
192.168.123.12:6000/sdb1 100

storage-node$ swift-ring-builder object.builder add
192.168.123.13:6000/sdb1 100

storage-node$ swift-ring-builder object.builder rebalance

Object Storage

[88]

In this example, there is only one zone used that is referenced by z1- as a preix to
each of the IP addresses. It is recommended that a minimum of ive zones are used
to avoid conlicts within zones on the same IP address. Behind each of the addresses
and device names in these commands, there is a weight. This weight helps Swift to
determine how many partitions are placed on the device relative to the rest of the
devices in the cluster. It is recommended that you start with 100 times the number of
terabytes on the drive. When this is complete, you should be able to list the iles in
your /etc/swift directory and see a .ring.gz ile for each of the ring types. These
are the iles that need to be copied to each of the storage nodes and the Swift proxy
server node before services are started. Also, ensure that these iles on each of the
nodes are owned by root:swift.

Once these iles are in place across the servers, the services can be started. Note that
Swift's coniguration iles do not reference the other servers in the storage cluster.
The servers reference each other by way of ring iles. These ring iles can also be
updated to help Swift work around hardware failures in the storage cluster. Just
make sure that any changes that are made are copied across the cluster so that the
ring iles match on all the nodes.

Summary
In this chapter, we looked at using the Swift object storage and how to generate the
ring iles that the Swift storage engine uses to manage its storage. Now that we have
covered the storage components in OpenStack, let's take a look at the Telemetry
component that OpenStack uses to measure the usage of resources across the cluster.

[89]

Telemetry
Ceilometer is the telemetry component in OpenStack. While all the other components
in OpenStack are busy managing virtual resources, Ceilometer keeps a watchful eye
over them and measures the usage of resources, what resources are being used, and
how they are being used within the cluster. In this chapter, we are going take a look
at what is being measured and how to query the telemetry data. Then, we will use
gnuplot to plot some of the data on a graph.

Understanding the data store
Before we start exploring Ceilometer, it is important to know that, by default,
Ceilometer uses MongoDB to store all of its telemetry data. This data store can grow
very rapidly and can use excess space. It is in your interest to keep Mongo's data
store separate from the root partition of your control node so that the telemetry
data does not ill up your control node's root disk. OpenStack has a horrible time
functioning without a disk to write to. Mongo's data store is /var/lib/mongodb/
by default. A simple way to be sure that the node's root disk doesn't ill up would be
to mount another partition, logical volume, or some other external storage to /var/
lib/mongodb/. If there isn't any important data in Ceilometer, you can even stop
the MongoDB service, delete the contents of the data store directory, mount the new
storage, ensure the ownership is correct, and restart the central and collector services of
both the MongoDB and Ceilometer APIs. The iles that were deleted will be recreated
as an empty Mongo database for Ceilometer to start dumping data into again.

Telemetry

[90]

Deinitions of Ceilometer's coniguration
terms
As resources are being managed within the OpenStack cluster, there are certain types
of things that are being measured by Ceilometer. These types of things are called
meters in Ceilometer. Each of these types of measurements gathers samples. Samples
are single measurements or data points of a certain meter. The deinition of how
often to sample a meter is called a pipeline. Once enough samples are collected, they
can be aggregated into statistics. Ceilometer statistics show a collection of samples
over time for a particular meter. Ceilometer also has the ability to set alarms that will
monitor statistics and is able to respond to matching criteria.

Pipelines
Pipelines are something that you shouldn't have to spend time coniguring.
Ceilometer has a collection of predeined pipelines that should suit most of your
needs. If you end up needing a custom pipeline, it would be done in the /etc/
ceilometer/pipeline.yaml coniguration ile. Take a look at this ile if you would
like to familiarize yourself with the pipeline coniguration. We are not going to
spend any more time beyond mentioning pipelines here.

Meters
Meters are the types of data being measured and the resources being measured.
To see which meters have been collected and which resources have metered data,
simply list the meters:

control# ceilometer meter-list

Only meters that have collected data are included in this list. If a meter is absent,
then there haven't been any events to generate data for the absent meter. If no meters
are listed, then the Ceilometer services are not properly collecting and reporting
data. There is also a command that will show you which resources have collected
telemetry data:

control# ceilometer resource-list

After Ceilometer has been collecting data for an extended period of time, a very large
meter-list could come back. This list can be iltered using the query argument:

control# ceilometer meter-list -q name=vcpus

Chapter 9

[91]

As a non-privileged user, you will only see meters for your project; as the
administrator, you will probably need to ilter the meters to a speciic project.
To do this, use the query argument to ilter the list of meters:

control# ceilometer meter-list -q project=<PROJECT_ID>

You can also pass multiple items to ilter using a semicolon to delimit the ilter items:

control# ceilometer meter-list -q project=<PROJECT_ID>;name=vcpus

Samples
Now that you can retrieve the meters that are collecting data, you can look at what
data has been collected for those meters. Samples are a single measurement of a
meter for a resource. To get a list of samples, you will need to provide the meter that
you would like to list samples for:

control# ceilometer sample-list -m vcpus

As with the meter-list command, you can also ilter the results with the query
argument:

control# ceilometer sample-list -m vcpus -q resource_id=<INSTANCE_ID>

You can also ilter certain ields to get a range of results; for example, samples within
a limited time period can be returned by iltering on the timestamp ield:

control# ceilometer sample-list -m vcpus -q
'resource_id=<INSTANCE_ID>;timestamp>2014-09-
27T07:30:00;timestamp<=2014-09-27T011:00:00'

Statistics
By listing the meters, we have looked at what is being measured, and by listing
the samples, we have looked at the actual raw data that is being collected for the
meters. The inal aggregation of this data into something useful is called statistics
in Ceilometer. As with samples, the statistics command requires you to provide the
meter for which you would like to see statistics. Here's the statistics command:

control# ceilometer statistics -m vcpus

As with meters and samples, a query argument can be passed to ilter the data:

control# ceilometer statistics -m vcpus -q 'timestamp>2014-09-
27T07:30:00;timestamp<=2014-09-27T011:00:00'

Telemetry

[92]

An additional argument that is available with statistics is the period argument. The
period is the number of seconds into which samples can be grouped for the statistics
generated. If you do not pass the period argument, you will get a single statistic
returned to you with all the data for your meter and query. If you pass a period, you
will get multiple statistics returned—one for each grouping of samples according to
the period speciied. For example, to get statistics for each 10-minute period within
the timestamp range we have been using, the command would look like this:

control# ceilometer statistics -m vcpus -q 'timestamp>2014-09-
27T07:30:00;timestamp<=2014-09-27T011:00:00' -p 600

Alarms
Alarms are a resource used mainly in conjunction with orchestration. We will look
at alarms again when we look at orchestration in the next chapter. Alarms have to be
created; they will not appear magically like the meters and samples we just looked
at. Let's create an alarm that will watch for high CPU usage on a particular instance:

control# ceilometer alarm-threshold-create --name cpu_alarm --
description 'cpu usage is high!' --meter-name cpu --threshold 80.0 --
comparison-operator gt --statistic avg --period 600 --evaluation-
periods 3 --alarm-action 'log://' --query resource_id=<INSTANCE_ID>

This will create an alarm that watches the CPU on a speciic instance and logs to the
ile if the instance's CPU usage is above 80 percent over three checks, 10 minutes
apart. Use the list command to see the alarm just created:

control# ceilometer alarm-list

Get the alarm's ID from the list and check its history:

control# ceilometer alarm-history -a <ALARM_ID>

There is probably only a creation event; other events will show up in the history
as they are triggered, though. Finally, it may be necessary to enable or disable the
alarm for some reason. There is an enabled lag on alarms that you can use to turn it
on and off:

control# ceilometer alarm-update --enabled False -a <ALARM_ID>

Updates to the alarm using the alarm-update command are logged as history. After
you have updated the alarm, look at the history again, and you will see an event for
the update you made. This applies to any alarm property that is updated.

Chapter 9

[93]

Graphing the data
Up until now, we have just seen data points lowing through our screen that may or
may not be very useful to us. Wouldn't it be nice to make something visual to help
display this data? There are plenty of options that could be used to plot this data. As
an example, let's take a quick look at gnuplot, which is a command-line program that
is packaged with most modern Linux distributions. This book has been using Fedora;
to install gnuplot, simply yum install it:

control# yum install -y gnuplot

There are options that need to be fed into gnuplot to tell it how to render the graph
that it creates. Let's use a coniguration ile that will be passed to gnuplot. Put the
following content into a ile. I'm going to name mine memory.cfg because I will
plot the memory usage that's already been aggregated by the Ceilometer statistics
command:

#memory.conf

set terminal png truecolor

set output "memory.png"

set autoscale

set xdata time

set timefmt '%Y-%m-%dT%H:%M:%S'

set style data lines

plot '<cat' using 2:7 title "Sum"

The set terminal line tells gnuplot to generate a .png image. Set output sets the
ilename to write to. Autoscale turns on autoscaling. The xdata and timefmt lines
deine the format to read the time from. The set style line tells gnuplot to make
a line graph. Finally, the plotline <cat reads from standard input. 2:7 tells us to
use the second column for the x axis, the seventh column for the y axis, and the title
"Sum" sets the title for the line that will be drawn. Next, let's execute the string of
commands that will clean Ceilometer's output and give it to gnuplot:

control# ceilometer statistics -m memory -q project=<PROJECT_ID> -p
3600 | tail -n +4 | head -n -1 | tr -d '|' | tr -s ' ' | gnuplot
memory.cfg

Telemetry

[94]

The Ceilometer statistics command uses the memory meter for the project of the
ID that is passed and groups the memory measurements into hour-long periods.
The Ceilometer output is piped to the tail, which strips off the rows that display the
column headers. The head command strips off the last line, which is just another
line as the one that was included in the header that borders the bottom of the data.
The irst tr command deletes all the pipes that are delimiting the columns, and the
second tr command squashes all the spaces into single spaces. What we end up
with is no pipe delimiting, no column headers, and no special output formatting.
This is just the raw data with single-spaced delimiting. There may be a way to make
Ceilometer do this automatically for us. Finally, the cleaned-up data is passed to
gnuplot, which reads our coniguration ile and generates .png. Here is an image
I generated with some sample data:

As a second example, let's plot two lines. This can't be achieved by piping data
directly to gnuplot. We will have to dump the data into a data ile so that the data can
be read twice, once for each line. We will use vcpus this time instead of memory and
a period of 30 minutes. Also make a copy of the cfg ile so that it can be modiied:

control# ceilometer statistics -m vcpus -q project=<PROJECT_ID> -p
1800 | tail -n +4 | head -n -1 | tr -d '|' | tr -s ' ' > vcpus.txt

control# cp memory.cfg vcpus.cfg

Chapter 9

[95]

Next, update the vcpus.cfg ile to use the vcpus.txt ile and to plot two lines
instead of one. To do this, update the output line to a new ilename so that you don't
overwrite your memory.png ile and update the plotline. The new ile's content will
look like this:

#vcpus.conf

set terminal png truecolor

set output "vcpus.png"

set autoscale

set xdata time

set timefmt '%Y-%m-%dT%H:%M:%S'

set style data lines

plot 'vcpus.txt' using 2:7 title "Sum", 'vcpus.txt' using 2:9
title "duration"

Once you have the new cfg ile and the data ile, run gnuplot:

control# gnuplot vcpus.cfg

This will generate a vcps.png ile. Here's one I generated with sample data:

Telemetry

[96]

Another example that could be worked with is to dump the memory data into one
ile and have one line plotted from the memory data and the second line plotted
from the vcpus data. As illustrated, gnuplot can be a powerful tool. These examples
show what can be done with the data that Ceilometer produces. They show the only
possible tool to consume and plot the data.

Summary
In this chapter, we looked at how to view, aggregate, and plot telemetry data
using Ceilometer. This data is useful to monitor the health of a set of instances, a
billing client, and so on. As mentioned in this chapter, Ceilometer's alarms are a
useful resource for the orchestration tool in OpenStack. Next, we will look at cloud
orchestration using the OpenStack component named Heat.

[97]

Orchestration
In the previous chapter, we looked at Ceilometer and used telemetry in OpenStack.
In this chapter, we will take a look at orchestration using OpenStack's Heat
component. We will take a look at what orchestration is and how to write a template
for Heat. Then, we will use the template to launch a Heat stack.

About orchestration
In Chapter 6, Instance Management, we used Nova to launch instances in OpenStack.
This example walked through launching a single instance or, if the instance count
was increased, multiple instances with the same coniguration. What if a collection
of instances needed to be launched that required each of them to have a different
coniguration or they all needed to know about each other as part of their post-boot
coniguration? For example, maybe a different Glance image is needed for each instance
or a different lavor is needed for the different roles within this collection of instances.
It's even a possible requirement to control the order in which the instances are spawned
to make sure that they are available in a speciic order for post-boot coniguration
purposes. Enter orchestration. With OpenStack's orchestration component, Heat, all of
these requirements and more can be met with Heat's capabilities.

Writing templates
The two core concepts to get started with Heat are stacks and templates. A stack is
a collection of resources related to one another and launched by way of a template.
A template is a text document deinition of a stack. To launch a Heat stack, a Heat
template is launched. Let's look at both of these in more depth, starting with templates.

Orchestration

[98]

Before we can launch a stack, we need a template that will deine the stack. There
are two formats of template that you can use to launch a stack in Heat. One is the
AWS CloudFormation template format. If you have ever used CloudFormation
in AWS, then you would be familiar with this template format. Heat templates are
very similar to those used within Amazon Web Services (AWS), and add additional
capabilities within OpenStack. The second format is HOT, which stands for Heat
Orchestration Template. HOT is a native Heat template format that is written in
the YAML Ain't Markup Language syntax. For more examples of both, visit the
Heat-templates github repository and browse through the collection of example
scripts. The examples used in this chapter were pulled from https://github.com/
openstack/heat-templates.

The AWS CloudFormation format
Let's pull an example from the Heat-templates repository to gain some familiarity
with the AWS CloudFormation format. This is a large document, so the entire
content will not be provided here. I'll reference the document from top to bottom.
The document in its entirety is available at the following link and is available in the
code resources provided with this book:

https://github.com/openstack/heat-templates/blob/master/cfn/F19/

WordPress_NoKey.yaml

Let's take a look at the coniguration options used in this template:

• HeatTemplateFormatVersion is just for versioning so that Heat knows
which syntax version is being used.

