
www.allitebooks.com

http://www.allitebooks.org

Oracle BPM Suite 12c
Modeling Patterns

Design and implement highly accurate Business
Process Management solutions with Oracle
BPM Patterns

Vivek Acharya

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Oracle BPM Suite 12c Modeling Patterns

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1220914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-902-1

www.packtpub.com

Cover image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Vivek Acharya

Reviewers
Cyril Brigant

Haitham A. El-Ghareeb

Jaideep Ganguli

Ramakrishna Kandula

Max Pellizzaro

Surendra Pepakayala

Acquisition Editor
Nikhil Karkal

Content Development Editor
Rikshith Shetty

Technical Editors
Menza Mathew

Akash Rajiv Sharma

Copy Editors
Roshni Banerjee

Dipti Kapadia

Karuna Narayanan

Stuti Srivastava

Project Coordinator
Kinjal Bari

Proofreaders
Simran Bhogal

Mario Cecere

Maria Gould

Paul Hindle

Chris Smith

Indexers
Mariammal Chettiyar

Monica Ajmera Mehta

Rekha Nair

Tejal Soni

Graphics
Ronak Dhruv

Valentina D'silva

Abhinash Sahu

Production Coordinators
Melwyn D'sa

Manu Joseph

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

Disclaimer

The views expressed in this book are my own and do not reflect the views of Oracle
Corporation or the company (or companies) I work (or have worked) for.

The information in this book is written based on personal experiences. You are free
to use the information in this book, but I am not responsible and will not compensate
you if you ever happen to suffer a loss/inconvenience/damage because of/while
making use of this information.

This book is designed to provide information on BPM Patterns only. This information
is provided and sold with the knowledge that the publisher and author do not offer
any legal or professional advice. In case of a need for any such expertise, consult with
the appropriate professional.

This book does not contain all the information available on the subject. Every effort
has been made to make this book as accurate as possible. However, there may be
typographical and/or content errors. Therefore, this book should serve only as a
general guide and not as the ultimate source of subject information.

Furthermore, this manual contains information on writing and publishing that is
current only up to the printing date.

www.allitebooks.com

http://www.allitebooks.org

About the Author

Vivek Acharya is an Oracle BPM and Fusion Middleware Applications
professional and works for Oracle Corporation, USA. He has been in the world of
design, development, consulting, and architecture for approximately 10 years. He is
an Oracle Certified Expert, an Oracle Fusion SOA 11g Implementation Specialist, and
Oracle BPM 11g Implementation Specialist. He has experience working with Oracle
Fusion Middleware and Fusion Applications. He loves all the things associated
with Oracle Fusion Applications, Oracle BPM/SOA, Cloud and SaaS, predictive
analytics, social BPM, and adaptive case management. He has been the author
for a couple of books, has an interest in playing the synthesizer, and loves travelling.
You can add him on LinkedIn at http://www.linkedin.com/pub/vivek-
acharya/15/377/26a, write to him on vivek.oraclesoa@gmail.com,
or reach him at http://acharyavivek.wordpress.com/.

www.allitebooks.com

http://www.linkedin.com/pub/vivek-acharya/15/377/26a
http://www.linkedin.com/pub/vivek-acharya/15/377/26a
http://acharyavivek.wordpress.com/
http://www.allitebooks.org

Acknowledgments

First and foremost, I would like to thank God. I could never have done this without
the faith that I have in Him, the Almighty.

No one walks alone, and when one is walking the journey of life, you begin to thank
those who joined you, walked beside you, and helped you along the way.

Many thanks to mom, papa, and my brother, Alankar; you all have been supreme.
You have nurtured my learning and have always stood by me when things were odd
or even. Thanks to my in-laws for giving wings to Richa.

Huge thanks to my wife, Richa, for inspiring me at every step, supporting my efforts,
and encouraging me through the long journey. Thanks for having patience with me
when I was facing yet another challenge in my life that reduced the amount of time
I spent with you, and your sacrifice of all those weekends and vacations.

I would like to express my gratitude to Bill Swenton for all his support. I would like
to take this opportunity to thank all those with whom I have worked in the past and
those who have inspired me in one way or the other. Many thanks to Dean Welch,
Vijay Navaluri, Prakash Devarakonda, Sebastiaan Dammann, Monique Albrecht,
Nader Svärd, and Jugni for inspiring me.

Thanks to the reviewers who worked on this book. I would like to thank Rikshith
Shetty, Binny Babu, Navu Dhillon, Larissa Pinto, Anthony Albuquerque, Menza
Mathew, Akash Rajiv Sharma, and all the members of the Packt Publishing team
for editing and polishing the book.

Last but not least, I beg forgiveness from all those who have been with me over the
course of all these years and whose names I have failed to mention.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Cyril Brigant is an application architect specialized in BPM modeling and
SOA Architecture. He has been involved in various workflow projects and SOA
initiatives for the last 10 years in various Enterprise environments. At the European
Commission, DG RTD, he was in charge of modeling the Enterprise architecture and
SOA governance. He has recently joined the CMA CGM Group to bring his expertise
for an ambitious project to rebuild the complete information system based on the
top-down approach.

Haitham A. El-Ghareeb is an Associate Professor at the Information Systems
Department, Faculty of Computers and Information Sciences, Mansoura University,
Egypt. He is a member of many distinguished computer organizations, reviewer for
different highly recognized academic journals, contributor to open source projects,
and the author of different books.

Haitham is interested in e-learning, Enterprise architecture, information
architecture, and software architecture, especially in Service-Oriented Architecture
(SOA), Business Process Management (BPM), Business Process Management
Systems (BPMS), Information Storage and Management, Virtualization, Cloud
Computing, Big Data, and in collaboration with Information Systems and e-learning
organizations and researchers.

Haitham holds a Master of Science degree (in 2008) from the same faculty
that he is currently working for. His thesis was titled Evaluation of Service
Oriented Architecture in e-Learning. This thesis was highly recognized and has
been published as an international book under the same title (ISBN-13: 978-3-
83835-538-2). He holds a PhD degree (in 2012) from the same faculty. His PhD
dissertation was titled Optimizing Service Oriented Architecture to Support e-Learning
with Adaptive and Intelligent Features, which was highly recognized and has been
published as an international book under the title, Optimizing Service Oriented
Architecture to Support e-Learning, LAP Lambert Academic Publishing,
(ISBN-13: 978-3-84731-187-4).

www.allitebooks.com

http://www.allitebooks.org

Haitham is the author of the book, Enterprise Integration Opportunities and Challenges,
LAP Lambert Academic Publishing, (ISBN-13: 978-3-65937-179-0). For an updated list of
Haitham's activities and research articles, please consider the following websites:

• Haitham's personal website: http://www.helghareeb.me
• Haitham's blog: http://blog.helghareeb.me
• Haitham's channel on YouTube: http://video.helghareeb.me

Jaideep Ganguli has more than 20 years of experience in developing software
solutions for several domains, including financial services, e-government, criminal
justice, and wireless application services. Over the last 10 years, he has delivered
several Enterprise-scale solutions based on WebLogic, JEE, Oracle BPM, SOA Suite,
ADF, and WebCenter. He is a Certified Implementation Specialist with Oracle
WebCenter Portal 11g and Oracle BPM 11g.

Currently, Jaideep is one of the cofounders and partners of Fusion Applied
(www.fusionapplied.com). Fusion Applied offers top-notch Oracle Fusion
Middleware-focused consulting and training.

Jaideep holds an MBA degree from Johns Hopkins University and a BS in
Electronics Engineering from Mumbai University, India.

He can be contacted at http://www.linkedin.com/in/jaideepganguli/,
or you can e-mail him at jaideep@fusionapplied.com.

I'd like to thank my wife, Rajeshwari, for her patience and support
and my partners, Vivek Chaudhari, Vikram Bailur, and Sanjib
Rajbhandari, for their encouragement and technical expertise.

www.allitebooks.com

http://www.helghareeb.me
http://blog.helghareeb.me
http://video.helghareeb.me
http://www.linkedin.com/in/jaideepganguli/
http://www.allitebooks.org

Ramakrishna Kandula has an experience of 10 years in the IT sector and 7 years
with Fusion Middleware technologies. He has worked on different projects in SOA
and BPM Suites with various clients.

He completed his graduation with a Bachelor's of Technology degree in Electronics
and Communication, in 2003.

He has received many accolades and awards in his career from client and
internal organization recognition events for key implementations and innovative
approach design.

He has designed and implemented many B2B and EAI architectures for different
business implementations, which have also become role model architectures for
many other implementations.

He has technically reviewed Oracle BPM Suite 11g Developer's Cookbook,
Packt Publishing.

You can e-mail him at ramakrishna.rpkandula@gmail.com.

Max Pellizzaro, with over 15 years of working experience, has been working as a
software/IT consultant in complex projects within different industries: automotive,
telecommunication, and entertainment and media. Within the projects he has been
involved with, he has developed experience throughout all the phases of a project's
life cycle: collecting user requirements, designing software solutions, leading
software development, and designing monitor tools for the on-going production
environment. In his last organization, Max was the leading architect of Center of
Excellence of Oracle Technology. His main activity was to understand clients' needs
to help him drive the design and prototype of Oracle Solutions.

Max loves technologies; even in his day-to-day jobs, he mainly deals with Oracle
technology. His passion has brought him to learn other technologies such as mobile
development, game development, and 3D development.

Max has contributed to the review of other books on XML technology and open
source frameworks.

www.allitebooks.com

http://www.allitebooks.org

Surendra Pepakayala is a seasoned technology professional and entrepreneur
with over 16 years of experience in the US and in India. He has a broad experience in
building enterprise software products for both startups and multinational companies.

After 11 years in the corporate industry, Surendra founded an enterprise software
product company based in India. He subsequently sold the company and started
Cloud computing, Big Data, and Data Science Consulting practice.

Surendra has reviewed drafts, recommended changes, and formulated questions for
various IT certification literature/tests, such as CGEIT, CRISC, MSP, and TOGAF.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter, or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Flow Control Patterns 9

Sequence flow pattern 10
Working with the sequence flow pattern 12
Elucidating the sequence flow pattern 14

Getting ready for executing use cases 14
Exclusive choice and simple merge pattern 16

Working with exclusive choice and simple merge pattern 18
Knowing about the exclusive choice pattern 21
Elucidating the simple merge pattern 22

Multichoice and synchronizing merge pattern 22
Demonstrating multichoice and synchronization with the OR gateway 23
The working of multichoice and synchronization pattern 26
Structured synchronizing merge pattern 26
Local synchronizing merge pattern 27

The parallel split and synchronization pattern 28
Parallel split pattern 28
Synchronization pattern 29

Conditional parallel split and parallel merge pattern 32
Working with conditional parallel split and merge 33
Antipattern – the conditional parallel split and merge 35

Multimerge pattern 36
Exploring multimerge 38

Discriminator and partial join pattern 40
Structured discriminator pattern 41
Structured partial join 42
Working with a complex gateway to implement the discriminator
and partial join pattern 43

Table of Contents

[ii]

Testing a process by failing the complex gateway exit expression 44
Testing process as success by the complex gateway exit expression 44

Complex synchronization pattern 45
Canceling discriminator pattern 46
Canceling partial join pattern 47

Summary 48
Chapter 2: Multi-instance and State-based Patterns 49

Multiple instances with prior design-time knowledge pattern 50
Executing the multi-instance subprocess with prior
design-time knowledge 51

Multiple instances with prior runtime knowledge pattern 54
Demonstrating MI with prior runtime knowledge 55
Understanding how MI with prior runtime knowledge work 57

Multiple instances without prior runtime knowledge pattern 57
Working on MI without prior runtime knowledge 58
Testing the use case 60

Static partial join for multiple instances pattern 62
Testing the use case 64
Understanding how static partial join for MI works 66

There's more 66
Canceling partial join pattern 66
Dynamic partial join for multiple instances pattern 67

Working with dynamic partial join 68
Understanding the functionality behind partial join for MI 69

Structured loop pattern 69
Working with structured loops 70

Demystifying do-while 70
Demystifying while-do 72

Arbitrary cycle pattern 72
Exploring arbitrary cycle 73
Understanding the functionality of the arbitrary cycle 76

Trigger patterns 76
Transient trigger pattern 76
Persistent trigger pattern 77

Implicit termination pattern 78
Amalgamating implicit termination in the process flow 78

Explicit termination pattern 79
Learning how explicit termination works 79

Cancelation patterns 80
Cancel multi-instance task pattern 80

Summary 83

Table of Contents

[iii]

Chapter 3: Invocation Patterns 85
Web service pattern 86

Asynchronous request-response (request-callback) pattern 87
Request-response pattern 90
One request, one of the two possible responses pattern 92
Two request a pattern 94
Exposing the BPM process using Receive and Send Tasks 97

Loan Origination over Send and Receive tasks 97
One-way invocation pattern 99

Implementing one-way invocation using a timer 100
Implementing one-way invocation using an e-mail 102

The Loan Origination process over e-mail 103
Testing the flow to instantiate a process over e-mail 105

Publish-subscribe pattern – initiating the business process
through an event 105

Loan origination over an event 107
Multievent instantiation pattern – process instantiation
over multiple events 111

Loan origination over multiple event occurrence 111
Human task initiator pattern – initiating processes through
human tasks 113

Loan origination via the human task form 114
Testing the process 116

Guaranteed delivery pattern – process instantiation over
JMS – Queue/Topic 117

Loan origination over JMS – Queue/Topic 119
Creating JMS resources 120
Creating the publisher process 124
Developing the consumer process 124
Testing the process 126

Understanding multiple start events 128
Summary 129

Chapter 4: Human Task Patterns 131
Learning about human tasks 133
Milestone pattern 136

Modeling in a human task versus a BPMN process 139
Routing pattern 139
Task assignment pattern 140
List builder pattern 142

Absolute or nonhierarchical list builders 143
Hierarchical list builders 144
Rule-based list builders 145

Table of Contents

[iv]

Parallel routing pattern 147
Getting ready to test sample use cases 147
Parallel routing pattern with name and expression list builders 148
Parallel routing pattern with approval group list builder 152
Parallel routing pattern with lane participant list builder 153
Parallel routing pattern with rule-based list builder 154
Parallel routing pattern with management chain 156

Serial routing pattern 158
Serial routing pattern with list builder – name and expression 158

Participant identification type – users 158
Participant identification type – groups 159
Participant identification type – application role 159

Serial routing pattern with list builder – approval group 159
Serial routing pattern with list builder – management chain 160
Serial routing pattern with list builder – job level 160

Modifying participant lists using list modification 162
Substituting participants using list substitution 162

Serial routing pattern with list builder – position 163
Serial routing pattern with list builder – supervisory 164
Serial routing pattern with list builder – rules 165

Single routing pattern 165
Single approver pattern with list builder – name and expression 166
Single approver pattern with list builder – approval group 166
Single approver pattern with list builder – management chain 166

Notify/FYI pattern 166
FYI approver pattern with list builder – job level 167
FYI approver pattern with list builder – name and expression 167

Task aggregation pattern 167
Dispatching pattern 170
Escalation pattern 171
Rule-based reassignment and delegation pattern 172
Ad hoc routing pattern 173
Request information feature 175
Reassignment and delegation pattern 177
Force completion pattern 178

Enabling early completion in parallel subtasks 180
Routing rule pattern 180
Deadlines 182
Escalation, expiry, and renewal feature 186
Exclusion feature 190
Error assignee and reviewers 190
Notifications 192

Table of Contents

[v]

Configuring driver properties and attributes 193
Configuring the notification definition 194

Content access policy and task actions 196
Enterprise content management for task documents 197
Summary 199

Chapter 5: Interaction Patterns 201
Defining use cases to demonstrate interaction patterns 202

The BackOffice process 202
The Loan origination process 203
The CatchFraudDetails and Feedback processes 203

Conversation pattern 207
Asynchronous interaction pattern 211

Interacting with an asynchronous process using the Message
Throw and Catch events 213
Interacting with an asynchronous service using the Message
Throw and Catch Events 216
Enabling external services interaction 217
Interacting with an asynchronous process and service using Send
and Receive Tasks 219
Attaching boundary events on Send and Receive Tasks 221
Interacting with a process defined with Receive Task as a start activity 222

Synchronous request-response pattern 224
The business catalog 226

Subprocess interaction patterns 227
Reusable process interaction pattern 229
Use case scenario for reusable process interaction pattern 231

Embedded subprocess interaction pattern 232
Interrupting a boundary event 234

Boundary event on an activity 234
Event-driven interaction pattern 236

Defining an event-based interaction pattern scenario 238
Summary 240

Chapter 6: Correlation Patterns 241
Correlation mechanism 242

Types of correlations 242
Components of correlation 243
Configuring the environment 244
Defining correlation properties 246
Defining correlation keys and configuring the correlation definition 247
Understanding the correlation behavior 249

Table of Contents

[vi]

Message-based correlation pattern 250
Testing the message-based correlation pattern 256

Cancel instance pattern 258
Understanding the components 259
Testing cancelation pattern 261
Restart instance pattern 262

Testing the Loan Origination process to restart a loan 263
Testing the restart scenario 264

Update task pattern 266
Demonstrating the update task functionality 268

Query pattern 268
Testing the query pattern 270

Suspend process pattern 272
Suspend activity pattern 274
Cancel activity pattern 275

How a boundary event based activity correlation works 276
Testing the cancelation pattern on an activity 277

Summary 278
Chapter 7: Exception Handling Patterns 279

Classifying exceptions 280
Business process state 281
Reassigned Exception Handling Pattern 284
Allocated Exception Handling Pattern 285

Changing the Boundary Catch Event from Interrupting
to Noninterrupting 289

Force-Terminate Exception Handling Pattern 292
Force-Error Exception Handling Pattern 293
Force-Complete Exception Handling Pattern 295
Invoked Exception Handling Pattern 296
Invoked State Exception Handling Pattern 297
Continue Execution Exception Handling Pattern 299
Force-Terminate Execution Exception Handling Pattern 302
Force-Error Execution Exception Handling Pattern 303

Allocated state – External Exception Handling Pattern 304
Implementing Allocated state – External Exception Handling Pattern 306

Allocated state – Internal Exception Handling Pattern 309
Implementing Allocated state – Internal Exception Handling Pattern 309

Reallocated Exception Handling Pattern 313
External Exception Handling Pattern 314
Process-Level Exception Handling Pattern 314

Implementing Process-Level Exception Handling Pattern 315

Table of Contents

[vii]

Testing Process-Level Exception Handling Pattern 317
System-Level exception handling pattern 318
External Triggers 318
Summary 319

Chapter 8: Adaptive Case Management 321
Defining adaptive case management 322

Case 323
Case management 323
Dynamic case management 323
Mechanism of adaptive case management 324
Process versus case 325
Case management offerings 325
The building blocks of adaptive case management 327

Exploring ACM use case scenarios 329
The building blocks of the Insurance Claim use case 332
Testing the use case 333

Case stage 336
Event pattern 338
Milestone pattern 341
Case interaction pattern 344
Localization feature 345
Holistic view pattern 346
Ad hoc feature 348

Ad hoc inclusion of stakeholders 349
Ad hoc inclusion of activities 349
Ad hoc inclusion of documents 350
Association of a case with subcases 350
Ad hoc inclusion of rules and activities 351

Summary 352
Chapter 9: Advanced Patterns 353

Strategic Alignment Pattern 354
The Value Chain Model 357
The Strategy Model 361
Mapping goals to an organization 363
Defining KPIs in a BPMN project 363
Defining KPIs in a BA project 365

Defining KPIs in a child Value Chain Model 365
Defining KPIs in the master Value Chain Model 368

Publishing report data 370
Capturing the business context 372

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[viii]

Emulating Process Behavior 377
The Debugger feature 381
Round Trip and Business-IT Collaboration 383
Summary 392

Appendix: Installing Oracle BPM Suite12c 393
Installing JDK 393
Installing BPM suite 394
Configuring the default domain 397
Enabling the demo user community 399
Custom domain creation 402
The BPM/SOA configuration 407
Summary 412

Index 413

Preface
This book demonstrates the perceptible regularity in the world of BPMN design
and implementation while diving into the comprehensive learning path of the
much-awaited Oracle BPM modeling and implementation patterns, where, the
readers will discover the doing rather than reading about the doing and this book,
Oracle BPM Suite 12c Modeling Patterns, effectively demonstrates the doing. The
scope of this book covers the patterns and scenarios from flow patterns to strategic
alignment (goals and strategy model)—from conversation, collaboration, and
correlation patterns to exception handling and management patterns; from human
task patterns to asset management; from business-IT collaboration to adaptive case
management; and much more.

This book will demystify various patterns that have to be followed while
developing a professional BPM solution. The patterns such as split-join,
multi-instance, loop, cycle, termination, and so on, allow you to drill into
basic and advanced flow-based patterns. The integration, invocation, interaction,
and correlation patterns demonstrate collaboration and correlation of BPM with
other systems, processes, events and services. The human interaction pattern
section leaves no stone unturned in covering task modeling, routing, dispatching,
dynamic task assignment, rule-based assignments, list building, and other advanced
topics. The chapter on Exception Handling Pattern is a comprehensive guide to
model and implement exception handling in Oracle BPM implementation and
design. The chapter on Adaptive Case Management offers detailed information
about patterns handling unstructured data and unpredictable scenarios. The
adaptive case management features and patterns will empower you to develop
a milestone-oriented, state-based, rule-governed, content outbid, event-driven,
and case management solution. Also, the witness patterns bring enhanced and
dynamic business-IT collaboration. Experience the magic of strategic alignment
features, which brings together the requirement and analysis gaps and makes the
organizational activities very much in-line with the goals, strategies and objectives,
KPIs, and reports.

Preface

[2]

This is an easy-to-follow yet comprehensive guide to demystify strategies and
best practices to develop BPM solutions on the Oracle BPM 12c platform. All
patterns are complemented with code examples to help you better discover how
patterns work. The real-life scenarios and examples touch many facets of BPM,
whereas solutions are a comprehensive guide to various BPM modeling and
implementation challenges. Each pattern pairs the classic problem/solution format,
which includes signature, intent, motivation, applicability, and implementation,
where implementation is demonstrated via a use case scenario along with a BPMN
application with each chapter.

What this book covers
Chapter 1, Flow Control Patterns, covers the basic flow control patterns in BPMN.
This chapter offers an exemplary and comprehensive exposure to flow control
patterns that are helpful in modeling and implementing BPMN solutions. During
the course of modeling from "As-Is" to "To-Be" process, a process analyst models,
designs, drafts, and publishes a sequence of activities and their flow control. This
chapter starts off by showcasing the essentials of flow control patterns. This chapter
explains converging from conditional and unconditional sequence flow to simple
and parallel split and merge; later, the flow in this chapter expands to multi merge
and transitioning patterns. Then, there is a comprehensive guide to patterns such as
the partial join and discriminator patterns.

Chapter 2, Multi-instance and State-based Patterns, discusses a set of patterns that
will demonstrate how processes can handle batch jobs and simultaneously spawn
multiple work item instances in a process. This chapter simplifies the usage of loop
characteristics while showcasing multi-instance perspectives. This chapter emphasizes
on developing solutions for use cases with multi-instance requirements with design
time and run time knowledge. This chapter further covers iteration patterns by
demonstrating structured loop and unstructured looping mechanism. Then, implicit
and explicit termination patterns will showcase the termination pattern.

Chapter 3, Invocation Patterns, gives an insight into the various discrete mechanisms
to initiate processes and this chapter covers various patterns that illustrate these
discrete invocation patterns. Process interfacing offers other processes, services,
and external systems to communicate with BPM processes. This chapter uncovers
process interfacing with queues, services, and processes by exposing different
operations which external systems can interact with.

Chapter 4, Human Task Patterns, discusses the patterns and features that offer
formalized best practices and solutions for the commonly occurring issues and
challenges that allow process analysts, developers, and designers to build solutions
to bring in human intuition in the process. This chapter discusses various task flow

Preface

[3]

patterns and also demonstrates working with complex task flow. This chapter also
demonstrates the inclusion of business rules to build a dynamic participant list. This
chapter covers patterns that allow you to explore the feasibility to build a participant
list statically, dynamically, or based on rules. The task assignment patterns section
demonstrates how tasks are assigned statically, dynamically, or based on rules to
the participants. The ad hoc assignment patterns, delegation patterns, and escalation
patterns give depth to the chapter. The various other advanced features such as
exclusion, notification, ECM integration, access policy, and so on are covered in
detail along with elaboration on routing patterns, delegation, and so on.

Chapter 5, Interaction Patterns, discusses how processes interact and integrate with
other systems, processes, and services and how these interactions are facilitated
by various interaction patterns. This chapter includes various patterns that help
to communicate with other processes, systems, and services. This chapter focuses
on patterns that facilitate collaborative interaction of process with other processes,
service, events, and signals.

Chapter 6, Correlation Patterns, showcases patterns that offer solutions to scenarios
where processes need to be interrupted on the fly and sometimes need to be
cancelled. The solution to a scenario where a task needs to be changed and/or
updated in an in-flight process or cases such as querying an in-flight process. This
chapter also uncovers all those patterns that need to interact with an in-flight process
and also will explain how we can relate processes and associate a message with the
conversation that it belongs to. The much awaited 12c features include suspending
process and activities. These are elaborated in the chapter along with various other
patterns to cancel, update, and query a process or activity.

Chapter 7, Exception Handling Patterns, focuses on demystifying various Exception
Handling Patterns. This chapter focuses on exception classification, exception
propagation, exception handling mechanism, and fault management framework.
This chapter explains the strategies of how exceptions are handled in Oracle BPMN
with detailed coverage of the fault management framework. We will examine the
handling of exceptions in tasks, subprocess, and processes while covering different
categories of faults. We will also cover modeling for exception handling and various
modeling best practice while taking care of exception handling. Though the chapter
is focused on exception handling patterns, it covers various exception handling
mechanisms, their implementation, and usage in Oracle BPM.

Preface

[4]

Chapter 8, Adaptive Case Management, focuses on the case management framework
that enables building case management applications, which comprise business
processes, human interaction, decision making, data, collaboration, events,
documents, contents, rules, policies, reporting, and history. This chapter
demonstrates the inclusion of human intuition, empowered case, knowledge
workers, collaborative decision-making, enhanced content management, and
social collaboration. This chapter elaborates on Oracle Adaptive Case Management
solution and in the course of learning it, one can explore various patterns and
features that enable designers, developers, and analysts to model case management
solutions and bring in agility, true dynamism, collaborative decision making, and a
360-degree holistic view of the case. This chapter also covers milestone patterns, case
framework, event patterns, localization, case states, case interaction patterns, holistic
view, and ad hoc features.

Chapter 9, Advanced Patterns, covers patterns in analysis and discovery category,
where alignment patterns demonstrates features such as analyze, refine, define,
optimize and report, and business processes in the enterprise. Alignment patterns
highlight how IT development and process models can be aligned with organization
goals while performing alignment, learning enterprise maps, strategy models, value
chain models, KPIs, and reports. This chapter will also show how to create different
reports based on the information documented in the process such as RACI reports,
and so on. This chapter heavily focuses on demonstrating round trips and business
IT collaboration, which facilitates storing, sharing, and collaborating on process
assets and business architecture assets. This chapter also focuses on creating a
collaborative ecosystem for business and IT and a detailed analysis of PAM methods
to emulate the process behavior.

Appendix, Installing Oracle BPM Suite12c, gives us a brief introduction to the
technology used in the book and also lists the steps to install Oracle BPM.
Perform the steps given in this appendix to install Oracle BPM 12c to implement
the use cases demonstrated for each pattern in this book.

What you need for this book
To explore modeling and implementation patterns and various features of BPM
12c through recipes in this book, you need the following software installed in your
development environment:

• JDK 1.7.0_15 or higher
• Oracle BPM Suite Downloads 12c (12.1.3)
• Oracle Database XE (11g)

Preface

[5]

The detailed steps to set up the environment are included in Appendix, Installing
Oracle BPM Suite12c.

The important considerations that should be taken care of are as follows:

• Tool/IDE JDeveloper 12c to develop solutions should be a part of the 12c
BPM installation

• The installation document (Appendix, Installing Oracle BPM Suite12c)
contains two methods to install the database; follow the one that suits
your development requirements the most. It's a quick installation guide.

Who this book is for
This book is an invaluable resource for enterprise architects, solution architects,
developers, process analysts, application functional and technical analysts,
consultants, and all those who use business process and BPMN to model and
implement enterprise IT applications, SaaS, and cloud applications. The primary
focus is to showcase BPM patterns which are generic and can be read by anyone
allied with any BPM offering. Hence, if you are associated with BPMN, you can
relate to this title.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This is a static approval group defined in the BPM workspace with users
(Christine, salesrep, Jim, and Kim)."

A block of code is set as follows:

If Discount < 10% then
Process performs other activity and process ends.
Else-if Discount > 50%
Accept Quote task is revisited by salesrep user.
Else-if Discount > 10% and Discount < 50%
Sales Manager Approval task is initiated.

Preface

[6]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Now, click on the sequence flow with the Deal or Terms Reject tag and
check its properties."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.packtpub.com/authors
http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[7]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com

Flow Control Patterns
A pattern is a generic solution to a recurring problem. Patterns describe a
problem and its solution, which can be adopted in discrete situations. Patterns
are adorned best practices that deliver a reusable architecture outline. Business
Process Management (BPM) is widely adopted for process transparency, process
intelligence, business empowerment, and business alignment. While designing
business processes, we are not just automating and managing processes; it's more
about how an enterprise adapts to a comprehensive view of business processes.

This chapter offers an exemplary and comprehensive exposure to flow control
patterns, which are helpful in the modeling and implementation of Oracle BPM 12c
solutions. During the journey, it will walk you through various BPM patterns based
on real-life examples. The book offers projects to download with each chapter; these
projects allow you to design, model, and analyze the patterns discussed in each
chapter. Hence, it offers an interactive way to learn and implement BPM patterns.
It allows you to fill the gaps and offers content that allows you to use BPMN to its
full potential.

Process analysts, architects, and process developers deal with process modeling,
define and design process models, and implement them. While performing process
modeling and implementing them, they constantly deal with varied common
challenges. Process modeling and BPM patterns offer techniques to solve repeatable
issues, enhance the process-modeling approach, improve process modeling and
implementation quality, and offer great productivity.

www.allitebooks.com

http://www.allitebooks.org

Flow Control Patterns

[10]

This chapter covers the basic and advanced flow control patterns in Oracle BPM.
Perceptible regularity in the world of process control flow is demonstrated here.
During the course of modeling from the "As-Is" to "To-Be" process, a process analyst
models, designs, drafts, and publishes a sequence of activities and their flow control.
This chapter starts off the book by showcasing the essentials of flow control patterns.
Flow control patterns capture the various ways in which activities are represented and
controlled in workflows. Implementing these patterns gives Oracle BPM the capability
to handle the widest range of possible scenarios to model and execute processes.

This chapter will focus on the flow control patterns in the following points:

• Sequence flow pattern
• Exclusive choice and simple merge pattern
• Multichoice and synchronizing merge pattern
• Structured synchronizing merge pattern

 ° Local synchronizing merge pattern

• Parallel split and synchronization pattern
• Conditional parallel split and parallel merge pattern
• Multimerge pattern
• Discriminator and partial join pattern

 ° Structured discriminator pattern
 ° Structured partial join pattern

• Complex synchronization pattern
 ° Canceling discriminator pattern
 ° Canceling partial join pattern

Sequence flow pattern
One of the fundamental steps in the BPM process modeling is to build a process
model (diagram) which enables a shared understanding between participants
on a process flow pattern. The process participants are not going to discuss each
and every page of the document, neither will a collaborative, iterative process
improvement or approach succeed with a group of people sitting and walking
through documents. However, this group will be interested in a process model
(diagram) and discuss the flow, sequence, and process patterns visible through the
process model. This makes sequence flow patterns of paramount importance, as each

Chapter 1

[11]

and every activity is related to the other. In a process diagram, this relationship is
created and managed through sequence flows. The following table summarizes the
details of the sequence flow pattern:

Signature Sequence Flow Pattern

Classification Basic Flow Control Pattern
Intent Offers sequence routing.
Motivation The fundamental constituent to weave process components

and demonstrate dependency and state transition between
tasks/activities.

Applicability The sequence pattern enforces a transitive temporal ordering
to process activities. In business terms, sequences denote a
strong dependency between activities and cater to strictly
separating process involvement at organizational boundaries.
They define the behavior of a business process.

Implementation Widely adopted in most of the modeling languages including
Oracle BPMN.

Known issues Difference in acceptance.
Known solution Usage of tokens in process instances.

The sequence is the simplest pattern and is implemented through a graphical sequence
of actions, as graphical form is used for the sequencing of patterns. In BPMN, the
model elements that are to be executed in sequence are connected with sequence flow
connectors. When activities are connected with sequence flow connectors, processing
of the second activity will not commence before the first activity is completed. This
pattern defines the dependency of one task on the other and governs the fact that
execution of one task is dependent on the other and cannot be completed until that
task gets completed. Ordering of tasks in a business process is determined by sequence
flow, and it governs how the process token will flow through the process. With
sequence pattern, you can create a series of consecutive tasks, which are executed one
after another based on the sequence connector's connections.

Categories: The sequence flow can be categorized as follows:

• Incoming sequence flow: This refers to flow that leads into a flow object
• Outgoing sequence flow: This refers to flow that leads out of a flow object

Some activities/flow objects can have both the sequence flows, and most of the
activities/objects in a process have them. However, the start object can only
contain an outgoing sequence flow and the end object can only contain an incoming
sequence flow.

Flow Control Patterns

[12]

There are different types of sequence flows which are as follows:

• Default sequence flow/unconditional sequence flow
• Conditional sequence flow

Working with the sequence flow pattern
Perform the following steps to check the sequence flow usage in action:

1. Download the application (SalesQuoteDemo) contained in the download
link of this chapter.

2. Open SalesQuoteProject in JDeveloper 12c.
3. Open SalesQuoteProcess; this will open the process flow in the design area.
4. Go to Approvers Swim lane and click on Exclusive Gateway

(ApprovalsOutcome) that works on the ApproveDeals and ApproveTerms
outcomes. The process is shown in the following screenshot:

Chapter 1

[13]

5. Click on the outgoing sequence flow with the Approve tag. In the properties,
you will find that the type of sequence flow is Unconditional. This is the
default sequence flow from the Exclusive Gateway.

6. Now, click on the sequence flow with the Deal or Terms Reject tag and
check its properties.

7. The sequence flow type is Condition, and it has a conditional expression
build. When this conditional expression returns true, the process token
will take this sequence flow path. This is shown in the following screenshot:

8. Click on the sequence flow with the OnlyDealsApproved tag and check
its properties. This sequence flow is also a conditional flow with the
following expression:
DealapproverAppr ovalStatus == "APPROVE" and
termsapproverApprovalStatus == "REJECT"

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Flow Control Patterns

[14]

Elucidating the sequence flow pattern
The conditional sequence flow governs the token movement based on conditions
associated with the sequence flows, where conditions are expressed using the x-path
expressions. A path that is taken out of the gateways when none of the conditions
specified on the conditional flow is evaluated. This is termed as default sequence
flow, and it's drawn as an arrow line with a tick mark at one end.

Upon the arrival of token at the gateways, conditions associated with the drawn
sequence flows are evaluated, and that sequence route is picked whose conditional
evaluation returns true. Then, the token starts trailing this path. However, if none
of the evaluations of the conditional flow returns true, then the default route
is picked.

Conditional sequence flows can be associated with exclusive
and inclusive gateways for split.

Getting ready for executing use cases
This section talks about the steps that we will perform to get ready to execute the
use cases demonstrated in this chapter. As we check SalesQuoteProcess, there are
various human tasks. The following is the list of roles associated with the human
task and users associated with the role:

Task Role User
Accept Quote Salesrep salesrep

Business Review Business practice fkafka

Approvers Approvers jcooper

Contracts Contracts jstein

We have to perform the following steps to execute the processes that have
human task:

1. Log in to the WebLogic console and navigate to myrealm (embedded LDAP).
2. Click on the User and Group tab.
3. Verify that we have the aforementioned listed users in myrealm. If not, we

can create users (salesrep, fkafka, jcooper, and jstein) in myrealm.

Chapter 1

[15]

If we execute demo community that is installed while configuring
Oracle BPM 12c, we will get users (fkafka, jcooper, and jstein).
However, we can follow the preceding steps and create a user
(salesrep).

4. Open JDeveloper and navigate to Organization in SalesQuoteProject.
5. Click on Roles and associate users to roles as listed in the preceding table.

Save the changes.

Human tasks are executed with respect to organization units. Hence, we will create
an organization unit and associate the users to it. We will also make sure that the
organization unit is passed to the process when the process executes. Execute the
following steps:

1. Log in to the Oracle BPM workspace as an admin user (weblogic).
2. Navigate to Administration | Organization | Organization Units.
3. Click on the + icon to create a root organization.
4. Enter the name of the organization as SalesOrg.
5. In the Members section, add the users we listed in the preceding table.

To add users, we can browse the myrealm LDAP.
6. When users are added, we can save the changes. This process is shown

in the following screenshot:

Flow Control Patterns

[16]

7. Go back to JDeveloper and open SalesQuoteProcess.
8. Click on the Message Start Event (Start) and open its properties.
9. Go to the Implementation tab and open data association.
10. On the right-hand side of data association, scroll to the predefined variable

(Organization Unit).
11. Assign the newly created organization units, SalesOrg, to the predefined

variable (Organization Units) and save the project. This is demonstrated in
the following screenshot:

Exclusive choice and simple merge
pattern
In this section, we will uncover the exclusive choice and simple merge pattern.
It's also known as the exclusive choice pattern.

The control points in the process flow, where the sequence flows converge or diverge
are known as gateways. There are different types of gateways, each supporting
specific control logics. The gateway types are indicated with a marker in the center
of the gateway symbol. Gateways can split and/or join (merge) sequence flows. You
need gateways to control the process flow. A gateway is used to model decisions,
merges, forks, and joins on a BPMN business process diagram. An exclusive gateway
in Oracle BPMN offers simple split and merge patterns. An exclusive gateway

Chapter 1

[17]

(represented by XOR) evaluates the state of the business process and based on the
condition, breaks the flow into one of the two or more mutually exclusive paths.
This is how the name "mutually exclusive" got derived. The exclusive gateway splits
the process into multiple paths, but the token follows only one path. The following
table illustrates the details of the exclusive choice pattern:

Signature Exclusive Choice Pattern
Classification Basic Flow Control Pattern
Intent Breaks the flow into one of the two or more mutually exclusive paths.
Motivation Fundamental constituent to enable dynamic routing decision.
Applicability Decision point in the business process where the sequence flow

will take only one of the possible outgoing paths when the process
is performed.

Implementation Widely adopted in most of the modeling languages, including Oracle
BPMN, as the XOR gateway.

Known issues Enforcing accuracy in triggering an outgoing path.
Known solution Based on the evaluation of the conditions associated with the

outgoing sequence flows from the gateway, routes are determinate. In
case of multiple outgoing sequence flow, it is always a best practice to
associate an order of their evaluation, as this will enable the fact that
in case of multiple conditions getting evaluated as true, the process
token will route to the first sequence flow for which the evaluation
is true.

The decision mechanisms are categorized as follows:

• Data: An example of data is conditional expression. The conditional
expressions are evaluated at the gateway when the process token reaches the
gateway. That path whose evaluation result is true is followed, and it can
route to only one flow

• Events (for example, the receipt of alternative messages): An event-based
XOR gateway represents a divergence point where the alternatives paths are
picked based on the event that occurs at that instance in the process flow.
The event could be a receipt of message or a timer event. In an event-based
gateway, it's the events that determine the path to be taken and not the
conditional evaluations. The process becomes dynamic as process divergence
is based on the external system's interaction with the process.

Flow Control Patterns

[18]

Working with exclusive choice and simple
merge pattern
In order to evaluate the data-decision mechanism, refer to SalesQuoteProcess
associated with the project (you have referred to it in the Working with sequence flow
pattern section). Check the Approvals Outcome exclusive gateway, as shown in the
following screenshot.

There are three outgoing sequence flows from the Approvals Outcome exclusive
gateway. Two are conditional and one is default, as we discussed in The Sequence
flow pattern section. Hence, these sequence flow conditions are based on the values
of process data, the value of the data token itself, to determine which path should be
taken. An order of evaluation is associated with the Approvals Outcome exclusive
gateway, as this will enable the fact that in case of multiple conditions getting
evaluated as true, the process token will route to the first sequence flow for which
the evaluation is true. The following screenshot demonstrates this process:

Open the ExclusiveChoice&SimpleMerge process in JDeveloper 12c to evaluate the
event-based gateway.

Chapter 1

[19]

The use case illustrated in the preceding screenshot elucidates that quote processing
can happen for both, New Quote Application and Existing Quote Application. In
this case, use an event-based gateway, as there are multiple types of messages or
events that can start a business process. The SalesReqApprovalTask human task is
associated with the salesrep role, and we already assigned a user (salesrep) to this
role. Hence, when the process executes the task, it will get assigned to the salesrep
user, as shown in the following screenshot:

The following are the facts about the use case:

• Quote Processing is an initiating type of event-based gateway.
NewQuote Application and ReQuoteApplication will catch the
event messages. SalesReqApprovalTask is a task to be performed
by the sales representative.

• QuoteApproval is the decision point based on process data which is
the outcome of the user task (SalesReqApprovalTask) performed by
the sales representative.

• ReceivingQuoteSignedDocs is a non-initiating event-based gateway.
• QuoteDocsReceived is a Message Catch Event, while the DocsNotReceived

timer will move the token flow if documents are not received in 3 days.

www.allitebooks.com

http://www.allitebooks.org

Flow Control Patterns

[20]

• OtherActivity is a drafted process that performs further quote processing.
The correlation key is designed and associated with all the event messages
(NewQuoteApplication, ReQuoteApplication, and QuoteDocsReceived).
This is demonstrated in the following screenshot:

When the process initiates, it would either initiate for a new quote or an existing
quote. If initiated for a new quote, it would be caught by the NewQuoteApplication
event message. If initiated for an existing quote, it would be caught by the
ReQuoteApplication event message, as shown in the following screenshot:

Chapter 1

[21]

Test the process for the NewQuoteApplication event message by performing the
following steps:

1. Open EM Console and click on the SalesQuoteProject project.
2. Execute ExclusiveChoiceSimpleMerge.service to execute the

ExclusiveChoice&SimpleMerge process.
3. Select the NewQuoteApplication operation. As we can see in the preceding

screenshot, ExclusiveChoiceSimpleMerge.service exposes multiple
operations, which are essentially the event gateway's Message Catch Events.

4. Browse through the ExclusiveChoiceSimpleMerge.xml test data file in the
project by navigating to SalesQuoteProject | SOA | testsuites.

5. Execute the process instance.
6. Log in to the BPMN workspace as a salesrep user and APPROVE the

SalesReqApprovalTask task.

The Quote Processing event gateway initiates the sequence that has the
NewQuoteApplication message event, and the instance reaches the
SalesReqApprovalTask user task. Once the task is approved, we will find that the
process halts at the ReceivingQuoteSignedDocs event gateway. The instance status
will be running, and the token will stay there until a token arrives from any of the
branches. Either the supporting document message will be received, or the waiting
time will exceed three days.

Knowing about the exclusive choice pattern
Events receive communication, and hence, correlation needs to be defined to
correlate them with the main process instance. A quote's opportunity ID is used
as a correlation key. This correlation key is used in the intermediate events to
correlate them with the existing process instance. With the correlation defined for
the intermediate event gateway, the message will be correlated back to the original
instance when it arrives at the QuoteDocsReceived event.

The message flow waits at the ReceivingQuoteSignedDocs event-based gateway,
waiting for a token to arrive from any of its branches. In this case, the token can be
a receipt of an event message or time. The first event triggers one of the alternatives
that is an exclusion of any other path from the gateway. The event will basically pull
the token from the gateway and continue to sequence flow that event.

Flow Control Patterns

[22]

Elucidating the simple merge pattern
We can use exclusive gateway to merge incoming sequence flows; however, there is
no synchronization with other tokens that might be coming from other paths within
the process flow. Simple merge combines several transitions back into a single activity.
Tokens that merge at an exclusive gateway will be passed through as they are, and
they would not be evaluated. Token merging at the exclusive gateway will not be
synchronized. At the converging point, you would never have more than one token.

The following table illustrates the details of a simple merge pattern:

Signature Simple Merge Pattern
Classification Basic Flow Control Pattern
Intent Merging two or more paths.
Motivation Fundamental constituent to enable simple merge.
Applicability Combining several transitions back into a single activity. At

converging point, you would never have more than one token.
Implementation Widely adopted in most of the modeling languages using XOR-Join.
Known issues Token merging at the exclusive gateway will not be synchronized.
Known solution Multimerge.

For example, we have an invoice payment, and there are different ways to pay the
invoice, which include paying through credit card, bank transfer, or check. However,
to make the payment, only one method will be used for an invoice, and once paid,
the data need to be infused into Oracle E-Business Suite ERP. We would always use
only one payment method. This is an ideal candidate for a simple merge using an
exclusive gateway.

Multichoice and synchronizing merge
pattern
We can perform simple split and merge with the gateway (inclusive gateway)
offered by Oracle BPMS. It can perform token evaluation and also synchronize the
token merging at the convergence. An inclusive gateway (OR) specifies that one or
more of the available paths will be taken. They could all be taken, or only one of
them will be taken. This capability is also termed Multichoice. Sometimes, you need
to select a subset of alternatives from a set of possible alternatives. This is what the
multiple choice (inclusive) patterns are for. The multiple choice pattern is a point in
the workflow where, based on a decision or control data, one or more branches are
chosen, triggering one or more paths of the process.

Chapter 1

[23]

An inclusive OR merge is simply an OR gateway that is used to merge multiple
sequence flows into one outgoing sequence flow. Each outgoing sequence flow from
the gateway will have a Boolean expression that will be evaluated to determine
which sequence flow should be used to continue the process. The downstream
inclusive gateway is used to merge the paths created by the upstream inclusive
gateway. The downstream inclusive gateway synchronizes all the alternative paths
created by the multiple choice gateway. The following table shows details of the
multichoice pattern:

Signature Multichoice Pattern
Classification Advance Flow Control Pattern
Intent Breaks the flow into one of the two or more mutually exclusive paths.
Motivation Fundamental constituent to enable selection of a subset of alternative

paths from a set of possible alternatives.
Applicability Decision point in the business process where the sequence flow will

take one or more of the possible outgoing paths.
Implementation Widely adopted in most of the modeling languages using the

OR split.
Known issues Ensure at least one path selection.
Known solution Inclusive gateway splits the process at the divergence; however,

process tokens can advance to multiple outgoing flows/paths.
Sequence flow is picked based on the conditional evaluation where a
token is generated for each flow for which the condition is evaluated
as true, otherwise, a default sequence flow is picked. The solution is
the default path.

Demonstrating multichoice and
synchronization with the OR gateway
Download SalesQuoteProject from the download link of this chapter. Open the
project in JDeveloper. Open the SalesQuoteSimpleMerge process. The process accepts
QuoteRequestData and waits for the sales representative's approval, which will be
performed by the salesrep user (we already created a salesrep user in WebLogic
myrealm in the previous section). Deploy the process to a WebLogic server.

Let's consider an example scenario. In this business process (SalesQuoteProcess),
after SalesQuoteApprovalTask, the approval request also needs to be sent to
Legal and Terms for approval. Once Legal and Terms approve, other activities are
performed over Quote.

Flow Control Patterns

[24]

When Legal and Terms act on the task, the gateway will merge them,
and the process will move ahead. Perform the following steps to test the
SalesQuoteSimpleMerge process:

1. Test the process from EM or use SOAPUI.
2. Enter the QuoteRequest elements and submit QuoteRequest. We can use the

test data (SalesQuoteSimpleMerge.xml) available in the testsuites folder
in the project.

3. We will notice that the process token is waiting at SalesQuoteApprovalTask
to be acted upon by the salesrep user.

4. Log in to the BPM workspace at http://<server>:<port>/bpm/workspace
as a salesrep user and approve the QuoteRequest.

We will find that the process token will reach both the user tasks, Legal and Terms,
for approval. There will be two threads created to process the LegalApproval and
TermsApproval tasks and both will be in the processing mode.

As per the process design, both these tasks will again be assigned to the salesrep
user. You can customize the sample and associate different users for Terms and
Legal approval. For the moment, log in to the BPM workspace again as the salesrep
user and approve the legal task. You will find that in the process, the thread
processing the LegalApproval task is completed, while the thread processing the
TermsApproval task is still processing.

As we can check in the following screenshot, the process flow shows the point
where the process token is awaiting. The audit trail on the left-hand side showcases
the snapshot when the Legal task is approved; however, the Terms task is not
being acted upon by the salesrep user. We will notice that for both the tasks
(Legal and Terms), there are two separate threads for processing. Even though the
Legal task is approved, the process token waits at the merge inclusive gateway
(MergeQuoteApproval). Log in back to the BPM workspace as the salesrep user
and approve the Terms tasks. In the right-hand side of preceding screenshot, we can
witness that once both tasks are acted upon by the user, the process token converges
at the inclusive gateway (MergeQuoteApproval), and the process moves ahead to
subsequent activities. This is shown in the following screenshot:

Chapter 1

[25]

Flow Control Patterns

[26]

The working of multichoice and
synchronization pattern
The process token will diverge to that sequence flow for which the conditional
expression gets evaluated as true, and if not, then it routes to the default
sequence flow.

In the preceding sample process, the sequence flow from the inclusive gateway's
divergence is Conditional and is based on the approval status from the
SalesQuoteApprovalTask user task.

Run another test of the same process and reject the SalesQuoteApprovalTask.
You will find that the token passes along the default sequence flow, as the other
two sequence flows have not been evaluated as true.

Similar to the exclusive gateway, the inclusive gateway also splits the process at
the divergence; however, the process tokens can advance to multiple outgoing
flows/paths. The sequence flow is picked based on the conditional evaluation
where a token is generated for each flow for which the condition is evaluated as
true; otherwise a default sequence flow is picked. The tokens are merged at the
convergence, which can be an inclusive gateway.

Structured synchronizing merge pattern
Synchronizing merge, also known as structured synchronizing merge, is implemented
using the inclusive gateway in Oracle BPMS. When the inclusive gateway is used
downstream, it is used to merge the paths created by the upstream inclusive gateway.
The downstream inclusive gateway synchronizes all the alternative paths created by
the multiple choice gateway (inclusive gateway in the upstream). The following table
shows details of the structured synchronizing merge pattern:

Signature Synchronizing Merge Pattern
Classification Advance Flow Control Pattern
Intent Merging and synchronizing two or more paths.
Motivation Fundamental constituent to enable structured synchronizing

merge.
Applicability An ordered merging of all the previous activations of the

divergence point and then to synchronize them.

Chapter 1

[27]

Implementation Widely adopted in most of the modeling languages using OR-
Join. All of the tokens associated with a multichoice divergence
point must reach the structured synchronizing merge before
they can fire. In the case of structured synchronizing merge,
there will be a single multichoice divergence point, and the
structured synchronizing point will merge all the paths from
that particular multichoice divergence point.

Known issues Arbitrary loops in complex process models.
Known solution General synchronizing merge.

Perform the following steps to execute the SalesQuoteSimpleMerge process from
EM Console, as we did in the previous section:

1. Log in to the Oracle BPM workspace as a salesrep user and approve
SalesReqApprovalTask. As per the process design, the Legal and Terms
tasks will also gets assigned to the salesrep user.

2. Being logged in as the salesrep user, approve the LegalApproval task.
3. Check the status of the process in EM; it would be in the running state.

The following are the observations:

• Tokens wait at the merge gateways till all the tokens from the multichoice
split have converged to the merge point. When all the tokens arrive, the
merge gets completed, and then, the process can advance to subsequent
activities/tasks.

• Inclusive gateways are used when you need an ordered execution of all the
previous activations of the divergence point (inclusive gateway) and then to
synchronize them using a convergence element (exclusive gateway).

Local synchronizing merge pattern
The following table shows details of the local synchronizing merge pattern:

Signature Local Synchronizing Merge Pattern
Classification Advance Flow Control Pattern
Intent Merging and synchronizing two or more paths.
Motivation Fundamental constituent to enable the local synchronizing

merge.
Applicability An ordered merging of all the previous activations of the

divergence point/points and then to synchronize them.

Flow Control Patterns

[28]

Implementation Widely adopted in most of the modeling languages
using OR-Join. All of the tokens associated with
multichoice divergence point/points must reach the local
synchronizing merge before it can fire.

Known issues Determining the number of branches that need
synchronization.

Known solution Local synchronizing merge will determine it on the basis of
local data, for example, threads of the control that arrive at
the merge.

The parallel split and synchronization
pattern
The parallel gateways are points in the process where multiple parallel paths are
defined and they are also used to synchronize (wait for) parallel paths.

Parallel gateways represent concurrent tasks in business flows, and a fork gateway is
always accompanied by a join gateway, where a fork gateway illustrates concurrent
flows and expresses the fact that all outgoing paths must be pursued. On the other
hand, a join synchronization gateway mandates that all the concurrent paths must be
completed ahead of process advancement to subsequent tasks/activities.

A fork divides a path into two or more parallel paths and this is known as an AND
split. It's the point in the process flow where activities can be performed concurrently
rather than sequentially. In an OR gateway, one or another path is taken; however, in
an AND gateway, a single thread of execution will be split into two or more branches
that can execute tasks concurrently. For example, once an employee's on-boarding
process has started, then enter the employee's information in the ERP system and
also start the process for the provision of e-mail IDs, stationary, desk allocation,
and so on in parallel.

Parallel split pattern
The following table shows the details of the parallel split pattern:

Signature Parallel Split Pattern
Classification Basic Flow Control Pattern
Intent Breaks the flow into one of the two or more paths that execute

concurrently.
Motivation Fundamental constituent to the concurrent execution of two or

more paths.

Chapter 1

[29]

Applicability Decision point in the business process where all the outgoing paths
must be pursued.

Implementation Widely adopted in most of the modeling languages using the AND
split. When many activities have to be carried out at the same
time and in any order, AND splits (parallel split) can be used to
fork the concurrent flow where two or more concurrent threads
independently process the activities (gateways, events, and so on)
that reside on the corresponding control flow branches.

Known issues NA
Known solution NA

Synchronization pattern
The following table shows the details of the synchronization pattern:

Signature Synchronization Pattern
Classification Basic Flow Control Pattern
Intent Synchronize paths that exit a parallel split.
Motivation To synchronize the flow from multiple parallel branches. Parallel join

merge exactly one thread from each incoming branch into a single
thread on the outgoing branch by converging the threads of all the
parallel branches.

Applicability Merge point to synchronize the parallel paths. The AND join to be
symmetrically paired up with a corresponding upstream AND split.

Implementation Widely adopted in most of the modeling languages using the AND
join.
Accepts multiple incoming sequence flow and blocks the sequence
until all activities within the flows are completed; then, the flow
continues. Till the concurrent tokens are not synchronized, multiple
incoming sequence flows are blocked. Upon synchronization, one
token is passed out of the merge gateway's outgoing flow.

Known issues Nonavailability of a token at the AND join that got created from the
AND split.

Known solution The solution lies in how meticulously the process is modeled, and it's
anticipated that the issue will not arise in a structured context.

www.allitebooks.com

http://www.allitebooks.org

Flow Control Patterns

[30]

Design consideration by modelers is taken into account if you really
need parallel processing, that is, whether, in reality, the distinct
branches are executed in parallel.

Navigate to SalesQuoteDemo | SalesQuoteProject | ParallelSplitSynchronization
process. When the sales quote is initiated, it halts for quote acceptance by the
salesrep user at the ApproveQuote user task. Once it is approved, it's reviewed
by business practice, and on approval from the fkafka user, the token reaches
the parallel gateway, which is the divergent fork point. Both DealsApproval and
TermsApproval need to be performed in parallel, and hence, the choice was a
parallel gateway to diverge the flow. This is discussed in the following bullet points:

1. Click on Organization Unit in the project to verify the user assignment to
the roles. We will make sure that the user assignment to roles should happen
based on following table:

Task Role User
Accept Quote Salesrep salesrep

Business Review Business practice fkafka

Approvers Approvers jcooper

Contracts Contracts jstein

2. If not already deployed, deploy SalesQuoteProject.
3. Log in to EM console or use any tool of choice to execute

the ParallelSplitSynchronization process using the
ParallelSplitSynchronization.xml test data available in the testsuites
folder in the project.

4. Log in to the Oracle BPM workspace as the salesrep user and approve the
AcceptQuote task.

5. Log in to the Oracle BPM workspace as the fkafka user and approve the
Business Practice Review task.

6. Token has now reached the ApproveDeal and ApproveTerms task.
7. Log in to EM console and check the Audit Trail of the process.

We can find that a group of threads is created for each sequence flow from
the parallel gateway that forks/diverges the path. This is shown in the
following screenshot:

Chapter 1

[31]

Check the process flow using the graphical view of the process in the process audit
trail, as shown in the preceding screenshot. We can analyze that both the paths are
processed in parallel. Execute the following steps:

1. Log in to the BPM workspace as a jcooper user and approve the
ApproveDeal task. We can notice that at the convergence point, that is, at
the join (merge parallel gateway), tokens will be synchronized. Hence, the
process waits for the other token to reach the convergence point, which is the
AND join parallel gateway.

2. Click on the process audit trail in EM for the process. We can witness that
Approve Deal thread is completed, while the other thread for the Approve
Terms is still processing.

3. Log in to the BPM workspace as a jstein user and approve the Approve
Terms task.

4. Once both the tokens arrive at the AND join (Deals&TermsApproval_
Merge) the tokens are synchronized, and one token is passed out of the
merge gateway's outgoing flow.

Flow Control Patterns

[32]

Conditional parallel split and parallel
merge pattern
The conditional parallel split and parallel merge pattern is a part of advance
branching and synchronization. It's similar to parallel split and merge; however,
it is based on conditions, that is, it must follow a conditional transition. This process
is shown in the following screenshot:

Let's consider an example scenario. When the token diverges at the first parallel
gateway, it should perform conditional transition to different parallel tasks as follows:

• ApprovalDeals should be performed only when effective discount is greater
than 10 percent; otherwise, it should converge to the second parallel gateway
without requesting for the deal's approval.

• Similarly, we implement conditional parallel merge based on conditional
transition. For the sake of example, let the equation of conditional transition
be as follows:

 ° Check customer status to find if it's a new or old customer. Converge
to join at the parallel gateway. If the customer is old, you would not
need an approval of deals; however, request for a deal's approval if
the customer is new.

Chapter 1

[33]

• After TermsApproval, if the term approval request status is approved, then
it converges at the join at the parallel gateway. Otherwise, the quote request
can be ended, as shown in the preceding screenshot.

Working with conditional parallel split
and merge
Oracle BPM does not have conditional transitions from the parallel gateway. If we
try to implement a conditional transition outgoing from or incoming to a parallel
gateway, it throws a Parallel Gateway cannot have outgoing Conditional Sequence
Flows error . As we don't have a method to do conditional transition from the parallel
gateway, we can still implement it in combination with the other gateway; in this case,
it's the exclusive gateway (XOR). This scenario would be developed using parallel
gateway in combination with exclusive gateway.

Download SalesQuoteProject from the download link for this chapter and open
ConditionalParallelSplit&Merge. Check the configuration of the outgoing sequence
flows from the parallel split point (ParallelSplit) and incoming sequence flow to the
parallel merge gateway (ParallelSplit).

1. Open EM console and test the ConditionalParallelSplit&Merge process
using the ConditionalParallelSplit&Merge.xml test data available in the
testsuites folder in the project.

2. The test data contains the following data:
Effective discount: 9
Quote request status: Old
Rest all fields can be user choice

3. Log in to the Oracle BPM workspace as a salesrep user and approve the
AcceptQuote task.

4. Log in again to the BPM workspace as a fkafka user to approve the
BusinessReview task.

Flow Control Patterns

[34]

5. Process flow will reach the fork divergent parallel gateway (ParallelSplit) and
would initiate the parallel flow to perform the DiscountCheck, ApproveDeals,
and ApproveTerms task, as shown in the following screenshot:

6. As the effective discount is 9, which is less than 10 percent condition on the
transition flow (<10%), the process will flow at the sequence flow (<10%)
pathway and halts at parallel gateway (ParallelMerge) to get synchronized
at the join convergence parallel gateway.

7. Log in to the Oracle BPM workspace as a jstein user and approve the
ApproveTerms task. Post approval, the token will get synchronized at the
convergent point parallel gateway (ParallelMerge), and the process flow
will move ahead.

A token gets created for each outgoing flow from the split parallel gateway, and
none of the outgoing sequence flows are evaluated as the parallel gateway doesn't
allow for outgoing conditional flow. However, we can use exclusive gateways to
perform conditional transitions. This is not a direct offering of Oracle BPM; however,
we can implement this using a combination of gateways. The parallel merge gateway
waits for all the concurrent tokens to reach it. Until the concurrent tokens are not
synchronized, multiple incoming sequence flows are blocked. Upon synchronization,
one token is passed out of the merge gateway's outgoing flow.

Chapter 1

[35]

Antipattern – the conditional parallel split and
merge
In this section, we will demonstrate the fact that one cannot use conditional parallel
split and merge by just merging some of the gateways. Process modeling needs to be
performed meticulously. Hence, in this book, we are talking about patterns that offer
techniques to solve repeatable issues and enhance the process modeling approach.

We will test the ConditionalParallelSplit&Merge process using the
ConditionalParallelSplit&Merge.xml test data available in the testsuites
folder in the project. However, this time, we will change the effective discount to
any value greater than 10. Let the customer type be old, and keep all other fields as
they are as follows:

• Log in to the Oracle BPM workspace as the salesrep user and then as the
fkafka user to approve the AcceptQuote and BusinessReview tasks.

• Log in to the BPM workspace as the jstein user. It's the user to whom the
ApproveTerms task is assigned. Log in and reject the task as follows:

 ° The ApproveTerms task is now rejected, and the
ConditionalParallelSplit&Merge process is modeled in such a
way that if the ApproveTerms task is rejected, then the process
should end. We can verify an outgoing sequence flow from the
ApproveTerms task to the TermsOutcome exclusive gateway, which
checks for task's outcome. If the outcome is REJECT, then the process
should end.

• Check Process Trace and Audit Trail in EM console as shown in the
following screenshot. We will notice the following behavior:
Once the ApproveTerms task is rejected, the process moves to the
Terms Outcome exclusive gateway and then to the message end event
of the process.
However, we can check the process trace, as encircled in the following
screenshot; the process is still running.

Flow Control Patterns

[36]

Now, if we log in to the BPM workspace as the jcooper user and approve the
Approve Deals task, then only the parallel paths will converge, and the process
will move ahead. This is demonstrated in the following screenshot:

Multimerge pattern
Use the multimerge pattern to model the convergence of two or more branches into
a single path. Each time an incoming branch is enabled, it results in the activation of
the next activity within the process. For each multimerge gateway, there should be
an associated multibranch gateway.

Chapter 1

[37]

The following table shows the details of the multimerge pattern:

Signature Multimerge Pattern
Classification Advance Flow Control Pattern
Intent Converges two or more branches into one subsequent branch and in

doing so, it converges tokens of the incoming branch into one token
and passes the token to the subsequent branch. The multimerge
pattern allows each incoming branch to continue independently
of the others, enabling multiple threads of execution through the
remainder of the process.

Motivation Offers convergence of parallel paths into a single path; however,
parallel paths merging at the multimerge convergence point are not
synchronized.

Applicability Convergence point without synchronization.
Implementation Widely adopted in most of the modeling languages using the

XOR join.
Accepts multiple incoming parallel sequence flow and passes the
tokens as they arrive to the subsequent activity.

Known issues Activity performed in the subsequent branch after the multimerge
convergence point is not safe. With this pattern, more than one
incoming branch can be active simultaneously, and this means that
the activity that you are going to follow in the subsequent branch is
not necessarily safe. For example, the subsequent branch performs
a change in data. All the incoming parallel branches will act on
the data, as the behavior of the subsequent branch is same for all
the parallel flows. However, the order of the incoming parallel
branches' execution is unpredictable. This behavior will make the
change in data unpredictable, and hence, any subsequent process or
activities will exhibit unpredictable behavior.

Known solution NA. Workaround is to model the process flows meticulously.

Let's consider an example scenario. The requirement is to check inventory and credit
in parallel while reviewing the order. However, for each branch, the requirement
is to calculate the freight. In this case, when the parallel gateway diverges (fork)
the flow, three tokens will be generated and processed by three different threads.
Each time the incoming branch is enabled, it would result in the activation of the
Calculate Freight activity.

Flow Control Patterns

[38]

However, the process will move ahead only when all the divergent paths get
synchronized at the convergent point (parallel gateway) after the Calculate Freight
activity takes place, as shown in the following screenshot:

The multimerge pattern allows each incoming branch to continue independently
of the others, enabling multiple threads of execution through the remainder of the
process. However, with the usage of parallel gateway in Oracle BPM for divergence,
it would always need either a parallel gateway for convergence or a complex
gateway. This means that it would always lead to synchronization of the token,
either all of the tokens (with parallel gateway as convergent point) or some of the
tokens (with complex gateway as the convergent point).

Another multimerge example could be of an employee background check process.
The requirement is to perform personal reference check, business reference check,
and criminal background check in parallel. However, you need to notify Human
Resources (HR) of the enterprise each time a branch gets activated and performs
a reference check.

Exploring multimerge
Download the SalesQuoteProject project from the download link for this chapter
and open the MultiMerge process. While analyzing the MultiMerge process,
you can witness Exclusive Gateway before MultiMergeActivity. This is the XOR
gateway that will enable multimerge for this scenario. Execute the process with the
MultiMerge.xml sales quote data available in the testsuites folder in the project.

Chapter 1

[39]

The following are the key values being passed as input to the process:

• Customer type: OLD
• Effective discount: 10

The following screenshot demonstrates two states of the process. The left-hand side
showcases the state when the Approve Deals task is approved by the jcooper user.
However, the jstein user has not acted on the Approve Terms task. This showcases
that the MultiMergeActivity activity was executed, but both the time and process
didn't move ahead, as all the threads need to be synchronized at the ParallelMerge
parallel gateway.

The right-hand side of the screen shows the Audit Trail process after the
ApproveTerms task was approved. We can clearly witness that multiple threads
are enabled for the process branch execution. You can witness different threads that
process each parallel branch, the XOR exclusive gateway multimerge point, and the
(MultiMergeActivity activity getting executed for all the branches, as demonstrated
in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Flow Control Patterns

[40]

You can witness that each merging branch at Exclusive Gateway has its own thread,
and they are parallel processing. However, the Exclusive Gateway multimerge
convergence point will get executed for each parallel branch that has its own
token. You can check in the above screenshot that the AND split (ParallelSplit)
will split the token in three parallel paths. However, each parallel path will execute
the Exclusive multimerge convergence point, and all the parallel tokens will get
synchronized at the AND join (ParallelMerge). Hence, the MultiMergeActivity
activity will also get executed three times. The XOR gateway that acts as multimerge
will pass the tokens, as they arrive to the subsequent activity.

Discriminator and partial join pattern
This section will cover the advance flow control patterns such as structured
discriminator pattern and structured partial join pattern. The scenario for this section
is about employee request for resources such as machine, e-mail ID, batch ID, and
so on at the time of on-boarding. These resources will be credited to the employee
only when their request for the resource gets approved by their manager. Another
scenario is as per the following process screenshot. If the credit check fails, then
there is no need to perform inventory check and order review. This is shown in the
following screenshot:

To achieve this, you need a mechanism to set a trigger or an indicator in the
converging point. When conditions related to the indicator meet, the synchronize
activity in the process instance will be immediately released, and the BPM engine
will automatically remove the instances struck in Check Inventory and Review
Order. Then, the process instance converges at the convergence point and continues
on through the rest of the process.

