N/
1||||||||||L|"

ﬂﬂillllllll

Oracle BPM Suite 12c¢
Modeling Patterns

Vivek Acharya [PACKT] enterprise =

IIIIIIIII

http://www.allitebooks.org

Oracle BPM Suite 12¢
Modeling Patterns

Design and implement highly accurate Business
Process Management solutions with Oracle
BPM Patterns

Vivek Acharya

enterprise &

PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Oracle BPM Suite 12c¢ Modeling Patterns

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014
Production reference: 1220914

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-902-1
www . packtpub.com

Cover image by Artie Ng (artherng@yahoo.com. au)

[vww allitebooks.cond

www.packtpub.com
http://www.allitebooks.org

Credits

Author Project Coordinator
Vivek Acharya Kinjal Bari
Reviewers Proofreaders
Cyril Brigant Simran Bhogal
Haitham A. EI-Ghareeb Mario Cecere
Jaideep Ganguli Maria Gould
Ramakrishna Kandula Paul Hindle
Max Pellizzaro Chris Smith
Surendra Pepakayala
Indexers
Acquisition Editor Mariammal Chettiyar
Nikhil Karkal Monica Ajmera Mehta
Rekha Nair
Content Development Editor
I P Tejal Soni
Rikshith Shetty
Graphics

Techni i
echnical Editors Ronak Dhruv
Menza Mathew

Akash Rajiv Sharma

Valentina D'silva
Abhinash Sahu

Copy Editors

Roshni Banerjee Production Coordinators

o) Melwyn D'sa
Dipti Kapadia

Manu Joseph
Karuna Narayanan

Stuti Srivastava Cover Work

Melwyn D'sa

[vww allitebooks.cond

http://www.allitebooks.org

Disclaimer

The views expressed in this book are my own and do not reflect the views of Oracle
Corporation or the company (or companies) I work (or have worked) for.

The information in this book is written based on personal experiences. You are free
to use the information in this book, but I am not responsible and will not compensate
you if you ever happen to suffer a loss/inconvenience/damage because of / while
making use of this information.

This book is designed to provide information on BPM Patterns only. This information
is provided and sold with the knowledge that the publisher and author do not offer
any legal or professional advice. In case of a need for any such expertise, consult with
the appropriate professional.

This book does not contain all the information available on the subject. Every effort
has been made to make this book as accurate as possible. However, there may be
typographical and/or content errors. Therefore, this book should serve only as a
general guide and not as the ultimate source of subject information.

Furthermore, this manual contains information on writing and publishing that is
current only up to the printing date.

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Vivek Acharya is an Oracle BPM and Fusion Middleware Applications
professional and works for Oracle Corporation, USA. He has been in the world of
design, development, consulting, and architecture for approximately 10 years. He is
an Oracle Certified Expert, an Oracle Fusion SOA 11¢ Implementation Specialist, and
Oracle BPM 11g Implementation Specialist. He has experience working with Oracle
Fusion Middleware and Fusion Applications. He loves all the things associated
with Oracle Fusion Applications, Oracle BPM/SOA, Cloud and SaaS, predictive
analytics, social BPM, and adaptive case management. He has been the author

for a couple of books, has an interest in playing the synthesizer, and loves travelling.
You can add him on LinkedIn at http://www.linkedin.com/pub/vivek-
acharya/15/377/26a, write to him on vivek.oraclesoa@gmail . com,

or reach him at http://acharyavivek.wordpress.com/.

[vww allitebooks.cond

http://www.linkedin.com/pub/vivek-acharya/15/377/26a
http://www.linkedin.com/pub/vivek-acharya/15/377/26a
http://acharyavivek.wordpress.com/
http://www.allitebooks.org

Acknowledgments

First and foremost, I would like to thank God. I could never have done this without
the faith that I have in Him, the Almighty.

No one walks alone, and when one is walking the journey of life, you begin to thank
those who joined you, walked beside you, and helped you along the way.

Many thanks to mom, papa, and my brother, Alankar; you all have been supreme.
You have nurtured my learning and have always stood by me when things were odd
or even. Thanks to my in-laws for giving wings to Richa.

Huge thanks to my wife, Richa, for inspiring me at every step, supporting my efforts,
and encouraging me through the long journey. Thanks for having patience with me
when I was facing yet another challenge in my life that reduced the amount of time

I spent with you, and your sacrifice of all those weekends and vacations.

I would like to express my gratitude to Bill Swenton for all his support. I would like
to take this opportunity to thank all those with whom I have worked in the past and
those who have inspired me in one way or the other. Many thanks to Dean Welch,
Vijay Navaluri, Prakash Devarakonda, Sebastiaan Dammann, Monique Albrecht,
Nader Svird, and Jugni for inspiring me.

Thanks to the reviewers who worked on this book. I would like to thank Rikshith
Shetty, Binny Babu, Navu Dhillon, Larissa Pinto, Anthony Albuquerque, Menza
Mathew, Akash Rajiv Sharma, and all the members of the Packt Publishing team
for editing and polishing the book.

Last but not least, I beg forgiveness from all those who have been with me over the
course of all these years and whose names I have failed to mention.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Cyril Brigant is an application architect specialized in BPM modeling and

SOA Architecture. He has been involved in various workflow projects and SOA
initiatives for the last 10 years in various Enterprise environments. At the European
Commission, DG RTD, he was in charge of modeling the Enterprise architecture and
SOA governance. He has recently joined the CMA CGM Group to bring his expertise
for an ambitious project to rebuild the complete information system based on the
top-down approach.

Haitham A. El-Ghareeb is an Associate Professor at the Information Systems
Department, Faculty of Computers and Information Sciences, Mansoura University,
Egypt. He is a member of many distinguished computer organizations, reviewer for
different highly recognized academic journals, contributor to open source projects,
and the author of different books.

Haitham is interested in e-learning, Enterprise architecture, information
architecture, and software architecture, especially in Service-Oriented Architecture
(SOA), Business Process Management (BPM), Business Process Management
Systems (BPMS), Information Storage and Management, Virtualization, Cloud
Computing, Big Data, and in collaboration with Information Systems and e-learning
organizations and researchers.

Haitham holds a Master of Science degree (in 2008) from the same faculty

that he is currently working for. His thesis was titled Evaluation of Service

Oriented Architecture in e-Learning. This thesis was highly recognized and has

been published as an international book under the same title (ISBN-13: 978-3-
83835-538-2). He holds a PhD degree (in 2012) from the same faculty. His PhD
dissertation was titled Optimizing Service Oriented Architecture to Support e-Learning
with Adaptive and Intelligent Features, which was highly recognized and has been
published as an international book under the title, Optimizing Service Oriented
Architecture to Support e-Learning, LAP Lambert Academic Publishing,

(ISBN-13: 978-3-84731-187-4).

[vww allitebooks.cond

http://www.allitebooks.org

Haitham is the author of the book, Enterprise Integration Opportunities and Challenges,
LAP Lambert Academic Publishing, (ISBN-13: 978-3-65937-179-0). For an updated list of
Haitham's activities and research articles, please consider the following websites:

* Haitham's personal website: http://www.helghareeb.me
* Haitham's blog: http://blog.helghareeb.me

e Haitham's channel on YouTube: http://video.helghareeb.me

Jaideep Ganguli has more than 20 years of experience in developing software
solutions for several domains, including financial services, e-government, criminal
justice, and wireless application services. Over the last 10 years, he has delivered
several Enterprise-scale solutions based on WebLogic, JEE, Oracle BPM, SOA Suite,
ADF, and WebCenter. He is a Certified Implementation Specialist with Oracle
WebCenter Portal 11¢g and Oracle BPM 11g.

Currently, Jaideep is one of the cofounders and partners of Fusion Applied
(www . fusionapplied.com). Fusion Applied offers top-notch Oracle Fusion
Middleware-focused consulting and training.

Jaideep holds an MBA degree from Johns Hopkins University and a BS in
Electronics Engineering from Mumbai University, India.

He can be contacted at http://www.linkedin.com/in/jaideepganguli/,
or you can e-mail him at jaideepefusionapplied.com.

I'd like to thank my wife, Rajeshwari, for her patience and support
and my partners, Vivek Chaudhari, Vikram Bailur, and Sanjib
Rajbhandari, for their encouragement and technical expertise.

[vww allitebooks.cond

http://www.helghareeb.me
http://blog.helghareeb.me
http://video.helghareeb.me
http://www.linkedin.com/in/jaideepganguli/
http://www.allitebooks.org

Ramakrishna Kandula has an experience of 10 years in the IT sector and 7 years
with Fusion Middleware technologies. He has worked on different projects in SOA
and BPM Suites with various clients.

He completed his graduation with a Bachelor's of Technology degree in Electronics
and Communication, in 2003.

He has received many accolades and awards in his career from client and
internal organization recognition events for key implementations and innovative

approach design.

He has designed and implemented many B2B and EAI architectures for different
business implementations, which have also become role model architectures for
many other implementations.

He has technically reviewed Oracle BPM Suite 11g Developer's Cookbook,
Packt Publishing.

You can e-mail him at ramakrishna.rpkandula@gmail .com.

Max Pellizzaro, with over 15 years of working experience, has been working as a
software/IT consultant in complex projects within different industries: automotive,
telecommunication, and entertainment and media. Within the projects he has been
involved with, he has developed experience throughout all the phases of a project's
life cycle: collecting user requirements, designing software solutions, leading
software development, and designing monitor tools for the on-going production
environment. In his last organization, Max was the leading architect of Center of
Excellence of Oracle Technology. His main activity was to understand clients' needs
to help him drive the design and prototype of Oracle Solutions.

Max loves technologies; even in his day-to-day jobs, he mainly deals with Oracle
technology. His passion has brought him to learn other technologies such as mobile
development, game development, and 3D development.

Max has contributed to the review of other books on XML technology and open
source frameworks.

[vww allitebooks.cond

http://www.allitebooks.org

Surendra Pepakayala is a seasoned technology professional and entrepreneur
with over 16 years of experience in the US and in India. He has a broad experience in
building enterprise software products for both startups and multinational companies.

After 11 years in the corporate industry, Surendra founded an enterprise software
product company based in India. He subsequently sold the company and started
Cloud computing, Big Data, and Data Science Consulting practice.

Surendra has reviewed drafts, recommended changes, and formulated questions for
various IT certification literature/ tests, such as CGEIT, CRISC, MSP, and TOGAF.

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www . Packt Pub . com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub . com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

PACKT

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content
* On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books

Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter, or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents

Preface 1
Chapter 1: Flow Control Patterns 9
Sequence flow pattern 10
Working with the sequence flow pattern 12
Elucidating the sequence flow pattern 14
Getting ready for executing use cases 14
Exclusive choice and simple merge pattern 16
Working with exclusive choice and simple merge pattern 18
Knowing about the exclusive choice pattern 21
Elucidating the simple merge pattern 22
Multichoice and synchronizing merge pattern 22
Demonstrating multichoice and synchronization with the OR gateway 23
The working of multichoice and synchronization pattern 26
Structured synchronizing merge pattern 26
Local synchronizing merge pattern 27
The parallel split and synchronization pattern 28
Parallel split pattern 28
Synchronization pattern 29
Conditional parallel split and parallel merge pattern 32
Working with conditional parallel split and merge 33
Antipattern — the conditional parallel split and merge 35
Multimerge pattern 36
Exploring multimerge 38
Discriminator and partial join pattern 40
Structured discriminator pattern 41
Structured partial join 42
Working with a complex gateway to implement the discriminator
and partial join pattern 43

Table of Contents

Testing a process by failing the complex gateway exit expression 44
Testing process as success by the complex gateway exit expression 44
Complex synchronization pattern 45
Canceling discriminator pattern 46
Canceling partial join pattern 47
Summary 48
Chapter 2: Multi-instance and State-based Patterns 49
Multiple instances with prior design-time knowledge pattern 50
Executing the multi-instance subprocess with prior
design-time knowledge 51
Multiple instances with prior runtime knowledge pattern 54
Demonstrating MI with prior runtime knowledge 55
Understanding how MI with prior runtime knowledge work 57
Multiple instances without prior runtime knowledge pattern 57
Working on MI without prior runtime knowledge 58
Testing the use case 60
Static partial join for multiple instances pattern 62
Testing the use case 64
Understanding how static partial join for Ml works 66
There's more 66
Canceling partial join pattern 66
Dynamic partial join for multiple instances pattern 67
Working with dynamic partial join 68
Understanding the functionality behind partial join for Mi 69
Structured loop pattern 69
Working with structured loops 70
Demystifying do-while 70
Demystifying while-do 72
Arbitrary cycle pattern 72
Exploring arbitrary cycle 73
Understanding the functionality of the arbitrary cycle 76
Trigger patterns 76
Transient trigger pattern 76
Persistent trigger pattern 77
Implicit termination pattern 78
Amalgamating implicit termination in the process flow 78
Explicit termination pattern 79
Learning how explicit termination works 79
Cancelation patterns 80
Cancel multi-instance task pattern 80
Summary 83

Lii]

Table of Contents

Chapter 3: Invocation Patterns 85
Web service pattern 86
Asynchronous request-response (request-callback) pattern 87
Request-response pattern 90
One request, one of the two possible responses pattern 92
Two request a pattern 94
Exposing the BPM process using Receive and Send Tasks 97
Loan Origination over Send and Receive tasks 97
One-way invocation pattern 929
Implementing one-way invocation using a timer 100
Implementing one-way invocation using an e-mail 102
The Loan Origination process over e-mail 103
Testing the flow to instantiate a process over e-mail 105
Publish-subscribe pattern — initiating the business process
through an event 105
Loan origination over an event 107
Multievent instantiation pattern — process instantiation
over multiple events 111
Loan origination over multiple event occurrence 111
Human task initiator pattern — initiating processes through
human tasks 113
Loan origination via the human task form 114
Testing the process 116
Guaranteed delivery pattern — process instantiation over
JMS - Queue/Topic 117
Loan origination over JMS — Queue/Topic 119
Creating JMS resources 120
Creating the publisher process 124
Developing the consumer process 124
Testing the process 126
Understanding multiple start events 128
Summary 129
Chapter 4: Human Task Patterns 131
Learning about human tasks 133
Milestone pattern 136
Modeling in a human task versus a BPMN process 139
Routing pattern 139
Task assignment pattern 140
List builder pattern 142
Absolute or nonhierarchical list builders 143
Hierarchical list builders 144

Rule-based list builders 145

[iii]

Table of Contents

Parallel routing pattern
Getting ready to test sample use cases
Parallel routing pattern with name and expression list builders
Parallel routing pattern with approval group list builder
Parallel routing pattern with lane participant list builder
Parallel routing pattern with rule-based list builder
Parallel routing pattern with management chain

Serial routing pattern

Serial routing pattern with list builder — name and expression
Participant identification type — users
Participant identification type — groups
Participant identification type — application role

Serial routing pattern with list builder — approval group
Serial routing pattern with list builder — management chain

Serial routing pattern with list builder — job level
Modifying participant lists using list modification
Substituting participants using list substitution

Serial routing pattern with list builder — position
Serial routing pattern with list builder — supervisory
Serial routing pattern with list builder — rules
Single routing pattern
Single approver pattern with list builder — name and expression
Single approver pattern with list builder — approval group
Single approver pattern with list builder — management chain
Notify/FYI pattern
FYI| approver pattern with list builder — job level
FYI approver pattern with list builder — name and expression
Task aggregation pattern
Dispatching pattern
Escalation pattern
Rule-based reassignment and delegation pattern
Ad hoc routing pattern
Request information feature
Reassignment and delegation pattern
Force completion pattern
Enabling early completion in parallel subtasks
Routing rule pattern
Deadlines
Escalation, expiry, and renewal feature
Exclusion feature
Error assignee and reviewers
Notifications

147
147
148
152
153
154
156
158

158
158
159
159

159
160

160
162
162

163
164
165
165
166
166
166
166
167
167
167
170
171
172
173
175
177
178
180
180
182
186
190
190
192

[iv]

Table of Contents

Configuring driver properties and attributes 193
Configuring the notification definition 194
Content access policy and task actions 196
Enterprise content management for task documents 197
Summary 199
Chapter 5: Interaction Patterns 201
Defining use cases to demonstrate interaction patterns 202
The BackOffice process 202
The Loan origination process 203
The CatchFraudDetails and Feedback processes 203
Conversation pattern 207
Asynchronous interaction pattern 211
Interacting with an asynchronous process using the Message
Throw and Catch events 213
Interacting with an asynchronous service using the Message
Throw and Catch Events 216
Enabling external services interaction 217
Interacting with an asynchronous process and service using Send
and Receive Tasks 219
Attaching boundary events on Send and Receive Tasks 221
Interacting with a process defined with Receive Task as a start activity = 222
Synchronous request-response pattern 224
The business catalog 226
Subprocess interaction patterns 227
Reusable process interaction pattern 229
Use case scenario for reusable process interaction pattern 231
Embedded subprocess interaction pattern 232
Interrupting a boundary event 234
Boundary event on an activity 234
Event-driven interaction pattern 236
Defining an event-based interaction pattern scenario 238
Summary 240
Chapter 6. Correlation Patterns 241
Correlation mechanism 242
Types of correlations 242
Components of correlation 243
Configuring the environment 244
Defining correlation properties 246
Defining correlation keys and configuring the correlation definition 247
Understanding the correlation behavior 249

[v]

Table of Contents

Message-based correlation pattern 250
Testing the message-based correlation pattern 256
Cancel instance pattern 258
Understanding the components 259
Testing cancelation pattern 261
Restart instance pattern 262
Testing the Loan Origination process to restart a loan 263
Testing the restart scenario 264
Update task pattern 266
Demonstrating the update task functionality 268
Query pattern 268
Testing the query pattern 270
Suspend process pattern 272
Suspend activity pattern 274
Cancel activity pattern 275
How a boundary event based activity correlation works 276
Testing the cancelation pattern on an activity 277
Summary 278
Chapter 7: Exception Handling Patterns 279
Classifying exceptions 280
Business process state 281
Reassigned Exception Handling Pattern 284
Allocated Exception Handling Pattern 285
Changing the Boundary Catch Event from Interrupting
to Noninterrupting 289
Force-Terminate Exception Handling Pattern 292
Force-Error Exception Handling Pattern 293
Force-Complete Exception Handling Pattern 295
Invoked Exception Handling Pattern 296
Invoked State Exception Handling Pattern 297
Continue Execution Exception Handling Pattern 299
Force-Terminate Execution Exception Handling Pattern 302
Force-Error Execution Exception Handling Pattern 303
Allocated state — External Exception Handling Pattern 304
Implementing Allocated state — External Exception Handling Pattern 306
Allocated state — Internal Exception Handling Pattern 309
Implementing Allocated state — Internal Exception Handling Pattern 309
Reallocated Exception Handling Pattern 313
External Exception Handling Pattern 314
Process-Level Exception Handling Pattern 314
Implementing Process-Level Exception Handling Pattern 315

[vil

Table of Contents

Testing Process-Level Exception Handling Pattern 317
System-Level exception handling pattern 318
External Triggers 318
Summary 319

Chapter 8: Adaptive Case Management 321
Defining adaptive case management 322

Case 323

Case management 323

Dynamic case management 323

Mechanism of adaptive case management 324

Process versus case 325

Case management offerings 325

The building blocks of adaptive case management 327
Exploring ACM use case scenarios 329

The building blocks of the Insurance Claim use case 332

Testing the use case 333
Case stage 336
Event pattern 338
Milestone pattern 341
Case interaction pattern 344
Localization feature 345
Holistic view pattern 346
Ad hoc feature 348

Ad hoc inclusion of stakeholders 349

Ad hoc inclusion of activities 349

Ad hoc inclusion of documents 350

Association of a case with subcases 350

Ad hoc inclusion of rules and activities 351
Summary 352

Chapter 9: Advanced Patterns 353
Strategic Alignment Pattern 354

The Value Chain Model 357

The Strategy Model 361

Mapping goals to an organization 363

Defining KPIs in a BPMN project 363

Defining KPIs in a BA project 365

Defining KPlIs in a child Value Chain Model 365
Defining KPlIs in the master Value Chain Model 368

Publishing report data 370

Capturing the business context 372

[vii]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Emulating Process Behavior 377
The Debugger feature 381
Round Trip and Business-IT Collaboration 383
Summary 392
Appendix: Installing Oracle BPM Suite12c 393
Installing JDK 393
Installing BPM suite 394
Configuring the default domain 397
Enabling the demo user community 399
Custom domain creation 402
The BPM/SOA configuration 407
Summary 412
Index 413

[viii]

Preface

This book demonstrates the perceptible regularity in the world of BPMN design
and implementation while diving into the comprehensive learning path of the
much-awaited Oracle BPM modeling and implementation patterns, where, the
readers will discover the doing rather than reading about the doing and this book,
Oracle BPM Suite 12c Modeling Patterns, effectively demonstrates the doing. The
scope of this book covers the patterns and scenarios from flow patterns to strategic
alignment (goals and strategy model) — from conversation, collaboration, and
correlation patterns to exception handling and management patterns; from human
task patterns to asset management; from business-IT collaboration to adaptive case
management; and much more.

This book will demystify various patterns that have to be followed while
developing a professional BPM solution. The patterns such as split-join,
multi-instance, loop, cycle, termination, and so on, allow you to drill into

basic and advanced flow-based patterns. The integration, invocation, interaction,
and correlation patterns demonstrate collaboration and correlation of BPM with
other systems, processes, events and services. The human interaction pattern
section leaves no stone unturned in covering task modeling, routing, dispatching,
dynamic task assignment, rule-based assignments, list building, and other advanced
topics. The chapter on Exception Handling Pattern is a comprehensive guide to
model and implement exception handling in Oracle BPM implementation and
design. The chapter on Adaptive Case Management offers detailed information
about patterns handling unstructured data and unpredictable scenarios. The
adaptive case management features and patterns will empower you to develop

a milestone-oriented, state-based, rule-governed, content outbid, event-driven,
and case management solution. Also, the witness patterns bring enhanced and
dynamic business-IT collaboration. Experience the magic of strategic alignment
features, which brings together the requirement and analysis gaps and makes the
organizational activities very much in-line with the goals, strategies and objectives,
KPIs, and reports.

Preface

This is an easy-to-follow yet comprehensive guide to demystify strategies and

best practices to develop BPM solutions on the Oracle BPM 12¢ platform. All
patterns are complemented with code examples to help you better discover how
patterns work. The real-life scenarios and examples touch many facets of BPM,
whereas solutions are a comprehensive guide to various BPM modeling and
implementation challenges. Each pattern pairs the classic problem/solution format,
which includes signature, intent, motivation, applicability, and implementation,
where implementation is demonstrated via a use case scenario along with a BPMN
application with each chapter.

What this book covers

Chapter 1, Flow Control Patterns, covers the basic flow control patterns in BPMN.
This chapter offers an exemplary and comprehensive exposure to flow control
patterns that are helpful in modeling and implementing BPMN solutions. During
the course of modeling from "As-Is" to "To-Be" process, a process analyst models,
designs, drafts, and publishes a sequence of activities and their flow control. This
chapter starts off by showcasing the essentials of flow control patterns. This chapter
explains converging from conditional and unconditional sequence flow to simple
and parallel split and merge; later, the flow in this chapter expands to multi merge
and transitioning patterns. Then, there is a comprehensive guide to patterns such as
the partial join and discriminator patterns.

Chapter 2, Multi-instance and State-based Patterns, discusses a set of patterns that

will demonstrate how processes can handle batch jobs and simultaneously spawn
multiple work item instances in a process. This chapter simplifies the usage of loop
characteristics while showcasing multi-instance perspectives. This chapter emphasizes
on developing solutions for use cases with multi-instance requirements with design
time and run time knowledge. This chapter further covers iteration patterns by
demonstrating structured loop and unstructured looping mechanism. Then, implicit
and explicit termination patterns will showcase the termination pattern.

Chapter 3, Invocation Patterns, gives an insight into the various discrete mechanisms
to initiate processes and this chapter covers various patterns that illustrate these
discrete invocation patterns. Process interfacing offers other processes, services,
and external systems to communicate with BPM processes. This chapter uncovers
process interfacing with queues, services, and processes by exposing different
operations which external systems can interact with.

Chapter 4, Human Task Patterns, discusses the patterns and features that offer
formalized best practices and solutions for the commonly occurring issues and
challenges that allow process analysts, developers, and designers to build solutions
to bring in human intuition in the process. This chapter discusses various task flow

[2]

Preface

patterns and also demonstrates working with complex task flow. This chapter also
demonstrates the inclusion of business rules to build a dynamic participant list. This
chapter covers patterns that allow you to explore the feasibility to build a participant
list statically, dynamically, or based on rules. The task assignment patterns section
demonstrates how tasks are assigned statically, dynamically, or based on rules to
the participants. The ad hoc assignment patterns, delegation patterns, and escalation
patterns give depth to the chapter. The various other advanced features such as
exclusion, notification, ECM integration, access policy, and so on are covered in
detail along with elaboration on routing patterns, delegation, and so on.

Chapter 5, Interaction Patterns, discusses how processes interact and integrate with
other systems, processes, and services and how these interactions are facilitated
by various interaction patterns. This chapter includes various patterns that help
to communicate with other processes, systems, and services. This chapter focuses
on patterns that facilitate collaborative interaction of process with other processes,
service, events, and signals.

Chapter 6, Correlation Patterns, showcases patterns that offer solutions to scenarios
where processes need to be interrupted on the fly and sometimes need to be
cancelled. The solution to a scenario where a task needs to be changed and/or
updated in an in-flight process or cases such as querying an in-flight process. This
chapter also uncovers all those patterns that need to interact with an in-flight process
and also will explain how we can relate processes and associate a message with the
conversation that it belongs to. The much awaited 12c features include suspending
process and activities. These are elaborated in the chapter along with various other
patterns to cancel, update, and query a process or activity.

Chapter 7, Exception Handling Patterns, focuses on demystifying various Exception
Handling Patterns. This chapter focuses on exception classification, exception
propagation, exception handling mechanism, and fault management framework.
This chapter explains the strategies of how exceptions are handled in Oracle BPMN
with detailed coverage of the fault management framework. We will examine the
handling of exceptions in tasks, subprocess, and processes while covering different
categories of faults. We will also cover modeling for exception handling and various
modeling best practice while taking care of exception handling. Though the chapter
is focused on exception handling patterns, it covers various exception handling
mechanisms, their implementation, and usage in Oracle BPM.

[31]

Preface

Chapter 8, Adaptive Case Management, focuses on the case management framework
that enables building case management applications, which comprise business
processes, human interaction, decision making, data, collaboration, events,
documents, contents, rules, policies, reporting, and history. This chapter
demonstrates the inclusion of human intuition, empowered case, knowledge
workers, collaborative decision-making, enhanced content management, and

social collaboration. This chapter elaborates on Oracle Adaptive Case Management
solution and in the course of learning it, one can explore various patterns and
features that enable designers, developers, and analysts to model case management
solutions and bring in agility, true dynamism, collaborative decision making, and a
360-degree holistic view of the case. This chapter also covers milestone patterns, case
framework, event patterns, localization, case states, case interaction patterns, holistic
view, and ad hoc features.

Chapter 9, Advanced Patterns, covers patterns in analysis and discovery category,
where alignment patterns demonstrates features such as analyze, refine, define,
optimize and report, and business processes in the enterprise. Alignment patterns
highlight how IT development and process models can be aligned with organization
goals while performing alignment, learning enterprise maps, strategy models, value
chain models, KPIs, and reports. This chapter will also show how to create different
reports based on the information documented in the process such as RACI reports,
and so on. This chapter heavily focuses on demonstrating round trips and business
IT collaboration, which facilitates storing, sharing, and collaborating on process
assets and business architecture assets. This chapter also focuses on creating a
collaborative ecosystem for business and IT and a detailed analysis of PAM methods
to emulate the process behavior.

Appendix, Installing Oracle BPM Suitel2c, gives us a brief introduction to the
technology used in the book and also lists the steps to install Oracle BPM.
Perform the steps given in this appendix to install Oracle BPM 12¢ to implement
the use cases demonstrated for each pattern in this book.

What you need for this book

To explore modeling and implementation patterns and various features of BPM
12¢ through recipes in this book, you need the following software installed in your
development environment:

* JDK1.7.0_15 or higher

* Oracle BPM Suite Downloads 12¢ (12.1.3)

* Oracle Database XE (11g)

[4]

Preface

The detailed steps to set up the environment are included in Appendix, Installing
Oracle BPM Suitel2c.

The important considerations that should be taken care of are as follows:

* Tool/IDE JDeveloper 12c to develop solutions should be a part of the 12¢
BPM installation

* The installation document (Appendix, Installing Oracle BPM Suitel2c)
contains two methods to install the database; follow the one that suits
your development requirements the most. It's a quick installation guide.

Who this book is for

This book is an invaluable resource for enterprise architects, solution architects,
developers, process analysts, application functional and technical analysts,
consultants, and all those who use business process and BPMN to model and
implement enterprise IT applications, SaaS, and cloud applications. The primary
focus is to showcase BPM patterns which are generic and can be read by anyone
allied with any BPM offering. Hence, if you are associated with BPMN, you can
relate to this title.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"This is a static approval group defined in the BPM workspace with users
(Christine, salesrep, Jim, and Kim)."

A block of code is set as follows:

If Discount < 10% then

Process performs other activity and process ends.
Else-if Discount > 50%

Accept Quote task is revisited by salesrep user.
Else-if Discount > 10% and Discount < 50%

Sales Manager Approval task is initiated.

[51]

Preface

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Now, click on the sequence flow with the Deal or Terms Reject tag and
check its properties."

“ Warnings or important notes appear in a box like this.
i

Al

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub. com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

[6]

www.packtpub.com/authors
http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[71

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com

Flow Control Patterns

A pattern is a generic solution to a recurring problem. Patterns describe a
problem and its solution, which can be adopted in discrete situations. Patterns
are adorned best practices that deliver a reusable architecture outline. Business
Process Management (BPM) is widely adopted for process transparency, process
intelligence, business empowerment, and business alignment. While designing
business processes, we are not just automating and managing processes; it's more
about how an enterprise adapts to a comprehensive view of business processes.

This chapter offers an exemplary and comprehensive exposure to flow control
patterns, which are helpful in the modeling and implementation of Oracle BPM 12¢
solutions. During the journey, it will walk you through various BPM patterns based
on real-life examples. The book offers projects to download with each chapter; these
projects allow you to design, model, and analyze the patterns discussed in each
chapter. Hence, it offers an interactive way to learn and implement BPM patterns.

It allows you to fill the gaps and offers content that allows you to use BPMN to its
full potential.

Process analysts, architects, and process developers deal with process modeling,
define and design process models, and implement them. While performing process
modeling and implementing them, they constantly deal with varied common
challenges. Process modeling and BPM patterns offer techniques to solve repeatable
issues, enhance the process-modeling approach, improve process modeling and
implementation quality, and offer great productivity.

[vww allitebooks.cond

http://www.allitebooks.org

Flow Control Patterns

This chapter covers the basic and advanced flow control patterns in Oracle BPM.
Perceptible regularity in the world of process control flow is demonstrated here.
During the course of modeling from the "As-Is" to "To-Be" process, a process analyst
models, designs, drafts, and publishes a sequence of activities and their flow control.
This chapter starts off the book by showcasing the essentials of flow control patterns.
Flow control patterns capture the various ways in which activities are represented and
controlled in workflows. Implementing these patterns gives Oracle BPM the capability
to handle the widest range of possible scenarios to model and execute processes.

This chapter will focus on the flow control patterns in the following points:

* Sequence flow pattern
* Exclusive choice and simple merge pattern
* Multichoice and synchronizing merge pattern

* Structured synchronizing merge pattern
o

Local synchronizing merge pattern

* Parallel split and synchronization pattern
* Conditional parallel split and parallel merge pattern
* Multimerge pattern

* Discriminator and partial join pattern

[e]

Structured discriminator pattern
° Structured partial join pattern
* Complex synchronization pattern

o

Canceling discriminator pattern

[e]

Canceling partial join pattern

Sequence flow pattern

One of the fundamental steps in the BPM process modeling is to build a process
model (diagram) which enables a shared understanding between participants

on a process flow pattern. The process participants are not going to discuss each

and every page of the document, neither will a collaborative, iterative process
improvement or approach succeed with a group of people sitting and walking
through documents. However, this group will be interested in a process model
(diagram) and discuss the flow, sequence, and process patterns visible through the
process model. This makes sequence flow patterns of paramount importance, as each

[10]

Chapter 1

and every activity is related to the other. In a process diagram, this relationship is
created and managed through sequence flows. The following table summarizes the
details of the sequence flow pattern:

Signature Sequence Flow Pattern

Classification Basic Flow Control Pattern

Intent Offers sequence routing.

Motivation The fundamental constituent to weave process components
and demonstrate dependency and state transition between
tasks/activities.

Applicability The sequence pattern enforces a transitive temporal ordering

to process activities. In business terms, sequences denote a
strong dependency between activities and cater to strictly
separating process involvement at organizational boundaries.
They define the behavior of a business process.

Implementation | Widely adopted in most of the modeling languages including
Oracle BPMN.

Known issues Difference in acceptance.

Known solution | Usage of tokens in process instances.

The sequence is the simplest pattern and is implemented through a graphical sequence
of actions, as graphical form is used for the sequencing of patterns. In BPMN, the
model elements that are to be executed in sequence are connected with sequence flow
connectors. When activities are connected with sequence flow connectors, processing
of the second activity will not commence before the first activity is completed. This
pattern defines the dependency of one task on the other and governs the fact that
execution of one task is dependent on the other and cannot be completed until that
task gets completed. Ordering of tasks in a business process is determined by sequence
flow, and it governs how the process token will flow through the process. With
sequence pattern, you can create a series of consecutive tasks, which are executed one
after another based on the sequence connector's connections.

Categories: The sequence flow can be categorized as follows:

* Incoming sequence flow: This refers to flow that leads into a flow object

* Outgoing sequence flow: This refers to flow that leads out of a flow object

Some activities/flow objects can have both the sequence flows, and most of the
activities/objects in a process have them. However, the start object can only
contain an outgoing sequence flow and the end object can only contain an incoming
sequence flow.

[11]

Flow Con

trol Patterns

There are different types of sequence flows which are as follows:

Default sequence flow/unconditional sequence flow

Conditional sequence flow

Working with the sequence flow pattern

Perform the following steps to check the sequence flow usage in action:

1.

Download the application (SalesQuoteDemo) contained in the download
link of this chapter.

Open SalesQuoteProject in JDeveloper 12c.
Open SalesQuoteProcess; this will open the process flow in the design area.

Go to Approvers Swim lane and click on Exclusive Gateway
(ApprovalsOutcome) that works on the ApproveDeals and ApproveTerms
outcomes. The process is shown in the following screenshot:

Start

businesspractise salesrep

approvers

contracts

-
I

- Deals or Terms|Reject
AcceptQuote

QuoteAdteptance \

BusinesgReview

BusinessReyiewOutcome

Appfove

~

Pt

i —
- -9 X OnlyDealsApproved

Par alla\&atewav ApprovaljOutcome)
ApproveDeals Dealsdctivity

FinalizeGontract Assignutput

ApproveTerms

[12]

Chapter 1

5.

Click on the outgoing sequence flow with the Approve tag. In the properties,
you will find that the type of sequence flow is Unconditional. This is the
default sequence flow from the Exclusive Gateway.

Now, click on the sequence flow with the Deal or Terms Reject tag and
check its properties.
The sequence flow type is Condition, and it has a conditional expression

build. When this conditional expression returns true, the process token
will take this sequence flow path. This is shown in the following screenshot:

SalesQuoteProcess

- D.. - Dzd"'_)' Xy - 7] -
r Activity Interactive Mofification Catch Throw Gateway Artifacts
= S
Start Deals or Termq Reject
a
o AcceptQuote
il
]
[
— ~
&) Transition from Activity: 'ApprovalsOutcome’ to Activity: 'AcceptQuote L&J
Description =] Properties
= -
Type
|Condmoﬂ '|
Expression:
_D - Reje
(%) Simple Exp. () XPath Exp.
dealapproverApprovalStatus = "REJECT" or termsapproverdpprovalStatus == "BREJECT™ Ef‘i’
Help oK Cancel 1
i} 45[:
g X OnlyDealsApproved
w Appriuals Paralelateway ApprovaldOutcome
H ApproveDeals DealsActivity
H
&
2
a
o

Click on the sequence flow with the OnlyDealsApproved tag and check
its properties. This sequence flow is also a conditional flow with the
following expression:

DealapproverAppr ovalStatus == "APPROVE" and
termsapproverApprovalStatus == "REJECT"

Downloading the example code
\ You can download the example code files for all Packt books you

= have purchased from your account at http: //www.packtpub. com.
If you purchased this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the files e-mailed

directly to you. i

[13]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Flow Control Patterns

Elucidating the sequence flow pattern

The conditional sequence flow governs the token movement based on conditions
associated with the sequence flows, where conditions are expressed using the x-path
expressions. A path that is taken out of the gateways when none of the conditions
specified on the conditional flow is evaluated. This is termed as default sequence
flow, and it's drawn as an arrow line with a tick mark at one end.

Upon the arrival of token at the gateways, conditions associated with the drawn
sequence flows are evaluated, and that sequence route is picked whose conditional
evaluation returns true. Then, the token starts trailing this path. However, if none
of the evaluations of the conditional flow returns true, then the default route

is picked.

% Conditional sequence flows can be associated with exclusive
= and inclusive gateways for split.

Getting ready for executing use cases

This section talks about the steps that we will perform to get ready to execute the
use cases demonstrated in this chapter. As we check SalesQuoteProcess, there are
various human tasks. The following is the list of roles associated with the human
task and users associated with the role:

Task Role User
Accept Quote Salesrep salesrep
Business Review Business practice fkafka
Approvers Approvers jcooper
Contracts Contracts jstein

We have to perform the following steps to execute the processes that have

human task:
1. Login to the WebLogic console and navigate to myrealm (embedded LDAP).
2. Click on the User and Group tab.

3. Verify that we have the aforementioned listed users in myrealm. If not, we
can create users (salesrep, fkafka, jcooper, and jstein) in myrealm.

[14]

Chapter 1

If we execute demo community that is installed while configuring
& Oracle BPM 12¢, we will get users (fkafka, jcooper, and jstein).

& However, we can follow the preceding steps and create a user
(salesrep).

4. Open JDeveloper and navigate to Organization in SalesQuoteProject.
5. Click on Roles and associate users to roles as listed in the preceding table.
Save the changes.

Human tasks are executed with respect to organization units. Hence, we will create
an organization unit and associate the users to it. We will also make sure that the
organization unit is passed to the process when the process executes. Execute the
following steps:

1. Log in to the Oracle BPM workspace as an admin user (weblogic).
Navigate to Administration | Organization | Organization Units.
Click on the + icon to create a root organization.

Enter the name of the organization as Salesorg.

ARSI

In the Members section, add the users we listed in the preceding table.
To add users, we can browse the myrealm LDAP.

6. When users are added, we can save the changes. This process is shown
in the following screenshot:

Business Process Workspace Home Administration Pr

Administration Areas Search ® Details : SalesOrg Save
Organization Organization Units e x

General

Roles ¥ Finance

I OrganizationalUnit *Name SalesOrg

Calendars 4 Description

Organization Units

Parametric Roles

Extended User Properties
Calendar [=] &

Business Parameters
Members
Add member @ Manually _) Based on user attributes

Flex Fields
Public Flex Fields Add Users/Groups/App Role <o 3¢ Add Parametric Role + %
salesrep No data to display

Protected Flex Fields q 4 fkafka

b jcooper
ini i Members
Task Administration jstein
Approval Groups
Evidence Search

[15]

Flow Control Patterns

7. Go back to JDeveloper and open SalesQuoteProcess.

8. (Click on the Message Start Event (Start) and open its properties.

9. Go to the Implementation tab and open data association.

10. On the right-hand side of data association, scroll to the predefined variable
(Organization Unit).

11. Assign the newly created organization units, SalesOrg, to the predefined
variable (Organization Units) and save the project. This is demonstrated in
the following screenshot:

@ SalesQuoteFrocess
@ @ @8- @ O ®- @3- A
Activity Interactive Notification Catch Throw Gateway Artifacts
© Properties - Start =
Basic = Implementation ‘
i“ Implementation Type: LlM\MFm =
K Message Exchange © Data Assodiations [5
© — 1
- Type: [dgly | output
Conversation: (3) Df B wi §
Define Interface @) Start SalesQuoteProcess (]
-3 Arguments Data Cbjects £33
Arguments Definit [z8 salesquoteProcessin salesQuoteProcess_INPDO [z}
Name [l salesQuoteProcess | salesQuoteProcess_OUTPDO [z
SalesOuoteProceq | 2 salesrepApprovalStatus
u businesspractiseApprovalStatus [abg
£ dealanoroyerAnoroyalStats [l
] . lihe,
= BusinessRe E : termsapproverApprovalStatus i
n E 3
et Operation Name: Predefined Variables (-3 13
g B——- -
2 X || s N creationDate [
3 Dats Associations instanceMumber i
EusmessRe\l\ew- Message Headers e
8\, Hiohight Level: Warmings | Capy ‘| From: ‘ "SalesOrg” ‘ B 1o ‘Erganlzatll:nalUrut ‘ B + X4
Designer| Scripting Collaboration History From To
Buid - Issues. Simulations | Documentation @ SalesQuoteProcessIN @ salesQuoteProcess_INPDO
&, "salesOrg” R organizationalUnit

Exclusive choice and simple merge
pattern

In this section, we will uncover the exclusive choice and simple merge pattern.
It's also known as the exclusive choice pattern.

The control points in the process flow, where the sequence flows converge or diverge
are known as gateways. There are different types of gateways, each supporting
specific control logics. The gateway types are indicated with a marker in the center
of the gateway symbol. Gateways can split and/or join (merge) sequence flows. You
need gateways to control the process flow. A gateway is used to model decisions,
merges, forks, and joins on a BPMN business process diagram. An exclusive gateway
in Oracle BPMN offers simple split and merge patterns. An exclusive gateway

[16]

Chapter 1

(represented by XOR) evaluates the state of the business process and based on the
condition, breaks the flow into one of the two or more mutually exclusive paths.
This is how the name "mutually exclusive" got derived. The exclusive gateway splits
the process into multiple paths, but the token follows only one path. The following
table illustrates the details of the exclusive choice pattern:

Signature Exclusive Choice Pattern

Classification Basic Flow Control Pattern

Intent Breaks the flow into one of the two or more mutually exclusive paths.
Motivation Fundamental constituent to enable dynamic routing decision.
Applicability Decision point in the business process where the sequence flow

will take only one of the possible outgoing paths when the process
is performed.

Implementation | Widely adopted in most of the modeling languages, including Oracle

BPMN, as the XOR gateway.

Known issues Enforcing accuracy in triggering an outgoing path.

Known solution | Based on the evaluation of the conditions associated with the

outgoing sequence flows from the gateway, routes are determinate. In
case of multiple outgoing sequence flow, it is always a best practice to
associate an order of their evaluation, as this will enable the fact that
in case of multiple conditions getting evaluated as t rue, the process
token will route to the first sequence flow for which the evaluation

is true.

The decision mechanisms are categorized as follows:

Data: An example of data is conditional expression. The conditional
expressions are evaluated at the gateway when the process token reaches the
gateway. That path whose evaluation result is t rue is followed, and it can
route to only one flow

Events (for example, the receipt of alternative messages): An event-based
XOR gateway represents a divergence point where the alternatives paths are
picked based on the event that occurs at that instance in the process flow.
The event could be a receipt of message or a timer event. In an event-based
gateway, it's the events that determine the path to be taken and not the
conditional evaluations. The process becomes dynamic as process divergence
is based on the external system's interaction with the process.

[17]

Flow Control Patterns

Working with exclusive choice and simple
merge pattern

In order to evaluate the data-decision mechanism, refer to SalesQuoteProcess
associated with the project (you have referred to it in the Working with sequence flow
pattern section). Check the Approvals Outcome exclusive gateway, as shown in the
following screenshot.

There are three outgoing sequence flows from the Approvals Outcome exclusive
gateway. Two are conditional and one is default, as we discussed in The Sequence
flow pattern section. Hence, these sequence flow conditions are based on the values
of process data, the value of the data token itself, to determine which path should be
taken. An order of evaluation is associated with the Approvals Outcome exclusive
gateway, as this will enable the fact that in case of multiple conditions getting
evaluated as true, the process token will route to the first sequence flow for which
the evaluation is true. The following screenshot demonstrates this process:

@Sa!es@mfeﬂfocess
@ @ & 0O ® &- .

Activity Interactive MNotification Catch Throw Gateway Artifacts

A f—» O I
- -
-

Start Deals or Terms|Reject

AcceptQuote

X
Quute%:ptance

) Properties - ApprovalsOutcome —ti|

Basic Implementation | Outflows Order Reje

salesrep

Order Target

businesspractise

2 FurtherProcessQuote

SalesQuoteProcess

P67)
X CnlyDealsApproved

ApprovalsOutcome FurtherPrgcessQuote

approvers

Applove

Open the ExclusiveChoice&SimpleMerge process in JDeveloper 12¢ to evaluate the
event-based gateway.

[18]

Chapter 1

The use case illustrated in the preceding screenshot elucidates that quote processing
can happen for both, New Quote Application and Existing Quote Application. In
this case, use an event-based gateway, as there are multiple types of messages or
events that can start a business process. The SalesReqApprovalTask human task is
associated with the salesrep role, and we already assigned a user (salesrep) to this
role. Hence, when the process executes the task, it will get assigned to the salesrep
user, as shown in the following screenshot:

ExclusiveChoice&SimpleMerge

@ @8- 8- @ O @ -

Activity Interactive Motification Catch Throw Gateway Artifacts

.

QuioteDocsReceived

xo—»Q
OtherActivicy d

QuoteApproval ReceivingQuoteSiangd
Docs

salesrep

MeéwQuoteApplication SalesRepapprovalTasl

QuoteProcessirg DocsNotReceived

ExclusiveChoiceg:SimpleMerge

ReQuoteApplication ReProcessQuoteApplicat
ion

The following are the facts about the use case:

* Quote Processing is an initiating type of event-based gateway.
NewQuote Application and ReQuoteApplication will catch the
event messages. SalesReqApprovalTask is a task to be performed
by the sales representative.

* QuoteApproval is the decision point based on process data which is
the outcome of the user task (SalesReqApprovalTask) performed by
the sales representative.

* ReceivingQuoteSignedDocs is a non-initiating event-based gateway.

* QuoteDocsReceived is a Message Catch Event, while the DocsNotReceived
timer will move the token flow if documents are not received in 3 days.

[19]

vww allitebooks.conl

http://www.allitebooks.org

Flow Control Patterns

* OtherActivity is a drafted process that performs further quote processing.
The correlation key is designed and associated with all the event messages
(NewQuoteApplication, ReQuoteApplication, and QuoteDocsReceived).
This is demonstrated in the following screenshot:

© Properties - NewQuoteApplication =
Basic Implementation
Implementation Type: [(=) Message -
Message Exchange)
=nQuoteApplication. sjecpepnpproval | [@) Correlation Definition [
2 Y Property: |l prapertyOpportunityID -
@ QuotePipcessing
g [¥] initiates
&
g 8 s T T
2 —4 !
HE -
a 5 propertyOpportunityID: | foc:nepy pplication/ns 1:Q s 1:Summary fns 1:Oppor tunitylD @
2 ReQuoteApplication peprocessQuotehy
w ion
%]
Switch to Advanced Mode
Help oK Cancel

When the process initiates, it would either initiate for a new quote or an existing
quote. If initiated for a new quote, it would be caught by the NewQuoteApplication
event message. If initiated for an existing quote, it would be caught by the
ReQuoteApplication event message, as shown in the following screenshot:

43 Instance of ExclusiveChoiceSimpleMerge @ T SalesQuoteProject [1.0] @
This page shows BPMN process instance details. D{[g 504 Composite ™

Audit Trail Service ExdusiveCheiceSimpleMerge.service
Port i i MergePort
Graphical View E|
Operation El
Endpoint URL quoteDocsReceived 0a-infra/g
. (| reQuoteApplication

QuoteDocs

& . Received
a X — O
g QCT ity
4 i
o QuoteApprov ReceivingQn
2 NewQuoteA SalesRepApprov alpp oteSignedD
o pplication alTask ocs
N2)
QuoteProce DocsMNotRe
ssing ceived
ReQuoteAp ReProcessQuote
plication Application

[20]

Chapter 1

Test the process for the NewQuoteApplication event message by performing the
following steps:

1. Open EM Console and click on the SalesQuoteProject project.

2. Execute ExclusiveChoiceSimpleMerge.service to execute the
ExclusiveChoice&SimpleMerge process.

3. Select the NewQuoteApplication operation. As we can see in the preceding
screenshot, ExclusiveChoiceSimpleMerge.service exposes multiple
operations, which are essentially the event gateway's Message Catch Events.

4. Browse through the ExclusiveChoiceSimpleMerge.xml test data file in the
project by navigating to SalesQuoteProject | SOA | testsuites.

Execute the process instance.

Log in to the BPMN workspace as a salesrep user and APPROVE the
SalesReqApprovalTask task.

The Quote Processing event gateway initiates the sequence that has the
NewQuoteApplication message event, and the instance reaches the
SalesReqApprovalTask user task. Once the task is approved, we will find that the
process halts at the ReceivingQuoteSignedDocs event gateway. The instance status
will be running, and the token will stay there until a token arrives from any of the
branches. Either the supporting document message will be received, or the waiting
time will exceed three days.

Knowing about the exclusive choice pattern

Events receive communication, and hence, correlation needs to be defined to
correlate them with the main process instance. A quote's opportunity ID is used

as a correlation key. This correlation key is used in the intermediate events to
correlate them with the existing process instance. With the correlation defined for
the intermediate event gateway, the message will be correlated back to the original
instance when it arrives at the QuoteDocsReceived event.

The message flow waits at the ReceivingQuoteSignedDocs event-based gateway,
waiting for a token to arrive from any of its branches. In this case, the token can be

a receipt of an event message or time. The first event triggers one of the alternatives
that is an exclusion of any other path from the gateway. The event will basically pull
the token from the gateway and continue to sequence flow that event.

[21]

Flow Control Patterns

Elucidating the simple merge pattern

We can use exclusive gateway to merge incoming sequence flows; however, there is
no synchronization with other tokens that might be coming from other paths within
the process flow. Simple merge combines several transitions back into a single activity.
Tokens that merge at an exclusive gateway will be passed through as they are, and
they would not be evaluated. Token merging at the exclusive gateway will not be
synchronized. At the converging point, you would never have more than one token.

The following table illustrates the details of a simple merge pattern:

Signature Simple Merge Pattern

Classification Basic Flow Control Pattern

Intent Merging two or more paths.

Motivation Fundamental constituent to enable simple merge.
Applicability Combining several transitions back into a single activity. At

converging point, you would never have more than one token.

Implementation | Widely adopted in most of the modeling languages using XOR-Join.

Known issues Token merging at the exclusive gateway will not be synchronized.

Known solution | Multimerge.

For example, we have an invoice payment, and there are different ways to pay the
invoice, which include paying through credit card, bank transfer, or check. However,
to make the payment, only one method will be used for an invoice, and once paid,
the data need to be infused into Oracle E-Business Suite ERP. We would always use
only one payment method. This is an ideal candidate for a simple merge using an
exclusive gateway.

Multichoice and synchronizing merge
pattern

We can perform simple split and merge with the gateway (inclusive gateway)
offered by Oracle BPMS. It can perform token evaluation and also synchronize the
token merging at the convergence. An inclusive gateway (OR) specifies that one or
more of the available paths will be taken. They could all be taken, or only one of
them will be taken. This capability is also termed Multichoice. Sometimes, you need
to select a subset of alternatives from a set of possible alternatives. This is what the
multiple choice (inclusive) patterns are for. The multiple choice pattern is a point in
the workflow where, based on a decision or control data, one or more branches are
chosen, triggering one or more paths of the process.

[22]

Chapter 1

An inclusive OR merge is simply an OR gateway that is used to merge multiple
sequence flows into one outgoing sequence flow. Each outgoing sequence flow from
the gateway will have a Boolean expression that will be evaluated to determine
which sequence flow should be used to continue the process. The downstream
inclusive gateway is used to merge the paths created by the upstream inclusive
gateway. The downstream inclusive gateway synchronizes all the alternative paths
created by the multiple choice gateway. The following table shows details of the
multichoice pattern:

Signature Multichoice Pattern

Classification Advance Flow Control Pattern

Intent Breaks the flow into one of the two or more mutually exclusive paths.
Motivation Fundamental constituent to enable selection of a subset of alternative

paths from a set of possible alternatives.

Applicability Decision point in the business process where the sequence flow will
take one or more of the possible outgoing paths.

Implementation | Widely adopted in most of the modeling languages using the
OR split.

Known issues Ensure at least one path selection.

Known solution | Inclusive gateway splits the process at the divergence; however,
process tokens can advance to multiple outgoing flows/ paths.
Sequence flow is picked based on the conditional evaluation where a
token is generated for each flow for which the condition is evaluated
as true, otherwise, a default sequence flow is picked. The solution is
the default path.

Demonstrating multichoice and

synchronization with the OR gateway

Download SalesQuoteProject from the download link of this chapter. Open the
project in JDeveloper. Open the SalesQuoteSimpleMerge process. The process accepts
QuoteRequestData and waits for the sales representative's approval, which will be
performed by the salesrep user (we already created a salesrep user in WebLogic
myrealm in the previous section). Deploy the process to a WebLogic server.

Let's consider an example scenario. In this business process (SalesQuoteProcess),
after SalesQuoteApprovalTask, the approval request also needs to be sent to
Legal and Terms for approval. Once Legal and Terms approve, other activities are
performed over Quote.

[23]

Flow Control Patterns

When Legal and Terms act on the task, the gateway will merge them,
and the process will move ahead. Perform the following steps to test the
SalesQuoteSimpleMerge process:

1. Test the process from EM or use SOAPUI.

2. Enter the QuoteRequest elements and submit QuoteRequest. We can use the
test data (SalesQuoteSimpleMerge.xml) available in the testsuites folder
in the project.

3. We will notice that the process token is waiting at SalesQuoteApprovalTask
to be acted upon by the salesrep user.

4. Log in to the BPM workspace at http://<servers:<port>/bpm/workspace
as a salesrep user and approve the QuoteRequest.

We will find that the process token will reach both the user tasks, Legal and Terms,
for approval. There will be two threads created to process the Legal Approval and
TermsApproval tasks and both will be in the processing mode.

As per the process design, both these tasks will again be assigned to the salesrep
user. You can customize the sample and associate different users for Terms and
Legal approval. For the moment, log in to the BPM workspace again as the salesrep
user and approve the legal task. You will find that in the process, the thread
processing the Legal Approval task is completed, while the thread processing the
TermsApproval task is still processing.

As we can check in the following screenshot, the process flow shows the point
where the process token is awaiting. The audit trail on the left-hand side showcases
the snapshot when the Legal task is approved; however, the Terms task is not

being acted upon by the salesrep user. We will notice that for both the tasks

(Legal and Terms), there are two separate threads for processing. Even though the
Legal task is approved, the process token waits at the merge inclusive gateway
(MergeQuoteApproval). Log in back to the BPM workspace as the salesrep user
and approve the Terms tasks. In the right-hand side of preceding screenshot, we can
witness that once both tasks are acted upon by the user, the process token converges
at the inclusive gateway (MergeQuoteApproval), and the process moves ahead to
subsequent activities. This is shown in the following screenshot:

[24]

Chapter 1

24 Instance of SalesQuoteSimpleMerge @

~
This page shows BPMN process instance details,
HEIHI Q
Treeview =] All = SaiesQuoieappro. QueteAppreval almuAl?:a\nlMl Ena
SalesQuoteSimpleMerge TermsApproval J
FARag ctort _,Pracess Flow

> SalesRepApprovalTask

> &

Threads

SplitQuoteApproval

LegalApprovalTask

LegalApprovalTask

@

LegalApprovalTask

@ LegalApprovalTask Th

TermsApprovalTask

TermsApprovalTask

@

TermsApprovalTask

Activity completed
Task Number 200409
Activity completed
Thread Grouped
Thread completed
Task Number 200413
Activity completed
Task Number 200413

Instance entered the Activity

Responsible SalesQuoteProj Task history
Task Number 200413

1 4 [Stagel
Instance left the activity 3 N .
Responsible salesrep,user 11 Task Completed - Approved
Task Number 200413 salesrep
Thread processing
Task Number 200411
Activity processing
Task Number 200411 ﬁaslﬁ history
Instance entered the Activity 1 4 [5tage1
Responsible SalesQuotel & SalesQuoteProject.salesrey]
Task Number 200411 L Assigned

Audit Trail After - Legal Task Approval, hewever no action performed on Terms Task..

[=]

SalesQuoteSimpleMerge

Tree View All

> @ Start

> €

Threads

SplitQuoteApproval

LegalApprovalTask

@

@

TermsApprovalTask

@

3 @ SalesRepApprovalTask

LegalApprovalTask

LegalApproval Task 7|

LegalapprovalTask 7

TermsApprovalTask

@ TermsApprovalTask |

TermsApprovalTask

Instance created
Activity completed
Activity completed
Task Number 200409

Activity completed

Thread Grouped

Thread completed
Task Number 200413

Activity completed
Task Mumber 200413

Instance entered the Activity
Responsible SalesQuoteProj
Task Number 200413

Instance left the Activity
Responsible salesrep
Task Number 200413

Thread completed

‘ask history

[6] Stage1

ull

1.1 Task Completed
salesrep

Instance left the Activity
Responsible salesrep
Task Number 200411

/g Q MergeQuoteApproval

Activity completed

> End

Activity completed

Audit Trail After - Legal Task and Terms Tasks are Approval.

[25]

Flow Control Patterns

The working of multichoice and
synchronization pattern

The process token will diverge to that sequence flow for which the conditional
expression gets evaluated as true, and if not, then it routes to the default
sequence flow.

In the preceding sample process, the sequence flow from the inclusive gateway's
divergence is Conditional and is based on the approval status from the
SalesQuoteApprovalTask user task.

Run another test of the same process and reject the SalesQuoteApprovalTask.
You will find that the token passes along the default sequence flow, as the other
two sequence flows have not been evaluated as true.

Similar to the exclusive gateway, the inclusive gateway also splits the process at
the divergence; however, the process tokens can advance to multiple outgoing
flows/ paths. The sequence flow is picked based on the conditional evaluation
where a token is generated for each flow for which the condition is evaluated as
true; otherwise a default sequence flow is picked. The tokens are merged at the
convergence, which can be an inclusive gateway.

Structured synchronizing merge pattern

Synchronizing merge, also known as structured synchronizing merge, is implemented
using the inclusive gateway in Oracle BPMS. When the inclusive gateway is used
downstream, it is used to merge the paths created by the upstream inclusive gateway.
The downstream inclusive gateway synchronizes all the alternative paths created by
the multiple choice gateway (inclusive gateway in the upstream). The following table
shows details of the structured synchronizing merge pattern:

Signature Synchronizing Merge Pattern

Classification Advance Flow Control Pattern

Intent Merging and synchronizing two or more paths.

Motivation Fundamental constituent to enable structured synchronizing
merge.

Applicability An ordered merging of all the previous activations of the
divergence point and then to synchronize them.

[26]

Chapter 1

Implementation Widely adopted in most of the modeling languages using OR-
Join. All of the tokens associated with a multichoice divergence
point must reach the structured synchronizing merge before
they can fire. In the case of structured synchronizing merge,
there will be a single multichoice divergence point, and the
structured synchronizing point will merge all the paths from
that particular multichoice divergence point.

Known issues Arbitrary loops in complex process models.

Known solution General synchronizing merge.

Perform the following steps to execute the SalesQuoteSimpleMerge process from
EM Console, as we did in the previous section:

1. Login to the Oracle BPM workspace as a salesrep user and approve
SalesReqApprovalTask. As per the process design, the Legal and Terms
tasks will also gets assigned to the salesrep user.

2. Being logged in as the salesrep user, approve the Legal Approval task.
3. Check the status of the process in EM; it would be in the running state.

The following are the observations:

* Tokens wait at the merge gateways till all the tokens from the multichoice
split have converged to the merge point. When all the tokens arrive, the
merge gets completed, and then, the process can advance to subsequent
activities/tasks.

* Inclusive gateways are used when you need an ordered execution of all the
previous activations of the divergence point (inclusive gateway) and then to
synchronize them using a convergence element (exclusive gateway).

Local synchronizing merge pattern

The following table shows details of the local synchronizing merge pattern:

Signature Local Synchronizing Merge Pattern

Classification Advance Flow Control Pattern

Intent Merging and synchronizing two or more paths.

Motivation Fundamental constituent to enable the local synchronizing
merge.

Applicability An ordered merging of all the previous activations of the
divergence point/points and then to synchronize them.

[27]

Flow Control Patterns

Implementation Widely adopted in most of the modeling languages
using OR-Join. All of the tokens associated with
multichoice divergence point/points must reach the local
synchronizing merge before it can fire.

Known issues Determining the number of branches that need
synchronization.

Known solution Local synchronizing merge will determine it on the basis of
local data, for example, threads of the control that arrive at
the merge.

The parallel split and synchronization
pattern

The parallel gateways are points in the process where multiple parallel paths are
defined and they are also used to synchronize (wait for) parallel paths.

Parallel gateways represent concurrent tasks in business flows, and a fork gateway is
always accompanied by a join gateway, where a fork gateway illustrates concurrent
flows and expresses the fact that all outgoing paths must be pursued. On the other
hand, a join synchronization gateway mandates that all the concurrent paths must be
completed ahead of process advancement to subsequent tasks/activities.

A fork divides a path into two or more parallel paths and this is known as an AND
split. It's the point in the process flow where activities can be performed concurrently
rather than sequentially. In an OR gateway, one or another path is taken; however, in
an AND gateway, a single thread of execution will be split into two or more branches
that can execute tasks concurrently. For example, once an employee's on-boarding
process has started, then enter the employee's information in the ERP system and
also start the process for the provision of e-mail IDs, stationary, desk allocation,

and so on in parallel.

Parallel split pattern
The following table shows the details of the parallel split pattern:

Signature Parallel Split Pattern

Classification Basic Flow Control Pattern

Intent Breaks the flow into one of the two or more paths that execute
concurrently.

Motivation Fundamental constituent to the concurrent execution of two or
more paths.

[28]

Chapter 1

Applicability Decision point in the business process where all the outgoing paths
must be pursued.

Implementation | Widely adopted in most of the modeling languages using the AND
split. When many activities have to be carried out at the same

time and in any order, AND splits (parallel split) can be used to
fork the concurrent flow where two or more concurrent threads
independently process the activities (gateways, events, and so on)
that reside on the corresponding control flow branches.

Known issues NA

Known solution | NA

Synchronization pattern

The following table shows the details of the synchronization pattern:

Signature Synchronization Pattern

Classification Basic Flow Control Pattern

Intent Synchronize paths that exit a parallel split.

Motivation To synchronize the flow from multiple parallel branches. Parallel join

merge exactly one thread from each incoming branch into a single
thread on the outgoing branch by converging the threads of all the
parallel branches.

Applicability Merge point to synchronize the parallel paths. The AND join to be
symmetrically paired up with a corresponding upstream AND split.

Implementation | Widely adopted in most of the modeling languages using the AND
join.

Accepts multiple incoming sequence flow and blocks the sequence
until all activities within the flows are completed; then, the flow
continues. Till the concurrent tokens are not synchronized, multiple
incoming sequence flows are blocked. Upon synchronization, one
token is passed out of the merge gateway's outgoing flow.

Known issues Nonavailability of a token at the AND join that got created from the
AND split.

Known solution | The solution lies in how meticulously the process is modeled, and it's
anticipated that the issue will not arise in a structured context.

[29]

vww allitebooks.conl

http://www.allitebooks.org

Flow Control Patterns

Design consideration by modelers is taken into account if you really

need parallel processing, that is, whether, in reality, the distinct
g branches are executed in parallel.

Navigate to SalesQuoteDemo | SalesQuoteProject | ParallelSplitSynchronization
process. When the sales quote is initiated, it halts for quote acceptance by the
salesrep user at the ApproveQuote user task. Once it is approved, it's reviewed

by business practice, and on approval from the fkafka user, the token reaches

the parallel gateway, which is the divergent fork point. Both DealsApproval and
TermsApproval need to be performed in parallel, and hence, the choice was a
parallel gateway to diverge the flow. This is discussed in the following bullet points:

1. Click on Organization Unit in the project to verify the user assignment to
the roles. We will make sure that the user assignment to roles should happen
based on following table:

Task Role User
Accept Quote Salesrep salesrep
Business Review Business practice fkafka
Approvers Approvers jcooper
Contracts Contracts jstein

If not already deployed, deploy SalesQuoteProject.

Log in to EM console or use any tool of choice to execute

the ParallelSplitSynchronization process using the
ParallelSplitSynchronization.xml test data available in the testsuites
folder in the project.

4. Log in to the Oracle BPM workspace as the salesrep user and approve the
AcceptQuote task.

5. Log in to the Oracle BPM workspace as the fkafka user and approve the
Business Practice Review task.

Token has now reached the ApproveDeal and ApproveTerms task.
Log in to EM console and check the Audit Trail of the process.
We can find that a group of threads is created for each sequence flow from

the parallel gateway that forks/diverges the path. This is shown in the
following screenshot:

[30]

Chapter 1

73 Instance of ParallelSplitSynchronization @

[This page shows BPMN process instance details.

Audit Trail
Treeview [w]

Parallelsplitsynchronization
D () Start

> [@ AcceptQuote
» % QuoteAcceptance
> [@ BusinessReview

> 3% BusinessReviewQutcome
> & Deals&TermsApproval_Spl

Threads

ApproveDeals
>[@ approvebeals
ApproveTerms

> [@) ApproveTerms

Instance created
Activity completed

Activity completed
Task Number 200417
Activity completed
Activity completed
Task Number 200418
Activity completed
Activity completed
Thread Grauped
Thread processing
Task Number 200420
Activity processing
Task Number 200420
Thread processing
Task Number 200423

Activity processing
Task Number 200423

Audit Trail

Graphical View =

<« » |’ =
ewOutcome
Appfove
i —D =/>
» Deals&Terms Dea\spTerms
@ Approval_Spl ApproveDeals Approfal_Me
(= i rde
g
@
@ ApproveTerms
=
8

Check the process flow using the graphical view of the process in the process audit
trail, as shown in the preceding screenshot. We can analyze that both the paths are

processed in parallel. Execute the following steps:

1. Login to the BPM workspace as a jcooper user and approve the

ApproveDeal task. We can notice that at the convergence point, that is, at
the join (merge parallel gateway), tokens will be synchronized. Hence, the
process waits for the other token to reach the convergence point, which is the
AND join parallel gateway.

2. Click on the process audit trail in EM for the process. We can witness that
Approve Deal thread is completed, while the other thread for the Approve
Terms is still processing.

3. Login to the BPM workspace as a jstein user and approve the Approve

Terms task.

4. Once both the tokens arrive at the AND join (Deals&TermsApproval
Merge) the tokens are synchronized, and one token is passed out of the
merge gateway's outgoing flow.

[31]

Flow Control Patterns

Conditional parallel split and paraliel

merge pattern

The conditional parallel split and parallel merge pattern is a part of advance
branching and synchronization. It's similar to parallel split and merge; however,

it is based on conditions, that is, it must follow a conditional transition. This process
is shown in the following screenshot:

A4

Discount = 10%

Check Customer

Old Customer

Status

New Customer

Approve Deal

Discount <

Approve Terms

Process Ahead

10%4#’/4-

Terms Approved—

Terms Rejectec

Let's consider an example scenario. When the token diverges at the first parallel
gateway, it should perform conditional transition to different parallel tasks as follows:

* ApprovalDeals should be performed only when effective discount is greater
than 10 percent; otherwise, it should converge to the second parallel gateway
without requesting for the deal's approval.

* Similarly, we implement conditional parallel merge based on conditional
transition. For the sake of example, let the equation of conditional transition

be as follows:

o

Check customer status to find if it's a new or old customer. Converge

to join at the parallel gateway. If the customer is old, you would not
need an approval of deals; however, request for a deal's approval if
the customer is new.

[32]

Chapter 1

* After TermsApproval, if the term approval request status is approved, then
it converges at the join at the parallel gateway. Otherwise, the quote request
can be ended, as shown in the preceding screenshot.

Working with conditional parallel split
and merge

Oracle BPM does not have conditional transitions from the parallel gateway. If we

try to implement a conditional transition outgoing from or incoming to a parallel
gateway, it throws a Parallel Gateway cannot have outgoing Conditional Sequence
Flows error . As we don't have a method to do conditional transition from the parallel
gateway, we can still implement it in combination with the other gateway; in this case,
it's the exclusive gateway (XOR). This scenario would be developed using parallel
gateway in combination with exclusive gateway.

Download SalesQuoteProject from the download link for this chapter and open
ConditionalParallelSplit&Merge. Check the configuration of the outgoing sequence
flows from the parallel split point (ParallelSplit) and incoming sequence flow to the
parallel merge gateway (ParallelSplit).

1. Open EM console and test the ConditionalParallelSplit&Merge process
using the ConditionalParallelSplit&Merge.xml test data available in the
testsuites folder in the project.

2. The test data contains the following data:
Effective discount: 9
Quote request status: 01d
Rest all fields can be user choice
3. Login to the Oracle BPM workspace as a salesrep user and approve the
AcceptQuote task.

4. Login again to the BPM workspace as a fkafka user to approve the
BusinessReview task.

[33]

Flow Control Patterns

5. Process flow will reach the fork divergent parallel gateway (ParallelSplit) and
would initiate the parallel flow to perform the DiscountCheck, ApproveDeals,
and ApproveTerms task, as shown in the following screenshot:

Audit Trail

Graphical View E|

Approve

Old

CheckCutusstom merfype
erstat

approvers

Parallel§plit DiscolintCh ApproveDeals
etk

t =10% Parallgl1erg

=10%

» X
Efd
- FinalizeContract *SS19nOutput
TermleulEu

u

contracts

ApproveTerms

TermsReject

6. As the effective discount is 9, which is less than 10 percent condition on the
transition flow (<10%), the process will flow at the sequence flow (<10%)
pathway and halts at parallel gateway (ParallelMerge) to get synchronized
at the join convergence parallel gateway.

7. Log in to the Oracle BPM workspace as a jstein user and approve the
ApproveTerms task. Post approval, the token will get synchronized at the
convergent point parallel gateway (ParallelMerge), and the process flow
will move ahead.

A token gets created for each outgoing flow from the split parallel gateway, and
none of the outgoing sequence flows are evaluated as the parallel gateway doesn't
allow for outgoing conditional flow. However, we can use exclusive gateways to
perform conditional transitions. This is not a direct offering of Oracle BPM; however,
we can implement this using a combination of gateways. The parallel merge gateway
waits for all the concurrent tokens to reach it. Until the concurrent tokens are not
synchronized, multiple incoming sequence flows are blocked. Upon synchronization,
one token is passed out of the merge gateway's outgoing flow.

[34]

Chapter 1

Antipattern — the conditional parallel split and
merge

In this section, we will demonstrate the fact that one cannot use conditional parallel
split and merge by just merging some of the gateways. Process modeling needs to be
performed meticulously. Hence, in this book, we are talking about patterns that offer
techniques to solve repeatable issues and enhance the process modeling approach.

We will test the ConditionalParallelSplit&Merge process using the
ConditionalParallelSplit&Merge.xml test data available in the testsuites

folder in the project. However, this time, we will change the effective discount to
any value greater than 10. Let the customer type be old, and keep all other fields as
they are as follows:

* Log in to the Oracle BPM workspace as the salesrep user and then as the
fkafka user to approve the AcceptQuote and BusinessReview tasks.

* Log in to the BPM workspace as the jstein user. It's the user to whom the
ApproveTerms task is assigned. Log in and reject the task as follows:

o

The ApproveTerms task is now rejected, and the
ConditionalParallelSplit&Merge process is modeled in such a

way that if the ApproveTerms task is rejected, then the process
should end. We can verify an outgoing sequence flow from the
ApproveTerms task to the TermsOutcome exclusive gateway, which
checks for task's outcome. If the outcome is REJECT, then the process
should end.

* Check Process Trace and Audit Trail in EM console as shown in the
following screenshot. We will notice the following behavior:

Once the ApproveTerms task is rejected, the process moves to the
Terms Outcome exclusive gateway and then to the message end event
of the process.

However, we can check the process trace, as encircled in the following
screenshot; the process is still running.

[35]

Flow Control Patterns

Now, if we log in to the BPM workspace as the jcooper user and approve the
Approve Deals task, then only the parallel paths will converge, and the process
will move ahead. This is demonstrated in the following screenshot:

Thiz page shows BPMN process instance details,

Audit Trail

Tree View E|

ConditionalParallelSplitMerge
@ Start

> [@ AcceptQuote
s QuoteAcceptance
» [@ BusinessReview

X BusinessReviewQutcome
> & Pparallelsplit
Threads
DiscountCheck
e DiscountCheck

> [@ ApproveDeals
ApproveTerms

H |§| ApproveTerms
b & TermsQutcome
> @ End

» CheckCutusstomerStat

&2 Instance of ConditionalParallelSplitMerge @

Trace

Actions ¥ View ¥

Instance

&

(E ConditionalParallelSplitverge
& AcceptQuote
{5 BusinessReview
{5 ApproveTerms
& ApproveDeals

ALUVILY LIS LU
Activity completed
Task Mumber 200446
Activity completed
Activity completed

Thread Grouped _ [12 sk history

Show Instance IDs [

Type State

Service 4 Completed
EPMM =p Running
Workflow ¢ Completed
Workflow ¢ Completed
Workflow ¢? Completed
Workflow = Running

ThreadprBiessind 1 < [Stagel

Activity completed
Activity processing
Task Mumber 200451

Thread completed
Task Mumber 200448

& salesQuotef

Assigned

Task history

1 Stage1l

Activity completed
Task Mumber 200448 o
Activity completed
Activity completed

Thread completed

a
Task Completed - Rejected
jstein

Multimerge pattern

Use the multimerge pattern to model the convergence of two or more branches into
a single path. Each time an incoming branch is enabled, it results in the activation of
the next activity within the process. For each multimerge gateway, there should be

an associated multibranch gateway.

[36]

Chapter 1

The following table shows the details of the multimerge pattern:

Signature Multimerge Pattern

Classification Advance Flow Control Pattern

Intent Converges two or more branches into one subsequent branch and in
doing so, it converges tokens of the incoming branch into one token
and passes the token to the subsequent branch. The multimerge
pattern allows each incoming branch to continue independently
of the others, enabling multiple threads of execution through the
remainder of the process.

Motivation Offers convergence of parallel paths into a single path; however,
parallel paths merging at the multimerge convergence point are not
synchronized.

Applicability Convergence point without synchronization.

Implementation | Widely adopted in most of the modeling languages using the

XOR join.

Accepts multiple incoming parallel sequence flow and passes the
tokens as they arrive to the subsequent activity.

Known issues

Activity performed in the subsequent branch after the multimerge
convergence point is not safe. With this pattern, more than one
incoming branch can be active simultaneously, and this means that
the activity that you are going to follow in the subsequent branch is
not necessarily safe. For example, the subsequent branch performs
a change in data. All the incoming parallel branches will act on

the data, as the behavior of the subsequent branch is same for all
the parallel flows. However, the order of the incoming parallel
branches' execution is unpredictable. This behavior will make the
change in data unpredictable, and hence, any subsequent process or
activities will exhibit unpredictable behavior.

Known solution

NA. Workaround is to model the process flows meticulously.

Let's consider an example scenario. The requirement is to check inventory and credit
in parallel while reviewing the order. However, for each branch, the requirement

is to calculate the freight. In this case, when the parallel gateway diverges (fork)

the flow, three tokens will be generated and processed by three different threads.
Each time the incoming branch is enabled, it would result in the activation of the
Calculate Freight activity.

[37]

Flow Control Patterns

However, the process will move ahead only when all the divergent paths get
synchronized at the convergent point (parallel gateway) after the Calculate Freight
activity takes place, as shown in the following screenshot:

#| Check Inventory

v

@ » Check Credit Calculate Freight —r@—y Process Ahead End

[

» Review Orders

The multimerge pattern allows each incoming branch to continue independently

of the others, enabling multiple threads of execution through the remainder of the
process. However, with the usage of parallel gateway in Oracle BPM for divergence,
it would always need either a parallel gateway for convergence or a complex
gateway. This means that it would always lead to synchronization of the token,
either all of the tokens (with parallel gateway as convergent point) or some of the
tokens (with complex gateway as the convergent point).

Another multimerge example could be of an employee background check process.
The requirement is to perform personal reference check, business reference check,
and criminal background check in parallel. However, you need to notify Human
Resources (HR) of the enterprise each time a branch gets activated and performs

a reference check.

Exploring multimerge

Download the SalesQuoteProject project from the download link for this chapter
and open the MultiMerge process. While analyzing the MultiMerge process,

you can witness Exclusive Gateway before MultiMergeActivity. This is the XOR
gateway that will enable multimerge for this scenario. Execute the process with the
MultiMerge.xml sales quote data available in the testsuites folder in the project.

[38]

Chapter 1

The following are the key values being passed as input to the process:

* Customer type: OLD

e Effective discount: 10

The following screenshot demonstrates two states of the process. The left-hand side
showcases the state when the Approve Deals task is approved by the jcooper user.
However, the jstein user has not acted on the Approve Terms task. This showcases
that the MultiMergeActivity activity was executed, but both the time and process
didn't move ahead, as all the threads need to be synchronized at the ParallelMerge

parallel gateway.

The right-hand side of the screen shows the Audit Trail process after the

ApproveTerms task was approved. We can clearly witness that multiple threads

are enabled for the process branch execution. You can witness different threads that
process each parallel branch, the XOR exclusive gateway multimerge point, and the
(MultiMergeActivity activity getting executed for all the branches, as demonstrated

in the following screenshot:

Tace >
9 Instance of MultiMerge ®

This page shows BPMN process instance details,
lAudit Trail

Graphical view [« |

Audit Trail

TreeView [v]

> i@ start

»[@ Acceptuote

> & QuoteAcceptance
> [@ BusinessReview

» & BusinessReviewQutcome

> & Pparallelsplit

Activity completed
Activity completed
Task Number 200

Activity completed
Activity completed
Task Number 200

Activity completed

Activity completed

Appfove X old Threads Thread Grouped
e ChecfiCusto DiscountCheck Thread completed
cneczcrg:ngtnm e > % DiscountCheck Activity completed
¥ - Activity completed
& Y él AppsoseDels Task Number 200
<|_ > X W > & ExclusiveGateway Activity completed
Parallel§plit Discolintch 1o% ApproveDeals ExcluspfeGat MuMivny ParalliMerg > [MultiMergeActivity Activity completed
Thread completed
ApproveTerms Task Number 200
=10% "B Approvererms Activity completed
= Task Number 200
> 3 ExclusiveGateway Activity completed
> MultiMergeActivity Activity completed
CheckCutusstomerStat Thread completed
FinalizeGontract > [Checkcutusstomerst Activity completed
AppraveTerms » % CheckCustomerType Activity completed
» % ExclusiveGateway Activity completed
> [MultiMergeActivity Activity completed
> 4 PparallelMerge Activity completed
[39]

vww allitebooks.conl

http://www.allitebooks.org

Flow Control Patterns

You can witness that each merging branch at Exclusive Gateway has its own thread,
and they are parallel processing. However, the Exclusive Gateway multimerge
convergence point will get executed for each parallel branch that has its own

token. You can check in the above screenshot that the AND split (ParallelSplit)

will split the token in three parallel paths. However, each parallel path will execute
the Exclusive multimerge convergence point, and all the parallel tokens will get
synchronized at the AND join (ParallelMerge). Hence, the MultiMergeActivity
activity will also get executed three times. The XOR gateway that acts as multimerge
will pass the tokens, as they arrive to the subsequent activity.

Discriminator and partial join pattern

This section will cover the advance flow control patterns such as structured
discriminator pattern and structured partial join pattern. The scenario for this section
is about employee request for resources such as machine, e-mail ID, batch ID, and

so on at the time of on-boarding. These resources will be credited to the employee
only when their request for the resource gets approved by their manager. Another
scenario is as per the following process screenshot. If the credit check fails, then
there is no need to perform inventory check and order review. This is shown in the
following screenshot:

To achieve this, you need a mechanism to set a trigger or an indicator in the
converging point. When conditions related to the indicator meet, the synchronize
activity in the process instance will be immediately released, and the BPM engine
will automatically remove the instances struck in Check Inventory and Review
Order. Then, the process instance converges at the convergence point and continues
on through the rest of the process.

[40]

Chapter 1

Structured discriminator pattern

The structured discriminator describes a convergence point in the business process
that waits for one of the incoming branches to complete before activating the
subsequent activity. All other incoming branches will be omitted after they are
completed. Until all the incoming branches are complete, the discriminator is not
reset. Once all the incoming branches are completed, the discriminator is reset.
Structured discriminator construct resets when all incoming branches have been
enabled. Upon completion, the first branch out of the given number of branches
triggers a downstream activity. A token will be generated for all other branches.
However, all the remaining tokens that were generated from the parallel split will
eventually arrive at the discriminator, but they will be blocked and hence, will also
not be able to trigger the subsequent branch.

The following table shows the details of the structured discriminator pattern:

Signature Structured Discriminator Pattern

Classification Advance Flow Control Pattern

Intent A convergence point in the business process that awaits one of the
incoming branches to complete before activating the subsequent
activity.

Motivation When the first branches gets completed, the subsequent branch gets

triggered, but completions of other incoming branches thereafter
have no effect on the subsequent branch.

Applicability One out of M joins. It's a special case of M out of N Join, that is,
structured partial join.

Implementation | Widely adopted in most of the modeling languages using the
complex join.

Structured discriminator occurs in a structured context, that is,
there must be a single parallel split construct earlier in the process
model with which the structured discriminator is associated, and
it must merge all of the branches that emanate from the structured
discriminator.

Known issues Nonreceipt of input on each of the incoming branches means there
might be cases when some of the incoming branches might not have
input.

Known solution | Canceling the discriminator pattern will look for the first token to
be received at the incoming branch, and upon the receipt of the first
token at the incoming branch, all other branches will be skipped.
The branches that are not yet commenced will be aborted, and the
discriminator will get restarted.

[41]

Flow Control Patterns

Structured partial join

The structured partial join is an "N out of M Join" pattern. In this pattern, an AND
split (parallel gateway) or a multichoice (inclusive gateway) pattern produces a
number of tokens on parallel branches (known as runtime). From the total number
of "m" tokens, a subset "n" token will trigger synchronization and produce a single
token for the outgoing edge. The remaining (m-n) tokens are suppressed, and they
would not be able to trigger any subsequent branch. The following table shows the
details of the structured partial join pattern:

Signature Partial Join Pattern
Classification Advance Flow Control Pattern
Intent A convergence point in the business process of "m" branches into

one subsequent branch only when "n" incoming branches are
enabled, where "n" will be less than "m".

Motivation The convergence point will trigger synchronization and produces a
single token for the outgoing edge, only when a defined threshold
is reached. In case of N out of M joins, N is defined as the trigger
for the convergence point (complex join gateway). Once the trigger
is fired and a single token is produced for the outgoing edge, then
completion of the remaining incoming paths will not have any
impact and they will not trigger any subsequent path.

Convergence point will reset only when all the active incoming
branches are enabled.

Applicability For "N" out of "M" joins, the convergence point will trigger
synchronization when the defined threshold "N" is reached.

Implementation | Widely adopted in most of the modeling languages using the
complex join.

Join should happen in a structured fashion, means at the
convergence point. The complex join gateway must be associated
with either a single parallel AND split gateway or a multichoice
inclusive gateway. Once the partial number of paths is active,
subsequent paths can be followed. Hence, there will be no
requirement to wait for other incoming paths to complete

Known issues NA

Known solution | NA

[42]

Chapter 1

Working with a complex gateway to implement
the discriminator and partial join pattern

Oracle BPM offers a complex gateway to implement the structured discriminator
and structured partial join pattern. Parallel split is performed by a parallel gateway
named Approvals, shown in the following screenshot. Synchronization will be
performed at the ApprovalsMerge complex gateway. Perform the following steps
to test the scenario:

1. Download SalesQuoteProject from the download link for this chapter and
open the PartialJoin process.

2. Toimplement the "N out of M join" pattern, click on the ApprovalsMerge
complex gateway and check its properties.

3. In the properties, we can witness that Abort Pending Flow is unchecked,
and the following expression is included in the complex gateway's
properties. This is shown in the following code:

"bpmn : getDataObject ('quoteDO') /ns:Summary/ns:AccountName =

"FusionNX" and bpmn:getGatewayInstanceAttribute ('activationCount')
>= 1"

Activation count is a predefined variable and keeps track of the
= active tokens at the complex gateway.

Expressions at the complex gateway translate to the fact that if the activation count
of tokens at the merge gateway is 1 or greater than 1 and if the account name is
FusionNX, the gateway exit expression will evaluate as true.

Hence, while testing this process, if the account name supplied with quote request
data is FusionNX and the count of active tokens at the complex gateway is equal to
or greater than 1, then the synchronization activity in the process instance will be
immediately released and the process token will continue ahead.

[43]

Flow Control Patterns

Testing a process by failing the complex gateway
exit expression

Execute the following steps:

1.

Test the PartialJoin process using the PartialJoin.xml test data available in
the testsuites folder in the project.

The PartialJoin.xml test data that is provided contains the value
for the account name Hp. This will never fulfill the condition at the
complex gateway.

Check the process audit trail to deep drive in the behavior by looking into the
ApprovalsMerge complex gateway.

When the token arrives at the same activity block, the merge gateway will
be evaluated. However, the condition (the account name FusionNx) will fail,
and the flow will not move forward.

Log in to the BPM workspace as a jcooper user and jstein user one after
the other to approve the DealsApproval and TermsApproval tasks.

The TermsApproval and DealsApproval sequence flows will also fail. As no
gateway exit expression will get evaluated successfully, the entire token will
be suppressed and the process gets completed.

Testing process as success by the complex
gateway exit expression

Perform the following steps to test the partial join process for a success
gateway condition:

1.

Test the process again using the PartialJoin.xml test data. However,
this time, change the account name and pass Account Name: FusionNX.

Check Audit Trail for the process in EM.

You can find that the process moves ahead of the merge gateway just after
receiving the token from the first sequence flow. The gateway exit expression
will evaluate as Success in the first case itself.

[44]

Chapter 1

As we passed the account name as FusionNX and the activation count for

the ApprovalsMerge complex gateway reaches 1, the gateway exit expression
will evaluate as true and the process token moves ahead, as shown in the
following screenshot:

'3 Instance of PartialJoin @
IThis page shows BRMN process instance details.

Audit Trail

Graphical View El

Appfove

SomeActivity

approvers

: &

3
o ApproJalsie
ApproveDeals
lit PR rde

= @

FinalizeContract

contracts

ApproveTerms

We just tested the "N out of M Join" pattern. You can use the same project and
refractor the complex gateway that is merging the parallel split branches and set the
activation count as 1. The AND split (parallel gateway) which is the ApprovalsSplit
gateway, will produce the number of tokens on parallel branches (known as
runtime). There are exit conditions defined at the complex gateway, which is the
merging point. The process will move ahead to subsequent branches once the
gateway exit expressions are evaluated to Success. This means that the desired
number of activation tokens is reached and all the other logical conditions expressed
in the expression are fulfilled.

Complex synchronization pattern

The complex gateway can also be used for complex synchronization. Complex
gateway gets activated when the conditional expression is evaluated as true. Once the
complex gateway gets activated, it would create a token on the output sequence flow.

[45]

Flow Control Patterns

If Abort pending flows is checked on the complex gateway properties, then
complex gateway will abort all the pending flows and the remaining tokens will be

suppressed. They will not be able to trigger any subsequent branch, as shown in the
following screenshot:

@ PartialJoin

@ @ 8 w0 x- @

Activity Interactive MNotification Catch Throw Gateway Artifacts
i}

Partial X

Approve
SomeActivity
i
b
>
2
5 a
L) | i
- ®
Approv%ﬁt ApproveDadls ApprovasMerge
©) Properties - ApprovalsMerge l_J&

Basic | Implementation

["] Force commit after execution

(%) Simple Exp. (_) XPath Exp.

saleaQuoteProcess_INPDO.summary.accountName = "FusionlNX" and activationCount >= 1 Ef‘*

H .

Expression: izeContract

contracts

Abort pending flows

/By Highliaht Lavel: Wan [

The suppression of tokens is translated to various patterns, which are shown
as follows:

* Canceling discriminator pattern

* Canceling partial join pattern

Canceling discriminator pattern

The following table shows the details of the canceling discriminator pattern:

Signature Canceling Discriminator Pattern
Classification Advance Flow Control Pattern
Intent A convergence point in the business process that awaits one of the

incoming branches to complete before activating the subsequent
activity. It can also cancel the execution of all other remaining
branches

Motivation When the first branch gets completed, the subsequent branch will
trigger. However, the remaining incoming branches will not be
triggered as they would be cancelled.

