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Preface

We hope you will enjoy reading this book as much as we enjoyed writing it. Doing physics with Flash is a 
lot of fun—there is a sense of satisfaction in writing a few lines of code and then seeing how they make 
objects behave like they do in the real world. The ability to do this gives us great power as programmers. 
The aim of this book is to provide you with tools that will make you feel that sense of power. Whether you 
want to build convincing animations, games that behave realistically, or accurate simulators, you will find 
herein plenty of tools, examples and ideas that should be of help.    

The inspiration for this book came from the excellent book authored by Keith Peters, Foundation 
ActionScript Animation. This was the first book we read when we were still getting acquainted with Flash 
and ActionScript several years ago. The book contained a good amount of physics-related topics and 
showed us the power of Flash in creating interactive animations with physics that were as fun to code as 
they were to play with. Since then we became addicted to Flash and ActionScript, using them to create 
numerous physics-based simulations and other applications. Along the way we learned or figured out a lot 
of things that seemed worth sharing with the Flash community. Keith Peters’s book provided a great 
introduction to physics-based animation. But it seemed to us that there was also a need for a book that 
explored physics further and in greater depth, and that catered for more demanding applications such as 
accurate simulators or more complex game programming. After all, there are several “game physics” 
books written for other programming languages such as C++ and Java, so why not ActionScript? The 
present book is meant to fill this gap. 

We should make it clear at the outset that this is primarily a book about physics, and secondarily about 
Flash. Therefore, the focus is less on producing attractive animations, and more on modeling real physics 
using the Flash environment. Some of the simulations in the book may not be very pretty or smooth from a 
visual perspective, but they do contain a lot of physics goodness! The approach we adopt attempts to 
make serious physics accessible. But although we don’t shy away from going into technical stuff, with all 
the accompanying math, we hope to have done so in a way that is simple and straightforward.  

Inevitably, due to space and time restrictions, there are topics that we were not able to include or that we 
didn’t explore in detail. Nevertheless, the book covers an awful lot of ground, taking you from coding a 
simple bouncing ball animation in a few lines of code in the first chapter to a highly accurate simulation of 
the solar system in the final chapter. We hope you enjoy the journey in between! 

What this book will (and won’t) teach you 
The Essential Guide to Physics for Flash Games, Animation, and Simulations teaches you how to include 
physics into your programming. It does not teach you how to program. It does not teach you ActionScript. 
And though this book teaches you how to implement physics into your games (as well as other projects), it 
is not about game programming per se.

We assume that you have at least some programming experience with ActionScript 3.0 (AS 3.0) as well as 
familiarity with an authoring tool for building Flash applications in AS 3.0, such as Adobe Flash (version 
CS3 or above) or Adobe Flash Builder (formerly Adobe Flex Builder). This book does not teach you how to 
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use those authoring tools. If you don’t have this background we highly recommend picking up one of the 
many excellent introductory books on Flash and ActionScript available, such as Foundation ActionScript 
3.0 for Flash and Flex by Darren Richardson and Paul Milbourne. We also highly recommend Foundation 
ActionScript 3.0 Animation: Making Things Move! by Keith Peters.  

We do not assume any previous knowledge of physics, and only assume basic school level math 
knowledge. One chapter is dedicated to explaining some of the more difficult math concepts and tools that 
you are likely to need in the book.  All the physics concepts and knowledge you will need are explained in 
a self-contained way. Numerous applications are given throughout the book with full source code to 
illustrate the application of the principles learnt.  

Overview of this book 
This book is divided into four parts.  

Part I: “The Basics” (Chapters 1-4) introduces the necessary background in basic math and physics 
concepts upon which the rest of the book builds. For completeness, it also covers selected topics in 
ActionScript 3.0 that are most pertinent to physics programming.  

Part II: “Particles, Forces, and Motion” (Chapters 5-10) begins by formulating the laws of physics that 
govern the motion of particles under any type of force (Chapter 5). The next chapters then apply those 
laws to make objects move under the action of a large variety of forces including gravity, friction, drag, 
buoyancy, wind, springs, central forces, and many more. The main focus in this section is on simulating 
the motion of individual particles and other simple objects.  

In Part III: “Multi-Particle and Extended Systems” (Chapters 11-13), we show you how to model more 
complicated systems, including multiple interacting particles and extended objects. In these systems the 
constituent particles and objects do not simply co-exist but interact with each other, mutually influencing 
their motion. These interactions include collisions, short-range forces, and long-range forces. This part 
includes a discussion of particle systems, rigid bodies, and deformable bodies. 

Part IV: “Building More Complex Simulations” (Chapters 14-16) is devoted to building more complex 
simulations, where accuracy and/or realism is especially important, not just visual effects. This part 
includes a discussion of numerical integration schemes and other numerical and technical issues such as 
scale modeling and 3D. Part IV ends with a chapter including some example simulation projects.  

Source code and examples 
All the code for this book can be downloaded from the book’s page on the Apress website: 
www.apress.com.

Source code in the book will work with Adobe Flash (version CS3 onwards; a few examples require CS4) 
and Adobe Flex/Flash Builder (version 3 onwards). All the code is pure ActionScript. We do not use MXML 
or the Flex framework.    

We encourage you to modify and build upon the example codes given. While doing the technical review of 
this book, RJ Owen suggested it would be interesting to have a website where readers could share their 
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codes to see what people can build with the tools given in this book. We thought it was an excellent 
suggestion, and have therefore set up the following page on our website where you can find and contribute 
more code and examples: www.physicscodes.com/as3book.  
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Part I 

The Basics
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Chapter 1 

Introduction to Physics Programming 

Because you picked up this book, we assume that you are interested in implementing physics into your 
programming projects. But why would you want to do that? What can it do for you? And how difficult will it 
be? This chapter will provide answers to these questions.  

Topics covered in this chapter include: 

! Why model physics? This section will explain some of the reasons why you might want to add 
physics to your projects. 

! What is physics? Here we lift the veil of mystery and explain in simple terms what physics is. 
We also tell you, in a nutshell, what you’ll need to know.  

! Programming physics. Thankfully, programming physics is not as difficult as you might imagine, 
once you understand some basic principles. This section explains what you’ll need to do. 

! A simple example. As a concrete example, we’ll code up a simple animation involving physics, 
using a minimum of code. 

Why model real physics? 
There are a number of reasons why you might be interested in modeling physics using Flash. Here are 
some of the most common reasons.  
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Creating realistic animation effects 
One of the main strengths of working with Flash is the ability to create animations easily. With a little 
ActionScript and some physics, it is also possible to make animations that look and behave like the real 
thing. For example, suppose you are animating a scene in which someone kicks a ball and it bounces off 
the ground. If you’re working with Adobe Flash, you could try and fake the animation with tweens, but 
however hard you might try it would probably look less than realistic. With just a little bit of coding and 
some knowledge of simple physics you could produce a far more realistic animation. And if, like the 
authors, you are programmers rather than designers, you might even find it easier! We’ll show you just 
how easy it can be in the example at the end of this chapter.  

Creating realistic games 
Flash games are ever so popular on the Web. As the capabilities of the Flash Player continue to improve, 
better and more powerful games can be built. Hardware acceleration and native 3D support are just two of 
the recent developments that have the potential to improve the gaming user experience dramatically. But 
apart from performance and appearance, it is equally important for games to feel realistic. If you are 
throwing a ball, it has to fall according to the law of gravity; if you fire a torpedo underwater, it must move 
differently from a ball falling in air. In other words, your game needs to know physics.  

How do you build physics awareness into your games? This book will show you how. 

Building simulations and models 
A computer simulation or computer model is a program that attempts to imitate certain key aspects of a 
system. Simulations vary in completeness or accuracy, depending on purpose and resources. Let’s take a 
flight simulator program as an example. One would expect a flight simulator designed for training pilots to 
be much more comprehensive and accurate than one designed for a game. Simulations are extremely 
common in e-learning, training and in scientific research. In the final chapter of this book, you’ll build 
simulations, including a submarine, a basic flight simulator, and a model of the solar system. In fact, many 
of the coded examples throughout the book are simulations, even if generally simpler.  

Generating art from code 
Generative art has gained popularity in recent years. ActionScript and Processing are popular tools used 
by artists to generate art from code. A lot of fun can be had with some simple physics!for example, 
elaborate effects and motions can be produced using particles and different kinds of forces.  

We will explore the world of generative art and provide additional tools and algorithms that can be used to 
create original and interesting effects.  
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Can’t I just use a physics engine? 
You probably can. Physics engines are certainly useful for a lot of situations. But they may not necessarily 
be the panacea for all your problems. Here are a few reasons why the time you invest in learning how to 
program physics can pay off:  

! You’ll have more flexibility to do what you want. Physics engines cannot do everything. 

! In some cases, it may be simpler to write code from scratch rather than to use a physics engine. 

! Knowing how to use a physics engine doesn’t guarantee that you’ll know what physics to use for 
a particular application. 

! Sometimes things may not work quite as they should with a physics engine. For example, 
problems may arise due to numerical instability or inaccuracy in some situations.  

! You’ll be able to build your own physics engine, matched to your own needs. 

! It’s fun! 

The bottom line, though, is that it should not be an either/or lifetime decision whether to choose between a 
physics engine and coding your own physics. Experiment with both, and you’ll become better at both: 
being able to code up your own physics will give you a deeper understanding of how physics engines work 
and how to use them more effectively; conversely, experimenting with physics engines should give you 
plenty of ideas that you can implement into your own coding.  

There are now a number of Flash physics engines out there. Here is a brief list of some of them: 

! Box2DFlash: Also known as Box2DAS3, this is an ActionScript 3.0 (AS3.0) port of Box2D, an 
open source 2D physics engine written by Erin Catto in C++. Box2DFlash is primarily a rigid body 
library, but with a host of other features. It is a popular choice among Flash game developers. 
Because Box2DFlash closely resembles Box2D, users can get help from the Box2D forums. 

! FOAM: Another 2D rigid body physics engine. In the words of its creator, FOAM trades efficiency 
for modularity and extensibility, allowing a savvy developer to extend and repurpose FOAM to his 
own ends. FOAM is released under the MIT license. 

! Fisix: The Fisix engine is an AS3.0 verlet-based physics engine aimed for use in games and 
relatively CPU-intensive applications. The website pledges to give good documentation and help, 
and states that the engine is currently free for both commercial and noncommercial applications 
until the next release. 

! APE: APE stands for Actionscript Physics Engine, another AS3.0 open source 2D physics engine 
written by Alec Cove and released under the MIT license.  

! WOW-Engine: This is an AS3.0 open source 3D physics engine written by Jerome Birembaut. It 
uses the Sandy library for all its 3D math computations and handles collisions and physics by 
extending APE, the 2D physics engine created by Alec Cove (see the previous bullet).  
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! JiglibFlash: This is another AS3.0 open source 3D physics engine, ported from the C++ physics 
engine Jiglib. The engine has support for Away3D, Papervision3D and Sandy3D. Documentation 
appears sparse, but it seems to have an active forum. 

A disclaimer: The selection and ordering of the list are essentially random and do not 
constitute a recommendation to use any of them in preference to any other. 

What is physics? 
Physics is the most fundamental of the sciences. In a broad sense, physics is the study of the natural laws 
that govern how things behave. More specifically, it concerns itself with space, time and matter (defined as 
any “stuff” that exists in space and time). One aspect of physics is to formulate general laws that govern 
the behavior of matter, its interactions, and its motion in space and time. Another aspect is to use these 
laws to make predictions of the way specific things move and interact!for example, the prediction of 
eclipses from the laws of gravity or how airplanes are able to fly from the laws of aerodynamics.  

Physics is a vast subject, and in a book of this nature we cannot do more than scratch the surface. 
Fortunately, most of the physics that you will probably need to know fall within a branch known as 
Mechanics, which is one of the easiest to understand.  

Everything behaves according to the laws of physics 
Without getting too philosophical, it is fair to say that the laws of physics are truly universal, as far as 
physicists have been able to observe. What this means is that everything must behave according to 
physics. This is different from say, the laws of biology, which pertain only to living things. A stone thrown in 
the air, a planet orbiting the Sun, the workings of the human body, and the operation and motion of a man-
made machine must all obey the laws of physics. Moreover, many seemingly diverse phenomena are 
governed by the same subset of laws. For example, a falling stone and a planet orbiting the Sun both obey 
the laws of gravity.  

The laws can be written as math equations 
The great thing is that the laws of physics can be written as mathematical equations. Okay, that may not 
sound too great if you don’t like math! But the point here is that for a law to be useful, it has to be made 
precise. And math equations are as precise as anything can be. There is no possible ambiguity in how to 
apply a law that is expressed mathematically, in contrast with the laws that are fought over in courtrooms! 
Second, this means that centuries of developments in mathematics prove to be applicable to physics, 
making it possible to solve many physics problems. Third, and what is of most relevance for us: math 
equations are readily convertible into code.  
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Predicting motion 
Let’s get more specific. As an ActionScript programmer, you are mostly interested in how things move. 
Much of physics deals with how things move under the action of different types of influences. These 
“influences” can be from other things and from the environment. In physics we have a special name for 
these influences: they are called forces. The really good news is that the forces have simple mathematical 
forms. Although the motion of objects is usually complicated, the underlying mathematical laws that 
describe the forces are usually quite simple.  

The general relationship between force and motion can be written schematically as follows: 

motion = function{forces}

This is a cause-and-effect relationship. Forces cause objects to move in different ways. In practical terms, 
it means this: specify the forces acting on an object and put them in a mathematical equation, and then 
you can calculate the motion of the object. Simple isn’t it? 

Motion is effect. Force is cause. The motion of an object is the result of the forces acting 
on it. The mathematical relationship between force and motion is known as the “Law of 
Motion.” 

Now to be able to put this principle to use, we need to know the following:  

! Definitions. The precise definitions of motion and force.  

! The law of motion. In other words, the precise mathematical form of the function that relates a 
force to the motion it produces. 

! Force laws. In other words, how to calculate the forces. There are equations that tell you how to 
calculate each type of force. 

So there are two kinds of laws you need to know about: laws of motion and force laws. You will also need 
to know the proper concepts (known as physical quantities) to describe and analyze motion and forces and 
the relationship between them. Finally, you will need to know the mathematics for manipulating and 
combining these quantities. 

Programming physics 
So, how do you code up physics? Do you program the motion or forces, or both? And what does it 
involve? 

Once you know some basic physics (and some simple math), coding it is not much different or more 
difficult than what you are used to as a programmer!provided you do it in the right way. Let us take some 
time to explain what this “right way” is.  

www.allitebooks.com

http://www.allitebooks.org
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The difference between animation and simulation 
Some wise guy once said “A picture is worth a thousand words” or something like that. One could extend 
this by saying “A movie is worth a thousand pictures”. A movie (or animation) adds so much more to our 
perception than a static image because it includes the element of change in time, an extra dimension. But 
there is a sense in which an animation is still static rather than dynamic. No matter how many times you 
play it, it has the same beginning and the same end. Everything happens in exactly the same way. In 
terms of capturing the real world, while things become more realistic in progressing from written words to 
visual images to animated movies, there is still something missing: the power to interact with the medium 
and to influence the outcome in a way that duplicates the behavior of things in real life. This next step is 
what we call simulation. In the sense we use the word in this book, simulation entails realism and also 
interactivity. When you simulate something, you don’t just depict how it behaves under one set of 
conditions; you allow for many, even infinitely many, conditions. Building interactive simulations including 
physics makes things behave like they do in the real world: interacting with the environment and with the 
user to produce diverse and complex outcomes.  