Chapter 1

[41]

Structured discriminator pattern
The structured discriminator describes a convergence point in the business process
that waits for one of the incoming branches to complete before activating the
subsequent activity. All other incoming branches will be omitted after they are
completed. Until all the incoming branches are complete, the discriminator is not
reset. Once all the incoming branches are completed, the discriminator is reset.
Structured discriminator construct resets when all incoming branches have been
enabled. Upon completion, the first branch out of the given number of branches
triggers a downstream activity. A token will be generated for all other branches.
However, all the remaining tokens that were generated from the parallel split will
eventually arrive at the discriminator, but they will be blocked and hence, will also
not be able to trigger the subsequent branch.

The following table shows the details of the structured discriminator pattern:

Signature Structured Discriminator Pattern
Classification Advance Flow Control Pattern
Intent A convergence point in the business process that awaits one of the

incoming branches to complete before activating the subsequent
activity.

Motivation When the first branches gets completed, the subsequent branch gets
triggered, but completions of other incoming branches thereafter
have no effect on the subsequent branch.

Applicability One out of M joins. It's a special case of M out of N Join, that is,
structured partial join.

Implementation Widely adopted in most of the modeling languages using the
complex join.
Structured discriminator occurs in a structured context, that is,
there must be a single parallel split construct earlier in the process
model with which the structured discriminator is associated, and
it must merge all of the branches that emanate from the structured
discriminator.

Known issues Nonreceipt of input on each of the incoming branches means there
might be cases when some of the incoming branches might not have
input.

Known solution Canceling the discriminator pattern will look for the first token to
be received at the incoming branch, and upon the receipt of the first
token at the incoming branch, all other branches will be skipped.
The branches that are not yet commenced will be aborted, and the
discriminator will get restarted.

Flow Control Patterns

[42]

Structured partial join
The structured partial join is an "N out of M Join" pattern. In this pattern, an AND
split (parallel gateway) or a multichoice (inclusive gateway) pattern produces a
number of tokens on parallel branches (known as runtime). From the total number
of "m" tokens, a subset "n" token will trigger synchronization and produce a single
token for the outgoing edge. The remaining (m-n) tokens are suppressed, and they
would not be able to trigger any subsequent branch. The following table shows the
details of the structured partial join pattern:

Signature Partial Join Pattern
Classification Advance Flow Control Pattern
Intent A convergence point in the business process of "m" branches into

one subsequent branch only when "n" incoming branches are
enabled, where "n" will be less than "m".

Motivation The convergence point will trigger synchronization and produces a
single token for the outgoing edge, only when a defined threshold
is reached. In case of N out of M joins, N is defined as the trigger
for the convergence point (complex join gateway). Once the trigger
is fired and a single token is produced for the outgoing edge, then
completion of the remaining incoming paths will not have any
impact and they will not trigger any subsequent path.
Convergence point will reset only when all the active incoming
branches are enabled.

Applicability For "N" out of "M" joins, the convergence point will trigger
synchronization when the defined threshold "N" is reached.

Implementation Widely adopted in most of the modeling languages using the
complex join.
Join should happen in a structured fashion, means at the
convergence point. The complex join gateway must be associated
with either a single parallel AND split gateway or a multichoice
inclusive gateway. Once the partial number of paths is active,
subsequent paths can be followed. Hence, there will be no
requirement to wait for other incoming paths to complete

Known issues NA
Known solution NA

Chapter 1

[43]

Working with a complex gateway to implement
the discriminator and partial join pattern
Oracle BPM offers a complex gateway to implement the structured discriminator
and structured partial join pattern. Parallel split is performed by a parallel gateway
named Approvals, shown in the following screenshot. Synchronization will be
performed at the ApprovalsMerge complex gateway. Perform the following steps
to test the scenario:

1. Download SalesQuoteProject from the download link for this chapter and
open the PartialJoin process.

2. To implement the "N out of M join" pattern, click on the ApprovalsMerge
complex gateway and check its properties.

3. In the properties, we can witness that Abort Pending Flow is unchecked,
and the following expression is included in the complex gateway's
properties. This is shown in the following code:
"bpmn:getDataObject('quoteDO')/ns:Summary/ns:AccountName =
"FusionNX" and bpmn:getGatewayInstanceAttribute('activationCount')
>= 1"

Activation count is a predefined variable and keeps track of the
active tokens at the complex gateway.

Expressions at the complex gateway translate to the fact that if the activation count
of tokens at the merge gateway is 1 or greater than 1 and if the account name is
FusionNX, the gateway exit expression will evaluate as true.

Hence, while testing this process, if the account name supplied with quote request
data is FusionNX and the count of active tokens at the complex gateway is equal to
or greater than 1, then the synchronization activity in the process instance will be
immediately released and the process token will continue ahead.

Flow Control Patterns

[44]

Testing a process by failing the complex gateway
exit expression
Execute the following steps:

1. Test the PartialJoin process using the PartialJoin.xml test data available in
the testsuites folder in the project.

2. The PartialJoin.xml test data that is provided contains the value
for the account name HP. This will never fulfill the condition at the
complex gateway.

3. Check the process audit trail to deep drive in the behavior by looking into the
ApprovalsMerge complex gateway.

4. When the token arrives at the same activity block, the merge gateway will
be evaluated. However, the condition (the account name FusionNX) will fail,
and the flow will not move forward.

5. Log in to the BPM workspace as a jcooper user and jstein user one after
the other to approve the DealsApproval and TermsApproval tasks.

6. The TermsApproval and DealsApproval sequence flows will also fail. As no
gateway exit expression will get evaluated successfully, the entire token will
be suppressed and the process gets completed.

Testing process as success by the complex
gateway exit expression
Perform the following steps to test the partial join process for a success
gateway condition:

1. Test the process again using the PartialJoin.xml test data. However,
this time, change the account name and pass Account Name: FusionNX.

2. Check Audit Trail for the process in EM.
3. You can find that the process moves ahead of the merge gateway just after

receiving the token from the first sequence flow. The gateway exit expression
will evaluate as Success in the first case itself.

Chapter 1

[45]

As we passed the account name as FusionNX and the activation count for
the ApprovalsMerge complex gateway reaches 1, the gateway exit expression
will evaluate as true and the process token moves ahead, as shown in the
following screenshot:

We just tested the "N out of M Join" pattern. You can use the same project and
refractor the complex gateway that is merging the parallel split branches and set the
activation count as 1. The AND split (parallel gateway) which is the ApprovalsSplit
gateway, will produce the number of tokens on parallel branches (known as
runtime). There are exit conditions defined at the complex gateway, which is the
merging point. The process will move ahead to subsequent branches once the
gateway exit expressions are evaluated to Success. This means that the desired
number of activation tokens is reached and all the other logical conditions expressed
in the expression are fulfilled.

Complex synchronization pattern
The complex gateway can also be used for complex synchronization. Complex
gateway gets activated when the conditional expression is evaluated as true. Once the
complex gateway gets activated, it would create a token on the output sequence flow.

Flow Control Patterns

[46]

If Abort pending flows is checked on the complex gateway properties, then
complex gateway will abort all the pending flows and the remaining tokens will be
suppressed. They will not be able to trigger any subsequent branch, as shown in the
following screenshot:

The suppression of tokens is translated to various patterns, which are shown
as follows:

• Canceling discriminator pattern
• Canceling partial join pattern

Canceling discriminator pattern
The following table shows the details of the canceling discriminator pattern:

Signature Canceling Discriminator Pattern
Classification Advance Flow Control Pattern
Intent A convergence point in the business process that awaits one of the

incoming branches to complete before activating the subsequent
activity. It can also cancel the execution of all other remaining
branches

Motivation When the first branch gets completed, the subsequent branch will
trigger. However, the remaining incoming branches will not be
triggered as they would be cancelled.

Chapter 1

[47]

Applicability 1-out-of-M joins with a flag being set, is to set to abort the remaining
flow pattern.

Implementation Widely adopted in most of the modeling languages using the
complex join. On the complex gateway, Abort Pending Flows must
be checked, and the completion condition testing for the number of
active instances should be equal to 1. When this complex gateway
gets triggered, it would cancel the execution of all of the other
incoming branches and reset the construct.

Known issues NA
Known solution NA

Canceling partial join pattern
The following table shows the details of the Canceling partial join pattern:

Signature Partial Join Pattern

Classification Advance Flow Control Pattern
Intent A convergence point, in the business process of "m" branches

into one subsequent branch only when "n" incoming branches are
enabled, where "n" will be less than "m". However, once the join is
triggered, it would also lead to cancelling the execution of all the
remaining incoming paths and reset the convergence point.

Motivation The convergence point will trigger synchronization and produce a
single token for the outgoing edge, only when a defined threshold
is reached. In case of N out of M join, N is defined as the trigger for
the convergence point (the complex join gateway). Once the trigger
is fired and a single token is produced for the outgoing edge, then
the remaining incoming paths will be cancelled.
The convergence point will reset only when all the active incoming
branches will be enabled.

Applicability N-out-of-M joins and a flag being set to Abort Remaining Flows.
Implementation Widely adopted in most of the modeling languages using the

complex join. On the complex gateway, Abort Pending Flows must
be checked.

Known issues Determination of cancel region.
Known solution Structured processes.

Flow Control Patterns

[48]

Summary
This chapter offered a comprehensive knowledge of the flow control patterns by
showcasing the essentials of flow control patterns, which are used in designing and
modeling business processes. Recipes can be served as reference to control flow
patterns in BPM and are explained with simple sample processes and examples.
The next chapter will demonstrate how processes can handle batch jobs and how to
simultaneously spawn multiple work item instances in a process. The chapter will
also uncover iteration patterns by demonstrating structured loop and unstructured
looping mechanisms. Implicit and explicit termination patterns in the end will
showcase the termination pattern.

Multi-instance and
State-based Patterns

The set of patterns included in this chapter will demonstrate how processes can
handle batch jobs and how to simultaneously spawn multiple work item instances in
a process. This chapter simplifies the usage of loop characteristics while showcasing
multi-instance perspectives. This chapter emphasizes on developing solutions for use
cases with multi-instance requirement using design-time and runtime knowledge,
and it exhibits true dynamism in the process. The focus is simply on the cases where
flow paths need to be determined based on the intermediate events converging from
external systems and in order to break the usual ordering mechanism of the process
flow imposed on tasks. The patterns in this section will offer flexibility in the ordering
of process tasks. You will explore how to amalgamate a mechanism to support the
conditional execution of tasks and subprocesses when a process instance is in a specific
state. This chapter will further cover iteration patterns by demonstrating structured
and unstructured looping mechanisms. Implicit and explicit termination patterns at the
end will showcase termination patterns. The following are the different patterns that
will be discussed in this chapter:

• Multiple instances with prior design-time knowledge pattern
• Multiple instances with prior runtime knowledge pattern
• Multiple instances without prior runtime knowledge pattern
• Static partial join for multiple instances pattern
• Canceling partial join pattern
• Dynamic partial join for multiple instances pattern
• Structured loop pattern
• Arbitrary cycle pattern

www.allitebooks.com

http://www.allitebooks.org

Multi-instance and State-based Patterns

[50]

• Trigger patterns
 ° Transient trigger pattern
 ° Persistent trigger pattern

• Implicit termination pattern
• Explicit termination pattern
• Cancellation pattern

 ° Cancel multi-instance task pattern

Multiple instances with prior design-time
knowledge pattern
This pattern is based on the fact that the number of concurrent threads is known
in advance at design time. It's the modeler who will be aware of the fact at design
time and will know how many times the activity/task should be performed.
The following table summarizes the details around multiple instances with
prior design-time knowledge:

Signature Multiple Instances With Prior Design-time Knowledge Pattern

Classification Multi-instance Pattern

Intent The number of concurrent threads is known in advance at design time, and
concurrent thread synchronization must be performed.

Motivation This pattern has a context associated with it, which will determine the
number of tasks/activities/subprocess instances; the context will be
supplied at design time and will be a static value. Instances can be executed
in parallel/sequence and must be synchronized before completion. This
pattern behaves as a parallel split of the instances and as parallel merges at
the downstream of those instances.

Applicability This pattern is applicable in a multi-instance subprocess, and split and join.

Implementation When the BPMN service engine runs a subprocess with a multi-instance
loop marker, it creates a set of instances, one for each element on the set
of data. You can configure the multi-instance marker to process these
instances in parallel or sequence. This pattern allows concurrent tokens to
continue independently; however, they get synchronized before they move
out of the MI loop segment to execute any subsequent task. Oracle BPM
not only offers the parallel mode to create multiple instances, but you can
also have the sequential mode, where tasks/activities are performed one
by one.

Known issues NA

Known solution NA

Chapter 2

[51]

Executing the multi-instance subprocess with
prior design-time knowledge
Scenario: The quote request needs to be approved by the sales representative,
who is the user (salesrep) in our process. For each quote line product item, its
inventory status will be checked. Download the project (SalesQuoteProcess) from
the download links of this chapter. It contains the processes used for this chapter.
The process (MIWithPriorDesignTimeKnowledge) accepts the quote request and
assigns tasks to the user (salesrep) to act on AcceptQuoteTask. Upon approval
from the (salesrep) user, the script task determines the cardinality, which will
determine the number of parallel instances to be created. These script tasks will
determine a count for the instances. Perform the following steps to learn how the
process is configured for this pattern:

1. Expand the SalesQuoteProcess project in JDeveloper and open the
MIWithPriorDesignTimeKnowledge process.

2. AcceptQuoteTask is a user task that needs to be approved by the
user (salesrep).

3. The process has a process data object, lineItemNodeCount, of the number
type. The DetermineCardinality script task assigns a numeric value (3)
to lineItemNodeCount. This is the static value supplied to the process to
determine the number of parallel multiple instances.

4. Double-click on the subprocess and go to the Loop Characteristics tab,
as shown in the following screenshot.

5. In the Loop Characteristics tab, the loop is set to MultiInstance and the
mode is set as Parallel. The MultiInstance markers enable you to run a
subprocess for each of the elements on a set of data. When the BPMN service
engine runs a subprocess with a multi-instance loop marker, it creates a set
of instances, one for each element on the set of data. You can configure the
multi-instance marker to process these instances in parallel or sequence.

Multi-instance and State-based Patterns

[52]

6. The Loop Cardinality expression defines the number of tokens to be created
in the subprocess, and this cardinality is set by the Determine Cardinality
script task, as shown in the following screenshot:

7. Completion condition is set using the following expression:
inventory Status == "N"

Completion Condition determines when the loop will terminate the subprocess and
move ahead downstream to execute the subsequent task. The inventoryStatus is a
process data object. The subprocess invokes the CheckInventory process for each
token and the status of the inventory for that product item will be assigned to this
process data object, as shown in the following screenshot. (You can even assign it to
quote the data object and can play around in the process on those checks.)

Chapter 2

[53]

Before we deploy the process in this chapter, make sure you have
performed the steps listed in the Getting ready for executing use cases
section of Chapter 1, Flow Control Patterns. The user (salesrep) should
exist in myrealm to execute processes in this chapter that contain
human tasks. Also, in the message start event of all the processes in
this chapter, assign Organization Unit (SalesOrg) to the predefined
variable (Organization Unit) and save the project.

Perform the following steps to test the scenario:

1. Use JDeveloper and deploy the process.
2. Log in to the EM console or use SOAPUI to test the process. We will be using

EM to test the process; hence, log in to http://<server>:<port>:7001/em
as a weblogic user.

3. Click on the MIWithPriorDesignTimeKnowledge process and supply quote
request data using the test data (MIWithPriorDesignTimeKnowledge.xml).
We can find the data in the project's testsuites folder.

4. The test data (MIWithPriorDesignTimeKnowledge.xml) contains
more than three product items in the quote request, as shown in the
following screenshot.

5. Submit the quote request.
6. Log in to Oracle BPM at http://localhost:7001/bpm/workspace as the

salesrep user and approve the AcceptQuote task.
7. Log in to the EM console as the weblogic user, click on the process instance,

and check the audit trail of the process, as shown in the following screenshot.
8. You can see that a thread group is created and three threads are created

for processing.

Multi-instance and State-based Patterns

[54]

9. The MultiInstance option tells the system to create a separate instance of
the subprocess for each item. As we have checked the Parallel mode, all the
instances are created at once and executed in parallel. This is shown in the
following screenshot:

When the process starts, the process token will reach AcceptQuoteTask and on
approval, the token will reach the Determine Cardinality script task. This will set a
value for the lineItemNodeCount variable, which will later determine the number
of instances. When the process token reaches the subprocess, it will create parallel
multiples of three independent instances of the subprocess by creating three tokens
to process each parallel thread. However, the subprocess will wait to synchronize all
the tokens. Once all the tokens are synchronized, then the process moves ahead to
subsequent tasks/activities.

Multiple instances with prior runtime
knowledge pattern
Unlike multiple instances with prior design-time knowledge, the number of
multiple instances in this pattern is not known until the process is being performed
and cannot be set ahead of time at design time. However, the number of multiple
instances to be created is determined before the first instance of the multiple
instances gets initiated. In this pattern, the pattern instances can be created
in parallel and sequence.

Chapter 2

[55]

The following table summarizes the details around multiple instances with
runtime knowledge:

Signature Multiple Instances With Prior Runtime Knowledge Pattern
Classification Multi-instance Pattern
Intent The number of concurrent threads is not known in advance at design

time and is calculated at runtime. However, it's calculated before the
first instance is created. Concurrent thread synchronization must be
performed.

Motivation The determination of the number of instances will be performed at
runtime. Instances can be executed in parallel/sequence and must be
synchronized before completion. This pattern behaves as a parallel
split of the instances and parallel merges at the downstream of these
instances.

Applicability This refers to the multi-instance subprocess and a variable to determine
loop cardinality.

Implementation Creating multiple instances of a subprocess/task within a process
instance is provisioned by Oracle BPM's subprocess looping
characteristics. The number of multiple instances is determined by
cardinality, loop condition, completion condition, or the collection
on which it needs to iterate. These instances run independent of
each other as well as run concurrently; however, they need to be
synchronized before subsequent tasks/activities are triggered.

Known issues NA
Known solution NA

Demonstrating MI with prior runtime
knowledge
Open the project, SalesQuoteProcess, in JDeveloper 12c and perform the
following steps:

1. Go to BPM | BPMN Processes and open the
MIWithPriorDesignTimeKnowledge process. This is the same process that
we used in the previous section.

2. Double-click on Script task in the Properties – Determine Cardinality tab
and then click on the Implementation tab.

3. Click on Data Association. This will open XPath expression builder.
4. Enter the quoteDO.productItem.length() string.

Multi-instance and State-based Patterns

[56]

The product item is an array, and the cardinality of the subprocess loop will be
now be based on the length of the product items' array, that is, how many product
items are there in the quote request. This translates to the fact that the cardinality
of the subprocess will be determined at runtime by the XPath expression condition
(quoteDO.productItem.length()), which basically means that the subprocess'
cardinality is equal to the number of product items. This is shown in the
following screenshot:

Perform the following steps to execute the project:

1. Save the project and deploy it.
2. Test the project from the EM console using the test data

(MIWithPriorDesignTimeKnowledge.xml). The test data contains four
product line items.

We will see a behavior similar to what you have experienced while testing the
process in the Executing multi-instance subprocesses with prior design-time knowledge
section. However, in the Multiple instances with prior design-time knowledge section,
cardinality was defined at design time and was fixed as three. Hence, even though
the test data contains four line items, we saw only three threads that process the first
three line items. However, in this section, cardinality is derived at runtime and is
based on the number of product line items.

As the test data contains four product line items, the subprocess cardinality will be
four; hence, we will find four threads for four line items.

Chapter 2

[57]

Understanding how MI with prior runtime
knowledge work
A batch of line items, that is, the batch data objects (created by an array/collection);
loop cardinality, that is, the number of instances to be created; and predefined
variables, such as the loop count (the loop index), instance count, and so on, are
supplied to the subprocess. The BPM engine will extract line items from the batch
data object at a given index (the loop count value for that token) and will create
multiple instances of the subprocess in parallel. A token is associated with each
independent instance. The number of multiple instances created will depend on
the loop cardinality that you have set in the process, whose value is determined
at runtime. When the subprocess ends, the token gets completed and the loop exit
condition is evaluated. Here, the number of instances to be created is determined at
runtime, and it depends on the number of product items. These multiple instances
are then synchronized.

Multiple instances without prior runtime
knowledge pattern
The following table summarizes the details around Multiple Instances Without Prior
Runtime Knowledge:

Signature Multiple Instances Without Prior Runtime Knowledge Pattern
Classification Multi-instance Pattern
Intent The number of concurrent threads is not known in advance at the

design time and is calculated at runtime. However, the number of
instances is not known until the last instance is executed. Concurrent
thread synchronization must be performed.

Motivation The determination of the number of instances will be performed at
runtime; however, the determination of instances is deferred until
the last instance gets executed. Instances can be executed in parallel/
sequence and must be synchronized before completion.

Applicability This refers to the multi-instance subprocess.

Multi-instance and State-based Patterns

[58]

Implementation The BPMN service engine runs a subprocess with a MultiInstance
loop marker and will create a set of instances, one for each element
in the collection. The number of instances is determined by the
collection size, that is, the size of the array. Once each instance gets
completed, the instance tokens get synchronized and the process
moves to subsequent activities.

Known issues NA
Known solution NA

This section will explore how to determine the number of instances of the subprocess
based on the collection. We will also learn, through an example, how synchronization
works on multi-instance subprocesses.

Working on MI without prior runtime
knowledge
Scenario: The QuoteRequest task gets submitted to the user (salesrep).
On AcceptQuoteTask approval, the process token reaches the multi-instance
subprocess. The number of multiple instances created will be determined by the
number of product items in QuoteRequest. Business practice approval is for those
product items that have Quantity > 50. If Quantity < 50, then approval is not
required for the line items. Perform the following steps to verify the implementation
and test the use case:

1. Open the SalesQuoteProcess project in JDeveloper.
2. Go to BPM | BPMN Processes and click on the

MIWithoutPriorRunTimeKnowledge process, as shown in the
following screenshot:

Chapter 2

[59]

3. The subprocess is configured with the MultiInstance marker in Oracle
BPM, which enables you to run a subprocess for each of the elements in
the product item collection.

4. The process instances will be created in parallel as you can select the
Parallel mode.

5. Loop Data Input is an array data type that is passed as an input to the
subprocess, and Loop Data Output is the array data type that is produced
as a result of the execution of this subprocess.

6. The subprocess will loop on the product item in SalesQuoteRequest.
Hence, an input data item is created based on the quote process data object
(MIWithoutPriorRunTimeKnow_PDO), and an expression is created for the
product items. This XPath expression is used to assign values to arrays.

7. The number of times that the subprocess is executed is determined by the
size of the product item collection/array.

8. Make sure that you use the Expression checkbox. The Completion
Condition remains unchecked, as we are not building any condition to
forcefully exit the subprocess.

9. Click on the outgoing conditional flow in the subprocess as shown in the
preceding screenshot. This shows that each line will be checked for the
condition and only those lines that have Quantity > 50 will be submitted
for approval by the user (fkafka).

Multi-instance and State-based Patterns

[60]

Testing the use case
Perform the following steps to test the use case:

1. Deploy the MIWithoutPriorRunTimeKnowledge process to the
Oracle SOA server and test it from the EM console by logging in to
http://localhost:7001/em as an admin user (weblogic).

2. Use the test data (MIWithoutPriorRunTimeKnowledge.xml) to enter the
QuoteRequest information. The test data contains five products items and
out of these five product items, two product items (the second and third
product items) have more than 50 as the quantity.

3. Submit QuoteRequest to execute the process instance.
4. Log in to the Oracle BPM workspace at http://localhost:7001/bpm/

workspace as the user (salesrep) and accept the quote by approving it.
5. Log in to the EM at http://localhost:7001/em as a weblogic user and

check Audit Trail for the process.
6. Refer to the next screenshot and we can see that a thread group is created to

process five lines.
7. A subprocess instance is created for each product item. As the number of

product items you entered in the quote request was five, you can check
whether there are five multiple instances of the subprocess being created.

8. Note that the second and third subprocess instances are in the processing
state as the entered quantity for the second and third line items is
greater than 50. Hence, the second and third line items need business
practice approval.

9. All other subprocess multi-instances (the first, fourth, and fifth) are
completed; hence, the token for this subprocess gets completed. As the
entered quantity for the first, fourth, and fifth line item in less than 50,
they don't need business practice approval. This is shown in the
following screenshot:

Chapter 2

[61]

We can see that even though the tokens for the first, fourth, and fifth subprocess
instances are completed, the second and third sub processes are in the processing
state. Hence, the token does not move out of the subprocess. This is due to the fact
that the subprocess needs to synchronize its multiple instances. Once all the tokens
are synchronized, the process token can move ahead of the subprocess:

1. Log in to the BPM workspace as the fkafka user, and we can see that two
tasks (SeekLineApprovalTask) are assigned to this user.

2. Approve the two tasks (SeekLineApprovalTask) and check the Audit Trail
for the process in the EM console. All the parallel tokens are now completed,
and the process token has moved to subsequent activities.

The BPMN service engine runs a subprocess with a MultiInstance loop marker and
will create a set of instances, one for each element in the collection. The number of
to-be instances is determined by the collection size, that is, by the size of the array.
The subprocess will loop on Product Items in the SalesQuote request. The number
of times the subprocess is executed is determined by the size of the collection's
product items. Once each instance gets completed, the instance tokens get
synchronized and the process moves to subsequent activities.

Multi-instance and State-based Patterns

[62]

Static partial join for multiple instances
pattern
In multiple instances with a runtime knowledge pattern, the number of multiple
instances to be created (say, M) is determined before the first instance of the multiple
instances gets initiated. The process moves to the subsequent tasks/activities only
when all the tokens of the multiple instances (M) get completed, that is, all the
instances of the set of multiple instances (M) get synchronized.

In static partial join patterns, the number of multiple instances to be created (say, M)
is determined before the first instance of the multiple instances gets initiated. This is
the same as in multiple instances with a prior runtime knowledge pattern; however,
the process moves to subsequent tasks/activities only when N instances have been
completed, where N is less than M. This pattern allows the process to continue only
when a given number of instances have been completed; it's not necessary to wait
for all the instances in the MultiInstance set to be completed. The remaining m-n
instances are clogged from being initiated.

The following table summarizes the details around Static Partial Join:

Signature Static Partial Join Pattern

Classification Multi-instance Pattern
Intent The number of concurrent threads is calculated at runtime when the

first instance is created. When n out of m instances are completed, the
subsequent task is initiated.

Motivation The determination of the number of instances is performed before
the first instance gets executed. The process instance moves to
subsequent activities when a given number of task instances have
been completed, rather than requiring all of them to finish.

Applicability This refers to the multi-instance subprocess with loop completion
condition and loop cardinality.

Implementation The BPMN service engine runs a subprocess with a multi-instance
loop marker and will create a set of instances. The number of to-
be instances, m, is computed by Loop Cardinality before the first
instance of the subprocess starts. The given number of instances,
n, that can allow the execution of subsequent tasks is determined
by Completion Condition. Once n instances are completed, the
remaining m-n instances are cancelled. However, to reset and
subsequently enable the convergence, all instances must be complete.

Known issues NA
Known solution NA

Chapter 2

[63]

The MIStaticPartialJoin process is implemented to showcase static partial
join pattern. When initiated, this process results in the assignment of the task
(AcceptQuoteTask) to the user (salesrep) for approval. Once approved, the
subprocess with the SalesManagerApproval task gets initiated. The number of
instances of the subprocess is defined based on the cardinality set for the subprocess,
and a forceful exit from the subprocess is determined based on Completion
Condition. Perform the following steps to work on static partial join for the MI
process and to test the use case:

1. Open the SalesQuoteProcess project in JDeveloper.
2. Go to BPM | BPMN Processes and open the MIStaticPartialJoin process.
3. Script task (Determine Cardinality) sets the number of instances prior to the

first instance of the multiple instances subprocess as Start.

4. Click on Subprocess to reach the Loop Characteristics tab in the
Subprocess properties.

5. In the Completion Condition section, check the Use Expression checkbox
and enter the following simple expression:
NumberOfCompletedInstances == 2

6. Save the process and deploy it to the Oracle SOA server.

Multi-instance and State-based Patterns

[64]

Testing the use case
Perform the following steps to test the use case, which demonstrates the static partial
join pattern:

1. Log in to the EM console at http://localhost:7001/em as an admin user
(weblogic).

2. Test the MIStaticPartialJoin process using the MIStaticPartialJoin.xml test
data. We can find the test data in the testsuites folder in the project. The test
data (MIStaticPartialJoin.xml) contains five product line items.

3. Submit the quote request.
4. Log in to the Oracle BPM workspace as the salesrep user and approve

AcceptQuoteTasks.
5. Click on the refresh button and you will find five tasks

(SalesManagerApproval) being assigned to the same user (salesrep).
(For the sake of simplicity, we have used the same user for the
SalesManagerApproval tasks too).

6. Approve the fourth and fifth tasks.
7. Log in to the EM at http://localhost:7001/em as a weblogic user and visit

Audit Trail for the process instance, as shown in the following screenshot:

Chapter 2

[65]

We can see that the fourth and fifth subprocess instance get completed and the
activities inside these subprocesses also get completed; however, the first, second,
and third subprocess instances are cancelled and so are the activities in this
subprocess instance. If we check the audit trail of the process, as shown in the
preceding screenshot, we can find that the activities in the first, second, and third
subprocess instances are cancelled. If we check the process flow trace, it's evident
that a signal is raised by the process when the completion condition results in the
cancellation of activities in the rest of the subprocess instances.

Multi-instance and State-based Patterns

[66]

Understanding how static partial join for
MI works
The BPMN service engine runs a subprocess with the MultiInstance loop marker
and will create a set of instances. The number of to-be instances (m) is computed by
the Determine Cardinality task before the first instance of the subprocess is started.

Once each instance gets completed, the instance tokens get synchronized and the
process moves to subsequent activities.

As this is in the Parallel mode, the subprocess instances get created in parallel.
Once each instance gets completed, the Completion Condition is evaluated. If this
condition returns true, the subprocess gets completed and all the active concurrent
multiple instances, that is, the remaining (m-n) instances get completed.

There's more
We have set the Parallel mode in the multi-instance subprocess properties. However,
we can set it to sequential and can test the behavior. In the sequential mode, the
subprocess instances get created in a sequence one after another. Once one instance
gets completed, Completion Condition is evaluated. If this condition returns true,
the subprocess gets completed and no other instances of the subprocess get initiated.

Canceling partial join pattern
The following table summarizes details around the Canceling Partial Join:

Signature Canceling Partial Join Pattern
Classification Multi-instance Pattern
Intent The number of concurrent threads is calculated at runtime when the

first instance is created. When "n" out of "m" instances get executed,
the subsequent task is initiated and the remaining m-n instances
get cancelled.

Motivation The determination of the number of instances is performed before the
first instance gets executed. The process instance moves to subsequent
activities when a given number of task instances have completed,
rather than requiring all of them to finish; however, the remaining
m-n instances get cancelled.

Applicability The MultiInstance subprocess with the loop completion condition and
loop cardinality.

Chapter 2

[67]

Implementation The BPMN service engine runs a subprocess with a multi-instance
loop marker and will create a set of instances. The number of to-be
instances, m, is computed by the loop cardinality before the first
instance of the subprocess gets started. The given number of instances
n, that can allow the execution of subsequent tasks is determined
by Completion Condition. Once n instances are completed, the
subsequent completion of m-n instances is trivial and m-n instances
get cancelled.

Known issues NA
Known solution NA

Dynamic partial join for multiple
instances pattern
The following table summarizes the details around Dynamic Partial Join:

Signature Dynamic Partial Join Pattern
Classification Multi-instance Pattern
Intent The number of multiple instances to be created is not determined

until the final instance of the multiple instances has been completed
and all the instances then get synchronized. This pattern is an
extension to the multiple instances without prior runtime knowledge
pattern; however, in this pattern, a condition is evaluated that clogs
further instances from being created.

Motivation The determination of the number of instances is not performed until
the final instance. A completion condition can be specified, which
is evaluated each time an instance of the task completes. Once the
completion condition evaluates to true, the next task in the process
is triggered. Subsequent completions of the remaining task instances
are cancelled and no new instances can be created.

Applicability Multi-instance subprocess with completion condition.
Implementation Every time a process token gets completed, the completion condition

is evaluated. Once the XPath expression condition in the completion
condition section of the loop gets evaluated and returns true, further
processing of the subprocess's multiple instances gets clogged and
they get cancelled.

Known issues NA
Known solution NA

Multi-instance and State-based Patterns

[68]

Working with dynamic partial join
The SalesQuoteProcess project contains the MIDynamicPartialJoin process.
We will use this process to demonstrate and learn the dynamic partial join pattern.
The subprocess (DynamicPartialJoinSubprocess) is defined with Completion
Condition. As soon as the XPath condition in the Completion Condition section
of the loop characteristics of the subprocess is evaluated, it will inhibit further
instances from being created.

The expression condition will check whether the number of completed instances is
greater than the number of active instances; if it is, then the subprocess should get
completed and subsequent tasks get executed. This means that if enough lines get
approved by the sales manager, then there is no need to get other lines approved.
Further processing of the subprocess multiple instances gets clogged and these
instances get cancelled. Perform the following steps to check the implementation:

1. Expand the SalesQuoteProcess project in JDeveloper and open the
MIDynamicPartialJoin process.

2. Click on DynamicPartialJoinSubprocess to reach the loop characteristics.
3. In the Completion Condition section, check Use Expression and enter the

following simple expression:
NumberOfCompletedInstances > numberOfActiveInstances

4. Save the process and deploy it to the Oracle SOA server.
5. Test the process from the Oracle EM at http://localhost:7001/em as a

weblogic user.
6. When testing, use the test data (MIDynamicPartialJoin.xml), which contains

five product line items, each with quantity greater than 50. If the quantity
is greater than 50, then we have to check whether the test data is being
implemented on the gateway outgoing flow in the subprocess.

7. Submit the quote request.
8. Log in to the Oracle BPM workspace as the salesrep user and approve the

task (AcceptQuoteTask).
9. Log in to the BPM workspace as the fkafka user and approve three tasks

(SeekLineApprovalTask) out of the five takes assigned to this user. Five
tasks being assigned to this user as the number of instances will be computed
based on the product item collection. The test data contains five line items.

10. Approve the first, second, and third tasks (SeekLineApprovalTask).
11. Log in to the EM at http://localhost:7001/em as the weblogic user to

check the Audit Trail of the process.

Chapter 2

[69]

Understanding the functionality behind partial
join for MI
We can see from the Audit Trail window that we have approved the first, second,
and third tasks (SeekLineApprovalTask); hence, these subprocess instances get
completed. However, the fourth and fifth subprocess instances get cancelled.
This cancellation was due to the fact that every time the tokens get completed, the
Completion Condition is evaluated. As we have approved three instances of the
task (SeekLineApprovalTask), the Completion Condition gets evaluated to true.
Once the XPath condition in the Completion Condition section of the loop gets
evaluated and returns true, further processing of the remaining subprocess multiple
instances get clogged and they are cancelled.

Structured loop pattern
Iteration patterns are the foundation of many complex patterns. Structured loop
patterns are an implementation of the while-do or repeat-until (do-while) loop.

The following table summarizes the details around Structured Loops:

Signature Structured Loops Pattern
Classification Iteration Patterns
Intent The structured loop pattern exhibits the ability to repeat subprocesses.

This looping structure comprises of a single entry and exit point where
the iteration condition can be determined before a loop execution or
after a loop execution.

Motivation Loops are similar to any traditional programming language loop
structure. If a condition is evaluated before an iteration starts, then it's
a variant of while-do, and if the condition is evaluated after the first
iteration gets completed, then it's a do-while execution.

Applicability Multi-instance subprocesses with the loop characteristics property set
as loop. Loop characteristics (while-do or do-while) are defined by
setting the evaluation order of loop characteristics.

Multi-instance and State-based Patterns

[70]

Implementation In a while-do execution, the subprocesses are executed for zero or
more times sequentially based on the preiteration condition evaluation.
The condition is evaluated even before the first iteration starts, and it
gets evaluated every time an instance needs to be initiated. When the
evaluation condition fails and returns false, the token moves out of the
iterating subprocess to the next subsequent task/activity.
In a do-while execution, the subprocesses are executed at least once
sequentially. The condition is evaluated after the first iteration
completes, and it gets evaluated every time an instance is completed.
When the evaluation condition fails and returns false, the token moves
out of the iterating subprocess to the next subsequent task/activity.

Known issues NA
Known solution NA

Working with structured loops
The following section talks about the do-while and while-do looping variants.

Demystifying do-while
In do-while, the loop characteristic is set to check the conditions after iteration.
Walk through the following steps to check the loop's configuration:

1. Open the SalesQuoteProcess project in JDeveloper.
2. Go to BPM | BPMN Processes and open the StructuredLoop process.
3. The script task (Determine Cardinality) will determine the number of

instances to be created sequentially. The number is determined based
on the number of product items in the quote request.

4. Double-click on the subprocess (LoopSubprocess) to open Loop
Characteristics.

5. Check the Loop Condition checkbox and we can find the entered condition
in the loop characteristics. This can be accessed via LoopCounter |
LineItemNodeCount.

6. Loop Counter is a predefined variable and LineItemNodeCount is a
user-defined variable of the number type. The script task (Determine
Cardinality) assigns the number of instances to be created of the subprocess
(LoopSubprocess) to this variable (LineItemNodeCount) by counting the
number of product line items in the input request.

Chapter 2

[71]

7. Verify that the evaluation order is Unchecked. The evaluation order
determines when the loop condition should be evaluated. If it remains
unchecked, then the condition will be evaluated post iteration, as shown
in the following screenshot:

Perform the following steps to test the scenario for do-while:

1. Log in to the EM at http://localhost:7001/em and submit a quote request
by executing the StructuredLoop process with four product items. We can
use the test data (StructuredLoop.xml) to test the process.

2. Log in to the Oracle BPM workspace as the salesrep user and approve the
AcceptQuote task.

3. Click on refresh and approve the task (SalesManagerApproval), assigned
to the same user (salesrep). For the sake of convenience, we have used the
same user for both the tasks.

4. We will find that the second task (SalesManagerApproval) is assigned to the
salesrep user. Go ahead and approve the second SalesManagerApproval
task, and similarly, do the same for the third instance of the same task.

Multi-instance and State-based Patterns

[72]

5. When the loop condition gets evaluated after the third task approval,
it returns true. The process token will move out of the iterating subprocess
to the next subsequent task/activity.

6. Log in to the EM at http://localhost:7001/em as a weblogic user
and then view the Audit Trail of the structured loop process.

Understanding the structured loop functionality
Multiple instances are created based on the determination of the number of to-be
instances. This number is determined before the first iteration by the script task
(Determine Cardinality). The token then advances to the subprocess and initiates
the first iteration of the subprocess sequentially. After the iteration is completed,
the loop condition is evaluated. If it returns true, then the token moves out of the
iterating subprocess and the process starts executing the subsequent tasks/activities
after the subprocess.

Demystifying while-do
In while-do, the loop characteristic is set to check the condition before the iteration.

In the preceding process, Structured loop pattern, change the evaluation order in the
loop characteristics. Check the Evaluation Order checkbox in the loop characteristics.
Now, the evaluation of the instance will happen before the iteration. Moreover, as
soon as the condition returns true, the token moves out of the iterating subprocess
to the next subsequent task/activity.

Arbitrary cycle pattern
The following table summarizes the details around Arbitrary Cycle Patterns:

Signature Arbitrary Cycle Pattern
Classification Iteration Pattern
Intent The arbitrary cycle pattern offers a looping construct that allows

multiple entry and exit points in and out of the loop.
Motivation This unstructured loop (iteration/cycle) pattern offers the flexibility

to have multiple entry and exit points in the process. The arbitrary
cycle pattern provides a mechanism to repeat the process parts in an
unstructured way.

Applicability Exclusive gateways can be used in nonblock structured process
models.

Chapter 2

[73]

Implementation When a modeler is working on defining an "As-Is" process, there are
requirements to shuffle from one activity to another. There are cases
in which a task or an activity performed initially in the process needs
to be changed/altered after reaching a certain stage in the process.
This translates to the fact that one can work on the process in an ad
hoc manner. The process should allow you to arbitrarily visit tasks/
activities that need to be changed or altered after reaching a certain
stage in the process. When a process does this, you can use exclusive
gateways to realize arbitrary cycles.

Known issues NA
Known solution NA

The use case scenario is based on SalesQuoteApprovals. The project contains
a process (Arbitrary cycle) that demonstrates the arbitrary cycle pattern.
QuoteRequest initiates the SalesQuote of the "Arbitrary Cycle" process.
The following code snippet gives an insight into this:

If Quote Status == "Reject" then
Process token moves to "Further Activity" and
Task (Enter Quote) gets reassigned to salesrep.
Else
Some activity is executed and discount check is performed.

Now, Discount Check is performed on the process flow. This is demonstrated by
the following code snippet:

If Discount < 10% then
Process performs other activity and process ends.
Else-if Discount > 50%
Accept Quote task is revisited by salesrep user.
Else-if Discount > 10% and Discount < 50%
Sales Manager Approval task is initiated.

Exploring arbitrary cycle
Perform the following steps to test Arbitrary cycle use case scenario:

1. Open the SalesQuoteProcess project in JDeveloper.
2. Go to BPM | BPMN Processes and click on the Arbitrary cycle process.
3. Deploy the process to a weblogic server.

Multi-instance and State-based Patterns

[74]

4. Log in to Oracle EM at http://localhost:7001/em as a weblogic user and
submit a quote request. Make sure that you supply the following values to
the quote request:

 ° The request status: New
 ° Effective discount: 60

You can use the test data (ArbitraryCycle.xml) as the input data to initiate
the BPM process (Arbitrary cycle).

5. Log in to the Oracle BPM workspace at http://localhost:7001/bpm/
workspace as the salesrep user and approve the EnterQuote tasks.

We can create an ADF page (a user interface) for the task. Using
the user interface, we can even modify the quote details and
change the discount and other details.

6. The quote gets assigned for AcceptingQuote to the user (salesrep) via the
AcceptQuote task. (For the sake of convenience, the AcceptQuote task is
assigned to the salesrep user as well).

7. Log in to the BPM workspace as the user (salesrep) and approve the
AcceptQuote task.

8. On approval, the determination of the discount is performed on the
AcceptQuote task. The following are the conditions:

 ° If Discount < 10%, then the Discount Check exclusive gateway will
guide the token to another activity and the process ends normally

 ° If Discount > 50%, then the Discount Check exclusive gateway will
detour the token back to the task (AcceptQuote)

 ° If Discount > 10% but < 50%, then the Discount Check exclusive
gateway guides the process flow to the sales manager approval by
initiating the task (SalesManagerApproval)

9. Log in to the EM console and check the Audit Trail process flow, as shown in
the following screenshot. As the test data contains a discount greater than 50
percent, the process token is returned back to the task (Accept Quote), as we
can see on the top of the following screenshot.

10. Log in to the BPM workspace as the user (salesrep) and double-click on the
task (AcceptQuote). This will open the ADF task form.

Chapter 2

[75]

We can create a task user interface to change values using the
interface. To perform this step, please create a task user interface
for the AcceptQuote task. We can create the task user interface by
going to the task editor and navigating to Forms | Auto Generate
Task Form. Complete the wizard and save the project. Deploy the
process project along with the task user interface form project.

11. Using the task user interface, change the effective discount from 60 to 40
and save the quote.

12. After saving the quote, approve the task (AcceptQuote).
13. As the quote's effective discount is changed to 40 percent, on reapproval

by the user (salesrep) for the AcceptQuote task, the process token
moves ahead for further processing, and the sales manager approval
task is requested.

14. Log in to Oracle BPM and reject the SalesManagerApproval task.
15. Log in to the EM at http://localhost:7001/em as the weblogic user and

check the process flow, as shown at the bottom of the following screenshot.
16. We can see that after rejection from the sales manager, the process token

again reaches the EnterQuote task.

Multi-instance and State-based Patterns

[76]

Understanding the functionality of the
arbitrary cycle
We have seen two cases previously. First, when the discount was greater than
50 percent, the token reached the AcceptQuote task back. Second, when the
discount was greater than 10 percent but less than 50 percent, the token reached
the SalesManagerApproval task. Upon rejection from the sales manager, the token
reaches back the EnterQuote task.

Thus, we are able to establish multiple entries in the process loop. We are also
able to change the quote details based on the outcome of these activities and tasks,
which downstream the process. There are various factors, downstream the process,
that can govern the process flow, and sometimes it's better to re-perform that
task/activity that was performed initially in the process. Hence, mechanisms are
required to arbitrarily loop back in the process and the process should allow the
arbitrary visiting of tasks/activities to change/alter them after reaching a certain
stage in the process.

Trigger patterns
Trigger patterns are a set of patterns that deal with external signals. We will just list
the pattern features; however, you will find various occurrences in this book where
these patterns are used. There are two variants of trigger patterns: transient trigger
and persistent trigger.

Transient trigger pattern
The following table summarizes Transient Trigger Patterns:

Signature Transient Trigger Patterns
Classification Trigger Patterns
Intent The explicit initiation/termination of a task (activity/subprocess) by a

signal from the same process or from an external environment.
Motivation There are cases when an external signal arrives at the process or

the process itself raises a signal. However, these signals will be lost
if there is no subscriber to act on those signals. These signals are
basically events and must be dealt with as soon as they occur, else
they will be lost.

Chapter 2

[77]

Applicability For example, an activity can be cancelled by a cancel event. However,
to cancel the activity, this activity needs to be active. When that
activity is active, only the cancellation event meant for the activity
will have an effect on the activity. What if cancellation event is raised
when the process token has moved out of the activity for which
the cancellation event is meant? In this case, the activity will not be
cancelled.

Implementation We can use event subprocesses and boundary catch events. A
boundary catch event can be attached to the activity or subprocess,
and it can be configured to accept a certain event (signal). When this
signal arrives or this event is raised and the activity on which the
boundary catch event is configured for this event is active, then the
activity/subprocess can act on this event.

Known issues What if there are duplicate transient triggers, or many signals (events)
of the same type are raised?

Known solution When the first signal/event is raised and the activity that is meant to
catch it is active, then the signal/event will be consumed. Hence, there
will be no effect when there is a second or duplicate event.

Chapter 6, Correlation Patterns, contains the implementation of trigger patterns in the
Cancel activity pattern section.

Persistent trigger pattern
The following table summarizes the Persistent Trigger Pattern:

Signature Persistent Trigger Pattern
Classification Trigger Pattern
Intent The explicit initiation of a task (activity/subprocess) by a signal from

the same process or from an external environment.
Motivation There are cases when an external signal arrives at the process or the

process itself raises signal. However, this signal will not be lost and is
dealt with by the process.

Applicability For example, a process instance can be cancelled by a cancel instance
event. The cancel instance event can arrive any time in the life cycle of
the process.

Implementation We can use the event subprocess.
Known issues NA
Known solution NA

Multi-instance and State-based Patterns

[78]

Implicit termination pattern
The following table summarizes the details around Implicit Termination:

Signature Implicit Termination Pattern
Classification Termination Pattern
Intent To end a process gracefully when no more activities/tasks/

subprocesses need to be performed in the process.
Motivation The process needs to end successfully, that is, when no remaining

objectives are left to achieve in the process.
Applicability End event.
Implementation An implicit pattern is similar to an end event, where a process token

gets completed for the process and the process instance is completed.
This is the point where the last token gets terminated. This is termed
as implicit termination, as the process token termination happens
implicitly and is taken care of by the BPM process engine.

Known issues NA (not available in the case of Oracle BPM as it directly supports
this pattern).

Known solution NA

Amalgamating implicit termination in the
process flow
To demonstrate implicit termination, we will execute the arbitrary cycle process,
which we have worked with in the previous section (the arbitrary cycle):

1. Log in to Oracle EM at http://localhost:7001/em as the weblogic user
and submit a quote request by executing the process (the arbitrary cycle).
Make sure that you supply the following values to the quote request:
The request status: New
Effective discount: 40

2. We can use the test data (ArbitraryCycle.xml) as the input data to initiate
the BPM process (arbitrary cycle). Remember to check the effective discount
value and to change it to 40.

3. Log in to the Oracle BPM workspace at http://localhost:7001/bpm/
workspace as the user (salesrep) and approve the EnterQuote tasks,
the AcceptQuote task, as well as the SalesManagerApproval task.

4. Once the task (SalesManagerApproval) is approved, end the process.

Chapter 2

[79]

You can conclude from the process flow that the process instance gets completed
when the process hits the message end event. This is the case when all the tasks and
activities in the process are completed and there are no tasks and activities left that
need to be performed in future. This is termed as implicit termination.

Explicit termination pattern
There are certain stages in the process when you want to terminate a process
instance. For example, if the salesrep user rejects the AcceptQuote task, you
want the quote request to get terminated and all the remaining tasks/activities and
subprocesses to end. This is achieved by terminating the end event in the process.

The following table summarizes the details around Explicit Termination:

Signature Explicit Termination Pattern

Classification Termination Pattern

Intent To explicitly end a process when the process has a certain
specified flow pattern.

Motivation The process needs to end explicitly, and this will terminate all the
remaining tasks/activities and cause the processes to end.

Applicability This event terminates the end event and the Error End Event.

Implementation When the process token reaches this end event node, all the
remaining activities in the process need to be cancelled and
process instances get completed. However, the state of the process
depends on the end event. If the end event is terminated, then the
process instance gets terminated. If the end event is an error, then
the process instance ends in an error. However, you can catch the
error and explicitly complete the process instance successfully.

Known issues NA

Known solution NA

Learning how explicit termination works
Scenario: Enter the QuoteRequest task when it gets approved by salesrep; the
Discount Approval task gets assigned to the same user. This time, salesrep will
reject the Discount Approval task. All other remaining activities in the process will
end, and the process instance gets completed.

1. Open the SalesQuoteProcess project in JDeveloper; go to BPM | BPMN
Processes and click on ExplicitTermination.

Multi-instance and State-based Patterns

[80]

2. Log in to the EM at http://localhost:7001/em as the weblogic user
and initiate the Explicit Termination process. We can use the test data
(ExplicitTerminate.xml) to test the process. The test data can be found
in the testsuites folder in the project.

3. Log in to the Oracle BPM workspace as the salesrep user and reject
the AcceptQuote task.

4. Log in to the EM console and check the process instance's Audit Trail and
Process Flow.

When the process token reaches the AcceptQuote task, it gets assigned to the
salesrep user. When the user (salesrep) rejects QuoteRequest task, the process
gets terminated explicitly. When the process terminates, all the remaining activities
in the process are cancelled and the process instance gets aborted.

Cancelation patterns
Cancelation patterns are a set of patterns that deal with the cancellation of case,
activity, task, subprocess, and so on. We will just list the pattern features; however,
we will find various occurrences in this book where cancelation patterns are used.
We will include a reference to those sections where that specific cancelation pattern
is implemented or demonstrated. There are various variants of cancelation patterns
such as cancel case, cancel task, cancel activity, cancel multi-instance subprocess,
complete multi-instance subprocess, and so on. Cancel case pattern is covered in
Chapter 8, Adaptive Case Management. Cancel task pattern is covered in Chapter 4,
Human Task Patterns. Chapter 6, Correlation Patterns, contains the implementation of
trigger patterns in the Cancel activity pattern section.

Cancel multi-instance task pattern
The following table summarizes the Cancel Multi-instance Task Pattern:

Signature Cancel Multi-instance Task Pattern
Classification Cancelation Pattern
Intent In this chapter, we have witnessed that multi-instances of the task or

subprocess can be known at design time or runtime. We have also
seen that these multiple instances are independent of each other and
a separate thread is created to process these instances. The intent is to
cancel these multi-instances at any time.

Chapter 2

[81]

Motivation This includes canceling multi-instances when various instances of the
multi-instance task are in process. Cancellation can happen at any
time, and the remaining instances of the multi-instances that are not
processed should be cancelled.

Applicability For example, a multi-instance subprocess is executing a subprocess
that acts on a product line item collection. The subprocess is meant
to request approvals for all the line items in the collection. A
cancellation event can result in the withdrawal of the task/activities
in the subprocess and can lead to the cancellation of the remaining
subprocess instances.

Implementation We can use multi-instance subprocesses and boundary catch
events. Boundary catch events can be attached to the multi-instance
subprocess, and they can be configured to accept certain events
(signals). These signals/events are meant to cancel the remaining
instances of the multi-instance subprocess. When this signal arrives or
this event is raised, then the remaining instances of the multi-instance
will be cancelled.

Known issues NA
Known solution NA

Perform the following steps to test the cancel multi-instance task pattern:

1. Open the SalesQuoteProcess project in JDeveloper, go to BPM | BPMN
Processes, and click on the CancelMultiInstanceRegion process.

2. Log in to the EM at http://localhost:7001/em as a weblogic user and
initiate the process (CancelMultiInstanceRegion). We can use the test data
(CancelMultiInstanceRegion.xml) to test the process. The test data can
be found in the testsuites folder of the project. The test data contains three
product line items.

3. Log in to the Oracle BPM workspace as the user (salesrep) and
approve AcceptQuoteTask.

4. As the test data contains three product line items, the subprocess
containing the task (SalesManagerApproval) will result in the creation
of three subprocess multi-instances.

5. Log in to the Oracle BPM workspace as the salesrep user, and approve
the second instance of the task (SalesManagerApproval) out of the three
instances of the task (SalesManagerApproval).

Multi-instance and State-based Patterns

[82]

6. There is a timer event on the multi-instance subprocess. The timer
expires in 2 minutes. If the user (salesrep) does not act on the task
(SalesManagerApproval), the timer event gets triggered and the process
token reaches the message end event.

7. Log in to the EM console and check the process instance's Audit Trail
and Process Flow, as shown in the following screenshot.

The process is implemented to create a multi-instance of the subprocess containing
the task (SalesManagerApproval). Each instance of the subprocess results in the task
being assigned to the salesrep user. Interestingly, there is a catch timer event on
the multi-instance subprocess. The timer event is set with 2 minutes of timer cycle.
The timer event is an interrupting event. Hence, if a user (salesrep) does not act on
the remaining tasks in 2 minutes, the timer gets expired and an interrupting event is
raised. The event will eventually end the process. However, the remaining instances of
the multi-instance subprocess will get cancelled, as shown in the following screenshot:

Chapter 2

[83]

Summary
This chapter demonstrated how processes can handle batch jobs and how to
simultaneously spawn multiple work item instances in a process. It also uncovered
iteration patterns by demonstrating the structured loop and unstructured looping
mechanism. Implicit and explicit termination patterns at the end helped us learn
termination patterns.

The next chapter will focus on invocation patterns and will uncover how BPM
processes can be invoked by internal and external environments.

Invocation Patterns
A BPM process can be invoked or initiated in many different ways. Based on the
architectural design and business requirements, a BPM process invocation can be
defined. The invocation of a BPM process can be designed by either exposing the
BPM process as a web service (Sync/Async), through BPM APIs, or through the
Java Message Service (JMS). In addition, there could be other mechanisms to initiate
the BPM process via e-mails/files/batches or by scheduling a BPM process through
timers. Also, we can have a human task be the initiator of business processes.

A common integration requirement is to expose the BPMN process as a service.
You generally expose BPM processes as Oracle BPM services when you want them
to be consumed by BPEL, Mediator, and more specifically by the Oracle Service Bus.
Exposing a process as a web service is a built-in capability of the Oracle BPM. A
process instance creation or process notification can be exposed as a Service. When
we are looking for an assured and/or once-only delivery, asynchronous support,
publish/subscribe, scalability, reliability, handling high loads, large volumes of
messages (EDA), and transaction boundary, the obvious choice is JMS (Queue/
Topics). You can also adopt signals or events to initiate the BPM process if the
design guideline is loose coupling.

The following invocation patterns are discussed in this chapter:

• Web service pattern:
 ° Asynchronous request callback pattern
 ° Synchronous request response pattern
 ° One request, one of two possible responses pattern
 ° Two request pattern

Invocation Patterns

[86]

• One-way invocation pattern:
 ° Implementing one-way invocation using a timer
 ° Implementing one-way invocation using e-mail

• Publish/subscribe pattern
• Multievent instantiation
• Human task initiator pattern
• Guaranteed delivery pattern

Web service pattern
The scenario used in this chapter is based on the Loan Origination process. Loan
Origination is a core business process in financial services, where a borrower applies
and seeks for a loan through a loan application. The bank, which is the lender, will
process it and either approve (grant) the loan or reject the loan application. The Loan
Origination process is a sequence of steps performed by the lender that start from
the point when the customer starts showing interest in a loan product offering to the
disbursal or grant or rejection of the funds against the loan application. A fine-tuned
Loan Origination process is a requirement for banks (lenders) as they are looking for
processes that can overcome many challenges, as follows:

• A customer's need for instant visibility in the origination process, and often,
they seek immediate updates

• Customers have the expectation to get the loan processed with the least
turnaround time and reduced processing fees

• Customers can initiate Loan Origination via any mechanism/channel such
as e-mail/Internet banking (web)/visiting the branch/fax/phone banking/
mobile, and so on

• Freedom and agility to switch the lender
• Lenders should be able to have their processes cope with the changing

regulations and policies

Chapter 3

[87]

Processes should be agile to quickly change and remain scalable at the same time.
Changing business regulations and policies must be swiftly adopted in the business
processes and with a low reaction time. Oracle BPM offers everything that's
required for an agile, scalable, and reliable business process. This chapter will focus
on initiating a loan origination process from different channels. With the process
designed here, banks (lenders) can submit, approve, and track the loan application.

BPM Process as a Service (the web service pattern), where BPM processes are
configured as a service interface, can be defined with an asynchronous operation
or with a synchronous operation. The use case implemented for this example is
based on loan origination over the Web. The enterprise has a loan portal (the loan
application) that can be accessed by customers who have applied for loans. These
customers (applicants) can initiate loans via the Web using these web applications.
These web applications will internally invoke the loan origination BPM process as a
web service. As web services are loosely coupled, they allow companies to integrate
heterogeneous applications within the enterprise or expose business functions to
their customers and partners over the Web (Internet).

Asynchronous request-response
(request-callback) pattern
The following table lists the details around the asynchronous request-response pattern:

Signature Asynchronous Request-Response (Request-Callback) Pattern
Classification Invocation Pattern
Intent Exposes an asynchronous operation to allow a client to invoke the

process asynchronously. The intent is to generate a service interface
that creates request and callback operations for asynchronous
processes. Its goal is to serve those scenarios which do not expect a
response from the service provider in near real time.

Motivation The BPM process's service interface, exposed as an asynchronous
service, contains a start activity that defines an asynchronous
operation to accept the incoming request and an activity that defines
a callback operation, which returns the result for the asynchronous
operations it has defined.

Applicability Asynchronous service start operations are defined using the Message
Start Event or Catch Event. Callback operations are defined using
a Message Throw Event or a Message End Event. Correlation
mechanisms should be implemented too. You can also use, Receive
and Send Tasks to expose the BPM process operation as the
asynchronous operation.

Invocation Patterns

[88]

Implementation The service interface of an asynchronous BPM process shows a Start
operation and a Callback operation. A BPM process input is defined
using the Message Start Event, Catch Event, or Receive task, and
the process output is defined using the Message End Event, Throw
Event, or Send task. In the case of an asynchronous interface, there
will be two ports: one port is for requests and one is for callbacks. The
Message End Event or the Send task has to define a callback operation.

Known issues Reliability
Known solution To ensure that a message gets routed to the appropriate requester,

message correlation must be implemented to relate inbound and
outbound messages.

In this section, we will walk you through the configuration of the service interface of
an asynchronous BPM process. Download the LoanOriginationProcess application,
open LoanOrigination, and click on the LOProcessAsService process.

Use the following steps to expose the BPM Process as a Service:

1. Right-click on Start Message Event, click on the Implementation tab, and
select the Define Interface option in the Message Exchange type section.
If we have an interface defined and we need to use it to define the service,
we can choose the Use Interface option to browse for the interface from the
business catalog:

Chapter 3

[89]

2. In the Operation Name section, give a name to the request operation such
as StartLoanOrigination (this will become the operation name for the
service interface).

3. In the Argument Definition panel, define the web service request payload.
This will be based on a Business Object (LOProcessBusinessObject); hence,
define a Request Business Object based on the payload schema and use that
business object to define the request argument. However, the downloaded
process contains the business object that we can use.

4. As we are defining an asynchronous operation for the BPM process, we have
to define a callback operation for the BPM process.

5. This process has a defined callback operation that uses a Message End Event.
Right-click on the Message End Event (EndLoanOrigination) and go to the
Implementation tab, shown as follows:

Invocation Patterns

[90]

6. Define the interface and select/create the output argument. For this
example, we will just return a loan status. The loan status could be either
Success or Reject.

7. Note that the behavior of the BPM Process as a Service is defined here. If we
select Asynchronous, you need to specify a name for the callback operation.

8. Click on Data Associations and complete the data assignment.
9. Deploy the process to a web logic server, and log in to the EM,

http://server:host/em, as a web logic user.
10. Test the process using either SOAP-UI or EM or any other tool of your choice.

We can check the WSDL file created for the service interface of the process. Go to the
project directory and click on LOProcessAsService.wsdl, which is the WSDL for the
asynchronous service interface. We can witness two different ports being created,
one for requests and one for callbacks. We can define a BPEL/OSB or any other client
as a service consumer. A service consumer will have a request port and a callback
port available for the asynchronous message interaction.

Request-response pattern
The following table lists the details around the synchronous request-response pattern:

Signature Request-Response Pattern
Classification Invocation Pattern
Intent Expose a synchronous operation to allow a client to invoke the process

synchronously. The intent is to generate a service interface that creates
a request-reply operation for synchronous processes. Its goal is to serve
the scenarios that expect responses from the service provider in near
real time.

Motivation The BPM process, exposed as a synchronous service, needs a start
activity to accept the incoming request and an activity to return either
the requested information or an error message defined in the WSDL.

Applicability This pattern is applicable to message start event or catch event and
a corresponding Message End Event or Throw Event. In case of the
Message End Event, an optional fault definition is included in the
operation. You can also use the Receive and Send tasks to expose a
BPM process operation as being synchronous.

Chapter 3

[91]

Implementation You can configure a message start event, Message Catch Event, or
Receive task event to create a service interface. This service interface
can be defined with an asynchronous operation or with a synchronous
operation. The BPM process input is defined using a Message Start
Event, Catch Event, or Receive task, and the process output is defined
using a Message End Event, Throw Event, or Send task, respectively.
In the case of a synchronous interface, there will be one port for request
and response. You can have the fault definition in the operation to
return the error message to the service consumer. This can be achieved
with the Business Exception implementation type, which would result
in the generation of the fault definition in the operation. The Message
Start Event can automatically set the conversation to initiate. In the case
of the receive task, it should be capable enough to create instances, and
a Receive task will always follow the None Start Event.

Known issues If an immediate response is not received by the service consumer on
time, then it will result in a timeout exception.

Known solution The service should not contain a dehydration point; it should keep
the latency at the lowest, and overheads such as marshalling and
unmarshalling should be eliminated. The service provider must always
be available. The use case for implementing a synchronous interaction
must be very well-defined; for example, try not to use the synchronous
pattern of interaction when a service needs to interact with multiple
backend systems or when a service needs to perform real-time, complex
processing. It should be avoided when a service needs to work on
multiple requests from child nodes. A better use case and a strategy for
lower latency, timeout, complex processing, and so on must be defined
while implementing a service as a synchronous service.

Let's change the service message interaction pattern in the process
(LOProcessAsService) from asynchronous to synchronous by performing
the following steps:

1. Click on the Message End Event in the process, navigate to Properties,
and click on the Implementation tab.

2. Change the interface definition to Synchronous. You will find that the
Reply To option gets initiated.

3. From the drop-down list, choose the start event (Request
(StartLOOrigination)) that this response is meant for.

4. Create the data associations and click on OK.

You can check the WSDL file created for the service interface of the process. Go to
the project directory and click on LOProcessAsService.wsdl, which is the WSDL
for the synchronous service interface. You can see only one port for request
and response.

Invocation Patterns

[92]

With the synchronous variant of the BPM Process as a Service, the client needs to
wait for the response. In the case of the BPM processes that are highly human-centric
and a situation where the response might take longer, synchronous BPM Process as a
Services are rare and not used often.

One request, one of the two possible
responses pattern
We can create a BPM process that offers multiple operations as the response.
This is an asynchronous pattern where the client sends a single request and receives
one of two possible responses. For example, the request can be for loan approval and
the first response can be either Approved (the loan is approved) or NotApproved
(the loan is not approved).

Chapter 3

[93]

Perform the following steps to check the configuration of the process that
implements this pattern and also check its WSDL file:

1. Open the process (LOProcessOneRequestTwoResponse); we can see that it
has two Message End Events.

2. Open the WSDL file (LOProcessOneRequestTwoResponse.wsdl) for this
Process as a service. If we check the WSDL file for this process, we find two
operations in the callback port, as shown in the following screenshot:

Invocation Patterns

[94]

Two request a pattern
We can define a BPM process interface that can have two start events. This can be
achieved by a BPM interface that not only exposes the Message Start Event, but also
exposes the Message Catch Event. When you try to execute this process interface,
the Message Start Event should always be executed first. Also, correlation should be
enabled before you plan to expose the service interface of a BPM process with the
start event and catch event messages together. Perform the following steps to enable
multiple operations for the BPM process exposed as a service:

1. Open the LOProcessAsService process in JDeveloper.
2. Drag-and-drop the Message Catch Event between the Message

Start Events, verify the web application subprocess, and name it
GetAdditionalLoanInfo.

3. Let the other process definition remain the same as it was for the
initial process.

4. Right–click on the start message event, StartLoanOrigination, and go to the
Implementation tab.

5. Click on Correlation and define the correlation property based on
ApplicantID from the payload.

6. Remember that you need to define this correlation definition for the start
message event as Initiates and check the box. We saw the correlation
definition in the first diagram of this chapter.

7. Right-click on the catch message event, GetAdditionalLoanInfo, and go to
its Implementation tab to define the correlation.

8. Click on Correlations and use the CorrProperty_Async correlation property
based on ApplicantID from the payload.

9. Don't check the Initiates box, as the catch event message will participate
in the correlation defined and will start with the start message event
(StartLoanOrigination).

Chapter 3

[95]

10. Deploy the process and try to test it from the EM, http://server:host/em,
by logging in as a web logic user.

11. While testing, you will notice that there are two operations:
StartLoanOrigination (it's a Message Start Event) and
GetAdditionalLoanInfo (it's a Message Catch Event).

12. Select StartLoanOrigination and test the process. Remember that you need
to enter an Applicant ID in the payload.

Invocation Patterns

[96]

We can browse for the test data that can be found by navigating to
Loan Origination | SOA Content | testsuites | LOProcessAsService.
xml.

Once the process is executed, we can check the process instance audit trail
as shown in the preceding screenshot. The process instance will be in the
running state. If we check the flow of the process in the audit trail, we can
find the process instance as waiting for the catch event to take place.

13. Go to the Oracle EM console and run the process with the
GetAdditionalLoanInfo operation using the same test data. Remember that
you need to enter the same Applicant ID that you entered while testing the
StartLoanOrigination operation (as the correlation is based on the Applicant
ID payload element).

Once the GetAdditionalLoanInfo catch event is received with
the correct correlation ID, the process moves ahead to subsequent
flow activities.

Chapter 3

[97]

Click on the <ProcessName>.wsdl file, that is, LOProcessAsService.wsdl,
which is the WSDL file for the asynchronous service. You can see that two
different ports are created, one for requests and one for callbacks. The service
request will have two operations, one for StartLoanOrigination and one for
GetAdditionalLoanInfo. While executing the BPM process, the execution
process will be stalled until the catch event is received.

Exposing the BPM process using Receive
and Send Tasks
The Receive task BPMN component can be used to expose a BPM process as a
synchronous/asynchronous service. The Receive task operation must be capable
enough to create instances when other processes/services invoke this BPM Process
as a Service using the defined Receive task. You can define the input argument using
the Receive task and the output argument using the Send Task. The message pattern
behavior of the process will be described based on how the Send Task is configured,
synchronous/asynchronous. If the message exchange pattern is asynchronous, then
the Send Task has to define a callback operation.