[46]

Chapter 1

Applicability 1-out-of-M joins with a flag being set, is to set to abort the remaining
flow pattern.

Implementation | Widely adopted in most of the modeling languages using the
complex join. On the complex gateway, Abort Pending Flows must
be checked, and the completion condition testing for the number of
active instances should be equal to 1. When this complex gateway
gets triggered, it would cancel the execution of all of the other
incoming branches and reset the construct.

Known issues NA

Known solution | NA

Canceling partial join pattern

The following table shows the details of the Canceling partial join pattern:

Signature Partial Join Pattern
Classification Advance Flow Control Pattern
Intent A convergence point, in the business process of "m" branches

into one subsequent branch only when "n" incoming branches are
enabled, where "n" will be less than "m". However, once the join is
triggered, it would also lead to cancelling the execution of all the
remaining incoming paths and reset the convergence point.

Motivation The convergence point will trigger synchronization and produce a
single token for the outgoing edge, only when a defined threshold
is reached. In case of N out of M join, N is defined as the trigger for
the convergence point (the complex join gateway). Once the trigger
is fired and a single token is produced for the outgoing edge, then
the remaining incoming paths will be cancelled.

The convergence point will reset only when all the active incoming
branches will be enabled.

Applicability N-out-of-M joins and a flag being set to Abort Remaining Flows.

Implementation | Widely adopted in most of the modeling languages using the
complex join. On the complex gateway, Abort Pending Flows must
be checked.

Known issues Determination of cancel region.

Known solution | Structured processes.

[47]

Flow Control Patterns

Summary

This chapter offered a comprehensive knowledge of the flow control patterns by
showcasing the essentials of flow control patterns, which are used in designing and
modeling business processes. Recipes can be served as reference to control flow
patterns in BPM and are explained with simple sample processes and examples.
The next chapter will demonstrate how processes can handle batch jobs and how to
simultaneously spawn multiple work item instances in a process. The chapter will
also uncover iteration patterns by demonstrating structured loop and unstructured
looping mechanisms. Implicit and explicit termination patterns in the end will
showcase the termination pattern.

[48]

Multi-instance and
State-based Patterns

The set of patterns included in this chapter will demonstrate how processes can
handle batch jobs and how to simultaneously spawn multiple work item instances in

a process. This chapter simplifies the usage of loop characteristics while showcasing
multi-instance perspectives. This chapter emphasizes on developing solutions for use
cases with multi-instance requirement using design-time and runtime knowledge,

and it exhibits true dynamism in the process. The focus is simply on the cases where
flow paths need to be determined based on the intermediate events converging from
external systems and in order to break the usual ordering mechanism of the process
flow imposed on tasks. The patterns in this section will offer flexibility in the ordering
of process tasks. You will explore how to amalgamate a mechanism to support the
conditional execution of tasks and subprocesses when a process instance is in a specific
state. This chapter will further cover iteration patterns by demonstrating structured
and unstructured looping mechanisms. Implicit and explicit termination patterns at the
end will showcase termination patterns. The following are the different patterns that
will be discussed in this chapter:

* Multiple instances with prior design-time knowledge pattern
* Multiple instances with prior runtime knowledge pattern

* Multiple instances without prior runtime knowledge pattern
* Static partial join for multiple instances pattern

* Canceling partial join pattern

* Dynamic partial join for multiple instances pattern

* Structured loop pattern

* Arbitrary cycle pattern

[vww allitebooks.cond

http://www.allitebooks.org

Multi-instance and State-based Patterns

* Trigger patterns

o

[e]

Transient trigger pattern
Persistent trigger pattern

* Implicit termination pattern

* Explicit termination pattern

* Cancellation pattern

[e]

Cancel multi-instance task pattern

Multiple instances with prior design-time
knowledge pattern

This pattern is based on the fact that the number of concurrent threads is known
in advance at design time. It's the modeler who will be aware of the fact at design
time and will know how many times the activity/task should be performed.

The following table summarizes the details around multiple instances with

prior design-time knowledge:

Signature Multiple Instances With Prior Design-time Knowledge Pattern

Classification Multi-instance Pattern

Intent The number of concurrent threads is known in advance at design time, and
concurrent thread synchronization must be performed.

Motivation This pattern has a context associated with it, which will determine the
number of tasks/activities/subprocess instances; the context will be
supplied at design time and will be a static value. Instances can be executed
in parallel/sequence and must be synchronized before completion. This
pattern behaves as a parallel split of the instances and as parallel merges at
the downstream of those instances.

Applicability This pattern is applicable in a multi-instance subprocess, and split and join.

Implementation | When the BPMN service engine runs a subprocess with a multi-instance

loop marker, it creates a set of instances, one for each element on the set

of data. You can configure the multi-instance marker to process these
instances in parallel or sequence. This pattern allows concurrent tokens to
continue independently; however, they get synchronized before they move
out of the MI loop segment to execute any subsequent task. Oracle BPM
not only offers the parallel mode to create multiple instances, but you can
also have the sequential mode, where tasks/activities are performed one
by one.

Known issues

NA

Known solution

NA

[50]

Chapter 2

Executing the multi-instance subprocess with
prior design-time knowledge

Scenario: The quote request needs to be approved by the sales representative,
who is the user (salesrep) in our process. For each quote line product item, its
inventory status will be checked. Download the project (SalesQuoteProcess) from
the download links of this chapter. It contains the processes used for this chapter.
The process (MIWithPriorDesignTimeKnowledge) accepts the quote request and
assigns tasks to the user (salesrep) to act on AcceptQuoteTask. Upon approval
from the (salesrep) user, the script task determines the cardinality, which will
determine the number of parallel instances to be created. These script tasks will
determine a count for the instances. Perform the following steps to learn how the
process is configured for this pattern:

1. Expand the SalesQuoteProcess project in JDeveloper and open the
MIWithPriorDesignTimeKnowledge process.

2. AcceptQuoteTask is a user task that needs to be approved by the
user (salesrep).

3. The process has a process data object, lineltemNodeCount, of the number
type. The DetermineCardinality script task assigns a numeric value (3)
to lineltemNodeCount. This is the static value supplied to the process to
determine the number of parallel multiple instances.

4. Double-click on the subprocess and go to the Loop Characteristics tab,
as shown in the following screenshot.

5. In the Loop Characteristics tab, the loop is set to Multilnstance and the
mode is set as Parallel. The MultiInstance markers enable you to run a
subprocess for each of the elements on a set of data. When the BPMN service
engine runs a subprocess with a multi-instance loop marker, it creates a set
of instances, one for each element on the set of data. You can configure the
multi-instance marker to process these instances in parallel or sequence.

[51]

Multi-instance and State-based Patterns

6. The Loop Cardinality expression defines the number of tokens to be created
in the subprocess, and this cardinality is set by the Determine Cardinality
script task, as shown in the following screenshot:

MiWithPriorDesignTimeKnowiedge

@ @ @ @ O % d-

Activity Interactive Motificaton Catch Throw Gateway Artifacts

o -

=1}
=
2

=

2

=
a2

£

=

i ® .
g 2 End

o B Start - s i
g = AcceptQuoteTask Determine Cardinality CheckInventary

g O Properties - Subprocess

el
% Basic | Loop Characteristics
=
3 e
= istics: () (O] i
= Subprocess Loop Characteristics: () Loop (#) MultiInstance

- 1 Mod
@) Data Associations E oce
- () sequential () Parallel
Qutput
Ef|'_ w B Creation Type
ity

[f] Determine Cardinality MIWithPriorDesignTimeKnowledge (3) Cardinality () Collection

i £ Arguments i Data Objects £3-E Loop Cardinality

@ MIWithPriorDesignTimeknowledge |- quotePDO [z) Simple Exp. (3) XPath Exp.

salesrepOutcome

bpmn:getDataObject{lineltemNodeCount’)

(@3
inventoryStatus

Predefined Variables £3-&
Completion Condition

| Copy v| From: ‘3 | F, To: |lineItemNc::1eCc:unt | Ef\'! + X [+] Use Expression
From To () Simple Exp. () XPath Exp.

7. Completion condition is set using the following expression:

inventory Status == "N"

Completion Condition determines when the loop will terminate the subprocess and
move ahead downstream to execute the subsequent task. The inventoryStatus is a
process data object. The subprocess invokes the CheckInventory process for each
token and the status of the inventory for that product item will be assigned to this
process data object, as shown in the following screenshot. (You can even assign it to
quote the data object and can play around in the process on those checks.)

[52]

Chapter 2

%j%“ exist in myrealm to execute processes in this chapter that contain

Before we deploy the process in this chapter, make sure you have
performed the steps listed in the Getting ready for executing use cases
section of Chapter 1, Flow Control Patterns. The user (salesrep) should

human tasks. Also, in the message start event of all the processes in
this chapter, assign Organization Unit (SalesOrg) to the predefined
variable (Organization Unit) and save the project.

Perform the following steps to test the scenario:

1.
2.

Use JDeveloper and deploy the process.

Log in to the EM console or use SOAPUI to test the process. We will be using
EM to test the process; hence, log in to http://<servers:<port>:7001/em
as a weblogic user.

Click on the MIWithPriorDesignTimeKnowledge process and supply quote
request data using the test data (MIWithPriorDesignTimeKnowledge.xml).
We can find the data in the project's testsuites folder.

The test data (MIWithPriorDesignTimeKnowledge.xml) contains
more than three product items in the quote request, as shown in the
following screenshot.

Submit the quote request.

Log in to Oracle BPM at http://localhost:7001/bpm/workspace as the
salesrep user and approve the AcceptQuote task.

Log in to the EM console as the weblogic user, click on the process instance,
and check the audit trail of the process, as shown in the following screenshot.

You can see that a thread group is created and three threads are created
for processing.

[53]

Multi-instance and State-based Patterns

9. The Multilnstance option tells the system to create a separate instance of
the subprocess for each item. As we have checked the Parallel mode, all the
instances are created at once and executed in parallel. This is shown in the
following screenshot:

Flow Trace >

43 Instance of MIWithPriorDesignTimeKnowledge ®

@ subprocess Activity completed
This page shows BPMN process instance details. BJ_ P
(@l Subprocess Instance entered the activity
Audit Trail Threads Thread Grouped | activity instance audit detail
TreeView [=] Subprocess Thread completed | /3001 /%ML 5 chema-instance™>1111</ProductIDs|
MIWithPriorDesignTimeKnowledg Instance created
o start Activity campleted Subprocess Thread completed 7 v iy instance audit detail
T Activity completed
‘&l AcceptQuoteTask Task Number 2005 Subprocess Thread completed
L Determine Cardinality Activity completed
@ subprocess Actvity completed T oo Activity completed | 9T9/2001/XTLSChema-instance">2222</ Product 1Dy
[@ Subprocess Instance entered t
Threads Thread Grouped @ subprocess Instance entered the activity
Activity instance audit detail
Subprocess Thread completed
Start Activity completed
Subprocess Thread completed
= B Act leted
o] i 2 ity comele 2rg/2001/RMLSchena-instance”>3333</ ProductID
Subprocess Thread completed
End Activity completed
@ subprocess Instance left the ac
] someOtheractivity Activity completed @ subprocess Instance left the activity
& End Activity completed
MIWithPriorDesignTimeKnowledg Instance terminateq

When the process starts, the process token will reach AcceptQuoteTask and on
approval, the token will reach the Determine Cardinality script task. This will set a
value for the lineltemNodeCount variable, which will later determine the number
of instances. When the process token reaches the subprocess, it will create parallel
multiples of three independent instances of the subprocess by creating three tokens
to process each parallel thread. However, the subprocess will wait to synchronize all
the tokens. Once all the tokens are synchronized, then the process moves ahead to
subsequent tasks/activities.

Multiple instances with prior runtime
knowledge pattern

Unlike multiple instances with prior design-time knowledge, the number of
multiple instances in this pattern is not known until the process is being performed
and cannot be set ahead of time at design time. However, the number of multiple
instances to be created is determined before the first instance of the multiple
instances gets initiated. In this pattern, the pattern instances can be created

in parallel and sequence.

[54]

Chapter 2

The following table summarizes the details around multiple instances with
runtime knowledge:

Signature

Multiple Instances With Prior Runtime Knowledge Pattern

Classification

Multi-instance Pattern

Intent

The number of concurrent threads is not known in advance at design
time and is calculated at runtime. However, it's calculated before the
first instance is created. Concurrent thread synchronization must be
performed.

Motivation

The determination of the number of instances will be performed at
runtime. Instances can be executed in parallel/sequence and must be
synchronized before completion. This pattern behaves as a parallel
split of the instances and parallel merges at the downstream of these
instances.

Applicability

This refers to the multi-instance subprocess and a variable to determine
loop cardinality.

Implementation

Creating multiple instances of a subprocess/task within a process
instance is provisioned by Oracle BPM's subprocess looping
characteristics. The number of multiple instances is determined by
cardinality, loop condition, completion condition, or the collection
on which it needs to iterate. These instances run independent of
each other as well as run concurrently; however, they need to be
synchronized before subsequent tasks/activities are triggered.

Known issues

NA

Known solution

NA

Demonstrating Ml with prior runtime
knowledge

Open the project, SalesQuoteProcess, in JDeveloper 12c and perform the

following steps:

1. Goto BPM | BPMN Processes and open the
MIWithPriorDesignTimeKnowledge process. This is the same process that
we used in the previous section.

2. Double-click on Script task in the Properties - Determine Cardinality tab
and then click on the Implementation tab.

3. Click on Data Association. This will open XPath expression builder.

Enter the quoteDO.productItem.length () string.

[55]

Multi-instance and State-based Patterns

The product item is an array, and the cardinality of the subprocess loop will be
now be based on the length of the product items' array, that is, how many product
items are there in the quote request. This translates to the fact that the cardinality
of the subprocess will be determined at runtime by the XPath expression condition
(quoteDO.productItem.length ()), which basically means that the subprocess'
cardinality is equal to the number of product items. This is shown in the

following screenshot:

Start

MIWithPriorDesignTimeKnowledge
salesrep

(8\ Highlight Level: Warninas.

Designer | Scripting Collaboration History

=
=y

Q- Search > &
@ MIWithPriorDesignTimeknowledge
@- - T @0 ®-

AcceptQuoteTask

A -

Activity Interactive Notification Catch Throw Gateway Artifacts

fiip

Determine Cardinality

© Properties - Determine Cardinality =
Basic Implementstion
Implementation Type: | i) Seript task "
[] Force commit after execution
;&é Data Associations é Log Handlers
) Data Associations =
Qutput
E

5] Determine Cardinaiity
- £ Arguments
-] MIwithPriorDesignTimeknowledge

MIWithPriorDesignTimeKnowledge =
Data Objects (&

quotePDO (-2 -
salesrepOutcame

© Expression Builder

Mode: |[ﬂ Simple Exp. *

Buid an exoression by tvoina diectlv into the Expression field andjor insert fragments from the fragment editors

fragments from the fragment editors below the Expression field.

Expression:

inventoryStatus i
Predefined Varisbles £3-
SalesQuateProcess o]
X
B

quotePD0.productItem. length()

Perform the following steps to execute the project:

1. Save the project and deploy it.

2. Test the project from the EM console using the test data

(MIWithPriorDesignTimeKnowledge.xml). The test data contains four

product line items.

We will see a behavior similar to what you have experienced while testing the
process in the Executing multi-instance subprocesses with prior design-time knowledge
section. However, in the Multiple instances with prior design-time knowledge section,
cardinality was defined at design time and was fixed as three. Hence, even though
the test data contains four line items, we saw only three threads that process the first
three line items. However, in this section, cardinality is derived at runtime and is
based on the number of product line items.

As the test data contains four product line items, the subprocess cardinality will be
four; hence, we will find four threads for four line items.

[56]

Chapter 2

Understanding how MI with prior runtime

knowledge work

A batch of line items, that is, the batch data objects (created by an array/collection);
loop cardinality, that is, the number of instances to be created; and predefined
variables, such as the loop count (the loop index), instance count, and so on, are
supplied to the subprocess. The BPM engine will extract line items from the batch
data object at a given index (the loop count value for that token) and will create
multiple instances of the subprocess in parallel. A token is associated with each
independent instance. The number of multiple instances created will depend on
the loop cardinality that you have set in the process, whose value is determined

at runtime. When the subprocess ends, the token gets completed and the loop exit
condition is evaluated. Here, the number of instances to be created is determined at
runtime, and it depends on the number of product items. These multiple instances
are then synchronized.

Multiple instances without prior runtime
knowledge pattern

The following table summarizes the details around Multiple Instances Without Prior
Runtime Knowledge:

Signature Multiple Instances Without Prior Runtime Knowledge Pattern
Classification Multi-instance Pattern
Intent The number of concurrent threads is not known in advance at the

design time and is calculated at runtime. However, the number of
instances is not known until the last instance is executed. Concurrent
thread synchronization must be performed.

Motivation The determination of the number of instances will be performed at
runtime; however, the determination of instances is deferred until
the last instance gets executed. Instances can be executed in parallel/
sequence and must be synchronized before completion.

Applicability This refers to the multi-instance subprocess.

[57]

Multi-instance and State-based Patterns

Implementation | The BPMN service engine runs a subprocess with a Multilnstance
loop marker and will create a set of instances, one for each element
in the collection. The number of instances is determined by the
collection size, that is, the size of the array. Once each instance gets
completed, the instance tokens get synchronized and the process
moves to subsequent activities.

Known issues NA

Known solution | NA

This section will explore how to determine the number of instances of the subprocess
based on the collection. We will also learn, through an example, how synchronization
works on multi-instance subprocesses.

Working on MI without prior runtime
knowledge

Scenario: The QuoteRequest task gets submitted to the user (salesrep).

On AcceptQuoteTask approval, the process token reaches the multi-instance
subprocess. The number of multiple instances created will be determined by the
number of product items in QuoteRequest. Business practice approval is for those
product items that have Quantity > 50.If Quantity < 50, then approval is not
required for the line items. Perform the following steps to verify the implementation
and test the use case:

1. Open the SalesQuoteProcess project in JDeveloper.

2. Go to BPM | BPMN Processes and click on the
MIWithoutPriorRunTimeKnowledge process, as shown in the
following screenshot:

[58]

Chapter 2

E| SalesQuoteProcess =
D EPM @ Transition from Activity: 'LineApprovalRequired?
-[[=) BPMN Processes & ~ to Activity: "End
= 5
-] CheckInventory 0 @ p
@ MIwithoutFriorRun Timeknoniedge B Description [=; Froperties
: MIwithPriorDesignTimeknowledge -
i @ 9 9 AccephQuoteTask: Type
! I:B Business Components ‘ .
s . L — Condition
) Properties - Subpracess , i
s Expression:
Basic Loop Characteristics . ‘ Simple Exp. (i | XPath Exp.
Loop Characteristics: () Loop (2) Multinstance () None inputDataltem.quantity < 50
Mode
(") Sequential (=) Parallel Help oK
S
Creation Type ! r~
() Cardinality (=) Collection -
Loop Data Input B —
Input: / x l
= = =y
Expression: | XPath Exp. 'l ‘rRun‘I’lmeKnnw_PDO‘)fns:Prnduct{hem‘ |: =\x/ o) —
Start End
Loop Data Output LinzApprovalRequired? T
Output: 7 ® eekLineApprovalTas
= : = A mel
Expression: | XPath Exp. 'l ‘rRunTlmeKnnw_PDO)fns:PrnductIhem‘ |: —
Subprocess

The subprocess is configured with the MultiInstance marker in Oracle
BPM, which enables you to run a subprocess for each of the elements in
the product item collection.

The process instances will be created in parallel as you can select the
Parallel mode.

Loop Data Input is an array data type that is passed as an input to the
subprocess, and Loop Data Output is the array data type that is produced
as a result of the execution of this subprocess.

The subprocess will loop on the product item in SalesQuoteRequest.

Hence, an input data item is created based on the quote process data object
(MIWithoutPriorRunTimeKnow_PDO), and an expression is created for the
product items. This XPath expression is used to assign values to arrays.

The number of times that the subprocess is executed is determined by the
size of the product item collection/array.

Make sure that you use the Expression checkbox. The Completion
Condition remains unchecked, as we are not building any condition to
forcefully exit the subprocess.

Click on the outgoing conditional flow in the subprocess as shown in the
preceding screenshot. This shows that each line will be checked for the
condition and only those lines that have Quantity > 50 will be submitted
for approval by the user (fkafka).

[59]

Multi-instance and State-based Patterns

Testing the use case

Perform the following steps to test the use case:

1. Deploy the MIWithoutPriorRunTimeKnowledge process to the
Oracle SOA server and test it from the EM console by logging in to
http://localhost:7001/emas an admin user (weblogic).

2. Use the test data (MIWithoutPriorRunTimeKnowledge.xml) to enter the
QuoteRequest information. The test data contains five products items and
out of these five product items, two product items (the second and third
product items) have more than 50 as the quantity.

Submit QuoteRequest to execute the process instance.

Log in to the Oracle BPM workspace at http://localhost:7001/bpm/
workspace as the user (salesrep) and accept the quote by approving it.

5. Logintothe EM at http://localhost:7001/emas a weblogic user and
check Audit Trail for the process.

6. Refer to the next screenshot and we can see that a thread group is created to
process five lines.

7. A subprocess instance is created for each product item. As the number of
product items you entered in the quote request was five, you can check
whether there are five multiple instances of the subprocess being created.

8. Note that the second and third subprocess instances are in the processing
state as the entered quantity for the second and third line items is
greater than 50. Hence, the second and third line items need business
practice approval.

9. All other subprocess multi-instances (the first, fourth, and fifth) are
completed; hence, the token for this subprocess gets completed. As the
entered quantity for the first, fourth, and fifth line item in less than 50,
they don't need business practice approval. This is shown in the
following screenshot:

[60]

Chapter 2

Flow Trace >

Audit Trail
Treeview ||

MIwithoutPriorRunTimeKnowledc
() Start

» [AcceptQuoteTask

IEJ Subprocess
(@ subprocess
Threads

» Subprocess
 Subprocess
» Subprocess
 Subprocess

 Subprocess

29 Instance of MIwithoutPriorRunTimeKnowledge ®
This page shows BPMN process instance details,

Tree View E|

MIwithoutPriorRunTimeKnowledc
Pt Start

» |4 AcceptQuoteTask

[Subprocess
Instance created IEJ Subprocess
Activity completed Threads

Activity completed

TaskNumber a0ps:| Subprocess

Activity processing
Instance entered th Subprocess
T)

[@ Ssubprocess

Thread completed
IEJ Subprocess
Thread processing

Thread processing

b LineApprovalRegqu
Thread completed

4] seeklineApproval
Thread completed

(8] seekiineAppros

 Subprocess

Instance created
Activity completed

Activity completed
Task Number 200530

Activity processing
Instance entered the activity
Thread Grouped

Thread completed

Thread processing
Task history
Options ~
1 Stagel

3 SalesQuoteProcess.bus|

L1 Assigned

Activity completed

Activity completed

Activity processing
Task Number 200533

Instance entered the activity
Responsible SalesQuoteProcess.businesspracti
Task Number 200533

Thread processing

We can see that even though the tokens for the first, fourth, and fifth subprocess
instances are completed, the second and third sub processes are in the processing
state. Hence, the token does not move out of the subprocess. This is due to the fact
that the subprocess needs to synchronize its multiple instances. Once all the tokens
are synchronized, the process token can move ahead of the subprocess:

1. Login to the BPM workspace as the £kafka user, and we can see that two
tasks (SeekLineApprovalTask) are assigned to this user.

2. Approve the two tasks (SeekLineApprovalTask) and check the Audit Trail
for the process in the EM console. All the parallel tokens are now completed,
and the process token has moved to subsequent activities.

The BPMN service engine runs a subprocess with a MultiInstance loop marker and
will create a set of instances, one for each element in the collection. The number of
to-be instances is determined by the collection size, that is, by the size of the array.
The subprocess will loop on Product Items in the SalesQuote request. The number
of times the subprocess is executed is determined by the size of the collection's
product items. Once each instance gets completed, the instance tokens get
synchronized and the process moves to subsequent activities.

[61]

Multi-instance and State-based Patterns

Static partial join for multiple instances
pattern

In multiple instances with a runtime knowledge pattern, the number of multiple
instances to be created (say, M) is determined before the first instance of the multiple
instances gets initiated. The process moves to the subsequent tasks/activities only
when all the tokens of the multiple instances (M) get completed, that is, all the
instances of the set of multiple instances (M) get synchronized.

In static partial join patterns, the number of multiple instances to be created (say, M)
is determined before the first instance of the multiple instances gets initiated. This is
the same as in multiple instances with a prior runtime knowledge pattern; however,
the process moves to subsequent tasks/activities only when N instances have been
completed, where N is less than M. This pattern allows the process to continue only
when a given number of instances have been completed; it's not necessary to wait
for all the instances in the MultiInstance set to be completed. The remaining m-n
instances are clogged from being initiated.

The following table summarizes the details around Static Partial Join:

Signature Static Partial Join Pattern
Classification Multi-instance Pattern
Intent The number of concurrent threads is calculated at runtime when the

first instance is created. When n out of m instances are completed, the
subsequent task is initiated.

Motivation The determination of the number of instances is performed before
the first instance gets executed. The process instance moves to
subsequent activities when a given number of task instances have
been completed, rather than requiring all of them to finish.

Applicability This refers to the multi-instance subprocess with loop completion
condition and loop cardinality.

Implementation | The BPMN service engine runs a subprocess with a multi-instance
loop marker and will create a set of instances. The number of to-

be instances, m, is computed by Loop Cardinality before the first
instance of the subprocess starts. The given number of instances,

n, that can allow the execution of subsequent tasks is determined

by Completion Condition. Once 1 instances are completed, the
remaining m-n instances are cancelled. However, to reset and
subsequently enable the convergence, all instances must be complete.

Known issues NA

Known solution | NA

[62]

Chapter 2

The MIStaticPartialJoin process is implemented to showcase static partial

join pattern. When initiated, this process results in the assignment of the task
(AcceptQuoteTask) to the user (salesrep) for approval. Once approved, the
subprocess with the SalesManagerApproval task gets initiated. The number of
instances of the subprocess is defined based on the cardinality set for the subprocess,
and a forceful exit from the subprocess is determined based on Completion
Condition. Perform the following steps to work on static partial join for the MI
process and to test the use case:

1. Open the SalesQuoteProcess project in JDeveloper.
2. Go to BPM | BPMN Processes and open the MIStaticPartialJoin process.

3. Script task (Determine Cardinality) sets the number of instances prior to the
first instance of the multiple instances subprocess as Start.

T3] MIS = b ar ballon
~
n 2
© @ (=0 N i
=
2 ot Start
3 . AcceptQuoteTask Determine Cardinaity SalesManagerApproval SomeOtherActivity
0 Properties - Subprocess
Basic | Loop Characteristics
el
Loop Characteristics: () Loop (%) Multilnstance () None Subprocess
Mode 7
~ ~ © Expression Builder
() Sequential (3) Parallel
Mode: [ﬂ Simple Exp. 'l
Creation Type —
() Cardinality () Collection Build an expression by typing directly into the Expression field and/or insert fragments from the fragment editors below the Expression
Loop Cardinality — &
O Simple Exp. () XPath Exp. nurberOfCorpletedInatances =— 2
bpmn:getDataObject(lineltemNodeCount’) Bi_r
Variables Functions
) RGeS
Completion Condition [0 Arguments
Use Exaression =l £ Predefined Variables
- - loopCounter
(5) Simple Exp. (L) ¥Path Exp. mberOfinstances
nurberOfCompletedInatances = 2 B | imberCfActivelnstances
mberOfCompletedInstances
B numberOfTerminatedinstances
Log Handlers oK Cancel -3 MistaticPartialoin |fi2| substring

4. Click on Subprocess to reach the Loop Characteristics tab in the
Subprocess properties.

5. In the Completion Condition section, check the Use Expression checkbox
and enter the following simple expression:

NumberOfCompletedInstances == 2

6. Save the process and deploy it to the Oracle SOA server.

[63]

Multi-instance and State-based Patterns

Testing the use case

Perform the following steps to test the use case, which demonstrates the static partial
join pattern:

1.

Log in to the EM console at http: //localhost:7001/em as an admin user
(weblogic).

Test the MIStaticPartialJoin process using the MIStaticPartialJoin.xml test
data. We can find the test data in the testsuites folder in the project. The test
data (MIStaticPartialJoin.xml) contains five product line items.

Submit the quote request.

Log in to the Oracle BPM workspace as the salesrep user and approve
AcceptQuoteTasks.

Click on the refresh button and you will find five tasks
(SalesManagerApproval) being assigned to the same user (salesrep).
(For the sake of simplicity, we have used the same user for the
SalesManagerApproval tasks too).

Approve the fourth and fifth tasks.

Log in to the EM at http://localhost:7001/emas a weblogic user and visit
Audit Trail for the process instance, as shown in the following screenshot:

[64]

Chapter 2

Flow Trace >

Audit Trail
lstView [=] Al
Activity
B Start
|ZJ AcceptQuoteTask
1| Determine Cardinality
|E Subprocess
|B Subprocess
Start
|ZJ SalesManagerApproval
|:E] Subprocess
Start
|ZJ SalesManagerApproval
|:EI] Subprocess
Start
|ZJ SalesManagerApproval
|E Subprocess
Start
|E SalesManagerApproval
() End
|E Subprocess
Start
|E SalesManagerApproval
() End
@ catchEvent
[sSomeOtherActivity
H End

&3 Instance of MIStaticPartialJoin @
This page shows BPMN process instance details.

Status

Activity completed
Activity completed
Activity completed
Activity completed
Activity completed
Activity completed
Activity cancelled
Activity completed
Activity completed
Activity cancelled
Activity completed
Activity completed
Activity cancelled
Activity completed
Activity completed
Activity completed
Activity completed
Activity completed
Activity completed
Activity completed
Activity completed
Activity completed
Activity completed
Activity completed

@7 Instance of MIStaticPartialJoin @
This page shows BFMM process instance details,

Audit Trail
List View E| Human Activities; Service Activit | = ¥ &
. Activity Status

|Zj AcceptQuoteTask Activity completed
|§J SalesManagerApproval Activity cancelled
|Zj SalesManagerApproval Activity cancelled
|§] SalesManagerApproval Activity cancelled
|Zj SalesManagerApproval Activity completed
|§J SalesManagerApproval Activity completed

Flow Trace@

Faults = Composite Sensor Values Composites

View *

Error Message

@ <bpelFault><faultType >0 < ffaultType = <completionConditionSignal xmins="ht E

<bpelFault> <faultType=0< /faultType> < completionConditionSignal
xmins="http://www.omg.org/bpmn2d/runtime"> </completionCenditienSignal >

</bpelFault=

Trace

Actions = View +

Instance

53

9 mistaticPartialloin
& AcceptQuoteTask
gh SalesManagerApproval
(b SalesManager Approval
& SalesManager Approval
& SalesManagerApproval
gh SalesManagerApproval

Show Instance IDs [

Fault

Type State

Service 4 Completed
BPMN £ Recovered
Workflow ¢ Completed
Workflow ¢® Completed
Workflow ¢ Completed
Workflow ¢ Completed
Workflow ¢ Completed
Workflow ¢® Completed

We can see that the fourth and fifth subprocess instance get completed and the
activities inside these subprocesses also get completed; however, the first, second,
and third subprocess instances are cancelled and so are the activities in this
subprocess instance. If we check the audit trail of the process, as shown in the
preceding screenshot, we can find that the activities in the first, second, and third
subprocess instances are cancelled. If we check the process flow trace, it's evident
that a signal is raised by the process when the completion condition results in the
cancellation of activities in the rest of the subprocess instances.

[65]

Multi-instance and State-based Patterns

Understanding how static partial join for
MI works

The BPMN service engine runs a subprocess with the Multilnstance loop marker
and will create a set of instances. The number of to-be instances (1) is computed by
the Determine Cardinality task before the first instance of the subprocess is started.

Once each instance gets completed, the instance tokens get synchronized and the
process moves to subsequent activities.

As this is in the Parallel mode, the subprocess instances get created in parallel.
Once each instance gets completed, the Completion Condition is evaluated. If this
condition returns true, the subprocess gets completed and all the active concurrent
multiple instances, that is, the remaining (m-n) instances get completed.

There's more

We have set the Parallel mode in the multi-instance subprocess properties. However,
we can set it to sequential and can test the behavior. In the sequential mode, the
subprocess instances get created in a sequence one after another. Once one instance
gets completed, Completion Condition is evaluated. If this condition returns true,
the subprocess gets completed and no other instances of the subprocess get initiated.

Canceling partial join pattern

The following table summarizes details around the Canceling Partial Join:

Signature Canceling Partial Join Pattern
Classification Multi-instance Pattern
Intent The number of concurrent threads is calculated at runtime when the

first instance is created. When "n" out of "m" instances get executed,
the subsequent task is initiated and the remaining m-n instances
get cancelled.

Motivation The determination of the number of instances is performed before the
first instance gets executed. The process instance moves to subsequent
activities when a given number of task instances have completed,
rather than requiring all of them to finish; however, the remaining
m-n instances get cancelled.

Applicability The Multilnstance subprocess with the loop completion condition and
loop cardinality.

[66]

Chapter 2

Implementation | The BPMN service engine runs a subprocess with a multi-instance
loop marker and will create a set of instances. The number of to-be
instances, m, is computed by the loop cardinality before the first
instance of the subprocess gets started. The given number of instances
n, that can allow the execution of subsequent tasks is determined

by Completion Condition. Once 7 instances are completed, the
subsequent completion of m-n instances is trivial and m-n instances
get cancelled.

Known issues NA

Known solution | NA

Dynamic partial join for multiple
instances pattern

The following table summarizes the details around Dynamic Partial Join:

Signature Dynamic Partial Join Pattern
Classification Multi-instance Pattern
Intent The number of multiple instances to be created is not determined

until the final instance of the multiple instances has been completed
and all the instances then get synchronized. This pattern is an
extension to the multiple instances without prior runtime knowledge
pattern; however, in this pattern, a condition is evaluated that clogs
further instances from being created.

Motivation The determination of the number of instances is not performed until
the final instance. A completion condition can be specified, which

is evaluated each time an instance of the task completes. Once the
completion condition evaluates to t rue, the next task in the process
is triggered. Subsequent completions of the remaining task instances
are cancelled and no new instances can be created.

Applicability Multi-instance subprocess with completion condition.

Implementation | Every time a process token gets completed, the completion condition
is evaluated. Once the XPath expression condition in the completion
condition section of the loop gets evaluated and returns true, further
processing of the subprocess's multiple instances gets clogged and
they get cancelled.

Known issues NA

Known solution | NA

[67]

Multi-instance and State-based Patterns

Working with dynamic partial join

The SalesQuoteProcess project contains the MIDynamicPartialJoin process.

We will use this process to demonstrate and learn the dynamic partial join pattern.
The subprocess (DynamicPartialJoinSubprocess) is defined with Completion
Condition. As soon as the XPath condition in the Completion Condition section

of the loop characteristics of the subprocess is evaluated, it will inhibit further
instances from being created.

The expression condition will check whether the number of completed instances is
greater than the number of active instances; if it is, then the subprocess should get
completed and subsequent tasks get executed. This means that if enough lines get
approved by the sales manager, then there is no need to get other lines approved.
Further processing of the subprocess multiple instances gets clogged and these
instances get cancelled. Perform the following steps to check the implementation:

1. Expand the SalesQuoteProcess project in JDeveloper and open the
MIDynamicPartialJoin process.
Click on DynamicPartialJoinSubprocess to reach the loop characteristics.

In the Completion Condition section, check Use Expression and enter the
following simple expression:

NumberOfCompletedInstances > numberOfActiveInstances

Save the process and deploy it to the Oracle SOA server.

5. Test the process from the Oracle EM at http://localhost:7001/emas a
weblogic user.

6. When testing, use the test data (MIDynamicPartialJoin.xml), which contains
five product line items, each with quantity greater than 50. If the quantity
is greater than 50, then we have to check whether the test data is being
implemented on the gateway outgoing flow in the subprocess.

Submit the quote request.

Log in to the Oracle BPM workspace as the salesrep user and approve the
task (AcceptQuoteTask).

9. Login to the BPM workspace as the fkafka user and approve three tasks
(seekLineApprovalTask) out of the five takes assigned to this user. Five
tasks being assigned to this user as the number of instances will be computed
based on the product item collection. The test data contains five line items.

10. Approve the first, second, and third tasks (SeekLineApprovalTask).

11. Login to the EM at http://localhost:7001/em as the weblogic user to
check the Audit Trail of the process.

[68]

Chapter 2

Understanding the functionality behind partial
join for Ml

We can see from the Audit Trail window that we have approved the first, second,
and third tasks (SeekLineApprovalTask); hence, these subprocess instances get
completed. However, the fourth and fifth subprocess instances get cancelled.

This cancellation was due to the fact that every time the tokens get completed, the
Completion Condition is evaluated. As we have approved three instances of the
task (SeekLineApprovalTask), the Completion Condition gets evaluated to true.
Once the XPath condition in the Completion Condition section of the loop gets
evaluated and returns true, further processing of the remaining subprocess multiple
instances get clogged and they are cancelled.

Structured loop pattern

Iteration patterns are the foundation of many complex patterns. Structured loop
patterns are an implementation of the while-do or repeat-until (do-while) loop.

The following table summarizes the details around Structured Loops:

Signature Structured Loops Pattern
Classification Iteration Patterns
Intent The structured loop pattern exhibits the ability to repeat subprocesses.

This looping structure comprises of a single entry and exit point where
the iteration condition can be determined before a loop execution or
after a loop execution.

Motivation Loops are similar to any traditional programming language loop
structure. If a condition is evaluated before an iteration starts, then it's
a variant of while-do, and if the condition is evaluated after the first
iteration gets completed, then it's a do-while execution.

Applicability Multi-instance subprocesses with the loop characteristics property set
as loop. Loop characteristics (while-do or do-while) are defined by
setting the evaluation order of loop characteristics.

[69]

Multi-instance and State-based Patterns

Implementation | In a while-do execution, the subprocesses are executed for zero or

more times sequentially based on the preiteration condition evaluation.
The condition is evaluated even before the first iteration starts, and it
gets evaluated every time an instance needs to be initiated. When the
evaluation condition fails and returns false, the token moves out of the
iterating subprocess to the next subsequent task/activity.

In a do-while execution, the subprocesses are executed at least once
sequentially. The condition is evaluated after the first iteration
completes, and it gets evaluated every time an instance is completed.
When the evaluation condition fails and returns false, the token moves
out of the iterating subprocess to the next subsequent task/activity.

Known issues NA

Known solution | NA

Working with structured loops

The following section talks about the do-while and while-do looping variants.

Demystifying do-while
In do-while, the loop characteristic is set to check the conditions after iteration.
Walk through the following steps to check the loop's configuration:

1.
2.
3.

Open the SalesQuoteProcess project in JDeveloper.
Go to BPM | BPMN Processes and open the StructuredLoop process.

The script task (Determine Cardinality) will determine the number of
instances to be created sequentially. The number is determined based
on the number of product items in the quote request.

Double-click on the subprocess (LoopSubprocess) to open Loop
Characteristics.

Check the Loop Condition checkbox and we can find the entered condition
in the loop characteristics. This can be accessed via LoopCounter |
LineltemNodeCount.

Loop Counter is a predefined variable and LineIltemNodeCount is a
user-defined variable of the number type. The script task (Determine
Cardinality) assigns the number of instances to be created of the subprocess
(LoopSubprocess) to this variable (LineltemNodeCount) by counting the
number of product line items in the input request.

[70]

Chapter 2

7. Verify that the evaluation order is Unchecked. The evaluation order
determines when the loop condition should be evaluated. If it remains
unchecked, then the condition will be evaluated post iteration, as shown
in the following screenshot:

[r ™
™~
e—f = —El—

a Start End

E Start AcceptQuoteTask Determine Cardinality SalesManagerApproval

=2l e = -

g % ©) Properties - LoopSubprocess

E _ﬁ Basic = Loop Characteristics [DE J

E

@ Loop Characteristics: (3 Loop (_) Multilnstance (_) None LoopSubprocess

Loop Condition @) Expression Builder
(%) Simple Exp. (_) XPath Exp. Mode: ||:;‘} Simple Exp. '|
loocpCounter <= lineltemNodeCount

Build an expression by typing directly into the Expression

Expression:

[Loop Maximum loopCounter <= linelterNodeCount

Evaluation Order: [| Before

Variables

Log Handlers oK Cancel &) LoopSubprocess

£3 Arguments
E] (3 Predefined Yariables
(398 loopCounter
=) StructuredLoop

Perform the following steps to test the scenario for do-while:

1.

Log in to the EM at http://localhost:7001/em and submit a quote request
by executing the StructuredLoop process with four product items. We can
use the test data (StructuredLoop.xml) to test the process.

Log in to the Oracle BPM workspace as the salesrep user and approve the
AcceptQuote task.

Click on refresh and approve the task (SalesManagerApproval), assigned
to the same user (salesrep). For the sake of convenience, we have used the
same user for both the tasks.

We will find that the second task (SalesManagerApproval) is assigned to the
salesrep user. Go ahead and approve the second SalesManagerApproval
task, and similarly, do the same for the third instance of the same task.

[71]

Multi-instance and State-based Patterns

5. When the loop condition gets evaluated after the third task approval,
it returns true. The process token will move out of the iterating subprocess
to the next subsequent task/activity.

6. Logintothe EMathttp://localhost:7001/emas aweblogic user
and then view the Audit Trail of the structured loop process.

Understanding the structured loop functionality

Multiple instances are created based on the determination of the number of to-be
instances. This number is determined before the first iteration by the script task
(Determine Cardinality). The token then advances to the subprocess and initiates
the first iteration of the subprocess sequentially. After the iteration is completed,

the loop condition is evaluated. If it returns true, then the token moves out of the
iterating subprocess and the process starts executing the subsequent tasks/activities
after the subprocess.

Demystifying while-do

In while-do, the loop characteristic is set to check the condition before the iteration.

In the preceding process, Structured loop pattern, change the evaluation order in the
loop characteristics. Check the Evaluation Order checkbox in the loop characteristics.
Now, the evaluation of the instance will happen before the iteration. Moreover, as
soon as the condition returns true, the token moves out of the iterating subprocess
to the next subsequent task/activity.

Arbitrary cycle pattern

The following table summarizes the details around Arbitrary Cycle Patterns:

Signature Arbitrary Cycle Pattern
Classification Iteration Pattern
Intent The arbitrary cycle pattern offers a looping construct that allows

multiple entry and exit points in and out of the loop.

Motivation This unstructured loop (iteration/cycle) pattern offers the flexibility
to have multiple entry and exit points in the process. The arbitrary
cycle pattern provides a mechanism to repeat the process parts in an
unstructured way.

Applicability Exclusive gateways can be used in nonblock structured process
models.

[72]

Chapter 2

Implementation

When a modeler is working on defining an "As-Is" process, there are
requirements to shuffle from one activity to another. There are cases
in which a task or an activity performed initially in the process needs
to be changed/altered after reaching a certain stage in the process.
This translates to the fact that one can work on the process in an ad
hoc manner. The process should allow you to arbitrarily visit tasks/
activities that need to be changed or altered after reaching a certain
stage in the process. When a process does this, you can use exclusive
gateways to realize arbitrary cycles.

Known issues

NA

Known solution

NA

The use case scenario is based on SalesQuoteApprovals. The project contains
a process (Arbitrary cycle) that demonstrates the arbitrary cycle pattern.
QuoteRequest initiates the SalesQuote of the "Arbitrary Cycle" process.

The following code snippet gives an insight into this:

If Quote Status == "Reject" then
Process token moves to "Further Activity" and

Task (Enter Quote) gets reassigned to salesrep.

Else

Some activity is executed and discount check is performed.

Now, Discount Check is performed on the process flow. This is demonstrated by
the following code snippet:

If Discount < 10% then

Process performs other activity and process ends.

Else-if Discount > 50%

Accept Quote task is revisited by salesrep user.

Else-if Discount > 10% and Discount < 50%

Sales Manager Approval task is initiated.

Exploring arbitrary cycle

Perform the following steps to test Arbitrary cycle use case scenario:

1. Open the SalesQuoteProcess project in JDeveloper.
2. Goto BPM | BPMN Processes and click on the Arbitrary cycle process.

3. Deploy the process to a weblogic server.

[73]

Multi-instance and State-based Patterns

4. Login to Oracle EM at http://localhost:7001/emas a weblogic user and
submit a quote request. Make sure that you supply the following values to
the quote request:

o

The request status: New
° Effective discount: 60

You can use the test data (ArbitraryCycle.xml) as the input data to initiate
the BPM process (Arbitrary cycle).

5. Log in to the Oracle BPM workspace at http://localhost:7001/bpm/
workspace as the salesrep user and approve the EnterQuote tasks.

We can create an ADF page (a user interface) for the task. Using

the user interface, we can even modify the quote details and
change the discount and other details.

6. The quote gets assigned for AcceptingQuote to the user (salesrep) via the
AcceptQuote task. (For the sake of convenience, the AcceptQuote task is
assigned to the salesrep user as well).

7. Log in to the BPM workspace as the user (salesrep) and approve the
AcceptQuote task.

8. On approval, the determination of the discount is performed on the
AcceptQuote task. The following are the conditions:

[e]

If Discount < 10%, then the Discount Check exclusive gateway will
guide the token to another activity and the process ends normally

If Discount > 50%, then the Discount Check exclusive gateway will
detour the token back to the task (AcceptQuote)

° If Discount > 10% but < 50%, then the Discount Check exclusive
gateway guides the process flow to the sales manager approval by
initiating the task (SalesManagerApproval)

9. Log in to the EM console and check the Audit Trail process flow, as shown in
the following screenshot. As the test data contains a discount greater than 50
percent, the process token is returned back to the task (Accept Quote), as we
can see on the top of the following screenshot.

10. Log in to the BPM workspace as the user (salesrep) and double-click on the
task (AcceptQuote). This will open the ADF task form.

[74]

Chapter 2

We can create a task user interface to change values using the
. interface. To perform this step, please create a task user interface
& for the AcceptQuote task. We can create the task user interface by
L— going to the task editor and navigating to Forms | Auto Generate
Task Form. Complete the wizard and save the project. Deploy the
process project along with the task user interface form project.

11. Using the task user interface, change the effective discount from 60 to 40
and save the quote.

12. After saving the quote, approve the task (AcceptQuote).

13. As the quote's effective discount is changed to 40 percent, on reapproval
by the user (salesrep) for the AcceptQuote task, the process token
moves ahead for further processing, and the sales manager approval
task is requested.

14. Log in to Oracle BPM and reject the SalesManagerApproval task.

15. Login to the EM at http://localhost:7001/em as the weblogic user and
check the process flow, as shown at the bottom of the following screenshot.

16. We can see that after rejection from the sales manager, the process token
again reaches the EnterQuote task.

29 Instance of ArbitaryCycle @ Audit Trail
| This page shows BPMN process instance details,
Grapical View =
Reject
Discount=50% |
Start ChechQuote DiscdlintCh CheckAppro i
Enterflucte AcceptQuote Status SomeActivity ok Saleshlanagerip valStatus Otheffctiity ~ End
proval
Discount=10%
a
@
@
H
w®
@
FurtherActivity
Reject
Discount=50% I
—¢ {0l —¢
Start ChechQuote DiscépntCh CheckAppro _
Enterfluote AcceptQuote Status SomeActivity el SalesManagerAp valStatus Otheffctivity End
proval
Discount=10%
a
o
@
=
©
&
FurtherActivity

[75]

Multi-instance and State-based Patterns

Understanding the functionality of the
arbitrary cycle

We have seen two cases previously. First, when the discount was greater than

50 percent, the token reached the AcceptQuote task back. Second, when the
discount was greater than 10 percent but less than 50 percent, the token reached
the SalesManagerApproval task. Upon rejection from the sales manager, the token
reaches back the EnterQuote task.

Thus, we are able to establish multiple entries in the process loop. We are also

able to change the quote details based on the outcome of these activities and tasks,
which downstream the process. There are various factors, downstream the process,
that can govern the process flow, and sometimes it's better to re-perform that
task/activity that was performed initially in the process. Hence, mechanisms are
required to arbitrarily loop back in the process and the process should allow the
arbitrary visiting of tasks/activities to change/alter them after reaching a certain
stage in the process.

Trigger patterns

Trigger patterns are a set of patterns that deal with external signals. We will just list
the pattern features; however, you will find various occurrences in this book where
these patterns are used. There are two variants of trigger patterns: transient trigger

and persistent trigger.

Transient trigger pattern

The following table summarizes Transient Trigger Patterns:

Signature Transient Trigger Patterns
Classification Trigger Patterns
Intent The explicit initiation/ termination of a task (activity /subprocess) by a

signal from the same process or from an external environment.

Motivation There are cases when an external signal arrives at the process or
the process itself raises a signal. However, these signals will be lost
if there is no subscriber to act on those signals. These signals are
basically events and must be dealt with as soon as they occur, else
they will be lost.

[76]

Chapter 2

Applicability For example, an activity can be cancelled by a cancel event. However,
to cancel the activity, this activity needs to be active. When that
activity is active, only the cancellation event meant for the activity
will have an effect on the activity. What if cancellation event is raised
when the process token has moved out of the activity for which

the cancellation event is meant? In this case, the activity will not be

cancelled.

Implementation | We can use event subprocesses and boundary catch events. A
boundary catch event can be attached to the activity or subprocess,
and it can be configured to accept a certain event (signal). When this
signal arrives or this event is raised and the activity on which the
boundary catch event is configured for this event is active, then the

activity /subprocess can act on this event.

Known issues What if there are duplicate transient triggers, or many signals (events)

of the same type are raised?

Known solution | When the first signal/event is raised and the activity that is meant to
catch it is active, then the signal/event will be consumed. Hence, there

will be no effect when there is a second or duplicate event.

Chapter 6, Correlation Patterns, contains the implementation of trigger patterns in the
Cancel activity pattern section.

Persistent trigger pattern

The following table summarizes the Persistent Trigger Pattern:

Signature Persistent Trigger Pattern

Classification Trigger Pattern

Intent The explicit initiation of a task (activity /subprocess) by a signal from
the same process or from an external environment.

Motivation There are cases when an external signal arrives at the process or the
process itself raises signal. However, this signal will not be lost and is
dealt with by the process.

Applicability For example, a process instance can be cancelled by a cancel instance
event. The cancel instance event can arrive any time in the life cycle of
the process.

Implementation | We can use the event subprocess.

Known issues NA

Known solution | NA

[77]

Multi-instance and State-based Patterns

Implicit termination pattern

The following table summarizes the details around Implicit Termination:

Signature Implicit Termination Pattern
Classification Termination Pattern
Intent To end a process gracefully when no more activities/tasks/

subprocesses need to be performed in the process.

Motivation The process needs to end successfully, that is, when no remaining

objectives are left to achieve in the process.

Applicability End event.

Implementation | An implicit pattern is similar to an end event, where a process token

gets completed for the process and the process instance is completed.
This is the point where the last token gets terminated. This is termed
as implicit termination, as the process token termination happens
implicitly and is taken care of by the BPM process engine.

Known issues NA (not available in the case of Oracle BPM as it directly supports

this pattern).

Known solution | NA

Amalgamating implicit termination in the
process flow

To demonstrate implicit termination, we will execute the arbitrary cycle process,
which we have worked with in the previous section (the arbitrary cycle):

1.

Log in to Oracle EM at http://localhost:7001/em as the weblogic user
and submit a quote request by executing the process (the arbitrary cycle).
Make sure that you supply the following values to the quote request:

The request status: New
Effective discount: 40
We can use the test data (ArbitraryCycle.xml) as the input data to initiate

the BPM process (arbitrary cycle). Remember to check the effective discount
value and to change it to 40.

Log in to the Oracle BPM workspace at http://localhost:7001/bpm/
workspace as the user (salesrep) and approve the EnterQuote tasks,
the AcceptQuote task, as well as the SalesManagerApproval task.

Once the task (SalesManagerApproval) is approved, end the process.

[78]

Chapter 2

You can conclude from the process flow that the process instance gets completed
when the process hits the message end event. This is the case when all the tasks and
activities in the process are completed and there are no tasks and activities left that
need to be performed in future. This is termed as implicit termination.

Explicit termination pattern

There are certain stages in the process when you want to terminate a process
instance. For example, if the salesrep user rejects the AcceptQuote task, you
want the quote request to get terminated and all the remaining tasks/activities and
subprocesses to end. This is achieved by terminating the end event in the process.

The following table summarizes the details around Explicit Termination:

Signature Explicit Termination Pattern
Classification Termination Pattern
Intent To explicitly end a process when the process has a certain

specified flow pattern.

Motivation The process needs to end explicitly, and this will terminate all the
remaining tasks/activities and cause the processes to end.

Applicability This event terminates the end event and the Error End Event.

Implementation When the process token reaches this end event node, all the
remaining activities in the process need to be cancelled and
process instances get completed. However, the state of the process
depends on the end event. If the end event is terminated, then the
process instance gets terminated. If the end event is an error, then
the process instance ends in an error. However, you can catch the
error and explicitly complete the process instance successfully.

Known issues NA

Known solution NA

Learning how explicit termination works

Scenario: Enter the QuoteRequest task when it gets approved by salesrep; the
Discount Approval task gets assigned to the same user. This time, salesrep will
reject the Discount Approval task. All other remaining activities in the process will
end, and the process instance gets completed.

1. Open the SalesQuoteProcess project in JDeveloper; go to BPM | BPMN
Processes and click on ExplicitTermination.

[79]

Multi-instance and State-based Patterns

2. Logintothe EMathttp://localhost:7001/emas the weblogic user
and initiate the Explicit Termination process. We can use the test data
(ExplicitTerminate.xml) to test the process. The test data can be found
in the testsuites folder in the project.

3. Login to the Oracle BPM workspace as the salesrep user and reject
the AcceptQuote task.

4. Log in to the EM console and check the process instance's Audit Trail and
Process Flow.

When the process token reaches the AcceptQuote task, it gets assigned to the
salesrep user. When the user (salesrep) rejects QuoteRequest task, the process
gets terminated explicitly. When the process terminates, all the remaining activities
in the process are cancelled and the process instance gets aborted.

Cancelation patterns

Cancelation patterns are a set of patterns that deal with the cancellation of case,
activity, task, subprocess, and so on. We will just list the pattern features; however,
we will find various occurrences in this book where cancelation patterns are used.
We will include a reference to those sections where that specific cancelation pattern
is implemented or demonstrated. There are various variants of cancelation patterns
such as cancel case, cancel task, cancel activity, cancel multi-instance subprocess,
complete multi-instance subprocess, and so on. Cancel case pattern is covered in
Chapter 8, Adaptive Case Management. Cancel task pattern is covered in Chapter 4,
Human Task Patterns. Chapter 6, Correlation Patterns, contains the implementation of
trigger patterns in the Cancel activity pattern section.

Cancel multi-instance task pattern

The following table summarizes the Cancel Multi-instance Task Pattern:

Signature Cancel Multi-instance Task Pattern
Classification Cancelation Pattern
Intent In this chapter, we have witnessed that multi-instances of the task or

subprocess can be known at design time or runtime. We have also
seen that these multiple instances are independent of each other and
a separate thread is created to process these instances. The intent is to
cancel these multi-instances at any time.

[80]

Chapter 2

Motivation This includes canceling multi-instances when various instances of the
multi-instance task are in process. Cancellation can happen at any
time, and the remaining instances of the multi-instances that are not
processed should be cancelled.

Applicability For example, a multi-instance subprocess is executing a subprocess
that acts on a product line item collection. The subprocess is meant
to request approvals for all the line items in the collection. A
cancellation event can result in the withdrawal of the task/activities
in the subprocess and can lead to the cancellation of the remaining
subprocess instances.

Implementation | We can use multi-instance subprocesses and boundary catch

events. Boundary catch events can be attached to the multi-instance
subprocess, and they can be configured to accept certain events
(signals). These signals/events are meant to cancel the remaining
instances of the multi-instance subprocess. When this signal arrives or
this event is raised, then the remaining instances of the multi-instance
will be cancelled.

Known issues NA

Known solution | NA

Perform the following steps to test the cancel multi-instance task pattern:

1. Open the SalesQuoteProcess project in JDeveloper, go to BPM | BPMN
Processes, and click on the CancelMultiInstanceRegion process.

2. Loginto the EM at http://localhost:7001/emas a weblogic user and
initiate the process (CancelMultilnstanceRegion). We can use the test data
(CancelMultiInstanceRegion.xml) to test the process. The test data can
be found in the testsuites folder of the project. The test data contains three
product line items.

3. Login to the Oracle BPM workspace as the user (salesrep) and
approve AcceptQuoteTask.

4. As the test data contains three product line items, the subprocess
containing the task (SalesManagerApproval) will result in the creation
of three subprocess multi-instances.

5. Log in to the Oracle BPM workspace as the salesrep user, and approve
the second instance of the task (SalesManagerApproval) out of the three
instances of the task (SalesManagerApproval).

[81]

Multi-instance and State-based Patterns

6. There is a timer event on the multi-instance subprocess. The timer
expires in 2 minutes. If the user (salesrep) does not act on the task
(SalesManagerApproval), the timer event gets triggered and the process
token reaches the message end event.

7. Log in to the EM console and check the process instance's Audit Trail
and Process Flow, as shown in the following screenshot.

The process is implemented to create a multi-instance of the subprocess containing

the task (SalesManagerApproval). Each instance of the subprocess results in the task
being assigned to the salesrep user. Interestingly, there is a catch timer event on

the multi-instance subprocess. The timer event is set with 2 minutes of timer cycle.
The timer event is an interrupting event. Hence, if a user (salesrep) does not act on
the remaining tasks in 2 minutes, the timer gets expired and an interrupting event is
raised. The event will eventually end the process. However, the remaining instances of
the multi-instance subprocess will get cancelled, as shown in the following screenshot:

Flow Trace > - -
Audit Trail
29 Instance of CancelMultiInstanceRegion @ Graphical view [=]
This page shows BPMN process instance details.
a
= i () ()
@« = —_—
™
¢ Start Start End
Determine
AcceptQuoteTask petermine SERDEIEGEE some0fferactivit
x proval
Audit Trail
. ™
Tree View -| .@
B L -] 27
CancelMultiInstanceRegion Instance created Subprocess
> = Start Activity completed
T‘ Activity completed
@ AcceptQuateTask Task Mumber 20063
» 11 Determine Cardinality Activity completed
\;J Subprocess Activity processing
EJ Subprocess Instance entered th
Threads Thread Grouped
> Subprocess Thread cancelled
» Subprocess Thread completed
> Subprocess Thread cancelled
> @ CancelMI Activity completed
[l subprocess Activity cancelled
> [SomeOtherActivity Activity completed

[82]

Chapter 2

Summary

This chapter demonstrated how processes can handle batch jobs and how to
simultaneously spawn multiple work item instances in a process. It also uncovered
iteration patterns by demonstrating the structured loop and unstructured looping
mechanism. Implicit and explicit termination patterns at the end helped us learn
termination patterns.

The next chapter will focus on invocation patterns and will uncover how BPM
processes can be invoked by internal and external environments.

[83]

Invocation Patterns

A BPM process can be invoked or initiated in many different ways. Based on the
architectural design and business requirements, a BPM process invocation can be
defined. The invocation of a BPM process can be designed by either exposing the
BPM process as a web service (Sync/ Async), through BPM APIs, or through the

Java Message Service (JMS). In addition, there could be other mechanisms to initiate
the BPM process via e-mails/files /batches or by scheduling a BPM process through
timers. Also, we can have a human task be the initiator of business processes.

A common integration requirement is to expose the BPMN process as a service.

You generally expose BPM processes as Oracle BPM services when you want them
to be consumed by BPEL, Mediator, and more specifically by the Oracle Service Bus.
Exposing a process as a web service is a built-in capability of the Oracle BPM. A
process instance creation or process notification can be exposed as a Service. When
we are looking for an assured and/or once-only delivery, asynchronous support,
publish/subscribe, scalability, reliability, handling high loads, large volumes of
messages (EDA), and transaction boundary, the obvious choice is JMS (Queue/
Topics). You can also adopt signals or events to initiate the BPM process if the
design guideline is loose coupling.

The following invocation patterns are discussed in this chapter:

* Web service pattern:

o

Asynchronous request callback pattern

[e]

Synchronous request response pattern
o

One request, one of two possible responses pattern

Two request pattern

Invocation Patterns

One-way invocation pattern:

° Implementing one-way invocation using a timer

[e]

Implementing one-way invocation using e-mail

Publish/subscribe pattern
Multievent instantiation
Human task initiator pattern

Guaranteed delivery pattern

Web service pattern

The scenario used in this chapter is based on the Loan Origination process. Loan
Origination is a core business process in financial services, where a borrower applies
and seeks for a loan through a loan application. The bank, which is the lender, will
process it and either approve (grant) the loan or reject the loan application. The Loan
Origination process is a sequence of steps performed by the lender that start from
the point when the customer starts showing interest in a loan product offering to the
disbursal or grant or rejection of the funds against the loan application. A fine-tuned
Loan Origination process is a requirement for banks (lenders) as they are looking for
processes that can overcome many challenges, as follows:

A customer's need for instant visibility in the origination process, and often,
they seek immediate updates

Customers have the expectation to get the loan processed with the least
turnaround time and reduced processing fees

Customers can initiate Loan Origination via any mechanism/channel such
as e-mail/Internet banking (web)/visiting the branch/fax/phone banking/
mobile, and so on

Freedom and agility to switch the lender

Lenders should be able to have their processes cope with the changing
regulations and policies

[86]

Chapter 3

Processes should be agile to quickly change and remain scalable at the same time.
Changing business regulations and policies must be swiftly adopted in the business
processes and with a low reaction time. Oracle BPM offers everything that's
required for an agile, scalable, and reliable business process. This chapter will focus
on initiating a loan origination process from different channels. With the process
designed here, banks (lenders) can submit, approve, and track the loan application.

BPM Process as a Service (the web service pattern), where BPM processes are
configured as a service interface, can be defined with an asynchronous operation

or with a synchronous operation. The use case implemented for this example is
based on loan origination over the Web. The enterprise has a loan portal (the loan
application) that can be accessed by customers who have applied for loans. These
customers (applicants) can initiate loans via the Web using these web applications.
These web applications will internally invoke the loan origination BPM process as a
web service. As web services are loosely coupled, they allow companies to integrate
heterogeneous applications within the enterprise or expose business functions to
their customers and partners over the Web (Internet).

Asynchronous request-response
(request-callback) pattern

The following table lists the details around the asynchronous request-response pattern:

Signature Asynchronous Request-Response (Request-Callback) Pattern
Classification Invocation Pattern
Intent Exposes an asynchronous operation to allow a client to invoke the

process asynchronously. The intent is to generate a service interface
that creates request and callback operations for asynchronous
processes. Its goal is to serve those scenarios which do not expect a
response from the service provider in near real time.

Motivation The BPM process's service interface, exposed as an asynchronous
service, contains a start activity that defines an asynchronous
operation to accept the incoming request and an activity that defines
a callback operation, which returns the result for the asynchronous
operations it has defined.

Applicability Asynchronous service start operations are defined using the Message
Start Event or Catch Event. Callback operations are defined using

a Message Throw Event or a Message End Event. Correlation
mechanisms should be implemented too. You can also use, Receive
and Send Tasks to expose the BPM process operation as the
asynchronous operation.

[87]

Invocation Patterns

Implementation | The service interface of an asynchronous BPM process shows a Start
operation and a Callback operation. A BPM process input is defined
using the Message Start Event, Catch Event, or Receive task, and

the process output is defined using the Message End Event, Throw
Event, or Send task. In the case of an asynchronous interface, there
will be two ports: one port is for requests and one is for callbacks. The
Message End Event or the Send task has to define a callback operation.

Known issues Reliability

Known solution | To ensure that a message gets routed to the appropriate requester,
message correlation must be implemented to relate inbound and
outbound messages.

In this section, we will walk you through the configuration of the service interface of
an asynchronous BPM process. Download the LoanOriginationProcess application,
open LoanOrigination, and click on the LOProcessAsService process.

Use the following steps to expose the BPM Process as a Service:

1. Right-click on Start Message Event, click on the Implementation tab, and
select the Define Interface option in the Message Exchange type section.
If we have an interface defined and we need to use it to define the service,
we can choose the Use Interface option to browse for the interface from the
business catalog:

Appl.. Proce... | Appiic... | Teams | 2] LOProcessasservice O Froperties - StartloanOngination
LoanCriginationProcess * | = - o) Basic = Implementation
| Projects &l ®- V- e Actvity Interactive Notfication Catd| | yupiementation Type: [() Message =
LoenCriginafon Message Exchange
=~ 8PM -
{2 8PMN Processes Type: | 8] Define Interface M
9 LoProcessActvatanFromEmai Conversation: (2) Default () Advanced

+-F] LOProcessActivationFromEvent

. Define Interf
+-{] LOProcessActivationFromQueue efine Interface

5] LOProcessAsService Arguments Definition + 7K
++{] LOProcessHumaninitiation
5] LOPracessMUItEvent -_ Neme [Tvpe

LOProcessAsServiceIN LOProcessBusinessObject

/5] LOProcessOneR equestTwoRespc
-] LOProcessSchedule
' [=5] LOProcessSendreceive

StartLoanOrigination

-3 B C its -E
usiness Component > Operation Name: [Start_oanCrigination
{3 Events g
{5 Human Tasks @
2 N < 28 L
o Organization 2 38 Data Assodiations @ B Correlations ¢ Log Handlers
-1 soA 2
= " Message Headers Service Properties
PublishLoanPri E J
ushToEmail S :
-[E5] TaskForm © Correlation Definition
Property: | CorrProperty_Async
Initiates
() Hiahligh Level: Wsmings Correlation Property Aliases

Designer | Scripting Collaboration Histol

+| Application Resources CorrProperty_ASYNC: | fne:5tart nanOrigination/ns 1:LoanRequest/ns 1:LoanDetails fns 1: ApplicantlD

| Data Controls

Build - kssues | Simulations | Do

o I

[88]

Chapter 3

In the Operation Name section, give a name to the request operation such
as StartLoanOrigination (this will become the operation name for the
service interface).

In the Argument Definition panel, define the web service request payload.
This will be based on a Business Object (LOProcessBusinessObject); hence,
define a Request Business Object based on the payload schema and use that
business object to define the request argument. However, the downloaded
process contains the business object that we can use.

As we are defining an asynchronous operation for the BPM process, we have
to define a callback operation for the BPM process.

This process has a defined callback operation that uses a Message End Event.
Right-click on the Message End Event (EndLoanOrigination) and go to the
Implementation tab, shown as follows:

K

e
L

heckPass?

v

ApplicationRejectionAct
ivity

4..

EndLOProcess

Start2

S

7
O Properties - EndLoanQrigination

Basic | Implementation

Implementation Type: uj@ju Message R |

|| Force commit after execution

Message Exchange

Type: | @ Define Interface

Conversation: (2) Default (") Advanced

Define Interface

+ /X

Arguments Definition

Mame Type

string

LOProcessAsService_Out EndLoandrigination

() Asynchronous () Synchronous

ichlight Lewvel:

Callback Operation Name: |EndLoanOr\ginah’0n

.
—— 10% v §

pner | Scripting
sl k-

loyment - Log)

&3 Data Assodiations # M Correlations Log Handlers

Message Headers J Service Properties

oK Cancel

[89]

Invocation Patterns

6. Define the interface and select/ create the output argument. For this
example, we will just return a loan status. The loan status could be either
Success Or Reject.

7. Note that the behavior of the BPM Process as a Service is defined here. If we
select Asynchronous, you need to specify a name for the callback operation.

Click on Data Associations and complete the data assignment.

Deploy the process to a web logic server, and log in to the EM,
http://server:host/em, as a web logic user.

10. Test the process using either SOAP-UI or EM or any other tool of your choice.

We can check the WSDL file created for the service interface of the process. Go to the
project directory and click on LOProcessAsService.wsdl, which is the WSDL for the
asynchronous service interface. We can witness two different ports being created,
one for requests and one for callbacks. We can define a BPEL/OSB or any other client
as a service consumer. A service consumer will have a request port and a callback
port available for the asynchronous message interaction.

Request-response pattern

The following table lists the details around the synchronous request-response pattern:

Signature Request-Response Pattern
Classification Invocation Pattern
Intent Expose a synchronous operation to allow a client to invoke the process

synchronously. The intent is to generate a service interface that creates
a request-reply operation for synchronous processes. Its goal is to serve
the scenarios that expect responses from the service provider in near
real time.

Motivation The BPM process, exposed as a synchronous service, needs a start
activity to accept the incoming request and an activity to return either
the requested information or an error message defined in the WSDL.

Applicability This pattern is applicable to message start event or catch event and
a corresponding Message End Event or Throw Event. In case of the
Message End Event, an optional fault definition is included in the
operation. You can also use the Receive and Send tasks to expose a
BPM process operation as being synchronous.

[90]

Chapter 3

Implementation | You can configure a message start event, Message Catch Event, or
Receive task event to create a service interface. This service interface
can be defined with an asynchronous operation or with a synchronous
operation. The BPM process input is defined using a Message Start
Event, Catch Event, or Receive task, and the process output is defined
using a Message End Event, Throw Event, or Send task, respectively.
In the case of a synchronous interface, there will be one port for request
and response. You can have the fault definition in the operation to
return the error message to the service consumer. This can be achieved
with the Business Exception implementation type, which would result
in the generation of the fault definition in the operation. The Message
Start Event can automatically set the conversation to initiate. In the case
of the receive task, it should be capable enough to create instances, and
a Receive task will always follow the None Start Event.

Known issues If an immediate response is not received by the service consumer on
time, then it will result in a timeout exception.

Known solution | The service should not contain a dehydration point; it should keep

the latency at the lowest, and overheads such as marshalling and
unmarshalling should be eliminated. The service provider must always
be available. The use case for implementing a synchronous interaction
must be very well-defined; for example, try not to use the synchronous
pattern of interaction when a service needs to interact with multiple
backend systems or when a service needs to perform real-time, complex
processing. It should be avoided when a service needs to work on
multiple requests from child nodes. A better use case and a strategy for
lower latency, timeout, complex processing, and so on must be defined
while implementing a service as a synchronous service.

Let's change the service message interaction pattern in the process
(LOProcessAsService) from asynchronous to synchronous by performing
the following steps:

1. Click on the Message End Event in the process, navigate to Properties,
and click on the Implementation tab.

2. Change the interface definition to Synchronous. You will find that the
Reply To option gets initiated.

3. From the drop-down list, choose the start event (Request
(StartLOOrigination)) that this response is meant for.

4. Create the data associations and click on OK.

You can check the WSDL file created for the service interface of the process. Go to
the project directory and click on LOProcessAsService.wsdl, which is the WSDL
for the synchronous service interface. You can see only one port for request

and response.

[91]

Invocation Patterns

With the synchronous variant of the BPM Process as a Service, the client needs to

wait for the response. In the case of the BPM processes that are highly human-centric
and a situation where the response might take longer, synchronous BPM Process as a
Services are rare and not used often.

LOProcessAsService

@ @ =3 o
Activity Interactive Notificaton Catch
%

7] -

Throw Gateway Artifacts

Al v -

VerificationJheckPass?

Mo

i J

Start2

=D—~J
End2

ApplicationRejectionAct

EndLOProcess

LoanDfficer

Skart3 [e

|8\ Hichlizht Level: Warnings

iviky
i =
@) Properties - EndLoanOrigination |.&Jj
Basic Implementation
Implementation Type: '|
[] Force commit after execution
Message Exchange
Type: |El Define Interface -
Conversation: (=) Default (") Advanced
Define Interface
Arguments Definition GF / 2@
MName Type
LOProcessAsService_Out string
() Asynchronous (3) Synchronous
Reply To: (@) startLoanorigination - &
[] Throw Error | | Q ¢
3-:5 Data Associations é [Correlations Log Handlers
Message Headers J Service Properties
Help OK Cancel

EndLoan!l\'\g\natio

£=-100%v¢);

One request, one of the two possible

responses

pattern

We can create a BPM process that offers multiple operations as the response.

This is an asynchronous pattern where the client sends a single request and receives
one of two possible responses. For example, the request can be for loan approval and
the first response can be either Approved (the loan is approved) or NotApproved
(the loan is not approved).

[92]

Chapter 3

Perform the following steps to check the configuration of the process that
implements this pattern and also check its WSDL file:

1. Open the process (LOProcessOneRequestTwoResponse); we can see that it
has two Message End Events.

2. Open the WSDL file (LOProcessOneRequestTwoResponse.wsdl) for this
Process as a service. If we check the WSDL file for this process, we find two
operations in the callback port, as shown in the following screenshot:

@ LOProcessAsService @ LOProcessOneRequestTwoResponse LOProcessOneRequestTwoResponse wsdl . Resoun
@ B B 0 @ x- - A e
Activity Interactive Notification Catch Throw Gateway Artifacts BPM De:
] Activig
| Eventy
+| Gartes
| Artifa
A
@ pproved
7]
=
2
2| ©® X
=4
g ch ?
E Start SomeActivity eckfoan
R
@
2E
=
g2
L
= 1
[=1
5 MotApproved
§ @ LOProcessAsService @ LOProcessOneReguestTwoResponse LOProcessOneRequestTwoResponse, wsdl
5] g,
5 Q e 13 % % P
[
(=]
=
& Imports "W o Artifacts "W
; —1Port Types GF x =1 Bindings [Partner Link Types GF - x
o
L E Bﬂ LOProcessoneRequestT. . .onsePort TypeCallBack E|-- LOProcessOneRequestT, . tTypePartnerLinkType
E H endapproved ﬁ LOProcessOneRequestT.. .onsePort TypeProvider
endiotApproved
‘* = ﬂ LOProcessOneRequestTwoResponsePort Type
x start

[93]

Invocation Patterns

Two request a pattern

We can define a BPM process interface that can have two start events. This can be
achieved by a BPM interface that not only exposes the Message Start Event, but also
exposes the Message Catch Event. When you try to execute this process interface,
the Message Start Event should always be executed first. Also, correlation should be
enabled before you plan to expose the service interface of a BPM process with the
start event and catch event messages together. Perform the following steps to enable
multiple operations for the BPM process exposed as a service:

1.
2.

Open the LOProcessAsService process in JDeveloper.

Drag-and-drop the Message Catch Event between the Message
Start Events, verify the web application subprocess, and name it
GetAdditionalLoanInfo.

Let the other process definition remain the same as it was for the
initial process.

Right-click on the start message event, StartLoanOrigination, and go to the
Implementation tab.

Click on Correlation and define the correlation property based on
ApplicantID from the payload.

Remember that you need to define this correlation definition for the start
message event as Initiates and check the box. We saw the correlation
definition in the first diagram of this chapter.

Right-click on the catch message event, GetAdditionalLoanInfo, and go to
its Implementation tab to define the correlation.

Click on Correlations and use the CorrProperty_Async correlation property
based on ApplicantID from the payload.

Don't check the Initiates box, as the catch event message will participate
in the correlation defined and will start with the start message event
(StartLoanOrigination).

[94]

Chapter 3

@ LOProcessAsService J
@ @ @ 9 @ x- [

Activity Interactive Notification Catch Throw Gateway Ar

®

StartLoanOrigination GetAdditionalLoanInfo

) Correlation Definition

Property: | CorrProperty_Async

[nitiates

y| -Correlation Property Aliases

-
) Properties - GetAdditionalLoanInfo [= |
Basic = Implementation
Implementation Type: ‘B Message '|
Message Exchange
Type: |nE| Define Interface '|
Conversation: () Default (") Advanced
Define Interface
Arguments Definition EF f 22
Name |Type
getAdditionalLoanInfoIlN LOProcessBusinessObject
Cperation Mame: |get.-\ddiﬁonaILoanInfD
;&é Data Associations é b Correlations é - | Log Handlers
Message Header§ J Service Properties
[=X=)
v|
oK Cancel

| CorrProperty_Async:

gethdditionalloanInfolIN.loanDetails| applicantID

10. Deploy the process and try to test it from the EM, http://server:host/em,
by logging in as a web logic user.

11. While testing, you will notice that there are two operations:

StartLoanOrigination (it's a Message Start Event) and

GetAdditionalLoanInfo

(it's a Message Catch Event).

12. Select StartLoanOrigination and test the process. Remember that you need

to enter an Applicant ID

in the payload.

[95]

Invocation Patterns

* We can browse for the test data that can be found by navigating to
Loan Origination | SOA Content | testsuites | LOProcessAsService.
"~ xml

. "FInstance of LOProcessAsService @
Test Web Service Ihiz page shows BPMN process instance details,
Use thie page to test any WSDL or WADL, induding WSDLs or WADLs that are noj
WSDL or WADL details, first select the Service Resource, then select the Port/Mel
Audit Trail

WSDL or WADL http: ff 7003 /s0a-infrafservices/default/LoanCrigination /LOPrd Graphical View E|
HTTF Basic Auth Option for WSDL ar WADL Access

Service LOProcessAsService.service “ | b
Port LOProcessAsServicePort

Operation E.Starﬁ_Dﬂn‘d}i‘g\naﬁu.ﬁ"".E|

Endpaint URL geb\ddmnnlnanlnﬁj = Py
Start oanOrigination
Request Response
X —
» Security c’ .[@

4
. _ StartLoanOr iti verififftionC
GetAddition PP "
> Quality of Service igination S VerifyWebApplica heckhass?

 HTTP Header tion
»» Additional Test Options

Input Arguments

Tree View E| Enable validation [+ Load Payload | Browse_ |1

SOAP Body

AutomaticHandler

View +

Name Tvoe

Once the process is executed, we can check the process instance audit trail
as shown in the preceding screenshot. The process instance will be in the
running state. If we check the flow of the process in the audit trail, we can
find the process instance as waiting for the catch event to take place.

13. Go to the Oracle EM console and run the process with the
GetAdditionalLoanInfo operation using the same test data. Remember that
you need to enter the same Applicant ID that you entered while testing the
StartLoanOrigination operation (as the correlation is based on the Applicant
ID payload element).

+ Once the GetAdditionalLoanInfo catch event is received with

the correct correlation ID, the process moves ahead to subsequent
g flow activities.

[96]

Chapter 3

Click on the <ProcessName>.wsdl file, that is, LOProcessAsService.wsdl,
which is the WSDL file for the asynchronous service. You can see that two
different ports are created, one for requests and one for callbacks. The service
request will have two operations, one for StartLoanOrigination and one for
GetAdditionalLoanInfo. While executing the BPM process, the execution
process will be stalled until the catch event is received.

Exposing the BPM process using Receive
and Send Tasks

The Receive task BPMN component can be used to expose a BPM process as a
synchronous/asynchronous service. The Receive task operation must be capable
enough to create instances when other processes/services invoke this BPM Process
as a Service using the defined Receive task. You can define the input argument using
the Receive task and the output argument using the Send Task. The message pattern
behavior of the process will be described based on how the Send Task is configured,
synchronous/asynchronous. If the message exchange pattern is asynchronous, then
the Send Task has to define a callback operation.

Loan Origination over Send and Receive tasks

Download the LoanOriginationProcess application to open LoanOriginationPrj.
Click on the LOProcessSendReceive process. To implement Send and Receive Tasks
and to demonstrate the instantiation of a process using Send and Receive Tasks,
perform the following steps:

1. Open the LOProcessSendReceive process in JDeveloper.
2. Verify the start event as none.

3. Right-click on the ReceiveLoanOriginationReq Receive task and click on the
Implementation tab to check its properties.

You will find that the Create Instance checkbox is checked. This enables the
Receive task to instantiate process instances. The request operation is named
ReceiveLoanOriginationReq. This operation will be used by the calling
process/service to invoke this Process as a service. Click on Data Associations
to check the association between the Receive task output and the process data
object. (Both are based on the Loan Origination business object.)

4. Go to the Properties page of the SendLoanOriginationResp Send Task to
verify its configuration.

[97]

Invocation Patterns

5. The message type is used to define an interface for the Send Task.
The message exchange pattern is defined as Asynchronous; hence,
the Asynchronous box is checked, and the callback operation name
entered is SendLoanOriginationResp.

ERequestTwoR.esponse 8
j [}
dReceive 2|
nts Ele
&
218
DE
20 @
I d
= - .
3 Start ReceiveloanCrigination SomeOtherActivity SendLoanOriginationke En
= Req sp
n B - ——) ——
3 @) Properties - ReceiveloanOriginationReg Léj @) Properties - SendLoanOriginationResp li—E-J
Basic | Implementation I Basic | Implementation
o | Implementation Type: “@ Receive task v| Implementation Type: |@ Send task]
Ereate Iskance: [] Force commit after execution
Message Exchange
9 Message Exchange g g_
ER| — Type: Define Interface i
Type: |@ Define Interface - |®

. — — Conversation: (2) Default () Advanced
Canversation: (#) Default () Advanced
Define Interface
Define Interface

Arguments Definition 4 / X
i Arguments Definition 4 / S@
ral T = Mame Type
ame | P - SendLoanCriginationResp string
ReceiveLoanOriginationRegIM LOProcessBusinessObject il
() Asynchronous () Synchronous
o] tion N; : ivel oanOriginationRs
peration Name |rE[ENE oantriginationteq | Callback Operation Name: |sendLoanOriginaﬁonResp
22 Dats Assodiations ? [*> Correlations Log Handlers a8 . .
—— || &8 Data Assodations é > Correlations Log Handlers
Message Head 5 Propert 3 . :
S J s Message Headers J Service Properties
Help oK Cancel Help oK Cancel

If we check the LOProcessSendReceiveTask.wsdl WSDL file created for this process,
we can see that two ports have been created, one for Send and one for Callback.

We can change the message exchange pattern from asynchronous to synchronous in
order to make the BPM process service interface synchronous. In this case, you need
to define the reply-to (response) operation. Moreover, in the configuration, you need
to select the corresponding request operation.

If the service interface is asynchronous, then the service consumer would have the
request and callback operations available. We can use the Send Task or a Throw
Event to invoke an asynchronous BPM process that has been built using a Receive
Task and a Send Task. A BPEL process can invoke this asynchronous process using
invoke. If the process service interface is synchronous, then we can use the service
task to invoke the process service interface. Interaction patterns are discussed in
detail in Chapter 5, Interaction Patterns.

[98]

Chapter 3

One-way invocation pattern

In this section, we will learn about process instantiation using the timer events

(the timer start pattern). This pattern enables process instantiation using Timer
Events. Timer Events are used extensively in BPM, and Oracle BPM offers rich Timer
Event configurations. You can use timers to incorporate a delay before initiating an
activity, configure a deadline for an activity/process, trigger activities after a certain
amount of time has elapsed, periodically trigger a process, and start a process. This
section is dedicated to showcasing how Timer Events can be used to start/initiate
BPM processes or to periodically schedule BPM processes.

The following table lists the details around the Timer Start pattern:

Signature One-way Timer Start Pattern
Classification Invocation Pattern
Intent The intent is to configure a process to be triggered based on a

time condition.

Motivation A BPM process can be configured to be triggered based on the time
condition by adding a Timer Start Event to your process.

Applicability It's applicable on the Timer Start Event.

Implementation | A Timer Start Event can raise the BPM process instance either on a
specific date (time/date) or periodically (the timer cycle), and you
can specify the date or interval using a fixed value or by using an
expression through an expression builder. An instance gets created
each time the timer condition in the Timer Start Event gets evaluated
to true. Similarly, in the start cycle case, the Timer Start Event

is configured to use a cycle; hence, the process instance gets

created periodically.

Known issues There is the possibility of having processes with past dates.

Known solution | The solution should be capable of handling immediately created
process instances because for any process deployed with a past date,
a process instance is immediately created.

[99]

Invocation Patterns

Implementing one-way invocation using

a timer

A simple BPM process is implemented for the start Timer Event. With the
download able files for this chapter (available on the Packt website), we have the
LoanOriginationProcess application with LoanOriginationPrj as the project.
Download the application and open the project in JDeveloper.

Click on LOProcessSchedule, which is implemented with multiple Timer Start
Events. This process will be initiated at the scheduled time, specified in the start
Timer Event named startSchedule, while the other processes will run periodically
every 2 minutes and will stop at the time specified under Run To in the optional
settings of the startCycle Timer Event.

Walk through the following steps to use the Timer Start Event and the periodic start
event to trigger the process on schedule and periodically, respectively:

1. Click on the LOProcessSchedule project in JDeveloper.

2. Right-click on the StartSchedule Timer Event, and click on the
Implementation tab in the Properties page.

3. The Timer Definition type is Schedule as it's a scheduled Timer Event.

Enter a daily time, say 10:28:00 PM. You can change this time as per your
testing requirements.

The Timer Event, known as the process scheduler, can be configured to act
daily, weekly, or monthly. When set as monthly, you can specify the month,
day, date, and time; thus, BPM offers rich scheduling options.

5. Right-click on StartCycle, click on the Implementation tab, and select the
type of timer as Time Cycle to define the Timer Event as a periodical cycle.

6. Enter a time value; say, if the process should get triggered every 2 minutes,
then enter the values as shown in the preceding point. The values specified
here will cause the timer catch event to run at a defined interval. This is
specified in months, days, hours, minutes, and seconds.

7. Deploy the process and check the process instance creation pattern in EM,
http://server:host/em.

You can check, as follows, that some of the instances are created every 2
minutes between the Run from and Run to timings, and one instance got
created at the scheduled time, 10:28:00 PM.

[100]

Chapter 3

Here, we have demonstrated that the Timer Start Event and the Periodic
Start Event trigger the process on schedule and on a periodic cycle,
respectively. We have defined them using fixed values; however, you

can use an expression builder and or BPM-offered rich functions to define
values for the Timer Event.

An instance gets created each time the timer condition in the Timer Start
Event gets evaluated to true. In the scheduled Timer Event case, whenever
the time is 10:28:00 PM, the process instance will be created. Similarly, in the
start cycle case, the Timer Start Event is configured to use a cycle; hence, the
process instance gets created periodically.

W e & & % T
Bl ®@-F-=- Activity Interactive Notification Catch Throw Gateway Artifacts

igination

M

F! BPMM Processes

5] LOProcessAsService

@ LOProcessOneRequestTwoResponse

£ LOProcessSchedule

@ LOProcessSendReceive

[l Business Components

h Organization

A

| Events

[Schemas |

ﬁ% LoanOrigination. xsd StarkCycle
\ 10:28:00 PM
O Properties - StartCycle] &J |

Basic | Implementation

;
@) Properties - StartSchedule

Basic | Implementation

Implementation Type: | ; | Timer

Timer Definition

Type: |Time Schedule '|

LOProcessSchedule
LoanOfficer

Daily Weekly = Monthly
When

'-o

Implementation Type: |‘-§‘-T|mer " Optional settings
Timer Definition [Run from :I
Type: [Time Cyde | [JRunto =
[]Use Expression
|U Months 0 Days 0:2:0 ‘II [] Use calendar rules

Optional settings

Run from [oct 20, 2013 10:24:56 PM == |
Run to [oct 20, 2013 10:30:56 P == | | nep
S
a0rigination_zevl. 0.jar
[[] Use calendar rules om the server, response code=200

[101]

Invocation Patterns

Implementing one-way invocation using
an e-mail

In this section, we will learn about process instantiation using e-mail (the one-way

pattern). This section demonstrates the invocation of a BPM process by e-mails.
The following table lists the details around the Email Start Pattern:

Signature One-way message - Email Start Pattern

Classification Invocation Pattern

Intent The intent is to configure a process to be triggered based on the arrival
of an e-mail.

Motivation The BPM process can be configured to be triggered based on
an e-mail.

Applicability In the message start events and for the UMS configuration in
SOA/BPM.

Implementation | The UMS adapter is configured for inbound interaction; hence, the
adapter is able to asynchronously receive messages/mnotifications from
UMS. The UMS adapter is configured as a listener and has initiated
threads to process it. The UMS adapter will act as a proxy between
SOA and the external world. The use-case-adapter will be able to
receive messages from the inbox of the loan officer, as the adapter was
able to retrieve e-mails from the Gmail IMAP server supporting SSL.

Known issues Selectively receives messages.

Known solution | The message was received with a subject, body, and one/more
attachments. You can configure the adapter to selectively receive
incoming messages by defining message filtering, and you also have
the option of a Java callout function to execute a certain custom logic
before message processing.

Every enterprise has e-mail and various other messaging channels such as SMSs,
IMs, voice, and so on for communication and collaboration. A loan request can
originate over the phone or e-mail. Let's assume the case where a customer sends

an e-mail to the loan origination department to initiate the loan origination process.
Oracle BPM has message events that can trigger the BPMN process instance upon
the arrival of a message. In this section, we will build a sample BPMN process that
is triggered when an e-mail arrives for loan origination. For the sake of our example,
we have used the Gmail server to listen to incoming messages.

A client can initiate a loan approval process by filling in a loan form, and they can
e-mail the loan form to a loan officer's e-mail address (for example, weblogic0009@
gmail.com). Once a loan origination request e-mail arrives in the inbox of the loan
officer, the loan origination process gets triggered.