• Description is a description of what the template will launch. This template
indicates it will launch a single-instance WordPress install.

• Parameters is a section that defines what information is needed for this
template to be launched. You can see that each of the parameters is defined
by its name first and then a set of parameters to help the end user enter
the correct information in it. For the template we are looking at, there are
InstanceType, which references the flavors in Nova, and the DBName,
DBUsername, DBPassword, and DBRootPassword properties that will be
used to configure the database that will be created.

• Mappings in this template only map flavors with images so that when you
launch a specific flavor, you will get the associated image.

Chapter 10

[99]

• The resources section defines the resources that will be created in OpenStack.
In this template, security group rules and an instance are created. You can see
the security group rules to allow ICMP, port 80 (HTTP), and port 22 (SSH)
traffic. You can also see the configuration options that will be passed to the
instance when it is booted. These include packages to be installed, services to
be started, the image to be used to launch the instance, which references the
mappings we just looked at, the security group for the instance to reside in,
and the user data that cloud-init should execute.

• Finally, there is an outputs section. This is data passed back to Heat from the
stack once it has been launched.

Next, let's take a look at the HOT format before we use a template to launch a stack.

The Heat Orchestration Template (HOT)

format
Take a look at the hello world template in the HOT directory in the same github
repository:

https://github.com/openstack/heat-templates/blob/master/hot/hello_

world.yaml

The HOT format uses most of the same keywords that the AWS CloudFormation
format uses. In the hello world template, you can see that almost all the same
sections exist: heat_template_version, parameters, resources, and outputs. The
coniguration options for each of these sections look very similar; the main difference
is that the HOT format is pure YAML and the AWS CloudFormation is a kind of
YAML/JSON hybrid. The next step for us is to take these templates and launch a
stack using them. We will use the HOT format to launch a stack next, so you will
gain familiarity with this format in our practical application.

Launching a stack
Let's use the HOT hello world. The template can be passed to the Heat stack-
create command as a local ile, a URL to pull it from the network somewhere,
or even as a Swift object if it was stored in Swift. I had to pull down a copy of the
HOT we just looked at to remove a few lines from it to get it to work. Pull down a
copy of the template to your local ile system. A template can be validated with the
template-validate command. The template as it is in github didn't validate for me:

control# heat template-validate -f hello_world.yaml

ERROR: Unknown Property admin_pass

Orchestration

[100]

I edited the ile to remove the references to admin_pass from the server resource
and from the parameter deinitions in the template. The admin_pass property is not
really needed since a key pair is being passed into the instance when it's launched, so
we will be ine if we remove it. Here's what the template looked like after editing it:

#

This is a hello world HOT template just defining a single
compute server.

#

heat_template_version: 2013-05-23

description: >

 Hello world HOT template that just defines a single server.

 Contains just base features to verify base HOT support.

parameters:

 key_name:

 type: string

 description: Name of an existing key pair to use for the server

 constraints:

 - custom_constraint: nova.keypair

 flavor:

 type: string

 description: Flavor for the server to be created

 default: m1.small

 constraints:

 - custom_constraint: nova.flavor

 image:

 type: string

 description: Image ID or image name to use for the server

 constraints:

 - custom_constraint: glance.image

 db_port:

 type: number

 description: Database port number

 default: 50000

 constraints:

 - range: { min: 40000, max: 60000 }

 description: Port number must be between 40000 and 60000

resources:

 server:

 type: OS::Nova::Server

 properties:

Chapter 10

[101]

 key_name: { get_param: key_name }

 image: { get_param: image }

 flavor: { get_param: flavor }

 user_data:

 str_replace:

 template: |

 #!/bin/bash

 echo db_port

 params:

 db_port: { get_param: db_port }

outputs:

 server_networks:

 description: The networks of the deployed server

 value: { get_attr: [server, networks] }

After you pull out the references to admin_pass, it will validate properly, and the
command will return a JSON structure with all the template's data in it:

control# heat template-validate -f hello_world.yaml

Next, pass into the stack-create command a stack name and all the parameters
that the template requires to launch:

control# heat stack-create -f hello_world.yaml -P key_name=danradez -
P image=Fedora -P admin_pass=Abadpass ""My First Stack""

This command will launch a stack named My First Stack from the template that you
just downloaded and edited. Once a stack has been launched, you can keep track of
the stack's progress and details using Heat's stack-list command and the stack-
show command. Further, you can list the resources associated with the stack with
the resource-list command, and you can see the individual resources through the
other OpenStack components using the appropriate command associated with those
resources. In this example, the only resource created was an instance through Nova,
so use the nova list command to see the instance that the stack created. A stack also
has a set of events. Those events can be listed with the event-list command. The
details of resources and events can be seen with their respective show commands:

control# heat stack-list

control# heat stack-show {STACK_ID}

control# heat resource-list {STACK_ID}

control# heat resource-show {RESOURCE_ID}

control# nova list

control# heat event-list {STACK_ID}

control# heat event-show {EVENT_ID}

Orchestration

[102]

Note here that the resources that are created through Heat can be managed
independently of Heat. The instance that was created by way of the hello world stack
could be deleted directly through Nova. Deleting the instance will not delete the stack,
but deleting the stack will delete all the resources that are associated with the stack.

Autoscaling instances with Heat
In Chapter 9, Telemetry, Ceilometer alarms were introduced. These were monitoring
objects that were able to trigger external actions based on a certain criterion being
met for a predetermined set of iterations. Heat's autoscaling is the primary use case
for this functionality. Using Heat's autoscaling, it is possible to monitor a set of
instances and add or subtract instances to meet load demands. In the same GitHub
repository that the previous examples were taken from, there is an autoscaling
example. For the autoscaling example to work, you will need to grab two templates:

• https://github.com/openstack/heat-templates/blob/master/hot/

autoscaling.yaml

• https://github.com/openstack/heat-templates/blob/master/hot/

lb_server.yaml

These templates are written to launch a single database instance and to add and
remove web server instances respective to the load put on the WordPress stack
running on the web servers.

LBaaS setup
Before we get to walking through these templates, we need to enable the Load
Balancer as a Service (LBaaS) functionality of Neutron. Packstack does not conigure
it when it installs Neutron. There are a couple of coniguration iles to be updated
and a couple of services to restart. First off, ensure that HAProxy is installed on the
network node:

network# yum install -y haproxy

Note that the contents of the ile referenced in this chapter
should not be replaced in their entirety. The coniguration
options listed are intended to be updated and the rest of the ile
left intact. If the contents of the iles edited here include only
the contents referenced here, then LBaaS will not be enabled
properly, and this Heat template will fail to launch.

Chapter 10

[103]

Next, edit /etc/neutron/neutron.conf on the network nodes and add the value
lbaas to the service_plugins coniguration option. If there are already values,
leave them there and add lbaas to the comma-delimited list. Mine was commented
out with out a value, so I just added lbaas as the only value to this coniguration:

service_plugins = lbaasLastly edit /etc/neutron/lbaas_agent.ini on
the network node and make sure that the device_driver options is
set to HAProxy, the interface_driver is set to OVS and that the
[haproxy] user_group is set to nobody.

[DEFAULT]

device_driver =
neutron.services.loadbalancer.drivers.haproxy.namespace_driver.Hap
roxyNSDriver

interface_driver =
neutron.agent.linux.interface.OVSInterfaceDriver

[haproxy]

user_group = nobody

Finally, restart the Neutron server and lbaas services on the network node:

network# service neutron-server restart

network# service neutron-lbaas-agent restart

Now that the lbaas service is enabled, let's take a look at the autoscaling.yaml ile.
Here are the contents; there is more explanation after the contents of the ile:

heat_template_version: 2013-05-23

description: AutoScaling Wordpress

parameters:

 image:

 type: string

 description: Image used for servers

 key:

 type: string

 description: SSH key to connect to the servers

 flavor:

 type: string

 description: flavor used by the web servers

 database_flavor:

 type: string

 description: flavor used by the db server

 subnet_id:

 type: string

 description: subnet on which the load balancer will be located

 database_name:

 type: string

Orchestration

[104]

 description: Name of the wordpress DB

 default: wordpress

 database_user:

 type: string

 description: Name of the wordpress user

 default: wordpress

 external_network_id:

 type: string

 description: UUID of a Neutron external network

resources:

 database_password:

 type: OS::Heat::RandomString

 database_root_password:

 type: OS::Heat::RandomString

 db:

 type: OS::Nova::Server

 properties:

 flavor: {get_param: database_flavor}

 image: {get_param: image}

 key_name: {get_param: key}

 user_data_format: RAW

 user_data:

 str_replace:

 template: |

 #!/bin/bash -v

 yum -y install mariadb mariadb-server

 systemctl enable mariadb.service

 systemctl start mariadb.service

 mysqladmin -u root password $db_rootpassword

 cat << EOF | mysql -u root --password=$db_rootpassword

 CREATE DATABASE $db_name;

 GRANT ALL PRIVILEGES ON $db_name.* TO ""$db_user""@""%""

 IDENTIFIED BY ""$db_password"";

 FLUSH PRIVILEGES;

 EXIT

 EOF

 params:

 $db_rootpassword: {get_attr: [database_root_password,
value]}

 $db_name: {get_param: database_name}

 $db_user: {get_param: database_user}

 $db_password: {get_attr: [database_password, value]}

 web_server_group:

 type: OS::Heat::AutoScalingGroup

Chapter 10

[105]

 properties:

 min_size: 1

 max_size: 3

 resource:

 type: lb_server.yaml

 properties:

 flavor: {get_param: flavor}

 image: {get_param: image}

 key_name: {get_param: key}

 pool_id: {get_resource: pool}

 metadata: {""metering.stack"": {get_param:
""OS::stack_id""}}

 user_data:

 str_replace:

 template: |

 #!/bin/bash -v

 yum -y install httpd wordpress

 systemctl enable httpd.service

 systemctl start httpd.service

 setsebool -P httpd_can_network_connect_db=1

 sed -i ""/Deny from All/d""
/etc/httpd/conf.d/wordpress.conf

 sed -i ""s/Require local/Require all granted/""
/etc/httpd/conf.d/wordpress.conf

 sed -i s/database_name_here/$db_name/
/etc/wordpress/wp-config.php

 sed -i s/username_here/$db_user/
/etc/wordpress/wp-config.php

 sed -i s/password_here/$db_password/
/etc/wordpress/wp-config.php

 sed -i s/localhost/$db_host/ /etc/wordpress/wp-
config.php

 systemctl restart httpd.service

 params:

 $db_name: {get_param: database_name}

 $db_user: {get_param: database_user}

 $db_password: {get_attr: [database_password,
value]}

 $db_host: {get_attr: [db, first_address]}

 web_server_scaleup_policy:

 type: OS::Heat::ScalingPolicy

 properties:

 adjustment_type: change_in_capacity

Orchestration

[106]

 auto_scaling_group_id: {get_resource: web_server_group}

 cooldown: 60

 scaling_adjustment: 1

 web_server_scaledown_policy:

 type: OS::Heat::ScalingPolicy

 properties:

 adjustment_type: change_in_capacity

 auto_scaling_group_id: {get_resource: web_server_group}

 cooldown: 60

 scaling_adjustment: -1

 cpu_alarm_high:

 type: OS::Ceilometer::Alarm

 properties:

 description: Scale-up if the average CPU > 50% for 1 minute

 meter_name: cpu_util

 statistic: avg

 period: 60

 evaluation_periods: 1

 threshold: 50

 alarm_actions:

 - {get_attr: [web_server_scaleup_policy, alarm_url]}

 matching_metadata: {''metadata.user_metadata.stack'':
{get_param: ""OS::stack_id""}}

 comparison_operator: gt

 cpu_alarm_low:

 type: OS::Ceilometer::Alarm

 properties:

 description: Scale-down if the average CPU < 15% for 10
minutes

 meter_name: cpu_util

 statistic: avg

 period: 600

 evaluation_periods: 1

 threshold: 15

 alarm_actions:

 - {get_attr: [web_server_scaledown_policy, alarm_url]}

 matching_metadata: {''metadata.user_metadata.stack'':
{get_param: ""OS::stack_id""}}

 comparison_operator: lt

 monitor:

 type: OS::Neutron::HealthMonitor

 properties:

 type: TCP

 delay: 5

Chapter 10

[107]

 max_retries: 5

 timeout: 5

 pool:

 type: OS::Neutron::Pool

 properties:

 protocol: HTTP

 monitors: [{get_resource: monitor}]

 subnet_id: {get_param: subnet_id}

 lb_method: ROUND_ROBIN

 vip:

 protocol_port: 80

 lb:

 type: OS::Neutron::LoadBalancer

 properties:

 protocol_port: 80

 pool_id: {get_resource: pool}

 # assign a floating ip address to the load balancer

 # pool.

 lb_floating:

 type: ""OS::Neutron::FloatingIP""

 properties:

 floating_network_id: {get_param: external_network_id}

 port_id: {get_attr: [pool, vip, port_id]}

outputs:

 scale_up_url:

 description: >

 This URL is the webhook to scale up the autoscaling group.
You can invoke the scale-up operation by doing an HTTP POST to
this URL; no body nor extra headers are needed.

 value: {get_attr: [web_server_scaleup_policy, alarm_url]}

 scale_dn_url:

 description: >

 This URL is the webhook to scale down the autoscaling group.
You can invoke the scale-down operation by doing an HTTP POST to
this URL; no body nor extra headers are needed.

 value: {get_attr: [web_server_scaledown_policy, alarm_url]}

 pool_ip_address:

 value: {get_attr: [pool, vip, address]}

 description: The IP address of the load balancing pool

 website_url:

 value:

 str_replace:

 template: http://host/wordpress/

Orchestration

[108]

 params:

 host: { get_attr: [lb_floating, floating_ip_address] }

 description: >

 This URL is the ""external"" URL that can be used to access
the Wordpress site.

 ceilometer_query:

 value:

 str_replace:

 template: >

 ceilometer statistics -m cpu_util

 -q metadata.user_metadata.stack=stackval -p 600 -a avg

 params:

 stackval: { get_param: ""OS::stack_id"" }

 description: >

This is a Ceilometer query for statistics on the cpu_util meter samples about
OS::Nova::Server instances in this stack. The -q parameter selects samples according
to the subject's metadata. When a VM's metadata includes an item of the form
metering.X=Y, the corresponding Ceilometer resource has a metadata item of the
form user_metadata.X=Y and samples about resources so tagged can be queried with
a Ceilometer query term of the form metadata.user_metadata.X=Y. In this case the
nested stacks give their VMs metadata that is passed as a nested stack parameter, and
this stack passes a metadata of the form metering.stack=Y, where Y is this stack's ID.