Loan Origination over Send and Receive tasks
Download the LoanOriginationProcess application to open LoanOriginationPrj.
Click on the LOProcessSendReceive process. To implement Send and Receive Tasks
and to demonstrate the instantiation of a process using Send and Receive Tasks,
perform the following steps:

1. Open the LOProcessSendReceive process in JDeveloper.
2. Verify the start event as none.
3. Right-click on the ReceiveLoanOriginationReq Receive task and click on the

Implementation tab to check its properties.
You will find that the Create Instance checkbox is checked. This enables the
Receive task to instantiate process instances. The request operation is named
ReceiveLoanOriginationReq. This operation will be used by the calling
process/service to invoke this Process as a service. Click on Data Associations
to check the association between the Receive task output and the process data
object. (Both are based on the Loan Origination business object.)

4. Go to the Properties page of the SendLoanOriginationResp Send Task to
verify its configuration.

Invocation Patterns

[98]

5. The message type is used to define an interface for the Send Task.
The message exchange pattern is defined as Asynchronous; hence,
the Asynchronous box is checked, and the callback operation name
entered is SendLoanOriginationResp.

If we check the LOProcessSendReceiveTask.wsdl WSDL file created for this process,
we can see that two ports have been created, one for Send and one for Callback.

We can change the message exchange pattern from asynchronous to synchronous in
order to make the BPM process service interface synchronous. In this case, you need
to define the reply-to (response) operation. Moreover, in the configuration, you need
to select the corresponding request operation.

If the service interface is asynchronous, then the service consumer would have the
request and callback operations available. We can use the Send Task or a Throw
Event to invoke an asynchronous BPM process that has been built using a Receive
Task and a Send Task. A BPEL process can invoke this asynchronous process using
invoke. If the process service interface is synchronous, then we can use the service
task to invoke the process service interface. Interaction patterns are discussed in
detail in Chapter 5, Interaction Patterns.

Chapter 3

[99]

One-way invocation pattern
In this section, we will learn about process instantiation using the timer events
(the timer start pattern). This pattern enables process instantiation using Timer
Events. Timer Events are used extensively in BPM, and Oracle BPM offers rich Timer
Event configurations. You can use timers to incorporate a delay before initiating an
activity, configure a deadline for an activity/process, trigger activities after a certain
amount of time has elapsed, periodically trigger a process, and start a process. This
section is dedicated to showcasing how Timer Events can be used to start/initiate
BPM processes or to periodically schedule BPM processes.

The following table lists the details around the Timer Start pattern:

Signature One-way Timer Start Pattern
Classification Invocation Pattern
Intent The intent is to configure a process to be triggered based on a

time condition.
Motivation A BPM process can be configured to be triggered based on the time

condition by adding a Timer Start Event to your process.
Applicability It's applicable on the Timer Start Event.
Implementation A Timer Start Event can raise the BPM process instance either on a

specific date (time/date) or periodically (the timer cycle), and you
can specify the date or interval using a fixed value or by using an
expression through an expression builder. An instance gets created
each time the timer condition in the Timer Start Event gets evaluated
to true. Similarly, in the start cycle case, the Timer Start Event
is configured to use a cycle; hence, the process instance gets
created periodically.

Known issues There is the possibility of having processes with past dates.
Known solution The solution should be capable of handling immediately created

process instances because for any process deployed with a past date,
a process instance is immediately created.

Invocation Patterns

[100]

Implementing one-way invocation using
a timer
A simple BPM process is implemented for the start Timer Event. With the
download able files for this chapter (available on the Packt website), we have the
LoanOriginationProcess application with LoanOriginationPrj as the project.
Download the application and open the project in JDeveloper.

Click on LOProcessSchedule, which is implemented with multiple Timer Start
Events. This process will be initiated at the scheduled time, specified in the start
Timer Event named StartSchedule, while the other processes will run periodically
every 2 minutes and will stop at the time specified under Run To in the optional
settings of the StartCycle Timer Event.

Walk through the following steps to use the Timer Start Event and the periodic start
event to trigger the process on schedule and periodically, respectively:

1. Click on the LOProcessSchedule project in JDeveloper.
2. Right-click on the StartSchedule Timer Event, and click on the

Implementation tab in the Properties page.
3. The Timer Definition type is Schedule as it's a scheduled Timer Event.
4. Enter a daily time, say 10:28:00 PM. You can change this time as per your

testing requirements.
The Timer Event, known as the process scheduler, can be configured to act
daily, weekly, or monthly. When set as monthly, you can specify the month,
day, date, and time; thus, BPM offers rich scheduling options.

5. Right-click on StartCycle, click on the Implementation tab, and select the
type of timer as Time Cycle to define the Timer Event as a periodical cycle.

6. Enter a time value; say, if the process should get triggered every 2 minutes,
then enter the values as shown in the preceding point. The values specified
here will cause the timer catch event to run at a defined interval. This is
specified in months, days, hours, minutes, and seconds.

7. Deploy the process and check the process instance creation pattern in EM,
http://server:host/em.
You can check, as follows, that some of the instances are created every 2
minutes between the Run from and Run to timings, and one instance got
created at the scheduled time, 10:28:00 PM.

Chapter 3

[101]

Here, we have demonstrated that the Timer Start Event and the Periodic
Start Event trigger the process on schedule and on a periodic cycle,
respectively. We have defined them using fixed values; however, you
can use an expression builder and or BPM-offered rich functions to define
values for the Timer Event.
An instance gets created each time the timer condition in the Timer Start
Event gets evaluated to true. In the scheduled Timer Event case, whenever
the time is 10:28:00 PM, the process instance will be created. Similarly, in the
start cycle case, the Timer Start Event is configured to use a cycle; hence, the
process instance gets created periodically.

Invocation Patterns

[102]

Implementing one-way invocation using
an e-mail
In this section, we will learn about process instantiation using e-mail (the one-way
pattern). This section demonstrates the invocation of a BPM process by e-mails.
The following table lists the details around the Email Start Pattern:

Signature One-way message – Email Start Pattern
Classification Invocation Pattern
Intent The intent is to configure a process to be triggered based on the arrival

of an e-mail.
Motivation The BPM process can be configured to be triggered based on

an e-mail.
Applicability In the message start events and for the UMS configuration in

SOA/BPM.
Implementation The UMS adapter is configured for inbound interaction; hence, the

adapter is able to asynchronously receive messages/notifications from
UMS. The UMS adapter is configured as a listener and has initiated
threads to process it. The UMS adapter will act as a proxy between
SOA and the external world. The use-case-adapter will be able to
receive messages from the inbox of the loan officer, as the adapter was
able to retrieve e-mails from the Gmail IMAP server supporting SSL.

Known issues Selectively receives messages.
Known solution The message was received with a subject, body, and one/more

attachments. You can configure the adapter to selectively receive
incoming messages by defining message filtering, and you also have
the option of a Java callout function to execute a certain custom logic
before message processing.

Every enterprise has e-mail and various other messaging channels such as SMSs,
IMs, voice, and so on for communication and collaboration. A loan request can
originate over the phone or e-mail. Let's assume the case where a customer sends
an e-mail to the loan origination department to initiate the loan origination process.
Oracle BPM has message events that can trigger the BPMN process instance upon
the arrival of a message. In this section, we will build a sample BPMN process that
is triggered when an e-mail arrives for loan origination. For the sake of our example,
we have used the Gmail server to listen to incoming messages.

A client can initiate a loan approval process by filling in a loan form, and they can
e-mail the loan form to a loan officer's e-mail address (for example, weblogic0009@
gmail.com). Once a loan origination request e-mail arrives in the inbox of the loan
officer, the loan origination process gets triggered.

Chapter 3

[103]

Oracle BPM offers User Messaging Service (UMS), which provides services to
send or receive notifications and alerts through various messaging channels such as
e-mails, SMSs, IMs, and voice. Oracle BPM also offers the UMS adapter to kick off a
BPM process or a BPEL/Mediator process when a new e-mail arrives in the inbox.
The UMS adapter enables processes to send e-mail too, along with filtering and
transforming/formatting based on business needs. UMS also supports SSL for
e-mail channels.

We will configure the Email Driver to enable e-mails as the message delivery
channel; hence, the UMS adapter will be able to retrieve e-mails from the IMAP
server of Gmail-supporting SSL.

The Loan Origination process over e-mail
To enable the receiving and triggering of a BPMN process via e-mails, UMS
server-side configurations need to be accomplished before the actual process
is developed and deployed. Use http://acharyavivek.wordpress.
com/2013/10/21/email-driver-properties/ to perform the following
activities, which will allow you to send e-mails to the loan officer's inbox in
order to initiate the Loan origination request:

• Import SSL certificates to trust the Keystore
• Configure the Email Driver on the web logic server
• Create an SOA/BPEL process to send e-mails to the loan officer's

e-mail address

The preceding blog post covers details on importing certificates and configuring
the Email Driver on the web logic server. To push a Loan Origination request to the
loan officer, the SOA (BPEL) process is available to you when you download the
LoanOriginationProcess application, available with the downloads for this chapter.

Download the LoanOriginationProcess application and open the LoanOrigination
project. Click on the LOProcessActivationFromEmail process. Perform the
following steps to witness the UMS adapter configuration:

1. Click on LoanOrigination (the Composite file) and click on the UMS
adapter (ReceiveLOEmail) to check its configuration.

2. Configure the JNDI name as eis/ums/UMSAdapterInbound and click
on Next. You can enter the appropriate JNDI as per your configuration.

3. Choose the operation type as Inbound Receive Notification, enter the
operation name as receiveLONotification, and click on Next.

4. The value of Operation Mode is set to Listening and the listener thread has
a value of 1.

http://acharyavivek.wordpress.com/2013/10/21/email-driver-properties/
http://acharyavivek.wordpress.com/2013/10/21/email-driver-properties/

Invocation Patterns

[104]

5. Click on Next to set the type of notification as email.
6. The e-mail endpoint configuration is weblogic0009@gmail.com.

This is the e-mail address of the loan officer to which the e-mail request
will be sent in order to initiate the Loan Origination BPM process.

7. In the schema selection, choose ReceiveEmailEvent.xsd, which can be
found in the /Schemas folder of the project, and click on Next.

8. Click on Next three times and finish the configuration.
9. Click on the LOProcessActivationFromEmail process.
10. Right-click on the start message event and check the implementation

properties.
11. You can see that the message event is configured with the message exchange

type as Use Interface. The UMS adapter that we just configured is available
as a service that we can refer to.

12. Select the already-existing service that you have defined using the UMS
adapter (ReceiveLOEmail), as shown in the following screenshot:

13. Click on Data Associations and check the assignment from
the UMS adapter to process the data objects that are based on the
ReceiveEmailEvent.xsd schema.

14. Click on Save All and deploy the process.

Chapter 3

[105]

Testing the flow to instantiate a process over e-mail
With the downloadable file for this chapter, you will receive the
LoanOriginationProcess application. This application contains the PushToEmail
project. This project will send an e-mail to weblogic0009@gmail.com, which is the
e-mail address of the loan officer we have configured in the process. Open the project
in JDeveloper and take a look at its configuration. It's being configured with a UMS
adapter to send messages. Use an appropriate JNDI, as we did in the preceding
section. You can enter the JNDI and other properties based on the configuration of
your web logic server. Perform the following steps to test the flow:

1. Open the PushToEmail project in JDeveloper and deploy it to the web
logic instance.

2. Execute the PushToEmail process from the EM, http://server:host/em.
3. Execution of the PushToEmail process will result in an e-mail being sent to

the e-mail address (weblogic0009@gmail.com).
4. Log in to the EM and check the audit trail for the

LOProcessActivationFromEmail process.
5. You will find an instance being created for the

LOProcessActivationFromEmail process.
6. Click on the audit trail of the process to check instance details and the

payload. We can, of course, use this as an initiating template and can
extend and build a BPM process that gets initiated from an e-mail.

We have used PushToEmail to send messages to the e-mail account of
the loan officer (weblogic0009@gmail.com). However, you are not
limited to use the PushToEmail SOA process. You can create or use
your own client to send messages to some-email@some-domain.
com, that is, you can create your own e-mail address and use it.

Publish-subscribe pattern – initiating the
business process through an event
Business events comprise of message data published as the result of an occurrence
in a business environment. Other services/processes can subscribe to these events.
Business events are raised when a situation of interest occurs. For example, a
customer visits a lender's/bank's website and browses for a couple of bank products
such as home loans, mortgages, education loans, savings, wealth management, and
so on. During browsing, customers are asked to fill in their details.

Invocation Patterns

[106]

Bank sales representatives contact the customer for a follow-up and to check the
customer's interest in one/more of the products from the portfolio of products.
Once the sales representative gauges a specific product interest of the customer,
then they raise a specific product event through an application. For our example,
we will assume that a Loan Origination event is raised by the sales representative.

The distinction between business events and direct service invocation based on
WSDL is based on the fact that business events separate the consumer from the
producer. The design consideration is to use events when the integration is
loosely coupled.

Event-driven integration has an edge over the request-response integration pattern.
In the request-response pattern, the scalability of the solution is difficult as the
change is difficult; this further makes governance difficult. If a service contract
changes, then the system needs to be changed. The request-response integration
pattern does not result in a loosely coupled integration. The event-driven messaging
pattern offers loose coupling, where the scalability and flexibility to add a new
application is way easier than the request-response pattern. Events have their own
message format (schema), and subscribers need to comply with it and take care of
the transformations. Event-driven patterns are asynchronous, one-way message
exchange patterns. Subscribers are not durable. They offer a flexible and agile
architecture; however, durability remains an issue. The following table summarizes
the publish-subscribe pattern:

Signature Publish-Subscibe Pattern
Classification Invocation Pattern
Intent The participating process or application publishes events and

messages that are subscribed to by one or more participating
processes.

Motivation The BPM process can be configured as a subscriber to the events that
are raised in the Event Driven Network (EDN). These events trigger
the BPM process.

Applicability In the signal throw, signal end, signal catch, and Signal Start Events.
Throw intermediate signal events or signal end events are used to
raise and broadcast a signal. The Signal Start Event is used to receive
an event in another process. To enable event delivery, you need an
eventing platform. Oracle BPM uses Oracle EDN to send and receive
signals.

Chapter 3

[107]

Implementation On execution, throw intermediate signal event or signal end event will
publish an event to the EDN. The EDN will then deliver it to all the
subscribers who are configured to listen to that specific event (signal).
A subscriber process can trigger only when the signal to which it
has subscribed arrives. Oracle BPM leverages Oracle SOA and the
EDN runs within every SOA instance. Java/BPEL/Mediator or any
component can raise an event to the underlying SOA environment
to publish that event to the EDN. Any interested BPMN process as a
subscriber to that event will get triggered when the signal to which it
has subscribed arrives.

Known issues Loss of messages, guaranteed message processing, and durability.
Known solution EDN offers different levels of delivery consistency. You can always

configure once and only when the delivery is transactional in nature
and is delivered to the subscriber in its own transaction. You can use
an effective error handling solution and a retry mechanism to achieve
some level of guaranteed message processing. However, this might
need every subscriber to make sure that the event gets successfully
processed. In spite of that, a durable system cannot be guaranteed. If
a system fails, the message may be lost and will not be delivered even
when the system is restarted.

Loan origination over an event
As business events are published in the EDN, which runs within every SOA/BPM
environment, we will first create a business event. Then, a process (the BPEL process)
will be created to raise the sample Loan Origination event. A separate BPM process
will subscribe to this event. The raised events are delivered by the EDN to the
subscribing business process. Perform the following steps to define an event:

1. Open and expand the LoanOriginationProcess application and right-click
on the LoanOrigination project.

2. Click on New to create an event. A gallery will open to create an event
definition file and an event.

3. Scroll down in the list and select Event Definition. This will open the event
creation page.

4. Enter LoanEvent as the name of the event definition (EDL) file.
5. Click on the green plus (+) sign to define an event and its type.
6. Enter the name as LoanOriginationEvent for the event and browse for the

event type.
7. Choose the Loan origination schema as Event Payload (the event payload).

Invocation Patterns

[108]

8. Click on OK. This will result in the creation of an event file and an event
definition inside the EDL file. This is shown in the following screenshot:

9. Once the event is defined, we can now create a BPEL process to raise
an event.

10. Drag-and-drop a BPEL component in the LoanOrigination (the composite
file) file.

11. Let the BPEL template be one-way and enter the name of the process as
LoanOriginationEventService.

12. Choose Loan origination schema as the input schema of the BPEL process.
13. Click on OK in the process creation dialog.
14. Drag-and-drop an invoke activity into the BPEL process.
15. Choose Interaction Type as Event.
16. Browse for the event and select LoanOriginationEvent, and complete

the configuration.

Chapter 3

[109]

17. Drag and assign an activity before the Invoke activity, as shown in the
following screenshot, and complete the assignment of values from the input
receive parameter to the event input variable, RaiseLoanoriginationEvent_
InputVariable:

18. When you execute this process, LoanOriginationEvent is raised.
19. Your BPEL process should look as per the LoanOriginationEventService

process defined in the LoanOrigination project, which you can download
from this chapter's downloadable files.

Now, we will create the BPMN process that gets initiated when the event is raised by
executing the BPEL process, LoanOriginationEventService, which we just defined
in the preceding steps. To do so, perform the following steps:

1. Right-click on the LoanOrigination project and select New to choose
the BPMN 2.0 process. This will open the process creation wizard.

2. Enter the name of the process as LOProcessActivationFromEvent.
3. Let the type be asynchronous service and click on Finish.

Invocation Patterns

[110]

4. Define a process data object (subscriberProcessIN_PDO) based on the
business object (LOProcessBusinessObject). You will find the business
object with the project.

5. In the process editor, right-click on the Message Start Event and change the
trigger type to Signal.

6. Name the Signal Start Event as SubscribeToLoanOrigination.
7. Right-click on the Signal Start Event, SubscribeToLoanOrigination,

and go to its Implementation tab.
8. Browse for the LoanOriginationEvent event definition; this will define

the subscription of the BPM process to the LoanOriginationEvent event.
9. Complete the data associations from the Signal Start Event to

process the data object, subscriberProcessIN_PDO, as shown in
the following screenshot:

10. Deploy the process.
11. Log in to the EM as the admin user (web logic), http://server:host/em.
12. Execute the LoanOriginationEventService BPEL process, which will raise

the LoanOriginationEvent event.
13. When the event is raised, the LOProcessActivationFromEvent process gets

initiated as it has subscribed to the event.
14. Trace the flow of the LOProcessActivationFromEvent process, and we

can verify that after the BPEL process raises the event, the BPMN process,
LOProcessActivationFromEvent, gets initiated.

Chapter 3

[111]

Business events raised by the LoanOriginationEventService BPEL process are
published to an EDN that runs within the Oracle SOA/BPM infrastructure.
Raised events are delivered by the EDN to the subscribing process,
LOProcessActivationFromEvent, and the payload exchanged is as per
the EDL schema definition.

Multievent instantiation pattern – process
instantiation over multiple events
If we have the requirement to branch out our process flow based on external events,
then the event-based gateway initiation mechanism is best suited for us. Here,
several external events might occur; however, the path is chosen based on the
occurrence of an event within your process design. We will use the loan origination
use case to demonstrate this pattern. When the process is initiated, it will either be
initiated for the new loan and get caught by the NewLoanApplication Message
Catch Event, or if it gets initiated for an existing loan process instance, it will be
caught by the ReLoanApplication Message Catch Event.

The Loan Processing event gateway initiates the sequence that has the
NewLoanApplication message event, and the instance reaches subsequent
activities and the downstream flow.

Loan origination over multiple event
occurrence
The loan origination process can be instantiated for a new loan application and/or
for an existing loan application. We can use an event-based gateway as a mechanism
to branch based on the event received and the initiate process instance. There are
multiple types of messages or events that can start a Loan Origination business
process. Perform the following steps to verify the process configurations that have
event-based gateways configured:

1. Download the LoanOriginationProcess application from the downloadable
files for this chapter (available on the Packt website) and open
LoanOrigination.

2. Click on the LOProcessMultipleEvent process.
3. Right-click on the event-based gateway, LOProcessing, and open the

Implementation tab under its Properties page.

Invocation Patterns

[112]

4. You can see that the Instantiate box is checked. For an event-based gateway
to start new instances, it must be checked. However, there could be
midprocess event-based gateways, and in such cases, we don't need to
check the Instantiate box.

5. Right-click on the NewLoanApplication Message Catch Event. We can verify
that while defining the interface; we can associate data and can enter a name
for the operation as newLoanApplication, which will be exposed as shown
in the following screenshot:

Remember to furnish correlation details. We have set the
correlation based on ApplicantID. Correlation is a must when
using event-based gateways as we will be developing this
process to include midprocess events, and in those cases, the
process flow needs to be in correlation.

6. Deploy the process and test it through the EM, http://server:host/em.
7. While testing the process, you can find two operations being exposed. Any

client application or process using this Process as a service will have two
operations to choose from.

Event-based gateways can be used midprocess as well as at the start of the process
to initiate new process instances. The configuration demonstrated in the preceding
steps, using an event-based gateway, is similar to multiple start events in the
process. An event-based gateway can initiate a new process instance when it does
not have any incoming sequence flow and the initiate property of the event gateway

Chapter 3

[113]

must be enabled. If the new loan application is raised by an external application,
then the NewLoanApplication Message Catch Event can be initiated, or else the
ReLoanApplication Message Catch Event can be initiated.

Human task initiator pattern – initiating
processes through human tasks
The initiator task is one among the many human task interactive patterns in Oracle
BPM. It's used to trigger a BPM process flow from the defined human task user
interaction interface. When you are using the initiator task to initiate a BPM process,
the process always starts with the none start event. The none start event will not
trigger the process; however, the human task initiator will initiate the process. It's
the role associated with the swim lane that defines the process participant, and
that process participant/assignee is the one the initiator task gets assigned to.
The following table summarizes the human initiator pattern:

Signature Human Task Initiator Pattern
Classification Invocation Pattern
Intent The intent is to trigger a BPM process flow from a form initiated by a

human activity.
Motivation The BPM process can be configured to be triggered based on human

interaction by submitting a form. The form can be accessed via a
workspace application or a work list application.

Applicability In the initiator human task
Implementation When you are using the initiator task to initiate a BPM process, the

process always starts with a none start event. The none start event
will not trigger the process; however, the initiator human task will
initiate the process. A user logs in to a workspace application and
clicks on the link to kick-start the process. Upon clicking the link, the
user is presented with a form where they can enter data as input to
the process or the form can be preinitialized too. Once data is entered
or edited, the user can click on the Submit button to instantiate
the process.

Known issues NA
Known solution NA

Invocation Patterns

[114]

The human task initiator can be used in various business scenarios. For instance,
in the insurance claim process, a customer can call the Customer Service
Representative (CSR) of the insurance organization and the CSR can raise a claim
request on behalf of the customer. This claim request is a human task along with a
task form available in the CSR's workspace application. The CSR has to fill in the
human task form and click on Submit to initiate the claim process.

Loan origination via the human task form
In this section, we will build an initiator task and get it assigned to a user,
salesrep, defined in myrealm (the embedded LDAP in the web logic server).
For this example, we will assume that the user, salesrep, is the loan officer.
We have the LoanOrigination project available in JDeveloper from the previous
section downloads. We will build a new process for this section as follows:

1. In JDeveloper, navigate to LoanOrigination | Processes and create a new
process by right-clicking on Processes and selecting New.

2. Enter a name for the process as LOProcessHumanInitiation.
3. Choose the manual process in the Application Template panel.
4. Click on Finish. This will create the LOProcessHumanInitiation process

with an initiator user task.
5. Create the LOProcessHumanInitiationINPDO process data object based

on the business object, LOProcessBusinessObject, which already exists
in the LoanOrigination project as we created it in the first section of
this chapter.

6. Double–click on the initiator human task and rename the initiator human
task to LOProcessHumanInitiationTask.

7. Go to the Implementation tab of the Properties wizard.
8. Click on the plus (+) sign to create a human task.
9. Enter the Human Task name as LOProcessHumanInitiationTask and the

title as shown in the following screenshot.
10. Add parameters to Human Task. This parameter is based on the loan

origination schema's business object, LOProcessBusinessObject, which is
based on the process data object.

11. Click on OK and finish the data association.
12. Click on OK again.

Chapter 3

[115]

13. Drag an activity after the human task and name it SomeOtherActivity.
Check the draft mode for the activity. (This activity is a placeholder or
an assumption for further process activities). This is shown in the
following screenshot:

14. In the swim lane, select the LoanOfficer role. If it is not available,
create the role.

15. Click on Project (LoanOrigination) and select Organization.
16. In the roles, select LoanOfficer, and in the Members section, browse

for the embedded LDAP (myrealm) for the users.
17. Select salesrep as the user and click on OK.
18. Click on Save to save the process.
19. Right-click on the initiator human task in the process and select

Open Human Task. This will open the .task task definition.

Invocation Patterns

[116]

20. Confirm whether the application role in the task editor's general section is
LoanOriginationPrj.LoanOfficer.

21. In the General tab of the task editor, click on Create form and select
Auto-Generate Task Form to create a task user interface for the initiator
human task.

22. Enter the name for the human task user interface as Task Form and click
on OK.

23. This will launch the UI creation wizard. Complete the wizard and
click on Save ALL.

24. Deploy the project with the human task UI.

The LOProcessHumanInitiation process is available when we
download the LoanOrigination project for this chapter. You can
always create a new process with a new name to implement the
scenario we discussed in the preceding steps.

Testing the process
Use the following steps to test the process and learn how you can instantiate process
instances using the human task:

1. Log in to http://localhost:7001/bpm/workspace BPM workspace as the
salesrep user.

2. We will find that the LOProcessHumanInitiation loan process got assigned
to the salesrep user.

3. Click on the LOProcessHumanInitiation process in the Applications
section, and this will initiate the user interface.

4. Enter the Loan Origination values and click on Submit to submit the loan
origination request, as shown in the following screenshot:

Chapter 3

[117]

The initiator task followed by the none start event is an effective way to assign
an application task with a user interface to the users. Also, users can initiate the
BPM process from their inboxes in the BPM workspace application or the work
list application.

Guaranteed delivery pattern – process
instantiation over JMS – Queue/Topic
The initiation of a BPM process takes place through either exposing the BPM process
as a web service, BPM reading a JMS, or through the BPM PAPI APIs, and so on.
Other mechanisms may include processes instantiated with e-mails/files/batches
(that is, from enterprise information systems) and scheduled mechanisms such as
using timers. In this section, we will explore how to initiate a BPM process via a
queue. Specifically, we will be using JMS queues, and for the sake of examples, we
have limited the discussion around the web logic server and JMS queues. However,
this pattern is not limited to web logic and can be used beyond it.

Invocation Patterns

[118]

The following table lists the details around the guaranteed delivery pattern:

Signature Guaranteed Delivery Pattern
Classification Invocation Pattern
Intent The participating process gets invoked by reading messages from a

queue or a topic.
Motivation Using queue messaging offers a foundation for the asynchronous and

reliable delivery of messages in a distributed heterogeneous system.
It also offers a scalable messaging architecture. A queue/topic-based
solution offers point-to-point (Queue) and publish/subscribe (Topic)
mechanisms, transaction boundaries, guaranteed information delivery,
scalability, and interoperability between heterogeneous frameworks.

Applicability Any web application, process, or service can push the message
directly to a queue. The BPM process will pick up the message as soon
as the message is dropped in the queue. With this mechanism, the
message-producing application can continue to send new messages
regardless of whether the BPM process is available or not. A JMS
consumer, a BPM process with a JMS adapter, is responsible for
dequeuing the messages and initiating the process. It now depends
on the transactional boundaries (milestones) to make sure that the
message gets removed from the queue only after the successful
completion of the task in the BPM process.

Implementation The source application 'A' pushes messages to Queue#1. The BPM
process picks up the messages from the queue and takes care of
the business logic. If anything fails, the message should remain in
Queue#1. The message gets removed from Queue#1 only after the
successful completion of the task in the BPM process.

Known issues If integrating applications are interacting in an unreliable fashion.

Chapter 3

[119]

Known solution A best practice will be the inclusion of logical points (milestones)
in the end-to-end integration. This translates to the fact that while
implementing guaranteed delivery patterns, transactions should be
considered as first-class citizens and must be dealt with effectively.
For example, the source system pushes the message to the starting
queue in one transaction and ensures the guaranteed delivery of the
message in its zone. When the message first arrives in the queue—
define this point as milestone#1— the implementation process
(service) will pick the message from the primary queue in a new
transaction (Trx#1). The implementation process (service) will then
enrich the message and routes the message to another milestone
(milestone#2). Once the message reaches milestone#2, the services
and resources in milestone#1 should be released. Moreover, all
the services and components in milestone#1 should be enlisted in
one transaction. Another process (service) should pick the message
when milestone#2 is initiated and should interact with the target
application. Activities in milestone#2, such as picking the message
from the queue, transformation, enrichment, and interacting with the
target application, should happen in one transaction.

Known issues Processing overhead and business process performance
Known solution Adding milestones could lead to processing overhead and

performance challenges. Selecting the number of milestones should
be given paramount consideration when designing the process. If
you minimize the milestones(s), you might end up adding more work
in a single transaction. The solution should be designed to allow
optimum work between milestones, and transactions must be handled
effectively. You should not end up with transactional overhead while
ensuring reliable messaging between milestones and applications.

Loan origination over JMS – Queue/Topic
In this section, we will explore how to initiate a BPM process via a queue to
demonstrate guaranteed delivery. The scenario is that the lender (bank) offers a
portal (web) application that a user can access and request for a loan. That web
application is based on the JMS framework, and it pushes messages to a loan queue
(the JMS queue). The loan origination BPM process gets initiated when a message
arrives in a loan queue.

Invocation Patterns

[120]

Creating JMS resources
The JMS queue and topic used during this section are always associated with a
number of other enabler resources that need to be defined in the web logic server.
A JMS server is required to create JMS modules, as it is a container for all the
resources defined in a JMS module. Your queues, connection factories, topics,
bridges, and other resources are defined in the JMS module. Subdeployment is
an optional resource. However, it is used to group targets. The JMS module and
resources within JMS modules, such as queues and topics, are the targets to a JMS
server / WSL server instance. We can have a subdeployment created to target the
different components of a JMS module to a single/group of targets.

A Connection Factory encapsulates the connection configuration information,
and enables the clients of JMS applications to create connections to JMS destinations.
A Connection Factory supports concurrent use, enabling multiple threads to access
the object simultaneously.

JMS supports two messaging models: point-to-point (PTP) and publish/subscribe
(pub/sub). A Queue is used for the PTP messaging model that enables the delivery
of a message to exactly one recipient, while Topic is used for the pub/sub messaging
model to enable the delivery of a message to multiple recipients. Oracle SOA
and BPM use the JMS adapter to relate (read/write) to JMS resources. You need
connection pools to refer to Connection Factories associated with queues and topics.
These JMS adapters are deployed to the web logic server, and the Connection
Factories are configured in the JMS adapter.

The following are the steps to create a JMS queue and topic. Activities
listed in the following section need to be performed at the web logic console,
http://server:host/console, by logging in as the admin user (weblogic).

Creating a JMS server
Perform the following steps to create a JMS server in the web logic console:

1. In the domain structure, navigate to Domain | Services | Messaging |
JMS Servers.

2. Click on New to create a new JMS server.
3. Enter the name of the JMS server as LoanOrigJMSServer; let the

persistent store be None and click on Next.
4. Select the target as soa_server1 or your available server.
5. Click on Finish.
6. The JMS server will be listed with Health Status = OK.

Chapter 3

[121]

Creating a JMS module
Perform the following steps to create a JMS module in the web logic console:

1. Navigate to Services | Messaging | JMS Modules and select New to create
a new JMS module.

2. Enter the name as LoanOrigSystemModule and the description, and click
on Next.

3. Choose the target as soa_server1, or the one you selected while creating the
JMS server, and click on Next.

4. Don't check the box to add resources and click on Finish.
5. You can see that a new JMS module is listed.

Creating a JMS subdeployment
Perform the following steps to create a JMS subdeployment in the web logic console:

1. Click on LoanOrigSystemModule and click on the Sub Deployment tab.
2. Click on New to create a new subdeployment.
3. Enter the name for the subdeployment as LoanOrigSubDeployment and click

on Next.
4. In the targets, select the JMS server, LoanOrigJMSServer.
5. Click on Finish.

Creating a Connection Factory
Perform the following steps to create a Connection Factory in the web logic console:

1. Navigate to Services | Messaging | JMS Modules and select New to
add resources.

2. Select Connection Factory and click on Next.
3. Enter the Connection Factory name as LoanOrigConnFactory.
4. Enter the Connection Factory JNDI as jms/LoanOrigConnFactory; leave the

default as it is and click on Next.
5. Click on Advance Targeting and select the LoanOrigSubDeployment

subdeployment, which we created earlier.
6. Click on Finish.

Invocation Patterns

[122]

Creating a queue
Perform the following steps to create a JMS queue in a JMS module:

1. Navigate to Services | Messaging | JMS Modules and select New
to add resources.

2. Select Queue and click on Next.
3. Enter the name and JNDI of the queue as LoanOrigQueue and

jms/LoanOrigQueue, respectively.
4. Select the LoanOrigSubDeployment subdeployment and click on Finish.
5. You can now find the Connection Factory and the queue listed as resources

in the JMS module.

Creating a topic
Perform the following steps to create a JMS topic in a JMS module:

1. Navigate to Services | Messaging | JMS Modules and select New to
add resources.

2. Select Topic and click on Next.
3. Enter the name and JNDI of the topic as LoanOrigTopic and jms/

LoanOrigTopic, respectively.
4. Select the LoanOrigSubDeployment subdeployment and click

on Finish.

Configuring the connection pool
Perform the following steps to create a connection pool in the web logic console:

1. Navigate to WebLogic console | Domain | Deployments.
2. Scroll down and click on JmsAdapter.
3. Click on the Configuration tab, select Outbound connection pool,

and expand it as oracle.tip.adapter.jms.IJmsConnectionFactory.
This lists all the connection pools.

4. Click on New to create a new connection pool.
5. Select the oracle.tip.adapter.jms.IJmsConnectionFactory option and

click on Next.
6. Enter eis/wls/LoanOrig as the connection pool JNDI name.
7. Click on Finish and navigate to the outbound connection

factory properties.

Chapter 3

[123]

8. Enter jms/LoanOrigConnFactory as the Connection Factory Location
property value and hit Enter.

9. Save the property value configuration.

You will receive a message saying that the changes are activated (if the server
is in the development mode). In any case, you will now update the JMS adapter,
as follows, for the changes to take effect:

1. Click on the Configuration tab, select Outbound connection pool,
and expand it as oracle.tip.adapter.jms.IJmsConnectionFactory.
This lists all the connection pools.

2. Click on New to create a new connection pool.
3. Select the oracle.tip.adapter.jms.IJmsConnectionFactory option and

click on Next.
4. Enter the connection pool JNDI name as eis/wls/LoanOrigTopic.
5. Click on Finish and navigate to the outbound connection factory properties.
6. Enter jms/LoanOrigConnFactory as the Connection Factory Location

property value and hit Enter.
7. Enter true for IsTopic.
8. Save the property value configuration.

You will receive a message saying that the changes are activated (if the server is in
the development mode). In any case, you now need to update the JMS adapter for
the changes to take effect.

Redeploying the JMS adapter
Perform the following steps to deploy the JMS adapter with new configurations by
updating the adapter:

1. Navigate to WebLogic console| Domain| Deployments.
2. Scroll down, click on JmsAdapter, and check the box close to JMS adapter.
3. Click on the Update button.
4. Select the Update this application in place with new deployment

plan changes option, click on Next, and then click on Finish.
5. You will receive the following message:

All changes have been activated. No restarts are necessary.
Selected Deployments were updated.

Invocation Patterns

[124]

Creating the publisher process
In a real-life scenario, as per our use case, a web application would push messages
to the loan queue (LoanOrigQueue). However, for this demonstration, we will
use an SOA process to produce a message to this queue. With the downloadable
code for this chapter, we have the LoanOriginationProcess application. The
LoanOriginationProcess application contains the PublishLoanPrj project. It's
a simple BPEL process that exposes a SOAP interface and pushes messages to
the LoanOrigQueue queue. Click on the LoanPublishingProcess BPEL process
and check its configuration. We can visit the .jca file to verify the queue and the
Connection Factory JNDI configured in the process in order to publish messages to
the LoanOrigQueue queue.

Developing the consumer process
We will now create a subscriber process that subscribes to the LoanOrigQueue
queue as follows, and the process gets initiated when a message of the loan request
arrives at the queue:

1. In JDeveloper, go to Application | LoanOrigination | BPM Processes.
2. Right-click on BPM Processes and create a new process.
3. Select the type of process as Asynchronous and enter the name of the

process as LOProcessActivationFromQueue.
4. Click on Finish.
5. Go to LoanOrigination (the composite file) of the LoanOrigination project.
6. Drag-and-drop a JMS adapter in the swimlane exposed service.

This will open the JMS adapter configuration wizard.
7. Enter the name of the JMS adapter service as ConsumeLoanRequest

and click on Next in the wizard.
8. Choose JMS adapter and click on Next.
9. Select the application server connection and click on Next.
10. Select the operation type as Consume_Message and click on Next.
11. Browse for the destination queue (LoanOrigQueue), enter the JNDI

(eis/wls/LoanOrig), and click on Next.
12. Navigate to Loan origination schema| Loan Request element, click on Next,

and then on Finish. Click on Save all.

Chapter 3

[125]

This completes the configuration of a JMS subscriber service (the JMS adapter as a
service). Now, we will continue with further procedures, as follows:

1. Go back to the LOProcessActivationFromQueue BPMN process and create a
process input process data object, LOProcessActivationQueueINPDO, based
on the business object (LOProcessBusinessObject).

2. Double-click on the Message Start Event to open the properties.
3. Enter the name for the Message Start Event as

LoanOriginationSubscriber.
4. Click on the Implementation tab and select Use Interface.
5. Click on Browse in the reference interface section.
6. Browse and select the JMS adapter service, ConsumeLoanRequest, which you

configured earlier.
7. The operation message (the consumer message) will automatically

pop up.
8. Complete the data associations and click on OK.
9. Drag-and-drop an embedded subprocess and give it a name.

Let the subprocess be in the draft mode. You will place this just as a
token to demonstrate that further loan origination process flow activities
and tasks will be defined later.

10. Assign a role to swimlane as LoanOfficer. It will already exist if you
have completed the other sections; if not, create a role with the name
LoanOfficer.

Invocation Patterns

[126]

11. The process will look as shown in the following screenshot; save and deploy
the process to web logic:

Testing the process
Execute the following steps to push a message to the queue:

1. Go to the EM console, http://server:host/em, and initiate the BPEL server
loan publishing process. The BPEL service, LOPublishingProcess, when
executed, will push the message to the queue.

2. Click on the LoanOrigination project and you will find an instance created
for the LOProcessActivationFromQueue process, as follows:

Chapter 3

[127]

The LOPublishingProcess BPEL service pushes the loan request message to the
LoanOrigQueue queue; the LOProcessActivationFromQueue process, which is
subscribed to this queue, picks the messages from the same queue and initiates the
BPMN process instance.

Publish-subscribe pattern using topics
This section will demonstrate the publish-subscribe pattern using topics. Once the
loan origination process is completed—after the underwriting, contracting and
legalizing, and loan funding—there might be many other processes interested.
For example, when the loan origination process ends, a business might initiate a
back office process that would set dates, time, and other follow-up details to check
for the initial month's EMI payment of the loan of the customer. There might be a
process for when you may be interested to know which applicant's request loans
are disbursed, and then these processes can set a follow-up communication with the
same customer for other product offerings.

Invocation Patterns

[128]

Let's name these processes as Bank Office Process and Advertisement
Process. For enabling this functionality, we will use the JMS topics
(which we created in the previous section). We can change the end
event for the LOProcessActivationFromQueue process. Once the
LOProcessActivationFromQueue process ends, it will publish a message to
the LoanOrigTopic topic. We can create two new BPMN processes named
BackOfficeProcess and Advertisement Process, which can be subscribed
to the LoanOrigTopic topic. As soon as the LOProcessActivationFromQueue
process ends and loan information is published, these two processes start.

Understanding multiple start events
We can implement processes that can start by multiple methods. In the following
screenshot, we can see that there are multiple start activities for the process. The loan
process can subscribe to a queue, and at the same time, it can subscribe to a topic.
Also, it can be instantiated by a human task or can be scheduled:

Chapter 3

[129]

Summary
This chapter demonstrated the different BPM process invocation patterns. BPM
processes can be exposed as a service and can be invoked using different message
exchange patterns. This chapter showcased the initiation of a BPM process from
a human task, e-mail, timers, and so on. You also learned how to engulf loose
coupling, scalability, and durability with the publish-subscribe pattern. On the other
hand, you have also walked through the details to implement guaranteed delivery
and reliability through queues. We also covered the one-request-two-response
pattern and two-request-one-response pattern along with the one-way messaging
pattern. Different ways to implement patterns are also discussed in this chapter.
While learning different patterns, we have also covered various service invocations,
tasks, and activities such as Send and Receive tasks, Service tasks, and so on, and
have learned various events and activities.

The next chapter is focused on human task patterns. We will learn how to
incorporate human intuition in processes and various patterns to support it.

Human Task Patterns
Business processes need human interactions for approvals, exception management,
interactions with a running process, group collaboration, document reviews or
case management, and so on. There are various requirements for enabling human
interaction and human intuition within a running BPMN process, which are
accomplished using human tasks in the Oracle BPM. This chapter is dedicated to
demonstrating human task patterns. In order to bring in the human intuition and
human decision mechanism in the process, Oracle BPMN 12c offers you human tasks
(user tasks).

Human tasks are implemented by human workflow services that are responsible
for the routing of tasks, assignment of tasks to users, and so on. When a token
arrives at the user task, the control is passed from the BPM process to Oracle Human
Workflow, and the token remains with human tasks until it's completed. As callbacks
are defined implicitly once the workflow is completed, the control is returned back
to the user task and the token moves ahead to subsequent flow activities. However,
if you terminate a BPM process while it is running a user task, the associated human
task will keep running as human tasks are independent of the BPM processes.
Actions taken on a human task can interact with the process until the process
instance has left the user task. Even when the process instance has left the user task,
you can still access the user task. However, any actions taken on the task will not
bring any interaction with the process and it will not appear even in the audit trail.

This chapter covers a rich set of patterns, from milestone patterns to routing patterns.
Oracle BPM offers several human task patterns such as the initiate task, user task,
management task, group-voting task, For Your Information (FYI), and complex task
patterns, which are covered in this chapter through a detailed description on routing
patterns. The chapter also covers patterns that allow you to explore various participant
list-building patterns. Task assignment patterns, ad hoc assignment patterns,
delegation patterns, and escalation patterns are discussed in depth in the chapter.

Human Task Patterns

[132]

Various advanced features such as exclusion, notification, ECM integration, and
access policy are covered in detail along with routing patterns, delegation patterns,
and so on. These set of patterns and features offer formalized best practices
that allow process analysts, developers, and designers to build solutions for the
commonly occurring issues and challenges, seamlessly bringing in human intuition
in the BPMN process.

In this chapter, we will focus on the following patterns and features:

• Milestone pattern
• Routing pattern
• Assignment patterns
• List builder patterns
• Parallel routing pattern
• Serial routing pattern
• Single routing pattern
• FYI pattern
• Task aggregation pattern
• Dispatching pattern
• Escalation pattern
• Rule-based reassignment and delegation pattern
• Ad hoc routing pattern
• Request info feature
• Reassignment and delegation pattern
• Force completion pattern
• Routing rule pattern
• Error assignees and reviewers
• Deadline
• Escalation, expiry, and renewal
• Exclusion
• Error assignee and reviewer
• Notification
• Content access policy and task actions
• Enterprise content management for task documents

Chapter 4

[133]

Learning about human tasks
In this section, we will create a simple BPM process and configure the human task
for each pattern. However, before we start talking about human task patterns, let's
understand some of the definitions that we will follow throughout this chapter.

We will discuss building a list of participants, routing to participants, task
assignments, escalations, and so on in this chapter. Participants will remain the core
of the discussion. Participants are users who act on the tasks. They are defined in the
assignment and routing policy definition. In the first screenshot of this chapter, each
participant block with the icon that represents people is a participant. We are talking
about human tasks and user tasks, and it's the user (participant) who needs to act on
them. The following are the types of participants:

• Users: This refers to the individual users who act on a task. Users are defined
in an embedded LDAP (myrealm) in Oracle SOA, or they can be in the Oracle
Internet directory or an external/third-party LDAP directory.

• Groups: A task can be assigned to a group. A group contains individual
users who can claim and act on the task. For example, Christine and
Richa could be from SalesAgentGroup and the task could be assigned to
a SalesAgentGroup group. A group can be defined in the LDAP, such as
myrealm, or a group can be generated dynamically.

• Roles: They are created as application roles under the
OracleBPMProcessRolesApp. OracleBPMProcessRolesApp application,
which is a weblogic application that contains application roles and swimlane
roles. There are two types:

 ° Application roles: Users and other roles can be grouped logically
using application roles. They represent any roles in the organization.
They are created in addition to the swimlane roles defined during
design time. These roles are specific to applications and are not
stored in the identity store. An application role can be used as a
task assignee or as a grantee of another application role. As they are
application-specific, they are defined in the application policy store
and are used by the application directly. These roles basically define
a policy. Roles that can be defined at design time can also be defined
at runtime using the EM console. They can be created by using either
the Oracle BPM Studio or the process workspace.

Human Task Patterns

[134]

 ° Swimlane roles: These roles are created at design time in the BPM
studio. Once defined, they are mapped to an application role that
was created during deployment. This mapping cannot be changed
after the deployment. Participants are assigned swimlane roles while
defining organizations in the BPM studio or from the workspace
application. Members of the roles can perform actions on the task at
runtime. Swimlane roles are application roles that are also contained
in OracleBPMProcessRolesApp.

 ° Approval Groups: This is used to define and manage a group
of participants/users. Approval groups are defined in the BPM
workspace. They can be static or dynamic approval groups. To
learn more about dynamic approval groups, refer to http://
acharyavivek.wordpress.com/2012/02/27/dynamic-approval-
group-bpm-workspace/.

• Organizational roles (parametric roles): These are logical roles. Members
of parametric roles are evaluated dynamically at runtime. Parametric roles
are based on the process roles that are created when you deploy a BPM
process, or you can also create them in the administration section of the
Oracle BPM workspace. They basically use the application roles to build a
query on OracleBPMProcessRolesApp. These roles have defined parameters
and based on these parameters, assignees of a task are derived. This is a
dynamic way to assign participants. For example, if the industry is IT, then
the ITSalesrepApproverRole application role must be selected. If the
industry is MFG, then the MFGSalesrepApproverRole application role must
be selected. Here, the industry can be defined as a parameter (the plain text
or Xpath expression) and can be passed from the task to the parametric role.
The parametric role will have the condition to evaluate the parameters based
on the parameter industry.

In this section, we will perform the following exercise in order to understand the
human task configuration offered in the project delivered with this chapter. This
project will remain the baseline for the demos that we will execute while learning
various patterns:

1. Download HumanTaskApps from the download link for this chapter.
2. Open HumanTaskPrj and click on the SalesQuoteProcess BPM process.

http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/
http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/
http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/

Chapter 4

[135]

You will find all the user task patterns being configured in the process. Click on each
task and analyze its task metadata:

• Initiator user task: This is used to initiate the process from worklist
applications. Assignees are calculated from the roles associated with the
swimlane. Click on the .task file for the initiator task to analyze the task
configuration in the task metadata. Click on the Assignment tab in the
task metadata. You will find that you can neither add more stages nor
participants. A user who has the swimlane role will find a link in the
workspace, and the user can initiate the process from that link.

• User task: This is the default pattern with the participant type as single. This
pattern is useful when a single user action is required, such as confirmation,
decision, and so on. Participants are defined by the swimlane for this pattern.

• FYI task: This is similar to the user task pattern; however, it's meant only to
send notifications and participants are not supposed to act on the task. The
participant type is FYI. When a token arrives at the FYI task, the control is not
passed from the BPM process to Oracle Human Workflow, and the process
does not wait for the task completion and executes subsequent activities.
Default assignees are the role associated with the swimlane to which a task
belongs, and a notification is sent to all the participants that belong to the role.

• Group task: This pattern is useful when the tasks need to be performed
in parallel.

• Management task: This pattern is useful when users are defined based on
levels in the management hierarchy.

• Complex task: This pattern allows you to define a complex routing slip.

When analyzing each human task in the project, it's evident that it comprises of
various features such as assignments, routing, participant lists, assignment patterns,
and so on. Oracle BPM offers these patterns as a template for developers, which can
be extended. We will be using complex approval patterns to look into all the building
components in subsequent sections of this chapter.

Participants are logically grouped using stages that define the assignment within
the routing slip. Assignments can be grouped based on assignment modeling
patterns. Based on assignment modeling patterns, these can be sequential, parallel,
or hybrid. The participant configuration and routing of the human task is enabled in
the routing slip. The routing of the tasks to participants is governed by the routing
pattern, which is a behavioral pattern. This defines whether one participant needs
to act on a task, many participants need to act in sequence, all participants need to
act in parallel, or participants need not act at all (covered in the routing pattern).
Participants of the task are built using participant list-building patterns, such as
approval groups, management chains, and so on.

Human Task Patterns

[136]

The assignment of the participant is performed by task assignment mechanisms such
as static, dynamic, and rule-based. Tasks can be manually claimed by the user, or
they can be automatically assigned by automatic task dispatching through dynamic
assignment patterns (covered in the Dispatching pattern section).

Milestone pattern
The following pattern table highlights facts around Milestone Pattern:

Signature Milestone Pattern
Classification Human Task Pattern
Intent The logical indicative of the key milestones within the approval

sequence.
Motivation The motive is to define the task routing. Modeling task routing and

assignments are termed as milestone patterns. A stage(s) defines the
milestone and is the core task sequence modeling pattern. Stages
are used to model task routing, which allows you to identify the key
milestones within the approval sequence. They are a logical grouping
of participant blocks.

Applicability Stages can be in sequence or in parallel, and while modeling a routing
slip, you can have one or more stages. Each stage has a participant
block that has a participant type, which in turn consists of a list
builder that determines the list of approvers. The stages are for the
following reasons:

• Dividing the complex task into smaller scopes
• Grouping participant types in blocks
• Modeling, and hence, defining the execution sequence of the

approval process for the task
• Defining a set of approvals for a collection
• Defining the state model that can be simple, complex, and can

be sequential, parallel, or hybrid
Implementation When collections are defined, JDeveloper will determine whether

they can be repeating elements or not. This definition of collections
is helpful when collections are associated with stages. Associate a
nonrepeating collection with a singular stage. However, associate
a repeating collection with the stage that needs to get repeated in
parallel for each element in the collection. The repetition of stage
on collection elements, as explained previously, is the runtime
behavioral pattern.

Known issues NA
Known solution NA

Chapter 4

[137]

A stage can be repeating or nonrepeating. You can associate a nonrepeating
collection with a nonrepeatable stage. However, if you want to repeat a stage in
parallel for each element in the collection, then a repeating collection needs to be
associated with the stage. For example, if a sales quote has 10 lines, the stage is
repeated 10 times in parallel. Download HumanTaskApps and open HumanTaskPrj.
Perform these steps if you have not already downloaded HumanTaskApps. Open the
ComplexTasks.task files. We will develop the complex task for this scenario with
the following steps:

1. Click on the ComplexTasks.task file; this will open the human task metadata
editor. Go to the Data section and analyze the data element. This is based on
the quote request element in Quote.xsd.

Navigate to HumanTaskPrj |SOA |XSD/Schemas |Quote.xsd
to open and analyze the quote schema.

2. Double-click on Stage 1 (ProductLineItemApproval) to open the
stage editor.

You can verify that a collection is being defined on product items. Product items
are repeating data elements in the quote schema. The Xpath expression for it is /
task:task/task:payload/ns0:QuoteRequest/ns0:ProductItem.

We would repeat a stage in parallel for each item in the product collection, and
hence, a collection is defined here. This can also be based on the entity or SDO.
The following steps show you the nature of each stage in the sequence task flow:

• Stage 1 (ProductLineItemApproval) is for the line items, and it is based
on collections as will be repeated.

• Stage 2 (ProductHeaderApproval) is nonrepeating and is based on
header values.

• Stage 3 (LegalApproval) and Stage 4 (ContractApproval) are also
nonrepeating.

• Stage 1 and Stage 2 are in sequence, while stage 3 and stage 4 are in parallel.
However, stage 2 is in sequence with stage 3 and stage 4.

Walk through the following steps to model the sequence flow:

1. Open the Assignment section of the task metadata. The assignment and
routing section helps you define the sequence flow of the task. For a new
complex task, this would be empty. This is an Oracle-BPM-offered task with no
seeded template and can be modeled and build as per business requirements.

2. Click on the stage and name it ProductLineItemApproval.

Human Task Patterns

[138]

3. Enable the radio button repeat stage in parallel for each item in a collection.
This will open the collection item that is based on a voting pattern. If 50
percent of the items (elements) in the collection are approved, then the task is
approved, or if 30 percent of the items (elements) are rejected, then the task
is rejected. Choose either to trigger the outcome immediately or wait until all
the votes are in before triggering the outcome.

4. Click on the green plus sign on top of the screen and select Sequential Stage.
5. A new stage in sequence with the ProductLineItemApproval stage will be

created. Name it ProductHeaderApproval.
6. Enable the radio button—nonrepeating—as we don't want it to be

based on collections and it needs to be performed only once for the
header level information.

7. Click on the green plus sign on top of the screen and select Sequential
Stage. You will create a third stage. Name it LegalApproval and let it be
nonrepeating too.

8. While you are in the third stage, which is LegalApproval, click on the green
plus sign to create a parallel stage. This will create a stage in parallel with the
third stage. Name the newly created stage ContractApproval and let it be
nonrepeating as well.

The stage will be a sequence flow that defines task routing, as shown in the
following screenshot:

Chapter 4

[139]

Now, you might be thinking that we can perform such task modeling in a BPM process
too. Why model in a human task? The following section answers this question.

Modeling in a human task versus a BPMN
process
The routing of tasks can be modeled in a human task, as well as in a BPMN
process. This purely depends on the business requirement and various modeling
considerations. For instance, if you are looking for greater business visibility and
if there is a requirement to use exceptional handling, then it's good to model the
task in the BPMN process itself. However, if you are looking for dynamism,
abstraction, dynamic assignment, dynamic routing, and rules-driven routing,
then modeling task routing in the human task assignment and routing is an
enhanced modeling mechanism.

Routing pattern
The following pattern table highlights facts around Routing Pattern:

Signature Routing Pattern

Classification Human Task Pattern
Intent Assignment of task participants. At each stage, you can define

participant blocks that have participant types that participants are
associated with. Behaviors of participants are defined by the routing
patterns.

Motivation Tasks can be routed to participants based on the routing pattern that
governs the behavioral pattern of the participants.

Applicability A participant type is grouped in a participant block under a stage.
You can create a parallel or sequential participant block that contains
participant types. Each participant type can have its own routing
pattern and its own way to build the list of participants. However,
it's the routing pattern defined for the participant type that defines
the behavior of the participant.
Whether all the participants need to act in parallel or in sequence or
whether they don't need to act at all is defined by the routing pattern
defined in the participant type. Hence, the routing pattern defines
the behavioral patterns of the participants. The list of participants is
derived based on list-building patterns such as management chain,
approval group, and so on.

Human Task Patterns

[140]

Implementation This chapter demonstrates various types of routing patterns
in detail.

Known issues NA
Known solution NA

The following are the different routing patterns that are required to route a task:

• Single approver: The task is assigned to a single user, group, or role. For
example, a vacation approval request is assigned to a manager. If the
manager approves or rejects the request, the employee is notified of the
decision. If the task is assigned to a group, then one of the managers acts on it
and the task is completed. If the list of participants is built using an approval
group, then the task is assigned to the group; however, once one of the users
in the group acts on the task, it's considered complete.

• Parallel: This is like voting. The task is assigned to a set of people who
must work in parallel. For example, a task gets approved once 50 percent of
the participants approve it. You can also set it up to be a unanimous vote.
For example, a loan request is considered approved when 50 percent of
the participants approve it, it's considered rejected when 40 percent of the
participants reject it, and so on.

• Serial: Participants must work in sequence. The most common scenario for
this is the management chain escalation. For example, a list of participants is
built using a dynamic approval group, and the participants are assigned tasks
in a sequence. If one participant completes the task, then the next participant is
assigned the task, and so on. Participants have to act in a serial fashion.

• FYI: The task is assigned to participants who can view it, add comments
and attachments, but cannot modify or complete the task. It's just like a
notification, and no one is supposed to act on it. The process token remains
with the BPM process and the control is not passed on to the human
workflow, and the main process executes subsequent activities.

Task assignment pattern
The following pattern table highlights facts around Task Assignment Pattern:

Signature Task Assignment Pattern
Classification Human Task Pattern
Intent The assignment of user(s), group(s), and roles to human tasks.
Motivation Assigning participants to tasks either statically, dynamically, or

derived based on business rules.

Chapter 4

[141]

Applicability There are different methods to assign user(s), group(s), and roles to
tasks, which are covered in this section.

Implementation The user(s), group(s), and roles can be assigned to tasks at design
time or can be derived at runtime. Runtime derivation can also be
based on rules.

Known issues NA
Known solution NA

After going through the types of participants, it would be interesting to know how
participants (users, groups, and application roles) are assigned to the tasks. The
following are the methods for assigning users, groups, and application roles to tasks:

• Static assignment: Static users, groups, or application roles can be assigned
to a task at design time. You can statically assign a user(s), group(s), and
roles to a task where the decision of an assignment is taken at design time.

• Dynamic assignment: Users, groups, and application roles can be assigned
to a task dynamically at runtime when the task assignment pattern is
getting executed. The following are the ways to perform the dynamic
task assignment:

 ° Task assignment patterns: We will go into more detail on this subject
in subsequent sections. This chapter has covered various routing
patterns, and varied task assignment patterns have been covered in
these patterns.

 ° Using the XPath expression builder: With the XPath expression
builder, you can derive users. You can use XPath expression builders
to define queries that will result in assigning users to tasks during the
process execution.

 ° Business rules.
 ° The organizational role (parametric roles).
 ° External routing.

Dynamic task assignment is covered in detail in the article published
on the Packt Publishing website (http://www.packtpub.com/
article-network).

http://www.packtpub.com/article-network
http://www.packtpub.com/article-network

Human Task Patterns

[142]

• Nonfunction-based derivation: Queries that result in assigning a user(s),
group(s), and roles to the task during the process execution can be based
on the XPath expression that derives values from the task payload itself.
For example, if payload contains data that has approvers, then you can
build an XPath expression to determine a user from there just like the /
task:task/task:payload/ns0:QuoteRequest/ns0:LicenseTerm/
ns0:Approval/ns0:Approver field in the SalesQuote schema offers
the approver.

• Function-based derivation: You can use functions in XPath expressions to
derive the users, groups, and so on. This is shown in the following bullet list:

 ° ids:getManager (richa, jazn.com): This returns the manager
of richa

 ° ids:getReportees (christine, 2, jazn.com): This returns all
reportees of Christine up to two levels

 ° ids:getUsersInGroup (SalesOfficerGroup, false, jazn.com):
This returns all direct and indirect users in the SalesOfficerGroup
group

• Rule-based assignment: You can use business rules to build the list of
participants by using complex expressions.

List builder pattern
The following pattern table highlights facts around List Builder Pattern:

Signature List Builder Pattern
Classification Human Task Pattern
Intent Deriving the actual list of participants to act on the task.
Motivation Stages have participant blocks, which have participant types. Each

participant type has a routing pattern that defines the participant's
behavioral pattern. In a specific routing pattern, the list of
participants is derived based on list-building patterns such as the
management chain, approval group, and so on.

Applicability This specifies the collection of participants. The list builder pattern
can be hierarchical, nonhierarchical, or it can be rule-driven.

Implementation This is implemented inside the routing pattern. Each routing pattern
section in this chapter covers the associated list builder pattern
in detail.

Known issues NA
Known solution NA

Chapter 4

[143]

The following are the different categories and functions of the list builder pattern.

Absolute or nonhierarchical list builders
These list builders create participant lists based on the static assignment of a user(s),
group(s), and roles, deriving statically/dynamically from approval groups or
dynamically from application roles. However, the list is not based on an organizational
or role hierarchy. The following is the list of nonhierarchical list builder patterns:

Pattern Description
Name and
expression

These lists enable you to statically or dynamically select users,
groups, or application roles as task assignees. This pattern enables
you to construct a list using static names or names that come from
XPath expressions. If the identification type is the name or group, it
would allow you to browse and build the list from the LDAP. If the
identification type is the application role, you are allowed to browse
OracleBPMProcessRolesApp. Here, the group is a group defined
in the LDAP and is different from the approval group defined in the
workspace application.

Approval
groups

This is a pattern that defines and manages the group of participants/
users. Approval groups are defined in the BPM workspace. They can be
static or dynamic approval groups.
You can use worklist applications to configure approval groups. The
static approval group is a static and predefined list of approvers.
Approvers are derived at runtime in the case of dynamic approval
groups. Use dynamic approval groups when you need to calculate the
approval group dynamically, based on the task payload. For example,
for each sales quote line, we can have a different set of approvers based
on the quantity defined in the line. If the quantity is greater than 100,
you might need to derive a different group, or if the quantity is less than
100, then derive a different set of users based on an approval group.
You can use business rules and model this flow in the BPM process;
however, it becomes more efficient to model such scenarios in rule-based
dynamic/static approval groups. An approval group can be defined as a
value in the approval group pattern, or it can be based on rules.

Lane
participant

Participants are derived based on the swimlane in which the user task
is positioned in the BPM process. This could be the current swimlane
participant or the previous swimlane participant.

Human Task Patterns

[144]

Pattern Description
Parametric
Role

These are logical roles. Members of parametric roles are evaluated
dynamically at runtime. Parametric roles are based on the process
roles that are created when you deploy a BPM process, or you can
also create them in the administration section in the Oracle BPM
workspace. They basically use the application roles to build a query on
OracleBPMProcessRolesApp. These roles have defined parameters
and based on these parameters, assignees of a task are derived. This
is a dynamic way to assign participants. For example, if the industry
is IT, then the ITSalesrepApproverRole application role must be
selected. If the industry is MFG, then the MFGSalesrepApproverRole
application role must be selected. Here, the industry can be defined
as a parameter (plain text or the Xpath expression) and can be passed
from the task to the parametric role. The parametric role will have the
condition to evaluate the task based on the industry parameter.

You can read more about the parametric role by reading the dynamic
task assignment article published on the Packt Publishing website
(http://www.packtpub.com/article-network). For more
information on dynamic approval groups, please visit http://
acharyavivek.wordpress.com/2012/02/27/dynamic-
approval-group-bpm-workspace/.

Hierarchical list builders
These patterns are mostly used for serial routing patterns. The participant list is built
using the organization or role hierarchy. The following is the list of hierarchical list
builder patterns:

Pattern Description

Management
chain

The management chain list builder pattern is used for serial approvals
through multiple users in a management chain hierarchy. To
configure a management chain list-building pattern, you have to
specify a starting participant (user/group/role), a top participant title,
and/or the number of levels. The computation of the number of level
is absolute and starts from the starting participant. For example, if
you want the task to be approved by the starting participant and his/
her manager, then specify the starting participant and number of level
as 1. The management chain hierarchy is always computed based on
users defined in the embedded LDAP, active directory, or third-party-
configured LDAP.

http://www.packtpub.com/article-network
http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/
http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/
http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/

Chapter 4

[145]

Pattern Description

Supervisory Starting from a given approver, the list of participants climb up
the approvers list and generates a chain that has a fixed number
of approvers in it. While configuring the supervisory list builder
pattern, you have to supply starting participants, top participants,
and the supervisory level. The starting participant is the default to the
initiator's manager. Hence, if no value is specified, then the initiator's
manager is considered as the starting participant and the task gets
assigned to it. Here, the top participant is not a title. While in the job
level hierarchy, you can use a title as the top participant. This pattern
traverses the supervisory hierarchy.

Job level Starting from a given approver, the list of participants climbs up the
supervisory hierarchy until an approver with a specified job level is
found. This can be value-based or rule-based. This pattern traverses
the job level hierarchy. This pattern allows you to specify the starting
participant and top participant. Levels that are defined are relative to
the starting participant or task creator. This allows you the flexibility
to include all managers at the last level. It also allows you to define
the utilization of the participants. You can define whether you want to
utilize all the participants from the list, or the first and the last person
from the list, or only the last person from the list. It stops when the
top participant is reached or the top job level criteria are met.

Position List building starts at the requester or a given approver's position and
goes up until a specific number of level or a position is met.

Rule-based list builders
Business rules can be used to create a list of participants. However, business rules
can also be part of a different type of list builder. For example, Name and expression
is the main list builder mechanism; however, attributes are specified using rules and
not values. When using rule-based attributes inside a different list builder, the action
of the rule is in accordance with the type of the main list builder.

It's always effective to use the rule-based list builder in comparison to using rules in
some other list builder, because the action of the rule is based on its definition and is
not in accordance with the other list builder type in which it is included.

Rules are defined using Oracle business rules. The moment you configure the
rule-based list-building pattern, a decision service is created. You will get the rule
dictionary created at <Task Name>Rules.Rules and <Task name>RulesBase.rule.

Human Task Patterns

[146]

The first one is referred to as the runtime rule dictionary (the custom dictionary)
and the other is referred to as the base design time rule dictionary. Always use the
first rule dictionary to engulf any runtime changes. Different rule dictionaries have
advantages for customization scenarios. For example, you create and ship Version
1 of an application to a customer. The customer then customizes the rule sets in the
application with the Oracle SOA composer. These customizations are now stored in a
different rule dictionary and not the base rule dictionary.

The rule dictionary that stores the customized rule sets links with the rules in the
base dictionary. When you ship Version 2 of the application later, the base rule
dictionary might contain additional changes introduced in the product. The rule
set customization changes that were previously performed by the customer are
preserved and available with the new changes in the base dictionary.

We can use one of the following functions in the business rule's action to derive the
list of participants:

• CreateResourceList: This function matches the Names and Expressions
list builder

• CreateApprovalGroupList: This function matches the approval groups
list builder

• CreateManagementChainList: This function matches the management
chain list builder

• CreateSupervisoryList: This function matches the supervisory list builder
• CreateJobLevelList: This function matches the job level list builder
• CreatePositionList: This function matches the position list builder

With the specified rule set, two other rule sets are created: the substitution rule
set and the modification rule set. The substitution rule uses the seeded substitution
function that allows you to substitute users, groups, and roles in the created
lists with different users, groups, and roles. Modification rules use seeded
functions—extend and truncate—that allow you to extend or truncate the
participant lists. However, the modification rule is applicable to the job level
and position-based list builders. The example that demonstrates the list substation
is covered in the Serial routing pattern with list builder section.

Chapter 4

[147]

Parallel routing pattern
The following pattern table highlights facts around Parallel Routing Pattern:

Signature Parallel Routing Pattern
Classification Human Task Pattern
Intent A set of the people (participants) must work in parallel.
Motivation This is like a voting process where multiple users have to provide

their opinion or vote.
Applicability This pattern is useful in scenarios where multiple users have to

provide their opinion or vote. You have to specify a voted-upon
outcome that will override the default outcome selected in the default
outcome list. The voted-upon outcome takes effect when the required
percentage is reached. Voted-upon outcomes are evaluated in the
order in which they are listed in the table.

Known issues NA
Known solution NA

A task is assigned to a set of people who must work in parallel. For example, a task
gets approved once 50 percent of the participants approve it. You can also set it up to
be a unanimous vote. For example, a loan request is considered approved when 50
percent of the participants approve it, and it's considered rejected when 40 percent
of the participants reject it, and so on. In this section, we will enlist the working of a
parallel routing pattern for different list builders.