[102]

Chapter 3

Oracle BPM offers User Messaging Service (UMS), which provides services to
send or receive notifications and alerts through various messaging channels such as
e-mails, SMSs, IMs, and voice. Oracle BPM also offers the UMS adapter to kick off a
BPM process or a BPEL/Mediator process when a new e-mail arrives in the inbox.
The UMS adapter enables processes to send e-mail too, along with filtering and
transforming/formatting based on business needs. UMS also supports SSL for
e-mail channels.

We will configure the Email Driver to enable e-mails as the message delivery
channel; hence, the UMS adapter will be able to retrieve e-mails from the IMAP
server of Gmail-supporting SSL.

The Loan Origination process over e-mail

To enable the receiving and triggering of a BPMN process via e-mails, UMS
server-side configurations need to be accomplished before the actual process
is developed and deployed. Use http://acharyavivek.wordpress.
com/2013/10/21/email-driver-properties/ to perform the fOHOWng
activities, which will allow you to send e-mails to the loan officer's inbox in
order to initiate the Loan origination request:

* Import SSL certificates to trust the Keystore
* Configure the Email Driver on the web logic server

* Create an SOA/BPEL process to send e-mails to the loan officer's
e-mail address

The preceding blog post covers details on importing certificates and configuring
the Email Driver on the web logic server. To push a Loan Origination request to the
loan officer, the SOA (BPEL) process is available to you when you download the
LoanOriginationProcess application, available with the downloads for this chapter.

Download the LoanoOriginationProcess application and open the LoanOrigination
project. Click on the LOProcessActivationFromEmail process. Perform the
following steps to witness the UMS adapter configuration:

1. Click on LoanoOrigination (the Composite file) and click on the UMS
adapter (ReceiveLOEmail) to check its configuration.

2. Configure the JNDI name as eis/ums/UMSAdapterInbound and click
on Next. You can enter the appropriate JNDI as per your configuration.

3. Choose the operation type as Inbound Receive Notification, enter the
operation name as receiveLONotification, and click on Next.

4. The value of Operation Mode is set to Listening and the listener thread has
a value of 1.

[103]

http://acharyavivek.wordpress.com/2013/10/21/email-driver-properties/
http://acharyavivek.wordpress.com/2013/10/21/email-driver-properties/

Invocation Patterns

10.

11.

12.

Click on Next to set the type of notification as email.

The e-mail endpoint configuration is weblogic0009@gmail . com.

This is the e-mail address of the loan officer to which the e-mail request
will be sent in order to initiate the Loan Origination BPM process.

In the schema selection, choose ReceiveEmailEvent .xsd, which can be
found in the /Schemas folder of the project, and click on Next.

Click on Next three times and finish the configuration.

Click on the LOProcessActivationFromEmail process.

Right-click on the start message event and check the implementation
properties.

You can see that the message event is configured with the message exchange
type as Use Interface. The UMS adapter that we just configured is available
as a service that we can refer to.

Select the already-existing service that you have defined using the UMS
adapter (ReceiveLOEmail), as shown in the following screenshot:

E-[&] Loanorigination =
=-C8PM E
E-{ BPMN Processes 2
i LOProcessActivationFromemail [2 |
. =] LOProcessasservice 5|'s
i) LOProcessOneRequestTwoRespc A
i3] LOProcessschedule Z |2 .
i) LOProcesssendReceive S8 i
Start
{3 Business Components % = LoanProcessingActivities LoggingTransaction nd
a a
© Properties - Start = w
Basic Implementation]
\
Implementation Type: (@) Message 8 Instance of LOProcessActivationFromEmail @
Message Exchange This page shows BPMN process instance detals.
Type: |} Use Interface -
Conversation: (3) Default () Advanced Audit Trail
Use Interface Graphical View E\
Reference: |ReceiveLOEmaM J u& 0
Operation: | receivelONotification - < | > ‘ [100
&3 Data Assodations @ [Correlations Log Handlers
Message Headers i5| service Properties g
= &
0 sevee == |2 © . - @
3
[search: - Start End
:l LoanProcessing LoggingTransacti
Activities on
[Search Resuts:
| receiveLOEmail —I
i I |

13.

14.

Click on Data Associations and check the assignment from
the UMS adapter to process the data objects that are based on the
ReceiveEmailEvent.xsd schema.

Click on Save All and deploy the process.

[104]

Chapter 3

Testing the flow to instantiate a process over e-mail

With the downloadable file for this chapter, you will receive the
LoanOriginationProcess application. This application contains the PushToEmail
project. This project will send an e-mail to weblogic0009@gmail . com, which is the
e-mail address of the loan officer we have configured in the process. Open the project
in JDeveloper and take a look at its configuration. It's being configured with a UMS
adapter to send messages. Use an appropriate JNDI, as we did in the preceding
section. You can enter the JNDI and other properties based on the configuration of
your web logic server. Perform the following steps to test the flow:

1. Open the PushToEmail project in JDeveloper and deploy it to the web
logic instance.

2. Execute the PushToEmail process from the EM, http://server:host/em.

3. Execution of the PushToEmail process will result in an e-mail being sent to
the e-mail address (weblogic0009@gmail . com).

4. Log in to the EM and check the audit trail for the
LOProcessActivationFromEmail process.

5. You will find an instance being created for the
LOProcessActivationFromEmail process.

6. Click on the audit trail of the process to check instance details and the
payload. We can, of course, use this as an initiating template and can
extend and build a BPM process that gets initiated from an e-mail.

We have used PushToEmail to send messages to the e-mail account of
the loan officer (weblogic0009@gmail . com). However, you are not
% limited to use the PushToEmail SOA process. You can create or use
T your own client to send messages to some-email@some-domain.
com, that is, you can create your own e-mail address and use it.

Publish-subscribe pattern — initiating the
business process through an event

Business events comprise of message data published as the result of an occurrence
in a business environment. Other services/processes can subscribe to these events.
Business events are raised when a situation of interest occurs. For example, a
customer visits a lender's/bank's website and browses for a couple of bank products
such as home loans, mortgages, education loans, savings, wealth management, and
so on. During browsing, customers are asked to fill in their details.

[105]

Invocation Patterns

Bank sales representatives contact the customer for a follow-up and to check the
customer's interest in one/more of the products from the portfolio of products.
Once the sales representative gauges a specific product interest of the customer,
then they raise a specific product event through an application. For our example,
we will assume that a Loan Origination event is raised by the sales representative.

The distinction between business events and direct service invocation based on
WSDL is based on the fact that business events separate the consumer from the
producer. The design consideration is to use events when the integration is
loosely coupled.

Event-driven integration has an edge over the request-response integration pattern.
In the request-response pattern, the scalability of the solution is difficult as the
change is difficult; this further makes governance difficult. If a service contract
changes, then the system needs to be changed. The request-response integration
pattern does not result in a loosely coupled integration. The event-driven messaging
pattern offers loose coupling, where the scalability and flexibility to add a new
application is way easier than the request-response pattern. Events have their own
message format (schema), and subscribers need to comply with it and take care of
the transformations. Event-driven patterns are asynchronous, one-way message
exchange patterns. Subscribers are not durable. They offer a flexible and agile
architecture; however, durability remains an issue. The following table summarizes
the publish-subscribe pattern:

Signature Publish-Subscibe Pattern

Classification Invocation Pattern

Intent The participating process or application publishes events and
messages that are subscribed to by one or more participating
processes.

Motivation The BPM process can be configured as a subscriber to the events that
are raised in the Event Driven Network (EDN). These events trigger
the BPM process.

Applicability In the signal throw, signal end, signal catch, and Signal Start Events.
Throw intermediate signal events or signal end events are used to
raise and broadcast a signal. The Signal Start Event is used to receive
an event in another process. To enable event delivery, you need an
eventing platform. Oracle BPM uses Oracle EDN to send and receive
signals.

[106]

Chapter 3

Implementation

On execution, throw intermediate signal event or signal end event will
publish an event to the EDN. The EDN will then deliver it to all the
subscribers who are configured to listen to that specific event (signal).
A subscriber process can trigger only when the signal to which it

has subscribed arrives. Oracle BPM leverages Oracle SOA and the
EDN runs within every SOA instance. Java/BPEL/Mediator or any
component can raise an event to the underlying SOA environment

to publish that event to the EDN. Any interested BPMN process as a
subscriber to that event will get triggered when the signal to which it
has subscribed arrives.

Known issues

Loss of messages, guaranteed message processing, and durability.

Known solution

EDN offers different levels of delivery consistency. You can always
configure once and only when the delivery is transactional in nature
and is delivered to the subscriber in its own transaction. You can use
an effective error handling solution and a retry mechanism to achieve
some level of guaranteed message processing. However, this might
need every subscriber to make sure that the event gets successfully
processed. In spite of that, a durable system cannot be guaranteed. If
a system fails, the message may be lost and will not be delivered even
when the system is restarted.

Loan origination over an event

As business events are published in the EDN, which runs within every SOA /BPM
environment, we will first create a business event. Then, a process (the BPEL process)
will be created to raise the sample Loan Origination event. A separate BPM process
will subscribe to this event. The raised events are delivered by the EDN to the
subscribing business process. Perform the following steps to define an event:

1. Open and expand the LoanOriginationProcess application and right-click
on the LoanOrigination project.

2. Click on New to create an event. A gallery will open to create an event
definition file and an event.

3. Scroll down in the list and select Event Definition. This will open the event
creation page.

Enter LoanEvent as the name of the event definition (EDL) file.

Click on the green plus (+) sign to define an event and its type.

Enter the name as LoanOriginationEvent for the event and browse for the

event type.

7. Choose the Loan origination schema as Event Payload (the event payload).

[107]

Invocation Patterns

8. Click on OK. This will result in the creation of an event file and an event
definition inside the EDL file. This is shown in the following screenshot:

. . T 7? Events
3 LOActivationFromQueuePrj

j LoanOrigipati Namesnare:
QD EPM BPMM 2.0 Process.., icess LoanCrigination/LoanEvent
3D SOA Edit Project Seurce Paths... @ Business Catalog Module...
g 43¢ Delete Project B8 Business Exception...
SR =
n Version Project... Business Object.. Tvpe
Jhttp: ffwww. myloanoriginationsystem. org}LoanRequest]
-3 4 BPM » Enum Qbject...
L — £ XML Schema...
= | T
Qv @8 Find Project Files — =)
-1 Show Cl th [@O Create Event Definition
g o how Classpa
o] K Show Overview EDL File
~affl L o , - - 7%
E L eploy Creates an EDL file containing zero or more event definitions.,
Je] L Save to PAM
e L Name: |LDar|E\rEr|t |
Y Directory: |skb0p\AQAbeI\FERSONAL\Chapber3\ChapberBloanOr\ginaﬁonProcess\LoanOr\ginaﬁonEOA\Eventﬁ| Q
el 1
Relocate Project Mamespace:
jplication Res "
— Find Usages... Chl+AIL |http.,"fxmlns.nrade.com,ILoanOng|nahonPrncessjLoanOnglnahonﬂ.oanEvent |
jeent Files @ Make LoanQrigination,jpr Ctrl-Fg Events: + / X GE}
&% Rebuild LoanOriginationjpr AltFg Name Type
Origination. j
> Run
'ﬂ' Debug ﬂ Create Event
Refactor 4 MName: |LDanOriginaﬁDnEvEnt
Compare With 4 Type: |{http:ffwww.myloanorig\naticnsyshem.org}LoanRequest
Replace With » Help oK
Help

9. Once the event is defined, we can now create a BPEL process to raise
an event.

10. Drag-and-drop a BPEL component in the LoanOrigination (the composite
file) file.

11. Let the BPEL template be one-way and enter the name of the process as
LoanOriginationEventService.

12. Choose Loan origination schema as the input schema of the BPEL process.
13. Click on OK in the process creation dialog.

14. Drag-and-drop an invoke activity into the BPEL process.

15. Choose Interaction Type as Event.

16. Browse for the event and select LoanOriginationEvent, and complete
the configuration.

[108]

Chapter 3

17. Drag and assign an activity before the Invoke activity, as shown in the
following screenshot, and complete the assignment of values from the input
receive parameter to the event input variable, RaiseLoanoriginationEvent_

.
InputVariable:
Process Asset ... | o[LoanOrigination &a LoanOriginationEventService.bpel
= ‘ﬁ%MainProcess "vﬁai' o | Y- @l W - 5'@@@@ > @ “Jg
- - Partrer Links -
Service..]
. @ @
loanoriginationeventservice_client
receivelnput
© Edit Invoke =
Headers Documentaton Skip Conditon Targets Sources ‘ !.- (1Y H
4 [
General Correlations Properties Aszertions Annotations : 4 I :
- P =RaiseLoan0r\ginat.“ :
Mame: |RalseLoanOrlglnahonEvent | T ———
Conversation ID: | | E‘z

[] Invoke as Detail

Interaction Type: | ; Event 'l

Event:

|Loan0r\ginationEvent

0 Published Events

Variable:
|Ra|seLoanOr|g|nahonEvent_Input\-’arlab\e

Event

';7 LoanCriginationEvent

Persistent Delivery Priority Time to Live (ms)
YES 4]

18. When you execute this process, LoanOriginationEvent is raised.

19. Your BPEL process should look as per the LoanOriginationEventService
process defined in the LoanOrigination project, which you can download
from this chapter's downloadable files.

Now, we will create the BPMN process that gets initiated when the event is raised by
executing the BPEL process, LoanOriginationEventService, which we just defined
in the preceding steps. To do so, perform the following steps:

1. Right-click on the LoanOrigination project and select New to choose
the BPMN 2.0 process. This will open the process creation wizard.

Enter the name of the process as LOProcessActivationFromEvent.

Let the type be asynchronous service and click on Finish.

[109]

Invocation Patterns

4.

Define a process data object (subscriberProcessIN_PDO) based on the
business object (LOProcessBusinessObject). You will find the business
object with the project.

In the process editor, right-click on the Message Start Event and change the
trigger type to Signal.

Name the Signal Start Event as SubscribeToLoanOrigination.
Right-click on the Signal Start Event, SubscribeToLoanOrigination,

and go to its Implementation tab.

Browse for the LoanOriginationEvent event definition; this will define
the subscription of the BPM process to the LoanOriginationEvent event.
Complete the data associations from the Signal Start Event to

process the data object, subscriberProcessIN_PDO, as shown in

the following screenshot:

teractive Motficy

© Properties - SubscribeToloanOrigination 5 - -
s - O 29 Instance of LOProcessActivationFromEvent
Basic = Implementation I This page shows BPMN process instance details.

Implementation Type: ‘ &) Signal

{:{% Audit Trail
Event: ‘ # LoanOriginationEvent
Graphical View E|

. 4 Data Assodiations @ [> Correlations Log receivelnput
SubscribeToloan <4 | » °
tion (%
) Data Associations =
o
A B
Output ssign_receiv. g
]
|
2] SubscribeToloanOrigination i > E
: o S
(3 Arguments % 2 SEDSCBD?T SomeActivity
E- 0 Datn rigi
H] i nation
%] LOProcessActivationFromEvent 2 RaiseLoanCrig...
| Copy " From: |pay1cad | G}_ Ta: ‘suhs:ribet}‘m:essIN O
From To
,r__{;_" payload fﬂ. subscriberProcessIN_PDO

[] validate target after assigning output data associations

10.
11.
12.

13.

14.

Deploy the process.

Log in to the EM as the admin user (web logic), http://server:host/em.
Execute the LoanOriginationEventService BPEL process, which will raise
the LoanOriginationEvent event.

When the event is raised, the LOProcessActivationFromEvent process gets
initiated as it has subscribed to the event.

Trace the flow of the LOProcessActivationFromEvent process, and we
can verify that after the BPEL process raises the event, the BPMN process,
LOProcessActivationFromEvent, gets initiated.

[110]

Chapter 3

Business events raised by the LoanOriginationEventService BPEL process are
published to an EDN that runs within the Oracle SOA /BPM infrastructure.
Raised events are delivered by the EDN to the subscribing process,
LOProcessActivationFromEvent, and the payload exchanged is as per

the EDL schema definition.

Multievent instantiation pattern — process
instantiation over multiple events

If we have the requirement to branch out our process flow based on external events,
then the event-based gateway initiation mechanism is best suited for us. Here,
several external events might occur; however, the path is chosen based on the
occurrence of an event within your process design. We will use the loan origination
use case to demonstrate this pattern. When the process is initiated, it will either be
initiated for the new loan and get caught by the NewLoanApplication Message
Catch Event, or if it gets initiated for an existing loan process instance, it will be
caught by the ReLoanApplication Message Catch Event.

The Loan Processing event gateway initiates the sequence that has the
NewLoanApplication message event, and the instance reaches subsequent
activities and the downstream flow.

Loan origination over multiple event
occurrence

The loan origination process can be instantiated for a new loan application and/or
for an existing loan application. We can use an event-based gateway as a mechanism
to branch based on the event received and the initiate process instance. There are
multiple types of messages or events that can start a Loan Origination business
process. Perform the following steps to verify the process configurations that have
event-based gateways configured:

1. Download the LoanOriginationProcess application from the downloadable
files for this chapter (available on the Packt website) and open
LoanOrigination.

Click on the LOProcessMultipleEvent process.

Right-click on the event-based gateway, LOProcessing, and open the
Implementation tab under its Properties page.

[111]

Invocation Patterns

4. You can see that the Instantiate box is checked. For an event-based gateway
to start new instances, it must be checked. However, there could be
midprocess event-based gateways, and in such cases, we don't need to
check the Instantiate box.

5. Right-click on the NewLoanApplication Message Catch Event. We can verify
that while defining the interface; we can associate data and can enter a name
for the operation as newLoanApplication, which will be exposed as shown
in the following screenshot:

e |G e Ll d
Basic Implementation
rocess Assel... | 5] LOProcessMultiEvent plementatin Type: [Mesemge p——
= =] = i - Message Exchange i n_e_rprlse and
G- T-E- Activity Interactive Notification Catch Throw Ga — =¥ WeblogicDomain ¥ I SOA Infrastruc
Type: | 58] Define Interface
Conversation: (3) Default () Advanced Loanorigination [1.0] @
O Properties - LOProcessi... [Bt.| e [nte\lfac-e - off2 SOA Composite ~
Basic | Implementation Arguments Defnition + /
Instantiate: o = Test Web Service
NewLoanAppsIN LOProcessBusinessObject H?;D‘i“:r'?iitud‘:;“‘:”;r::S:E"LE;’ ﬂ::zé
| MewLoanApplicati '
o5 Operation Name: [renLosnapplication i
= %3 Dats Associations @ D> Correlations & Loq Handlers reLoanApplication
- 7 Message Headers =] service Properties
ReloanApplicatis) Correlation Definition L&
Property: | fag CorrProperty_Async -
[] tnitiates
Correlation Property Aliases
A\ Hiohih Level Warmings CorrProperty ASYNC: | ey T.oankppsIN. LoanDetails. applicantID B,
Designer Scrinting Collaharation Histor:

Remember to furnish correlation details. We have set the
+ correlation based on ApplicantID. Correlation is a must when

using event-based gateways as we will be developing this

process to include midprocess events, and in those cases, the
process flow needs to be in correlation.

Deploy the process and test it through the EM, http://server:host/em.

While testing the process, you can find two operations being exposed. Any

client application or process using this Process as a service will have two
operations to choose from.

Event-based gateways can be used midprocess as well as at the start of the process
to initiate new process instances. The configuration demonstrated in the preceding
steps, using an event-based gateway, is similar to multiple start events in the
process. An event-based gateway can initiate a new process instance when it does
not have any incoming sequence flow and the initiate property of the event gateway

[112]

Chapter 3

must be enabled. If the new loan application is raised by an external application,
then the NewLoanApplication Message Catch Event can be initiated, or else the
ReLoanApplication Message Catch Event can be initiated.

Human task initiator pattern — initiating
processes through human tasks

The initiator task is one among the many human task interactive patterns in Oracle
BPM. It's used to trigger a BPM process flow from the defined human task user
interaction interface. When you are using the initiator task to initiate a BPM process,
the process always starts with the none start event. The none start event will not
trigger the process; however, the human task initiator will initiate the process. It's
the role associated with the swim lane that defines the process participant, and

that process participant/assignee is the one the initiator task gets assigned to.

The following table summarizes the human initiator pattern:

Signature Human Task Initiator Pattern
Classification Invocation Pattern
Intent The intent is to trigger a BPM process flow from a form initiated by a

human activity.

Motivation The BPM process can be configured to be triggered based on human
interaction by submitting a form. The form can be accessed via a
workspace application or a work list application.

Applicability In the initiator human task

Implementation | When you are using the initiator task to initiate a BPM process, the
process always starts with a none start event. The none start event
will not trigger the process; however, the initiator human task will
initiate the process. A user logs in to a workspace application and
clicks on the link to kick-start the process. Upon clicking the link, the
user is presented with a form where they can enter data as input to
the process or the form can be preinitialized too. Once data is entered
or edited, the user can click on the Submit button to instantiate

the process.

Known issues NA

Known solution | NA

[113]

Invocation Patterns

The human task initiator can be used in various business scenarios. For instance,
in the insurance claim process, a customer can call the Customer Service
Representative (CSR) of the insurance organization and the CSR can raise a claim
request on behalf of the customer. This claim request is a human task along with a
task form available in the CSR's workspace application. The CSR has to fill in the
human task form and click on Submit to initiate the claim process.

Loan origination via the human task form

In this section, we will build an initiator task and get it assigned to a user,
salesrep, defined in myrealm (the embedded LDAP in the web logic server).
For this example, we will assume that the user, salesrep, is the loan officer.

We have the LoanOrigination project available in JDeveloper from the previous
section downloads. We will build a new process for this section as follows:

1. InJDeveloper, navigate to LoanOrigination | Processes and create a new
process by right-clicking on Processes and selecting New.
Enter a name for the process as LOProcessHumanInitiation.
Choose the manual process in the Application Template panel.

Click on Finish. This will create the LOProcessHumanInitiation process
with an initiator user task.

5. Create the LOProcessHumanInitiationINPDO process data object based
on the business object, LOProcessBusinessObject, which already exists
in the LoanOrigination project as we created it in the first section of
this chapter.

6. Double-click on the initiator human task and rename the initiator human
task to LOProcessHumanInitiationTask.

Go to the Implementation tab of the Properties wizard.
Click on the plus (+) sign to create a human task.

Enter the Human Task name as LOProcessHumanInitiationTask and the
title as shown in the following screenshot.

10. Add parameters to Human Task. This parameter is based on the loan
origination schema's business object, LOProcessBusinessObject, which is
based on the process data object.

11. Click on OK and finish the data association.
12. Click on OK again.

[114]

Chapter 3

13. Drag an activity after the human task and name it SomeotherActivity.
Check the draft mode for the activity. (This activity is a placeholder or
an assumption for further process activities). This is shown in the

following screenshot:

@ LOProcessHumanInitiation

1 @) Properties - LOProcessHumanlnitiationTask [=

[#» Correlations

Dv v - .Q]vlié}v O - . : :
Activity Interactive Motification Catch Throw Gateway Basic | Impiementation
Implementation Type: |@ User Task
c Human Task: |
2
=
-g [Human Task Attributes
£
5 " o Title: | Plain Text v||LOPr0cessHumanIniﬁaﬁonT:‘nsk
5|2 O =
E - A Priority: | Literal v||
& Start: .
8 LOProcessHumanlnitiati [[] Reinitiate
g onTask
& Advanced
(=}
=
2.2 L
L =5 Data Assodations
@) Create Human Task EY
General
MName: |LOProcessHumanIniﬁaﬁonTask | Priority: |3(normal)] '|
Title: |LOProcessHumanIniﬁaﬁonTask |
Cutcomes: |SUEM1T | Qb
Pattern: |@ Initiator -
/8 Highliaht
Designer Parameters: 4 K
Deploymet | [parameter MName Type Editable
@ 0 & L oanRequest |OProcessHumannit. .. |Data.LOProcessBusi. ..
Descripti
QOutcome target: |task0uh:ome | EF 0

= | Log Handlers

[

Drag Data Objects to Parameters table and Outcome
Target field.

) Browse Data Objects

@ LOProcessHumanlnitiation

El-- 3 Data Objects

@ |0ProcessHumanInitiationINPDO
(3 Predefined Variables

5] s0a

14. In the swim lane, select the LoanOfficer role. If it is not available,

create the role.

15. Click on Project (LoanOrigination) and select Organization.

16. In the roles, select LoanOfficer, and in the Members section, browse
for the embedded LDAP (myrealm) for the users.

17. Select salesrep as the user and click on OK.

18. Click on Save to save the process.

19. Right-click on the initiator human task in the process and select
Open Human Task. This will open the . task task definition.

[115]

Invocation Patterns

20

21.

22.

23.

24.

Confirm whether the application role in the task editor's general section is
LoanOriginationPrj.LoanOfficer.

In the General tab of the task editor, click on Create form and select
Auto-Generate Task Form to create a task user interface for the initiator
human task.

Enter the name for the human task user interface as Task Form and click
on OK.

This will launch the Ul creation wizard. Complete the wizard and
click on Save ALL.

Deploy the project with the human task Ul

The LOProcessHumanInitiation process is available when we

download the LoanOrigination project for this chapter. You can
o

always create a new process with a new name to implement the
scenario we discussed in the preceding steps.

Testing the process

Use the following steps to test the process and learn how you can instantiate process
instances using the human task:

1.

Logintohttp://localhost:7001/bpm/workspace BPM workspace as the
salesrep user.

We will find that the LOProcessHumanlInitiation loan process got assigned
to the salesrep user.

Click on the LOProcessHumanlInitiation process in the Applications
section, and this will initiate the user interface.

Enter the Loan Origination values and click on Submit to submit the loan
origination request, as shown in the following screenshot:

[116]

Chapter 3

Business Process Workspace l» references Logout Help +

—
Tasks Case *4 Process Irackinge:l%ll Dashboards

Applications Actions ¥ Views « @ﬂ Search
. taskDetails1.jspx &
@ show~ @ Title Number Process Name Status| - -
Instance #100083 of Human_. 100083 [HumanTaskRoutin... @ 7003 /worldflow/ TaskForm/faces,
Others

Instance #130206 of LOProc... 130206 [LoanCriginationv... [[
Instance #130214 of LOProc...| 130214 | [LoanCrigination v... @ LOProcessHumanInitiationTask Submit | Mctions 1

| 8 Details (i)

LOPracessHumanInitiation

Assigness salesrep Expiration Date
Creator salesrep Acquired By
Priority 2 Qutcome Assigned|
Views (List filtars) State Assighed Task Number 201253
'I Contents
8 History
e . Lean Status New
Last day Instance #130214 of LOProcessHumanInitiatic
Loan Request - Loan Details
LaStIIVEEk Details Hist Applicant 1D 1234
etails Histor Applican
Last month bl i o
[El Three months ago s D Product ABC1234 Some Product
Lbehio il Amount 123456
Application Date 11/24/2013 I?(_l)
. Channel WEB
- Source CSR
& | start End
g LOProcessHuma SomeotherActivit Interest Rate 2
z ninitiationTask tes Update Date 11/24/2013 [E2Y
-1
i

I Loan Officer_salesrep

The initiator task followed by the none start event is an effective way to assign
an application task with a user interface to the users. Also, users can initiate the
BPM process from their inboxes in the BPM workspace application or the work
list application.

Guaranteed delivery pattern — process
instantiation over JMS — Queue/Topic

The initiation of a BPM process takes place through either exposing the BPM process
as a web service, BPM reading a JMS, or through the BPM PAPI APIs, and so on.
Other mechanisms may include processes instantiated with e-mails/files/batches
(that is, from enterprise information systems) and scheduled mechanisms such as
using timers. In this section, we will explore how to initiate a BPM process via a
queue. Specifically, we will be using JMS queues, and for the sake of examples, we
have limited the discussion around the web logic server and JMS queues. However,
this pattern is not limited to web logic and can be used beyond it.

[117]

Invocation Patterns

The following table lists the details around the guaranteed delivery pattern:

Signature

Guaranteed Delivery Pattern

Classification

Invocation Pattern

Intent

The participating process gets invoked by reading messages from a
queue or a topic.

Motivation

Using queue messaging offers a foundation for the asynchronous and
reliable delivery of messages in a distributed heterogeneous system.

It also offers a scalable messaging architecture. A queue/topic-based
solution offers point-to-point (Queue) and publish/subscribe (Topic)
mechanisms, transaction boundaries, guaranteed information delivery,
scalability, and interoperability between heterogeneous frameworks.

Applicability

Any web application, process, or service can push the message
directly to a queue. The BPM process will pick up the message as soon
as the message is dropped in the queue. With this mechanism, the
message-producing application can continue to send new messages
regardless of whether the BPM process is available or not. A JMS
consumer, a BPM process with a JMS adapter, is responsible for
dequeuing the messages and initiating the process. It now depends

on the transactional boundaries (milestones) to make sure that the
message gets removed from the queue only after the successful
completion of the task in the BPM process.

Implementation

The source application 'A' pushes messages to Queue#1. The BPM
process picks up the messages from the queue and takes care of
the business logic. If anything fails, the message should remain in
Queue#1. The message gets removed from Queue#1 only after the
successful completion of the task in the BPM process.

Known issues

If integrating applications are interacting in an unreliable fashion.

[118]

Chapter 3

Known solution

A best practice will be the inclusion of logical points (milestones)
in the end-to-end integration. This translates to the fact that while
implementing guaranteed delivery patterns, transactions should be
considered as first-class citizens and must be dealt with effectively.

For example, the source system pushes the message to the starting
queue in one transaction and ensures the guaranteed delivery of the
message in its zone. When the message first arrives in the queue —
define this point as milestone#1 — the implementation process
(service) will pick the message from the primary queue in a new
transaction (Trx#1). The implementation process (service) will then
enrich the message and routes the message to another milestone
(milestone#2). Once the message reaches milestone#2, the services
and resources in milestone#1 should be released. Moreover, all

the services and components in milestone#1 should be enlisted in
one transaction. Another process (service) should pick the message
when milestone#2 is initiated and should interact with the target
application. Activities in milestone#2, such as picking the message
from the queue, transformation, enrichment, and interacting with the
target application, should happen in one transaction.

Known issues

Processing overhead and business process performance

Known solution

Adding milestones could lead to processing overhead and
performance challenges. Selecting the number of milestones should

be given paramount consideration when designing the process. If

you minimize the milestones(s), you might end up adding more work
in a single transaction. The solution should be designed to allow
optimum work between milestones, and transactions must be handled
effectively. You should not end up with transactional overhead while
ensuring reliable messaging between milestones and applications.

Loan origination over JMS — Queue/Topic

In this section, we will explore how to initiate a BPM process via a queue to
demonstrate guaranteed delivery. The scenario is that the lender (bank) offers a
portal (web) application that a user can access and request for a loan. That web
application is based on the JMS framework, and it pushes messages to a loan queue
(the JMS queue). The loan origination BPM process gets initiated when a message
arrives in a loan queue.

[119]

Invocation Patterns

Creating JMS resources

The JMS queue and topic used during this section are always associated with a
number of other enabler resources that need to be defined in the web logic server.
A JMS server is required to create JMS modules, as it is a container for all the
resources defined in a JMS module. Your queues, connection factories, topics,
bridges, and other resources are defined in the JMS module. Subdeployment is
an optional resource. However, it is used to group targets. The JMS module and
resources within JMS modules, such as queues and topics, are the targets to a JMS
server / WSL server instance. We can have a subdeployment created to target the
different components of a JMS module to a single/group of targets.

A Connection Factory encapsulates the connection configuration information,

and enables the clients of JMS applications to create connections to JMS destinations.
A Connection Factory supports concurrent use, enabling multiple threads to access
the object simultaneously.

JMS supports two messaging models: point-to-point (PTP) and publish/subscribe
(pub/sub). A Queue is used for the PTP messaging model that enables the delivery
of a message to exactly one recipient, while Topic is used for the pub/sub messaging
model to enable the delivery of a message to multiple recipients. Oracle SOA

and BPM use the JMS adapter to relate (read/write) to JMS resources. You need
connection pools to refer to Connection Factories associated with queues and topics.
These JMS adapters are deployed to the web logic server, and the Connection
Factories are configured in the JMS adapter.

The following are the steps to create a JMS queue and topic. Activities
listed in the following section need to be performed at the web logic console,
http://server:host/console, by logging in as the admin user (weblogic).

Creating a JMS server
Perform the following steps to create a JMS server in the web logic console:

1. Inthe domain structure, navigate to Domain | Services | Messaging |
JMS Servers.
Click on New to create a new JMS server.

3. Enter the name of the JMS server as LoanOrigJdMSServer; let the
persistent store be None and click on Next.

Select the target as soa_serverl or your available server.
Click on Finish.
The JMS server will be listed with Health Status = OK.

[120]

Chapter 3

Creating a JMS module

Perform the following steps to create a JMS module in the web logic console:

1.

5.

Navigate to Services | Messaging | JMS Modules and select New to create
a new JMS module.

Enter the name as LoanOrigSystemModule and the description, and click
on Next.

Choose the target as soa_serverl, or the one you selected while creating the
JMS server, and click on Next.

Don't check the box to add resources and click on Finish.

You can see that a new JMS module is listed.

Creating a JMS subdeployment

Perform the following steps to create a JMS subdeployment in the web logic console:

1.
2.
3.

5.

Click on LoanOrigSystemModule and click on the Sub Deployment tab.
Click on New to create a new subdeployment.

Enter the name for the subdeployment as LoanOrigSubDeployment and click
on Next.

In the targets, select the JMS server, LoanOrig]MSServer.
Click on Finish.

Creating a Connection Factory
Perform the following steps to create a Connection Factory in the web logic console:

1.

Navigate to Services | Messaging | JMS Modules and select New to
add resources.

Select Connection Factory and click on Next.
Enter the Connection Factory name as LoanOrigConnFactory.

Enter the Connection Factory JNDI as jms/LoanOrigConnFactory; leave the
default as it is and click on Next.

Click on Advance Targeting and select the LoanOrigSubDeployment
subdeployment, which we created earlier.

Click on Finish.

[121]

Invocation Patterns

Creating a queue
Perform the following steps to create a JMS queue in a JMS module:

1.

Navigate to Services | Messaging | JMS Modules and select New
to add resources.

Select Queue and click on Next.

Enter the name and JNDI of the queue as LoanOrigQueue and
jms/LoanOrigQueue, respectively.

Select the LoanOrigSubDeployment subdeployment and click on Finish.

You can now find the Connection Factory and the queue listed as resources
in the J]MS module.

Creating a topic

Perform the following steps to create a JMS topic in a J]MS module:

1.

Navigate to Services | Messaging | JMS Modules and select New to
add resources.

Select Topic and click on Next.

Enter the name and JNDI of the topic as LoanOrigTopic and jms/
LoanOrigTopic, respectively.

Select the LoanOrigSubDeployment subdeployment and click
on Finish.

Configuring the connection pool
Perform the following steps to create a connection pool in the web logic console:

1.
2.
3.

Navigate to WebLogic console | Domain | Deployments.
Scroll down and click on JmsAdapter.

Click on the Configuration tab, select Outbound connection pool,
and expand itas oracle.tip.adapter.jms.IJmsConnectionFactory.
This lists all the connection pools.

Click on New to create a new connection pool.

Select the oracle.tip.adapter.jms.IJmsConnectionFactory option and
click on Next.

Enter eis/wls/LoanOrig as the connection pool JNDI name.

Click on Finish and navigate to the outbound connection
factory properties.

[122]

Chapter 3

8.

9.

Enter jms/LoanOrigConnFactory as the Connection Factory Location
property value and hit Enter.

Save the property value configuration.

You will receive a message saying that the changes are activated (if the server
is in the development mode). In any case, you will now update the JMS adapter,
as follows, for the changes to take effect:

1.

Click on the Configuration tab, select Outbound connection pool,
and expand itas oracle.tip.adapter.jms.IJmsConnectionFactory.
This lists all the connection pools.

Click on New to create a new connection pool.

Select the oracle.tip.adapter.jms.IJmsConnectionFactory option and
click on Next.

Enter the connection pool JNDI name as eis/wls/LoanOrigTopic.
Click on Finish and navigate to the outbound connection factory properties.

Enter jms/LoanOrigConnFactory as the Connection Factory Location
property value and hit Enter.

Enter true for IsTopic.

Save the property value configuration.

You will receive a message saying that the changes are activated (if the server is in
the development mode). In any case, you now need to update the JMS adapter for
the changes to take effect.

Redeploying the JMS adapter
Perform the following steps to deploy the JMS adapter with new configurations by

updating the adapter:
1. Navigate to WebLogic console | Domain | Deployments.
2. Scroll down, click on JmsAdapter, and check the box close to JMS adapter.
3. Click on the Update button.
4. Select the Update this application in place with new deployment
plan changes option, click on Next, and then click on Finish.
5. You will receive the following message:

All changes have been activated. No restarts are necessary.
Selected Deployments were updated.

[123]

Invocation Patterns

Creating the publisher process

In a real-life scenario, as per our use case, a web application would push messages
to the loan queue (LoanOrigQueue). However, for this demonstration, we will

use an SOA process to produce a message to this queue. With the downloadable
code for this chapter, we have the LoanOriginationProcess application. The
LoanOriginationProcess application contains the PublishLoanPrj project. It's

a simple BPEL process that exposes a SOAP interface and pushes messages to

the LoanOrigQueue queue. Click on the LoanPublishingProcess BPEL process
and check its configuration. We can visit the . jca file to verify the queue and the
Connection Factory JNDI configured in the process in order to publish messages to
the LoanOrigQueue queue.

Developing the consumer process
We will now create a subscriber process that subscribes to the LoanOrigQueue
queue as follows, and the process gets initiated when a message of the loan request
arrives at the queue:

1. In]JDeveloper, go to Application | LoanOrigination | BPM Processes.

2. Right-click on BPM Processes and create a new process.

3. Select the type of process as Asynchronous and enter the name of the
process as LOProcessActivationFromQueue.

Click on Finish.
Go to LoanOrigination (the composite file) of the LoanOrigination project.

Drag-and-drop a JMS adapter in the swimlane exposed service.
This will open the JMS adapter configuration wizard.

7. Enter the name of the JMS adapter service as ConsumeLoanRequest
and click on Next in the wizard.

8. Choose JMS adapter and click on Next.
Select the application server connection and click on Next.
10. Select the operation type as Consume_Message and click on Next.

11. Browse for the destination queue (LoanOrigQueue), enter the JNDI
(eis/wls/LoanOrig), and click on Next.

12. Navigate to Loan origination schema | Loan Request element, click on Next,
and then on Finish. Click on Save all.

[124]

Chapter 3

This completes the configuration of a JMS subscriber service (the JMS adapter as a
service). Now, we will continue with further procedures, as follows:

1.

10.

Go back to the LOProcessActivationFromQueue BPMN process and create a
process input process data object, LOProcessActivationQueueINPDO, based
on the business object (LOProcessBusinessObject).

Double-click on the Message Start Event to open the properties.

Enter the name for the Message Start Event as
LoanOriginationSubscriber.

Click on the Implementation tab and select Use Interface.
Click on Browse in the reference interface section.

Browse and select the JMS adapter service, ConsumeLoanRequest, which you
configured earlier.

The operation message (the consumer message) will automatically
pop up.
Complete the data associations and click on OK.

Drag-and-drop an embedded subprocess and give it a name.

Let the subprocess be in the draft mode. You will place this just as a
token to demonstrate that further loan origination process flow activities
and tasks will be defined later.

Assign a role to swimlane as LoanOfficer. It will already exist if you
have completed the other sections; if not, create a role with the name
LoanOfficer.

[125]

Invocation Patterns

11. The process will look as shown in the following screenshot; save and deploy
the process to web logic:

-- LoanOrigination N

=1 8PM

- 0 Properties - LoanOriginationSubscriber
=-{}=) BPMN Processes

- f&5] LOProcessActivationFromEmail Basic | Implementation

@ LOProcessActivationFromEvent et e |B Message

w@ LOProcessActivationFromQueue
@ LOProcessAsService

Message Exchange

LoanOfficer

-] LOProcessHumanInitiation LoanOriginationSubscri Type: ‘“v T

@ LOProcessMultEvent
-[5] LOProcessOneR equestTwoResponse
—f&5] LOProcessSchedule

EE] Conversation: (3) Default (") Advanced

Use Interface

LOProcessActivationFromQu..

=] LOProcessSendReceive

S— Reference: |ConsumeLoanRequast
J[E Business Components

- (3 Events Operation: | consumeMessage

-7 Human Tasks
% Organization

-7 s0a 48 Data Associations é [Correlations
LoanOriginationEvent A ! Head: - J Service Properties
I = LoanQ)) Data Associations @
=11 e - | Log Handlers
IApplication
Cutput
Data Contr
Recent Files, i = @ L
(=) LoanOriginationSubscriber LOProcess,
Frocessacd)| =03 Arguments
loanRequest] [oProcessActivation|
-5 Activi [#-f] LOProcessActivationFromQueue Fre
|-l Busine:
|-z Conved
- Correld =
b corre ‘CODY '| FrTe |1CEDP~E=IUEST: , To: IC-FrccessA:tivaticni B +X43
{i@) Measul
-- Procesq| From To
" Fraoje E,,".' loanRequest _r-% IOProcessActivationQueueINFDO

Testing the process
Execute the following steps to push a message to the queue:
1. Go to the EM console, http://server:host/em, and initiate the BPEL server

loan publishing process. The BPEL service, LOPublishingProcess, when
executed, will push the message to the queue.

2. Click on the LoanOrigination project and you will find an instance created
for the LOProcessActivationFromQueue process, as follows:

[126]

Chapter 3

Flow Trace =
_ 3 1nstance of LOProcessActivationFromQueue @
.ﬁga Instance of LoanPublishingProcess ® This page shows BPMN process instance details.
This page shows BPEL process instance details.
Audit Trail
AuditTral ~ Flow = Sensors
Graphical View E|
<< ‘ > a 100%
receivelnput E
2 -
g = O
&
@
& 5 LoanOrigin — End
ez ationSubscr OtherActivity
iber
AsszignLoanDet...
‘
®
InvokePublish... Flow Trace
Actions * View * Show Instance IDs
Instance Type
W %, Service
,533 LoanPublishingProcess BPEL
EndProcess ’ng Reference
’Cég Service
ﬁ LOProcessActivationFromQueue BPMMN

The LoPublishingProcess BPEL service pushes the loan request message to the
LoanOrigQueue queue; the LOProcessActivationFromQueue process, which is
subscribed to this queue, picks the messages from the same queue and initiates the
BPMN process instance.

Publish-subscribe pattern using topics

This section will demonstrate the publish-subscribe pattern using topics. Once the
loan origination process is completed — after the underwriting, contracting and
legalizing, and loan funding — there might be many other processes interested.

For example, when the loan origination process ends, a business might initiate a
back office process that would set dates, time, and other follow-up details to check
for the initial month's EMI payment of the loan of the customer. There might be a
process for when you may be interested to know which applicant's request loans
are disbursed, and then these processes can set a follow-up communication with the
same customer for other product offerings.

[127]

Invocation Patterns

Let's name these processes as Bank Office Process and Advertisement
process. For enabling this functionality, we will use the JMS topics

(which we created in the previous section). We can change the end

event for the LOProcessActivationFromQueue process. Once the
LOProcessActivationFromQueue process ends, it will publish a message to
the LoanOrigTopic topic. We can create two new BPMN processes named
BackOfficeProcess and Advertisement Process, which can be subscribed
to the LoanorigTopic topic. As soon as the LOProcessActivationFromQueue
process ends and loan information is published, these two processes start.

Understanding multiple start events

We can implement processes that can start by multiple methods. In the following
screenshot, we can see that there are multiple start activities for the process. The loan
process can subscribe to a queue, and at the same time, it can subscribe to a topic.
Also, it can be instantiated by a human task or can be scheduled:

@ L OOniginatonMuliChannelProcess S 1 OProcessMulichanne!

G- @ @8- @ o- &-

Activity Interactive Motificaton Catch Throw Gateway Artifacts

- I—’()

EndLoanProcess

3 .
Queus gsEingActiviby

Email

LOProcessMultiChannel
LoanOfficer

LoanCriginationT ask

Timer

[128]

Chapter 3

Summary

This chapter demonstrated the different BPM process invocation patterns. BPM
processes can be exposed as a service and can be invoked using different message
exchange patterns. This chapter showcased the initiation of a BPM process from

a human task, e-mail, timers, and so on. You also learned how to engulf loose
coupling, scalability, and durability with the publish-subscribe pattern. On the other
hand, you have also walked through the details to implement guaranteed delivery
and reliability through queues. We also covered the one-request-two-response
pattern and two-request-one-response pattern along with the one-way messaging
pattern. Different ways to implement patterns are also discussed in this chapter.
While learning different patterns, we have also covered various service invocations,
tasks, and activities such as Send and Receive tasks, Service tasks, and so on, and
have learned various events and activities.

The next chapter is focused on human task patterns. We will learn how to
incorporate human intuition in processes and various patterns to support it.

[129]

Human Task Patterns

Business processes need human interactions for approvals, exception management,
interactions with a running process, group collaboration, document reviews or

case management, and so on. There are various requirements for enabling human
interaction and human intuition within a running BPMN process, which are
accomplished using human tasks in the Oracle BPM. This chapter is dedicated to
demonstrating human task patterns. In order to bring in the human intuition and
human decision mechanism in the process, Oracle BPMN 12c¢ offers you human tasks
(user tasks).

Human tasks are implemented by human workflow services that are responsible

for the routing of tasks, assignment of tasks to users, and so on. When a token
arrives at the user task, the control is passed from the BPM process to Oracle Human
Workflow, and the token remains with human tasks until it's completed. As callbacks
are defined implicitly once the workflow is completed, the control is returned back
to the user task and the token moves ahead to subsequent flow activities. However,
if you terminate a BPM process while it is running a user task, the associated human
task will keep running as human tasks are independent of the BPM processes.
Actions taken on a human task can interact with the process until the process
instance has left the user task. Even when the process instance has left the user task,
you can still access the user task. However, any actions taken on the task will not
bring any interaction with the process and it will not appear even in the audit trail.

This chapter covers a rich set of patterns, from milestone patterns to routing patterns.
Oracle BPM offers several human task patterns such as the initiate task, user task,
management task, group-voting task, For Your Information (FYI), and complex task
patterns, which are covered in this chapter through a detailed description on routing
patterns. The chapter also covers patterns that allow you to explore various participant
list-building patterns. Task assignment patterns, ad hoc assignment patterns,
delegation patterns, and escalation patterns are discussed in depth in the chapter.

Human Task Patterns

Various advanced features such as exclusion, notification, ECM integration, and
access policy are covered in detail along with routing patterns, delegation patterns,
and so on. These set of patterns and features offer formalized best practices

that allow process analysts, developers, and designers to build solutions for the
commonly occurring issues and challenges, seamlessly bringing in human intuition
in the BPMN process.

In this chapter, we will focus on the following patterns and features:

* Milestone pattern

* Routing pattern

* Assignment patterns

* List builder patterns

* Parallel routing pattern

* Serial routing pattern

* Single routing pattern

* FYI pattern

* Task aggregation pattern

* Dispatching pattern

* Escalation pattern

* Rule-based reassignment and delegation pattern
* Ad hoc routing pattern

* Request info feature

* Reassignment and delegation pattern
* Force completion pattern

* Routing rule pattern

* Error assignees and reviewers

* Deadline

* Escalation, expiry, and renewal

* Exclusion

* Error assignee and reviewer

* Notification

* Content access policy and task actions

* Enterprise content management for task documents

[132]

Chapter 4

Learning about human tasks

In this section, we will create a simple BPM process and configure the human task
for each pattern. However, before we start talking about human task patterns, let's
understand some of the definitions that we will follow throughout this chapter.

We will discuss building a list of participants, routing to participants, task
assignments, escalations, and so on in this chapter. Participants will remain the core
of the discussion. Participants are users who act on the tasks. They are defined in the
assignment and routing policy definition. In the first screenshot of this chapter, each
participant block with the icon that represents people is a participant. We are talking
about human tasks and user tasks, and it's the user (participant) who needs to act on
them. The following are the types of participants:

* Users: This refers to the individual users who act on a task. Users are defined
in an embedded LDAP (myrealm) in Oracle SOA, or they can be in the Oracle
Internet directory or an external/third-party LDAP directory.

* Groups: A task can be assigned to a group. A group contains individual
users who can claim and act on the task. For example, Christine and
Richa could be from SalesAgentGroup and the task could be assigned to
a SalesAgentGroup group. A group can be defined in the LDAP, such as
myrealm, or a group can be generated dynamically.

* Roles: They are created as application roles under the
OracleBPMProcessRolesApp. OracleBPMProcessRolesApp application,
which is a weblogic application that contains application roles and swimlane
roles. There are two types:

o

Application roles: Users and other roles can be grouped logically
using application roles. They represent any roles in the organization.
They are created in addition to the swimlane roles defined during
design time. These roles are specific to applications and are not
stored in the identity store. An application role can be used as a

task assignee or as a grantee of another application role. As they are
application-specific, they are defined in the application policy store
and are used by the application directly. These roles basically define
a policy. Roles that can be defined at design time can also be defined
at runtime using the EM console. They can be created by using either
the Oracle BPM Studio or the process workspace.

[133]

Human Task Patterns

° Swimlane roles: These roles are created at design time in the BPM
studio. Once defined, they are mapped to an application role that
was created during deployment. This mapping cannot be changed
after the deployment. Participants are assigned swimlane roles while
defining organizations in the BPM studio or from the workspace
application. Members of the roles can perform actions on the task at
runtime. Swimlane roles are application roles that are also contained
in OracleBPMProcessRolesApp.

° Approval Groups: This is used to define and manage a group
of participants/users. Approval groups are defined in the BPM
workspace. They can be static or dynamic approval groups. To

learn more about dynamic approval groups, refer to http://
acharyavivek.wordpress.com/2012/02/27/dynamic-approval -

group-bpm-workspace/.

* Organizational roles (parametric roles): These are logical roles. Members
of parametric roles are evaluated dynamically at runtime. Parametric roles
are based on the process roles that are created when you deploy a BPM
process, or you can also create them in the administration section of the
Oracle BPM workspace. They basically use the application roles to build a
query on OracleBPMProcessRolesApp. These roles have defined parameters
and based on these parameters, assignees of a task are derived. This is a
dynamic way to assign participants. For example, if the industry is IT, then
the 1TSalesrepApproverRole application role must be selected. If the
industry is MFG, then the MFGSalesrepApproverRole application role must
be selected. Here, the industry can be defined as a parameter (the plain text
or Xpath expression) and can be passed from the task to the parametric role.
The parametric role will have the condition to evaluate the parameters based
on the parameter industry.

In this section, we will perform the following exercise in order to understand the
human task configuration offered in the project delivered with this chapter. This
project will remain the baseline for the demos that we will execute while learning
various patterns:

1. Download HumanTaskApps from the download link for this chapter.

2. Open HumanTaskPrj and click on the SalesQuoteProcess BPM process.

[134]

http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/
http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/
http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/

Chapter 4

You will find all the user task patterns being configured in the process. Click on each
task and analyze its task metadata:

* Initiator user task: This is used to initiate the process from worklist
applications. Assignees are calculated from the roles associated with the
swimlane. Click on the . task file for the initiator task to analyze the task
configuration in the task metadata. Click on the Assignment tab in the
task metadata. You will find that you can neither add more stages nor
participants. A user who has the swimlane role will find a link in the
workspace, and the user can initiate the process from that link.

* User task: This is the default pattern with the participant type as single. This
pattern is useful when a single user action is required, such as confirmation,
decision, and so on. Participants are defined by the swimlane for this pattern.

* FYI task: This is similar to the user task pattern; however, it's meant only to
send notifications and participants are not supposed to act on the task. The
participant type is FYI. When a token arrives at the FYI task, the control is not
passed from the BPM process to Oracle Human Workflow, and the process
does not wait for the task completion and executes subsequent activities.
Default assignees are the role associated with the swimlane to which a task
belongs, and a notification is sent to all the participants that belong to the role.

* Group task: This pattern is useful when the tasks need to be performed
in parallel.

* Management task: This pattern is useful when users are defined based on
levels in the management hierarchy.

* Complex task: This pattern allows you to define a complex routing slip.

When analyzing each human task in the project, it's evident that it comprises of
various features such as assignments, routing, participant lists, assignment patterns,
and so on. Oracle BPM offers these patterns as a template for developers, which can
be extended. We will be using complex approval patterns to look into all the building
components in subsequent sections of this chapter.

Participants are logically grouped using stages that define the assignment within
the routing slip. Assignments can be grouped based on assignment modeling
patterns. Based on assignment modeling patterns, these can be sequential, parallel,
or hybrid. The participant configuration and routing of the human task is enabled in
the routing slip. The routing of the tasks to participants is governed by the routing
pattern, which is a behavioral pattern. This defines whether one participant needs
to act on a task, many participants need to act in sequence, all participants need to
act in parallel, or participants need not act at all (covered in the routing pattern).
Participants of the task are built using participant list-building patterns, such as
approval groups, management chains, and so on.

[135]

Human Task Patterns

The assignment of the participant is performed by task assignment mechanisms such
as static, dynamic, and rule-based. Tasks can be manually claimed by the user, or
they can be automatically assigned by automatic task dispatching through dynamic
assignment patterns (covered in the Dispatching pattern section).

Milestone pattern

The following pattern table highlights facts around Milestone Pattern:

Signature Milestone Pattern

Classification Human Task Pattern

Intent The logical indicative of the key milestones within the approval
sequence.

Motivation The motive is to define the task routing. Modeling task routing and

assignments are termed as milestone patterns. A stage(s) defines the
milestone and is the core task sequence modeling pattern. Stages

are used to model task routing, which allows you to identify the key
milestones within the approval sequence. They are a logical grouping
of participant blocks.

Applicability Stages can be in sequence or in parallel, and while modeling a routing
slip, you can have one or more stages. Each stage has a participant
block that has a participant type, which in turn consists of a list
builder that determines the list of approvers. The stages are for the
following reasons:

* Dividing the complex task into smaller scopes
* Grouping participant types in blocks

* Modeling, and hence, defining the execution sequence of the
approval process for the task

* Defining a set of approvals for a collection

* Defining the state model that can be simple, complex, and can
be sequential, parallel, or hybrid

Implementation | When collections are defined, JDeveloper will determine whether
they can be repeating elements or not. This definition of collections
is helpful when collections are associated with stages. Associate a
nonrepeating collection with a singular stage. However, associate
a repeating collection with the stage that needs to get repeated in
parallel for each element in the collection. The repetition of stage
on collection elements, as explained previously, is the runtime
behavioral pattern.

Known issues NA

Known solution | NA

[136]

Chapter 4

A stage can be repeating or nonrepeating. You can associate a nonrepeating
collection with a nonrepeatable stage. However, if you want to repeat a stage in
parallel for each element in the collection, then a repeating collection needs to be
associated with the stage. For example, if a sales quote has 10 lines, the stage is
repeated 10 times in parallel. Download HumanTaskaApps and open HumanTaskPrj.
Perform these steps if you have not already downloaded HumanTaskapps. Open the
ComplexTasks . task files. We will develop the complex task for this scenario with
the following steps:

1. Click on the ComplexTasks.task file; this will open the human task metadata
editor. Go to the Data section and analyze the data element. This is based on
the quote request element in Quote. xsd.

Navigate to HumanTaskPrj |SOA |XSD/Schemas |Quote.xsd
s to open and analyze the quote schema.

2. Double-click on Stage 1 (ProductLineltemApproval) to open the
stage editor.

You can verify that a collection is being defined on product items. Product items
are repeating data elements in the quote schema. The Xpath expression for it is /
task:task/task:payload/ns0:QuoteRequest/ns0:ProductItem.

We would repeat a stage in parallel for each item in the product collection, and
hence, a collection is defined here. This can also be based on the entity or SDO.
The following steps show you the nature of each stage in the sequence task flow:

* Stage 1 (ProductLineltemApproval) is for the line items, and it is based
on collections as will be repeated.

* Stage 2 (ProductHeaderApproval) is nonrepeating and is based on
header values.

* Stage 3 (LegalApproval) and Stage 4 (ContractApproval) are also
nonrepeating.

* Stage 1 and Stage 2 are in sequence, while stage 3 and stage 4 are in parallel.
However, stage 2 is in sequence with stage 3 and stage 4.

Walk through the following steps to model the sequence flow:

1. Open the Assignment section of the task metadata. The assighment and
routing section helps you define the sequence flow of the task. For a new
complex task, this would be empty. This is an Oracle-BPM-offered task with no
seeded template and can be modeled and build as per business requirements.

2. Click on the stage and name it ProductLineItemApproval.

[137]

Human Task Patterns

3.

Enable the radio button repeat stage in parallel for each item in a collection.
This will open the collection item that is based on a voting pattern. If 50
percent of the items (elements) in the collection are approved, then the task is
approved, or if 30 percent of the items (elements) are rejected, then the task
is rejected. Choose either to trigger the outcome immediately or wait until all
the votes are in before triggering the outcome.

Click on the green plus sign on top of the screen and select Sequential Stage.

A new stage in sequence with the ProductLineltemApproval stage will be
created. Name it ProductHeaderApproval.

Enable the radio button —nonrepeating —as we don't want it to be
based on collections and it needs to be performed only once for the
header level information.

Click on the green plus sign on top of the screen and select Sequential
Stage. You will create a third stage. Name it Legal Approval and let it be
nonrepeating too.

While you are in the third stage, which is Legal Approval, click on the green
plus sign to create a parallel stage. This will create a stage in parallel with the
third stage. Name the newly created stage ContractApproval and let it be
nonrepeating as well.

The stage will be a sequence flow that defines task routing, as shown in the
following screenshot:

& General

@ pata

3 Assignment
5 Presentation
“3» Deadines
M Notification
& Access

£ Events

., Documents

05 ComplexTask. task
o Form = /% Configure

ju, 9 Early Completion
‘ , Dynamic Routing Rules
Error Assignees
-
Adhoc Routing | Stage Name: ProductLineltemApproval |
*) Non Repeating
. A 3) Repeat Stage in parallel for each item in a collection
1 For coliections, reate a parallel stage for each item in the collection: [prg =]
ProductCollecti
3 ¥ Collection Outcome focLatoEcion
A Voted outcome will override the default outcome if the required percentage is reached.
e e Qutcomes will be evaluated in the order listed in the table.
|
r + ®

Voted Outcomes
APPROVE
REJECT

Outcome Type
By Percentage
=B, =h,

28 38

By Percentage

LegalApproval Particip... ContractApproval Par...

Default Outcome:

APPROVE

%) Immediately trigger voted outcome when minimum percentage is met
7 Wait unti all votes are in before triggering outcome

Share attachments and comments

Help Cancel

[138]

Chapter 4

Now, you might be thinking that we can perform such task modeling in a BPM process
too. Why model in a human task? The following section answers this question.

Modeling in a human task versus a BPMN
process

The routing of tasks can be modeled in a human task, as well as in a BPMN
process. This purely depends on the business requirement and various modeling
considerations. For instance, if you are looking for greater business visibility and
if there is a requirement to use exceptional handling, then it's good to model the
task in the BPMN process itself. However, if you are looking for dynamism,
abstraction, dynamic assignment, dynamic routing, and rules-driven routing,
then modeling task routing in the human task assignment and routing is an
enhanced modeling mechanism.

Routing pattern

The following pattern table highlights facts around Routing Pattern:

Signature Routing Pattern
Classification Human Task Pattern
Intent Assignment of task participants. At each stage, you can define

participant blocks that have participant types that participants are
associated with. Behaviors of participants are defined by the routing
patterns.

Motivation Tasks can be routed to participants based on the routing pattern that
governs the behavioral pattern of the participants.

Applicability A participant type is grouped in a participant block under a stage.
You can create a parallel or sequential participant block that contains
participant types. Each participant type can have its own routing
pattern and its own way to build the list of participants. However,
it's the routing pattern defined for the participant type that defines
the behavior of the participant.

Whether all the participants need to act in parallel or in sequence or
whether they don't need to act at all is defined by the routing pattern
defined in the participant type. Hence, the routing pattern defines
the behavioral patterns of the participants. The list of participants is
derived based on list-building patterns such as management chain,
approval group, and so on.

[139]

Human Task Patterns

Implementation | This chapter demonstrates various types of routing patterns

in detail.

Known issues NA

Known solution | NA

The following are the different routing patterns that are required to route a task:

Single approver: The task is assigned to a single user, group, or role. For
example, a vacation approval request is assigned to a manager. If the
manager approves or rejects the request, the employee is notified of the
decision. If the task is assigned to a group, then one of the managers acts on it
and the task is completed. If the list of participants is built using an approval
group, then the task is assigned to the group; however, once one of the users
in the group acts on the task, it's considered complete.

Parallel: This is like voting. The task is assigned to a set of people who
must work in parallel. For example, a task gets approved once 50 percent of
the participants approve it. You can also set it up to be a unanimous vote.
For example, a loan request is considered approved when 50 percent of

the participants approve it, it's considered rejected when 40 percent of the
participants reject it, and so on.

Serial: Participants must work in sequence. The most common scenario for
this is the management chain escalation. For example, a list of participants is
built using a dynamic approval group, and the participants are assigned tasks
in a sequence. If one participant completes the task, then the next participant is
assigned the task, and so on. Participants have to act in a serial fashion.

FYI: The task is assigned to participants who can view it, add comments
and attachments, but cannot modify or complete the task. It's just like a
notification, and no one is supposed to act on it. The process token remains
with the BPM process and the control is not passed on to the human
workflow, and the main process executes subsequent activities.

Task assignment pattern

The following pattern table highlights facts around Task Assignment Pattern:

Signature Task Assignment Pattern
Classification Human Task Pattern
Intent The assignment of user(s), group(s), and roles to human tasks.

Motivation Assigning participants to tasks either statically, dynamically, or

derived based on business rules.

[140]

Chapter 4

Applicability There are different methods to assign user(s), group(s), and roles to
tasks, which are covered in this section.

Implementation | The user(s), group(s), and roles can be assigned to tasks at design
time or can be derived at runtime. Runtime derivation can also be
based on rules.

Known issues NA

Known solution | NA

After going through the types of participants, it would be interesting to know how
participants (users, groups, and application roles) are assigned to the tasks. The
following are the methods for assigning users, groups, and application roles to tasks:

* Static assignment: Static users, groups, or application roles can be assigned
to a task at design time. You can statically assign a user(s), group(s), and
roles to a task where the decision of an assignment is taken at design time.

* Dynamic assignment: Users, groups, and application roles can be assigned
to a task dynamically at runtime when the task assignment pattern is
getting executed. The following are the ways to perform the dynamic
task assignment:

° Task assignment patterns: We will go into more detail on this subject
in subsequent sections. This chapter has covered various routing
patterns, and varied task assignment patterns have been covered in
these patterns.

° Using the XPath expression builder: With the XPath expression
builder, you can derive users. You can use XPath expression builders
to define queries that will result in assigning users to tasks during the
process execution.

° Business rules.
The organizational role (parametric roles).

° External routing.

Dynamic task assignment is covered in detail in the article published
on the Packt Publishing website (http://www.packtpub.com/

article-network).

[141]

http://www.packtpub.com/article-network
http://www.packtpub.com/article-network

Human Task Patterns

* Nonfunction-based derivation: Queries that result in assigning a user(s),
group(s), and roles to the task during the process execution can be based
on the XPath expression that derives values from the task payload itself.
For example, if payload contains data that has approvers, then you can
build an XPath expression to determine a user from there just like the /
task:task/task:payload/ns0:QuoteRequest/ns0:LicenseTerm/
ns0:Approval/ns0:Approver field in the salesQuote schema offers
the approver.

* Function-based derivation: You can use functions in XPath expressions to
derive the users, groups, and so on. This is shown in the following bullet list:

o

ids:getManager (richa, jazn.com): This returns the manager

of richa

ids:getReportees (christine, 2, jazn.com): This returns all

reportees of Christine up to two levels

ids:getUsersInGroup (SalesOfficerGroup, false, jazn.com):

This returns all direct and indirect users in the SalesOfficerGroup
group

* Rule-based assignment: You can use business rules to build the list of
participants by using complex expressions.

List builder pattern

The following pattern table highlights facts around List Builder Pattern:

Signature List Builder Pattern

Classification Human Task Pattern

Intent Deriving the actual list of participants to act on the task.

Motivation Stages have participant blocks, which have participant types. Each
participant type has a routing pattern that defines the participant's
behavioral pattern. In a specific routing pattern, the list of
participants is derived based on list-building patterns such as the
management chain, approval group, and so on.

Applicability This specifies the collection of participants. The list builder pattern
can be hierarchical, nonhierarchical, or it can be rule-driven.

Implementation | This is implemented inside the routing pattern. Each routing pattern
section in this chapter covers the associated list builder pattern
in detail.

Known issues NA

Known solution | NA

[142]

Chapter 4

The following are the different categories and functions of the list builder pattern.

Absolute or nonhierarchical list builders

These list builders create participant lists based on the static assignment of a user(s),
group(s), and roles, deriving statically/dynamically from approval groups or
dynamically from application roles. However, the list is not based on an organizational
or role hierarchy. The following is the list of nonhierarchical list builder patterns:

Pattern

Description

Name and
expression

These lists enable you to statically or dynamically select users,
groups, or application roles as task assignees. This pattern enables
you to construct a list using static names or names that come from
XPath expressions. If the identification type is the name or group, it
would allow you to browse and build the list from the LDAP. If the
identification type is the application role, you are allowed to browse
OracleBPMProcessRolesApp. Here, the group is a group defined
in the LDAP and is different from the approval group defined in the
workspace application.

Approval
groups

This is a pattern that defines and manages the group of participants/
users. Approval groups are defined in the BPM workspace. They can be
static or dynamic approval groups.

You can use worklist applications to configure approval groups. The
static approval group is a static and predefined list of approvers.

Approvers are derived at runtime in the case of dynamic approval
groups. Use dynamic approval groups when you need to calculate the
approval group dynamically, based on the task payload. For example,
for each sales quote line, we can have a different set of approvers based
on the quantity defined in the line. If the quantity is greater than 100,
you might need to derive a different group, or if the quantity is less than
100, then derive a different set of users based on an approval group.

You can use business rules and model this flow in the BPM process;
however, it becomes more efficient to model such scenarios in rule-based
dynamic/static approval groups. An approval group can be defined as a
value in the approval group pattern, or it can be based on rules.

Lane
participant

Participants are derived based on the swimlane in which the user task
is positioned in the BPM process. This could be the current swimlane
participant or the previous swimlane participant.

[143]

Human Task Patterns

Pattern Description
Parametric These are logical roles. Members of parametric roles are evaluated
Role dynamically at runtime. Parametric roles are based on the process

roles that are created when you deploy a BPM process, or you can

also create them in the administration section in the Oracle BPM
workspace. They basically use the application roles to build a query on
OracleBPMProcessRolesApp. These roles have defined parameters
and based on these parameters, assignees of a task are derived. This

is a dynamic way to assign participants. For example, if the industry

is IT, then the ITSalesrepApproverRole application role must be
selected. If the industry is MFG, then the MFGSalesrepApproverRole
application role must be selected. Here, the industry can be defined

as a parameter (plain text or the Xpath expression) and can be passed
from the task to the parametric role. The parametric role will have the
condition to evaluate the task based on the industry parameter.

You can read more about the parametric role by reading the dynamic
. task assignment article published on the Packt Publishing website
(http://www.packtpub.com/article-network). For more
= information on dynamic approval groups, please visit http://
acharyavivek.wordpress.com/2012/02/27/dynamic-
approval-group-bpm-workspace/.

Hierarchical list builders

These patterns are mostly used for serial routing patterns. The participant list is built
using the organization or role hierarchy. The following is the list of hierarchical list
builder patterns:

Pattern Description
Management The management chain list builder pattern is used for serial approvals
chain through multiple users in a management chain hierarchy. To

configure a management chain list-building pattern, you have to
specify a starting participant (user/group/role), a top participant title,
and/or the number of levels. The computation of the number of level
is absolute and starts from the starting participant. For example, if
you want the task to be approved by the starting participant and his/
her manager, then specify the starting participant and number of level
as 1. The management chain hierarchy is always computed based on
users defined in the embedded LDAP, active directory, or third-party-
configured LDAP.

[144]

http://www.packtpub.com/article-network
http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/
http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/
http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/

Chapter 4

Pattern Description

Supervisory Starting from a given approver, the list of participants climb up

the approvers list and generates a chain that has a fixed number

of approvers in it. While configuring the supervisory list builder
pattern, you have to supply starting participants, top participants,
and the supervisory level. The starting participant is the default to the
initiator's manager. Hence, if no value is specified, then the initiator's
manager is considered as the starting participant and the task gets
assigned to it. Here, the top participant is not a title. While in the job
level hierarchy, you can use a title as the top participant. This pattern
traverses the supervisory hierarchy.

Job level Starting from a given approver, the list of participants climbs up the
supervisory hierarchy until an approver with a specified job level is
found. This can be value-based or rule-based. This pattern traverses
the job level hierarchy. This pattern allows you to specify the starting
participant and top participant. Levels that are defined are relative to
the starting participant or task creator. This allows you the flexibility
to include all managers at the last level. It also allows you to define
the utilization of the participants. You can define whether you want to
utilize all the participants from the list, or the first and the last person
from the list, or only the last person from the list. It stops when the
top participant is reached or the top job level criteria are met.

Position List building starts at the requester or a given approver's position and
goes up until a specific number of level or a position is met.

Rule-based list builders

Business rules can be used to create a list of participants. However, business rules
can also be part of a different type of list builder. For example, Name and expression
is the main list builder mechanism; however, attributes are specified using rules and
not values. When using rule-based attributes inside a different list builder, the action
of the rule is in accordance with the type of the main list builder.

It's always effective to use the rule-based list builder in comparison to using rules in
some other list builder, because the action of the rule is based on its definition and is
not in accordance with the other list builder type in which it is included.

Rules are defined using Oracle business rules. The moment you configure the
rule-based list-building pattern, a decision service is created. You will get the rule
dictionary created at <Task Name>Rules.Rules and <Task name>RulesBase.rule.

[145]

Human Task Patterns

The first one is referred to as the runtime rule dictionary (the custom dictionary)

and the other is referred to as the base design time rule dictionary. Always use the
first rule dictionary to engulf any runtime changes. Different rule dictionaries have
advantages for customization scenarios. For example, you create and ship Version

1 of an application to a customer. The customer then customizes the rule sets in the
application with the Oracle SOA composer. These customizations are now stored in a
different rule dictionary and not the base rule dictionary.

The rule dictionary that stores the customized rule sets links with the rules in the
base dictionary. When you ship Version 2 of the application later, the base rule
dictionary might contain additional changes introduced in the product. The rule
set customization changes that were previously performed by the customer are
preserved and available with the new changes in the base dictionary.

We can use one of the following functions in the business rule's action to derive the
list of participants:

* CreateResourceList: This function matches the Names and Expressions
list builder

* CreateApprovalGroupList: This function matches the approval groups
list builder

* CreateManagementChainList: This function matches the management
chain list builder

* CreateSupervisoryList: This function matches the supervisory list builder
* CreateJobLevelList: This function matches the job level list builder

* CreatePositionList: This function matches the position list builder

With the specified rule set, two other rule sets are created: the substitution rule

set and the modification rule set. The substitution rule uses the seeded substitution
function that allows you to substitute users, groups, and roles in the created

lists with different users, groups, and roles. Modification rules use seeded
functions — extend and truncate — that allow you to extend or truncate the
participant lists. However, the modification rule is applicable to the job level

and position-based list builders. The example that demonstrates the list substation
is covered in the Serial routing pattern with list builder section.

[146]

Chapter 4

Parallel routing pattern

The following pattern table highlights facts around Parallel Routing Pattern:

Signature Parallel Routing Pattern

Classification Human Task Pattern

Intent A set of the people (participants) must work in parallel.
Motivation This is like a voting process where multiple users have to provide

their opinion or vote.

Applicability This pattern is useful in scenarios where multiple users have to
provide their opinion or vote. You have to specify a voted-upon
outcome that will override the default outcome selected in the default
outcome list. The voted-upon outcome takes effect when the required
percentage is reached. Voted-upon outcomes are evaluated in the
order in which they are listed in the table.

Known issues NA

Known solution | NA

A task is assigned to a set of people who must work in parallel. For example, a task
gets approved once 50 percent of the participants approve it. You can also set it up to
be a unanimous vote. For example, a loan request is considered approved when 50
percent of the participants approve it, and it's considered rejected when 40 percent
of the participants reject it, and so on. In this section, we will enlist the working of a
parallel routing pattern for different list builders.

Getting ready to test sample use cases

To test the samples demonstrated for this pattern, we need to perform the
following activities:

* Login to the weblogic console and create users (Christine, Jim, Kim, Lata,
salesrep, and so on) in myreal (the embedded LDAP). Other users will be
available to you if you have installed the demo community by following the
installation steps enlisted in Appendix, Installing Oracle BPM Suite 12c.

[147]

Human Task Patterns

Log in to the BPM workspace as an admin user and navigate to the
following path to create an organization unit (Salesorg) and assign users
(Christine, achrist, cdyole, lata, jcooper, jstein, Kim, Jim, fkafka,
wfaulk, and cdickens) to the organization. The path is BPM Workspace |
Administration | Organization | Organization Units.

Log in to the BPM workspace and navigate to the mentioned path to create

a static approval group (MFGSalesAdmin) and associate user (Christine,
salesrep, Jim, and Kim) to the static approval group. The path is BpM
Workspace | Administration | Task Administration | Approval Group.
Static approval groups are predetermined lists of approvers, while dynamic
approval groups generate approver lists at run time. The outcome will be
decided based on the voting pattern.

Log in to the WebLogic console and navigate to myrealm to create a group
(ITsalesrepAdmin) and to assign users (achrist, jcooper, jstein, and
fkafka) to this group.

Parallel routing pattern with name and
expression list builders

If you want to configure the parallel routing pattern with the name and expression
list builder pattern using the participant identification type (users/groups/roles),
then you can browse the LDAP to identify the user/group. If the identification type
is the application role, we are allowed to browse 0racleBPMProcessRolesApp.
Download and open the project in order to open the task and check its configuration.
The stage is configured over a collection to implement the product items. Create the
participant type with the parallel routing pattern using the following steps:

1.

2.

Download HumanTaskApps and open the HumanTaskRout ing project in

JDeveloper 12c.

Open the parallelRoutingTask task, and navigate to the assignment
section in the task metadata editor.

Enter a label for the routing pattern as productItem.
ParallelParticipantBasedOnNameExpression.

Configure the voting pattern. The voting outcome is defined in the
percentage. Hence, if 75 percent of the participants approve the task, then the
task outcome will be APPROVE. If 25 percent of the participants reject the
task, then the task outcome will be REJECT, and the task will get completed.

[148]

Chapter 4

5. Select Names and expressions to build the participant list. Let the list
building be based on values. Browse the embedded LDAP and select the
users, as shown in the following screenshot:

O Edit Participant Type - M]

General Type: l E Parallel vl Label: |Product1tem.ParaIIeIPart‘cipantBasedOnNameExpression |
Advanced:
Participant List =~ Voting:
Build a list of partidpants using:
() Let participants manually claim the task:
() Auto assign task to a single ‘ /
Specify attributes using: (%) Value-based | () Rule-based
Participant Mames ok 3
Identification Type Data Type Value
r " -
@) Edit Participant Type
G 1
enera Type: g Parallel vl Label: |Productitem.ParallelParticpantBaseddnMNameExpression
Advanced:
Participant List =~ Voting:
A Voted outcome will override the default outcome if the required percentage is reached.
Outcomes will be evaluated in the order listed in the table.
A @ q
Voted Cutcomes Outcome Type Value
REIECT By Percentage 25
Help
; Default Outcome: |APPROVE =
() Immediately trigger voted outcome when minimum percentage is met]
Designer | So () Wait until all votes are in before triggering outcome
Build - Izsu
Share attachments and comments
@0 Ao
Descriptiol
o Help 0K

[149]

Human Task Patterns

6. Click on the stage and check its configuration. The stage is based on the

collection, and the voting pattern is defined as follows:

[e]

This is configured with the fact that if 50 percent of the line
items in the collection are approved, then the stage is considered

as APPROVE.

If 30 percent of the line items in the collection are rejected, then the
stage is considered as REJECT, as shown in the following screenshot:

o Form = 4% Configure

Sg) General

5 pata

; Assignment
E; Presentation
43 Deadines

M Notification
&, Access

& Events

., Documents

Designer | Source History
Deployment - Log Build - lssue
Q

74 Edit

484
333

Productltem.Paralel. ..
|

W) Early Completion

%@ Error Assignees

&§ Reviewers

, Dynamic Routing Rules

Adhoc Routing

Stage Name: roductlineltemApproval

() Non Repeating
() Repeat Stage in parallel for each item in a collection

For colectons, create a peralll stage for each itemn the colecton: [prg, .]

~Collection Qutcom:
A Voted outcome will override the default outcome if the required percentage is reached.
Outcomes will be evaluated in the order listed in the table.

Voted Outcomes Outcome Type
APPROVE By Percentage
REIECT By Percentage

Default Outcome: |APPROVE -

(%) Immediately trigger voted outcome when minimum percentage is met
() Wait unti all votes are in before triggering outcome

[] Share attachments and comments

Actions *

We can check the Wait until all votes are in before triggering outcome option if we
want the task to wait for all the participants in the list in order to act on it. We can
check Immediately trigger voted outcome when minimum percentage is met if

we want to trigger the outcome as soon as minimum percentage for APPROVE

or REJECT is met.

Deploy the project (HumanTaskRouting) to weblogic 12c and test the service
(HumanTaskRout ing) using the test data that is available by navigating to Project
(HumanTaskRouting) | SOA | testsuites.

[150]

Chapter 4

The test data contains three line items for the element that is used to frame the
collection for the stage. Testing results reveals the following:

* The task gets repeated for three items as the test data has three product
items, hence three tasks will be assigned to each user.

* For each stage, the task gets assigned to Christine, cdickens, archist,
and cdoyle in parallel.

* As we have set 75 percent for APPROVE and 25 percent for REJECT, if one
participant out of the four rejects it, the task will get completed with REJECT
as the outcome. However, if three of the four participants approve it, then the
task will get completed with APPROVE as the outcome.

* So, when you test the process with three product items, all the users get the
task at the same time. There will be three tasks assigned to each user, one for
each line item.

Login as Christine, cdickens, and archist and approve the first task (the first
task out of the three tasks), and you can see that the first task gets completed with
APPROVE as the outcome. When three users approve it, the task gets withdrawn
from the fourth user (cdoyle).

All the users will still have two more tasks in the task list for the other two line items.
Log in again as archist, Christine, and cdickens and approve the second task.
This time, we will have an interesting observation:

* The second task gets withdrawn from the user (cdoyle) after it gets
approved by three users (Christine, cdickens, and archist).

* The process gets completed as two line items out of the three line items in the
collection are approved.

This underlines the fact that the voting pattern gets applied at two levels, one at the
participant level and the other at the stage level. You can see this in the following
screenshot that showcases the stage level voting pattern. It's configured with the
fact that if 50 percent of the line items in the collection are approved, then the stage
is considered as APPROVE. You can check this in the preceding screenshot in this
section, which demonstrates the participant-level voting pattern. Hence, when 75
percent of the participants approve the task, that task is considered as APPROVE.

[151]

Human Task Patterns

Parallel routing pattern with approval group
list builder

Approval groups are defined in the BPM workspace. They can be static or dynamic
approval groups. Browse http://acharyavivek.wordpress.com/2012/02/27/
dynamic-approval-group-bpm-workspace/ to know more about dynamic
approval groups.

To configure the parallel routing pattern with the approval group list builder, we
will start with the following;:

* Log in to the Oracle BPM workspace and create a static approval group,
which is MFGSalesAdmin. Associate the user (Christine, salesrep, Jim,
and kim) with the static approval group. This will create a static approval
group. The task will get assigned to all the users in the static list at the same
time, as the routing pattern is parallel.

* Asyou have already configured a parallel routing pattern in the Parallel
routing pattern with Names and expressions list builder section, use the same
user task and change the list builder pattern from Names and expressions
to Approval Groups.

* Browse Approval Groups in the weblogic application server and select the
MFGSalesAdmin static approval group.

* Deploy the process and test the user task.

Testing results will reveal that for each stage, the task will get assigned to
Christine, salesrep, jim, and kimin parallel. As we have set 75 percent for
APPROVE and 25 percent for REJECT, and if one participant out of the four rejects
it, then the task will get completed with REJECT as the outcome. However if three
of the four participants approve it, then the task will get completed with APPROVE
as the outcome. Hence, when you test the process with three product items, all the
users get the task at the same time. Let jim reject the task, and you can see that the
task gets completed with REJECT as the outcome.

As the participant type is defined in the stage that is a repeating stage, all the four
participants will receive three tasks each. This is because the input payload has three
lines and the stage is configured to repeat for each line. Hence, when j im rejects one
task, only the first stage is considered as REJECT. All other users still have two other
tasks each. At the stage level, it's the voting pattern defined at the stage level that is
considered. Click on Stage configuration in the task metadata editor's assignment
section. The stage will be repeated on the product item collection. The task will be
considered complete when 50 percent of the stages are completed. Walk through the
following steps to browse the task status:

[152]

http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/
http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/

Chapter 4

Log in as kim and reject the second user task.

2. Login to the Oracle BPM workspace as an admin user —weblogic —and go
to the Administrative task tab. You can browse the completed task, select the
user task, and check its flow diagrams in the history of the task.

You can see that the second stage shows REJECT. As half of the total stages show
REJECT, the task is completed with the REJECT outcome.

Parallel routing pattern with lane participant
list builder

In the lane participant list builder, the participant is derived based on the swimlane
in which the user task is positioned in the BPM process. It could be the current
swimlane participant or the previous swimlane participant. Perform the following
steps to enable the lane participant list builder pattern or the parallel routing task
that we used in the preceding section:

1. Open the HumanTaskRouting process in JDeveloper 12¢ and check the
swimlane role (salesrep).

2. Navigate to BPM studio (JDeveloper) | Task Metadata editor |
Assignment and click on the ProductItem participant type.

3. Change the list builder pattern from Approval Group to Lane Participant.
Select the Current Lane participants, save, and deploy the project.

Log in to the Oracle BPM workspace as an admin user and click on Roles
in the administration task.

6. Select the HumanTaskRouting. Salesrep role and associate Christine,
jstein, salesrep, and fkafka with the application role.

The task gets assigned to all swimlane roles. They are assigned to the sales
representative, and hence, to all the users which belong to the application role,
HumanTaskRouting Salesrep.

However, as soon as one user in the role approves the task, that task is considered
approved, and it gets withdrawn from the other users' lists. If you check in the
preceding section, you will see that there are three stages, as there are three items in
the lines and the stage gets repeated three times. However, for each stage, the task
gets assigned to the HumanTaskPrj.Salesrep swimlane role. Once a user in the role
approves the task, the task gets approved.

[153]

Human Task Patterns

Parallel routing pattern with rule-based list

builder

Rules are defined using Oracle business rules. The moment you configure the
rule-based list-building pattern, a decision service is created. You will create the

rule dictionaries — <Task Name>Rules.Rules and <Task name>RulesBase.rule.
The first one is referred to as a runtime rule dictionary, and the other is referred to as
a base design-time rule dictionary. Always use the first rule dictionary to engulf any
runtime changes. Use the following steps to build a list using the rules:

1. Use the same task metadata that you created while working in the

preceding section.

2. Go to the Assignment section in the task metadata and click on the
participant type. Let the stage remain the same as the repeating stage on the
product item.

3. Let the routing pattern or the participant type be the same as the preceding
one (parallel).

Change the list builder pattern to a rule-based pattern.

5. Enter the name of the rule as ComplexTypeListbuildingRule.

A decision service will be created, and the ComplexTaskRules.rule
and ComplexTaskBaseRules.rule rule dictionaries will be created.

This is shown in the following screenshot:

<} Agpication Resorces
+ Data Controls
+! Recent Fles

HurmsTaskipps jwa - Sructure

Apgicabens | AppheaionServ, | - =) - ek O Organaaton | & FaraleRoutngasiiues. e
] rmanTasiteps L L B2 %0 8 s
Propees W = -
i Tasifioutng @ settng 1G4 Overview | ConeraiRuies | (5 Verbol Rudes
Facts
et - Bter On + % B4 e
o PR Procrases £ Furctins
[umanTasisouting 2 T ComplesTypelbstbildingfue_IT
[l B Companerits) s
= Dot B vakie Sets -
D deevQuietiC
e £ Rukey o Linkes Tk o cpaobefiecuent sumary ckabry we T
ParsbeRioutngTasRues.nies 4% Degson Funcions
P sl Bcn b ok BBl » o ot
= L Hamen Tesks
b” g Tk, sk - Test call Craateasouresih users = rull , grops =TT e REQUIREDY , rulsbiame © “ComplesTynelisthulSnoftule 1T, lsts : Lisks
iy Onganimaiien A Dot Expiover
T“:’“‘F - P tusicss Phroves = ¥ Complextypelbtbuildingitule_MIG
&0 HumanTasis Rule Sets + R
=L orace - "
% [ndes i ol Task parkond. ey ndutry == MG
=[] schemas G Mock e atr e
a - T :
3, Drvserfier cerfremterTroes & Subabtutorshutes oy

=] J b name

itrue,

= ALQUERLD: | rulsbiame : "ComplesTypeListbuldngiids MFG"

[154]

Chapter 4

Configure the rule as shown in the preceding screenshot. If the industry is IT, then
the list should be based on the ITSalesrepAdmin user group (the group is defined
in myrealm, which is an embedded LDAP). However, if the industry is MFG, then
the list should be based on the approval group, which is defined in the workspace
application. Save the rule configuration, deploy the project, and test the project using
TestDatal2c.xml.

The task was executed with a payload that has three line items, and the industry is
IT. This will lead to building the list from the ITSalesrepAdmin group defined in
the LDAP. Four users (achrist, jcooper, jstein, and fkafka) are members of this
group in the LDAP. As this is a parallel routing pattern, all the users have received
the task. As there are three product lines in the input payload, the stage will be
repeated three times. Each user will receive three tasks for each line.

Log in as fkafka, achrist, jstein, and jcooper to verify that they have the three
tasks assigned. All the users receive the tasks in their task list. However, they have
to claim and approve it. As soon as one user from the group claims the task, the task
is considered as COMPLETE. It's withdrawn from the list of other users. It does not
follow the voting pattern.

In the case of approval group and Dynamic/Static approval group, the list of

users is built using the group, and tasks are assigned to all four users. However, it
follows the voting pattern, and when 75 percent of the users approve it, the task gets
approved. Or, if 25 percent of the users reject it, the task is considered as REJECT.

There are many functions available in rule dictionaries that facilitate list building. In
the rule, you have to specify the condition, and in the action of the rule, you can call
one of the following functions to build the list of participants:

®* CreateResourceList

® (CreateSupervisoryList

® CreateManagementChainList

® CreateApprovalGroupList

®* CreateJobLevelList

® (CreatePositionList

[155]

Human Task Patterns

Parallel routing pattern with management
chain

While specifying the management chain, you have to specify a starting participant
(the user/group/role), the top participant title, and/or the number of levels. The
number of level computation is absolute and starts from the starting participant.
The management chain hierarchy is always computed based on users defined in the
embedded LDAP, active directory, or the third-party configured LDAP. Perform the
following steps to build a list using the management chain:

1. Use the same task metadata that you created while working in the
preceding section.

2. Go to the Assignment section in the task metadata and click on
participant type. Let the stage remain the same as the repeating stage
on the product item.

3. Let the routing pattern or participant type be the same as the one in the
previous case, that is, parallel.

4. Change the voting outcome pattern value of APPROVE to 50 percent and
REJECT to 50 percent.

Change the list builder pattern to the management chain.

Configure the management chain list builder pattern with the
following details:

The starting participant user: jcooper
The top participant: TitleVice President

Number of value levels: 4

The management chain list builder stops when the top participant is reached or the
number of levels is met. Hence, the management chain list builder will stop when
four levels are met or the top participant (Vice President) is reached. Jcooper is the
starting participant. His manager is jstein, and jstein's manager is wEaulk. Wfaulk
is also titled the Vice President.

Deploy and test the user task. Perform the following steps to analyze the pattern:

1. Login to the Oracle BPM workspace as a user (jstein), and we can find
three tasks that have been assigned (as the stage is getting repeated and the
input payload contains three items). Approve the first task and log out.

2. Login as jcooper and approve the first task. At this stage, the first task is
approved by two users (jstein and jcooper), and as we have modified
the voting pattern to 50 percent, the task will be withdrawn from the user
(jstein) task list.

[156]

Chapter 4

3. Login again as wfaulk and approve the second task. We would expect that
as wfaulk is the Vice President and the stage is being met, the second task
should be approved and get removed from other users' lists. However, this
does not happen.

4. Log in to the BPM workspace as an admin user (weblogic) and navigate to
the administration tasks in the inbox. Browse this task in the task list and
check its history.