You will see that the parameters collect the information necessary to dynamically
launch the instances, attach them to networks, and create a database name and user
to set up the database. The irst three resources in the resource deinitions include the
database server itself and randomly generated passwords for the database users. The
next resource is an auto-scaling group. The group is of the AutoScalingGroup type,
and the resource deined in this group is of the lb_server.yaml type. This refers to
the other yaml ile. Let's quickly look at this template:

heat_template_version: 2013-05-23

description: A load-balancer server

parameters:

 image:

 type: string

 description: Image used for servers

 key_name:

 type: string

 description: SSH key to connect to the servers

 flavor:

 type: string

 description: flavor used by the servers

 pool_id:

Chapter 10

[109]

 type: string

 description: Pool to contact

 user_data:

 type: string

 description: Server user_data

 metadata:

 type: json

resources:

 server:

 type: OS::Nova::Server

 properties:

 flavor: {get_param: flavor}

 image: {get_param: image}

 key_name: {get_param: key_name}

 metadata: {get_param: metadata}

 user_data: {get_param: user_data}

 user_data_format: RAW

 member:

 type: OS::Neutron::PoolMember

 properties:

 pool_id: {get_param: pool_id}

 address: {get_attr: [server, first_address]}

 protocol_port: 80

The lb_server.yaml template is a fairly basic server deinition to launch a single
instance using Heat. The extra deinitions to note are the pool_id parameter and
the Neutron PoolMember resource. These associate the servers that are launched
with this template with the LBaaS pool resource created in the autoscaling.yaml
template. This also shows an example of how Heat templates can reference each
other. Let's jump back to the autoscaling.yaml template now.

The next two resources deined after the AutoScalingGroup resource are the Heat
policies that are used to deine what to do when scaling up or scaling down. The next
two resources are the Ceilometer alarms that trigger the Heat policies to scale up
or down accordingly when the CPU usage is too high or too low for the number of
instances that are currently running. The last four resources deine a load balancer,
an IP address for the load balancer, a monitor for the load balancer, and a pool to
add servers to for the load balancer to balance the load.

Lastly, the autoscale.yaml template deines a set of outputs to get URLs and the
pool IP address or that the heat stack can be used.

Orchestration

[110]

Now that we've walked through these templates, let's launch the autoscale template.
You will need to pass in a glance image ID to launch all the instances off, the ID of your
internal subnet and your external network, a key pair's name, and Nova lavor names
for the database and the web server instances. The stack-create command should
be executed as the admin user. The policies in Ceilometer require admin access. They
could be created ahead of time and provided to end users if it was necessary for non-
administrative users to launch auto-scaling stacks. For our demonstrations here, just
use the admin user. The command will look something like this.

heat stack-create -f autoscaling.yaml -P database_flavor=m1.small -P
subnet_id={INTERNAL_SUBNET_ID} -P external_network_id={EXT_NET_ID} -P
image={GLANCE_IMAGE_ID} -P key=danradez -P flavor=m1.small autoscale_me

Once the stack launches, you can use the stack, resource, and event commands to
list and show information about the stack, monitor its progress, and troubleshoot
any errors that might be encountered. This stack is now ready to scale automatically
using the resources Heat has put into place to monitor the set of resources created
through this stack. If you were to put a load on the web service instance enough to
trigger the scale-up alarm, another instance would spawn. You can also accomplish
this via POST to the scale-up URL listed in the outputs of the auto-scaling template.
Similarly, reducing the load to trigger the scale-down alarm or a POST to the scale-
down URL in the outputs section of the template would reduce the number of
instances in the web server pool.

Web interface
Now that we've looked at Heat on the command line and explored some of its
functionality, let's take a look at the dashboard and the support available for Heat in
the dashboard web interface. Log in to the dashboard, ind the Orchestration menu,
and select the Stacks menu option. The following screenshot captures the dashboard:

Chapter 10

[111]

To launch a new stack, click on the Launch Stack button in the top-right corner:

To launch your stack, you have the same options to pull your template from. I've
chosen the same hello_world.yaml ile used earlier.

Orchestration

[112]

Fill out the form to provide the parameters required to launch the stack. Then, click
on the Launch button at the bottom of the form. You may have to scroll down to get
to it. If the form validation fails, you will be notiied as to what needs to be updated:

The web interface will auto-update itself until the stack reaches a complete or failed
state. Click on the Stack to drill down and ind out more information about the
stack. There are tabs with identiication details, a Resources list, and an Event list.
One other tab available is the topology tab. This tab is more interesting with more
resources; the hello world stack only has one item on it. Here's what the topology
looked like after I launched the autoscaling template:

Chapter 10

[113]

Each of the circles can be moused over to show what each of them are and what
their status is. Their status also shows failure reasons, so if something fails, this is
sometimes a convenient place to get a visual representation of what failed and what
the error message from the failure is. The graph is also interactive in a drag-around
kind of way, which makes for great eye candy.

Summary
In this chapter, we looked at the different kinds of Heat templates and how to launch
Heat stacks from these templates. Heat stacks offer a new level of opportunity to
launch instances and tie them all together into a useful and functional set of instances
and complementary resources. This completes the set of OpenStack components
that we are going to review in this book. In the upcoming chapters, we are going to
look at how to architect an OpenStack cluster, how to monitor the cluster, and how
to troubleshoot OpenStack infrastructure. In Chapter 11, Scaling Horizontally, we will
start with the architecture of an OpenStack cluster and look at how to scale it.

[115]

Scaling Horizontally
One of the foundations of OpenStack is that it was built to run on generic commodity
hardware and is intended to scale out horizontally very easily. Scaling horizontally
means adding more servers to get the job done. Scaling vertically means getting
larger, more specialized servers. Whether the servers you run have a handful of
processors and a few gigabytes of RAM, or double digits of processors and RAM
approaching or exceeding triple digits, OpenStack will run on your servers. Further,
whatever assortment of servers of varying horsepower you have collected, they can
all be joined into an OpenStack cluster to run the API services, service agents, and
hypervisors within the cluster. The only hard requirement is that your processors
have virtualization extensions built into them, which is pretty much a standard
feature in most modern-day processors. In this chapter, we will look at the process
of scaling an OpenStack cluster horizontally on the control, network, and compute
layers. Then, we will discuss the concepts around making the cluster highly available.

Scaling compute nodes
The irst and easiest way to scale an OpenStack cluster is to add compute power.
One control node and one network node can support more than one compute
node. Remember installing RDO in Chapter 2, RDO Installation? We have come a
long way since then! In that example, only one compute node was installed. One
control and one network node can support a large collection of compute nodes. The
exact number that can be handled depends on the demand put on the cluster by
its end users. It is probably safe to say that the capacity provided by one compute
node probably isn't going to meet most use cases, so let's take a look at how to add
additional compute nodes to our OpenStack installation.

Scaling Horizontally

[116]

Technically, there are only two OpenStack services plus the supporting networking
infrastructure that need to be running for a new compute node to be joined into an
OpenStack cluster and start sharing the computing workload. These two services
are the Nova compute service and the Neutron Open vSwitch agent. In our example
installation, the supporting networking infrastructure is Open vSwitch, so Open
vSwitch is required. The Ceilometer compute agent should also be installed if the
telemetry data is expected to be collected. As soon as the Nova and Neutron agents
communicate over the message bus with the control tier, the node will be available
for new instances to be scheduled to it as long as everything is properly conigured.

Enter the great coniguration complexity of OpenStack. A coniguration management
engine will make this process much simpler. There are a handful of coniguration
management engines out there that have a vibrant community with and active
investment in a set of maintained modules to install and conigure OpenStack. In
Chapter 2, RDO Installation, Packstack was used to install OpenStack. Under the
hood, Packstack uses puppet to do the heavy lifting of installation and coniguration.
Packstack offers the facility to make additions and modiications to the original
coniguration that was used to add additional compute nodes by editing and reusing
the original answer ile. Before we use Packstack to add another node, let's see what
compute nodes are already associated with our OpenStack cluster and what their
status is using Nova's service-list command.

control# nova service-list

This command will output a list of services that are currently checking in with Nova.
For now, the compute node service is the interesting one. If this compute node is in
regular communication with the control node, its status will show a happy face and
if the compute node loses contact with the control node, the status will be XXX. This
status shows whether the compute node is attached to the message bus and checking
in with the Nova control tier. Next, let's go ahead and add a new compute node to
the cluster.

If you remember the installation from Chapter 2, RDO Installation, an answer ile was
used to invoke Packstack. This answer ile was populated with all the passwords,
IP addresses, and coniguration options necessary to conigure an OpenStack
installation. In particular, there was a line in the answer ile that deined the IP
addresses of the compute nodes that looked like this:

CONFIG_NOVA_COMPUTE_HOSTS=192.168.123.103

Chapter 11

[117]

This parameter speciies one compute node. To add a second compute node is as
simple as adding another freshly installed host, one that has just the operating
system on it, to the comma-delimited list of compute hosts, and rerunning Packstack:

CONFIG_NOVA_COMPUTE_HOSTS=192.168.123.103,192.168.123.104

Rerun Packstack passing in the answer ile with the updated value. Remember
that Packstack will change any coniguration that has been manually changed
back to the value in the answer ile. If you haven't made any modiications to the
coniguration on the control, network, or compute node ile systems, this shouldn't
be an issue for you:

control# packstack --answer-file myanswers.txt

When this inishes, run the Nova service list command, and the second compute
node should be listed:

control# nova service-list

This process can be repeated for more compute nodes. As more nodes are added and
show that they are checking in with the Nova control services, the Nova scheduler
will spawn instances across all the nodes according to its scheduling algorithm.

Installing more control and networking
To scale the control and networking nodes, you will need to install and conigure
control and networking services on additional nodes. In our installation example
in Chapter 2, RDO Installation, Packstack was used to do the installation. In a
production environment, a more complex coniguration management setup should
be used; Packstack is intended for demonstration and proof-of-concept installs and
is incapable of maintaining an OpenStack installation long term. Foreman, Staypuft,
and Triple-O are all more robust options that can handle a longer-term installation.
There are also other open source projects and commercial products that have these
long-term management capabilities.

Packstack does not include direct functionality to duplicate control and networking
services. Although requiring some manual intervention, it can help get plenty of
the heavy lifting done for us. Let's take a quick, high-level overview of what it will
take to shoehorn Packstack into helping us out. Note that we won't be able to take
an exhaustive look at this. The majority of OpenStack components are not addressed
here. For the topics not addressed in this chapter, make sure to check the resources
for your coniguration management tool and test your changes.

Scaling Horizontally

[118]

The most important part of coniguring additional nodes in an OpenStack cluster is
to make sure that they have the same users and passwords conigured to talk to each
other. Fortunately, the answer ile you used to install the initial set of nodes contains all
the usernames and passwords that will be needed to replicate a node. In light of this,
the irst thing to do is make a copy of the original answer ile so that modiications can
be made to the copy to conigure the new nodes. Because all the users, passwords, and
components that should be installed are the same, search and replace the original IP
addresses with the new addresses. I am going to use the same subnets, but I will use
the 200s for the fourth octet of the IP addresses instead of the 100s:

control# cp myanswer.txt myanswers2.txt

control# sed -i ''s/192.168.123.101/192.168.123.201/g''
myanswers2.txt

control# sed -i ''s/192.168.123.102/192.168.123.202/g''
myanswers2.txt

control# sed -i ''s/192.168.122.101/192.168.122.201/g''
myanswers2.txt

Notice that 192.168.123.103 is not updated. Scaling compute nodes was just
covered, so it is unnecessary to include it in this Packstack run. However, whichever
hosts are deined in the compute hosts directive will still be checked for the proper
compute services, so additional hosts could be added for this Packstack run. Leaving
aside the already installed and conigured hosts, there won't be changing anything
about them.

A detailed walkthrough of scaling the database and message bus is beyond the
scope of this chapter. They will be touched upon briely in a conceptual perspective
later in this chapter. Since they will not be addressed in detail, set the database and
Advanced Message Queuing Protocol (AMQP) hosts back to the irst compute node
so that a common database and message bus are used for the cluster:

CONFIG_MYSQL_HOST=192.168.123.101

CONFIG_AMQP_HOST=192.168.123.101

When Packstack runs for the second set of hosts, it will see that the database and
message bus services are already conigured on the IP address speciied and will
not change their coniguration. Now that the IP addresses of the new hosts have
been put into the new answer ile, invoke Packstack with the new ile to conigure
the new nodes:

control# packstack --answer-file myanswers2.txt

Chapter 11

[119]

Once the Packstack run is complete, you have a new set of conigured nodes, but
there are further steps for trafic to be sent to them. This is also the time to note that
if you would like more of any of the nodes than you already have, you should go
ahead and install them now using additional Packstack answer iles. Coniguration
changes will be made to the cluster that will reverted to by any additional Packstack
runs from here on.

Scaling control and network services
When more compute services are added to the cluster, OpenStack's scheduler
distributes the new instances appropriately. When new control or network services
are added, trafic has to be deliberately sent to them. There isn't anything in
OpenStack that handles trafic being distributed across the API services. There is a
load-balancing service called HAProxy that can do this for us. HAProxy can be run
anywhere it can access the endpoints that you will be balancing. It could go on its
own node or it could be put on a node that already has a bit of OpenStack installed
on it. Let's put it on the irst control node in our example. Start by installing it:

control# yum install -y haproxy

HAProxy has a concept of frontends and backends. The frontends are where HAProxy
listens for incoming trafic, and the backends deine where the incoming trafic will be
sent to and balanced across. Some of the services will need additional coniguration
beyond HAProxy to be able to work properly. Let's look at the irst example, Keystone.