There is more. If you really pay attention to accuracy, you can even build a simulation that is so realistic it 
can be used as a virtual lab. You’ll be able to experiment with it to learn how things actually work out there 
in the real world, on your computer! In fact, you will build such simulations in this book. 

The laws of physics are simple 
We have already said that the laws of physics are mathematical equations. The good news is that most of 
the laws (and hence the equations) you’ll come across are actually quite simple. The apparently bad news 
is that these simple laws can produce very complex motions. In fact, that is probably a good thing, too; 
otherwise the Universe would have been a rather boring place.  

For example, the laws that govern gravity can be written down as just two simple-looking equations (they 
are given in Chapter 6). But they are responsible for the motion of the Moon around the Earth, the motion 
of planets around the Sun, and the motion of stars in the Galaxy. The net effect of all these motions, plus 
the gravitational interactions between different celestial bodies, create very complicated motions that arise 
from just two simple equations.  

Hence, they can be readily coded up! 
We are now in a position to answer the questions asked at the beginning of this section. Here is a no-
brainer. The laws of motion and forces are simple; the actual motions they produce are complex. If you 
know the laws, you can calculate the motions under different conditions. Would you rather code up the 
forces or the motions they produce? 

Okay, let’s spell it out. Animation attempts to reproduce the motion of an object directly. Simulation is to 
program the laws of motion and then to derive the motion of the object. It is much easier to code up the 
cause of motion than its effect. Moreover, an animation generally depicts a single scenario. But a 
simulation can potentially handle an infinite number of different scenarios.  
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Simple laws of motion and simple force laws can give rise to complex motions. It is 
generally easier to code up the laws rather than the motions themselves. Hence, 
paradoxically, simulation can be easier than animation. 

Simulation is like playing God. You re-create a virtual world, not by blindly duplicating all the behavior you 
see, but by reproducing the laws that govern the way things behave and then letting it all happen.  

The four steps for programming physics 
The process of programming physics can be broken down into four steps, as shown schematically in 
Figure 1-1.  

 

Figure 1-1. Steps in programming physics 

The first step is to identify the physics principles that apply to the situation you are modeling. This can be 
tricky if you have no physics background. This book will help you: it is not just a how-to book but is also 
intended to actually teach you some physics. The second step is to recall, research, or derive the relevant 
equations. Obviously, this step involves some math. Don’t worry; we’ll give you all the help you need! The 
third step is to develop algorithms to solve the equations. Sometimes the equations can be solved 
analytically (we’ll explain what that means in later chapters), in which case the algorithms are pretty 
simple. More often, one needs to employ numerical methods, which can be simple or less so, depending 
on the problem and on the desired level of accuracy. Although the first two steps may seem obvious, the 
third step is often overlooked. Indeed, many developers may even be unaware of its existence or 
necessity. Again, we’ll spend some time on this aspect, especially in Part IV of the book. The fourth and 
last step is to write the code in your favorite programming language. You are already good at this, aren’t 
you? 

A simple example 
To see how all this works in practice, we will now look at a simple example. We’ll set ourselves the task of 
simulating the motion of a ball thrown to the ground, using just a few lines of code.  

To start with, let’s try and picture the scenario that we are trying to model, the way it behaves in reality. 
Suppose you throw a volleyball in the air. How does it move? You’ve probably noticed that such a ball 
does not move in a straight line, but traces out a curved path. Moreover, the ball appears to move slowly at 
the top of the curve and quickly at the bottom, near the ground. When it hits the ground it usually bounces, 
but always reaches a lesser height than that from which it fell. Before we try to reproduce this motion, let 
us look more closely at the physics that is causing it.  
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A bouncing ball: the physics 
As you already know by now, forces are what cause things to move. So the first clue to understanding why 
the volleyball moves the way it does is to find out what forces are acting on it. As you’ll learn later, there 
are generally many forces acting together on objects in everyday situations. But in this case there is one 
force that is much more important than any other. It’s the force of gravity that the Earth exerts on the ball.  

So let us assume that gravity is the only force acting on the ball once it has been thrown in the air. 
Thankfully, gravity acts in a very simple way. Close to the Earth’s surface, as in the present example, it is a 
constant force that points vertically downward. Its effect is therefore to pull objects downward, making 
them accelerate as they do so. Accelerate? Yes, that means it increases the speed of the object. As we’ll 
discuss in much greater detail in later chapters, gravity increases the vertical speed of an object by a 
constant amount in each second. But because gravity acts downward, it does not affect the horizontal 
speed of an object.  

Every time the ball hits the ground, the latter exerts a contact force on it. This force acts upward for a very 
brief time. Unlike gravity, it is not easy to model this contact force directly. Therefore, we’ll simplify things 
and model its effect instead. Its effect is to reverse the motion of the ball from downward to upward while 
reducing the speed of the ball.  

Coding up a bouncing ball in 2D 
To simplify things, we’ll pretend we’re living in a 2D world. An object in 2D can move along two 
independent directions: horizontal and vertical. We’ll denote the position of the ball at any given time by 
two numbers, x and y, where x refers to the horizontal position, and y refers to the vertical position. We’ll 
denote the speed at which the ball is moving along these two directions as vx and vy.  

According to what we said, each time the clock ticks, gravity will cause vy to increase by a constant 
amount, but vx will remain the same.  

Because vx and vy are speeds, they tell us how much the object moves each time the clock ticks. In other 
words, at each tick of the clock, x increases by an amount vx, and y increases by an amount vy. 

This takes care of the effect of gravity. To implement the effect of the ground, what we have to do is 
reverse the sign of vy and reduce its magnitude each time the ball hits the ground. And, believe it or not, 
that’s pretty much it. 

Some code at last! 
The code for Figure 1-2 is included in the BouncingBall.as file. Note that the frame rate in the source 
files has been set to 30 fps to produce a smooth animation. Here is the code that does it all.  
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Figure 1-2. How to code up a bouncing ball 
 
package{ 
        import flash.display.Sprite; 
        import flash.events.Event; 
 
        public class BouncingBall extends Sprite { 
 
                private var g:Number = 0.1; // acceleration due to gravity 
                private var vx:Number = 2;  // initial horizontal speed 
                private var vy:Number = 0;  // initial vertical speed 
                private var ball:Ball; 
 
                public function BouncingBall() { 
                        init(); 
                } 
                private function init():void { 
                        ball = new Ball();• 
                        ball.x = 50;• 
                        ball.y = 75;• 
                        addChild(ball); 
                        addEventListener(Event.ENTER_FRAME,onEachTimestep);  
                } 
 
                private function onEachTimestep(evt:Event):void{ 
 
                        vy += g  // gravity increases the vertical speed 
 
                        ball.x += vx; // horizontal speed increases horizontal position 
                        ball.y += vy; // vertical speed increases vertical position 
 
                        if (ball.y > 350){  // if ball hits the ground 
                                vy *= -0.8;  // its vertical velocity reverses and reduces 
                        } 
 
                } 
        } 
} 
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If you are not entirely comfortable with AS3.0 classes, don’t panic. We’ll explain all the elements of the 
code fully in the next chapter. The important bits that contain the physics are the lines with the comments 
next to them. The variable g is the acceleration due to gravity. Here we’ve set a value that will give an 
animation that looks visually correct. The next two lines set the initial horizontal and vertical speeds of the 
ball. All the physics action is taking place in the aptly named function onEachTimestep(), which is 
executed at the frame rate set for the movie. Here we increase vy but not vx because gravity only acts 
vertically. Then we update the ball’s position by increasing x and y by amounts vx and vy, respectively. 
The final piece of code takes care of the bouncing. 

Run the code and see the result. It looks pretty realistic, doesn’t it? How does the ball know how to behave 
with so few instructions? This is like magic. We challenge you to create the same effect using tweens!  

Is it really that simple? Wait! We’ve barely scratched the surface of what’s possible. This is a good start 
(give yourself a pat on the back). There are plenty of ways to improve the simulation to make it even more 
realistic, but they require more physics and more coding. For example, you could add friction so that the 
ball’s horizontal speed reduces as it touches the ground. Suppose you are building a game that includes 
balls moving around. You might want the ball to feel the effect of air resistance and to be blown by wind in 
addition to moving under the effect of gravity. You might want it to behave properly if thrown into water, 
sinking and then rising, and oscillating on the water surface before coming to rest and floating. There might 
be lots of balls colliding. Or you might want to create an accurate simulation that school students can use 
to learn about gravity. In that case, you would need to pay careful attention to implement proper boundary 
effects as well as accurate and stable time-stepping algorithms. By the time you finish the book, you will be 
able to do all these and more. And you’ll know what you are doing. We promise. 

Summary
Physics encapsulates the laws of nature in mathematical form. These laws are simple and can be readily 
coded up. Hence, it is generally easy to create effects that look realistic.  

Programming physics involves four steps: identifying what physics principles you need, writing down the 
relevant equations, devising a numerical algorithm for solving the equations, and writing the code. So it 
involves knowledge and skills in four different areas: physics, math, numerical methods, and programming. 
This book gives you help in the first three areas; you are assumed to have some proficiency in the fourth: 
general programming in ActionScript.  

Having said this, the next chapter will provide a rapid overview/review of selected topics in ActionScript 
3.0, emphasizing aspects that are especially relevant for physics programming. 
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Chapter 2 

Selected ActionScript 3.0 Topics 

ActionScript 3.0 is very different from the previous versions of the language. This chapter will give a brief 
review of the elements of AS3.0 that we will make most use of in the rest of this book. It is not meant to be 
a comprehensive tutorial on ActionScript; instead, it is a summary of what you need to know to understand 
the code examples in the book. The other aim of this chapter is to cover relevant aspects of Flash and 
ActionScript that will set the context for applying physics. 

This chapter was written with the assumption that the reader would have at least a basic knowledge of 
Flash and ActionScript. If you are an experienced AS3.0 programmer, you could safely skip most of this 
chapter, perhaps skimming over some of the material at the end on ActionScripted animation and collision 
detection. On the other hand, if you haven’t done any programming with ActionScript before, we suggest 
you pick up one of the books mentioned in the summary at the end. If you have programmed in an earlier 
version of ActionScript, or maybe need a refresher of AS3.0, you will benefit from going through the 
chapter in some detail. While the overview on its own won’t make you a proficient AS3.0 programmer, it 
should enable you to use and build upon the code examples in the book without much difficulty. 

Topics covered in this chapter include the following: 

! ActionScript 3.0 classes: Classes and objects are the basic building blocks of object-oriented 
programming (OOP). “Things” in the real world are represented as objects in ActionScript. 
Objects have properties. They can also do things by using methods. 

! ActionScript 3.0 language basics: For completeness, the basic constructs of AS3.0 and their 
syntax are reviewed, such as variables, data types, arrays, operators, functions, math, logic, and 
loops. 
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! Events in ActionScript 3.0: The event framework in AS3.0 is very different from what it was in 
previous ActionScript versions. We briefly review some basic concepts and syntax, giving 
examples of how to make things happen in response to changes in the program or user 
interaction. 

! The Flash coordinate system: This is the equivalent of space in the Flash world. Objects can be 
positioned on the stage in 2D and 3D using code. We review the differences between the Flash 
coordinate system and the usual Cartesian coordinate system in math. 

! The Flash drawing API: The ability to draw things using only code is a powerful tool, especially 
when combined with math and physics. Some of the most common methods of the AS3.0 
drawing API, which will be used throughout the book, are briefly reviewed here. 

! Producing animation using ActionScript: We review different methods of producing animation 
using code, and explain the main method we’ll use for physics-based animation in the rest of the 
book. 

! Collision detection: In any game or other project involving motion, things are inevitably going to 
bump into each other. Collision detection algorithms tell you when this has happened so that you 
can program the appropriate response. 

ActionScript 3.0 classes 
If you’ve programmed using an earlier version of ActionScript before version 3.0, chances are you haven’t 
worried too much about classes. However, in AS3.0 it is impossible to ignore classes, because they are 
built into the very structure of the language. So what is a class? 

A class is a fundamental construct of object-oriented programming (OOP). It is an abstract specification of 
an object that you want to create. An object is anything that exists in your movie at runtime. 

Now that sounds pretty abstract, so let’s look at an example. Suppose you want to create particles in a 
project, and the particles will be the objects. How will Flash know how to make particles? Well, you’ll first 
have to tell it what a particle consists of, how it should look, what it can do, and so on. This is done by 
creating a class for the particle object called Particle, for example (by convention, class names start with 
an uppercase letter). Then each time you want a particle, you invoke the Particle class. The following 
sections describe how to produce an object from a class, create a class, and understand what it consists 
of. 

Classes and objects 
Let’s take another look at the BouncingBall class from the last chapter. The function init() contains an 
example of how to produce an object from a class: 
 
private function init():void { 
        ball = new Ball();• 
        ball.x = 50;• 
        ball.y = 75;• 
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        addChild(ball); 
        addEventListener(Event.ENTER_FRAME,onEachTimestep); 
} 

The ball object is an instance of the Ball class, and is created (or instantiated) by this code: 
 
        ball = new Ball();• 

The ball is subsequently made visible (technically added to the Display List) by the addChild command: 
 
        addChild(ball); 

Note that the Flash movie is made from a class. (See the listing in Chapter 1 for an example.) In Flash 
CS3 to CS5, this is called the document class. In Flex Builder 3 and Flash Builder 4 (used for a pure 
ActionScript project), it is generally called the main application class or something similar. 

Structure of an AS3.0 class 
Okay, you now know how to produce an object from a class, but what does a class actually look like in 
AS3.0? Here is a simple example of a perfectly valid class that does nothing: 
 
package{ 
        public class DoNothing { 
 
                public function DoNothing() { 
 
                } 
 
        } 
} 

Note that the class specification is enclosed within a package{} statement. A package is a bit like a folder; 
it is used to organize related classes. The default package has no name, as in this example. But you could 
give it any name you want, for example package mypackage{}. 

The class is then declared using public class DoNothing{}, where DoNothing is the name of the class 
in this example. 

This class ships with a function (more precisely a method) with the same name as that of the class: the 
DoNothing() function. This function is called the constructor of the class. 

The keyword public sets the scope of a class, function, or property (we’ll introduce properties shortly). 
This means that the class DoNothing and function DoNothing can be accessed from outside the class. It 
is also possible for a class to have private functions, which can be accessed only from within the class; or 
protected functions, which can also be accessed by its subclasses (see the following section on 
inheritance). We’ll show examples of private and protected functions soon. 