Getting ready to test sample use cases
To test the samples demonstrated for this pattern, we need to perform the
following activities:

• Log in to the weblogic console and create users (Christine, Jim, Kim, Lata,
salesrep, and so on) in myreal (the embedded LDAP). Other users will be
available to you if you have installed the demo community by following the
installation steps enlisted in Appendix, Installing Oracle BPM Suite 12c.

Human Task Patterns

[148]

• Log in to the BPM workspace as an admin user and navigate to the
following path to create an organization unit (SalesOrg) and assign users
(Christine, achrist, cdyole, lata, jcooper, jstein, Kim, Jim, fkafka,
wfaulk, and cdickens) to the organization. The path is BPM Workspace |
Administration | Organization | Organization Units.

• Log in to the BPM workspace and navigate to the mentioned path to create
a static approval group (MFGSalesAdmin) and associate user (Christine,
salesrep, Jim, and Kim) to the static approval group. The path is BPM
Workspace | Administration | Task Administration | Approval Group.
Static approval groups are predetermined lists of approvers, while dynamic
approval groups generate approver lists at run time. The outcome will be
decided based on the voting pattern.

• Log in to the WebLogic console and navigate to myrealm to create a group
(ITSalesrepAdmin) and to assign users (achrist, jcooper, jstein, and
fkafka) to this group.

Parallel routing pattern with name and
expression list builders
If you want to configure the parallel routing pattern with the name and expression
list builder pattern using the participant identification type (users/groups/roles),
then you can browse the LDAP to identify the user/group. If the identification type
is the application role, we are allowed to browse OracleBPMProcessRolesApp.
Download and open the project in order to open the task and check its configuration.
The stage is configured over a collection to implement the product items. Create the
participant type with the parallel routing pattern using the following steps:

1. Download HumanTaskApps and open the HumanTaskRouting project in
JDeveloper 12c.

2. Open the ParallelRoutingTask task, and navigate to the assignment
section in the task metadata editor.

3. Enter a label for the routing pattern as ProductItem.
ParallelParticipantBasedOnNameExpression.

4. Configure the voting pattern. The voting outcome is defined in the
percentage. Hence, if 75 percent of the participants approve the task, then the
task outcome will be APPROVE. If 25 percent of the participants reject the
task, then the task outcome will be REJECT, and the task will get completed.

Chapter 4

[149]

5. Select Names and expressions to build the participant list. Let the list
building be based on values. Browse the embedded LDAP and select the
users, as shown in the following screenshot:

Human Task Patterns

[150]

6. Click on the stage and check its configuration. The stage is based on the
collection, and the voting pattern is defined as follows:

 ° This is configured with the fact that if 50 percent of the line
items in the collection are approved, then the stage is considered
as APPROVE.

 ° If 30 percent of the line items in the collection are rejected, then the
stage is considered as REJECT, as shown in the following screenshot:

We can check the Wait until all votes are in before triggering outcome option if we
want the task to wait for all the participants in the list in order to act on it. We can
check Immediately trigger voted outcome when minimum percentage is met if
we want to trigger the outcome as soon as minimum percentage for APPROVE
or REJECT is met.

Deploy the project (HumanTaskRouting) to weblogic 12c and test the service
(HumanTaskRouting) using the test data that is available by navigating to Project
(HumanTaskRouting) | SOA | testsuites.

Chapter 4

[151]

The test data contains three line items for the element that is used to frame the
collection for the stage. Testing results reveals the following:

• The task gets repeated for three items as the test data has three product
items, hence three tasks will be assigned to each user.

• For each stage, the task gets assigned to Christine, cdickens, archist,
and cdoyle in parallel.

• As we have set 75 percent for APPROVE and 25 percent for REJECT, if one
participant out of the four rejects it, the task will get completed with REJECT
as the outcome. However, if three of the four participants approve it, then the
task will get completed with APPROVE as the outcome.

• So, when you test the process with three product items, all the users get the
task at the same time. There will be three tasks assigned to each user, one for
each line item.

Log in as Christine, cdickens, and archist and approve the first task (the first
task out of the three tasks), and you can see that the first task gets completed with
APPROVE as the outcome. When three users approve it, the task gets withdrawn
from the fourth user (cdoyle).

All the users will still have two more tasks in the task list for the other two line items.
Log in again as archist, Christine, and cdickens and approve the second task.
This time, we will have an interesting observation:

• The second task gets withdrawn from the user (cdoyle) after it gets
approved by three users (Christine, cdickens, and archist).

• The process gets completed as two line items out of the three line items in the
collection are approved.

This underlines the fact that the voting pattern gets applied at two levels, one at the
participant level and the other at the stage level. You can see this in the following
screenshot that showcases the stage level voting pattern. It's configured with the
fact that if 50 percent of the line items in the collection are approved, then the stage
is considered as APPROVE. You can check this in the preceding screenshot in this
section, which demonstrates the participant-level voting pattern. Hence, when 75
percent of the participants approve the task, that task is considered as APPROVE.

Human Task Patterns

[152]

Parallel routing pattern with approval group
list builder
Approval groups are defined in the BPM workspace. They can be static or dynamic
approval groups. Browse http://acharyavivek.wordpress.com/2012/02/27/
dynamic-approval-group-bpm-workspace/ to know more about dynamic
approval groups.

To configure the parallel routing pattern with the approval group list builder, we
will start with the following:

• Log in to the Oracle BPM workspace and create a static approval group,
which is MFGSalesAdmin. Associate the user (Christine, salesrep, Jim,
and Kim) with the static approval group. This will create a static approval
group. The task will get assigned to all the users in the static list at the same
time, as the routing pattern is parallel.

• As you have already configured a parallel routing pattern in the Parallel
routing pattern with Names and expressions list builder section, use the same
user task and change the list builder pattern from Names and expressions
to Approval Groups.

• Browse Approval Groups in the weblogic application server and select the
MFGSalesAdmin static approval group.

• Deploy the process and test the user task.

Testing results will reveal that for each stage, the task will get assigned to
Christine, salesrep, jim, and kim in parallel. As we have set 75 percent for
APPROVE and 25 percent for REJECT, and if one participant out of the four rejects
it, then the task will get completed with REJECT as the outcome. However if three
of the four participants approve it, then the task will get completed with APPROVE
as the outcome. Hence, when you test the process with three product items, all the
users get the task at the same time. Let jim reject the task, and you can see that the
task gets completed with REJECT as the outcome.

As the participant type is defined in the stage that is a repeating stage, all the four
participants will receive three tasks each. This is because the input payload has three
lines and the stage is configured to repeat for each line. Hence, when jim rejects one
task, only the first stage is considered as REJECT. All other users still have two other
tasks each. At the stage level, it's the voting pattern defined at the stage level that is
considered. Click on Stage configuration in the task metadata editor's assignment
section. The stage will be repeated on the product item collection. The task will be
considered complete when 50 percent of the stages are completed. Walk through the
following steps to browse the task status:

http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/
http://acharyavivek.wordpress.com/2012/02/27/dynamic-approval-group-bpm-workspace/

Chapter 4

[153]

1. Log in as kim and reject the second user task.
2. Log in to the Oracle BPM workspace as an admin user—weblogic—and go

to the Administrative task tab. You can browse the completed task, select the
user task, and check its flow diagrams in the history of the task.

You can see that the second stage shows REJECT. As half of the total stages show
REJECT, the task is completed with the REJECT outcome.

Parallel routing pattern with lane participant
list builder
In the lane participant list builder, the participant is derived based on the swimlane
in which the user task is positioned in the BPM process. It could be the current
swimlane participant or the previous swimlane participant. Perform the following
steps to enable the lane participant list builder pattern or the parallel routing task
that we used in the preceding section:

1. Open the HumanTaskRouting process in JDeveloper 12c and check the
swimlane role (salesrep).

2. Navigate to BPM studio (JDeveloper) | Task Metadata editor |
Assignment and click on the ProductItem participant type.

3. Change the list builder pattern from Approval Group to Lane Participant.
4. Select the Current Lane participants, save, and deploy the project.
5. Log in to the Oracle BPM workspace as an admin user and click on Roles

in the administration task.
6. Select the HumanTaskRouting. Salesrep role and associate Christine,

jstein, salesrep, and fkafka with the application role.

The task gets assigned to all swimlane roles. They are assigned to the sales
representative, and hence, to all the users which belong to the application role,
HumanTaskRouting Salesrep.

However, as soon as one user in the role approves the task, that task is considered
approved, and it gets withdrawn from the other users' lists. If you check in the
preceding section, you will see that there are three stages, as there are three items in
the lines and the stage gets repeated three times. However, for each stage, the task
gets assigned to the HumanTaskPrj.Salesrep swimlane role. Once a user in the role
approves the task, the task gets approved.

Human Task Patterns

[154]

Parallel routing pattern with rule-based list
builder
Rules are defined using Oracle business rules. The moment you configure the
rule-based list-building pattern, a decision service is created. You will create the
rule dictionaries—<Task Name>Rules.Rules and <Task name>RulesBase.rule.
The first one is referred to as a runtime rule dictionary, and the other is referred to as
a base design-time rule dictionary. Always use the first rule dictionary to engulf any
runtime changes. Use the following steps to build a list using the rules:

1. Use the same task metadata that you created while working in the
preceding section.

2. Go to the Assignment section in the task metadata and click on the
participant type. Let the stage remain the same as the repeating stage on the
product item.

3. Let the routing pattern or the participant type be the same as the preceding
one (parallel).

4. Change the list builder pattern to a rule-based pattern.
5. Enter the name of the rule as ComplexTypeListbuildingRule.
6. A decision service will be created, and the ComplexTaskRules.rule

and ComplexTaskBaseRules.rule rule dictionaries will be created.

This is shown in the following screenshot:

Chapter 4

[155]

Configure the rule as shown in the preceding screenshot. If the industry is IT, then
the list should be based on the ITSalesrepAdmin user group (the group is defined
in myrealm, which is an embedded LDAP). However, if the industry is MFG, then
the list should be based on the approval group, which is defined in the workspace
application. Save the rule configuration, deploy the project, and test the project using
TestData12c.xml.

The task was executed with a payload that has three line items, and the industry is
IT. This will lead to building the list from the ITSalesrepAdmin group defined in
the LDAP. Four users (achrist, jcooper, jstein, and fkafka) are members of this
group in the LDAP. As this is a parallel routing pattern, all the users have received
the task. As there are three product lines in the input payload, the stage will be
repeated three times. Each user will receive three tasks for each line.

Log in as fkafka, achrist, jstein, and jcooper to verify that they have the three
tasks assigned. All the users receive the tasks in their task list. However, they have
to claim and approve it. As soon as one user from the group claims the task, the task
is considered as COMPLETE. It's withdrawn from the list of other users. It does not
follow the voting pattern.

In the case of approval group and Dynamic/Static approval group, the list of
users is built using the group, and tasks are assigned to all four users. However, it
follows the voting pattern, and when 75 percent of the users approve it, the task gets
approved. Or, if 25 percent of the users reject it, the task is considered as REJECT.

There are many functions available in rule dictionaries that facilitate list building. In
the rule, you have to specify the condition, and in the action of the rule, you can call
one of the following functions to build the list of participants:

• CreateResourceList

• CreateSupervisoryList

• CreateManagementChainList

• CreateApprovalGroupList

• CreateJobLevelList

• CreatePositionList

Human Task Patterns

[156]

Parallel routing pattern with management
chain
While specifying the management chain, you have to specify a starting participant
(the user/group/role), the top participant title, and/or the number of levels. The
number of level computation is absolute and starts from the starting participant.
The management chain hierarchy is always computed based on users defined in the
embedded LDAP, active directory, or the third-party configured LDAP. Perform the
following steps to build a list using the management chain:

1. Use the same task metadata that you created while working in the
preceding section.

2. Go to the Assignment section in the task metadata and click on
participant type. Let the stage remain the same as the repeating stage
on the product item.

3. Let the routing pattern or participant type be the same as the one in the
previous case, that is, parallel.

4. Change the voting outcome pattern value of APPROVE to 50 percent and
REJECT to 50 percent.

5. Change the list builder pattern to the management chain.
6. Configure the management chain list builder pattern with the

following details:
The starting participant user: jcooper
The top participant: TitleVice President
Number of value levels: 4

The management chain list builder stops when the top participant is reached or the
number of levels is met. Hence, the management chain list builder will stop when
four levels are met or the top participant (Vice President) is reached. Jcooper is the
starting participant. His manager is jstein, and jstein's manager is wfaulk. Wfaulk
is also titled the Vice President.

Deploy and test the user task. Perform the following steps to analyze the pattern:

1. Log in to the Oracle BPM workspace as a user (jstein), and we can find
three tasks that have been assigned (as the stage is getting repeated and the
input payload contains three items). Approve the first task and log out.

2. Log in as jcooper and approve the first task. At this stage, the first task is
approved by two users (jstein and jcooper), and as we have modified
the voting pattern to 50 percent, the task will be withdrawn from the user
(jstein) task list.

Chapter 4

[157]

3. Log in again as wfaulk and approve the second task. We would expect that
as wfaulk is the Vice President and the stage is being met, the second task
should be approved and get removed from other users' lists. However, this
does not happen.

4. Log in to the BPM workspace as an admin user (weblogic) and navigate to
the administration tasks in the inbox. Browse this task in the task list and
check its history.

When you click on the user task in the history, it will open Task history, as shown in
the following screenshot:

We can see that the hierarchy gets resolved in one go and all the participants are
assigned the task. Participants are derived based on the list builder configuration.

In this case, although the level was entered, the list has been built up to three levels,
starting from jcooper and stretching till the Vice President (wfaulk). We can act
on tasks irrespective of their level, and based on the voting pattern defined for the
parallel participant type, the outcome will be decided.

Human Task Patterns

[158]

Serial routing pattern
The following pattern table highlights facts around the Serial Routing Pattern:

Signature Serial Routing Pattern
Classification Human Task Pattern
Intent A set of people (participants) must work in sequence.
Motivation The participants have to act in a serial fashion, one after another.
Applicability This pattern is useful in scenarios where multiple users have to

provide their opinion in a serial fashion.
Implementation This is implemented using serial routing in participant blocks.

Though this pattern intends to allow participants to work in a
sequence, the assignment of tasks to participants also depends on the
list-building pattern. For example, if the list-building pattern is the
name and expression, then the task gets assigned to participants in a
sequence; however, if the list builder pattern is a group, then the task
gets assigned to all the users at the same time. However, one of the
participants has to claim it and then act on it.

Known issues NA
Known solution N/A

Serial routing enables participants to work in a sequence. The most common scenario
for this is the management chain escalation. For example, a list of participants is
built using a dynamic approval group, and the participants are assigned tasks
in a sequence; if one task is completed, then the next task is assigned, and so on.
Participants have to act in a serial fashion. This participant type enables you to
create a list of sequential participants for a workflow. The following are the serial
behavioral patterns in conjunction with different list builders.

Serial routing pattern with list builder – name
and expression
Name and expression can be used for users, groups, and application roles.

Participant identification type – users
The task gets assigned to participants in a serial fashion, for example, if the name
and expression and the value-based list contains users such as jstein, jcooper,
and Christine. Use the following steps to configure the participant type for users:

Chapter 4

[159]

1. Use the same task metadata that you have been using so far. Modify the stage
and make it nonrepeating.

2. Click on the participant type and edit it.
3. Make the participant type serial.
4. Choose the list builder pattern as name and expressions.
5. Enter values for the participants as jstein, jcooper, and Christine.
6. Deploy and test the process.

A task gets assigned to the first user in the list. Once the participant acts on the task,
it gets assigned to another user in the list, and so on.

Participant identification type – groups
The task is assigned to the ITSalesrepAdmin group. A couple of users are members
of this ITSalesrepAdmin group (the myrealm LDAP group). Users (achrist,
jcooper, jstein, and fkafka) are members of this group in the LDAP. When the
task is initiated, it gets assigned to all the users, as there is no sequence defined for
the users in the group. One of the participants has to claim the task and act on it.
Once claimed, the task gets withdrawn from other users' lists.

Participant identification type – application role
The task is assigned to the HumanTaskRouting. Salesrep application role.
Users (salesrep, Christine, jcooper, and fkafka) are members of the
HumanTaskRouting. Salesrep application role. When the task is initiated, the task
gets assigned to all the users, as there is no sequence defined for the users in the group.
One of the participants has to act (approve or reject or some other defined action) on
the task. Once it is acted upon, the task gets withdrawn from other users' lists.

Serial routing pattern with list
builder – approval group
Configure the serial participant type with the approval group list builder pattern.
The MFGSalesAdmin approval group is a static approval group with users
(Christine, salesrep, Jim, and Kim) defined in a sequence. Save, deploy, and
test the process. Tasks get assigned to the users in a sequence. As it's a static list,
Christine gets the task first. Once the assigned participant acts on the task, it gets
assigned to the subsequent participant.

Human Task Patterns

[160]

Serial routing pattern with list
builder – management chain
The management chain list builder stops when the top participant is reached or
the number of levels is met. Configure the management chain participant list
builder with Jcooper as the starting participant. Let the top participant title be Vice
President. The number of levels is four. The hierarchy for Jcooper is defined with
Jstein as its manager and wfaulk as the manager of jstein. Wfaulk is also titled
the Vice President. Perform the following steps to test the scenario:

1. Deploy and test the user task.
2. Log in to the Oracle BPM workspace as a user (jcooper), and approve

the task.
3. Log back in to the BPM workspace as an admin user (weblogic) and

navigate to the administration tab and browse the task in the assigned
task list.

4. Go to the task's history section, and you can view the task flow. You can see
that the list is created in one go with three participants— jcooper, jstein,
and wfaulk—and the task gets assigned to users in a sequence.

Serial routing pattern with list builder – job
level
Starting from a given approver, the list of participants climbs up the supervisory
hierarchy until an approver with a specified job level is found. This can be value-
based or rule-based. This pattern traverses the job level hierarchy. It allows you to
specify the starting participant and the top participant. The level defined is relative
to the starting participant or the task creator. It allows you the flexibility to include
all managers in the last level. This also allows you to define the utilization of the
participant. You can define whether you want to utilize all the participants from the
list, the first and the last person from the list, or only the last person from the list.
This stops when the top participant is reached or the top job level criteria are met.

Use the same task metadata that you used in the preceding scenario. Change
the assignment configuration. Let the stage be a nonrepeating stage. In the
participant type, select the Serial routing pattern. Build the list using Job Level.
Enter the following details for the list builder configuration, as shown in the
following screenshot:

Chapter 4

[161]

• Starting Participant: This is the first participant in the list. If you don't
enter a value, then the task initiator's manager will be considered the first
participant. The task initiator in this case is jcooper. You can define the task
initiator in the user task's implementation properties in the advanced section.

• Top Participant: The user cdickens is the last participant in the hierarchy
chain, and the task approval request will not go beyond this participant in
the chain.

• Number of Levels: Two levels will be traversed in this case. However, the
number of levels specifies the levels to be traversed for the job level. In this
case, the number is relative to Starting Participant. However, you can specify
the number relative to Task Creator. Also, you can create a number that can
be an absolute value.

• Include all managers at last level: If the job level equals that of the
previously calculated last participant in the list, then it includes the
next manager in the list.

Human Task Patterns

[162]

• Utilized Participants: Select a value from the calculated list of participants.
If you specify the first and last person from the list, then the task will get
assigned to only the first and last person from the calculated participant list.
If you select everyone from the list, then everyone from the list will receive
the task.

When you test the preceding configuration, you will find that starting from jstein
(jstein is the manager of the task initiator), the task gets assigned to cdickens, as
the level specified is 2. Remember, the user cdickens is two levels senior to jstein.

Job Level can be built using a rule-based attribute. However, with Job Level and the
position list builder, you can use the substitution and modification rules. These rules
are offered as seeded rules when you create a rule-based list builder. Users, groups,
and application roles appearing in a list can be substituted using list substitution.
Similarly, you can extend or truncate job levels and positions from the rules. List
modification is applied after the list is created.

Modifying participant lists using list modification
After the list creation, you can modify the list using a list-modification rule. You can
extend and/or truncate Job Level and position list builders from rules using list
modification. The rule dictionary will always contain a pre-seeded rule set named
ModificationRules by default. This rule is available for use only when Job Level
and position list builders are asserted in the list that created the rule sets. The following
are the functions that are available to enable and facilitate list modifications:

• Extend
• Truncate

Substituting participants using list substitution
You can substitute users, groups, or application roles. With each rule dictionary,
you have access to a pre-seeded rule named SubstitutionRule with a Substituterule
function, which facilitates list substitution. The substitute function carries
four parameters.

As shown in the following screenshot, Job Level is built using a rule-based attribute.
The starting participant will be derived as the manager of the task initiator. In this
case, the task initiator is the user jcooper. Hence, the starting participant of the
user task will be the manager of jcooper, who is jstein. However, if you check
the substitute rule, jstein will be substituted with wfaulk. Hence, when the task
is executed, it will derive the starting participant as jstein. However, it will be
substituted with wfaulk.

Chapter 4

[163]

The user wfaulk becomes the starting participant and the task gets assigned
to wfaulk. It then moves the supervisory chain till the at-most/at-least level is
reached or till the participant is met:

Serial routing pattern with list
builder – position
List building starts at the requester or a given approver's position and goes up until
a specific number of levels or a position is met. Use the same task metadata that you
used for the previous section and modify the list builder. Let the routing pattern be
serial and change the list builder to the position. It will ask you to enter a rule name,
as it's always based on rules. Enter the rule name as PositionRule.

When you configure the position list builder, you encounter almost the same
properties as we defined in the preceding section, such as utilized participants,
and so on.

Human Task Patterns

[164]

Serial routing pattern with list
builder – supervisory
Starting from a given approver, the list of participants climbs up the approver list
and generates a chain that has a fixed number of approvers in it. While configuring
the supervisory list builder pattern, you have to supply Starting participant, Top
participant, and Level. If no value is passed, then Starting participant defaults
to the initiator's manager. Here, the top participant is not a title. While in the Job
level hierarchy, you can use a title as the top participant. This pattern traverses the
supervisory hierarchy. In this section, you will create a supervisory list builder based
on a rule. You can configure a supervisory list builder based on values. However,
we will choose to create a supervisory list based on rules. The following is the
configuration of the rule for the supervisory list builder:

IF Industry = "IT" THEN
call CreateSupervisoryListcall CreateSupervisoryListcall
CreateSupervisoryListcall CreateSupervisoryListcall
CreateSupervisoryListcallCreateSupervisoryList(levels:3,
startingPoint:HierarchyBuilder.getManager("supervisory",Task.
creator,-1,"",""), uptoApprover:HierarchyBuilder.getPrinicipal("wfau
lk",-1,"",""),
AutoActionEnabled: false, autoAction: null, responseType:
ResponseType.REQUIRED, ruleName:"SupervisoryListRule", lists: Lists)

The preceding rule configuration makes it clear that the number of levels is three,
starting from the manager of the user who is the task creator. In this case, configure
the user task property with the task initiator as jcooper. As the user jstein is the
manager of jcooper; the task will first get assigned to jstein and will move in the
chain until the user wfaulk is reached or the number of levels is met. A response is
required from the participant as it's not an FYI. The following are the parameters that
you need to set while invoking the createsupervisoryList() function:

• StartingPoint and topApprover: Starting point and top approver are
specified as users, but you can also build a hierarchy principal as the starting
point and the top approver. To build a hierarchy principal, you have the
following functions available:

 ° getManager

 ° getPrinciple

 ° getManagerofHierarchyPrinciple

• AutoActionEnabled and autoAction: Configuring these properties
enables the users resulting from a particular list builder to act automatically
on the task.

Chapter 4

[165]

• The response type: The assignee has to act on the task if the response type
selected is required. If it's not required, then the task will be converted to an
FYI assignment.

Serial routing pattern with list builder – rules
Rules build the list of participants. Oracle BPM offers many built-in seeded functions
that can be used to create the list of participants. The following are the functions that
are available:

• CreateResourceList

• CreateSupervisoryList

• CreateManagementChainList

• CreateApprovalGroupList

• CreateJobLevelList

• CreatePositionList

When you enter the name of the rule, a decision service is created, and two rule
dictionaries are created—<Task Name>Rules. Rules and <Task name>RulesBase.
rule. In the rule designer, model your conditions, and in the action part, call one of
the functions mentioned previously to complete building your lists.

When the rule conditions are met, the function gets executed. The function will
return the list of participants. However, it's the routing pattern that will define
how the task will be assigned. Let the approval group be MFGSalesAdmin. This
is a static approval group defined in the BPM workspace with users (Christine,
salesrep, Jim, and Kim) defined in a sequence. The task gets assigned to the users
in a sequence. As it's a static list, Christine gets the task first. Once the assigned
participant acts on the task, it gets assigned to the subsequent participant.

Single routing pattern
The task is assigned to a single user, group, or role. For example, a vacation approval
request is assigned to a manager. If the manager approves or rejects the request, the
employee is notified of the decision. If the task is assigned to a group, then once one
of the managers acts on it, the task is completed. If the list of participants is built
using an approval group, then the task is assigned to the group; however, once one
of them acts on the task, it's considered complete.

Human Task Patterns

[166]

Single approver pattern with list
builder – name and expression
Configure the task metadata with the list builder pattern—name and expression. Let
the participants be users (Christine, jstein, or jcooper). Upon execution, the task
gets assigned to all three participants—Christine, jstein, and jcooper. However,
once one of them acts on the task, it's considered complete.

Single approver pattern with list
builder – approval group
Configure a single participant type with the approval group list builder pattern.
The MFGSalesAdmin approval group is a static approval group with users
(Christine, salesrep, Jim, and Kim) defined in a sequence. Save, deploy, and
test the process. The task gets assigned to all the users in one go. Once any one of
the assigned participants acts on the task, the task is considered complete and is
withdrawn from other users' lists.

Single approver pattern with list
builder – management chain
The management chain list builder is best utilized with the serial routing pattern.
However, if you use it with the single routing pattern, then all the users in the
management chain will receive the task. However, once a participant acts on the task,
the task is considered complete, and it gets withdrawn from other users' lists. All other
list-building patterns work as they should; however, their behavior is governed by the
routing pattern. In the case of a single routing pattern, once a participant acts on the
task, the task is considered complete and gets withdrawn from other users' list.

Notify/FYI pattern
The task is assigned to participants who can view it, add comments and attachments,
but cannot modify or complete the task. It's just like a notification and no one is
supposed to act on it. We will cover two list builder patterns for the FYI routing
patterns. The remaining patterns are quite similar, as their behavior is to just notify
participants. The process token remains with the BPM process, the control is not
assigned to the human workflow, and the main process executes subsequent activities.

Chapter 4

[167]

FYI approver pattern with list builder – job
level
The task will be assigned from the starting participant to the top participant/level.
The flow of the assigned task will show you the task assigned from the starting to the
top level/participant. All participants will receive the task. The control will not get
assigned to the task, and the token remains with the BPM process. The BPM process
will move ahead to subsequent activities.

FYI approver pattern with list builder – name
and expression
Create a simple user task with the stage as nonrepeating and the routing pattern
as FYI. Let the list builder pattern be names and expressions. Enter values for
users as Christine, jstein, jcooper, and fkafka. The task will be sent to all the
participants in one go, which means in parallel. The control will not get assigned to
the task and the token remains with the BPM process. The BPM process will move
ahead with subsequent activities. Now, let's modify the stage and make it a parallel
stage. Let the stage be repeating on the Product Item collection. This is the same
collection that you created in earlier sections. Let the rest of the configuration remain
the same. Deploy and test the process. As there are three product lines, each user will
get the task information three times. An FYI task will be offered to them three times.
We will try to solve and simplify this problem using task aggregation.

Task aggregation pattern
As you have seen in the FYI approver pattern with list builder – name and expression
section, the task gets assigned to the same user multiple times. This holds true for
other patterns too. However, Oracle BPM offers the task aggregation mechanism
that will enable you to configure how often a user can see the task.

For the same task metadata that you created in the FYI approver pattern with list
builder – name and expression section, as it's a repeating stage, click on the stage and
then on the Task will go from starting to final participant link on the aggregate
section in the task metadata. This will open the Assignment and Routing Policy
dialog box. Click on the Assignment tab.

In the task aggregation drop-down list, select STAGE. Save and execute the process.
This time, the task will get assigned to the user once. This means that the user will
see the task only one time in the stage.

Human Task Patterns

[168]

The task aggregation, when defined as none, indicates that there is no approval
aggregation, which means that the user sees the task as many times as it is assigned
to him or her. If the task aggregation is selected as TASK, then the user sees the task
only one time in the life cycle of the task. The following table highlights the facts:

Routing
pattern

Stage Aggregation Action Assignment

FYI Nonrepeating None, stage,
task

N/A The task gets
assigned to all
the users once.

FYI Repeating None, stage,
task

N/A The task
is in the
recoverable
error.

Single Nonrepeating None, stage,
task

N/A The task gets
assigned to all
the users once,
and then, the
single routing
pattern gets
applied.

Single Repeating None The stage is repeating and the
input data contains three line
items. Hence, all the users
will receive three tasks (one
for each line item). Users can
claim and act on the task.
Once it is claimed by a user,
the other user will see the
task in their list but cannot
act on an already-claimed
task by some other user.

All the users
will receive
three tasks
(one for each
line item).

Single Repeating Stage, task Once the user can claim and
act on the task, the task gets
completed.

The input
contains three
line items;
however, the
aggregation
happens at the
stage level,
and each user
will receive
the task just
once.

Chapter 4

[169]

Routing
pattern

Stage Aggregation Action Assignment

Serial NonRepeating None, stage,
task

N/A Tasks get
assigned to
users in a
serial fashion,
and there will
be just one
task.

Serial Repeating None As it's repeating, and if the
input contains three line
items, then three tasks get
assigned to the first user in
the list.

Three tasks
get assigned
to the first
user in the list.

Serial Repeating Stage, task Even if it's repeating, and
if the input contains three
line items, only one task gets
assigned to the first user in
the list, and the rest of the
behavior is based on the
serial routing pattern.

Tasks get
assigned to
users in a
serial fashion
and there will
be just one
task.

Parallel Nonrepeating None, stage,
task

N/A All the users
receive one
task.

Parallel Repeating None The stage is repeating and the
input data contains three line
items. Hence, all the users
will receive three tasks (one
for each line item).

All the users
will receive
three tasks
(one for each
line item).

Parallel Repeating Stage, task Although the stage is
repeating and the input data
contains three line items, the
aggregation happens and all
the users will receive just one
task.

All the users
will receive
just one task.

You might be wondering whether the stage and task aggregation behave in a
similar manner. However, this is not true. As we have just used one stage and
one participant type and constructed the preceding table, we have not witnessed
the stage aggregation. Let's refractor the assignment routing slip and add another
participant block in the same stage, which is parallel to the first participant block.
We can use the ParallelRoutingTask.task human task. Let the routing pattern
for both the participant blocks be parallel routing.

Human Task Patterns

[170]

Let's use the name and expression list builder pattern for both the parallel routing
participant blocks. Let the first participant block have the users jstein, jcooper,
Christine, and fkafka and the second participant block have the users jstein,
jcooper, rivi, and lata. The following are the observations when the task
aggregation is staged:

• The task gets assigned to all the users in both the participant blocks just once.
• Users jstein and jcooper are common in both the participant blocks; still,

they will receive the task just once, as aggregation is set at the stage level.

Dispatching pattern
We learned about the task assignment patterns in the Task assignment patterns section.
In this section, we will cover the dispatching pattern. Dispatching patterns select a
particular user or group from either a group or a list of users or groups. There are
many patterns offered by Oracle BPM for escalating and dispatching; interestingly,
we can create our own patterns too. Usually, a user needs to manually claim the task.
However, using dispatching patterns, we can configure the task to dispatch messages
based on one of the following patterns:

• LEAST_BUSY: The tasks will be dispatched to the user who has the least
number of tasks currently assigned. This will pick the least busy user, group,
or application role with the least number of assigned tasks. In the case
of users, tasks that are assigned to the user and the task that the user has
claimed are counted. In the case of groups and roles, all the tasks assigned
to the group and role are counted, irrespective of the fact that they were
assigned or claimed.

• MOST_PRODUCTIVE: The task is dispatched to the user who completes the most
tasks over a time frame. For groups and application roles, the total number of
tasks completed by all the users who are direct members of that group or role
is counted. The time period to be used can be specified using the time period
parameter. If no time period is specified, then the default value specified in the
dynamic assignment configuration for the instance is used.

• ROUND_ROBIN: The task is dispatched to each user or group in turn. Every
time the Round_Robin functions are executed, a new participant is picked
from the list of potential participants. When all the participants are picked,
the patterns iterate again from the start of the list.

Chapter 4

[171]

Dynamic assignment patterns can also be called using an Xpath function in any
Xpath expression in the task definition. The signature of the function is given by
the following:

hwf:dynamicTaskAssign(patternName, participants,
inputParticipantType, targetAssigneeType, isGlobal,
invocationContext, parameter1, parameter2, ..., parameterN).

Escalation pattern
Escalation is a common requirement while implementing Oracle BPM's processes
with human interactions. Processes don't do the work, it's the people who do it.
This concept leads to those processes that have heavy human interactions. There
are scenarios where a participant does not act on an assigned human task, and such
scenarios contribute to the candidate being escalated.

Custom escalation empowers the BPM system with the capability to introduce a
check on the task's outcome. A participant is assigned a task, and if he/she doesn't
act on the task in a specified time frame, then nonavailability should be accounted,
published, and notified. If a participant does not act in the duration provided, the
task is escalated to the manager or another user, as deemed appropriate.

Escalation makes sure that service level agreements (SLAs) are met and the
processes are performed as per the exceptions within the time frame in which they
are supposed to be performed. For example, if a task is assigned to a participant and
the participant was supposed to respond in two days and it's overdue by four days,
it basically hampers the fabric of the process and might lead to loss of business. Let's
assume a loan approval process. If the loan document request is awaiting a loan
officer's approval and it's overdue in its queue by four days, then the best practice is
to escalate the overdue information and the task to another participant.

The https://blogs.oracle.com/acharyavivek/ blog post is meant to showcase the
process of custom escalation and how the participant list can be built dynamically. The
duration deadline section in the human task metadata can be used to create a human
task definition.

By default, escalation is based on the management chain hierarchy and the task
gets escalated up in the hierarchy from the user to his/her manager, and so on.
You can control the level to which a task can be escalated and can also use a title to
which the task gets escalated. The level and title assignment can be configured while
configuring the human task definition's duration deadline.

https://blogs.oracle.com/acharyavivek/

Human Task Patterns

[172]

Oracle BPM offers you various ways to escalate:

• Role-based escalation
• Level-and-title-based escalation
• Custom escalation

To know more about escalation and download the escalation project, visit my blog
post at https://blogs.oracle.com/acharyavivek/.

Rule-based reassignment and delegation
pattern
Task reassignment and delegation can be performed automatically, based on rules.
Reassignment rules are defined within the preferences page in the BPM workspace
application. The following pattern table highlights facts around the Rule-based
Reassignment And Delegation Pattern:

Signature Rule-based Reassignment And Delegation Pattern
Classification Human Task Pattern
Intent Automatic reassignment and delegation of tasks based on rules.
Motivation Defining personal or group rules that can perform rule-based auto

reassignment, delegation, and automatic actions on the tasks.
Applicability The rule-based reassignment and delegation pattern offers you the

flexibility to reassign, delegate, and auto-act on tasks by applying
the participant's personal rules or group rules.

Implementation Personal rules are implemented in the BPM workspace. A
participant can log in to the BPM workspace and define his/her
personal rules. Group rules are defined by administrators who can
reassign tasks to users/groups/roles.

Known issues NA
Known solution NA

To walk through the use case and sample project, visit the article associated with
this book available on the Packt Publishing website at http://www.packtpub.com/
article-network. There, we defined a rule for the user buny, which demonstrates
the implementation of the rule-based reassignment and delegation pattern.

https://blogs.oracle.com/acharyavivek/
http://www.packtpub.com/article-network
http://www.packtpub.com/article-network

Chapter 4

[173]

Ad hoc routing pattern
The following pattern table highlights facts around Ad Hoc Pattern:

Signature Ad Hoc Routing Pattern
Classification Human Task Pattern
Intent Dynamically adds task participants at runtime.
Motivation Allows task participants to invite other participants to act on the

task.
Applicability We need ad hoc routing to cater to the business requirements,

where participants want to add other participants in an ad hoc
fashion at runtime.

Implementation The routing pattern in 12c offers you the flexibility to allow each
participant to invite other participants as the next assignees to
the task when approving the task. Before routing to the next
assignees in the workflow, we can allow the initiator to invite other
participants too. Using Allow participant to edit new participant,
we can edit other ad hoc participants that were added to the
routing slip.

Known issues Privileges need to be assigned to participants to perform ad hoc
routing, and the task should have at least one participant.

Known solution By default, task owners and assignees have the grants to the ad
hoc routing action in the Access tab of the task editor. The ad hoc
assignee should not be added for FYI participants.

We'll continue with DynamicTaskAssignment, which you created in the dynamic
task assignment section in the article associated with this book, which is available
on the Packt Publishing website at http://www.packtpub.com/article-network.
In this section, we will explore the ad hoc routing pattern:

1. Open the DynamicTaskAssignment project in JDeveloper 12c.
2. Click on ValidationTask.task to open the task metadata editor and go to the

assignment section.
3. Click on the ad hoc routing tab in the Assignment section.
4. Check all or one of the options as per your requirements. These options are

discussed in the implementation box in the ad hoc routing pattern table,
as shown previously. For this sample, we have selected all three options.

5. Save all and deploy the project.
6. Test the service using the test data (TestData12c.xml) from the

DynamicTaskAssignment project's testsuites folder.

http://www.packtpub.com/article-network

Human Task Patterns

[174]

7. The validation task gets assigned to different participants based on the
organization unit you have passed. Log in to the BPM workspace as the
participant anju.

8. Click on the task to open up the task user interface.
9. Expand Actions and click on Ad hoc Route. This will open the Route Task

dialog box.
10. We can route the task to Single Approver, Group Vote, or Chain of Single

Approvers. However, for this sample, check Single Approver.
11. Enter the comment that you want to pass into the Comments section

of Single Approver.
12. Browse/search for the user (Single Approver), and select the

new participant.
13. Click on OK.

Once you click on OK in the route task dialog box, the task gets approved by
the participant anju and gets assigned to the newly invited participant jstein.
This is shown in the following screenshot:

As we can see in the preceding screenshot, the task gets routed to other participants
once the task is acted upon by the user. This option works at any current point in the
task's routing. However, if we want to add participants at a future point in the task's
routing, then check the Allow participants to edit new participants option in the ad
hoc routing dialog box.

Chapter 4

[175]

With this option checked, the user can use the history region in the task form to add
additional participants at the desired point in the task's routing. To do so, perform
the following steps:

1. Click on the task to open the task form.
2. Scroll down to the history section and expand it.
3. Click on + to add the assignee.
4. You can also edit and delete assignees.

Request information feature
In the preceding section, we learned about various human task patterns; however,
in the following sections, we will explore and implement various features that
greatly enhance BPMN. The following table highlights facts around the Request
Information Feature:

Feature Request Info Feature
Classification Human Task Pattern
Intent Requests information from other participants.
Motivation Allows task participants to request for information from other

participants.
Applicability The request information pattern offers you the flexibility to request

for additional information from participants or other users. All
those participants who have acted on the task will be listed in
the participant list, while we can also browse for other users. The
task state will be Info Requested when the task is routed to the
participant from whom the information is requested.

Implementation The task participant who is requesting for information will
click on Request Information... in the action, as shown in the
following screenshot. However, the user who has requested for the
information will be assigned the task. The requested participant
can enter the information in the Comments section of the task
and can hit Submit Information to provide the information being
requested. Based on the return option configured by the request
initiating participant, the task will either come back to the requesting
participant after information is submitted, or it can be rerouted
through all intermediate participants, as defined in the routing slip.

Known issues NA
Known solution NA

Human Task Patterns

[176]

As we can see in the following screenshot, the participants who have Validation
Task assigned can request for information from other participants. The participant
rivi will receive the task and submit the information. The task is then rerouted
through all intermediate participants as per the routing slip as shown in the
following screenshot:

Chapter 4

[177]

Reassignment and delegation pattern
The following pattern table highlights facts around the reassignment and
delegation pattern:

Signature Reassignment And Delegation Pattern
Classification Human Task Pattern
Intent The participant can reassign and delegate the task to other users/

groups/roles.
Motivation To change the task assignment or allow someone else to perform on

behalf of the original assignee.
Applicability The Reassignment And Delegation pattern offers you the flexibility

to reassign a task to another assignee who can work on the task as
if the task was assigned to her or him. However, in the case of task
delegation, the assignee to whom the task is delegated will work on
behalf of the original assignee.

Implementation The task participant who wants to reassign the task to another
assignee can click on Reassign... in the Actions tab. The Reassign
Task dialog box will allow the original assignee to reassign the task
to another user or delegate the task to another user.

Known issues NA
Known solution NA

As you can see in the following screenshot, the original assignee can click on
Reassign... in the Actions tab to perform the task reassignment or delegation.

Human Task Patterns

[178]

Reassign... will allow the transfer of the task to another user or group, and the
delegate will allow the new assignee to act on behalf of the original assignee.
This is shown in the following screenshot:

Force completion pattern
The following pattern table highlights facts around the force completion/early
completion pattern:

Signature Force Completion/Early Completion Pattern
Classification Human Task Pattern
Intent Forcefully or abruptly completing a task.
Motivation To cater to those business requirements that require early

completion of the task regardless of other participants in the
workflow.

Chapter 4

[179]

Applicability The early completion pattern offers you the flexibility to
abruptly complete a task. For example, an insurance claim goes
to an insurance agent and then to the claim manager. If the
first participant (the insurance agent) rejects it, we can end the
workflow without sending it to the next participant (the claim
manager). Such cases can be modeled in the BPMN flow; however,
this makes the model complex. Hence, modeling them in the
routing slip makes things efficient.

Implementation To perform the abrupt completion of the task, there are
two methods:

• Outcome
• XPath expression-based routing condition

If outcomes are defined in the early completion pattern, then any
time the specified task outcome occurs, the task gets completed.
If the routing condition is defined, then any time the specified
routing condition occurs, the task gets completed. However,
if both the outcome and routing conditions are defined, the
workflow service performs a logical operation of the two
conditions.

Known issues Evaluation of the routing condition defined using the XPath
expression is not performed until at least one user has acted upon
the task.

Known solution Effective modeling.

We can define early completion in the verification task, which is defined in the
DynamicTaskAssignment tab.

The following are the steps:

1. Click on the VerificationTask task to open the task editor and navigate to the
assignment section.

2. Click on Early Completion, as shown in the upcoming screenshot.
3. Check Complete task when participant chooses; this will open the

Completion details dialog box.
4. Select REJECT to complete the task if any of the participants rejects the task.
5. We can also enter a routing condition. The entered routing condition says

that if the claim is not validated, then the task can be completed.

If both the situations happen, then a logical OR is performed. You can test the
scenario by executing DynamicTaskAssignment with the supplied TestData12c.
xml; however, change the claimValidated value from YES to NO.

Human Task Patterns

[180]

Enabling early completion in parallel subtasks
When we have a multistage configuration and each stage (group) has multiple
participant blocks, stages are parallel to each other. Check Enabling Early Completion
in Parallel Subtasks if you want to model in such a way that if any participant rejects/
approves the task, then all the tasks in that stage get abruptly completed.

Check Completing Parent Subtasks of Early Completing Subtasks if you want to
model in such a way that if any participant rejects/approves the task, then all the
tasks in that stage get abruptly completed and the parallel stage also gets completed.

Routing rule pattern
The following pattern table highlights facts around the Routing Rule Pattern:

Signature Routing Rule Pattern
Classification Human Task Pattern
Intent To solve complex rules based on routing scenarios. This offers you

the flexibility to complete the task or route it based on rules.
Motivation Rules can be routing rules or participant rules. Routing rules will

provide solutions to back and forth and complex task routings.
Applicability We can define stages and participant blocks to route tasks between

participants; however, this offers you a linear flow from one set of
participants to another. We can use early completion, reassignment,
delegation, skipping, and other features to cater nonlinear
requirements. However, if we need to perform complex routing that
includes back and forth routing between participants, then we need
a rule-based routing solution. For example, if certain conditions are
met, we want to give back the task to the previous participant. Else,
if the amount is less than a certain threshold, we want to complete
the task or maybe allow the task to go to some other participant, and
so on.

Implementation When we define a dynamic rule, a routing rule set is created in base
and custom rule dictionaries. Whenever a task is completed by a
participant and/or when the task gets assigned to a participant, the
task service will assert the facts into the decision service and will
execute the routing rule set.

Known issues NA
Known solution NA

There are some facts that are available for only the routing rule and not participant
rules. Facts such as Previous Outcome and Task Action are available to only
routing rules.

Chapter 4

[181]

The task service routes the tasks based on Task Actions defined in the routing rule
set. The following is the list of Task Actions that you can call from the routing rule to
guide the task service routing:

Action Comment
GO_FORWARD This is the default behavior that guides the task flow to the next

participant in the list.
PUSHBACK This guides the task flow to the last participant who just set the

task outcome.
GOTO Use this if you want to assign the task to a specific participant.
COMPLETE The task will be marked as complete, and it will not be routed further.
ESCALATE Based on the escalation policy that is defined, the task will be escalated

and reassigned.

As you can see in the following screenshot, we can click on Dynamic Routing Rules
in JDeveloper. This will open the Use Advance Rules dialog box. Enter a name of the
rule, say, ValidationTaskRule. A RoutingRules set will be created. We can create an
if-then-else rule or a decision table to build the logic. As we can see in the following
screenshot, an if-then-else rule is created, which calls for Task Action complete () to
complete the task when the specified condition is met:

Human Task Patterns

[182]

Deadlines
While performing task modeling, we have to deal with situations such as deadlines,
reminders, escalation, expiration, and renewal. A BPMN offering should have
features such as deadline, warning, reminders, escalation, renewal, and so on.
The following table highlights facts around the Deadline Feature:

Feature Deadline Feature
Classification Human Task Pattern
Intent To offer a preventive solution to task participants to ensure

deadlines are met by ensuring reminders and warnings. In case
deadlines are missed, escalations can be performed.

Motivation While performing task modeling, we have to deal with situations
such as deadlines, reminders, escalation, expiration, and renewal.
A BPMN offering should have features such as deadline, warning,
reminders, escalation, renewal, and so on. In this section, we will
define a deadline feature and escalation feature. All other features
will be included with it. These features essentially answer questions
such as the following:

• What to do when the allocated task's time expires
• What to do if the task needs to be escalated
• What to do if the participant/user needs to be informed/

reminded before the task expiration
Applicability To ensure that corrective measures are taken when participants don't

act on assigned tasks in a timely manner, Oracle BPMN offers you
the deadline feature at the task level and participant level. Oracle
BPMN offers deadlines at different levels:

• Task level
• Participant level

Implementation The task level deadline is defined in the Deadline section in the task
routing slip. The participant level deadline can be defined in the
Advance tab of the Participant dialog box.

Known issues The what-if task deadline and the participant deadline are both
specified in the routing slip and participant block, respectively.

Known solution The deadline specified in the participant block takes precedence over
the deadlines specified in the task routing slip.

Chapter 4

[183]

The following are the task level deadlines:

• Duration deadline: The duration deadline at the task level is like a global
policy and is applicable to all participants associated with the task. The
length of the idle time for the task is defined by the duration deadline,
and once the idle policy expires, the following actions can be performed:

 ° The task can be expired
 ° The task can be renewed
 ° Escalation can be performed

• Warning: Before deadlines are approached, it is always preventive to send
the participants a warning to make them aware of an overdue task. Specify
a value in the Action Requested Before section in the Deadlines tab of the
routing slip. Remember to set a value for Action Requested Before, which
should be less than the value for Task Duration Settings.
Warning is essentially a due date. It's the date by which the task should
be completed; else, it's considered overdue. A task is considered overdue
after it's past the due date that we have specified in the global task deadline
policy. If enabled, we can list overdue tasks in the worklist applications,
or we can filter tasks based on overdue tasks in the task list in worklist/
workspace applications.

• Reminder: Reminder offers you the flexibility to model task routing with
a reminder to the task user/participant before the task is expired or before
the due date or after assignment. We can set the reminder once, twice, or
multiple times.

Perform the following steps to experience a task deadline. The use case is a
DynamicTaskAssignment project that contains a deadline and escalation process
(Deadline&EscalationProcess). This process, when executed, assigns human tasks
(DeadlineEscalationTask) in a serial routing pattern to the jstein and achrist
users. If the user jstein does not approve it in 5 minutes, the task expires:

• If you have not downloaded the project (DynamicTaskAssignment) from
the downloads for Chapter 4, Human Task Patterns, then download the project
and open it in JDeveloper 12c.

• Open DeadlineEscalationTask.task and check the Deadlines tab in the
routing slip, as shown in the following screenshot.

Human Task Patterns

[184]

• We can set the duration deadline for the task (enforcing it for all participants)
by setting Task Duration Settings. For this use case, we have set the
task to expire if the user does not act on it in 5 minutes as shown in
the following screenshot:

• We can check Action Requested Before; it has a value of 2 minutes to send
a warning.

• Click on the Notification tab and check the Reminder setting. The task is set
to Remind once, 1 minute before the task expires. Notification settings of the
task will take care of sending the reminders.

Chapter 4

[185]

• Click on the Assignment tab and open the Participant block; we can find that
it's a serial routing pattern that builds the participants' list using Names and
expressions. The task, when executed, first gets assigned to jstein and then
to achrist.

• Deploy the process and test it using the test data (TestData12c.xml) that we
can find by navigating to HumanTaskAssignment | SOA | testsuites.

Upon execution, we can see that the task gets assigned to the user jstein. If we
check the process flow trace, we can find the Created Date and time and Expiration
Date and time specified for the task. As shown in the following screenshot, they
show you a difference of 5 minutes, which is the task expiration limit:

Participant Level Deadline can be set by navigating to Participant Block |
Participant Type Editor. If we have Task Level Deadline and Participant Level
Deadline defined for the task, then Participant Level Deadline takes precedence
over Task Level Deadline. So, we will extend the Task Level Deadline use case,
which we discussed previously. We will define Participant Level Deadline too.
For this, perform the following steps:

1. Click on the Assignment tab in the task routing slip, and click on the
participant block to open the Edit Participant Type window.

Human Task Patterns

[186]

2. Go to the Advanced tab of the Edit Participant Type window, and check the
Limit allocated duration to set a limit on the task allocation for that specific
participant. Let's set this to 3 minutes for this use case, as shown in the
following screenshot:

 ° Save and deploy the project. Remember that we have not changed the
Task Level Deadline setting that we performed earlier.

 ° Execute the project, and you can see Created Date and the time and
Expiration Date and the time specified for the task. As shown in the
preceding screenshot, these show a difference of 3 minutes, which is
the participant limit's allocated duration.

 ° Check the process trace, and you can see that if the user does not act
on it, then the task expires after 3 minutes of being created.

Escalation, expiry, and renewal feature
To implement escalation for human tasks, you can implement it from the Duration
Deadline section in the human task definition. By default, escalation is based on the
management chain hierarchy, and the task gets escalated up in the hierarchy from
the user to his/her manager, and so on. You can control the level to which the task
can be escalated and also use a title to which the task gets escalated. The level and

Chapter 4

[187]

title assignment can be configured while configuring the human task definition's
Duration Deadline. Oracle BPM offers you varied ways to escalate:

• Role-based escalation
• Level-and-title-based escalation
• Custom escalation

The following table highlights facts around the Escalation, Expiry,
And Renewal Features:

Feature Escalation, Expiry, And Renewal Feature
Classification Human Task Pattern
Intent To offer a preventive solution to escalate a task if it's not being acted

on in the allocated time or if the deadline duration has expired.
Motivation While performing task modeling, we have to deal with situations

such as escalation, expiration, and renewal. A BPMN offering should
have features such as expiry, escalation, renewal, and so on. In this
section, we will define the escalation feature.

Applicability To ensure that corrective measures are taken when participants don't
act on assigned tasks in a timely manner, Oracle BPMN offers you
various mechanisms to escalate the nonaction on the task, and while
the escalation is performed, the task can be renewed or expired.

Implementation The expiration policy is defined at the task and participant level
where the participant level definition takes precedence over the task
level specifications. In a serial routing pattern, each task assignment
(basically each participant) gets the same time as the time specified
in the expiration duration. So, if we have three users going to
work on the task in a serial fashion and the expiration policy is 5
minutes, then each participant will have 5 minutes to act on the task
(collectively, 15 minutes); otherwise, the escalation and renewal
policy will be applied. However, if the routing pattern is the parallel
routing pattern, then a routing slip is created for each participant,
and each participant will have the same time. However, as it's being
assigned in parallel and the expiration duration is decremented
by the time that is elapsed in the task, if none of the users act on
the parallel task in the specified duration, then the escalation and
renewal policy will be applied.

Known issues In the parallel routing pattern, if the parent task has subtasks, what
would happen with the subtasks?

Known solution In case the parent task has subtasks and the parent task has expired,
then the subtasks are withdrawn if they have not been completed.

Human Task Patterns

[188]

As we can see in the following screenshot, we can specify Expire after (pointer 1),
Renew after (pointer 2), Escalate after (pointer 3), and Never Expire (pointer 4):

Never Expire allows a task to never get expired even if the allocated time has
elapsed. With Expire after action, we can expire the task by specifying the time
duration. (We have seen the demonstration of this in the Deadline section that we
discussed previously). Escalate after allows you to escalate the task. The escalation
can be role/position-based, or there can be customer escalation. To implement
renewal, let's use the same use case that we used in the Deadlines features section
and perform the following steps:

1. Expand the DynamicTaskAssignment project, and click on
DeadlineEscalationTask.task.

2. Navigate to the Deadlines tab, and change the Task Duration Settings by
selecting the Renew after action.

3. Specify a time list, say, 2 minutes, for this case.
4. Enter a value of Maximum Renewals (say, 2 times). This value specifies the

maximum number of times the task will be renewed after expiring. When the
maximum renewal number is reached, the task expires.

5. Open the Participant block and verify that the time limit of the allocated
duration is 3 minutes.

Chapter 4

[189]

6. This is the time that is allocated to the participant for him/her to act on the
task; otherwise, the global escalation and expiry policy will be executed.

7. Save and deploy the project.
8. Test Deadline&EscalationProcess using the test data (TestData12c.xml).
9. Click on Process Trace and keep noting the changing process trace after

every 3 minutes. Remember that 3 minutes is the time that you have
allocated for each participant to act on the task.

As we can see in the following screenshot, for the first time the task gets created, the
expiration time is the time specified in the duration of the allocated limit (Participant
Level Settings), which is 3 minutes after the task creation. When the task expires
after 3 minutes, it gets renewed for 2 minutes again (this is the time we have
specified in the renewals). The maximum number of times the task gets renewed is
2, as this is the limit that we have set in Maximum Renewal in the global renewal
policy. This is shown in the following screenshot:

To learn more about custom escalation and other details related to
escalation, please visit my blog at https://blogs.oracle.com/
acharyavivek/.

https://blogs.oracle.com/acharyavivek/
https://blogs.oracle.com/acharyavivek/

Human Task Patterns

[190]

Exclusion feature
When performing task modeling, we have to deal with situations such as deadlines,
reminders, escalation, expiration, and renewal. A BPMN offering should have
features such as deadline, warning, reminders, escalation, renewal, and so on.
The following table highlights facts around Exclusion Feature:

Feature Exclusion Feature/Skipping Assignee/Participants
Classification Human Task Pattern
Intent To offer a mechanism to allow the exclusion of the participants.
Motivation While perform task modeling, if we have specific conditions that

result in bypassing the participants, then you need an exclusion
mechanism.

Applicability The exclusion feature finds applicability by ensuring that scenarios
such as self approval or skipping a participant who has already
acted on the task or bypassing a participant if some specific
conditions are met.

Implementation Navigate to the Assignment tab in the routing slip, and open the
Participant block that opens up the Participant Type dialog box.
Go to the Advance tab, and you will find the Specify Skip Rule
checkbox. If you need to enable the skipping condition, then check
the box and specify a skipping condition. When the skipping
condition is evaluated and it results in true, then the participant is
skipped (bypassed).

Known issues NA
Known solution NA

Error assignee and reviewers
When an error occurs, we need a mechanism to assign participants who can act or
review errors. The following table highlights facts around Error Assignees And The
Reviewer Feature:

Feature Error Assignees And The Reviewer
Classification Human Task Pattern
Intent To offer a mechanism that performs a corrective mechanism when

errors occur.
Motivation While performing task modeling, we should be able to specify a

user/group/role whose task gets assigned in case of an error and
can be assigned to a user/group/role to review the task.

Chapter 4

[191]

Applicability Tasks get assigned to error assignees if they are specified. However,
if there are no error assignees being specified, then the error task
gets assigned to error assignees. Error assignees can perform ad hoc
routing, task reassignment, or mark errors in the task as an indication
that the task cannot be rectified further.

Implementation Errors are of two types, recoverable and nonrecoverable. Recoverable
errors include invalid users/groups, invalid Xpath expressions
that evaluate assignees, invalid Xpath expressions that evaluate
the deadline duration, escalation on expiration errors, evaluating
escalation policy, and so on. Nonrecoverable errors include invalid
task metadata, custom escalation functions, evaluation errors, and
so on. The error assignee is implemented in the assignment and the
routing section in the task metadata.

Known issues What if there is an error in the evaluation of an error assignee?
Known solution A task will be marked as an error.

To implement the scenario, we can extend the use case that we have implemented
in the sections of this chapter that discuss escalation, expiry, and renewal:

1. Open DeadlineEscalationTask.task, and go to the Assignment tab.
2. Click on Error Assignees, and assign a user/group/application role that will

receive the task in case there's an error (for the use case, we can assign it to
any user, say, user lata).

3. Click on Reviewers and assign a user/group/role as a reviewer who can
review the task and add comments in the Comments section. However,
reviewers cannot perform any other action on the task.

4. Open the Participant block to change the spelling of the assigned user
jstein. (Bring a change in the name so that the user cannot be identified
in the LDAP/myrealm.)

5. Save and deploy the project.
6. Execute the project by running Deadline&EscalationProcess by passing

the test data (TestData12c.xml).

Human Task Patterns

[192]

We can see that the human task engine tries to look for the user jstein. However,
as its spelling is changed (jstin), the user will not be found in myrealm (LDAP).
This will result in a recoverable error, and the error task gets assigned to the error
assignee (lata), as we can check in the instance history in the following screenshot:

Notifications
When an error occurs, we need a mechanism that notifies participants (assignees,
approvers, owners, and so on) via e-mails, SMSes, IMs, and so on. The following
table highlights facts around Notification Feature:

Feature Notification Feature
Classification Human Task Pattern
Intent To notify assignees, initiators, approvers, owners, and reviewers in

case the task attains a status such as error, completed, update, and so
on.

Motivation This feature ensures that specified recipients are notified when the
task reaches a defined status. This feature will also allow you to
configure notification messages and set their behavior.

Applicability Along with the feature that notifies interested users, when a task
reaches a certain status, this feature is applicable in case we need to
set reminders, defining Unicodes, make notifications secure, make
notification emails actionable, send attachments, and so on.

Chapter 4

[193]

Implementation Notifications are implemented in the Notification tab in the task
metadata definition, and notification leverages the UMS driver and
workflow properties defined in the EM console.

Known issues NA
Known solution NA

Implementing notifications is a multiple-step process. For instance, we want to
notify participants with e-mail as the channel. To enable notification, we have to first
configure the e-mail driver. Then, we have to set the workflow properties. Along
with this, the e-mail address should be associated with the user (the LDAP user/
myrealm) as its e-mail attribute. Finally, we need to configure the Notification tab in
the task metadata.

Configuring driver properties and attributes
The notification feature leverages User Messaging Service (UMS). For the
notification mechanism, we will first configure the e-mail driver:

1. Log in to the Enterprise Manager console, and navigate to User
Messaging Service

2. Right-click on User Messaging Service, and select Email Driver Properties.
3. Furnish details to configure the e-mail driver by supplying SMTP and other

details as per the e-mail server configuration. Click on OK to persist the
driver configuration as shown in the following screenshot:

Human Task Patterns

[194]

4. Configure workflow properties to enable e-mailing. Expand
SOA | SOA-Infra.

5. Navigate to SOA-INFRA | SOA Administration and right-click on
Workflow properties.

6. Select the notification mode as e-mail, furnish the notification service details,
and apply the changes.

7. Log in to the WebLogic console, and navigate to Domain | myrealm | Users
And Groups | Attributes.

8. Enter the e-mail address for the user in the mail attribute.

Configuring the notification definition
Once the driver is configured and the attributes and properties are set, it is now
time to configure the notification definition in the task editor. Specify the task status,
recipient, and notification header details:

• The Task Status column specifies when the notification will be initiated and
on what status of the task that specific notification will be initiated. Various
task statuses are shown in following screenshot. For example, if the Task
Status is completed, then the task initiator will be notified.

• The Recipient column enlists the possible recipient of the notification:
 ° Assignees: This is the group/user to whom the task is being

assigned currently.
 ° Initiator: This refers to the creator of the task.
 ° Approvers: This includes the list of all the users who have acted

on the task till this point.
 ° Owner: This refers to the owner of the task.
 ° Reviewer: This refers to the reviewer of the task who can add

comments and attachment to the task; however, he/she cannot act
on the task This is shown in the following screenshot:

Chapter 4

[195]

The Notification Header column shows you the message that will be sent to the
recipient when the task reaches the specified status. We can edit the notification
message, and the message will be applicable to all the supporting channels, that is,
e-mail, voice, IM, SMS, and so on.

The Advance tab allows you to configure reminders, Unicode, secure notifications,
and various other features, as enlisted:

• The reminder subsection in the notification's Advance tab allows you to send
a reminder before a task expires or after the task assignment.

• Unicode allows you to store information in a single character set by proving a
unique code value for each character irrespective of its language or platform.
Select UTF-8 (default), or you can use a Java class to specify the character set.

• Make notification secure: Checking this box will allow you to make the
task secure; however, if you do so, you will not be able to make notifications
actionable and will not be able to send task attachments with e-mail
notifications.

Human Task Patterns

[196]

• Show worklist URL in notifications: Checking this box allows you to
display the BPM worklist application URL in the e-mail notification sent to
the recipient.

• Make notification actionable: Check this box if you want to allow the
notification recipient to perform the task action through e-mail.

• Send task attachments with e-mail notifications: Checking this box will
allow you to send task attachments via e-mail notifications. You can send
notifications to individual e-mails. Checking this option will result in an
individual receipt of the e-mail by each user in the group/role.

• Use separate task forms based on locale: This is enabled by default, with
notifications to individual e-mails. When checked, this option will result in
the receipt of individual e-mails by the users based on the language locale;
otherwise, the task form will be reused and shared.

• Send one email containing all the user addresses; this will result in the receipt
of an e-mail by all users in the group/role.

E-mail address are picked from the LDAP for the users; hence, we just set the e-mail
address for the user in the embedded LDAP.

Content access policy and task actions
Tasks have contents such as attachments, comments, payload, history, and so on.
BPMN offers you a mechanism that controls access to the contents and performs
actions selectively. The following table highlights facts around the Content Access
Policy And Task Actions Feature:

Feature Content Access Policy And Task Actions Feature
Classification Human Task Pattern
Intent To specify access rules on the contents and define actions that are to

be performed on these contents.
Motivation To define which part of the task can be viewed and updated by

participants and what actions can be performed on the contents.
Applicability Access rules are basically rules that are enforced by the workflow

service during the task update and retrieval.

Chapter 4

[197]

Implementation In the task metadata editor, navigate to Access | Content.
Here, we can grant privileges to users (owner, approvers, and so on)
so that they can act on specific task content such as payload, header,
flex field, and so on.
In the task metadata editor, navigate to Access | Actions.
Actions allow you to define the actions (access or no access) for the
defined users so that they can act on the task contents that we have
configured in the Contents tab.

Known issues What if access rules and action rules conflict with each other?
Known solution In Oracle BPMN, access rules exist independent of one another.

Enterprise content management for task
documents
The following table highlights facts around Enterprise Content Management For The
Task Documents Feature:

Feature Enterprise Content Management For Task Documents
Classification Human Task Pattern
Intent To offer a BPMN task solution that integrates with the enterprise

content management solution.
Motivation Human tasks can be configured to use attachments from contents

and documents stored in the enterprise content management store.
Applicability Applies to the feature of querying and fetching documents and

attaching them with the task where the documents are stored in
the enterprise content management store. Also, it offers you the
flexibility to provide query properties at design time and at runtime
in the task form.

Implementation Enables document packaging in order to connect ECM and queries
based on properties that can be implemented in the Documents tab
in the task editor.

Known issues NA
Known solution NA

Human Task Patterns

[198]

The document will be stored in ECM; however, documents have metadata
properties, consuming services, applications, or task configuration, which can be
used to retrieve that specific document from the ECM store. Make sure that the
underlying SOA infrastructure is configured to integrate with the ECM solution
of the enterprise. We can manage documents, document folder, version, and so on
in the ECM solution application. However, to enable the human task to retrieve
documents from ECM, perform the following steps:

1. Navigate to the .task file and visit the Documents tab.
2. Check the Use Document Package checkbox in order to enable using ECM.
3. Once Use Document Package is checked, the task properties

are enlisted.
4. Select specific properties such as Document Folder, Content Id, Version

Label, and so on along with the default specified properties (the security
group and document type). This is shown in the following screenshot:

5. Set the display property as Editable, Hidden, and Read Only.

The value provided in the display mode that defines the behavior on the task means
that we can enter the value at design time in the Documents tab, as shown in the
preceding screenshot, or we can define value of the properties in the Task form, if
that property is editable. If the display mode is editable, then in the task form, a value
can provided for the properties while attaching the document. If the display mode is
hidden, then the value will not be displayed at runtime in the task form. If it's Read
Only, then the value of the property will not be visible, and it cannot be edited.

Chapter 4

[199]

Summary
This chapter concentrated on human task patterns and during this journey, we covered
various patterns that facilitate human task patterns. We now know that a stage defines
the milestone of the approval sequence. Stages contain participant types, which defines
the behavior of the routing pattern. A task can be assigned to participants through
different means. There are different derivation patterns, and there are different
assignment patterns as well. During the course of this chapter, we explored various
Oracle BPMN features, which enhances human task patterns such as the request
info feature, reassignment and delegation pattern, force completion pattern, routing
rule pattern, error assignees and reviewers, deadline, escalation, expiry and renewal,
exclusion, error assignee and reviewer, notification, content access policy and task
actions, and enterprise content management for task documents.

The next chapter elaborates on the interaction patterns.

Interaction Patterns
Processes are not always isolated. They interact and integrate with other systems,
processes, and services. These interactions are facilitated by various interaction
patterns. This chapter covers various patterns that offer best practice around
communications with other processes, systems, and services. It showcases various
patterns of interactions of a BPM process with other BPM processes and services.
Interaction patterns are more commonly known as Inter Process Communication
(IPC), which facilitates collaboration of a process with other processes, services,
and events. There are many reasons that lead to collaborative communications:

• Your process needs to invoke other services, for example, the Loan
Origination process needs to invoke a credit check service or your
process might need to invoke another process; for example, the Loan
Origination process may need to invoke the BackgroundCheck process.

• You might need to implement reusability, develop modular processes,
and collaborate with them.

• You might need to iterate over a collection/set of data and hence, need
subprocesses and multi-instance features in a separate process or subprocess.

• You might need to widely broadcast an information enterprise and let other
interested processes/services interact via subscription to these events. There
might be cases where you might have to deal with human interactions and
patterns such as escalation, reminders, and so on.

This chapter is focused on events, interaction tasks, and activities. The following
interaction patterns are a part of this chapter:

• Conversation pattern
• Asynchronous interaction pattern
• Synchronous interaction pattern

Interaction Patterns

[202]

• Subprocess interaction pattern
 ° Reusable processes interaction pattern
 ° Embedded subprocess interaction pattern

• Event-driven interaction pattern

Visit the following link to learn more about BPM events:
http://acharyavivek.wordpress.com/2013/11/20/
understanding-bpm-event/.