Load-balancing keystone
Keystone is a single-threaded service that can beneit from some tuning and scaling
when done properly. To run HAProxy on the same node as the API services, the API
services will have to be told not to listen on all IP addresses on the node. Edit your /
etc/keystone/keystone.cfg ile and change the public_bind_host and admin_
bind_host options from 0.0.0.0 to the internal IP address of the node. If these are
commented out, just uncomment them and set them to the internal IP address of
your control node.

Coniguration changes from here on made to OpenStack
components in coniguration iles, or in the database, are
subject to be overwritten by Packstack with original answer
ile values if you run Packstack again.

public_bind_host=192.168.123.101

admin_bind_host=192.168.123.101

Scaling Horizontally

[120]

Next, restart Keystone so that it sees the change:

control# service openstack-keystone restart

Now that Keystone is bound to a speciic IP address, another IP address can be
added to HAProxy to listen in on. Add an IP address for both internal and external
trafic. These IP addresses are sometimes called VIPs (Virtual IP addresses). We will
talk more about these VIPs when we talk about high availability. For now, know that
when a VIP is referenced, it is referring to these IP addresses:

control# ip addr add 192.168.123.111/24 dev eth0

control# ip addr add 192.168.122.111/24 dev eth1

These ip addr commands do not persist these IP addresses. If
the host is rebooted, the IP addresses will not be reassigned to
the interfaces and these commands will need to be run again.
There are conigurations that can persist these IP addresses
through Linux networking conigurations that would persist
them across reboots. This is not done here because the VIP will
be revisited in the High availability section shortly.

Instead of persisting them through Linux networking, we will use a pacemaker to
have them dynamically managed. Next, add a frontend and a backend for Keystone
to your /etc/haproxy/haproxy.cfg ile. Note that there is a frontend and backend
for both of the ports that keystone listens in on, but the admin port is only bound to
the internal IP address. The admin port is not intended for public use. These stanzas
could look something like this:

frontend keystone-admin-frontend
 bind 192.168.123.111:35357
 mode http
 default_backend keystone-admin-backend

frontend keystone-frontend
 bind 192.168.122.111:5000
 bind 192.168.123.111:5000
 mode http
 default_backend keystone-backend

backend keystone-admin-backend
 balance roundrobin
 mode http
 server control 192.168.123.101:35357 check inter 10s

 server control-deux 192.168.123.201:35357 check inter 10s

backend keystone-backend
 balance roundrobin
 mode http
 server control 192.168.123.101:5000 check inter 10s

 server control-deux 192.168.123.201:5000 check inter 10s

Chapter 11

[121]

Another helpful coniguration to add to the haproxy.cfg ile is an admin listener to
get stats from:

listen admin
 bind *:8081
 mode http
 stats enable

Once HAProxy is listening in on port 8081, the stats page can be accessed at the /
haproxy?stats URI on one of the IP addresses on the host it is running on. Now,
start HAProxy so that it starts to listen on the ports just deined:

control# service haproxy start

What has been done here? Keystone is now only listening on the internal IP address
of the control node on port 5000 and port 35357. HAProxy is listening in on both
the internal and public VIPs on both port 5000 and port 35357. When trafic is sent
to either of these VIPs on either of the listening ports, HAProxy is going to balance
the trafic in a round robin fashion across the active nodes speciied in the Keystone
backend's stanza in HAProxy's coniguration.

There is one missing piece to fully balance the Keystone trafic. HAProxy will
only balance the trafic sent to it. If you recall from Chapter 3, Identity Management,
there are endpoints deined for each OpenStack component. These endpoints are
stored in Keystone and need to be updated for each component that is going to be
load balanced. As it stands now, any incoming trafic from end users that uses the
VIPs will be balanced. As soon as a call is made to Keystone to get the endpoint
for Keystone to send subsequent requests, the original control node's IP address
will be returned and the rest of the calls to Keystone will be sent to the IP address
in the Keystone endpoint list. Currently, this IP address is not the load balancer's
IP address. This may be a bit confusing because we are currently working on load
balancing Keystone. To be clear, a service that is added to HAProxy to be load
balanced that has an endpoint registered with keystone must have its endpoint
deinitions updated so that all requests to that service are load balanced. To do this,
let's irst list the services to get Keystone's service ID and list Keystone's current
endpoints:

control# keystone service-list | grep keystone

control# keystone endpoint-list | grep {SERVICE_ID}

Scaling Horizontally

[122]

Unfortunately, a Keystone endpoint update requires us to irst delete the existing
endpoint and re-add it with the new values. There isn't an endpoint-update command:

control# keystone endpoint-delete {ENDPOINT_ID}

control# keystone endpoint-create \
 --service-id=the_service_id_above \
 --publicurl=http://192.168.122.111:5000/v2.0 \
 --internalurl=http://192.168.123.111:5000/v2.0 \
 --adminurl=http://192.168.123.111:35357/v2.0

Now that the endpoint for the Keystone service uses the VIP address, all trafic will
be load balanced correctly across all nodes that are conigured in HAProxy.

Additional Keystone tuning
By default, Keystone keeps stored tokens in the database. The database can become
bogged down by moderate use when trying to keep up with all the token lookups that
happen in OpenStack. It is recommended that you reduce the token expiration period,
enable caching and that memcached be conigured to replace the database as a storage
engine for Keystone tokens. These three items will dramatically increase Keystone's
performance regardless of whether you have one Keystone instance or multiple.

Glance load balancing
Let's scale one more service to make sure there isn't confusion with updating the
endpoints. The second service we looked at earlier in Chapter 4, Image Management

was Glance. Start by updating the glance-api.conf and glance-registry.conf
iles to set bind_host to the primary IP address of the host that the Glance services
are running on:

bind_host=192.168.123.101

Make sure you do this for both the glance-api.conf and glance-registry.conf
iles. Next, add the glance frontends and backends to the /etc/haproxy/haproxy.
conf ile:

frontend glance-frontend
 bind 192.168.122.111:9292
 bind 192.168.123.111:9292
 mode http
 default_backend glance-backend

frontend glance-registry-frontend
 bind 192.168.122.111:9191
 bind 192.168.123.111:9191
 mode http
 default_backend glance-registry-backend

Chapter 11

[123]

backend glance-backend
 balance roundrobin
 mode http
 server control 192.168.123.101:9292 check inter 10s

 server control-deux 192.168.123.201:9292 check inter 10s

backend glance-registry-backend
 balance roundrobin
 mode http
 server control 192.168.123.101:9191 check inter 10s

 server control-deux 192.168.123.201:9191 check inter 10sAs

With keystone, we irst are making Glance listen to a single IP address, then binding
HAProxy to the VIP on the same port as the Glance services. Now restart the services
so that they see the updates that have been added.

control# service openstack-glance-api restart

control# service openstack-glance-registry restart

control# service haproxy restart

With these conigurations in place and the services restarted, the Glance trafic is
now being load balanced across the two control nodes. It is very important for each
OpenStack service to be evaluated to be sure that the way it functions is proper
when more than one instance of the service is running. Glance needs some extra
coniguration. In the current coniguration, there are two Glance registries; therefore,
there are two disk stores for the images that are being stored. This is a problem
because when you have a common database, it means that all images are going to
be listed as available for us to launch. If a request is made to one node to store the
image, and a request is made to the other node to get the image to spawn an instance
on a compute node, then the request to retrieve the image will fail because the
physical media would be stored on the opposite node.

There is a simple solution this problem. There are also multiple solutions. A quick
and easy solution would be to mount a shared storage device into Glance's storage
path. NFS, GlusterFS, and most other shared storage solutions are great options
for this mount, just mount the same shared storage volume to /var/lib/glance/
images/ on each glance node. If there's data already in the directory on any of the
nodes, just copy the images to the storage before you mount it in place.

Another option to store the images is to use Swift as the backend storage for Glance.
There is support built into Glance and Swift to use Swift as the storage backend for
Glance. Let's do that now for each of the nodes. For each node, edit the /etc/glance/
glance-api.conf coniguration ile and update the following coniguration options:

default_store = swift

swift_store_auth_address = http://192.168.123.111:5000/v2.0/

Scaling Horizontally

[124]

swift_store_user = services:glance

swift_store_key = {GLANCE PASSWORD}

swift_store_create_container_on_put = True

The value that you need to enter for the swift_store_key option is the same value
that is in admin_password in the same ile. Once these values are updated on each
server, restart the Glance services on each server:

control# service openstack-glance-api restart

control# service openstack-glance-registry restart

Now that both nodes are conigured to use Glance as the backend ile store, any
images that were already in the Glance registry are inaccessible for use because they
are not in Swift. They need to be reimported into Glance to be available. To make
them re-accessible, list the images in Glance and then do an image-create on each
of the images. Use the images ID in the list for each image and reference the ile that
needs to be imported by using the path /var/lib/glance/images/{IMAGE_ID}.
Once the images are recreated and stored in Swift, the old record can be deleted with
the image-delete command:

control# glance image-list

control# glance image-create --name {IMAGE_NAME} --is-public true --
disk-format qcow2 --container-format bare --file
var/lib/glance/images/{IMAGE_ID}

control# glance image-delete {IMAGE_ID}

Scaling other services
Unfortunately, we will have to conclude the section on scaling here. Moving
forward, the process to scale each service in OpenStack becomes fairly repetitive.
Make the same IP address modiications to each of the services and update HAProxy
for the ports that the services listen in on. Then, make sure to search for information
on any extra coniguration that needs to be done for each of the services to be able to
coexist with multiple instances of themselves within the cluster.

High availability
Until now, the architecture discussed has added additional instances of services
and balanced trafic across them. While HAProxy has monitors built into it to check
the health of a host, this is only to know whether or not to send trafic to the host. It
doesn't include any capability of recovering from failure.

Chapter 11

[125]

To make the control and network tiers highly available, Pacemaker can be added
to the cluster to monitor services, ile systems, networking resources, and other
resources that need to be made highly available. Pacemaker is capable of moving
services from node to node in a pacemaker cluster and monitoring the nodes to
know whether action needs to be taken to recover a particular resource or even one
of the entire nodes.

The installation and coniguration of Pacemaker is a whole book in itself; here,
we will just touch upon some of the major, important items to consider when
coniguring Pacemaker and the concept behind how it will handle some of our
resources and what resources need to be managed by Pacemaker. There will not
be any command-line examples of how to use Pacemaker.

There are two major infrastructure considerations to be mindful of when considering
setting up Pacemaker. These points are related to the installation of Pacemaker and
preparing it to start managing resources that you would like to be highly available.
First, at least three nodes are needed to properly conigure Pacemaker and establish
quorum. With only two nodes, if communication is lost between them, they can enter
a state called split brain. This is when the nodes both think that they should be the
primary node because they can't reach the other node. In this case, resources that
should only reside on one server can be started in two places and cause conlict, for
example, the VIPs. We will discuss the VIPs a little more in just a moment. When
there are more than two nodes, there will be a vote cast from the nodes before an
action takes place. For example, if one node loses communication with the other, two
or more nodes will have to vote for that node to be fenced. When the majority agrees
on the action, then the power to the node is cut to reboot it.

Second, fencing must be conigured for a proper Pacemaker installation. Fencing is
the capability of nodes within the cluster to control the power of each other. In the
case that one node loses communication with the others, the other nodes must be
able to do something about it. Without the ability to communicate with other nodes,
it is fenced, that is the power to it is cut to reboot it in the hope that a fresh boot will
restore its communication with the cluster.

Once a Pacemaker cluster is set up and running, it will be ready to have resources
conigured within it to be highly available. An example set of resources that
should be made highly available are HAProxy and the VIP that it is listening in on.
HAProxy is a single point of failure for all of the API trafic being passed through
it. By adding it as a resource to Pacemaker, it will be monitored to ensure that the
IP address is always reachable on one of Pacemaker's nodes and that HAProxy is
listening in on that IP address to receive incoming trafic. Earlier, it was suggested
that the VIP wasn't persisted across boots on the control node. That is because when
it is added to Pacemaker as a resource, Pacemaker will handle the coniguration and
health of that IP address for you.

Scaling Horizontally

[126]

Almost all of the other OpenStack services should be made highly available. Most
of them can be added to Pacemaker in what is called a cloned coniguration. That
means that Pacemaker expects to run them on more than one node but will monitor
their health and restart them if they go down. This is the coniguration you would
probably want to use for the services that are being load balanced by HAProxy.

Highly available database and message

bus
The database and the message bus are not necessarily OpenStack services, but they
are services that OpenStack depends on and that you want to be sure are highly
available too. One option to make the database highly available is to add it to
Pacemaker with a shared storage device. If the database were to fail on a node, then
Pacemaker would move the shared storage to another node and start the database on
a different node. There are also active/passive and active/active replication scenarios
that can be conigured for the database. Active/passive means that there is more
than one instance of the database running, but only one of them is used as the active
writable instance. The other instance(s) are there as passive backups and only become
active if the current active instance needs to failover for some reason. Active/active
means that there is more than one active writable instance of the database. These
are running on different nodes and each can be read from and written to as equal
members of the database cluster. Replication is important in both of these scenarios
because the database can't read and write to the same datastore at the same time. To
overcome this, databases know how to replicate their data so that each instance has
its own datastore and so that transactions in the database are duplicated to each of the
database instances to preserve the integrity of the data in the database.

The message bus is in a similar situation, the main difference being that it doesn't have
a persistent data store such as a database. It can be conigured in a pure failover mode
where it would only run on one node, an active/passive coniguration, or an active/
active coniguration. Each of these conigurations has its positives and negatives and
should be researched more in depth before one is chosen for implementation.

Summary
In this chapter, we looked at the concepts involved in scaling and load balancing
OpenStack services. We have also touched upon the concepts involved in making
OpenStack highly available. Now that an OpenStack cluster is up and running and
has been scaled to meet demand, we're going to take a look at monitoring the cluster
to keep track of its health and help diagnose trouble when it arises.

[127]

Monitoring
As an OpenStack cluster is scaled out, the number of moving parts that can get
jammed increases. As you have seen, each server added to the cluster will run more
than one service. Each of those services interacts and communicates with each other
across the cluster using different communication methods and unique endpoints for
each service. This presents a complicated web of interdependence that can be very
complicated to debug when something goes wrong. Monitoring all the moving parts
can save a large amount of time and hassle in trying to igure out what has gone
wrong when things stop working.