The next few sections explain some of these concepts in a bit more detail. 
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Functions, methods and constructors 
As you’ve just seen in the last subsection, an example of a function is the constructor of a class. The code 
within the constructor is automatically executed whenever the class is instantiated as an object using the 
new keyword. 

In the BouncingBall example, the function init() is called from within the constructor. Note that init() 
has private scope, so it is accessible (and therefore callable) only within the class BouncingBall. Why do 
we need a separate function init() in this example? Couldn’t the code in init() be placed directly 
inside the constructor? The answer is that code placed in the constructor is interpreted, whereas code 
placed anywhere else is compiled!and so runs faster. 

Notice the use of the function type void (this was Void, with a capital V in AS2.0). This means that this 
function does not return any value. It is possible for functions to return different kinds of things; for 
example, this function returns a random number between 0 and 100: 
 
private function randomNumber():Number { 
        return(Math.random()*100); 
} 

As in AS2.0, functions (and, therefore, methods and constructors) can have arguments or parameters 
(values that we can feed into them). For example, this function adds two numbers supplied as arguments 
and returns the value as another number: 
 
private function addNumbers(x:Number,y:Number):Number { 
        return(x+y); 
} 

Similarly, as in AS2.0, public methods of a class can be accessed using dot notation. For example, 
suppose a Car class has a public function move(). If car is an instance of Car, car.move() will invoke 
the move() function. 

Properties 
The splendid example of a class that we gave earlier is not very useful as it stands. Let us make it useful 
by making it do something, such as adding two numbers, for example. 

This is how we might do it: 
 
package{ 
        public class DoSomething { 
 
                private var x:Number = 2; 
                private var y:Number = 3; 
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public function DoSomething() { 
                        var z:Number; 
                        z = x + y; 
                        trace(z);  // write to output console 
                } 
 
        } 
} 

There is a lot happening here. First, we created properties x, y, and z. In AS3.0, properties need to be 
defined or declared first. This is done using the var keyword. 

Note that we declare the properties x and y as private. This means that they are accessible within the 
class but not outside of it. “Within the class” means that any function in the class can access them. 

Did you notice a difference in the way z is declared? There is no private keyword. That’s because it is 
declared within a function—in that case, it is accessible only within that function. So it cannot be declared 
as private because private properties are accessible from anywhere within the class. 

How do you know whether to declare your properties and functions as private or public? The simple rule is 
to keep them private unless you really have to make them accessible from outside the class. This stops 
any outside code from potentially messing with your code. 

Just as functions, public properties in AS3.0 can be accessed using dot notation. For example, ball.x 
gives the horizontal position of the ball object because x is a built-in public property of display objects 
such as MovieClips and Sprites (note that in AS2.0, this was denoted _x, with a leading underscore). 

Static methods and properties 
The methods and properties we’ve looked at pertain to objects, but it also is possible to have methods and 
properties for classes. This means that the class does not have to be instantiated to invoke the property or 
method. 

An example is Math.random(), which is a class method from the Math class that generates a random 
number. 

We use the static keyword to declare class level properties and methods. Static properties and methods 
are called using the class name, not an instance name. For example, suppose you have the following 
static method in a class called Physics: 
 
static public function calcGravity(mass:Number,g:Number):Number { 
        return(mass*g); 
} 

Physics.calcGravity(4, 9.8) would then give you the gravity force on a 4kg object on planet Earth. 
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Inheritance
An important concept in OOP is that of inheritance, which allows you to build new classes from existing 
classes. The new class is called a subclass, and the old class is called a superclass. This is done using 
the extends keyword. 

For example, to create a subclass called Electron from a Particle class we’d do this: 
 
package{ 
        public class Electron extends Particle { 
 
                public function Electron() { 
                        // Electron code goes here. 
                } 
        } 
} 

The subclass Electron has access to all the non-private properties and methods of the Particle 
superclass, as well as those of its own. To invoke the superclass constructor, one simply calls super(). 

Note that the BouncingBall class extends the Sprite class. Every document class must extend either 
Sprite or MovieClip. To do so, one must first use an import statement to import the class or package, 
as done in BouncingBall.as. 

ActionScript 3.0 language basics 
Classes are clever concepts but, as the last section showed, they are pretty useless by themselves. In this 
section, we’ll review the code elements that do all the groundwork. Special emphasis is placed on their 
relevance to math and physics. 

Variables and constants 
Remember the var keyword that we used to declare properties? The keyword var stands for variable. A 
variable is a container that holds some value. Here value might mean different things. For example, the 
following variable x is defined to hold values that are numbers (we are omitting private keywords): 
 
var x:Number; 

Subsequently, x may only be assigned values that are numbers. For example: 
 
x = 2; 
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This assignment can be done together with the following variable declaration or anywhere else in the code: 
 
var x:Number = 2; 

One can also perform arithmetic on x; for example, the following code multiplies x by a number, adds the 
result to another variable y, and assigns the result to a third variable z: 
 
z = 2*x + y; 

This resembles algebra, with some notable differences. The first difference is purely a matter of syntax: 
We use the operator * to multiply 2 and x. More about operators soon. 

The second difference is more subtle and relates to the meaning of an assignment. Although the 
preceding code may look superficially like an algebraic equation, it is important to note that an assignment 
is not an equation. The difference can be highlighted by considering an assignment like this one: 
 
x = x + 1; 

If this were an algebraic equation, it would imply that 0 = 1!an impossibility! Here, what it means is that 
we increase the value of x (whatever it is) by 1. 

The word variable entails that we can change the value stored in a variable any time. If we want the value 
of a variable to be fixed, it might be a good idea to define it as a constant instead: 
 
const gravity:Number = 1; 

The value of a constant can be assigned only when it is defined. This is because declaring a const 
effectively prevents any subsequent assignment to be made in the rest of the code. There is no absolute 
need to use constants, but it may be a good idea to protect values that should not really be changed. 

Variables in ActionScript can have values other than numeric values. The type of value that a variable can 
hold is called its data type. 

Data types 
There are a number of different data types in AS3.0, and they may broadly be classified as primitive and 
complex. Primitive data types are the most basic types in AS3.0. ActionScript stores them in a manner that 
makes them especially memory- and speed-efficient. Complex data types, on the other hand, are made up 
of or reference primitives. They are more resource-intensive, but provide a lot of flexibility for 
programmers. Tables 2-1 and 2-2 list some of the more common data types in each category. 

Table 2-1. Primitive Data Types 

Data Type Description 

Boolean Has two possible values: true and false, or 1 and 0 

int 32-bit integer 

Number 64-bit double-precision floating-point number 
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Data Type Description 

String A sequence of 16-bit characters 

uint 32-bit unsigned integer 
Table 2-1 continued. 

Table 2-2. Complex Data Types 

Data Type Description 

Object Defined by the Object class, which is the base class for all class definitions 

Array Holds a list of data of any type 

Vector Variant of Array that holds data of the same type 

Sprite A display object without a timeline 

MovieClip An animated movie clip display object 

Bitmap A non-animated bitmap display object 

Shape A nonanimated vector shape object 

ByteArray An array of binary data 

TextField A text field object 

The Number, int, and uint primitive data types will be described in the subsection that follows, but let’s 
say a few words about the remaining two primitive data types listed in Table 2-1: String and Boolean. 

A String is group of characters. For example, the following 
 
var str:String = “Hello there!”; 
trace(str); 

would give this output: Hello there! 

Note that the value of a String must be enclosed within quotes (single or double). 

A Boolean can have only one of two values: true or false. For example: 
 
var bln:Boolean = false; 

Note that the value true or false is not enclosed within quotes; it is not a string. 

Among the complex data types, objects and arrays are particularly useful in terms of programming. The 
Array data type is described in a separate section that follows. The Object data type is defined by the 
Object class, which serves as the base class for all classes in ActionScript. The Object class by itself 
does not do much, but it is powerful because it is dynamic: it can be extended at runtime with new 
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properties and methods. Objects can also be used as associative arrays, which are arrays that store 
values using strings as keys (normal arrays store values using numeric indices —see the “Arrays” section 
that follows). 

Because we’ll be using numeric data types and arrays an awful lot, let’s discuss them in a bit more detail. 

Numeric data types 
Numeric data types include Number, as discussed previously in the section “Variables and constants,” int, 
and uint. 

The Number type is a double-precision 64-bit floating-point number according to the IEEE 754 
specification. It is able to store both positive and negative real numbers (i.e. not only whole numbers, but 
those with fractional parts, too). The maximum value that Number can store is 1.8 x 10308. Given that the 
number of atoms in the visible universe is estimated to be “only” 1080, this should be enough even for the 
biggest scientific calculations! 

The Number class also includes the following special values: NaN (not a number), POSITIVE_INFINITY, 
and NEGATIVE_INFINITY. 

NaN signifies that a numeric value has not been assigned. You’d get NaN if you look at the value of a 
Number variable that has not been given a value. You’d also get NaN as a result of a mathematical 
operation that produces non-real or undefined results (for example, by taking the square root of –1 or 
dividing 0 by 0). 

Infinity is the result of dividing a non-zero number by 0. You will get positive or negative infinity depending 
on the sign of the number you are dividing by zero. 

The int type is a signed 32-bit integer. This means it can represent both positive and negative integers 
(including zero) between –2,147,483,648 and 2,147,483,647. 

The uint type is similar to int except that it can only be positive or 0. Its range of values is from 0 to 
4,294,967,295. It is most often used for counting, as you might imagine. 

Arrays 
An array is an object that holds a collection of items. Suppose you have to keep track of a number of 
particles in your movie. You could do that by naming them individually as particle1, particle2, particle3, and 
so on. That might work fine if you have a few particles, but what if you have 100 or 10,000? That’s where 
an array comes in handy. You can just define an array called particles, for example, and put all the 
particles in there. 

A simple way to create an array is by specifying the array elements as a comma-separated list enclosed 
by square brackets: 
 
var arr:Array = new Array(); 
arr = [2, 4, 6]; 
trace(arr[1]); // gives 4 
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As the preceding code snippet shows, the resulting array elements are then accessed by arr[n], where n 
is an unsigned integer called the array index. Note that the array index starts from 0, so that the first array 
element is arr[0]. 

There are several other ways of creating arrays. There are also lots of rules to do with the manipulation of 
arrays and array elements. We’ll come across examples of those soon. 

It is also possible to create multidimensional arrays. This is done by creating arrays whose elements are 
also arrays. The following example creates a two-dimensional array from two one-dimensional arrays: 
 
var xArr:Array = new Array(); 
var yArr:Array = new Array(); 
xArr = [1,2]; 
yArr = [3,4]; 
var zArr:Array = new Array(xArr,yArr); 
trace(zArr[0][1]); // gives 2 
trace(zArr[1][0]); // gives 3 

Note that we’ve created the third array in a different way, by passing the array elements directly to the 
constructor of Array(). 

It is possible to add different types of objects into the same array. That’s because arrays in ActionScript 
are not typed, unlike in some other languages like C++ and Java. The Vector data type (available in Flash 
Player 10 or above) is a variant of Array that is typed. Vectors generally perform faster than arrays. 

Operators
You can perform basic arithmetic with numbers with the usual operators (+, -, * and /, respectively) for 
adding, subtracting, multiplying, and dividing numbers. 

There are also a number of other, less obvious operators. The modulo operator % gives the remainder 
when a number is divided by another. The increment operator (++) increases the value of a number by 1, 
and the decrement operator (--) reduces the value of a number by 1. 
 
var x:int = 5; 
var y:int = 3; 
 
trace(x%y); // gives 2 
 
var z:int; 
z = x++; // assigns the value of x to z, then increments x 
trace(z); // gives 5 
z = ++x // increments the value of x, then assigns it to z 
trace(z); //gives 7 

Operators can also be combined with assignment. For example: 
 
var a:int = 1; 
 
a = a + 1; 
trace(a); // gives 2 
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a += 1; // shortened form of a = a + 1 
trace(a); // gives 3 
a = 4*a; 
trace(a); // gives 12 
a *= 4; // shortened form of a = a*4 
trace(a); // gives 48 

Math
Besides the basic operators described in the last section, the Math class contains many more 
mathematical functions. 

Table 2-3 gives some common examples of Math functions and what they do. In the next chapter you will 
encounter many more Math methods, such as trigonometric, exponential, and logarithmic functions. 

Table 2-3. Math Methods 

Method What it returns 

Math.abs(a:Number) absolute value of a 

Math.pow(a:Number,b:Number) a to the power of b 

Math.sqrt(a:Number) square root of a 

Math.ceil(a:Number) smallest integer that is larger than a 

Math.floor(a:Number) largest integer that is smaller than a 

Math.round(a:Number) nearest integer to a 

Math.max(a:Number,b:Number,c:Number,…) largest of a, b, c, … 

Math.min(a:Number,b:Number,c:Number,…) smallest of a, b, c, … 

Math.random() a pseudo-random number n, where 0 <= n < 1 

The last method, Math.random(), is an interesting one. It generates a random number between 0 and 1, 
including 0 but excluding 1. Strictly speaking, it is pseudo-random because it follows an algorithm. But it is 
good enough for most purposes you’re likely to use it for. 

Here is an example of how to use the Math.random() method. In BouncingBallsRandom.as, we have 
made a simple modification so that each time the swf runs, the ball has a different initial velocity. We do 
this by the following two lines in init(): 
 
vx = Math.random()*5; 
vy = (Math.random()-0.5)*4; 

The first line sets the initial horizontal speed to be between 0 and 5. The second line sets the vertical 
speed to be between –2 and 2. What does a negative vertical speed mean? It means a speed in the 
direction opposite to the direction of increasing y. Because in the Flash coordinate system y increases as 
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we go down (as we’ll see later in this chapter), negative vertical speed means that the object moves 
upward. So each time you start the swf you’ll see the ball initially move up or down with a different 
horizontal and vertical speed. 

Logic
In any programming language, logic is an essential part of coding. Logic enables code to take different 
actions based on the outcome of some expression. 

The simplest way to implement logic in ActionScript is through a basic if statement, which has the following 
structure: 
 
if (logical expression){ 
        do this code 
} 

An if statement basically checks if a logical expression is true. 

For example, in the BouncingBall.as code, there is the following logic: 
 
if (ball.y > 350){ 
        vy *= -0.8; 
} 

This tests whether the ball’s vertical position is greater than 350 pixels and, if so, multiplies its vertical 
speed by –0.8. In this example, the logical expression to be tested is ball.y > 350, and > is a logical 
operator that means “greater than.” 

Other commonly used logical operators include < (less than), == (equal to), <= (less than or equal to), >= 
(greater than or equal to), and != (not equal to). There is also a strict equality operator ===, which differs 
from the equality operator == in that it takes the data type into account when comparing two variables. 

Care must be taken not to confuse the equality operator == with the assignment operator =. This is a 
common source of mistake and consequent debugging frustration! 