Defining use cases to demonstrate
interaction patterns
Download the Loan Origination application from the downloadable files of Chapter 5,
Interaction Patterns. The downloaded project contains the processes and components
described in the upcoming sections. This section will help you understand the
different processes that we will be covering in this chapter.

The BackOffice process
The BackOffice process invokes the loan origination process using the Message
Throw Event (RequestLoanOrigination). Upon receiving the response from the
Loan Origination process on the Message Catch Event (RespLoanOrigination),
the BackOffice process initiates a feedback process. When the feedback process is
completed, the feedback process raises an event. The BackOffice process resumes
when it gets a message on the subscribed queue on which it's waiting for the feedback
to complete. The following screenshot showcases the BackOffice process model:

http://acharyavivek.wordpress.com/2013/11/20/understanding-bpm-event/
http://acharyavivek.wordpress.com/2013/11/20/understanding-bpm-event/

Chapter 5

[203]

The Loan origination process
The Loan Origination process checks for application verification. If the application is
verified, then the loan origination process checks for the applicant's credit, and does
a background and fraud check. The Loan Origination process is modeled as shown
in the following diagram:

StartLO
StartL1 End1

AppsVerificationTask
ApplicationVerified?

VerificationReminder
EndReminderTask

CallUtilityProcess

SuspensionActivities Assign

No

Split

Yes StartBGC

BGCRequest Start2

SomeActivity

End2
BGCResponse

EndBGC
join Assign EndLO

AssignThrowFraudDetails

EndFC

FraudIntruption

FraudCheck?FraudCheckResponseFraudCheckRequest

StartFC

CreditCheck PostCreditCheck

The CatchFraudDetails and Feedback
processes
The Feedback process is demonstrated in the Event-driven interaction pattern section
of this chapter. It handles customer feedback based on signals (events). It starts with
a message; however, it ends by raising a feedback event using the Signal End Event
(EndFeedback). The CatchFraudDetails process starts with an event and ends
with a None End Event.

Interaction Patterns

[204]

The following diagram illustrates the CatchFraudDetails and Feedback processes:

The following points illustrate the entire use case that we will cover in this chapter.
The purpose of listing these bullet points is to make you aware of how different
processes are woven. However, each process is demonstrated in its respective
section. For example, the feedback process is invoked by the BackOffice process.
When the feedback process completes the application's customer feedback, it will
raise a feedback event. The following list shows the relation of different processes;
however, the implementation of the individual process (for example, the feedback
process) and description of the pattern is described in that respective section. Walk
through the following steps to understand the relation between different processes:

1. The BackOffice process invokes the Loan Origination process.
2. Upon receiving a response from the Loan Origination process,

the BackOffice process initiates a feedback process.
3. The feedback process raises an event when the feedback gets completed.
4. The BackOffice process resumes when it gets a message on the subscribed

queue on which it's waiting for the feedback to complete.

Chapter 5

[205]

5. The Loan Origination process performs the application verification using a
human task.

6. The application verification's human task has a timer, which ensures:
If the task assignee doesn't act on the task in a day's time, a reminder e-mail
is sent to the task assignee's e-mail address.
If the task assignee doesn't act on the task in 3 days' time, the suspension
activities are performed and the process ends.

7. Upon approval of the application verification task, the process is split into
the following three activities:

 ° Checking customer credit using the credit check service invocation
 ° Background check by invoking the BackgroundCheck process
 ° Fraud check by interacting with the fraud check service

If the fraud check process is positive, then a fraud interruption
message is raised. The boundary catch event gets the interruption
message, and the process throws a FraudDetails signal and ends.
The fraud details signal is caught by a subscribed CatchFraudDetails
process.
If the fraud check is negative, then the process moves normally,
and all paths merge at the join gateway.

8. Upon rejection of the application verification task, the Loan Origination
process calls a LOUtility service to perform escalation and other activities,
and the process ends.

Interaction Patterns

[206]

Oracle BPM offers various components that interact with a process and enable
its collaboration with other events/signals, services, processes, and so on. The
following table includes BPMN 2.0 components and their demonstration in the
use case. A number is defined in the diagrams for back office, Loan Origination,
and other processes for a specific component, as shown in the following screenshot.
This number is included adjacent to the component. All these details and discussions
around them are part of this chapter. This is shown in the following screenshot:

Other than the components, you have certain activities that are a must to enable
collaboration with other processes and services. These activities are demonstrated
in the following screenshot:

Chapter 5

[207]

Conversation pattern
Conversation pattern allows a BPM process instance to collaborate with another
process or service instance. Conversation patterns find usage when you have
multi-instance scenarios where a master process needs to establish multiple
parallel conversations with a child process/subprocess, or those scenarios where
a process instance collaborates with other process/service instances.

The following pattern table highlights the facts around the conversation pattern:

Signature Conversation Pattern
Classification Interaction Pattern
Intent Conversation allows a BPM process instance to collaborate with

another process or service instance.
Motivation Grouping of message exchange (collaboration) between processes is

performed using conversations. Collaboration can be synchronous
or asynchronous. Collaborating participants could be BPM
processes, BPEL/mediator processes, human tasks, business rules,
external services, references, and so on.

Applicability In BPM, a conversation can be defined for a Send/Throw/End
message and Receive/Catch/Start message, using the conversation
property. The BPM engine uses the WS-addressing correlation
or message-based correlation, and default/advance-defined WS-
conversation ID for each conversation.

Interaction Patterns

[208]

Implementation The BPM process starts an outbound conversation when it
participates in a conversation that has already been started by a
participant process or service. The conversation can be a scoped
conversation, default conversation, or advance conversation:

• Scoped conversation: This refers to the conversations that
are defined in scope, which is inside the subprocess. When
you define a scoped conversation, make sure that you define
it in the structure panel; otherwise, it would inherit a process
scope.

• Advance conversation: This refers to an explicitly defined
conversation. A default conversation is available by default
in a BPM project; however, you can define an advance
conversation in some cases, such as those cases that involve
multi-instance collaboration and so on.

• Default conversation: Other than defining an advance
conversation, you can also use the default conversation.
The default conversation is available with a BPMN
process by default, and you don't have to explicitly
define a conversation.

Known issues These include message correlation.
Known solution If the message exchange pattern is a synchronous request

and response, then the BPM engine uses the WS-addressing
correlation and default/advance-defined WS-conversation ID
for each conversation.
However, if the message exchange pattern is an asynchronous
(one-way) request-callback, then you need to define the
message-based correlation along with the conversation ID
(default/advance defined).

If you define a conversation, then you can visualize the
collaborative conversation in collaboration diagrams.

In this section, we will witness the implementation of an advance conversation.
An advance conversation is defined between a BackOffice process and the Loan
Origination process. We will notice the usage of the advance conversation in the
BackOffice process in this section. However, for the rest of the sections in this
chapter, we will find the implementation of the default conversation. The following
is the screenshot of the BackOffice process that will be discussed in this chapter.
The back office process interacts with the Loan Origination process and has
conversations being defined.

Chapter 5

[209]

Use the following steps to check how conversations are defined and witness them in
action while checking the collaboration diagram:

1. Download the Loan Origination application from Chapter 5, Interaction Patterns.
2. Start JDeveloper and open LoanOriginationApps.jws to open the Loan

Origination process.
3. Navigate to LoanOriginationApps | LoanOriginationProject |

BackOffice process.
4. Go to the BackOffice – Structure window in the bottom-left corner of the

screen, as shown in the following screenshot:

5. Check the conversation defined in the structure window shown in the
preceding screenshot. There are two conversations defined: one between the
BackOffice process and Loan Origination process, and another between the
BackOffice process and feedback process.

6. Right-click on the BackOffice_LoanOrigination conversation defined in the
structure window. You can verify that it's being defined for the process call.

7. Right-click on the RequestLoanOrigination Message Throw Event in the
BackOffice process and check its properties. You can find that the defined
conversation is selected there as an Advanced conversation.

8. Click on the Collaboration tab, as shown in the upcoming screenshot.

Interaction Patterns

[210]

The process flow is shown through the collaboration diagram, which also shows a
process's interactions and collaboration with other processes and services. You can
check the following facts from the collaboration diagram:

• The BackOffice process interacts with the Loan Origination process by
sending a message through the RequestLoanOrigination throw message
event and receiving a response message through the RespLoanOrigination
Message Catch Event.

• The BackOffice process interacts with an external service through
the StartFeedback throw message event. This is shown in the
following screenshot:

StartLO
StartL1 End1

Pre-VertificationActivities

ApplicationVerification
Task

VertificationReminder
EndReminderTask

ApplicationVerified?

Yes

No

CallUtilityProcess

Assign
SuspensionActivities

Split

StartBGC
BGCRequest Start2

SomeActivity

Subprocess1

BackGroundCheck
SubProcess

BGCResponse
EndBGC

FraudIntruption

join Assign EndLO

EndBOGetFeedbackDetailsGetFeedbackRespLoanOriginationSomeOtherActivities
RequestLoanOriginationStartBO

Services,Externals,PushToFeedbackQueue

L
o

a
n

O
ri

g
in

a
ti

o
n

B
a

c
k

O
ffi

c
e

CreditCheck PostCreditCheck

We can define different types of conversation. For example, you can define a
conversation in which a BPMN process can be exposed as a service or a process; then,
you can define the interaction operations using the Define Interface conversation type.
If our process needs to interact with another BPMN process or service, then define the
conversation type as process call and service call, respectively. Also, you can define the
conversation using an interaction interface (which already exists) from the business
catalog, using the Use Interface conversation type.

Chapter 5

[211]

While walking though this chapter, we will notice that while interacting with a BPM
process, the conversation type is used heavily. For some interactions, we will witness
the usage of the service call conversation type. The service call conversation type
is used to invoke a service. The process call conversation type is used to invoke a
BPM process. Essentially, a conversation type defines different types of interactions
that our process can establish with other processes or services. The following list
describes the different types of conversations:

• Define interface: This conversation type is used when you want to define
operations for your BPMN process with which other services and processes
can interact.

• Use interface: This conversation type is used when you want to use an
interface that is already defined and is available in the business catalog.

• Process call: This conversation type is used to invoke another BPMN process.
• Service call: This conversation is mostly used to invoke a service defined in

your BPM project.

Before you execute any process in this chapter, make sure that
you create LOFeedbackQueue in the weblogic service with the
jms/LOFeedbackQueue JNDI, using the steps mentioned in the
Guaranteed delivery pattern section of Chapter 3, Invocation Patterns.

Asynchronous interaction pattern
The BPM process can invoke an asynchronous process or service using the Message
Throw Event or Send Task. The process can use either the Message Catch Event
or Receive Task to receive a response from the invoked process/service. When we
invoke an asynchronous process or a service, the invoked process or service becomes
a child of the calling (invoking) process. This section will uncover how to invoke
an asynchronous process or service using the Message Throw and Catch Event.
This section also has a subsection on invoking an asynchronous process or service
using the Send and Receive Tasks. The following pattern table illustrates the pattern
signature for an asynchronous request response (request callback) pattern:

Signature Asynchronous Request-Response (request-callback) Pattern
Classification Interaction Pattern
Intent Invoke an asynchronous operation on an asynchronous service

or process.

Interaction Patterns

[212]

Motivation When an asynchronous process or service is invoked, the BPMN
engine will not wait for the response and will start executing
subsequent activities that follow the Message Throw or Send
Task. The calling process will invoke the called process's callback
operation using the Message Catch Event or Receive Task to get
the response.

Applicability The BPM process can invoke an asynchronous process or service
using the Message Throw Event or Send Task. It can use either
the Message Catch Event or Receive Task to get the response.
When you invoke an asynchronous process or service, the invoked
process or service becomes a child of the calling (invoking) process.

Implementation The Message Throw Event or Send Task, when used to invoke a
BPM process/service, essentially initiates a conversation. While
executing a Throw Event or Send Task, the BPM engine creates
the following features:

• An XML message based on the asynchronous operation
• Input required by the asynchronous operation
• Data association defined in the intermediate Message

Throw Event

This XML message is sent to the asynchronous BPM process
or service. The calling (invoking) process does not wait for the
response, and it will continue the subsequent process flow. The
called (invoked) asynchronous service or process will execute
the asynchronous operation. The calling process will invoke the
callback operation to get a response from the called (invoked)
process using the Message Catch Event or Receive Task.
In the calling process, when the process token arrives at the
Message Catch Event or Receive Task, the process waits for the
asynchronously called (invoked) process to respond. If the called
process has already responded, then the calling process will receive
the response at the Message Catch Event or Receive Task. If not,
then the process token will wait at the Message Catch Event or
Receive Task until a response is received.

Known issues These include reliability.
Known solution To ensure that the message gets routed to the appropriate

requester, the message correlation must be implemented to relate
inbound and outbound messages.

Chapter 5

[213]

Interacting with an asynchronous process
using the Message Throw and Catch events
The message events (Throw Event and Catch Event) enable interaction with
asynchronous services and asynchronous processes. In this section, we will learn
how to interact with asynchronous processes using the Message Throw and Catch
Events while walking through the BackOffice process scenario. We will use
Message Throw and Catch Events to invoke the Loan Origination process, which is
an asynchronous process. To enable this invocation, the advance conversation is used
and the Process Call conversation type is defined. The Loan Origination process is an
asynchronous BPMN process, which starts with a Message Start Event and ends with
a Message End Event. The BackOffice process invokes the Loan Origination process
using a Message Throw Event. The process receives a response from the Loan
Origination process by configuring a Message Catch Event. It will then implement
the Process Call conversation type to interact with the Loan Origination process.

Perform the following steps to understand the conversation configuration in the
BackOffice process, which enables collaboration with the Loan Origination process:

1. Start JDeveloper and open the LoanOriginationApps application.
2. Navigate to LoanOriginationProject | BackOffice Process.
3. Open the BackOffice process.
4. Open the properties of the RequestLoanOrigination Message Throw Event

and go to the Implementation tab.
5. While implementing the Message Throw Event, the message exchange

type, that is, the conversation type, is Process Call. This is because the
Loan Origination process is an asynchronous BPM process. Remember to
use the Process Call conversation type to invoke another BPMN process.

6. Advance Conversation is defined because you have already defined a
conversation for the BackOffice and Loan Origination processes.

7. Select the BackOffice_LoanOrigination conversation. You will find
details of the Loan Origination process populating in the process name
and target node. The target node is the Message Start Event of the Loan
Origination process.

8. Click on Data Associations to view the data assignment.
9. We can check the correlation configuration. However, the details

around correlation will be discussed in Chapter 6, Correlation Patterns.

Interaction Patterns

[214]

10. Verify the properties of the RespLoanOrigination Message Catch Event.
The Message Catch Event in the BackOffice process receives a response
from the Loan Origination process.

11. We can witness the conversation type as Process Call. The same BackOffice_
LoanOrigination conversation that we used while configuring the Message
Throw Event, is used.

12. The process name will be LoanOrigination. However, this time, the target
node is EndLO, which is the Message End Event of the asynchronous Loan
Origination process, as shown in the following screenshot:

13. Check the data association; we can find the data assignment from the
Loan Origination process output to output the process data object of the
BackOffice process.

14. Open the Loan Origination process and check the properties of its Message
Start Event.

15. You can find that an asynchronous operation, startLO, is defined to accept
any asynchronous requests based on the Loan Origination data object
(Loan Origination schema).

16. Check the Message End Event, endLO, which ends the Loan Origination
process, as shown in the following screenshot.

Chapter 5

[215]

17. You can verify that the message exchange interface pattern is defined as
asynchronous. This configuration makes the Loan Origination process an
asynchronous process.

18. You can check whether the endLO operation is exposed as the callback
operation. This is demonstrated in the following screenshot:

The BackOffice process will obtain the response from the Loan Origination process
by invoking the endLO service callback operation using the Message Catch Event.
Even if the Loan Origination process ends much before the BackOffice process
reaches the Message Catch Event, the BackOffice process will not receive the
response message. The BackOffice process will receive the response only when
the Loan Origination process completes and the BackOffice process has reached
the RespLoanOrigination Message Catch Event.

Interaction Patterns

[216]

Interacting with an asynchronous service
using the Message Throw and Catch Events
In this section, we will learn to interact and invoke an asynchronous service using
the Message Throw and Catch Events. Let's consider an example scenario:

The Loan Origination process performs various checks such as application
verification and some parallel verification such as credit card check, background
check, and fraud check. Fraud check is implemented as a subprocess, which has
a Message Throw and Message Catch Event being configured to interact with
the FraudCheck service. This fraud check service is implemented using Oracle
SOA's BPEL as an asynchronous service. In this section, we will learn to invoke
an asynchronous service using the Message Throw and Catch Events. The Service
Call conversation type is defined to enable this interaction.

Perform the following steps to witness how the Message Throw Event in
FraudCheckSubProcess invokes the FraudCheck asynchronous service by
interacting with the operations exposed by the fraud check service:

1. Open the Loan Origination process and go to FraudCheckSubProcess.
2. Right-click on the FraudCheckRequest Message Throw Event and go to the

Implementation tab in the properties dialog.
3. We can verify that the conversation type is Service Call. This is because the

FraudCheck service is implemented as a web service.
4. We can find the FraudCheck service operation being populated in the

operation dropdown. This operation is the request operation of the
FraudCheck process.

5. Check the data association to learn the data assignment.
6. For the FraudCheckResponse Message Catch Event, the response

operation gets populated as the callback operation. This is shown
in the following screenshot:

Chapter 5

[217]

Enabling external services interaction
In this section, we will uncover how we can enable the external web service
interactions in BPM. As you saw earlier, the Loan Origination process is able to
invoke the FraudCheck service, which is an asynchronous service, even though
the FraudCheck service is not a part of the LoanOriginationProject. To enable
communication with the external service, we need to configure a service adapter.
For example, say we need to interact with queues, and then, we have to define a
JMS adapter that exposes queues as services and helps the BPM processes interact
with them.

As we are going to implement this project in our environment, we will perform the
following steps:

1. Download LoanOriginationApps and open it in JDeveloper 12c.
2. Along with LoanOriginationProject, we can also find the FraudCheck

and CreditCheckPrj projects.
3. Deploy the FraudCheck project to your web logic service and go to the

EM console at http://service:port/em.
4. Click on the FraudCheck service and copy its WSDL.

Interaction Patterns

[218]

To enable a conversation between the Loan Origination process and the FraudCheck
service, we need to define a web service adapter as a reference service in project's
(LoanOriginationProject) composite.xml. Perform the following steps to verify the
web service adapter configuration:

1. Go to the composite file of LoanOriginationProject and open it.
2. Click on the FraudCheck service reference properties. It is configured using

the web service adapter.
3. Open the web service adapter configuration of the FraudCheck service in the

composite file of LoanOriginationProject as seen in the following screenshot.
4. Enter the copied WSDL of the FraudCheck service and hit the Tab button.

This will populate the request and callback operations. This is shown in the
following screenshot:

Chapter 5

[219]

Interacting with an asynchronous process
and service using Send and Receive Tasks
Communication with other BPM processes and services in the project can be
implemented using the Send and Receive Tasks. Send and Receive Tasks are similar
to throw and catch events. However, we can define a boundary event on the Send
and Receive Tasks. Boundary events can be used in various business scenarios such
as enabling an SLA on a particular task or defining an escalation, and so on. Send
and Receive Tasks can be used to communicate with other processes and services.
They can be used to expose a process, which can be initiated with a Receive Task.
Such a process can be invoked by a Message Throw Event and also by a Send Task.

For the scenario in this section, the BackOffice process initiates a Loan Origination
process. It's based on the fact that a loan customer is interacting with a bank's back
office, and it's the back office that initiates the loan on behalf of the customer. However,
there might be other channels too. Lets' create a web process, keeping the fact that
this process will be the process that gets kicked off when a user interacts with a user
interface, such as a web application, and fills in the loan details. The Loan Origination
process gets initiated when the web process gets started from the user interface.

A Send Task will invoke the asynchronous Loan Origination process's startLO
operation and will receive the task to invoke the callback operation paired with the
asynchronous service/process.

Perform the following steps to create a web process that invokes the Loan
Origination process through the Send and Receive Tasks.

1. Navigate to LoanOriginationProject | BPMN | BPMN Processes and
right-click on the processes to create a new process.

2. Enter the name of the process as Web and let it be an asynchronous process.
3. Create the WebProcessIN and WebProcessOUT process arguments

as web process input and output arguments, respectively, based on
LOBusinessObject. This business object is used throughout the project,
and it's based on the Loan Origination schema.

4. Click on Finish to end the process wizard.
5. Create the webINPDO and webOUTPDO process data objects based on

LOBusinessObject. We can create process data objects (PDOs) from the
structure window.

6. Click on the Message Start Event and open its properties.

Interaction Patterns

[220]

7. Click on data association on the Message Start Event and assign the
WebProcessIN web process's input argument to the PDO of the
webINPDO web process input.

8. Drag-and-drop a Send Task in the process and name it SendLoanRequest.
9. Go to SendLoanRequest Send Task's implementation properties.
10. Choose the conversation type as Process Call and set the conversation

to default.
11. Click on Browse to select the Loan Origination process from the process list.
12. Select the Loan Origination process and click on OK.
13. You will find startLO as the target node, which gets automatically populated.
14. Use data association to assign the PDO of the webINPDO web process input

to the LOProcessIN input argument of the Loan Origination process.
15. Click on OK in the properties of the SendLoanRequest Send Task and save

the changes.
16. Drag-and-drop the Receive Task and name it ReceiveLoanResponse.

Then, go to its Implementation tab.
17. Select the conversation type as Process Call and let the default conversation

be checked.
18. Browse to select the Loan Origination process.
19. The target node will get populated with the endLO end node of the Loan

Origination process.
20. Use data association to assign the LOProcessOUT output of the Loan

Origination process to webOUTPDO, which is the PDO of the web process
output, and click on OK.

21. Click on Message End Event in the web process and configure the data
association from WebOUTPDO to the webProcessOUT output argument
of the web process.

22. Save all the changes and deploy the project.

Test the scenario by initiating the web process. When the Loan Origination process is
invoked by the web process's Send Task, the web process will not wait for a response
from the Loan Origination process and will continue with the subsequent flow.
However, the web process will receive a response from the Loan Origination process
by invoking the endLO callback operation of Loan Origination using a Receive Task.
If the Loan Origination process finishes before the web process reaches the Receive
Task, the web process will not receive a response. It would only receive a response
when the web process reaches the Receive Task and invokes the endLO callback
operation of Loan Origination.

Chapter 5

[221]

However, if the web process is quick and the process token for the web process
reaches the Receive Task much before the Loan Origination process gets completed,
the BPM service engine will wait at the receive task for the Loan Origination process
to complete.

Attaching boundary events on Send and
Receive Tasks
The boundary events, when triggered, can either interrupt the normal process flow,
or they can be mutually exclusive with the normal flow. They can also start an
exception flow parallel to the normal flow. This behavior depends on the boundary
event's configuration.

We will be visiting the boundary events in detail later in this chapter. In this section,
we will define a Service Level Agreement (SLA) for the loan process. Let's consider
a use case where, if the Loan Origination process is not completed in 7 days, then the
loan process initiator (the web process) will end the flow. This means the boundary
event will be a timer, and it will be of the interrupting type as it's going to stop the
normal flow of the process. Execute the following steps to enable a boundary event
on the Receive Task:

1. Open the web process that you implemented earlier in JDeveloper.
2. Drag-and-drop a catch timer event on the ReceiveLoanResponse

Receive Task and name it SLA.
3. Check the interrupting event check box and configure the implementation

properties, as defined in the preceding screenshot.
4. Set the time cycle as 7 days. (For a quick test, we can set it to 5 minutes).
5. Save the process and deploy it.

Enabling the timer with 7 days as the time cycle will trigger the timer 7 days after
the process initiation. If the web process doesn't receive a response from the Loan
Origination process in 7 days, then the timer gets triggered and the web process will
interrupt the normal Loan Origination process flow. The loan details will be saved,
and the process will end.

Interaction Patterns

[222]

Interacting with a process defined with
Receive Task as a start activity
In this section, we will implement an asynchronous process with a Receive Task as
the start activity. The Loan Origination process is an asynchronous process with a
Message Start Event. However, we can also define an asynchronous process with a
Receive Task as the start activity. The BackgroundCheck process is implemented as
an asynchronous process that starts with a receive activity. A BPM process that starts
with a Receive Task enables an asynchronous conversation. While creating a BPM
process, the Receive Task should be followed by a None event (None Start Event).

The None Start Event does not have any special properties, and it is also not
associated with any trigger mechanism. However, to enable a conversation with
processes that have the None Start Event, remember to use an Initiator Task event
or Receive Task event, with the Create Instance property being checked.

Walk through the following steps to check the BackgroundCheck
process's implementation:

1. Navigate to JDeveloper | LoanOriginationProject | BackgroundCheck and
open the BackgroundCheck process.

2. You will find a ReceiveBackgroundCheckReq receive activity after a None
Start Event.

3. Right-click to open the properties and go to the Implementation tab.
4. We can verify that the conversation type is Define Interface.
5. We have used the default conversation; however, an advance conversation

can be defined.
6. We can check whether an operation is exposed with the name

ReceiveBackgroundCheckReq. This is the operation that any other process
can use to communicate with the background check process.

7. Click on the sendBackgroundCheckResp Send Task and check its properties;
you can witness that a callback operation is defined with the name
sendBackgroundCheckResp.

8. The message exchange pattern is selected as Asynchronous. This makes the
process an asynchronous process. This is shown in the following screenshot:

Chapter 5

[223]

Open the Loan Origination process and expand BackGroundCheckSubProcess.
You can find that a Message Throw Event and Message Catch Event are configured
to interact with the BackgroundCheck process. Click on BGCRequest in
BackGroundCheckSubProcess and check its properties.

As you can see in the following screenshot, the Conversation type defined to
interact with the BackgroundCheck process is Process Call because it is a process.
You can verify that the target node exposed has the same name as the operation,
ReceiveBackgroundCheckReq, defined in the Receive Task activity in the
BackgroundCheck process.

Interaction Patterns

[224]

In the Message Catch Event, you can find the callback operation selected as the
target node. This is shown in the following screenshot:

The Loan Origination process will obtain the response of the BackgroundCheck
process by invoking the sendBackgroundCheckResp callback operation using the
BGCResponse Message Catch Event.

Synchronous request-response pattern
When we need to interact with a process or service and when an immediate response
is required, use the synchronous interaction pattern. The following table lists the
details of the synchronous request-response pattern:

Signature Request Response Pattern
Classification Interaction Pattern
Intent The intent is to invoke a service interface that is defined with the

request-reply operation. The goal is to serve those scenarios that
expect a response from the service provider in near real time.

Motivation To invoke synchronous operations in services and BPMN processes.
Essentially, a BPM process should be able to invoke a BPEL process,
SOA mediator, SOA adapters, external service, and so on, which
expose synchronous operations.

Applicability These include the service task.

Chapter 5

[225]

Implementation When you need to design a synchronous interaction, use a service
task. Service task invokes processes and services, synchronously.
When a service tasks invoke a process or service, the token waits
at the service task until a response is returned. After the response
is received, the token continues to the next sequence flow in the
process. You use process data objects to assign input data to an
invoked service's input, and the service output is assigned back to
PDOs.

Known issues If an immediate response is not received by a service consumer on
time, it results in a timeout exception. Also, the service consumer
might receive faults.

Known solution The solution for service providers were discussed in Chapter 3,
Invocation Patterns. The service consumer should build logic to
handle the errors and also have logic to handle timeout exceptions.
A meticulous exception-handling mechanism is required.

To demonstrate this pattern, we will interact with a synchronous web service using a
service task in a BPM process. The Loan Origination process interacts with the credit
check service to check the credit details of the loan applicant. A credit check service
is a synchronous web service that we would invoke from the Loan Origination BPM
process. Perform the following steps to deploy a credit check service and enable it in
your project:

1. Download LoanOriginationApps and open it in JDeveloper.
2. Along with LoanOriginationProject, you will also find CreditCheckPrj

as a separate project.
3. Deploy the CreditCheckPrj project to your web logic service, and go to

the EM console at http://service:port/em.
4. Click on the CreditCheck service and copy the WSDL of the

CreditCheck service.
5. Open the web service adapter configuration of the CreditCheck service in

composite.xml.
6. Enter the copied WSDL of the CreditCheck service and hit the Tab button.

This will populate the request reply operations. Only one port is enabled
as it's a synchronous service.

Interaction Patterns

[226]

Walk through the following steps to check the synchronous interaction pattern:

1. Go to the Loan Origination process and open the process in JDeveloper.
2. Double-click on the CreditCheck service task and go to the

Implementation tab.
3. Examine whether the conversation type is Service Call and the conversation

defined is the default one.
4. Browse for the CreditCheck service and click on OK.
5. Verify that the operation is in process for request-reply interaction of the

CreditCheck service.
6. Check the data association. The data from the process data objects is assigned

to the service's input argument, which is passed to the service when it's
invoked. The service output argument is assigned back to the process data
objects when the response is received.

The business catalog
The service task interaction pattern enables conversation and collaboration with only
those services that are available in the BPM process business catalog. Hence, if you
want some other external services to be invoked by your BPM process, remember
to make them available in the business catalog. To interact with JMS queues or with
any RESTful service, you need to configure a specific adapter in the project's LoanO
riginationProject(composite.xml) file. For example, to push messages from a
BPM process to a queue using the JMS adapter, configure the JMS adapter. The JMS
adapter will expose itself as a service, and it will be available in the business catalog.
Once available in the catalog, we can use this service in the BPM process. Along with
the entire adapter in the component pallet, we can have a BPEL process, mediator,
restful services, and so on being implemented and available in the business catalog
to be used by the BPM process.

Along with this, you can always use MDS to share common artifacts such as XSD
and WSDL.

When the CreditCheck service task in the Loan Origination process invokes the
CreditCheck service, the token waits at the service task until a response is returned.
After the response is received, the token continues to the next sequence flow in the
process. Until the response is received, the process token waits at the service task.
Upon response from the CreditCheck service, the data is mapped to the data objects
in the project using the data association of the CreditCheck service task.

Chapter 5

[227]

Subprocess interaction patterns
There are varied ways available to interact with subprocesses in Oracle BPM.
The following bullet points classify the various subprocesses:

• The embedded subprocesses are in-line with the parent process.
• The multi-instance subprocess is a process over which a parent process

can iterate. It is basically an embedded subprocess; however, you
can define multi-instance and looping behavior for this kind of an
embedded subprocess.

• The reusable subprocesses are defined outside the parent process model,
and they execute within the parent process flow.

• The event subprocess is similar to the embedded subprocess; however, it
is useful in handling errors and will be discussed in Chapter 7, Exception
Handling Patterns.

• The peer subprocesses are those processes that can be invoked by a Send
and Receive Task, via a throw and catch event, or even via a service task.

The following table categorizes the subprocess, its scope, and exception-handling
behavior:

Subprocess type Scope Definition Execution Exception
handling
behavior

Embedded
subprocess

Inline Defined inside
the main process
in which it is
embedded.

Executed as
part of main
process in
which it is
embedded.

Exceptions get
propagated to
the next level's
subprocess,
if not caught
and handled in
the embedded
subprocess.

Multi-instance
subprocess

Inline Defined inside
the main process
in which it is
embedded.

Executed as
part of main
process in
which it is
embedded.

Exceptions get
propagated to
the next level's
subprocess,
if not caught
and handled in
the embedded
subprocess.

Interaction Patterns

[228]

Subprocess type Scope Definition Execution Exception
handling
behavior

Reusable
subprocess

Outside Defined outside
the parent
process.

Executes
within
the parent
process.

Exceptions will
be propagated to
the calling parent
process.

Peer subprocess Outside Defined outside
the calling
process.

Executes
as an
independent
process.

Exception
behavior for the
peer subprocess.
When the
called process is
invoked via the
Message Throw
Event, you can
handle the fault
in the invoked
peer process and
then propagate it
to the invoking
process or let the
invoking process
handle
the fault.
When the
called process
is invoked via
the Send and
Receive Tasks,
the exceptions are
propagated to the
calling process.
When it is
invoked via the
service task,
exceptions are
propagated to the
calling process.

Chapter 5

[229]

Subprocess type Scope Definition Execution Exception
handling
behavior

Event
subprocess

Enclosing a
process or
subprocess

Defined inside
a subprocess or
process.

It remains
active till
the time the
process/
subprocess
in which it
is in-line is
active. If in
that active
time frame,
the specified
event gets
triggered,
then the
event
subprocess
will be
executed.

When peer processes are invoked, the calling process behavior depends on the
called process's conversation message exchange pattern. If the called process is
asynchronous, then the calling process will not wait for the callback. If the calling
process is synchronous, then the called process waits for the response.

The multi-instance subprocess is discussed in Chapter 2,
Multi-instance and State-based Patterns. The error-handling
patterns will be discussed in Chapter 7, Exception Handling
Patterns. This section will concentrate on peer subprocess,
reusable subprocess, and embedded subprocess.

Reusable process interaction pattern
When we create a new BPM process, we have four process templates available to
choose from: asynchronous process, synchronous process, manual process, and
reusable process. When we have the business requirement to create processes that
can be invoked by many parent processes, we use the reusable template. Using
the reusable template, we can create a reusable subprocess, for example, utility
processes, such as LOUtilityProcess, in the LoanOriginationProject project.

Interaction Patterns

[230]

The following table lists the details of the reusable process' interaction pattern:

Signature Reusable Process Interaction Pattern
Classification Interaction Pattern
Intent To establish a separate scope for processes; this also encourages

reusability in the process design.
Motivation When you have the business requirement to create processes that

would be invoked by many parent processes, use the reusable
template to create reusable subprocesses. For example, the utility
process in this section will be reused by many processes and is an
ideal candidate for being a reusable process.

Applicability A reusable subprocess is defined outside of its parent processes.
It is also stored outside its parent process model. You can invoke
a reusable process with the CALL task. At runtime, the reusable
subprocess executes in-line within the process that called it.

Implementation The CALL tasks invoke other BPMN processes to enable process
chaining. The BPM offers the CALL task to invoke a reusable
process. When a token reaches the CALL task, it gets inhibited,
and a new instance of the reusable subprocess is created.
The main process waits until the control is returned by the called
reusable subprocess. When the reusable process completes, the
control is returned to the CALL task, and the process token moves
ahead to the subsequent process flow. The BPM processes with
a None Start Event and None End Event are considered reusable
processes; however, if you change the trigger type of the
None Start and End Events, then a process no longer remains
a reusable process.

Known issues No access to the parent process data.
Known solution You can use data association to assign data from a parent process to

a reusable process.

The following are the characteristics of the reusable process:

• It is independent of the parent process.
• It can have many parent processes.
• It should be included in the same project as the parent processes.
• It has a separate process model; however, the audit logs show it executing

in-line within the calling process.
• It cannot be transactional.
• It has an atomic independent process definition.

Chapter 5

[231]

• It cannot be invoked as a service/process from outside of the project.
• As the name suggests, it encourages reusability in the process design.
• It does not have access to the parent process data; however, you can use data

association to assign data from the parent process to the reusable process.
• Check the properties of the CALL task, and you will not find the

conversation options as they cannot fall into the conversation
initiated from the parent processes.

• As you can define swimlanes in a parent process, you can define swimlanes
for reusable processes too.

• It can be looped; however, there is no direct mechanism to do so. Hence, it
needs to be wrapped in an embedded subprocess to enable iteration over a
reusable process.

• At runtime, the reusable subprocess executes in-line within the process that
called it.

Use a reusable subprocess when you have the requirement to establish a separate
scope for those processes that encourage reusability in the process design, such as
the LOUtilityProcess utility process.

Use case scenario for reusable process
interaction pattern
The Loan Origination process checks and validates the loan application. A human
task is used to assign an approval task to a loan officer for the verification of the
loan application. The loan officer checks the application and verifies it by either
approving or rejecting the application. The application's verification status is
checked at the exclusive Application Verified gateway in the process.

If the application is verified and approved, the process moves ahead for other
verifications. However, if the ApplicationVerified gateway is rejected, then the
Loan Origination process calls a LOUtilityProcess. This utility process will perform
various activities such as saving the applicant's details, notifying sales and other
concerned departments, and taking other proactive steps. Once the called utility
process gets completed, the Loan Origination process ends.

Interaction Patterns

[232]

The following steps will enable you to analyze the implementation of the CALL task:

1. Open JDeveloper and click to open LOUtilityProcess. This is a reusable
process, which is created with the reusable process template.

2. You can witness that the process has no access to the parent process data.
However, we defined the process data objects' input and output arguments
for the LOUtilityProcess.

3. Check the data association and verify that the data is assigned from the
LOUtilityProcess input argument to the data object of the LOUtilityProcess
input process. Also, check whether a similar association between the output
process data object and the output argument is implemented in the None
End Event.

4. Open the Loan Origination process in JDeveloper and go to the properties
of the CallUtilityProcess call task. This is a call task defined to interact
with the LOUtilityProcess reusable process.

5. Click on data association to verify the input data assignment from
the data object of the Loan Origination process to the input argument
of the utility process. Similarly, the utility process output arguments
are assigned to the Loan Origination process data object.

You can check whether any conversation type can be defined for a reusable process.
The implementation type is Call Activity as it's a CALL task. The data association
shows how data can be interfaced between the parent process and the reusable
called process.

When the Loan Origination process token reaches the CallUtilityProcess call
task, the tokens gets inhibited, and a new instance of the LOUtilityProcess
reusable process is created. The Loan Origination process gets hold until the
LOUtilityProcess utility process gets completed. The utility process will
execute its activities, and when it completes, control is returned back to
the Loan Origination process, and the process moves ahead.

Embedded subprocess interaction pattern
A subprocess is a process in itself that handles a part of the main process's
functionality. It's a set of activities that have a sequence and a defined purpose.
One of the many types of subprocesses is the embedded subprocess, which is a
part of our discussion in this section.

Chapter 5

[233]

The following table summarizes the details of the interaction pattern of the
embedded subprocess:

Signature Embedded Subprocess Interaction Pattern
Classification Interaction Pattern
Intent To establish subprocesses that are in-line within the main process.
Motivation When you have the business requirement to create subprocesses

that are embedded within the parent processes, are not reusable,
and loops can be created on the subprocess, then the obvious choice
is the embedded subprocess.

Applicability The embedded subprocess is not independent of the parent process
and hence, is in-line within the process and is often termed an in-
line subprocess.

Implementation An embedded subprocess will always start with a None Start Event,
and it cannot be changed for the embedded subprocess. Also, the
None Start Event does not have data association capability because
the embedded subprocess is in-line within the main parent process
and hence, has access to all data and information of the main
parent process. You can change the End Event trigger type for an
embedded subprocess to signal, message, error, and terminate.
When the End Event is changed, then the events thrown by these
subprocesses should be handled by the subprocess or the main
parent process, whichever is up in the hierarchy of the subprocess.

Known issues Cannot have a separate swim lane.
Known solution The embedded subprocess is in-line with the main process and

hence, it is within one of the swimlanes of the main process. The
modeling should be performed meticulously.

The following are the main characteristics of an embedded subprocess:

• It shares the same data and information with the parent process in which
it is embedded.

• It has a defined business objective and hence, has a None Start Event and
a None End Event to clearly define its start and end.

• It is not reusable, and it can be expanded and contracted to hide and
show details.

• It can be nested while each subprocess can have its own set of data objects
and other objects.

• The boundary events can be associated with an embedded subprocess.

Interaction Patterns

[234]

For BackGroundCheckSubProcess and other embedded subprocesses too, you can
create data objects, activities, conversations, correlations, and measurements.

The data objects defined for subprocesses are
termed scoped data objects.

It's a good design practice to use a scoped data object when you are aware of a data
object's life cycle. The subprocess can be nested. Check BackGroundCheckSubProcess,
which also has another subprocess inside it, as BPM allows subprocesses to be nested.

Interrupting a boundary event
The boundary events are defined as the catch events that can be associated with a
subprocess or an activity. The catch events can be configured as a boundary event
on various activities and subprocesses. These boundary catch events can be of
interrupting or non interrupting type, depending on the way they deal with the
normal process flow. You can implement the timer as a boundary event to introduce
a delay, SLA, or a wait on an activity or an embedded subprocess. The catch
intermediate events are also used as boundary events to a subprocess or activities of
a certain type. When any associated boundary event is executed, the process flows to
an exception path. A boundary event can be of interrupting or non-interrupting type.
In a non-interrupting boundary event, the process flow moves to a normal process
flow and exception flow, as both are mutually exclusive; however, in an interrupting
boundary event, the process flow moves only to exception flow.

Boundary event on an activity
Check the Loan Origination process. There, we have a human task defined to
perform the application's verification. There are two timer boundary events
associated with the human task:

• Non-interrupting event: Click on the lower timer event and check
its properties. This timer event is named VerificationReminder. It's a
non-interrupting boundary event. The time cycle set for this timer is
1 day. You can change it to 1 minute for the sake of testing it.

• Interrupting event: The upper boundary event is an interrupting boundary
event named LOSuspended. The time cycle set for this timer is 3 days.

These timer events serve as a reminder and can be used to implement SLA for the
Loan Origination process.

Chapter 5

[235]

For the loan verification process, an application verification task is assigned to a loan
officer. If the task in not acted upon by the loan officer (salesrep) in 1 day, then a
notification e-mail will be sent. This is the reminder policy of the Loan Origination
process. However, if the loan officer does not act on the task in 3 days, then the Loan
Origination process will end after performing some suspension activities.

The following steps demonstrate an interrupting timer boundary event
configuration:

1. Click on the LOSuspended boundary timer event and open its
Implementation properties.

2. You can witness that the Interrupting Event checkbox is checked and the
time is set to 3 days. This is shown in the following screenshot:

3. Check the Non-interrupting boundary timer event, VerificationReminder,
and verify the time as 1 day. However, the Interrupting Event checkbox is
not checked in this case, and this makes the VerificationReminder boundary
timer event non-interrupting.

When the process token arrives at the embedded subprocess, the token (initial
token) gets inhibited, and a new token is started for the embedded subprocess.
When the subprocess reaches its End Event and if there are no available tokens
in the subprocess (which also includes tokens for all non-interrupting event
handlers), then the subprocess ends. The token that initially started the subprocess
(initial token) gets resumed, and it gets propagated to the outgoing sequence flow
from the embedded subprocess.

Interaction Patterns

[236]

Non-interrupting event: In the case of a non-interrupting event associated with a
subprocess, all the tokens associated with non-interrupting event handlers must get
completed before the original token is propagated to the outgoing sequence flow
from the subprocess. Hence, when the loan officer does not act on the application's
verification task in 1 day, the non-interrupting boundary timer event triggers the
non-interrupting event handler, which sends a notification to the loan officer.

Interrupting event: In the case of an interrupting event associated with the
subprocess, if the interrupting event executes, then all the available tokens in the
subprocess are consumed, and the original token that started the subprocess gets
propagated to the outgoing sequence flow. Hence, when the loan officer does not act
on the application verification task in 3 days, the interrupting boundary timer event
triggers the interrupting event handler, which consumes all the Loan Origination
process tokens, and the original process token moves to suspension activities.

Event-driven interaction pattern
By definition, an event is an occurrence that has happened. It can be a change in a state,
a condition that triggers a notification, and so on. An event can be a notification, alert,
business event, or a complex event. The events are always named in the past tense
such as OrderShipped, OrderCancelled, and so on, and notification events are named
as inventoryLow, CartCleared, and so on.

The Oracle SOA/BPM platform offers the Event Delivery Network (EDN), which
deals with the publishing and subscription of events. The EDN also performs various
activities such as pattern matching, event publishing, event subscription, and so
on. In Oracle BPM, the events are defined using the Event Definition Language
(EDL) editor. The EDL can be based on the XML schema and can leverage Oracle
BPM/SOA MDS (metadata service) to be distributed as a shared artifact. When you
deploy an event to the MDS repository along with its artifacts (XSDs), it is known as
publishing the EDL (or event definition). Events are published to an EDN. Once an
event (EDL) is published, it can be subscribed to by other applications. EDLs cannot
be unpublished; the definition always exists. The raised events are delivered by EDN
to the subscribing service components. The Oracle mediator service components and
BPEL process service components can subscribe to and publish events.

The event system has following components:

• Event producer
• Event consumer (listener/subscriber)
• Event processor
• Messaging infrastructure

Chapter 5

[237]

The event producer is the process that publishes the event to EDN. The subscriber is
a process that has shown interest in the occurrence of the event. In the case of Oracle
BPM, the EDN is the event processor, and the messaging infrastructure can be a
database or JMS. You can use the database or JMS as a back-end store.

The following table lists the details around the event-driven interaction pattern:

Signature Event-driven Interaction Pattern
Classification Invocation Pattern
Intent To design a system that's geared for extension, interoperability,

and unanticipated use. The participating process or application
publishes events and messages, which are subscribed to one or
more consumers/subscribers.

Motivation When you are looking for loosely coupled, asynchronous, and
stateless interaction. When you want to tell the downstream
component what happened and what not to do. When the
potential of reuse is low.

Applicability The Signal Throw, Signal End, Signal Catch, and Signal Start
Event. The intermediate Throw Signal Event or Signal End Event
are used to raise and broadcast a signal. The Signal Start Event
is used to receive an event in another process. To enable event
delivery, you need an eventing platform. Oracle BPM uses the
Oracle EDN to send and receive signals. The events are defined
using the EDL editor, and these defined events are available
in the business catalog. The Signal Throw Event is used to
broadcast a signal, or a signal can be broadcast through a Signal
End Event. However, you can use a Signal Catch Event to receive
a signal in the BPM process.

Implementation Upon execution, the throw intermediate Signal Event or
Signal End Event will publish an event to EDN. The EDN
will then deliver it to all the subscribers that are configured to
listen to that specific event (signal). A subscriber process can
trigger only when the signal arrives to the event it has been
subscribed to. Oracle BPM leverages Oracle SOA, and an EDN
runs within every SOA instance. The Java/BPEL/Mediator
or any component can raise an event to the underlying SOA
environment to publish that event to the EDN. Any interested
BPMN process, as a subscriber to that event, will get triggered
when the signal arrives to the event it has subscribed to.

Known issues These include the loss of message, guaranteed message
processing, and durability.

Interaction Patterns

[238]

Known solution The signal-based collaboration pattern doesn't offer guaranteed
delivery. There are chances that a signal might be lost in the
event of failures, as you cannot create durable subscribers. You
can use various interaction mechanisms between applications
and processes. If you are looking for a guaranteed delivery, then
the solution is using queues such as the JMS queue. The queues
offer guaranteed delivery of messages. When you need a real-
time low-volume integration and interaction, the solution is a
web service.

There could be various scenarios for event-driven messaging, such as tracing
and tracking (FedEx, UPS, and so on), government systems (taxes), service level
agreements, and so on. For example, the order-processing system could have events
such as inventory low, stock cancelled, order cancelled, and so on. Other use cases
can be broadcasting telecom number changes or address change, triggering a signal
when a quote gets approved to trigger all the processes that depend on the approval
of a quote, and so on.

In a signal-based interaction pattern, neither the sender knows about the receiver
nor the receiver knows about the sender, and this offers a loosely coupled interaction
pattern, where processes can be added and removed without affecting any other
process or service. Other than the BPM process, BPEL and mediator processes and
services can also deal with BPM events. The events have a payload associated with
them based on the schema associated with the event definition.

While sending an event through a Signal End Event or Signal Throw Event, use data
association to add data to the event payload. This is how data is communicated from
a sender process/service to a receiver process/service.

Defining an event-based interaction pattern
scenario
A BackOffice process will invoke a feedback process after the Loan Origination
process gets completed. This feedback process is a BPM process. When the feedback
process completes the application's customer feedback, it will raise a feedback event.
The BackOffice process has a GetFeedbackDetails Signal Catch Event configured
as a subscriber to an event (feedback). The BackOffice process will wait at the
GetFeedbackDetails Signal Catch Event for the feedback event to occur. The
following steps will help you understand the Signal Catch Event configuration:

1. Open the feedback process and check the Signal End Event for the process.
2. You can find the Feedback event configured for the End Event.

Chapter 5

[239]

3. Data association assigns data from the feedback's process data object to the
feedback's event argument.

4. Open the BackOffice process and right-click on the GetFeedbackDetails
Signal Catch Event to check its Implementation properties. This is shown
in the following screenshot:

5. The event configured is Feedback, and the data assignment is from an event
argument to the BackOffice PDO.

The BackOffice process initiates the feedback process by invoking the Feedback
process using the Start Feedback Message Throw Event. When the process token
in the feedback process reaches the End Feedback Signal End Event, the feedback
event is raised to the EDN. The EDN will perform data association and raise the
event. It will deliver this event to the BackOffice process and all other subscribers
configured to listen to that specific signal. The BackOffice process is subscribed to
catch the feedback event using the GetFeedbackDetails signal catch event. When the
signal arrives at the BackOffice process, the process gets triggered by this signal.

Interaction Patterns

[240]

Summary
This chapter demonstrated how the BPM process interacts with other processes,
services, and events. While walking through the various recipes in this chapter,
you analyzed advance and default conversation, and their implementation in
the BPM process collaborations. You also witnessed the interaction patterns of
synchronous and asynchronous processes and services using events and tasks.
The embedded inline and reusable subprocess interaction patterns are also
housed in this chapter. The next chapter is focused on correlation patterns.

Correlation Patterns
In the previous chapter, we witnessed many conversations between processes
and services. There were conversations and collaborations to not only create new
instances of the process but also conversations and interactions with the in-flight
process. Imagine when there are many instances of the Loan Origination process
and each instance is handling a different applicant, how will the BPM engine make
sure that an interaction is meant for a specific process instance of a Loan Origination
application? The previous chapter contains a BackOffice process, Loan Origination
process, and many other processes. The BackOffice process interacts with the Loan
Origination process; however, there might be cases where a loan originates from
some other source such as a web application or by an applicant visiting the branch
and so on. How does a system make sure that if the feedback process has started
it should deal with that particular applicant's details for which it was initiated?
Or, when the feedback process ends, should it respond to the correct instance of
the BackOffice process? Similarly, we have a background check process and other
verification processes. There might be many Loan Origination processes in the
system. How does the background process make sure that once it gets completed it
responds to the instance of Loan Origination that it is supposed to respond to?

For example, we have four instances of the Loan Origination process, LO1, LO2,
LO3, and LO4. All these four instances have created four instances of background
checks as BG1, BG2, BG3, and BG4 for four different applications, applicant 1 to 4.

LO1 started BG1 for applicant number 1, LO2 started BG2 for applicant number 2,
and so on. While all these instances are in the BPM system, BG2 and BG3 instances
get completed before BG1 and BG4. The question is how will the system make sure
that BG2 responds to LO2 and not to LO1, LO3, or LO4, and that too for applicant
number 2 and not for any other applicant? Similarly, when the Loan Origination
process is completed how will the system make sure that it interacts with the
correct instances of the BackOffice process?

Correlation Patterns

[242]

This chapter will deal with all the questions related to correlating the conversation
and collaboration between different processes and services. The following patterns
around correlation are included in this chapter:

• Message-based correlation pattern
• Cancel instance pattern
• Update task pattern
• Query pattern
• Suspend process pattern
• Suspend activity pattern
• Cancel activity pattern

Correlation mechanism
In the last chapter, we learned about conversations. However, we now need to
associate a message with the instance to which it belongs. This message association
with the conversation is performed using the correlation mechanism. The correlation
mechanism enables the identification of a correct instance in another process through
an instance, and it enables us to send a message to that specific instance.

We can use correlation to communicate between the BackOffice process, web process,
and Loan Origination process. When the Loan Origination process completes a loan
process for an applicant, it sends a message to the BackOffice process or web process,
whichever has initiated the Loan Origination process, using the Applicant ID to locate
the instance in both processes. The correlation is done using the Applicant ID.

Types of correlations
The different types of correlations are as follows:

• Automatic correlation: Let's say we have a process interacting with services,
which understands WS-addressing, processes/services with JMS message
IDs, or conversation with synchronous services. In all these cases, correlation
is handled automatically; this type of correlation is termed as automatic
correlation. With WS-addressing, a unique correlation ID is infused in
the message header, which is then used by the BPM engine to correlate
a conversation.

Chapter 6

[243]

• Payload/message-based correlation: This refers to the customary way
of correlation based on your business logic and design, wherein you can
identify keys/values to use for the correlation. These keys/values are
identified from the message payload that belongs to your process design and
hence, it's termed as custom correlation. However, it's based on the message
and more appropriately termed as message-based correlation. For example,
we will use Applicant ID to correlate instances in this chapter. However, you
can also create a correlation based on multiple keys such as Applicant ID
and Tax ID.

When we create multiple correlations, we would need the values of all those
correlations to identify an instance, which is sort of a primary key in a database
relationship. For example, if we have used Applicant ID, SSN#, and Tax ID as
three different correlations, then we need all these correlation values to identify
the same instance.

When two processes start exchanging messages, they establish a conversation
between them. As one process starts a new instance of another process, they know
whom to route messages to, because the first-time interaction between them has
established a conversation between them. This means that the invoked process
would know whom to send the response to, and they can continue to collaborate
and interact using WS-addressing, which is the default, automatic correlation
mechanism of Oracle BPM. However, this correlation mechanism will not work
when the interaction needs to happen between two already running instances of
the collaborating processes. Then, we need to know whom to route messages to
so that the messages land and correlate with the correct process instance. Also, we
need a mechanism to establish a conversation with the in-flight processes. This is
performed by a payload-based correlation mechanism, also known as message-based
correlation. We may also need correlation when any of the application/process/
service in the conversation does not support WS-addressing, such as any legacy
application, non-SOA based applications, and so on during collaboration.

Components of correlation
The correlation mechanism has the following components:

• Correlation property: In a message-based custom correlation, you will
identify a common identifier such as Applicant ID, SSN ID, and so on.
They are identified based on the name and data type assigned to them.

Correlation Patterns

[244]

• Correlation keys: These keys are identified with a name; the correlation key
defines the properties to be used in correlation. You can use a correlation key
in any process/BPEL service in your project as its scope is within the project.
Even the correlation defined in the BPEL process in the projects can be
used in BPM processes. A correlation key can contain one/more correlation
properties. It has two modes: Uses and Initiates. The correlation key can be
defined as simple and advance.

• Correlation property alias: We have defined a correlation property
and assigned a name to it. However, it's the correlation property alias
that actually maps the element(s) of the message to the property. We can
use the expression builder to define the mapping of the message element(s)
to the property that helps you to use either an argument or any predefined
variables.

• Correlation set: This refers to a set of correlation keys. It's also known as the
correlation definition as it defines and configures the set of correlation keys.

Configuring the environment
In this section, we will perform some of the elementary steps that will allow us to
run the samples in this chapter.

The downloads available for Chapter 6, Correlation Patterns, have two application files.
One file is in the Correlation directory, and the other file is in the NonCorrelation
directory. Both the applications are the same. You can use the application from the
NonCorrelation directory if you want to create correlation and run the samples.
However, if you just want to verify the correlation and deploy the project, you can
use the application from the Correlation directory. The only difference is that
the applications in the Correlation directory have the correlation defined, while
applications in the NonCorrelation directory do not have correlation defined in
the processes.

To enable the sample application, we need the salesrep user in the myrealm
weblogic. We also need to have a JMS queue (LOFeedbackQueue). The following are
the mandatory steps you need to perform in order to enable the sample application
to work for you:

1. Log in to the WebLogic console and navigate to myrealm.
2. Click on Users And Groups and create a user (salesrep).
3. Apply the changes.

Chapter 6

[245]

4. Go to JMS module | SOAJMSModule.
5. Click on New to create a JMS queue with the name LOFeedbackQueue.
6. Let the JNDI mechanism be jms/LOFeedbackQueue.
7. Update the JMS adapter from deployments.
8. Along with the application, you will get the CreditCheckPrj and

FraudCheckPrj projects. Deploy CreditCheckPrj and FraudCheckPrj
to the server.

9. Navigate to the EM console to get the WSDL URL (webservice.wsdl) for the
CreditCheck service and the FraudCheck service.

10. Open the LoanOrigination project's composite.xml and change the WSDL
URL for the CreditCheck and FraudCheck references, as shown in the
following screenshot:

The data files to perform the test can be found by navigating to
LoanOriginationApp | LoanOriginationProject | SOA | testsuites.

Correlation Patterns

[246]

Defining correlation properties
In the calling process, we will define correlation on the flow object that will send
messages to the called process. The correlation mechanism defined on the calling
process's flow object should initiate the property aliases. In the called process,
we will define correlation on the flow object that will receive the message. The
correlation mechanism defined in the called process's flow object should have
the property aliases defined as join.

Correlation can be defined in two modes: simple and advanced. Use the simple mode
when you are defining just one property. For example, using only Applicant ID for the
correlation in the Loan Origination process, we define a simple correlation. However,
if you are defining multiple properties, using multiple correlation keys, and assigning
those multiple properties to one or more keys, then use the advanced mode.

Download LoanOriginationApps which is a part of the Chapter 6, Correlation
Patterns, downloads available on the Packt Publishing website. Open it in
JDeveloper. Go to LoanOriginationProject and select LoanOrigination process.

Perform the following steps to check the correlation definition on the message start
event of the process:

1. Click on the startLOEvent message start event to check its
implementation properties.

2. Click on Correlation in the implementation properties.
3. In the Properties tab, we can choose a correlation property if it's already

defined, else use the + icon adjacent to Property in order to create a new
simple correlation property.

4. Enter a name and data type, as shown in the following screenshot, and click
on OK.

5. Check the Initiate box if you want the mode to be Initiates. As the
startLOEvent message starts event is the start point for the Loan Origination
process, the LOCorrProp correlation property is defined as Initiates.

6. Click on Expression Filter, adjacent to the correlation property alias to define
a map between the message element and the correlation property. Select
Applicant ID as we will be mapping the Applicant ID message element with
the LOCorrProp correlation property.

7. We can switch to the Advance mode, if we have advanced definition
requirements.

Chapter 6

[247]

Defining correlation keys and configuring the
correlation definition
We can define correlation at the project level using the structure window, or we can
use an Activities Correlation tab to define and configure the correlation keys.

If you have a simple requirement of one key with one/more properties, then perform
the following steps:

1. Go to the structure window for this particular process.
2. Expand Correlations.
3. Right-click on Correlation Key and select New; this will open the Create

Correlation Key wizard.
4. Enter the name of the correlation key and select one/more correlation

properties that we need to assign to this correlation key.
5. We can also use the same wizard to create a correlation property by clicking

on the + sign adjacent to the correlation properties.

To define a correlation key in the advance mode and to configure a correlation
definition, perform the following steps:

1. Click on an activity or the event in the process flow.
2. Go to Implementation in the Properties tab.
3. Click on Correlations.
4. Select Switch to Simple Mode. This will open the Correlation Definition

dialog box.
5. Click on the + sign to create a new correlation key.
6. Select the Correlation Key if it's already defined, else click on the + sign to

create a new correlation key.
7. Enter the name of the correlation key.
8. Click on the + sign to create a correlation property, else select one/more

correlation properties to be assigned to the correlation key from the
property list.

Correlation Patterns

[248]

9. Select the mode, Uses/Initiates as per the design. The entire process is shown
in the following screenshot:

In Chapter 5, Interaction Patterns, we witnessed the correlation definition as we have
seen the usage of correlation properties. In the Loan Origination process, you will
find that for the LOCorrProp correlation property, we have selected the Applicant
ID using a simple expression builder. We can use an advanced expression builder
and functions offered by the expression builder if we have complex requirements.
This is shown in the following screenshot:

Chapter 6

[249]

We can check the startLOEvent message event to check the correlation property,
which is shown in the preceding screenshot. We can verify that for the startLOEvent
message event, the correlation key mode is set to Initiate.

Understanding the correlation behavior
The startLOEvent message start event will initialize the value of the correlation
property defined in the correlation key from the value of the correlation properties
in the message, as its mode is Initiate. For all the nodes that have their mode set to
Uses, the value of the correlation property is compared with the incoming message
element when a message arrives. This message element is defined in the correlation
key for correlation properties, which is mapped using the correlation alias, with all
the active instances in the system.

As in the Loan Origination system, we are invoking a background check process.
When you invoke it with a message throw event, you have used the same correlation
property with an alias, that maps a property with its Applicant ID. To get a response
from the background check process, you have to define a message catch event with
the same LOCorrProp, that maps with the Applicant ID message element.

Correlation Patterns

[250]

So, when the message arrives from the background check process to the catch event
in Loan Origination process, the value of the correlation property is compared with
the value of the correlation property for all the existing active Loan Origination
process instances. If one of the Loan Origination process instance's correlation
property matches with the incoming message's correlation property, then the
message is passed to this catch/receive activity. Else, if no instance matches
or more than one instance matches, then this would lead to an exception.

When we have a correlation key with multiple properties, then the value of each
correlation property is compared with the incoming message element. This is used in
the correlation property alias as a map to the correlation property with all the active
instances of that process. If only one instance matches, then the message is passed to
that instance's receive/catch event or else an exception is raised. In case of multiple
instances for a subprocess, each subprocess instance will have its own copy of a
correlation key. However, when the subprocess is to be executed in parallel, then the
best practice is to define a scoped conversation rather than defining a correlation.

Message-based correlation pattern
The following pattern table explains the features of the message-based
correlation pattern:

Signature Message-based Correlation Pattern
Classification Correlation Pattern
Intent This is the customary way to establish correlation based on your

business logic.
Motivation This provides the flexibility to identify and define custom keys and

values for correlation based on business requirements.

Chapter 6

[251]

Applicability Managing message context across the process and the different
partner services/processes that are collaborating.
We need the message-based correlation pattern for the following
reasons:

• Establishing a conversation between already running
instances.

• Any of the collaborating process/service cannot maintain a
conversation message exchange.

• There is a need to converse with an in-flight process/service.
• The collaborating system does not support WS-addressing.
• Interaction with the third-party system takes place using an

interaction mechanism such as a file, database push/pull, and
so on.

• A multihop interaction and response may come from any
process in the hop. For example, process A interacts with
process B that interacts with process C, which in turn interacts
with process D. Process D might respond to process B, which
in turn responds to process A, or process C responds to
process A, and so on.

Implementation • Flow objects such as throw events and Send Task can be
used to initialize a correlation. However, flow objects such
as Receive and Catch join a correlation by setting the
correlation to Uses.

• A service task flow object can initialize and use correlation at
the same time as it defines two types of correlations, input and
output.

• Correlation cannot be defined on a call activity that is used to
invoke a reusable process.

• If the embedded subprocess is single-flow inside the process,
that is, subprocess characteristics are none, then you can use
correlation.

• If the embedded subprocess is multi-instance, that is,
subprocess characteristics are multi-instance or loop, then
using scoped conversation is the best practice. Scoped
conversations have been covered in Chapter 5, Interaction
Patterns.

Known issues NA
Known solution NA

Correlation Patterns

[252]

Enlisted here are some of the main characteristics of message-based
correlation pattern:

• Once initialized, a correlation value cannot be changed as it's the value
of the correlation that the Oracle BPM service engine will use to identify
the instance

• We cannot assign a new value to the correlation
• We can create one or many correlations
• We can create a correlation property with many values
• We can create a correlation key with many correlation properties.
• We can create many correlation keys with one/more correlation properties
• The scope of the correlation is the process instance or the subprocess instance

in which they are defined
• The correlation key can be defined in either of the two modes, Initiate or Uses
• The correlation can be defined as simple or advanced
• The correlation keys can be scoped similar to the way data objects and

conversations can be scoped

The download section of Chapter 6, Correlation Patterns, contains the
LoanOriginationApps application. The loan origination apps contains the loan
origination project and other supporting services such as the FraudCheckPrj and
CheditCheckPrj projects. The Loan Origination project constrains the processes that
we will be discussing in this chapter. If you have not deployed the Deploy Credit
Check and Fraud Check services while performing labs of the previous chapter,
deploy these supporting services and change the web service references in the Loan
Origination processes as per the steps you have performed in the previous chapter,
in the Interaction pattern with asynchronous service using message throw and catch
events section.

Carry out the following steps to create a correlation for all the processes and perform
tests to uncover how the correlation will work:

1. Open the Loan Origination project and click on the BackOffice process.
2. Go to the structure window and expand Correlation | Correlation

properties.
3. Right-click on Correlation properties and select New. This will open the

Create Correlation Property dialog box.

Chapter 6

[253]

4. Enter a name for the correlation property as BOCorrProp, a short name for
the BackOffice correlation property, and select the type as string. This
correlation property will be mapped to the Application ID in the message
that has a type of string; hence, the string type is selected.

5. Click on OK, and you can find BOCorrProp being created in the
structure window.

6. Right-click on Correlation Keys in the structure window and select New.
This will open the Create Correlation Key dialog box.

7. Enter a name for the correlation key as ck_BOCorrProp. We will use a similar
structure throughout this chapter as a naming convention to the correlation
key, which is ck_<correlation property name>.

8. Select BOCorrProp from the list of properties, select the arrow to move the
property from the available list to the select list, and click on OK. If you have
a business requirement to define a correlation key with multiple properties,
then you can select multiple properties in this dialog.
We have just defined the correlation property and the correlation key. Now,
we will define the correlation definition and configure it as Initiates or Uses
for the different process flow objects.

9. Right-click on the StartBO message start event of the BackOffice process and
go to implementation properties.

10. Click on Correlation.
11. Select BOCorrProp from the correlation properties dropdown.
12. Select the mode as Initiates by checking it.

Correlation Patterns

[254]

13. Use an expression to map the message element with the correlation property.
As shown in the following screenshot, Applicant ID will be mapped to
the BOCorrProp correlation property, where Applicant ID is a message
element in BackOffice process's input argument. This is shown in the
following screenshot:

14. Click on OK thrice and when you are done, click on Save All.
15. Click on the RequestLoanOrigination message throw event and configure

the correlation definition similar to the BOCorrProp correlation property.
However, don't check the Initiates box as we want it to be on the Uses mode,
as this flow object will use the already existing and initiated correlation.

16. Use the expression builder and map BOCorrProp with Applicant ID. Click
on OK.

17. Repeat steps 15 and 16 for the RespLoanOrigination catch message
event, the CatchCancelLoan catch message event, StartFeedback,
GetFeedbackDetails, and the endBO message end event.

18. Click on Save All.

This completes the correlation definition of all the objects in the BackOffice process.
The BackOffice process will be invoking the Loan Origination process. However,
the BackOffice process also needs to correlate the feedback process response, which
itself will be invoked by other applications. Hence, we have created a correlation
definition with Initiates as the mode for BackOffice process's message start event.

Chapter 6

[255]

Open the Loan Origination process and perform the preceding steps to create
the following:

• The correlation property: LOCorrProp
• The correlation key: ck_LOCorrProp

For the startLOEvent message start event, define correlation with the Initiates
mode and for all other events, define correlation as Uses. Remember to select
LOCorrProp as the correlation property throughout the Loan Origination process.
Also, remember to map LOCorrProp with the Applicant ID message element.

The loan origination process invokes the background check process. Perform the
following steps to create the correlation key, properties, and definition with the
following details:

• The correlation property: BGCCorrProp
• The correlation key: ck_BGCCorrProp

Remember to select BGCCorrProp as a correlation property throughout the background
check process. Also, remember to map BGCCorrProp with the Applicant ID
message element.

The Loan Origination process also invokes the FraudCheck asynchronous service.
It's a BPEL service. Open the FraudCheck BPEL service and you can see that a
correlation is created in this too. Moreover, the correlation property is mapped
with the Applicant ID message element in the FraudCheck BPEL service too.

In the Loan Origination process, open FraudCheckSubProcess and for
FraudCheckRequest and FraudCheckResponse, throw and catch message events,
respectively. Select the correlation property as LOCorrProp and mode as Uses
for both the events. This is because when FraudCheckSubProcess invokes the
FraudCheck asynchronous service, Applicant ID will be used to correlate its
response so that the FraudCheck asynchronous service responds to the correct
instance of the process.