In this chapter, we will look at setting up monitoring for the cluster to help you have
a detailed view of the general health of a running OpenStack cluster.

Monitoring deined
There are two classiications of monitoring, performance monitoring and
availability monitoring. Performance monitoring shows the performance of what
is being monitored over time. Availability monitoring show the status of what is
being monitored at a point in time. Often, the same things are monitored, but the
purposes of the two types of monitoring are different. As an example, if a server's
CPU utilization was being monitored, availability monitoring checks the CPU
utilization, and if it breaches a certain threshold, the monitoring alerts an operator
that the utilization is high or may have remained high over the most recent checks.
Performance monitoring keeps track of the CPU utilization in the longer term and
most likely creates a graph to show the trend of CPU utilization on a server across
days or weeks or longer.

In this chapter, we will focus on availability monitoring to be able to determine the
current health of an OpenStack cluster based on the current status of the checks
being run on the servers in the cluster.

Monitoring

[128]

Installing Nagios
When Packstack installed OpenStack in Chapter 2, RDO Installation, one of the
options that's available is to install and conigure Nagios. If you remember, this was
one of the options that was set to yes in our installation:

CONFIG_NAGIOS_INSTALL=y

Since Packstack did the base Nagios installation for us, we are not going to cover
the details of a fresh Nagios installation. There are plenty of resources available on
the Internet that you can search for if you want more information on doing a fresh
Nagios installation outside of Packstack.

In the following sections, we'll add conigurations to Nagios coniguration iles. To
apply coniguration changes, the service will need to be restarted for Nagios to read
the updates and start checks based on the new conigurations. For example purposes,
we will refer to a set of monolithic coniguration iles to conigure Nagios in this
chapter. Each ile that is referred to in this chapter is referred to in the top level
Nagios coniguration ile /etc/nagios/nagios.cfg. There are options to break up
the iles referenced in this chapter. You will have to search for documentation on this
if you choose to use it.

Adding Nagios host checks
Start by adding host checks. The irst example's coniguration ile will hold all the
coniguration stanzas for the hosts in the cluster that we are going to monitor, Let's use
the ile /etc/nagios/nagios_host.cfg. This establishes a check to ensure that each
host is up and responding to network communication. If you have additional compute
nodes, make sure to add them as well. Here's the code that I am talking about:

define host {
address 192.168.123.101
host_name control
use linux-server
}

define host {
address 192.168.123.102
host_name network
use linux-server
}

define host {
address 192.168.123.103
host_name compute
use linux-server
}

Chapter 12

[129]

After adding these conigurations, validate the Nagios coniguration and restart the
Nagios service:

$ service nagios configcheck

Running configuration check... OK.

$ service nagios restart

Often a coniguration gets a fat inger error in it and the coniguration validation will
fail. When that happens Nagios will fail to start. To ind out where the syntax error
is, run Nagios by hand by referencing the top-level coniguration ile:

$ nagios -v /etc/nagios/nagios.cfg

This will give you the line that the syntax error is on. If Nagios restarts successfully,
you should be able to connect to Nagios on port 80, select the host list, and after
some time passes and the checks ire, do a health check on your hosts that have been
added to the hosts coniguration ile. Now that Nagios is aware of the hosts that we
will be monitoring, let's deine an example command that could be used to monitor
one of the services on the hosts.

Nagios commands
Before service checks can be executed to start checking a service on a host, there must
be a command deined that will be referenced by the service check. Let's put these
commands in the /etc/nagios/nagios_command.cfg ile. We are not going to cover
all the commands needed to monitor your OpenStack cloud here. Instead, we will
cover the concept of a deined command. Each command has a name that will be
referenced later and a path to an executable. The executable runs and returns a zero
through three return codes. Zero means the check succeeded, one means the check
is warning, two means the check failed, and three or another return code indicates
the status is unknown. An example of command deinitions in the /etc/nagios/
nagios_command.cfg ile looks like this:

define command {
command_line /usr/lib64/nagios/plugins/check_nrpe -H $HOSTADDRESS$
-c $ARG1$
command_name check_nrpe
}

define command {
command_line /usr/lib64/nagios/plugins/example_command
command_name example_command
}

Monitoring

[130]

Note that the commands are executed live in /usr/lib64/nagios/plugins/. If you
add executable scripts that Nagios will use to check services, it is a good practice to
add the executable scripts to this directory. If the intent of example_command was to
verify that the host's hostname was set properly, its content may look like this:

#!/bin/bash

HOSTNAME=`hostname`

if [-z $HOSTNAME] || [-z $1]; then

echo "Host name or argument was blank"

exit 3

fi

if [$HOSTNAME == $1]; then

echo "Hostname is $HOSTNAME"

exit 0

fi

if [[$HOSTNAME == *$1*]]; then

echo "Hostname is $HOSTNAME and contains $1"

exit 1

else

echo "Hostname is not $1"

exit 2

fi

Note that there is a case for all four of the possible return values. It is not required
that return codes three and one be returned. Unfortunately, this command could be
terribly useless. If it were associated to a host, it would never be accurate because it
would always execute on the host that Nagios is running on and would never return
success for any host other than the host that Nagios is running on. This creates the
need for a command to be executed remotely on a host that is being monitored.

The check_nrpe command shown is important as it allows exactly that—remote
execution of commands on the hosts being monitored. Nagios Remote Plugin
Executor (NRPE) checks are issued to the hosts via this command deinition. Make
sure that the NRPE command deinition is in the nagios_command.cfg ile. On each
of the hosts that will have NRPE checks run on them, the NRPE service must be
running and TCP port 5666 must be open for the Nagios host to connect to. Make
sure this is a private connection. If this is unsecured trafic, it can open a security risk.

The coniguration for these checks requires that a host and a command name be
passed and that all the details about the command that is run beyond its name will
be deined on the remote host that the command is being executed against. These
details live in /etc/nagios/nrpe.cfg on each host. At the very bottom of this ile,
there is an include_dir directive:

include_dir=/etc/nrpe.d/

Chapter 12

[131]

Though for this example, we will put the commands right in the nrpe.cfg ile
underneath the include_dir directive. By coniguring the NRPE commands, Nagios
is able to connect to the nodes and execute the commands to carry out the monitoring.
Let's use the example_command script as an example NRPE command and make it a
useful deinition. On the control node, put this line in the nrpe.cfg ile:

command[check_hostname]=/usr/lib64/nagios/plugins/example_command
control

If this was added to each of the networks and compute nodes with the respective
hostnames, then it could be used to verify that a hostname was properly set on each
of the OpenStack nodes.

There is a large collection of commands and NRPE commands that need to be
deined on the Nagios host and the hosts that Nagios is monitoring. Look at the
example code included with this book for the executable scripts, commands, and
NRPE deinitions needed to execute the service checks that will be referenced in the
rest of this chapter.

Now that a basic overview of adding hosts, commands, and service deinitions of
Nagios has been covered, let's take a look at the kinds of checks that are useful to
monitor the health of an OpenStack cluster.

Monitoring methods
As you begin to design availability monitoring for your cloud, there are at least three
schools of thought on the kinds of checks that should be executed. These should be
mixed and matched as you deem appropriate to establish the coverage you need
to monitor the services in your OpenStack cluster. You may also come across other
methods of designing health checks that can be mixed with what is discussed in
this chapter.

The irst type of check is the service status check. This type of check runs a simple
Linux service status check on each of the services. If the service status script
returns successfully that the service is running, the health check is successful. The
problem with relying on these is that many OpenStack services have the ability
to automatically heal from a loss of communication with each other. You can run
a service check on an OpenStack service that is up and running but is actively
attempting to reconnect to the database or to the message bus. OpenStack is
intelligent enough to know when these kinds of connections have been severed and
will attempt to re-establish the connections. In this case, the service status check will
return positive but users will not be able to use the cluster because things are not
functioning properly.

Monitoring

[132]

Then come the API checks. This type of check will call the APIs, making sure that a
simple resource list returns successfully. This type of check makes service checks a
bit redundant if you only have one instance of each service. If the service check fails,
the API check will fail too, and there is no need to have two checks telling you that
something is not working. The API check can do the job just ine and provides a more
thorough check.

API checks become insuficient once you have multiple instances of a service
running. In this case, a combination of service checks and the API checks is
necessary. If a service is being load balanced, the API check is important to make
sure that the instances are being load balanced properly. However, if one of the
services gets hung for some reason, the API check will start to lap or change from
a successful state to a failed state and back to a successful state over and over as the
load balancer still sees both services but one is not healthy. To better monitor this
situation, adding extra checks that monitor each instance of the service is necessary.
You will have to use your best judgment to decide whether the right way to monitor
each individually is to use service checks or API checks.

The third and inal check type we will discuss is the resource creation check. These
checks use the APIs to actually create resources and then verify that they were
successfully created in the cloud as expected. We will not get a chance to look at
these. An example of this would be a check that creates an instance and adds it to a
network to ensure that it can be connected to. This kind of health check is a little bit
more complex to design but is more comprehensive in its coverage.

A word of caution when using this type of check: there are rows
that are created in a database for each of these resources and their
associated counterparts that are created.

In some cases, when resources are deleted, the rows are not deleted from the
database, the resource is just labeled as having been deleted, and the database row
remains. A very obvious example of this is a Nova instance. All the instances that are
ever launched have a row in the database that can be used to constructs historical
record of instances that have existed. Be careful not to bloat your database with
health checks and degrade the service with excessive database records unrelated to
your end users. There are certain scripts included with OpenStack that are intended
to archive some of these records from resources that have been created and deleted.
As of now, I've not had them function as expected. There is also discussion in the
community to add more archival tools to help manage this kind of archival. Archival
generally will just move the records from the tables that active resources are using
into an identically structured table with a different name in the same database; they
are not completely deleted.

Chapter 12

[133]

Now that we have taken a look at some of the concepts used to help in deining
conigurations in Nagios and the kinds of checks that are useful to monitor your
OpenStack cluster, let's start to add some checks to start to establish health status
beyond the hosts being up or not.

Non-OpenStack service checks
We aren't going to cover generic non-OpenStack service checks in depth here. There
is plenty of information you can search for on the Internet that can guide you on
generic service checks. We will put these and the OpenStack service checks into /
etc/nagios/nagios_service.cfg. For OpenStack, it is important to at least add a
host load and a disk usage check for each host. OpenStack can consume an excessive
amount of disk space and processor load, and the whole cluster can become cranky
very quickly if either are used beyond one of the hosts' capacity. There are many
other generic checks that can and maybe should be added to your OpenStack hosts
though you will have to research others and choose the checks that you deem
advantageous. Here are examples of the conigurations for checking the load and
disk space on /var:

define service {
check_command check_nrpe!load5
host_name control
normal_check_interval 5
service_description 5 minute load average
use generic-service
}

define service {
check_command check_nrpe!df_var
host_name control
service_description Percent disk space used on /var
use generic-service
}

These checks should be set up for all your hosts. You can see that the disk space
check uses the default check interval and the load check is set up with a custom check
interval. Also, it is important to note that both of these checks are done over NRPE.
This means that the Nagios host connects to the NRPE service on the speciied hosts,
and the command is executed local to the host being monitored. To see the commands
executed for these checks, look at the Nagios commands that are included with the
code with this book. Now let's get into some OpenStack-speciic availability checks.

Monitoring

[134]

Monitoring control services
The control tier of an OpenStack cloud has the most moving parts that will need to
be monitored. There are a few services that need at least a basic service connection
validation. They include, but are not limited to, MySQL, RabbitMQ, and MongoDB.
More monitoring can certainly be added beyond simple connection checks to
monitor connections, queue sizes, and other statistics of the services. For now, we'll
just add a connection check to make sure that these services are running:

define service {
check_command check_mysql!nagios! nagios_password
host_name control
service_description MySQL Health check
use generic-service
}

define service {
check_command check_nrpe!check_rabbitmq_aliveness
host_name control
service_description RabbitMQ service check
use generic-service
}

define service {
check_command check_nrpe!check_mongod_connect
host_name control
service_description MongoDB service check
use generic-service
}

You can get the scripts for Rabbit and Mongo from https://github.com/mzupan/
nagios-plugin-mongodb and https://github.com/jamesc/nagios-plugins-
rabbitmq

Next, we get into checking OpenStack services. We are going to add API checks to
make sure that the service is running and that it is not in an error state. Packstack
includes a few scripts to cover most of the API services. A few are additional to
Packstack. Let's add the service stanzas for Nagios for the API calls:

define service {

check_command keystone-user-list

host_name control

normal_check_interval 5

service_description number of keystone users

use generic-service

}

define service {

check_command neutron-net-list

host_name network

service_description Neutron Server service check

https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/jamesc/nagios-pluginsrabbitmq
https://github.com/jamesc/nagios-pluginsrabbitmq

Chapter 12

[135]

use generic-service

}

define service {

check_command nova-list

host_name control

normal_check_interval 5

service_description number of nova instances

use generic-service

}

define service {

check_command glance-index

host_name control

normal_check_interval 5

service_description number of glance images

use generic-service

}

define service {

check_command cinder-list

host_name control

normal_check_interval 5

service_description number of cinder volumes

use generic-service

}

define service {

check_command heat-stack-list

host_name control

normal_check_interval 5

service_description number of heat stacks for admin

use generic-service

}

define service {

check_command ceilometer-resource-list

host_name control

normal_check_interval 5

service_description number of ceilometer resources

use generic-service

}

define service {

check_command swift-list

host_name control

normal_check_interval 5

service_description number of swift containers for admin

use generic-service

}

Monitoring

[136]

With these basic checks in place, a set of successful checks in Nagios will show that
services are up and running and the API services are healthy enough to list the
resources that are being managed. There is a collection of services on the control
node that are not API services. It is usually enough to do a service status check on
them to make sure they are running. Let's add a service status check for the rest of
the services that are not API endpoint services. You will want to add coniguration
stanzas that look like this for each service:

define service {

check_command check_nrpe!check_service_name

host_name 10.100.0.4

service_description Service Name service check

use generic-service

}

Do that for each of the following services, replacing service_name and Service
Name with the actual service names:

openstack-ceilometer-alarm-evaluator

openstack-ceilometer-alarm-notifier

openstack-ceilometer-central

openstack-ceilometer-collector

openstack-ceilometer-notification

openstack-cinder-backup

openstack-cinder-scheduler

openstack-cinder-volume

openstack-glance-registry

openstack-heat-api-cfn

openstack-heat-engine

openstack-nova-cert

openstack-nova-conductor

openstack-nova-consoleauth

openstack-nova-novncproxy

openstack-nova-scheduler

Remember that each of these services points to a corresponding NRPE command,
so the hosts that these services run on will have to have the corresponding NRPE
command deined on them.