When you click on the user task in the history, it will open Task history, as shown in
the following screenshot:

[Task history #
Options »
1 ProductiineltemApproval -
11 434 Branch 1
111 44% Productltem.ParalleParticpantBasedOnMan#Enpression
Anan & James Cooper 112 » & Branch 1.1
Assigned 113 & Branch 1.1
1112 & John Steinbeck 1131 444 ProductTtem. ParallelParticipantBasedOnhameE xpression
Assigned
% william Faulkner iR & Branch 1.1.3.1
L1113 Assigned & James Cooper
113111 Assianed
112 % Branch L1 Ssigne
44¢ Productitem, ParallelParticipantBasedOnNameExpression a
1121 4] 113112 Approved
i1t & James Cooper James Cooper
Assigned 11312 & Branch 1.1.3.1
John Steinbeck
1.1.2.1.3 & John Steinbec & John Steinbeck
Assigned 113121
Assigned
1..2.1.3 & Branch 1.1.2.1 3
[:
LR & william Faulkner 113122 Approved
""" Assigned L John Steinbeck
a 1 113,13 & Branch 1.1.3.1
1.12.13.2 Approved & William Faulkner
William Faulkner 113.1.3.1)
; Assigned
1122 System Undat A & william Faulkner
ystembpdate M| L1313 Withdrawn
Ll System Update
1133 Approved
-
L2 System Update

We can see that the hierarchy gets resolved in one go and all the participants are
assigned the task. Participants are derived based on the list builder configuration.

In this case, although the level was entered, the list has been built up to three levels,
starting from jcooper and stretching till the Vice President (wfaulk). We can act
on tasks irrespective of their level, and based on the voting pattern defined for the
parallel participant type, the outcome will be decided.

[157]

Human Task Patterns

Serial routing pattern

The following pattern table highlights facts around the Serial Routing Pattern:

Signature Serial Routing Pattern

Classification Human Task Pattern

Intent A set of people (participants) must work in sequence.
Motivation The participants have to act in a serial fashion, one after another.
Applicability This pattern is useful in scenarios where multiple users have to

provide their opinion in a serial fashion.

Implementation | This is implemented using serial routing in participant blocks.
Though this pattern intends to allow participants to work in a
sequence, the assignment of tasks to participants also depends on the
list-building pattern. For example, if the list-building pattern is the
name and expression, then the task gets assigned to participants in a
sequence; however, if the list builder pattern is a group, then the task
gets assigned to all the users at the same time. However, one of the
participants has to claim it and then act on it.

Known issues NA

Known solution | N/A

Serial routing enables participants to work in a sequence. The most common scenario
for this is the management chain escalation. For example, a list of participants is
built using a dynamic approval group, and the participants are assigned tasks

in a sequence; if one task is completed, then the next task is assigned, and so on.
Participants have to act in a serial fashion. This participant type enables you to

create a list of sequential participants for a workflow. The following are the serial
behavioral patterns in conjunction with different list builders.

Serial routing pattern with list builder — name
and expression

Name and expression can be used for users, groups, and application roles.

Participant identification type — users

The task gets assigned to participants in a serial fashion, for example, if the name
and expression and the value-based list contains users such as jstein, jcooper,
and christine. Use the following steps to configure the participant type for users:

[158]

Chapter 4

1. Use the same task metadata that you have been using so far. Modify the stage
and make it nonrepeating.

Click on the participant type and edit it.
Make the participant type serial.
Choose the list builder pattern as name and expressions.

Enter values for the participants as jstein, jcooper, and Christine.

SRS

Deploy and test the process.

A task gets assigned to the first user in the list. Once the participant acts on the task,
it gets assigned to another user in the list, and so on.

Participant identification type — groups

The task is assigned to the ITSalesrepAdmin group. A couple of users are members
of this ITSalesrepAdmin group (the myrealm LDAP group). Users (achrist,
jcooper, jstein, and fkafka) are members of this group in the LDAP. When the
task is initiated, it gets assigned to all the users, as there is no sequence defined for
the users in the group. One of the participants has to claim the task and act on it.
Once claimed, the task gets withdrawn from other users' lists.

Participant identification type — application role

The task is assigned to the HumanTaskRouting. Salesrep application role.

Users (salesrep, Christine, jcooper, and fkafka) are members of the
HumanTaskRouting. Salesrep application role. When the task is initiated, the task
gets assigned to all the users, as there is no sequence defined for the users in the group.
One of the participants has to act (approve or reject or some other defined action) on
the task. Once it is acted upon, the task gets withdrawn from other users' lists.

Serial routing pattern with list

builder — approval group

Configure the serial participant type with the approval group list builder pattern.
The MFGSalesAdmin approval group is a static approval group with users
(Christine, salesrep, Jim, and Kim) defined in a sequence. Save, deploy, and
test the process. Tasks get assigned to the users in a sequence. As it's a static list,
Christine gets the task first. Once the assigned participant acts on the task, it gets
assigned to the subsequent participant.

[159]

Human Task Patterns

Serial routing pattern with list
builder — management chain

The management chain list builder stops when the top participant is reached or

the number of levels is met. Configure the management chain participant list
builder with gcooper as the starting participant. Let the top participant title be Vice
President. The number of levels is four. The hierarchy for Jcooper is defined with
Jstein as its manager and wfaulk as the manager of jstein. Wfaulk is also titled
the Vice President. Perform the following steps to test the scenario:

1. Deploy and test the user task.

2. Login to the Oracle BPM workspace as a user (jcooper), and approve
the task.

3. Log back in to the BPM workspace as an admin user (weblogic) and
navigate to the administration tab and browse the task in the assigned
task list.

4. Go to the task's history section, and you can view the task flow. You can see
that the list is created in one go with three participants — jcooper, jstein,
and wfaulk—and the task gets assigned to users in a sequence.

Serial routing pattern with list builder — job
level

Starting from a given approver, the list of participants climbs up the supervisory
hierarchy until an approver with a specified job level is found. This can be value-
based or rule-based. This pattern traverses the job level hierarchy. It allows you to
specify the starting participant and the top participant. The level defined is relative
to the starting participant or the task creator. It allows you the flexibility to include
all managers in the last level. This also allows you to define the utilization of the
participant. You can define whether you want to utilize all the participants from the
list, the first and the last person from the list, or only the last person from the list.
This stops when the top participant is reached or the top job level criteria are met.

Use the same task metadata that you used in the preceding scenario. Change
the assignment configuration. Let the stage be a nonrepeating stage. In the
participant type, select the Serial routing pattern. Build the list using Job Level.
Enter the following details for the list builder configuration, as shown in the
following screenshot:

[160]

Chapter 4

General

f © Edit Participant Type &J‘ () Bt Conpletion
\') Dynamic Routing Rules
G I = " -
A::a:rcaed: Type: | B9 serial v‘ Label: ‘Producﬂtem.Para\leIParhapaniBasedOnNameExpresslon ‘ 1) Error Assigness
uf Reviewers
Build a list of particdpants using: |Job Level v| e Adhoc Routin
3) Let participants manually daim the task
() Auto assign task to a single |User v| /
Specify attributes using: () Value-based () Rule-based
Starting Participant: |Text and XPath '| ‘]conper | |2
Defaulted to the task initiator's manager
Top Participant: |Text and XPath '| ‘cdickens | Q
Number of Levels: |At least ~ ||:|
[] Include all managers at last level
i Utilized Participants: |Everyuna from the list 7} -
v
Mone]
1 Everyone from the list Q
= First and last person from the list | Location
i Last person from the list | E... .. g'SOA\HumanTasks
Help O Cancel
* Starting Participant: This is the first participant in the list. If you don't
enter a value, then the task initiator's manager will be considered the first
.. . e ey . . is 4 cooper. .
articipant. The task initiator in this case is j per. You can define the task
initiator in the user task's implementation properties in the advanced section.
* Top Participant: The user cdickens is the last participant in the hierarchy
chain, and the task approval request will not go beyond this participant in
the chain.
[]

Number of Levels: Two levels will be traversed in this case. However, the
number of levels specifies the levels to be traversed for the job level. In this
case, the number is relative to Starting Participant. However, you can specify
the number relative to Task Creator. Also, you can create a number that can
be an absolute value.

Include all managers at last level: If the job level equals that of the
previously calculated last participant in the list, then it includes the
next manager in the list.

[161]

Human Task Patterns

» Utilized Participants: Select a value from the calculated list of participants.
If you specify the first and last person from the list, then the task will get
assigned to only the first and last person from the calculated participant list.
If you select everyone from the list, then everyone from the list will receive
the task.

When you test the preceding configuration, you will find that starting from jstein
(jstein is the manager of the task initiator), the task gets assigned to cdickens, as
the level specified is 2. Remember, the user cdickens is two levels senior to jstein.

Job Level can be built using a rule-based attribute. However, with Job Level and the
position list builder, you can use the substitution and modification rules. These rules
are offered as seeded rules when you create a rule-based list builder. Users, groups,
and application roles appearing in a list can be substituted using list substitution.
Similarly, you can extend or truncate job levels and positions from the rules. List
modification is applied after the list is created.

Modifying participant lists using list modification
After the list creation, you can modify the list using a list-modification rule. You can
extend and/or truncate Job Level and position list builders from rules using list
modification. The rule dictionary will always contain a pre-seeded rule set named
ModificationRules by default. This rule is available for use only when Job Level

and position list builders are asserted in the list that created the rule sets. The following
are the functions that are available to enable and facilitate list modifications:

e Extend

e Truncate

Substituting participants using list substitution

You can substitute users, groups, or application roles. With each rule dictionary,
you have access to a pre-seeded rule named SubstitutionRule with a Substituterule
function, which facilitates list substitution. The substitute function carries

four parameters.

As shown in the following screenshot, Job Level is built using a rule-based attribute.
The starting participant will be derived as the manager of the task initiator. In this
case, the task initiator is the user jcooper. Hence, the starting participant of the

user task will be the manager of jcooper, who is jstein. However, if you check

the substitute rule, jstein will be substituted with wfaulk. Hence, when the task

is executed, it will derive the starting participant as jstein. However, it will be
substituted with wfaulk.

[162]

Chapter 4

The user wfaulk becomes the starting participant and the task gets assigned

to wfaulk. It then moves the supervisory chain till the at-most/at-least level is
reached or till the participant is met:

PR DO B[%@ 4
"%Setﬁngs
=) Facts

&4 Overview < General Rules &2 Verbal Rules

¥ [] Filter On
- Functions
= ¥ JobLevelRule
(x) Globals <enker description>

=) value Sets F
@ Links Task == Task
<f\, Decision Functions <insert test:=
?;i, Translations THEN
a Test call Createloblevellist{ atmost : 2 , atmostRelative | Relative Type, STARTING_POINT |, atleast : 3, atleastRelative : RelativeType, STARTIMNG_POINT |
ﬂ Data Explarer <insert action=
3’7“ Business Phrases & &) La]l :Q% & - (x| N '@ ﬂJg
Rule Sets + ® ; .
@ settings e Overview) General Rules D’c‘ Verbal Rules
@) JobLevelRule =) Facts
¥
@Mndiﬁ(aﬁDnRules £ Functions ¥ [Biter on
£ SubstitutionRules {x) Giobals = ¥ SubstitutionRule
E] = . <enker description:
=) Value Sets I
sign 2 Links Task == Task
i § <f\, Decision Functions sinsert test
usiness Rules - Log Simu P
W) Translations
B Dictionary - ParallelRouting THEN
Message Test call Substitute fromId ; "jstein” , told : "wfaulk" , ruleMame ; "SubstitutionRule” , substibutionRules : SubstitutionRules)
‘ﬂ Data Explorer <insert action=

5 Business Phrases
Rule Sets + b4

&P JoblevelRule

@) ModificationRules

&P SubstitutionRules

Serial routing pattern with list
builder — position

List building starts at the requester or a given approver's position and goes up until
a specific number of levels or a position is met. Use the same task metadata that you
used for the previous section and modify the list builder. Let the routing pattern be
serial and change the list builder to the position. It will ask you to enter a rule name,
as it's always based on rules. Enter the rule name as positionRule.

When you configure the position list builder, you encounter almost the same

properties as we defined in the preceding section, such as utilized participants,
and so on.

[163]

Human Task Patterns

Serial routing pattern with list
builder — supervisory

Starting from a given approver, the list of participants climbs up the approver list
and generates a chain that has a fixed number of approvers in it. While configuring
the supervisory list builder pattern, you have to supply Starting participant, Top
participant, and Level. If no value is passed, then Starting participant defaults

to the initiator's manager. Here, the top participant is not a title. While in the Job
level hierarchy, you can use a title as the top participant. This pattern traverses the
supervisory hierarchy. In this section, you will create a supervisory list builder based
on a rule. You can configure a supervisory list builder based on values. However,
we will choose to create a supervisory list based on rules. The following is the
configuration of the rule for the supervisory list builder:

IF Industry = "IT" THEN

call CreateSupervisoryListcall CreateSupervisoryListcall
CreateSupervisoryListcall CreateSupervisoryListcall
CreateSupervisoryListcallCreateSupervisoryList (levels:3,
startingPoint:HierarchyBuilder.getManager ("supervisory", Task.
creator,-1,"",""), uptoApprover:HierarchyBuilder.getPrinicipal ("wfau
lkm™,-1,mn, "),

AutoActionEnabled: false, autoAction: null, responseType:
ResponseType.REQUIRED, ruleName:"SupervisoryListRule", lists: Lists)

The preceding rule configuration makes it clear that the number of levels is three,
starting from the manager of the user who is the task creator. In this case, configure
the user task property with the task initiator as jcooper. As the user jstein is the
manager of jcooper; the task will first get assigned to jstein and will move in the
chain until the user wfaulk is reached or the number of levels is met. A response is
required from the participant as it's not an FYI. The following are the parameters that
you need to set while invoking the createsupervisoryList () function:

* StartingPoint and topApprover: Starting point and top approver are
specified as users, but you can also build a hierarchy principal as the starting
point and the top approver. To build a hierarchy principal, you have the
following functions available:

° getManager

o

getPrinciple

° getManagerofHierarchyPrinciple

* AutoActionEnabled and autoAction: Configuring these properties
enables the users resulting from a particular list builder to act automatically
on the task.

[164]

Chapter 4

* The response type: The assignee has to act on the task if the response type
selected is required. If it's not required, then the task will be converted to an
FYI assignment.

Serial routing pattern with list builder — rules

Rules build the list of participants. Oracle BPM offers many built-in seeded functions
that can be used to create the list of participants. The following are the functions that
are available:

® CreateResourcelist

® (CreateSupervisoryList

® CreateManagementChainList
® CreateApprovalGroupList

® CreateJobLevellist

® (CreatePositionList

When you enter the name of the rule, a decision service is created, and two rule
dictionaries are created — <Task Name>Rules. Rules and <Task name>RulesBase.
rule. In the rule designer, model your conditions, and in the action part, call one of
the functions mentioned previously to complete building your lists.

When the rule conditions are met, the function gets executed. The function will
return the list of participants. However, it's the routing pattern that will define
how the task will be assigned. Let the approval group be MFGSalesAdmin. This

is a static approval group defined in the BPM workspace with users (Christine,
salesrep, Jim, and Kim) defined in a sequence. The task gets assigned to the users
in a sequence. As it's a static list, Christine gets the task first. Once the assigned
participant acts on the task, it gets assigned to the subsequent participant.

Single routing pattern

The task is assigned to a single user, group, or role. For example, a vacation approval
request is assigned to a manager. If the manager approves or rejects the request, the
employee is notified of the decision. If the task is assigned to a group, then once one
of the managers acts on it, the task is completed. If the list of participants is built
using an approval group, then the task is assigned to the group; however, once one
of them acts on the task, it's considered complete.

[165]

Human Task Patterns

Single approver pattern with list
builder — name and expression

Configure the task metadata with the list builder pattern —name and expression. Let
the participants be users (Christine, jstein, or jcooper). Upon execution, the task
gets assigned to all three participants —Christine, jstein, and jcooper. However,
once one of them acts on the task, it's considered complete.

Single approver pattern with list

builder — approval group

Configure a single participant type with the approval group list builder pattern.
The MFGSalesAdmin approval group is a static approval group with users
(Christine, salesrep, Jim, and Kim) defined in a sequence. Save, deploy, and
test the process. The task gets assigned to all the users in one go. Once any one of
the assigned participants acts on the task, the task is considered complete and is
withdrawn from other users' lists.

Single approver pattern with list
builder — management chain

The management chain list builder is best utilized with the serial routing pattern.
However, if you use it with the single routing pattern, then all the users in the
management chain will receive the task. However, once a participant acts on the task,
the task is considered complete, and it gets withdrawn from other users' lists. All other
list-building patterns work as they should; however, their behavior is governed by the
routing pattern. In the case of a single routing pattern, once a participant acts on the
task, the task is considered complete and gets withdrawn from other users' list.

Notify/FYI pattern

The task is assigned to participants who can view it, add comments and attachments,
but cannot modify or complete the task. It's just like a notification and no one is
supposed to act on it. We will cover two list builder patterns for the FYI routing
patterns. The remaining patterns are quite similar, as their behavior is to just notify
participants. The process token remains with the BPM process, the control is not
assigned to the human workflow, and the main process executes subsequent activities.

[166]

Chapter 4

FYI approver pattern with list builder — job

level

The task will be assigned from the starting participant to the top participant/level.
The flow of the assigned task will show you the task assigned from the starting to the
top level/participant. All participants will receive the task. The control will not get
assigned to the task, and the token remains with the BPM process. The BPM process
will move ahead to subsequent activities.

FYIl approver pattern with list builder — name
and expression

Create a simple user task with the stage as nonrepeating and the routing pattern

as FYI. Let the list builder pattern be names and expressions. Enter values for

users as Christine, jstein, jcooper, and fkafka. The task will be sent to all the
participants in one go, which means in parallel. The control will not get assigned to
the task and the token remains with the BPM process. The BPM process will move
ahead with subsequent activities. Now, let's modify the stage and make it a parallel
stage. Let the stage be repeating on the Product Item collection. This is the same
collection that you created in earlier sections. Let the rest of the configuration remain
the same. Deploy and test the process. As there are three product lines, each user will
get the task information three times. An FYT task will be offered to them three times.
We will try to solve and simplify this problem using task aggregation.

Task aggregation pattern

As you have seen in the FYI approver pattern with list builder — name and expression
section, the task gets assigned to the same user multiple times. This holds true for
other patterns too. However, Oracle BPM offers the task aggregation mechanism
that will enable you to configure how often a user can see the task.

For the same task metadata that you created in the FYI approver pattern with list
builder - name and expression section, as it's a repeating stage, click on the stage and
then on the Task will go from starting to final participant link on the aggregate
section in the task metadata. This will open the Assignment and Routing Policy
dialog box. Click on the Assignment tab.

In the task aggregation drop-down list, select STAGE. Save and execute the process.
This time, the task will get assigned to the user once. This means that the user will
see the task only one time in the stage.

[167]

Human Task Patterns

The task aggregation, when defined as none, indicates that there is no approval
aggregation, which means that the user sees the task as many times as it is assigned
to him or her. If the task aggregation is selected as TASK, then the user sees the task
only one time in the life cycle of the task. The following table highlights the facts:

Routing | Stage Aggregation Action Assignment
pattern
FYI Nonrepeating | None, stage, N/A The task gets
task assigned to all
the users once.
FYI Repeating None, stage, N/A The task
task is in the
recoverable
error.
Single Nonrepeating | None, stage, N/A The task gets
task assigned to all
the users once,
and then, the
single routing
pattern gets
applied.
Single Repeating None The stage is repeating and the | All the users
input data contains three line | will receive
items. Hence, all the users three tasks
will receive three tasks (one (one for each
for each line item). Users can | line item).
claim and act on the task.
Once it is claimed by a user,
the other user will see the
task in their list but cannot
act on an already-claimed
task by some other user.
Single Repeating Stage, task Once the user can claim and | The input
act on the task, the task gets contains three
completed. line items;
however, the
aggregation
happens at the
stage level,
and each user
will receive
the task just
once.

[168]

Chapter 4

Routing | Stage Aggregation Action Assignment

pattern

Serial NonRepeating | None, stage, N/A Tasks get

task assigned to
users in a
serial fashion,
and there will
be just one
task.

Serial Repeating None As it's repeating, and if the Three tasks
input contains three line get assigned
items, then three tasks get to the first
assigned to the first user in user in the list.
the list.

Serial Repeating Stage, task Even if it's repeating, and Tasks get
if the input contains three assigned to
line items, only one task gets | usersina
assigned to the first user in serial fashion
the list, and the rest of the and there will
behavior is based on the be just one
serial routing pattern. task.

Parallel Nonrepeating | None, stage, N/A All the users

task receive one
task.

Parallel Repeating None The stage is repeating and the | All the users
input data contains three line | will receive
items. Hence, all the users three tasks
will receive three tasks (one (one for each
for each line item). line item).

Parallel Repeating Stage, task Although the stage is All the users
repeating and the input data | will receive
contains three line items, the just one task.
aggregation happens and all
the users will receive just one
task.

You might be wondering whether the stage and task aggregation behave in a
similar manner. However, this is not true. As we have just used one stage and
one participant type and constructed the preceding table, we have not witnessed
the stage aggregation. Let's refractor the assignment routing slip and add another
participant block in the same stage, which is parallel to the first participant block.
We can use the ParallelRoutingTask.task human task. Let the routing pattern
for both the participant blocks be parallel routing.

[169]

Human Task Patterns

Let's use the name and expression list builder pattern for both the parallel routing
participant blocks. Let the first participant block have the users jstein, jcooper,
Christine, and fkafka and the second participant block have the users jstein,
jcooper, rivi, and lata. The following are the observations when the task
aggregation is staged:

* The task gets assigned to all the users in both the participant blocks just once.

* Users jstein and jcooper are common in both the participant blocks; still,
they will receive the task just once, as aggregation is set at the stage level.

Dispatching pattern

We learned about the task assignment patterns in the Task assignment patterns section.
In this section, we will cover the dispatching pattern. Dispatching patterns select a
particular user or group from either a group or a list of users or groups. There are
many patterns offered by Oracle BPM for escalating and dispatching; interestingly,
we can create our own patterns too. Usually, a user needs to manually claim the task.
However, using dispatching patterns, we can configure the task to dispatch messages
based on one of the following patterns:

* LEAST_BUSY: The tasks will be dispatched to the user who has the least
number of tasks currently assigned. This will pick the least busy user, group,
or application role with the least number of assigned tasks. In the case
of users, tasks that are assigned to the user and the task that the user has
claimed are counted. In the case of groups and roles, all the tasks assigned
to the group and role are counted, irrespective of the fact that they were
assigned or claimed.

* MOST_PRODUCTIVE: The task is dispatched to the user who completes the most
tasks over a time frame. For groups and application roles, the total number of
tasks completed by all the users who are direct members of that group or role
is counted. The time period to be used can be specified using the time period
parameter. If no time period is specified, then the default value specified in the
dynamic assignment configuration for the instance is used.

* ROUND_ROBIN: The task is dispatched to each user or group in turn. Every
time the Round_Robin functions are executed, a new participant is picked
from the list of potential participants. When all the participants are picked,
the patterns iterate again from the start of the list.

[170]

Chapter 4

Dynamic assignment patterns can also be called using an Xpath function in any
Xpath expression in the task definition. The signature of the function is given by
the following:

hwf :dynamicTaskAssign (patternName, participants,
inputParticipantType, targetAssigneeType, isGlobal,
invocationContext, parameterl, parameter2, ..., parameterN).

Escalation pattern

Escalation is a common requirement while implementing Oracle BPM's processes
with human interactions. Processes don't do the work, it's the people who do it.
This concept leads to those processes that have heavy human interactions. There
are scenarios where a participant does not act on an assigned human task, and such
scenarios contribute to the candidate being escalated.

Custom escalation empowers the BPM system with the capability to introduce a
check on the task's outcome. A participant is assigned a task, and if he/she doesn't
act on the task in a specified time frame, then nonavailability should be accounted,
published, and notified. If a participant does not act in the duration provided, the
task is escalated to the manager or another user, as deemed appropriate.

Escalation makes sure that service level agreements (SLAs) are met and the
processes are performed as per the exceptions within the time frame in which they
are supposed to be performed. For example, if a task is assigned to a participant and
the participant was supposed to respond in two days and it's overdue by four days,
it basically hampers the fabric of the process and might lead to loss of business. Let's
assume a loan approval process. If the loan document request is awaiting a loan
officer's approval and it's overdue in its queue by four days, then the best practice is
to escalate the overdue information and the task to another participant.

The https://blogs.oracle.com/acharyavivek/ blog post is meant to showcase the
process of custom escalation and how the participant list can be built dynamically. The
duration deadline section in the human task metadata can be used to create a human
task definition.

By default, escalation is based on the management chain hierarchy and the task

gets escalated up in the hierarchy from the user to his/her manager, and so on.

You can control the level to which a task can be escalated and can also use a title to
which the task gets escalated. The level and title assignment can be configured while
configuring the human task definition's duration deadline.

[171]

https://blogs.oracle.com/acharyavivek/

Human Task Patterns

Oracle BPM offers you various ways to escalate:

¢ Role-based escalation
¢ Level-and-title-based escalation
e Custom escalation

To know more about escalation and download the escalation project, visit my blog
post at https://blogs.oracle.com/acharyavivek/.

Rule-based reassignment and delegation
pattern

Task reassignment and delegation can be performed automatically, based on rules.
Reassignment rules are defined within the preferences page in the BPM workspace
application. The following pattern table highlights facts around the Rule-based
Reassignment And Delegation Pattern:

Signature Rule-based Reassignment And Delegation Pattern

Classification Human Task Pattern

Intent Automatic reassignment and delegation of tasks based on rules.
Motivation Defining personal or group rules that can perform rule-based auto

reassignment, delegation, and automatic actions on the tasks.

Applicability The rule-based reassignment and delegation pattern offers you the
flexibility to reassign, delegate, and auto-act on tasks by applying
the participant's personal rules or group rules.

Implementation | Personal rules are implemented in the BPM workspace. A
participant can log in to the BPM workspace and define his/her
personal rules. Group rules are defined by administrators who can
reassign tasks to users/groups/roles.

Known issues NA

Known solution | NA

To walk through the use case and sample project, visit the article associated with
this book available on the Packt Publishing website at http: //www.packtpub.com/
article-network. There, we defined a rule for the user buny, which demonstrates
the implementation of the rule-based reassignment and delegation pattern.

[172]

https://blogs.oracle.com/acharyavivek/
http://www.packtpub.com/article-network
http://www.packtpub.com/article-network

Chapter 4

Ad hoc routing pattern

The following pattern table highlights facts around Ad Hoc Pattern:

Signature Ad Hoc Routing Pattern

Classification Human Task Pattern

Intent Dynamically adds task participants at runtime.

Motivation Allows task participants to invite other participants to act on the
task.

Applicability We need ad hoc routing to cater to the business requirements,

where participants want to add other participants in an ad hoc
fashion at runtime.

Implementation | The routing pattern in 12c offers you the flexibility to allow each
participant to invite other participants as the next assignees to

the task when approving the task. Before routing to the next
assignees in the workflow, we can allow the initiator to invite other
participants too. Using Allow participant to edit new participant,
we can edit other ad hoc participants that were added to the
routing slip.

Known issues Privileges need to be assigned to participants to perform ad hoc
routing, and the task should have at least one participant.

Known solution | By default, task owners and assignees have the grants to the ad
hoc routing action in the Access tab of the task editor. The ad hoc
assignee should not be added for FYI participants.

We'll continue with DynamicTaskAssignment, which you created in the dynamic
task assignment section in the article associated with this book, which is available
on the Packt Publishing website at http: //www.packtpub.com/article-network.
In this section, we will explore the ad hoc routing pattern:

1. Open the DynamicTaskAssignment project in JDeveloper 12c.

2. (Click on ValidationTask.task to open the task metadata editor and go to the
assignment section.

3. Click on the ad hoc routing tab in the Assignment section.

Check all or one of the options as per your requirements. These options are
discussed in the implementation box in the ad hoc routing pattern table,
as shown previously. For this sample, we have selected all three options.

Save all and deploy the project.

Test the service using the test data (TestDatal2c.xml) from the
DynamicTaskAssignment project's testsuites folder.

[173]

http://www.packtpub.com/article-network

Human Task Patterns

7. The validation task gets assigned to different participants based on the
organization unit you have passed. Log in to the BPM workspace as the
participant anju.

Click on the task to open up the task user interface.

Expand Actions and click on Ad hoc Route. This will open the Route Task
dialog box.

10. We can route the task to Single Approver, Group Vote, or Chain of Single
Approvers. However, for this sample, check Single Approver.

11. Enter the comment that you want to pass into the Comments section
of Single Approver.

12. Browse/search for the user (Single Approver), and select the
new participant.

13. Click on OK.
Once you click on OK in the route task dialog box, the task gets approved by

the participant anju and gets assigned to the newly invited participant jstein.
This is shown in the following screenshot:

[veidasonask 2[x] venfeatonproces:
ValidationTask Approve || Reject || Cloim |[BBEE™) ¢a cp (3 RouteTask x
Request Information..
> 3 Details (@) 2 [=] androute to: Comments:
Creste Stk @ Sngle Approver Can you please check damant's fraud btatus?
Contents = B
Adhoc Route.... -
Case Dedine Date B ¢ Chain of Sindle Approvers

Escalate
Suspend

Resson

Comments

Withdraw Al [=] sten Search | | Reset
Claim - Settlement

Skip Current Assignment
Faultsubject New » FirstName LastName Emai Tite Manager Organization
Claim - Settlement - Offers S U] § jsten John Stenbeck jstein@emaiExample. Manager2 wiauk Demo User
Upload Offer
Upload Date
SentDate

Selectal | | SelectNone

Selacted § psten 8

As we can see in the preceding screenshot, the task gets routed to other participants
once the task is acted upon by the user. This option works at any current point in the
task's routing. However, if we want to add participants at a future point in the task's
routing, then check the Allow participants to edit new participants option in the ad
hoc routing dialog box.

[174]

Chapter 4

With this option checked, the user can use the history region in the task form to add
additional participants at the desired point in the task's routing. To do so, perform
the following steps:

1. Click on the task to open the task form.

2. Scroll down to the history section and expand it.
3. Click on + to add the assignee.
4

You can also edit and delete assignees.

Request information feature

In the preceding section, we learned about various human task patterns; however,
in the following sections, we will explore and implement various features that
greatly enhance BPMN. The following table highlights facts around the Request
Information Feature:

Feature Request Info Feature

Classification Human Task Pattern

Intent Requests information from other participants.

Motivation Allows task participants to request for information from other
participants.

Applicability The request information pattern offers you the flexibility to request

for additional information from participants or other users. All
those participants who have acted on the task will be listed in
the participant list, while we can also browse for other users. The
task state will be Info Requested when the task is routed to the
participant from whom the information is requested.

Implementation | The task participant who is requesting for information will

click on Request Information... in the action, as shown in the
following screenshot. However, the user who has requested for the
information will be assigned the task. The requested participant

can enter the information in the Comments section of the task

and can hit Submit Information to provide the information being
requested. Based on the return option configured by the request
initiating participant, the task will either come back to the requesting
participant after information is submitted, or it can be rerouted
through all intermediate participants, as defined in the routing slip.

Known issues NA

Known solution | NA

[175]

Human Task Patterns

As we can see in the following screenshot, the participants who have Validation
Task assigned can request for information from other participants. The participant
rivi will receive the task and submit the information. The task is then rerouted
through all intermediate participants as per the routing slip as shown in the
following screenshot:

= [r—
ValidationTask Approve | Reject | Actions
- Request Information...
3 Details (i)
Reassign...
Create Subtask...
Contents
& Adhoc Route...
Case Dedline Date L%)
Push Back... \
Reason L]
" Escalate
Comments Suspend
Claim - Settlement
Withdraw
Fault Subject New
Skip Current Assignment
Claim - Settlement - Offers e
Version Save
Upioad Offer
Upioad Date %
Sent Date % é"
Conmoent Request More Information x
Claim - Settlement - Payments
Payment Method
. Particpant E|
From e
@ Other users rivi %
Nothing Suspicous. .| IPlease proceed.
Comments:
Return Options

i

[176]

Chapter 4

Reassignment and delegation pattern

The following pattern table highlights facts around the reassignment and
delegation pattern:

Signature Reassignment And Delegation Pattern

Classification Human Task Pattern

Intent The participant can reassign and delegate the task to other users/
groups/roles.

Motivation To change the task assignment or allow someone else to perform on

behalf of the original assignee.

Applicability The Reassignment And Delegation pattern offers you the flexibility
to reassign a task to another assignee who can work on the task as
if the task was assigned to her or him. However, in the case of task
delegation, the assignee to whom the task is delegated will work on
behalf of the original assignee.

Implementation | The task participant who wants to reassign the task to another
assignee can click on Reassign... in the Actions tab. The Reassign
Task dialog box will allow the original assignee to reassign the task
to another user or delegate the task to another user.

Known issues NA

Known solution | NA

As you can see in the following screenshot, the original assignee can click on
Reassign... in the Actions tab to perform the task reassignment or delegation.

[177]

Human Task Patterns

Reassign... will allow the transfer of the task to another user or group, and the

delegate will allow the new assignee to act on behalf of the original assignee.
This is shown in the following screenshot:

—=
ValidationTask Approve || Reject I =]
D> & Deiails@ Request Information...
Reassign...
. Create Subtask. ..
Contents
’ Adhoc Route,.,
Case Dedine Date &
Escalate
Reason
Release
Comments nd
Claim - Settlement -
Save
Fault Subject New
Claim - Settlement - Offers
Version
Upload Offer
Upload Date
Sent Date
Comment

Claim - Settlement - Payments
Payment Method
Payee Name

Payment Amount

Reassign Task

Reassign tasks to one or more users.

This will transfer ownership of the task and remove it from your worklist.
@ Reassign (transfer task to another user or group)
) Delzgate (allow specified user to act on my behalf)

Search Reset

Users
Groups
Application Role

MName LastMame Email Title Manager Organization

Select All Select None

Force completion pattern

The following pattern table highlights facts around the force completion/early
completion pattern:

Signature Force Completion/Early Completion Pattern

Classification Human Task Pattern

Intent Forcefully or abruptly completing a task.

Motivation To cater to those business requirements that require early
completion of the task regardless of other participants in the
workflow.

[178]

Chapter 4

Applicability The early completion pattern offers you the flexibility to

abruptly complete a task. For example, an insurance claim goes

to an insurance agent and then to the claim manager. If the

first participant (the insurance agent) rejects it, we can end the
workflow without sending it to the next participant (the claim
manager). Such cases can be modeled in the BPMN flow; however,
this makes the model complex. Hence, modeling them in the
routing slip makes things efficient.

Implementation | To perform the abrupt completion of the task, there are
two methods:

e Qutcome

* XPath expression-based routing condition

If outcomes are defined in the early completion pattern, then any
time the specified task outcome occurs, the task gets completed.
If the routing condition is defined, then any time the specified
routing condition occurs, the task gets completed. However,

if both the outcome and routing conditions are defined, the
workflow service performs a logical operation of the two
conditions.

Known issues Evaluation of the routing condition defined using the XPath
expression is not performed until at least one user has acted upon
the task.

Known solution | Effective modeling.

We can define early completion in the verification task, which is defined in the
DynamicTaskAssignment tab.

The following are the steps:
1. Click on the VerificationTask task to open the task editor and navigate to the
assignment section.
Click on Early Completion, as shown in the upcoming screenshot.

Check Complete task when participant chooses; this will open the
Completion details dialog box.

Select REJECT to complete the task if any of the participants rejects the task.
5. We can also enter a routing condition. The entered routing condition says
that if the claim is not validated, then the task can be completed.

If both the situations happen, then a logical oOr is performed. You can test the
scenario by executing DynamicTaskAssignment with the supplied TestDatal2c.
xml; however, change the claimvalidated value from YES to NO.

[179]

Human Task Patterns

Enabling early completion in parallel subtasks

When we have a multistage configuration and each stage (group) has multiple
participant blocks, stages are parallel to each other. Check Enabling Early Completion
in Parallel Subtasks if you want to model in such a way that if any participant rejects/
approves the task, then all the tasks in that stage get abruptly completed.

Check Completing Parent Subtasks of Early Completing Subtasks if you want to
model in such a way that if any participant rejects/approves the task, then all the
tasks in that stage get abruptly completed and the parallel stage also gets completed.

Routing rule pattern

The following pattern table highlights facts around the Routing Rule Pattern:

Signature

Routing Rule Pattern

Classification

Human Task Pattern

Intent

To solve complex rules based on routing scenarios. This offers you
the flexibility to complete the task or route it based on rules.

Motivation

Rules can be routing rules or participant rules. Routing rules will
provide solutions to back and forth and complex task routings.

Applicability

We can define stages and participant blocks to route tasks between
participants; however, this offers you a linear flow from one set of
participants to another. We can use early completion, reassignment,
delegation, skipping, and other features to cater nonlinear
requirements. However, if we need to perform complex routing that
includes back and forth routing between participants, then we need
a rule-based routing solution. For example, if certain conditions are
met, we want to give back the task to the previous participant. Else,
if the amount is less than a certain threshold, we want to complete
the task or maybe allow the task to go to some other participant, and
so on.

Implementation

When we define a dynamic rule, a routing rule set is created in base
and custom rule dictionaries. Whenever a task is completed by a
participant and/or when the task gets assigned to a participant, the
task service will assert the facts into the decision service and will
execute the routing rule set.

Known issues

NA

Known solution

NA

There are some facts that are available for only the routing rule and not participant
rules. Facts such as Previous Outcome and Task Action are available to only

routing rules.

[180]

Chapter 4

The task service routes the tasks based on Task Actions defined in the routing rule
set. The following is the list of Task Actions that you can call from the routing rule to
guide the task service routing;

Action Comment

GO_FORWARD | This is the default behavior that guides the task flow to the next
participant in the list.

PUSHBACK This guides the task flow to the last participant who just set the
task outcome.

GOTO Use this if you want to assign the task to a specific participant.

COMPLETE The task will be marked as complete, and it will not be routed further.

ESCALATE Based on the escalation policy that is defined, the task will be escalated
and reassigned.

As you can see in the following screenshot, we can click on Dynamic Routing Rules
in JDeveloper. This will open the Use Advance Rules dialog box. Enter a name of the
rule, say, ValidationTaskRule. A RoutingRules set will be created. We can create an
if-then-else rule or a decision table to build the logic. As we can see in the following
screenshot, an if-then-else rule is created, which calls for Task Action complete () to
complete the task when the specified condition is met:

qh General

o3 Ed Form ~ 4= configure

& Data
'.F Assi ey

) Use Advanced Rules

5 Presentaton|
43 Deadines
& Notificaticn
&, Access

Events

é.:, Documents

Rules Dictonary: j

Rules can be used to define state machine routing.

Rules are evaluated after a partidpant sets the outcome
of the task and before the task is assigned to the next

participant.

Help Create Rules

@ Settings
) Facts

J5 Functions
(x) Globals
=] value Seis
<2 Links

@_; Translations
B Test

_]] Data Explorer

Rule Sets

-q}: Dedision Functons

g:' Business Phrases
4= 3R sert acti
p RoutingRules ¢

255

&7 verbal Rules

& Genersl Rules

= ¥ EarlyApprovalRule

nker descr
IF
ary of the folowing are true
Task.payload.dam.FMOL. sensitivity == “Expert”

THEN
call COMPLETE()

i

':-:) Early Completion

b, Dynamic Routing Rules
v

Error Assignees

%§ Reviewers

o)

Adhoc Routing

[

[181]

Human Task Patterns

Deadlines

While performing task modeling, we have to deal with situations such as deadlines,
reminders, escalation, expiration, and renewal. A BPMN offering should have
features such as deadline, warning, reminders, escalation, renewal, and so on.

The following table highlights facts around the Deadline Feature:

Feature Deadline Feature
Classification Human Task Pattern
Intent To offer a preventive solution to task participants to ensure

deadlines are met by ensuring reminders and warnings. In case
deadlines are missed, escalations can be performed.

Motivation While performing task modeling, we have to deal with situations
such as deadlines, reminders, escalation, expiration, and renewal.
A BPMN offering should have features such as deadline, warning,
reminders, escalation, renewal, and so on. In this section, we will
define a deadline feature and escalation feature. All other features
will be included with it. These features essentially answer questions
such as the following;:

* What to do when the allocated task's time expires
* What to do if the task needs to be escalated

* What to do if the participant/user needs to be informed/
reminded before the task expiration

Applicability To ensure that corrective measures are taken when participants don't
act on assigned tasks in a timely manner, Oracle BPMN offers you
the deadline feature at the task level and participant level. Oracle
BPMN offers deadlines at different levels:

e Task level

* Participant level

Implementation | The task level deadline is defined in the Deadline section in the task
routing slip. The participant level deadline can be defined in the
Advance tab of the Participant dialog box.

Known issues The what-if task deadline and the participant deadline are both
specified in the routing slip and participant block, respectively.

Known solution | The deadline specified in the participant block takes precedence over
the deadlines specified in the task routing slip.

[182]

Chapter 4

The following are the task level deadlines:

Duration deadline: The duration deadline at the task level is like a global
policy and is applicable to all participants associated with the task. The
length of the idle time for the task is defined by the duration deadline,
and once the idle policy expires, the following actions can be performed:

o

The task can be expired

[e]

The task can be renewed
° Escalation can be performed

Warning: Before deadlines are approached, it is always preventive to send
the participants a warning to make them aware of an overdue task. Specify
a value in the Action Requested Before section in the Deadlines tab of the
routing slip. Remember to set a value for Action Requested Before, which
should be less than the value for Task Duration Settings.

Warning is essentially a due date. It's the date by which the task should

be completed; else, it's considered overdue. A task is considered overdue
after it's past the due date that we have specified in the global task deadline
policy. If enabled, we can list overdue tasks in the worklist applications,

or we can filter tasks based on overdue tasks in the task list in worklist/
workspace applications.

Reminder: Reminder offers you the flexibility to model task routing with
a reminder to the task user/participant before the task is expired or before
the due date or after assignment. We can set the reminder once, twice, or
multiple times.

Perform the following steps to experience a task deadline. The use case is a
DynamicTaskAssignment project that contains a deadline and escalation process
(Deadlines&EscalationProcess). This process, when executed, assigns human tasks
(DeadlineEscalationTask) in a serial routing pattern to the jstein and achrist
users. If the user jstein does not approve it in 5 minutes, the task expires:

If you have not downloaded the project (DynamicTaskAssignment) from
the downloads for Chapter 4, Human Task Patterns, then download the project
and open it in JDeveloper 12c.

Open DeadlineEscalationTask.task and check the Deadlines tab in the
routing slip, as shown in the following screenshot.

[183]

Human Task Patterns

* We can set the duration deadline for the task (enforcing it for all participants)

by setting Task Duration Settings. For this use case, we have set the
task to expire if the user does not act on it in 5 minutes as shown in

the following screenshot:

Deadline&EscalationProcess u’ﬁ DeadlineEscalationTask. task

ng Form = é§9 Configure

gh General

i pata -

$ _— Q Task Duration Settings: [] Base Expiration on Business Calendar
Ssignmen Duration Deadline

#23 Presentation |[Espire after |

I& Motification

Fenew after
Escalate after

‘@ Deadilines |Fixed Duration = | Day |U |%l Hour B%] Minutes B%}

%z Access

;; Events Custom Escalation Java Function: |
Warnin

l%n Dacuments g

Action Requested Before @ [By Duration '| Day |D |%] Hour |D |%]

Minutes | 2 |§]

ﬂ’g Form = ég Configure

g% General General | Advanced

m Data Reminder

m Presentation

3P Assignment [remind once - gay|l3 |$] ﬂour|l3 |$] Minutes |1_|i]

Encoding: z

{3\ Deadines e |ul Mo reminders

y - [] Make notifications secure {exdude details)

B notification Dortt send multiole notifications for th Remind twice

B Access [] Don't send multiple notifications for the samu IRemind three tmes |
| Show worklistfworkspace in notifications

) [v] Sh klist/waorks URL in notificati

& Events

& Even [] Make notification actionable

& Documents []5end task attachments with email notifications

Comments and attachments scope |Task level -

|Before Expiration '|

Before Expiration

After Assignment
Before Due Date

Group notification configuration: |Send individual emails

[] Use separate task forms based on locale

* We can check Action Requested Before; it has a value of 2 minutes to send

a warning,.

* Click on the Notification tab and check the Reminder setting. The task is set
to Remind once, 1 minute before the task expires. Notification settings of the

task will take care of sending the reminders.

[184]

Chapter 4

* Click on the Assignment tab and open the Participant block; we can find that
it's a serial routing pattern that builds the participants' list using Names and
expressions. The task, when executed, first gets assigned to jstein and then
to achrist.

Deploy the process and test it using the test data (TestDatal2c.xml) that we
can find by navigating to HumanTaskAssignment | SOA | testsuites.

Upon execution, we can see that the task gets assigned to the user jstein. If we
check the process flow trace, we can find the Created Date and time and Expiration
Date and time specified for the task. As shown in the following screenshot, they
show you a difference of 5 minutes, which is the task expiration limit:

Flow Trace >
pu Flow Trace >
&2 Instance of DeadlineEscalationTask @ Instance 1D 70017
This page shows the Human Workflow component instance details. Started 3:07:40 PM & Instance of DeadlineEscalationTask® ™"=10 70020
Thi - p Started 3:21:15 PM
is page shaws the Human Warkflow companent instance details.
Audit Trail
Workflow Details Audit Trail
Workfiow Number 232709 1-78ba-47ab-0907-fda45299ada0 Creator - Workflow Details
State EXPIRED CreatedDate 3:07:40PM faddfe3c-ads5-4bdb- Crector
Workfiow Number 27 o -
Outcome Updated Date_3:12;40 PM 80b7-0c4a53350775 Created Date 3:21:15PM
Priority 3 Expiration Date 3:12:40 PM State ASSIGNED Updated Date 3:21:15PM
Outcome Expiration Date 3:24:15PM
Actions ~ View ~ Priority 3
% onMessage Actions ¥ View ™
& Initiated 6 onMessage
User:jstein; State:ASSIGNED 5 mitiated
& Expired User:jstein; State:ASSIGNED
User:workflowsystem; State:EXPIRED
Participant Level Deadline
Task Level Deadline

Participant Level Deadline can be set by navigating to Participant Block |
Participant Type Editor. If we have Task Level Deadline and Participant Level
Deadline defined for the task, then Participant Level Deadline takes precedence
over Task Level Deadline. So, we will extend the Task Level Deadline use case,

which we discussed previously. We will define Participant Level Deadline too.
For this, perform the following steps:

1. Click on the Assignment tab in the task routing slip, and click on the
participant block to open the Edit Participant Type window.

[185]

Human Task Patterns

2. Go to the Advanced tab of the Edit Participant Type window, and check the
Limit allocated duration to set a limit on the task allocation for that specific
participant. Let's set this to 3 minutes for this use case, as shown in the
following screenshot:

) Bom 5 Data

b [[= BPMN Processes
T F Assignment
i) DeadineaEscalationProcess 0

i <] verificationProcess {5 Presentation
[@ Business Components 3 Noadine
) Edit Participant Type . l&,l
General —
Type: | 2 Serial " Label: \ \
Advanced: a=
Build a list of participants using: |Names and expressions " |
=
_ P
(®) Let particpants manually daim the task Q_.%
() Auto assign task to a single ‘User v‘ 7
Specfy attributes using: (3) Value-based () Rule-based |
Participant Names - - 3¢ l_
Identification Type Data Type Yalue D
User By Mame jstein, achrist ¥
) Edit Participant Type . d:h—l

General

Limit allocated duration to:
Advanced: “

Ray E?—I Hour Ea Minutes E?—I

Over all ta; duration is Eur;mjy setto 0 da\;’s,_ﬂ hours, and 5 minutes.
Allow this participant to invite other participants

[] Specify skip rule

Assignment Context

Name Value

Save and deploy the project. Remember that we have not changed the
Task Level Deadline setting that we performed earlier.

Execute the project, and you can see Created Date and the time and
Expiration Date and the time specified for the task. As shown in the
preceding screenshot, these show a difference of 3 minutes, which is
the participant limit's allocated duration.

Check the process trace, and you can see that if the user does not act
on it, then the task expires after 3 minutes of being created.

Escalation, expiry, and renewal feature

To implement escalation for human tasks, you can implement it from the Duration
Deadline section in the human task definition. By default, escalation is based on the
management chain hierarchy, and the task gets escalated up in the hierarchy from
the user to his/her manager, and so on. You can control the level to which the task
can be escalated and also use a title to which the task gets escalated. The level and

[186]

Chapter 4

title assignment can be configured while configuring the human task definition's
Duration Deadline. Oracle BPM offers you varied ways to escalate:

¢ Role-based escalation

e Level-and-title-based escalation

e Custom escalation

The following table highlights facts around the Escalation, Expiry,
And Renewal Features:

Feature Escalation, Expiry, And Renewal Feature

Classification Human Task Pattern

Intent To offer a preventive solution to escalate a task if it's not being acted
on in the allocated time or if the deadline duration has expired.

Motivation While performing task modeling, we have to deal with situations
such as escalation, expiration, and renewal. A BPMN offering should
have features such as expiry, escalation, renewal, and so on. In this
section, we will define the escalation feature.

Applicability To ensure that corrective measures are taken when participants don't
act on assigned tasks in a timely manner, Oracle BPMN offers you
various mechanisms to escalate the nonaction on the task, and while
the escalation is performed, the task can be renewed or expired.

Implementation | The expiration policy is defined at the task and participant level

where the participant level definition takes precedence over the task
level specifications. In a serial routing pattern, each task assignment
(basically each participant) gets the same time as the time specified
in the expiration duration. So, if we have three users going to

work on the task in a serial fashion and the expiration policy is 5
minutes, then each participant will have 5 minutes to act on the task
(collectively, 15 minutes); otherwise, the escalation and renewal
policy will be applied. However, if the routing pattern is the parallel
routing pattern, then a routing slip is created for each participant,
and each participant will have the same time. However, as it's being
assigned in parallel and the expiration duration is decremented

by the time that is elapsed in the task, if none of the users act on

the parallel task in the specified duration, then the escalation and
renewal policy will be applied.

Known issues

In the parallel routing pattern, if the parent task has subtasks, what
would happen with the subtasks?

Known solution

In case the parent task has subtasks and the parent task has expired,
then the subtasks are withdrawn if they have not been completed.

[187]

Human

Task Patterns

As we can see in the following screenshot, we can specify Expire after (pointer 1),
Renew after (pointer 2), Escalate after (pointer 3), and Never Expire (pointer 4):

= D

&

% EHr

S General
& pata

3P assignment
3 Presentation
/3 Deadlines
M Notification
e Access

F events

& Documents

S General
& Data

3P Assignment
3 Presentation
/3 Deadlines
M Notification

orm » 49 Configure

[] Base Expiration on Business Calendar

Task Duration Settings: [Bxpreafter ~|

FivedDuration~] Dy [0 (2] bour [0 [3] mmutes [5 [2]

Custom Escalation Java Function:

[v] Action Requested Before : |By Duration v‘ Day B?«{ Hour B?«{ Minutes BE«{

ol Form = % Configure

[] Base Expiration on Business Calendar

Task Duration Settings: [Renewafer =]

[Fxed uration ~] D2y [0 [3]
Maximum Renewals:

tor [0 5 s [2 13

Task Duration Settings:

Custom Escalation Java Function:

Action Requested Before ¢ [By Duraton ~| Day E?«{ Hour EE«{ Minutes Eﬂ

Task Duration Settings:

[[] Base Expiration on Business Calendar

|Escalate after |

[FedDuaton v | 0oy [0 [3] tour [0 [2] mues[s [

Maximum Escalation Levels
Highest Approver Tite: [[EREd |v]

Never Expre

Never Expire allows a task to never get expired even if the allocated time has
elapsed. With Expire after action, we can expire the task by specifying the time
duration. (We have seen the demonstration of this in the Deadline section that we
discussed previously). Escalate after allows you to escalate the task. The escalation
can be role/position-based, or there can be customer escalation. To implement
renewal, let's use the same use case that we used in the Deadlines features section

and perform the following steps:

1.

Expand the DynamicTaskAssignment project, and click on
DeadlineEscalationTask.task.

Navigate to the Deadlines tab, and change the Task Duration Settings by
selecting the Renew after action.

Specify a time list, say, 2 minutes, for this case.

Enter a value of Maximum Renewals (say, 2 times). This value specifies the
maximum number of times the task will be renewed after expiring. When the

maximum renewal number is reached, the task expires.

Open the Participant block and verify that the time limit of the allocated

duration is 3 minutes.

[188]

Chapter 4

6. This is the time that is allocated to the participant for him/her to act on the
task; otherwise, the global escalation and expiry policy will be executed.

Save and deploy the project.
Test Deadlines&EscalationProcess using the test data (TestDatal2c.xml).

Click on Process Trace and keep noting the changing process trace after
every 3 minutes. Remember that 3 minutes is the time that you have
allocated for each participant to act on the task.

As we can see in the following screenshot, for the first time the task gets created, the
expiration time is the time specified in the duration of the allocated limit (Participant
Level Settings), which is 3 minutes after the task creation. When the task expires
after 3 minutes, it gets renewed for 2 minutes again (this is the time we have
specified in the renewals). The maximum number of times the task gets renewed is

2, as this is the limit that we have set in Maximum Renewal in the global renewal
policy. This is shown in the following screenshot:

Fiow Trace = Fiow T
low Trace ow Trace > o e -
&2 Instance of DeadlineEscalationTask @ i i i @ - . @
% ?@ Instance of DeadllneEscaIathnTask : & Instance of DeadlineEscalationTask @
[This page shows the Human Workflow component instance detais. This page shows the Human Workflow companent instance details.
This page shows the Human Workflow component instance details.
Audit Trail Audit Trail
etk fret it Tra Audit Trail
Workflow Details Workflow Details Workflow Details
2bc9155-4772- abc09155-4772-4518-
Workfiow] Creator - Workflow) I g o
orkfiow Number 2 2% i orkflow Number 2 araer Creator Workfiow Number abcD9155-4772-4513 Crestor -
State ASSIGNED i, 5-57-43 - [— Created Date 5:54:43PM State EXPIRED Crested Date 5:5443PM
Outcome pasteabEie S Outcame Updated Date 5:59:43 PM Cutcome Updated Date 6:01:43PM
Priority 3 Expiration Dat= 5:59:43PM S Expiration Date 6:01:43PM Prierity 3 Expiration Date 6:01:43PM
Actions v View = - View v
ctions v View Actions + View e ——
#5 onM >
onMessage “¥ onMessage ¥ onMessage
& Initiated & itiated &5 Initiated
User:jstein; State:ASSIGNED User:jstein; State:ASSIGNED User:jstein; State:ASSIGNED
& Expired & Expired d Expired '
Useriworkflowsystem; State:EXPIRED User:workflowsystem; State:EXPIRED Usersworkfionsystem; State XPRED
9 Renewed & Renewed 35 Renewed ‘ o
User:jstein; State:ASSIGNED User:jstein; State:ASSIGNED s ftein State-ASSIGHED
Expired R
& Expir 3 Expired
User:workflowsystem; State:EXPIRED Usersmorkfionsysten; State: EXPRED
& Renewed & nencwed
Userijstein; State:ASSIGNED User jstein; State:ASSIGNED
& Expired
Useriworkflowsystem; State:EXPIRED

escalation, please visit my blog at https://blogs.oracle.com/
acharyavivek/.

i' To learn more about custom escalation and other details related to

[189]

https://blogs.oracle.com/acharyavivek/
https://blogs.oracle.com/acharyavivek/

Human Task Patterns

Exclusion feature

When performing task modeling, we have to deal with situations such as deadlines,
reminders, escalation, expiration, and renewal. A BPMN offering should have
features such as deadline, warning, reminders, escalation, renewal, and so on.

The following table highlights facts around Exclusion Feature:

Feature Exclusion Feature/Skipping Assignee/Participants

Classification Human Task Pattern

Intent To offer a mechanism to allow the exclusion of the participants.

Motivation While perform task modeling, if we have specific conditions that
result in bypassing the participants, then you need an exclusion
mechanism.

Applicability The exclusion feature finds applicability by ensuring that scenarios

such as self approval or skipping a participant who has already
acted on the task or bypassing a participant if some specific
conditions are met.

Implementation | Navigate to the Assignment tab in the routing slip, and open the
Participant block that opens up the Participant Type dialog box.
Go to the Advance tab, and you will find the Specify Skip Rule
checkbox. If you need to enable the skipping condition, then check
the box and specity a skipping condition. When the skipping
condition is evaluated and it results in true, then the participant is
skipped (bypassed).

Known issues NA

Known solution | NA

Error assignee and reviewers

When an error occurs, we need a mechanism to assign participants who can act or
review errors. The following table highlights facts around Error Assignees And The
Reviewer Feature:

Feature Error Assignees And The Reviewer
Classification Human Task Pattern
Intent To offer a mechanism that performs a corrective mechanism when

errors occur.

Motivation While performing task modeling, we should be able to specify a
user/ group/role whose task gets assigned in case of an error and
can be assigned to a user/group/role to review the task.

[190]

Chapter 4

Applicability Tasks get assigned to error assignees if they are specified. However,
if there are no error assignees being specified, then the error task

gets assigned to error assignees. Error assignees can perform ad hoc
routing, task reassignment, or mark errors in the task as an indication
that the task cannot be rectified further.

Implementation | Errors are of two types, recoverable and nonrecoverable. Recoverable
errors include invalid users/ groups, invalid Xpath expressions

that evaluate assignees, invalid Xpath expressions that evaluate

the deadline duration, escalation on expiration errors, evaluating
escalation policy, and so on. Nonrecoverable errors include invalid
task metadata, custom escalation functions, evaluation errors, and

so on. The error assignee is implemented in the assignment and the
routing section in the task metadata.

Known issues What if there is an error in the evaluation of an error assignee?

Known solution | A task will be marked as an error.

To implement the scenario, we can extend the use case that we have implemented
in the sections of this chapter that discuss escalation, expiry, and renewal:

1. OpenDeadlineEscalationTask.task, and go to the Assignment tab.

2. Click on Error Assignees, and assign a user/group/application role that will
receive the task in case there's an error (for the use case, we can assign it to
any user, say, user lata).

3. Click on Reviewers and assign a user/group/role as a reviewer who can
review the task and add comments in the Comments section. However,
reviewers cannot perform any other action on the task.

4. Open the Participant block to change the spelling of the assigned user
jstein. (Bring a change in the name so that the user cannot be identified
in the LDAP/myrealm.)

5. Save and deploy the project.

Execute the project by running Deadline&EscalationProcess by passing
the test data (TestDatal2c.xml).

[191]

Human Task Patterns

We can see that the human task engine tries to look for the user jstein. However,
as its spelling is changed (jstin), the user will not be found in myrealm (LDAP).
This will result in a recoverable error, and the error task gets assigned to the error
assignee (lata), as we can check in the instance history in the following screenshot:

&3 DeadineEscalationT | £.| Add Error Assignees _ g e
® Eram + %

& General Identification Type Data Type Value]

@ oo User ByMName lata et () Early Completion

3 Assignment \ ’ Dynamic Routing Rules
@) Presentation [Error Assignees

/@ Deadines ;vﬁ Reviewers

M Notification @ Adhoc Rauting

@ Access

F Events

@ Documents Help oK

|

| £| Add Reviewers

Task history
Identification Type DataType Value

User By Name weblogic

1 4 [Stagel
lata -
Help ok Cancel &3 Alerted
12 3 lata

13 338 Agatha Christie

Designer | Source Histary

Notifications

When an error occurs, we need a mechanism that notifies participants (assignees,
approvers, owners, and so on) via e-mails, SMSes, IMs, and so on. The following
table highlights facts around Notification Feature:

Feature Notification Feature

Classification Human Task Pattern

Intent To notify assignees, initiators, approvers, owners, and reviewers in
case the task attains a status such as error, completed, update, and so
on.

Motivation This feature ensures that specified recipients are notified when the

task reaches a defined status. This feature will also allow you to
configure notification messages and set their behavior.

Applicability Along with the feature that notifies interested users, when a task
reaches a certain status, this feature is applicable in case we need to
set reminders, defining Unicodes, make notifications secure, make
notification emails actionable, send attachments, and so on.

[192]

Chapter 4

Implementation | Notifications are implemented in the Notification tab in the task
metadata definition, and notification leverages the UMS driver and
workflow properties defined in the EM console.

Known issues NA

Known solution | NA

Implementing notifications is a multiple-step process. For instance, we want to
notify participants with e-mail as the channel. To enable notification, we have to first
configure the e-mail driver. Then, we have to set the workflow properties. Along
with this, the e-mail address should be associated with the user (the LDAP user/
myrealm) as its e-mail attribute. Finally, we need to configure the Notification tab in
the task metadata.

Configuring driver properties and attributes

The notification feature leverages User Messaging Service (UMS). For the
notification mechanism, we will first configure the e-mail driver:

1. Login to the Enterprise Manager console, and navigate to User
Messaging Service
Right-click on User Messaging Service, and select Email Driver Properties.

3. Furnish details to configure the e-mail driver by supplying SMTP and other
details as per the e-mail server configuration. Click on OK to persist the
driver configuration as shown in the following screenshot:

Enterprise Manager Fusion Middleware Control 12¢

=1 Weblogic Domain ~

Target Navigation @& usermessagingdriver-email @ Logged in a5
View ~ 4 User Messaging Email Driver ™

> 22 Application Deployments

» [3J soa : .

> 3 WebLogic Domain Create Driver Properties

>) Metadata Repositories e | YUy EmaIL Ve o iU aun e e

[User Messaging Service Driver Type User Messaging Email Driver Supported Carriers

&a usermessagingdriver amail fsna <omn @ Use Sender Addresses

24 usermessagingserver (Home Configuration Level Cluster
Sender Address
Control 4 Cluster Name Use Defauit Sender Address
Logs ¥ Joported Defivery Types EMAIL
Performance Summary Capabity SEND, RECEIVE ot 5]
Email Driver Properties #PPorted Content Types = -

speed [+

Eupported Status Types DELIVERY_TO_G "_SUCCESS,
DELIVERY_TO_GA _FAILURE,

Target Information USER_REPLY_ACKNOWLEDGEMENT_SUCCESS,

USER_REPLY_ACKNOWLEDGEMENT_FAILLRE

System MBean Browser

El

Driver-Specific Configuration

Encoded
Name Description Mandatory o o Value
. E-mail receiving protocol. The possible
E-mail Receing Protocal 408 T s, ™MAP [+

This value specifies the number of tmes
to retry connecting to the incoming mail
server, If the connection is lost due to
some rezson. The default value is -1
which means no limit to the number of
tries.

Connection Retry Limit

The frequency o permanently remave

[193]

Human Task Patterns

4.

Configure workflow properties to enable e-mailing. Expand
SOA | SOA-Infra.

Navigate to SOA-INFRA | SOA Administration and right-click on
Workflow properties.

Select the notification mode as e-mail, furnish the notification service details,
and apply the changes.

Log in to the WebLogic console, and navigate to Domain | myrealm | Users
And Groups | Attributes.

Enter the e-mail address for the user in the mail attribute.

Configuring the notification definition

Once the driver is configured and the attributes and properties are set, it is now
time to configure the notification definition in the task editor. Specify the task status,
recipient, and notification header details:

The Task Status column specifies when the notification will be initiated and
on what status of the task that specific notification will be initiated. Various
task statuses are shown in following screenshot. For example, if the Task
Status is completed, then the task initiator will be notified.
The Recipient column enlists the possible recipient of the notification:

° Assignees: This is the group/user to whom the task is being
assigned currently.
Initiator: This refers to the creator of the task.

Approvers: This includes the list of all the users who have acted
on the task till this point.

Owner: This refers to the owner of the task.

Reviewer: This refers to the reviewer of the task who can add
comments and attachment to the task; however, he/she cannot act
on the task This is shown in the following screenshot:

[194]

Chapter 4

& DeaclinesscaiationTask, task
ﬂg Form = 4% Configure
g General General Advanced
5 Data + %
“F Assignment Task Status Recipient. Motification Header
5 Presentation Assign Assigness Vs
@ Deadines Complete Initiator /
B Hotification Error Reviewer Vs
Access
; Events
{4, Documents Short Summary: | Plain Text - |
Lang SUMMArY: | Text and ¥Path = | | iE]
[Expire. |
Request Info I
lUpdate Outcome [lApprovers
[Suspend [jOwner
[withdraw r [Reviewer
Resume 5 ,
lUpdats) Edit Notification Message B
Notification Message:
Task <% task:task/task:titte % > requires your attention, Q
Applies to Voice, SMS, Email, and IM. Email message will also indude the worklist task detail
Help oK Cancel
I A

The Notification Header column shows you the message that will be sent to the
recipient when the task reaches the specified status. We can edit the notification
message, and the message will be applicable to all the supporting channels, that is,
e-mail, voice, IM, SMS, and so on.

The Advance tab allows you to configure reminders, Unicode, secure notifications,
and various other features, as enlisted:

* The reminder subsection in the notification's Advance tab allows you to send
a reminder before a task expires or after the task assignment.

* Unicode allows you to store information in a single character set by proving a
unique code value for each character irrespective of its language or platform.
Select UTF-8 (default), or you can use a Java class to specify the character set.

* Make notification secure: Checking this box will allow you to make the
task secure; however, if you do so, you will not be able to make notifications
actionable and will not be able to send task attachments with e-mail
notifications.

[195]

Human Task Patterns

* Show worklist URL in notifications: Checking this box allows you to
display the BPM worklist application URL in the e-mail notification sent to
the recipient.

* Make notification actionable: Check this box if you want to allow the
notification recipient to perform the task action through e-mail.

* Send task attachments with e-mail notifications: Checking this box will
allow you to send task attachments via e-mail notifications. You can send
notifications to individual e-mails. Checking this option will result in an
individual receipt of the e-mail by each user in the group/role.

* Use separate task forms based on locale: This is enabled by default, with
notifications to individual e-mails. When checked, this option will result in
the receipt of individual e-mails by the users based on the language locale;
otherwise, the task form will be reused and shared.

* Send one email containing all the user addresses; this will result in the receipt
of an e-mail by all users in the group/role.

E-mail address are picked from the LDAP for the users; hence, we just set the e-mail
address for the user in the embedded LDAP.

Content access policy and task actions

Tasks have contents such as attachments, comments, payload, history, and so on.
BPMN offers you a mechanism that controls access to the contents and performs
actions selectively. The following table highlights facts around the Content Access
Policy And Task Actions Feature:

Feature Content Access Policy And Task Actions Feature
Classification Human Task Pattern
Intent To specify access rules on the contents and define actions that are to

be performed on these contents.

Motivation To define which part of the task can be viewed and updated by
participants and what actions can be performed on the contents.

Applicability Access rules are basically rules that are enforced by the workflow
service during the task update and retrieval.

[196]

Chapter 4

Implementation | In the task metadata editor, navigate to Access | Content.

Here, we can grant privileges to users (owner, approvers, and so on)
so that they can act on specific task content such as payload, header,
flex field, and so on.

In the task metadata editor, navigate to Access | Actions.

Actions allow you to define the actions (access or no access) for the
defined users so that they can act on the task contents that we have
configured in the Contents tab.

Known issues What if access rules and action rules conflict with each other?

Known solution | In Oracle BPMN, access rules exist independent of one another.

Enterprise content management for task
documents

The following table highlights facts around Enterprise Content Management For The
Task Documents Feature:

Feature Enterprise Content Management For Task Documents
Classification Human Task Pattern
Intent To offer a BPMN task solution that integrates with the enterprise

content management solution.

Motivation Human tasks can be configured to use attachments from contents
and documents stored in the enterprise content management store.

Applicability Applies to the feature of querying and fetching documents and
attaching them with the task where the documents are stored in

the enterprise content management store. Also, it offers you the
flexibility to provide query properties at design time and at runtime
in the task form.

Implementation | Enables document packaging in order to connect ECM and queries
based on properties that can be implemented in the Documents tab
in the task editor.

Known issues NA

Known solution | NA

[197]

Human Task Patterns

The document will be stored in ECM; however, documents have metadata
properties, consuming services, applications, or task configuration, which can be
used to retrieve that specific document from the ECM store. Make sure that the
underlying SOA infrastructure is configured to integrate with the ECM solution
of the enterprise. We can manage documents, document folder, version, and so on
in the ECM solution application. However, to enable the human task to retrieve
documents from ECM, perform the following steps:

1. Navigate to the . task file and visit the Documents tab.

2. Check the Use Document Package checkbox in order to enable using ECM.

3. Once Use Document Package is checked, the task properties
are enlisted.

4. Select specific properties such as Document Folder, Content Id, Version
Label, and so on along with the default specified properties (the security
group and document type). This is shown in the following screenshot:

ol Form~ 4% Configure
g General

@ Dats Orade Enterprise Content Management (ECM) can be used to store process documents. These documents can be managed by logging directly in to ECM.
; Assignment Use Document Package
@ Presentation
A document can have set of meta-data properties. These properties can be used to query for the document in ECM. If a value is not provided for the property, the value can be
3 Deadines provided from Workspace application. These properties can be hidden, readonly or editable in the Workspace application.
M Notification
@ Access
:'; Events
% Documents

+ &K
Mame Value Display
Security Group Editable
Document Type Editable
ContentID 100001041 Editable
Document Folder Jed/Insurancelocs/ Editable

Version Label Editable

1
- I

[Comment
Release Date
Expiration Date
Account

5. Set the display property as Editable, Hidden, and Read Only.

The value provided in the display mode that defines the behavior on the task means
that we can enter the value at design time in the Documents tab, as shown in the
preceding screenshot, or we can define value of the properties in the Task form, if
that property is editable. If the display mode is editable, then in the task form, a value
can provided for the properties while attaching the document. If the display mode is
hidden, then the value will not be displayed at runtime in the task form. If it's Read
Only, then the value of the property will not be visible, and it cannot be edited.

[198]

Chapter 4

Summary

This chapter concentrated on human task patterns and during this journey, we covered
various patterns that facilitate human task patterns. We now know that a stage defines
the milestone of the approval sequence. Stages contain participant types, which defines
the behavior of the routing pattern. A task can be assigned to participants through
different means. There are different derivation patterns, and there are different
assignment patterns as well. During the course of this chapter, we explored various
Oracle BPMN features, which enhances human task patterns such as the request

info feature, reassignment and delegation pattern, force completion pattern, routing
rule pattern, error assignees and reviewers, deadline, escalation, expiry and renewal,
exclusion, error assignee and reviewer, notification, content access policy and task
actions, and enterprise content management for task documents.

The next chapter elaborates on the interaction patterns.

[199]

Interaction Patterns

Processes are not always isolated. They interact and integrate with other systems,
processes, and services. These interactions are facilitated by various interaction
patterns. This chapter covers various patterns that offer best practice around
communications with other processes, systems, and services. It showcases various
patterns of interactions of a BPM process with other BPM processes and services.
Interaction patterns are more commonly known as Inter Process Communication
(IPC), which facilitates collaboration of a process with other processes, services,
and events. There are many reasons that lead to collaborative communications:

Your process needs to invoke other services, for example, the Loan
Origination process needs to invoke a credit check service or your
process might need to invoke another process; for example, the Loan
Origination process may need to invoke the BackgroundCheck process.

You might need to implement reusability, develop modular processes,
and collaborate with them.

You might need to iterate over a collection/set of data and hence, need
subprocesses and multi-instance features in a separate process or subprocess.

You might need to widely broadcast an information enterprise and let other
interested processes/services interact via subscription to these events. There
might be cases where you might have to deal with human interactions and
patterns such as escalation, reminders, and so on.

This chapter is focused on events, interaction tasks, and activities. The following
interaction patterns are a part of this chapter:

Conversation pattern
Asynchronous interaction pattern

Synchronous interaction pattern

Interaction Patterns

* Subprocess interaction pattern
° Reusable processes interaction pattern

° Embedded subprocess interaction pattern

* Event-driven interaction pattern

Visit the following link to learn more about BPM events:

http://acharyavivek.wordpress.com/2013/11/20/

understanding-bpm-event/.

Defining use cases to demonstrate
interaction patterns

Download the Loan Origination application from the downloadable files of Chapter 5,
Interaction Patterns. The downloaded project contains the processes and components
described in the upcoming sections. This section will help you understand the
different processes that we will be covering in this chapter.

The BackOffice process

The BackOf fice process invokes the loan origination process using the Message
Throw Event (RequestLoanOrigination). Upon receiving the response from the

Loan Origination process on the Message Catch Event (RespLoanOrigination),

the Backof fice process initiates a feedback process. When the feedback process is
completed, the feedback process raises an event. The BackOf fice process resumes
when it gets a message on the subscribed queue on which it's waiting for the feedback
to complete. The following screenshot showcases the Backoffice process model:

&——@® ™ © o

StartBO RespLoanOrigination StartFeedback GetFeedbackDetails EndBO

BackOffice

RequestLoanCrigination SomeGtherActivities

[202]

http://acharyavivek.wordpress.com/2013/11/20/understanding-bpm-event/
http://acharyavivek.wordpress.com/2013/11/20/understanding-bpm-event/

Chapter 5

The Loan origination process

The Loan Origination process checks for application verification. If the application is
verified, then the loan origination process checks for the applicant's credit, and does
a background and fraud check. The Loan Origination process is modeled as shown
in the following diagram:

3

SuspensionActivities _ Assign

CallUtiltyProcess I- —

CreditCheck PostCreditCheck

No
1

(e s @)
e & l"ﬂj‘

s f =
L e |

BGCRequest

StartL1 Endi =
StarlLlo & ApplicationVerified? spiit

AppsVerificationTask

LoanDrigination
Losniilicer
.8

The CatchFraudDetails and Feedback
processes

The Feedback process is demonstrated in the Event-driven interaction pattern section
of this chapter. It handles customer feedback based on signals (events). It starts with
a message; however, it ends by raising a feedback event using the Signal End Event
(EndFeedback). The catchFraudDetails process starts with an event and ends
with a None End Event.

[203]

Interaction Patterns

The following diagram illustrates the CatchFraudDetails and Feedback processes:

Al

O

. End
Start Somehctivity

CatchFraudDetails

-®

EndFeadback

fi

® =

StartFeedback CatchEvent

-
e

©

Feedback

AssignOutput

The following points illustrate the entire use case that we will cover in this chapter.
The purpose of listing these bullet points is to make you aware of how different
processes are woven. However, each process is demonstrated in its respective
section. For example, the feedback process is invoked by the Backof fice process.
When the feedback process completes the application's customer feedback, it will
raise a feedback event. The following list shows the relation of different processes;
however, the implementation of the individual process (for example, the feedback
process) and description of the pattern is described in that respective section. Walk
through the following steps to understand the relation between different processes:

1. The BackOffice process invokes the Loan Origination process.

2. Upon receiving a response from the Loan Origination process,
the BackOf fice process initiates a feedback process.

3. The feedback process raises an event when the feedback gets completed.

The BackOffice process resumes when it gets a message on the subscribed
queue on which it's waiting for the feedback to complete.

[204]

Chapter 5

5. The Loan Origination process performs the application verification using a
human task.

6. The application verification's human task has a timer, which ensures:

If the task assignee doesn't act on the task in a day's time, a reminder e-mail
is sent to the task assignee's e-mail address.

If the task assignee doesn't act on the task in 3 days' time, the suspension
activities are performed and the process ends.

7. Upon approval of the application verification task, the process is split into
the following three activities:

o

Checking customer credit using the credit check service invocation

[e]

Background check by invoking the BackgroundCheck process

o

Fraud check by interacting with the fraud check service

If the fraud check process is positive, then a fraud interruption
message is raised. The boundary catch event gets the interruption
message, and the process throws a FraudDetails signal and ends.
The fraud details signal is caught by a subscribed CatchFraudDetails
process.

If the fraud check is negative, then the process moves normally,
and all paths merge at the join gateway.

8. Upon rejection of the application verification task, the Loan Origination
process calls a Loutility service to perform escalation and other activities,
and the process ends.

[205]

Interaction Patterns

Oracle BPM offers various components that interact with a process and enable

its collaboration with other events/signals, services, processes, and so on. The
following table includes BPMN 2.0 components and their demonstration in the

use case. A number is defined in the diagrams for back office, Loan Origination,

and other processes for a specific component, as shown in the following screenshot.
This number is included adjacent to the component. All these details and discussions
around them are part of this chapter. This is shown in the following screenshot:

Number in Diagram

|00 (Back Office process) and 1 (Loan Origination process)

|06 and 18

: 01 (Back Office Process) , 11 and 13 (Loan Origination Process)

102,12 and 14

| A1 (Catch Fraud Details Process)

| A2 (Feedback Process)

17 (Loan Origination Process)

: 05 (Back office process)

. Background Check process and All Sub process

. Background Check process and All Sub process

: Catch Fraud Details Process

| Chapter 3

| 3.4 @Loan Origination Process)

| Chapter Error handling

| Chapter Error handling

| Chapter 3

3 and 4 Loan Origination Process

16 Loan Origination Process

Error Handling Chapter

Error Handling Chapter

Error Handling Chapter

Other than the components, you have certain activities that are a must to enable
collaboration with other processes and services. These activities are demonstrated
in the following screenshot:

[206]

Chapter 5

Activity Number in Diagram

Send Task Background Check Process

Receive Task Background Check Process

Service Task 9 Loan Origination Process

Call 7 Loan Origination Process

Embedded Sub process Loan Origination Process

Reusable Sub Process LOUtilityProcess

Multi-Instance Sub process Demonstrated in Chapter 1 and Chapter 2
Peer process

Event Sub process Included as part of Error Handling Chapter

Conversation pattern

Conversation pattern allows a BPM process instance to collaborate with another
process or service instance. Conversation patterns find usage when you have
multi-instance scenarios where a master process needs to establish multiple
parallel conversations with a child process/subprocess, or those scenarios where
a process instance collaborates with other process/service instances.

The following pattern table highlights the facts around the conversation pattern:

Signature Conversation Pattern
Classification Interaction Pattern
Intent Conversation allows a BPM process instance to collaborate with

another process or service instance.

Motivation Grouping of message exchange (collaboration) between processes is
performed using conversations. Collaboration can be synchronous
or asynchronous. Collaborating participants could be BPM
processes, BPEL/mediator processes, human tasks, business rules,
external services, references, and so on.

Applicability In BPM, a conversation can be defined for a Send/ Throw/End
message and Receive/Catch/Start message, using the conversation
property. The BPM engine uses the WS-addressing correlation

or message-based correlation, and default/advance-defined WS-
conversation ID for each conversation.

[207]

Interaction Patterns

Implementation | The BPM process starts an outbound conversation when it
participates in a conversation that has already been started by a
participant process or service. The conversation can be a scoped
conversation, default conversation, or advance conversation:

* Scoped conversation: This refers to the conversations that
are defined in scope, which is inside the subprocess. When
you define a scoped conversation, make sure that you define
it in the structure panel; otherwise, it would inherit a process
scope.

* Advance conversation: This refers to an explicitly defined
conversation. A default conversation is available by default
in a BPM project; however, you can define an advance
conversation in some cases, such as those cases that involve
multi-instance collaboration and so on.

* Default conversation: Other than defining an advance
conversation, you can also use the default conversation.
The default conversation is available with a BPMN
process by default, and you don't have to explicitly
define a conversation.

Known issues These include message correlation.

Known solution | If the message exchange pattern is a synchronous request
and response, then the BPM engine uses the WS-addressing
correlation and default/advance-defined WS-conversation ID
for each conversation.

However, if the message exchange pattern is an asynchronous
(one-way) request-callback, then you need to define the
message-based correlation along with the conversation ID
(default/advance defined).

& If you define a conversation, then you can visualize the
= collaborative conversation in collaboration diagrams.

In this section, we will witness the implementation of an advance conversation.

An advance conversation is defined between a Backoffice process and the Loan
Origination process. We will notice the usage of the advance conversation in the
BackOf fice process in this section. However, for the rest of the sections in this
chapter, we will find the implementation of the default conversation. The following
is the screenshot of the Backoffice process that will be discussed in this chapter.
The back office process interacts with the Loan Origination process and has
conversations being defined.

[208]

Chapter 5

Use the following steps to check how conversations are defined and witness them in

action while checking the collaboration diagram:

1. Download the Loan Origination application from Chapter 5, Interaction Patterns.

2. Start JDeveloper and open LoanOriginationApps.jws to open the Loan

Origination process.

3. Navigate to LoanOriginationApps | LoanOriginationProject |

BackOffice process.

4. Go to the BackOffice - Structure window in the bottom-left corner of the
screen, as shown in the following screenshot:

s i

BackgroundCheck.wsdl
BackgroundCheckDocumentation, xml
BackOffice, wsdl

- Feedback, wsdl

- FeedbackDocumentation.xml
- & FraudDetails.edl

- FraudIntruption.wsdl

etFeedbackDetails. wsdl

@ Edit Conversation

oanOriginatio;

RequestLoanGrigination

LoanOriginatio| | Name; [BackOffice_LoanCrigination

I8 LoanOriginatio

| -] Application Resources Type: |Pﬁ‘ Process Call

(3 Activities

-l Business Indicator Bindings

= ,=J Conversations

= ﬁ BackOffice_LoanOrigination: [LoanOrigination]
f BackOffice_Feedback: [PushToFeedbackQueue]
&Pl Correlations

(@) Measurements

- BackOfficeDocumentation,xml S
Business Indicators &CI: 1
% CatchFraudDetailsDocumentation. xml = =~ h @
— oo}
& Feedback.ed e StartBO

SomeCtherActivities
.

RespLoanOrigin

D) Properties - RequestLoanQOrigination

Basic = Implementation
- FraudIntruptionDocumentation, xml -
|¢2] GetFeedbackDetais_jms.jca Implementation Type: | () Message

[] Force commit after execution

Message Exchange

Type: ‘rﬁ Process Call

Conversation: (_) Default (%) Advanced

|| Data Controls Definition Name: ‘EadﬁOf‘ﬁce_LUanOnginatun: [LoanCrigination] | Q, &
|| Recent Files -
Process: LoanOrigination ‘ Q ¢ Process Call
BackDffice - Structure Process: ‘LoanOngmauon
Help oK Cancel

Target Node: |(@) StartLo

§§ Data Associations é

Bl Corelations g

| Service Properties

Message Headers

Help oK

Log Handlers Log]

Cancel

5. Check the conversation defined in the structure window shown in the

preceding screenshot. There are two conversations defined: one between the
BackOf fice process and Loan Origination process, and another between the
BackOffice process and feedback process.

Right-click on the BackOffice_LoanOrigination conversation defined in the
structure window. You can verify that it's being defined for the process call.

Right-click on the RequestLoanOrigination Message Throw Event in the
BackOffice process and check its properties. You can find that the defined
conversation is selected there as an Advanced conversation.

Click on the Collaboration tab, as shown in the upcoming screenshot.

[209]

Interaction Patterns
The process flow is shown through the collaboration diagram, which also shows a
process's interactions and collaboration with other processes and services. You can

check the following facts from the collaboration diagram:
The BackOffice process interacts with the Loan Origination process by

sending a message through the RequestLoanOrigination throw message
event and receiving a response message through the RespLoanOrigination

Message Catch Event.
The BackOffice process interacts with an external service through
the StartFeedback throw message event. This is shown in the

[]
following screenshot:
e—e- = O —@®—0—e
& fsmm0 requsganc el ioh s _CoFeedack GaFesdbadOal Enddo
‘If ‘-‘1““‘--_
(. I e
o 1 ¢ -
/ Services,Externals, PushToFsedbackQueue
o,
S
1 -
<
<=
<

[-_:: Asign | :'I
._',Ji y 3
PosiCredilCheck .
T~
~——
":;’é

7
!
i
1
!
SuspensionActivties
CallUtiityProcess
CrediCheck
L
— 1wt

= Assign End
— . —{E—
) -— EndBGC
BGCResponse

‘SomeAcivity

i
join

il
|
!
!
]
Ir
No

i |
!
| —
)
g /
=) = 0 4
g| [sero = o ApplcationVerifed? it <
£ ApplicationVerifcation
£ l Task
5|
= 5|a | S—
s
HE Pre-VerlfcationActiviies ubprocesst
3
BackGroundCheck
E ‘SubProcess
EndReminderTask i far—T=
[4_ VertifcationReminder r‘_ G
o 7 Fouaninpton
Desgrar Soptng Colsboraton Histry

We can define different types of conversation. For example, you can define a
conversation in which a BPMN process can be exposed as a service or a process; then,
you can define the interaction operations using the Define Interface conversation type.

If our process needs to interact with another BPMN process or service, then define the
conversation type as process call and service call, respectively. Also, you can define the
conversation using an interaction interface (which already exists) from the business

catalog, using the Use Interface conversation type.

[210]

Chapter 5

While walking though this chapter, we will notice that while interacting with a BPM
process, the conversation type is used heavily. For some interactions, we will witness
the usage of the service call conversation type. The service call conversation type

is used to invoke a service. The process call conversation type is used to invoke a
BPM process. Essentially, a conversation type defines different types of interactions
that our process can establish with other processes or services. The following list
describes the different types of conversations:

* Define interface: This conversation type is used when you want to define
operations for your BPMN process with which other services and processes
can interact.

* Use interface: This conversation type is used when you want to use an
interface that is already defined and is available in the business catalog.

* Process call: This conversation type is used to invoke another BPMN process.

* Service call: This conversation is mostly used to invoke a service defined in
your BPM project.

_ Before you execute any process in this chapter, make sure that
% you create LOFeedbackQueue in the weblogic service with the
s jms/LOFeedbackQueue JNDI, using the steps mentioned in the
Guaranteed delivery pattern section of Chapter 3, Invocation Patterns.

Asynchronous interaction pattern

The BPM process can invoke an asynchronous process or service using the Message
Throw Event or Send Task. The process can use either the Message Catch Event

or Receive Task to receive a response from the invoked process/service. When we
invoke an asynchronous process or a service, the invoked process or service becomes
a child of the calling (invoking) process. This section will uncover how to invoke

an asynchronous process or service using the Message Throw and Catch Event.

This section also has a subsection on invoking an asynchronous process or service
using the Send and Receive Tasks. The following pattern table illustrates the pattern
signature for an asynchronous request response (request callback) pattern:

Signature Asynchronous Request-Response (request-callback) Pattern

Classification Interaction Pattern

Intent Invoke an asynchronous operation on an asynchronous service
or process.

[211]

Interaction Patterns

Motivation

When an asynchronous process or service is invoked, the BPMN
engine will not wait for the response and will start executing
subsequent activities that follow the Message Throw or Send
Task. The calling process will invoke the called process's callback
operation using the Message Catch Event or Receive Task to get
the response.

Applicability

The BPM process can invoke an asynchronous process or service
using the Message Throw Event or Send Task. It can use either

the Message Catch Event or Receive Task to get the response.
When you invoke an asynchronous process or service, the invoked
process or service becomes a child of the calling (invoking) process.

Implementation

The Message Throw Event or Send Task, when used to invoke a
BPM process/service, essentially initiates a conversation. While
executing a Throw Event or Send Task, the BPM engine creates
the following features:

* An XML message based on the asynchronous operation
* Input required by the asynchronous operation

* Data association defined in the intermediate Message
Throw Event

This XML message is sent to the asynchronous BPM process

or service. The calling (invoking) process does not wait for the
response, and it will continue the subsequent process flow. The
called (invoked) asynchronous service or process will execute
the asynchronous operation. The calling process will invoke the
callback operation to get a response from the called (invoked)
process using the Message Catch Event or Receive Task.

In the calling process, when the process token arrives at the
Message Catch Event or Receive Task, the process waits for the
asynchronously called (invoked) process to respond. If the called
process has already responded, then the calling process will receive
the response at the Message Catch Event or Receive Task. If not,
then the process token will wait at the Message Catch Event or
Receive Task until a response is received.

Known issues

These include reliability.

Known solution

To ensure that the message gets routed to the appropriate
requester, the message correlation must be implemented to relate
inbound and outbound messages.

[212]

Chapter 5

Interacting with an asynchronous process
using the Message Throw and Catch events

The message events (Throw Event and Catch Event) enable interaction with
asynchronous services and asynchronous processes. In this section, we will learn
how to interact with asynchronous processes using the Message Throw and Catch
Events while walking through the Backof fice process scenario. We will use
Message Throw and Catch Events to invoke the Loan Origination process, which is
an asynchronous process. To enable this invocation, the advance conversation is used
and the Process Call conversation type is defined. The Loan Origination process is an
asynchronous BPMN process, which starts with a Message Start Event and ends with
a Message End Event. The Backoffice process invokes the Loan Origination process
using a Message Throw Event. The process receives a response from the Loan
Origination process by configuring a Message Catch Event. It will then implement
the Process Call conversation type to interact with the Loan Origination process.

Perform the following steps to understand the conversation configuration in the
BackOf fice process, which enables collaboration with the Loan Origination process:

1. Start JDeveloper and open the LoanOriginationApps application.
2. Navigate to LoanOriginationProject | BackOffice Process.