The Loan Origination process includes the query and cancel patterns offered by the
QuerySubprocess and CancelLoanSubprocess event subprocesses. For both the
event subprocesses, use LOCorrProp as a correlation property and map this with the
Applicant ID message element in the CancelLoan, EndCancelLoan, and RestartLO
events in the CancelLoanSubprocess event subprocess, and the CheckLoanStatus
and EndCheckLoanStatus events in QuerySubprocess.

Correlation Patterns

[256]

The event subprocesses are correlated as we want to make sure that the query
subprocess responds to the loan status for the requested Loan Origination instance,
and not for any running instance. Similarly, cancel loan subprocess should cancel
the Loan Origination process instance for which the request is meant and not just
any running instance. Message-based correlation ensures that request and response
are correlated and the fabric of conversation remains perfect. Similarly, click on
FeedBack process and Create Correlation Property and map FeedCorrProp with the
Applicant ID message element throughout the feedback process. However, ensure
that for the startFeedback message start event, you select the mode as Initiates
and for all the others, select the Uses mode. Save all your efforts and deploy it to the
weblogic instance.

Testing the message-based correlation pattern
The web process and the BackOffice process will invoke the Loan Origination
process. Navigate to LoanOriginationProject | SOA | testsuites.

Use the following test data files to test start the web process and the
BackOffice process:

• Web.xml to test the web process
• BackOffice.xml to test the BackOffice process

Using BackOffice.xml, initiate the first BackOffice process instance with the
applicant ID as 1111 and the second BackOffice process instance with the applicant
ID as 2222. Similarly, use the Web.xml file and initiate the first web process instance
with the applicant ID as 3333 and the second instance with the applicant ID as 4444.

Check the test results by carrying out the following steps:

1. Log in to the EM (http://server:host/em) as an admin user, weblogic.
2. You will find that four instances have been created: two for the web process

and two instances for the BackOffice process.
3. Log in to the BPM workspace (http://server:host/bpm/workspace) as

the salesrep user and approve the instance application verification task for
applicant ID 2222 and applicant ID 3333.

4. Re-login to the EM as an admin user and check the audit trail for the
BackOffice process for which the request was sent with the applicant ID 2222.

Chapter 6

[257]

5. In the instance trace for the BackOffice process, click on the LoanOrigination
process. This will open the audit trail of the process. Click on startLOEvent
and expand it. Click on the Instance left the activity link to check the payload
that entered the Loan Origination process and to verify that the applicant ID
is 2222, which you have passed while creating the second instance for the
BackOffice process.

6. Now, click on the BackOffice process in the instance trace, which will open
the audit trail of the process.

7. Click on the RespLoanOrigination message catch event, and then click on
Instance entered the activity to check the payload that was returned from
the Loan Origination process. This is shown in the following screenshot:

8. You can verify that the returned data from the Loan Origination process is
for the applicant ID 2222. This correlates the BackOffice instance with the
correct response from the Loan Origination process. Now, let's verify for the
web process. Click on the completed process of the web process instance.
This completed instance will be for the web process instance that has the
applicant ID 3333.

9. Click on the Loan Origination process component in the web process
trace. This will open the instance of loan origination. Click on Instance left
the activity by expanding startLOEvent. Verify that the instance of loan
origination created by the web process for the applicant ID is 3333.

Correlation Patterns

[258]

10. Click on the web process trace and open the audit trail of the web process.
Expand ReceiveLoanResponse, then click on Instance left the activity, and
verify that the response contains the applicant ID 3333.

Re-login to Oracle BPM at http://server:host/bpm/workspace as the salesrep
user and approve the other two application verification tasks, one for the web
process and the other for the BackOffice process. You can verify the data request and
response pattern for these two instances; they remain correlated for the request and
response based pattern on the applicant IDs.

Cancel instance pattern
The following pattern table explains the features of the cancel instance pattern:

Signature Cancel Instance Pattern
Classification Cancellation Pattern
Intent Canceling the BPM process instance.
Motivation There are business requirements to cancel the already running

process instances. BPMN processes should be developed with the
flexibility to provide process consumers with the option to cancel
the running instances.

Applicability The cancellation of a process instance should be correlated. A
request to cancel instances cannot just cancel any process instance.
A cancellation request must be correlated with the correct instance
to be cancelled. It's the correlation which makes sure that the
cancellation process results in the cancellation of the correct
instance of a process that it is meant for and does not affect
any other instances.

Implementation The cancel instance pattern can be implemented using event
subprocess, event gateways, and correlation properties. The
following section demonstrates the implementation and testing
of Cancellation pattern.

Known issues NA
Known solution NA

The cancel instance pattern is included in correlation because
defining a correlation is a must for establishing the cancel
instance pattern. However, this pattern is a part of the
cancellation and completion patterns.

Chapter 6

[259]

The Loan Origination process takes care of an applicant's loan request and fulfills
that request. However, there might be cases when a customer wants to cancel a loan
application. Cancellation might happen at any stage of the loan application. To fulfill
the requirement to implement Cancelation pattern in the Loan Origination process,
we will use event subprocesses. The CancelLoanSubProcess event subprocess
defined in the Loan Origination process takes care of loan cancellation. The following
code snippet checks for the application verification task's status:

If
Application task is already executed i.e. Loan officer has taken
appropriate action on the task then
 Process moves ahead.
Else
Application task is suspended.

In both cases, the process checks for the stage in which it is present.

If the process has passed all the verification steps and is in the underwriting stage
and then a cancel request arrives, the customer will be contacted. The customer will
be asked if he/she is interested to restart the loan process. If the customer wants to
restart the loan process, then the RestartLO message throw event will be raised; else,
the loan process will be ended.

Understanding the components
In this section, we have used event gateways and event subprocesses. Let's invest
some time to understand the concept of event subprocesses and event gateways.

An event subprocess is a kind of inline subprocess. Its scope is the process/
subprocess in which it is defined. The event subprocess is active as long as the
process/subprocess in which it's enclosed is active. An event subprocess can either
be of the interrupting type or the non-interrupting type.

If the event subprocess is of the interrupting type and the event occurs, then the
original process/subprocess in which it's enclosed will be stopped and the event
handler will be executed. The event handler could be a boundary event, and in this
case, the token moves to the boundary handler path (you can learn more about
boundary events in Chapter 7, Exception Handling Patterns). If the event handler is an
event subprocess, then the event subprocess will be executed. The event subprocess
has access to the data and conversations of the process or subprocesses in which it is
defined and enclosed.

Correlation Patterns

[260]

If the event subprocess is of the non-interrupting type, then the normal process
flow will not be hampered. The process/subprocess in which the event handler is
enclosed will run in parallel to the event subprocess; however, a new token will be
created for the event subprocess. In Chapter 5, Interaction Patterns, we learned the
working of the boundary event. Event subprocesses are similar to boundary events.
However, use cases for event subprocesses are different in many ways from those
scenarios that need boundary events.

Event subprocesses can also handle complex business requirements. For example,
we can throw events from inside the event subprocess, and these events can
be caught by another subprocess/process, which is not the case if we are using
boundary event handlers.

An event gateway has been defined in Chapter 1, Flow Control Patterns, and Chapter
2, Multi-instance and State-based Patterns, in detail. We can associate multiple catch
events or receive tasks or timers with an event gateway. An event gateway can be
defined with the Instantiate property. When defined in the Instantiate mode,
it will pick the first event that occurs among the events associated with the event
gateway. It works on an event's occurrence. Flexibility with event gateways is
that we can use them to initiate process instances based on one of the many event
occurrences, or they can be used as a midprocess to wait for any of the many event
occurrences. We can check for the noninstantiate type of event gateway in the
BackOffice process. The BackOffice process has event gateways being defined which
wait to catch the response of the Loan Origination process. If the Loan Origination
process ends smoothly at the endLO message end event, then its response is caught at
the RespLoanOrigination message catch event. However, if a cancel loan request is
raised for a Loan Origination process and the cancel loan process does not lead to
re-application, then it would end at the EndCancelLO message end event. Also, to
catch EndCancelLO, the BackOffice process has a CatchCancelLoan message catch
event being defined in the noninstantiate event gateway.

In the Loan Origination process, we have used the event gateway. Click on the Tart
Event gateway and check its properties. We can verify that its mode is Instantiate.
It will either wait for a new loan process to get started from either the web process
or the BackOffice process or for a re-application of the loan.

A re-application of the loan process will get triggered from the event subprocess
that is handling the Cancel Loan request.

Chapter 6

[261]

Perform the following actions to check the correlation definition:

• Open the Loan Origination process and go to the CancelLoanSubProcess
event subprocess.

• Click on the CancelLoan message start event and verify that the correlation
is defined with LOCorrProp as a correlation property, which is mapped with
the Applicant ID message element. Verify the same for the EndCancelLoan
and RestartLO events in the CancelLoanSubprocess event subprocess.

Testing cancelation pattern
Process cancelation patterns can be tested as follows:

1. Log in to the EM at http://server:host/em as an admin user, weblogic.
2. Instantiate the BackOffice process instance with the applicant IDs 1101, 1102,

and 1103.
3. You will find that three instances have been created for the BackOffice process.
4. Log in to the BPM workspace at http://server:port/bpm/workspace, and

you will find three application verification tasks being assigned to the
salesrep user.

5. Go back to the EM and instantiate Loan Origination process by selecting the
CancelLoan operation.

6. Execute the CancelLoan operation for the application ID 1102.

We have run a similar test when correlation was not defined. However, this time
we have defined a correlation; let's check the audit trail for the BackOffice process to
verify that the result is as per the expectation. We would expect only the instance with
applicant ID 1102 to be cancelled and the process token to reach the EndCancelLO
message end event.

Correlation Patterns

[262]

The process instance will be completed and the human task application verification
will be withdrawn from the salesrep user task list for that process instance which
was cancelled. This is shown in the following screenshot:

Click on the BackOffice process instance trail. You can check whether a new instance
gets created for the Loan Origination process when a cancel loan request is raised;
however, we have enabled correlation this time. Also, because of the correlation,
the BPM engine was able to identify the correct instance of the Loan Origination
process that needs to be cancelled. The cancel event handler subprocess will take
the appropriate action, and this will lead to process instance completion for the
Loan Origination process, which you can verify in the following diagram. We have
just learned how correlation makes sure that the cancellation process results in the
cancellation of the correct instance of a process that it is meant for and does not affect
any other instances.

Restart instance pattern
Let's make another test to check correlation and its importance:

1. Go to Cancel Event Subprocess (CancelLoanSubProcess) click on the
CustomerResponse script task, and then click on the Implementation tab.

Chapter 6

[263]

2. Change data association from No CustomerResp to Yes CustomerResp.
We need to change the customer response from No to Yes as we explicitly
want a restart. Check the event gateway to flow towards the Yes path.
This will lead to restarting the loan process.

3. In the Loan Origination process, go to the reStartLOEvent message catch
event after the Start event.

4. Clear the correlation. Let there be no correlation defined for this node.

Testing the Loan Origination process to restart
a loan
Walk through the following steps to test the restart scenario:

1. Log in to the EM as an admin weblogic user.
2. Click on LoanOriginationProject and instantiate an instance of the

BackOffice process for the applicant ID 7799.
3. Create another instance of the Loan Origination process with the cancelLoan

operation and applicant ID 7799.
4. Check the BackOffice process's audit trail.

You can verify that a new instance of the Loan Origination process is created for
the cancelLoan event; however, this lands into a error as no correlation was being
defined on the reStartLOEvent message catch event, which is defined after the
start event gateway.

Redefine the correlation on the reStartLOEvent message catch event using
LOCorrProp with the mode set to Initiate.

1. In the Loan Origination process, go to the reStartLOEvent message catch
event after the start event.

2. Choose LOCorrProp as the correlation property and Initiates as the mode.
3. Map LOCorrProp with its Applicant ID.
4. Save and deploy the process.

Correlation Patterns

[264]

You would have an obvious question as to what happened with the already running
instance of the BackOffice process that initiated the Loan Origination process.
This behavior is determined by how the event subprocess is configured. An event
subprocess can be configured to be of the interrupting type or non-interrupting type.
The following are the steps for configuring an event subprocess:

1. Click on the CancelLoanSubProcess event subprocess.
2. Open the CancelLoan message start event.
3. Check its implementation properties.
4. You can see that the implementation type is Interrupting Event.

Testing the restart scenario
Perform the following steps to instantiate the BackOffice process:

1. Log in to the BPM workspace as the salesrep user and approve the
application verification human task. Post human task approval, the script
task will set CustomerResp to Yes; we can see that reStartLOEvent will get
invoked with the same applicant ID.

2. Go to the EM at http://server:host/em and select instances of the
BackOffice process and check its audit trace.

If the event subprocess is of the interrupting type and if this event occurs, then the
original process/subprocess in which it's enclosed will be stopped and the event
handler will be executed. The token for the cancel loan event subprocess will reach
the RestartLO message throw event, and this will lead to a restart of the Loan
Origination process because the RestartLO throw event would be caught at the
reStartLOEvent message catch event. As we can check in the audit screenshot,
there is a separate instance that got created for the Loan Origination process.

Log in to the BPM workspace and approve the application verification human task;
let the restarted Loan Origination process instance complete.

Now, you might be expecting that once the restarted Loan Origination process
instance gets completed, the process token will reach the BackOffice process
back; however, in the case of the restarted Loan Origination process, this would
not happen. Even if the restarted Loan Origination process ends, the token never
reaches the BackOffice process or even if we implement a correlation or conversation
between the BackOffice process and Loan Origination process.

Check the audit trail trace for the BackOffice process which is shown in the
following screenshot.

Chapter 6

[265]

We can verify that when we execute the cancel loan operation on the Loan
Origination process, this particular old instance of Loan Origination gets completed
and a new instance is started for the Loan Origination process. This new instance
is correlated with the original instance using the correlation definition based on the
Applicant ID message element. This is shown in the following screenshot:

However, the BackOffice process will be in the running state even if new instances
of the Loan Origination process get completed. Hence, implement the CancelEvent
subprocess with a mechanism to restart a process instance, only when it's the main
process and not when it is a "called" process being invoked by another other process
"calling" process. Hence, if we invoke just the Loan Origination process and then
execute cancel loan, cancellation would work as expected, which can be seen in the
following screenshot:

Correlation Patterns

[266]

If the event subprocess is of the non-interrupting type, then the normal process
flow will not be hampered. The process/subprocess in which the event handler
is enclosed will run in parallel with the event subprocess; however, a new token
will be created for the event subprocess. We will explore a non-interrupting event
subprocess while walking through the query pattern in this chapter.

Update task pattern
The following pattern table explains the features of the update task pattern:

Signature Update Task Pattern
Classification Human Task Pattern
Intent To update the human task properties.
Motivation Based on the process status or business logic, there are

requirements to update user tasks. Using update task, we can
define a updating sequence in our business process, which makes
the process flow easier.

Applicability We can update specific user tasks in our BPMN process using
update tasks. We can selectively update users' tasks, or we can
even update all the user tasks. We can only update the active user
tasks. If the user task is completed or has not started yet, then we
cannot update it using an update task.

Implementation Update tasks have been added from 11g, and they offer a rich
set of operations to be performed on human tasks. Using these
operations, we can update the properties of the human tasks in our
process. We can update a human task or a set of human tasks, and
it does not need a task ID or task context to be dealt explicitly.

Known issues NA
Known solution NA

Though this pattern should be demonstrated in human
task patterns, I have included it in this section as we are
working on a Loan Origination process that has a use
case to demonstrate it here.

Chapter 6

[267]

To demonstrate an update task, we will use the Loan Origination process's use case.
The Loan Origination process has the CancelLoanSubProcess event task. This event
subprocess first checks the application verification human task's status based on
its outcome. The following code snippet checks the application verification human
task's outcome:

If
ApplicationVerificationOutcom == "REJECT" or
ApplicationVerificationOutcom == "APPROVE" Then
 Bypass Update task "SuspendVerification" and directly move to Merge
exclusive gateway.
Else
Execute "SuspendVerification" update task.

This means if the application verification is performed by an assignee loan
officer, then the subprocess can directly move ahead, as the update task cannot
be performed on the AppVerificationTask human task because it would no
longer be active. An update task can be applied on a human task only when
the task that needs to be updated is active, that is, as long as the human task is
active. If AppVerificationTask is active, then the task will be updated using the
SuspendVerification update task. Use the following steps to check the update
task configuration:

1. Open the Loan Origination process.
2. Go to the CancelLoanSubProcess event task.
3. Go to the SuspendVerification update task and check its implementation

properties.
4. The target selected for the update task is User task. However, select All User

Tasks if you want to update all user tasks in the process, or you can also use
the task ID to work around using the task identifier.
As we have just one human task, AppVerificationTask, we have selected
User task as the Target and selected AppVerificationTask in the User
Task dropdown.

Correlation Patterns

[268]

5. The selected operation is Suspend; however, there are many other operations
that we can perform based on our business requirements. This is shown in
the following screenshot:

Demonstrating the update task functionality
The SuspendVerification update task gets instantiated when the process token
reaches the cancel loan event subprocess. This happens on the event when the
cancel loan is initiated. If the Loan Origination process is at a stage where the
AppVerificationTask human task is active, the SuspendVerification update
task will suspend the AppVerificationTask human task.

Query pattern
The following pattern table explains the features of the query pattern:

Signature Query Pattern/Query Instance Pattern
Classification Correlation Pattern
Intent To query an already executing process instance.
Motivation Based on the process status or business logic, there are requirements to

query an already running process for varied information.

Chapter 6

[269]

Applicability When a query event occurs, the regular flow of the process will be
interrupted and the query event subprocess will execute in parallel
with the main BPMN process.

Implementation We can use the event subprocess to query an existing process without
even interrupting the main process, and both the main process and the
query event subprocess will run in parallel. A new token is created for
the query event subprocess.

Known issues Making certain that the request to query a process instance must result
from the process instance that it is meant for.

Known solution Correlation.

Event subprocesses are powerful mechanisms as they can be used for varied use
cases and scenarios in real time BPM process implementation. As we have seen
previously, the event subprocess was used to implement cases when executing
cancelation patterns in the BPM process. The cancelation pattern, in turn, can be
used to implement the update task pattern. With the event subprocess, we always
have the option to go back to the main process, which we have witnessed using
the reStartLoanEvent message catch event and the RestartLO message throw
event combination.

Another major use case of an event subprocess is the query pattern. We can use
an event subprocess to query an existing process without even interrupting the
main process and both the main process and the query event subprocess will run
in parallel.

The Loan Origination process contains the QuerySubprocess event subprocess,
which is a noninterrupting subprocess to query the loan status while the
Loan Origination process is running. Perform the following steps to check
the configuration of QuerySubprocess:

1. Open the loan origination process to find the QuerySubprocess
event subprocess.

2. Click on the CheckLoanStatus message start event to define its properties
in the Implementation tab.

3. Don't check Interrupting event or Suspending event, as we are defining this
event subprocess as a noninterrupting subprocess.

4. We can verify this noninterrupting event subprocess offers the
checkLoanStatus operation.

5. Click on correlation and select LOCorrProp as the correlation property.

Correlation Patterns

[270]

6. Map to the Applicant ID message element by entering the following code
using expression builder:
/ns:checkLoanStatus/ns1:LoanRequest/ns1:LoanDetails/
ns1:ApplicantID

7. Click on OK twice; save and deploy the process to the BPM 12c server.
8. At various nodes in the Loan Origination process, we have set the loan

status. To verify this, perform the following steps:

1. Click on the startLOEvent message catch event and open its data
association. We can check whether the StartStage value is assigned
to the loan status message element.

2. Similarly, check the reStartLOEvent data association and you can
witness that the ReStartStage value is assigned to the loan status
message element.

3. Click on the FinalAssign script activity, which we can locate before
the Underwriting subprocess. The data association for the final
assign script task shows the FinalStage value assigned to the loan
status message element.

Depending on where the process instance is, we will receive different results
to query the instance. So if we query a new instance of the Loan Origination
process before the process token reaches the underwriting subprocess, we will get
StartStage as the loan status; however, if the query restarted the instance of a Loan
Origination process, we will receive ReStartStage as the loan status. Moreover, if
we query after the underwriting subprocess or when the underwriting subprocess is
executing, we will receive FinalStage as the loan status in response.

Testing the query pattern
This query pattern can be tested as follows:

1. Log in to the EM at http://server:host/em and instantiate a new instance
of the Loan Origination process by executing the startLOEvent operation.

2. Log in to the BPM workspace as the salesrep user and approve the
application verification human task.

3. Check the process flow in the EM and you will find the process token at the
underwriting subprocess.

4. Instantiate two instances of the Loan Origination process from the EM by
selecting the checkLoanStatus operation.

Chapter 6

[271]

Remember to pass the applicant ID when executing the Loan Origination process for
the startLOEvent operation and then for the checkLoanStatus operation. As we
have queried twice, we will find that two new instances have been created for the
Loan Origination process started for the checkLoanStatus operation. They are in the
running state, and they keep running till the original instance with which they are
correlated gets completed. The original instance means the instance that got created
when instantiating the Loan Origination process via the startLOEvent operation.
The Loan Origination process flow trace is shown in the following screenshot:

If you check the Loan Origination process's audit trail and check the payload
associated with the assigned activity, you can find the current status of the process.
Check the process's audit trail as shown in the following screenshot:

Correlation Patterns

[272]

We can see that two threads are created for the QuerySubprocess event subprocess.
Expand any one of the query subprocess threads and click on the Instance left the
activity link, as shown in the preceding screenshot. We can see that the output
contains the current loan status.

Threads are created to execute the event subprocess after the Underwriting
subprocess, as the process was queried when the process token was at the
underwriting subprocess.

When the query event occurred, the regular flow of the Loan Origination process
was not interrupted, the query event subprocess was executed in parallel with the
Loan Origination process, and a new token was assigned to it. As we have queried
twice, we will find that the two instances of the query event subprocess are running
in parallel to the Loan Origination process.

However, as we can check in the previous screenshot, even though the threads
associated with the query subprocess got completed, the event subprocess will not
complete and the instances created for the subprocess remains in the running state
till the main process and all other noninterrupting event handlers get completed.
Hence, when the Loan Origination process gets completed, the other two instances
of the Loan Origination that were created while executing the query subprocess will
also get completed.

Suspend process pattern
The following pattern table explains the features of the suspend process pattern:

Signature Suspend Process Pattern
Classification Correlation Pattern
Intent To suspend an already executing process instance.
Motivation Based on the process status or business logic, there are requirements

to suspend an already running process instance and then to resume
it from the point it was suspended or maybe to start from the next
activity from the point it was suspended.

Applicability When a suspend process occurs, the regular flow of the process will
be suspended and the BPM engine will run the process flow in the
event subprocess.

Implementation We can use the event subprocess to suspend an existing process. We
can resume the process flow by assigning Resume to a predefined
variable, Action. Resume will resume the suspended process flow.
However, if we want to advance the process flow to the next activity
in the process flow that caught the suspension, then assign Send to
the predefined variable.

Chapter 6

[273]

Known issues NA
Known solution NA

The Loan Origination process in LoanOriginationProject contains an event
subprocess named SuspendProcess. This event subprocess is configured as a
Suspending Event, as we can see in the following screenshot:

Remember to check the correlation defined for the SuspendProcess message start
event. It's also based on the applicant ID and is using LOCorrProp as the correlation
property. This also demonstrates another use case for correlation.

Correlation Patterns

[274]

Execute the Loan Origination process with the StartLOEvent operation.
Then, execute the Loan Origination process with the SuspendProcess operation.
Remember to use the same application ID as you have passed in StartLOEvent.
Check the process flow trace; you can find the Loan Origination process in the
Suspended state.

Suspend activity pattern
The following pattern table explains the features of the suspend activity pattern:

Signature Suspend Activity Pattern
Classification Correlation Pattern
Intent To suspend an already executing process activity or subprocess.
Motivation Based on the process status or business logic, there are requirements

to suspend an already running process activity or subprocess, and
then to resume it from the point it was suspended or maybe to start
from the next activity from the point it was suspended.

Applicability When suspended process happens, the regular flow of the process
will be suspended and the BPM engine will run the alternative
sequence flow.
After running a task in an alternative sequence flow, the BPM
runtime checks the value of the predefined variable action. If
the value of the predefined variable action is Resume or Send,
it resumes the main process flow and cancels the event handler
sequence flow.

Implementation To suspend an activity or subprocess, we can use a boundary event.
A message event, timer event, or signal event can be configured as
the boundary event.

Known issues NA
Known solution NA

When the process token reaches the boundary event, the process instance gets
suspended and an alternative sequence flow will be executed. After executing a
task/activity in the alternate flow, the BPMN engine will check for the value of the
predefined variable action. If the value of the predefined variable action is Resume,
then the main process flow is resumed and the alternative flow is cancelled. If the
value of the predefined variable is Send, then the main process flow is resumed
from the next activity.

Chapter 6

[275]

Cancel activity pattern
The following pattern table explains the features of the cancel activity pattern:

Signature Cancel Activity Pattern
Classification Cancellation Pattern
Intent To cancel process activities.
Motivation Based on the process status or business logic, there are requirements

to cancel certain activities of the process.
Applicability The cancel activity pattern is a useful cancelation pattern as it will

allow you to initiate the cancellation of activities based on business
requirements. An activity can only be cancelled when it's active;
hence, when we initiate the cancellation for an activity, make sure
that the activity is running in the instance.

Implementation We can use event subprocesses and boundary catch events. The
following section includes a implementation sample for this pattern.

Known issues Makes it certain that the request to cancel an activity must result in
the cancellation of the activity in the process instance for which it is
initiated.

Known solution Correlation.

To implement this pattern, we will create an interrupting boundary event on an
activity. When the event is raised, the process token will follow the path guided
by the interrupting boundary event.

Until this point, we are working on the Loan Origination process. We will extend the
process to implement this scenario. Perform the following steps:

1. Expand the Pre-VerificationActivities subprocess and drag-and-drop a timer
between the start and end of the subprocess.

2. Set a wait time of 1 minute in the timer.
3. Go to the Pre-VerificationActivities subprocess to define the boundary catch

event on an activity.
4. Drag-and-drop the message catch event as a boundary event

on the Pre-VerificationActivities subprocess and name it as
CatchConditionalCancel.

5. Go to the Implementation tab and define an interface with the operation
name CatchConditionalCancel.

6. Define the conditionalCancelIN argument of the LOBusinessObject type
and click on OK.

7. Define data association and click on OK.

Correlation Patterns

[276]

8. Define the event subprocess as an interrupting event subprocess by checking
the Interrupting event.

9. Define a sequence flow from the CatchConditionalCancel boundary event to
the message end event of the main process.

10. Save and deploy the project. This is demonstrated in the
following screenshot:

When the Pre-VerificationActivities activity gets cancelled, the process gets
completed. We can also define other ways to deal with cancellation of an activity.

How a boundary event based activity
correlation works
Execute the Loan Origination process using the startLOEvent operation. When the
process token reaches the Pre-VerificationActivities subprocess, execute the Loan
Origination process again using the CatchConditionalCancel operation.

Chapter 6

[277]

The CatchConditionalCancel operation will result in execution of the
ConditionalCancelSubprocess interrupting event. As this is an interrupting
boundary catch event, it will interrupt the Loan Origination process. This would
hold the main process token, and the token will follow the path defined for the
boundary catch event.

We can also use other mechanisms to implement a conditional cancel on an
activity/subprocess. With this implementation of conditional cancel, we have
witnessed the usage of a noninterrupting subprocess and interrupting boundary
event to cancel an activity.

Remember that for activity cancellation to work, the process token
should be on the activity. This means that the activity/subprocess
must be active, else conditional cancel being invoked in either of the
previously mentioned methods will not work.

Testing the cancelation pattern on an activity
Perform the following steps to test the cancelation pattern on an activity:

1. Go to the EM at http://server:host/em and select Loan Origination
Project. From the test dropdown, choose Loan Origination Service.

2. In the operation dropdown, select the startLOEvent operation to instantiate
loan origination.

3. The process token will now be waiting at the Pre-VerificationActivities
subprocess. It will wait here for 1 minute as this is the time set in the timer
inside the subprocess.

4. Execute another instance of the Loan Origination process; however, select the
CatchConditionalCancel operation this time.
Remember to use the same applicant ID that you used while executing the
StartLOevent operation, because the Applicant ID is the correlation key.

Correlation Patterns

[278]

5. Go to the EM and check the Loan Origination process's audit flow. This is
shown in the following screenshot:

You can verify that when the subprocess gets interrupted by the
CatchConditionalCancel operation, it will end the Loan Origination process.

Summary
The chapter started with defining correlation as well as the correlation
mechanism and its components, along with its types. We learned to define
correlation and various patterns to implement it. It offered us an opportunity
to test all the patterns with a sample application. We uncovered how correlation
caters to scenarios such as cancel instance/activity/subprocess or query process
instances. We also witnessed suspending processes and suspending activities.
The sample application offered with this chapter helps us to learn subprocesses,
event subprocesses (interrupting, noninterrupting and suspending events) boundary
events (interrupting, noninterrupting and suspending events) event gateways, and
so on. The update task pattern, which is a human task pattern, was also covered here.

The next chapter focuses on exception-handling patterns.

Exception Handling Patterns
Anything that hampers the normal flow of execution of a BPMN process is termed
as an exception. Exceptions happen due to undesirable situations such as the system
may be down, a business condition is not satisfied, a deadline has expired, and so on.
These undesirable situations result in an exception. To lay down the foundation for
an effective exception-handling mechanism, we need to classify exceptions. Along
with the classification of exceptions, it's equally important to know how exceptions
propagate. Once an exception propagation mechanism is defined, we can implement
exception handling based on Exception Handling Patterns discussed in this chapter.
A distinct approach is used in this chapter to define Exception Handling Patterns.
This chapter deals with Exception Handling Patterns only for the Oracle BPM suite
and hence the terms and terminologies will revolve around this product suite.

It's always a good process-modeling practice to analyze, define, and implement
exceptions for BPM processes from the beginning. We can use the underlying
technology to implement generic solutions to handle exceptions. Generic solutions
could be at process level, project level, or enterprise level. At whatever level the
solution is implemented, the pattern remains the same. Normal process execution
flow and exception sequence flow are mutually exclusive. Hence, when an exception
is caught by a boundary catch error event, the normal process execution flow is
interrupted and the token flows to the exception sequence flow.

The following patterns are covered in this chapter:

• Reassigned Exception Handling Pattern
• Allocated Exception Handling Pattern
• Force-Terminate Exception Handling Pattern
• Force-Error Exception Handling Pattern
• Force-Complete Exception Handling Pattern
• Invoked Exception Handling Pattern

Exception Handling Patterns

[280]

• Invoked State Exception Handling Pattern
• Continue Execution Exception Handling Pattern
• Force-Terminate Execution Exception Handling Pattern
• Force-Error Execution Exception Handling Pattern

 ° External Exception Handling Pattern
 ° Internal Exception Handling Pattern

Internal Complete Exception Handling Pattern
Internal Terminate Exception Handling Pattern
Internal Error Exception Handling Pattern

 ° Reallocated Exception Handling Pattern

• External Exception Handling Pattern
• Process Level Exception Handling Pattern
• System Level Exception Handling Pattern
• External Triggers

Classifying exceptions
Unexpected issues can result in process failure. The problems that arise in the BPMN
ecosystem are software or hardware failure, and sometimes system error occurs.
System errors are connectivity issues, remote faults, timeouts, and so on. To handle
system errors, we use system exceptions. Issues in the regular process development
such as a credit card not authorized, an out-of-stock inventory, and so on are
business-related issues that result in business error. They are handled using business
exceptions. Exceptions can be classified as system exceptions, business exceptions,
timeout/deadline exceptions, external triggers/process exceptions. These exceptions
are further described as follows:

• System exceptions: Exceptions that occur due to system errors such as
database failure, infrastructure failure, connectivity issues, web service
not available, and so on come under this category. These exceptions are
meant to handle system errors. System errors are highly unpredictable.
A fault-handling management system is needed to handle system errors.

Chapter 7

[281]

• Business exceptions: Errors due to problems in the process behavior are
called business exceptions. They are caused due to the interference of
problems in your regular process flow. For example, a process is designed
in such a way that if the inventory doesn't have the stock available, then
the quotation cannot be processed normally. This would lead to a business
exception. Predictable/unpredictable circumstances that arise in the business
logic or in the business process result in business errors. With an effective
process analysis and modeling, most of the business errors can be identified
and you can term them as predictable business errors. You can define the
exception-handling mechanism for predictable as well as nonpredictable
business errors too.

• Timeout/Deadline exceptions: These exceptions arise whenever an
activity/task does not happen in a defined time interval or at a specified
time. For example, application verification in the Loan Origination process
has to be completed in 3 days. If this does not happen, then an exception
should be raised. SLA violation and such time-based scenarios are subject to
deadline exceptions. You need to have a defined approach as to what needs
to be done when a deadline is met; the timeout/deadline exception deals
with those scenarios.

• External triggers/process exceptions: External systems or process interaction
with external systems can lead to cases that affect normal process execution,
for example, when the Loan Origination process has to be either cancelled
or queried. These external events are raised by external systems, and your
process needs to be equipped to deal with such scenarios. External triggers
can be of interrupting or noninterrupting type, for example, cancelling the
Loan Origination process will stop the normal process flow and end the
process based on the process exception flow. QueryLoanOrigination is a
noninterrupting type process and it would be mutually inclusive with the
main process execution flow; however, it might affect the normal execution
flow of main process too.

Business process state
An exception might occur in a process component. Oracle BPM process components
are: human tasks, send and receive activities, call tasks, service tasks, subprocesses,
and reusable processes. Together, they are termed as Activities. There are various
patterns to handle exceptions. However, before we talk about exception handling
patterns, it is wise to understand and analyze different states through which a
process component travels in the process instance. The following activity state
diagram explains an activity's state as well as exception handling pattern paths.
We will be walking through all the paths in this chapter.

Exception Handling Patterns

[282]

Remember, we have defined the states for the activities, just for the sake
of learning Exception Handling Patterns.

A BPM process belongs to a BPM system and runs on the BPM engine in the Oracle
BPM suite. Hence, the system is mentioned as an environment in which a process
instance executes. The following are the states shown in the activity state diagram:

• Assigned: This is the first state of a process activity. When the process
instance starts, it could start through various means such as JMS, an event,
and so on. However, here we are going to refer to only the BPM activities as
we are discussing exception handling on them. While the process instance is
executing, a token is assigned to an activity. This activity could be a human
task, service task, and so on.

Chapter 7

[283]

• Allocated: This is the state where a process token reaches from an activity.
It could be the case that a deadline exception or an error catch event allocates
the token from the activity to the subprocess, as shown in the preceding state
diagram. When the Timer Boundary Event (TBE) timer expires, as pointed
by arrow B, the token gets allocated to a subprocess.

• Started: An event subprocess can start due to various reasons. An event
subprocess can start due to an external event as shown in the state diagram.
It can also start by an Error Start Event, which basically catches an exception
and handles it. In these cases, the token gets assigned to the event subprocess
and gets started.

• Reallocated: This means that the token from an allocated state is passed to a
subprocess/activity.

• Invoked: A BPM process can invoke processes or services. For example,
a service task might invoke a synchronous service or a call activity might
invoke a reusable process. Hence, the state is termed as invoked state. The
following are the components that we will talk about while walking through
the invoked state:

 ° Service task: In case of the service task, the token remains with the
service task until the response is received from the process/service
that is invoked synchronously. Once the response is received, the
token moves ahead to subsequent activities.

 ° Send and Receive Tasks: When send and receive tasks are used to
invoke an asynchronous process, calling (invoking) the process token
will keep executing subsequent activities after the Send Task until it
reaches a receive activity, which is paired with the called process's
Send Task. The token then waits at the receive activity until a
response is received from the invoked process. When a called process
is initiated by a receive activity, which has a create instance property
set to true, a new token gets created in the called (invoked) process
and this token has its own lifecycle. In the case of an invoked process,
a new token is created.

 ° Message Throw and Catch Events: Message Throw Events are
used to invoke an asynchronous process or service. When a Message
Throw Event sends a message and invokes a process or service, a token
immediately moves to subsequent process activities. However, when
it reaches the Message Catch Event, it waits for the response from the
invoked process/service. When the token reaches the Message Catch
Event, the process will invoke the callback operation of the invoked
process/service, using the Message Catch Event.

Exception Handling Patterns

[284]

 ° Call activity: This is used to invoke a reusable process. When a
reusable process is invoked, new tokens are not created for the
invoked process. Instead, the same token is passed from the main
process to the invoked, reusable process. The reusable process
becomes the child process. When the token completes the child
process, it returns to the parent process to continue running
subsequent activities that follow the call activity.

We have defined exception types and process states. Now, it's time to define the
Exception Handling Patterns and to analyze the state transitions from exception
handling perspectives. After listing the various Exception Handling Patterns,
we will categorize the exception pattern based on exception types.

Reassigned Exception Handling Pattern
The following table highlights some important facts about the Reassigned Exception
Handling Pattern:

Signature Reassigned Exception Handling Pattern
Classification Exception Pattern
Intent The intention is to reassign the process token to the same activity on

which the exception has occurred.
Motivation When exception occurs, there would not be any change in the state of

the process.
Applicability A token is assigned to an activity. When the exception occurs, the

token gets reassigned to the same activity. Hence, when the exception
occurs, there would not be any change in the state of the process.

Implementation Implementation is discussed as follows.
Known issues NA
Known solution NA

When we check the preceding process state diagram, we can notice that TBE
is a timer event and a sequence line flows from the TBE back to the activity.
Perform the following steps to realize the scenario and test it:

1. Download the ExceptionHandlingApps folder from the downloadable files
for Chapter 7, Exception Handling Patterns from the Packt Publishing website.

Chapter 7

[285]

2. Expand the ExceptionHandlingPrj project and click on the
ExceptionDemoProcess process.

3. Notice the ApplicationVerification human task. Click on the boundary
catch timer A. It's a noninterrupting timer. Verify that time is set to 1 minute.
In real-life scenarios, we can set the SLA on the task/activity using timers.

4. Deploy the process and create an instance of the Reusable process by passing
the value AppsVerify-BC. (As input is a single string argument, no test data
file is provided with this chapter.)

When the process starts, the token gets assigned to the ApplicationVerification
human task. If the user does not act on the task in 1 minute, the timer expires. As
it's a noninterrupting timer and the end activity is the none event, the token gets
reassigned to the same activity. We can implement the same scenario on any other
activity as well by using timers. In the exception path, we can build a notification
mechanism to let others know that the task is overdue.

Allocated Exception Handling Pattern
The following table highlights some important facts about the Allocated Exception
Handling Pattern:

Signature Allocated Exception Handling Pattern
Classification Exception Pattern
Intent The intention is to handle the timeout exception in subprocesses.
Motivation To handle timeout exception in subprocesses.
Applicability The token is assigned to an activity. When the exception occurs,

the token gets allocated to the subprocess. The state of the process
instance now depends on the state of the allocated subprocess.
The following are different scenarios for that:

• Allocated-Complete: The token gets allocated to a subprocess
and the subprocess gets completed

• Allocated-Error: The Token gets allocated to a subprocess and
the subprocess gets an error

• Allocated-Terminate: The token gets allocated to a subprocess
and the subprocess gets terminated

Exception Handling Patterns

[286]

Implementation Check the process state diagram. This has a sequence flowing from
TBE (timer B) timer to the subprocess (Allocated). This sequence is
to demonstrate the process flow when timeout happens at point B
(timer B). Timer B is an interrupting timer and when the timer expires,
the process token will reach the subprocess (Allocated). Based on
the input data we pass, the subprocess might lead to three different
scenarios: the subprocess will complete (marked as Complete-BC),
the subprocess will itself lead into error (marked as Error-BE), or the
subprocess will terminate (marked as Terminate-BT). In this section,
you will learn how the interrupting Boundary Catch Event can be
used to handle timeout exceptions. You will
also learn about the different patterns that arise when the token
gets assigned to a subprocess.

Known issues NA
Known solution NA

Check the preceding process activity state diagram. We can notice that TBE is a timer
event, and a sequence line flow exists from TBE to a subprocess (Allocated). Perform
the following steps to realize the scenario and to test it:

1. Open the ExceptionDemoProcess process in JDeveloper and click on the
timer B. We can notice that timer B is an interrupting timer and the time for
it is set to 2 minutes. When the timer B expires, the token gets allocated to the
subprocess (Allocated-B).

2. Deploy the process if not deployed already.
3. Test the process through the SOAPUI or EM or any tool of choice. Pass the

following values to test each of the following patterns:

 ° Allocated-Complete: To test the Allocated-Complete Exception
Handling Pattern, pass AppsVerify-BC as the input parameter.
A human task gets assigned to a user. If the user does not act in 2
minutes, the token gets assigned to the subprocess (Allocated-B). As
timer A is also connected with the human task, it would get activated
in 1 minute as it is set to 1 minute, but the token will be assigned back
to the human task. However, when 2 minutes gets completed, timer B
expires and the following are some interesting observations:
After the expiration of timer B, the token gets assigned to the
subprocess (Allocated-B). There is a wait activity in the subprocess
(Allocated-B) that allows readers to dig into the instance and verify
that the token was with the subprocess (Allocated-B), as it's an
interrupting timer event. The input passed is AppsVerify-BC, where
BC means the state will transition to the None End Event which will
complete the subprocess (Allocated-B).

Chapter 7

[287]

The subprocess (Allocated-B) gets completed; however, the task gets
reassigned. As you can check in the following screenshot, a new
instance of the ApplicationVerification human task is created
and the older instance of the task gets withdrawn:

 ° Allocated-Error: To test the Allocated-Error Exception Handling
Pattern, pass AppsVerify-BE as the input parameter, where BE
translates to the subprocess (Allocated-B) in Error. This pattern states
that the token is assigned to an activity. On exception (deadline or
timer exception), the token is withdrawn from the activity and is
allocated to a subprocess. The process instance state will depend on
the allocated subprocess behavior. If the allocated subprocess ends
with an error, the error gets reported and the fate of the instance will
depend on whether the error was caught or not. We have built the
scenario where a catch-all exception handler will catch the exception.
However, if there is no exception handler then the exception
propagates to the system where it's handled and reported by the
BPM service engine.
Now, test the process by passing AppsVerify-BE as the input
parameter and click on the process instance in EM to check the
process flow and trace.

Exception Handling Patterns

[288]

You can notice that the subprocess (Allocated-B) will raise an error
when you pass AppsVerify-BE. The error raised by the Allocated–B
subprocess is caught by an exception handler at the process level.

This pattern highlights certain facts related to the exception.
When being raised in the subprocess (Allocated-B), it can lead
to the following scenarios:

 ° If the allocated subprocess gives errors, then that exception should
be caught either at a Boundary Catch event associated to the allocated
subprocess, by an event subprocess inside the subprocess itself, or by
a process-level event subprocess.

 ° In the preceding test case, when we pass AppsVerify-BE, the
process instance gets recovered from the business exception and it
gets completed; however, it reports errors raised by the subprocess
(Allocated-B). Recovered from the exception means that the process
got an exception which was handled by the event subprocess.

Chapter 7

[289]

In this case, we have used the event subprocess to
handle the exception raised by the allocated subprocess
only. However, the "J" scenario will cover all other
exception-handling scenarios for a subprocess.

 ° Allocated-Terminate: To test the Allocated-Terminate Exception
Handling Pattern, pass AppsVerify-BT as the input parameter,
where BT means the subprocess (Allocated-B) will terminate. The
token has been assigned to an activity. On exception (deadline or
timer exception), the token gets withdrawn from the activity and is
allocated to a subprocess. The process instance state will depend on
the allocated subprocess behavior, and if the allocated subprocess
ends with the terminate event, the entire process instance will
terminate and no subsequent activities will execute. Perform the
following steps to check the process flow trace:

1. Test the process by passing AppsVerify-BT as the
input parameter.

2. Click on the process instance in EM to check the process
flow and trace.

The subprocess (Allocated-B) will raise an abort action when you pass
AppsVerify-BT and the entire process will terminate.

Changing the Boundary Catch Event from
Interrupting to Non-interrupting
We will now try to test the same scenarios that we tested in the preceding section
by performing the following steps; however, this time, the timer (deadline) will be
a noninterrupting timer event.

1. Go to JDeveloper and open ExceptionDemoProcess.
2. Click on the timer B, which is set on the ApplicationVerification human task.
3. Change the timer B from interrupting to noninterrupting.
4. Make changes in the process by deleting the sequence flow from the

subprocess (Allocated-B) to the ApplicationVerification human task.

Exception Handling Patterns

[290]

5. Create a sequence flow from the subprocess (Allocated-B) to a None End
Event as pointed by an arrow in the following screenshot:

6. Test the process by passing the appropriate input parameter. The following
table shows the input parameters along with their results:

Input parameter Results
AppsVerify-BC We can check that when timer B expires, the subprocess

(Allocated-B) gets initiated. Also, as we have passed input as
AppsVerify-BC, the token will reach to the None End Event
named Complete-BC in the subprocess. The subprocess
(Allocated-B) will end and the sequence flow moves to
EndSubprocess-B, the None End Event.
Again, the token reaches the ApplicationVerification
human task. However, this time, the task is not reassigned to the
user and hence you don't find multiple instances of human task.
Remember you have witnessed multiple assignments of tasks in
the Allocated Exception Handling Pattern section.
As the timer exception is not handled, it would lead to infinite
assignment. Hence, you need to implement logic to end the
reassignment of the token to the same activity and to handle
timer exception.

Chapter 7

[291]

Input parameter Results
AppsVerify-BE This input parameter will eventually enable the subprocess

(Allocated-B) to raise an error. This error would be
handled by an exception handler at the process level. The
ExternalErrorHandlingEventSubprocess event
subprocess is a process-level event subprocess to handle all
exceptions. Exceptions thrown by the subprocess (Allocated-B)
are handled at the process level by the event subprocess and
defined at the process level. Once the error is handled by the
exception handler event subprocess, the process instance gets
completed normally. If there was no process-level exception
handler, then the exception will reach the Oracle Enterprise
Manager fault recovery system.

AppsVerify-BT Timer expiration will terminate the process instance.

7. Click on the process instance in EM to check the process flow and trace.

Exception Handling Patterns

[292]

Force-Terminate Exception Handling
Pattern
The following table highlights some important facts about the Force-Terminate
Exception Handling pattern:

Signature Force-Terminate Exception Handling Pattern
Classification Exception Pattern
Intent The intention is to terminate the process instance if a deadline/timer

exception occurs.
Motivation Handle timeout exception.
Applicability The token is assigned to an activity. When the timeout exception

occurs, the process flow from the Boundary Catch Timer Event to
the Terminate End Event.

Implementation Check the process state diagram. It has a sequence flowing from
the TBE to terminate C & D (Terminate End Events). This sequence
is to demonstrate the process flows when a timeout happens at the
TBE. If the TBE is a noninterrupting timer, the process instance gets
terminated when the timer expires. This holds true even if the TBE
is an interrupting timer.

Known issues NA
Known solution NA

Expand the exception-handling project, ExceptionHandlingPrj, in JDeveloper and
click to open the ExceptionDemoProcess process. Click on the Boundary Catch Timer
Event A and verify its implementation. Let it be set to 1 minute and its implementation
type should be noninterrupting. Change the associated end event, End-A, from the
None End Event to Terminate End Event. Save and deploy the project.

The timer A is a noninterrupting timer set to 1 minute. Hence, when the token gets
assigned to the ApplicationVerification human task and if the user does not
act in 1 minute, timer A expires and it raises an exception. The sequence flow that
connects to timer A, moves the token to the Terminate End Event. Test the process
from EM by passing AppsVerify as the input parameter. As expected, the entire
instance will get terminated. The same holds true for the interrupting timer too.
To test the interrupting scenario, we can change the timer from noninterrupting
to interrupting and test the process by passing AppsVerify as input parameter.
As this pattern forcefully terminates the process instance, it is termed as
Force-Terminate Exception Handling Pattern.

Chapter 7

[293]

Force-Error Exception Handling Pattern
The following table highlights some important facts about the Force-Error Exception
Handling Pattern:

Signature Force-Error Exception Handling Pattern
Classification Exception Pattern
Intent The intention is to raise an error when the timer expires.
Motivation Implement an Exception Handling Pattern that would raise an error

when the deadline/timer expires.
Applicability The token is assigned to an activity. When the timeout exception

occurs, the process flows from the Boundary Catch Timer Event
to the Error End Event.

Implementation Check the process state diagram. It has a sequence flowing from
TBE to error E & F (Error End Events). This sequence demonstrates
the process flow when timeout happens at the TBE. If the TBE is
a noninterrupting timer, the process instance throws a business
exception when the timer expires. The business exception is caught
by the event subprocess defined at process level. The process
instance is recovered from the error as the exception is handled and
the process instance is completed. A human task assigned to the
participant gets withdrawn. The same holds true if the TBE is an
interrupting timer.

Known issues NA
Known solution NA

Expand the ExceptionHandlingPrj project in JDeveloper and click to open
ExceptionDemoProcess. Right-click on Business Components and navigate to New
| Business Exception to define a business exception named Deadline Exception.
Click on the Create Business Exception dialog and save all. Click on the Boundary
Catch Timer Event A and verify its implementation. Let it be set to 1 minute and its
implementation type should be noninterrupting. Change the associated end event,
End-A, from None End Event to Error End Event. Browse for the business exception
and select Deadline Exception. Perform data association as required and save all.
Now, we will change the properties of the ExternalErrorHandlingEventSubprocess
event subprocess.

Exception Handling Patterns

[294]

Click on the catch error event in the event subprocess and implement it for the
business exception, Deadline Exception, as shown in the following screenshot.
Then, save and deploy the project:

Test the process from EM by passing AppsVerify as the process input. A token
gets assigned to a human task activity. If the user does not act in 1 minute, timer
A expires and raises a deadline exception. When the timer expires, the following
events happen:

• If the timer A is a noninterrupting timer and the timer expires, the process
instance throws the Deadline Exception business exception.

• This exception is caught by the ExternalErrorHandlingEventSubprocess
event subprocess defined at the process level.

• The process instance gets recovered from the error as the exception is
handled and the process instance gets completed. The human task assigned
to the participant gets withdrawn. The same holds true if the timer A is an
interrupting timer.

Exceptions are caught at process level by the
ExternalErrorHandlingEventSubprocess event subprocess. Remember, the fate
of the process instance will depend on how the event subprocess ends. For this
particular case on Deadline Exception, the event process gets started and it would
end with the None End Event. This would complete the process instance. We will
visit more complex scenarios with a different ending mechanism for an event
subprocess later in this chapter.

Chapter 7

[295]

Force-Complete Exception Handling
Pattern
The following table highlights some important facts about the Force-Complete
Exception Handling Pattern:

Signature Force-Complete Exception Handling Pattern
Classification Exception Pattern
Intent The intention is to complete the process, when the timer expires.
Motivation To implement an Exception Handling Pattern that will forcefully

end the process when the deadline/timer expires.
Applicability The token is assigned to an activity. When the timeout exception

occurs, the process flow from the Boundary Catch Timer Event to
the Message End Event of the process.

Implementation Check the process state diagram. It has a sequence flowing from
TBE to message G & H (Message End Events). This sequence shows
the process flows when timeout happens at the TBE. If the TBE is
a noninterrupting timer, the process instance reaches a Message
End Event when the timer expires. The token again reaches the
activity (human task); however, the task is neither withdrawn nor
reassigned, which is different from the behavior in the Allocated and
Complete Exception Handling Pattern. If the TBE is interrupting and
when process reaches the Message End Event, the activity (human
task) gets cancelled and the process instance gets completed. If
the TBE is a suspending event, then the activity (human task) gets
cancelled and the process instance gets completed.

Known issues NA
Known solution NA

In ExceptionDemoProcess, click on End-A, the Error End Event that we used earlier,
and change the trigger type from the Error End Event to the Message End Event.
Rename the Message End Event to TBE-End-Process. Click on timer A and change its
trigger type to noninterrupting. Test the process by passing AppsVerify as the input
parameter to the process. After 1 minute, check the process flow. We can find that the
process instance is still running. The human task remains with the participant (user)
and timer keeps evaluating as long as the user does not act on the task.

Exception Handling Patterns

[296]

If you change the trigger type of timer A from noninterrupting event to
interrupting event, we can find that the activity (human task) gets cancelled
and the process instance completes. The scenario will be same if we make the
timer A suspending event. The following screenshot shows the process instance
details of ExceptionDemoProcess:

Invoked Exception Handling Pattern
A BPM process needs to interact and collaborate with other processes and services.
We have read a lot about invocation patterns in Chapter 5, Interaction Patterns.
However, when we invoke a process/service, those invoked processes/services
might end in error and raise an exception. This section will help you to learn about
exception handling patterns in scenarios where an invoked process raises an error.
This section will also include exception propagation pertaining to each pattern.

As per the process state diagram, an activity state transits from ASSIGNED to INVOKED
when that assigned activity invokes a process or a service. The following are the
activities used to invoke a process or a service:

• Call activity invokes a reusable process.
• An activity such as service task is used to invoke synchronous services

and processes.
• Send and receive tasks and throw and catch message events are used to

invoke asynchronous services and processes.

Chapter 7

[297]

Whatever the invocation mechanism, the following are the broad categories of
exception handling:

• Handling exceptions in the invoked process/service itself, that is,
exception handling at the INVOKED state

• Catching exceptions using a catch boundary event on the activity that has
invoked the process/service

• Catching exceptions by an event subprocess at a level outside the activity
• Catching exceptions at process level by event subprocess (process-level event

subprocess) or using the Fault Management Framework
• Using the BPM service engine to catch the exception

To understand the exception handling mechanism, we need to walk through the
exception propagation pattern in Oracle BPM.

Invoked State Exception Handling Pattern
The following table highlights some important facts about the Invoked State
Exception Handling pattern:

Signature Invoked State Exception Handling Pattern
Classification Exception Pattern
Intent The intention is to handle exceptions in the invoked (called) process

itself.
Motivation Implement an Exception Handling Pattern that results in exception

handling in the invoked process itself. The invoked process that
has experienced the error will not propagate the exception to the
called process.

Applicability This pattern considers the fact that an assigned activity has invoked a
process/service and the process/service has the capability to handle
the exception itself. This means that when an exception rises in the
invoked process/service, it gets handled there and the invoking
process (assigned activity) will never know about it.

Exception Handling Patterns

[298]

Implementation To implement the scenario, we will consider an asynchronous
process. This asynchronous process will be invoked by the Send Task
and to get a response from the invoked process, a receive task will
be used to invoke the callback operation. When send and receive
tasks are used to invoke an asynchronous process, the process token
will keep executing subsequent activities after the Send Task until
it reaches a receive activity that is paired with the called process's
Send Task. The token then waits at the receive activity until a
response is received from the invoked process. The invoked process
will encounter an error and will handle the exception by itself. The
invoking process (calling process) will receive a normal response
from the invoked process.

Known issues The invoking process (calling process) will never know about the
exception.

Known solution It's a subject of architectural design and is based on how the business
wants to consider this modeling pattern. If the invoking process
needs to be made aware of the exception, then the exception should
be propagated to the calling process. In this case, the calling process
should handle the exception.

The BPMN project, ExceptionHandlingPrj, contains the ExceptionDemoProcess
process, which has the Invoke Process (I) Send Task that invokes an
asynchronous process (Validation Process). The ExceptionDemoProcess process
also has Receive Process (I), which is a receive task. It's the receive task where
the token awaits until the invoking process, ExceptionDemoProcess, gets a response
from the invoked process, ValidationProcess.

Open the Properties dialog box of ExceptionDemoProcess and uncheck
the Is Draft checkbox for send and receive tasks, respectively (by default,
ExceptionDemoProcess provides all activities in the draft mode). In JDeveloper,
open the validation process and check its configuration. The Validation process is
designed in such a form that on receiving any input, it will raise a Validation_
BizException exception. The Validation process has an exception handler in it
which will handle the raised exception, Validation_BizException. Perform
the following steps to test the scenario:

1. Use any tool of choice or login to EM to test the reusable process.
2. Pass the input as AppsVerify. You can notice that a token gets assigned

to the Send Task, InvokeProcess (I). This assigned activity will invoke the
validation process.

Chapter 7

[299]

As we can see in the following image, on the right-hand side an instance of
ValidationProcess is displayed. It gets completed normally and returns a response
based on the business requirement. However, the exception raised in the validation
process is handled by the process itself and it's not propagated to the assigned
activity, that is, Invoke Process (I) (invoked the validation process).

Also, you can see on the left-hand side of the screenshot, the process flow of
ExceptionDemoProcess moves ahead of the Receive Process (I) receive task
as the validation process has not returned an exception and in fact handled the
exception itself.

The major challenge with this approach is that the invoking process (calling process)
will never know about the exception.

Continue Execution Exception Handling
Pattern
The following table highlights some important facts about the Continue Execution
Exception Handling pattern:

Signature Continue Execution Exception Handling Pattern
Classification Exception Pattern
Intent The intention is to handle exceptions raised by the invoked (called)

process/service in the invoking (calling) process / service.
Motivation Handle exception in invoking activity using boundary event.

Exception Handling Patterns

[300]

Applicability This pattern showcases those scenarios of exception handling where
an exception is not handled by the invoked process/service. That
exception will propagate outside the invoked process/service. An
assigned activity has invoked a process/service that experiences an
error. That exception propagates to the assigned activity and it's then
caught by an error catch boundary event.

Implementation If you check the process state diagram and look into the INVOKED
state, the sequence "J" points to the scenario where the invoked
process/service has raised an exception. The assigned activity catches
that exception using a Boundary Catch Event shown as CBE. The CBE
(boundary event) will catch the exception and the process token moves
to the ALLOCATED state, that is, the token moves to the subprocess.
Now, there could be various scenarios:

• Allocated state completes (the allocated subprocess ends with
the None End Event)

• Allocated state terminates (the allocated subprocess ends with
the Terminate End Event)

• Allocated state errors (the allocated subprocess ends with the
Error End Event)

Continue Execution Exception Handling Pattern is about the scenario
where the allocated state completes, that is, the allocated subprocess
ends with a None End Event.

Known issues NA
Known solution NA

To implement this scenario, we developed a reusable process, ReusableProcess, in
the ExceptionHandlingPrj project. Inside ExceptionDemoProcess, a call activity will
invoke ReusableProcess using a CALL task, shown as CallReusableProcess (J).
When invoked, ReusableProcess raises an exception; it is caught by the Boundary
Catch Event associated with the CallReusableProcess (J) call task. The process
token will move from the Boundary Catch Event to the subprocess (Allocated). The
Allocated subprocess can reach to various states (complete, error, or terminate)
based on the input values being passed. This is modeled to demonstrate process
behaviors in various exception handling scenarios where an exception is propagated
from a Boundary Catch Event to a subprocess.

Chapter 7

[301]

We have downloaded the ExceptionHandlingPrj project from the downloadable
code files of Chapter 7, Exception Handling Patterns. Deploy the project to 12c
WebLogic server. Perform the following steps to test the process for continuous
execution exception handling:

1. Open ExceptionHandlingPrj project in JDeveloper
2. Go to ExceptionDemoProcess and click on InvokeProcess (I) and Receive

Process (I), the send and receive tasks, respectively.
3. Change their implementation type to draft, as we want the token to be

passed directly to the CallReusableProcess (J) call activity.
4. Test the reusable caller process by passing input, JComplete.
5. Log in to the EM console and check the process flow of

ExceptionDemoProcess, as shown in the following screenshot:

As we can witness from the process flow, when the token gets assigned to a call task,
CallReusableProcess (J), it invokes a reusable process, ReusableProcess. The token
gets assigned to the reusable process as the reusable process acts as a child to the
main process. The reusable process will raise an exception and it will not be handled
by ExceptionDemoProcess. Hence, the exception gets propagated to the assigned
activity, CallReusableProcess (J).

When the exception is raised by the reusable process, the catch boundary event
configured on the assigned activity (CallReusableProcess (J)) will handle the
exception. The sequence flow attached to the catch boundary event will detour
the process execution flow to the subprocess (Allocated).

Exception Handling Patterns

[302]

As the input passed is JComplete, the token flow will detour to the None End Event
JComplete in the subprocess (Allocated). You can include any exception handling
logic as per business requirement such as logging, notification, and so on. When the
Allocated subprocess completes, the process starts executing subsequent activities as
guided by the outgoing flow from the allocated subprocess (Allocated). Hence, this
pattern is termed as continue execution pattern.

Force-Terminate Execution Exception
Handling Pattern
The following table highlights some important facts about the Force-Terminate
Execution Exception Handling Pattern:

Signature Force-Terminate Execution Exception Handling Pattern
Classification Exception Pattern
Intent The intention is to handle exceptions raised by the invoked (called)

process/service in the invoking (calling) process/service.
Motivation Handle exception in invoking activity using the boundary event.

Applicability This pattern showcases those scenarios of exception handling where
an exception is not handled by the invoked process/service. That
exception will propagate outside the invoked process/service. An
assigned activity has invoked a process/service that experiences an
error. That exception propagates to the assigned activity and it's then
caught by an error catch boundary event.

Implementation If you check the process state diagram and look into the INVOKED
state, The sequence "J" points to the scenario where the invoked
process/service has raised an exception. An assigned activity catches
that exception using the Boundary Catch Event shown as CBE.
The CBE will catch the exception and the process token moves to
the ALLOCATED state, that is, the token moves to the subprocess.
Now, there could be various scenarios and one of them is when the
ALLOCATED state terminates (the allocated subprocess ends with the
Terminate End Event).
The Force-Terminate Execution Exception Handling Pattern is about
the scenario where the Allocated state terminates, that is, the allocated
subprocess ends with a Terminate End Event

Known issues NA
Known solution NA

Chapter 7

[303]

Test the ExceptionHandlingPrj process by passing JTerminate as the input.
The process token flows from the ASSIGNED state to the INVOKED state. The invoked
process (reusable process) will not handle the raised exception and the exception will
be caught at the CBE placed on the CallReusableProcess (J) assigned activity.
The flow will detour to the allocated state from the catch boundary event and will hit
the Terminate End Event, JTerminate.

Go to the EM console and check the process flow. When the exception is raised by
the reusable process, the catch boundary event configured on CallReusableProcess
(J), the assigned activity, will handle the exception. The sequence flow attached
to the catch boundary event will detour the process execution flow to the
subprocess (Allocated).

As the input passed is JTerminate, the flow of the token will detour to the
Terminate End Event, JTerminate, in the subprocess (Allocated). When the
allocated subprocess terminates, the process instance gets terminated and no
subsequent activities will be executed. Hence, this pattern is termed as the
terminate execution pattern.

Force-Error Execution Exception
Handling Pattern
The following table highlights some important facts about the Force-Error Execution
Exception Handling Pattern:

Signature Force Error Execution Exception Handling Pattern
Classification Exception Pattern
Intent The intention is to handle the exception raised by the invoked (called)

process/service in the invoking (calling) process/service.
Motivation Handle exception in the invoking activity using a boundary event.
Applicability This pattern is used to showcase those scenarios of exception handling

where the exception is not handled by the invoked process/service
by itself. That exception will propagate outside the invoked process/
service and is caught by the attached Boundary Catch Event. From
there, the process token is allocated to a subprocess which lands
into error.

Exception Handling Patterns

[304]

Implementation If you check the process state diagram and look into the INVOKED
state, the sequence "J" points to the scenario where the invoked
process/service has raised an exception. The assigned activity catches
that exception using the Boundary Catch Event shown as CBE. The
CBE will catch the exception and the process token moves to the
ALLOCATED state, that is, the token moves to the subprocess. Now,
there could be various scenarios that can happen in the allocated
subprocess and one of them is Allocated state error (this allocated
subprocess ends with the Error End Event).
Error Execution Exception Handling Pattern is about the scenario
where there is Allocated state error, that is, the allocated subprocess
ends with an Error End Event.

Known issues Handling exceptions raised in the ALLOCATED state.

Known solution The following are the patterns to handle exceptions raised at the
ALLOCATED state:

• Allocated state-External Exception Handling Pattern
• Allocated state-Internal Exception Handling Pattern
• Reallocated exception handling pattern

The invoked process/service has raised an exception and the exception is handled
by the assigned activity, which has invoked that process/service. The exception is
caught by a catch boundary event and the process state will change to the ASSIGNED
state. The Allocated subprocess will raise an exception by itself. There could be
multiple scenarios to handle the exception raised by the Allocated subprocess.
The following are the patterns to handle exceptions raised at the ALLOCATE state:

• Allocated state-External Exception Handling Pattern
• Allocated state-Internal Exception Handling Pattern
• Reallocated Exception Handling Pattern

These patterns are useful in the scenario where the allocated subprocess itself throws
a business exception.

Allocated state – External Exception Handling
Pattern
When the process is in the ALLOCATED state and it raises an exception, the following
case can be identified:

If the exception is not handled in the allocated subprocess itself, the exception will
then get propagated outside the subprocess and can either be caught at the process
level or caught by a fault-handling framework or a BPM engine.

Chapter 7

[305]

We can verify the same from the process activity state diagram (as shown in the
following screenshot). We can relate what we have discussed based on the arrow
coming out of the subprocess (Allocated) to the event subprocess (Started). This
shows how exceptions raised by the subprocess (Allocated) are caught at the
process level by the event subprocess (Started). So, when an exception arises in
the subprocess (Allocated), it is neither caught by an event subprocess inside the
subprocess (Allocated), nor it is handled by a Boundary Catch Event; hence, it gets
propagated outside the subprocess. So for the exception raised by the subprocess
(Allocated), there is an event subprocess configured to catch it and hence the
exception is handled by the external event subprocess at process level.

Exception Handling Patterns

[306]

Implementing Allocated state – External Exception
Handling Pattern
Open ExceptionDemoProcess in JDeveloper. Navigate to the Allocated subprocess
and click on the Error End Event, Error - JExternal. Remember there are two Error
End Events with the same name in the Allocated subprocess and Event subprocess,
that is, InternalExceptionHandler (which is inside the Allocated subprocess). To
demonstrate this pattern, click on Error - JExternal inside the Allocated subprocess,
and not the one which is inside Event subprocess, InternalExceptionHandler.
This Error End Event is configured to raise the business exception, JExternal_
BizException.

Log in to the EM console and test ExceptionDemoProcess. If you pass the input as
JExternal-Complete/JExternal-Terminate/JExternal-Error, the process token
gets allocated to the subprocess (Allocated). The Allocated subprocess will raise the
exception, JExternal_BizException. When the subprocess (Allocated) raises an
exception, the BPMN engine then tries to find a handler for it. This exception neither
has an exception handler in the subprocess (Allocated) nor does the subprocess
(Allocated) have a Boundary Catch Event to catch the exception. Hence, the
exception gets propagated outside the subprocess (Allocated) and it results in the
STARTED state for an event subprocess (Started).

The External event subprocess (Started) can also land in one of the following
three cases:

• External event subprocess (Started) can complete normally: If we pass input
as JExternal-Complete, the subprocess will raise JExternal_BizException,
which is caught at the process level by event subprocess (Started) and the
process token will detour to the sequence flow, JExternal-Complete. Finally,
the process gets completed.

Chapter 7

[307]

• External event subprocess (Started) can be aborted. If we pass the input as
JExternal-Terminate, the subprocess will raise an exception, JExternal_
BizException, which is caught at the process level by the event subprocess
(Started) and the process token will detour to the sequence flow, JExternal-
Terminate, and the process gets aborted (reaches the TERMINATE state).

• External event subprocess (Started) can output an error. If we pass the
input as JExternal-Error, the subprocess (Allocated) will raise an exception,
JExternal_BizException, which is caught at the process level by the event
subprocess (Started) and the process token will detour to the sequence flow,
JExternal-Error, and the process gets an error (ERRORED).

Check the process audit trail as shown in the following screenshot. We can see
that the process needs a recovery (Recovery required). This happens because an
exception was raised by the event subprocess (Started) at the process level.