There are also && (AND) and || (OR) operators that enable you to combine conditions: 
 
if (a < 10 || b < 20){ 
        c = a+b; 
 
} 

There are more elaborate forms of the if statement. The if else statement is of this form: 
 
if (logical expression){ 
        do this if expression is true 
} else { 
        do this if expression is false 
} 
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You can also use an if else if … else statement to check for different possibilities: 
 
if (a == 0){ 
        do this if a is zero 
} else if (a < 0 ) { 
        do this if a is negative 
} else if (a > 0) { 
        do this if a is positive 
} else { 
        do this if a is NaN 
} 

Other logical constructs include the switch and the ternary conditional operator, but we won’t be using 
them much in this book. 

Here is an exercise: modify the BouncingBallRandom.as code to recycle the ball so that when it 
disappears at the right boundary, it starts again at the initial location but with a new random velocity. The 
answer is in BouncingBallRecycled.as. 

Loops 
Just like logic, looping is an essential ingredient of programming. One of the things that make computers 
useful is their capability to repeat operations over and over again, much more quickly than humans, and 
without ever getting bored. They do it by looping. 

In ActionScript there are several kinds of loops. We’ll review just a couple of those here. 

The for loop is the one that we’ll make most use of. Here is an example of a for loop, used for summing the 
first 100 positive integers: 
 
var sum:Number = 0; 
for (var i:int = 1; i <= 100; i++) { 
        sum += i; 
} 
trace(sum); 

The first line initializes the value of the variable sum to 0. The next line sets up the loop—the variable i is a 
counter, set to start at 1 (you could start it from 0 or any other integer), up to and including 100, and told to 
increment by 1 (i++) on each step. So the loop executes 100 times, each time adding the current value of 
i to sum. 

Looping over elements of an array is an especially useful technique. Suppose you want to animate five 
bouncing balls rather than one. To see how you’d do it, take a look at the code in BouncingBalls.as. 

The main idea is to modify the init() function so that we create a bunch of balls, give each one a 
position and velocity (we’ve added vx and vy as public properties in the Ball class), and put them into an 
array named balls (which is defined as a private variable, so can be accessed later in another part of the 
code) using the push() method: 
 

         private function init():void { 
                balls = new Array(); 
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                for (var i:uint=0; i<5; i++){ 
                        var ball:Ball = new Ball(); 
                        ball.x = 50; 
                        ball.y = 75; 
                        ball.vx = Math.random()*5; 
                        ball.vy = (Math.random()-0.5)*4; 
                        addChild(ball); 
                        balls.push(ball); 
                } 
                addEventListener(Event.ENTER_FRAME,onEachTimestep); 
         } 

Naturally, the event handler is also modified to loop over all the balls: 
 
        private function onEachTimestep(evt:Event):void{ 
                for (var i:uint=0; i<5; i++){ 
                        var ball:Ball = balls[i]; 
                        ball.vy += g; 
 
                        ball.x += ball.vx; 
                        ball.y += ball.vy; 
 
                        if (ball.y > 350){ 
                                ball.y = 350; 
                                ball.vy *= -0.8; 
                        } 
                } 
        } 

Don’t worry that the balls just pass through each other when they meet. That’s because your code doesn’t 
know about collision detection yet! We’ll fix that later. 

Note that in order to use a for loop, you need to know exactly how many times you want to loop. If you 
don’t, then there are other options, such as for ... in, for each ... in, and while loops. We won’t describe the 
first two as we don’t make use of them in this book. 

In a while loop, you tell the loop to execute as long as some condition is true, no matter how many times 
you need to loop. The basic structure of a while loop is as follows: 
 
while (some condition) { 
        do something 
} 

For example, suppose you want to know the minimum number of consecutive integers you must sum, 
starting from 1, to obtain at least 1000. Here is a while loop to do this: 
 

var sum:Number = 0; 
var i:int = 1; 
while (sum < 1000) { 
        sum += i; 
        i++; 
} 
trace(i-1); 
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You can also use a while loop in the same way as a for loop, to perform an operation a fixed number of 
times, for example, to sum the first 100 positive integers: 
 
var sum:Number = 0; 
var i:int = 1; 
while (i <= 100) { 
        sum += i; 
        i++; 
} 
trace(sum); 

Be careful with while loops —if the condition is always true, you’ll end up with an infinite loop and the code 
will never stop executing! 

A variation is a do ... while loop, in which the condition is checked after the loop instead of before. This 
ensures that the code within the loop executes at least once: 
 
do { 
        do something 
} while (some condition); 

Events in ActionScript 3.0 
An event allows a given course of action to be replaced by a different course of action. Events contribute in 
a major way to making interactive media as interesting as they are. AS3.0 has quite an involved event 
framework. We won’t go into details of the event framework and how it works under the hood, but will just 
take a very practical approach by simply reviewing the code syntax for tracking and responding to events. 
Also we focus here only on a few examples that we’ll use frequently in our physics applications. 

Event listeners and handlers 
There are two aspects to event management: tracking events and responding to events. In AS3.0, event 
listeners “listen” to events, and event handlers take the appropriate action. 

The syntax for setting up an event listener is as follows: 
 
addEventListener(event_type, handler); 

Here handler is simply a function that is called whenever an event of type event_type happens. 
BouncingBall.as contains an example: 
 
addEventListener(Event.ENTER_FRAME, onEachTimestep); 

Here the event type is Event.ENTER_FRAME, a static property of the Event class. It is automatically 
triggered at a rate set by the frame rate of the movie. So if the frame rate is 20 frames per second (fps), 
Event.ENTER_FRAME is triggered every 50 milliseconds. In response, the function onEachTimestep() is 
called and executed immediately each time the event is triggered. Note that the function onEachTimestep 
takes an argument of type Event (evt:Event). 
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You can also remove an event listener in exactly the same way, replacing addEventListener by 
removeEventListener. For example: 
 
removeEventListener(Event.ENTER_FRAME, onEachTimestep); 

Events and user interaction 
There are many other classes that deal with events besides the Event class. For example, the 
MouseEvent class deals with mouse events and the KeyboardEvent class deals with, well, keyboard 
events. 

Mouse and keyboard events are great because they allow the user to interact with the Flash movie. For 
example, suppose we want to pause the BouncingBall animation when the user clicks and holds down the 
mouse, and resume it when the mouse is released. This can be achieved easily using the 
MouseEvent.MOUSE_DOWN and MouseEvent.MOUSE_UP events. Just add the following lines to the init() 
method: 
 
addEventListener(MouseEvent.MOUSE_DOWN,stopAnim); 
addEventListener(MouseEvent.MOUSE_UP,startAnim); 

and include these event handlers: 
 
private function stopAnim(evt:MouseEvent):void{ 
        removeEventListener(Event.ENTER_FRAME,onEachTimestep); 
} 
 
private function startAnim(evt:MouseEvent):void{ 
        addEventListener(Event.ENTER_FRAME,onEachTimestep); 
} 

The code is in BouncingBallPause.as. Note that you need to import the class 
flash.events.MouseEvent. 

Note that the addEventListener() is actually a method of an object such as a sprite or movie clip. 
Therefore, you can do something like this: 
 
ball.addEventListener(MouseEvent.MOUSE_DOWN,stopAnim); 

In this case, the animation will stop only if the ball object is pressed. If no object is specified, stopAnim() 
is called whenever the mouse is pressed anywhere on the stage. 

Drag and drop 
Drag and drop is easy with AS3.0, using the aptly named startDrag() and stopDrag() methods. To 
illustrate the use of startDrag() and stopDrag(), we will modify the bouncing ball code yet again, so 
that now you can click the ball, move it anywhere on the stage, and then release it again. 

To do this, make the following changes. First, remove the following line from init(): 
 
addEventListener(Event.ENTER_FRAME, onEachTimestep); 
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Replace it with the following two lines: 
 
ball.addEventListener(MouseEvent.MOUSE_DOWN,drag); 
ball.addEventListener(MouseEvent.MOUSE_UP,drop); 

They set up listeners, and the corresponding event handlers are these: 
 
private function drag(evt:MouseEvent):void{ 
        removeEventListener(Event.ENTER_FRAME,onEachTimestep); 
        ball.startDrag(); 
} 
 
private function drop(evt:MouseEvent):void{ 
        addEventListener(Event.ENTER_FRAME,onEachTimestep); 
        ball.stopDrag(); 
} 

You will also need to set the initial values of vx and vy to zero, the initial value of ball.y to 350 (so that it 
is initially stationary on the ground), and ball.x to any suitable value so that it is visible on the stage. The 
modified code is in BouncingBallDrag.as. Try it out! 

The Flash coordinate system 
In the real world things exist in space. In the Flash world the equivalent is that objects exist on the stage. 
To know how to position objects on the stage, it is necessary to understand the Flash coordinate system. 

2D coordinates 
Flash’s coordinate system is somewhat different from the usual Cartesian system of coordinates in math. 
In normal coordinate geometry, the x-coordinate runs from left to right, and the y-coordinate runs from 
bottom to top (see Figure 2-1b). In Flash, however, the y-coordinate runs in the opposite way, from top to 
bottom (see Figure 2-1a). The origin is in the top-left corner of the visible stage. 

The usual Cartesian system is called a right-handed coordinate system because if you hold your right 
hand with your fingers closed and your thumb pointing out of the paper, your fingers will point from the 
positive x-axis to the positive y-axis. By implication, Flash’s coordinate system in 2D is a left-handed 
coordinate system. 
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Figure 2-1. 2D coordinate systems compared: (a) in Flash and (b) math 

Another oddity in the Flash coordinate system is that angles are measured in a clockwise sense from the 
direction of the positive x-axis (see Figure 2-2a). The usual convention in math is that angles are 
measured counterclockwise from the positive x-axis (see Figure 2-2b). 
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Figure 2-2. Angles as measured in (a) Flash and (b) math coordinate systems 

3D in Flash 
From Flash Player 10, 3D is supported natively. This means that it is possible to position and manipulate 
objects in 3D space using built-in AS3.0 properties and methods. To be sure, the capabilities of additional 
third-party 3D engines for Flash such as Papervsion3D or Away3D far exceed the native 3D capabilities of 
Flash Player. However, the availability of native 3D means that it is now extremely easy to perform basic 
tasks in 3D. 

3D means that there is a third axis: the z-axis. In Flash, the direction of increasing z points into the screen. 
Any display object such as a sprite has a property z that fixes the z-coordinate of the object on the screen. 
Note that the position on the screen matches the x- and y-coordinate values only if the z-coordinate is 
zero. 

Figures 2-3a and 2-3b show the corresponding coordinate systems in 3D. Note that the usual right-handed 
Cartesian system used in math is frequently pictured with the y-axis pointing into the screen and the z-axis 
pointing upward. The 3D coordinate system used in Flash 10, however, has the y-axis pointing down (as in 
the 2D version) and the z-axis pointing into the screen. However, the two coordinate systems are, in a 
sense, equivalent because the Flash 10 3D coordinate system is also right-handed. In fact, if you rotate it 
by 90 degrees clockwise about the positive x-axis you recover the usual orientation of axes used in math. 
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Figure 2-3. 3D coordinate systems compared: (a) in Flash and (b) in math 

Rotation is also possible around the three axes. An object’s rotation is specified by the properties 
rotationX, rotationY, and rotationZ, which are measured in degrees. The convention for the 
orientation of angles in 3D is again opposite to that in math, with angles about an axis being measured in a 
clockwise sense while looking in the positive direction along that axis. 

To show how straightforward it is to incorporate basic 3D, we have modified the bouncing ball code to 
make the ball bounce off the four walls inside an invisible box. To achieve this, we invoked the third 
coordinate ball.z and introduced a corresponding velocity component vz. We initialize the values of 
these variables in init(). Then in the onEachTimestep() function, we update ball.z in exactly the 
same way as ball.x: 
 
ball.z += vz; 

The velocity component vz remains unchanged except when the ball bounces off a wall perpendicular to 
the z direction. This is because the z direction is also horizontal in this context, and gravity does not act 
horizontally. 

The remaining additions in the code implement bouncing at the walls, following the same logic as that for 
bouncing at the ground (and taking into account the size of the ball). 

 This is what the updated onEachTimestep() method looks like: 
 

private function onEachTimestep(evt:Event):void{ 
 
                        vy += g;      // gravity increases the vertical speed 
 
                        ball.x += vx; // horizontal speed increases horizontal position 
                        ball.y += vy; // vertical speed increases vertical position 
                        ball.z += vz; 
 
                        if (ball.y > 350){ // if ball hits the ground 
                                ball.y = 350; 
                                vy *= gfac;    // its vertical velocity reverses/reduces 
                        } 
                        if (ball.x > 550 - w){ 
                                ball.x = 550 - w; 
                                vx *= wfac; 
                        } 
                        if (ball.x < w){ 
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                                ball.x = w; 
                                vx *= wfac; 
                        } 
                        if (ball.z > 200){ 
                                ball.z = 200; 
                                vz *= wfac; 
                        } 
                        if (ball.z < -200){ 
                                ball.z = -200; 
                                vz *= wfac; 
                        } 
                } 

The full code is found in BouncingBall3D.as. There you are—a ball bouncing inside an invisible 3D box! 
Never mind if you can’t see the box yet; we’ll fix that soon. 

The Flash drawing API 
The Flash drawing application programming interface (API) allows you to draw things such as basic 
shapes and fills using ActionScript. Technically, this is possible because all display objects have a 
graphics property that can access the methods of the drawing API. 

Drawing lines and curves 
There are four methods that you need to know to be able to draw lines and curves: lineStyle, moveTo, 
lineTo, and curveTo. 

! The lineStyle(width, color, alpha) method takes three arguments: the width of the line to 
be drawn, the line color, and its transparency. 

! The moveTo(x, y) method moves the cursor to the specified location (x, y) without drawing 
anything. 

! The lineTo(x, y) method draws a straight line from the current location to the new location (x, 
y) specified in its argument. 

! The curveTo(x1, y1, x2, y2) method draws a curve from the current location ending at the 
new location specified by (x2, y2) and with a control point at (x1, y1). The control point 
determines the curvature of the curve. 

For example, to draw a straight line from the point (50, 100) to (250, 400), you would do something like 
this: 
 
graphics.lineStyle(1,0x000000,1); 
graphics.moveTo(50, 100); 
graphics.lineTo(250, 400); 

As an exercise, why not draw a grid using these methods? See the code in Grid.as. 
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There are also a few very useful methods for drawing primitive shapes such as circles and rectangles. For 
example, drawCircle(x, y, radius) draws a circle with a center at (x, y) and the specified radius; 
drawRect(x, y, width, height) draws a rectangle with the upper-left corner located at point (x, y) and 
with the specified width and height. 

Creating fills and gradients 
Producing fills is straightforward. The beginFill(color, alpha) method sets the fill to the specified 
color and alpha, to be applied to all objects drawn thereafter and until an endFill() is encountered. The 
following code snippet will produce a green rectangle without a border: 
 
graphics.lineStyle(1,0x000000,0); 
graphics.beginFill(0x00ff00); 
graphics.drawRect(10, 10, 20, 30); 
graphics.endFill(); 

Creating gradients is a bit trickier. To do the job, the method beginGradientFill() needs no fewer than 
eight arguments, although some have default values, so they don’t necessarily need to be specified: 

! type:String: a value that specifies which gradient type to use: GradientType.LINEAR or 
GradientType.RADIAL. 