3. Open the BackOffice process.
4

Open the properties of the RequestLoanOrigination Message Throw Event
and go to the Implementation tab.

5. While implementing the Message Throw Event, the message exchange
type, that is, the conversation type, is Process Call. This is because the
Loan Origination process is an asynchronous BPM process. Remember to
use the Process Call conversation type to invoke another BPMN process.

6. Advance Conversation is defined because you have already defined a
conversation for the Backoffice and Loan Origination processes.

7. Select the BackOffice_LoanOrigination conversation. You will find
details of the Loan Origination process populating in the process name
and target node. The target node is the Message Start Event of the Loan
Origination process.

Click on Data Associations to view the data assignment.

We can check the correlation configuration. However, the details
around correlation will be discussed in Chapter 6, Correlation Patterns.

[213]

Interaction Patterns

10. Verify the properties of the RespLoanOrigination Message Catch Event.
The Message Catch Event in the BackOffice process receives a response
from the Loan Origination process.

11.

We can witness the conversation type as Process Call. The same BackOffice_

LoanOrigination conversation that we used while configuring the Message

Throw Event, is used.
12.

The process name will be LoanOrigination. However, this time, the target

node is EndLO, which is the Message End Event of the asynchronous Loan
Origination process, as shown in the following screenshot:

@
o
&
| o—® [C) =
: = =/
o StartBO pfr L
[=il e e SomeOtherActivities ResploanCrigination StartFeedback GetFeedbackDetail
@) Properties - RequestLoanCrigination I.iz-J
—'| Basic | Implementation) Properties - RespLoanQOriginaticn |
= Basi Impls itati
Implementation Type: | (&) Message 'l e mplementation
[Farce commit after execution Implementation Type: [() Message -
Message Exchange Message Exchange
Type: | % Process cal - Type: | =% Process cal -
Conversation: () Default (3) Advanced Conversation: () Default (=) Advanced
Name: [BackOFfice_LoanCrigination: [LoanOriginatian] | & Name: [packoffice_Loanorigination: [LoanOrigination] | (B, &
Process Call Process Call
Process: |LoanOrigination | & Process: |LoanOrigination | S &
Target Node: |(@) Start.0 - Target Node: | (@) EndLo -
28 2.2
#48 Data Associations @ D Correlations ¢ Log Handlers &4 Data Associations @ DI Correlations ¢ Log Handlers
Message Headers | service Properties Message Headers | service Properties
Help oK Cancel
- Hell oK Cancel M
A ~& [

13. Check the data association; we can find the data assignment from the
Loan Origination process output to output the process data object of the

BackOffice process.

14.
Start Event.

15.

any asynchronous requests based on the Loan Origination data object
(Loan Origination schema).

16.

process, as shown in the following screenshot.

Open the Loan Origination process and check the properties of its Message

You can find that an asynchronous operation, startLO, is defined to accept

Check the Message End Event, endLO, which ends the Loan Origination

[214]

Chapter 5

17. You can verify that the message exchange interface pattern is defined as
asynchronous. This configuration makes the Loan Origination process an
asynchronous process.

18. You can check whether the endLO operation is exposed as the callback
operation. This is demonstrated in the following screenshot:

BackOffice @ LoanOrigination

@ @ @ -

Activity Interactive Motification Catch
Lredicneck

H[3 LoanOriginationProject

o

StartBGC
BGCRequest

LoanOfficer

s, ===
Start2

s ——

g.+7
'

fim

SomeActivicy

=

Subprocess

El

BackGroundChee
OCess

FraudCheckR equest

StartFC l I

FraudCheckResponse

0 Properties - EndLO

Basic | Implementation

Implementation Type: (] Message

[] Force commit after execution

Message Exchange

Type: |EI Define Interface

Conversation: (2) Default (") Advanced

Define Interface

Message Headers J Service Properties

Arguments Definition '* / X
MName Type
LOProcessOUT LOBusinessObject
(%) Asynchronous () Synchronous
Calback Operation Name: |endLO
é"‘u§ Data Assodiations é P Correlations é Log Handlers

Lo

The Backoffice process will obtain the response from the Loan Origination process
by invoking the endLO service callback operation using the Message Catch Event.
Even if the Loan Origination process ends much before the Backof fice process
reaches the Message Catch Event, the Backof£fice process will not receive the
response message. The BackOf fice process will receive the response only when
the Loan Origination process completes and the BackOffice process has reached
the RespLoanOrigination Message Catch Event.

[215]

Interaction Patterns

Interacting with an asynchronous service
using the Message Throw and Catch Events

In this section, we will learn to interact and invoke an asynchronous service using
the Message Throw and Catch Events. Let's consider an example scenario:

The Loan Origination process performs various checks such as application
verification and some parallel verification such as credit card check, background
check, and fraud check. Fraud check is implemented as a subprocess, which has

a Message Throw and Message Catch Event being configured to interact with

the FraudCheck service. This fraud check service is implemented using Oracle
SOA's BPEL as an asynchronous service. In this section, we will learn to invoke
an asynchronous service using the Message Throw and Catch Events. The Service
Call conversation type is defined to enable this interaction.

Perform the following steps to witness how the Message Throw Event in
FraudCheckSubProcess invokes the FraudCheck asynchronous service by
interacting with the operations exposed by the fraud check service:

1. Open the Loan Origination process and go to FraudCheckSubProcess.

2. Right-click on the FraudCheckRequest Message Throw Event and go to the
Implementation tab in the properties dialog.

3. We can verify that the conversation type is Service Call. This is because the
FraudCheck service is implemented as a web service.

4. We can find the FraudCheck service operation being populated in the
operation dropdown. This operation is the request operation of the
FraudCheck process.

Check the data association to learn the data assignment.

For the FraudCheckResponse Message Catch Event, the response
operation gets populated as the callback operation. This is shown
in the following screenshot:

[216]

Chapter 5

WV ET Activity Interactive Notfication Catch Throw Gateway Artifacts
b
iofh
O W
StartBaC P stz e EEaE
SomeActivity GrEeh e
- i
O Properties - FraudCheckRequest =
Basic | Implementation | —E‘ O Properties - FraudCheckResponse (X
Implementation Type: | (@il Message = focic Implementation
[] Force commit after execution SackGroundChecksuber Implementation Type: [() Message
Message Exchange ocess Message Exchange
Type: < service Cal Type: | # service cal -
Canversation: (3) Default () Advanced Conversation: (%) Default () Advanced
Service Cal Service Cal
Service: [FraudCheck | & Service: [FraudCheck, Calback |G ¢
Operation: |process ~ Operation: |processResponse M
;
8 Data Associations ¥ [Correlations Lo Handlers || ko, dcheckRequest FraudCheckResponse F1aud{| 5=3 pata Associations ¢ Dl Correlations Log Handlers
Messaqe Headers Service Properties Message Headers Service Properties
=
\ Help o Cancel FraudCheckSubProcess Help oK Cancel

Enabling external services interaction

In this section, we will uncover how we can enable the external web service
interactions in BPM. As you saw earlier, the Loan Origination process is able to
invoke the FraudCheck service, which is an asynchronous service, even though
the FraudCheck service is not a part of the LoanOriginationProject. To enable
communication with the external service, we need to configure a service adapter.
For example, say we need to interact with queues, and then, we have to define a
JMS adapter that exposes queues as services and helps the BPM processes interact
with them.

As we are going to implement this project in our environment, we will perform the
following steps:
1. Download LoanOriginationApps and open it in JDeveloper 12c.

2. Along with LoanOriginationProject, we can also find the FraudCheck
and CreditCheckPrj projects.

3. Deploy the FraudCheck project to your web logic service and go to the
EM console at http://service:port/em.

4. Click on the FraudCheck service and copy its WSDL.

[217]

Interaction Patterns

To enable a conversation between the Loan Origination process and the FraudCheck
service, we need to define a web service adapter as a reference service in project's
(LoanOriginationProject) composite.xml. Perform the following steps to verify the
web service adapter configuration:

Go to the composite file of LoanOriginationProject and open it.

2. Click on the FraudCheck service reference properties. It is configured using
the web service adapter.

3. Open the web service adapter configuration of the FraudCheck service in the
composite file of LoanOriginationProject as seen in the following screenshot.

4. Enter the copied WSDL of the FraudCheck service and hit the Tab button.
This will populate the request and callback operations. This is shown in the
following screenshot:

fZ|LoanCrigination * D{ELoanOriginaﬁonProject{compoybe.xml) X | ZjCatchFraudDetails X |°§,Ea:k0fﬁce X |='c°FEedba:k X |%L0uﬁ\ityProcess x |°<0Fraudlntrupﬁon x @@E}

S FPLBRRDY | B DFD Compesite: LoanOriginationProject

ﬁm ionVertifi
ationVertifi...
=

3 5
) Web ~< Update Reference @
Web Service S @ %
BPM-NotificationSer...
Web service is a service external to the SOA composite, Operations:
sendIMNotification
sendFaxNotification
Name: raudCheck] sendVoiceNotificati
- ‘ sendSME Notification
. sendPagelotificati...
D 3 WSDL URL: [\RY-LI5:800 1/s0a-infra/services/default/FraudCheck FraudCheck. wsd| & endURINtfication
sendEmailNotification [
X e
Port Type: ‘Fraudcheck = ‘ sendNotificationTo..
CalbackPort Type: |FraudCheckCallback |
[] copy wsdl and its dependent artifacts into the project. ® El ﬁg

CreditCheck
Mote: Keeping a copy of a WSDL may result in synchronization issues if the remote WSDL is updated. It g 8 5 ec.
is not recommended to make local copies - this should be reserved for situations such as offline PEEme:
designing. proogss
D Transaction Particpation: |WSDLDriven +
=
FraudCheck

Operations:
— 00255
processResponse

o

[218]

Chapter 5

Interacting with an asynchronous process
and service using Send and Receive Tasks

Communication with other BPM processes and services in the project can be
implemented using the Send and Receive Tasks. Send and Receive Tasks are similar
to throw and catch events. However, we can define a boundary event on the Send
and Receive Tasks. Boundary events can be used in various business scenarios such
as enabling an SLA on a particular task or defining an escalation, and so on. Send
and Receive Tasks can be used to communicate with other processes and services.
They can be used to expose a process, which can be initiated with a Receive Task.
Such a process can be invoked by a Message Throw Event and also by a Send Task.

For the scenario in this section, the BackOf£fice process initiates a Loan Origination
process. It's based on the fact that a loan customer is interacting with a bank's back
office, and it's the back office that initiates the loan on behalf of the customer. However,
there might be other channels too. Lets' create a web process, keeping the fact that

this process will be the process that gets kicked off when a user interacts with a user
interface, such as a web application, and fills in the loan details. The Loan Origination
process gets initiated when the web process gets started from the user interface.

A Send Task will invoke the asynchronous Loan Origination process's startLO
operation and will receive the task to invoke the callback operation paired with the
asynchronous service/ process.

Perform the following steps to create a web process that invokes the Loan
Origination process through the Send and Receive Tasks.

1. Navigate to LoanOriginationProject | BPMN | BPMN Processes and
right-click on the processes to create a new process.

Enter the name of the process as web and let it be an asynchronous process.

Create the WebProcessIN and WebProcessOUT process arguments

as web process input and output arguments, respectively, based on
LOBusinessObject. This business object is used throughout the project,
and it's based on the Loan Origination schema.

Click on Finish to end the process wizard.

5. Create the webINPDO and webOUTPDO process data objects based on
LOBusinessObject. We can create process data objects (PDOs) from the
structure window.

6. Click on the Message Start Event and open its properties.

[219]

Interaction Patterns

7.

10.

11.
12.
13.
14.

15.

16.

17.

18.
19.

20.

21.

22.

Click on data association on the Message Start Event and assign the
WebProcessIN web process's input argument to the PDO of the
webINPDO web process input.

Drag-and-drop a Send Task in the process and name it SendLoanRequest.
Go to SendLoanRequest Send Task's implementation properties.

Choose the conversation type as Process Call and set the conversation
to default.

Click on Browse to select the Loan Origination process from the process list.
Select the Loan Origination process and click on OK.
You will find startLO as the target node, which gets automatically populated.

Use data association to assign the PDO of the webINPDO web process input
to the LOProcessIN input argument of the Loan Origination process.

Click on OK in the properties of the SendLoanRequest Send Task and save
the changes.

Drag-and-drop the Receive Task and name it ReceiveLoanResponse.

Then, go to its Implementation tab.

Select the conversation type as Process Call and let the default conversation
be checked.

Browse to select the Loan Origination process.

The target node will get populated with the endLO end node of the Loan
Origination process.

Use data association to assign the LOProcessOUT output of the Loan
Origination process to webOUTPDO, which is the PDO of the web process
output, and click on OK.

Click on Message End Event in the web process and configure the data
association from WebOUTPDO to the webProcessOUT output argument
of the web process.

Save all the changes and deploy the project.

Test the scenario by initiating the web process. When the Loan Origination process is
invoked by the web process's Send Task, the web process will not wait for a response
from the Loan Origination process and will continue with the subsequent flow.
However, the web process will receive a response from the Loan Origination process
by invoking the endLO callback operation of Loan Origination using a Receive Task.
If the Loan Origination process finishes before the web process reaches the Receive
Task, the web process will not receive a response. It would only receive a response
when the web process reaches the Receive Task and invokes the endLO callback
operation of Loan Origination.

[220]

Chapter 5

However, if the web process is quick and the process token for the web process
reaches the Receive Task much before the Loan Origination process gets completed,
the BPM service engine will wait at the receive task for the Loan Origination process
to complete.

Attaching boundary events on Send and
Receive Tasks

The boundary events, when triggered, can either interrupt the normal process flow,
or they can be mutually exclusive with the normal flow. They can also start an
exception flow parallel to the normal flow. This behavior depends on the boundary
event's configuration.

We will be visiting the boundary events in detail later in this chapter. In this section,
we will define a Service Level Agreement (SLA) for the loan process. Let's consider
a use case where, if the Loan Origination process is not completed in 7 days, then the
loan process initiator (the web process) will end the flow. This means the boundary
event will be a timer, and it will be of the interrupting type as it's going to stop the
normal flow of the process. Execute the following steps to enable a boundary event
on the Receive Task:

1. Open the web process that you implemented earlier in JDeveloper.

2. Drag-and-drop a catch timer event on the ReceiveLoanResponse
Receive Task and name it SLA.

3. Check the interrupting event check box and configure the implementation
properties, as defined in the preceding screenshot.

4. Set the time cycle as 7 days. (For a quick test, we can set it to 5 minutes).

5. Save the process and deploy it.

Enabling the timer with 7 days as the time cycle will trigger the timer 7 days after
the process initiation. If the web process doesn't receive a response from the Loan
Origination process in 7 days, then the timer gets triggered and the web process will
interrupt the normal Loan Origination process flow. The loan details will be saved,
and the process will end.

[221]

Interaction Patterns

Interacting with a process defined with
Receive Task as a start activity

In this section, we will implement an asynchronous process with a Receive Task as
the start activity. The Loan Origination process is an asynchronous process with a
Message Start Event. However, we can also define an asynchronous process with a
Receive Task as the start activity. The BackgroundCheck process is implemented as
an asynchronous process that starts with a receive activity. A BPM process that starts
with a Receive Task enables an asynchronous conversation. While creating a BPM
process, the Receive Task should be followed by a None event (None Start Event).

The None Start Event does not have any special properties, and it is also not
associated with any trigger mechanism. However, to enable a conversation with
processes that have the None Start Event, remember to use an Initiator Task event
or Receive Task event, with the Create Instance property being checked.

Walk through the following steps to check the BackgroundCheck

process's implementation:
1. Navigate to JDeveloper | LoanOriginationProject | BackgroundCheck and
open the BackgroundCheck process.

2. You will find a ReceiveBackgroundCheckReq receive activity after a None
Start Event.

3. Right-click to open the properties and go to the Implementation tab.
We can verify that the conversation type is Define Interface.

We have used the default conversation; however, an advance conversation
can be defined.

6. We can check whether an operation is exposed with the name
ReceiveBackgroundCheckReq. This is the operation that any other process
can use to communicate with the background check process.

7. Click on the sendBackgroundCheckResp Send Task and check its properties;
you can witness that a callback operation is defined with the name
sendBackgroundCheckResp.

8. The message exchange pattern is selected as Asynchronous. This makes the
process an asynchronous process. This is shown in the following screenshot:

[222]

Chapter 5

] BackaroundCheck
O-@ @ © @ ®- @3-

Activity Interactive MNotificaion Catch Throw Gateway Artifacts

o—E—{—F = 0

BackgroundCheck

Start ReceiveBackgroundChe SomeActivities Assignment sendBackgroundCheck End
diReq Resp
) Properties - ReceiveBackgroundCheckReq []
| @) Properties - sendBackgroundCheckResp
Basic = Implementation
Basic = Implementation
Implementation Type: |@ Receive task
Implementation Type: |@ Send task
iz reEvEs ["] Force commit after execution
Message Exchange Message Exchange
Type: |~EI Define Interface 1 Type: |@ Define Interface
Conversation: (3) Default () Advanced Conversation: (=) Default (_) Advanced
Define Interface Define Interface
Arguments Definition 4 / % Arguments Definition EF / x
Name | Type Mame Type
receiveBackgroundCheckReqIN LOBusinessObject sendBackgroundCheckRespOut LOBusinessObject
Operation Name: |receiveEad(groundChed<Req (%) Asynchronous (7) Synchronous
Callback Operation MName: |sendBad<groundChed<Resp
;&§ Data Assodations ? Pl Correlations ? Log Handlers
2.0

Open the Loan Origination process and expand BackGroundCheckSubProcess.
You can find that a Message Throw Event and Message Catch Event are configured
to interact with the BackgroundCheck process. Click on BGCRequest in
BackGroundCheckSubProcess and check its properties.

As you can see in the following screenshot, the Conversation type defined to
interact with the BackgroundCheck process is Process Call because it is a process.
You can verify that the target node exposed has the same name as the operation,

ReceiveBackgroundCheckReq, defined in the Receive Task activity in the
BackgroundCheck process.

[223]

Interaction Patterns

In the Message Catch Event, you can find the callback operation selected as the
target node. This is shown in the following screenshot:

LoanOrigination

Activity Interactive Notification Catch Throw Gateway Artifacts

™

PostCreditCheck:

) Properties - BGCRequest

Basic | Implementation

Implementation Type: |(iG) Message

[] Force commit after execution

Message Exchange

Type: =% Process cal - 4’] §
-
Conversation: (&) Default () Advanced Sttt Erde

BECRequest
Process Call

EndBGC

BGCResponse

SomeActivity

Process: |Bad<groundche:k | % O
Target Node: ||@ ReceiveBackgroungCheckReq " L E
Subprocessl
2 Data Assocations ¢ DD Correlations ¢ Log Handlers B

Message Headers Service Properties BackGroundCheckSubPr
ocess

The Loan Origination process will obtain the response of the BackgroundCheck
process by invoking the sendBackgroundCheckResp callback operation using the
BGCResponse Message Catch Event.

Synchronous request-response pattern

When we need to interact with a process or service and when an immediate response
is required, use the synchronous interaction pattern. The following table lists the
details of the synchronous request-response pattern:

Signature Request Response Pattern
Classification Interaction Pattern
Intent The intent is to invoke a service interface that is defined with the

request-reply operation. The goal is to serve those scenarios that
expect a response from the service provider in near real time.

Motivation To invoke synchronous operations in services and BPMN processes.
Essentially, a BPM process should be able to invoke a BPEL process,
SOA mediator, SOA adapters, external service, and so on, which
expose synchronous operations.

Applicability These include the service task.

[224]

Chapter 5

Implementation | When you need to design a synchronous interaction, use a service
task. Service task invokes processes and services, synchronously.
When a service tasks invoke a process or service, the token waits
at the service task until a response is returned. After the response
is received, the token continues to the next sequence flow in the
process. You use process data objects to assign input data to an
invoked service's input, and the service output is assigned back to
PDOs.

Known issues If an immediate response is not received by a service consumer on
time, it results in a timeout exception. Also, the service consumer
might receive faults.

Known solution | The solution for service providers were discussed in Chapter 3,
Invocation Patterns. The service consumer should build logic to
handle the errors and also have logic to handle timeout exceptions.
A meticulous exception-handling mechanism is required.

To demonstrate this pattern, we will interact with a synchronous web service using a
service task in a BPM process. The Loan Origination process interacts with the credit
check service to check the credit details of the loan applicant. A credit check service
is a synchronous web service that we would invoke from the Loan Origination BPM
process. Perform the following steps to deploy a credit check service and enable it in
your project:

1. Download LoanOriginationApps and open it in JDeveloper.

2. Along with LoanOriginationProject, you will also find CreditCheckPrj
as a separate project.

3. Deploy the CreditCheckPrj project to your web logic service, and go to
the EM console at http://service:port/em.

4. Click on the CreditCheck service and copy the WSDL of the
CreditCheck service.

5. Open the web service adapter configuration of the CreditCheck service in
composite.xml.

6. Enter the copied WSDL of the CreditCheck service and hit the Tab button.

This will populate the request reply operations. Only one port is enabled
as it's a synchronous service.

[225]

Interaction Patterns

Walk through the following steps to check the synchronous interaction pattern:

1. Go to the Loan Origination process and open the process in JDeveloper.

2. Double-click on the CreditCheck service task and go to the
Implementation tab.

3. Examine whether the conversation type is Service Call and the conversation
defined is the default one.

Browse for the CreditCheck service and click on OK.

Verify that the operation is in process for request-reply interaction of the
CreditCheck service.

6. Check the data association. The data from the process data objects is assigned
to the service's input argument, which is passed to the service when it's
invoked. The service output argument is assigned back to the process data
objects when the response is received.

The business catalog

The service task interaction pattern enables conversation and collaboration with only
those services that are available in the BPM process business catalog. Hence, if you
want some other external services to be invoked by your BPM process, remember

to make them available in the business catalog. To interact with JMS queues or with
any RESTful service, you need to configure a specific adapter in the project's Loano
riginationProject (composite.xml) file. For example, to push messages from a
BPM process to a queue using the JMS adapter, configure the JMS adapter. The JMS
adapter will expose itself as a service, and it will be available in the business catalog.
Once available in the catalog, we can use this service in the BPM process. Along with
the entire adapter in the component pallet, we can have a BPEL process, mediator,
restful services, and so on being implemented and available in the business catalog
to be used by the BPM process.

Along with this, you can always use MDS to share common artifacts such as XSD
and WSDL.

When the CreditCheck service task in the Loan Origination process invokes the
CreditCheck service, the token waits at the service task until a response is returned.
After the response is received, the token continues to the next sequence flow in the
process. Until the response is received, the process token waits at the service task.
Upon response from the CreditCheck service, the data is mapped to the data objects
in the project using the data association of the CreditCheck service task.

[226]

Chapter 5

Subprocess interaction patterns

There are varied ways available to interact with subprocesses in Oracle BPM.
The following bullet points classify the various subprocesses:

* The embedded subprocesses are in-line with the parent process.

* The multi-instance subprocess is a process over which a parent process
can iterate. It is basically an embedded subprocess; however, you
can define multi-instance and looping behavior for this kind of an
embedded subprocess.

* The reusable subprocesses are defined outside the parent process model,
and they execute within the parent process flow.

* The event subprocess is similar to the embedded subprocess; however, it
is useful in handling errors and will be discussed in Chapter 7, Exception
Handling Patterns.

* The peer subprocesses are those processes that can be invoked by a Send
and Receive Task, via a throw and catch event, or even via a service task.

The following table categorizes the subprocess, its scope, and exception-handling
behavior:

Subprocess type | Scope Definition Execution Exception
handling
behavior

Embedded Inline Defined inside Executed as | Exceptions get

subprocess the main process | part of main | propagated to

in which it is process in the next level's
embedded. which it is subprocess,
embedded. if not caught
and handled in
the embedded
subprocess.
Multi-instance Inline Defined inside Executed as | Exceptions get
subprocess the main process | part of main | propagated to
in which it is process in the next level's
embedded. which it is subprocess,
embedded. if not caught
and handled in
the embedded
subprocess.

[227]

Interaction Patterns

Subprocess type | Scope Definition Execution Exception
handling
behavior

Reusable Outside Defined outside Executes Exceptions will

subprocess the parent within be propagated to

process. the parent the calling parent
process. process.

Peer subprocess | Outside Defined outside Executes Exception

the calling as an behavior for the
process. independent | peer subprocess.
process. When the

called process is
invoked via the
Message Throw
Event, you can
handle the fault
in the invoked
peer process and
then propagate it
to the invoking
process or let the
invoking process
handle

the fault.

When the

called process

is invoked via

the Send and
Receive Tasks,
the exceptions are
propagated to the
calling process.

When it is
invoked via the
service task,
exceptions are
propagated to the
calling process.

[228]

Chapter 5

Subprocess type | Scope Definition Execution Exception
handling
behavior

Event Enclosinga | Defined inside It remains

subprocess process or a subprocess or active till

subprocess process. the time the
process/
subprocess
in which it

is in-line is
active. If in
that active
time frame,
the specified
event gets
triggered,
then the
event
subprocess
will be
executed.

When peer processes are invoked, the calling process behavior depends on the
called process's conversation message exchange pattern. If the called process is
asynchronous, then the calling process will not wait for the callback. If the calling
process is synchronous, then the called process waits for the response.

The multi-instance subprocess is discussed in Chapter 2,
Multi-instance and State-based Patterns. The error-handling
%\ patterns will be discussed in Chapter 7, Exception Handling
g Patterns. This section will concentrate on peer subprocess,
reusable subprocess, and embedded subprocess.

Reusable process interaction pattern

When we create a new BPM process, we have four process templates available to
choose from: asynchronous process, synchronous process, manual process, and
reusable process. When we have the business requirement to create processes that
can be invoked by many parent processes, we use the reusable template. Using
the reusable template, we can create a reusable subprocess, for example, utility
processes, such as LOUtilityProcess, in the LoanOriginationProject project.

[229]

Interaction Patterns

The following table lists the details of the reusable process' interaction pattern:

Signature

Reusable Process Interaction Pattern

Classification

Interaction Pattern

Intent

To establish a separate scope for processes; this also encourages
reusability in the process design.

Motivation

When you have the business requirement to create processes that
would be invoked by many parent processes, use the reusable
template to create reusable subprocesses. For example, the utility
process in this section will be reused by many processes and is an
ideal candidate for being a reusable process.

Applicability

A reusable subprocess is defined outside of its parent processes.
It is also stored outside its parent process model. You can invoke
a reusable process with the CALL task. At runtime, the reusable
subprocess executes in-line within the process that called it.

Implementation

The CALL tasks invoke other BPMN processes to enable process
chaining. The BPM offers the CALL task to invoke a reusable
process. When a token reaches the CALL task, it gets inhibited,
and a new instance of the reusable subprocess is created.

The main process waits until the control is returned by the called
reusable subprocess. When the reusable process completes, the
control is returned to the CALL task, and the process token moves
ahead to the subsequent process flow. The BPM processes with

a None Start Event and None End Event are considered reusable
processes; however, if you change the trigger type of the

None Start and End Events, then a process no longer remains

a reusable process.

Known issues

No access to the parent process data.

Known solution

You can use data association to assign data from a parent process to
a reusable process.

The following are the characteristics of the reusable process:

* Itis independent of the parent process.

* It can have many parent processes.

* It should be included in the same project as the parent processes.

* It has a separate process model; however, the audit logs show it executing
in-line within the calling process.

e [t cannot be transactional.

* It has an atomic independent process definition.

[230]

Chapter 5

* It cannot be invoked as a service/process from outside of the project.
* Asthe name suggests, it encourages reusability in the process design.

* It does not have access to the parent process data; however, you can use data
association to assign data from the parent process to the reusable process.

* Check the properties of the cALL task, and you will not find the
conversation options as they cannot fall into the conversation
initiated from the parent processes.

* Asyou can define swimlanes in a parent process, you can define swimlanes
for reusable processes too.

* It can be looped; however, there is no direct mechanism to do so. Hence, it
needs to be wrapped in an embedded subprocess to enable iteration over a
reusable process.

* Atruntime, the reusable subprocess executes in-line within the process that
called it.

Use a reusable subprocess when you have the requirement to establish a separate
scope for those processes that encourage reusability in the process design, such as
the LOUtilityProcess utility process.

Use case scenario for reusable process
interaction pattern

The Loan Origination process checks and validates the loan application. A human
task is used to assign an approval task to a loan officer for the verification of the
loan application. The loan officer checks the application and verifies it by either
approving or rejecting the application. The application's verification status is
checked at the exclusive Application Verified gateway in the process.

If the application is verified and approved, the process moves ahead for other
verifications. However, if the ApplicationVerified gateway is rejected, then the
Loan Origination process calls a LOUtilityProcess. This utility process will perform
various activities such as saving the applicant's details, notifying sales and other
concerned departments, and taking other proactive steps. Once the called utility
process gets completed, the Loan Origination process ends.

[231]

Interaction Patterns

The following steps will enable you to analyze the implementation of the CALL task:

1. Open JDeveloper and click to open LOUtilityProcess. This is a reusable
process, which is created with the reusable process template.

2. You can witness that the process has no access to the parent process data.
However, we defined the process data objects' input and output arguments
for the LOUtilityProcess.

3. Check the data association and verify that the data is assigned from the
LOUtilityProcess input argument to the data object of the LOUtilityProcess
input process. Also, check whether a similar association between the output
process data object and the output argument is implemented in the None
End Event.

4. Open the Loan Origination process in JDeveloper and go to the properties
of the CallUtilityProcess call task. This is a call task defined to interact
with the LOUtilityProcess reusable process.

5. Click on data association to verify the input data assignment from
the data object of the Loan Origination process to the input argument
of the utility process. Similarly, the utility process output arguments
are assigned to the Loan Origination process data object.

You can check whether any conversation type can be defined for a reusable process.
The implementation type is Call Activity as it's a CALL task. The data association
shows how data can be interfaced between the parent process and the reusable
called process.

When the Loan Origination process token reaches the CallUtilityProcess call
task, the tokens gets inhibited, and a new instance of the LOUtilityProcess
reusable process is created. The Loan Origination process gets hold until the
LOUtilityProcess utility process gets completed. The utility process will
execute its activities, and when it completes, control is returned back to

the Loan Origination process, and the process moves ahead.

Embedded subprocess interaction pattern

A subprocess is a process in itself that handles a part of the main process's
functionality. It's a set of activities that have a sequence and a defined purpose.
One of the many types of subprocesses is the embedded subprocess, which is a
part of our discussion in this section.

[232]

Chapter 5

The following table summarizes the details of the interaction pattern of the
embedded subprocess:

Signature Embedded Subprocess Interaction Pattern

Classification Interaction Pattern

Intent To establish subprocesses that are in-line within the main process.
Motivation When you have the business requirement to create subprocesses

that are embedded within the parent processes, are not reusable,
and loops can be created on the subprocess, then the obvious choice
is the embedded subprocess.

Applicability The embedded subprocess is not independent of the parent process
and hence, is in-line within the process and is often termed an in-
line subprocess.

Implementation | An embedded subprocess will always start with a None Start Event,
and it cannot be changed for the embedded subprocess. Also, the
None Start Event does not have data association capability because
the embedded subprocess is in-line within the main parent process
and hence, has access to all data and information of the main
parent process. You can change the End Event trigger type for an
embedded subprocess to signal, message, error, and terminate.
When the End Event is changed, then the events thrown by these
subprocesses should be handled by the subprocess or the main
parent process, whichever is up in the hierarchy of the subprocess.

Known issues Cannot have a separate swim lane.

Known solution | The embedded subprocess is in-line with the main process and
hence, it is within one of the swimlanes of the main process. The
modeling should be performed meticulously.

The following are the main characteristics of an embedded subprocess:
* It shares the same data and information with the parent process in which
it is embedded.

* It has a defined business objective and hence, has a None Start Event and
a None End Event to clearly define its start and end.

* Itis not reusable, and it can be expanded and contracted to hide and
show details.

* It can be nested while each subprocess can have its own set of data objects
and other objects.

* The boundary events can be associated with an embedded subprocess.

[233]

Interaction Patterns

For BackGroundCheckSubProcess and other embedded subprocesses too, you can
create data objects, activities, conversations, correlations, and measurements.

The data objects defined for subprocesses are
= termed scoped data objects.

It's a good design practice to use a scoped data object when you are aware of a data
object's life cycle. The subprocess can be nested. Check BackGroundCheckSubProcess,
which also has another subprocess inside it, as BPM allows subprocesses to be nested.

Interrupting a boundary event

The boundary events are defined as the catch events that can be associated with a
subprocess or an activity. The catch events can be configured as a boundary event
on various activities and subprocesses. These boundary catch events can be of
interrupting or non interrupting type, depending on the way they deal with the
normal process flow. You can implement the timer as a boundary event to introduce
a delay, SLA, or a wait on an activity or an embedded subprocess. The catch
intermediate events are also used as boundary events to a subprocess or activities of
a certain type. When any associated boundary event is executed, the process flows to
an exception path. A boundary event can be of interrupting or non-interrupting type.
In a non-interrupting boundary event, the process flow moves to a normal process
flow and exception flow, as both are mutually exclusive; however, in an interrupting
boundary event, the process flow moves only to exception flow.

Boundary event on an activity

Check the Loan Origination process. There, we have a human task defined to
perform the application's verification. There are two timer boundary events
associated with the human task:

* Non-interrupting event: Click on the lower timer event and check
its properties. This timer event is named VerificationReminder. It's a
non-interrupting boundary event. The time cycle set for this timer is
1 day. You can change it to 1 minute for the sake of testing it.

* Interrupting event: The upper boundary event is an interrupting boundary
event named LOSuspended. The time cycle set for this timer is 3 days.

These timer events serve as a reminder and can be used to implement SLA for the
Loan Origination process.

[234]

Chapter 5

For the loan verification process, an application verification task is assigned to a loan
officer. If the task in not acted upon by the loan officer (salesrep) in 1 day, then a
notification e-mail will be sent. This is the reminder policy of the Loan Origination
process. However, if the loan officer does not act on the task in 3 days, then the Loan
Origination process will end after performing some suspension activities.

The following steps demonstrate an interrupting timer boundary event
configuration:

1. Click on the LOSuspended boundary timer event and open its
Implementation properties.

2. You can witness that the Interrupting Event checkbox is checked and the
time is set to 3 days. This is shown in the following screenshot:

. ——()

~ Properties - LOSuspended [&J
Basic | Implementation

Implementation Type: | (@) Timer '|

AppsVertification

Interrupting Event

Timer Definition
Type: |T|me Cyde 'l

[] Use Expression

Y

@ |D Months 3 Days 0:0:0 iil

VerificationReminde

4

3. Check the Non-interrupting boundary timer event, VerificationReminder,
and verify the time as 1 day. However, the Interrupting Event checkbox is
not checked in this case, and this makes the VerificationReminder boundary
timer event non-interrupting.

When the process token arrives at the embedded subprocess, the token (initial
token) gets inhibited, and a new token is started for the embedded subprocess.
When the subprocess reaches its End Event and if there are no available tokens

in the subprocess (which also includes tokens for all non-interrupting event
handlers), then the subprocess ends. The token that initially started the subprocess
(initial token) gets resumed, and it gets propagated to the outgoing sequence flow
from the embedded subprocess.

[235]

Interaction Patterns

Non-interrupting event: In the case of a non-interrupting event associated with a
subprocess, all the tokens associated with non-interrupting event handlers must get
completed before the original token is propagated to the outgoing sequence flow
from the subprocess. Hence, when the loan officer does not act on the application's
verification task in 1 day, the non-interrupting boundary timer event triggers the
non-interrupting event handler, which sends a notification to the loan officer.

Interrupting event: In the case of an interrupting event associated with the
subprocess, if the interrupting event executes, then all the available tokens in the
subprocess are consumed, and the original token that started the subprocess gets
propagated to the outgoing sequence flow. Hence, when the loan officer does not act
on the application verification task in 3 days, the interrupting boundary timer event
triggers the interrupting event handler, which consumes all the Loan Origination
process tokens, and the original process token moves to suspension activities.

Event-driven interaction pattern

By definition, an event is an occurrence that has happened. It can be a change in a state,
a condition that triggers a notification, and so on. An event can be a notification, alert,
business event, or a complex event. The events are always named in the past tense
such as OrderShipped, OrderCancelled, and so on, and notification events are named
as inventoryLow, CartCleared, and so on.

The Oracle SOA /BPM platform offers the Event Delivery Network (EDN), which
deals with the publishing and subscription of events. The EDN also performs various
activities such as pattern matching, event publishing, event subscription, and so

on. In Oracle BPM, the events are defined using the Event Definition Language
(EDL) editor. The EDL can be based on the XML schema and can leverage Oracle
BPM/SOA MDS (metadata service) to be distributed as a shared artifact. When you
deploy an event to the MDS repository along with its artifacts (XSDs), it is known as
publishing the EDL (or event definition). Events are published to an EDN. Once an
event (EDL) is published, it can be subscribed to by other applications. EDLs cannot
be unpublished; the definition always exists. The raised events are delivered by EDN
to the subscribing service components. The Oracle mediator service components and
BPEL process service components can subscribe to and publish events.

The event system has following components:

* Event producer
* Event consumer (listener/subscriber)
* Event processor

* Messaging infrastructure

[236]

Chapter 5

The event producer is the process that publishes the event to EDN. The subscriber is
a process that has shown interest in the occurrence of the event. In the case of Oracle
BPM, the EDN is the event processor, and the messaging infrastructure can be a
database or JMS. You can use the database or JMS as a back-end store.

The following table lists the details around the event-driven interaction pattern:

Signature Event-driven Interaction Pattern
Classification Invocation Pattern
Intent To design a system that's geared for extension, interoperability,

and unanticipated use. The participating process or application
publishes events and messages, which are subscribed to one or
more consumers/ subscribers.

Motivation When you are looking for loosely coupled, asynchronous, and
stateless interaction. When you want to tell the downstream
component what happened and what not to do. When the
potential of reuse is low.

Applicability The Signal Throw, Signal End, Signal Catch, and Signal Start
Event. The intermediate Throw Signal Event or Signal End Event
are used to raise and broadcast a signal. The Signal Start Event

is used to receive an event in another process. To enable event
delivery, you need an eventing platform. Oracle BPM uses the
Oracle EDN to send and receive signals. The events are defined
using the EDL editor, and these defined events are available

in the business catalog. The Signal Throw Event is used to
broadcast a signal, or a signal can be broadcast through a Signal
End Event. However, you can use a Signal Catch Event to receive
a signal in the BPM process.

Implementation | Upon execution, the throw intermediate Signal Event or
Signal End Event will publish an event to EDN. The EDN

will then deliver it to all the subscribers that are configured to
listen to that specific event (signal). A subscriber process can
trigger only when the signal arrives to the event it has been
subscribed to. Oracle BPM leverages Oracle SOA, and an EDN
runs within every SOA instance. The Java/BPEL/Mediator

or any component can raise an event to the underlying SOA
environment to publish that event to the EDN. Any interested
BPMN process, as a subscriber to that event, will get triggered
when the signal arrives to the event it has subscribed to.

Known issues These include the loss of message, guaranteed message
processing, and durability.

[237]

Interaction Patterns

Known solution | The signal-based collaboration pattern doesn't offer guaranteed
delivery. There are chances that a signal might be lost in the
event of failures, as you cannot create durable subscribers. You
can use various interaction mechanisms between applications
and processes. If you are looking for a guaranteed delivery, then
the solution is using queues such as the JMS queue. The queues
offer guaranteed delivery of messages. When you need a real-
time low-volume integration and interaction, the solution is a
web service.

There could be various scenarios for event-driven messaging, such as tracing

and tracking (FedEx, UPS, and so on), government systems (taxes), service level
agreements, and so on. For example, the order-processing system could have events
such as inventory low, stock cancelled, order cancelled, and so on. Other use cases
can be broadcasting telecom number changes or address change, triggering a signal
when a quote gets approved to trigger all the processes that depend on the approval
of a quote, and so on.

In a signal-based interaction pattern, neither the sender knows about the receiver
nor the receiver knows about the sender, and this offers a loosely coupled interaction
pattern, where processes can be added and removed without affecting any other
process or service. Other than the BPM process, BPEL and mediator processes and
services can also deal with BPM events. The events have a payload associated with
them based on the schema associated with the event definition.

While sending an event through a Signal End Event or Signal Throw Event, use data
association to add data to the event payload. This is how data is communicated from
a sender process/service to a receiver process/service.

Defining an event-based interaction pattern
scenario

A Backoffice process will invoke a feedback process after the Loan Origination
process gets completed. This feedback process is a BPM process. When the feedback
process completes the application's customer feedback, it will raise a feedback event.
The Backoffice process has a GetFeedbackDetails Signal Catch Event configured
as a subscriber to an event (feedback). The Backoffice process will wait at the
GetFeedbackDetails Signal Catch Event for the feedback event to occur. The
following steps will help you understand the Signal Catch Event configuration:

1. Open the feedback process and check the Signal End Event for the process.
2. You can find the Feedback event configured for the End Event.

[238]

Chapter 5

3. Data association assigns data from the feedback's process data object to the
feedback's event argument.

4. Open the BackOffice process and right-click on the GetFeedbackDetails
Signal Catch Event to check its Implementation properties. This is shown
in the following screenshot:

© Properties - GetFeedbackDetails

Basic | Implementation

é Implementation Type: |ﬁ
= £

5 Event: Jf Feedback G &
2 StartBO by estLoanOrigination SomeCtherctiviies ResploanOrigination StartFeedback GetFeedbackDetails EndB0

38 Data Associations @ [P Correlations &

‘ Help oK Cancel

(&) GetFeedbackDetais Data Ohjects DE

(3 Arguments ‘ g BOProcessINFDO [} @
) i
BackOffice :5 :5: Predefined Variables £33
& . F | nanOrininatinnBraiact Bl a1
(2 cony ~| From: [pagload | B To: [50ProcessouTEDo B + X433
From To
= —vloa 1 p—
L[o Booromomo |
[©) Properties - EndFeedback &J
Basic = Implementation
a2 r
% — Implementation Type: |L@;,- Signal "
] = —®
B @ [] Force commit after execution
i}
& StartFeedback CatchEvent AssignOutput EndFeedback et | & Feedback | Q ¢
;&§ Data Associations é Bl Correlations é Log Handlers
Help OK Cancel

5. The event configured is Feedback, and the data assignment is from an event
argument to the Backoffice PDO.

The BackOf£fice process initiates the feedback process by invoking the Feedback
process using the Start Feedback Message Throw Event. When the process token

in the feedback process reaches the End Feedback Signal End Event, the feedback
event is raised to the EDN. The EDN will perform data association and raise the
event. It will deliver this event to the BackOffice process and all other subscribers
configured to listen to that specific signal. The BackOffice process is subscribed to
catch the feedback event using the GetFeedbackDetails signal catch event. When the
signal arrives at the Backof fice process, the process gets triggered by this signal.

[239]

Interaction Patterns

Summary

This chapter demonstrated how the BPM process interacts with other processes,
services, and events. While walking through the various recipes in this chapter,
you analyzed advance and default conversation, and their implementation in
the BPM process collaborations. You also witnessed the interaction patterns of
synchronous and asynchronous processes and services using events and tasks.
The embedded inline and reusable subprocess interaction patterns are also
housed in this chapter. The next chapter is focused on correlation patterns.

[240]

Correlation Patterns

In the previous chapter, we witnessed many conversations between processes

and services. There were conversations and collaborations to not only create new
instances of the process but also conversations and interactions with the in-flight
process. Imagine when there are many instances of the Loan Origination process
and each instance is handling a different applicant, how will the BPM engine make
sure that an interaction is meant for a specific process instance of a Loan Origination
application? The previous chapter contains a BackOffice process, Loan Origination
process, and many other processes. The BackOffice process interacts with the Loan
Origination process; however, there might be cases where a loan originates from
some other source such as a web application or by an applicant visiting the branch
and so on. How does a system make sure that if the feedback process has started

it should deal with that particular applicant's details for which it was initiated?

Or, when the feedback process ends, should it respond to the correct instance of
the BackOffice process? Similarly, we have a background check process and other
verification processes. There might be many Loan Origination processes in the
system. How does the background process make sure that once it gets completed it
responds to the instance of Loan Origination that it is supposed to respond to?

For example, we have four instances of the Loan Origination process, LO1, LO2,
LO3, and LO4. All these four instances have created four instances of background
checks as BG1, BG2, BG3, and BG4 for four different applications, applicant 1 to 4.

LO1 started BG1 for applicant number 1, LO2 started BG2 for applicant number 2,
and so on. While all these instances are in the BPM system, BG2 and BG3 instances
get completed before BG1 and BG4. The question is how will the system make sure
that BG2 responds to LO2 and not to LO1, LO3, or LO4, and that too for applicant
number 2 and not for any other applicant? Similarly, when the Loan Origination
process is completed how will the system make sure that it interacts with the
correct instances of the BackOffice process?

Correlation Patterns

This chapter will deal with all the questions related to correlating the conversation
and collaboration between different processes and services. The following patterns
around correlation are included in this chapter:

* Message-based correlation pattern
* Cancel instance pattern

* Update task pattern

* Query pattern

* Suspend process pattern

* Suspend activity pattern

* Cancel activity pattern

Correlation mechanism

In the last chapter, we learned about conversations. However, we now need to
associate a message with the instance to which it belongs. This message association
with the conversation is performed using the correlation mechanism. The correlation
mechanism enables the identification of a correct instance in another process through
an instance, and it enables us to send a message to that specific instance.

We can use correlation to communicate between the BackOffice process, web process,
and Loan Origination process. When the Loan Origination process completes a loan
process for an applicant, it sends a message to the BackOffice process or web process,
whichever has initiated the Loan Origination process, using the Applicant ID to locate
the instance in both processes. The correlation is done using the Applicant ID.

Types of correlations

The different types of correlations are as follows:

* Automatic correlation: Let's say we have a process interacting with services,
which understands WS-addressing, processes/services with JMS message
IDs, or conversation with synchronous services. In all these cases, correlation
is handled automatically; this type of correlation is termed as automatic
correlation. With WS-addressing, a unique correlation ID is infused in
the message header, which is then used by the BPM engine to correlate
a conversation.

[242]

Chapter 6

* Payload/message-based correlation: This refers to the customary way
of correlation based on your business logic and design, wherein you can
identify keys/values to use for the correlation. These keys/values are
identified from the message payload that belongs to your process design and
hence, it's termed as custom correlation. However, it's based on the message
and more appropriately termed as message-based correlation. For example,
we will use Applicant ID to correlate instances in this chapter. However, you
can also create a correlation based on multiple keys such as Applicant ID
and Tax ID.

When we create multiple correlations, we would need the values of all those
correlations to identify an instance, which is sort of a primary key in a database
relationship. For example, if we have used Applicant ID, SSN#, and Tax ID as
three different correlations, then we need all these correlation values to identify
the same instance.

When two processes start exchanging messages, they establish a conversation
between them. As one process starts a new instance of another process, they know
whom to route messages to, because the first-time interaction between them has
established a conversation between them. This means that the invoked process
would know whom to send the response to, and they can continue to collaborate
and interact using WS-addressing, which is the default, automatic correlation
mechanism of Oracle BPM. However, this correlation mechanism will not work
when the interaction needs to happen between two already running instances of
the collaborating processes. Then, we need to know whom to route messages to

so that the messages land and correlate with the correct process instance. Also, we
need a mechanism to establish a conversation with the in-flight processes. This is
performed by a payload-based correlation mechanism, also known as message-based
correlation. We may also need correlation when any of the application/process/
service in the conversation does not support WS-addressing, such as any legacy
application, non-SOA based applications, and so on during collaboration.

Components of correlation

The correlation mechanism has the following components:

* Correlation property: In a message-based custom correlation, you will
identify a common identifier such as Applicant ID, SSN ID, and so on.
They are identified based on the name and data type assigned to them.

[243]

Correlation Patterns

* Correlation keys: These keys are identified with a name; the correlation key
defines the properties to be used in correlation. You can use a correlation key
in any process/BPEL service in your project as its scope is within the project.
Even the correlation defined in the BPEL process in the projects can be
used in BPM processes. A correlation key can contain one/more correlation
properties. It has two modes: Uses and Initiates. The correlation key can be
defined as simple and advance.

* Correlation property alias: We have defined a correlation property
and assigned a name to it. However, it's the correlation property alias
that actually maps the element(s) of the message to the property. We can
use the expression builder to define the mapping of the message element(s)
to the property that helps you to use either an argument or any predefined
variables.

* Correlation set: This refers to a set of correlation keys. It's also known as the
correlation definition as it defines and configures the set of correlation keys.

Configuring the environment

In this section, we will perform some of the elementary steps that will allow us to
run the samples in this chapter.

The downloads available for Chapter 6, Correlation Patterns, have two application files.
One file is in the Correlation directory, and the other file is in the NonCorrelation
directory. Both the applications are the same. You can use the application from the
NonCorrelation directory if you want to create correlation and run the samples.
However, if you just want to verify the correlation and deploy the project, you can
use the application from the correlation directory. The only difference is that

the applications in the Correlation directory have the correlation defined, while
applications in the NonCorrelation directory do not have correlation defined in

the processes.

To enable the sample application, we need the salesrep user in the myrealm
weblogic. We also need to have a JMS queue (LOFeedbackQueue). The following are
the mandatory steps you need to perform in order to enable the sample application
to work for you:

1. Login to the WebLogic console and navigate to myrealm.

2. Click on Users And Groups and create a user (salesrep).

3. Apply the changes.

[244]

Chapter 6

*® NS Gk

Go to JMS module | SOAJMSModule.
Click on New to create a JMS queue with the name LOFeedbackQueue.
Let the JNDI mechanism be jms/LOFeedbackQueue.

Update the J]MS adapter from deployments.

Along with the application, you will get the CreditCheckPrj and

FraudCheckPrj projects. Deploy CreditCheckPrj and FraudCheckPrj
to the server.

9. Navigate to the EM console to get the WSDL URL (webservice.wsdl) for the
CreditCheck service and the FraudCheck service.

10.

Open the LoanOrigination project's composite.xml and change the WSDL

URL for the CreditCheck and FraudCheck references, as shown in the
following screenshot:

LoanOriginationApp
=| Projects =)
reditCheckPrs ¢
raudCheckPrj q
oanOriginatiorProject
=-[Jeem
i) BPMN Processes
{5 BackgroundCheck
i) BackOffice
9] catchFraudbetails
5] Feedback
-] Fraudintruption
F) LoanOrigination
F3) LoutiityProcess
-] RestartLo
53] web
{33 Business Components
=-{ Events
& Feedback.ed
F FraudDetsils.ed
{8 Human Tasks
& AppVerificationTask. task
<y Activity Guide
w2 Organization
3504
@3 Events

Lo
=) Application Resources
| Data Contrals

] Recent Files

Design

S ld Ral DD B

f—

=
)

EL

LoanOrigination

&
:JE AppVerificationT...

© Update Reference

=)

SOAP

Name:

WSDL URL:

Port Type:

>, Callback Port Type:

Web service is a service external to the SOA composite.

[] copy wsdl and its dependent artifacts into the project.

Transaction Participation: [WSDLDriven

Fravocred \

[303/s0a-infra/services default/FraudCheckPri! 1.0/WSDLs/FraudCheck.wsdl| 78]

|Fraudcheck -

|FraudCheckcalback -

LoanOrigination

CreditCheck
Operations:
process

FraudCheck
Operations:
procass
procassResponse

The data files to perform the test can be found by navigating to
LoanOriginationApp | LoanOriginationProject | SOA | testsuites.

[245]

Correlation Patterns

Defining correlation properties

In the calling process, we will define correlation on the flow object that will send
messages to the called process. The correlation mechanism defined on the calling
process's flow object should initiate the property aliases. In the called process,
we will define correlation on the flow object that will receive the message. The
correlation mechanism defined in the called process's flow object should have
the property aliases defined as join.

Correlation can be defined in two modes: simple and advanced. Use the simple mode
when you are defining just one property. For example, using only Applicant ID for the
correlation in the Loan Origination process, we define a simple correlation. However,
if you are defining multiple properties, using multiple correlation keys, and assigning
those multiple properties to one or more keys, then use the advanced mode.

Download LoanOriginationApps which is a part of the Chapter 6, Correlation
Patterns, downloads available on the Packt Publishing website. Open it in
JDeveloper. Go to LoanOriginationProject and select LoanOrigination process.

Perform the following steps to check the correlation definition on the message start
event of the process:

1. Click on the startLOEvent message start event to check its
implementation properties.

Click on Correlation in the implementation properties.

In the Properties tab, we can choose a correlation property if it's already
defined, else use the + icon adjacent to Property in order to create a new
simple correlation property.

4. Enter a name and data type, as shown in the following screenshot, and click
on OK.

5. Check the Initiate box if you want the mode to be Initiates. As the
startLOEvent message starts event is the start point for the Loan Origination
process, the LOCorrProp correlation property is defined as Initiates.

6. Click on Expression Filter, adjacent to the correlation property alias to define
a map between the message element and the correlation property. Select
Applicant ID as we will be mapping the Applicant ID message element with
the LOCorrProp correlation property.

7. We can switch to the Advance mode, if we have advanced definition
requirements.

[246]

Chapter 6

Defining correlation keys and configuring the
correlation definition

We can define correlation at the project level using the structure window, or we can
use an Activities Correlation tab to define and configure the correlation keys.

If you have a simple requirement of one key with one/more properties, then perform

the following steps:

1. Go to the structure window for this particular process.

2. Expand Correlations.

3. Right-click on Correlation Key and select New; this will open the Create
Correlation Key wizard.

4. Enter the name of the correlation key and select one/more correlation
properties that we need to assign to this correlation key.

5. We can also use the same wizard to create a correlation property by clicking

on the + sign adjacent to the correlation properties.

To define a correlation key in the advance mode and to configure a correlation
definition, perform the following steps:

1.

2.
3.
4

o

Click on an activity or the event in the process flow.
Go to Implementation in the Properties tab.
Click on Correlations.

Select Switch to Simple Mode. This will open the Correlation Definition
dialog box.

Click on the + sign to create a new correlation key.

Select the Correlation Key if it's already defined, else click on the + sign to
create a new correlation key.

Enter the name of the correlation key.

Click on the + sign to create a correlation property, else select one/more
correlation properties to be assigned to the correlation key from the
property list.

[247]

Correlation Patterns

9. Select the mode, Uses/Initiates as per the design. The entire process is shown
in the following screenshot:

Bae > =
L @) Properties - startLOEvent |£‘T
oavr:l(.‘ B Basic Implem;ntatiun O Correlation Definition ‘il
Activity Interactive Motificad] Implementation Type: Correlation Keys = $ / ?2
Message Exchange —
||| correlation Key Mode
Type: | \‘E Defin{ | |ck_LOCorrProp Initiates

Conversation: () Defaul

Define Interface

Arguments Definition Correlation Property Aliases
I =

MName LOCorrProp: | jng:startl OEvent/ns 1:LoanRequest/ns 1:LoanDetsils/ns 1: ApplicantlD | [
Startl OEventINArgu

5 22
startl OEvent Suitch to Simple Mode 4 © Create Correlation Key -
r-
Operation Mame: |start] Help Correlation Key: |d< ReStartCorrProp 'l |—§ |
o) 0 Create Correlation Key
&3 Data Assodations é 3 Pl Correlations é Name: |Ck_|_oco|—,—p|—op 7
St Message Headers 2] Service Properties &8
Correlation Properties: g Selected:
\ | |abel BECCorrProp] [
=4 B
2,) Create Correlation Property @
m o
S| 2
=) % reStartl OEvent Name: |LOCnrrPrnp| ‘
L E
(=R}
|8 bk Type: [STRING -
Q
=
Help OK Cancel

In Chapter 5, Interaction Patterns, we witnessed the correlation definition as we have
seen the usage of correlation properties. In the Loan Origination process, you will
find that for the LOCorrProp correlation property, we have selected the Applicant
ID using a simple expression builder. We can use an advanced expression builder
and functions offered by the expression builder if we have complex requirements.
This is shown in the following screenshot:

[248]

Chapter 6

5 Properties - startlOEvent =
Basic | Implementation
Implementation Type: | = Message .

Messace Fuchanas - =
1 = Correlation Definition =

Cq | Correlation Keys + 7R

Correlation Key Mode |
ik _LOCerFrop Intistes

r,-\\]) |
®—
=
e Corredation Property Aliass
LOCrProp: | <o oy rLOEventINAz qu., 1oanDetails, applicantID 15

(o) A.(:i’ Expression Builder

L

i Sttt §3 | | Snitch to Smple Mode 1| ode: L5} Simple Exp. >
| Ll {|| Buid an expression by typing directly into the Expression field and/or insert fragments from
= ‘) \
e .

Expression:
StartL0EventINArqu. loanDetails. applicantTn|

restartLOEvent

#\ Insert Into Expression

Variables

- oradebompoject ConelatonliendConisneringi2Beesse Y.

= £ Arguments

;- Bl (58 Startt OEventiNArgu | A

We can check the startLOEvent message event to check the correlation property,
which is shown in the preceding screenshot. We can verify that for the startLOEvent
message event, the correlation key mode is set to Initiate.

Understanding the correlation behavior

The startLOEvent message start event will initialize the value of the correlation
property defined in the correlation key from the value of the correlation properties
in the message, as its mode is Initiate. For all the nodes that have their mode set to
Uses, the value of the correlation property is compared with the incoming message
element when a message arrives. This message element is defined in the correlation
key for correlation properties, which is mapped using the correlation alias, with all
the active instances in the system.

As in the Loan Origination system, we are invoking a background check process.
When you invoke it with a message throw event, you have used the same correlation
property with an alias, that maps a property with its Applicant ID. To get a response
from the background check process, you have to define a message catch event with
the same LOCorrProp, that maps with the Applicant ID message element.

[249]

Correlation Patterns

So, when the message arrives from the background check process to the catch event
in Loan Origination process, the value of the correlation property is compared with
the value of the correlation property for all the existing active Loan Origination
process instances. If one of the Loan Origination process instance's correlation
property matches with the incoming message's correlation property, then the
message is passed to this catch/receive activity. Else, if no instance matches

or more than one instance matches, then this would lead to an exception.

When we have a correlation key with multiple properties, then the value of each
correlation property is compared with the incoming message element. This is used in
the correlation property alias as a map to the correlation property with all the active
instances of that process. If only one instance matches, then the message is passed to
that instance's receive/catch event or else an exception is raised. In case of multiple
instances for a subprocess, each subprocess instance will have its own copy of a
correlation key. However, when the subprocess is to be executed in parallel, then the
best practice is to define a scoped conversation rather than defining a correlation.

Message-based correlation pattern

The following pattern table explains the features of the message-based
correlation pattern:

Signature Message-based Correlation Pattern
Classification Correlation Pattern
Intent This is the customary way to establish correlation based on your

business logic.

Motivation This provides the flexibility to identify and define custom keys and
values for correlation based on business requirements.

[250]

Chapter 6

Applicability Managing message context across the process and the different
partner services/processes that are collaborating.
We need the message-based correlation pattern for the following
reasons:

* Establishing a conversation between already running
instances.

* Any of the collaborating process/service cannot maintain a
conversation message exchange.

* There is a need to converse with an in-flight process/service.

* The collaborating system does not support WS-addressing.

* Interaction with the third-party system takes place using an
interaction mechanism such as a file, database push/pull, and
SO on.

* A multihop interaction and response may come from any
process in the hop. For example, process A interacts with
process B that interacts with process C, which in turn interacts
with process D. Process D might respond to process B, which
in turn responds to process A, or process C responds to
process A, and so on.

Implementation * Flow objects such as throw events and Send Task can be

used to initialize a correlation. However, flow objects such
as Receive and Catch join a correlation by setting the
correlation to Uses.

* A service task flow object can initialize and use correlation at
the same time as it defines two types of correlations, input and
output.

» Correlation cannot be defined on a call activity that is used to
invoke a reusable process.

* If the embedded subprocess is single-flow inside the process,
that is, subprocess characteristics are none, then you can use
correlation.

¢ If the embedded subprocess is multi-instance, that is,
subprocess characteristics are multi-instance or loop, then
using scoped conversation is the best practice. Scoped
conversations have been covered in Chapter 5, Interaction
Patterns.

Known issues

NA

Known solution

NA

[251]

Correlation Patterns

Enlisted here are some of the main characteristics of message-based
correlation pattern:

* Once initialized, a correlation value cannot be changed as it's the value
of the correlation that the Oracle BPM service engine will use to identify
the instance

* We cannot assign a new value to the correlation

* We can create one or many correlations

* We can create a correlation property with many values

* We can create a correlation key with many correlation properties.

* We can create many correlation keys with one/more correlation properties

* The scope of the correlation is the process instance or the subprocess instance
in which they are defined

* The correlation key can be defined in either of the two modes, Initiate or Uses
* The correlation can be defined as simple or advanced

* The correlation keys can be scoped similar to the way data objects and
conversations can be scoped

The download section of Chapter 6, Correlation Patterns, contains the
LoanOriginationApps application. The loan origination apps contains the loan
origination project and other supporting services such as the FraudCheckprj and
CheditCheckPrj projects. The Loan Origination project constrains the processes that
we will be discussing in this chapter. If you have not deployed the Deploy Credit
Check and Fraud Check services while performing labs of the previous chapter,
deploy these supporting services and change the web service references in the Loan
Origination processes as per the steps you have performed in the previous chapter,
in the Interaction pattern with asynchronous service using message throw and catch

events section.

Carry out the following steps to create a correlation for all the processes and perform
tests to uncover how the correlation will work:
1. Open the Loan Origination project and click on the BackOffice process.

2. Go to the structure window and expand Correlation | Correlation
properties.

3. Right-click on Correlation properties and select New. This will open the
Create Correlation Property dialog box.

[252]

Chapter 6

4. Enter a name for the correlation property as BoCorrprop, a short name for
the BackOffice correlation property, and select the type as string. This
correlation property will be mapped to the Application ID in the message
that has a type of string; hence, the string type is selected.

5. Click on OK, and you can find BocorrProp being created in the
structure window.

6. Right-click on Correlation Keys in the structure window and select New.
This will open the Create Correlation Key dialog box.

7. Enter a name for the correlation key as ck_BoCorrpProp. We will use a similar
structure throughout this chapter as a naming convention to the correlation
key, which is ck_<correlation property names.

8. Select BOCorrProp from the list of properties, select the arrow to move the
property from the available list to the select list, and click on OK. If you have
a business requirement to define a correlation key with multiple properties,
then you can select multiple properties in this dialog.
We have just defined the correlation property and the correlation key. Now,
we will define the correlation definition and configure it as Initiates or Uses
for the different process flow objects.

9. Right-click on the StartBO message start event of the BackOffice process and
go to implementation properties.

10. Click on Correlation.

11. Select BOCorrProp from the correlation properties dropdown.

12. Select the mode as Initiates by checking it.

[253]

Correlation Patterns

13. Use an expression to map the message element with the correlation property.

As shown in the following screenshot, Applicant ID will be mapped to
the BoCorrProp correlation property, where Applicant ID is a message
element in BackOffice process's input argument. This is shown in the
following screenshot:

FiBackofce * 5 Properties - Stant80 =
- [8 - ||(#se] moiementston
Activity Interactive | |

Implementation Type: |(® Messagg -

= 5 Correlation Definition &
Type:) Define Interface e T z @
Conversaton: (3) Default () Advanced
i) vl Initiates 4

§ Comelala fropert Abase <
e Arguments Definition . = -
[@\,— BOCorProp: |popyocessIN. losnDetails. spplicantID i {7 P
= Hame | . '\\'ay

StartBO BOProcessIN 8 2 5 3

5 < Expression Builder

E Mode: || 7] Simple Exp. ™

E] Operation Name: [iart50 |

Build an expression by typing directly into the Expression field and/or insert fragments from the fragment editors below
2 Suitch to Advanced Mode
4 Dato Assocations ¢ D Comciteord | — - Expression:
" |BOProcessIN. loanDetalls. spplicancID
Message Headers

iy A\ Insert Into Expression

(W

Variables - Functions
= oracle bom.project, CorrelationltemsContainerimplS2 @ 79bdecoh String
| ‘contains
| fiy endswith

) length
fu)| towercase
fiy startswith

14. Click on OK thrice and when you are done, click on Save AlL

15. Click on the RequestLoanOrigination message throw event and configure
the correlation definition similar to the BoCorrProp correlation property.
However, don't check the Initiates box as we want it to be on the Uses mode,
as this flow object will use the already existing and initiated correlation.

16. Use the expression builder and map BoCorrProp with Applicant ID. Click
on OK.

17. Repeat steps 15 and 16 for the RespLoanOrigination catch message
event, the CatchCancelLoan catch message event, StartFeedback,
GetFeedbackDetails, and the endBO message end event.

18. Click on Save All.

This completes the correlation definition of all the objects in the BackOffice process.
The BackOffice process will be invoking the Loan Origination process. However,
the BackOffice process also needs to correlate the feedback process response, which
itself will be invoked by other applications. Hence, we have created a correlation
definition with Initiates as the mode for BackOffice process's message start event.

[254]

Chapter 6

Open the Loan Origination process and perform the preceding steps to create
the following;:

* The correlation property: LOCorrProp

* The correlation key: ck_LOCorrProp

For the startLOEvent message start event, define correlation with the Initiates
mode and for all other events, define correlation as Uses. Remember to select
LOCorrProp as the correlation property throughout the Loan Origination process.
Also, remember to map LoCorrProp with the Applicant ID message element.

The loan origination process invokes the background check process. Perform the
following steps to create the correlation key, properties, and definition with the
following details:

* The correlation property: BGCCorrProp

* The correlation key: ck_BGCCorrProp

Remember to select BGCCorrProp as a correlation property throughout the background
check process. Also, remember to map BGCCorrProp with the Applicant ID
message element.

The Loan Origination process also invokes the Fraudcheck asynchronous service.
It's a BPEL service. Open the Fraudcheck BPEL service and you can see that a
correlation is created in this too. Moreover, the correlation property is mapped
with the Applicant ID message element in the FraudCheck BPEL service too.

In the Loan Origination process, open FraudCheckSubProcess and for
FraudCheckRequest and FraudCheckResponse, throw and catch message events,
respectively. Select the correlation property as LoCorrprop and mode as Uses

for both the events. This is because when FraudCheckSubProcess invokes the
FraudCheck asynchronous service, Applicant ID will be used to correlate its
response so that the FraudCheck asynchronous service responds to the correct
instance of the process.

The Loan Origination process includes the query and cancel patterns offered by the
QuerySubprocess and CancelLoanSubprocess event subprocesses. For both the
event subprocesses, use LOCorrProp as a correlation property and map this with the
Applicant ID message element in the Cancelloan, EndCancelLoan, and RestartLO
events in the CancelLoanSubprocess event subprocess, and the CheckLoanStatus
and EndCheckLoanStatus events in QuerySubprocess.

[255]

Correlation Patterns

The event subprocesses are correlated as we want to make sure that the query
subprocess responds to the loan status for the requested Loan Origination instance,
and not for any running instance. Similarly, cancel loan subprocess should cancel
the Loan Origination process instance for which the request is meant and not just
any running instance. Message-based correlation ensures that request and response
are correlated and the fabric of conversation remains perfect. Similarly, click on
FeedBack process and Create Correlation Property and map FeedCorrProp with the
Applicant ID message element throughout the feedback process. However, ensure
that for the startFeedback message start event, you select the mode as Initiates
and for all the others, select the Uses mode. Save all your efforts and deploy it to the
weblogic instance.

Testing the message-based correlation pattern

The web process and the BackOffice process will invoke the Loan Origination
process. Navigate to LoanOriginationProject | SOA | testsuites.

Use the following test data files to test start the web process and the
BackOffice process:
* Web.xml to test the web process
* BackOffice.xml to test the BackOffice process
Using BackOffice.xml, initiate the first BackOffice process instance with the
applicant ID as 1111 and the second BackOffice process instance with the applicant

ID as 2222. Similarly, use the Web.xm1 file and initiate the first web process instance
with the applicant ID as 3333 and the second instance with the applicant ID as 4444.

Check the test results by carrying out the following steps:

1. Logintothe EM (http://server:host/em)as an admin user, weblogic.

2. You will find that four instances have been created: two for the web process
and two instances for the BackOffice process.

3. Login to the BPM workspace (http://server:host/bpm/workspace) as
the salesrep user and approve the instance application verification task for
applicant ID 2222 and applicant ID 3333.

4. Re-login to the EM as an admin user and check the audit trail for the
BackOffice process for which the request was sent with the applicant ID 2222.

[256]

Chapter 6

5. In the instance trace for the BackOffice process, click on the Loanorigination
process. This will open the audit trail of the process. Click on startLOEvent
and expand it. Click on the Instance left the activity link to check the payload
that entered the Loan Origination process and to verify that the applicant ID
is 2222, which you have passed while creating the second instance for the
BackOffice process.

6. Now, click on the BackOffice process in the instance trace, which will open
the audit trail of the process.

7. Click on the RespLoanOrigination message catch event, and then click on
Instance entered the activity to check the payload that was returned from
the Loan Origination process. This is shown in the following screenshot:

Activity instance audit detail

aryPayload auditId="72&" ciKey="72" xmlns="ht +

State>
atalbject name="BOPFrocessINFDO" detailld="1Z1
<value umlns="http://umlns_cracle.com/bpmn/e

<! [CDATA[<Loank t xmlns="http://Www.3
Details>
<ApplicantID>2222</EpplicantID>
<Product>PRD1111</Product>
<Amount>1000</Amount>
<ApplicationDate»2014-12-12T00:00

Ch 1>Backoffi /Ch 1>

<Source>Backoffice</Source>
<InterestRaterZ</InterestRate>
<UpdateDate>2014-12-12T00:00:00</
<LoanOfficerrsalesrep</LoanOffice
<LoanSalesfep>jstein</LoanfSalesfe
<LoanProcessorrchristine</LoanPro
<LoanStatus*New</LoanStatus> e

[E—— »
ol

8. You can verify that the returned data from the Loan Origination process is
for the applicant ID 2222. This correlates the BackOffice instance with the
correct response from the Loan Origination process. Now, let's verify for the
web process. Click on the completed process of the web process instance.
This completed instance will be for the web process instance that has the
applicant ID 3333.

9. Click on the Loan Origination process component in the web process
trace. This will open the instance of loan origination. Click on Instance left
the activity by expanding startLOEvent. Verify that the instance of loan
origination created by the web process for the applicant ID is 3333.

[257]

Correlation Patterns

10. Click on the web process trace and open the audit trail of the web process.
Expand ReceiveLoanResponse, then click on Instance left the activity, and
verify that the response contains the applicant ID 3333.

Re-login to Oracle BPM at http://server:host/bpm/workspace as the salesrep
user and approve the other two application verification tasks, one for the web

process and the other for the BackOffice process. You can verify the data request and

response pattern for these two instances; they remain correlated for the request and
response based pattern on the applicant IDs.

Cancel instance pattern

The following pattern table explains the features of the cancel instance pattern:

Signature

Cancel Instance Pattern

Classification

Cancellation Pattern

Intent

Canceling the BPM process instance.

Motivation

There are business requirements to cancel the already running
process instances. BPMN processes should be developed with the
flexibility to provide process consumers with the option to cancel
the running instances.

Applicability

The cancellation of a process instance should be correlated. A
request to cancel instances cannot just cancel any process instance.
A cancellation request must be correlated with the correct instance
to be cancelled. It's the correlation which makes sure that the
cancellation process results in the cancellation of the correct
instance of a process that it is meant for and does not affect

any other instances.

Implementation

The cancel instance pattern can be implemented using event
subprocess, event gateways, and correlation properties. The
following section demonstrates the implementation and testing
of Cancellation pattern.

Known issues

NA

Known solution

NA

The cancel instance pattern is included in correlation because
defining a correlation is a must for establishing the cancel
instance pattern. However, this pattern is a part of the
cancellation and completion patterns.

[258]

Chapter 6

The Loan Origination process takes care of an applicant's loan request and fulfills
that request. However, there might be cases when a customer wants to cancel a loan
application. Cancellation might happen at any stage of the loan application. To fulfill
the requirement to implement Cancelation pattern in the Loan Origination process,
we will use event subprocesses. The CancelLoanSubProcess event subprocess
defined in the Loan Origination process takes care of loan cancellation. The following
code snippet checks for the application verification task's status:

If
Application task is already executed i.e. Loan officer has taken
appropriate action on the task then
Process moves ahead.
Else
Application task is suspended.

In both cases, the process checks for the stage in which it is present.

If the process has passed all the verification steps and is in the underwriting stage
and then a cancel request arrives, the customer will be contacted. The customer will
be asked if he/she is interested to restart the loan process. If the customer wants to
restart the loan process, then the RestartLo message throw event will be raised; else,
the loan process will be ended.

Understanding the components

In this section, we have used event gateways and event subprocesses. Let's invest
some time to understand the concept of event subprocesses and event gateways.

An event subprocess is a kind of inline subprocess. Its scope is the process/
subprocess in which it is defined. The event subprocess is active as long as the
process/subprocess in which it's enclosed is active. An event subprocess can either
be of the interrupting type or the non-interrupting type.

If the event subprocess is of the interrupting type and the event occurs, then the
original process/subprocess in which it's enclosed will be stopped and the event
handler will be executed. The event handler could be a boundary event, and in this
case, the token moves to the boundary handler path (you can learn more about
boundary events in Chapter 7, Exception Handling Patterns). If the event handler is an
event subprocess, then the event subprocess will be executed. The event subprocess
has access to the data and conversations of the process or subprocesses in which it is
defined and enclosed.

[259]

Correlation Patterns

If the event subprocess is of the non-interrupting type, then the normal process
flow will not be hampered. The process/subprocess in which the event handler is
enclosed will run in parallel to the event subprocess; however, a new token will be
created for the event subprocess. In Chapter 5, Interaction Patterns, we learned the
working of the boundary event. Event subprocesses are similar to boundary events.
However, use cases for event subprocesses are different in many ways from those
scenarios that need boundary events.

Event subprocesses can also handle complex business requirements. For example,
we can throw events from inside the event subprocess, and these events can

be caught by another subprocess/process, which is not the case if we are using
boundary event handlers.

An event gateway has been defined in Chapter 1, Flow Control Patterns, and Chapter
2, Multi-instance and State-based Patterns, in detail. We can associate multiple catch
events or receive tasks or timers with an event gateway. An event gateway can be
defined with the Instantiate property. When defined in the Instantiate mode,

it will pick the first event that occurs among the events associated with the event
gateway. It works on an event's occurrence. Flexibility with event gateways is

that we can use them to initiate process instances based on one of the many event
occurrences, or they can be used as a midprocess to wait for any of the many event
occurrences. We can check for the noninstantiate type of event gateway in the
BackOffice process. The BackOffice process has event gateways being defined which
wait to catch the response of the Loan Origination process. If the Loan Origination
process ends smoothly at the endL.O message end event, then its response is caught at
the RespLoanOrigination message catch event. However, if a cancel loan request is
raised for a Loan Origination process and the cancel loan process does not lead to
re-application, then it would end at the EndcancelL0 message end event. Also, to
catch EndcancelLo, the BackOffice process has a catchCancelLoan message catch
event being defined in the noninstantiate event gateway.

In the Loan Origination process, we have used the event gateway. Click on the Tart
Event gateway and check its properties. We can verify that its mode is Instantiate.
It will either wait for a new loan process to get started from either the web process
or the BackOffice process or for a re-application of the loan.

A re-application of the loan process will get triggered from the event subprocess
that is handling the Cancel Loan request.

[260]

Chapter 6

Perform the following actions to check the correlation definition:

Open the Loan Origination process and go to the CancelLoanSubProcess
event subprocess.

Click on the CancelLoan message start event and verify that the correlation
is defined with LoCorrProp as a correlation property, which is mapped with
the Applicant ID message element. Verify the same for the EndcancelLoan
and RestartLO events in the CancelLoanSubprocess event subprocess.

Testing cancelation pattern

Process cancelation patterns can be tested as follows:

1.
2.

6.

Log in to the EM at http://server:host/emas an admin user, weblogic.

Instantiate the BackOffice process instance with the applicant IDs 1101, 1102,
and 1103.

You will find that three instances have been created for the BackOffice process.

Log in to the BPM workspace at http://server:port/bpm/workspace, and
you will find three application verification tasks being assigned to the
salesrep user.

Go back to the EM and instantiate Loan Origination process by selecting the
CancelLoan operation.

Execute the CancelLoan operation for the application ID 1102.

We have run a similar test when correlation was not defined. However, this time

we have defined a correlation; let's check the audit trail for the BackOffice process to
verify that the result is as per the expectation. We would expect only the instance with
applicant ID 1102 to be cancelled and the process token to reach the EndCancelLO
message end event.

[261]

Correlation Patterns

The process instance will be completed and the human task application verification
will be withdrawn from the salesrep user task list for that process instance which
was cancelled. This is shown in the following screenshot:

29 Instance of Loa nOrigination @
This page shows BPMN process instance details.

Audit Trail

Graphical View B All -

<=

Click on the BackOffice process instance trail. You can check whether a new instance
gets created for the Loan Origination process when a cancel loan request is raised;
however, we have enabled correlation this time. Also, because of the correlation,

the BPM engine was able to identify the correct instance of the Loan Origination
process that needs to be cancelled. The cancel event handler subprocess will take

the appropriate action, and this will lead to process instance completion for the

Loan Origination process, which you can verify in the following diagram. We have
just learned how correlation makes sure that the cancellation process results in the
cancellation of the correct instance of a process that it is meant for and does not affect
any other instances.

Restart instance pattern

Let's make another test to check correlation and its importance:

1. Go to Cancel Event Subprocess (CancelLoanSubProcess) click on the
CustomerResponse script task, and then click on the Implementation tab.

[262]

Chapter 6

Change data association from No CustomerResp to Yes CustomerResp.

We need to change the customer response from No to Yes as we explicitly
want a restart. Check the event gateway to flow towards the Yes path.
This will lead to restarting the loan process.

In the Loan Origination process, go to the reStartLOEvent message catch
event after the Start event.

Clear the correlation. Let there be no correlation defined for this node.

Testing the Loan Origination process to restart

a loan
Walk through the following steps to test the restart scenario:

1.
2.

4.

Log in to the EM as an admin weblogic user.

Click on LoanOriginationProject and instantiate an instance of the
BackOffice process for the applicant ID 7799.

Create another instance of the Loan Origination process with the cancelLoan
operation and applicant ID 7799.

Check the BackOffice process's audit trail.

You can verify that a new instance of the Loan Origination process is created for
the cancelLoan event; however, this lands into a error as no correlation was being
defined on the reStartLOEvent message catch event, which is defined after the
start event gateway.

Redefine the correlation on the restartLOEvent message catch event using
LOCorrProp with the mode set to Initiate.

1.

In the Loan Origination process, go to the restartLOEvent message catch
event after the start event.

Choose LoCorrProp as the correlation property and Initiates as the mode.
Map LoCorrprop with its Applicant ID.
Save and deploy the process.

[263]

Correlation Patterns

You would have an obvious question as to what happened with the already running
instance of the BackOffice process that initiated the Loan Origination process.

This behavior is determined by how the event subprocess is configured. An event
subprocess can be configured to be of the interrupting type or non-interrupting type.
The following are the steps for configuring an event subprocess:

1. Click on the CancelLoanSubProcess event subprocess.
2. Open the CancelLoan message start event.

3. Check its implementation properties.
4

You can see that the implementation type is Interrupting Event.

Testing the restart scenario

Perform the following steps to instantiate the BackOffice process:

1. Login to the BPM workspace as the salesrep user and approve the
application verification human task. Post human task approval, the script
task will set CustomerResp to Yes; we can see that reStartLOEvent will get
invoked with the same applicant ID.

2. Gotothe EM athttp://server:host/em and select instances of the
BackOffice process and check its audit trace.

If the event subprocess is of the interrupting type and if this event occurs, then the
original process/subprocess in which it's enclosed will be stopped and the event
handler will be executed. The token for the cancel loan event subprocess will reach
the RestartLO message throw event, and this will lead to a restart of the Loan
Origination process because the RestartLo throw event would be caught at the
reStartLOEvent message catch event. As we can check in the audit screenshot,
there is a separate instance that got created for the Loan Origination process.

Log in to the BPM workspace and approve the application verification human task;
let the restarted Loan Origination process instance complete.

Now, you might be expecting that once the restarted Loan Origination process
instance gets completed, the process token will reach the BackOffice process

back; however, in the case of the restarted Loan Origination process, this would

not happen. Even if the restarted Loan Origination process ends, the token never
reaches the BackOffice process or even if we implement a correlation or conversation
between the BackOffice process and Loan Origination process.

Check the audit trail trace for the BackOffice process which is shown in the
following screenshot.

[264]

Chapter 6

We can verify that when we execute the cancel loan operation on the Loan
Origination process, this particular old instance of Loan Origination gets completed
and a new instance is started for the Loan Origination process. This new instance

is correlated with the original instance using the correlation definition based on the
Applicant ID message element. This is shown in the following screenshot:

Trace

Actions ¥ View ¥ Show Instance IDs
Instance
{9 Backoffice : 233
&3 "LoanOrigination : 294
& AppverificationTask : 295
5‘3 CreditCheckService : 237

5% FraudCheck : 299
(EBackgroundChe:k: 300
gELoanOrigination 1302

& AppVerificationTask : 303
53
& .

Type
Service
EPMN
BPMN
Workflow
Reference
Service
BPEL
Reference
Service
BPEL
BPMN
EBPMN
Workflow
Service

Usage

ﬂ%ﬂ Service

ng Reference

ﬂ%ﬂ Service

o Reference

o service

o Service

12

tate
Completed
Running
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Running

Running

€I eeeeeLeeeds

Completed

Composite
LoanOriginationProject [1.0]
LoanOriginationProject [1.0]
LoanOriginationProject [1.0]
LoanCriginationProject [1.0]
LoanOriginationProject [1.0]
CreditCheckPrj [1.0]
CreditCheckPrj [1.0]
LoanOriginationProject [1.0]
FraudChed:Prj [1.0]
FraudChedkPrj [1.0]
LoanOriginationProject [1.0]
LoanOriginationProject [1.0]
LoanOriginationProject [1.0]
LoanCriginationProject [1.0]

However, the BackOffice process will be in the running state even if new instances
of the Loan Origination process get completed. Hence, implement the CancelEvent
subprocess with a mechanism to restart a process instance, only when it's the main
process and not when it is a "called" process being invoked by another other process
"calling" process. Hence, if we invoke just the Loan Origination process and then
execute cancel loan, cancellation would work as expected, which can be seen in the

following screenshot:

Trace

Actions + View * Show Instance IDs

Instance

@.LoanOr\gination » 276
& AppverificationTask : 277
&
5
& CreditCheckService : 279
&
@

g% FraudCheck : 281
9 BackgroundCheck : 282
| gELoanDriginaﬁon 1 284
gﬁ AppVerificationTask : 235
&
a3 .

Type
Service
BPMM
Workflow
Reference
Service
BPEL
Reference
Service
BPEL
BPMN
BPMN
Workflow
Service

Usage

ﬂéf:g Service

o] Reference

B{'& Service

915 Reference

D{:ﬂ Service

ﬂéf:g Service

State

« Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Running

Running

A E I L S S S S S L R

Completed

Composite
LoanOriginationProject [1.0]
LoanOriginationProject [1.0]
LoanOriginationProject [1.0]
LoanOriginationProject [1.0]
CreditCheckPrj [1.0]
CreditCheckPri [1.0]
LoanOriginationProject [1.0]
FraudCheckPrj [1.0]
FraudCheckPrj [1.0]
LoanOriginationProject [1.0]
LoanOriginationProject [1.0]
LoanOriginationProject [1.0]
LoanOriginationProject [1.0]

[265]

Correlation Patterns

If the event subprocess is of the non-interrupting type, then the normal process
flow will not be hampered. The process/subprocess in which the event handler

is enclosed will run in parallel with the event subprocess; however, a new token
will be created for the event subprocess. We will explore a non-interrupting event
subprocess while walking through the query pattern in this chapter.

Update task pattern

The following pattern table explains the features of the update task pattern:

Signature

Update Task Pattern

Classification

Human Task Pattern

Intent

To update the human task properties.

Motivation

Based on the process status or business logic, there are
requirements to update user tasks. Using update task, we can
define a updating sequence in our business process, which makes
the process flow easier.

Applicability

We can update specific user tasks in our BPMN process using
update tasks. We can selectively update users' tasks, or we can
even update all the user tasks. We can only update the active user
tasks. If the user task is completed or has not started yet, then we
cannot update it using an update task.

Implementation

Update tasks have been added from 11g, and they offer a rich

set of operations to be performed on human tasks. Using these
operations, we can update the properties of the human tasks in our
process. We can update a human task or a set of human tasks, and
it does not need a task ID or task context to be dealt explicitly.

Known issues

NA

Known solution

NA

Though this pattern should be demonstrated in human
task patterns, I have included it in this section as we are
working on a Loan Origination process that has a use
case to demonstrate it here.

[266]

Chapter 6

To demonstrate an update task, we will use the Loan Origination process's use case.
The Loan Origination process has the CancelLoanSubProcess event task. This event
subprocess first checks the application verification human task's status based on

its outcome. The following code snippet checks the application verification human
task's outcome:

If
ApplicationVerificationOutcom == "REJECT" or
ApplicationVerificationOutcom == "APPROVE" Then

Bypass Update task "SuspendVerification" and directly move to Merge
exclusive gateway.
Else
Execute "SuspendVerification" update task.

This means if the application verification is performed by an assignee loan
officer, then the subprocess can directly move ahead, as the update task cannot
be performed on the AppverificationTask human task because it would no
longer be active. An update task can be applied on a human task only when

the task that needs to be updated is active, that is, as long as the human task is
active. If AppverificationTask is active, then the task will be updated using the
SuspendVerification update task. Use the following steps to check the update
task configuration:

Open the Loan Origination process.

Go to the CancelLoanSubProcess event task.

Go to the Suspendverification update task and check its implementation
properties.

4. The target selected for the update task is User task. However, select All User
Tasks if you want to update all user tasks in the process, or you can also use
the task ID to work around using the task identifier.

As we have just one human task, AppVerificationTask, we have selected
User task as the Target and selected AppverificationTask in the User
Task dropdown.

[267]

Correlation Patterns

5. The selected operation is Suspend; however, there are many other operations
that we can perform based on our business requirements. This is shown in
the following screenshot:

53 LoanCriginationProject] LoanCrigination =] Web BackOffice, xml . FResource

@ @- @- -0 ®- - N el 8- o
e

- r
Activity Interactive Notification Catch Throw Gateway Artifacts o Properties - SuspendVerification

Basic = Implementation

=

Implementation Type: ||@ Update task

Target

Target: |User Task

User Task: |\E| AppVerificationTask 'l &

SomeHctivity
Operation

_Q Operation: |{§} Withdraw =

Update Outcome
{:9'} Update Priority
455 withdraw
{:% Suspend
Resume
i Escalate
{§} Reassign
{:% Suspend Timers
{:% Resume Timers

CancelLoan CheckTasksStatus? Suspendverification

|48, Highliaht Level: Warmings Help oK Cancel

Designer | Scripting Collaboration Histor

Demonstrating the update task functionality

The SuspendVerification update task gets instantiated when the process token
reaches the cancel loan event subprocess. This happens on the event when the
cancel loan is initiated. If the Loan Origination process is at a stage where the
AppVerificationTask human task is active, the SuspendVerification update
task will suspend the AppVerificationTask human task.

Query pattern

The following pattern table explains the features of the query pattern:

Signature Query Pattern/Query Instance Pattern

Classification Correlation Pattern

Intent To query an already executing process instance.

Motivation Based on the process status or business logic, there are requirements to
query an already running process for varied information.

[268]

Chapter 6

Applicability When a query event occurs, the regular flow of the process will be
interrupted and the query event subprocess will execute in parallel
with the main BPMN process.

Implementation | We can use the event subprocess to query an existing process without
even interrupting the main process, and both the main process and the
query event subprocess will run in parallel. A new token is created for
the query event subprocess.

Known issues Making certain that the request to query a process instance must result
from the process instance that it is meant for.

Known solution | Correlation.

Event subprocesses are powerful mechanisms as they can be used for varied use
cases and scenarios in real time BPM process implementation. As we have seen
previously, the event subprocess was used to implement cases when executing
cancelation patterns in the BPM process. The cancelation pattern, in turn, can be
used to implement the update task pattern. With the event subprocess, we always
have the option to go back to the main process, which we have witnessed using
the restartLoanEvent message catch event and the RestartLo message throw
event combination.

Another major use case of an event subprocess is the query pattern. We can use
an event subprocess to query an existing process without even interrupting the
main process and both the main process and the query event subprocess will run
in parallel.

The Loan Origination process contains the QuerySubprocess event subprocess,
which is a noninterrupting subprocess to query the loan status while the

Loan Origination process is running. Perform the following steps to check

the configuration of QuerySubprocess:

1. Open the loan origination process to find the Querysubprocess
event subprocess.

2. Click on the CheckLoanStatus message start event to define its properties
in the Implementation tab.

3. Don't check Interrupting event or Suspending event, as we are defining this
event subprocess as a noninterrupting subprocess.