Chapter 12

[137]

Monitoring network services
Next, let's take a look at monitoring networking services. Networking services in
general usually stay running, and things that go wrong are happening inside the
running service. We will go ahead and put a service status check on each of them
and add additional checks to make sure things are working across the board. Start
with giving each of the network services a service status check—the same checks
that the control services got:

neutron-dhcp-agent

neutron-l3-agent

neutron-lbaas-agent

neutron-metadata-agent

neutron-metering-agent

neutron-openvswitch-agent

neutron-ovs-cleanup

openvswitch

Now, let's look at what can be monitored to make sure that when these services say
that they are running, the network service is actually running. The coniguration
we have used in this book uses VXLAN tunnels to build overlay networks for
OpenStack tenants. What this means is that each compute node is connected to the
network node and to each other with VXLAN tunnels that encapsulate the trafic so
that the network that actually connects the nodes doesn't directly handle the network
trafic within Open vSwitch. When a packet is put on the network by an instance, it
is tagged with a local VLAN to the compute node. When the packet moves from the
compute node to the tunnel between that compute node and either another compute
node or the network node, it gets retagged and the encapsulation header is added to
the packet. This header somewhat hides the VLAN tag given to the packet to move
across the tunnel from the actual network that connects the nodes that the packet is
moving between. After the packet reaches the destination node it was sent to, the
header is removed, and the packet is then retagged again to move around locally
within this next node. These tunnels are handled by a running OVS process, and the
ports and interfaces that are added and removed are handed by the running neutron
OVS agent running on each node. Here is where just because an agent is running, it
does not mean that trafic is lowing from node to node without issue. To monitor
that trafic is actually lowing, we can build our networking resources in OpenStack
that mock the process followed when an instance is attached. Instead of attaching
an instance to it, we will expose an interface to the node that we want to make
sure is properly networking and send a ping across it. If the ping succeeds across
the interface exposed to the node, then we know that the entire encapsulation just
described is working properly.

Monitoring

[138]

The irst step to set up the networking is to create a network speciically to do the
tunnel monitoring on. Make sure you have sourced your admin's keystonerc ile,
and create the network. Refer to Chapter 3, Identity Management, if you need to revisit
the keystonerc ile. Here's the command that is being discussed:

control# neutron net-create tun-mon

control# neutron subnet-create tun-mon 10.0.0.0/24

Take note of the network ID from the net-create command; you will need that at
the end of this process. Next, manually create a neutron port for each node that you
want to monitor tunnel connectivity on. This is most likely each of your compute
nodes. You don't need to do this for the network node or the control nodes. The
control node has nothing to do with your networking in OpenStack, and the network
node is the node that you will be pinging to verify tunnel connectivity. Here's the
command that is being discussed:

control# neutron port-create --name moncompute --
binding:host_id=compute

$NETWORK_ID

NETWORK_ID is the ID of the network that was just created. You should be able to use
grep to port out of a neutron port list now:

control# neutron port-list | grep moncompute

This will include a port ID, a MAC address and an IP address. You will need those
for the inal step. Finally add a port in the OVS on the target machine and give it an
IP address:

compute# ovs-vsctl -- --may-exist add-port br-int moncompute \

-- set Interface moncompute type=internal \

-- set Interface moncompute external-ids:iface-status=active \

-- set Interface moncompute external-ids:attached-mac=${PORT_MAC}
\

-- set Interface moncompute external-ids:iface-id=${PORT_ID}

compute$ ip link set dev moncompute address ${PORT_MAC}

compute$ ip a add ${PORT_IP}/24 dev moncompute

Now on the compute node, you can verify that all is in place. First, look at the interface:

compute# ip a s moncompute

You should see an interface that has the IP address and MAC address that corresponds
to the Neutron port you created for the node. Next, look at the routing table:

compute# ip r

Chapter 12

[139]

You should see a routing entry for the subnet that you gave to the tun-mon network.
In the example command earlier, it was given as 10.0.0.0/24, so the routing entry
should look like the following line of code:

compute# 10.0.0.0/24 dev moncompute proto kernel scope link src

${PORT_IP}

Finally, on the compute node, you can look at the port in the OVS:

compute# ovs-vsctl show

Look for a port named moncompute. It will have an interface named moncompute,
which is the interface you just looked at, and it will have a VLAN tag number. The
last thing to do is get the DHCP address from the network you created and ping it.
To get the DHCP agent's IP address, show the interfaces in the network namespace
for your network on the network node:

network# ip netns exec qdhcp-${NETWORK_ID} ip a

You will see 127.0.0.1 and another address, probably 10.0.0.2 or 10.0.0.3 if
you used the same subnet as the example. This address is the DHCP agent for the
network you created. Now, try and ping that address from the compute node:

compute# ping 10.0.0.3 -c 3

If you get a reply ping when you do this, your tunnel is working. The way this trafic
is funneled over the wire ensures that the VXLAN tunnels in your OpenStack cluster
are working properly. These resources should stay in place unless you delete them
but the OVS interface on the compute node will have to be recreated if the node
is rebooted. You will have to get creative about how to persist or reestablish the
interface if the node is rebooted. The ping can be added to Nagios so that you get
your tunnel status with the rest of your checks. Let's move on to compute services
and take care of the ping there.

Monitoring compute services
The inal set of services to monitor are those on the compute node. Here, you can
make sure a couple of services are running and add the ping from the section you
just inished. Start with the generic service status check for these services:

neutron-openvswitch-agent

openvswitch

neutron-ovs-cleanup

openstack-ceilometer-compute

openstack-nova-compute

Monitoring

[140]

Then add a service coniguration to Nagios that will run the ping command to check
your tunnel connectivity.

define service {

check_command check_nrpe!check_ovs_tunnel

host_name compute

service_description OVS tunnel connectivity

use generic-service

}

As you can see, this is just an NRPE check command that will execute a ping from
the compute node to the network node.

Summary
As a inal word of caution, remember that successful health checks across a cluster
do not equate to a positive end user experience. Make sure to be in communication
with end users about their experience, and use the cluster for your own purposes to
ensure you are familiar with the experience the end user is receiving.

In this chapter, we have gone through a list of items that should be checked to
monitor the health of an OpenStack cluster; this list is not exhaustive though. The best
practice is to keep an eye out for possible points of failure and add checks that make
sure that something that could potentially degrade services is monitored for its health.

The last topic for us to cover is troubleshooting. When these health checks start to alert,
how should you go about diagnosing the problem and resolving the issue? In the last
chapter, we will take a look at how to troubleshoot each of OpenStack's components.

[141]

Troubleshooting
With the number of moving parts that make up an OpenStack installation, it is
inevitable that as the cluster is brought up for the irst time, a few things will not
work. Further, as the cluster operates, there will also be service failures that should
be addressed. It is very important to be able to troubleshoot a running OpenStack
installation. Let's take a look at some of the details of how things work under the
hood and how to igure out what is going wrong when things are not working
properly. We will look at general troubleshooting and then take a look in detail at a
few components to help troubleshoot each of them.

The debug command line option
Most of the command-line clients support passing --debug before a subcommand.
For example, with Keystone or Nova, it could look like this:

$ keystone --debug service-list

$ nova --debug list

Note that --debug is put before the subcommand being executed. Using the debug
option like this is helpful because it will show curl commands for each of the API
calls that are being made from the command-line client to the API endpoints. Hosts
and ports are included in this, so if your command-line client has trouble connecting
to the endpoint, you can use the debug option to get more detail. If you need to see
what information is being sent from or returned to the command line, the debug
option will show those details.

Troubleshooting

[142]

Tail the server logs
There is an extensive collection of logs across an OpenStack cluster, and they are
your best friend. Often a good place to start is when an API call succeeds, but
the end result is, not as you expect, to tail the log iles of a component that you're
having trouble with. You can do this as, or right after, you execute the command
that you are seeing failure with. For example, if you are having trouble connecting
to Keystone, it might not be running properly or might be throwing errors for some
reason. Start a tail on /var/log/keystone/keystone.log and rerun the command
that is failing. This is shown in the following command:

$ tail -fn0 /var/log/keystone/keystone.log

In this command, -f indicates that we follow the log or show new entries as they are
added. The -n0 means show the most recent zero lines; in other words, any previous
content in the ile is suppressed so that you only see new entries when you run the
command. All of the OpenStack components are going to have logs in /var/log/
{component_name}/ except Swift-proxy, which will be in /var/log/messages.
Horizon will have extra logs in Apache's log iles at /var/log/httpd/*log.

As another example, if Nova is not launching an instance properly, there could be a
problem with the API collecting enough information or a problem with the scheduler
inding a place to put the running instance. Sometimes, it is helpful to tail all the logs
in the log directory instead of just one. Tailing more than one log will get you output
from all the services that are related to a component. This is shown in the following
command:

$ tail -fn0 /var/log/nova/*.log

Notice here that *.log is indicated and not an asterisk. This is because if logrotate
is rotating logs, there could be .gz iles that you do not want to tail because they are
binary. The tail's initial output will indicate what ile a new entry is coming from,
which will help you narrow down the service that needs a little help.

Often, the case is that one component is showing an error in its log, but the error is
being generated by another component, and the error that you are trying to debug
was a result of a call being made from one component to another. To debug this kind
of behavior, it is helpful to know how components interact with each other. In the
following sections, let's take a look at the major components in OpenStack for you
to get an better idea of how they interact with each other so that you can effectively
debug them.

Chapter 13

[143]

Troubleshooting Keystone and

authentication
Nothing is more frustrating than not being able to log in to your cluster to see what
is going on. Thankfully, OpenStack offers an authentication override to bypass
authentication and allow you to make Keystone calls to see services, endpoints, and
other Keystone resources. This is called using the Keystone admin service token. In
Chapter 3, Identity Management, we looked at creating a keystonerc ile. To use this
service token to override authentication, you need to use a similar methodology.
Start by getting the current service token value from the keystone.conf ile:

$ grep admin_token /etc/keystone/keystone.conf

The value that keystone's admin_token is set to can be passed with a service
endpoint URL to Keystone and authentication will be overridden. Get the OS_
AUTH_URL environment variable from the keystonerc_admin ile you created, and
create a new ile with the following content. To keep it separate from your original
keystonerc ile, give it a name like keystonerc_service_token. The following
command shows this:

export OS_SERVICE_TOKEN={value of keystone.conf admin_token }

export OS_SERVICE_ENDPOINT=http://192.168.123.101:35357/v2.0/

It is important to note here that OS_SERVICE_ENDPOINT points to your Keystone
administrative endpoint on port 35357 and not the public or internal endpoint on
port 5000. Port 5000 is for authenticated trafic, and port 35357 is for non-public
administrative trafic, such as service token calls to override authentication. It is not
recommended that port 35357 be publicly accessible. Next, source this ile so that the
environment includes these variables:

$ source keystonerc_service_token

Now, run a Keystone command such as service-list or endpoint-list, and you
will see a message that indicates that authentication has been bypassed:

WARNING: Bypassing authentication using a token & endpoint
(authentication credentials are being ignored).

Troubleshooting

[144]

The irst thing you want to do here is reset the admin user's password and then stop
using these service tokens. It is very bad practice to operate on Keystone using the
service token. So, irst, update the admin user's password. Then, unset the service
token environment variables. The following command shows this:

$ keystone user-password-update admin

$ unset OS_SERVICE_TOKEN

$ unset OS_SERVICE_ENDPOINT

Make sure you unset both SERVICE environment variables. If Keystone sees
OS_SERVICE_TOKEN and not OS_SERVICE_ENDPOINT, it will complain. If it sees OS_
SERVICE_ENDPOINT and not OS_SERVICE_TOKEN, weird things happen.

Once you have unset the service token environment variables, make sure that you
update the password in your keystonerc_admin ile and re-source it. If you do
not source it, then the new password will not be used. This is shown in the
following command:

$ source ~/keystonerc_admin

If you want to see the value that is being used of any of the variables that you have
sourced, then just use the echo command; for example, to see your password that is
being used, execute the following command:

$ echo $OS_PASSWORD

If you have other problems to troubleshoot, start with the Keystone log ile at /var/
log/keystone.conf. From there, you'll need to move on to verifying the endpoints
by listing them with endpoint-list and making sure that they are correct and that
they point to running services. If you are having authentication issues from the
services, you need to make sure that the password in the coniguration ile for the
services matches what is in Keystone's database. You can simply use the user-
update-password command for the service users to force Keystone's password for
the service users to match what is in their coniguration ile. The user name to use
should be indicated in the service's coniguration ile right next to the password it is
using.

Chapter 13

[145]

Troubleshooting Glance image

management
It's not often that Glance needs troubleshooting. There are two common ways that
you will have things fail related to Glance:

• If Glance cannot access the file system that it will be writing to when it
is saving an image into the registry

• If Nova cannot get an image that has been assigned to launch an
instance with

In the event that you are not able to save an image to the registry, you will just have
to read the logs in /var/log/glance/*. Depending on the backing store that you
have chosen, or has been conigured for you, there will be different errors. In most
cases, when you resolve these errors, you will have a working Glance service.

When a new instance is launched on a compute node, one of the things that the nova-
compute service does is to check whether it has a cached copy of the image that the
instance is being launched from on the compute node. If it does, it will use the local
cache; if it does not, it will connect to Glance and download a copy of the image to its
cache and then continue launching the image. This, again, is a case where you will
have to watch the logs and read the errors that are being thrown. Follow the logs and
verify connectivity from the compute node to the Glance endpoint. This should help
if nova-compute cannot get images from Glance for the instances it is launching.