! colors:Array: An array of RGB hexadecimal color values used in the gradient. 

! alphas:Array: An array of alpha values for each color in the colors array; valid values are from 
0 to 1. 

! ratios:Array: An array that specifies where to center each color; values range from 0 to 255. 

! matrix:Matrix (default = null): A transformation matrix that tells Flash how to fill the 
shape. 

! spreadMethod:String (default = "pad"): A value that specifies which spread method to 
use; chosen from SpreadMethod.PAD, SpreadMethod.REFLECT, or SpreadMethod.REPEAT. 

! interpolationMethod:String (default = "rgb"): A value from the interpolation method 
that specifies which value to use: InterpolationMethod.LINEAR_RGB or 
InterpolationMethod.RGB. 

! focalPointRatio:Number (default = 0): A number that controls the location of the focal 
point of the gradient; valid values are between -1 and 1. 

The parameters you are most likely to need to change are the first five. Note that the last four parameters 
are optional because they have default values. A full description of all these parameters and what they do 
is outside the scope of this book, but we refer the reader to Adobe’s online AS3.0 documentation for full 
details: http://livedocs.adobe.com/flash/9.0/ActionScriptLangRefV3/. 

Back in Chapter 1 we built a Ball class (that we didn’t talk much about) that we used to create the ball 
object in BouncingBall.as. It’s time now to take a look at the code in Ball.as. Based on the 
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explanations in this section, most of the code should be self-evident. The less-obvious part of the code is 
the creation of the gradient fill, which is done with the following three lines: 
 
var matrix:Matrix = new Matrix(); 
 
matrix.createGradientBox(_radius,_radius,0,-_radius,-_radius/2); 
 
graphics.beginGradientFill(GradientType.RADIAL,[0xffffff,_color],[1,1],[0,255],matrix); 

After creating a matrix object, we used the createGradientBox() method, which takes five arguments: 
width, height, rotation, horizontal shift, and vertical shift. We set these parameters in relation to the radius 
of the ball to create a nice effect—feel free to experiment with alternative values. The final line invokes 
graphics.beginGradientFill() using a radial gradient, a two-color array (one of which is white), 
alphas of 1 for each, locating the center of each color at the two extremes 0 and 255, and the matrix object 
we created to fill the shape. 

Example: Bouncing ball in a box 
Okay, let’s now put together what we discussed in the last two sections (Flash 3D and the drawing API) to 
create something useful: let’s build that 3D box! 

The code is in BouncingBall3DWalls.as and the final result is shown in Figure 2-4. 
 
package { 
        import flash.display.Sprite; 
        import flash.events.Event; 
 
        public class BouncingBall3DWalls extends Sprite { 
                private var g:Number=0.1; // acceleration due to gravity 
                private var vx:Number;  // initial horizontal speed 
                private var vy:Number;  // initial vertical speed 
                private var vz:Number;  // lateral speed 
                private var ball:Ball; 
                private var w:Number; 
                private var gfac:Number=-0.99; 
                private var wfac:Number=-0.99; 
 
                public function BouncingBall3DWalls() { 
                        init(); 
                } 
                private function init():void { 
                        setWall(0,200,250,300,400,-90); // left wall 
                        setWall(550,200,250,300,400,90); // right wall 
                        setWall(275,200,400,548,400,0); // far wall 
                        vx = Math.random()*5; 
                        vy = (Math.random()-0.5)*4; 
                        vz = 4; 
                        ball = new Ball(); 
                        ball.x = 100; 
                        ball.y = 75; 
                        ball.z = 0; 
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                        w = ball.width/2; 
                        addChild(ball); 
                        addEventListener(Event.ENTER_FRAME,onEachTimestep); 
                        setWall(275,200,100,550,400,0,0x0000ff,0.2); // near wall 
                } 
 
                private function setWall(pX:Number, pY:Number, pZ:Number, pW:Number,! 
 pH:Number, pAngle:Number, pCol:uint=0x586cbf, pAlp:Number=1):void{ 
                        var wall:Wall = new Wall(pW, pH, pCol, pAlp); 
                        wall.x=pX; 
                        wall.y=pY; 
                        wall.z=pZ; 
                        wall.rotationY=pAngle; 
                        addChild(wall); 
                } 
 
                private function onEachTimestep(evt:Event):void{ 
 
                        vy += g;      // gravity increases the vertical speed 
 
                        ball.x += vx; // horizontal speed increases horizontal position 
                        ball.y += vy; // vertical speed increases vertical position 
                        ball.z += vz; 
 
                        if (ball.y > 350){ // if ball hits the ground 
                                ball.y = 350; 
                                vy *= gfac;    // vertical velocity reverses and reduces 
                        } 
                        if (ball.x > 550 - w){ 
                                ball.x = 550 - w; 
                                vx *= wfac; 
                        } 
                        if (ball.x < w){ 
                                ball.x = w; 
                                vx *= wfac; 
                        } 
                        if (ball.z > 400){ 
                                ball.z = 400; 
                                vz *= wfac; 
                        } 
                        if (ball.z < 100){ 
                                ball.z = 100; 
                                vz *= wfac; 
                        } 
 
                } 
        } 
} 

Here’s how we do it. First we create a Wall class. If you look at the code in Wall.as, you see that this is 
very straightforward. We basically draw a filled rectangle using values for the width, height, color, and 
alpha that are supplied via the constructor. Then in the main code BouncingBallBox, we define a function 
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setWall() that basically creates a wall object, positions it, and rotates it in 3D space. This function 
setWall() takes eight arguments, the last two of which (color and alpha) are optional. The remaining six 
arguments set the location, size and orientation of the wall. 

The final thing is to invoke setWall() four times in init() to create the four walls. Note that three of the 
walls are created before the ball instance is created and the fourth (the near side one) is created after. 
This is because there is no automatic depth sorting in Flash 3D, and objects are simply given a depth 
based on the order in which they are placed on the stage. 

You need Flash Player 10 or above to view this movie and Flash CS4 or above to work 
with the source code. 

 

Figure 2-4. A ball bouncing inside a 3D box 

Producing animation using code 
There are a number of ways to produce animation using code in AS3.0. For example, there is a Tween 
class that can be used to move, resize, and fade movie clips. However, our focus is to produce physics-
based animation. We basically know how to move objects. What is needed is a method to measure the 
advancement of time. We need a clock. 

Using the built-in frame stepping as a clock 
We’ve already been using a clock: the ENTER_FRAME event. Let’s now take a closer look to see how good 
a time-keeper the ENTER_FRAME event is. 

Suppose the frame rate of a movie is 50 fps. This means that, in theory, the Event.ENTER_FRAME event is 
triggered once every 1/50 seconds (every 20 milliseconds). We said “in theory” because the frame rate in 
the Flash Player is notoriously inaccurate and depends, for instance, on the capabilities of the machine 
running the movie. What effect can this inaccuracy have on the animation? 
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To answer this question, we’ll need to do some simple math. Suppose that we want to move an object at a 
constant velocity of 100 pixels per second, and suppose that the frame rate of the movie is 50 fps. Let’s 
increment the object’s horizontal position by vx per frame as in the bouncing ball example: 
 
private function onEachTimestep(evt:Event):void{ 
        ball.x += vx; 
} 

In other words, vx is the horizontal velocity in units of pixels per frame. What value must we give vx? Well, 
the velocity in units of pixels per second is 100, and there are 50 frames per second. So the value of vx is 
100/50 or 2. In general, we have the following relationship: 

(Velocity in pixels per second) = (Velocity in pixels per frame) ! (Frame rate in fps) 

Okay, so if we set vx = 2, we should see the ball moving at 100 pixels per second. The speed in pixels 
per second is what we actually perceive on the screen. However, there is no guarantee that the frame rate 
at which the movie runs will be exactly the frame rate that is set. Suppose that your machine is slow or 
there are other things running on it, so that the actual frame rate is closer to 30 fps. This gives an actual 
velocity of only 60 pixels per second. Your object appears to be moving slower. What’s more, if you 
republish your movie at a different frame rate, the velocity of the ball will be different. 

Clearly we need a better alternative than a clock that depends on the actual frame rate at which the movie 
runs. 

Using the Timer class 
So we just decided that Event.ENTER_FRAME is not reliable for timekeeping. Is there an alternative? Yes, 
one alternative is the Timer class (found in the flash.utils package), together with the related 
TimeEvent class (found in the flash.events package). 

What a Timer does is not actually that different from Event.ENTER_FRAME. It “fires” an event at a specified 
rate. But Timer is a lot more reliable than Event.ENTER_FRAME. To set up a timer you need to do the 
following. First, create a timer object: 
 
timer = new Timer(10, 1000); 

As you can see, a Timer() takes two arguments. The first one is the time delay, in milliseconds, between 
timer events. The second, optional, argument is the number of times that the timer event fires. If the 
second argument is set to 0, or not specified, the timer will fire indefinitely. 

The next step is to set up an event listener that detects timer events: 
 
timer.addEventListener(TimerEvent.TIMER, onEachTimestep); 

and the corresponding event handler that responds to the timer event: 
 
private function onEachTimestep(evt:TimerEvent):void{ 
        ball.x + = vx; 
} 

www.allitebooks.com
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The other crucial thing is to start it! You see, unlike an enterframe, a timer does not exist or tick by default. 
So after you create it, you have to actually start it. This is easy enough with the start() method: 
 
timer.start(); 

Moreover, you can stop a timer at any time using the stop() method: 
 
timer.stop(); 

This is neat because it allows you to stop and restart your animation at will, without having to remove and 
add the event listener (which is not very elegant). 

One thing you have to remember with a timer is that it does not update your screen. So, if your frame rate 
is lower than your timer rate, you may not see the update until after the next frame event. For example, 
suppose your timer delay is 10 milliseconds, but your frame rate is only 10 frames per second. Your 
frames will be updating every 0.1 seconds, or 100 milliseconds —every 10 timer events. This will make 
your animation appear “jumpy” despite the high timer rate. To fix this, use the updateAfterEvent() 
method to force a screen update after every timer event: 
 
private function onEachTimestep(evt:TimerEvent):void{ 
        ball.x + = vx; 
        evt.updateAfterEvent(); 
} 

Although Timer is a big improvement on Event.ENTER_FRAME, it is not without its shortcomings. One of 
the main problems is that the actual time interval between timer events actually includes the time it takes 
to execute all the code within the event handler on top of the specified delay. If there is a lot of code in 
your event handler, it might mean your timer ticking rate is substantially slower than what you specified. 

Using getTimer() to compute elapsed time 
Bad timekeeping can really mess up your physics. For really accurate timekeeping, what we need is a way 
to measure actual elapsed time. Keith Peters, in his book Foundation ActionScript Animation, gives a great 
way to do this: using the getTimer() function. 

The getTimer() function, found in the flash.utils package, returns an integer equal to the number of 
milliseconds that have elapsed since the Flash Player has initialized. So, if you call getTimer() twice, in 
different parts of the code, and work out the difference in the returned value, that would give you the time 
that has elapsed between those two calls. 

How does that help us with animation? The point is that we can calculate the actual time that has elapsed 
since the object’s position was last updated. Then we can use that time to calculate the amount by which 
to move it.  
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To see this in action, TimerExample.as animates the motion of a ball moving at constant horizontal 
velocity vx. Here is the modified event handler: 
 
private function onEachTimestep(evt:TimerEvent):void{ 
        // time elapsed in seconds since last call 
        var dt:Number = (getTimer() - t)/1000; 
        t = getTimer(); // reset t 
        ball.x += vx*dt; 
        evt.updateAfterEvent(); 
} 

We added two lines here. The first line works out the time elapsed dt (this notation will become clear in 
the next chapter) since the last time the call to onEachTimestep() was made. Here t is a private variable 
initialized to getTimer() before the start of the animation. The next line resets t so that it can be used for 
the next call. 

You’ll see also that we modified the code that updates the ball’s position. We’re now adding an amount 
vx*dt to the ball’s current position instead of vx, as before. What’s going on here? Well, this is the whole 
point of calculating the elapsed time dt. You see, previously we were interpreting the velocity vx as pixels 
moved per frame (if using Event.ENTER_FRAME) or per tick (if using Timer). The assumptions we were 
making in doing so were that the frames or ticks were of fixed duration, and that duration was just what we 
specified in the frame rate or timer delay parameter. As long as those assumptions work, we can use 
frames or timer ticks as a good proxy for time, and thinking of velocity in terms of pixels per frame or timer 
tick is a good idea. But here what we’re saying is this: let’s get back to thinking about velocity in the correct 
way, as pixels moved per second. Therefore, in dt seconds, the distance moved is vx*dt, so that the new 
position is this: 
 
ball.x += vx*dt; 

The advantage of going back to the real meaning of velocity is that the motion is always computed 
correctly, independently of the frame rate or timer tick rate. This technique will come in handy when we 
start looking at more complex physics. 

Here is the code for TimerExample.as in its entirety: 
 
package { 
        import flash.display.Sprite; 
        import flash.utils.Timer; 
        import flash.events.TimerEvent; 
        import flash.utils.getTimer; 
 
        public class TimerExample extends Sprite { 
                private var vx:Number=100; // velocity in units of pixels per second 
                private var ball:Ball; 
                private var timer:Timer; 
                private var t:int; 
 

public function TimerExample() { 
                        init(); 
                } 
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                private function init():void { 
                        createBall(); 
                        setupTimer(); 
                } 
 
                private function createBall():void{ 
                        ball = new Ball(); 
                        ball.x = 50; 
                        ball.y = 100; 
                        addChild(ball); 
                } 
 
                private function setupTimer():void{ 
                        timer = new Timer(20); 
                        timer.addEventListener(TimerEvent.TIMER,onEachTimestep); 
                        timer.start(); 
                        t = getTimer(); // initialise value of t 
                } 
 
                private function onEachTimestep(evt:TimerEvent):void{ 
                        // time elapsed in seconds since last call 
                        var dt:Number = (getTimer() - t)/1000; 
                        t = getTimer(); // reset t 
                        ball.x += vx*dt; 
                        evt.updateAfterEvent(); 
                } 
        } 
} 

Precalculating motion 
As you’ll now be aware, the methods for animating objects with code we’re using work by calculating 
updates to the object’s position “on the fly.” It might also be possible to precalculate the motion of an object 
and animate it afterward. This can be done by using a for or while loop to represent time-stepping, 
calculating the particles position at each step and saving the position coordinates in an array. You can 
even save the values in an external file (if using Adobe AIR) to be used by another movie. 

Why would you want to do that? It can be useful, for example, if calculations take too long to perform and 
cannot fit within a reasonable frame rate. 

The downside of this method is that it doesn’t work with interactivity. Because user interaction is usually an 
important aspect of physics-based applications, we won’t generally use this approach. 