4. We can verify this noninterrupting event subprocess offers the
checkLoanStatus operation.

5. Click on correlation and select LOCorrProp as the correlation property.

[269]

Correlation Patterns

6. Map to the Applicant ID message element by entering the following code
using expression builder:

/ns:checkLoanStatus/nsl:LoanRequest/nsl:LoanDetails/
nsl:ApplicantID

Click on OK twice; save and deploy the process to the BPM 12c server.

At various nodes in the Loan Origination process, we have set the loan
status. To verify this, perform the following steps:

1. Click on the startLOEvent message catch event and open its data
association. We can check whether the StartStage value is assigned
to the loan status message element.

2. Similarly, check the reStartLOEvent data association and you can
witness that the ReStartStage value is assigned to the loan status
message element.

3. Click on the FinalAssign script activity, which we can locate before
the Underwriting subprocess. The data association for the final
assign script task shows the FinalStage value assigned to the loan
status message element.

Depending on where the process instance is, we will receive different results

to query the instance. So if we query a new instance of the Loan Origination

process before the process token reaches the underwriting subprocess, we will get
StartStage as the loan status; however, if the query restarted the instance of a Loan
Origination process, we will receive RestartStage as the loan status. Moreover, if
we query after the underwriting subprocess or when the underwriting subprocess is
executing, we will receive FinalStage as the loan status in response.

Testing the query pattern
This query pattern can be tested as follows:
1. Logintothe EM athttp://server:host/emand instantiate a new instance
of the Loan Origination process by executing the startLOEvent operation.

2. Login to the BPM workspace as the salesrep user and approve the
application verification human task.

3. Check the process flow in the EM and you will find the process token at the
underwriting subprocess.

4. Instantiate two instances of the Loan Origination process from the EM by
selecting the checkLoanStatus operation.

[270]

Chapter 6

Remember to pass the applicant ID when executing the Loan Origination process for
the startLOEvent operation and then for the checkLoanStatus operation. As we
have queried twice, we will find that two new instances have been created for the
Loan Origination process started for the checkLoanStatus operation. They are in the
running state, and they keep running till the original instance with which they are
correlated gets completed. The original instance means the instance that got created
when instantiating the Loan Origination process via the startLOEvent operation.
The Loan Origination process flow trace is shown in the following screenshot:

»| Sensors (0)

Trace
Click a component instance to see its detailed audit trai,
Show Instance IDs

Instance |Type |State Time | Composite Instance
7 @a o n.service of service: 470043 Web Service " Completed 9:43:57 PM LoanCriginationProject of 470048
iv IlLcyar\{)rignadcm of bpmn: 650033 BPMN Component Running 9:44:58 PM LoanCriginationProject of 470048
v &b 3 Web Service(Local Invoc® Completed 9:43:58 PM LoanCriginationProject of 470048

Web Service(local Invors® Complated
BPEL Component " Completed
Web Service(Local Invoc%® Completed
Web Service(Local Invoc % Completed

& CreditCheckService of bpel:660021
P N

9:43:58 PM CreditChedkPrj of 470043
9:43:58 PM CreditCheddPr] of 470045
9:43:58 PM LoanCriginationProject of 470048
9:43:58 PM FraudCheck of 470050

v

ﬁ!ﬁ FraudChedk of bpel:660022 BPEL Component & Completed 9:43:58 PM FraudChed: of 470050
@Badogmundche& of bpmn:650034 BPMM Component " Completed 9:43:58 PM LoanCriginationProject of 470048
Web Service " Completed 9:44:02 PM LoanCriginationProject of 470051
cess receive 1) BRMN Component Running LoanCrignationFraject of $70048
Web Service " Completed 9:44:08 PM LoanCriginationProject of 470052
cess receive 2) BPMV Companent Running LoanCniginationfroject of 470048

If you check the Loan Origination process's audit trail and check the payload
associated with the assigned activity, you can find the current status of the process.
Check the process's audit trail as shown in the following screenshot:

HInstance of LoanOrigination -.D_
This page shows BPMN process instance details, (2)

Audit Trail Flow Faults
Activity | Loop Count Event | Date|
Instance created 5:43:58PM
> @ Start 0 Activity completed

> (Bl startl OEvent

- [Pre-VertificationActivities
t> (@ AppverificationTask

[# ApplicationVerified?

> & st

0 Activity completed
0 Activity completed
0 Activity completed

0 Activity completed
0 Activity completed

1> Threads Thread Grouped il Feylood il a
1> o join 0 Activity completed auditG 3 t1d="56218" ck=y="650033
= () aelssn O Actily pompictad -~ 'CheckLoanStatusProcessOUT
&> [Underuriting 0 Activity processing false
v Thread Grouped
ey e Thread completed
QuEr{?ubprn s read complete o
7 [QuerySubprocess 0 Activity completed FinalStage -

Instance entered the activity

L= (8 Chedd oanStatus
= | [assign

i [someActivity

¥ (8 EndCheckoanStatus

b QuerySubprocess

0 Activity completed

0 Activity completed

0 Activity completed

0 Activity completed
Instance entered the activity
Instanice left the activity
Instance left the activity
Thread completed

Close

[271]

Correlation Patterns

We can see that two threads are created for the QuerySubprocess event subprocess.
Expand any one of the query subprocess threads and click on the Instance left the
activity link, as shown in the preceding screenshot. We can see that the output
contains the current loan status.

Threads are created to execute the event subprocess after the Underwriting
subprocess, as the process was queried when the process token was at the
underwriting subprocess.

When the query event occurred, the regular flow of the Loan Origination process
was not interrupted, the query event subprocess was executed in parallel with the
Loan Origination process, and a new token was assigned to it. As we have queried
twice, we will find that the two instances of the query event subprocess are running
in parallel to the Loan Origination process.

However, as we can check in the previous screenshot, even though the threads
associated with the query subprocess got completed, the event subprocess will not
complete and the instances created for the subprocess remains in the running state
till the main process and all other noninterrupting event handlers get completed.
Hence, when the Loan Origination process gets completed, the other two instances
of the Loan Origination that were created while executing the query subprocess will
also get completed.

Suspend process pattern

The following pattern table explains the features of the suspend process pattern:

Signature Suspend Process Pattern

Classification Correlation Pattern

Intent To suspend an already executing process instance.

Motivation Based on the process status or business logic, there are requirements

to suspend an already running process instance and then to resume
it from the point it was suspended or maybe to start from the next
activity from the point it was suspended.

Applicability When a suspend process occurs, the regular flow of the process will
be suspended and the BPM engine will run the process flow in the
event subprocess.

Implementation | We can use the event subprocess to suspend an existing process. We
can resume the process flow by assigning Resume to a predefined
variable, Action. Resume will resume the suspended process flow.
However, if we want to advance the process flow to the next activity
in the process flow that caught the suspension, then assign Send to
the predefined variable.

[272]

Chapter 6

Known issues NA

Known solution | NA

The Loan Origination process in LoanOriginationProject contains an event
subprocess named SuspendProcess. This event subprocess is configured as a
Suspending Event, as we can see in the following screenshot:

) Properties - SuspendProcess

===

Basic | Implementation

Implementation Type: | (@ Message

v |

[] Interrupting Event

Suspending Event
Message Exchange

Type: |ﬁ| Define Interface

Sus?endii

Conversation: () Default () Advanced

Define Interface

Arguments Definition ‘* / 3@
Mame Type
SuspendProcess LOBusinessObject
Operation Name: |suspendProcess
§"x§ Data Assodations é [Correlations é .| Log Handlers
I Message Headers J Service Properties
Help Ok Cancel
Trace
.) Process Trace
Actions * View * | Show Instance IDs |:|
Instance Type Usage Sta,
@ Service ﬂé‘g Service mpleted
r.‘E'LnanOrigination BPMMN @ Suspended
&5 AppVerificationTask Workflow =+ Running
%% Service Service o Completed

Remember to check the correlation defined for the SuspendProcess message start
event. It's also based on the applicant ID and is using LoCorrpProp as the correlation

property. This also demonstrates another use case for correlation.

[273]

Correlation Patterns

Execute the Loan Origination process with the startLOEvent operation.

Then, execute the Loan Origination process with the SuspendProcess operation.
Remember to use the same application ID as you have passed in StartLOEvent.
Check the process flow trace; you can find the Loan Origination process in the
Suspended state.

Suspend activity pattern

The following pattern table explains the features of the suspend activity pattern:

Signature Suspend Activity Pattern

Classification Correlation Pattern

Intent To suspend an already executing process activity or subprocess.
Motivation Based on the process status or business logic, there are requirements

to suspend an already running process activity or subprocess, and
then to resume it from the point it was suspended or maybe to start
from the next activity from the point it was suspended.

Applicability When suspended process happens, the regular flow of the process
will be suspended and the BPM engine will run the alternative
sequence flow.

After running a task in an alternative sequence flow, the BPM
runtime checks the value of the predefined variable action. If
the value of the predefined variable action is Resume or Send,
it resumes the main process flow and cancels the event handler
sequence flow.

Implementation | To suspend an activity or subprocess, we can use a boundary event.
A message event, timer event, or signal event can be configured as
the boundary event.

Known issues NA

Known solution | NA

When the process token reaches the boundary event, the process instance gets
suspended and an alternative sequence flow will be executed. After executing a
task/activity in the alternate flow, the BPMN engine will check for the value of the
predefined variable action. If the value of the predefined variable action is Resume,
then the main process flow is resumed and the alternative flow is cancelled. If the
value of the predefined variable is Send, then the main process flow is resumed
from the next activity.

[274]

Chapter 6

Cancel activity pattern

The following pattern table explains the features of the cancel activity pattern:

Signature Cancel Activity Pattern

Classification Cancellation Pattern

Intent To cancel process activities.

Motivation Based on the process status or business logic, there are requirements

to cancel certain activities of the process.

Applicability The cancel activity pattern is a useful cancelation pattern as it will
allow you to initiate the cancellation of activities based on business
requirements. An activity can only be cancelled when it's active;
hence, when we initiate the cancellation for an activity, make sure
that the activity is running in the instance.

Implementation | We can use event subprocesses and boundary catch events. The
following section includes a implementation sample for this pattern.

Known issues Makes it certain that the request to cancel an activity must result in
the cancellation of the activity in the process instance for which it is
initiated.

Known solution | Correlation.

To implement this pattern, we will create an interrupting boundary event on an
activity. When the event is raised, the process token will follow the path guided
by the interrupting boundary event.

Until this point, we are working on the Loan Origination process. We will extend the
process to implement this scenario. Perform the following steps:

1. Expand the Pre-VerificationActivities subprocess and drag-and-drop a timer
between the start and end of the subprocess.
Set a wait time of 1 minute in the timer.

Go to the Pre-VerificationActivities subprocess to define the boundary catch
event on an activity.

4. Drag-and-drop the message catch event as a boundary event
on the Pre-VerificationActivities subprocess and name it as
CatchConditionalCancel.

5. Go to the Implementation tab and define an interface with the operation
name CatchConditionalCancel.

6. Define the conditionalCancelIN argument of the LOBusinessObject type
and click on OK.

7. Define data association and click on OK.

[275]

Correlation Patterns

8. Define the event subprocess as an interrupting event subprocess by checking
the Interrupting event.

9. Define a sequence flow from the CatchConditionalCancel boundary event to
the message end event of the main process.

10. Save and deploy the project. This is demonstrated in the

following screenshot:

LoanOrigination
LoanOfficer

restartLOE vent

Start1 I Endl

Wait

Pre-wertificationActivities

1

s 2 &—

O Data Assodiations

©) Properties - CatchConditionalCancel

Basic | Implementation 2

Implementation Type: | () Message

Interrupting Event g

Message Exchange

| Define Interface 4

Type:

Conversation: () Default () Advanced
Define Interface

5

Arguments Definition

Name Type

Output
) CatchConditionalCancel
= £3 Arguments

{5 LoanOrigination

LoanOrigination

Data Objects (3=

LOProcessINPDO [
LOProcessOUTPDO [
ApplicationVertificationOutcom
CancelloanINPDO (g2}
CancelLoanOUTPDO (23
ChedkLoanStatusPDOIN (g}
CheckLoanStatusPDOOUT (3%
LoanStatusEventProcessPDOIN (g3
AppVerificationTaskiD

3w

‘ Copy

" From: [conditionalCancell] [To: [conditionalcanceirnd { ¥ 4

From To

7. conditionalCancellN

I3, ConditionalCancelPDOIN

lconditionalCancellN LOBusinessObject 7

Operation Name: [catchConditionalCancel 5

8
33 Data Ascociation: ¢

DD Correlations Log Handlers

=
=] |

© Conelation Definition

Property: [fid LoCorrProp 20

[] Initiates

Correlation Property Alisses

LOCarrPrap: | jns: catchConditionalCancel/ns 1:LoanRequest/ns 1:LoanDetals/ns 1:ApplicantlD

When the Pre-VerificationActivities activity gets cancelled, the process gets
completed. We can also define other ways to deal with cancellation of an activity.

How a boundary event based activity

correlation works

Execute the Loan Origination process using the startLoEvent operation. When the
process token reaches the Pre-VerificationActivities subprocess, execute the Loan
Origination process again using the CatchConditionalCancel operation.

[276]

Chapter 6

The catchConditionalCancel operation will result in execution of the
ConditionalCancelSubprocess interrupting event. As this is an interrupting
boundary catch event, it will interrupt the Loan Origination process. This would
hold the main process token, and the token will follow the path defined for the
boundary catch event.

We can also use other mechanisms to implement a conditional cancel on an
activity /subprocess. With this implementation of conditional cancel, we have
witnessed the usage of a noninterrupting subprocess and interrupting boundary
event to cancel an activity.

_ Remember that for activity cancellation to work, the process token
% should be on the activity. This means that the activity /subprocess
=" must be active, else conditional cancel being invoked in either of the
previously mentioned methods will not work.

Testing the cancelation pattern on an activity

Perform the following steps to test the cancelation pattern on an activity:

1. Gotothe EM athttp://server:host/emand select Loan Origination
Project. From the test dropdown, choose Loan Origination Service.

2. In the operation dropdown, select the startLOEvent operation to instantiate
loan origination.

3. The process token will now be waiting at the Pre-VerificationActivities
subprocess. It will wait here for 1 minute as this is the time set in the timer
inside the subprocess.

4. Execute another instance of the Loan Origination process; however, select the
CatchConditionalCancel operation this time.

Remember to use the same applicant ID that you used while executing the
StartLOevent operation, because the Applicant ID is the correlation key.

[277]

Correlation Patterns

5. Go to the EM and check the Loan Origination process's audit flow. This is
shown in the following screenshot:

29 Instance of LoanOrigination ®
[This page shows BPMN process instance details.

Audit Trail

Graphical View [+

!‘r;;“
L

H _JE; X +T—
= l. O\I Ve
? O Application Split
g AppVerificafion Verifig® B ndChe

Task sSubProcess

t 0> —)
EndRemin
ficationfiem derTask
nde

You can verify that when the subprocess gets interrupted by the
CatchConditionalCancel operation, it will end the Loan Origination process.

Summary

The chapter started with defining correlation as well as the correlation

mechanism and its components, along with its types. We learned to define
correlation and various patterns to implement it. It offered us an opportunity

to test all the patterns with a sample application. We uncovered how correlation
caters to scenarios such as cancel instance/activity /subprocess or query process
instances. We also witnessed suspending processes and suspending activities.

The sample application offered with this chapter helps us to learn subprocesses,
event subprocesses (interrupting, noninterrupting and suspending events) boundary
events (interrupting, noninterrupting and suspending events) event gateways, and
so on. The update task pattern, which is a human task pattern, was also covered here.

The next chapter focuses on exception-handling patterns.

[278]

Exception Handling Patterns

Anything that hampers the normal flow of execution of a BPMN process is termed
as an exception. Exceptions happen due to undesirable situations such as the system
may be down, a business condition is not satisfied, a deadline has expired, and so on.
These undesirable situations result in an exception. To lay down the foundation for
an effective exception-handling mechanism, we need to classify exceptions. Along
with the classification of exceptions, it's equally important to know how exceptions
propagate. Once an exception propagation mechanism is defined, we can implement
exception handling based on Exception Handling Patterns discussed in this chapter.
A distinct approach is used in this chapter to define Exception Handling Patterns.
This chapter deals with Exception Handling Patterns only for the Oracle BPM suite
and hence the terms and terminologies will revolve around this product suite.

It's always a good process-modeling practice to analyze, define, and implement
exceptions for BPM processes from the beginning. We can use the underlying
technology to implement generic solutions to handle exceptions. Generic solutions
could be at process level, project level, or enterprise level. At whatever level the
solution is implemented, the pattern remains the same. Normal process execution
flow and exception sequence flow are mutually exclusive. Hence, when an exception
is caught by a boundary catch error event, the normal process execution flow is
interrupted and the token flows to the exception sequence flow.

The following patterns are covered in this chapter:

* Reassigned Exception Handling Pattern

* Allocated Exception Handling Pattern

* Force-Terminate Exception Handling Pattern
* Force-Error Exception Handling Pattern

* Force-Complete Exception Handling Pattern

* Invoked Exception Handling Pattern

Exception Handling Patterns

Invoked State Exception Handling Pattern
Continue Execution Exception Handling Pattern
Force-Terminate Execution Exception Handling Pattern
Force-Error Execution Exception Handling Pattern
° External Exception Handling Pattern
° Internal Exception Handling Pattern
Internal Complete Exception Handling Pattern
Internal Terminate Exception Handling Pattern

Internal Error Exception Handling Pattern
° Reallocated Exception Handling Pattern

External Exception Handling Pattern
Process Level Exception Handling Pattern
System Level Exception Handling Pattern
External Triggers

Classifying exceptions

Unexpected issues can result in process failure. The problems that arise in the BPMN
ecosystem are software or hardware failure, and sometimes system error occurs.
System errors are connectivity issues, remote faults, timeouts, and so on. To handle
system errors, we use system exceptions. Issues in the regular process development
such as a credit card not authorized, an out-of-stock inventory, and so on are
business-related issues that result in business error. They are handled using business
exceptions. Exceptions can be classified as system exceptions, business exceptions,
timeout/ deadline exceptions, external triggers/process exceptions. These exceptions
are further described as follows:

System exceptions: Exceptions that occur due to system errors such as
database failure, infrastructure failure, connectivity issues, web service
not available, and so on come under this category. These exceptions are
meant to handle system errors. System errors are highly unpredictable.
A fault-handling management system is needed to handle system errors.

[280]

Chapter 7

Business exceptions: Errors due to problems in the process behavior are
called business exceptions. They are caused due to the interference of
problems in your regular process flow. For example, a process is designed
in such a way that if the inventory doesn't have the stock available, then

the quotation cannot be processed normally. This would lead to a business
exception. Predictable/unpredictable circumstances that arise in the business
logic or in the business process result in business errors. With an effective
process analysis and modeling, most of the business errors can be identified
and you can term them as predictable business errors. You can define the
exception-handling mechanism for predictable as well as nonpredictable
business errors too.

Timeout/Deadline exceptions: These exceptions arise whenever an
activity/task does not happen in a defined time interval or at a specified
time. For example, application verification in the Loan Origination process
has to be completed in 3 days. If this does not happen, then an exception
should be raised. SLA violation and such time-based scenarios are subject to
deadline exceptions. You need to have a defined approach as to what needs
to be done when a deadline is met; the timeout/deadline exception deals
with those scenarios.

External triggers/process exceptions: External systems or process interaction
with external systems can lead to cases that affect normal process execution,
for example, when the Loan Origination process has to be either cancelled
or queried. These external events are raised by external systems, and your
process needs to be equipped to deal with such scenarios. External triggers
can be of interrupting or noninterrupting type, for example, cancelling the
Loan Origination process will stop the normal process flow and end the
process based on the process exception flow. QueryLoanOriginationisa
noninterrupting type process and it would be mutually inclusive with the
main process execution flow; however, it might affect the normal execution
flow of main process too.

Business process state

An exception might occur in a process component. Oracle BPM process components
are: human tasks, send and receive activities, call tasks, service tasks, subprocesses,
and reusable processes. Together, they are termed as Activities. There are various
patterns to handle exceptions. However, before we talk about exception handling
patterns, it is wise to understand and analyze different states through which a
process component travels in the process instance. The following activity state
diagram explains an activity's state as well as exception handling pattern paths.

We will be walking through all the paths in this chapter.

[281]

Exception Handling Patterns

Remember, we have defined the states for the activities, just for the sake
of learning Exception Handling Patterns.

Allocated

» Subprocess

Invoked
+ Process | Service
» Reusable Process

Invoked Process!
Service

Assigned
« Service Task
o Call Activity
« Send & Receive Task
* Human Task

B?, .2

Terminate — BT,
JTerminate

|

mror — BE,
JExternal

Error - JIntarnal

Error - JCBE

G;E\ Reallocated

| Eror—E&F

\—C &D Terminate —C & D

Terminate

il

A BPM process belongs to a BPM system and runs on the BPM engine in the Oracle
BPM suite. Hence, the system is mentioned as an environment in which a process
instance executes. The following are the states shown in the activity state diagram:

* Assigned: This is the first state of a process activity. When the process
instance starts, it could start through various means such as JMS, an event,
and so on. However, here we are going to refer to only the BPM activities as
we are discussing exception handling on them. While the process instance is
executing, a token is assigned to an activity. This activity could be a human

task, service task, and so on.

Chapter 7

Allocated: This is the state where a process token reaches from an activity.

It could be the case that a deadline exception or an error catch event allocates
the token from the activity to the subprocess, as shown in the preceding state
diagram. When the Timer Boundary Event (TBE) timer expires, as pointed
by arrow B, the token gets allocated to a subprocess.

Started: An event subprocess can start due to various reasons. An event
subprocess can start due to an external event as shown in the state diagram.
It can also start by an Error Start Event, which basically catches an exception
and handles it. In these cases, the token gets assigned to the event subprocess
and gets started.

Reallocated: This means that the token from an allocated state is passed to a
subprocess/activity.

Invoked: A BPM process can invoke processes or services. For example,

a service task might invoke a synchronous service or a call activity might
invoke a reusable process. Hence, the state is termed as invoked state. The
following are the components that we will talk about while walking through
the invoked state:

° Service task: In case of the service task, the token remains with the
service task until the response is received from the process/service
that is invoked synchronously. Once the response is received, the
token moves ahead to subsequent activities.

° Send and Receive Tasks: When send and receive tasks are used to
invoke an asynchronous process, calling (invoking) the process token
will keep executing subsequent activities after the Send Task until it
reaches a receive activity, which is paired with the called process's
Send Task. The token then waits at the receive activity until a
response is received from the invoked process. When a called process
is initiated by a receive activity, which has a create instance property
set to true, a new token gets created in the called (invoked) process
and this token has its own lifecycle. In the case of an invoked process,
a new token is created.

° Message Throw and Catch Events: Message Throw Events are
used to invoke an asynchronous process or service. When a Message
Throw Event sends a message and invokes a process or service, a token
immediately moves to subsequent process activities. However, when
it reaches the Message Catch Event, it waits for the response from the
invoked process/service. When the token reaches the Message Catch
Event, the process will invoke the callback operation of the invoked
process/ service, using the Message Catch Event.

[283]

Exception Handling Patterns

[e]

Call activity: This is used to invoke a reusable process. When a
reusable process is invoked, new tokens are not created for the
invoked process. Instead, the same token is passed from the main
process to the invoked, reusable process. The reusable process
becomes the child process. When the token completes the child
process, it returns to the parent process to continue running
subsequent activities that follow the call activity.

We have defined exception types and process states. Now, it's time to define the
Exception Handling Patterns and to analyze the state transitions from exception
handling perspectives. After listing the various Exception Handling Patterns,
we will categorize the exception pattern based on exception types.

Reassigned Exception Handling Pattern

The following table highlights some important facts about the Reassigned Exception
Handling Pattern:

Signature Reassigned Exception Handling Pattern
Classification Exception Pattern
Intent The intention is to reassign the process token to the same activity on

which the exception has occurred.

Motivation When exception occurs, there would not be any change in the state of
the process.

Applicability A token is assigned to an activity. When the exception occurs, the
token gets reassigned to the same activity. Hence, when the exception
occurs, there would not be any change in the state of the process.

Implementation | Implementation is discussed as follows.

Known issues NA

Known solution | NA

When we check the preceding process state diagram, we can notice that TBE
is a timer event and a sequence line flows from the TBE back to the activity.
Perform the following steps to realize the scenario and test it:

1. Download the ExceptionHandlingApps folder from the downloadable files
for Chapter 7, Exception Handling Patterns from the Packt Publishing website.

[284]

Chapter 7

2. Expand the ExceptionHandlingPrj project and click on the
ExceptionDemoProcess process.

3. Notice the ApplicationVerification human task. Click on the boundary
catch timer A. It's a noninterrupting timer. Verify that time is set to 1 minute.
In real-life scenarios, we can set the SLA on the task/activity using timers.

4. Deploy the process and create an instance of the Reusable process by passing
the value Appsverify-BC. (As input is a single string argument, no test data
file is provided with this chapter.)

When the process starts, the token gets assigned to the Applicationverification
human task. If the user does not act on the task in 1 minute, the timer expires. As
it's a noninterrupting timer and the end activity is the none event, the token gets
reassigned to the same activity. We can implement the same scenario on any other
activity as well by using timers. In the exception path, we can build a notification
mechanism to let others know that the task is overdue.

Allocated Exception Handling Pattern

The following table highlights some important facts about the Allocated Exception
Handling Pattern:

Signature Allocated Exception Handling Pattern

Classification Exception Pattern

Intent The intention is to handle the timeout exception in subprocesses.
Motivation To handle timeout exception in subprocesses.

Applicability The token is assigned to an activity. When the exception occurs,

the token gets allocated to the subprocess. The state of the process
instance now depends on the state of the allocated subprocess.
The following are different scenarios for that:

* Allocated-Complete: The token gets allocated to a subprocess
and the subprocess gets completed

* Allocated-Error: The Token gets allocated to a subprocess and
the subprocess gets an error

* Allocated-Terminate: The token gets allocated to a subprocess
and the subprocess gets terminated

[285]

Exception Handling Patterns

Implementation | Check the process state diagram. This has a sequence flowing from

TBE (timer B) timer to the subprocess (Allocated). This sequence is
to demonstrate the process flow when timeout happens at point B
(timer B). Timer B is an interrupting timer and when the timer expires,
the process token will reach the subprocess (Allocated). Based on
the input data we pass, the subprocess might lead to three different
scenarios: the subprocess will complete (marked as Complete-BC),
the subprocess will itself lead into error (marked as Error-BE), or the
subprocess will terminate (marked as Terminate-BT). In this section,
you will learn how the interrupting Boundary Catch Event can be
used to handle timeout exceptions. You will

also learn about the different patterns that arise when the token

gets assigned to a subprocess.

Known issues

NA

Known solution | NA

Check the preceding process activity state diagram. We can notice that TBE is a timer
event, and a sequence line flow exists from TBE to a subprocess (Allocated). Perform
the following steps to realize the scenario and to test it:

1.

Open the ExceptionDemoProcess process in JDeveloper and click on the
timer B. We can notice that timer B is an interrupting timer and the time for
it is set to 2 minutes. When the timer B expires, the token gets allocated to the
subprocess (Allocated-B).

Deploy the process if not deployed already.

Test the process through the SOAPUI or EM or any tool of choice. Pass the
following values to test each of the following patterns:

o

Allocated-Complete: To test the Allocated-Complete Exception
Handling Pattern, pass Appsverify-BcC as the input parameter.

A human task gets assigned to a user. If the user does not act in 2
minutes, the token gets assigned to the subprocess (Allocated-B). As
timer A is also connected with the human task, it would get activated
in 1 minute as it is set to 1 minute, but the token will be assigned back
to the human task. However, when 2 minutes gets completed, timer B
expires and the following are some interesting observations:

After the expiration of timer B, the token gets assigned to the
subprocess (Allocated-B). There is a wait activity in the subprocess
(Allocated-B) that allows readers to dig into the instance and verify
that the token was with the subprocess (Allocated-B), as it's an
interrupting timer event. The input passed is Appsverify-BC, where
BC means the state will transition to the None End Event which will
complete the subprocess (Allocated-B).

[286]

Chapter 7

The subprocess (Allocated-B) gets completed; however, the task gets
reassigned. As you can check in the following screenshot, a new
instance of the ApplicationvVerification human task is created
and the older instance of the task gets withdrawn:

43 Instance of ExceptionDemoProcess @
This page shows BPMN process instance details.

Task history
Audit Trail

Treeview =] Options
1 Stagel
ExceptionDemoProcess Instance created
o = 5 ExceptionHandlingPrj.LoanOfficer
> @ Start ctivity comple 11 P
% CheckIn? Activity completed:

— Activity processing oK
@] Assigned - Applicationverit Task Number 200121

Instance entered the activity

4] Assigned - ApplicationVe Responsible ExceptionHandingPrj.LoanOfficer application_role
Task Number 200121
» Threads Thread Grouped frask history b
@ B Activity completed
4] Assigned - ApplicationVerif Activity cancelled Options +
[@ Allocated ActivityEémpleted . Staget
o AclalyipecsSi) ExceptionHandlingPri.LoanOfficer
»[@ Assigned - ApplicationVerif B G Eoert gPrj

Task Number 200123 Assigned Jul 27, 2014

° Allocated-Error: To test the Allocated-Error Exception Handling
Pattern, pass AppsVerify-BE as the input parameter, where BE
translates to the subprocess (Allocated-B) in Error. This pattern states
that the token is assigned to an activity. On exception (deadline or
timer exception), the token is withdrawn from the activity and is
allocated to a subprocess. The process instance state will depend on
the allocated subprocess behavior. If the allocated subprocess ends
with an error, the error gets reported and the fate of the instance will
depend on whether the error was caught or not. We have built the
scenario where a catch-all exception handler will catch the exception.
However, if there is no exception handler then the exception
propagates to the system where it's handled and reported by the
BPM service engine.

Now, test the process by passing Appsverify-BE as the input
parameter and click on the process instance in EM to check the
process flow and trace.

[287]

Exception Handling Patterns

You can notice that the subprocess (Allocated-B) will raise an error
when you pass AppsVerify-BE. The error raised by the Allocated-B
subprocess is caught by an exception handler at the process level.

@2 Instance of ExceptionDemoProcess @
This page shows BPMN process instance details,
Audit Trail
Graphical View E|
Start
O‘—'?‘@]ﬂ 3 ’ ==
End-A .
e
App\icaéjn"ﬁ'é'r fic InvokePracessil ReceiveProcess(
atipn)
s ~\
Apps\erify-BC JIEdernal-Complete =O
Complete - = Complete
BC o~
@) (=)
) ernal-Erma
4 AppsVerify-BE StartJExtern CheckError?
startg ChetkB? Error - BE al BT Error
20}
L) JEsterp=! Terminate
. |*| @ /J E[Temiﬂgtgf,.
Allocated-B Terminate - Started
BT

This pattern highlights certain facts related to the exception.
When being raised in the subprocess (Allocated-B), it can lead
to the following scenarios:

° If the allocated subprocess gives errors, then that exception should
be caught either at a Boundary Catch event associated to the allocated
subprocess, by an event subprocess inside the subprocess itself, or by
a process-level event subprocess.

° Inthe preceding test case, when we pass Appsverify-BE, the
process instance gets recovered from the business exception and it
gets completed; however, it reports errors raised by the subprocess
(Allocated-B). Recovered from the exception means that the process
got an exception which was handled by the event subprocess.

[288]

Chapter 7

_ In this case, we have used the event subprocess to
% handle the exception raised by the allocated subprocess
i only. However, the "J" scenario will cover all other
exception-handling scenarios for a subprocess.

Allocated-Terminate: To test the Allocated-Terminate Exception
Handling Pattern, pass Appsverify-BT as the input parameter,
where BT means the subprocess (Allocated-B) will terminate. The
token has been assigned to an activity. On exception (deadline or
timer exception), the token gets withdrawn from the activity and is
allocated to a subprocess. The process instance state will depend on
the allocated subprocess behavior, and if the allocated subprocess
ends with the terminate event, the entire process instance will
terminate and no subsequent activities will execute. Perform the
following steps to check the process flow trace:

1. Test the process by passing Appsverify-BT as the
input parameter.

2. Click on the process instance in EM to check the process
flow and trace.

The subprocess (Allocated-B) will raise an abort action when you pass
AppsVerify-BT and the entire process will terminate.

Changing the Boundary Catch Event from
Interrupting to Non-interrupting

We will now try to test the same scenarios that we tested in the preceding section
by performing the following steps; however, this time, the timer (deadline) will be
a noninterrupting timer event.

1. Go to JDeveloper and open ExceptionDemoProcess.

2. Click on the timer B, which is set on the ApplicationVerification human task.
3. Change the timer B from interrupting to noninterrupting.
4

Make changes in the process by deleting the sequence flow from the
subprocess (Allocated-B) to the ApplicationVerification human task.

[289]

Exception Handling Patterns

5. Create a sequence flow from the subprocess (Allocated-B) to a None End
Event as pointed by an arrow in the following screenshot:

ExceptonDemoFrocess

End-A

o- @ @- ® O-

Activity Interactive Notification Catch Throw Gateway Artifacts {0 Properties - B [_J&

s Implementation Type: | (&) Timer e
O— = [| l
I [[] Interrupting Event
Ly

Applicationverificafion InvokeProcess(T) Receivi

| Components

- Q search olE =

Basc | Implementation

[] suspending Event
Timer Definition

Type: [Tmecyde v |
[] Use Expression
[0 Months 0 Days 0:2:0 =

Start-B

Appsverify-BC comte e Gptional settings
empiee [JRun from
[JRun to
S —)
% AppsVerify-BE [_] Repetitions
t;E—‘

LE [

[Endsubprocess-B

[] Use calendar rules

Allocated-B

Terminate -BT Help oK Cancel

6. Test the process by passing the appropriate input parameter. The following
table shows the input parameters along with their results:

Input parameter

Results

AppsVerify-BC

We can check that when timer B expires, the subprocess
(Allocated-B) gets initiated. Also, as we have passed input as
AppsVerify-BC, the token will reach to the None End Event
named Complete-BC in the subprocess. The subprocess
(Allocated-B) will end and the sequence flow moves to
EndSubprocess-B, the None End Event.

Again, the token reaches the ApplicationVerification
human task. However, this time, the task is not reassigned to the
user and hence you don't find multiple instances of human task.
Remember you have witnessed multiple assignments of tasks in
the Allocated Exception Handling Pattern section.

As the timer exception is not handled, it would lead to infinite
assignment. Hence, you need to implement logic to end the
reassignment of the token to the same activity and to handle
timer exception.

[290]

Chapter 7

Input parameter

Results

AppsVerify-BE

This input parameter will eventually enable the subprocess
(Allocated-B) to raise an error. This error would be

handled by an exception handler at the process level. The
ExternalErrorHandlingEventSubprocess event
subprocess is a process-level event subprocess to handle all
exceptions. Exceptions thrown by the subprocess (Allocated-B)
are handled at the process level by the event subprocess and
defined at the process level. Once the error is handled by the
exception handler event subprocess, the process instance gets
completed normally. If there was no process-level exception
handler, then the exception will reach the Oracle Enterprise
Manager fault recovery system.

AppsVerify-BT

Timer expiration will terminate the process instance.

7. Click on the process instance in EM to check the process flow and trace.

]

@

Threads
Threads
A
bl)
40
B
> A
C A
> B
> A
Threads
B
>
> @
> (@D

\/

> B

4 Instance of ExceptionDemoProcess @
This page shows BPMN process instance details.

Audit Trail
Tree View E|
ExceptionDemoProcess Instance created
>3 Start Activity completed
> % CheckIn? Activity completed
Activity processing

Assigned - ApplicationVerif

Assigned - ApplicationVe

Task Number 200143

Instance entered the activity
Responsible ExceptionHandlingPri. LoanOfficer ,application
Task Mumber 200143

Thread Grouped
Thread Grouped

Thread completed

A Activity completed
End-A Activity completed
Thread completed
Thread completed
Thread completed

Thread completed

Thread completed

Thread Grouped

Thread completed
B Activity completed
Allocated Activity completed
End-Alloacted-B Activity completed

Thread completed

[291]

Exception Handling Patterns

Force-Terminate Exception Handling
Pattern

The following table highlights some important facts about the Force-Terminate
Exception Handling pattern:

Signature Force-Terminate Exception Handling Pattern

Classification Exception Pattern

Intent The intention is to terminate the process instance if a deadline/timer
exception occurs.

Motivation Handle timeout exception.

Applicability The token is assigned to an activity. When the timeout exception

occurs, the process flow from the Boundary Catch Timer Event to
the Terminate End Event.

Implementation | Check the process state diagram. It has a sequence flowing from
the TBE to terminate C & D (Terminate End Events). This sequence
is to demonstrate the process flows when a timeout happens at the
TBE. If the TBE is a noninterrupting timer, the process instance gets
terminated when the timer expires. This holds true even if the TBE
is an interrupting timer.

Known issues NA

Known solution | NA

Expand the exception-handling project, ExceptionHandlingPrj, in JDeveloper and
click to open the ExceptionbDemoProcess process. Click on the Boundary Catch Timer
Event A and verify its implementation. Let it be set to 1 minute and its implementation
type should be noninterrupting. Change the associated end event, End-A, from the
None End Event to Terminate End Event. Save and deploy the project.

The timer A is a noninterrupting timer set to 1 minute. Hence, when the token gets
assigned to the ApplicationVerification human task and if the user does not
act in 1 minute, timer A expires and it raises an exception. The sequence flow that
connects to timer A, moves the token to the Terminate End Event. Test the process
from EM by passing Appsverify as the input parameter. As expected, the entire
instance will get terminated. The same holds true for the interrupting timer too.
To test the interrupting scenario, we can change the timer from noninterrupting

to interrupting and test the process by passing Appsverify as input parameter.

As this pattern forcefully terminates the process instance, it is termed as
Force-Terminate Exception Handling Pattern.

[292]

Chapter 7

Force-Error Exception Handling Pattern

The following table highlights some important facts about the Force-Error Exception
Handling Pattern:

Signature Force-Error Exception Handling Pattern

Classification Exception Pattern

Intent The intention is to raise an error when the timer expires.
Motivation Implement an Exception Handling Pattern that would raise an error

when the deadline/timer expires.

Applicability The token is assigned to an activity. When the timeout exception
occurs, the process flows from the Boundary Catch Timer Event
to the Error End Event.

Implementation | Check the process state diagram. It has a sequence flowing from
TBE to error E & F (Error End Events). This sequence demonstrates
the process flow when timeout happens at the TBE. If the TBE is

a noninterrupting timer, the process instance throws a business
exception when the timer expires. The business exception is caught
by the event subprocess defined at process level. The process
instance is recovered from the error as the exception is handled and
the process instance is completed. A human task assigned to the
participant gets withdrawn. The same holds true if the TBE is an
interrupting timer.

Known issues NA

Known solution | NA

Expand the ExceptionHandlingPrj project in JDeveloper and click to open
ExceptionDemoProcess. Right-click on Business Components and navigate to New
| Business Exception to define a business exception named Deadline Exception.
Click on the Create Business Exception dialog and save all. Click on the Boundary
Catch Timer Event A and verify its implementation. Let it be set to 1 minute and its
implementation type should be noninterrupting. Change the associated end event,
End-A, from None End Event to Error End Event. Browse for the business exception
and select Deadline Exception. Perform data association as required and save all.
Now, we will change the properties of the ExternalErrorHandlingEventSubprocess
event subprocess.

[293]

Exception Handling Patterns

Click on the catch error event in the event subprocess and implement it for the
business exception, Deadline Exception, as shown in the following screenshot.
Then, save and deploy the project:

ExceptionHandlingApps - v

| Projects B & F-rE&-

CreditvalidationService

= ExceptionHandlingPrj

e-Ca8eM

=-{[) BPMN Processes
i] ExceptionDemofrocess

[=++{ 33 Business Companents
=

X

&+ Human

5

@ @ © 0 ®-

5] BPMIN 20 Process...
(9 Business Catalog Module...

n -

Activity Interactive Notification Catch Throw Gateway Artifacts

0 Properties - Start

Appligationverification

Basic Implementation

Implementation Type: | (1) Error

Exclude Project Content Business Exception... [catchallb
Catch all business exceptions
-l Ap #3 Business Object... E
D‘% Organi; Enum Object... [Catch all system exceptions
- S0A D
- Recoverable error
- [&] ReusableCaller &a AML Schems.. 'r
. J— | ype
=-Casem Relocate Project From Gallery... Cirl-N i ! -
ER=LLOT | @ eyeror |) DeadineException
i g Re Compare With 3 7 _|; -
- Re Replace With » Create Business Exception = | () By Error Info
H i
| 28
[Busines Restore from Local History Exception i 88 Data Assocations &
{8 Human 5 SAP Adapter Migration Tool Name: [peadineException |) stat
iR Ader PRE) |
H -3 . " (i
(¥ ApplicationVerificationiTask. ta:] Destination Module: Q | Help
& Cardverify.task i
’ el Bl Help oK Cangel | TTTTTTTTC
ExternalErrorHandlingE
= entSubnrace:

Test the process from EM by passing Appsverify as the process input. A token
gets assigned to a human task activity. If the user does not act in 1 minute, timer
A expires and raises a deadline exception. When the timer expires, the following
events happen:

* If the timer A is a noninterrupting timer and the timer expires, the process
instance throws the Deadline Exception business exception.

* This exception is caught by the ExternalErrorHandlingEventSubprocess

event subprocess defined at the process level.

* The process instance gets recovered from the error as the exception is

handled and the process instance gets completed. The human task assigned

to the participant gets withdrawn. The same holds true if the timer A is an
interrupting timer.

Exceptions are caught at process level by the
ExternalErrorHandlingEventSubprocess event subprocess. Remember, the fate
of the process instance will depend on how the event subprocess ends. For this
particular case on Deadline Exception, the event process gets started and it would
end with the None End Event. This would complete the process instance. We will
visit more complex scenarios with a different ending mechanism for an event
subprocess later in this chapter.

[294]

Chapter 7

Force-Complete Exception Handling
Pattern

The following table highlights some important facts about the Force-Complete
Exception Handling Pattern:

Signature Force-Complete Exception Handling Pattern

Classification Exception Pattern

Intent The intention is to complete the process, when the timer expires.
Motivation To implement an Exception Handling Pattern that will forcefully

end the process when the deadline/timer expires.

Applicability The token is assigned to an activity. When the timeout exception
occurs, the process flow from the Boundary Catch Timer Event to
the Message End Event of the process.

Implementation | Check the process state diagram. It has a sequence flowing from
TBE to message G & H (Message End Events). This sequence shows
the process flows when timeout happens at the TBE. If the TBE is

a noninterrupting timer, the process instance reaches a Message

End Event when the timer expires. The token again reaches the
activity (human task); however, the task is neither withdrawn nor
reassigned, which is different from the behavior in the Allocated and
Complete Exception Handling Pattern. If the TBE is interrupting and
when process reaches the Message End Event, the activity (human
task) gets cancelled and the process instance gets completed. If

the TBE is a suspending event, then the activity (human task) gets
cancelled and the process instance gets completed.

Known issues NA

Known solution | NA

In ExceptionDemoProcess, click on End-A, the Error End Event that we used earlier,
and change the trigger type from the Error End Event to the Message End Event.
Rename the Message End Event to TBE-End-Process. Click on timer A and change its
trigger type to noninterrupting. Test the process by passing Appsverify as the input
parameter to the process. After 1 minute, check the process flow. We can find that the
process instance is still running. The human task remains with the participant (user)
and timer keeps evaluating as long as the user does not act on the task.

[295]

Exception Handling Patterns

If you change the trigger type of timer A from noninterrupting event to
interrupting event, we can find that the activity (human task) gets cancelled
and the process instance completes. The scenario will be same if we make the
timer A suspending event. The following screenshot shows the process instance
details of ExceptionDemoProcess:

Flow Trace >
N p Flow Trace >
23 Instance of ExceptionDemoProcess @ Flow Trace >
This page shows BPMN process instance detals. 4 Instance of ExceptionDemoProcess ® .
This page shows BPMN process instance details. 23 Instance of ExceptionDemoProcess @
Audit Trail |This page shows BPMN process instance details.
udit Trai
Audit Trail
Treevien [—
TreeView [w|
ExceptionDemoProcess Instance created TreeView [x]
> @ Start Activity completed ExceptionDemoProcess Instance created
Inst; ted
% Checkin? Actvity completed »@) Start Activity completed ExceptionDemoProcess nstance create
V Acti leted
Activity processing % Checkin? Activity completed v @) start SEERpEE
= - I - - Activity completed
&l Applicationverification Toscrumber 0zte] o o Actvity processing X CheckIn? y compl
- |&] ApplicationVerification T STTIR . - o Activity processing
Instance entered the Activity [&] ApplicationVerification BT ETT
@ ApplicationVerification Responsible 5 Instance entered the activity
&l ExceptionHandingPri —
Task MNumber 200215 3] ApplicationVerification Responsible ExceptionHandingPrj Instance entered the activity
Threads Thread Grouped Task Number 200212 |4 ApplicationVerification Responsible Exception)
Task Number 200214
A Thread completed @ a Activity completed sk Humber
A Activity completed @ a Instance entered 1 ST Task history
i =] @ A
> (E TBE-End-Process Activity completed a0 A Instance left the activity
A Thread completed [@ ApplicationVerification Actvity cancelled) A
A Activity completed (@ TBE-End-Process Actvity completed > (E) TBE-End-Process Stagel
> (@ TBE-End-Process Activity completed ExceptionDemoProcess Instance terminated \&] ApplicationVerification & ExceptionHandiingPrj
5@ End Withdrawn
A Thread completed
x ess

Invoked Exception Handling Pattern

A BPM process needs to interact and collaborate with other processes and services.
We have read a lot about invocation patterns in Chapter 5, Interaction Patterns.
However, when we invoke a process/service, those invoked processes/services
might end in error and raise an exception. This section will help you to learn about
exception handling patterns in scenarios where an invoked process raises an error.
This section will also include exception propagation pertaining to each pattern.

As per the process state diagram, an activity state transits from ASSIGNED to INVOKED
when that assigned activity invokes a process or a service. The following are the
activities used to invoke a process or a service:

* Call activity invokes a reusable process.

* An activity such as service task is used to invoke synchronous services
and processes.

* Send and receive tasks and throw and catch message events are used to
invoke asynchronous services and processes.

[296]

Chapter 7

Whatever the invocation mechanism, the following are the broad categories of
exception handling:

* Handling exceptions in the invoked process/service itself, that is,
exception handling at the INVOKED state

* Catching exceptions using a catch boundary event on the activity that has
invoked the process/service

* Catching exceptions by an event subprocess at a level outside the activity

* Catching exceptions at process level by event subprocess (process-level event
subprocess) or using the Fault Management Framework

* Using the BPM service engine to catch the exception

To understand the exception handling mechanism, we need to walk through the
exception propagation pattern in Oracle BPM.

Invoked State Exception Handling Pattern

The following table highlights some important facts about the Invoked State
Exception Handling pattern:

Signature Invoked State Exception Handling Pattern

Classification Exception Pattern

Intent The intention is to handle exceptions in the invoked (called) process
itself.

Motivation Implement an Exception Handling Pattern that results in exception

handling in the invoked process itself. The invoked process that
has experienced the error will not propagate the exception to the
called process.

Applicability This pattern considers the fact that an assigned activity has invoked a
process/service and the process/service has the capability to handle
the exception itself. This means that when an exception rises in the
invoked process/service, it gets handled there and the invoking
process (assigned activity) will never know about it.

[297]

Exception Handling Patterns

Implementation | To implement the scenario, we will consider an asynchronous
process. This asynchronous process will be invoked by the Send Task
and to get a response from the invoked process, a receive task will
be used to invoke the callback operation. When send and receive
tasks are used to invoke an asynchronous process, the process token
will keep executing subsequent activities after the Send Task until

it reaches a receive activity that is paired with the called process's
Send Task. The token then waits at the receive activity until a
response is received from the invoked process. The invoked process
will encounter an error and will handle the exception by itself. The
invoking process (calling process) will receive a normal response
from the invoked process.

Known issues The invoking process (calling process) will never know about the
exception.

Known solution | It's a subject of architectural design and is based on how the business
wants to consider this modeling pattern. If the invoking process
needs to be made aware of the exception, then the exception should
be propagated to the calling process. In this case, the calling process
should handle the exception.

The BPMN project, ExceptionHandlingPrj, contains the ExceptionDemoProcess
process, which has the Invoke Process (I) Send Task that invokes an
asynchronous process (Validation Process).The ExceptionDemoProcess process
also has Receive Process (I),which is a receive task. It's the receive task where
the token awaits until the invoking process, ExceptionDemoProcess, gets a response
from the invoked process, validationProcess.

Open the Properties dialog box of ExceptionDemoProcess and uncheck

the Is Draft checkbox for send and receive tasks, respectively (by default,
ExceptionDemoProcess provides all activities in the draft mode). In JDeveloper,
open the validation process and check its configuration. The Validation process is
designed in such a form that on receiving any input, it will raise a validation_
BizException exception. The Validation process has an exception handler in it
which will handle the raised exception, validation_BizException. Perform

the following steps to test the scenario:

1. Use any tool of choice or login to EM to test the reusable process.

2. Pass the input as Appsverify. You can notice that a token gets assigned
to the Send Task, InvokeProcess (I). This assigned activity will invoke the
validation process.

[298]

Chapter 7

As we can see in the following image, on the right-hand side an instance of
ValidationProcess is displayed. It gets completed normally and returns a response
based on the business requirement. However, the exception raised in the validation
process is handled by the process itself and it's not propagated to the assigned
activity, that is, Invoke Process (I) (invoked the validation process).

Flow Trace >

&9 Instance of ExceptionDemoProcess @
This page shows BPMN process instance detals

Audit Trail

Graphical View [=]

Activity

ation|

Appucan"m‘Tanﬁc InvokeProcess(l) ReceiveProcess(
)

2 Instance of ValidationProcess @

This page shows BPMN process instance details.

Audit Trail

Graphical View =

©

Invokedstar Start

»

AutomaticHandler

WValidationActivity

=

End

®
5

ValidationSubprocess

SomeOtherActivit
¥

ValidationPr
ocessEnd

Also, you can see on the left-hand side of the screenshot, the process flow of
ExceptionDemoProcess moves ahead of the Receive Process (I) receive task
as the validation process has not returned an exception and in fact handled the

exception itself.

The major challenge with this approach is that the invoking process (calling process)
will never know about the exception.

Continue Execution Exception Handling

Pattern

The following table highlights some important facts about the Continue Execution

Exception Handling pattern:

Signature Continue Execution Exception Handling Pattern
Classification Exception Pattern
Intent The intention is to handle exceptions raised by the invoked (called)

process/service in the invoking (calling) process / service.

Motivation Handle exception in invoking activity using boundary event.

[299]

Exception Handling Patterns

Applicability

This pattern showcases those scenarios of exception handling where
an exception is not handled by the invoked process/service. That
exception will propagate outside the invoked process/service. An
assigned activity has invoked a process/service that experiences an
error. That exception propagates to the assigned activity and it's then
caught by an error catch boundary event.

Implementation

If you check the process state diagram and look into the INVOKED
state, the sequence "]" points to the scenario where the invoked
process/service has raised an exception. The assigned activity catches
that exception using a Boundary Catch Event shown as CBE. The CBE
(boundary event) will catch the exception and the process token moves
to the ALLOCATED state, that is, the token moves to the subprocess.
Now, there could be various scenarios:

* Allocated state completes (the allocated subprocess ends with
the None End Event)

* Allocated state terminates (the allocated subprocess ends with
the Terminate End Event)

* Allocated state errors (the allocated subprocess ends with the
Error End Event)

Continue Execution Exception Handling Pattern is about the scenario
where the allocated state completes, that is, the allocated subprocess
ends with a None End Event.

Known issues

NA

Known solution

NA

To implement this scenario, we developed a reusable process, ReusableProcess, in
the ExceptionHandlingPrj project. Inside ExceptionDemoProcess, a call activity will
invoke ReusableProcess using a CALL task, shown as CallReusableProcess (J).
When invoked, ReusableProcess raises an exception; it is caught by the Boundary
Catch Event associated with the CallReusableProcess (J) call task. The process

token will move from the Boundary Catch Event to the subprocess (Allocated). The
Allocated subprocess can reach to various states (complete, error, or terminate)
based on the input values being passed. This is modeled to demonstrate process
behaviors in various exception handling scenarios where an exception is propagated
from a Boundary Catch Event to a subprocess.

[300]

Chapter 7

We have downloaded the ExceptionHandlingPrj project from the downloadable
code files of Chapter 7, Exception Handling Patterns. Deploy the project to 12¢
WebLogic server. Perform the following steps to test the process for continuous
execution exception handling:

1. Open ExceptionHandlingPrj project in JDeveloper

2. Go to ExceptionDemoProcess and click on InvokeProcess (I) and Receive
Process (I), the send and receive tasks, respectively.

3. Change their implementation type to draft, as we want the token to be
passed directly to the CallReusableProcess (J) call activity.

Test the reusable caller process by passing input, JComplete.

5. Login to the EM console and check the process flow of
ExceptionDemoProcess, as shown in the following screenshot:

@3 Instance of ExceptionDemoProcess @
This page shows BPMN process instance detalls.

Audit Trail
Graphical View [«
' ' (=

Sthrt

(@)

JcEE -
LEEE Allocated

As we can witness from the process flow, when the token gets assigned to a call task,
CallReusableProcess (]J), it invokes a reusable process, ReusableProcess. The token
gets assigned to the reusable process as the reusable process acts as a child to the
main process. The reusable process will raise an exception and it will not be handled
by ExceptionDemoProcess. Hence, the exception gets propagated to the assigned
activity, CallReusableProcess (J).

When the exception is raised by the reusable process, the catch boundary event
configured on the assigned activity (CallReusableProcess (J)) will handle the
exception. The sequence flow attached to the catch boundary event will detour
the process execution flow to the subprocess (Allocated).

[301]

Exception Handling Patterns

As the input passed is JComplete, the token flow will detour to the None End Event
JComplete in the subprocess (Allocated). You can include any exception handling
logic as per business requirement such as logging, notification, and so on. When the
Allocated subprocess completes, the process starts executing subsequent activities as
guided by the outgoing flow from the allocated subprocess (Allocated). Hence, this
pattern is termed as continue execution pattern.

Force-Terminate Execution Exception
Handling Pattern

The following table highlights some important facts about the Force-Terminate
Execution Exception Handling Pattern:

Signature Force-Terminate Execution Exception Handling Pattern

Classification Exception Pattern

Intent The intention is to handle exceptions raised by the invoked (called)
process/service in the invoking (calling) process/service.

Motivation Handle exception in invoking activity using the boundary event.

Applicability This pattern showcases those scenarios of exception handling where
an exception is not handled by the invoked process/service. That
exception will propagate outside the invoked process/service. An
assigned activity has invoked a process/service that experiences an
error. That exception propagates to the assigned activity and it's then
caught by an error catch boundary event.

Implementation | If you check the process state diagram and look into the INVOKED

state, The sequence "]" points to the scenario where the invoked
process/service has raised an exception. An assigned activity catches
that exception using the Boundary Catch Event shown as CBE.

The CBE will catch the exception and the process token moves to

the ALLOCATED state, that is, the token moves to the subprocess.
Now, there could be various scenarios and one of them is when the
ALLOCATED state terminates (the allocated subprocess ends with the
Terminate End Event).

The Force-Terminate Execution Exception Handling Pattern is about
the scenario where the Allocated state terminates, that is, the allocated
subprocess ends with a Terminate End Event

Known issues

NA

Known solution

NA

[302]

Chapter 7

Test the ExceptionHandlingPrj process by passing JTerminate as the input.

The process token flows from the ASSIGNED state to the INVOKED state. The invoked
process (reusable process) will not handle the raised exception and the exception will
be caught at the CBE placed on the callrReusableProcess (J) assigned activity.
The flow will detour to the allocated state from the catch boundary event and will hit
the Terminate End Event, JTerminate.

Go to the EM console and check the process flow. When the exception is raised by
the reusable process, the catch boundary event configured on callrReusableProcess
(J), the assigned activity, will handle the exception. The sequence flow attached

to the catch boundary event will detour the process execution flow to the

subprocess (Allocated).

As the input passed is JTerminate, the flow of the token will detour to the
Terminate End Event, JTerminate, in the subprocess (Allocated). When the
allocated subprocess terminates, the process instance gets terminated and no
subsequent activities will be executed. Hence, this pattern is termed as the
terminate execution pattern.

Force-Error Execution Exception
Handling Pattern

The following table highlights some important facts about the Force-Error Execution
Exception Handling Pattern:

Signature Force Error Execution Exception Handling Pattern

Classification Exception Pattern

Intent The intention is to handle the exception raised by the invoked (called)
process/service in the invoking (calling) process/service.

Motivation Handle exception in the invoking activity using a boundary event.

Applicability This pattern is used to showcase those scenarios of exception handling

where the exception is not handled by the invoked process/service
by itself. That exception will propagate outside the invoked process/
service and is caught by the attached Boundary Catch Event. From
there, the process token is allocated to a subprocess which lands

into error.

[303]

Exception Handling Patterns

Implementation | If you check the process state diagram and look into the INVOKED
state, the sequence "]" points to the scenario where the invoked
process/service has raised an exception. The assigned activity catches
that exception using the Boundary Catch Event shown as CBE. The
CBE will catch the exception and the process token moves to the
ALLOCATED state, that is, the token moves to the subprocess. Now,
there could be various scenarios that can happen in the allocated
subprocess and one of them is Allocated state error (this allocated
subprocess ends with the Error End Event).

Error Execution Exception Handling Pattern is about the scenario
where there is Allocated state error, that is, the allocated subprocess
ends with an Error End Event.

Known issues Handling exceptions raised in the ALLOCATED state.

Known solution | The following are the patterns to handle exceptions raised at the
ALLOCATED state:

* Allocated state-External Exception Handling Pattern
* Allocated state-Internal Exception Handling Pattern

* Reallocated exception handling pattern

The invoked process/service has raised an exception and the exception is handled
by the assigned activity, which has invoked that process/service. The exception is
caught by a catch boundary event and the process state will change to the ASSIGNED
state. The Allocated subprocess will raise an exception by itself. There could be
multiple scenarios to handle the exception raised by the Allocated subprocess.

The following are the patterns to handle exceptions raised at the ALLOCATE state:

* Allocated state-External Exception Handling Pattern
* Allocated state-Internal Exception Handling Pattern
* Reallocated Exception Handling Pattern

These patterns are useful in the scenario where the allocated subprocess itself throws
a business exception.

Allocated state — External Exception Handling
Pattern

When the process is in the ALLOCATED state and it raises an exception, the following
case can be identified:

If the exception is not handled in the allocated subprocess itself, the exception will
then get propagated outside the subprocess and can either be caught at the process
level or caught by a fault-handling framework or a BPM engine.

[304]

Chapter 7

We can verify the same from the process activity state diagram (as shown in the
following screenshot). We can relate what we have discussed based on the arrow
coming out of the subprocess (Allocated) to the event subprocess (Started). This
shows how exceptions raised by the subprocess (Allocated) are caught at the
process level by the event subprocess (Started). So, when an exception arises in
the subprocess (Allocated), it is neither caught by an event subprocess inside the
subprocess (Allocated), nor it is handled by a Boundary Catch Event; hence, it gets
propagated outside the subprocess. So for the exception raised by the subprocess
(Allocated), there is an event subprocess configured to catch it and hence the
exception is handled by the external event subprocess at process level.

Allocated Complete - BC, JC

Subprocess Error - Jinternal

Invoked - P or— BE,
+ Process/ Service JExternal
* Reusable Process
y

Terminate — BT,
JTerminate

G;E\ Reallocated

Call Activity
Send & Receive Task
Human Task

* EventSubprocess ={ Comok J
tart — BE
JExtemal

[305]

Exception Handling Patterns

Implementing Allocated state — External Exception
Handling Pattern

Open ExceptionDemoProcess in JDeveloper. Navigate to the Allocated subprocess
and click on the Error End Event, Error - JExternal. Remember there are two Error
End Events with the same name in the Allocated subprocess and Event subprocess,
that is, InternalExceptionHandler (which is inside the Allocated subprocess). To
demonstrate this pattern, click on Error - JExternal inside the Allocated subprocess,
and not the one which is inside Event subprocess, InternalExceptionHandler.
This Error End Event is configured to raise the business exception, JExternal
BizException.

Log in to the EM console and test ExceptionDemoProcess. If you pass the input as
JExternal-Complete/JExternal-Terminate/JExternal-Error, the process token
gets allocated to the subprocess (Allocated). The Allocated subprocess will raise the
exception, JExternal BizException. When the subprocess (Allocated) raises an
exception, the BPMN engine then tries to find a handler for it. This exception neither
has an exception handler in the subprocess (Allocated) nor does the subprocess
(Allocated) have a Boundary Catch Event to catch the exception. Hence, the
exception gets propagated outside the subprocess (Allocated) and it results in the
STARTED state for an event subprocess (Started).

The External event subprocess (Started) can also land in one of the following
three cases:

* External event subprocess (Started) can complete normally: If we pass input
as JExternal-Complete, the subprocess will raise JExternal BizException,
which is caught at the process level by event subprocess (Started) and the
process token will detour to the sequence flow, JExternal-Complete. Finally,
the process gets completed.

[306]

Chapter 7

23 Instance of ExceptionDemoProcess @
This page shows BPMN process instance details.

Audit Trail

Graphical View =]

End-A @
Aoplieal g“”mc InvokeProcessil) Fecelerrocess(Cau%samem InvakeSenvice(K)

celsid)

JConjplet@omplete -
__ JComplete

‘e (=X x

'
i
i

JIExternal-Complete i Start-J Cheks? Jinternal®
i Complete | Check)? JF,{O,_I
¢ nternal
XA : ZON (®)

JIExternal-Error™ !
i
i
i
i
i
i
H
i

Error-
JExternal

* JTerminate
B e Terminate-
: JTerminate JCBE Error-
@ JCBE
JExlerETerminate i
Terminate” E

Siisd Allocated

* External event subprocess (Started) can be aborted. If we pass the input as
JExternal-Terminate, the subprocess will raise an exception, JExternal _
BizException, which is caught at the process level by the event subprocess
(Started) and the process token will detour to the sequence flow, JExternal-
Terminate, and the process gets aborted (reaches the TERMINATE state).

* External event subprocess (Started) can output an error. If we pass the
input as JExternal-Error, the subprocess (Allocated) will raise an exception,
JExternal_BizException, which is caught at the process level by the event
subprocess (Started) and the process token will detour to the sequence flow,
JExternal-Error, and the process gets an error (ERRORED).

Check the process audit trail as shown in the following screenshot. We can see
that the process needs a recovery (Recovery required). This happens because an
exception was raised by the event subprocess (Started) at the process level.

[307]

Exception Handling Patterns

There is neither an event subprocess nor any fault policy to handle the exception
raised by the event subprocess. Hence, the exception gets propagated to the
environment and the exception is logged to the Enterprise Manager Fault recovery
system. We can log in to the EM console and can abort or recover from the exception.

_4
: (@)
Receelrocessl caiRepsaniePro
! cegsil)

InvokeSenice(K)

=

JComplet8omplete -
JComplete

JIExternal-Complete
Complete

X Ac

+
StartJExtern CheckErrar?

Jinternal* al

Error -

JIExternal-Error*

Jinternal

JEﬂerE'—Terminate .
Terminate]
JTerminate Started
Terminate- -
JTerminate JCBE Error -)
JCBE
Flow Trace @ Ll
Faults Composite Sensor Values ~ Compaosites
Recover » View v
Error Message Fault Owner Recovery
@ <bpelFault><faultType 1< faultType |- <Reusable_BizException ¥mins="http://xmins.orade. com/bpmn /bpmnPr rE ExceptionDemoProcess F)’ Recovered
@ <bpelFault><faultType> 1< faulfType |- <JExternal _BizException smins="http://xmins.orade.com bpmn/bpmnPr rE ExceptionDemoProcess I’ Recovered
@ <bpelFault> <faultType> 1< faultType | <Process_BizException xniins="http:/xmins.oracle.com,bpmn/bpmnPro: rE ExceptionDemoProcess J Recovery Required
Actions + View = Show Instance IDs
Instance Type Usage State
[Service ol service & Completed
gE ExceptionDemoProcess BPMN J Recovery Required
& ApplicationVerification Workflow o Completed

There are three end states when the token is at the STARTED state and the input
passed is in one of the following:

JExternal-Complete: When the ALLOCATED state raises an exception, it

STARTS an event subprocess to handle it. The STARTED state ends with
COMPLETE, which results in the process instance to complete.

JExternal-Error: When the ALLOCATED state raises an exception, it starts

(reaches the STARTS state) an event subprocess to handle it. The STARTED
state also raises an exception. As there is no fault-handling framework to
handle the exception, the exception is handled by the BPMN engine and
the process instance ends in the FAULTED state with the RECOVERY status.

JExternal-Terminate: When the ALLOCATED state raises an exception, it

STARTS an event subprocess to handle it. The STARTED state will end with
TERMINATE, which will eventually terminate (abort) the process instance too.

[308]

Chapter 7

Allocated state — Internal Exception Handling
Pattern

When the process is at the ALLOCATED state and it raises an exception, it can either be
caught (handled) at the ALLOCATED state itself or a boundary event on the allocated
subprocess or it will get propagated outside the allocated subprocess. This pattern
focuses on the scenario where the exception raised at the ALLOCATED state gets
caught in the allocated subprocess itself.

Visit the process activity state diagram to check the ALLOCATED state. It shows a
block for the STARTED state too. When the subprocess (Allocated) raises an exception,
JInternal, this exception is caught at the event subprocess (Started), which is
defined inside the subprocess. As the exception is handled internally at the allocated
subprocess, this pattern is named as Internal Exception handling Pattern. The
internal event subprocess (Started), defined inside the subprocess (Allocated), starts
with the gInternal error catch and has three end cases:

* Complete: The internal event subprocess catches and handles the JInternal
exception and gets completed

* Terminate: The internal event subprocess catches and handles the JInternal
exception and gets aborted

* Error: The internal event Subprocess catches and handles the JInternal
exception and it raises an exception

Allocated State Internal Exception Handling Pattern has the following three broad
categories of patterns:

* Internal Complete Exception Handling Pattern

* Internal Terminate Exception Handling Pattern

* Internal Error Exception Handling Pattern

Implementing Allocated state — Internal Exception
Handling Pattern

Open ExceptionDemoProcess in JDeveloper. Navigate to the Allocated subprocess
and click on the Error End Event, Error-JInternal. This Error End Event is configured
to raise a business exception, JInternal_BizException. Log in to the EM console and
test ExceptionDemoProcess.

[309]

Exception Handling Patterns

If you pass the input as JInternal-Complete / JInternal-Terminate / JInternal-
Error, the process token gets allocated to the subprocess (Allocated). The Allocated
subprocess will raise an exception, JInternal_ BizException. When the Allocated
subprocess raises the exception, JInternal_BizException, then the BPMN engine
tries to find a handler for it. For the exception, JInternal BizException, the
subprocess (Allocated) has an exception handler (event subprocess) defined in

the subprocess (Allocated) itself. Hence the exception gets caught inside the
subprocess (Allocated) and it results in the STARTED state for an internal event
subprocess (Started).

There are three end states when a token is at the STARTED state in internal event
subprocess (Started):

* Internal Complete Exception Handling Pattern

* Internal Terminate Exception Handling Pattern

* Internal Error Exception Handling Pattern

Internal Complete Exception Handling Pattern

Test ExceptionDemoProcess and pass the input as JInternal-Complete. We can
check below, when the subprocess (Allocated) state raises an exception, it starts an
event subprocess to handle it (reaches the STARTS state). The internal event subprocess
(Started) ends with a COMPLETE state, which will result in the completion of the process
instance state.

[310]

Chapter 7

1

InvokeService(K) SubsedfentActivi
[

Cal!gsablePro

cass(l)

|:|'>|Allocated |

Internal Terminate Exception Handling Pattern

Test ExceptionDemoProcess and pass the input as JInternal-Terminate. When the
ALLOCATED state raises an exception, it STARTS an internal event subprocess (Started)
to handle it. The STARTED event subprocess will end in the TERMINATE state, which will
eventually terminate the process instance (reach the ABORT state).

Internal Error Exception Handling Pattern

Test ExceptionDemoProcess and pass the input as JInternal-Error. When the
ALLOCATED state raises an exception, it STARTS an internal event subprocess (Started)
to handle it. The STARTED event subprocess will end in the ERROR state, which means
that the process instance will eventually cause an error.

[311]

Exception Handling Patterns

If the internal event subprocess (Started) raises an exception, there could be various
possibilities, some of which are given as follows:

The internal exception raised by the event subprocess gets caught by a catch
boundary event associated with the event subprocess.

If no boundary catch is defined for the event subprocess (Started), then the
exception gets propagated to the subprocess (Allocated) into which this event
subprocess is defined. The possibilities are as follows:

o

If another event subprocess to handle it exists, then the exception is
caught there

If there is a Boundary Catch Event defined on the subprocess
(Allocated), then the exception will be caught there

If not handled in the subprocess (Allocated), then the exception gets
propagated to the process level. Then there are following possibilities:

o

If there is an event subprocess defined at process level to catch that
exception, then the exception is caught by the event subprocess.

If there is no event subprocess at process level, the exception gets
propagated to the parent process exception handler. If no fault policy
is defined, then the exception gets propagated to BPMN engine.

If the exception is not handled anywhere, it gets logged by BPMN engine in
the EM fault recovery system.

For the sake of demonstration, we have modeled an internal event subprocess
(Started) and defined it inside a subprocess (Allocated), with two exceptions:

Reallocated: An exception raised at the internal STARTED state is caught by
the catch boundary event, which reallocates the token to a subprocess.

Restarted: An exception raised at the internal STARTED state is propagated
outside the ALLOCATED state, which will restart (reach the RESTART state)
the external event subprocess (Started) to handle the exception at the
process level.

Testing the Restarted scenario
The following screenshot shows the BPMN process instance details:

[312]

Chapter 7

Flow Trace > flow Trace®

& Instance of ExceptionDemoProcess ® Faults =~ Composite Sensor Values ~ Composites
This page shows BPMN process instance details. View
Error Message Recovery

@ <bpelFault:><faultType >1</faultType > <Jinternal_BizException xmins="http:/jx ¥ Recovered

@ <bpelFault:><faultType 1< /faultType > <JInternalExternal_BizException xmins=" ¥ Recovered

@ <bpelFault:><faultType 1< faultType > <Reusable_BizException xmins="http: /1 ¥ Recovered
JExernal 3 <bpelFault><faultType>1</faultType > <Process_BizException xmins="htip:(fxm ' Recovery Required

K Ae———r 'y -\—@ Columns Hidden 8

* <
Jinternal®
Start-J ChegkJ?
CheckJ? J‘E’t’m" Actions * View v Show Instance IDs
nternal
(o) i Instance Type SER
b {M @ Service « Completed

JCompletBomplete -
JComplete

JTerminate

Terminate- LE ExceptionDemoProcess BPMN J Recovery Required
JTerminate dieEs Error - 8 ApplicationVerification Workfiow o Completed
JCBE
N
| . R TTTTTTT.
| r
] - uerhal-Complete &;)
| i cj'l’:g:: JintemalExtems| i ;O
| Error- i
o, / e ! JIEdternal-Complete
| @ L x | Complete
| - I - i -
| s Checdintem %&ﬂ{\nhﬂn S~ } (Ef/ > % i . @
| Jintemal b sl (M) 1
] = | * JIExternal-Error
i S JinternalCBE. — 1 StartExtern CheckError? Error
al
—~
o (Internal) = Y @)
Allocated JExerpat-Terminate
Started E" Terminate?/

If you pass the input as JInternal-Error, the process token gets allocated to the
subprocess (Allocated). The subprocess will raise an exception, JInternal
BizException. When this exception is raised, the BPMN engine tries to find a
handler for it. For this exception, the subprocess (Allocated) has an exception handler
(event subprocess) defined in the subprocess (Allocated) itself. Hence, the exception
gets caught inside the subprocess (Allocated) and it results in the STARTED state

for an internal event subprocess (Started). However, the internal event subprocess,
InternalExceptionHandler, will raise an exception JExternal BizException.
However, neither the exception handler in the subprocess (Allocated) nor does the
subprocess (Allocated) has a Boundary Catch Event to catch the exception. Hence,
the exception gets propagated outside the subprocess (Allocated) and it results in
the STARTED state for an external event subprocess (Started).

Reallocated Exception Handling Pattern

Test ExceptionDemoProcess and pass the input as JInternal -Error. When the
ALLOCATED state raises an exception, it starts (the STARTS state) an internal event
subprocess (Started) to handle it. The STARTED event subprocess will end in the
ERROR state. If the internal event subprocess (Started) raises an exception, there
could be various possibilities that we have enlisted in the Internal Error Exception
Handling Pattern section. One of the many possibilities is the exception raised at
the internal event subprocess (Started) is caught by the catch boundary event,
which reallocates the token to a subprocess.

[313]

Exception Handling Patterns

Visit the process activity state diagram to check the reallocated scenario. When the
subprocess (Allocated) raises an exception, JInternal, this exception is caught at
the internal event subprocess (Started), which is defined inside the subprocess. The
internal event subprocess (Started) defined inside the subprocess (Allocated) starts
with the gInternal error catch and raises the JCBE exception. The JCBE exception
is caught by a catch error boundary event that detours the process token from the
subprocess to the subprocess (Reallocated).

To test the scenario, execute ExceptionDemoProcess and pass the input as
JInternalCBE. This will result in the business exception, JCBE_BizException.
This business exception is caught at the catch error boundary event defined on
the subprocess (Allocated). When caught, the process token is detoured to the
subprocess (Reallocated) and the process moves ahead to subsequent activities.

External Exception Handling Pattern

When a process/service is invoked and it raises an exception, there are various
exception-handling mechanisms to deal with these exceptions. This section is
dedicated to the third scenario where an exception raised by an invoked process/
service is handled by an external exception handler. Check the process state diagram
and you can relate this scenario with the pointer K. An assigned activity invokes a
process/service. The invoked process/service raises an exception. The exception

is not handled inside the process/service nor does the assigned activity (invoking
activity) has a Boundary Catch Event. Hence, the exception gets propagated outside
the assigned activity and it's caught by an external event subprocess (Started) in

the process diagram. Therefore, we can find the symbol K in the start event for

the external event subprocess. You learned about the external exception handling
pattern in previous sections when we tried to catch the fault in the external event
subprocess. This is just to demonstrate the fact that even an exception raised by

an invoked process/service is handled by an external exception handler.

Process-Level Exception Handling
Pattern

If the fault is not handled in the subprocess or by a Boundary Catch Event, or if there
is no event subprocess to handle an exception, then the exception gets propagated

at process level. If there is a fault policy defined to handle such an exception, then
the fault policy will catch that exception. This section is dedicated to those scenarios
where the fault policy will catch the exception.

[314]

Chapter 7

If you check the process state diagram, we will be walking through the L-Fault
Policy scenario in this section. You can use the Fault Handling Framework to handle
faults. The Fault policy can be used to handle runtime faults and business faults. The
Fault policy file along with the fault binding file allows you to define and implement
the fault-handling framework. It's the fault policy binding file that associates the
policies defined in the fault policies file with one of the following;:

* Composite with a BPMN process

* Oracle BPMN process service component

* Reference binding component (for example, another BPMN process

or a JCA adapter)

The following fault recovery actions are supported in the fault policies file for Oracle
BPM Suite:

* Retry

* Human intervention

* Terminate

* Javacode

For more information, you can also refer to Oracle BPM 11g Developer's Cookbook,
Vivek Acharya, Packt Publishing.

Implementing Process-Level Exception
Handling Pattern

To implement the fault-handling pattern, the fault policy and fault binding files need
to be defined. When we define the fault-handling framework, we define fault policy
and fault binding. These are XML files, where the fault-binding file will associate the
policies defined in the policy file with the composite application and the components
defined in the composite.xml file. The fault policy bindings are identified in the
following order in the composite.xml file:

* Reference binding component
* Service component

* BPM/SOA composite application

[315]

Exception Handling Patterns

The InvokeService (K) service task invokes the credit validation service. If the
Credit validation service is down, then a runtime exception will be raised. There is
no fault handling defined at the service task nor is the process-level event subprocess
configured to handle system faults. Hence, the fault gets propagated at process
(composite) level. The fault policy is defined at the process level to handle such
system faults (runtime faults). The following screenshot is the configuration of the
fault-policy.xml file:

<zyml wersion="1.0" encoding="UTF-8" 2>
<faultPolicies xmlns="http: //schemas.oracle.con/bpel/faultpolicy”™
xmlns:®si="http: ///vww.w3.org/2001 /XMLSchena-instance >
<faultPolicy version="0.0.1" id="HMyFaultPolicy"
xmlns: env="http: //schemas.xnlsoap. ocrg/soap/envelopes"
xmlns:xs="http: //www.w3. org/2001 XMLSchema’™
xmins="http: //schemnas. oracle.con/bpel /faultpolicy”
Xmlns:xXsi="hcop: //vww. w3.o0rg/2001 FXMLSchena-instcance™>
<Conditions>
<faultHame xmlns:bpelx="http://schemas.oracle.con/bpel/extension” name="bpelx:remoteFaulc:
<condition>
<action ref="Action-Retzy”™ />
</condition:
</ faul tHame:>
<faultHame xXmlns:bpelx="http://schemas.oracle.con/bpel/sextension” name="bpelxX:bindingFaultc”>
<condition>
<action ref="Action-Retcry” />
< /conditions
</ Eaul tHame:>
<faultHame X¥mlns:bpelx="hrttp://schenas.oracle.con/bpel/extension’” name="bpelx:runtimeFaule >
<conditions
<action ref="Action-Retry™/ >
</condition>
</ faul tHame>
</Conditions>
<hActionss
<hction id="Action-Abort’ >
<abort />
< /Action:
<Action id="Action-Recry' >

<retry>
<retryCount>3</retryCount> @

“retryTntervals10< /retryinterval s
<exponentialBackoff />
< /retrys
/Rctions
</faultPolicy>
</faultPolicies>

The following is the configuration of the fault-bindings.xml file that associates the
fault policies defined in fault-policies.xml with the reference.

As you can check, when a process is called using a service reference, the reference
used is not the BPMN process reference, but rather the reference created to call
the creditvalidationService BPMN process named Services.Externals.
CreditValidationService.reference.

The reference name is created as follows:

* The term Services.Externals. is prefixed to the reference name of
CreditValidationService

* The term .reference is appended to the reference name of
CreditValidationService

[316]

Chapter 7

We can obtain the reference name to specify in the fault-bindings.xml file either
from the reference section of the process name.componentType file or from the
From the wire section of the composite.xml file.

The fault policy is configured with a retry option. There are different ways to treat

a fault. One way is to retry a fault. For example, if an invoked service is down, the
fault-handling framework can be configured to retry three times and once the retries
are exceeded, the instance will be marked as open. faulted (in-flight state). This
would keep the instance active. If you keep the instance as active, you can perform
the following different actions on the instance which has faulted:

* You can manually perform instance recovery from the EM console if you
configure ora-human-intervention as another action to be performed after
retries exceed

* You can terminate the instance to mark the instance as closed

Testing Process-Level Exception Handling
Pattern

Perform the following steps to instantiate a process instance:

1. Open JDeveloper and navigate to ExceptionDemoProcess.

2. Check the IsDraft box for the ApplicationVerification human task,
InvokeProcess(I), ReceiveProcess(I), and CallReusableProcess(J). We are
bringing these activities in the draft mode as we directly want to execute the
InvokeService(K) service task.

3. Save and deploy the project.
Open the EM console and shut down Credit Validation Service.

The process token will get assigned to the InvokeService (K) service task.

The Credit Validation Service will be invoked. As we have shut down the Credit
Validation Service, a runtime fault is raised. As there is no Boundary Catch Event
configured at the InvokeService (K) service task to catch the runtime fault, hence,
the fault gets propagated outside the ASSIGNED state of the service task. As there is
no fault handling outside the ASSIGNED state too; hence, the fault gets propagated
to the level outside. At the process level, a fault policy is configured, which will
handle the runtime exception as per the configuration in the fault policy file.

As the fault policy is configured with a retry option, the system will retry three
times. If the number of specified instance retries is exceeded, the instance is
marked as Recovery Required.

[317]

Exception Handling Patterns

As we can check in the following screenshot, retry was attempted three times and
then the instance is marked as Recovery Required:

Flow Trace @
This page shows the flow of the message through various composite and component instances.

Faults | Composite Sensor Values | Composites
View =

Error Message Fault Owner Recovery
) orade j2ee.ws.client jaxws. JRFSOAPFaultException: Client received SOAP Fault from server : The compesite "di §5 ExceptionDemoProcess & Recovery Required (3 attempted)

Columns Hidden 8

[Trace
Actions v View ¥ Show Instance IDs

Instance Type Usage State

Q, Service o service & Completed
& ExceptionDemoProcess BPMN & Recovery Required
58 Reference ol Reference © Faied
5% Service o Service © Failed
@, Reference ol Reference © Failed
@, Service o service © Failed
58 Reference ol Reference © Faied
5% Service o Service © Faied
@, Reference ol Reference © Failed
@, Service o service © Failed

System-Level exception handling pattern

Consider a scenario where a fault is not even handled at the process level. It would
get propagated to the runtime system BPMN engine. In this case, the fault gets
propagated to the BPMN engine and then the exception is logged to the Enterprise
Manager Fault recovery system.

External Triggers

Querying a BPM process or a BPM process cancel event are termed as external
events. You learned in the Cancel message pattern section of Chapter 6, Correlation
Patterns, how an external event can trigger a process instance cancellation. Similarly,
you have also learned in the Query Pattern section of Chapter 6, Correlation Patterns,
how a noninterrupting external trigger can impact a process instance. External
triggers such as cancelling messages are interrupting triggers and you can find them
marked as External Trigger-O in the process state diagram. Noninterrupting external
triggers are marked as External Trigger-N and you can use the Query Pattern section
of Chapter 6, Correlation Patterns to learn about the behavior. As these patterns are
described in the previous chapter, details are not included in this section and you
can refer to it to understand these patterns.

[318]

Chapter 7

Summary

The content of this chapter was more focused on Exception Handling Patterns and

not on the mechanism to handle the exception. While walking through the chapter,
you learned various exception handling mechanisms and their implementation and
usage in Oracle BPM. It gradually covered almost all the exception propagation
mechanism in Oracle BPM. This chapter covered event subprocess, inline subprocess,
and boundary events as mechanisms to handle exceptions, and their implementations
too are a part of the content. The chapter also included the fault-handling framework
while covering other mechanism to handle faults. While demystifying various
exception handling patterns, you learned exception propagation mechanisms too. This
chapter started with defining states of activities in the process and exception handling
is centered on those states. However, states are just used for the sake of demonstration
and better categorization of exception handling patterns. This chapter will surely lead
you to a footprint in your mind to model exceptions, way before they occur. The next
chapter is focused on some advance BPM patterns and case management patterns.

[319]

Adaptive Case Management

The landscape of enterprise processes has changed drastically. A process can be
predictable or unpredictable, data-intensive or process-intensive, and structured or
unstructured. The business process vista has changed from predetermined steps to
unknown events; today, businesses demand a higher degree of agility, which needs
to coexist with the unknowns and unpredictable factors. Business processes now
need to include knowledge workers, customers, and various sets of case participants
to collaborate in the decision-making. Often, an ad hoc inclusion of knowledge
workers is required as the processes experience unknown contents and events.
Hence, a solution is required to model the patterns of work which are complex,
unpredictable, unstructured, unknown, and those which require a higher degree

of collaboration, complex decision-making, dynamism, and so on.

Case management is a framework that enables you to build case management
applications. Case management applications comprise of business processes,

human interaction, decision-making, data, collaboration, events, documents, rules,
policies, reporting, and history. This chapter elaborates on Oracle's Adaptive Case
Management (ACM) solution, and over the course of learning about ACM, we will
explore various patterns and features that enable designers, developers, and analysts
to model case management solutions. For example, the milestone pattern showcases
how the logical indicatives of a case's progress are included in the ACM solution and
how these logical indicatives help in case modeling. A topic such as event patterns
elaborates on how an unknown's case should be handled. A holistic view pattern
brings depth to the ACM solution by offering a 360 degree view of the case.

Adaptive Case Management

The following table lists the terms that we will refer to in this chapter:

Case A case is the focal point for all the information required for the
work.
Case management Case management is a way of organizing and framing work

around the case.

Process versus case | Process is a path to accomplish tasks/activities, and case is the
work that needs to be performed from opening to closure.

ACM ACM is a novel mechanism of managing work. For me, ACM is
about defining a milestone-oriented, state-based, rule-governed,
content-outbid, and event-driven case.

What is ACM It is about defining case and work. It is about working on ad
about? hoc, dynamic, unstructured, and unpredictable processes/
cases. It is also about design at execution, milestones, content
management, and process and social collaboration as well as
about the incorporation of Business Intelligence, valuing human
intuition, empowerment, and optimizing real-time known and
unknown events.

Who works on Practically everyone — case and knowledge workers,
cases? participants, and so on.

This chapter covers the following patterns:

* Case stage

* Event pattern

* Milestone pattern

* Case interaction pattern
* Localization feature

* Holistic view pattern

* Ad hoc feature

Defining adaptive case management

This section will walk you through the definitions and try to give you the essence
of what adaptive case management (ACM) is all about.

[322]

Chapter 8

Case

A case is a unit of work. It's a package in itself. There are goals and milestones in the
case's life cycle, which are achieved when some work is performed on the case. A
case is a superset of work, processes, transactions, and services which traverse from
being open to closed over a time frame in order to reach a collaborative solution of
an investigation, incident, service request, or a long running process. Essentially,

it's a coordination of works. Examples of cases are an insurance claim, contract
management, managed health care, and so on.

Case management

Case management is a way of organizing and framing work around the case.
We have used the term framing work in the definition as it's evident that work
cannot be defined for a case in one shot or in one go. It's an ongoing process,

and as the work keeps deriving, the case keeps evolving.

It's a collaborative, coordinative, and milestone-oriented process to handle a case
from opening to closure by interacting with the ecosystem and knowledge workers.
Case management coordinates knowledge workers, contents, resources, systems,
and correspondence to trace the progress of a case to different milestones. The
progression of the case is determined and governed by human interactions and by
the occurrence of internal and external events, where the process is a non-routine,
unpredictive, and ad hoc process.

A case management solution offers case and knowledge workers greater control and
the insight to resolve problems more effectively. Case management ensures that the
right information is available for decision-making at the right time and in real time.

One can say that effective process management is essential for case management.
Case management is nondeterministic because the case flow is dynamically
determined at runtime. ACM focuses on managing all the work required to handle
a case, regardless of whether it's content-intensive, structured or unstructured,
predictable or unpredictable, deterministic or nondeterministic, automated or
manual, and so on.

Dynamic case management

Many vendors have various definitions. For some, dynamic case management is a
progression from Rigid BPM | Human-centric content-oriented BPM | Social and
iBPM (Intelligence BPM) | Case Management.

[323]

Adaptive Case Management

Dynamic case management is about semi-structured, human-centric, information-
intensive, collaborative processes that are driven by events. Dynamic case
management enables dynamic changes at runtime. Adaptive case management

is about the just-in-time creation of work around the case and processes, with
intelligence to learn from the previous case/subcase/work. This means people
working on a case should be able to use the subcase/work that is learned by the
just-in-time process/case. To most people, adaptive case management and dynamic
case management are the same, just defined differently by a different set of people.

Mechanism of adaptive case management

ACM is a novel mechanism of managing work. For me, ACM is about defining a
milestone-oriented, state-based, rule-governed, content-outbid, and event-driven case.

For health care, it is a collaborative approach to plan, analyze, define, and then
advocate and facilitate an individual's health care needs. The legal industry requires
knowledge workers (lawyers, clients, judges, and so on) and their expertise as

they drive through advocacy, consultation, and so on, and each individual case

has a different life cycle. Also, information and work related to a case need to be
assembled as the case progresses. For example, in the legal sector, as a court case
progresses, new works are derived that need collaboration with different knowledge
workers. Results need to be assembled, which could further lead to a new work
identification and so on.

Enterprise Resource Planning (ERP) is a superset of processes. ECM is about
content, while CRM is about the customer. BPM is about process and process
management. There is no process without content and no CRM without
communication, collaboration, and processes. Collaboration is not possible without
a social BPM. Real-time analytics and transparency are engulfed by intelligent BPM.
ACM is an integrated consolidation of ERP, ECM, CRM, social BPM, and iBPM to
create a holistic view of the case and it's the customer which is the focus in the case.