Troubleshooting Neutron networking
Neutron is a bit of a special case among the OpenStack components because it relies
on and manages a fairly intricate collection of transport resources. These may be
created as a result of Neutron resources being deined by end users. There is not
always a straightforward correlation at irst sight. Let's walk through the trafic low
for an instance to make sure that you know which agent is doing what within the
Neutron infrastructure.

Troubleshooting

[146]

The irst thing that an end user will do before launching an instance is create a
network speciic to their tenant for their instances to attach to. At the system level,
this translates into a network namespace being created on the node that is running
the Neutron DHCP agent. Network namespaces are virtual network spaces that are
isolated from the host-level networking. This is how Neutron is able to do isolated
networks per tenant. They all get their own network namespace. You can list the
network namespaces on any Linux host that has network namespaces enabled, using
the ip utils command:

$ ip netns

When you run this command, if you have some networks already deined, you see
namespaces named qdhcp-{network-id}.

The letter Q is a legacy naming convention from the original name
Neutron had, which started with the letter Q. The old name had a
legal conlict, and it had to be changed.

So a qdhcp network namespace is a namespace created to house the DHCP instance
for a private network in Neutron. The namespaces can be interacted with and
managed by the same tools as the host's networking by just indicating the namespace
that you want to execute commands in. For example, let's list the interfaces and
routes on the host and then in a network namespace. Start with the host you're on.
The following command shows this:

$ ip a

$ ip r

The interfaces listed should be familiar, and the routes should match the networks
you are communicating with. These are the interfaces and routes that the host that
OpenStack is installed on is using. Next, get the ID of the network you would like
to debug, and list the interfaces and routes in the namespace using the netns exec
command. This is shown by the following command:

$ ip netns exec qdhcp-{network-id} ip a

$ ip netns exec qdhcp-{network-id} ip r

The same commands are executed inside the namespace and the results are different.
You should see the loopback device, the DHCP agent's interface, and the routes
that match the subnet you created for your network. Any other command can also
be executed in just the same manner. Get the IP address of an instance of the tenant
network and ping it:

$ ip netns exec qdhcp-{network-id} ping {host-ip-address}

Chapter 13

[147]

There is even an independent iptables rule space in this namespace:

$ ip netns exec qdhcp-{network-id} iptables -nL

The ping is important because by pinging the instance that is running on the
compute node from the qdhcp network namespace, you are passing trafic over the
OVS tunnel from the network node to the compute node. OpenStack can appear to
be completely functional—instances launch and get assigned IP addresses—but then,
the tunnels that carry the tenant trafic aren't operating correctly, and the instances
are unreachable by way of their loating IP addresses.

To debug an unreachable host, you have to traverse more than one namespace. The
qdhcp namespace we just looked at is one of the namespaces that an instance needs
to communicate with the outside world; the other is the qrouter. The OpenStack
router that the instance is connected to is represented by a namespace, and the
namespace is named qrouter-{router-id}. If you look at the interfaces in the
qrouter, you will see an interface with the IP address that was assigned to the router
when the tenant network was added to the router. You will also see the loating IP
added to an interface in the qrouter.

What we are working towards is tracing the trafic from the Internet through the
OpenStack infrastructure to the instance. By knowing this path, you can ping and
tcpdump to igure out what in the infrastructure is not wired correctly. Before we
trace this, let's look at one more command:

$ ovs-vsctl show

This command will list the bridges and ports that Open vSwitch has conigured in
it. There are a couple of them that are important for you to know about. Think of a
bridge in OVS as somewhat analogous to a physical switch, and a port in OVS is just
a network port on a switch or a physical port on a physical switch. So br-int, br-
tun, br-ex, and any others that are listed are virtual switches and each of them have
ports. Looking at br-int irst, we can igure out that this is the name of the bridge
that all local trafic will be connected to. Next, br-tun is the bridge that will have the
tunnel ports on. Not all hosts will need to use br-ex; this is the bridge that should be
connected to a physical interface on the host to allow external trafic to reach OVS.
Finally, only in the case of a VLAN setup is there a custom bridges setup. We are
not going to look at them in this book, but you should know that the three we are
discussing are not the exclusive list of OVS bridges that OpenStack uses. The last
thing to note here is that some of these bridges have ports to each other. This is just
like connecting two physical switches to each other.

Troubleshooting

[148]

Now, let's map out the path that a packet will take to get from the Internet to a
running instance. The packet will be sent to the loating IP from somewhere on the
internet. It should go through the physical interface, which should be a port on br-
ex. The loating IP will have an interface on br-ex. The virtual router will have an
interface on br-ex and br-int and will have iptables rules to forward trafic from
the loating IP address to the private IP address of the instance. For the packet to
get from the router to the instance, it will travel over br-int to br-tun, which are
patched to each other, over the VXLAN tunnel to br-tun on the compute node, which
is patched with br-int on the compute node that has the instance's virtual interface
attached to it.

With this many different hoops to jump through, there are quite a few places for
trafic to get lost. The main entry points for debugging start with namespaces. Start
by trying to ping the instance or the DHCP server for the tenant in the namespaces
and move to tcpdump if you need to. Pings and tcpdumps can be a quick diagnosis
of where trafic is not lowing. Try these tests to track down where things are failing.

• Make sure that ICMP is allowed for all IP addresses in the security groups

• Ping the instance from the qdhcp namespace

• Ping the instance from the qrouter namespace

• Tcpdump ICMP traffic on physical interfaces, br-int, br-tun, and br-ex as
needed

These pings establish irst that trafic is lowing over the VXLAN tunnels and that
the instance has successfully used DHCP. Secondly, they establish that the router's
namespace was correctly attached to the qdhcp namespace. If the ping from qdhcp
doesn't succeed, use ovs-vsctl show to verify that the tunnels have been created
and check the Open vSwitch and Open vSwitch agent logs on the network and
compute node if they haven't. If the tunnels are there and you can't ping the instance,
then you need to troubleshoot DHCP. Check /var/log/messages for DHCP
messages from the instance on the network node, and boot an instance you can log in
from the console to try to dhclient from the instance if you don't see messages from
the instance in the logs.

If the initial pings don't succeed, you can use tcpdump on the Open vSwitch bridges
to dig a bit deeper. You can specify which interface you want to listen on using
the -i switch on tcpdump, and you can drill down to where trafic is failing to
low by attaching to the Open vSwitch bridges one at a time to watch your trafic
low. Search the Internet for tcpdump and ping if you are not familiar with using
tcpdump:

$ tcpdump -i br-int

Chapter 13

[149]

Start with br-int on the compute node, and make sure you see the DHCP trafic
coming out of the instance onto br-int. If you do not see that trafic, then the
instance might not even be trying to use DHCP. Log in to the instance through the
console and verify that it has an interface and that dhclient is attempting to contact
the DHCP server. Next, use tcpdump on br-int on the network node. If you do not
see the DHCP trafic on the network's br-int, then you may need to attach to br-tun
on the compute and network nodes to see whether your trafic is making it to and
across the VXLAN tunnels. This should help you make sure that the instance can use
DHCP, and if it can, then trafic should be lowing properly into the instance from
the network node.

Next, you may need to troubleshoot trafic getting from the outside world to the
network node. Use tcpdump on br-ex to make sure you see the pings coming from
the Internet into the network node. If you see the trafic on br-ex, then you will
want to check the iptables rules in the qrouter namespace to make sure that there
are forwarding rules that associate the loating IP with the instance. The following
command shows this:

$ ip netns exec qrouter-{router-id} iptables -t nat -L

In this list of iptables rules, look for the loating IP and the instance's IP address. If
you need to, you can use tcpdump in the namespace as well, though it is uncommon
to do this. Look up the interface the loating IP is on, and attach to it to listen to the
trafic on it:

$ ip netns exec qrouter-{router-id} ip a

$ ip netns exec qrouter-{router-id} tcpdump -i {fip-interface}

Using this collection of tests, you should be able to identify where the trouble is.
From there, check logs for Open vSwitch and the Neutron Open vSwitch agent for
tunneling, the Neutron Open vSwitch agent and Neutron DHCP agent for DHCP
issues, and the Neutron L3 agent for loating IP issues.

Troubleshooting Nova launching

instances
Nova has good logging and will most likely have a pretty good error message to
indicate what is going wrong if you have trouble getting instances to launch. You
would want to check logs for nova-api, nova-conductor, and nova-scheduler on
the control tier, and on each compute node where there is a nova-compute service
running. Let's look at what each of these agents does so that you know where to look
when something is going wrong.

Troubleshooting

[150]

When a Nova command is executed, it talks to the nova-api service. If an error is
received directly when a Nova command is executed, this is generally where you can
ind more detail beyond the immediate error message returned.

Once a command to act on an instance is accepted into the Nova infrastructure, there
are two services that handle passing actions to the compute nodes—nova-scheduler
and nova-conductor. Nova-scheduler is just what its name suggests. It handles the
decision making as to where to schedule resources across the collection of compute
nodes that are available. Start with the scheduler's log ile if instances are falling into an
error state quickly. There is a chance that there are criteria mismatches for the instance
to launch. If the scheduler suggests there are no available compute nodes, then use the
nova service-list command to see a list of available compute nodes:

$ nova service-list

This will show all the Nova services and their statuses. The services of the nova-
compute type are the nodes that the scheduler will need to have an up status to be
able to schedule resources properly.

Once the scheduler has made a decision about where to launch an instance, it will
pass on the information to nova-conductor. The main purpose of nova-conductor
is to remove the need for the compute nodes to access the database. There is
communication between nova-conductor and the nova-compute service on each of
the compute nodes via the message bus and they access the database on their behalf.
If your instances are having trouble spawning, then they have been scheduled, and
there is most likely an issue with nova-conductor or its communication with the
nova-compute nodes. Check the logs in /var/log/nova for nova-conductor and the
assigned compute node's nova-compute service.

Troubleshooting post-boot metadata
Images are built and added to Glance as generic reusable images. This means that
there isn't any data included to launch the image that is built into it. To provide
the image with conigurations to allow login and customization, the images should
include a service called cloud-init. Cloud-init calls back into OpenStack to get SSH
pub keys and post-boot coniguration commands. There is a predetermined URL that
cloud-init calls into: http://169.254.169.254. If you are getting an access-denied
error when you try and SSH to your loating IP address, it is probably because cloud-
init is failing to get the SSH pub key for your authorized keys ile, you are using the
wrong username, or you are using a prepackaged image that you have downloaded
with a username other than root.

Chapter 13

[151]

To troubleshoot the metadata service, make sure that you have an image that you
can connect to the console. CirrOS is a good option for debugging things like this;
just remember not to use CirrOS for anything other than testing and debugging.
CirrOS is an insecure distribution of Linux and is intended only for testing and
debugging. Once you have logged into the console of an instance, use curl to mock
the call that cloud-init will make:

$ curl http://169.254.169.254/latest/meta-data/

You will have to memorize the IP address that is used or search the Internet, but you
can make a call directly to the IP, and it will give you a list of paths that can be used.
Try making a call to the metadata service in this order:

$ curl http://169.254.169.254/

$ curl http://169.254.169.254/latest/

$ curl http://169.254.169.254/latest/meta-data/

You can see that in the second call, the latest is listed, and in the third call, metadata
is listed. In the third call, there is a further collection of paths that can be called to
get different information. If you have gotten this far, then the metadata service is
working, and maybe cloud-init is not installed on the image that you are having
trouble accessing. When you call these URLs and you get errors, you will have to
check logs in two places to igure out what the issue is. The irst one is the Neutron
metadata proxy service. Look in /var/log/neutron and you will see one log
named metadata-agent.log and other logs named neutron-ns-metadata-proxy-
{network-id}.log. To troubleshoot the metadata service that is not working, you
just need to look at the metadata-agent.log ile. Make sure there aren't any errors
in it. There are only a few coniguration options in this ile. If you get any connection
error in the logs, check the URL and port for the Nova metadata proxy service. If you
get an authentication error, check that the shared secret matches the shared secret
value in the nova.conf ile on the control tier.

If your investigation takes you up to Nova, you will need to look at the API service.
The Nova metadata service is a subprocess of nova-api. Check the logs of nova-api
and check the errors that are there. Coniguration options related to nova-api are in
nova.conf.

When troubleshooting the metadata service calls, the issues are usually closer to the
instance itself, such as cloud-init not being installed, the instance not using DHCP
properly, or in early cases of setting up the cluster, the neutron-metadata-agent not
being conigured properly to proxy calls.

Troubleshooting

[152]

Troubleshooting console access
The URL for console access is generated from a property that is set on each
compute node. Look at the nova.conf ile on one of your compute nodes for
the novncproxy_base_url property:

novncproxy_base_url=http://control.example.com:6080/vnc_auto.html

This base URL is the address of the nova-novncproxy service that will be able to
create a console connection to the instance. In the web interface, this URL is retrieved
for you when you select the console tab for an instance. At the command line, you
can use Nova's get-vnc-console and pass the novnc type to get the console URL:

$ nova get-vnc-console {instance-id} novnc

This will return a URL that will include base_url from the compute node the
instance is running on and an authentication token to access the console with. If you
paste this URL into a web browser, there are a few steps that happen under the hood
to connect you to the instance's console.

First, you need to be able to connect to nova-novncproxy. This runs by default on
port 6080 on the control tier. Once the request to connect to the instance's console is
established, the token that is passed in the URL is passed to nova-consoleauth and
validated in nova-cert. If all that succeeds, then the connection to the instance on
the compute is established and the console is provided through the web browser.

If you are having trouble with console connections, make sure that the base URL
is pointing to the nova-novncproxy service, and that you can connect to the nova-
novncproxy service. If you see a console window, but the console is not being
displayed, then you need to check that nova-consoleauth and nova-cert are
running and check the logs for errors in validating the token. If there aren't any
errors in validating the token, check the nova-novncproxy log to ensure that a
connection to the instance can be made.

Troubleshooting Cinder block storage
Troubleshooting Cinder is similar to troubleshooting Glance. The issues that arise
are dependent on the backing storage that you use. The best course of action to
troubleshoot it is to watch the logs in /var/log/cinder/* and correct errors that
show up in there. These logs are where you will ind errors related to creating Cinder
volumes and connecting them to the instances.