Exception Handling Patterns

[308]

There is neither an event subprocess nor any fault policy to handle the exception
raised by the event subprocess. Hence, the exception gets propagated to the
environment and the exception is logged to the Enterprise Manager Fault recovery
system. We can log in to the EM console and can abort or recover from the exception.

There are three end states when the token is at the STARTED state and the input
passed is in one of the following:

• JExternal-Complete: When the ALLOCATED state raises an exception, it
STARTS an event subprocess to handle it. The STARTED state ends with
COMPLETE, which results in the process instance to complete.

• JExternal-Error: When the ALLOCATED state raises an exception, it starts
(reaches the STARTS state) an event subprocess to handle it. The STARTED
state also raises an exception. As there is no fault-handling framework to
handle the exception, the exception is handled by the BPMN engine and
the process instance ends in the FAULTED state with the RECOVERY status.

• JExternal-Terminate: When the ALLOCATED state raises an exception, it
STARTS an event subprocess to handle it. The STARTED state will end with
TERMINATE, which will eventually terminate (abort) the process instance too.

Chapter 7

[309]

Allocated state – Internal Exception Handling
Pattern
When the process is at the ALLOCATED state and it raises an exception, it can either be
caught (handled) at the ALLOCATED state itself or a boundary event on the allocated
subprocess or it will get propagated outside the allocated subprocess. This pattern
focuses on the scenario where the exception raised at the ALLOCATED state gets
caught in the allocated subprocess itself.

Visit the process activity state diagram to check the ALLOCATED state. It shows a
block for the STARTED state too. When the subprocess (Allocated) raises an exception,
JInternal, this exception is caught at the event subprocess (Started), which is
defined inside the subprocess. As the exception is handled internally at the allocated
subprocess, this pattern is named as Internal Exception handling Pattern. The
internal event subprocess (Started), defined inside the subprocess (Allocated), starts
with the JInternal error catch and has three end cases:

• Complete: The internal event subprocess catches and handles the JInternal
exception and gets completed

• Terminate: The internal event subprocess catches and handles the JInternal
exception and gets aborted

• Error: The internal event Subprocess catches and handles the JInternal
exception and it raises an exception

Allocated State Internal Exception Handling Pattern has the following three broad
categories of patterns:

• Internal Complete Exception Handling Pattern
• Internal Terminate Exception Handling Pattern
• Internal Error Exception Handling Pattern

Implementing Allocated state – Internal Exception
Handling Pattern
Open ExceptionDemoProcess in JDeveloper. Navigate to the Allocated subprocess
and click on the Error End Event, Error-JInternal. This Error End Event is configured
to raise a business exception, JInternal_BizException. Log in to the EM console and
test ExceptionDemoProcess.

Exception Handling Patterns

[310]

If you pass the input as JInternal-Complete / JInternal-Terminate / JInternal-
Error, the process token gets allocated to the subprocess (Allocated). The Allocated
subprocess will raise an exception, JInternal_BizException. When the Allocated
subprocess raises the exception, JInternal_BizException, then the BPMN engine
tries to find a handler for it. For the exception, JInternal_BizException, the
subprocess (Allocated) has an exception handler (event subprocess) defined in
the subprocess (Allocated) itself. Hence the exception gets caught inside the
subprocess (Allocated) and it results in the STARTED state for an internal event
subprocess (Started).

There are three end states when a token is at the STARTED state in internal event
subprocess (Started):

• Internal Complete Exception Handling Pattern
• Internal Terminate Exception Handling Pattern
• Internal Error Exception Handling Pattern

Internal Complete Exception Handling Pattern
Test ExceptionDemoProcess and pass the input as JInternal-Complete. We can
check below, when the subprocess (Allocated) state raises an exception, it starts an
event subprocess to handle it (reaches the STARTS state). The internal event subprocess
(Started) ends with a COMPLETE state, which will result in the completion of the process
instance state.

Chapter 7

[311]

Internal Terminate Exception Handling Pattern
Test ExceptionDemoProcess and pass the input as JInternal-Terminate. When the
ALLOCATED state raises an exception, it STARTS an internal event subprocess (Started)
to handle it. The STARTED event subprocess will end in the TERMINATE state, which will
eventually terminate the process instance (reach the ABORT state).

Internal Error Exception Handling Pattern
Test ExceptionDemoProcess and pass the input as JInternal-Error. When the
ALLOCATED state raises an exception, it STARTS an internal event subprocess (Started)
to handle it. The STARTED event subprocess will end in the ERROR state, which means
that the process instance will eventually cause an error.

Exception Handling Patterns

[312]

If the internal event subprocess (Started) raises an exception, there could be various
possibilities, some of which are given as follows:

• The internal exception raised by the event subprocess gets caught by a catch
boundary event associated with the event subprocess.

• If no boundary catch is defined for the event subprocess (Started), then the
exception gets propagated to the subprocess (Allocated) into which this event
subprocess is defined. The possibilities are as follows:

 ° If another event subprocess to handle it exists, then the exception is
caught there

 ° If there is a Boundary Catch Event defined on the subprocess
(Allocated), then the exception will be caught there

• If not handled in the subprocess (Allocated), then the exception gets
propagated to the process level. Then there are following possibilities:

 ° If there is an event subprocess defined at process level to catch that
exception, then the exception is caught by the event subprocess.

 ° If there is no event subprocess at process level, the exception gets
propagated to the parent process exception handler. If no fault policy
is defined, then the exception gets propagated to BPMN engine.

• If the exception is not handled anywhere, it gets logged by BPMN engine in
the EM fault recovery system.

For the sake of demonstration, we have modeled an internal event subprocess
(Started) and defined it inside a subprocess (Allocated), with two exceptions:

• Reallocated: An exception raised at the internal STARTED state is caught by
the catch boundary event, which reallocates the token to a subprocess.

• Restarted: An exception raised at the internal STARTED state is propagated
outside the ALLOCATED state, which will restart (reach the RESTART state)
the external event subprocess (Started) to handle the exception at the
process level.

Testing the Restarted scenario
The following screenshot shows the BPMN process instance details:

Chapter 7

[313]

If you pass the input as JInternal-Error, the process token gets allocated to the
subprocess (Allocated). The subprocess will raise an exception, JInternal_
BizException. When this exception is raised, the BPMN engine tries to find a
handler for it. For this exception, the subprocess (Allocated) has an exception handler
(event subprocess) defined in the subprocess (Allocated) itself. Hence, the exception
gets caught inside the subprocess (Allocated) and it results in the STARTED state
for an internal event subprocess (Started). However, the internal event subprocess,
InternalExceptionHandler, will raise an exception JExternal_BizException.
However, neither the exception handler in the subprocess (Allocated) nor does the
subprocess (Allocated) has a Boundary Catch Event to catch the exception. Hence,
the exception gets propagated outside the subprocess (Allocated) and it results in
the STARTED state for an external event subprocess (Started).

Reallocated Exception Handling Pattern
Test ExceptionDemoProcess and pass the input as JInternal-Error. When the
ALLOCATED state raises an exception, it starts (the STARTS state) an internal event
subprocess (Started) to handle it. The STARTED event subprocess will end in the
ERROR state. If the internal event subprocess (Started) raises an exception, there
could be various possibilities that we have enlisted in the Internal Error Exception
Handling Pattern section. One of the many possibilities is the exception raised at
the internal event subprocess (Started) is caught by the catch boundary event,
which reallocates the token to a subprocess.

Exception Handling Patterns

[314]

Visit the process activity state diagram to check the reallocated scenario. When the
subprocess (Allocated) raises an exception, JInternal, this exception is caught at
the internal event subprocess (Started), which is defined inside the subprocess. The
internal event subprocess (Started) defined inside the subprocess (Allocated) starts
with the JInternal error catch and raises the JCBE exception. The JCBE exception
is caught by a catch error boundary event that detours the process token from the
subprocess to the subprocess (Reallocated).

To test the scenario, execute ExceptionDemoProcess and pass the input as
JInternalCBE. This will result in the business exception, JCBE_BizException.
This business exception is caught at the catch error boundary event defined on
the subprocess (Allocated). When caught, the process token is detoured to the
subprocess (Reallocated) and the process moves ahead to subsequent activities.

External Exception Handling Pattern
When a process/service is invoked and it raises an exception, there are various
exception-handling mechanisms to deal with these exceptions. This section is
dedicated to the third scenario where an exception raised by an invoked process/
service is handled by an external exception handler. Check the process state diagram
and you can relate this scenario with the pointer K. An assigned activity invokes a
process/service. The invoked process/service raises an exception. The exception
is not handled inside the process/service nor does the assigned activity (invoking
activity) has a Boundary Catch Event. Hence, the exception gets propagated outside
the assigned activity and it's caught by an external event subprocess (Started) in
the process diagram. Therefore, we can find the symbol K in the start event for
the external event subprocess. You learned about the external exception handling
pattern in previous sections when we tried to catch the fault in the external event
subprocess. This is just to demonstrate the fact that even an exception raised by
an invoked process/service is handled by an external exception handler.

Process-Level Exception Handling
Pattern
If the fault is not handled in the subprocess or by a Boundary Catch Event, or if there
is no event subprocess to handle an exception, then the exception gets propagated
at process level. If there is a fault policy defined to handle such an exception, then
the fault policy will catch that exception. This section is dedicated to those scenarios
where the fault policy will catch the exception.

Chapter 7

[315]

If you check the process state diagram, we will be walking through the L-Fault
Policy scenario in this section. You can use the Fault Handling Framework to handle
faults. The Fault policy can be used to handle runtime faults and business faults. The
Fault policy file along with the fault binding file allows you to define and implement
the fault-handling framework. It's the fault policy binding file that associates the
policies defined in the fault policies file with one of the following:

• Composite with a BPMN process
• Oracle BPMN process service component
• Reference binding component (for example, another BPMN process

or a JCA adapter)

The following fault recovery actions are supported in the fault policies file for Oracle
BPM Suite:

• Retry
• Human intervention
• Terminate
• Java code

For more information, you can also refer to Oracle BPM 11g Developer's Cookbook,
Vivek Acharya, Packt Publishing.

Implementing Process-Level Exception
Handling Pattern
To implement the fault-handling pattern, the fault policy and fault binding files need
to be defined. When we define the fault-handling framework, we define fault policy
and fault binding. These are XML files, where the fault-binding file will associate the
policies defined in the policy file with the composite application and the components
defined in the composite.xml file. The fault policy bindings are identified in the
following order in the composite.xml file:

• Reference binding component
• Service component
• BPM/SOA composite application

Exception Handling Patterns

[316]

The InvokeService (K) service task invokes the credit validation service. If the
Credit validation service is down, then a runtime exception will be raised. There is
no fault handling defined at the service task nor is the process-level event subprocess
configured to handle system faults. Hence, the fault gets propagated at process
(composite) level. The fault policy is defined at the process level to handle such
system faults (runtime faults). The following screenshot is the configuration of the
fault-policy.xml file:

The following is the configuration of the fault-bindings.xml file that associates the
fault policies defined in fault-policies.xml with the reference.

As you can check, when a process is called using a service reference, the reference
used is not the BPMN process reference, but rather the reference created to call
the CreditValidationService BPMN process named Services.Externals.
CreditValidationService.reference.

The reference name is created as follows:

• The term Services.Externals. is prefixed to the reference name of
CreditValidationService

• The term .reference is appended to the reference name of
CreditValidationService

Chapter 7

[317]

We can obtain the reference name to specify in the fault-bindings.xml file either
from the reference section of the process_name.componentType file or from the
From the wire section of the composite.xml file.

The fault policy is configured with a retry option. There are different ways to treat
a fault. One way is to retry a fault. For example, if an invoked service is down, the
fault-handling framework can be configured to retry three times and once the retries
are exceeded, the instance will be marked as open.faulted (in-flight state). This
would keep the instance active. If you keep the instance as active, you can perform
the following different actions on the instance which has faulted:

• You can manually perform instance recovery from the EM console if you
configure ora-human-intervention as another action to be performed after
retries exceed

• You can terminate the instance to mark the instance as closed

Testing Process-Level Exception Handling
Pattern
Perform the following steps to instantiate a process instance:

1. Open JDeveloper and navigate to ExceptionDemoProcess.
2. Check the IsDraft box for the ApplicationVerification human task,

InvokeProcess(I), ReceiveProcess(I), and CallReusableProcess(J). We are
bringing these activities in the draft mode as we directly want to execute the
InvokeService(K) service task.

3. Save and deploy the project.
4. Open the EM console and shut down Credit Validation Service.

The process token will get assigned to the InvokeService (K) service task.
The Credit Validation Service will be invoked. As we have shut down the Credit
Validation Service, a runtime fault is raised. As there is no Boundary Catch Event
configured at the InvokeService (K) service task to catch the runtime fault, hence,
the fault gets propagated outside the ASSIGNED state of the service task. As there is
no fault handling outside the ASSIGNED state too; hence, the fault gets propagated
to the level outside. At the process level, a fault policy is configured, which will
handle the runtime exception as per the configuration in the fault policy file.
As the fault policy is configured with a retry option, the system will retry three
times. If the number of specified instance retries is exceeded, the instance is
marked as Recovery Required.

Exception Handling Patterns

[318]

As we can check in the following screenshot, retry was attempted three times and
then the instance is marked as Recovery Required:

System-Level exception handling pattern
Consider a scenario where a fault is not even handled at the process level. It would
get propagated to the runtime system BPMN engine. In this case, the fault gets
propagated to the BPMN engine and then the exception is logged to the Enterprise
Manager Fault recovery system.

External Triggers
Querying a BPM process or a BPM process cancel event are termed as external
events. You learned in the Cancel message pattern section of Chapter 6, Correlation
Patterns, how an external event can trigger a process instance cancellation. Similarly,
you have also learned in the Query Pattern section of Chapter 6, Correlation Patterns,
how a noninterrupting external trigger can impact a process instance. External
triggers such as cancelling messages are interrupting triggers and you can find them
marked as External Trigger-O in the process state diagram. Noninterrupting external
triggers are marked as External Trigger-N and you can use the Query Pattern section
of Chapter 6, Correlation Patterns to learn about the behavior. As these patterns are
described in the previous chapter, details are not included in this section and you
can refer to it to understand these patterns.

Chapter 7

[319]

Summary
The content of this chapter was more focused on Exception Handling Patterns and
not on the mechanism to handle the exception. While walking through the chapter,
you learned various exception handling mechanisms and their implementation and
usage in Oracle BPM. It gradually covered almost all the exception propagation
mechanism in Oracle BPM. This chapter covered event subprocess, inline subprocess,
and boundary events as mechanisms to handle exceptions, and their implementations
too are a part of the content. The chapter also included the fault-handling framework
while covering other mechanism to handle faults. While demystifying various
exception handling patterns, you learned exception propagation mechanisms too. This
chapter started with defining states of activities in the process and exception handling
is centered on those states. However, states are just used for the sake of demonstration
and better categorization of exception handling patterns. This chapter will surely lead
you to a footprint in your mind to model exceptions, way before they occur. The next
chapter is focused on some advance BPM patterns and case management patterns.

Adaptive Case Management
The landscape of enterprise processes has changed drastically. A process can be
predictable or unpredictable, data-intensive or process-intensive, and structured or
unstructured. The business process vista has changed from predetermined steps to
unknown events; today, businesses demand a higher degree of agility, which needs
to coexist with the unknowns and unpredictable factors. Business processes now
need to include knowledge workers, customers, and various sets of case participants
to collaborate in the decision-making. Often, an ad hoc inclusion of knowledge
workers is required as the processes experience unknown contents and events.
Hence, a solution is required to model the patterns of work which are complex,
unpredictable, unstructured, unknown, and those which require a higher degree
of collaboration, complex decision-making, dynamism, and so on.

Case management is a framework that enables you to build case management
applications. Case management applications comprise of business processes,
human interaction, decision-making, data, collaboration, events, documents, rules,
policies, reporting, and history. This chapter elaborates on Oracle's Adaptive Case
Management (ACM) solution, and over the course of learning about ACM, we will
explore various patterns and features that enable designers, developers, and analysts
to model case management solutions. For example, the milestone pattern showcases
how the logical indicatives of a case's progress are included in the ACM solution and
how these logical indicatives help in case modeling. A topic such as event patterns
elaborates on how an unknown's case should be handled. A holistic view pattern
brings depth to the ACM solution by offering a 360 degree view of the case.

Adaptive Case Management

[322]

The following table lists the terms that we will refer to in this chapter:

Case A case is the focal point for all the information required for the
work.

Case management Case management is a way of organizing and framing work
around the case.

Process versus case Process is a path to accomplish tasks/activities, and case is the
work that needs to be performed from opening to closure.

ACM ACM is a novel mechanism of managing work. For me, ACM is
about defining a milestone-oriented, state-based, rule-governed,
content-outbid, and event-driven case.

What is ACM
about?

It is about defining case and work. It is about working on ad
hoc, dynamic, unstructured, and unpredictable processes/
cases. It is also about design at execution, milestones, content
management, and process and social collaboration as well as
about the incorporation of Business Intelligence, valuing human
intuition, empowerment, and optimizing real-time known and
unknown events.

Who works on
cases?

Practically everyone—case and knowledge workers,
participants, and so on.

This chapter covers the following patterns:

• Case stage
• Event pattern
• Milestone pattern
• Case interaction pattern
• Localization feature
• Holistic view pattern
• Ad hoc feature

Defining adaptive case management
This section will walk you through the definitions and try to give you the essence
of what adaptive case management (ACM) is all about.

Chapter 8

[323]

Case
A case is a unit of work. It's a package in itself. There are goals and milestones in the
case's life cycle, which are achieved when some work is performed on the case. A
case is a superset of work, processes, transactions, and services which traverse from
being open to closed over a time frame in order to reach a collaborative solution of
an investigation, incident, service request, or a long running process. Essentially,
it's a coordination of works. Examples of cases are an insurance claim, contract
management, managed health care, and so on.

Case management
Case management is a way of organizing and framing work around the case.
We have used the term framing work in the definition as it's evident that work
cannot be defined for a case in one shot or in one go. It's an ongoing process,
and as the work keeps deriving, the case keeps evolving.

It's a collaborative, coordinative, and milestone-oriented process to handle a case
from opening to closure by interacting with the ecosystem and knowledge workers.
Case management coordinates knowledge workers, contents, resources, systems,
and correspondence to trace the progress of a case to different milestones. The
progression of the case is determined and governed by human interactions and by
the occurrence of internal and external events, where the process is a non-routine,
unpredictive, and ad hoc process.

A case management solution offers case and knowledge workers greater control and
the insight to resolve problems more effectively. Case management ensures that the
right information is available for decision-making at the right time and in real time.

One can say that effective process management is essential for case management.
Case management is nondeterministic because the case flow is dynamically
determined at runtime. ACM focuses on managing all the work required to handle
a case, regardless of whether it's content-intensive, structured or unstructured,
predictable or unpredictable, deterministic or nondeterministic, automated or
manual, and so on.

Dynamic case management
Many vendors have various definitions. For some, dynamic case management is a
progression from Rigid BPM | Human-centric content-oriented BPM | Social and
iBPM (Intelligence BPM) | Case Management.

Adaptive Case Management

[324]

Dynamic case management is about semi-structured, human-centric, information-
intensive, collaborative processes that are driven by events. Dynamic case
management enables dynamic changes at runtime. Adaptive case management
is about the just-in-time creation of work around the case and processes, with
intelligence to learn from the previous case/subcase/work. This means people
working on a case should be able to use the subcase/work that is learned by the
just-in-time process/case. To most people, adaptive case management and dynamic
case management are the same, just defined differently by a different set of people.

Mechanism of adaptive case management
ACM is a novel mechanism of managing work. For me, ACM is about defining a
milestone-oriented, state-based, rule-governed, content-outbid, and event-driven case.

For health care, it is a collaborative approach to plan, analyze, define, and then
advocate and facilitate an individual's health care needs. The legal industry requires
knowledge workers (lawyers, clients, judges, and so on) and their expertise as
they drive through advocacy, consultation, and so on, and each individual case
has a different life cycle. Also, information and work related to a case need to be
assembled as the case progresses. For example, in the legal sector, as a court case
progresses, new works are derived that need collaboration with different knowledge
workers. Results need to be assembled, which could further lead to a new work
identification and so on.

Enterprise Resource Planning (ERP) is a superset of processes. ECM is about
content, while CRM is about the customer. BPM is about process and process
management. There is no process without content and no CRM without
communication, collaboration, and processes. Collaboration is not possible without
a social BPM. Real-time analytics and transparency are engulfed by intelligent BPM.
ACM is an integrated consolidation of ERP, ECM, CRM, social BPM, and iBPM to
create a holistic view of the case and it's the customer which is the focus in the case.

ACM targets unstructured processes, where the exact steps and behaviors are not
always known ahead of time. Case management is a way to govern and control these
unstructured processes. You need rule definition in the form of templates that can be
changed at runtime. You need tools to define and modify a process on the fly. You
need to add work to the case while the case is executing and so on. Essentially, you
need a case management solution.

Work on a case can be performed at discrete places such as an ERP process, CRM,
content store, e-mails, manuals, and so on. However, it's the ACM that manages
discrete pieces of work to be performed on a case. ACM creates an adaptive
ecosystem for a work where a change or addition is acknowledged and adopted in
the ecosystem to be adapted by the work.

Chapter 8

[325]

Process versus case
ACM offers a clear distinction between a process and a case. With a case, to
accomplish work and to achieve milestones, many processes might be running in
sequence and/or in parallel. BPM will understand and execute these processes as
distinct, separate processes being orchestrated by one process, and so on. However,
with a case, processes are tightly associated with the case and subcases; hence, cases
offer a holistic view.

Case management offerings
Strategies from management, targets from executives, and milestones from process
owners should be inline and must be transparent to those who act and execute as
well as to those who use them (end users and customers). This transparency can be
achieved by knowing what's being moved in real time. Based on real-time analysis,
decisions should be taken and actions should be performed by those who are
empowered to do so. Above all, the real-time inclusion of customers, process owners,
knowledge workers, and ecosystem are brought in focus. ACM is about a real-time
and focused empowerment, which brings transparency. Management acquires the
full transparency of processes and execution.

ACM is about empowerment. Empowerment comes with focus and transparency,
and transparency comes with a socio-collaborative infrastructure. Transparency
enables you to monitor which, in turn, increases the focus, and focus is increased by
laying milestones and achieving them. Even if BPM empowers participants to act
on the task, it's only ACM that empowers knowledge workers and case workers to
include resources to reach milestones. It leads to a better customer satisfaction. In
an adaptive ecosystem, drill, adapt, transform, optimize, and improve are the key
characteristics of adaptive enterprises, and these characteristics are realized by ACM.
Stakeholders will have complete visibility and control of their objectives, which are
often expressed in key performance indicators. Greater insight translates to the fact
that challenges can be identified the moment they arise. This makes the enterprise
more proactive to respond to such challenges. Above all, ACM offers holistic work
management; this improves the enterprise outcome of work and further translates to
increased revenue, effective and better services, and efficient risk mitigation.

The following are some of the offerings of adaptive case management:

• Transparency
• Empowerment
• Optimized and efficient customer experience
• Handling unpredictability

Adaptive Case Management

[326]

• Adaptive enterprises
• Real-time monitoring
• Greater insight
• Collaborative decision-making
• Participation
• Dynamism
• Holistic approach

The following figure showcases the highlights of adaptive case management:

Transparency Dynamism

Optimized and Efficient Customer Participation

Real-time Monitoring Empowerment Holistic Approach

Greater Insight Data Adaptive Enterprise Event Driven

Intellectual
PropertyUnstructured Process

Ad-hoc processDynamicNon-routine

Case

Un-predictive Work
State

Collaborative iBPM Design at Execution

Knowledge from Execution for Design at Execution

Human IntuitionIntegration

Knowledge at Real-time

Knowledge and Experience collecting

Dashboard or Portal
SMAC

Business Intelligence

People Stakeholders

Knowledge Workers

Processes User Driven

Task and Activity

Contents

Rules
Event (Internal and External)

Events (Known and Un-Known)

A
D
A
P
T
I
V
E

Milestone Oriented Approach (MOA)

Socio-Collaboration
Opening Closure

360O

Chapter 8

[327]

The building blocks of adaptive case
management
The following are the building blocks of ACM:

Component Description
Stakeholders A stakeholder can be a user/group/role. They can perform actions

on the case objects that are part of the case to which stakeholders
are related. The behavior of the stakeholders can be defined by the
administrators by assigning permissions. Case objects are CASE,
COMMENT, DOCUMENT, DATA, EVENT, ACTIVITY, MILESTONE,
STAKEHOLDER, and HEADER.

Case/knowledge
workers and
participants

Case workers, knowledge workers, participants, and so on, can
work on the case. Case management offers case and knowledge
workers greater control and insight to resolve problems more
effectively. Knowledge and case workers are empowered to
include resources to reach milestones. With each case, a different
set of knowledge workers and participants get associated with the
process.

Processes BPM will understand and execute processes as distinct, separate
processes being orchestrated by each process and so on. However,
with a case, processes are tightly associated with the case and
subcases; hence, cases offer a holistic view.

Tasks and
activities

A task and an activity is the work that can be performed in
the context of a case. Case tasks and activities can be executed
automatically or manually, and they might be mandatory, optional,
or conditional. You can implement case activities using human
tasks, BPMN processes, or custom Java classes.

Data Case data and information, case instance data (data objects,
comments, and so on), along with case metadata (milestone,
stakeholders, outcome, and so on) are stored in a database. Case
data also represents the payload of the case, input parameters of the
case, and so on.

Content and
information

A case contains documents. Case management can be configured
to use either a database as the content store or an enterprise content
management system as the document store. If you use enterprise
content management (ECM), then case information is stored mostly
in case folders where all the documents related to case instances are
stored.

Adaptive Case Management

[328]

Component Description
Collaboration Socio-collaboration is a must for case and knowledge workers to

reach a milestone and to identify/modify work/tasks/activities.
Collaboration brings human intuition in to the process and
improves the overall quality of the case.

Events An event is an occurrence that impacts the case, which may lead
to the addition/deletion/modification of work and tasks, and also
defines and decides the progression of the case. ACM allows you
to capture events (internal/external) as and when they happen
and to act on them as they occur. The more responsive the case
management system for the events, the more dynamic the enterprise
will be.

Rules and policies Business rules can be used to control the flow of a case. With Oracle
ACM, each case comes with a business rule set and a rule dictionary
is generated. Rules can be configured to act on events, milestones,
activities, and so on.

Milestones Milestones are like goals/checkpoints that represent the completion
of a deliverable and are indicative, to trace the progress of a case.
Milestones are logical checkpoints; the attainment of milestones is
defined in the rules, or actions can be performed when a milestone
of interest is reached.

Integrations A BPMN process can be invoked by a case, and BPMN processes
can be promoted as case activities. BPMN processes or SOA services
can integrate via working on events. A case can raise events and
BPMN/SOA can react to these events.

Dashboard or
portal

A case dashboard and interface is a must for a collaborative case
ecosystem. A user interface allows case workers, knowledge
workers, participants, and users to act and work on the case and
activities. It also offers a 360 degree view of the case.

Chapter 8

[329]

The following diagram depicts the building blocks of ACM:

DB
CRM
Processes

Third-party
Services

Customer

Partners

Sales

Services

SOA & Data Entities

BPM
Processes

Social BPM
and iBPM

Enterprise Bus

Adapter

S
O

A

M
Q

/JM
S

B
I

Integration

Legacy
Services

ECM
Processes

ERP
Processes
ERP
Processes

Process Intelligence

Big Data Events Business Intelligence

S - Social
M - Mobile
A - Analytics
C - Cloud

Content
Management
and ECM
Processes

Content Repository, Metadata, Rules Repository, Process Template Repository

FileDatabase Monitoring

Auditing

Reporting

Management

Operations

Administrators

D
A
S
H
B
O
A
R
D
/
P
O
R
T
A
L

S
E
C
U
R
I
T
Y

S
O

A

Rules

Exploring ACM use case scenarios
The Auto Insurance Claim case is used as the user case scenario to demonstrate case
patterns. An Insurance Claim case will be created to demonstrate the milestone
pattern and other patterns and features, as follows:

1. A customer calls the insurance company's Customer Service Representative
(CSR) to initiate a claim request. CSR will perform the following actions:

1. CSR will raise a claim on behalf of the claimant, who is a policyholder
with the insurance company.

 ° CSR will update the Sensitivity information (Expert or Regular).
 ° If the Sensitivity of the case is Expert, then an Expert agent is

assigned, else a Regular agent will be assigned to the case. Also,
the Service Level Agreement (SLA) associated with the user task
will be different going forward.

Also, if the case sensitivity is expert, the SLA associated with user
tasks will take two days; else, it would be seven days.

2. CSR will initiate the claim case by submitting the First Notice of
Loss (FNOL).

3. Once the FNOL is submitted, the case reaches the FNOL milestone.

Adaptive Case Management

[330]

2. On reaching the FNOL milestone, a verification activity (EVerificationTask
or RVerificationTask) will be initiated based on the updates from CSR in
the earlier step.

 ° In this step, the agent (Expert/Regular) will review a claimant's
policy to ensure that the damaged asset is covered by the insurance
policy and that the policy is current.

 ° The agent will also set fastTrackFlag to Yes or No, based on
whether the case needs to be fast-tracked or not.

 ° Once the verification activity is completed, the case will reach the
Verified milestone.

3. Once the Verified milestone is reached, the service provider needs to be
dispatched. The SLA for the service provider's turnaround is based on the
Sensitivity flag. The service provider will use the loss address to reach the
location of the incident if the Sensitivity of the case is Expert.

4. Once the Verified milestone is reached, the validation activity is initiated
and a case manager is assigned to perform the validation. The case manager
performs the following actions:

 ° Case validation and checking for any fraudulent activity.
 ° Discussion with the customer and requesting the essential

documents.
 ° Defines whether a case needs to be fast-tracked. The case manager

will validate the claim, and if it's a valid claim, the case manager
will set the Claim Validated flag.

 ° Define the settlement (payment/recovery) and communicate with
the customer.

 ° Initiating the settlement; to perform the settlement, the case manager
will enter the values for a claim reserve, as the claim reserve needs to
be performed for both fast-track and regular cases.

Chapter 8

[331]

The case manager will update the FaultSubject field under Claim
| Settlement to either Payment or Recovery, based on whether the
payment needs to be made to the claimant or recovery needs to be
performed from the claimant.

5. Once the settlement is initiated, the case reaches the Validated milestone.
6. On reaching the Validated milestone, a Customer Acceptance activity will

be raised. One of the features of case management is to involve a customer
in decision-making. To do this, and to involve a customer in a collaboration,
different socio-collaboration mechanisms can be used.
A customer's e-mail should be identified from the customer details, and
the username should be identified from the customer details as well. For
example, a user account will be created in my realm; however, in real
time, each customer will have an e-mail account and an actionable e-mail
notification will go to the customer. On reaching the Customer Acceptance
milestone, the customer receives the documents for customer acceptance.
They can perform one of the following actions: either the customer can
accept or reject the claim settlement, or optionally, they can upload some
supporting documents.
The inclusion of a customer in the process increases the customer satisfaction
level manifold. The customer gets included in the decision-making process
and this drives the settlement.

7. Once a customer accepts the claim settlement, they will approve the
Customer Acceptance task. Once a task is completed normally, the Customer
Acceptance activity gets completed and the case reaches the Customer
Accepted milestone; however, if a customer rejects the claim, then the activity
(Customer Acceptance) gets faulted and the following activities will happen:

 ° The Customer Rejection event is raised
 ° The case reaches the Customer Rejected milestone

Adaptive Case Management

[332]

The table in the following screenshot summarizes the use case scenario of the
Insurance Claim case:

The building blocks of the Insurance Claim
use case
The table in the following screenshot shows the building blocks for the Insurance
Claim use case:

Chapter 8

[333]

Testing the use case
We will walk you through the following steps to execute the Insurance Claim use case:

1. Download the ClaimApps application from the downloadable link in Chapter
8, Adaptive Case Management.

2. Deploy the InsuranceClaim project to the web logic server.
3. Log in to Oracle Business Process Workspace as the admin user and assign

the users to roles (stakeholders) as follows:
 ° CSR Role: jcooper
 ° Expert Agent: jstein
 ° Regular Agent: fkafka
 ° Case Manager: weblogic
 ° Customer: achrist

Adaptive Case Management

[334]

4. Test the InsuranceClaimCase service using the Claim.xml data file that
can be found in the InsuranceClaim project itself. Navigate to the following
path to find the test data file:
InsuranceClaim | SOA| testsuites | Claim.xml

5. Use SoapUI or any tool of your choice to initiate a case instance. We can use
the Enterprise Manager console to initiate the case instance.

6. Choose the startCase operation, as shown in the following screenshot,
and shift to the XML view for the input arguments:

7. Pass the test data from the Case.xml file. You can enter a different case ID.
8. Log in to the Oracle Enterprise Manager console to check the process flow.
9. Log in to the Oracle BPM workspace in order to perform actions on the case

activities and tasks.

Chapter 8

[335]

A case consists of many activities, and most of the activities have user tasks.
User tasks are assigned to roles, and users are assigned to the respective roles.
You can follow these steps to log in to the BPM workspace in order to act on a
specific activity/task:

1. Log in to the BPM workspace as jcooper (CSR) and edit the value and set
the Sensitivity flag. When the CSR (jcooper) clicks on OK, the case reaches
the FNOL milestone.

2. Log in to the BPM workspace as an Expert agent (jstein) if the CSR
(jcooper) selected the Expert value for the Sensitivity flag, or else log
in as a Regular agent (fkafka) if the CSR (jcooper) selected the value as
Regular for the Sensitivity flag.

3. While being logged in as an expert agent or regular agent, set fastTrackFlag
to either Yes or No based on whether the case needs to be fast-tracked or not.
When an agent accepts the task, the case reaches the Verified milestone.

4. Once the Verified milestone is reached, we can note that the Validation task
gets assigned to the case manager (weblogic). Log in to the BPM workspace
as the case manager (weblogic) and add documents to the task to perform
case manager activities; also, set the FaultSubject field to Payment or
Recovery. The case will reach the Customer Acceptance milestone.

5. Log in to the BPM workspace as the customer (achrist) and check the
settlement details. If the customer is happy with the settlement, they can
approve it or else reject it.

When approved, the case reaches the Customer Accepted milestone and the
settlement activity will start.
When rejected, the case reaches the Customer Rejected milestone and
the customer rejection event is raised, which is caught by the customer
rejection handler.

We have to create a task form for each of the user tasks. Editing of the values by
the users is performed on the task form. For instance, when the verification task is
executed, you can log in to the Oracle BPM workspace with the CSR role (jcooper).
The CSR is expected to edit the claim values and add values in the Sensitivity flag
as Expert or Regular. The following diagram shows the placeholder that hosts the
Sensitivity information.

Adaptive Case Management

[336]

Once you are finished with editing the claim values, save the task form and then you
can perform actions on the task:

Case stage
Stages are an integral part of a case and are always associated with it. The case
stage or phase may or may not be related to a milestone. Similarly, activities can
be associated with a phase or stage or with multiple phases or stages. A case will
transition from one case stage to another based on the rules that act on milestones,
tasks, activities, and events. The following diagram shows the stages that a case
passes through while moving from Opening to Closure:

Opening

Stale

Active

Abort

Un Deploy Composite
Abort case

Close
Re-Open Case

Close Case
Closure

Resume Case
Suspend Case

Suspend

Chapter 8

[337]

The following table highlights the facts around the Case Stage pattern:

Signature Case Stage Pattern
Classification Case Pattern
Intent Progress a case instance from the Opening stage to the Closure stage.
Motivation A case's life cycle spans from Opening to Closure; however, a case

lives in the different stages/phases in its life cycle.
Applicability The transition from one stage to another may bring changes in the case

and in other integrating and interacting components. For instance,
Abort Case will halt the case instance, and closing a case will complete
the case instance.

Implementation A case is exposed as a service; so, the BPMN process or SOA services
can invoke the case service to drive the case transition. A case service
offers the following operations:

• Abort Case
• Close Case
• Revoke Case
• Reopen Case
• Start Case
• Resume Case
• forceClose Case

Apart from interacting with case service operations, you can close a
case from a case user interface or using APIs.

Known issues NA
Known solution NA

In this section, we will walk you only through the Close Case pattern, which deals
with closing the case instances. You can use the case service operation to close the
case; however, for this example, you can close the case from the BPM workspace case
user interface, as follows:

1. Log in to the Oracle BPM workspace (http://wlsserver:port/bpm/
workspace) as the admin user.

2. Click on Close Case; you will be prompted to enter a comment and
optionally, you can select Outcome, if one exists (outcomes are defined
in the case editor).

Adaptive Case Management

[338]

3. Once the case is closed, you can find the comments you entered in the Audit
Trail section of a case. You can still browse the closed case(s) from the case
user interface:

Note that we can abort the case and suspend the case from the Actions dropdown.
If we suspend the case, the process instance gets suspended. We can resume the case
by invoking the resumeCase operation on the case service. Similarly, we can abort
the case and reopen it too.

Event pattern
The following table highlights facts around the event pattern:

Signature Event Pattern

Classification Case Pattern
Intent An occurrence that impacts the case, which may lead to the addition/

deletion/modification of work and tasks, as well as defines and
decides the progression of the case.

Chapter 8

[339]

Motivation The progression of the case is determined and governed by human
interactions and by the occurrence of internal and external events.
Dynamic case management is about semi-structured, human-centric,
information-intensive, collaborative processes that are driven by
events. ACM allows you to capture events (internal/external) as and
when they happen and allows you to act on them as they occur. The
more responsive the case management system for the events, the
more dynamic the enterprise will be.

Applicability Events are the key components of a case management system. Case
management leverages the Event Delivery Network (EDN) to
publish and subscribe to events. The Oracle case management engine
raises events and subscribes to events. Oracle Case Management
offers the following events: Life Cycle events, Milestone events,
Activity events, Data events, Document events, Comment events, and
User events. On every case event, business rules are fired.

Implementation Events occur due to several reasons. Events can be generated when
a case instance progresses, when a case reaches a certain milestone,
when an activity is triggered, or when an activity is completed
or withdrawn. Events can be raised by external systems, by
stakeholders, from business rules, or can be explicitly raised. Events
offer the best audit trail for the case instance and, moreover, events
are used to evaluate business rules. The evaluation of business rules
brings progression in the case or leads to a certain milestone or may
lead to the initiation of an activity.

Known issues NA
Known solution NA

The following diagram shows some of the events used in the InsuranceClaim
sample project:

Adaptive Case Management

[340]

Initiate the case using a service call, case interface, or user interface. When the case
instance gets created, the case metadata and case data is inserted into the database.
The moment a case instance is initiated, the case lifecycle events are raised and all
the rules get executed. The rule that is defined to evaluate case lifecycle gets fired.
If you check the preceding diagram, the LifeCycleEventRule business rule gets fired.

LifeCycleEventRule will capture life cycle events and the respective action will be
performed. In this case, the Started milestone will be reached. The business rule,
MileStoneRule, acts on the milestone events. On reaching the Started milestone, the
FNOLActivity case activity will get executed. ActivityRule showcases the usage of
the activity rule. Once FNOLActivity (the FNOL case activity) gets completed, then
an FNOL milestone is achieved by the case. You have witnessed that different types
of events can be raised. Events can be anything from case changes, life cycle changes,
case milestone changes, and so on. Events can be of the following types:

• Life cycle events
• Milestone events
• Activity events
• Data events
• Document events
• Comment events
• User events

Events are evaluated by the business rules and activities, and a milestone case can
be reached based on how rules are defined in those events. Along with the seeded
events, we can define custom events (user events). In the InsuranceClaim project,
we have defined an event and a dispatch service (under InsuranceClaim | Events).
We can not only configure a rule to raise the event, but also explicitly raise the event
from the case user interface. This showcases the dynamism of the case management
solution. For instance, if the CSR finds that the Agent (Expert or Regular) has found
that the case needs immediate attention at the accident site, they can raise a dispatch
service event. This event is caught by the dispatch service to dispatch a team at the
site of the accident and various other defined activities:

1. Log in to the BPM workspace as the admin (weblogic) user and click on
case workspace.

2. Click on Raise Event as shown in the following screenshot.
3. Select the event, DispatchServiceEvent, from the list of user-defined events.
4. Enter a comment, which will appear in the audit trail of the case.

Chapter 8

[341]

5. Set a permission (public or restricted).
6. Click on Raise Event to raise the DispatchServiceEvent.

If there is a business rule defined to catch the event, that rule will evaluate to true
and the defined action will get executed.

This example showcases the seamless integration of an Event Driven Network
with a case management solution. It also demonstrates the empowerment of the
case workers, where it was showcased that case workers can raise events without
bringing about a change in the code.

Milestone pattern
Milestones are like goals/checkpoints that represent the completion of a deliverable,
and they are indicative factors to trace the progress of a case. Milestones are logical
checkpoints; the attainment of milestones is defined in the rules, or actions can be
performed when a milestone of interest is reached.

Adaptive Case Management

[342]

The following table highlights the facts around the milestone pattern:

Signature Milestone Pattern
Classification Case Pattern
Intent A logical indicative of the case's progress.
Motivation Milestones are like goals/checkpoints that represent the completion

of a deliverable and are indicative factors to trace the progress of the
case. Milestones are logical checkpoints; the attainment of milestones
is defined in the rules, or actions can be performed when a milestone
of interest is reached.

Applicability It's a specific execution point in the case instance. They support a
conditional execution of the case flow, tasks, and case activities.
Checkpoints can be set to act when certain nominated points in the
process execution are reached. Milestones are optional in a case, and
they do not bring about changes in the case state. However, they can
be used in rules to define and decide the progression of the case flow.

Implementation Oracle case management offers case components, where milestones
are defined. Each case comes with a business rule set and rule
dictionary. Milestones are available as a global in the rule dictionary.
Case management also offers various events, and one of the primary
event sets are milestone events. Business rules in the case can be
configured to listen to milestone events. Rules are fired when
milestone events are raised in the case management ecosystem.
Business logic in the rules can be defined to react when an event of
particular interest is received.

Known issues NA
Known solution NA

Download the sample case management application, ClaimApps, from the download
section for Chapter 8, Adaptive Case Management. Open the application in JDeveloper.
Perform the following steps to check the configuration of milestones and their usage
in the business rules:

1. Expand the InsuranceClaim project and follow the navigation path to open
the case editor for InsuranceClaimCase; this case can be found under the
path InsuranceClaim | BPM | Case | InsuranceClaimCase.

2. Check the general case properties defined for the sample case. You can define
the following general properties of the case:

 ° Title and category—Insurance Claim
 ° Priority
 ° Milestones and outcomes

Chapter 8

[343]

Using the case editor, you can assign outcome values to the case when it
is completed. For instance, in a claim case, the outcome when the case is
completed can be claim processed, claim recovered, and so on.

3. Click on the green plus (+) icon to add a new milestone in the case editor.
Check the milestone being defined for the InsuranceClaimCase.

4. Expand the project, InsuranceClaim | SOA | Business Rules |
InsuranceClaimCaseRules, to open the rule dictionary.

5. Click on Global in the rule dictionary and verify that the milestones are
listed there.

6. Click on the rule sets to open CaseEventRule. The business rule defined here
works as follows:
If Case == Started, then Milestone reached == "Started"

When a case is initiated, the case life cycle event is raised. Whenever an event
is raised, the case's business rules are executed. When the correct conditions
are met, an action is taken. So when the case's life cycle starts, the case will
reach the Started milestone. You can witness this in the business rule's action;
there are functions such as reachMilestone and revokeMilestone, which
can be used to define rule actions.

7. Click on CaseMilestoneRule in the rule sets. You can witness the usage of
milestone events in rule conditions:
If Milestone reached == "Started" then initiate FNOL activity.

Oracle case management offers milestone events to reason and define the
process flow. In this case, if the Started milestone is reached, then the FNOL
activity will be initiated.

Perform the following steps to test the scenario:

1. Deploy the InsuranceClaim project to the web logic server.
2. Log in to the Enterprise Manager console as the admin and click on the

deployed InsuranceClaimCase service.
3. Choose the Start Case operation from the list of operations and pass the

input in the XML view in the EM console. You can use SoapUI or any other
tool or mechanism to test the service.

4. Pass the test data (Claim.xml) and click on Test Web Service to execute the
service test.

Adaptive Case Management

[344]

5. You can trace the process flow, which shows the execution of the FNOL user
task. The FNOL user task is assigned to the CSR role (jcooper).

6. Verify, from the case editor's stakeholder section, which user is associated
with the CSR stakeholder. Log in to the BPM workspace as that user and act
on the FNOL user task.

The following screenshot depicts the sequential flow of the activities. When a case
starts, the LifeCycleEventRule rule gets executed. LIFECYCLE_EVENT starts,
which will mark the attainment of the Started milestone. When the Started milestone
is reached (as shown with an arrow in the following diagram), FNOLActivity (the
FNOL activity) gets initiated; FNOLActivity is based on the FNOL process that
assigns an FNOL user task to the stakeholder. When CSR (jcooper) acts on the
tasks, FNOLActivity gets completed. When the activity is completed, ActivityRule
gets executed and a call to reachMilestone will bring the case to attain the FNOL
milestone, as shown in the following screenshot:

Case interaction pattern
The case interaction pattern highlights the facts around the different processes and
service integrations with cases. Interactions and integrations can happen using APIs,
service calls, events, and so on. The following table highlights facts around the case
interaction pattern:

Signature Case Interaction Pattern
Classification Case Pattern
Intent Integrating the case with processes and services.

Chapter 8

[345]

Motivation A case ecosystem where different technology components can
integrate.

Applicability Events are the key components of the case management system.
Case management leverages EDN to publish and subscribe to
events. The Oracle case management engine raises events and
subscribes to events. The SOA service and processes can be
configured to subscribe to such events and can integrate with cases.

Implementation The case management engine can publish/subscribe events to
Oracle EDN and a case is exposed as a service; hence, the BPMN
process can invoke the case service to integrate with cases. A case
service offers the following operations: Abort Case, Close Case,
Revoke Case, Reopen Case, Start Case, and Resume Case.

Known issues NA
Known solution NA

Localization feature
Localization feature is a must in any BPMN/ACM solution as it offers the flexibility to
configure a case to use different languages when it is displayed in the user interface:

Signature Localization feature.
Classification Case feature
Intent Configure a case to use different languages when displaying in the

user interface.
Motivation Case interface to be used by case/knowledge workers and

participants following different languages.
Applicability The following artifacts of a case can be localized: case title, case

category, milestone name, outcome, data, user event, stakeholders,
and permissions. You can define a display name for all these
artifacts, except for the case title and category.

Implementation Key, value, and translation need to be defined to perform the
localization. The case editor has the translation tab to define the
following:

• Key (the name to identify a key)
• Value of the key in the default language
• Translation for the target language

Known issues NA
Known solution NA

Adaptive Case Management

[346]

Holistic view pattern
Processes are running across functional, system, and enterprise boundaries. An
enterprise needs an end-to-end definition of the case and a unified view of the case.
An enterprise wants to be agile and needs a real-time view of the current case status.
A real-time view of the case makes enterprises more responsive as and when events
happen. The following table highlights facts around this pattern:

Signature Holistic View Pattern
Classification Case Pattern
Intent Offer a holistic 360 degree view of the case instance.

Motivation As cases run long, a lot can happen over this time and various
participants and knowledge workers would have acted and
contributed in the due course of time. Hence, a holistic view of
the case is required, which ACM offers. ACM offers holistic work
management; this improves the enterprise outcome of work and
further translates to increased revenue, effective and better services,
and efficient risk mitigation.

Applicability Oracle ACM offers a case user interface that presents a holistic view
of the case instance.

Implementation The Oracle case management user interface can be used to view the
details of an open as well as closed case. It provides the flexibility to
add comments or initiate events on the case. Working on activities as
well as viewing and adding documents and case data are some other
events that can be performed via the case user interface. Viewing
and adding stakeholders, milestones, and user information can also
be performed using the case user interface. A case can be closed and
reopened from the case interface too.

Known issues NA
Known solution NA

Log in to the Oracle BPM workspace (http://wlsserver:port/bpm/workspace)
as the admin user and click on the CASE interface tab. This will navigate you to the
case user interface, shown in the following screenshot:

Chapter 8

[347]

You can perform the following activities though the case interface:

• Browse for the case instance you are interested in. Filter and search for the
case instance you are looking for.

• Click on Add Comment to add comments to the case, which will be visible in
the audit trail.

• You can use the case user interface to raise events; however, you can work
on the events that are preconfigured using the BPM JDeveloper Studio.

• Activities can be viewed in the left panel of the case interface. Activities are
categorized based on their state: running, completed, available, and error.

• Activities that are in the Available state can be initiated from the
case interface.

• The Audit trail panel allows you to view case events, participants who acted
on the events, and so on.

• The Data panel can be used to view and modify the case data.

Adaptive Case Management

[348]

• The Documents panel can be used to view the documents associated with the
case instance. Moreover, you can add/upload documents, set permissions
for the document, and you can also uncover the users/case workers who
uploaded the documents.

• You can view and change the status of the milestones from the
Milestones panel.

• The Stakeholder panel can be used to add new stakeholders. You can
also edit the existing stakeholder if the performer has permissions.

Ad hoc feature
Case management is all about handling unpredictable scenarios, unknown events,
and dealing with activities that are not predetermined. Hence, we need a solution
for the ad hoc inclusion of activities, ad hoc mechanisms to raise events, ad hoc
methods to add stakeholders and methods to refer to the subcases in the case, and
so on. In this section, we will check the various features of the Oracle adaptive case
management 12c solution that allow the ad hoc inclusion of stakeholders, rules,
activities, subcases, documents, and so on.

The following table highlights the facts around this pattern:

Feature Ad hoc feature
Classification Case feature
Intent The ad hoc inclusion of stakeholders, activities, rules and policies,

documents, subcases, and so on.
Motivation As cases run long, a lot can happen in that time. A case might need

new documents for which new knowledge workers need to be added
to the task. There might be cases when new ad hoc activities need to
be launched, or some of the scenarios need the existing subcases to
fulfill a case functionality, or there might be a requirement to change
the business rules and policies on the fly when the case is executing.

Applicability Oracle ACM offers the case user interface, which presents a holistic
view of the case instance. Also, it offers the flexibility to perform
various ad hoc activities, such as to change or modify a rule/
policy, add new rules/policies, define new activities and tasks, add
stakeholders, add documents, and so on.

Implementation The Oracle case management user interface can be used to perform
various ad hoc inclusion activities that are covered in the following
section.

Known issues NA
Known solution NA

Chapter 8

[349]

Ad hoc inclusion of stakeholders
We can note that Oracle ACM allows you to browse and add users, roles,
or groups as stakeholders at runtime. Perform the following steps to add
a stakeholder at runtime:

1. Log in to the BPM workspace as the admin user and click on the
Case workspace.

2. Click on the plus (+) sign in the stakeholder section to add new knowledge
workers or case workers.

Ad hoc inclusion of activities
Let's assume that somewhere in the case life cycle, if the business feels the need to
verify the witness report associated with the case, a witness report verification can
be performed by the user (lata). We will create a task at runtime and assign it to the
user (lata) to get it verified:

1. Navigate to Case workspace | Activities and click on Create Task.
2. Enter task details (title, assignees, due date, and so on) and click on Create to

create and initiate the task.
3. Log in as the user (lata) and we can find the task in the user's inbox:

Adaptive Case Management

[350]

Ad hoc inclusion of documents
We can add documents at various places. Click on a case workspace and go to
Document to add a document. We can browse for a configured ECM for the
document. Extending the case, when the CheckWitnessReport task gets assigned to
the user (lata), she can associate the witness report with the task and the document
will be available in the case.

Association of a case with subcases
A case can depend on another case, a case can be a parent of subcases, a case by
itself can be a subcase of another case/subcases, or a case might be a duplicate of
some other case. Oracle ACM offers the flexibility to associate a case with subcases
and other cases. Oracle ACM offers the feature to link cases with other cases and
subcases. In real time, an enterprise might have a pool of subcases that can be
linked with the current case. For instance, the settlement process is a subcase in
the enterprise. When the current case reaches the Customer Accepted milestone,
the settlement subcases can be linked with the current case, shown as follows, and
settlement subcases will take care of the settlement activities for the parent case:

Chapter 8

[351]

Ad hoc inclusion of rules and activities
When the case is progressing, at some point in the case life cycle, the business
decides to perform a check for fraudulent activity on the claimant and their claim
request. If we look at the InsuranceClaim project, we have FraudCheckProcess and
FraudCheckActivity. However, none of the rules are defined to initiate the fraud
check activity. We will now perform an ad hoc inclusion of the activity in the rule
that justifies the true dynamism of the Oracle ACM solution.

Log in to the SOA Composer application (http://host:7003/soa/composer/)
as the admin user and perform the following steps:

1. Click on Create Session to start an editing session.
2. Expand SOA-INFRA and click on InsuranceClaimCaseRules.rule inside

the InsuranceClaim project.
3. Click on MileStoneRule and select a decision table.
4. Navigate to Add action | All function to call activateActivity.
5. Author the rule, as shown in the following screenshot, to call

FraudCheckActivity.
6. Click on Save to save the authored rule as unsaved changes are

not published.
7. Click on Validate to validate the rule.
8. Click on Publish to persist and bring your authored rule into effect.

Adaptive Case Management

[352]

As we checked in the rule definition, FraudCheckActivity gets executed when a case
reaches the Validated milestone, as follows:

• Log in to the BPM workspace case manager (the web logic user), edit the
rule, and click on Approve under the Actions pane to approve the user task.

• Trace the process by logging in to the Oracle EM console and check the
process trace. We can verify that FraudCheckActivity gets initiated.

Summary
We often need a mechanism to handle unpredictable business scenarios, for which
case management is the solution. This solution is characterized with unpredictable
outcomes, is typically content-driven, usually depends on semi-structured
information, and has unpredictable recursive flows.

In this chapter, you have witnessed the milestone pattern, the event pattern, the
case interaction pattern, the holistic view pattern, and the case stage pattern. Along
with the patterns, we have checked out the ad hoc features of case management that
can be viewed as a practical justification to various ACM offerings. While walking
through the chapters, you must have realized how empowered knowledge and case
workers are. This chapter highlights the ad hoc inclusion of knowledge workers to
include human intuition in processes. We have witnessed the realization of some
of the ACM offerings through the sample demonstration. We have noted how
Oracle ACM integrates seamlessly with SOA, EDN, processes, services, content
management solutions, subcases, and so on.

The next chapter is focused on advanced features such as architecture models,
value chain models, KPIs, reports, and PAM, which are required for an effective
BPMN solution.

Advanced Patterns
This chapter discusses an organization's need to capture the context of a business to
perform impact and dependency analyses. Also, this chapter highlights how to report
on goals, objectives, strategies, and value chains in the organization. We will learn
how to create reports on KPIs to view how different components are stitched into
the fabric of an organization unit. It also demonstrates how a business architecture
model can be used effectively to inline the goals, objectives, strategies, and value
chain, which expedite IT development and always keep business and IT in concert.
Enumerating process behaviors offers visual representation of a BPMN process that
showcases an animated view of your process behavior so that process behavioral
patterns can be analyzed even before deploying and publishing the project. The
inclusion of a debugger will allow you to identify and fix logical or workflow issues
in the process and thus, infuse a preventive mechanism in the process modeling.

The Process Asset Management (PAM) section illustrates how process assets can
be shared between users who work on different applications and tools and also
between different users who work on the same application. PAM infuses business IT
collaboration and offers an enhanced method of round-trip between business and IT.
This section successfully demonstrates how well, versioning and PAM gel together
for an enhanced development and modeling experience for developers and process
analysts, respectively. This chapter focuses on methodologies and features around
analysis and discovery patterns that make an organization aligned with the goals,
objectives, and strategies. It also focuses on creating a collaborative ecosystem for
business and IT, and a detailed analysis of PAM and methods to emulate the process
behavior. The following methodologies, patterns, and features are covered in
this chapter:

• Strategic Alignment Pattern
• Capturing the business context
• Emulating the process behavior
• The debugger feature
• Round-trip and business-IT collaboration

Advanced Patterns

[354]

Strategic Alignment Pattern
BPMN needs a solution to align business goals, objectives, and strategies, as well
as a solution to allow business analysts and function/knowledge workers to create
business architecture models. These business architecture models will then drive the
IT development of processes. They will remain inline and align with the organization
goals. Oracle BPM 12c offers Business Architecture (BA), a methodology to perform
high-level analysis of business processes. This methodology adopts a top-down
approach to discover organizational processes, define goals and objectives, define
strategies and map them to goals and objectives, and report on BA components.
Strategic Alignment is more of a methodology than a pattern. However, it's an
important feature for a successful BPMN solution that aligns goals, objectives, and
strategies of the organization. The following table highlights the facts around the
Strategic Alignment Pattern:

Signature Strategic Alignment Pattern
Classification Analysis and Discovery Pattern
Intent To offer a broader business model (an organizational

blueprint) that ensures the alignment of goals, objectives,
and strategies with organizational initiatives.

Motivation A BPMN solution should offer business analysts and
functional users a set of features to analyze, refine, define,
optimize, and report business processes in the enterprise.

Applicability Such a solution will empower a business to define models
based on what they actually need, and reporting will
help evaluate the performance. This will then drive the
technological development of the processes by translating
requirements into BPMN processes and cases.

Implementation Using the BPM composer, one can define goals, objectives,
strategies, and value chain models. We can refer to BPMN
processes from the value chain models. Goals break down
into objects that are fulfilled by strategies. Strategies are
implemented by value chains that can be decomposed into
value chains/business processes.

Known issues Collaboration and a defined method to collect information.
Known solution Solution to such a challenge is by including different

stakeholders to define such artifacts. Stakeholders include
business analysts, systems analysts, the IT department, CEO,
CIO, and so on.

Chapter 9

[355]

Using the BPM composer, we can define models using the following capabilities:

• Enterprise maps: In models that showcase key process areas of an
organization, Enterprise maps infuse process classification (functional
division of processes) and decomposition (business functions of services).
Classification is enabled using lanes. Process areas are added to lanes, and
each process area is linked to a value chain model.

• Value Chain Models: These represent the various stages of the process.
A value chain model can be broken down into distinct value chain models or
can be linked to business processes. It is the business processes that outline
the IT requirements needed to realize the model. We can define KPIs that
ensure the tracking of key business information for an organization, within
the value chain models.

• Strategy Models: This is to define an organization's objectives and goals and
also a strategy to achieve them. Strategy Models contain goals (end result of
the Strategy Model), objectives (smaller objects or milestones to achieve the
organization's goals), strategy (plans to achieve an objective), and value
chain (how a strategy is implemented by referencing other value chains
or BPMN processes).

We will use the Loan Origination application and Loan Origination
project from Chapter 6, Correlation Patterns. Download the Loan
Origination project from the Correlation directory. You can
deploy the Loan Origination project as it is and start executing the
samples given in this chapter.

Perform the following steps to create enterprise maps:

1. Log in to the BPM composer application at http://host:7003/bpm/
composer. We will create an enterprise map for a new project.

2. Click on ALL and + (pointed to as 1 in the following screenshot) to create
a process space.

3. You can select a process space that already exists or create a new process
space. Process spaces group related BA and BPM projects.

4. Enter the name of the process space as MyBPMProjectSpace.
5. Click on Save to save the process space. By default, a space is a private space.
6. Click on Edit (as pointed to by arrow 3) to add participants to the

process space.

Advanced Patterns

[356]

7. Click on Enterprise Map on the welcome page under BA Project.
8. Enter the enterprise name as MySocialBankEnterpriseMap.
9. Select the process space that we just created, that is, MyBPMProjectSpace.
10. Enter a name for the project as MySocialBankProject, as shown in the

following screenshot, and provide a description for the map.
11. Click on Create to create a BA Enterprise map project.

The Enterprise map editor will open up. You can add new lanes and process areas;
by default, 12c offers core, management, and support lanes. We can drag-and-drop
the lane and process area components from the component pallet to the map editor
to add a lane or process area by performing the following steps:

1. Drag-and-drop Process Area from the component pallet to create a process
area into the Core, Management, and Support lanes.

2. Click on the pencil icon to edit it. This will open the Properties page.
Enter a name and save your activity.

3. Enter the name of the process area and a description, and click on OK.
4. Save your work by clicking on the Save icon, as pointed to by an arrow

at the top of the window, in the following screenshot.

Chapter 9

[357]

5. Create a lane structure with process area, as shown in the
following screenshot:

The Value Chain Model
Perform the following steps to create a Value Chain Model and associate the BPMN
process to it:

1. Navigate to Value Chain Model in the project, as shown in the following
screenshot, and click on New (+) to create a Value Chain Model.

Advanced Patterns

[358]

2. Enter the name of the Value Chain Model as MySocialBankValueChain;
then, enter a description and click on Save, as shown in the following
screenshot. Remember to select a process space for the Value Chain Model.
We are performing this step to create a master Value Chain Model.

3. Drag-and-drop a chain step into the Value Chain Model editor, and click
on Edit to enter the names of the chain steps (Loan Origination and
Payments). This will create a master Value Chain Model.

4. Navigate to the project space, click on Value Chain Model again
in the project to create another Value Chain Model, and name it as
LoanOriginationValueChain. This will create a child Value Chain
Model. We will link this child model to the BPMN process.

Chapter 9

[359]

5. Drag-and-drop a chain step into the Value Chain Model editor, shown in the
following screenshot, and click on the Edit (pencil) icon to enter the name of
the chain step (for Validation, Underwriting, and so on). This will create a
child Value Chain Model that will refer to the BPMN process.

6. In the child Value Chain Model, click on Validation chain step and go to its
Properties page.

7. In the Properties dialog box, under Links, click on the browse icon beside the
BPM or Value Chain section. This will open the Link dialog box.

8. Choose LoanOriginationProject and click on Next.

Advanced Patterns

[360]

9. Then, choose LoanOriginationProcess and click on Finish.

We just associated the BPMN process with the Value
Chain Model.

Perform similar steps with other chain steps (BCG, Underwriting, and so on)
to associate them with the Fraud Check process. The preceding process is
demonstrated in the following screenshot:

10. Save the edition and publish the changes.
11. Navigate to the primary Value Chain Model named

MySocialBankValueChain. We will now link the primary Value Chain
Model to the child Value Chain Model.

12. Click on the Loan Origination chain step and go to its Properties page.
13. Click on Links as shown in the following screenshot.
14. Select MySocialBankProject and click on Next.

Chapter 9

[361]

15. Choose the LoanOriginationValueChain child Value Chain Model and click
on Finish.
This establishes a master-child Value Chain relationship between the Value
Chains we defined earlier. The preceding process is demonstrated in the
following screenshot:

In this section, we defined the master and child Value Chain Models, and associated
them to define the relationship. We also associated a value chain model with
BPMN processes.

The Strategy Model
In this section, we will create a Strategy Model and link the goal to the objectives.
We will then link objectives to strategy and strategy to Value Chain references, as
shown in the following screenshot. Goals break down into objects that are fulfilled
by strategies. Strategies are implemented by Value Chains; these strategies can be
decomposed into value chains/business processes. Create a Strategy Model for the
organization using the following steps:

1. Click on a Strategy Model in the MySocialBankProject project.
2. Enter the name and details for the Strategy Model named

MySocialBankStrategyModel. This will open the model editor.

Advanced Patterns

[362]

3. Drag-and-drop the goals, objectives, and strategy, and name them as shown
in following screenshot:

4. Click on the processes objective, that is, Efficient Processes, and go to its
properties page, as shown in preceding screenshot.

5. Choose Priority as Critical, and give appropriate values for Actual Cost,
Actual Time, Proposed Cost, and Proposed Time.

6. Click on OK, and save it to retain the changes.
7. Similarly set properties for other objectives too.
8. Link the goal to objectives and objectives to strategies, as shown in the

preceding screenshot.

We will now create a value chain reference by performing the following steps:

1. Drag-and-drop a Value Chain reference to the canvas.
2. Enter the name as MySocialBankValueChain and provide a description.
3. Browse for the Value Chain links, select the Value Chain named

MySocialBankValueChain, and click on Finish.

Chapter 9

[363]

Mapping goals to an organization
We are now going to map goals to the fictitious organization unit,
MySocialBankOrganization. All the assets (objectives, strategies, and Value Chain
Models) that are linked to the goal will automatically get linked and grouped for this
organization unit. Perform the following steps to map goals to the organization:

1. Go to the project's home page, create an organization unit named
MySocialBankOrganization, and save it.

2. Go to Strategy Model, visit the properties of the goal, and assign the
organization unit to the goal.

Defining KPIs in a BPMN project
In this section, we will define the KPIs that will help an organization track its
performance against the objectives that are set. LoanOriginationProject already
contains the measurements defined for loan amount. If we check the process in
the BPM composer, we can find the measurements under Business Indicators.
We will now define the KPIs section, shown in the following screenshot, for the
business indicators:

Advanced Patterns

[364]

Perform the following steps to define the KPI:

1. Click on KPIs and then on the plus (+) icon to create the KPI.
2. Enter the name of the KPI as Loan Amount, as shown in the

preceding screenshot.
3. Click on Create. This will open the KPI's edit page.
4. Enter the KPI details as shown in the following screenshot.
5. Enter the display name, and choose the LoanOrigination process.
6. Select the LoanAmount business indicator.
7. Define Target Type as Range and enter the range values.
8. Let Operation be set to Total and Time Range to Last 365 days

(that is, the whole year).

Chapter 9

[365]

9. Similarly, define a KPI based on the seeded business indicator, Instance
Count, and name the KPI as LoanRequests

10. Save the changes and publish the project.

Defining KPIs in a BA project
We just defined the KPIs in a BPMN project. Now, we will define KPIs in a BA
project. We will define the range for the KPIs, and this way, we can visualize the
impact of business indicators on our process, with the real values that we defined.
KPIs can be manual KPI (to plug a known value), rollup KPIs (to aggregate child
KPIs), and external KPIs (to include KPIs from external applications).

Defining KPIs in a child Value Chain Model
We can define KPIs on a Strategy Model and on Value Chain Models. In this section,
we will define KPIs on the child Value Chain Model that we created earlier.

KPIs in the Value Chain Step level
Perform the following steps to create KPIs on the Value Chain step level:

1. Navigate to the BA project, MySocialBankProject, and click on Value
Chain Model.

2. Select the child Value Chain Model named LoanOriginationValueChain.
3. Right-click on the chain step, Validation, and select KPIs.
4. Click on the plus (+) sign to create two manual KPIs, as shown in the

following screenshot.

Advanced Patterns

[366]

With manual KPIs, we are able to plug in known values for the number of loans
processed and rejected. The following screenshot demonstrates the creation of
manual KPIs:

Now, we will create rollup KPIs, which allow us to rollup the number of loan
requests and the amount mentioned in loan requests from the underlying BPMN
project. Click on the plus (+) sign to create two rollup KPIs, as shown in the
following screenshot. As we witnessed, rollup KPIs are based on the available
KPIs from the business process, as depicted in the following screenshot:

Chapter 9

[367]

KPIs in the Value Chain Model level
Perform the following steps to create KPIs on the Value Chain Model level:

1. Double-click on the Value Chain Model grid in the background. We will be at
the LoanOriginationValueChain model level.

Advanced Patterns

[368]

2. Click on KPIs and then on the plus (+) icon to define a KPI. The following
screenshot shows how to define a KPI for LoanOriginationValueChain:

Defining KPIs in the master Value Chain Model
In this section, we will define KPIs on the master Value Chain Model that we
created earlier.

KPIs in the Value Chain Step level
Perform the following steps to create KPIs in the Value Chain Step level:

1. Navigate to the BA project, MySocialBankProject, and click on Value
Chain Model.

2. Select the master Value Chain Model, MySocialBankValueChain.
3. Right-click on the LoanOrgination chain step and select KPIs.

Chapter 9

[369]

4. Click on the plus (+) sign to create two manual KPIs, TotalLoanRequests and
TotalLoanAmount, as shown in the following screenshot.