ACM targets unstructured processes, where the exact steps and behaviors are not
always known ahead of time. Case management is a way to govern and control these
unstructured processes. You need rule definition in the form of templates that can be
changed at runtime. You need tools to define and modify a process on the fly. You
need to add work to the case while the case is executing and so on. Essentially, you
need a case management solution.

Work on a case can be performed at discrete places such as an ERP process, CRM,
content store, e-mails, manuals, and so on. However, it's the ACM that manages
discrete pieces of work to be performed on a case. ACM creates an adaptive
ecosystem for a work where a change or addition is acknowledged and adopted in
the ecosystem to be adapted by the work.

[324]

Chapter 8

Process versus case

ACM offers a clear distinction between a process and a case. With a case, to
accomplish work and to achieve milestones, many processes might be running in
sequence and/or in parallel. BPM will understand and execute these processes as
distinct, separate processes being orchestrated by one process, and so on. However,
with a case, processes are tightly associated with the case and subcases; hence, cases
offer a holistic view.

Case management offerings

Strategies from management, targets from executives, and milestones from process
owners should be inline and must be transparent to those who act and execute as
well as to those who use them (end users and customers). This transparency can be
achieved by knowing what's being moved in real time. Based on real-time analysis,
decisions should be taken and actions should be performed by those who are
empowered to do so. Above all, the real-time inclusion of customers, process owners,
knowledge workers, and ecosystem are brought in focus. ACM is about a real-time
and focused empowerment, which brings transparency. Management acquires the
full transparency of processes and execution.

ACM is about empowerment. Empowerment comes with focus and transparency,
and transparency comes with a socio-collaborative infrastructure. Transparency
enables you to monitor which, in turn, increases the focus, and focus is increased by
laying milestones and achieving them. Even if BPM empowers participants to act

on the task, it's only ACM that empowers knowledge workers and case workers to
include resources to reach milestones. It leads to a better customer satisfaction. In

an adaptive ecosystem, drill, adapt, transform, optimize, and improve are the key
characteristics of adaptive enterprises, and these characteristics are realized by ACM.
Stakeholders will have complete visibility and control of their objectives, which are
often expressed in key performance indicators. Greater insight translates to the fact
that challenges can be identified the moment they arise. This makes the enterprise
more proactive to respond to such challenges. Above all, ACM offers holistic work
management; this improves the enterprise outcome of work and further translates to
increased revenue, effective and better services, and efficient risk mitigation.

The following are some of the offerings of adaptive case management:

* Transparency
* Empowerment
* Optimized and efficient customer experience

* Handling unpredictability

[325]

Adaptive Case Management

* Adaptive enterprises

* Real-time monitoring

* Greater insight

* Collaborative decision-making
* Participation

* Dynamism

* Holistic approach

The following figure showcases the highlights of adaptive case management:

Transparency pynamism

Participation

Optimized and Efficient Customer

Real-time Monitoring Empowerment Holistic Approach

Greater Insight Data Adaptive Enterprise Eyent Driven

adoh Intellectual
-routi i -hoc process
Non-routine Dynamic P Unstructured Process Property
A
D Milestone Oriented Approach (MOA) Case
A State Opening — Closure
p Socio-Collaboration Un-predictive Work
T Integration Human Intuition
| Collaborative iBPM Design at Execution
Knowledge at Real-time
V' Knowledge from Execution for Design at Execution
E Knowledge and Experience collecting

Stakeholders ~ Processes User Driven Dashboard or Portal

SMAC

Task and Activity Bysiness Intelligence

People

Knowledge Workers

Contents Events (Known and Un-Known)
Rules

awiling,
g,

7,

\\\\ulm,/,
w
(&)
Q

’/uu|u\\\

Event (Internal and External)

)

“, o
'/lm|u\\\

[326]

Chapter 8

The building blocks of adaptive case

management
The following are the building blocks of ACM:

Component Description

Stakeholders A stakeholder can be a user/group/role. They can perform actions
on the case objects that are part of the case to which stakeholders
are related. The behavior of the stakeholders can be defined by the
administrators by assigning permissions. Case objects are CASE,
COMMENT, DOCUMENT, DATA, EVENT, ACTIVITY, MILESTONE,
STAKEHOLDER, and HEADER.

Case/knowledge Case workers, knowledge workers, participants, and so on, can
workers and work on the case. Case management offers case and knowledge
participants workers greater control and insight to resolve problems more
effectively. Knowledge and case workers are empowered to
include resources to reach milestones. With each case, a different
set of knowledge workers and participants get associated with the
process.

Processes BPM will understand and execute processes as distinct, separate
processes being orchestrated by each process and so on. However,
with a case, processes are tightly associated with the case and
subcases; hence, cases offer a holistic view.

Tasks and A task and an activity is the work that can be performed in
activities the context of a case. Case tasks and activities can be executed
automatically or manually, and they might be mandatory, optional,
or conditional. You can implement case activities using human
tasks, BPMN processes, or custom Java classes.

Data Case data and information, case instance data (data objects,
comments, and so on), along with case metadata (milestone,
stakeholders, outcome, and so on) are stored in a database. Case
data also represents the payload of the case, input parameters of the
case, and so on.

Content and A case contains documents. Case management can be configured
information to use either a database as the content store or an enterprise content
management system as the document store. If you use enterprise
content management (ECM), then case information is stored mostly
in case folders where all the documents related to case instances are
stored.

[327]

Adaptive Case Management

Component Description

Collaboration Socio-collaboration is a must for case and knowledge workers to
reach a milestone and to identify /modify work/tasks/activities.
Collaboration brings human intuition in to the process and
improves the overall quality of the case.

Events An event is an occurrence that impacts the case, which may lead

to the addition/ deletion/ modification of work and tasks, and also
defines and decides the progression of the case. ACM allows you

to capture events (internal/external) as and when they happen

and to act on them as they occur. The more responsive the case
management system for the events, the more dynamic the enterprise
will be.

Rules and policies

Business rules can be used to control the flow of a case. With Oracle
ACM, each case comes with a business rule set and a rule dictionary
is generated. Rules can be configured to act on events, milestones,
activities, and so on.

Milestones

Milestones are like goals/checkpoints that represent the completion
of a deliverable and are indicative, to trace the progress of a case.
Milestones are logical checkpoints; the attainment of milestones is
defined in the rules, or actions can be performed when a milestone
of interest is reached.

Integrations

A BPMN process can be invoked by a case, and BPMN processes
can be promoted as case activities. BPMN processes or SOA services
can integrate via working on events. A case can raise events and
BPMN/SOA can react to these events.

Dashboard or
portal

A case dashboard and interface is a must for a collaborative case
ecosystem. A user interface allows case workers, knowledge
workers, participants, and users to act and work on the case and
activities. It also offers a 360 degree view of the case.

[328]

Chapter 8

The following diagram depicts the building blocks of ACM:

F>» =0TV T-0UIV>O0OWIN>O

/

<"A—-—Icomw

&

=

Content Repository, Metadata, Rules Repository, Process Template Repository
Database File II Monitoring
e
BPM Social BPM S - Social Content she Management
Processes and iBPM M - Mobile Management
A - Analytics and ECM
C - Cloud Processes
& L
Auditin >

Process Intelligence g -4 &i

Rules] [Big Data] [Events] [Business Intelligence J Q\ i.— "
Operations
Enterprise Bus
SOA & Data Entities .
(§ g § % g - Reporting L
2 _ @ i A
: : - =7 4
i

ERP CRM ECM Lgacy || Thirg-party | S— Administrators
Processes || Processes || Processes Services Services J

Exploring ACM use case scenarios

The Auto Insurance Claim case is used as the user case scenario to demonstrate case
patterns. An Insurance Claim case will be created to demonstrate the milestone
pattern and other patterns and features, as follows:

1. A customer calls the insurance company's Customer Service Representative
(CSR) to initiate a claim request. CSR will perform the following actions:

1. CSRwill raise a claim on behalf of the claimant, who is a policyholder

with the insurance company.

° CSR will update the Sensitivity information (Expert or Regular).

° If the Sensitivity of the case is Expert, then an Expert agent is
assigned, else a Regular agent will be assigned to the case. Also,
the Service Level Agreement (SLA) associated with the user task

will be different going forward.

Also, if the case sensitivity is expert, the SLA associated with user
tasks will take two days; else, it would be seven days.

CSR will initiate the claim case by submitting the First Notice of

Loss (FNOL).

3. Once the FNOL is submitted, the case reaches the FNOL milestone.

[329]

Adaptive Case Management

2. Onreaching the FNOL milestone, a verification activity (EverificationTask
or RverificationTask) will be initiated based on the updates from CSR in
the earlier step.

° In this step, the agent (Expert/Regular) will review a claimant's
policy to ensure that the damaged asset is covered by the insurance
policy and that the policy is current.

° The agent will also set fastTrackFlag to Yes or No, based on
whether the case needs to be fast-tracked or not.

° Once the verification activity is completed, the case will reach the
Verified milestone.

3. Once the Verified milestone is reached, the service provider needs to be
dispatched. The SLA for the service provider's turnaround is based on the
Sensitivity flag. The service provider will use the loss address to reach the
location of the incident if the Sensitivity of the case is Expert.

4. Once the Verified milestone is reached, the validation activity is initiated
and a case manager is assigned to perform the validation. The case manager
performs the following actions:

° Case validation and checking for any fraudulent activity.

° Discussion with the customer and requesting the essential
documents.

° Defines whether a case needs to be fast-tracked. The case manager
will validate the claim, and if it's a valid claim, the case manager
will set the Claim Validated flag.

° Define the settlement (payment/recovery) and communicate with
the customer.

° Initiating the settlement; to perform the settlement, the case manager
will enter the values for a claim reserve, as the claim reserve needs to
be performed for both fast-track and regular cases.

[330]

Chapter 8

. The case manager will update the FaultSubject field under Claim
| Settlement to either Payment or Recovery, based on whether the
/s payment needs to be made to the claimant or recovery needs to be
performed from the claimant.

Once the settlement is initiated, the case reaches the Validated milestone.

On reaching the Validated milestone, a Customer Acceptance activity will
be raised. One of the features of case management is to involve a customer
in decision-making. To do this, and to involve a customer in a collaboration,
different socio-collaboration mechanisms can be used.

A customer's e-mail should be identified from the customer details, and
the username should be identified from the customer details as well. For
example, a user account will be created in my realm; however, in real
time, each customer will have an e-mail account and an actionable e-mail
notification will go to the customer. On reaching the Customer Acceptance
milestone, the customer receives the documents for customer acceptance.
They can perform one of the following actions: either the customer can
accept or reject the claim settlement, or optionally, they can upload some
supporting documents.

The inclusion of a customer in the process increases the customer satisfaction
level manifold. The customer gets included in the decision-making process
and this drives the settlement.

Once a customer accepts the claim settlement, they will approve the
Customer Acceptance task. Once a task is completed normally, the Customer
Acceptance activity gets completed and the case reaches the Customer
Accepted milestone; however, if a customer rejects the claim, then the activity
(Customer Acceptance) gets faulted and the following activities will happen:

o

The Customer Rejection event is raised

o

The case reaches the Customer Rejected milestone

[331]

Adaptive Case Management

The table in the following screenshot summarizes the use case scenario of the
Insurance Claim case:

Claim Case
Milestone Rule
= When case FNOL Activity When FNOL Activity FNOL Project has a FNOL process which contains the FNOL user task.
started then completes,reach FNOL FMOL process is promoted as FNOL activity. User task (FNOL
initiate FNOL milestone user task) is assigned to CSR role. Case activity rule defines
activity progression of the case, When FNOL Activity gets completed,
case reach FNOL milestone. While editing the FNOL task, CSR will
set the Sensitivity flag to Expert or Regular.
If Milestone FNOL Verification Activity Expert When Verification Verified Project has a Verification process which contains the
reached then initiate (In Verification Agentor Activity EVerification and RVerification user task.Claim agent verify
Verification Activity Process: Regular completes,reach claimant supplied details, verify policy details and policy
I Sensitivity = Expert Agent Verified milestone status,collecting proof documents and associating documents
then with the case. Verification process is promoted as Verification
Task initiated = activity. Verification activity starts basad on activity rule. User
EverificationTask task is assigned to agent role. Case milestone rule defines
Else If Sensitivity = further case progression to Verified mil Agent will also set
Regular then fastTrackFlag to “Yes or ‘No’ based on the fact, if case needs to
Task initiated = be Fast Tracked or not.
RWerificationTask).
If Milestone Verified Validation Activity Case When validation Validated Project have a Validation process which contains validation task.
reached then initiate Manager Activity lidation proc 3 1 as vali activity. Case
Validation Activity completes,reach manager will validate the claim and if it's a valid claim, case
Validated milestone manager will set the flag claimvalidated as “Yes' and would also
define the settlement (payment/recovery) and communicating
with customer and initiates claim settlement.
When Customer Project contains Customer Acceptance Process and Customer
Acceptance Activity acceptance task. This process is promoted as Customer
1f Milestone Validated completes, reach Acceptance Activity. If customer accepts the claim then activity
reached then initiate Customer Acceptance C\fslomer Accepted Customer l'.u_lll]]ll![l?!i rmrmall.\r .md process reaches Customer Accepted
.. Customer milestone Accepted milestone. Else activity gets faulted. When faulted, customer
Customer Acceptance Activity : (o] ichi
Activity When l'_‘us'mrnc.r) Customer ar-?cpt_a Nce process raises a re.]ec!wn event which is cau_ght by
Acceptance Activity Rejected Rejection Handler Process. Rejection handler process will
faults, reach Customer reassign the case to case manager to further collaborate with
Rejected customer to check his/her concerns.
If Milestone Customer Reassign case to Case On customer rejection, case gets reassigned to the case
Rejected reached Manager and initiate manager and a rejection handler activity is raised.
then initiate Rejection Rejection Handler
Handler Activity Activity System
If Milestone Customer Reassign case to Case Admin On customer acceplance, case gets processed for closure and all
Accepted reached Manager and the knowledge workers and particiapnts are notfied o it's status
then initiate Closure Rejection Handler and customer comments and feedbacks.
Activi Activity

The building blocks of the Insurance Claim

use case

The table in the following screenshot shows the building blocks for the Insurance

Claim use case:

[332]

Chapter 8

Case Data FNOL (First Notice Of Loss details)

Evaluation
Decline Claim
Appraisal
Settlement

Close Claim Case

Check InsuranceClaim xsd schema file to understand the case data definitions.
Schema file can be located at — Project = SOA = Schemas

Content & Information Police Report.Claimant Credit Check
ReportFraud Report. Witness Information

Sheet

Configure ECM content store and enable document package at task metadata
editor to store and retrieve content documents. We can also associate
document from case workspace and tasks.

Started

FNOL

Verified

Validated

Customer Accepted

Milestone

Customer Rejected

Milestone can be defined at runtime too from case workspace.

Case Activity FNOL Activity

Verification Activity
Validation Activity

Customer Acceptance Activity
Rejection Handler Activity
Dispatcher Activity

Processes, Human Tasks efc are promoted as activities.

Stakeholder CSR

Expert Agent
Regular Agent
Case Manager
Customer

DPermission Public/Restricted

Outcome Started . Accepted Rejected Closed

Stakeholder can be defined at designed time in JDeveloper and at runtime in
case workspace.

Integrations BPMN Processes, Events, Services

Event Dispatch Service & Customer Rejection

Event

Rules and policies Lifecycle event rule, activity rule and

milestone rule

Project contains Insurance Claim Case rule which includes lifecycle. activity
and tilestone rules.

Dashboard UT

All the task need to have there user interface. We can create a ADF UI for all
the tasks.

Testing the use case

We will walk you through the following steps to execute the Insurance Claim use case:

1. Download the claimApps application from the downloadable link in Chapter

8, Adaptive Case Management.

Deploy the InsuranceClaim project to the web logic server.

Log in to Oracle Business Process Workspace as the admin user and assign
the users to roles (stakeholders) as follows:

° CSR Role: jcooper

° Expert Agent: jstein
° Regular Agent: fkafka
° Case Manager: weblogic

Customer: achrist

[333]

Adaptive Case Management

4. Test the InsuranceClaimCase service using the Claim.xml data file that
can be found in the InsuranceClaim project itself. Navigate to the following
path to find the test data file:

InsuranceClaim | SOA | testsuites | Claim.xml

5. Use SoapUI or any tool of your choice to initiate a case instance. We can use
the Enterprise Manager console to initiate the case instance.

6. Choose the startCase operation, as shown in the following screenshot,
and shift to the XML view for the input arguments:

[—
4 Insuranceclaim [11] @
D{[g S0A Composite ™

Test Web Service
Usge thiz page to test any WSDL or WADL, induding WSDLs or WADLs that are not in the farm. To test a Web service, enter the WSDL or WADL and dlick Parse WSDL or WADL.

WSDL or WADL http: (/TFITDEVDTES41 5, thoffice, WIRELESS. AD: 7003 /soa-infra/services default/InsuranceClaim/InsuranceClaimCase .service 7\ % Parse WSDL or WADL
HTTP Basic Auth Option for WSDL or WADL Access

Service InsuranceClaimCase. service
Port CaseServicePort

Operation startCase B
revokeMiestone
forceCloseCase
abortCase
doseCase
suspendCaze
attainMilestone
»» Quality| recpencase

Endpoint URL . thoffice.wireless.ad: soa-nfrafservices/default/InsuranceClaim/InsuranceC Edit Endpeint URL [
Request

> Securit

» Additional Test Options
Input Arguments
Tree View El Enable validation Load Payload Mo-filelselected, Save Payload
SOAP Body
View v i Detach

Mame Type Value
» *payload tStartCaselnputMessage

Pass the test data from the Case.xml file. You can enter a different case ID.
Log in to the Oracle Enterprise Manager console to check the process flow.

Log in to the Oracle BPM workspace in order to perform actions on the case
activities and tasks.

[334]

Chapter 8

A case consists of many activities, and most of the activities have user tasks.
User tasks are assigned to roles, and users are assigned to the respective roles.
You can follow these steps to log in to the BPM workspace in order to act on a
specific activity / task:

1. Login to the BPM workspace as jcooper (CSR) and edit the value and set
the Sensitivity flag. When the CSR (jcooper) clicks on OK, the case reaches
the FNOL milestone.

2. Log in to the BPM workspace as an Expert agent (jstein) if the CSR
(jcooper) selected the Expert value for the Sensitivity flag, or else log
in as a Regular agent (fkafka) if the CSR (jcooper) selected the value as
Regular for the Sensitivity flag.

3. While being logged in as an expert agent or regular agent, set fastTrackFlag
to either ves or No based on whether the case needs to be fast-tracked or not.
When an agent accepts the task, the case reaches the Verified milestone.

4. Once the Verified milestone is reached, we can note that the Validation task
gets assigned to the case manager (weblogic). Log in to the BPM workspace
as the case manager (weblogic) and add documents to the task to perform
case manager activities; also, set the FaultSubject field to Payment or
Recovery. The case will reach the Customer Acceptance milestone.

5. Log in to the BPM workspace as the customer (achrist) and check the
settlement details. If the customer is happy with the settlement, they can
approve it or else reject it.

When approved, the case reaches the Customer Accepted milestone and the
settlement activity will start.

When rejected, the case reaches the Customer Rejected milestone and
the customer rejection event is raised, which is caught by the customer
rejection handler.

We have to create a task form for each of the user tasks. Editing of the values by

the users is performed on the task form. For instance, when the verification task is
executed, you can log in to the Oracle BPM workspace with the CSR role (jcooper).
The CSR is expected to edit the claim values and add values in the Sensitivity flag
as Expert or Regular. The following diagram shows the placeholder that hosts the
Sensitivity information.

[335]

Adaptive Case Management

Once you are finished with editing the claim values, save the task form and then you
can perform actions on the task:

Claim - FNOL

ok [Adions v & ®
Loss Type GlassDamage « Q D

Request Information...
Loss Date

g}

Reassign
Reported Channel Agent Create Subtask...
Description GlassDamage Escalate
Sensitivity Experf ¢ Release
Fast Track Flag Suspend
Claim Validated Save «ga

Claim - FNOL - Loss Address
Location Type Parking
Address Line 1 SomeAddress 1
Address Line 2 SomeAddress 2
Address Line 3 Address3
City Miami
Country U
State FL

Zip Code 33178
Claim - FNOL - Loss Details

Case stage

Stages are an integral part of a case and are always associated with it. The case
stage or phase may or may not be related to a milestone. Similarly, activities can
be associated with a phase or stage or with multiple phases or stages. A case will
transition from one case stage to another based on the rules that act on milestones,
tasks, activities, and events. The following diagram shows the stages that a case
passes through while moving from Opening to Closure:

Suspend Case

Resume Case

Re-Open Case
Close Case

Opening Closure

Un Deploy Composite
Abort case

! N
[Stale] [Abort

[336]

Chapter 8

The following table highlights the facts around the Case Stage pattern:

Signature Case Stage Pattern

Classification Case Pattern

Intent Progress a case instance from the Opening stage to the Closure stage.

Motivation A case's life cycle spans from Opening to Closure; however, a case
lives in the different stages/phases in its life cycle.

Applicability The transition from one stage to another may bring changes in the case
and in other integrating and interacting components. For instance,
Abort Case will halt the case instance, and closing a case will complete
the case instance.

Implementation | A case is exposed as a service; so, the BPMN process or SOA services

can invoke the case service to drive the case transition. A case service
offers the following operations:

e Abort Case

* C(Close Case

* Revoke Case

* Reopen Case

e Start Case

¢ Resume Case

e forceClose Case

Apart from interacting with case service operations, you can close a
case from a case user interface or using APIs.

Known issues

NA

Known solution

NA

In this section, we will walk you only through the Close Case pattern, which deals
with closing the case instances. You can use the case service operation to close the
case; however, for this example, you can close the case from the BPM workspace case
user interface, as follows:

1. Login to the Oracle BPM workspace (http://wlsserver:port/bpm/
workspace) as the admin user.

2. Click on Close Case; you will be prompted to enter a comment and
optionally, you can select Outcome, if one exists (outcomes are defined
in the case editor).

[337]

Adaptive Case Management

3. Once the case is closed, you can find the comments you entered in the Audit
Trail section of a case. You can still browse the closed case(s) from the case
user interface:

Business Process Workspace

-
Mraske Case %yprocessTrading I Dashboards

=/~ @[69] InsuranceClaim @ Add Comment Raise Event e

Abort Case
Outcome Closed [

Close Case

Activities g [= Data Documents | Audit Trail o Mile« Payment Processes for the daimant suspend Case
achrist # 1101, Case being dosed..!!

Available &~ All Comments Eventw [< Open =
Send Email Document added: WitnessReport.docx 17 seconds ago 4 Close Case Open v
Create Task weblogic

Runnin @ Dispatched Open ~

a9 o, Activity completed: DispatcherActivity 10 minutes ago
CustomerAcceptanceActivity System User @ rrot Completed =
System User
Activity started: CustomerAcceptanceActivity 11 minutes ago
Completed =
System User @ started Completed =
FMOLACtvity System User
¢ Miestone completed: Validated 11 minutes ago
Verificationact System User Load More Items 1-5 of 7items
ValidationActivity o Activity completed: ValidationActivity 11 minutes ago
System User Stakeholders & 7 X
Dispatcher Activity
Y Milestone completed: Verified 25 minutes ago SR
System User il csrGroup

Note that we can abort the case and suspend the case from the Actions dropdown.
If we suspend the case, the process instance gets suspended. We can resume the case
by invoking the resumeCase operation on the case service. Similarly, we can abort
the case and reopen it too.

Event pattern

The following table highlights facts around the event pattern:

Signature Event Pattern
Classification Case Pattern
Intent An occurrence that impacts the case, which may lead to the addition/

deletion/ modification of work and tasks, as well as defines and
decides the progression of the case.

[338]

Chapter 8

Motivation

The progression of the case is determined and governed by human
interactions and by the occurrence of internal and external events.
Dynamic case management is about semi-structured, human-centric,
information-intensive, collaborative processes that are driven by
events. ACM allows you to capture events (internal/external) as and
when they happen and allows you to act on them as they occur. The
more responsive the case management system for the events, the
more dynamic the enterprise will be.

Applicability

Events are the key components of a case management system. Case
management leverages the Event Delivery Network (EDN) to
publish and subscribe to events. The Oracle case management engine
raises events and subscribes to events. Oracle Case Management
offers the following events: Life Cycle events, Milestone events,
Activity events, Data events, Document events, Comment events, and
User events. On every case event, business rules are fired.

Implementation

Events occur due to several reasons. Events can be generated when
a case instance progresses, when a case reaches a certain milestone,
when an activity is triggered, or when an activity is completed

or withdrawn. Events can be raised by external systems, by
stakeholders, from business rules, or can be explicitly raised. Events
offer the best audit trail for the case instance and, moreover, events
are used to evaluate business rules. The evaluation of business rules
brings progression in the case or leads to a certain milestone or may
lead to the initiation of an activity.

Known issues

NA

Known solution

NA

The following diagram shows some of the events used in the InsuranceClaim

sample project:

\) InsuranceClaimCaseRules rules Resources Components.
Ml % @ 48 @
1o Overview [LifeCycleEventRule | verbal Rules 3 viiestoneRule &7 Verbal Rules E @ overview [ActivityRule %
¥ . &d LifeCycleEventRule ¥ @, &8 MileStoneRule ¥ @, &4 ActivityRule
k- R
- Conditions hd Conditions R1 - Conditions R1
C1 CaseEvent.eventType LIFECYCLE_EVENT C1{CaseMilestoneEvent. milestone "Started" C1/CaseActivityEvent. activityName "FNOLACtivity"!
€2 CaseEvent.lifecyclsEvent.lifecycle... STARTED €} CaseMilestonsEvent. milestoneEvent REACHED €2 CaseActivityEvent, activityEvent COMPLETED
X Confiict Resolution X Conflict Resolution x Conflict Resolution
hd Actions et Actions hd Actions
A1 call reachMiestone Al call activateActivity AL call reachMilestone
milestoneName; 5 "Started" activibyblame: 5 "FNOLAcivity" milestoneMame: 5t "FHOL"
comments: 5t ol A2 call activatedctivity AT il

[339]

Adaptive Case Management

Initiate the case using a service call, case interface, or user interface. When the case
instance gets created, the case metadata and case data is inserted into the database.
The moment a case instance is initiated, the case lifecycle events are raised and all
the rules get executed. The rule that is defined to evaluate case lifecycle gets fired.
If you check the preceding diagram, the LifeCycleEventRule business rule gets fired.

LifeCycleEventRule will capture life cycle events and the respective action will be
performed. In this case, the Started milestone will be reached. The business rule,
MileStoneRule, acts on the milestone events. On reaching the Started milestone, the
FNOLACctivity case activity will get executed. ActivityRule showcases the usage of
the activity rule. Once FNOLACctivity (the FNOL case activity) gets completed, then
an FNOL milestone is achieved by the case. You have witnessed that different types
of events can be raised. Events can be anything from case changes, life cycle changes,
case milestone changes, and so on. Events can be of the following types:

* Life cycle events

* Milestone events

* Activity events

* Data events

* Document events

* Comment events

* User events
Events are evaluated by the business rules and activities, and a milestone case can
be reached based on how rules are defined in those events. Along with the seeded
events, we can define custom events (user events). In the InsuranceClaim project,
we have defined an event and a dispatch service (under InsuranceClaim | Events).
We can not only configure a rule to raise the event, but also explicitly raise the event
from the case user interface. This showcases the dynamism of the case management
solution. For instance, if the CSR finds that the Agent (Expert or Regular) has found
that the case needs immediate attention at the accident site, they can raise a dispatch

service event. This event is caught by the dispatch service to dispatch a team at the
site of the accident and various other defined activities:

1. Login to the BPM workspace as the admin (weblogic) user and click on
case workspace.
Click on Raise Event as shown in the following screenshot.
Select the event, DispatchServiceEvent, from the list of user-defined events.

Enter a comment, which will appear in the audit trail of the case.

[340]

Chapter 8

5. Set a permission (public or restricted).

6. Click on Raise Event to raise the DispatchServiceEvent.

If there is a business rule defined to catch the event, that rule will evaluate to true
and the defined action will get executed.

This example showcases the seamless integration of an Event Driven Network
with a case management solution. It also demonstrates the empowerment of the
case workers, where it was showcased that case workers can raise events without
bringing about a change in the code.

Business Process Workspace weblogic Home
— cm
Tasks Case *'s Process Tracking I Dashboards More
=-Q [69] InsuranceClaim @ Add Comment Raise Event
Event Name l
. =E, Y i i Milestones
Activities E EventMame DispatchServiceEvent |« |
Raising Dispatch Event to initiate dispatch service to send the team at acddent site immediately.. 1! Q Customer
Available ae |
Send Email Q Customer
Create Task Public El Close Raise Event
Q Dispatched|
Running Data Documents Audit Trail GE
o @ moL
VerificationAct
Q, All Comments Event v
Completed o, Activity started: VerificationAct 1 minute ago <P started
FNOLACtvity System User
0 Milestone completed: FNOL 1 minute ago
System User Stakeholders
Linked Cases £
Activi leted: FNOLActivi i SR
No cases are linked to this caze o ity completed: ity 1 minute ago],m .
System User
. . CaseManager
Q Milestone completed: Started 1 minute ago
System User

Milestone pattern

Milestones are like goals/checkpoints that represent the completion of a deliverable,
and they are indicative factors to trace the progress of a case. Milestones are logical
checkpoints; the attainment of milestones is defined in the rules, or actions can be
performed when a milestone of interest is reached.

[341]

Adaptive Case Management

The following table highlights the facts around the milestone pattern:

Signature

Milestone Pattern

Classification

Case Pattern

Intent

A logical indicative of the case's progress.

Motivation

Milestones are like goals/checkpoints that represent the completion
of a deliverable and are indicative factors to trace the progress of the
case. Milestones are logical checkpoints; the attainment of milestones
is defined in the rules, or actions can be performed when a milestone
of interest is reached.

Applicability

It's a specific execution point in the case instance. They support a
conditional execution of the case flow, tasks, and case activities.
Checkpoints can be set to act when certain nominated points in the
process execution are reached. Milestones are optional in a case, and
they do not bring about changes in the case state. However, they can
be used in rules to define and decide the progression of the case flow.

Implementation

Oracle case management offers case components, where milestones
are defined. Each case comes with a business rule set and rule
dictionary. Milestones are available as a global in the rule dictionary.
Case management also offers various events, and one of the primary
event sets are milestone events. Business rules in the case can be
configured to listen to milestone events. Rules are fired when
milestone events are raised in the case management ecosystem.
Business logic in the rules can be defined to react when an event of
particular interest is received.

Known issues

NA

Known solution

NA

Download the sample case management application, ClaimaApps, from the download

section for Chapter 8, Adaptive Case Management. Open the application in JDeveloper.
Perform the following steps to check the configuration of milestones and their usage
in the business rules:

1. Expand the InsuranceClaim project and follow the navigation path to open
the case editor for InsuranceClaimCase; this case can be found under the
path InsuranceClaim | BPM | Case | InsuranceClaimCase.

2. Check the general case properties defined for the sample case. You can define

the following general properties of the case:

o

Title and category — Insurance Claim

° Priority

o

Milestones and outcomes

[342]

Chapter 8

Using the case editor, you can assign outcome values to the case when it
is completed. For instance, in a claim case, the outcome when the case is
’ completed can be claim processed, claim recovered, and so on.

3. Click on the green plus (+) icon to add a new milestone in the case editor.
Check the milestone being defined for the InsuranceClaimCase.

4. Expand the project, InsuranceClaim | SOA | Business Rules |
InsuranceClaimCaseRules, to open the rule dictionary.

5. (Click on Global in the rule dictionary and verify that the milestones are
listed there.

6. Click on the rule sets to open CaseEventRule. The business rule defined here
works as follows:

If Case == Started, then Milestone reached == "Started"

When a case is initiated, the case life cycle event is raised. Whenever an event
is raised, the case's business rules are executed. When the correct conditions
are met, an action is taken. So when the case's life cycle starts, the case will
reach the Started milestone. You can witness this in the business rule's action;
there are functions such as reachMilestone and revokeMilestone, which
can be used to define rule actions.

7. Click on CaseMilestoneRule in the rule sets. You can witness the usage of
milestone events in rule conditions:
If Milestone reached == "Started" then initiate FNOL activity.
Oracle case management offers milestone events to reason and define the

process flow. In this case, if the Started milestone is reached, then the FNOL
activity will be initiated.

Perform the following steps to test the scenario:

1. Deploy the InsuranceClaim project to the web logic server.

2. Log in to the Enterprise Manager console as the admin and click on the
deployed InsuranceClaimCase service.

3. Choose the Start Case operation from the list of operations and pass the
input in the XML view in the EM console. You can use SoapUI or any other
tool or mechanism to test the service.

4. Pass the test data (Claim.xml) and click on Test Web Service to execute the
service test.

[343]

Adaptive Case Management

5. You can trace the process flow, which shows the execution of the FNOL user
task. The FNOL user task is assigned to the CSR role (jcooper).

6. Verify, from the case editor's stakeholder section, which user is associated

with the CSR stakeholder. Log in to the BPM workspace as that user and act
on the FNOL user task.

The following screenshot depicts the sequential flow of the activities. When a case
starts, the LifeCycleEventRule rule gets executed. LIFECYCLE_EVENT starts,
which will mark the attainment of the Started milestone. When the Started milestone
is reached (as shown with an arrow in the following diagram), FNOLActivity (the
FNOL activity) gets initiated; FNOLActivity is based on the FNOL process that
assigns an FNOL user task to the stakeholder. When CSR (j cooper) acts on the

tasks, FNOLACctivity gets completed. When the activity is completed, ActivityRule
gets executed and a call to reachMilestone will bring the case to attain the FNOL
milestone, as shown in the following screenshot:

“ InsuranceClamCaseRules.rules . Resources Components
Mm% @ o @
(&4 Overview [LifeCydeEventrule x| verbal Rules &l Milestonerule X & verbal Rules E (G overview [ActivityRule X
¥ © éd LifeCycleEventRule ¥ ©, &4 MileStoneRule ¥ %, &4 ActivityRule
+- %
- Conditions M Conditions R1 - Conditions R1
C1 CaseEvent.eventType LIFECYCLE_EVENT C1jCaseMilestoneE vent, milestone "Started" C1/CaseActiviyEvent, activityName "FNOLActivity"|
C2 CaseEvent.lfecycleEvent. [fecydle. . STARTED CJ CaseMiestoneEvent. milestoneEvent REACHED €3 CaseActivityEvent. activityEvent COMPLETED
% Conflict Resolution £3 Conflict Resolution x Conflict Resolution
- Actions - Actions - Actions
a1 cal reachMiestons Al call activateActivity A1 call reachMilzstone
milestoneName: “Started" act byl ame] "FNOLActivity” milestaneName: "FNOL"
comments: ul A2 call activateActivity comments; null

Case interaction pattern

The case interaction pattern highlights the facts around the different processes and
service integrations with cases. Interactions and integrations can happen using APlIs,

service calls, events, and so on. The following table highlights facts around the case
interaction pattern:

Signature Case Interaction Pattern
Classification Case Pattern
Intent Integrating the case with processes and services.

[344]

Chapter 8

Motivation A case ecosystem where different technology components can

integrate.

Applicability Events are the key components of the case management system.
Case management leverages EDN to publish and subscribe to
events. The Oracle case management engine raises events and
subscribes to events. The SOA service and processes can be

configured to subscribe to such events and can integrate with cases.

Implementation | The case management engine can publish/subscribe events to
Oracle EDN and a case is exposed as a service; hence, the BPMN
process can invoke the case service to integrate with cases. A case
service offers the following operations: Abort Case, Close Case,

Revoke Case, Reopen Case, Start Case, and Resume Case.
NA
NA

Known issues

Known solution

Localization feature

Localization feature is a must in any BPMN/ACM solution as it offers the flexibility to
configure a case to use different languages when it is displayed in the user interface:

Signature Localization feature.

Classification Case feature

Intent Configure a case to use different languages when displaying in the
user interface.

Motivation Case interface to be used by case/knowledge workers and
participants following different languages.

Applicability The following artifacts of a case can be localized: case title, case
category, milestone name, outcome, data, user event, stakeholders,
and permissions. You can define a display name for all these
artifacts, except for the case title and category.

Implementation | Key, value, and translation need to be defined to perform the

localization. The case editor has the translation tab to define the
following:

* Key (the name to identify a key)
* Value of the key in the default language

* Translation for the target language

Known issues

NA

Known solution

NA

[345]

Adaptive Case Management

Holistic view pattern

Processes are running across functional, system, and enterprise boundaries. An
enterprise needs an end-to-end definition of the case and a unified view of the case.
An enterprise wants to be agile and needs a real-time view of the current case status.
A real-time view of the case makes enterprises more responsive as and when events
happen. The following table highlights facts around this pattern:

Signature Holistic View Pattern

Classification Case Pattern

Intent Offer a holistic 360 degree view of the case instance.
Motivation As cases run long, a lot can happen over this time and various

participants and knowledge workers would have acted and
contributed in the due course of time. Hence, a holistic view of

the case is required, which ACM offers. ACM offers holistic work
management; this improves the enterprise outcome of work and
further translates to increased revenue, effective and better services,
and efficient risk mitigation.

Applicability Oracle ACM offers a case user interface that presents a holistic view
of the case instance.

Implementation | The Oracle case management user interface can be used to view the
details of an open as well as closed case. It provides the flexibility to
add comments or initiate events on the case. Working on activities as
well as viewing and adding documents and case data are some other
events that can be performed via the case user interface. Viewing
and adding stakeholders, milestones, and user information can also
be performed using the case user interface. A case can be closed and
reopened from the case interface too.

Known issues NA

Known solution | NA

Log in to the Oracle BPM workspace (http://wlsserver:port/bpm/workspace)
as the admin user and click on the CASE interface tab. This will navigate you to the
case user interface, shown in the following screenshot:

[346]

Chapter 8

Business Process Workspace gc Home Admi

-
M rasks Case "yprocesstracking WM pashboards

= - ©[69] InsuranceClaim @ Add Comment Raise Event [0} = Actions ™
Activities [=] Dats Documents Audit Trail @) Milestones
Available &b/ Al Comn| Event > @ customeraccepted Open v
Activity
Send Email Caselink added LifeCyde } CustomerRejected Open
Create Task & Oupicate Case Document
Running weblogic Miestone } Dispatched Open
User Defined
CustomerAcceptanceActivity &2 Caselink removed Data Upload ¥ oL
weblogic Link System User
Completed Stakeholder
Caselink added Stakeholder Member P Started
FNOLACtvity (f Settlement Subcase System User
weblogic
VerificationAct Load More Items 1-5 of 7 items|
g Coscinkadded 22 minutes ago Stakeholders & 7
validationActivity weblogic
csR
FraudCheckActivity - Activity completed: FraudCheckActivity 32 minutes ago &} CSRGroup
System User
CaseManager
Linked Cases & o, Activity started: CustomerAcceptanceActivity 32 minutes ago &) caseManagerGroup
System User
This case is duplicate of Customer
[45] SubCaseProject > & Milestone completed: validated 32 minutes ago B8 Customer
System User

You can perform the following activities though the case interface:

Browse for the case instance you are interested in. Filter and search for the
case instance you are looking for.

Click on Add Comment to add comments to the case, which will be visible in
the audit trail.

You can use the case user interface to raise events; however, you can work
on the events that are preconfigured using the BPM JDeveloper Studio.

Activities can be viewed in the left panel of the case interface. Activities are
categorized based on their state: running, completed, available, and error.

Activities that are in the Available state can be initiated from the
case interface.

The Audit trail panel allows you to view case events, participants who acted
on the events, and so on.

The Data panel can be used to view and modify the case data.

[347]

Adaptive Case Management

* The Documents panel can be used to view the documents associated with the
case instance. Moreover, you can add/upload documents, set permissions
for the document, and you can also uncover the users/case workers who
uploaded the documents.

* You can view and change the status of the milestones from the
Milestones panel.

* The Stakeholder panel can be used to add new stakeholders. You can
also edit the existing stakeholder if the performer has permissions.

Ad hoc feature

Case management is all about handling unpredictable scenarios, unknown events,
and dealing with activities that are not predetermined. Hence, we need a solution
for the ad hoc inclusion of activities, ad hoc mechanisms to raise events, ad hoc
methods to add stakeholders and methods to refer to the subcases in the case, and
so on. In this section, we will check the various features of the Oracle adaptive case
management 12c¢ solution that allow the ad hoc inclusion of stakeholders, rules,
activities, subcases, documents, and so on.

The following table highlights the facts around this pattern:

Feature Ad hoc feature
Classification Case feature
Intent The ad hoc inclusion of stakeholders, activities, rules and policies,

documents, subcases, and so on.

Motivation As cases run long, a lot can happen in that time. A case might need
new documents for which new knowledge workers need to be added
to the task. There might be cases when new ad hoc activities need to
be launched, or some of the scenarios need the existing subcases to
fulfill a case functionality, or there might be a requirement to change
the business rules and policies on the fly when the case is executing.

Applicability Oracle ACM offers the case user interface, which presents a holistic
view of the case instance. Also, it offers the flexibility to perform
various ad hoc activities, such as to change or modify a rule/
policy, add new rules/ policies, define new activities and tasks, add
stakeholders, add documents, and so on.

Implementation | The Oracle case management user interface can be used to perform
various ad hoc inclusion activities that are covered in the following
section.

Known issues NA

Known solution | NA

[348]

Chapter 8

Ad hoc inclusion of stakeholders

We can note that Oracle ACM allows you to browse and add users, roles,
or groups as stakeholders at runtime. Perform the following steps to add
a stakeholder at runtime:

1. Login to the BPM workspace as the admin user and click on the
Case workspace.

2. (Click on the plus (+) sign in the stakeholder section to add new knowledge
workers or case workers.

Ad hoc inclusion of activities

Let's assume that somewhere in the case life cycle, if the business feels the need to
verify the witness report associated with the case, a witness report verification can
be performed by the user (1ata). We will create a task at runtime and assign it to the
user (lata) to get it verified:

1. Navigate to Case workspace | Activities and click on Create Task.

2. Enter task details (title, assignees, due date, and so on) and click on Create to
create and initiate the task.

3. Log in as the user (lata) and we can find the task in the user's inbox:

Business Process Workspace Home Administration
— -
M Tasks Case %y Process Tracking M pashboards More
= - [69] InsuranceClaim ® Add Comment Raise Event
Create Task * Milestones
Activities) [~ Dats Documents | Audit Trail 0
Title
@ CustomerAccepted
CheckWitnessReport o A Comments
Available LR e — Event v
st Q P CustomerRejected
Send Email New Event: DispatchSer
. 8 Reising Dispatch Event toir] D203
Create Tas aising Dispatch Event toir]) o1 S @ pispatched
— weblogic
Blare P FHoL
Verificationact o, Activity started: Verific
System User Priority High [
@ Started
Completed Assi t
g Milestone completed: St
ENOLAGtivity System User @ any assignee () All assignees
o, Actiity completed: Fic Task Gutcome Agprove [] Stakeholders
System User Outcome percentage 2
Linked Cases LY " < 1o
CsR
Mo cases are linked to this case & Milestone completed: 5 Create | [Cancel & csreroup
System User 4
CaseManager
b Case started &) caseManagerGroup
System User

[349]

Adaptive Case Management

Ad hoc inclusion of documents

We can add documents at various places. Click on a case workspace and go to
Document to add a document. We can browse for a configured ECM for the
document. Extending the case, when the CheckWitnessReport task gets assigned to
the user (1ata), she can associate the witness report with the task and the document
will be available in the case.

Association of a case with subcases

A case can depend on another case, a case can be a parent of subcases, a case by
itself can be a subcase of another case/subcases, or a case might be a duplicate of
some other case. Oracle ACM offers the flexibility to associate a case with subcases
and other cases. Oracle ACM offers the feature to link cases with other cases and
subcases. In real time, an enterprise might have a pool of subcases that can be
linked with the current case. For instance, the settlement process is a subcase in
the enterprise. When the current case reaches the Customer Accepted milestone,
the settlement subcases can be linked with the current case, shown as follows, and
settlement subcases will take care of the settlement activities for the parent case:

Milestones
Activities g [+] Dats Documents Audit Trail
@ CustomerAccepted Open +
Available %/~ AlFiles Upload Fie)
5end Email & WitnessReport.docx . Q CustomerRejected Open v
Create Task Witness Report
P pispatched Open ~
Running
& Claim.xml - @ FioL
CustomerAcceptanceActivity N
Claim Data System User
Completed P started
- System User
FNOLActivity
Load More Items 1-5 of 7 items
VerificationAct
Link Cases #
Validatinactivity Search
alidationActivity stakeholders & 7
Number State Title
FraudCheckActivity 49 Aborted InsuranceClaim - CSR
48 Closed SubCaseProject) csreroup
47 Active SubCaseProject
44 Aborted InsuranceClaim
Linked Cases + 42 Ahartad TncurancaClaim 32 CaseManager
4§ CaseManagerGroup
This case is duplicate of *This Case isrelatedto [+
. is related to
45] SubCasePy t
[45] SubCaseProjec > depends on Customer
is duplicate of & customer
.) has subcase
This case is parent of
E rtA; t
[46] SubCasePraject > s Sz wpertagen
*) Expertagent

[350]

Chapter 8

Ad hoc inclusion of rules and activities

When the case is progressing, at some point in the case life cycle, the business
decides to perform a check for fraudulent activity on the claimant and their claim
request. If we look at the InsuranceClaim project, we have FraudCheckProcess and
FraudCheckActivity. However, none of the rules are defined to initiate the fraud
check activity. We will now perform an ad hoc inclusion of the activity in the rule
that justifies the true dynamism of the Oracle ACM solution.

Log in to the SOA Composer application (http://host:7003/soa/composer/)
as the admin user and perform the following steps:
1. Click on Create Session to start an editing session.

2. Expand SOA-INFRA and click on InsuranceClaimCaseRules.rule inside
the InsuranceClaim project.

3. Click on MileStoneRule and select a decision table.
Navigate to Add action | All function to call activateActivity.

Author the rule, as shown in the following screenshot, to call
FraudCheckActivity.

6. Click on Save to save the authored rule as unsaved changes are
not published.

Click on Validate to validate the rule.

Click on Publish to persist and bring your authored rule into effect.

SOA Composer Links * Preferences Hep v weblogic v
© conmer vt seson [
A 4t 8
Search = InsuranceClaimCaseRules.rules 5 H @ @ |~
Deployment View ~| =X B @ [value Sets @@ Globals & Busiess Phrases [Tests | @ Explorer |I{ Facts | §yDecision Functions | o Links | o Translations|
&P InsuranceClaimCaseRules ~ B2 op 3¢
£2 soanfia
@ default Rules . By Type | MileStoneRule P
ol credichecr (101 E v I Click to view tests and variables

> off§ DynamicTaskAssignment [1.0]

ofld FraudCheckeri [1.0] & |- IR # [Tods |+ | EF switch Rows to Columns
> offd HumanTaskRouting [1.0]

8 wifeCycleEventRule A3 R4
o nsuranceClaim [1.1]
& customerAcceptanceTask, task @ MileStoneRule 7
&5 EverificationUserTask. task CaseMilestoneEvent.milestone “Verified” “Validated”
& FHOLUserTask task B actwityRule CaseMiestoneEvent.milestoneEvent REACHED REACHED
3 InsuranceClaimCaseRules.rul
Al Ey
& RverificationserTask. task T — . M
& validationUserTask. task
> o2 LoanGriginatonFroject [1.0] H activityName:String “ValidationActivity™ "CustomerAcceptanceActivity™
> offd SimpleApproval [1.0] cal activateActivity v v
> oflf subcaseComposite [1.0] activityName:String nul “FraudCheckActivity”
(3 shared

seManagementBaseDictionary.rules

ynamicRouting rules

[351]

Adaptive Case Management

As we checked in the rule definition, FraudCheckActivity gets executed when a case
reaches the Validated milestone, as follows:

* Log in to the BPM workspace case manager (the web logic user), edit the
rule, and click on Approve under the Actions pane to approve the user task.

* Trace the process by logging in to the Oracle EM console and check the
process trace. We can verify that FraudCheckActivity gets initiated.

Summary

We often need a mechanism to handle unpredictable business scenarios, for which
case management is the solution. This solution is characterized with unpredictable
outcomes, is typically content-driven, usually depends on semi-structured
information, and has unpredictable recursive flows.

In this chapter, you have witnessed the milestone pattern, the event pattern, the
case interaction pattern, the holistic view pattern, and the case stage pattern. Along
with the patterns, we have checked out the ad hoc features of case management that
can be viewed as a practical justification to various ACM offerings. While walking
through the chapters, you must have realized how empowered knowledge and case
workers are. This chapter highlights the ad hoc inclusion of knowledge workers to
include human intuition in processes. We have witnessed the realization of some

of the ACM offerings through the sample demonstration. We have noted how
Oracle ACM integrates seamlessly with SOA, EDN, processes, services, content
management solutions, subcases, and so on.

The next chapter is focused on advanced features such as architecture models,
value chain models, KPIs, reports, and PAM, which are required for an effective
BPMN solution.

[352]

Advanced Patterns

This chapter discusses an organization's need to capture the context of a business to
perform impact and dependency analyses. Also, this chapter highlights how to report
on goals, objectives, strategies, and value chains in the organization. We will learn
how to create reports on KPIs to view how different components are stitched into
the fabric of an organization unit. It also demonstrates how a business architecture
model can be used effectively to inline the goals, objectives, strategies, and value
chain, which expedite IT development and always keep business and IT in concert.
Enumerating process behaviors offers visual representation of a BPMN process that
showcases an animated view of your process behavior so that process behavioral
patterns can be analyzed even before deploying and publishing the project. The
inclusion of a debugger will allow you to identify and fix logical or workflow issues
in the process and thus, infuse a preventive mechanism in the process modeling.

The Process Asset Management (PAM) section illustrates how process assets can

be shared between users who work on different applications and tools and also
between different users who work on the same application. PAM infuses business IT
collaboration and offers an enhanced method of round-trip between business and IT.
This section successfully demonstrates how well, versioning and PAM gel together
for an enhanced development and modeling experience for developers and process
analysts, respectively. This chapter focuses on methodologies and features around
analysis and discovery patterns that make an organization aligned with the goals,
objectives, and strategies. It also focuses on creating a collaborative ecosystem for
business and IT, and a detailed analysis of PAM and methods to emulate the process
behavior. The following methodologies, patterns, and features are covered in

this chapter:

* Strategic Alignment Pattern

* Capturing the business context

* Emulating the process behavior

* The debugger feature

* Round-trip and business-IT collaboration

Advanced Patterns

Strategic Alignment Pattern

BPMN needs a solution to align business goals, objectives, and strategies, as well

as a solution to allow business analysts and function/knowledge workers to create
business architecture models. These business architecture models will then drive the
IT development of processes. They will remain inline and align with the organization
goals. Oracle BPM 12c offers Business Architecture (BA), a methodology to perform
high-level analysis of business processes. This methodology adopts a top-down
approach to discover organizational processes, define goals and objectives, define
strategies and map them to goals and objectives, and report on BA components.
Strategic Alignment is more of a methodology than a pattern. However, it's an
important feature for a successful BPMN solution that aligns goals, objectives, and
strategies of the organization. The following table highlights the facts around the
Strategic Alignment Pattern:

Signature Strategic Alignment Pattern
Classification Analysis and Discovery Pattern
Intent To offer a broader business model (an organizational

blueprint) that ensures the alignment of goals, objectives,
and strategies with organizational initiatives.

Motivation A BPMN solution should offer business analysts and
functional users a set of features to analyze, refine, define,
optimize, and report business processes in the enterprise.

Applicability Such a solution will empower a business to define models
based on what they actually need, and reporting will
help evaluate the performance. This will then drive the
technological development of the processes by translating
requirements into BPMN processes and cases.

Implementation | Using the BPM composer, one can define goals, objectives,
strategies, and value chain models. We can refer to BPMN
processes from the value chain models. Goals break down
into objects that are fulfilled by strategies. Strategies are
implemented by value chains that can be decomposed into
value chains/business processes.

Known issues Collaboration and a defined method to collect information.

Known solution | Solution to such a challenge is by including different
stakeholders to define such artifacts. Stakeholders include
business analysts, systems analysts, the IT department, CEO,
CIO, and so on.

[354]

Chapter 9

Using the BPM composer, we can define models using the following capabilities:

Enterprise maps: In models that showcase key process areas of an
organization, Enterprise maps infuse process classification (functional
division of processes) and decomposition (business functions of services).
Classification is enabled using lanes. Process areas are added to lanes, and
each process area is linked to a value chain model.

Value Chain Models: These represent the various stages of the process.

A value chain model can be broken down into distinct value chain models or
can be linked to business processes. It is the business processes that outline
the IT requirements needed to realize the model. We can define KPIs that
ensure the tracking of key business information for an organization, within
the value chain models.

Strategy Models: This is to define an organization's objectives and goals and
also a strategy to achieve them. Strategy Models contain goals (end result of
the Strategy Model), objectives (smaller objects or milestones to achieve the
organization's goals), strategy (plans to achieve an objective), and value
chain (how a strategy is implemented by referencing other value chains

or BPMN processes).

We will use the Loan Origination application and Loan Origination
project from Chapter 6, Correlation Patterns. Download the Loan
%@‘\ Origination project from the Correlation directory. You can
g deploy the Loan Origination project as it is and start executing the
samples given in this chapter.

Perform the following steps to create enterprise maps:

1.

Log in to the BPM composer application at http: //host : 7003 /bpm/
composer. We will create an enterprise map for a new project.

Click on ALL and + (pointed to as 1 in the following screenshot) to create
a process space.

You can select a process space that already exists or create a new process
space. Process spaces group related BA and BPM projects.

Enter the name of the process space as MyBPMProjectSpace.
Click on Save to save the process space. By default, a space is a private space.

Click on Edit (as pointed to by arrow 3) to add participants to the
process space.

[355]

Advanced Patterns

7. Click on Enterprise Map on the welcome page under BA Project.
8. Enter the enterprise name as MySocialBankEnterpriseMap.
9. Select the process space that we just created, that is, MyBPMProjectSpace.

10. Enter a name for the project as MySocialBankProject, as shown in the
following screenshot, and provide a description for the map.

11. Click on Create to create a BA Enterprise map project.

() MyBPMProjectSpace @,

M Modaler view

B8N pA Project +

* Name M.aaw-a):csm::l—D

LoanOriginationProject

Space: MyBPMProjectSpace
Created: 10:16 AM
Creator: WEBLOGIC
Type: EPM Project

Process Space for Business Archl...

Enterprise Map
Strategy Model
Walue Chain Model

e gemproject

Process

Recent Projects

MySocialBankProject

>

K 3
* Model Name MySocialBankEnterpriseMap
Name MyBPMProjectSpace

Je

*Space | MyBPMProjectSpace El

Team

Sharing Participants 4 = New Project MySocialBankProject
MyBPMProject...

Deletz Delete space and content Description MySodalBankEnterpriseMap|

WEBLOGIC

5

Create

{0.

Gviner]

JSTEIN
Editor]

]

The Enterprise map editor will open up. You can add new lanes and process areas;
by default, 12c offers core, management, and support lanes. We can drag-and-drop
the lane and process area components from the component pallet to the map editor
to add a lane or process area by performing the following steps:

1. Drag-and-drop Process Area from the component pallet to create a process
area into the Core, Management, and Support lanes.

2. Click on the pencil icon to edit it. This will open the Properties page.
Enter a name and save your activity.

3. Enter the name of the process area and a description, and click on OK.

Save your work by clicking on the Save icon, as pointed to by an arrow
at the top of the window, in the following screenshot.

[356]

Chapter 9

5. Create a lane structure with process area, as shown in the
following screenshot:

Froject Home | |5 MySocaiBankEnterpr...
e @ = G E L
Core
In Exchange
lerest Charges Hitas Discounts
Lane
Fayment
Limits Systems Fee Inventory Verifications
/ =8 Process Arca
Personal Mutual Wealth
Bankng Luas Funds Equity t
Deposits
Banking Leanding Guaranlees Conlracts Credils
Bupport
Integration
Reporting Audit S50 Workflows = .
Pusge i Garanger Seheduler Localzation

The Value Chain Model

Perform the following steps to create a Value Chain Model and associate the BPMN
process to it:

1. Navigate to Value Chain Model in the project, as shown in the following
screenshot, and click on New (+) to create a Value Chain Model.

[357]

Advanced Patterns

2. Enter the name of the Value Chain Model as MySocialBankValueChain;
then, enter a description and click on Save, as shown in the following
screenshot. Remember to select a process space for the Value Chain Model.
We are performing this step to create a master Value Chain Model.

@ MyBPM

Project Home

Project... » ™M MySocialBank... Editing

DDE MySocialBankProject

10:22

by weblogic Shared Project (2 users)

@ Enterprise Map (1) Views -
Strategy Model (0}

[Z] value chain Model (0)

Preferences Help

vt || Savedat11:47:43

Created on 10:22, by WEBLOGIC
Reports data not published E

More information

*Name MySodalBankValueChain

Description My Social Bank Yalue Chain |

All (1)
3. Drag-and-drop a chain step into the Value Chain Model editor, and click
on Edit to enter the names of the chain steps (Loan Origination and
pPayments). This will create a master Value Chain Model.
4. Navigate to the project space, click on Value Chain Model again

in the project to create another Value Chain Model, and name it as
LoanOriginationvValueChain. This will create a child Value Chain
Model. We will link this child model to the BPMN process.

[358]

Chapter 9

5. Drag-and-drop a chain step into the Value Chain Model editor, shown in the
following screenshot, and click on the Edit (pencil) icon to enter the name of
the chain step (for Validation, Underwriting, and so on). This will create a
child Value Chain Model that will refer to the BPMN process.

[T Mysecafankyvauechan

Dasic

4 Attty Descrpien My Social Bank Vake Chan

eI @E e

)=

Basic

Bii Cocumentaton

2 Armchments

[0] tomrOrigratoniskieChan

escrpbon Loan Orignation Ve Chan Model

6. In the child Value Chain Model, click on Validation chain step and go to its

Properties page.

7. In the Properties dialog box, under Links, click on the browse icon beside the
BPM or Value Chain section. This will open the Link dialog box.

8. Choose LoanOriginationProject and click on Next.

[359]

Advanced Patterns

9. Then, choose LoanOriginationProcess and click on Finish.

We just associated the BPMN process with the Value
L Chain Model.

Perform similar steps with other chain steps (BCG, Underwriting, and so on)
to associate them with the Fraud Check process. The preceding process is
demonstrated in the following screenshot:

@ SelectProcess
&%, BackOffice

5 BackgroundCheck.
45 CatchFraudDetails

cedbar
rau
utii
oant tion
EoRestartLo
&5 Web

§ Previous | Mext & Finish |

oject
= ontriratiorproget
71 MySocialBankPraject

rrevous [vext | o#rnish [cancd |

10. Save the edition and publish the changes.

11. Navigate to the primary Value Chain Model named
MySocialBankValueChain. We will now link the primary Value Chain
Model to the child Value Chain Model.

12. Click on the Loan Origination chain step and go to its Properties page.
13. Click on Links as shown in the following screenshot.
14. Select MySocialBankProject and click on Next.

[360]

Chapter 9

15. Choose the LoanOriginationValueChain child Value Chain Model and click
on Finish.

This establishes a master-child Value Chain relationship between the Value
Chains we defined earlier. The preceding process is demonstrated in the
following screenshot:

@ Select Project
CMySodsenProect

»

== Y L
| @Prvios | et | ofFinsh || coneel |

/

B ap—
revious ‘ auext‘ o Fish || Cancel

In this section, we defined the master and child Value Chain Models, and associated
them to define the relationship. We also associated a value chain model with
BPMN processes.

The Strategy Model

In this section, we will create a Strategy Model and link the goal to the objectives.
We will then link objectives to strategy and strategy to Value Chain references, as
shown in the following screenshot. Goals break down into objects that are fulfilled
by strategies. Strategies are implemented by Value Chains; these strategies can be
decomposed into value chains/business processes. Create a Strategy Model for the
organization using the following steps:

1. Click on a Strategy Model in the MySocialBankProject project.

2. Enter the name and details for the Strategy Model named
MySocialBankStrategyModel. This will open the model editor.

[361]

Advanced Patterns

3. Drag-and-drop the goals, objectives, and strategy, and name them as shown
in following screenshot:

BA Properties 6 x

*Name Efficent Processes

Description Enhancing Customer Facing
Processes..

priority | Critical

Actual Cost 200000
Actual Time | 30d

Proposed Cost 175000

Alignment With

Competitors Offerings Etanosed Tne| | 2]

Enhanced Loan
Origination Process

MySocialbankValueChain -
£ v~ 3 BA Properties 0 x|

Enhanced Customa Efficient Processes

Experience

BA Properties

. ;
¥liame Enhanced Loan Origination Process Name Enhanced Insurance Claim Process

Description i
Descriptian Enhanced Loan Origination Process Ption Enhanced Insurance Claim Process

Enhanced Insurance
Claim Process =
Priority | Critical B Priarity | High

Actual Cost 125000 Actual Cost | 75000
Actual Tme 20d Actual Time | 10d
Proposed Cost 100000 Proposed Cost 75000

Other Strategy Proposed Time 7d

Other Objective

Proposed Tme 15d

/faces/ba/baProject jspx pov | e oK || cancel

4. Click on the processes objective, that is, Efficient Processes, and go to its
properties page, as shown in preceding screenshot.

5. Choose Priority as Critical, and give appropriate values for Actual Cost,
Actual Time, Proposed Cost, and Proposed Time.

6. Click on OK, and save it to retain the changes.
Similarly set properties for other objectives too.
Link the goal to objectives and objectives to strategies, as shown in the
preceding screenshot.

We will now create a value chain reference by performing the following steps:

1. Drag-and-drop a Value Chain reference to the canvas.
2. Enter the name as MySocialBankValueChain and provide a description.

3. Browse for the Value Chain links, select the Value Chain named
MySocialBankValueChain, and click on Finish.

[362]

Chapter 9

Mapping goals to an organization

We are now going to map goals to the fictitious organization unit,
MySocialBankOrganization. All the assets (objectives, strategies, and Value Chain
Models) that are linked to the goal will automatically get linked and grouped for this
organization unit. Perform the following steps to map goals to the organization:

1. Go to the project's home page, create an organization unit named
MySocialBankOrganization, and save it.

2. Go to Strategy Model, visit the properties of the goal, and assign the
organization unit to the goal.

Defining KPIs in a BPMN project

In this section, we will define the KPIs that will help an organization track its
performance against the objectives that are set. LoanOriginationProject already
contains the measurements defined for loan amount. If we check the process in
the BPM composer, we can find the measurements under Business Indicators.
We will now define the KPIs section, shown in the following screenshot, for the
business indicators:

Business

@ MyBPMProject... » i:LoanDriginat... Editing @

Project Home

EE?) LoanOriginationProject

1:081 1by weblogic Shared Project (2 Users) Language: English | Edit

Processes (9) +

LoanAmount o .
ew
& Rules (0) C\D Measure
& Human Tasks (1) Mame * LoanAmount

Web Forms (0) Type @ Process (0 Activity
Business Components (17) Process * | LpanOrigination Izl
ﬁ Simulations {0} Create

I, Business Indicators (2)
KPIs (0)

Al (20)

[363]

Advanced Patterns

Perform the following steps to define the KPI:

1.
2.

preceding screenshot.

® NS O

=
.:‘) MyBPMProject... > %4 LoanOrigination

cjectHome | LoanAmount

KPI
Name:
* Display Name:
Description:
KPI Type:
Process:

[% Business Indicator

Select Business Indicator
Name
&) Running Time

LoanAmount

LoanAmount

LoanAmount

@ Process O

Activity

LoanOrigination B

Activity

Measure Name: LoanAmount

&b Instance Count
[sLoanAmount

Type @ Total
) Average
Operation:
(@ Minimum
Measure ,
@ Maximum

* Tme Range: || 2ct 365 days B

‘ G Target

* Target Type:

Range

[Fon

1000 To 500000

Select the LoanAmount business indicator.

Editing

Click on KPIs and then on the plus (+) icon to create the KPL

Enter the name of the KPI as Loan Amount, as shown in the

Click on Create. This will open the KPI's edit page.

Enter the KPI details as shown in the following screenshot.

Define Target Type as Range and enter the range values.

Let Operation be set to Total and Time Range to Last 365 days
(that is, the whole year).

Project Home] LoanReq

7] kpL

Select Business Indicat

Name

* Display Name:

uestsMade

Name: LoanRequestsMade

LoarRequests

Description: LoanRequests

KPI Type: @ Process () Activity

Process: | LoanOrigination El

[l Business Indicator

or

Enter the display name, and choose the LoanOrigination process.

Measure Name: Instance Count

@ Total
Average
Operation:
Minimum

Maximum

* Tme Range: | oot 365 days

Activity Type
& Running Time:
) Instance Count
LoanAmount Measure
G Target
*TargetTyoe: [Remge || From 0 To 1000

[364]

Chapter 9

9. Similarly, define a KPI based on the seeded business indicator, Instance
Count, and name the KPI as LoanRequests

10. Save the changes and publish the project.

Defining KPIs in a BA project

We just defined the KPIs in a BPMN project. Now, we will define KPIs in a BA
project. We will define the range for the KPIs, and this way, we can visualize the
impact of business indicators on our process, with the real values that we defined.
KPIs can be manual KPI (to plug a known value), rollup KPIs (to aggregate child
KPIs), and external KPIs (to include KPIs from external applications).

Defining KPlIs in a child Value Chain Model

We can define KPIs on a Strategy Model and on Value Chain Models. In this section,
we will define KPIs on the child Value Chain Model that we created earlier.

KPlIs in the Value Chain Step level

Perform the following steps to create KPIs on the Value Chain step level:
1. Navigate to the BA project, MySocialBankProject, and click on Value
Chain Model.
Select the child Value Chain Model named LoanOriginationValueChain.
Right-click on the chain step, Validation, and select KPISs.

Click on the plus (+) sign to create two manual KPIs, as shown in the
following screenshot.

[365]

Advanced Patterns

With manual KPIs, we are able to plug in known values for the number of loans

processed and rejected. The following screenshot demonstrates the creation of

manual KPlIs:

Validation
[E Properties

[Delete

Properties
B P KPIs
Attachments Name
@
There
@ Comments
KPIs

Project Home I @] LoanOriginationValue...

KP1

Mame: Mumberofloansprocessed
* Display Name: humhernﬂnanspmcessed

Description: Mumberofloansprocessed

<&

Type: | Manual

% Measure

* Measure Mame: Numberofloansprocessed

* Manual Value: 100

€ Target

*Target Type: | Range : * From: 100 *To: 1,000
* Greater than Acceptable Range: | OK :l pry
* Inside Acceptable Range: | Warning :l !
* Less than Acceptable Range: | Danger :l .
oK Cancel

KPT

Name: Mumberofloansrejected

* Display Name: Numberofloansrejected

Description: Mumberofloansrejected

<o

Type: | Manual

% Measure

* Measure Name: Numberofloansrejected

* Manual Value: 50

€D Target
*Target Type: | Range :l *From:

* Greater than Acceptable Range: | Danger :
* Inside Acceptable Range: | Warning :
* Less than Acceptable Range: | OK :

OK

20 *To:

M Editing KPI for validation

iw + - S E e Mg Editing KP1 for Validation I

Y

Cancel

Now, we will create rollup KPIs, which allow us to rollup the number of loan

requests and the amount mentioned in loan requests from the underlying BPMN

project. Click on the plus (+) sign to create two rollup KPIs, as shown in the
following screenshot. As we witnessed, rollup KPIs are based on the available
KPIs from the business process, as depicted in the following screenshot:

[366]

Chapter 9

M Mew KPI for Validation

KPI

MName:
* Display Name:

Description:

Rolluploanamount
RollupLoanAmount

RollupLoanAmount

*Type: | Rollup :l <::|
% Measure

Available KPIs

LoanOrigination.LoanReguests

"R o B v

o Target
*Target Type: | Range :l * From:

Selected KPIs

LoanOrigination.LoanAmount

1,000 *To: 500,000

ME New KPI for Validation

KPI

MName:
* Display Name:

Description:

Rolluploanrequests
RollupLoanRequests

RollupLoanRequests

* Greater than Acceptable Range: | Warning

*Type: | Rollup :l <j
% Measure

Available KPIs

LoanOrigination.LoanAmount

B e ¥Bwv

0 Target
*Target Type: | Range :l * From:

Selected KPIs

LoanOrigination.LoanReguests

00 *To: 1,000

* Inside Acceptable Range:

* Less than Acceptable Range:

Y
oK : l ¥
0K Cancel

* Greater than Acceptable Range: | OK : l
* Inside Acceptable Range: | OK : l

* Less than Acceptable Range:

— 0 Q

oK Cancel

KPlIs in the Value Chain Model level
Perform the following steps to create KPIs on the Value Chain Model level:

1. Double-click on the Value Chain Model grid in the background. We will be at
the LoanOriginationValueChain model level.

[367]

Advanced Patterns

2. Click on KPIs and then on the plus (+) icon to define a KPI. The following
screenshot shows how to define a KPI for LoanOriginationValueChain:

Ma Mew KPI for LoanOriginationValueChain

M Mew KPI for LoanOriginationValueChain

KPI

Mame: Aggregatedloanamount

* Display Name: AggregatedLoanAmount

AggregatedLoanAmount

-]

Description:

* Type: | Rollup

% Measure

Available KPIs

Validation.Rolluploanrequests
Validation.Mumberofloansprocessed
Validation.Mumberofloansrejected

e Target

* Target Type:

B * From:

Range

* Less than Acceptable Range

* Greater than Acceptable Range:

* Inside Acceptable Range:

Selected KPIs

Validation.Rolluploanamount

® o 8w

1,000 *To: 500,000

Warning

OK.

T[]

1

.

+
oK Cancel

KPI

Mame: Aggregateloanrequests

* Display Mame: Aggregateloanrequests

Aggregateloanrequests

B

Description:

* Type: | Rollup

% Measure

Available KPIs

Validation.Numberofloansprocessed
Validation.Rolluploanamount

Selected KPIs

Validation.Rolluploanrequests

Validation.Numberofloansrejected >
@
3
*
@ Target
*Target Type: | Range B * From: 100 *To: 1,000

* Greater than Acceptable Range:

* Inside Acceptable Range:

* Less than Acceptable Range:

Defining KPIs in the master Value Chain

Model

In this section, we will define KPIs on the master Value Chain Model that we

created earlier.

KPlIs in the Value Chain Step level
Perform the following steps to create KPIs in the Value Chain Step level:

1. Navigate to the BA project, MySocialBankProject, and click on Value

Chain Model.

Select the master Value Chain Model, MySocialBankValueChain.

Right-click on the LoanOrgination chain step and select KPIs.

[368]

Chapter 9

4. Click on the plus (+) sign to create two manual KPIs, TotalLoanRequests and
TotalLoanAmount, as shown in the following screenshot.

5. Save and publish the changes.

4 New KPI for Loan Origination L2IR S
2] ket Iy Measure
Mame: Totalloanrequests Available KPIs Selected KPIs
* Display Name: Totalloanrequests MySodalBankProject. LoanOriginationValueChain. Aggregatedloanamount MySﬂaaIBankPrnJect.LnanOrlglnahnn\faIueCha\n.Aggregat&lnanrequesb{
Description: Totalloanrequests ED Target
*Type: | Rollup B
* Target Type: | Range B * From: 10 *To: 1,000

* Greater than Acceptable Range:

* Inside Acceptable Range:

* Less than Acceptable Range: |}
0 X

Mew KPI for Loan Origination

KPI E'i\';" Measure

Available KPIs Selected KPIs

Mame: Totalloanamount
* Display Name: Totalloanamount MySodalBankProject. LoanOriginationValueChain. Aggregateloanrequests MysodalBankProject.LoanOriginationValueChain. Aggregatedioanamount

Description: Totalloanamount

*Type: | Rollup B

*Target Type: | Range B * From: 1,000 *To: 500,000
* Greater than Acceptable Range: | OK B Y
* Inside Acceptable Range: |:Of v
* Less than Acceptable Range: | Warning B !

KPlIs in the Value Chain Model level
Perform the following steps to create KPIs in the Value Chain Model level:

1. Double-click on the Value Chain Model grid in the background. We will be at
the MySocialBankValueChain model level.
Click on KPIs and then on the plus (+) icon to define a KPI.

Define one KPI, volumeofloanrequests, which is of the Rollup type by
selecting Loanorigination.Totalloanrequests from the list of available KPIs.
Define it with the same range as the Totalloanrequests KPI.

4. Define another KPI, Grandloanamount, which is of the Rollup type by
selecting Loanorigination.Totalloanamount from the list of available KPIs.
Define it with the same range as the Totalloanamount KPL

5. Save and publish the changes.
Release the lock.

Deploy the BPMN project from the BPMN composer if it's not
already deployed.

[369]

Advanced Patterns

You can create a simple Loan Origination process in the composer with a Start
Message Event and two business indicators defined as the measurement marks.
Alternatively, we can use the Loan Origination project from the correlation folder
available in the downloadable code of Chapter 6, Correlation Patterns. Until this level,
we defined KPIs for the child and master value chain steps and models.

Publishing report data

Before we generate a report, we have to publish the report data. Perform the
following steps to publish the report data and generate reports:

1.

Go to the main menu and click on Publish report data. A message dialog will
appear with the published details.

To generate a report in the main menu, navigate to Reports | Business
Architecture | Impact Analysis Report | Value Chain (the value chain
report will help us understand how goals, objectives, strategies, value chains,
and processes are linked).

Click on Viewpoint and select By Organization Unit, as we want to generate
reports based on the organization unit.

In the following screenshot, we can see that goals are listed inside the
organization units. Objectives are linked to the goals. Similarly, strategies
are bound to respective objectives, and processes are linked to the Value
Chain Model.

[370]

Chapter 9

VTG By Organization Uni H|

Browse Model by Organization Unit

% MySocialBankOrganization Type : valueChainstep
#+Enhanced Customer Experience Modified By :
@ Appealing New products
» 4 aalignment With Competitors Offerings
¥ 4 2Wealth Management Products Qrganization Unit : MySocialBankOrganization
@ Efficient Processes
» 4 4Enhanced Insurance Claim Process
{2Enhanced Loan Origination Process
=|MySocialBankValueChain
[3 Loan Origination — LoanOriginationValueChain

WEBLOGIC

> @ Other Objective
L Associations

/| BPM Processes | Belongs To

@ LoanOrigination/LeanOrigination I8 LoanOriginationValueChain

As we can see, the Impact Analysis report used the published data stored in the BPM
repository, and these reports showcase properties and hierarchy of BA components.
We can also run the Process Critical report, where values will come from the KPIs
that we just created. We can drill into the report and click on the text inside the

value chain model. Using BA, we modeled the processes within an organization and
defined goals, objectives, and strategies. We can use reports to view how different
components are stitched in the fabric of an organization unit. These reports will help
us in knowing the following:

* What our goals are
* How goals and objectives are fulfilled by strategies
* How goals, objectives, strategies, and value chains are linked

* How goals, objectives, strategies, value chains, and processes are linked

[371]

Advanced Patterns

Capturing the business context

Organizations need process documentation that helps them perform Impact and
Dependency analysis. Using the BPM 12c composer, we can document the process

at various levels such as project, process, and activity levels, and generate reports for
the analysis of business requirements, issues, challenges, and so on. There are various
documentations defined at discrete document levels as shown in following table:

Document | Documentation How it's When it's used? Where it's used?

level defined?

Project Project When a project | When projects are Detailed Business
description is created, we enlisted in the space Process Report

(helps distinguish | can enter it's

between different | description

projects)

Role description Below the role Role description Detailed Business
in the narrative Process Report
view

Process Process When a process | When process are * Detailed
description (it is created, we enlisted in the space. Business

explains the

can enter its

Process Report

title and helps description e Busi
distinguish in the general Hsiness
suis €8 Requirements

between different | tab in process Report
processes) properties or

below process * Process

name in the Properties

narrative view Report
Process Can be added Add information to e Detailed
documentation in the narrative | the process when Business
(links can be view or information does not Process Report
added to check documentation | exist elsewhere. e Busi
. . o usiness
information properties in R .

. equirements
duplicity, and the | the process Report
documentation properties,
type will help us (it's shown in
define whether the following
document screenshot)

visibility is for
end user or
internal user)

[372]

Chapter 9

Document | Documentation How it's When it's used? Where it's used?
level defined?
Process links (link | Link tab in To determine if * Detailed
description helps | the business a link contains Business
in removing the properties the appropriate Process Report
confusion when document, we can add e Business
information is information to links, .

.. . [requirements
generic in various which is then added report
components) to activities, processes,

requirements, activity
documentation,
and process
documentation.
Requirements Business Requirements allow * Detailed
(this feature properties (it us to set the business business
allows tracking is shown in context. We can add process report
status, priority, the following multiple requirements. e Business
and challenges of | screenshot) Downstream we can requirements
the requirements sort them by date, req
port
of a process.) status and so on.
Process notes Drag-and-drop | While editing and Not visible
(they are like notes from the creating a process,
sticky notes) component notes are useful to
pallet to the establish collaboration.
process graphic
Activity Activity In the graphic Brief expansion of the * Detailed
description view at activity | activity name Business
business Process Report
properties or e Business
narrative view Reaui ts
quiremen
Report
* Human Tasks
versus Process
Report
* Services versus
Process Report
Activity links Business Can be added to * Detailed
properties as activities, processes, Business

shown below;
multiple links
can be added

requirements, activity
documentation,

and process
documentation. You
can enter name,
description, and
select the URL of the
link with the correct
format, as shown

in the following
screenshot.

Process Report

* Business
Requirements
Report

[373]

Advanced Patterns

Document | Documentation How it's When it's used? Where it's used?
level defined?
Activity Can be added To add relevant * Detailed
documentation at narrative information Business
view or to the activity. Process Report
documentation | Documentation type e Busi
1 will help us define e
pane P Requirements
whether document R
. iy eport
visibility is for end
user or internal user.
Activity Add through Use comments to * Detailed
comments business record information. Business
properties They appear in various Process Report

reports as they are
permanently attached

* Business

with the activities. ggggﬁemems
* Issuesand
Comments
Report
Activity notes Drag-and-drop | Helps in collaboration. | Not available
the activity They are like sticky
note from the notes and are not
component permanent; they
pallet to process | should be used as
graphic reminders.
General In the General It facilitates process * Detailed
tab under improvement and Business
business discovery. It helps Process Report
properties tack the cost and time e Business

required to perform
the activity.

Requirements
Report

[374]

Chapter 9

Document
level

Documentation

How it's
defined?

When it's used?

Where it's used?

Issues

The Issues tab
in business
properties

e It facilitates
process
improvements,
testing, and
discovery.
Issues can be
sorted based
on severity,
date, priority,
and resolution
status.

e [t facilitates
the tracking
of issues, such
as severity,
priority, and
resolution
status, that are
associated with
activities

Detailed
Business
Process Report

Business
Requirements
Report

Issues and
Comments
Report

RACI
(Responsible
Accountable
Consulted
Informed)

The RACI tab
in business
properties
tracks those
who are
responsible,
accountable,
consulted, and
informed on an
activity

Facilitates process
improvements, testing,
and discovery to
ensure that proper
roles are associated
with the activity

The RACI report

[375]

Advanced Patterns

The following screenshot showcases the Narrative view, Documentation Type,
Links, Requirements, and an activity's RACI properties:

=
@ MyBPMProject... » ﬂ LoanOriginat... Fditina

Project Home | LoanOrigination

&5 LoanOrigination

LoanOrigination ¢Narra1ive Vie
escription

LoanOrigination process for the financial institute MySocialBank_.11

Edit Link

*Name: Loan Origination Guidelines Add Requirement

Deseription: | oan Origination Guidelines = Loan Origination Requrements
jame: Loan Origination Requirement

Documentation * Cost 200000
*Link Mame: Loan Crigination Guidelines
Page 1 of3(1-10 of 27 items) [*URL: ordpress.com/Pattachment_id=137 = =
*URL: http: fsomelifS)Link fo Existing
LoanOfficer Type: [Pef [(o documents

priority: | Criteal [=]

Difficulty: | High [=]

Status: | Not started [=]

Role Description

lGraphical | Marrative

&5 LoanOrigination

Time: Morths) 15 Dayls) 0%
Documentation ¢PruparlvPane\

Courier N 2 R entation Typ
I7) Business Properties B @@ |coverten [+] B # ¥

Business process enhances loan origination proces experien)
kX implementation Solution: Enhanced approval mechanism

and modified process...!1|

|E§ Documentation
Notes: | gan Origination process should
expedits oan initiation process..!!

|# validation Add Requirements

OK_|| Cancel

Save and publish the information to the BPM repository. We can now generate
reports by clicking on the main menu in the application's welcome page and
selecting Process Report from the drop-down list. We can generate various report
types, as shown in the following screenshot. Select the report type and output
format, and the respective report will be generated.

[376]

Chapter 9

*‘. -
. » C¢ LoanOriginat...

"iginatinn
B X & @ & &2

3 Process Report

=l

Select report type: | Detailed Business Process lz‘

Show Documnentation:

E: scard Show Business Properties: |:|

% yalidate Project Select output file type: @) HTML

{4 share @ POF

[¥] close Project &ML

() HTML/Zip

4 -

Graphical Narrative e Cancel
Process Report L2J8 8
Select report type: | Detailed Business Process |Z|

HHf Documentation Sc Detailed Business Process

No datz Report Type Business Requirements
Issues and Comments
Data Objects

Process vs Data

Data ws Process

Human Tasks vs Process
Service vs Process

User Tasks

Process Image

RACI

@ Business Properties
£¥ Implementation

+/ Validation

Emulating Process Behavior

The following feature table highlights the facts around Emulating Process
Behavior feature:

Feature Emulating Process Behavior

Category Analysis and Discovery Pattern

Intent Facilitating process designers with the creation of test and revise
processes without saving and deploying the process.

Motivation Visual representation of a BPMN process, which showcases

an animated view of your process behavior so that process
behavioral patterns can be analyzed even before deploying
and publishing the project.

[377]

Advanced Patterns

Applicability Process player does not require that you either deploy or publish the

project to visualize the changes. Technically, the Oracle BPM composer
will validate the project and will deploy the draft version of the BPM
project to a player partition in BPM's runtime environment.

Implementation | In a BPMN process, the process player will emulate the runtime

behavior of User Tasks, Message Send Tasks, Send Events, Timer
Events, Call Activities, End Events, and other activities.

Known issues NA

Known solution | NA

Enabling the process player is a two-step process. First, the process player needs to
be enabled, and second, we need to map the role defined in the process to the user or
group in the organization's infrastructure.

While enabling the process player, we need to provide the SOA administrator
credentials, because the BPM composer uses them to deploy the draft version of the
project to runtime player partition and to perform tasks on the process instance as
different users. Any user with edit privileges can run the process player. Perform the
following steps to access edit privileges:

1.

2.
3.
4

Log in to the Oracle BPM 12¢ composer application.
Go to Administrator view in the application's welcome page.
Select Process Player and enter the SOA admin user name and password.

Click on Save, and we will receive a message saying that the SOA admin
credentials were successfully configured.

Now, we will map the role defined in the process with the user/group defined in
organization infrastructure as this facilitates the emulation of process behavior in a
real-world situation.

[378]

Chapter 9

The following screenshot showcases the Administrator view and enables the process
player by supplying the SOA admin credentials. It also shows the Modular view to
start the process player by mapping the role with the user and selecting the process
to analyze:

.. > ¥y LoanOriginat... e = elp Log Out

% mmport

1) Export
ilpeployment jinationProject
o]

cess Report

°) Process Player 6

Spaces Projects Player 2 Reports 7
@ MyBPMProject... » {: LoanOriginat... » \b LoanOriginat...

Player Administration

Project Player
Enter SOA Administrator Credentials

* User name: | weblogic Processes & Organization
*Eassword: weeseses 3 a2 &7 10 B ¥
*Repeat password: sesesess RoundTripl .. LoanOrigination F ion CatchFr: Add Mappings
= Select Role | LoanOriginationProject.LoanOfficer v || 7
Bsae | 4 L [LomnOrigiation & i g !
BackgroundCheck Restartl0 Web Bacl spcify Users or Groups Choose | g

AddMapping | g

Manage Mappings
% Instances

Show Rales: | Al [+
Process Title Activity
No data to display Role Identity
LoanOriginationProject.LoanOfficer rivi

A process role (all the roles defined in the process) must be mapped to at least one
user/ group each. Select a process from the list of processes; for example, select the
BackOffice process. BPMN will start deploying the process to a runtime player
partition as shown by number 2 in the following screenshot. It will open a web
service test client.

[379]

Advanced Patterns

Select the operation (for example, startBO) and enter the request parameters.
We can pass security details if required by the process. Policies can also be
associated if required. Clicking invokes the initiation of the process instance.
When a process starts, you can find the process emulation behavior shown by
number 8 in following screenshot:

Instance Execution

3
- E Web Services Test Clent
Instance Execution | Choose Another WSDL
. 2. . -
Deploying application for /ws_utc/.... Operations
- [E5BackOffice.service
This application is deployed on the first access. [E5BackOfficePort

You can change this epplication to instead deploy during startup Elstarto 4
Reafer to instructions in the On-Demand Deployment documentz

e)
MyBPMProject... > %4 LoanOriginat... > () LoanOriginat... > Instance: 80008

Project Player

StartBO Request_o r Eventfased
anoriginatl SomeOtherActiviti Gatdway

es
on

[380]

Chapter 9

A!_AzﬁA! A!

WSDL | Tmported WSDL and Schema
BackOffice.service > BackOfficePort > startBO

Parameters 5

% LoanRequest]

Settings

Basic Settings *Addressing Atomic Transaction MTOM Fast Infoset OWSM

Endpoint URL: http://viachary-us: 7003/s0a-infra/services/Pla’ ¢ | Invoke

@
Export & Import Test Case(A1 and :

A2). A3 allows to set general pr o

settings and security settings..

Raw Messag

= LoanDetails =
[ApplicantD LoanAppsID1029 il
[Product Homeloan [
= Amount 20000000 =
[ApplicationDate 1982-04-02 =
[Channel Branch ma
6

Associating Security Policy

7

When the process reaches the end event, we can click the drill-up icon to end the
process emulation. This will end the process instance, and the process player will
delete the process instance.

The Debugger feature

The following feature table highlights facts around the Debugger feature:

Feature BPM Debugger

Category Analysis and Discovery Pattern

Intent To identify and fix logical or workflow issues in the process.
Motivation It's a preventive approach to know in advance various challenges in

the logical and process flows. The Debugger feature allows us to track
the BPMN process, inspecting process instance attributes, drilling into
data objects, watching correlation keys and conversations, and, above
all, allowing us to inspect the message values sent from and returned

to the BPMN components.

[381]

Advanced Patterns

Applicability

Processes logical thread while executing and activates various frames
that contain sets of data values which represent process data objects
and attributes. The BPMN process, subprocess, callable subprocess,
and event subprocess are data-declaration containers. When a process
starts or enters one of these containers, a new frame is created.

The debugger will then build a stake of frame based on how these
containers are nested in the process. The debugger basically creates a
model out of the stake frame, where this model offers data visibility
and enables access to data in the BPMN process.

Implementation

Implementation is based on breakpoints. We define breakpoints in the
BPMN process, and these are the points where the process will stop.
This stoppage will allow monitoring of values in the BPMN process
variables. These values will help analyze any potential problems in the
process logic or process flow.

Known issues

NA

Known solution

NA

Perform the following steps to enable debugging in the BPMN process:

set a break point.

in the following screenshot):

Expand the Loan Origination project, and open the Loan Origination process.

Right-click on any of the BPMN process components on which we want to

Select the Toggle breakpoint (a red dot will appear on the component, as seen

o8 LoanOriginationProject | 5] LoanCrigination

@ @ &8 2@

Activity Interactive Notification Catch Throw

reStartLOEvent

Designer | Scripting Collaboration History

7] -

Gateway Artifacts

-

Startl Endl

RoundTripActivity

=

Pre-VertificationActivities

| D |
-

Description

Loan0

jectjpr - Log

© Edit BPM Breakpoint

Definition | Conditions | Actions
[v] Halt Execution

Coees

Log Breakpoint Occurrence

Tag: [

Expression: |

[stagk
[| Enable a Group of Breakpoints

[] Disable a Group of Breakpaints

@ LoanOriginationProject.jpr [LoanOrigination
@ LoanOriginationProject.jpr [LoanOrigination
------ @ LoanOriginationProject.jpr [LoanOrigination
@ LoanOriginationProject.jpr [LoanOrigination

* LoanCriginationProject.jpr [LoanOrigination

- Pre-VertificationActivities]

- startLOEvent]

- AppVerificationTask]

- ApplicationVerified?]

- BackGroundCheckSubProcess]

Help ok

[] save as Defait

Cancel

LoanOriginationApp - v

=l Projects

@l ¥~

CreditCheckPr]
: Eraugc New
0anOri
£ om Edit Project Source Paths...

T

@@ Find Project Files

3 Delete Project

Version Project...