Collision detection 
Collisions are an inevitable fact of life in an animated world. So far, the movies we created do not know 
how to detect when two objects have collided or what to do when they do. This section focuses on the first 
issue: collision detection. Responding properly to collisions will be treated in detail in Chapter 11. 
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In general, collision detection can be a tricky problem, but if the objects to be tested are rectangular in 
shape, there is a very simple built-in method: hitTestObject(). 

Using the hitTestObject() method 
The hitTestObject() method determines whether two display objects (such as sprites or movie clips) 
are in collision: 
 
object1.hitTestObject(object2); 

The outcome is a Boolean: it returns true if they do and false it they don’t. So you’d typically use it as a 
condition in an if statement, writing code to handle the collision if it returns true. 

What hitTestObject() actually does is to check whether the bounding boxes of the two display objects 
overlap or not. If the objects are rectangular in shape, obviously their bounding boxes coincide with their 
visible area, and hitTestObject() works like a dream. However, if one or both of the objects is any other 
shape (for example, a circle), that wouldn’t be true, and hitTestObject() might return true, even in 
some cases when the objects are not actually touching. 

Using the hitTestPoint() method 
The hitTestPoint() method checks whether a given point is touching a display object. It takes two 
mandatory parameters and one optional parameter and returns a Boolean: 
 
object.hitTestPoint(x:Number, y:Number, shapeFlag:Boolean = false); 

The first two parameters specify the coordinates of the point to be tested against the object. The 
shapeFlag option tells Flash whether to test against the visible area of the object (if set to true) or against 
its bounding box (if false, the default). 

With shapeFlag=true, this method is especially handy if one of the objects is quite small (think projectile), 
even if the other object has a complicated shape (think spaceship): boom! 

Distance-based collision detection 
This method involves checking the distance between two objects explicitly and is simplest to formulate for 
circular objects. We have already used a variant of this method when checking for collisions of a bouncing 
ball with the ground or walls. Basically, you work out, using simple geometry, the minimum distance the 
objects can be before they touch. Let’s assume we have a circular ball with the registration point located at 
its center. Then the minimum distance the ball can be from a wall is equal to its radius. For example, to 
check if a ball hits a wall on the right side, the test would look like the following, where _wallx is the 
location of the wall and _radius is the radius of the ball: 
 
if (ball.x >= _wallx - _radius){ 
        code to handle collision 
} 
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If you’re testing whether two circles (of radiuses r1 and r2) are colliding, you need to check if the distance 
between their centers is less than or equal to r1 + r2. Why the sum of their radiuses? Because that’s 
always how far their centers are whenever there’re touching. Okay, but how do we calculate the distance 
between the centers of the circles? This boils down to a common problem in elementary geometry—the 
formula for the distance between two points. Lucky for us, a Greek guy called Pythagoras worked that out 
a long time ago. It’s called Pythagoras’s Theorem. We’ll take a closer look at that theorem in the next 
chapter. For now, here is the formula: 
 
dist = Math.sqrt((x2 – x1)* (x2 – x1) + (y2 – y1)* (y2 – y1)); 

This gives the distance between two points with coordinates (x1, y1) and (x2, y2). So you take the 
difference between the x-coordinates and square it, do the same with the y-coordinates, add the results, 
and then take the square root. 

Now if you’re talking about two circles, (x1, y1) and (x2, y2) will be the coordinates of their centers, and are 
in fact equal to their x and y properties if their registration points are in the center. So, here is our condition 
for detecting collisions between two circles: 
 
if (dist  <= (r1 + r2)){ 
        code to handle collision 
} 

Before you rush off to code this up, you can simplify things a bit. That Math.sqrt() is not entirely 
necessary, and could eat up lots of CPU time in a timer or enterframe loop. And things would get much 
worse if multiple objects were involved. The trick is to check for the square of dist instead: 
 
rSquare = (r1 + r2)*(r1 + r2); 
… 
distSquare = (x2 – x1)* (x2 – x1) + (y2 – y1)* (y2 – y1); 
if (distSquare  <= rSquare){ 
        code to handle collision 
} 

Note that if you only have two objects, or if all the objects have the same radius, the square (r1 + r2)*(r1 + 
r2) needs to be evaluated only once, outside of the time-stepping loop. 

The formula for distSquare can easily be generalized to 3D: 
 
distSquare = (x2 – x1)* (x2 – x1) + (y2 – y1)* (y2 – y1) + (z2 – z1)* (z2 – z1); 

The formula for rSquare remains the same in 3D, of course. 

When multiple objects are involved, you still need to check every pair of objects using the same formula. 

The file CollidingBalls.as modifies BouncingBalls.as to implement this collision-detection method. 
Take a look at the code and have a play with the swf, but don’t worry too much about the physics to deal 
with the collisions for now. We shall handle that in Chapter 11. 



Selected ActionScript 3.0 Topics 

43 

Advanced collision detection 
You are now well equipped to detect collisions between to rectangular objects ((using HitTestObject), a 
point or small object and another object of arbitrary shape (using HitTestPoint with the shapeFlag 
option set to true), and two circular or spherical objects (using Pythagoras’s Theorem). But what about 
more complex shapes? 

Several clever techniques exist for testing for collisions between irregular objects. One of them is by 
looking at individual pixels of BitmapData objects. We refer the interested reader to Chapter 1 of Keith 
Peters’s Advanced ActionScript 3.0 Animation. 

Summary
Wow! This chapter has been a whirlwind tour through vast stretches of Flashland. Hopefully, you’ve now 
gained an appreciation of how different aspects of ActionScript can be useful for physics-based animation. 

If you’ve struggled with any of the material in this chapter, we highly recommend that you brush up on your 
knowledge of Flash and ActionScript 3.0. Here are a couple of books that we particularly recommend for 
beginners: 

! Foundation ActionScript 3.0 for Flash and Flex, by Darren Richardson and Paul Milbourne 
(Apress, ISBN: 978-1-4302-1918-7). 

! Foundation ActionScript 3.0 Animation: Making Things Move!, by Keith Peters (Apress, ISBN: 
978-1-59059-791-0). 

 



45 

 

Chapter 3 

Some Math Background 

Programming even the simplest physics will inevitably involve some math. Therefore, we assume that 
readers of this book will be comfortable with math notation and have at least some math knowledge. This 
knowledge need not be very sophisticated; familiarity with basic algebra and simple algebraic 
manipulations of equations and formulas is the most important requirement and will be assumed without 
review. In addition, some appreciation of coordinate geometry and the basics of trigonometry and vectors 
would provide a good foundation. In case you need it, this chapter provides a review or refresher of these 
topics. Prior knowledge of calculus is a bonus, but is not essential; similarly for numerical methods. We 
provide an overview of the basic concepts on these topics at a level sufficient to apply them in physics 
programming. 

Here is what we’ll cover: 

! Coordinates and simple graphs: Math functions and their graphs crop up constantly in physics 
applications. We review some common math functions, and plot their graphs using a custom 
ActionScript graph plotting class. We also show how to make an object move along any curve 
described by a mathematical equation. 

! Basic trigonometry: Trigonometry crops up a lot in graphics and animation in general, and is 
pretty much an indispensable tool in physics-based animation. In this section, we’ll review some 
trigonometry essentials that will be used in later chapters. We’ll also get to play with trig functions 
such as sin and cos to produce some cool animation effects. 

! Vectors and vector algebra: Vectors are useful because physics equations can be expressed, 
manipulated, and coded up more simply using them. After a review of vector concepts, we’ll 
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construct an ActionScript 3.0 (AS3.0) Vector2D class that will be used throughout the rest of the 
book. 

! Simple calculus ideas: Calculus deals with things that change continuously, including motion. It 
is, therefore, a natural tool to apply to physics. Calculus is usually considered part of advanced 
math. So we’ll give only an overview of the basic concepts here to show how they can be 
implemented in physics equations and in code. 

Although this chapter consists of review material, much of it covers application of the math in ActionScript 
and physics. Therefore, even if you have a solid math background, we recommend that you at least skim 
through this chapter to see how we apply the math.  

In our attempt to illustrate the application of otherwise abstract math concepts to physics, we have picked 
some examples of physics concepts that will be explained more fully in later chapters. So don’t worry if you 
don’t immediately get everything that we’ll cover here; you can always come back to this chapter as 
needed.  

Coordinates and simple graphs 
Coordinate geometry provides a way to visualize relationships expressed as mathematical functions or 
equations. This section will review some things you’d have covered in your school math classes, but mixed 
with a lot of ActionScript code to emphasize the application of those math concepts.  

To get started, let’s remember how to plot functions on graphs. Say you want to plot the graph of the 
function y = x2. The first thing you must do is to decide what range of values you want to plot. Suppose you 
want x to range from  –4 to 4. Then what you might have done at school is to tabulate the values of x and 
the corresponding values of y that you get by using y = x2. The next thing you might have done is to plot 
each (x, y) pair of values as a dot on graph paper and then join the dots to make a smooth curve. Don’t 
worry; we won’t ask you to do this here. Instead of reaching out for graph paper, let’s do it with 
ActionScript! 

Building a plotter: the Graph class 
The Graph class is a custom class we created that does just what its name suggests: draw graphs. You’re 
welcome to have a look at the code, but what it does is quite simple: it has public functions that draw a set 
of axes and major and minor grid lines using the drawing API. It also has a public function to plot data. The 
Graph class takes eight arguments in its constructor:  
 
Graph(xmin, xmax, ymin, ymax, x0, y0, xwidth, ywidth) 

The first four arguments (xmin, xmax, ymin, ymax) denote the minimum and maximum desired values of x 
and y. The next two parameters (x0, y0) denote the coordinates of the origin in the Flash coordinate 
system, in pixels. The final two parameters specify the width and height of the graph object in pixels.  

The public function drawgrid() takes four arguments that specify the major and minor divisions: 
 
drawgrid(xmajor, xminor, ymajor, yminor) 
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It draws corresponding grid lines and labels the values at the relevant major grid locations.  

The public function drawaxes() takes two optional arguments that specify the text labels on the axes. It 
draws the axes and labels them, the default labels being "x" and "y". 
 
drawaxes(xlabel:String="x", ylabel:String="y") 

An example will make the usage clear. Suppose we want to plot the function y = x2 over the range of 
values specified for x from –4 to 4. Then the corresponding range of values of y would be from 0 to 16. 
This tells us that the graph should accommodate positive and negative values for x, but only needs to have 
positive values for y. If the stage is 550 by 400 pixels (the Flash default), a good position to place the origin 
would be at (275, 380). Let’s choose the width and height of the graph to be 450 and 350 so that it fills 
most of the stage. The range in x and y (xmin, xmax, ymin, ymax) can be chosen to be (-4, 4, 0, 20). 
Sensible choices for (xmajor, xminor, ymajor, yminor) are (1, 0.2, 5, 1): 
 
var graph:Graph = new Graph(-4, 4, 0, 20, 275, 380, 450, 350); 
graph.drawgrid(1, 0.2, 5, 1); 
graph.drawaxes('x','y'); 
addChild(graph); 

The code is in GraphExample.as. Go on, have a go yourself and change the parameters to see the effect. 
It’s not really hard, and you’ll soon get the hang of it. 

Plotting functions using the Graph class 
What we’ve done so far is to make the equivalent of a piece of graph paper, with labeled axes on it. To plot 
a graph, we use the public method plot() in the Graph class. This method plots pairs of values of x and 
y, optionally joining them with a line of specified color: 
 
public function plot(x:Array, y:Array, color:uint, dots:Boolean=true, line:Boolean=true) 

As you can see, the values of x and y are to be specified as separate arrays in the first two arguments. 
The last two parameters, dots and line, are optional. If dots is true (the default), a small circle (radius 1 
pixel) is drawn at each point with the specified color. If line is true (the default), the points are joined by 
a line of the same color. If you look at the code, you’ll see that the dot is drawn using the drawCircle() 
method, and the line is drawn using the lineTo() method of the Graphics class. 

Let’s now plot the graph of y = x2: 
 
var xvals:Array = new Array(-4,-3,-2,-1,0,1,2,3,4); 
var yvals:Array = new Array(16,9,4,1,0,1,4,9,16); 
graph.plot(xvals, yvals, 0x0000ff); 

There’s our graph, but it looks a bit odd and not a smooth curve at all. The problem is that we don’t have 
enough points. The lineTo() method joins the points using a straight line, and if the distance between 
adjacent points is large, the plot does not look good.  
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We can do better than that by computing the array elements from within the code. Let’s do this: 
 
var xA:Array = new Array(); 
var yA:Array = new Array(); 
for (var i:uint=0; i<=100; i++){ 
        xA[i] = (i-50)*0.08; 
        yA[i] = xA[i]*xA[i]; 
} 
graph.plot(xA, yA, 0xff0000); 

We’ve now used 101 values instead of just 9. The result is shown in Figure 3-1. As you can see, the plot 
gives a smooth curve. This particular curve has a shape called a parabola. In the next few sections, we’ll 
use the Graph class to produce plots for different types of math functions.  

 

Figure 3-1. Plotting the function y = x2 using the Graph class 

Straight lines 
We’ll start with linear functions, such as y = 2x + 1. Type the following code or copy it from 
GraphFunctions.as: 
 
package{ 
        import flash.display.Sprite; 
 
        public class GraphFunctions extends Sprite{ 
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                public function GraphFunctions(){ 
                        init(); 
                } 
                private function init():void{ 
                        var graph:Graph = new Graph(-4,4,-10,10,275,210,450,350); 
                        graph.drawgrid(1,0.2,5,1); 
                        graph.drawaxes('x','y'); 
                        addChild(graph); 
                        var xA:Array = new Array(); 
                        var yA:Array = new Array(); 
                        for (var i:uint=0; i<=100; i++){ 
                                xA[i] = (i-50)*0.08; 
                                yA[i] = f(xA[i]); 
                        } 
                        graph.plot(xA,yA,0xff0000,false,true); 
                } 
                private function f(x:Number):Number{ 
                        var y:Number; 
                        y = 2*x+1; 
                        return y; 
                } 
        } 
} 

Note that we’ve moved the actual math function to a function called f() to make things slightly easier to 
see and modify.  

The graph is a straight line. If you wish, play around with different linear equations of the form y = ax + b, 
for different values of a and b. You’ll see that they are always straight lines.  

Where does the line meet the y-axis? You’ll find that it is always at y= b. That’s because on the y-axis, x = 
0. Putting x = 0 in the equation gives y = b. The value b is called the intercept on the y-axis. What is the 
significance of a? You’ll find out later in this chapter, in the section on calculus.  

Polynomial curves 
You’ve already seen that the equation y = x2 gives a parabolic curve. Experiment with 
GraphFunctions.as by plotting different quadratic functions of the form y = ax2 + bx + c, for different 
values of a, b and c, for example: 
 
y = x*x - 2*x - 3; 

You may need to change the range of the graph. You’ll find that they are all parabolic. If the value of a is 
positive, you will always get a bowl-shaped curve; if a is negative, the curve will be hill-shaped.  