5. Save and publish the changes.

KPIs in the Value Chain Model level
Perform the following steps to create KPIs in the Value Chain Model level:

1. Double-click on the Value Chain Model grid in the background. We will be at
the MySocialBankValueChain model level.

2. Click on KPIs and then on the plus (+) icon to define a KPI.
3. Define one KPI, Volumeofloanrequests, which is of the Rollup type by

selecting Loanorigination.Totalloanrequests from the list of available KPIs.
Define it with the same range as the Totalloanrequests KPI.

4. Define another KPI, Grandloanamount, which is of the Rollup type by
selecting Loanorigination.Totalloanamount from the list of available KPIs.
Define it with the same range as the Totalloanamount KPI.

5. Save and publish the changes.
6. Release the lock.
7. Deploy the BPMN project from the BPMN composer if it's not

already deployed.

Advanced Patterns

[370]

You can create a simple Loan Origination process in the composer with a Start
Message Event and two business indicators defined as the measurement marks.
Alternatively, we can use the Loan Origination project from the Correlation folder
available in the downloadable code of Chapter 6, Correlation Patterns. Until this level,
we defined KPIs for the child and master value chain steps and models.

Publishing report data
Before we generate a report, we have to publish the report data. Perform the
following steps to publish the report data and generate reports:

1. Go to the main menu and click on Publish report data. A message dialog will
appear with the published details.

2. To generate a report in the main menu, navigate to Reports | Business
Architecture | Impact Analysis Report | Value Chain (the value chain
report will help us understand how goals, objectives, strategies, value chains,
and processes are linked).

3. Click on Viewpoint and select By Organization Unit, as we want to generate
reports based on the organization unit.

4. In the following screenshot, we can see that goals are listed inside the
organization units. Objectives are linked to the goals. Similarly, strategies
are bound to respective objectives, and processes are linked to the Value
Chain Model.

Chapter 9

[371]

As we can see, the Impact Analysis report used the published data stored in the BPM
repository, and these reports showcase properties and hierarchy of BA components.
We can also run the Process Critical report, where values will come from the KPIs
that we just created. We can drill into the report and click on the text inside the
value chain model. Using BA, we modeled the processes within an organization and
defined goals, objectives, and strategies. We can use reports to view how different
components are stitched in the fabric of an organization unit. These reports will help
us in knowing the following:

• What our goals are
• How goals and objectives are fulfilled by strategies
• How goals, objectives, strategies, and value chains are linked
• How goals, objectives, strategies, value chains, and processes are linked

Advanced Patterns

[372]

Capturing the business context
Organizations need process documentation that helps them perform Impact and
Dependency analysis. Using the BPM 12c composer, we can document the process
at various levels such as project, process, and activity levels, and generate reports for
the analysis of business requirements, issues, challenges, and so on. There are various
documentations defined at discrete document levels as shown in following table:

Document
level

Documentation How it's
defined?

When it's used? Where it's used?

Project Project
description
(helps distinguish
between different
projects)

When a project
is created, we
can enter it's
description

When projects are
enlisted in the space

Detailed Business
Process Report

Role description Below the role
in the narrative
view

Role description Detailed Business
Process Report

Process Process
description (it
explains the
title and helps
distinguish
between different
processes)

When a process
is created, we
can enter its
description
in the general
tab in process
properties or
below process
name in the
narrative view

When process are
enlisted in the space.

• Detailed
Business
Process Report

• Business
Requirements
Report

• Process
Properties
Report

Process
documentation
(links can be
added to check
information
duplicity, and the
documentation
type will help us
define whether
document
visibility is for
end user or
internal user)

Can be added
in the narrative
view or
documentation
properties in
the process
properties,
(it's shown in
the following
screenshot)

Add information to
the process when
information does not
exist elsewhere.

• Detailed
Business
Process Report

• Business
Requirements
Report

Chapter 9

[373]

Document
level

Documentation How it's
defined?

When it's used? Where it's used?

Process links (link
description helps
in removing the
confusion when
information is
generic in various
components)

Link tab in
the business
properties

To determine if
a link contains
the appropriate
document, we can add
information to links,
which is then added
to activities, processes,
requirements, activity
documentation,
and process
documentation.

• Detailed
Business
Process Report

• Business
requirements
report

Requirements
(this feature
allows tracking
status, priority,
and challenges of
the requirements
of a process.)

Business
properties (it
is shown in
the following
screenshot)

Requirements allow
us to set the business
context. We can add
multiple requirements.
Downstream we can
sort them by date,
status and so on.

• Detailed
business
process report

• Business
requirements
report

Process notes
(they are like
sticky notes)

Drag-and-drop
notes from the
component
pallet to the
process graphic

While editing and
creating a process,
notes are useful to
establish collaboration.

Not visible

Activity Activity
description

In the graphic
view at activity
business
properties or
narrative view

Brief expansion of the
activity name

• Detailed
Business
Process Report

• Business
Requirements
Report

• Human Tasks
versus Process
Report

• Services versus
Process Report

Activity links Business
properties as
shown below;
multiple links
can be added

Can be added to
activities, processes,
requirements, activity
documentation,
and process
documentation. You
can enter name,
description, and
select the URL of the
link with the correct
format, as shown
in the following
screenshot.

• Detailed
Business
Process Report

• Business
Requirements
Report

Advanced Patterns

[374]

Document
level

Documentation How it's
defined?

When it's used? Where it's used?

Activity
documentation

Can be added
at narrative
view or
documentation
panel

To add relevant
information
to the activity.
Documentation type
will help us define
whether document
visibility is for end
user or internal user.

• Detailed
Business
Process Report

• Business
Requirements
Report

Activity
comments

Add through
business
properties

Use comments to
record information.
They appear in various
reports as they are
permanently attached
with the activities.

• Detailed
Business
Process Report

• Business
Requirements
Report

• Issues and
Comments
Report

Activity notes Drag-and–drop
the activity
note from the
component
pallet to process
graphic

Helps in collaboration.
They are like sticky
notes and are not
permanent; they
should be used as
reminders.

Not available

General In the General
tab under
business
properties

It facilitates process
improvement and
discovery. It helps
tack the cost and time
required to perform
the activity.

• Detailed
Business
Process Report

• Business
Requirements
Report

Chapter 9

[375]

Document
level

Documentation How it's
defined?

When it's used? Where it's used?

Issues The Issues tab
in business
properties

• It facilitates
process
improvements,
testing, and
discovery.
Issues can be
sorted based
on severity,
date, priority,
and resolution
status.

• It facilitates
the tracking
of issues, such
as severity,
priority, and
resolution
status, that are
associated with
activities

• Detailed
Business
Process Report

• Business
Requirements
Report

• Issues and
Comments
Report

RACI
(Responsible
Accountable
Consulted
Informed)

The RACI tab
in business
properties
tracks those
who are
responsible,
accountable,
consulted, and
informed on an
activity

Facilitates process
improvements, testing,
and discovery to
ensure that proper
roles are associated
with the activity

The RACI report

Advanced Patterns

[376]

The following screenshot showcases the Narrative view, Documentation Type,
Links, Requirements, and an activity's RACI properties:

Save and publish the information to the BPM repository. We can now generate
reports by clicking on the main menu in the application's welcome page and
selecting Process Report from the drop-down list. We can generate various report
types, as shown in the following screenshot. Select the report type and output
format, and the respective report will be generated.

Chapter 9

[377]

Emulating Process Behavior
The following feature table highlights the facts around Emulating Process
Behavior feature:

Feature Emulating Process Behavior
Category Analysis and Discovery Pattern
Intent Facilitating process designers with the creation of test and revise

processes without saving and deploying the process.
Motivation Visual representation of a BPMN process, which showcases

an animated view of your process behavior so that process
behavioral patterns can be analyzed even before deploying
and publishing the project.

Advanced Patterns

[378]

Applicability Process player does not require that you either deploy or publish the
project to visualize the changes. Technically, the Oracle BPM composer
will validate the project and will deploy the draft version of the BPM
project to a player partition in BPM's runtime environment.

Implementation In a BPMN process, the process player will emulate the runtime
behavior of User Tasks, Message Send Tasks, Send Events, Timer
Events, Call Activities, End Events, and other activities.

Known issues NA
Known solution NA

Enabling the process player is a two-step process. First, the process player needs to
be enabled, and second, we need to map the role defined in the process to the user or
group in the organization's infrastructure.

While enabling the process player, we need to provide the SOA administrator
credentials, because the BPM composer uses them to deploy the draft version of the
project to runtime player partition and to perform tasks on the process instance as
different users. Any user with edit privileges can run the process player. Perform the
following steps to access edit privileges:

1. Log in to the Oracle BPM 12c composer application.
2. Go to Administrator view in the application's welcome page.
3. Select Process Player and enter the SOA admin user name and password.
4. Click on Save, and we will receive a message saying that the SOA admin

credentials were successfully configured.

Now, we will map the role defined in the process with the user/group defined in
organization infrastructure as this facilitates the emulation of process behavior in a
real-world situation.

Chapter 9

[379]

The following screenshot showcases the Administrator view and enables the process
player by supplying the SOA admin credentials. It also shows the Modular view to
start the process player by mapping the role with the user and selecting the process
to analyze:

A process role (all the roles defined in the process) must be mapped to at least one
user/group each. Select a process from the list of processes; for example, select the
BackOffice process. BPMN will start deploying the process to a runtime player
partition as shown by number 2 in the following screenshot. It will open a web
service test client.

Advanced Patterns

[380]

Select the operation (for example, startBO) and enter the request parameters.
We can pass security details if required by the process. Policies can also be
associated if required. Clicking invokes the initiation of the process instance.
When a process starts, you can find the process emulation behavior shown by
number 8 in following screenshot:

Chapter 9

[381]

When the process reaches the end event, we can click the drill-up icon to end the
process emulation. This will end the process instance, and the process player will
delete the process instance.

The Debugger feature
The following feature table highlights facts around the Debugger feature:

Feature BPM Debugger
Category Analysis and Discovery Pattern
Intent To identify and fix logical or workflow issues in the process.
Motivation It's a preventive approach to know in advance various challenges in

the logical and process flows. The Debugger feature allows us to track
the BPMN process, inspecting process instance attributes, drilling into
data objects, watching correlation keys and conversations, and, above
all, allowing us to inspect the message values sent from and returned
to the BPMN components.

Advanced Patterns

[382]

Applicability Processes logical thread while executing and activates various frames
that contain sets of data values which represent process data objects
and attributes. The BPMN process, subprocess, callable subprocess,
and event subprocess are data-declaration containers. When a process
starts or enters one of these containers, a new frame is created.
The debugger will then build a stake of frame based on how these
containers are nested in the process. The debugger basically creates a
model out of the stake frame, where this model offers data visibility
and enables access to data in the BPMN process.

Implementation Implementation is based on breakpoints. We define breakpoints in the
BPMN process, and these are the points where the process will stop.
This stoppage will allow monitoring of values in the BPMN process
variables. These values will help analyze any potential problems in the
process logic or process flow.

Known issues NA
Known solution NA

Perform the following steps to enable debugging in the BPMN process:

1. Expand the Loan Origination project, and open the Loan Origination process.
2. Right-click on any of the BPMN process components on which we want to

set a break point.
3. Select the Toggle breakpoint (a red dot will appear on the component, as seen

in the following screenshot):

Chapter 9

[383]

4. We can navigate to JDeveloper | Window | Breakpoint, and this will enlist
all the break points defined in the process. We can edit their behavior as
shown in the preceding screenshot.

Perform the following steps to attach a BPM project to the debugger:

1. Right-click on the project.
2. Select Debug; this will open the SOA Debugger Connection Settings

dialog box.
3. Enter the debugger's host and port, and click on OK.
4. Select the option to deploy the project to the application server.
5. The composite editor and debugger windows will appear; we can run the

BPMN process step by step and analyze the values at various breakpoints.

Round Trip and Business-IT
Collaboration
The following feature table highlights facts around Business-IT
Collaboration feature:

Feature Round Trip and Business-IT Collaboration
Category Process Collaboration
Intent Facilitating storing and sharing of business process assets and

business architecture assets.
Motivation Common storage for process assets and business architecture assets.

Sharing of assets between process developers who work on the BPM
studio and process analysts who work on composer application.

Applicability PAM supports collaboration (allowing multiple users to work on the
same project at the same time), versioning (allowing the existence
of multiple versions of the same asset), security and access control
(providing secure access control of the business assets), life cycle
(flexible life cycle model), reporting (detailed report of business
assets), conflict resolution, difference and merge (viewing the
difference between different versions of the asset, resolving conflict,
and merging the changes), and backup and recovery (the ability to
roll back to a stable version in case of error/bugs).

Advanced Patterns

[384]

Implementation Oracle BPM 12c uses PAM to store and share business process assets
and business architecture assets. PAM infuses the sharing of assets
between process developers who work on the BPM studio and
process analysts who work on a composer application.

Known issues NA
Known solution NA

Working with PAM is a multistep process, which is as follows:

1. Open JDeveloper 12c and navigate to Window | Process Asset Manager
Navigator to connect with a PAM server.

2. Enter the connection name as MyPAMConnection; also, enter the admin
username and password of the asset manager server, and click on Next.

3. Enter the location of the asset manager, that is, the server and port.
4. Test the connection and save the PAM server connection configuration,

as shown in the following screenshot:

We can create a process space from JDeveloper too. However, let's take a round
trip to the process composer to perform other activities. We will use JDeveloper
12c to modify a process in the Loan Origination project. Then, we will open the
same project in the process composer to share it with other users to perform further
modeling. When composer users perform the changes, JDeveloper users will be able
to merge them and continue with the development.

Chapter 9

[385]

Remember that the lock feature prevails when we want to save the
asset into PAM. If the asset is locked by another user or the same user
in JDeveloper/composer, the asset cannot be saved until it is unlocked
by the other user.

If the asset is already updated by another user or another application or if there is an
updated version of the project in repository, we need to first update our local copy
and then save it.

Open the Loan Origination application in JDeveloper12c and expand the Loan
Origination project. Then, perform the following steps:

1. Open the Loan Origination process and add an activity named
RoundTripActivity.

2. Select the Is Draft checkbox to let the activity be in the draft mode.
3. Right-click on the project and select Save to PAM.
4. Enter a comment in the Save Project to PAM dialog.
5. Click on OK.
6. Check the PAM log, and we can witness the PAM commit status and the

new revision number.

Advanced Patterns

[386]

In this exercise, we added a new activity in the Loan Origination process. We can
now log in to the Oracle BPM composer to check the Loan Origination process model
to verify the change.

We will share the project with two users using the following steps; you can share it
with any two users defined in the LDAP or embedded LDAP (myrealm):

1. Go to the application's welcome page and click on Edit on the process space
to which your project belongs.

2. Specify the user and select a role (Owner, Editor, or Viewer). Let the users
(RIVI and LATA) be editors.

3. Click on Share to share the assets with the users (RIVI and LATA) who are in
the editor role.

4. We can witness the users as Team in the project space, as shown in the
following screenshot:

Open the Loan Origination project in three different browsers by logging in as,
weblogic, rivi, and lata users and perform the following steps. If the project is
already locked by the weblogic user, it needs to be unlocked by the weblogic user
to allow the rivi or lata user to perform editing. Otherwise, they would be in the
viewing mode.

1. Log in to the BPM composer as weblogic.

Chapter 9

[387]

2. Open the Loan Origination project (at this stage, weblogic is editing the
project). Close the project, as shown in the following screenshot:

3. The Close Project dialog will ask to Release Lock and recommend that you
publish any unpublished changes. Click on Publish to publish the changes
made by weblogic into the BPM repository.

4. Check the Release Lock box to unlock the project so that other users can
open it in editing mode.

5. As we logged in to the BPM composer in other browsers with users rivi
and lata, allow user rivi to start editing the project.

6. Navigate back to the browser in which we are logged in as weblogic.
Click on the team–sharing logo in the application's welcome page as
pointed by number 5.

Advanced Patterns

[388]

7. The Team dialog will appear; this will showcase which user is performing
what function and how the asset is shared between the team. We can
witness that rivi is performing editing, and weblogic and lata are
viewing the project.

8. Go to the third browser where we logged in as user lata. As weblogic
has published its changes, asset is modified in the repository,
and hence, the user lata will be prompted to refresh the project to view
the latest changes.

This exercise shows how collaboration between different users and between
applications and the JDeveloper tool can be facilitated quickly and efficiently. If there
are new published changes, the viewing users are notified by a request to refresh
their view. If a user wants to close the project and there are unpublished changes,
then they will be promoted to publish these changes, as shown in the following
screenshot. Lock-unlock is another feature that allows effective sharing of assets
between a team. Perform the following steps to demonstrate the round-trip process:

1. Log in to the BPM composer as user rivi, open the Loan Origination project,
and click on RoundTripDemoProcess.

2. Edit RoundTripDemoProcess by adding two new activities in the draft
mode, as shown in the following screenshot:

Chapter 9

[389]

3. Save the asset.
4. When we click on Publish, the Publish Project dialog appears.
5. Enter comments while publishing the changes.
6. We can either select Make snapshot and/or select Release Lock to unlock

the project
7. Click on Publish to publish the changes to the repository.

Open JDeveloper and make changes to RoundTripDemoProcess. These changes
made by a user in JDeveloper are different from the changes made by a user in
the BPM composer. We are trying to demonstrate the difference and merge in this
section by performing the following steps:

1. Right-click on the project in JDeveloper.
2. Expand Versioning to click on update.
3. We will try to update the asset definition.
4. Click on Yes in the dialog; this prompts for the changes to be saved,

as shown in the following screenshot:

Advanced Patterns

[390]

5. Updating the process will open the Subversion Merge Wizard dialog.
Select Merge Selected Revision Range to perform the merge.

6. Click on Next.
7. In the next dialog box, click on Next again.
8. The wizard showcases Conflicts, as shown in the following screenshot.

Then, click on Finish.

As a project has conflicts, we will try to resolve the conflicts by performing the
following steps:

1. Right-click on the project and select Resolve conflicts (steps 9 and 10 in the
preceding screenshot).
This will open a visual difference and merge screen. We can do this for
every file that has conflicts. We can then click on Save and Complete Merge,
as shown in the following screenshot, when all conflicts are resolved:

Chapter 9

[391]

2. When all differences are sorted and merged in the editable section, add a
localization entry, from the section on which you want to bring the change,
to the editable area (step 11, in the preceding screenshot).

3. Click on Save and Complete Merge (step 12 in the preceding screenshot).
This will showcase the result process.

As we can check in the preceding screenshot, the left-hand side window shows the
JDeveloper process, and the right-hand side window shows the process after the
conflicts are resolved. As we saw in the preceding sections, PAM and SVN were
used interchangeably. We have the flexibility to choose between the features of
PAM (update, save and resolve conflict, and resolution functionality) and the
SVN versioning features (update, remove, merge, lock, unlock, switch, and so on).
For example, you can use the save action of PAM to publish a project, or you can
use the SVN commit action.

Advanced Patterns

[392]

Summary
The Strategic Alignment pattern in the Analysis and Discovery pattern category
demonstrated features to analyze, refine, define, optimize, and report business
processes in the enterprise. This pattern highlighted how IT development and
process models can be aligned with organization goals. While performing alignment,
we learned about enterprise maps, Strategy Models, and Value Chain models. We
discovered how models are created and linked to an organization. We learned how
to define KPIs in processes and Value Chain models.

The chapter also offered a detailed description on publishing report data, and
creating impact analysis reports and critical reports. Capturing business context
shows the importance of documentation in the process model phase. Different
document levels and their methods of definition were discussed along with their
usage. Further, we learned how to create different reports based on the information
we documented in the process, such as RACI reports. The process player's
demonstration showcased how process behavior can be emulated in a visual
representation that allows designers and analysts to test and revise the process
without deploying it.

While doing so, we learned how to navigate in various modes, mapping users to roles
and running process instances to analyze process behavior. We also learned how to
set breakpoints and enable debugging in the BPMN process. Round-trip and business-
IT collaboration facilitated storing, sharing, and collaborating on process assets and
business architecture assets. While doing so, we witnessed PAM and subversion and
also learned versioning, save/update/commit, difference and merge, and various
other activities, which empower developers and analysts to work in unison.

Installing Oracle BPM
Suite 12c

This appendix introduces you to the installation of Oracle BPM suite 12c.

Installing JDK
Download JDK from the following URL, which is from official site of Oracle. Make
sure that you download a JDK higher than 1.7.0_15, as Oracle BPM 12c requires JDK
1.7.0_15 and higher:

http://www.oracle.com/technetwork/java/javase/downloads/index.html.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installing Oracle BPM Suite 12c

[394]

After clicking on the preceding link, the Java SE Development Kit 7u60 window
opens as shown in the following screenshot:

Install JDK, set JAVA_HOME, and update the environment variable with JAVA_HOME.

Installing BPM suite
To install the BPM suite, perform the following steps:

1. Download Oracle BPM Suite 12c from OTN or Oracle product downloads
for BPM 12c at http://www.oracle.com/technetwork/middleware/bpm/
downloads/index.html.

http://www.oracle.com/technetwork/middleware/bpm/downloads/index.html
http://www.oracle.com/technetwork/middleware/bpm/downloads/index.html

Appendix

[395]

2. Save the download file and unzip it to a local directory.
3. Open the command prompt with admin privileges, and run the following

command to begin the installation:
Java –jar fmw_12.1.3.0.0_bpm_quickstart.jar

The preceding command line is entered into the command prompt as shown
in the following screenshot:

Installing Oracle BPM Suite 12c

[396]

4. This will start the extraction of the file and will essentially start the
installation. The following screenshot shows you the Welcome page
of the installer window:

5. Click on Next.
6. Enter the installation location that will be the Oracle home. It checks for the

operating system and Java version (JDK 1.7.0_15+ is expected).
7. Verify the installation summary, and click on Install to begin the installation.

Then, click on Next.
8. The Installation complete screen shows you the installation summary.

You can check/uncheck the Start JDeveloper checkbox if you want to
start/not start the JDeveloper after the installation.

9. Click on Finish to complete the installation process. The installed files can be
viewed as follows:

Appendix

[397]

Configuring the default domain
Perform the following steps to configure the default domain:

1. Launch JDeveloper.
2. Allow for the visibility of Application Servers by navigating to

Window | Application Servers.
3. Start the integrated WebLogic server as shown in the following screenshot:

4. This will launch the domain creation dialog box.

Installing Oracle BPM Suite 12c

[398]

5. Create the default domain with all the details, as shown in the
following screenshot:

6. We can enter a password of our choice and the ports as we want to
define them. Click on the Technologies tab to review the technologies
that will be configured.

7. Click on OK.
8. JDeveloper will be using the derby database. Once you get the message

that the server has started, in the JDeveloper log, as shown in the following
screenshot, you can log in to the console and verify the configurations:

Appendix

[399]

9. Log in to the WebLogic console at http://localhost:7101/console
using the weblogic username and the password that you entered while
configuring the domain.

10. Navigate to Deployments to verify the BPM Composer application, BPM
Workspace application, and EM.

11. Log in to the workspace at http://localhost:7101/bpm/workspace,
and verify the case workspace UI and other features.

12. Navigate to myrealm | Users and Groups and verify the users. We will find
only three users available.

Enabling the demo user community
To include other users and build a hierarchy, perform the following steps:

1. Log in to WebLogic console and navigate to Deployments. On the summary
page of Deployments, click on Install.

Installing Oracle BPM Suite 12c

[400]

2. Browse SOATestDemoApp.ear to install the demo community by clicking on
the upload your file(s) link as shown in the following screenshot, and click
on Next:

3. Click on Next and select the option to install the deployment as the application.
4. On the Optional Settings page, click on Next.

Appendix

[401]

5. In the installation assistant, review the page, click on No, I will review the
configuration later., and click on Finish.

6. Log in to http://localhost:7101/integration/SOADemoCommunity/
DemoCommunitySeedServlet.

Installing Oracle BPM Suite 12c

[402]

7. Click on Submit in order to seed the demo community. The following
screenshot shows you the Seed Demo Community page:

8. Once done, come back to the WebLogic console, navigate to myrealm | User
and Groups | Users, and verify the new users that have been created.

9. Stop the default domain.
10. Click on the Terminate icon to stop the integrated weblogic.

Custom domain creation
The default domain installation comes with JavaDB (derby DB); however, if you are
looking for a complex domain structure and want to install the product suite on a
database, perform the following steps:

1. Install the database (XE or Oracle 11g) (I'm not covering the database
installation here).

2. Open the command prompt with admin privileges, and navigate to the
ORACLE_HOME/oracle_common/bin directory.

Appendix

[403]

3. Run rcu.bat, as shown in the following screenshot. This will start the
repository creation script.

4. On the RCU creation welcome page, click on Next.

Installing Oracle BPM Suite 12c

[404]

5. As shown in the following screenshot, choose System Load and Product
Load if you have DBA privileges, and click on Next. You can use the same
screen to drop the repository, if required.

Appendix

[405]

6. Enter the database details as shown in the following screenshot, and click
on Next:

Installing Oracle BPM Suite 12c

[406]

7. In the Select Components window, enter a schema prefix for the components
that we are going to install:

8. Click on Next; once the prerequisites are checked, click on OK.
9. Enter the schema password.
10. Enter the values for the custom variable. As this is a standard installation,

let the default values be selected. Click on Next.
11. In the Map Tablespaces window, click on Next. This will create tablespaces

in the database.
12. The Summary window will showcase the component, schema, and

tablespace. Click on Create to create and load the components.

Appendix

[407]

13. The Completion summary window, as shown in the following screenshot,
will show you the completion status and will also allow you to click on the
respective logfiles of the components:

The BPM/SOA configuration
Perform the following steps to configure BPM 12c:

1. Open the command prompt with admin privileges, and navigate to
ORACLE_HOME/oracle_common/common/bin.

2. Start the configuration process with the config.cmd command, as shown
in the following screenshot:

3. This will start the creation wizard.

Installing Oracle BPM Suite 12c

[408]

4. Enter the name for the domain if you want to create a new domain. Also enter
the location of domain home, as shown in the following screenshot, and click
on Next:

Appendix

[409]

5. In the Templates window, as shown in the following screenshot, select the
templates for the components you need to configure, and click on Next:

6. The Application Location window will enlist the domain, domain location,
and domain home; click on Next.

7. Enter the domain password in the admin account dialog, and click on Next.

Installing Oracle BPM Suite 12c

[410]

8. For Domain Mode, select the Development mode and the JDK that we
used; the installation will be listed as a hotspot. However, we can select the
Production mode, as shown in the following screenshot, when setting a
PROD environment. Click on Next.

9. Select Manual Configuration in the database, and click on Next.

Appendix

[411]

10. Enter the DB service name, host, port, schema, and schema password,
as shown in following screenshot, and click on Next:

11. The JDBC test will perform the data source connection testing; once it is
successful, click on Next.

12. The advance configuration allows for the Administration Server, Node
Manager, Managed Servers, and Cluster and Coherence configurations.
Click on Next if you want the default topology configuration.

13. The Configuration Summary window will enlist the configuration that you
have defined. Click on Create when you are satisfied.

14. The Configuration Progress window will guide you through the percentage
of the domain configuration that is in progress. Once this is completed, click
on Next.

15. The Configuration Success page will show you the configuration success
message. The domain location and admin console location will be enlisted.
Click on Finish.

Installing Oracle BPM Suite 12c

[412]

16. We can use following lines of command to start the weblogic server and the
managed server, respectively:

 ° startWebLogic.cmd

 ° startmanagedWebLogic.cmd

17. We can use the following command to stop the weblogic server and the
managed server, respectively:

 ° stopWebLogic.cmd

 ° stopmanagedWebLogic.cmd

18. Use following links to log in to the WebLogic console and EM
console, respectively:

 ° http://administration_server_host:administration_server_
port/console

 ° http://administration_server_host:administration_server_
port/em

Summary
The walk-through provided by this appendix will help us install the Oracle BPM 12c
environment. This will facilitate in deploying and testing the sample applications
delivered with this title. This document facilitates the quick-start installation
of Oracle BPM 12c, and it also demonstrates the creation of complex domains
and executing schema and domain creation. It also helps us provision the demo
community on our installed environment.

Index
A
Activities 281
Adaptive Case Management (ACM)

about 321-324
benefits 325, 326
highlights 326
use case scenarios 330-332

Adaptive Case Management (ACM),
components

activity 327
case 327
collaboration 328
content and information 327
dashboard 328
data 327
events 328
integrations 328
knowledge workers 327
milestones 328
participants 327
policies 328
portal 328
processes 327
rules 328
stakeholder 327
task 327

ad hoc feature
about 348
applicability 348
association of case, with subcases 350
facts 348
implementation 348
motivation 348

ad hoc inclusion, of activities 349
ad hoc inclusion, of documents 350

ad hoc inclusion, of rules and activities 351
ad hoc inclusion, of stakeholders 349
ad hoc routing pattern, facts

about 173
applicability 173
classification 173
exploring 173, 174
implementation 173
intent 173
motivation 173
signature 173

advance conversation 208
Allocated-Error Exception Handling

pattern
about 287
scenarios 288

Allocated Exception Handling pattern
about 285-289
Allocated-Complete pattern 285, 286
Allocated-Error pattern 285-289
Allocated-Terminate pattern 285-289
applicability 285
Boundary Catch Event, modifying 289
classification 285
implementation 286
intent 285
motivation 285
signature 285

allocated state, business process 283
Allocated state External Exception

Handling pattern
about 304, 305
cases 306, 307
implementing 306, 307

Allocated state error 304

[414]

Allocated-Terminate Exception Handling
pattern

about 289
process flow trace, checking 289

application roles 133
approval group list builder pattern

about 143
serial routing pattern, configuring with 159
used, for parallel routing pattern

configuration 152
using, with single routing pattern 166

approval groups
URL 134

AppsVerify-BC, input parameter 290
AppsVerify-BE, input parameter 291
AppsVerify-BT, input parameter 291
arbitrary cycle pattern

about 72, 73
applicability 72
exploring 73-75
functionality 76
implementation 73
intent 72
motivation 72
signature 72

assigned state, business process 282
asynchronous interaction pattern

about 211
asynchronous process and service

interaction, with Receive Task 219
asynchronous process and service

interaction, with Send Task 219
boundary event, enabling on

Receive Task 221
boundary event, enabling on Send Task 221
external services interaction,

enabling 217, 218
asynchronous process

implementing, with Receive Task as start
activity 222-224

interaction, Catch Events used 213-215
interaction, Message Throw

used 213-215
asynchronous process and service

interaction, Receive Task used 219-221
interaction, Send Task used 219-221

asynchronous request-response
(request-callback) pattern,
asynchronous interaction pattern

applicability 212
classification 211
implementation 212
intent 211
known issues 212
known solution 212
motivation 212
signature 211

asynchronous request-response
(request-callback) pattern, web
service pattern

about 87
applicability 87
BPM Process as a Service,

exposing 88-90
implementation 88
intent 87
known issues 88
known solution 88
motivation 87

asynchronous service
interacting with, Catch Events used 216
interacting with, Message Throw used 216

automatic correlation 242

B
BackOffice process 202
BA project

KPIs, defining in 365
Boundary Catch Event

modifying, from interrupting
to non-interrupting 289-291

boundary event
enabling, on Receive Task 221
enabling, on Send Task 221

boundary event based activity correlation
working 277

boundary event, embedded subprocess
interaction pattern

interrupting 234
interrupting event 236
interrupting timer boundary

event configuration 235

[415]

non-interrupting event 236
BPM

about 9, 324
configuring, steps for 407-412
flow control pattern 10

BPM composer
used, for defining models 355

BPM events
URL 202

BPMN process
debugging, enabling 382, 383

BPMN process modeling
versus human task modeling 139

BPMN project
KPIs, defining in 363, 364

BPM process
exposing, with Receive Task operation 97
exposing, with Send Task operation 97

BPM project
attaching, to debugger 383

BPM suite
installing 394-396

Business Architecture (BA) 354
business catalog, synchronous

request-response pattern 226
business context

capturing 372-376
document level 372

business exception 281
business process

initiating, through event 105, 106
Business Process Management. See BPM
business process state

about 281
allocated 283
assigned 282
invoked 283
reallocated 283
started 283

C
cancel activity pattern

about 275, 276
applicability 275
classification 275
implementation 275

intent 275
known issues 275
motivation 275
testing 277, 278

cancel instance pattern
about 258, 259
applicability 258
classification 258
components 259, 260
correlation definition, checking 261
implementation 258
intent 258
motivation 258
restart instance pattern 262
signature 258
testing 261, 262

cancel interaction pattern
applicability 345
implementation 345
intent 344
motivation 345

cancellation patterns
about 80
cancel multi-instance task pattern 80

canceling discriminator pattern 46, 47
canceling partial join pattern

about 47, 66
applicability 66
classification 66
implementation 67
intent 66
motivation 66
signature 66

cancel multi-instance task pattern
applicability 81
classification 80
implementation 81
intent 80
motivation 81
signature 80
testing 81

case
about 322, 323
versus process 322, 325

case interaction pattern
about 344
facts 344

[416]

case management 321-323
case stage pattern

about 336
applicability 337
facts 337, 338
implementation 337
intent 337
motivation 337

Catch Events
used, for asynchronous process

interaction 213-215
used, for asynchronous service

interaction 216
CatchFraudDetails process 204-206
CBE 300
child Value Chain Model

KPIs, defining 365
KPIs, defining in Value Chain

Model level 367
KPIs, defining in Value Chain

Step level 365, 366
collaborative communications

reasons 201
complex gateway

discriminator pattern,
implementing with 43

partial join pattern, implementing with 43
complex synchronization pattern

about 45, 46
canceling discriminator pattern 46, 47
canceling partial join pattern 46, 47

complex task pattern 135
components, cancel activity pattern

event gateway 260
event subprocess 259

conditional parallel split and
parallel merge pattern

about 32
antipattern 35
working with 33, 34

conditional sequence flow 12
Connection Factory

about 120
creating 121

connection pool
configuring 122, 123

content access policy and task actions
feature, facts

about 196
applicability 196
implementation 197
intent 196
known issues 197
known solution 197
motivation 196

Continue Execution Exception Handling
pattern

about 299, 300
applicability 300
CBE 300
classification 299
implementation, scenarios 300
intent 299
motivation 299
signature 299
testing 301, 302

conversation pattern
about 207-211
advanced conversation 208
applicability 207
classification 207
default conversation 208
implementation 208
known issues 208
known solution 208
motivation 207
scoped conversation 208
signature 207

conversations, types
define interface 211
process call 211
service call 211
use interface 211

correlation behavior 249, 250
correlation definition

configuring 247-249
correlation keys

about 244
defining 247-249

correlation mechanism
about 242
correlation behavior 249

[417]

correlation definition,
configuring 247-249

correlation keys, defining 247
correlation properties, defining 246
correlations, types 242
environment, configuring 244

correlations, components
correlation keys 244
correlation property 243
correlation property alias 244
correlation set 244

correlations, types
automatic correlation 242
payload/message-based correlation 243

CreateApprovalGroupList function 146
CreateJobLevelList function 146
CreateManagementChainList function 146
CreatePositionList function 146
CreateResourceList function 146
CreateSupervisoryList function 146
custom domain

creating 402-407
Customer Acceptance activity 331
Customer Service Representative

(CSR) 114, 329

D
deadline

about 182
applicability 182
classification 182
implementation 182
intent 182
motivation 182
Participant Level Deadline 185
task level deadlines 183

Debugger feature, facts
about 381-383
applicability 382
category 381
feature 381
implementation 382
intent 381
known issues 382
known solution 382
motivation 381

default conversation 208
default domain

configuring, steps for 397-399
demo user community

enabling 399-402
discriminator pattern

about 40
implementing, with complex gateway 43
structured discriminator pattern 41

dispatching pattern
about 170
LEAST_BUSY task, configuring 170
MOST_PRODUCTIVE, configuring 170
ROUND_ROBIN, configuring 170

document level, business context
activity 373-375
process 372, 373
project 372

do-while loop
demystifying 70, 71
scenario, testing 71, 72
structured loop functionality 72

driver attributes, notification
configuring 193, 194

driver properties, notification
configuring 193, 194

duration deadline, task level deadlines 183
dynamic assignment,

task assignment pattern 141
dynamic case management 324
dynamic partial join,

for multiple instances pattern
about 67
applicability 67
classification 67
implementation 67
intent 67
motivation 67
signature 67
working with 68

E
ECM 324
e-mail

used, for one-way invocation pattern
implementation 102

[418]

Email Start Pattern
applicability 102
implementation 102
intent 102
known issues 102
known solution 102
motivation 102

embedded subprocess 227
embedded subprocess interaction pattern

about 232
applicability 233
boundary event, interrupting 234, 235
characteristics 233
classification 233
implementation 233
intent 233
known issues 233
known solution 233
motivation 233
signature 233

Emulating Process Behavior feature
about 377-381
applicability 378
category 377
feature 377
implementation 378
intent 377
known issues 378
known solution 378
motivation 377

end cases, Internal Exception
Handling pattern

complete 309
error 309
terminate 309

end states, Allocated state External
Exception Handling pattern

JExternal-Complete 308
JExternal-Error 308
JExternal-Terminate 308

end states, Internal Exception
Handling pattern

Internal Complete Exception
Handling pattern 310

Internal Error Exception
Handling pattern 311

Internal Terminate Exception Handling
pattern 311

enterprise content management, for task
documents

about 197, 198
applicability 197
classification 197
implementation 197
intent 197
motivation 197

enterprise maps
about 355
creating 355

Enterprise Resource Planning (ERP) 324
environment, correlation mechanism

configuring 244, 245
error assignee feature, facts

applicability 191
classification 190
implementation 191
intent 190
known issues 191
known solution 191
motivation 190

escalation feature
applicability 187
classification 187
implementation 187
intent 187
known issues 187
known solution 187
motivation 187
URL 189

escalation pattern
about 171
escalating, ways 172
URL 172

Event Definition Language (EDL) 236
Event Delivery Network (EDN) 236
event-driven interaction pattern

about 236-238
applicability 237
components 236
event producer component 237
implementation 237
intent 237
known issues 237

[419]

known solution 238
motivation 237
scenario, defining 238, 239
signal catch event configuration 238, 239

event gateway 260
event pattern

applicability 339
classification 338
implementation 339
intent 338
motivation 339
signature 338

events
about 339-341
types 340

event subprocess 229, 259
exception

about 279
business exception 281
classifying 280
external triggers/process exceptions 281
system exceptions 280
timeout/deadline exceptions 281

exclusion feature, facts
applicability 190
classification 190
implementation 190
intent 190
motivation 190

exclusive choice pattern(exclusive choice
and simple merge pattern)

about 16, 17
elucidating 22
overview 21
use case 19
working with 18-21

exclusive choice pattern,
decision mechanisms

data 17
events 17

expiry feature
about 186-189
applicability 187
classification 187
implementation 187
intent 187

known issues 187
known solution 187
motivation 187

explicit termination pattern
about 79
applicability 79
classification 79
implementation 79
motivation 79
signature 79
working 79

external services interaction
enabling 217, 218

External Trigger-N 318
External Trigger-O 318
external triggers 318
external triggers/process exceptions 281

F
Feedback process 204-206
First Notice of Loss (FNOL) 329
flow control pattern, BPM

about 10
complex synchronization pattern 45, 46
conditional parallel split and

parallel merge pattern 32
discriminator pattern 40
exclusive choice pattern 16, 17
multichoice pattern 22, 23
multimerge pattern 36-38
parallel split pattern 28
partial join pattern 40
sequence flow pattern 10, 11
synchronization pattern 28
synchronizing merge pattern 22, 23
use cases, executing 14, 15

Force-Complete Exception Handling pattern
about 295
applicability 295
classification 295
implementation 295
intent 295
motivation 295
signature 295

[420]

force completion/early completion
pattern, facts

about 179
applicability 179
classification 178
Enabling Early Completion in

Parallel Subtasks option 180
implementation 179
motivation 178
signature 178

Force-Error Exception Handling pattern
about 293, 294
applicability 293
classification 293
implementation 293
intent 293
motivation 293
signature 293

Force-Error Execution Exception
Handling pattern

about 303, 304
Allocated state External Exception

Handling Pattern 304
applicability 303
classification 303
implementation 304
intent 303
Internal Exception Handling pattern 309
known issues 304
known solution 304
motivation 303
Reallocated Exception

Handling pattern 313
signature 303

Force-Terminate Exception
Handling pattern

about 292
applicability 292
classification 292
implementation 292
intent 292
motivation 292
signature 292

Force-Terminate Execution
Exception Handling pattern

about 302, 303
applicability 302

classification 302
implementation 302
intent 302
motivation 302
signature 302

function-based derivation, task assignment
pattern 142

FYI approver pattern
using, with job level list builder pattern 167
using, with name and expression list

builder pattern 167
FYI routing pattern 140
FYI task pattern 135

G
groups 133
group task pattern 135
guaranteed delivery pattern

about 117
applicability 118
classification 118
implementation 118
intent 118
known issues 118, 119
known solution 119
motivation 118

H
hierarchical list builder pattern

about 144
job level 145
management chain 144
position 145
supervisory 145

holistic view pattern
about 346
applicability 346
facts 346
implementation 346
intent 346
motivation 346
signature 346

human task
about 131, 133
participants 133
user task patterns 135

[421]

human task, features
about 132
content access policy 196, 197
deadline 182
error assignees 190
escalation 186
exclusion 190
expiry 186, 187
notification 192
renewal 187
request information feature 175
reviewer 190
task actions 196, 197

human task initiator pattern
about 113
applicability 113
classification 113
implementation 113
loan origination, via human task form 114
motivation 113
process, testing 116, 117

human task modeling
versus BPMN process modeling 139

human task patterns
about 132
ad hoc routing pattern 173
complex task 135
dispatching pattern 170
escalation pattern 171
force completion pattern 178
FYI task 135
group task 135
initiator user task 135
list builder pattern 142
management task 135
milestone pattern 136
Notify/FYI pattern 166
parallel routing pattern 147
reassignment and delegation pattern 177
routing pattern 139
routing rule pattern 180
rule-based reassignment and

delegation pattern 172
serial routing pattern 158
single routing pattern 165
task aggregation pattern 167

task assignment pattern 140
user task 135

I
implicit termination pattern

amalgamating, in process flow 78, 79
applicability 78
classification 78
implementation 78
intent 78
known issues 78
motivation 78
signature 78

incoming sequence flow 11
initiator user task pattern 135
Insurance Claim case

about 329
building blocks 332
testing 333-335

interaction patterns
demonstrating, by use cases definition 202

Internal Complete Exception
Handling pattern 310

Internal Error Exception Handling pattern
possibilities 312
reallocated scenario 312
restarted scenario 312
restarted scenario, testing 312

Internal Exception Handling pattern
about 309
implementing 309
pattern categories 309

Internal Terminate Exception
Handling pattern 311

Inter Process Communication (IPC). See
interaction patterns

interrupting event 234, 236
interrupting timer boundary

event configuration
demonstrating 235

Invoked Exception Handling pattern
about 296
activities 296
exception handling, categories 297

invoked state, business process
about 283

[422]

call activity 284
catch event 283
Message Throw Events 283
Receive Task 283
Send Task 283
service task 283

Invoked State Exception Handling pattern
about 297-299
applicability 297
challenge 299
classification 297
implementation 298
intent 297
known issues 298
known solution 298
motivation 297
scenario, testing 298
signature 297

J
Java Message Service (JMS) 85
JDK

installing 393, 394
JExternal-Complete state 308
JExternal-Error state 308
JExternal-Terminate state 308
JMS adapter

configuring 123
JMS module

creating 121
JMS queue

creating 122
JMS resources

Connection Factory, creating 121
connection pool, configuring 122, 123
creating 120
JMS adapter, redeploying 123
JMS module, creating 121
JMS queue, creating 122
JMS server, creating 120
JMS subdeployment, creating 121
JMS topic, creating 122

JMS server
about 120
creating 120

JMS subdeployment
creating 121

JMS topic
creating 122

job level list builder pattern
about 145
FYI approver pattern, using with 167
participant list, modifying with list

modification 162
participant, substituting with list

substitution 162, 163
serial routing pattern,

using with 160-162

K
KPIs

defining, in BA project 365
defining, in BPMN project 363, 364
defining, in child Value Chain Model 365
defining, in master Value Chain Model 368

L
lane participant list builder pattern

about 143
parallel routing pattern, using with 153

LEAST_BUSY task 170
list builder pattern

about 142
applicability 142
classification 142
hierarchical list builder 144
implementation 142
intent 142
motivation 142
nonhierarchical list builder patterns 143
rule-based list builder 145
signature 142

loan origination process
about 203
initiating, over e-mail 103, 104
initiating, over event 107-110
initiating, over JMS' Queue/Topic 119
initiating, over multiple

event occurrence 111, 112
testing, for restarting loan 263, 264
via human task form 114-116

[423]

loan origination BPM process
consumer process, creating 124, 125
initiating, via queue 119
JMS resources, creating 120
message, pushing to queue 126, 127
publisher process, creating 124
publish-subscribe pattern,

Topics used 127, 128
localization feature

applicability 345
implementation 345
intent 345
motivation 345

local synchronizing merge pattern 27

M
management chain list builder pattern

about 144
parallel routing pattern,

using with 156, 157
using, with single routing pattern 166

management task pattern 135
master Value Chain Model

KPIs, defining in Value Chain
Model level 369, 370

KPIs, defining in Value Chain
Step level 368, 369

message-based correlation pattern
about 250
applicability 251
characteristics 252
implementation 251
intent 250
motivation 250
testing 256-258
working 252-256

Message Throw
used, for asynchronous

process interaction 213-215
used, for asynchronous

service interaction 216
MI

demonstrating, with prior runtime
knowledge pattern 55, 56

dynamic partial join functionality 69
static partial join pattern, working 66

working, with prior runtime knowledge
pattern 57

milestone pattern
about 136, 137, 341
applicability 136, 342
BPMN process,

versus human task modeling 139
classification 136
facts 342
implementation 136, 342
intent 136, 342
motivation 136, 342
sequence flow, modeling 137, 139
signature 136

MI, without prior runtime
knowledge pattern

about 58
applicability 57
classification 57
implementation 58
intent 57
motivation 57
signature 57
use case, testing 60, 61
working 58, 59

model definition, capabilities
enterprise maps 355
Strategy Model 355
Value Chain Model 355

MOST_PRODUCTIVE task 170
multichoice pattern

about 22, 23
demonstrating, with OR gateway 23, 24
working with 26

multi-instance subprocess
about 227
executing, with prior design-time

knowledge pattern 51-54
multimerge pattern

about 36-38
exploring 38, 39

multiple instances pattern
dynamic partial join 67
static partial join patterns 62

multiple instances, with prior design-time
knowledge pattern

applicability 50

[424]

classification 50
demonstrating 55, 56
implementation 50
intent 50
motivation 50
signature 50
working 57

multiple instances, with prior runtime
knowledge pattern

about 54
applicability 55
classification 55
implementation 55
intent 55
motivation 55

multiple operations, for BPM Process
exposing, steps 94-97

multiple start events 128

N
name and expression list builder pattern

about 143
FYI approver pattern, using with 167
participant identification type,

application role 159
participant identification type, groups 159
participant identification type,

users 158, 159
using, with single routing pattern 166

nonfunction-based derivation,
task assignment pattern 142

nonhierarchical (absolute)
list builder patterns

about 143
approval groups 143
lane participant 143
name and expression 143
parametric role 144

non-interrupting event 234, 236
notification

about 192, 193
applicability 192
attributes, configuring 193, 194
classification 192
definition, configuring 194, 195

driver properties, configuring 193, 194
implementation 193
intent 192
motivation 192

Notify/FYI pattern 166

O
one-way invocation pattern

about 99
implementing, e-mail used 102
implementing, timer used 100, 101

one-way invocation pattern
implementation, with e-mail

flow, testing 105
loan origination request,

initiating 103, 104
Oracle BPM Suite 12c

URL 394
Oracle BPM workspace

URL 337
organizational roles (parametric roles) 134
outgoing sequence flow 11

P
PAM

about 353
working with 384

parallel routing pattern
about 140, 147
applicability 147
classification 147
configuring, with approval group list

builder pattern 152
implementation 147
intent 147
motivation 147
use cases, testing 147
used, for creating participant type 148-151
used, with lane participant list

builder pattern 153
used, with management chain list builder

pattern 156, 157
used, with rule-based list builder 154, 155

parallel split pattern 28
parametric role list builder pattern 144

[425]

partial join pattern
implementing, with complex gateway 43
structured partial join pattern 42
testing, for failure complex gateway 44
testing, for success complex gateway 44, 45

participants, human task
groups 133
organizational roles (parametric roles) 134
roles 133
users 133

payload/message-based correlation 243
peer subprocess 228
persistent trigger pattern

applicability 77
classification 77
implementation 77
intent 77
motivation 77
signature 77

point-to-point (PTP) model 120
position list builder pattern

about 145
using, with serial routing pattern 163

prior design-time knowledge pattern
used, for executing multi-instance

subprocess 51-54
using, with multiple instances 50

prior runtime knowledge pattern
MI, demonstrating with 56
MI, working with 57
using, with multiple instances 54

process
about 321
versus case 322, 325

Process Asset Management. See PAM
process data objects (PDOs) 219
Process-Level Exception Handling pattern

about 314
implementing 315-317
testing 317, 318

publish-subscribe pattern
about 105, 106
applicability 106
implementation 107
intent 106
known issues 107
known solution 107

loan origination,
initiating over event 107-110

motivation 106

Q
query pattern

about 268
applicability 269
classification 268
implementation 269
known issues 269
motivation 268
testing 270-272
QuerySubprocess configuration,

checking 269, 270
Queue 120

R
RACI (Responsible Accountable

Consulted Informed) 375
Reallocated Exception Handling pattern 314
reallocated state, business process 283
Reassigned Exception Handling pattern

about 284
applicability 284
classification 284
implementation 284
intent 284
motivation 284
signature 284

reassignment and delegation pattern
about 177
applicability 177
classification 177
implementation 177
intent 177
motivation 177
signature 177

Receive Task
boundary event, attaching on 221
used, for asynchronous process and service

interaction 219, 220
Receive Task, as start activity

asynchronous process,
implementing with 222-224

[426]

reminder, task level deadlines 183
renewal feature

about 187
applicability 187
classification 187
implementation 187
implementing 188, 189
intent 187
known issues 187
known solution 187
motivation 187

report data, Strategic Alignment pattern
publishing 370, 371

request information feature
about 175
applicability 175
classification 175
implementation 175
motivation 175

request-response pattern
applicability 90
implementation 91
intent 90
known issues 91
known solution 91
motivation 90
service message interaction pattern,

modifying 91, 92
response type 165
restart instance pattern

about 262
loan origination process, testing 263, 264
restart scenario, testing 264-266

restart scenario
testing 264-266

reusable processes interaction pattern
about 229
applicability 230
characteristics 230, 231
implementation 230
intent 230
known issues 230
known solution 230
motivation 230
use case scenario 231, 232

reusable subprocess 228
reviewers feature

applicability 191
classification 190
implementation 191
intent 190
known issues 191
known solution 191
motivation 190

roles
about 133
application roles 133
approval groups 134
swimlane roles 134

ROUND_ROBIN task 170
round trip and business-IT collaboration

about 383-391
applicability 383
category 383
demonstrating 388, 389
feature 383
implementation 384
intent 383
known issues 384
known solution 384
motivation 383

routing pattern
applicability 139
classification 139
FYI 140
implementation 140
intent 139
motivation 139
parallel 140
serial 140
single approver 140

routing rule pattern
about 180, 181
applicability 180
classification 180
COMPLETE action 181
ESCALATE action 181
GO_FORWARD action 181
GOTO action 181
implementation 180
intent 180
motivation 180
PUSHBACK action 181
signature 180

[427]

rule-based assignment,
task assignment pattern 142

rule-based list builder
about 145, 146
CreateApprovalGroupList function 146
CreateJobLevelList 146
CreateManagementChainList function 146
CreatePositionList function 146
CreateResourceList function 146
parallel routing pattern,

using with 154, 155
using, with serial routing pattern 165

rule-based reassignment
and delegation pattern

about 172
applicability 172
implementation 172
intent 172
motivation 172

S
scenario, event-driven interaction pattern

defining 238, 239
scoped conversation 208
Send Task

boundary event, attaching on 221
used, for asynchronous process and service

interaction 219-221
sequence flow pattern

about 10, 11
elucidating 14
working with 12, 13

sequence flow pattern, categories
incoming sequence flow 11
outgoing sequence flow 11

sequence flow pattern, types
conditional sequence flow 12
default/unconditional sequence flow 12

serial routing pattern
about 140, 158
applicability 158
classification 158
configuring, with approval group list

builder pattern 159
configuring, with supervisory list builder

pattern 164, 165

implementation 158
intent 158
motivation 158
signature 158
using, with job level list-builder

pattern 160-162
using, with management chain list builder

pattern 160
using, with name and expression list

builder pattern 158
using, with position list builder pattern 163
using, with rules list builder pattern 165

Service Level Agreement (SLA) 221, 329
single approver routing pattern 140
single routing pattern

about 165
using, with approval group list

builder pattern 166
using, with management chain list builder

pattern 166
using, with name and expression list

builder pattern 166
SOA

configuring, steps for 407-412
stakeholders 327
started state, business process 283
static assignment, task assignment

pattern 141
static partial join patterns, for multiple

instances pattern
about 62
applicability 62
classification 62
intent 62
motivation 62
signature 62
use case, testing 64, 65
working on 63

Strategic Alignment pattern
about 354-356
applicability 354
classification 354
goals, mapping to organization 363
implementation 354
intent 354
known issues 354
known solution 354

[428]

KPIs, defining in BA project 365
KPIs, defining in BPMN project 363, 364
motivation 354
report data, publishing 370, 371
Strategy Model 361, 362
Value Chain Model 357-361

Strategy Model
about 355
creating 361, 362

structured discriminator pattern 41
structured loop functionality 72
structured loop pattern

about 69
applicability 69
classification 69
do-while looping 70
implementation 70
intent 69
motivation 69
signature 69
while-do looping 72
working with 70

structured partial join pattern 42
structured synchronizing merge pattern 26
subdeployment resource 120
subprocess 232
subprocess interaction patterns

about 227-229
embedded subprocess 227
event subprocess 229
multi-instance subprocess 227
peer subprocess 228
reusable processes interaction pattern 229
reusable subprocess 228

supervisory list builder pattern
about 145
using, with serial routing pattern 164, 165

suspend activity pattern
about 274
applicability 274
classification 274
implementation 274
intent 274
motivation 274

suspend process pattern
about 272-274
applicability 272

classification 272
implementation 272
intent 272
motivation 272
signature 272

swimlane roles 134
synchronization pattern 28-31
synchronizing merge pattern

about 22, 23
demonstrating, with OR gateway 23, 24
local synchronizing merge pattern 27
structured synchronizing merge pattern 26
working with 26

synchronous request-response pattern
about 224
applicability 224
business catalog 226
demonstrating 225, 226
implementation 225
intent 224
known issues 225
known solution 225
motivation 224
signature 224

system exceptions 280
system-level exception

handling pattern 318

T
task aggregation pattern

about 167, 170
routing pattern 168, 169
staging 168, 169

task assignment pattern
about 140
applicability 141
classification 140
dynamic assignment 141
function-based derivation 142
implementation 141
intent 140
motivation 140
nonfunction-based derivation 142
rule-based assignment 142
signature 140
static assignment 141

[429]

task level deadlines
about 183-185
duration deadline 183
reminder 183
warning 183

timeout/deadline exceptions 281
timer

used, for one-way invocation
pattern implementation 100, 101

timer boundary events
interrupting event 234
non-interrupting event 234

timer start pattern
applicability 99
implementation 99
intent 99
known solution 99
motivation 99

Topic 120
transient trigger patterns

applicability 77
classification 76
implementation 77
intent 76
known issues 77
known solution 77
motivation 76
signature 76

trigger patterns
about 76
persistent trigger 77
transient trigger 76

U
update task pattern

about 266, 267
applicability 266
configuration, checking 267, 268
functionality, demonstrating 268
implementation 266
intent 266
motivation 266
signature 266

use cases, parallel routing pattern
testing 147

use case scenarios, Adaptive
Case Management (ACM)

about 330-332
Insurance Claim 332

use cases, for interaction
pattern demonstration

BackOffice process 202
CatchFraudDetails 203-206
Feedback process 203-206
loan origination process 203

User Messaging Service (UMS) 103, 193
users 133

V
Value Chain Model

about 355
creating 357-361

W
web service pattern

about 86, 87
asynchronous request-response

(request-callback) pattern 87-90
BPM process, exposing with

Receive Task operation 97
BPM process, exposing with

Send Task operation 97
challenges 86
multiple operations, enabling 94-96
request-response pattern 90, 91
Receive Tasks, implementing 97, 98
Send Tasks, implementing 97, 98

while-do loop
demystifying 72

Thank you for buying
Oracle BPM Suite 12c Modeling Patterns

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen
in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Oracle Fusion Applications
Administration Essentials
ISBN: 978-1-84968-686-0 Paperback: 114 pages

Administer, configure, and maintain your Oracle
Fusion Applications

1. Provides clear and concise guidance for
administering Oracle Fusion Applications.

2. Comprehensively covers all major areas of
Oracle Fusion Applications administration.

3. Contains meaningful illustrations that
explain basic concepts, followed by detailed
instructions on how to implement them.

Getting Started with Oracle
WebLogic Server 12c:
Developer's Guide
ISBN: 978-1-84968-696-9 Paperback: 374 pages

Understand Java EE 6, JDK 7, and Oracle WebLogic
Server 12c concepts by creating a fully-featured
application with this step-by-step handbook

1. Create a complete Java EE 6 application
leveraging WebLogic features such as JMS,
SOAP, and RESTful Web Services.

2. Learn how to use Oracle WebLogic Server's
key components and features.

3. Step-by-step instructions with screenshots
and code samples to help understand and
apply concepts.

Please check www.PacktPub.com for information on our titles

Oracle SOA Suite 11g
Performance Tuning Cookbook
ISBN: 978-1-84968-884-0 Paperback: 328 pages

Over 100 recipes to get the best performance from
your Oracle SOA Suite 11g infrastructure

1. Tune the Java Virtual Machine to get the best
out of the underlying platform.

2. Learn how to monitor and profile your Oracle
SOA Suite applications.

3. Discover how to design and deploy your
application for high-performance scenarios.

4. Identify and resolve performance bottlenecks
in your Oracle SOA Suite infrastructure.

Oracle SOA Suite 11g Developer's
Cookbook
ISBN: 978-1-84968-388-3 Paperback: 346 pages

Over 65 high-level recipes for extending your Oracle
SOA applications and enhancing your skills with
expert tips and tricks for developers

1. Extend and enhance the tricks in your Oracle
SOA Suite developer arsenal with expert tips
and best practices.

2. Get to grips with Java integration, OSB message
patterns, SOA Clusters, and much more in this
book and e-book.

3. A practical Cookbook packed with recipes
for achieving the most important SOA Suite
tasks for developers.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Disclaimer
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Flow Control Patterns
	Sequence flow pattern
	Working with the sequence flow pattern
	Elucidating the sequence flow pattern

	Getting ready for executing use cases
	Exclusive choice and simple merge pattern
	Working with exclusive choice and simple merge pattern
	Knowing about the exclusive choice pattern
	Elucidating the simple merge pattern

	Multichoice and synchronizing merge pattern
	Demonstrating multichoice and synchronization with the OR gateway
	The working of multichoice and synchronization pattern
	Structured synchronizing merge pattern
	Local synchronizing merge pattern

	The parallel split and synchronization pattern
	Parallel split pattern
	Synchronization pattern

	Conditional parallel split and parallel merge pattern
	Working with conditional parallel split
and merge
	Antipattern – the conditional parallel split and merge

	Multimerge pattern
	Exploring multimerge

	Discriminator and partial join pattern
	Structured discriminator pattern
	Structured partial join
	Working with a complex gateway to implement the discriminator and partial join pattern
	Testing a process by failing the complex gateway exit expression
	Testing process as success by the complex gateway exit expression

	Complex synchronization pattern
	Canceling discriminator pattern
	Canceling partial join pattern

	Summary

	Chapter 2: Multi-instance and State-based Patterns
	Multiple instances with prior design-time knowledge pattern
	Executing the multi-instance subprocess with prior design-time knowledge

	Multiple instances with prior runtime knowledge pattern
	Demonstrating MI with prior runtime knowledge
	Understanding how MI with prior runtime knowledge work

	Multiple instances without prior runtime knowledge pattern
	Working on MI without prior runtime knowledge
	Testing the use case

	Static partial join for multiple instances pattern
	Testing the use case
	Understanding how static partial join for MI works
	There's more

	Canceling partial join pattern
	Dynamic partial join for multiple instances pattern
	Working with dynamic partial join
	Understanding the functionality behind partial join for MI

	Structured loop pattern
	Working with structured loops
	Demystifying do-while
	Demystifying while-do

	Arbitrary cycle pattern
	Exploring arbitrary cycle
	Understanding the functionality of the arbitrary cycle

	Trigger patterns
	Transient trigger pattern
	Persistent trigger pattern

	Implicit termination pattern
	Amalgamating implicit termination in the process flow

	Explicit termination pattern
	Learning how explicit termination works

	Cancelation patterns
	Cancel multi-instance task pattern

	Summary

	Chapter 3: Invocation Patterns
	Web service pattern
	Asynchronous request-response
(request-callback) pattern
	Request-response pattern
	One request, one of the two possible responses pattern
	Two request a pattern
	Exposing the BPM process using Receive
and Send Tasks
	Loan Origination over Send and Receive tasks

	One-way invocation pattern
	Implementing one-way invocation using
a timer
	Implementing one-way invocation using an e-mail
	The Loan Origination process over e-mail
	Testing the flow to instantiate a process over e-mail

	Publish-subscribe pattern – initiating the business process through an event
	Loan origination over an event

	Multievent instantiation pattern – process instantiation over multiple events
	Loan origination over multiple event occurrence

	Human task initiator pattern – initiating processes through human tasks
	Loan origination via the human task form
	Testing the process

	Guaranteed delivery pattern – process instantiation over JMS – Queue/Topic
	Loan origination over JMS – Queue/Topic
	Creating JMS resources
	Creating the publisher process
	Developing the consumer process
	Testing the process

	Understanding multiple start events
	Summary

	Chapter 4: Human Task Patterns
	Learning about human tasks
	Milestone pattern
	Modeling in a human task versus a BPMN process

	Routing pattern
	Task assignment pattern
	List builder pattern
	Absolute or nonhierarchical list builders
	Hierarchical list builders
	Rule-based list builders

	Parallel routing pattern
	Getting ready to test sample use cases
	Parallel routing pattern with name and expression list builders
	Parallel routing pattern with approval group list builder
	Parallel routing pattern with lane participant list builder
	Parallel routing pattern with rule-based list builder
	Parallel routing pattern with management chain

	Serial routing pattern
	Serial routing pattern with list builder – name and expression
	Participant identification type – users
	Participant identification type – groups
	Participant identification type – application role

	Serial routing pattern with list
builder – approval group
	Serial routing pattern with list
builder – management chain
	Serial routing pattern with list builder – job level
	Modifying participant lists using list modification
	Substituting participants using list substitution

	Serial routing pattern with list
builder – position
	Serial routing pattern with list
builder – supervisory
	Serial routing pattern with list builder – rules

	Single routing pattern
	Single approver pattern with list
builder – name and expression
	Single approver pattern with list
builder – approval group
	Single approver pattern with list
builder – management chain

	Notify/FYI pattern
	FYI approver pattern with list builder – job level
	FYI approver pattern with list builder – name and expression

	Task aggregation pattern
	Dispatching pattern
	Escalation pattern
	Rule-based reassignment and delegation pattern
	Ad hoc routing pattern
	Request information feature
	Reassignment and delegation pattern
	Force completion pattern
	Enabling early completion in parallel subtasks

	Routing rule pattern
	Deadlines
	Escalation, expiry, and renewal feature
	Exclusion feature
	Error assignee and reviewers
	Notifications
	Configuring driver properties and attributes
	Configuring the notification definition

	Content access policy and task actions
	Enterprise content management for task documents
	Summary

	Chapter 5: Interaction Patterns
	Defining use cases to demonstrate interaction patterns
	The BackOffice process
	The Loan origination process
	The CatchFraudDetails and Feedback processes

	Conversation pattern
	Asynchronous interaction pattern
	Interacting with an asynchronous process using the Message Throw and Catch events
	Interacting with an asynchronous service using the Message Throw and Catch Events
	Enabling external services interaction
	Interacting with an asynchronous process and service using Send and Receive Tasks
	Attaching boundary events on Send and Receive Tasks
	Interacting with a process defined with Receive Task as a start activity

	Synchronous request-response pattern
	The business catalog

	Subprocess interaction patterns
	Reusable process interaction pattern
	Use case scenario for reusable process interaction pattern

	Embedded subprocess interaction pattern
	Interrupting a boundary event
	Boundary event on an activity

	Event-driven interaction pattern
	Defining an event-based interaction pattern scenario

	Summary

	Chapter 6: Correlation Patterns
	Correlation mechanism
	Types of correlations
	Components of correlation
	Configuring the environment
	Defining correlation properties
	Defining correlation keys and configuring the correlation definition
	Understanding the correlation behavior

	Message-based correlation pattern
	Testing the message-based correlation pattern

	Cancel instance pattern
	Understanding the components
	Testing cancelation pattern
	Restart instance pattern
	Testing the Loan Origination process to restart
a loan
	Testing the restart scenario

	Update task pattern
	Demonstrating the update task functionality

	Query pattern
	Testing the query pattern

	Suspend process pattern
	Suspend activity pattern
	Cancel activity pattern
	How a boundary event based activity correlation works
	Testing the cancelation pattern on an activity

	Summary

	Chapter 7: Exception Handling Patterns
	Classifying exceptions
	Business process state
	Reassigned Exception Handling Pattern
	Allocated Exception Handling Pattern
	Changing the Boundary Catch Event from Interrupting to Noninterrupting

	Force-Terminate Exception Handling Pattern
	Force-Error Exception Handling Pattern
	Force-Complete Exception Handling Pattern
	Invoked Exception Handling Pattern
	Invoked State Exception Handling Pattern
	Continue Execution Exception Handling Pattern
	Force-Terminate Execution Exception Handling Pattern
	Force-Error Execution Exception Handling Pattern
	Allocated state – External Exception Handling Pattern
	Implementing Allocated state – External Exception Handling Pattern

	Allocated state – Internal Exception Handling Pattern
	Implementing Allocated state – Internal Exception Handling Pattern

	Reallocated Exception Handling Pattern

	External Exception Handling Pattern
	Process-Level Exception Handling Pattern
	Implementing Process-Level Exception Handling Pattern
	Testing Process-Level Exception Handling Pattern

	System-Level exception handling pattern
	External Triggers
	Summary

	Chapter 8: Adaptive Case Management
	Defining adaptive case management
	Case
	Case management
	Dynamic case management
	Adaptive case management
	Process versus case
	Case management offerings
	The building blocks of adaptive case management

	Exploring ACM use case scenarios
	The building blocks of the Insurance Claim use case
	Testing the use case

	Case stage
	Event pattern
	Milestone pattern
	Case interaction pattern
	Localization feature
	Holistic view pattern
	Ad hoc feature
	Ad hoc inclusion of stakeholders
	Ad hoc inclusion of activities
	Ad hoc inclusion of documents
	Association of a case with subcases
	Ad hoc inclusion of rules and activities

	Summary

	Chapter 9: Advanced Patterns
	Strategic Alignment Pattern
	The Value Chain Model
	The Strategy Model
	Mapping goals to an organization
	Defining KPIs in a BPMN project
	Defining KPIs in a BA project
	Defining KPIs in a child Value Chain Model
	Defining KPIs in the master Value Chain Model

	Publishing report data

	Capturing the business context
	Emulating Process Behavior
	The Debugger feature
	Round Trip and Business-IT Collaboration
	Summary

	Appendix: Installing Oracle BPM Suite12c
	Installing JDK
	Installing BPM suite
	Configuring the default domain
	Enabling the demo user community
	Custom domain creation
	The BPM/SOA configuration
	Summary

	Index