Chapter 13

[153]

Troubleshooting Swift object storage
The trick to troubleshooting Swift is to remember that it has a proxy tier and a
storage backend tier. The proxy is essentially the API layer to Swift, and it is the
place to start looking for errors in Swift. As mentioned earlier, Swift-proxy does not
have its own log ile. Its logs will show up in /var/log/messages. If things look
good in the proxy's logs, then take a look at the storage backend, and see whether
there are any errors in the Swift storage logs.

Troubleshooting Ceilometer Telemetry
Ceilometer has a large number of dependencies and agents that run across the
cluster to collect data on the resources being used. Once again, to troubleshoot this
component, the best course of action to take is to watch the logs. Any errors that you
see should be resolved to ensure that Telemetry data is being collected.

Troubleshooting Heat orchestration
Heat is one of the widest-reaching components within the OpenStack infrastructure to
troubleshoot. This is because each template that is built is different and has different
dependencies among resources created in the stack that is launched. Further, it is
able to depend on or create almost any resource within OpenStack. As with the other
components, the best starting place is with the Heat logs in /var/log/heat. This will
give you a good indication of where things might not be going correctly.

If a stack is launched and does not successfully complete, but you do not see any
errors in the Heat logs, then the issue may be in the instances. Heat has callbacks
from the running instances that must work for the orchestration of data and the
ordering of instance creation within a stack.

If you review the section in this chapter on the metadata server, you will notice that
the post-boot coniguration that is run on an instance is delivered by the metadata
service. When cloud-init ires and receives post-boot coniguration, it will log what
it is doing in /var/log/cloud-init.log. There are callbacks into Heat that are
included in your cloud-init scripts that must alert Heat that it is time for the next
instance in a stack to be created if it is dependent on a previous instance in the
stack completing its provisioning. The service that is called back into is the heat-cfn
service. If you see failures calling back into the heat-cfn service, you will need to get
this URL and verify and troubleshoot this connectivity.

Troubleshooting

[154]

Getting more help
It is not possible to foresee every error or troubleshooting scenario that could happen
in an OpenStack installation. If you need further help in debugging and installation,
start with http://ask.openstack.org. Each of the projects that we have covered
in this book also has a community of developers that actively work on it. You can
connect with them through mailing lists, forums, IRC channels, and bug trackers.
To ind contact information for each of these communication channels, start with
http://www.openstack.org. If you do not ind what you are looking for there, then
search the Internet to get further information for each of the projects.

Summary
In this chapter, we have taken a look at some of the architecture and worklow to a
few of the components of OpenStack. Knowing how the components operate will
help you to troubleshoot issues when they arise in your OpenStack cluster. With the
number of modules that are present in OpenStack, you have to follow the order of
operations that are being run, validate their success, and check for errors as you
go along.

Having looked at troubleshooting OpenStack, we have come to the end of this
book. The information in this book is core to OpenStack and deines many of the
basic concepts and methodologies that are baked into the OpenStack project. The
project moves quickly, and new features are added very rapidly, but because the
information here is central to a base installation of OpenStack, you should be able
to reference the majority of this book for many releases to come from the OpenStack
project.

[155]

Index

A

Advanced Message Queuing Protocol
(AMQP) 118

alarms 92
Amazon Web Services (AWS) 98
answer ile

generating 12-16
appliance-creator 4
Application Programming Interfaces

(API) 1
authentication

troubleshooting 143, 144
availability monitoring 127
AWS CloudFormation format

about 98
coniguration options 98, 99
reference link 98

B
backing storage

about 75
Cinder, types 75

block storage
attaching, to instance 70, 71
creating 69, 70
use case 69
using 69, 70

C

Ceilometer
about 7, 89, 90
alarms 92

meters 90
pipeline 90
samples 91
statistics 91
Telemetry, troubleshooting 153

Ceph 6, 75
CIDR calculator

URL 41
Cinder

about 6, 69
block storage, troubleshooting 152
types 75
using 69
volumes, managing in web interface 72-74

CirrOS
about 30, 151
URL 30

Classless Inter-Domain Routing (CIDR) 41
cloud-init 4, 150
commands, Nagios

deining 129-131
components, OpenStack

compute 1
control 1
network 1

compute nodes
scaling 115-117

compute services
monitoring 139

coniguration, Open vSwitch (OVS)
Generic Routing Encapsulation

(GRE) tunnels 39
Virtual Local Area Network (VLAN) 39
VXLAN tunnels 40

[156]

coniguration options, AWS
CloudFormation format

description 98
HeatTemplateFormatVersion 98
mappings 98
outputs 99
parameters 98
resources 99

console access
troubleshooting 152

control
installing 117, 118
scaling 119

control services
monitoring 134-136

D

dashboard
about 2
endpoints 26
Keystone, interacting with 24-26

data
graphing 93-95

data store 89
debug command line option 141
dhclient 148
Domain Name System (DNS) 41

E

endpoints 19, 20, 26
external network

accessing 46
creating 50
network, preparing 46-49
setting up, for web interface 51-54

F

Fedora qcow cloud image
URL, for downloading 30

lavors
about 55
managing 55

loating IP addresses
managing 59

G

Generic Routing Encapsulation
(GRE) tunnels

about 39
jumbo frames, enabling 40
MTU instances, lowering 39

Glance
about 4
image, downloading 30, 31
image management, troubleshooting 145
image, registering 30, 31
load balancing 122, 123
URL, for documentation 31
using 29

GlusterFS
about 6, 75
setting up 76, 77

H

Heat
about 7
instance, autoscaling 102
orchestration, troubleshooting 153
web interface support 110-113

Heat Orchestration Template (HOT) format
about 99
reference link 99

high availability 124-126
highly available database 126
Horizon 2
host checks

adding, to Nagios 128, 129

I

image
building 34, 35
downloading 30, 31
registering 30, 31

instance
autoscaling, with Heat 102
block storage, attaching 70, 71
communicating with 61
launching 58

[157]

launching, web interface used 62-66
object storage, using 85, 86
URL, for autoscaling 102

Internet Control Message Protocol (ICMP) 6

K

key pairs
about 56
managing 56, 57

Keystone
about 2
endpoints 19, 20
interacting with, in dashboard 24-26
load balancing 119-121
services 19, 20
troubleshooting 143, 144
tuning 122

L

Load Balancer as a Service (LBaaS)
setting up 102-110

load balancing
Glance 122, 123
Keystone 119-121

logging
with new user 23

Logical Volume Manager (LVM) 6

M

Maximum Transmission Unit (MTU) 39
message bus 126
meters 90
monitoring

about 127
availability monitoring 127
methods 131, 132
performance monitoring 127

N

Nagios
commands, deining 129-131
host checks, adding 128, 129
installing 128

reference link, for Mongo scripts 134
reference link, for Rabbit scripts 134

Nagios Remote Plugin Executor (NRPE) 130
Network Address Translation (NAT) 46
network fabric 38
networking

about 37, 38
installing 117, 118
Neutron 37, 38

Networking as a Service (NaaS) 5
network services

monitoring 137-139
scaling 119

Neutron
about 5, 37, 38
network fabric 38
network, troubleshooting 145-149
used, for creating network 40-42

nodes
preparing, for RDO installation 11

non-OpenStack service checks 133
Nova

about 5, 6
launching instances,

troubleshooting 149, 150

O

object ile management
in web interface 83-85

object storage
about 81
creating 82
use case 81
using 82
using, on instance 85, 86

OpenStack
architecture 1, 2
components 1
other services, scaling 124
URL 2, 154

Open vSwitch (OVS)
about 5, 38
coniguration 38

orchestration 97
Oz 4

[158]

P

Pacemaker
using 125

Packstack
about 9
installing 12-16
used, for installing RDO 10, 11

performance monitoring 127
pipeline 90
post-boot metadata

troubleshooting 150, 151
pseudo-folder 85
Public Key Infrastructure (PKI) 3, 23

Q

qcow2 30

R

RDO
about 9
installing, Packstack used 10, 11
nodes, preparing 11
Packstack, installing 12-16
URL 10

ring iles
about 86
creating 86-88

role
about 20, 21
granting 22

S

samples 90, 91
Secure Shell (SSH) 4
security groups

about 60
managing 60

services 19, 20
Software Deined Networking (SDN) 5
stack

about 97
launching 99-102

statistics 91
staypuft 9
Swift

about 7
architecture 81, 82
object storage, troubleshooting 153

T

tail, server logs 142
tcpdump 147
template

about 97
AWS CloudFormation format 98, 99
Heat Orchestration Template

(HOT) format 99
URL 98
writing 97, 98

tenant
about 20, 21
creating 22

triple-o 9
troubleshooting

authentication 143, 144
Ceilometer Telemetry 153
Cinder block storage 152
console access 152
Glance image management 145
Heat orchestration 153
Keystone 143, 144
Neutron networking 145-149
Nova launching instances 149, 150
OpenStack installation 154
post-boot metadata 150, 151
Swift object storage 153

U

user
about 20, 21
creating 21
logging in, with new user 23

User Datagram Protocol (UDP) 40

[159]

V

virt-install 4
Virtual Extensible LAN (VXLAN) 13, 40
Virtual Local Area Network (VLAN) 39

W

web interface
Cinder volumes, managing 72-74
external network, setting up 51-54
network management 42-45
object ile management 83-85
used, for launching instance 62-66
using 32, 33
with Heat 110-113

Thank you for buying
OpenStack Essentials

About Packt Publishing
Packt, pronounced 'packed', published its irst book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it irst before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Creating Mobile Apps with

Sencha Touch 2
ISBN: 978-1-84951-890-1 Paperback: 348 pages

Learn to use the Sencha Touch programming
language and expand your skills by building
10 unique applications

1. Learn the Sencha Touch programming language
by building real, working applications.

2. Each chapter focuses on different features and
programming approaches; you can decide
which is right for you.

3. Full of well-explained example code and rich
with screenshots.

Sencha MVC Architecture
ISBN: 978-1-84951-888-8 Paperback: 126 pages

A practical guide for designers and developers to
create scalable enterprise-class web applications in
ExtJS and Sencha Touch using the Sencha
MVC architecture

1. Map general MVC architecture concept to the
classes in ExtJS 4.x and Sencha Touch.

2. Create a practical application in ExtJS as well
as Sencha Touch using various Sencha MVC
Architecture concepts and classes.

3. Dive deep into the building blocks of the
Sencha MVC Architecture including the class
system, loader, controller, and application.

Please check www.PacktPub.com for information on our titles

Learning Ext JS 4
ISBN: 978-1-84951-684-6 Paperback: 434 pages

Sencha Ext JS for a beginner

1. Learn the basics and create your irst classes.

2. Handle data and understand the way it works,
create powerful widgets and new components.

3. Dig into the new architecture deined by Sencha
and work on real world projects.

Ext JS 4 Web Application

Development Cookbook
ISBN: 978-1-84951-686-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with
real-life examples, walking you through basic Ext
JS features to advanced application design using
Sencha's Ext JS

1. Learn how to build Rich Internet Applications
with the latest version of the Ext JS framework
in a cookbook style.

2. From creating forms to theming your
interface, you will learn the building blocks for
developing the perfect web application.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Architecture and
Component Overview
	OpenStack architecture
	Dashboard
	Keystone
	Glance
	Neutron
	Nova
	Cinder
	Swift
	Ceilometer
	Heat
	Summary

	Chapter 2: RDO Installation
	Installing RDO using Packstack
	Preparing nodes for installation
	Installing Packstack and generating an answer file

	Summary

	Chapter 3: Identity Management
	Services and endpoints
	Hierarchy of users, tenants, and roles
	Creating a user
	Creating a tenant
	Granting a role
	Logging in with the new user

	Interacting with Keystone in the dashboard
	Endpoints in the dashboard
	Summary

	Chapter 4: Image Management
	Glance as a registry of images
	Downloading and registering an image

	Using the web interface
	Building an image
	Summary

	Chapter 5: Network Management
	Networking and Neutron
	Network fabric

	Open vSwitch configuration
	VLAN
	GRE tunnels
	VXLAN tunnels

	Creating a network
	Web interface management
	External network access
	Preparing a network
	Creating an external network

	Web interface external network setup
	Summary

	Chapter 6: Instance Management
	Managing flavors
	Managing key pairs
	Launching an instance
	Managing floating IP addresses
	Managing security groups
	Communicating with the instance
	Launching an instance using the web interface
	Summary

	Chapter 7: Block Storage
	Use case
	Creating and using block storage
	Attaching the block storage to
an instance
	Managing Cinder volumes in the web interface
	Backing storage
	Cinder types
	GlusterFS setup

	Summary

	Chapter 8: Object Storage
	Use case
	Architecture of a Swift cluster
	Creating and using object storage
	Object file management in the web interface
	Using object storage on an instance
	Ring files
	Creating ring files

	Summary

	Chapter 9: Telemetry
	Understanding the data store
	Definitions of Ceilometer's configuration terms
	Pipelines
	Meters
	Samples
	Statistics
	Alarms

	Graphing the data
	Summary

	Chapter 10: Orchestration
	About orchestration
	Writing templates
	The AWS CloudFormation format
	The Heat Orchestration Template (HOT) format

	Launching a stack
	Autoscaling instances with Heat
	LBaaS setup
	Web interface
	Summary

	Chapter 11: Scaling Horizontally
	Scaling compute nodes
	Installing more control and networking
	Scaling control and network services
	Load-balancing keystone
	Additional Keystone tuning

	Glance load balancing
	Scaling other services
	High availability
	Highly available database and message bus
	Summary

	Chapter 12: Monitoring
	Monitoring defined
	Installing Nagios
	Adding Nagios host checks
	Nagios commands

	Monitoring methods
	Non-OpenStack service checks
	Monitoring control services
	Monitoring network services
	Monitoring compute services
	Summary

	Chapter 13: Troubleshooting
	The debug command line option
	Tail the server logs
	Troubleshooting Keystone and authentication
	Troubleshooting Glance image management
	Troubleshooting Neutron networking
	Troubleshooting Nova launching instances
	Troubleshooting post-boot metadata
	Troubleshooting console access
	Troubleshooting Cinder block storage
	Troubleshooting Swift object storage
	Troubleshooting Ceilometer Telemetry
	Troubleshooting Heat orchestration
	Getting more help
	Summary

	Index