Linear and quadratic functions are special cases of polynomial functions. In general, a polynomial function 
is made up by adding terms with different powers of x. The highest power of x is called the degree of the 
polynomial. So a quadratic is a degree 2 polynomial. Higher polynomials have more twists and turns; for 
example, this polynomial will give you the plot shown in Figure 3-2: 
 
y = -0.5*Math.pow(x,5) + 3*Math.pow(x,3) + x*x - 2*x - 3; 
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Figure 3-2. A polynomial curve y = –0.5 x5 + 3x3 + x2 – 2x – 3 

Things that grow and decay: exponential and log functions 
There are many more exotic types of functions that do interesting things. One interesting example is the 
exponential function, which crops up all over physics. It is defined mathematically by  

xey =  
You might be wondering what e stands for. It’s a special number approximately equal to 2.71828. In this 
respect, e is a math constant like π, which cannot be written down in exact decimal form, but is 
approximately equal to 3.14159. Constants such as π and e appear all over physics. 

The exponential function is also sometimes written as exp(x). AS3.0 has a built in Math.exp() function. It 
also has a Math.e static constant with the value of 2.71828182845905. 

Let’s plot Math.exp(x) then! 

As you can see from Figure 3-3, the graph of exp(x) goes to zero as x becomes more negative and 
increases more and more rapidly as x becomes more positive. You’ve heard of the term exponential 
growth. This is it. If you now plot exp(–x), you’ll see the reverse: as x increases from negative to positive 
values, exp(–x) decays rapidly to zero. This is exponential decay. Note that when x is 0, both exp(x) and 
exp(–x) are exactly equal to 1. That’s because any number to the power of zero is equal to 1. 
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Figure 3-3. Exponential growth function exp(x) (solid curve) and decay function exp(–x) (dotted curve) 

Nothing stops us from combining functions, of course, and you can get interesting shapes by doing this. 
For example, try plotting the exponential of –x2: 

y = exp −x2( )  

This gives a bell-shaped curve (technically it’s called a Gaussian curve), as shown in Figure 3-4. It has a 
maximum in the middle and falls rapidly toward zero on either side. In Figure 3-4, the curve appears to fall 
to zero because of the limited resolution of the figure. In reality, it never gets to exactly zero because exp(–
x2) becomes vanishingly small for large positive and negative values of x, but never actually becomes 
exactly zero.  
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Figure 3-4. The bell shape (Gaussian) function exp(–x2) 

Making an object move along a curve 
Here is a fun thing to do. Can you make a ball move along a curve? To do this, we added three new 
functions to GraphFunctions.as and called the new code MoveCurve.as: 
 
private function placeBall():void{ 
        ball = new Ball(6); 
        ball.x = xA[0]/xscal+ xorig; 
        ball.y = -yA[0]/yscal + yorig; 
        addChild(ball); 
} 
private function setupTimer():void{ 
        timer = new Timer(5); 
        timer.addEventListener(TimerEvent.TIMER,moveBall); 
        timer.start(); 
} 
private function moveBall(evt:TimerEvent):void{ 
        ball.x = xA[n]/xscal + xorig; 
        ball.y = -yA[n]/yscal + yorig; 
        evt.updateAfterEvent(); 
        n++; 
        if (n==xA.length){ 
                timer.stop(); 
                timer.removeEventListener(TimerEvent.TIMER,moveBall); 
        } 
} 
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The function placeBall() is called after plotGraph() in init() and simply places a Ball instance at 
the beginning of the curve. Then setupTimer() is called after placeBall(), and it does exactly what its 
name suggests. The event handler moveBall() runs at every timer event and moves the ball along the 
curve, stopping the timer and removing the event listener when it reaches the end of the curve.  

Fun with hills 
You can try this with any function you like; for example y = x2. But let’s go crazy and try something more 
fun, such as this degree 6 polynomial: 
 
y = 0.2*(x+3.6)*(x+2.5)*(x+1)*(x-0.5)*(x-2)*(x-3.5); 

You can see that this is a degree 6 polynomial because if you expand out the factors, the term with the 
highest power of x will be 0.2 x6. 

Run the code with this function to see the animation. Does that give you any ideas? Perhaps you could 
use a curve to represent a hilly landscape and build a game where you try and push a ball over the hills? 
The only problem is that the curve shoots off to very large values at the ends. This is inevitable with 
polynomials. The reason is that for large positive or negative values of x, the highest term (in this case, 0.2 
x6) will always dominate over the rest. So, in this example, we’ll get very large values because of the effect 
of the 0.2 x6 term. In the jargon, the curve “blows up” in those limits.  

Let’s try and remedy this by multiplying the whole thing by a bell function of the type exp(–x2), which, as 
you know, tends to zero at the ends: 
 
y = (x+3.6)*(x+2.5)*(x+1)*(x-0.5)*(x-2)*(x-3.5)*Math.exp(-x*x/4); 

Figure 3-5 shows what we get. Cool. The bell function flattens the curve at the ends, solving our problem. 
Note that we’ve divided the x2 within the exp() by 4. This is to broaden the bell shape; otherwise it would 
kill off the polynomial too quickly, leaving fewer hills. Remove the 4 or replace it by 2 to see what we mean. 
Try also changing the 4 to 5 or 6 to see the opposite effect.  
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Figure 3-5. Animating a ball on a curve made by multiplying a polynomial and a Gaussian 

Here is another way you can modify the curve: multiply it by another factor of x (and an appropriate 
number to keep it within the range being displayed): 
 
 y = 0.5*x*(x+3.6)*(x+2.5)*(x+1)*(x-0.5)*(x-2)*(x-3.5) *Math.exp(-x*x/4); 

This modifies the curve in a different way. Because x is small near the origin and large away from it, by 
multiplying the function by x, we tend to reduce the hills closer to the origin and increase the relative height 
of the hills farther away. You might notice another change: the value of y for large negative x is now 
negative, and the landscape starts with a valley instead of a hill because by introducing that extra factor of 
x, the dominant term in that function is now 0.5 x7. Compare that with the previous 0.2 x6. When the power 
of the dominant term is odd, it will be negative for negative values of x. But when the power is even, it will 
be positive even if x is negative. Check this out by multiplying by another factor of x to get this: 
 
 y = 0.1*x*x*(x+3.6)*(x+2.5)*(x+1)*(x-0.5)*(x-2)*(x-3.5) *Math.exp(-x*x/4); 

If you multiply the function by a negative number, you’ll reverse the whole curve.  

There is clearly enormous flexibility in what you can do with functions to create different types of shapes. 
Hopefully you might find some use for them! Perhaps build that game that shoots balls over hills. Or 
maybe get rid of the graph and curve to produce some cool math-based animations without giving away 
how you’ve done it. 
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Beyond its use for plotting known functions, the Graph class will come in handy as a useful diagnostic tool 
to help you visualize what your code is actually calculating, more intuitively and in much greater detail than 
the humble trace() can do. It can help you to understand the logic or physics in your code, and to identify 
any potential problems. Think of it as a dashboard or instrument panel like the ones in a car or plane, and 
soon you’ll be using it more than you think! 

The trouble with circles 
Let’s now try and move an object around a circle using the same method. That should be simple enough, 
right? First, we need the equation of a circle. You can find this in any elementary geometry textbook. 

The equation of a circle of radius r and with origin at (a, b) is given by this: 

x − a( )2 + y − b( )2 = r2
 

If you try to do things in exactly the same way as before, you’ll want to have y as a function of x. Recalling 
your algebra, you should be able to manipulate the preceding equation to get this: 

y = b + r2 − x − a( )2
 

To keep things simple, choose a = b = 0, and r = 1 (center at the origin, radius of 1): 

y = 1− x2( )  

Now let’s plot the graph. You’ll want to use the same scaling on both axes so that your circle does not look 
distorted. If you do just that and run the code, you’ll get something that looks half-good, but with a couple 
of strange problems. The first problem is that you only end up with a semicircle, not the whole circle. The 
second problem is that there are extra bits outside the circle. Figure 3-6 shows the resulting plot. 
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Figure 3-6. First attempt to plot a circle 

Let’s deal with the latter problem first. These “extra bits” are there because we’ve gone outside of the 
range for which the equation makes sense. If you look at the preceding equation, you’ll see that if the 
magnitude of x is larger than 1, we have the square root of a negative number, which does not give you a 
real number.  

In contrast with the functions you saw previously, a circle is confined to a limited region of the plane. In 
math jargon, the function is not defined outside of that range. Let’s fix the code by calculating the value of 
the function only for values of x in the range –1 <= x <= 1. This is easily done in the loop that calculates 
the values of the function. Take a look at MoveCircle.as. This is the modified code that ensures that x is 
restricted to the correct range: 
 
for (var i:uint=0; i<=1000; i++){ 
        xA[i] = (i-500)*0.002; 
        yA[i] = f(xA[i]); 
} 
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The first problem is trickier. It arises because when we take the square root to get the previous equation, 
we should have included the negative as well: 

y = ± 1− x2( )  

The trouble is that you can’t have a function returning two different values at the same time. There is 
another problem, this time to do with the animation. You might have noticed that the ball appears to move 
quickly along some parts of the circle and slowly elsewhere. This isn’t usually what we want to see. It 
arises because we have been incrementing x in equal amounts. But where the curve is “steep,” the same 
increment in x leads to a larger increment in y compared with where the curve is more “level.” 

Usually we’d want to make an object move in a circle at a uniform rate. Is there a way to know how the 
position of the ball depends on time and the rate of rotation? There is. It’s time to learn about parametric 
equations. 

Using parametric equations 
The basic problem we had in the last section was that we know y as a function of x, but do not know how 
either x or y depends on time. What we are after is a pair of equations of this form, where f(t) and g(t) are 
functions of time: 

x = f(t) 

y = g(t)  

They are called parametric equations because x and y are expressed in terms of another parameter t, 
which in this instance represents time. From those, it should be possible to recover the equation 
connecting x and y. But the reverse is not necessarily true. Parametric equations are not unique; there 
might be different pairs of parametric equations that work.  

We’ll give you an answer here. Although it won’t make full sense until you’ve done some trigonometry and 
we’ve covered the concept of angular velocity (in the next section), here it is (where r is the radius of the 
circle and ω is the so-called angular velocity, which is basically a rate of rotation around the circle): 

x = r sin ω t( ) 

y = r cos ω t( )  

We’re fully aware that we are using concepts that will be fully explained only later in this chapter. 
Therefore, although the concepts might not be completely clear now, they should become so soon 
enough.  
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Let’s choose r = 1 and w = 1, and modify the code to compute x and y accordingly (see 
MoveCircleParametric.as): 
 
for (var i:uint=0; i<=1000; i++){ 
        var t:Number=0.01*i; 
        xA[i] = Math.sin(t); 
        yA[i] = Math.cos(t); 
} 

This does the job perfectly (see Figure 3-7). The multiplicative factor that computes time t from the 
counter i is chosen to produce at least one complete revolution. Of course, you don’t have to do it this 
way. You can get rid of the arrays and the loop altogether and just compute x and y on the fly in a timer or 
enterframe event handler. But it’s just good to know that there is another way to animate an object with 
code apart from computing its position on the fly. This method can prove useful, for example, if the 
computations are too time-consuming; they could then be done and the positions stored in an array (as 
done previously) during an “initialization” period, to be animated subsequently in the usual way.  

 

Figure 3-7. Moving an object around a circle using parametric equations 

You should be able to do this in 3D easily. And while you’re at it, why not add a constant drift in the third 
dimension so that you get a helical motion? 
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In HelicalMotion.as, we did this and also included a negative exponential factor to give a decaying 
helical (spiral) motion. Here is the event handler with the relevant code: 
 
private function onEachTimestep(evt:TimerEvent):void{ 
        var dt:Number = (getTimer() - t)/1000; // time elapsed in seconds since last call 
        t = getTimer(); // reset t 
        theta += omega*dt; 
        ball.x = 100*Math.cos(theta)*Math.exp(-theta/20) + 200; 
        ball.z = 100*Math.sin(theta)*Math.exp(-theta/10) + 200; 
        ball.y += vz*dt; 
        evt.updateAfterEvent(); 
} 

Distance between two points 
A common problem is to find the distance between two objects given their locations, which is needed in 
collision detection, for example. Some physics laws also involve the distance between two objects. For 
example, Newton’s law of gravitation (covered in Chapter 6) involves the square of the distance between 
two objects.  

Fortunately, there is a simple formula, based upon Pythagoras’s Theorem, which allows us to calculate the 
distance between two points. Pythagoras’s Theorem is actually a theorem about the lengths of the sides of 
triangles. Specifically, it applies to a special type of triangle known as a right-angled triangle, which has 
one angle that is 90 degrees. The longest side of the triangle, called the hypotenuse, is always opposite 
the 90-degree angle (see Figure 3-8). 

b 

a

c

 

Figure 3-8. A right-angled triangle  

Pythagoras’s Theorem states that if we take each of the other sides, square their lengths, and add the 
result, we would get the square of the length of the longest side. In formula form, it is the following, where 
c is the length of the hypotenuse, and a and b are the lengths of the other two sides: 

a2 + b2 = c2,  

Figure 3-9 shows how we use this formula to calculate the distance between two points: by drawing a 
right-angled triangle. If the coordinates of the two points are (x1, y1) and (x2, y2), the length of the two 
shorter sides are (x2 – x1) and (y2 – y1), respectively.  
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Therefore, the length of the hypotenuse, which is actually the distance between the two points, is given by 
this: 

d 2 = x2 − x1( )2 + y2 − y1( )2
 

That’s it. What’s more, this formula can be readily generalized to 3D to give the following: 

d 2 = x2 − x1( )2 + y2 − y1( )2 + z2 − z1( )2
 

Note that it does not matter if we take (x1 – x2) 2 instead of (x2 – x1) 2, and similarly for the other terms 
because the square of a negative number is the same as that of the corresponding positive number. 

d 

(x1, y1) 

y2 – y1 

(x2, y2)

x2 – x1  

Figure 3-9. Using Pythagoras’s Theorem to calculate the distance between two points  

Basic trigonometry 
Trigonometry is a branch of math that technically deals with the properties of triangles and the 
relationships between the lengths of their sides and their angles. Put this way, trigonometry may not sound 
very special, but it is, in fact, an indispensable part of your toolset as an animation or game programmer. 
For example, we used trigonometric functions previously in the parametric equations that produced 
uniform motion around a circle.  

You probably remember the basics from your school days, such as the theorem that the sum of interior 
angles in a triangle is 180 degrees. But perhaps you may not remember what a sine function is. This 
section will review the essentials of the subject.  

Degrees and radians 
Everyone knows that there are 360 degrees in a complete revolution. Far fewer people know that 360 
degrees equal 2π radians (or maybe have never even heard of a radian). So let’s start by explaining what 
a radian is.  
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The short answer is this: a radian is a unit of angular measure (just like a degree is). Here’s how the two 
measures are related:  

2π radians is equal to 360 deg  

so π radians is equal to 180 deg  

so 1 radian is equal to 180/π deg, which is approximately 57.3 degrees 

Now you might not feel very comfortable with this. Why do we need such a weird unit for angle? Don’t we 
all know and love the degree? Well, the point is that the degree is just as arbitrary—why is there 360 
degrees in a circle? Why not 100?  