BPM

S0A —]
0 SOA Debugger Canne|

Show Classpath Hast: [FACHARY LS |
Show Overview
port: [EAIE
Deploy
Timeout: |3
Save to PAM
Update [] Skip this dislog next ti

Help
Relocate Project

Cirl=AlL)

Find Usages..

@y Make LoanOriginationProject jpr CtlF9

3 Rebuild LoanGriginationPrajectjpr AltF2
> Run

Refactor |

[382]

Chapter 9

4. We can navigate to JDeveloper | Window | Breakpoint, and this will enlist
all the break points defined in the process. We can edit their behavior as
shown in the preceding screenshot.

Perform the following steps to attach a BPM project to the debugger:

1. Right-click on the project.

2. Select Debug; this will open the SOA Debugger Connection Settings

dialog box.

3. Enter the debugger's host and port, and click on OK.

Select the option to deploy the project to the application server.

The composite editor and debugger windows will appear; we can run the
BPMN process step by step and analyze the values at various breakpoints.

Round Trip and Business-IT
Collaboration

The following feature table highlights facts around Business-IT
Collaboration feature:

Feature Round Trip and Business-IT Collaboration

Category Process Collaboration

Intent Facilitating storing and sharing of business process assets and
business architecture assets.

Motivation Common storage for process assets and business architecture assets.
Sharing of assets between process developers who work on the BPM
studio and process analysts who work on composer application.

Applicability PAM supports collaboration (allowing multiple users to work on the

same project at the same time), versioning (allowing the existence
of multiple versions of the same asset), security and access control
(providing secure access control of the business assets), life cycle
(flexible life cycle model), reporting (detailed report of business
assets), conflict resolution, difference and merge (viewing the
difference between different versions of the asset, resolving conflict,
and merging the changes), and backup and recovery (the ability to
roll back to a stable version in case of error/bugs).

[383]

Advanced Patterns

Implementation

Oracle BPM 12¢ uses PAM to store and share business process assets
and business architecture assets. PAM infuses the sharing of assets
between process developers who work on the BPM studio and

process analysts who work on a composer application.

Known issues

NA

Known solution

NA

Working with PAM is a multistep process, which is as follows:

1. Open JDeveloper 12c and navigate to Window | Process Asset Manager

Navigator to connect with a PAM server.

2. Enter the connection name as MyPAMConnection; also, enter the admin
username and password of the asset manager server, and click on Next.

3. Enter the location of the asset manager, that is, the server and port.
4. Test the connection and save the PAM server connection configuration,

as shown in the following screenshot:

|0 Oracle JDeveloper 12¢ - LoanOriginationApp.jws : CreditChec

B coa@ 90 @ ©-

Fille Edit View Application Refactor Search ﬂavigalemm Help

@ il Application Servers

Applications

Ei]
@, pam

Process Ass Application Se.

B, Pan

i (@) MyPAMConnection:localhost:weblogic

B, pam

o @ e ey
: Create Space
Delete Connection

MyPAMConnection:localnost:weblogic... Thumbnail

Applications
[Bookmarks
= Breakpoints
Components
Database
Debugger
Extensicn Diagnostics
Ed Lsues
Java

Log

b2 dEibeect = etlbanagedtin kg) Create Process Asset Manager Connection - Step 3 of 3

[®] Processes
B properties
Profiling

B

Resources

. tructure

Team
Thumbnsil

.

Switch Window Layout
Configure Window

Reset Windlows To Factory Settings

Assign File Accelerator

&P Simulations
[Documentation

& Catalog

) Create Process Asset Manager Connection - Step 2 of 3

Connection Name

Welcome

Connection Name

€4

Application Server

Help

Connection Name: [MyPAMConnection

Username:

[weblogic

Password: [se

<Back

Next >

Cancel

=

Application Server

C tion N
 Connection Name

Application Server: Weblogic 12.x

WebLogic Hostname (Administration Server):

1
@ ication Server

iocalhost

Help

Port:

SSL Port:

ol

02[3]

[] Alays use S5L

Test Connection

Status

Success!

< Back

Finish

We can create a process space from JDeveloper too. However, let's take a round
trip to the process composer to perform other activities. We will use JDeveloper
12¢ to modify a process in the Loan Origination project. Then, we will open the

Cancel

same project in the process composer to share it with other users to perform further
modeling. When composer users perform the changes, JDeveloper users will be able
to merge them and continue with the development.

[384]

Chapter 9

. Remember that the lock feature prevails when we want to save the
asset into PAM. If the asset is locked by another user or the same user
Ko in JDeveloper/composer, the asset cannot be saved until it is unlocked
by the other user.

If the asset is already updated by another user or another application or if there is an

updated version of the project in repository, we need to first update our local copy
and then save it.

Open the Loan Origination application in JDeveloper12c and expand the Loan
Origination project. Then, perform the following steps:

1. Open the Loan Origination process and add an activity named

RoundTripActivity.
| Applications Process Asset... | Application Se. | @ Start Page @ LoanOrignation
LoanOriginationApp - - - - b -) =
= D @ g © Save Project to PAM
- Projects Bl Fr&- Activity Interactive Motification Catch _
e
FraudCheddr; | | Saurce: . C:\Users\yiachary\Desktop'c88888888\Correlation\LoanOriginationAppLoa
LoanOriginationPraject New » Use Connection: MyPAMConnection
= Q_j BPM Edit Project Source Paths... Use Space: MyBPMProjectSpace
52 BPMN Processi 9 Dejete Project Adding RoundTrip activity..!! 4
&%) Backgrour v o X @ - | Comment:
@ BackOffice ersion Project...
g2 CatchFrau ppm » HOEvert
-] Feedback Help 5 oK
53 Fraudintn. S0A 4
= 1@&@“
Find Project Files =0
B < D
--Ef Restartig Show Classpath Startl End1
&3] RoundTrip _ Show Overview g RoundTiiphdivicy I
@ Web 3 Denlo - JE— - . -
3 Business Comg L%; O Properties - RoundTripActivity | Designer | Seripting | Collaboration History
-4 Events Save to PAM Basc | implementaton Live lssues: LoanOrigination - lssues | Simulations
) Human Tasks Update !
-G8, Activity Guide Name: RoundTriphctvity =====File Statistics: =====
= o-% Organization Merged: &
Q:l S04 Relocate Project Updated: 8
T . Sending C:/Usersfviachary/Desktop/c35888888/Correla’
|:| Application Resources Desdription: Sending C:/Users/viachary/Desktop/c33888888/Correla
l+| Data Controls “l ? Sending Ci/Usersfviachary /Desktop/c38888888/Correla
L1l Recent Files Sending Ci/Usersfviachary /Desktop/c38888888/Correla
1s Draft: Sending C:/Usersfviachary /Desktop/c88888888/Correla’
)) Transmitting file data ... PAM log with committed
LoanOrigination - Structure Thumbnail Sampiing Point Committed revision 22. revision number..1!

Select the Is Draft checkbox to let the activity be in the draft mode.
Right-click on the project and select Save to PAM.

Enter a comment in the Save Project to PAM dialog.

Click on OK.

Check the PAM log, and we can witness the PAM commit status and the
new revision number.

AL

[385]

Advanced Patterns

In this exercise, we added a new activity in the Loan Origination process. We can
now log in to the Oracle BPM composer to check the Loan Origination process model
to verify the change.

We will share the project with two users using the following steps; you can share it
with any two users defined in the LDAP or embedded LDAP (myrealm):

1. Go to the application's welcome page and click on Edit on the process space
to which your project belongs.

2. Specify the user and select a role (Owner, Editor, or Viewer). Let the users
(RIVI and LATA) be editors.

3. Click on Share to share the assets with the users (RIVI and LATA) who are in
the editor role.

4. We can witness the users as Team in the project space, as shown in the
following screenshot:

Share - MyBPMProjectSpace

Spedfy Users or Groups |ata Choose |
SelectRole)| Viewer [
| Ovner
| Editor

EditRole 3€ Delete

Identity Role
& RV Editor

& WEBLOGIC Owner MyBPMProjectSpace

Team

Open the Loan Origination project in three different browsers by logging in as,
weblogic, rivi, and lata users and perform the following steps. If the project is
already locked by the weblogic user, it needs to be unlocked by the weblogic user
to allow the rivi or lata user to perform editing. Otherwise, they would be in the
viewing mode.

1. Login to the BPM composer as weblogic.

[386]

Chapter 9

2. Open the Loan Origination project (at this stage, weblogic is editing the
project). Close the project, as shown in the following screenshot:

Close Project 8 RIVI (Editing)
@ LATA (viewing)
‘fou are about to dose the project: LoanOriginationProject & WEBLOGIC (Viewing)

Release Lock ¢ 4

‘Warning: You will discard all your changes. Do you want to publish first?

3 ° Publish || CloseProject || Cancel

]
@ MyEPMPrject... > B4 LoanOrgnat.. 7 ¢View\ng

Project Home

Eig LoanOriginationProject

& 3:35 PM by rivi 2 Shared Project (3 Users) (5] Language: English

Project Update

[&} Processes (10) Views + The project has been updated, refresh to see the latest changes,

8 ¢ Refresh Cancel

3. The Close Project dialog will ask to Release Lock and recommend that you
publish any unpublished changes. Click on Publish to publish the changes
made by weblogic into the BPM repository.

4. Check the Release Lock box to unlock the project so that other users can
open it in editing mode.

5. Aswelogged in to the BPM composer in other browsers with users rivi
and lata, allow user rivi to start editing the project.

6. Navigate back to the browser in which we are logged in as weblogic.
Click on the team-sharing logo in the application's welcome page as
pointed by number 5.

[387]

Advanced Patterns

7. The Team dialog will appear; this will showcase which user is performing
what function and how the asset is shared between the team. We can
witness that rivi is performing editing, and weblogic and lata are
viewing the project.

8. Go to the third browser where we logged in as user lata. As weblogic
has published its changes, asset is modified in the repository,

and hence, the user lata will be prompted to refresh the project to view
the latest changes.

This exercise shows how collaboration between different users and between
applications and the JDeveloper tool can be facilitated quickly and efficiently. If there
are new published changes, the viewing users are notified by a request to refresh
their view. If a user wants to close the project and there are unpublished changes,
then they will be promoted to publish these changes, as shown in the following
screenshot. Lock-unlock is another feature that allows effective sharing of assets
between a team. Perform the following steps to demonstrate the round-trip process:

1. Log in to the BPM composer as user rivi, open the Loan Origination project,
and click on RoundTripDemoProcess.

2. Edit RoundTripDemoProcess by adding two new activities in the draft
mode, as shown in the following screenshot:

(J MyBPMProject... » {:LuanOngmat...

RoundTripDemoProcess...
o ~ . Changes Artifacts
LoanOriginationProject ©
‘ h‘ Unpublished changes Madified: 2

0 added, 2 modified, 0 deleted.

& 3:35PM by rivi . Shared Projed =) e s e e e h New:]
@‘(j) £~ RoundTripDemoProcess.bpmn Deleted: o
& & LOBusinessObject.bom Other Options

. _ 2

&) Processes (10) Views v| & Release Lock

£ Rules (0) 2 [Z) make snapshot

35 Start
- Tacks (1) New Activity 1 NewAc
uman Tas}
@ Comment
@ Web Forms (0} 7\
— RoundTip Demo process modified with 2 new activities..!! 5
— RoundTripDemoProcess 1 (]
Business Components (17)
1d: RoundTripDemoProcess
@ Simulations (0) RoundTripDemoProcess
7 | Publish || cancel
i Business Indicators ()
KPIs (0)

[388]

Chapter 9

Save the asset.
When we click on Publish, the Publish Project dialog appears.

Enter comments while publishing the changes.

SARIC LI S

We can either select Make snapshot and/ or select Release Lock to unlock
the project

7. Click on Publish to publish the changes to the repository.
Open JDeveloper and make changes to RoundTripDemoProcess. These changes
made by a user in JDeveloper are different from the changes made by a user in
the BPM composer. We are trying to demonstrate the difference and merge in this
section by performing the following steps:

1. Right-click on the project in JDeveloper.

2. Expand Versioning to click on update.
3. We will try to update the asset definition.
4

Click on Yes in the dialog; this prompts for the changes to be saved,
as shown in the following screenshot:

T Subversion Merge Wizard - Step 1 of 5
Applications. Process Asset . | Application Se... | [*%] LoanOrigination 5| RoundTripDemorrocess Merge Type
LoanOriginationApp - |- D - @ - - @~ .(;) - o 2 e —-
= = z - elect the type of merge:
=l B®R-T-E- Activity Interactive Notification Catch Throw Gateway Artil 5 Merge Type
: I .
ckPrj A Merge Resource () Merge Selected Revision Range
Eomtuoataipes] HNew 4 Merge selected revisions on one branch to anothe
" %3 E%‘IEPMN PI Edit Project Source Paths... recent changes made in the trunk.
=g rocess
&4 Backgrou K Delete Project () Reintegrate a Branch
Vi Pi t...
: % BackOffic erston Lrojec Mergeallhemes from e bl ek o miere!
CatchFral the work. leted feature branch b
Eoere o *[" Commit Working Copy.. merge the work on a completed feature branch ba
@ FraudIntr SOA » () Merge Two Different Trees
- &2] LoanCrigi & Update Working Copy... Merge the difference between two branches. For
2] Loutiitypy @@ Find Eroject Files Remove... two different branches and merge into working cor]
i % Rasta;;l— Show Classpath Export Files. Help Next> 6
RoundTrj Show Overview -
w53 Web 3 Branch/Tag... >
= Subversion Merge Wizard - Step 2 of 3
W= Deploy 3 °
58 Business Com Save -
-5 Events Save to PA Merge Resource
o Human Tasks -
o8 S Update C:\Users\viachary\Desktop\c88888888\Carrelation\LoanCrigin Select the revisions to merge:
/}‘ Activity Guide| M T
ﬂ% 5 ;" 1 ationApp\LoanOriginationProject|processes\RoundTripDemoPr A Merge Tvoe
gn Lrganizaton ocess.bpmn has been medified. Save changes? "
50 s0a Relocate D ¢ i, Merge Resource | gy to Merge From:
— I
ge Op P— -
+| Application Resources Eind Usag - 4 - — . Merge Options ‘)anOngmauonProJectj‘trunkfprucesseszoundTrlpDe
- Datta Controls — == = ance Revision Range to Merge:
2 Recent Files & Make Loal —S o —— |U-HEAD
#% Rebuild LoanOriginationProjectjpr AltFe 58 Add Subversion Property...
LoanOriginationProject.jpr - Sf llorking Copy:
. R Vi Histt
B> Run @ ereton Fistory |aﬁon\LoanOrigmaﬁonApp\LaanOr\ginahunPruject\p
¥ Debug Version Tree
- Refacter 5 » Properties... Help <Back Next > 7
- S Versioning [< Pending Changes

[389]

Advanced Patterns

5. Updating the process will open the Subversion Merge Wizard dialog.
Select Merge Selected Revision Range to perform the merge.

Click on Next.
In the next dialog box, click on Next again.

The wizard showcases Conflicts, as shown in the following screenshot.
Then, click on Finish.

@) Subversion Merge Wizard - Step 3 of 3 Applications Process Asset.. | Appiication Se... |

LoanCriginationApp - |-
=| Projects Bl &~ Fr&=-
ckPri

Merge Options

|
,T\ Merge Resource
e/ Merge Options

Select merge options:

Depth: |Inﬁnity: fully recursive -

LoanOriginationProject [weblogic@viachary-us]

=50 BPM

152 BPMN Processes
&%) BackgroundCheck 3

["] Ianore Ancestry &%) BadkOffice 3
&%) CatchFraudDetails 3
E
A== -] Feedback 3

[] only Record -] Fraudintruption 3

&%) LoanOrigination 22

Test Merge &9 LoutiityProcess 21
Status: g% RestartlO 3 9
oProcess.bpmn C:/Users/viachary/Desktop/c88888888 [Correlation/LoanCriginationApp/ @ JCiUsers/viar g
LeanCriginationProject/processes/RoundTripDemaProcess.bpmn % web 3 x =pen
Delete

- Business Compon

- Merging r21 through r24 into C:/Usersfviachary /Desktop/c88883888 [Correlation/Loa =
nCriginationApp/LoanOriginationProject/processes/RoundTrinDemoPracess. bpmn -l Events
C Ci/Usersfviachary /Desktop/c88888538/Correlation/LoanOriginationApp LoanOriginat
ionProject/processes/RoundTripDemoProcess.bpmn

Dry-run merge complete.

Exclude Project Content
& Human Tasks

&h Activity Guide 3

= --U% Organization 3
P

Process Report

[Copy

Mew Simulation

-+ Application Resources

8 +| Data Controls
Help < Back Finish Cancel I Recent Files

As a project has conflicts, we will try to resolve the conflicts by performing the
following steps:

1. Right-click on the project and select Resolve conflicts (steps 9 and 10 in the
preceding screenshot).

This will open a visual difference and merge screen. We can do this for
every file that has conflicts. We can then click on Save and Complete Merge,
as shown in the following screenshot, when all conflicts are resolved:

[390]

Chapter 9

fC:/Users viachary/DesktopfLoanOriginationApp,LoanOriginationPrajectfprocesses/RoundTripDemoProcess 3’ Merge: RoundTripDemoProcess,bpmn
4L 04D E <«
RoundTripDemoProcess.bpmn, warking (Wiew sl L e RoundTripDemoProcess.bpmn. mergeJeft.r21 (Editable) 4F |RoundTripDemoProcess,bpmn.merge-right.r24 (View-0
E P RoundTripDemoProcess = [} RoundTripDemoProcess =] RoundTripDemoProcess
=] Properties = Properties [=] Properties
& (Flow Nodes & (§ Flow Nodes B (F Flow Nodes
End End Moving asset components from End
= [SomeAbstract Activity B [Abstract Activity repository verison to edit area B [New Activity 1
B [Properties & [Properties 01 1 = [Properties
B 0 Name B [Name = [Name
() English: SomeAbstract Activity b3 [T English: Abstract Activity { (7 [Engiish: New Activity 1
() Description () Description Description
(1 Sampling Paint: Inherit process default () Sampling Point: Inherit process default Add localization ent Sampling Point: Inherit process|
(0 Lane: LoanOfficer (0 Lane: LoanOfficer ([Lane: LoanOfficer
=p Outgoing Flows =p Outgoing Flows =p Outgeing Flows
[SomeNewActivity [SomeNewActivity [MewActivity 2
Start Start Start . deof)
i View mode of process in - View mode of process in
Data Objects Data Objects 8 3 Data Objects
: Toeveimmer " Edit mode to find the "5 the verison in repository
difference and merge here
Result Process
- -
- IiDeveloper Process Model P Process Model in Repository
@ 1 o []
@ @ j j]
o o
g =}
= o
z| 3z Start d £y
5|8 al i} . En, S| @
2|2 Abstract Activity SomeNewActivity gl& Start New Activity 1 MewActivity 2
22 22
B 5 2B
=2 =3

2. When all differences are sorted and merged in the editable section, add a
localization entry, from the section on which you want to bring the change,
to the editable area (step 11, in the preceding screenshot).

3. (lick on Save and Complete Merge (step 12 in the preceding screenshot).
This will showcase the result process.

As we can check in the preceding screenshot, the left-hand side window shows the
JDeveloper process, and the right-hand side window shows the process after the
conflicts are resolved. As we saw in the preceding sections, PAM and SVN were
used interchangeably. We have the flexibility to choose between the features of
PAM (update, save and resolve conflict, and resolution functionality) and the

SVN versioning features (update, remove, merge, lock, unlock, switch, and so on).
For example, you can use the save action of PAM to publish a project, or you can
use the SVN commit action.

[391]

Advanced Patterns

Summary

The Strategic Alignment pattern in the Analysis and Discovery pattern category
demonstrated features to analyze, refine, define, optimize, and report business
processes in the enterprise. This pattern highlighted how IT development and
process models can be aligned with organization goals. While performing alignment,
we learned about enterprise maps, Strategy Models, and Value Chain models. We
discovered how models are created and linked to an organization. We learned how
to define KPIs in processes and Value Chain models.

The chapter also offered a detailed description on publishing report data, and
creating impact analysis reports and critical reports. Capturing business context
shows the importance of documentation in the process model phase. Different
document levels and their methods of definition were discussed along with their
usage. Further, we learned how to create different reports based on the information
we documented in the process, such as RACI reports. The process player's
demonstration showcased how process behavior can be emulated in a visual
representation that allows designers and analysts to test and revise the process
without deploying it.

While doing so, we learned how to navigate in various modes, mapping users to roles
and running process instances to analyze process behavior. We also learned how to
set breakpoints and enable debugging in the BPMN process. Round-trip and business-
IT collaboration facilitated storing, sharing, and collaborating on process assets and
business architecture assets. While doing so, we witnessed PAM and subversion and
also learned versioning, save/update/commit, difference and merge, and various
other activities, which empower developers and analysts to work in unison.

[392]

Installing Oracle BPM
Suite 12¢

This appendix introduces you to the installation of Oracle BPM suite 12c.

Installing JDK

Download JDK from the following URL, which is from official site of Oracle. Make
sure that you download a JDK higher than 1.7.0_15, as Oracle BPM 12c requires JDK
1.7.0_15 and higher:

http://www.oracle.com/technetwork/java/javase/downloads/index.html.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installing Oracle BPM Suite 12¢

After clicking on the preceding link, the Java SE Development Kit 7u60 window
opens as shown in the following screenshot:

Java SE Development Kit 7u60
You must accept the Oracle Binary Code License Agreement for Java SE to download this
software.
Thank you for accepting the Oracle Binary Code License Agreement for Java SE; you may now
download this software.
Product | File Description File Size [Download
Linux x86 11967MB # jdk-7u60-linux-i586.rpm
Linux x86 136.95MB % jdk-7uB0-linux-i586.tar.gz
Linux x64 12097 MB ¥ jdk-7u60-linux-x64.rppm
Linux x64 13577 MB ¥ jdk-Tu60-linux-x64.tar.gz
Mac 0S X x64 185.94 MB ¥ jdk-Tu60-macosx-x64.dmg
Solaris x86 (SVR4 package) 13943 MB @ jdk-Tub0-solaris-i586.tar.Z
Solaris x86 95.5MB ¥ jdk-Tub0-solaris-i586.tar.gz
Solaris x64 (SVR4 package) 24.64 MB * jdk-Tub0-solaris-x64.tar.Z
Solaris x64 16.35MB # jdk-Tub0-solaris-x64.tar.gz
Solaris SPARC (SVR4 package) 13873MB ¥ jdk-Tu60-solaris-sparc.tar.Z
Solaris SPARC 98.57 MB ¥ jdk-7ub0-solaris-sparc.tar.gz
Solaris SPARC 64-bit (SVR4 package) 2404 MB 4 jdk-Tub0-solaris-sparcv9.tar.Z
Solaris SPARC 64-bit 18.4 MB ¥ jdk-7ub0-solaris-sparcv.tar.gz
Windows x86 12791 MB # jdk-7uB0-windows-i586.exe
Windows x64 129.65MB ¥ jdk-Tub0-windows-x64.exe g

Install JDK, set gava_HOME, and update the environment variable with JAVA HOME.

Installing BPM suite

To install the BPM suite, perform the following steps:

1. Download Oracle BPM Suite 12¢ from OTN or Oracle product downloads
for BPM 12c at http://www.oracle.com/technetwork/middleware/bpm/
downloads/index.html.

[394]

http://www.oracle.com/technetwork/middleware/bpm/downloads/index.html
http://www.oracle.com/technetwork/middleware/bpm/downloads/index.html

Appendix

Overview || Downloads || Documentation || Community | Learn Maore

QOracle EPM Suite Downloads

This page contains the download for evaluating Oracle BPM Suite and includes only the generic
quick start install. You can download other options from our Oracle Software Delivery Cloud.

Please visitthe Fusion Middleware: Download, Installation & Cenfiguration Readme Files and the
Installation Guide for Oracle 304 and BPM Suite for an overview of the full production installation
process and the Certification Guide for platform specific information

The download on this page is called the BPM Suite Quick Start Installation. Please note that quick
start installation files are different for BPM Suite and SOA Suite. For the download below,
please follow the steps outlined in the Installing SOA Suite and Business Process Management
Suite Quick Start for Developers Guide to set up a development or evaluation enviranment for
Oracle BPM Suite

The same guide also describes the configuration of your environment to use Oracle Business

Activity Monitoring and SOA Suite components.

The download below is provided for evaluators under the OTN License Agreement.
Current customers should download software via our Oracle Software Delivery Cloud

Thank you for accepting the OTM License Agreement; you may now download
this software.
=/ Oracle EPM Suite 12c Installation
This is the latest release of the Oracle SOA Suite 12c. Please see the Documentation tab for
Release Notes, Installation Guides and ather release specific information.
Please also see the Samples provided for this release
= Release 12¢ (12.1.3.0.0)

All Platforms - Generic 64bit JVM -

Product Installation

Download
BPM Suite 12.1.3 Size: 3.4 GB, Check Sum: 3913703416

Hote: The generic BPM Suite Quick Start Installer for

2. Save the download file and unzip it to a local directory.

3. Open the command prompt with admin privileges, and run the following
command to begin the installation:

Java -jar fmw 12.1.3.0.0 _bpm quickstart.jar

The preceding command line is entered into the command prompt as shown
in the following screenshot:

i — — — = v 1
= 'MTinistratal: C:AWindows\System32\cmd.exe H . lﬂlﬂlﬁ_hj

Microsoft Windows [Wersion b.1.76811]
sopyright > 2889 Microsoft Corporationm. ALl rights reserved.

swindowsssystem3d22java —version
java ve ion "1.7.8_6s6"

Java(TM>» SE Runtime Environment <¢huild 1.7.8_68-h19>
Java HotSpot<{THM>» 64-Bit Server UM <{build 24.60-bB?. mnixed model

GC:sJavaHomesJavasjdkl . 7.8_6 java =jar CG:xBPM12c¢:fmw_12.1.3.8.8_bpm_guic

ar

[395]

Installing Oracle BPM Suite 12¢

4. This will start the extraction of the file and will essentially start the
installation. The following screenshot shows you the Welcome page
of the installer window:

E Oracle Fusion Middleware 12c Business Process Management Quick Start Installation - Step 1 of 6

| Welcome _ORACLE m
i FUSION MIDDLEWARE

w! Welcome
‘;_ instaliation Location Welceme fo the Oracle Fusion Middleware 12c (12.1.3.0.0) Business Process Management Quick Start for
Developers installer.
W Prarequisite Checks
s Use this instalier to create a new Oracle home or to extend an existing Oracle Home that confains everyihing
= ;
v lnslafabon Summany you need to evakiate or develop applcations with the Oracle Business Process Management sofiware
For more information, see install Patch, and Upgrade in the Oracle Fusion Middleware documentation brary.
1a
Context-sensi&ive oniine help is avaiable from the Help button
!
|
| Copyright @ 1998, 2014, Oracle and/or its affiiates. All rights reserved
|
| Help HNext = Cancel
Click on Next.

Enter the installation location that will be the Oracle home. It checks for the
operating system and Java version (JDK 1.7.0_15+ is expected).

7. Verify the installation summary, and click on Install to begin the installation.
Then, click on Next.

8. The Installation complete screen shows you the installation summary.
You can check/uncheck the Start JDeveloper checkbox if you want to
start/not start the JDeveloper after the installation.

9. Click on Finish to complete the installation process. The installed files can be
viewed as follows:

[396]

Appendix

. Oracle
. OracleHome
@ Online Documentation
Uninstall Oracle Middleware
. Oracle IDeveloper Studic
u Online Documentaticn
O Oracle IDeveloper Studic
. Weblogic Server12c (12.1.3)
a Online Documentation
. Tools
u Cenfiguration Wizard
Dernain Template Builde
ﬂ Reconfiguration Wizard ||
|_1 Weblegic Scripting Tool

Configuring the default domain

Perform the following steps to configure the default domain:

1. Launch JDeveloper.

2. Allow for the visibility of Application Servers by navigating to
Window | Application Servers.

3. Start the integrated WebLogic server as shown in the following screenshot:

4. This will launch the domain creation dialog box.

[397]

Installing Oracle BPM Suite 12¢

5. Create the default domain with all the details, as shown in the

6.

8.

following screenshot:

@ Create Default Domain ﬁ

Configuration ~ Technologies

Choose an administrator password for the default server domain, which must be created
before starting the server for the first time.

| Administrator ID: |

Password:

Must be at least & characters, with 1 non-alphabetic

Confirm Password:

Listen Address: | <Al Available Addresses > v|

Listen Port: [7101 |

SsLlistenPort: 7102 |

¥ou can monitor progress in the Messages - Log window.,

Help [0]4 Cancel

We can enter a password of our choice and the ports as we want to
define them. Click on the Technologies tab to review the technologies
that will be configured.

Click on OK.

JDeveloper will be using the derby database. Once you get the message
that the server has started, in the JDeveloper log, as shown in the following
screenshot, you can log in to the console and verify the configurations:

[398]

Appendix

Running: IntegratediieblLogcServer - Log
Q -
Flontext.getVersicnlontext () returns null.>
wngilr <pullr taull> <
HDSInatancs adigciated with the MDESessicn: ADFApplicaticnld
MaradataSrores sccessed: FileMetadataSesszs ! Matadata Dutkh = CiwDasss\vacshasyaiApplataiReasties, JDevelepaziayssesl] . 1.3.0.41.140821

FOOBTANT . JATVECSLENCORTANE [} THTUZNN null.>
€nulls <pulls <null> <Thresd (237) -- oracle.mds. incernal. nac.CralDESUALConnection.getkDocforsamdichaiacey: Revry resd Tip documant 4

£nall® fpull* fnulls <
HOSInstance associated with the HDSSession: ADFApplicationid
HatadataStores accessed: FileMetadataltore : Metadata Fath = &i\Deess\vachazyardpplata’Roasing J0evelcpesoyece=lid. 1.3, 0. 41, . 040831

Flentext . getVesslenfontaxe (b etuzas aull.>

waully <mullr <mull> <

MOETmscamce assccisted wich the MDSSessien: ADFApplicacienid
Matadata Fath = C:yDasrsywacharya\ApplatahRoaming JDeveleperiayscem=ly 1.3.0.41.140821

HatadataScores accessed: FileMetadataScore :
POORTENT . QaTVersionContexc(} returms null.>
Integratedieblogicerver starcup time: 310137 ms.
[Integrasedifetlogiciesver srazted.]

“sracle.integration.platfcrm. blocke. scheduler, NabricleckRowiemaphoser <MabsiclockRowiesapharer <fexacutafllr <Nz row existe in tably

SOR PLatfecs 48 Tunsing and ACSEpELAG SeSuests

9. Login to the WebLogic console at http://localhost:7101/console
using the weblogic username and the password that you entered while

configuring the domain.

10. Navigate to Deployments to verify the BPM Composer application, BPM
Workspace application, and EM.

11. Log in to the workspace at http://localhost:7101/bpm/workspace,
and verify the case workspace Ul and other features.

12. Navigate to myrealm | Users and Groups and verify the users. We will find
only three users available.

Enabling the demo user community

To include other users and build a hierarchy, perform the following steps:

1. Log in to WebLogic console and navigate to Deployments. On the summary
page of Deployments, click on Install.

[399]

Installing Oracle BPM Suite 12¢

2. Browse SOATestDemoApp.ear to install the demo community by clicking on
the upload your file(s) link as shown in the following screenshot, and click

on Next:

ERELHE AD{Ca tides ALsrEant
ok | | et | | | || Carel
Lecate drplayment En nstall and propare for deployment

Select S i Bath that epeesenits S appleation foot dredtony, v e, sxploded it draciory, or adrkas bon medule Shicptsr |
fhe Path fleid

Mtz iy v Mg Satha are Saclayed biftm. 1f vou carmst indl vour deployeent Med, oinad v Belil andor confirs Bl rour agohe

Pathc =

Recenily Lived Faths: o)

Cuirrent Lot zranye

i Smmrreary ol krgre——ts

Heidages

oF The fie S0ATesDemedopn. eor has been upiosded successfully de C'Usersacherva ionDieta oy e veloper wrsaem 12 L L0, 4L 19052 L 1003 DefaulDomen servers Delmitserve uplosd
Amanall Applation Assntant

Bock | | Kasd | || Pk Carcel |

Locate deploymeent to iitall snd prepare for dephymest

et the Sl ot Put represersy the apokoston rost drectery, vt Sie, enploded enchive drectony, o spplcaton modle descrptor 4 o ant e netel. You o sl ety e path o the aopkcaton drectory o e n
the Fuih feld

Mot Dy i S pathe are depleved below. 1 you carrat frd your decioyment s, uploadd your fle (s} andior confirm that your aoplication conkaing the requined deployment desarpion.

Clusarsivachary s AppDam Roamng JDey oloparsyammi? 1 3041 14050 100 DalsDcmar o DetpuS arvenupload SOATesDomannp

Path
Recrntly Ferd Palbnc frace)
Current Location: 137005, 8 16 Yihrs | vacharys | Appliats | Azarmng | Deerioper {aystom 122,50, 42, (43521, 1008 | Defauftfiomain | sorars | DelautSereer upioad
& 7 soATestDemoAppecar
o o

3. Click on Next and select the option to install the deployment as the application.
4. On the Optional Settings page, click on Next.

Q

Home >Summary of Servers >Summary of Deployments >Summary of Security Realms >myrealm >Users and Groups >Summary of Deploym|

(@) Home Log Out Preferences [&2] Record Help

Install Application Assistant

Back Nm|!‘-‘nid1|l:moel

Optional Settings
fou can modify these settings or accept the defaults

* Indicates required fields

General

What do you want to name this deployment?

* Name: SOATestDemoApp

Security

[400]

Appendix

5. In the installation assistant, review the page, click on No, I will review the
configuration later., and click on Finish.

Install Application Assistant

uBock| | Nee | {| Frish | [Concel

Review your choices and click Finish

Chck Finish o coenplecte the deployment. This may take a fiew moments to complete.
Additional configuration

In order to work successfdly, thes apphcabon may requine additional configurabion, Do you want bo review this appcation’s configuration after complating this assista
Yes, take me to the deployment’s configuration screen.

@ Ho, I will review the configuration later. ¢

— Summary

Deployment: Ci\Uisers \wacharya\AppDiata'foamng | Developer system 12, 1, 3.0, 41. 14052 1, 1008 \De faultDomain iservers\DefaultServer upload\S0ATes
Name: SOATestDemoApp

Staging Mode: Use the defaults defined by the chosen targets

Plan Staging Mode: Use the same accessibity as the apphcation

Securty Modek DOOnly: Use only roles and polides that are dafined n the deployment desoriptors.,

Target Summary

‘Cﬂnpnnenb(& Targets
[SDATuDﬁmMﬂ.m DefandtSanver
Back | [t | || Fneh | || Cancel

6. Logintohttp://localhost:7101/integration/SOADemoCommunity/
DemoCommunitySeedServlet.

[401]

Installing Oracle BPM Suite 12¢

7. Click on Submit in order to seed the demo community. The following
screenshot shows you the Seed Demo Community page:

127001

& Most Veted Gettang Started Suggested Sited Wel Shce Gallery Microtoft Word - Cust.,

Seed Demo Community

Seed Action : Seod Community =
Taput file path : defaul-demo-communi

Submit |

8. Once done, come back to the WebLogic console, navigate to myrealm | User
and Groups | Users, and verify the new users that have been created.

9. Stop the default domain.

10. Click on the Terminate icon to stop the integrated weblogic.

B T T T
d Bun Team Tools Window Help
R Y |

B IntegratedWeblogicServer

Custom domain creation

The default domain installation comes with JavaDB (derby DB); however, if you are
looking for a complex domain structure and want to install the product suite on a
database, perform the following steps:

1. [Install the database (XE or Oracle 11g) (I'm not covering the database
installation here).

2. Open the command prompt with admin privileges, and navigate to the
ORACLE_HOME/oracle_common/bin directory.

[402]

Appendix

3. Run rcu.bat, as shown in the following screenshot. This will start the
repository creation script.

—y- o}
.| Repository Creation Uﬁl'r_tl—WeJcome - =B8] X

Welcome ORACLE ‘
FUSION MIDDLEWARE - ‘

Welcome

i Create Repository
T Welcome to Repository Creation Utility 12.1.3.0.0 for Orade Fusion Middleware.,

The Repository Creation Utility enables you to create and drop database schemas that are required for
Oracle Fusion Middleware products.

BN Administrator: C\Windows\System32\cmd.exe |ﬂ|ﬁj

C:~Oracle~Middlewarel2c™0Oracle_Home“oracle_common“hin>rcu.bat

C:~Oracle~Middlewarel2c™0Oracle_Home“oracle_common“hin?>

Skip this Page Mext Time

Help Mext = Cancel

4. On the RCU creation welcome page, click on Next.

[403]

Installing Oracle BPM Suite 12¢

5. As shown in the following screenshot, choose System Load and Product
Load if you have DBA privileges, and click on Next. You can use the same

screen to drop the repository, if required.

£| Create R itory - Step 1 of 7
| £| Create Repository Steplot

Repository Creation Utility
el

\r elcome

Sl Create Repository

T Database Connection Details

#| Create Repository
Create and load component schemas into a database.

_ORACLE
FUSION MIDDLEWARE

I
I
I
I

Help

#) System Load and Product Load
1 have DBA privileges.

Prepare Scripts for System Load
Create scripts for DBA to run later,

Perform Product Load
System Load scripts have been run by DEA.

Drop Repository
Remove component schemas from a database.

Messages:

< Back Mext =
L

Cancel

[404]

Appendix

6. Enter the database details as shown in the following screenshot, and click
on Next:

ORACLE
FUSION MIDDLEWARE

Repository Creation Utility

] Database TYPE: | Oracle Database -
A Create Repository
) Database Connection Details Host Mame: localhost
Select Components For RAC database, spedfy VIP name or one of the Node name as Host name.

For SCAN enabled RAC database, spedfy SCAN host as Host name.,

Port: 1521

Service Name: XE

O — — — — —H

Username: sYs
User with DBA or 5YSDBA privileges. Example:sys

Password: T

Role: SYSDBA b
One or more components may require SYSDBA rale for the operation to succeed.

ﬁe;sages:

Help < Back Mext =] Cancel

[405]

Installing Oracle BPM Suite 12¢

7. In the Select Components window, enter a schema prefix for the components

that we are going to install:

| Select Components - Step 3 of |

Select Components

Select existing prefix:

3,
P

l
|

, Database Connection Details ») Create new prefix: DEV
1

[Select Components Alpha numeric only. Cannot start with a numt
+ Schema Passwords Component
=¥ Oracle AS Repository Components
] =B AS Common Schemas
T ¥ Metadata Services
. ¥ Audit Services
¥ Audit Senvices Append
¥ Audit Senvices Viewer
Oracle Platform Security Services
¥ User Messaging Service
¥ 'Weblaogic Senices
Oracle Enterprise Scheduler
Commaon Infrastructure Services
=¥ SOA Suite
SOA Infrastructure

Messages:

Help < Back

ORACLE
FUSION MIDDLEWARE

. Specify a unique prefix for all schemas created in this session, so you can easily locate, reference, and manage the schemas later.

=
i

Mext =

)

Schema Owner

DEV_MDS
DEV_IAU
DEV_IAU_APPEND
DEV_IAU_VIEWER
DEV_OPSS
DEV_UNS
DEV_WLS
DEV_ESS

DEV_SOAINFRA

Cancel

Click on Next; once the prerequisites are checked, click on OK.

Enter the schema password.
10.
let the default values be selected. Click on Next.
11.
in the database.

12.

Enter the values for the custom variable. As this is a standard installation,
In the Map Tablespaces window, click on Next. This will create tablespaces

The Summary window will showcase the component, schema, and

tablespace. Click on Create to create and load the components.

[406]

Appendix

13. The Completion summary window, as shown in the following screenshot,
will show you the completion status and will also allow you to click on the
respective logfiles of the components:

! Completion Summary

Repository Creation Utility

" Database details:

Host Name: localhost

Part: 1521

Service Name: XE

Connected As: sys

Operation: System and Dats Load concurrently
RCU Logfile:

ORACLE

FUSION MIDDLEWARE

C:\OradleMiddleware 12c\Orade_Home\orade_commenYycuYoglogdir, 2014-07-01_13-32\rcu.log

Component Log Directory: C:\Orade Middleware 12c\Oracdle_Home \oracle_common rcuVog\logdir. 2014-07-01_13-32

Execution Time: 2 minutes 50 seconds

view Log:

Prefix for {prefixable) Schema Owners:DEV

Component
Metadata Services

Audit Services

Audit Services Append

Audit Services Viewer

Crade Platform Security Services
User Messaging Service
VebLogic Services

Oracle Enterprise Scheduler

SOA Infrastructure

Common Infrastructure Services

Success
Success
Success
Success
Success
Success
Success
Success
Success
Success

Status

reu.log

00:12,568(sec)
00:11. 266{sec)
00:09.143{sec)
00:09.080(sec)
00:13.635(sec)
00:11,547(sec)
00:09.999{sec)
00:14.183{sec)
00:45.452(sec)
00:09. 180(sec)

wdl

Logfile(Click to view)
mds.log
iau.log

iau_append.log
igu_viewer.log
opss.log
ucsums.log
wis.log
esslog
soainfra.log
sth.log

The BPM/SOA configuration

Perform the following steps to configure BPM 12c:

1. Open the command prompt with admin privileges, and navigate to
ORACLE HOME/oracle common/common/bin.

2. Start the configuration process with the config.cmd command, as shown
in the following screenshot:

BN Administraton C\Windows\System32\cmd.exe

C:xOraclesMiddlewarelZ2c Oracle_Home“oracle_common™commonsbin?config.cnd

3. This will start the creation wizard.

=

[407]

Installing Oracle BPM Suite 12¢

4. Enter the name for the domain if you want to create a new domain. Also enter

the location of domain home, as shown in the following screenshot, and click
on Next:

I—Q—I Fusion Middleware Configuratic
PR — T

Configuration Type FUSC).IO fﬁi‘;ﬁ“ O‘

) Create Domain

Templates
Administrator Account

Domain Mode and JDK

Configuration Summar What do you want to do?

Configuration Progress

T
J[; Advanced Configuration
T
|

») Create a new domain
End Of Configuration

Update an existing domain

Domain Location: | C:\Orade\Middleware 12c\Oracde_Home \user_projectsdomains\bpm12cdomain Browse

Create a new domain.

Help

Mext = Cancel
_

[408]

Appendix

5. In the Templates window, as shown in the following screenshot, select the
templates for the components you need to configure, and click on Next:

zl Fusion Middleware Configuration Wizard - Page 2 of 12

Templates ORACLE ‘
FUSION MIDDLEWARE 6)

+, Create Domain

| Templates ») Create Domain Using Product Templates:

Application Location Template Categories: | All Templates -
Applicaton Locaton

Administrator Account Available Templates

Basic WeblLogic Server Domain - 12,1, 3.0 [wiserver] *

Cracle BPM Suite - 12,1.3.0 [soa]

Database Confiquration Type Oracle B2B - 12.1.3.0 [z0a]

Oracle SOA Suite - 12,1,3.0 [soa]

Cracle Service Bus - 12, 1.3.0 [osb]

WebLogic Advanced Web Services for JAX-RPC Extension - 12.1.3.0 [orade_common]
Advanced Confiquration 0ODSI ¥Query 2004 Components - 12.1.3.0 [orade_common]

Configuration Summary Oracle Enterprise Scheduler Service Basic - 12.1.3.0 [orade_common]

Oracle Business Activity Monitoring - 12.1.3.0 [soa]

Domain Mode and JDK

<

<

Component Datasources
JDBC Test

C—C—€ ¥ € € € €€ €0

Configuration Progress
Oracle Enterprise Manager Plugin for ESS - 12.1.3.0 [em]
End Of Confiquratio X
S A el +| Oracle Enterprise Manager - 12.1.3.0 [em]
Oracle User Messaging Service Basic - 12.1.3.0 [orade_common]
| Oracle WSM Policy Mananer - 12.1.3.0 [oracde common] bt
Create Domain Using Custom Template:
Help < Back Mext = Cancel

6. The Application Location window will enlist the domain, domain location,
and domain home; click on Next.

7. Enter the domain password in the admin account dialog, and click on Next.

[409]

Installing Oracle BPM Suite 12¢

8. For Domain Mode, select the Development mode and the JDK that we
used; the installation will be listed as a hotspot. However, we can select the
Production mode, as shown in the following screenshot, when setting a
PROD environment. Click on Next.

EI Fusion Middleware Configuration Wizard - Page 5 of 12

C— —c—j(—(—(—c—cj—c:—c'%%

Domain Mode and JDK

Create Domain

Templates

Application Location
Administrator Account
Domain Mode and JDK
Database Configuration Type
Component Datasources
JDBC Test

Advanced Configuration

Configuration Summary

Help

| Domain Mode

») Development

Utilize boot.properties for username and password, and poll for applications to deploy.

Production

Require the entry of a username and password, and do not poll for applications to deploy.

JDK

FUSION MIDDLEWARE

#) Qracle HotSpot 1.7.0_60 C:\JavaHomeJava'jdk1.7.0_60

Other JDK Location:

< Back

ORACLE

MNext >

O

Cancel

9. Select Manual Configuration in the database, and click on Next.

[410]

Appendix

10.

Enter the DB service name, host, port, schema, and schema password,
as shown in following screenshot, and click on Next:

_)] Fusion Middleware Configuration Wizard - Page 7 of 12

JDBC Component Schema _ORACLE
FUSlON MIDDLEWARE

Create Domain

/T\ Vendor: | Oracle w| Driver: | *Oracde's Driver (Thin) for Service connections; Versions: 9.0«
Templates
/T\ DBMS /Service: | ord Host Name: | localhost Port: | 1521
Application Location
T Administrator Account Schema Owner: | DEV_OPSS Schema Password: | sessssss
¥ Domain Mode and JDK Orade RAC configuration for component schemas:
7 Database Configuration Type Convert to GridLink Convert to RAC multi data source Don't convert
v/ Component Datasources
[1DBC Test Edits to the data above will affect all checked rows in the table below.
%[Ag_dvmd conturten Sompererischona | Dovopvs [HosiNane | Pt Shena O | S Peswrd |
¥ Configuration Summary LocalSwcTbl Schema XE localhost 1521 | DEV_STB eeresnen
¢ User Messaging Service | XE localhost 1521 | DEV_UMS LTI
SOA (XA) XE localhost 1521 | DEV_SOAINFRA | sssesnss
S0A (Local) XE localhost 1521 | DEV_SOAINFRL | sesssnss
OWSM MDS Schema XE localhost 1521 | DEV_MDS sessnane
SOA MDS XE localhost 1521 | DEV_MDS sessnane
OPSS Audit Schema XE localhost 1521 | DEV_IAU_APPE | sessssss
OPSS Audit Viewer Scher| XE localhost 1521 DEV_IAL_VIEW| sesssass
v| | OPS5 Schema xE| | localhost 1521 | DEV_OPSS F—
Help < Back Mext = Cancel
11. The JDBC test will perform the data source connection testing; once it is

12.

13.

14.

15.

successful, click on Next.

The advance configuration allows for the Administration Server, Node
Manager, Managed Servers, and Cluster and Coherence configurations.
Click on Next if you want the default topology configuration.

The Configuration Summary window will enlist the configuration that you
have defined. Click on Create when you are satisfied.

The Configuration Progress window will guide you through the percentage
of the domain configuration that is in progress. Once this is completed, click
on Next.

The Configuration Success page will show you the configuration success
message. The domain location and admin console location will be enlisted.
Click on Finish.

[411]

Installing Oracle BPM Suite 12¢

16.

17.

18.

We can use following lines of command to start the weblogic server and the
managed server, respectively:

[e]

startWebLogic.cmd

° startmanagedWebLogic.cmd

We can use the following command to stop the weblogic server and the
managed server, respectively:

[e]

stopWebLogic.cmd

o

stopmanagedWebLogic.cmd

Use following links to log in to the WebLogic console and EM
console, respectively:

° http://administration server host:administration server

port/console
http://administration server host:administration server
port/em

Summary

The walk-through provided by this appendix will help us install the Oracle BPM 12¢
environment. This will facilitate in deploying and testing the sample applications
delivered with this title. This document facilitates the quick-start installation

of Oracle BPM 12¢, and it also demonstrates the creation of complex domains

and executing schema and domain creation. It also helps us provision the demo
community on our installed environment.

[412]

A

Activities 281
Adaptive Case Management (ACM)
about 321-324
benefits 325, 326
highlights 326
use case scenarios 330-332
Adaptive Case Management (ACM),
components
activity 327
case 327
collaboration 328
content and information 327
dashboard 328
data 327
events 328
integrations 328
knowledge workers 327
milestones 328
participants 327
policies 328
portal 328
processes 327
rules 328
stakeholder 327
task 327
ad hoc feature
about 348
applicability 348

association of case, with subcases 350

facts 348

implementation 348

motivation 348
ad hoc inclusion, of activities 349
ad hoc inclusion, of documents 350

Index

ad hoc inclusion, of rules and activities 351
ad hoc inclusion, of stakeholders 349
ad hoc routing pattern, facts
about 173
applicability 173
classification 173
exploring 173,174
implementation 173
intent 173
motivation 173
signature 173
advance conversation 208
Allocated-Error Exception Handling
pattern
about 287
scenarios 288
Allocated Exception Handling pattern
about 285-289
Allocated-Complete pattern 285, 286
Allocated-Error pattern 285-289
Allocated-Terminate pattern 285-289
applicability 285
Boundary Catch Event, modifying 289
classification 285
implementation 286
intent 285
motivation 285
signature 285
allocated state, business process 283
Allocated state External Exception
Handling pattern
about 304, 305
cases 306, 307
implementing 306, 307
Allocated state error 304

Allocated-Terminate Exception Handling
pattern
about 289
process flow trace, checking 289
application roles 133
approval group list builder pattern
about 143
serial routing pattern, configuring with 159
used, for parallel routing pattern
configuration 152
using, with single routing pattern 166
approval groups
URL 134
AppsVerify-BC, input parameter 290
AppsVerify-BE, input parameter 291
AppsVerify-BT, input parameter 291
arbitrary cycle pattern
about 72,73
applicability 72
exploring 73-75
functionality 76
implementation 73
intent 72
motivation 72
signature 72
assigned state, business process 282
asynchronous interaction pattern
about 211
asynchronous process and service
interaction, with Receive Task 219
asynchronous process and service
interaction, with Send Task 219
boundary event, enabling on
Receive Task 221
boundary event, enabling on Send Task 221
external services interaction,
enabling 217, 218
asynchronous process
implementing, with Receive Task as start
activity 222-224
interaction, Catch Events used 213-215
interaction, Message Throw
used 213-215
asynchronous process and service
interaction, Receive Task used 219-221
interaction, Send Task used 219-221

asynchronous request-response
(request-callback) pattern,
asynchronous interaction pattern
applicability 212
classification 211
implementation 212
intent 211
known issues 212
known solution 212
motivation 212
signature 211
asynchronous request-response
(request-callback) pattern, web
service pattern
about 87
applicability 87
BPM Process as a Service,
exposing 88-90
implementation 88
intent 87
known issues 88
known solution 88
motivation 87
asynchronous service
interacting with, Catch Events used 216
interacting with, Message Throw used 216
automatic correlation 242

B

BackOffice process 202
BA project
KPIs, defining in 365
Boundary Catch Event
modifying, from interrupting
to non-interrupting 289-291
boundary event
enabling, on Receive Task 221
enabling, on Send Task 221
boundary event based activity correlation
working 277
boundary event, embedded subprocess
interaction pattern
interrupting 234
interrupting event 236
interrupting timer boundary
event configuration 235

[414]

non-interrupting event 236
BPM

about 9, 324

configuring, steps for 407-412

flow control pattern 10
BPM composer

used, for defining models 355
BPM events

URL 202
BPMN process

debugging, enabling 382, 383
BPMN process modeling

versus human task modeling 139
BPMN project

KPIs, defining in 363, 364
BPM process

exposing, with Receive Task operation 97

exposing, with Send Task operation 97
BPM project

attaching, to debugger 383
BPM suite

installing 394-396
Business Architecture (BA) 354
business catalog, synchronous

request-response pattern 226

business context

capturing 372-376

document level 372
business exception 281
business process

initiating, through event 105, 106
Business Process Management. See BPM
business process state

about 281

allocated 283

assigned 282

invoked 283

reallocated 283

started 283

C

cancel activity pattern
about 275, 276
applicability 275
classification 275
implementation 275

intent 275
known issues 275
motivation 275
testing 277, 278
cancel instance pattern
about 258, 259
applicability 258
classification 258
components 259, 260
correlation definition, checking 261
implementation 258
intent 258
motivation 258
restart instance pattern 262
signature 258
testing 261, 262
cancel interaction pattern
applicability 345
implementation 345
intent 344
motivation 345
cancellation patterns
about 80
cancel multi-instance task pattern 80
canceling discriminator pattern 46, 47
canceling partial join pattern
about 47, 66
applicability 66
classification 66
implementation 67
intent 66
motivation 66
signature 66
cancel multi-instance task pattern
applicability 81
classification 80
implementation 81
intent 80
motivation 81
signature 80
testing 81
case
about 322, 323
versus process 322, 325
case interaction pattern
about 344
facts 344

[415]

case management 321-323
case stage pattern
about 336
applicability 337
facts 337, 338
implementation 337
intent 337
motivation 337
Catch Events
used, for asynchronous process
interaction 213-215
used, for asynchronous service
interaction 216
CatchFraudDetails process 204-206
CBE 300
child Value Chain Model
KPIs, defining 365
KPIs, defining in Value Chain
Model level 367
KPIs, defining in Value Chain
Step level 365, 366
collaborative communications
reasons 201
complex gateway
discriminator pattern,
implementing with 43

partial join pattern, implementing with 43

complex synchronization pattern
about 45, 46

canceling discriminator pattern 46, 47

canceling partial join pattern 46, 47
complex task pattern 135
components, cancel activity pattern

event gateway 260

event subprocess 259
conditional parallel split and

parallel merge pattern

about 32

antipattern 35

working with 33, 34
conditional sequence flow 12
Connection Factory

about 120

creating 121
connection pool

configuring 122,123

content access policy and task actions

feature, facts
about 196
applicability 196
implementation 197
intent 196
known issues 197
known solution 197
motivation 196

Continue Execution Exception Handling

pattern

about 299, 300

applicability 300

CBE 300

classification 299

implementation, scenarios 300

intent 299

motivation 299

signature 299

testing 301, 302
conversation pattern

about 207-211

advanced conversation 208

applicability 207

classification 207

default conversation 208

implementation 208

known issues 208

known solution 208

motivation 207

scoped conversation 208

signature 207
conversations, types

define interface 211

process call 211

service call 211

use interface 211
correlation behavior 249, 250
correlation definition

configuring 247-249
correlation keys

about 244

defining 247-249
correlation mechanism

about 242

correlation behavior 249

[416]

correlation definition,
configuring 247-249

correlation keys, defining 247

correlation properties, defining 246

correlations, types 242

environment, configuring 244
correlations, components

correlation keys 244

correlation property 243

correlation property alias 244

correlation set 244
correlations, types

automatic correlation 242

payload/message-based correlation 243
CreateApprovalGroupList function 146
CreateJobLevelList function 146
CreateManagementChainList function 146
CreatePositionList function 146
CreateResourceList function 146
CreateSupervisoryList function 146
custom domain

creating 402-407
Customer Acceptance activity 331
Customer Service Representative

(CSR) 114, 329

D

deadline
about 182
applicability 182
classification 182
implementation 182
intent 182
motivation 182
Participant Level Deadline 185
task level deadlines 183
Debugger feature, facts
about 381-383
applicability 382
category 381
feature 381
implementation 382
intent 381
known issues 382
known solution 382
motivation 381

default conversation 208
default domain
configuring, steps for 397-399
demo user community
enabling 399-402
discriminator pattern
about 40
implementing, with complex gateway 43
structured discriminator pattern 41
dispatching pattern
about 170
LEAST_BUSY task, configuring 170
MOST_PRODUCTIVE, configuring 170
ROUND_ROBIN, configuring 170
document level, business context
activity 373-375
process 372,373
project 372
do-while loop
demystifying 70, 71
scenario, testing 71, 72
structured loop functionality 72
driver attributes, notification
configuring 193, 194
driver properties, notification
configuring 193, 194
duration deadline, task level deadlines 183
dynamic assignment,
task assignment pattern 141
dynamic case management 324
dynamic partial join,
for multiple instances pattern
about 67
applicability 67
classification 67
implementation 67
intent 67
motivation 67
signature 67
working with 68

E

ECM 324
e-mail
used, for one-way invocation pattern
implementation 102

[417]

Email Start Pattern

applicability 102

implementation 102

intent 102

known issues 102

known solution 102

motivation 102

embedded subprocess 227

embedded subprocess interaction pattern
about 232

applicability 233

boundary event, interrupting 234, 235
characteristics 233

classification 233

implementation 233

intent 233

known issues 233

known solution 233

motivation 233

signature 233

Internal Terminate Exception Handling
pattern 311
enterprise content management, for task
documents
about 197, 198
applicability 197
classification 197
implementation 197
intent 197
motivation 197
enterprise maps
about 355
creating 355
Enterprise Resource Planning (ERP) 324
environment, correlation mechanism
configuring 244, 245
error assignee feature, facts
applicability 191
classification 190
implementation 191

Emulating Process Behavior feature intent 190
about 377-381 known issues 191
applicability 378 known solution 191
category 377 motivation 190
feature 377 escalation feature
implementation 378 applicability 187
intent 377 classification 187
known issues 378 implementation 187
known solution 378 intent 187
motivation 377 known issues 187
end cases, Internal Exception known solution 187
Handling pattern motivation 187
complete 309 URL 189
error 309 escalation pattern
terminate 309 about 171
end states, Allocated state External escalating, ways 172
Exception Handling pattern URL 172
JExternal-Complete 308 Event Definition Language (EDL) 236
JExternal-Error 308 Event Delivery Network (EDN) 236
JExternal-Terminate 308 event-driven interaction pattern
end states, Internal Exception about 236-238
Handling pattern applicability 237
Internal Complete Exception components 236
Handling pattern 310 event producer component 237
Internal Error Exception implementation 237
Handling pattern 311 intent 237

known issues 237

[418]

known solution 238
motivation 237
scenario, defining 238, 239
signal catch event configuration 238, 239
event gateway 260
event pattern
applicability 339
classification 338
implementation 339
intent 338
motivation 339
signature 338
events
about 339-341
types 340
event subprocess 229, 259
exception
about 279
business exception 281
classifying 280
external triggers/process exceptions 281
system exceptions 280
timeout/ deadline exceptions 281
exclusion feature, facts
applicability 190
classification 190
implementation 190
intent 190
motivation 190
exclusive choice pattern(exclusive choice
and simple merge pattern)
about 16,17
elucidating 22
overview 21
use case 19
working with 18-21
exclusive choice pattern,
decision mechanisms
data 17
events 17
expiry feature
about 186-189
applicability 187
classification 187
implementation 187
intent 187

known issues 187
known solution 187
motivation 187
explicit termination pattern
about 79
applicability 79
classification 79
implementation 79
motivation 79
signature 79
working 79
external services interaction
enabling 217, 218
External Trigger-N 318
External Trigger-O 318
external triggers 318
external triggers/process exceptions 281

F

Feedback process 204-206
First Notice of Loss (FNOL) 329
flow control pattern, BPM
about 10
complex synchronization pattern 45, 46
conditional parallel split and
parallel merge pattern 32
discriminator pattern 40
exclusive choice pattern 16, 17
multichoice pattern 22,23
multimerge pattern 36-38
parallel split pattern 28
partial join pattern 40
sequence flow pattern 10, 11
synchronization pattern 28
synchronizing merge pattern 22, 23
use cases, executing 14, 15

Force-Complete Exception Handling pattern

about 295
applicability 295
classification 295
implementation 295
intent 295
motivation 295
signature 295

[419]

force completion/early completion
pattern, facts
about 179
applicability 179
classification 178
Enabling Early Completion in
Parallel Subtasks option 180
implementation 179
motivation 178
signature 178
Force-Error Exception Handling pattern
about 293, 294
applicability 293
classification 293
implementation 293
intent 293
motivation 293
signature 293
Force-Error Execution Exception
Handling pattern
about 303, 304
Allocated state External Exception
Handling Pattern 304
applicability 303
classification 303
implementation 304
intent 303

Internal Exception Handling pattern 309

known issues 304
known solution 304
motivation 303
Reallocated Exception
Handling pattern 313
signature 303
Force-Terminate Exception
Handling pattern
about 292
applicability 292
classification 292
implementation 292
intent 292
motivation 292
signature 292
Force-Terminate Execution
Exception Handling pattern
about 302, 303
applicability 302

classification 302
implementation 302
intent 302
motivation 302
signature 302
function-based derivation, task assignment
pattern 142
FYI approver pattern
using, with job level list builder pattern 167
using, with name and expression list
builder pattern 167
FYI routing pattern 140
FYI task pattern 135

G

groups 133

group task pattern 135

guaranteed delivery pattern
about 117
applicability 118
classification 118
implementation 118
intent 118
known issues 118, 119
known solution 119
motivation 118

H

hierarchical list builder pattern
about 144
job level 145
management chain 144
position 145
supervisory 145

holistic view pattern
about 346
applicability 346
facts 346
implementation 346
intent 346
motivation 346
signature 346

human task
about 131, 133
participants 133
user task patterns 135

[420]

human task, features
about 132
content access policy 196, 197
deadline 182
error assignees 190
escalation 186
exclusion 190
expiry 186, 187
notification 192
renewal 187
request information feature 175
reviewer 190
task actions 196, 197
human task initiator pattern
about 113
applicability 113
classification 113
implementation 113
loan origination, via human task form 114
motivation 113
process, testing 116, 117
human task modeling
versus BPMN process modeling 139
human task patterns
about 132
ad hoc routing pattern 173
complex task 135
dispatching pattern 170
escalation pattern 171
force completion pattern 178
FYI task 135
group task 135
initiator user task 135
list builder pattern 142
management task 135
milestone pattern 136
Notify /FYI pattern 166
parallel routing pattern 147
reassignment and delegation pattern 177
routing pattern 139
routing rule pattern 180
rule-based reassignment and
delegation pattern 172
serial routing pattern 158
single routing pattern 165
task aggregation pattern 167

task assignment pattern 140
user task 135

implicit termination pattern
amalgamating, in process flow 78, 79
applicability 78
classification 78
implementation 78
intent 78
known issues 78
motivation 78
signature 78
incoming sequence flow 11
initiator user task pattern 135
Insurance Claim case
about 329
building blocks 332
testing 333-335
interaction patterns
demonstrating, by use cases definition 202
Internal Complete Exception
Handling pattern 310
Internal Error Exception Handling pattern
possibilities 312
reallocated scenario 312
restarted scenario 312
restarted scenario, testing 312
Internal Exception Handling pattern
about 309
implementing 309
pattern categories 309
Internal Terminate Exception
Handling pattern 311
Inter Process Communication (IPC). See
interaction patterns
interrupting event 234, 236
interrupting timer boundary
event configuration
demonstrating 235
Invoked Exception Handling pattern
about 296
activities 296
exception handling, categories 297
invoked state, business process
about 283

[421]

call activity 284
catch event 283
Message Throw Events 283
Receive Task 283
Send Task 283
service task 283

Invoked State Exception Handling pattern
about 297-299
applicability 297
challenge 299
classification 297
implementation 298
intent 297
known issues 298
known solution 298
motivation 297
scenario, testing 298
signature 297

J

Java Message Service (JMS) 85
JDK
installing 393, 394
JExternal-Complete state 308
JExternal-Error state 308
JExternal-Terminate state 308
JMS adapter
configuring 123
JMS module
creating 121
JMS queue
creating 122
JMS resources
Connection Factory, creating 121
connection pool, configuring 122, 123
creating 120
JMS adapter, redeploying 123
JMS module, creating 121
JMS queue, creating 122
JMS server, creating 120
JMS subdeployment, creating 121
JMS topic, creating 122
JMS server
about 120
creating 120

JMS subdeployment
creating 121
JMS topic
creating 122
job level list builder pattern
about 145
FYI approver pattern, using with 167
participant list, modifying with list
modification 162
participant, substituting with list
substitution 162, 163
serial routing pattern,
using with 160-162

K

KPIs
defining, in BA project 365
defining, in BPMN project 363, 364
defining, in child Value Chain Model 365
defining, in master Value Chain Model 368

L

lane participant list builder pattern
about 143
parallel routing pattern, using with 153
LEAST_BUSY task 170
list builder pattern
about 142
applicability 142
classification 142
hierarchical list builder 144
implementation 142
intent 142
motivation 142
nonhierarchical list builder patterns 143
rule-based list builder 145
signature 142
loan origination process
about 203
initiating, over e-mail 103, 104
initiating, over event 107-110
initiating, over JMS' Queue/Topic 119
initiating, over multiple
event occurrence 111, 112
testing, for restarting loan 263, 264
via human task form 114-116

[422]

loan origination BPM process
consumer process, creating 124, 125
initiating, via queue 119
JMS resources, creating 120
message, pushing to queue 126, 127
publisher process, creating 124
publish-subscribe pattern,
Topics used 127,128
localization feature
applicability 345
implementation 345
intent 345
motivation 345
local synchronizing merge pattern 27

management chain list builder pattern
about 144
parallel routing pattern,
using with 156, 157
using, with single routing pattern 166
management task pattern 135
master Value Chain Model
KPIs, defining in Value Chain
Model level 369, 370
KPIs, defining in Value Chain
Step level 368, 369
message-based correlation pattern
about 250
applicability 251
characteristics 252
implementation 251
intent 250
motivation 250
testing 256-258
working 252-256
Message Throw
used, for asynchronous
process interaction 213-215
used, for asynchronous
service interaction 216
MI
demonstrating, with prior runtime
knowledge pattern 55, 56
dynamic partial join functionality 69
static partial join pattern, working 66

working, with prior runtime knowledge
pattern 57

milestone pattern

about 136, 137, 341
applicability 136, 342
BPMN process,
versus human task modeling 139
classification 136
facts 342
implementation 136, 342
intent 136, 342
motivation 136, 342
sequence flow, modeling 137, 139
signature 136

MI, without prior runtime

knowledge pattern
about 58
applicability 57
classification 57
implementation 58
intent 57
motivation 57
signature 57
use case, testing 60, 61
working 58, 59

model definition, capabilities

enterprise maps 355
Strategy Model 355
Value Chain Model 355

MOST_PRODUCTIVE task 170
multichoice pattern

about 22,23
demonstrating, with OR gateway 23, 24
working with 26

multi-instance subprocess

about 227
executing, with prior design-time
knowledge pattern 51-54

multimerge pattern

about 36-38
exploring 38, 39

multiple instances pattern

dynamic partial join 67
static partial join patterns 62

multiple instances, with prior design-time

knowledge pattern
applicability 50

[423]

classification 50
demonstrating 55, 56
implementation 50
intent 50
motivation 50
signature 50
working 57
multiple instances, with prior runtime
knowledge pattern
about 54
applicability 55
classification 55
implementation 55
intent 55
motivation 55
multiple operations, for BPM Process
exposing, steps 94-97
multiple start events 128

N

name and expression list builder pattern
about 143
FYI approver pattern, using with 167
participant identification type,
application role 159
participant identification type, groups 159
participant identification type,
users 158, 159
using, with single routing pattern 166
nonfunction-based derivation,
task assignment pattern 142
nonhierarchical (absolute)
list builder patterns
about 143
approval groups 143
lane participant 143
name and expression 143
parametric role 144
non-interrupting event 234, 236
notification
about 192,193
applicability 192
attributes, configuring 193, 194
classification 192
definition, configuring 194, 195

driver properties, configuring 193, 194
implementation 193
intent 192
motivation 192
Notify/FYI pattern 166

(0

one-way invocation pattern
about 99
implementing, e-mail used 102
implementing, timer used 100, 101
one-way invocation pattern
implementation, with e-mail
flow, testing 105
loan origination request,
initiating 103, 104
Oracle BPM Suite 12c¢
URL 394
Oracle BPM workspace
URL 337
organizational roles (parametric roles) 134
outgoing sequence flow 11

P

PAM
about 353
working with 384
parallel routing pattern
about 140, 147
applicability 147
classification 147
configuring, with approval group list
builder pattern 152
implementation 147
intent 147
motivation 147
use cases, testing 147
used, for creating participant type 148-151
used, with lane participant list
builder pattern 153
used, with management chain list builder
pattern 156, 157
used, with rule-based list builder 154, 155
parallel split pattern 28
parametric role list builder pattern 144

[424]

partial join pattern

implementing, with complex gateway 43

structured partial join pattern 42

testing, for failure complex gateway 44

testing, for success complex gateway 44, 45
participants, human task

groups 133

organizational roles (parametric roles) 134

roles 133

users 133
payload/message-based correlation 243
peer subprocess 228
persistent trigger pattern

applicability 77

classification 77

implementation 77

intent 77

motivation 77

signature 77
point-to-point (PTP) model 120
position list builder pattern

about 145

using, with serial routing pattern 163
prior design-time knowledge pattern

used, for executing multi-instance

subprocess 51-54

using, with multiple instances 50
prior runtime knowledge pattern

MI, demonstrating with 56

M1, working with 57

using, with multiple instances 54
process

about 321

versus case 322,325
Process Asset Management. See PAM
process data objects (PDOs) 219
Process-Level Exception Handling pattern

about 314

implementing 315-317

testing 317, 318
publish-subscribe pattern

about 105, 106

applicability 106

implementation 107

intent 106

known issues 107

known solution 107

loan origination,
initiating over event 107-110
motivation 106

Q

query pattern
about 268
applicability 269
classification 268
implementation 269
known issues 269
motivation 268
testing 270-272
QuerySubprocess configuration,

checking 269, 270
Queue 120

R

RACI (Responsible Accountable
Consulted Informed) 375
Reallocated Exception Handling pattern 314
reallocated state, business process 283
Reassigned Exception Handling pattern
about 284
applicability 284
classification 284
implementation 284
intent 284
motivation 284
signature 284
reassignment and delegation pattern
about 177
applicability 177
classification 177
implementation 177
intent 177
motivation 177
signature 177
Receive Task
boundary event, attaching on 221
used, for asynchronous process and service
interaction 219, 220
Receive Task, as start activity
asynchronous process,
implementing with 222-224

[425]

reminder, task level deadlines 183
renewal feature
about 187
applicability 187
classification 187
implementation 187
implementing 188, 189
intent 187
known issues 187
known solution 187
motivation 187
report data, Strategic Alignment pattern
publishing 370, 371
request information feature
about 175
applicability 175
classification 175
implementation 175
motivation 175
request-response pattern
applicability 90
implementation 91
intent 90
known issues 91
known solution 91
motivation 90
service message interaction pattern,
modifying 91, 92
response type 165
restart instance pattern
about 262
loan origination process, testing 263, 264
restart scenario, testing 264-266
restart scenario
testing 264-266
reusable processes interaction pattern
about 229
applicability 230
characteristics 230, 231
implementation 230
intent 230
known issues 230
known solution 230
motivation 230
use case scenario 231, 232
reusable subprocess 228
reviewers feature

applicability 191
classification 190
implementation 191
intent 190
known issues 191
known solution 191
motivation 190
roles
about 133
application roles 133
approval groups 134
swimlane roles 134
ROUND_ROBIN task 170
round trip and business-IT collaboration
about 383-391
applicability 383
category 383
demonstrating 388, 389
feature 383
implementation 384
intent 383
known issues 384
known solution 384
motivation 383
routing pattern
applicability 139
classification 139
FYI 140
implementation 140
intent 139
motivation 139
parallel 140
serial 140
single approver 140
routing rule pattern
about 180, 181
applicability 180
classification 180
COMPLETE action 181
ESCALATE action 181
GO_FORWARD action 181
GOTO action 181
implementation 180
intent 180
motivation 180
PUSHBACK action 181
signature 180

[426]

rule-based assignment,
task assignment pattern 142
rule-based list builder
about 145, 146
CreateApprovalGroupList function 146
CreateJobLevelList 146
CreateManagementChainList function 146
CreatePositionList function 146
CreateResourceList function 146
parallel routing pattern,
using with 154, 155
using, with serial routing pattern 165
rule-based reassignment
and delegation pattern
about 172
applicability 172
implementation 172
intent 172
motivation 172

S

scenario, event-driven interaction pattern
defining 238, 239
scoped conversation 208
Send Task
boundary event, attaching on 221
used, for asynchronous process and service
interaction 219-221
sequence flow pattern
about 10,11
elucidating 14
working with 12,13
sequence flow pattern, categories
incoming sequence flow 11
outgoing sequence flow 11
sequence flow pattern, types
conditional sequence flow 12
default/unconditional sequence flow 12
serial routing pattern
about 140, 158
applicability 158
classification 158
configuring, with approval group list
builder pattern 159
configuring, with supervisory list builder
pattern 164, 165

implementation 158
intent 158
motivation 158
signature 158
using, with job level list-builder
pattern 160-162
using, with management chain list builder
pattern 160
using, with name and expression list
builder pattern 158
using, with position list builder pattern 163
using, with rules list builder pattern 165
Service Level Agreement (SLA) 221, 329
single approver routing pattern 140
single routing pattern
about 165
using, with approval group list
builder pattern 166
using, with management chain list builder
pattern 166
using, with name and expression list
builder pattern 166
SOA
configuring, steps for 407-412
stakeholders 327
started state, business process 283
static assignment, task assignment
pattern 141
static partial join patterns, for multiple
instances pattern
about 62
applicability 62
classification 62
intent 62
motivation 62
signature 62
use case, testing 64, 65
working on 63
Strategic Alignment pattern
about 354-356
applicability 354
classification 354
goals, mapping to organization 363
implementation 354
intent 354
known issues 354
known solution 354

[427]

KPIs, defining in BA project 365

KPIs, defining in BPMN project 363, 364

motivation 354

report data, publishing 370, 371

Strategy Model 361, 362

Value Chain Model 357-361
Strategy Model

about 355

creating 361, 362
structured discriminator pattern 41
structured loop functionality 72
structured loop pattern

about 69

applicability 69

classification 69

do-while looping 70

implementation 70

intent 69

motivation 69

signature 69

while-do looping 72

working with 70
structured partial join pattern 42
structured synchronizing merge pattern 26
subdeployment resource 120
subprocess 232
subprocess interaction patterns

about 227-229

embedded subprocess 227

event subprocess 229

multi-instance subprocess 227

peer subprocess 228

reusable processes interaction pattern 229

reusable subprocess 228
supervisory list builder pattern

about 145

using, with serial routing pattern 164, 165
suspend activity pattern

about 274

applicability 274

classification 274

implementation 274

intent 274

motivation 274
suspend process pattern

about 272-274

applicability 272

classification 272
implementation 272
intent 272
motivation 272
signature 272

swimlane roles 134
synchronization pattern 28-31
synchronizing merge pattern

about 22,23

demonstrating, with OR gateway 23, 24
local synchronizing merge pattern 27
structured synchronizing merge pattern 26
working with 26

synchronous request-response pattern

about 224
applicability 224
business catalog 226
demonstrating 225, 226
implementation 225
intent 224

known issues 225
known solution 225
motivation 224
signature 224

system exceptions 280
system-level exception

handling pattern 318

T

task aggregation pattern

about 167,170
routing pattern 168, 169
staging 168, 169

task assignment pattern

about 140

applicability 141
classification 140

dynamic assignment 141
function-based derivation 142
implementation 141

intent 140

motivation 140
nonfunction-based derivation 142
rule-based assignment 142
signature 140

static assignment 141

[428]

task level deadlines
about 183-185
duration deadline 183
reminder 183
warning 183
timeout/deadline exceptions 281
timer
used, for one-way invocation
pattern implementation 100, 101
timer boundary events
interrupting event 234
non-interrupting event 234
timer start pattern
applicability 99
implementation 99
intent 99
known solution 99
motivation 99
Topic 120
transient trigger patterns
applicability 77
classification 76
implementation 77
intent 76
known issues 77
known solution 77
motivation 76
signature 76
trigger patterns
about 76
persistent trigger 77
transient trigger 76

U

update task pattern
about 266, 267
applicability 266
configuration, checking 267, 268
functionality, demonstrating 268
implementation 266
intent 266
motivation 266
signature 266

use cases, parallel routing pattern
testing 147
use case scenarios, Adaptive
Case Management (ACM)
about 330-332
Insurance Claim 332
use cases, for interaction
pattern demonstration
BackOffice process 202
CatchFraudDetails 203-206
Feedback process 203-206
loan origination process 203
User Messaging Service (UMS) 103,193
users 133

\'

Value Chain Model
about 355
creating 357-361

w

web service pattern
about 86, 87
asynchronous request-response
(request-callback) pattern 87-90
BPM process, exposing with
Receive Task operation 97
BPM process, exposing with
Send Task operation 97
challenges 86
multiple operations, enabling 94-96
request-response pattern 90, 91
Receive Tasks, implementing 97, 98
Send Tasks, implementing 97, 98
while-do loop
demystifying 72

[429]

enterprise &

professional expertise distilled

PUBLISHING

Thank you for buying
Oracle BPM Suite 12c Modeling Patterns

About Packt Publishing

Packt, pronounced 'packed’, published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen

in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . packtpub . com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software - software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

"PUBLISHING

Oracle Fusion Applications
Administration Essentials

enterprise 8

professional expertise distilled

Oracle Fusion Applications
Administration Essentials
ISBN: 978-1-84968-686-0 Paperback: 114 pages

Administer, configure, and maintain your Oracle
Fusion Applications

1. Provides clear and concise guidance for
administering Oracle Fusion Applications.

2. Comprehensively covers all major areas of
Oracle Fusion Applications administration.

3. Contains meaningful illustrations that
explain basic concepts, followed by detailed
instructions on how to implement them.

Getting Started with Oracle
WebLogic Server 12c¢:
Developer's Guide

illiam Markito Oliveira
zanatti Nunes

Getting Started with Oracle
WebLogic Server 12c:

Developer's Guide
ISBN: 978-1-84968-696-9 Paperback: 374 pages

Understand Java EE 6, JDK 7, and Oracle WebLogic
Server 12c concepts by creating a fully-featured
application with this step-by-step handbook

1. Create a complete Java EE 6 application
leveraging WebLogic features such as JMS,
SOAP, and RESTful Web Services.

2. Learn how to use Oracle WebLogic Server's
key components and features.

3. Step-by-step instructions with screenshots
and code samples to help understand and
apply concepts.

Please check www.PacktPub.com for information on our titles

enterprise 8

professional expertise distilled

"PUBLISHING

Oracle SOA Suite 11g
Performance Tuning Cookbook

Matt Bragier Micholas Wright

Oracle SOA Suite 11g
Performance Tuning Cookbook
ISBN: 978-1-84968-884-0 Paperback: 328 pages

Over 100 recipes to get the best performance from
your Oracle SOA Suite 11g infrastructure

1. Tune the Java Virtual Machine to get the best
out of the underlying platform.

2. Learn how to monitor and profile your Oracle
SOA Suite applications.

3. Discover how to design and deploy your
application for high-performance scenarios.

4. Identify and resolve performance bottlenecks
in your Oracle SOA Suite infrastructure.

Oracle SOA Suite 11g
Developer's Cookbook

RUBICONYRED

Antony Reynolds Matt Wright

Oracle SOA Suite 11g Developer's

Cookbook
ISBN: 978-1-84968-388-3 Paperback: 346 pages

Over 65 high-level recipes for extending your Oracle
SOA applications and enhancing your skills with
expert tips and tricks for developers

1. Extend and enhance the tricks in your Oracle
SOA Suite developer arsenal with expert tips
and best practices.

2. Get to grips with Java integration, OSB message
patterns, SOA Clusters, and much more in this
book and e-book.

3. A practical Cookbook packed with recipes
for achieving the most important SOA Suite
tasks for developers.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Disclaimer
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Flow Control Patterns
	Sequence flow pattern
	Working with the sequence flow pattern
	Elucidating the sequence flow pattern

	Getting ready for executing use cases
	Exclusive choice and simple merge pattern
	Working with exclusive choice and simple merge pattern
	Knowing about the exclusive choice pattern
	Elucidating the simple merge pattern

	Multichoice and synchronizing merge pattern
	Demonstrating multichoice and synchronization with the OR gateway
	The working of multichoice and synchronization pattern
	Structured synchronizing merge pattern
	Local synchronizing merge pattern

	The parallel split and synchronization pattern
	Parallel split pattern
	Synchronization pattern

	Conditional parallel split and parallel merge pattern
	Working with conditional parallel split
and merge
	Antipattern – the conditional parallel split and merge

	Multimerge pattern
	Exploring multimerge

	Discriminator and partial join pattern
	Structured discriminator pattern
	Structured partial join
	Working with a complex gateway to implement the discriminator and partial join pattern
	Testing a process by failing the complex gateway exit expression
	Testing process as success by the complex gateway exit expression

	Complex synchronization pattern
	Canceling discriminator pattern
	Canceling partial join pattern

	Summary

	Chapter 2: Multi-instance and State-based Patterns
	Multiple instances with prior design-time knowledge pattern
	Executing the multi-instance subprocess with prior design-time knowledge

	Multiple instances with prior runtime knowledge pattern
	Demonstrating MI with prior runtime knowledge
	Understanding how MI with prior runtime knowledge work

	Multiple instances without prior runtime knowledge pattern
	Working on MI without prior runtime knowledge
	Testing the use case

	Static partial join for multiple instances pattern
	Testing the use case
	Understanding how static partial join for MI works
	There's more

	Canceling partial join pattern
	Dynamic partial join for multiple instances pattern
	Working with dynamic partial join
	Understanding the functionality behind partial join for MI

	Structured loop pattern
	Working with structured loops
	Demystifying do-while
	Demystifying while-do

	Arbitrary cycle pattern
	Exploring arbitrary cycle
	Understanding the functionality of the arbitrary cycle

	Trigger patterns
	Transient trigger pattern
	Persistent trigger pattern

	Implicit termination pattern
	Amalgamating implicit termination in the process flow

	Explicit termination pattern
	Learning how explicit termination works

	Cancelation patterns
	Cancel multi-instance task pattern

	Summary

	Chapter 3: Invocation Patterns
	Web service pattern
	Asynchronous request-response
(request-callback) pattern
	Request-response pattern
	One request, one of the two possible responses pattern
	Two request a pattern
	Exposing the BPM process using Receive
and Send Tasks
	Loan Origination over Send and Receive tasks

	One-way invocation pattern
	Implementing one-way invocation using
a timer
	Implementing one-way invocation using an e-mail
	The Loan Origination process over e-mail
	Testing the flow to instantiate a process over e-mail

	Publish-subscribe pattern – initiating the business process through an event
	Loan origination over an event

	Multievent instantiation pattern – process instantiation over multiple events
	Loan origination over multiple event occurrence

	Human task initiator pattern – initiating processes through human tasks
	Loan origination via the human task form
	Testing the process

	Guaranteed delivery pattern – process instantiation over JMS – Queue/Topic
	Loan origination over JMS – Queue/Topic
	Creating JMS resources
	Creating the publisher process
	Developing the consumer process
	Testing the process

	Understanding multiple start events
	Summary

	Chapter 4: Human Task Patterns
	Learning about human tasks
	Milestone pattern
	Modeling in a human task versus a BPMN process

	Routing pattern
	Task assignment pattern
	List builder pattern
	Absolute or nonhierarchical list builders
	Hierarchical list builders
	Rule-based list builders

	Parallel routing pattern
	Getting ready to test sample use cases
	Parallel routing pattern with name and expression list builders
	Parallel routing pattern with approval group list builder
	Parallel routing pattern with lane participant list builder
	Parallel routing pattern with rule-based list builder
	Parallel routing pattern with management chain

	Serial routing pattern
	Serial routing pattern with list builder – name and expression
	Participant identification type – users
	Participant identification type – groups
	Participant identification type – application role

	Serial routing pattern with list
builder – approval group
	Serial routing pattern with list
builder – management chain
	Serial routing pattern with list builder – job level
	Modifying participant lists using list modification
	Substituting participants using list substitution

	Serial routing pattern with list
builder – position
	Serial routing pattern with list
builder – supervisory
	Serial routing pattern with list builder – rules

	Single routing pattern
	Single approver pattern with list
builder – name and expression
	Single approver pattern with list
builder – approval group
	Single approver pattern with list
builder – management chain

	Notify/FYI pattern
	FYI approver pattern with list builder – job level
	FYI approver pattern with list builder – name and expression

	Task aggregation pattern
	Dispatching pattern
	Escalation pattern
	Rule-based reassignment and delegation pattern
	Ad hoc routing pattern
	Request information feature
	Reassignment and delegation pattern
	Force completion pattern
	Enabling early completion in parallel subtasks

	Routing rule pattern
	Deadlines
	Escalation, expiry, and renewal feature
	Exclusion feature
	Error assignee and reviewers
	Notifications
	Configuring driver properties and attributes
	Configuring the notification definition

	Content access policy and task actions
	Enterprise content management for task documents
	Summary

	Chapter 5: Interaction Patterns
	Defining use cases to demonstrate interaction patterns
	The BackOffice process
	The Loan origination process
	The CatchFraudDetails and Feedback processes

	Conversation pattern
	Asynchronous interaction pattern
	Interacting with an asynchronous process using the Message Throw and Catch events
	Interacting with an asynchronous service using the Message Throw and Catch Events
	Enabling external services interaction
	Interacting with an asynchronous process and service using Send and Receive Tasks
	Attaching boundary events on Send and Receive Tasks
	Interacting with a process defined with Receive Task as a start activity

	Synchronous request-response pattern
	The business catalog

	Subprocess interaction patterns
	Reusable process interaction pattern
	Use case scenario for reusable process interaction pattern

	Embedded subprocess interaction pattern
	Interrupting a boundary event
	Boundary event on an activity

	Event-driven interaction pattern
	Defining an event-based interaction pattern scenario

	Summary

	Chapter 6: Correlation Patterns
	Correlation mechanism
	Types of correlations
	Components of correlation
	Configuring the environment
	Defining correlation properties
	Defining correlation keys and configuring the correlation definition
	Understanding the correlation behavior

	Message-based correlation pattern
	Testing the message-based correlation pattern

	Cancel instance pattern
	Understanding the components
	Testing cancelation pattern
	Restart instance pattern
	Testing the Loan Origination process to restart
a loan
	Testing the restart scenario

	Update task pattern
	Demonstrating the update task functionality

	Query pattern
	Testing the query pattern

	Suspend process pattern
	Suspend activity pattern
	Cancel activity pattern
	How a boundary event based activity correlation works
	Testing the cancelation pattern on an activity

	Summary

	Chapter 7: Exception Handling Patterns
	Classifying exceptions
	Business process state
	Reassigned Exception Handling Pattern
	Allocated Exception Handling Pattern
	Changing the Boundary Catch Event from Interrupting to Noninterrupting

	Force-Terminate Exception Handling Pattern
	Force-Error Exception Handling Pattern
	Force-Complete Exception Handling Pattern
	Invoked Exception Handling Pattern
	Invoked State Exception Handling Pattern
	Continue Execution Exception Handling Pattern
	Force-Terminate Execution Exception Handling Pattern
	Force-Error Execution Exception Handling Pattern
	Allocated state – External Exception Handling Pattern
	Implementing Allocated state – External Exception Handling Pattern

	Allocated state – Internal Exception Handling Pattern
	Implementing Allocated state – Internal Exception Handling Pattern

	Reallocated Exception Handling Pattern

	External Exception Handling Pattern
	Process-Level Exception Handling Pattern
	Implementing Process-Level Exception Handling Pattern
	Testing Process-Level Exception Handling Pattern

	System-Level exception handling pattern
	External Triggers
	Summary

	Chapter 8: Adaptive Case Management
	Defining adaptive case management
	Case
	Case management
	Dynamic case management
	Adaptive case management
	Process versus case
	Case management offerings
	The building blocks of adaptive case management

	Exploring ACM use case scenarios
	The building blocks of the Insurance Claim use case
	Testing the use case

	Case stage
	Event pattern
	Milestone pattern
	Case interaction pattern
	Localization feature
	Holistic view pattern
	Ad hoc feature
	Ad hoc inclusion of stakeholders
	Ad hoc inclusion of activities
	Ad hoc inclusion of documents
	Association of a case with subcases
	Ad hoc inclusion of rules and activities

	Summary

	Chapter 9: Advanced Patterns
	Strategic Alignment Pattern
	The Value Chain Model
	The Strategy Model
	Mapping goals to an organization
	Defining KPIs in a BPMN project
	Defining KPIs in a BA project
	Defining KPIs in a child Value Chain Model
	Defining KPIs in the master Value Chain Model

	Publishing report data

	Capturing the business context
	Emulating Process Behavior
	The Debugger feature
	Round Trip and Business-IT Collaboration
	Summary

	Appendix: Installing Oracle BPM Suite12c
	Installing JDK
	Installing BPM suite
	Configuring the default domain
	Enabling the demo user community
	Custom domain creation
	The BPM/SOA configuration
	Summary

	Index