In fact, the radian is in many ways a more “natural” unit of angle. This follows from its definition: the angle 
subtended at the center of a circle by an arc that is equal in length to its radius. See Figure 3-10. 

r 

1 radian

r 

 

Figure 3-10. A radian is the angle subtended at the center of a circle by an arc of length equal to the circle’s radius 

The bottom line is that radians are here to stay. In fact, the AS3.0 trigonometric functions that we shall 
introduce shortly, such as MMath.sin(), take angles in radians as arguments. Shall we give up degrees 
then? Unfortunately, it’s not that simple. In Flash, the rotation property of objects is measured in 
degrees. So we need both in Flash. The consequence is that you will frequently need to convert between 
them. So, here is the conversion formula: 

(angle in degrees) = (angle in radians) x 180 / π 

(angle in radians) = (angle in degrees) x π / 180 

The sine function 
The trigonometric functions are defined in terms of the sides of a right-angled triangle. Referring to Figure 
3-11, you know that the hypotenuse (let’s call it hyp for short) is the longest side of the triangle and is 
opposite the right angle. Pick one of the other angles, say x. Then, in relation to angle x, the far side that 
does not touch x is called the opposite (opp). The near side that does touch x is called the adjacent (adj). 
Note that opposite and adjacent are in relation to your chosen angle (x in this case). In relation to the other 
angle, the roles of opposite and adjacent are reversed. On the other hand, the hypotenuse is always the 
longest side.  
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x 

hyp 
opp 

adj  

Figure 3-11. Definition of hypotenuse, adjacent and opposite sides of a right-angled triangle 

The sine function is defined simply as the ratio of the length of the opposite side to that of the hypotenuse: 

sin x( ) = opp
hyp  

Now you could draw lots of right-angled triangles for different angles x, measure opp and hyp, calculate 
their ratio, and tabulate and plot sin (x) to see what it is like. But surely you’ll prefer to dig out that Graph 
class and plot Math.sin(). This is what we’ve done in TrigFunctions.as. 

Figure 3-12 shows what we get. We’ve plotted between –720 deg (–4π radians) and 720 deg (4π radians) 
to show the periodic nature of the function. The period (interval over which it repeats) is 360 deg, or 2π 
radians. The curve is like a smooth wave.  

Note that sin (x) is always between –1 and 1. It can never be larger than 1 in magnitude because opp can 
never be larger than hyp. We say that the peak amplitude of a sine wave is 1. The value of sin (x) is zero 
at 0 degrees and every 180 deg thereafter and before.  

 

Figure 3-12. The graph of a sine function 
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The cosine function 
Similar to sine, the cosine function is defined as the ratio of the length of the adjacent side to that of the 
hypotenuse: 

cos x( ) = adj
hyp  

The graph shown in Figure 3-13 is similar to that of sin (x), except that cos (x) appears to be shifted by 90 
degrees with respect to sin (x). In fact, it turns out that cos (x – π/2) = sin (x). Go ahead and prove it by 
plotting this function. This shows that cos and sin differ only by a constant shift. We say they have a phase 
difference of 90 degrees. 

 

Figure 3-13. The graph of a cosine function 

The tangent function 
A third common trig function is the tangent function, defined as follows: 

tan x( ) = opp
adj  
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This definition is equivalent to this: 

tan x( ) = sin x( )
cos x( )  

If you try and plot the graph of tan x, it might look a bit weird at first sight (see Figure 3-14). Ignore the 
vertical lines at 90 deg, and so on. They shouldn’t really be there. The graph is still periodic, but it consists 
of disjoint branches every 180 deg. Also, tan (x) can take any value, not just a value between –1 and 1. 
What happens at 90 deg is that tan (x) becomes infinite. Going back to the definition of tan (x), this is 
because for 90 deg, adj is zero, so we end up dividing by zero.  

 

Figure 3-14. The graph of a tangent function 

You probably won’t use tan nearly as much as sin and cos. But you will definitely use its inverse, which 
we’ll introduce next. 

The inverse trig functions 
It is frequently necessary to find an angle given the value of the sin, cos, or tan of that angle. In math, this 
is done using the inverse of the trig functions, called arcsin, arccos, and arctan, respectively.  
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In the AS3.0 Math class, these functions, which are called Math.asin(), Math.acos(), and 
Math.atan(), take a number as argument. Obviously, the number must be between –1 and 1 for 
Math.asin() and Math.acos(), but can be any value for Math.atan(). 

Note that the inverse trig functions return an angle in radians, so you have to convert to degrees if that’s 
what you need.  

There is another inverse tan function in AS3.0: Math.atan2(). What is the difference, and why do we 
need two of them? 

Math.atan() takes a single argument, which is the ratio opp/adj for the angle you are computing. 
Math.atan2() takes two arguments, which are the actual values of opp and adj, if you happen to know 
them. So, why is Math.atan2() needed—can’t you just do Math.atan(opp/adj)?  

To answer your question, do the following: 
 
trace(Math.atan(1)*180/Math.PI); 
trace(Math.atan2(2,2)*180/Math.PI); 
trace(Math.atan2(-2,-2)*180/Math.PI); 

All three have an opp/adj ratio of 1, but what you’ll find is that the first two will return 45 deg, while the third 
will return -135 deg. What’s going on is that the third option specifies that the angle points upward and to 
the left, and because angles are measured in a clockwise direction from the positive x-axis in Flash, the 
angle is actually -135 deg (see Figure 3-15). Now, you’d have no way of telling this to the Math.atan() 
function because it takes only one argument: 1, the same as for 45 deg.  

x 

-135 

y 

45

 

Figure 3-15. Understanding the result of Math.atan2(-2,-2) 

Using trig functions for animation 
You’ve already seen how sin and cos can be used for making an object move in a circle. They are also 
especially useful for producing any kind of repeating or oscillating motion. But before we get into animation 
using trig functions, let’s introduce some new terms. 

Wavelength, period, frequency and angular frequency 
Take a look again at Figure 3-12, in which we show the graph of the sine function. If x represents distance 
in space, we have a sine wave in space that repeats at regular interval. That interval is called the 
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wavelength of the wave. It is the distance between adjacent similar points, for example, the distance 
between successive crests.  

If we instead plot the sine function against time, the repeating interval is a time scale called the period of 
the wave. For example, if this were a ball that’s moving up and down, the period (denoted by the symbol T) 
would be the time it takes to return to its initial position. Let’s call this a cycle.  

Now, suppose that a cycle takes 0.5 seconds, i.e. T = 0.5 seconds. How many cycles does the ball 
complete in 1 second? Well, obviously 2. That’s how many half-seconds there are in a second. This is 
called the frequency of the motion (denoted by the symbol f). 

 It is not difficult to see that, in general, the frequency is given by the reciprocal of the period: 

f = 1
T  

Now, it turns out that you can always think of the up-and-down motion of the ball as the projection of the 
position of another imaginary ball that is moving at a constant rate in a circle (see Figure 3-16). One cycle 
in an oscillation then corresponds to a complete revolution around the circle. Thinking in terms of the angle 
moved by the circling ball, that’s 2π radians. Because the ball moves f cycles per second, and each cycle 
is 2π radians, this means that the ball goes through 2πf radians per second. This is called the angular 
frequency or angular velocity of the motion (usually denoted by the Greek letter ω, omega). It tells you the 
angle, in radians, through which the circling ball moves in each second. 

ω = 2π f = 2π
T  

 

Figure 3-16. Relationship between oscillation, circular motion and a sine wave 
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Finally, because ω is the angle through which the imaginary ball moves per second, in t seconds the ball 
will have moved through ω t radians. So, if it starts out at an angle of 0 radians, at t seconds its projected 
displacement is equal to sin (ω t): 

y = sin ω t( )  

If we know the angular frequency of the oscillation, we can calculate the position of the ball at any time if 
its initial position is known. Of course, if we know the period or frequency instead, we can work out the 
angular frequency from the preceding formula.  

Let’s look at some examples. For these examples, we’re using TrigAnimations.as, which is a 
modification of MoveCurve.as. We will now show, side by side, a 2D animation as well as its 1D version, 
in which you just move an object along one direction.  

Oscillations 
Basic oscillations (wave motion in 2D) are pretty straightforward to achieve with just a sine or cosine 
function. Such an oscillation is called a simple harmonic motion (SHM). The oscillation consists of a wave 
with a single frequency. Try it out with TrigAnimations.as: 
 
private function f(x:Number):Number{ 
        var y:Number; 
        y = Math.sin(x*Math.PI/180); 
        return y; 
} 

You can produce waves of different frequencies by multiplying the argument by different factors. 

Damped oscillations 
Oscillations with a sine wave go on forever. If you want to make them die out with time, you can just 
multiply the sine by an exponential with a negative coefficient: 
 
y = Math.sin(x*Math.PI/180)*Math.exp(-0.002*x); 

You can experiment by changing the coefficient 0.002 to a smaller or larger number. Figure 3-17 shows a 
typical pattern you might see.  
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Figure 3-17. Damped oscillations using sin(x) and exp(–x) 

Combining sine waves 
You can produce all kinds of exotic effects by combining sine and cosine waves. Here’s an example of a 
combination: 
 
y = Math.sin(x*Math.PI/180) + Math.sin(1.5*x*Math.PI/180); 

Or try two sine waves with nearly the same angular frequency: 
 
y = 0.5*Math.sin(3*x*Math.PI/180) + 0.5*Math.sin(3.5*x*Math.PI/180); 

This gives you a “beats” motion; a rapid oscillation upon which is superimposed a slower oscillation (see 
Figure 3-18). 
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Figure 3-18. Pattern produced by superimposing two sine waves of nearly equal frequency 

It is possible to produce all sorts of repeating patterns using a combination of sine waves. There is a 
mathematical technique called Fourier analysis that allows you to work out what combination of sine wave 
you need to produce a particular pattern. The resulting sum of sine waves is called a Fourier series.  

For example, you can produce something that looks like a square wave (step function wave) by adding 
sine waves in the following way: 
 
y = Math.sin(x*Math.PI/180) + Math.sin(3*x*Math.PI/180)/3 + Math.sin(5*x*Math.PI/180)/5; 

The more waves you add, the closer it will be to a square wave. For example, add the next term in the 
series (Math.sin(7*x*Math.PI/180)/7) to see what you get. 

We wrote a little function, fourierSum(N,x), that computes the Fourier sum to N terms for the square 
wave.  
 
private function f(x:Number):Number{ 
        var y:Number; 
        y = fourierSum(10,x); 
        return y; 
}  
private function fourierSum(N:int,x:Number):Number{ 
        var fs:Number=0; 
        for (var nn:uint=1; nn<=N; nn=nn+2){ 
                fs += Math.sin(nn*x*Math.PI/180)/nn; 
        } 
        return fs; 
} 
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Figure 3-19 shows what you get with N = 10. With a value of N = 1000, the curve is an almost perfect 
square wave.  

 

Figure 3-19. Fourier series pattern for a square wave with N = 10 

Vectors and basic vector algebra 
Vectors are useful math constructs that simplify how we need to deal with many physical quantities like 
velocity and force, which will be discussed in detail in the next chapter. You’ve already met vectors 
informally, when you dealt with velocity components. Let’s now see what we were really doing. 

What are vectors? 
Vectors can be most intuitively illustrated using the example of displacements. The concept of 
displacement will be covered in detail in Chapter 4, but essentially it refers to movement for a given 
distance and in a given direction. Here is an example. 

Suppose that Bug, the ladybug, is crawling on a piece of graph paper. Bug starts at the origin and crawls 
for a distance of 10 units; then he stops. Bug then resumes crawling for a further distance of 10 units 
before stopping again. How far is Bug from the origin? One might be tempted to say 20 units. But what if 
Bug crawled upward the first time and to the right the second time? (See Figure 3-20). Clearly 20 units is 
the wrong answer. By using Pythagoras’s Theorem, the answer is actually !(10 2 + 10 2), or roughly 14.1 
units.  
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Figure 3-20. The direction of displacement matters!  

You can’t just add the two distances because you also need to take into account the direction in which Bug 
moves. To analyze displacements, you need a magnitude and a direction.  

In math we abstract this idea into the concept of a vector, which is a quantity that has a magnitude and a 
direction.  

Displacements are not the only vectors. Many of the basic concepts of motion, such as velocity, 
acceleration, and force, are vectors (they will be discussed in the next chapter). This section outlines the 
algebra of vectors as abstract mathematical objects, regardless of whether they are displacements, 
velocities, or forces. With a little grasp of vector algebra, you can simplify calculations by reducing the 
number of equations that you have to deal with. This saves time, reduces the likelihood of errors, and 
simplifies life.  

Vectors and scalars 
Vectors are often contrasted with scalars, which are quantities that have a magnitude only. Distance or 
length is a scalar—you need only one number to specify it. But displacement is a vector because you need 
to specify the direction of the displacement. Pictorially, vectors are often represented as directed straight 
lines—a line with an arrow on it.  

Note that a vector is characterized uniquely by its magnitude and direction. That means that two vectors 
with the same magnitude and direction are considered to be equal, irrespective of where they are in space 
(see Figure 3-21a). In other words, the location of a vector does not matter. There’s one exception to this 
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rule, however: the position vector. The position vector of an object is the vector that joins a fixed origin to 
that object, so it’s a displacement vector in relation to a fixed origin (see Figure 3-21b).  

x 

y 

O 

P 

a b  

Figure 3-21. (a) Parallel vectors of equal length are equal; (b) Position vectors relate to the origin. 

Adding and subtracting vectors 
In the Bug example, what is the sum of the two displacements? The natural answer is that it is the 
resultant displacement as given by the vector that points from the initial to the final position (refer to Figure 
3-20). What if Bug now moves a distance of 5 units downward? You might say that the resultant 
displacement is the vector that points from the beginning (the origin, in this case) to the destination. This is 
the so-called head-to-tail rule: 

To add two or more vectors, join them so that they are “head-to-tail,” moving them 
around if necessary (as long as their direction does not change, i.e. they remain parallel 
to their original direction). The sum or resultant vector is then the vector that joins the 
starting point to the ending point. 

To subtract a vector from another vector, we just add the negative of that vector. The negative of a vector 
is one with the same magnitude but pointing in the opposite direction.  

Subtracting a vector from itself (or the sum of a vector and its negative) gives you the zero vector"a 
vector of zero length and arbitrary direction.  

Let’s look at an example. Suppose that after Bug has moved 10 units upward, he decides to move 10 units 
at an angle of 45 degrees instead (see Figure 3-22). What is the resultant displacement? Now that is 
trickier: you can’t directly apply Pythagoras’s Theorem because you don’t have a right-angled triangle any 
more. You could use some more complicated trigonometry, or draw the vectors accurately and take a ruler 
and measure the resultant distance and angle. 

In practice, that’s not how you’ll be doing it, though. Adding and subtracting vectors is much easier using 
vector components. So let’s take a look at vector components now.  
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Figure 3-22. Addition of vectors 

Resolving vectors: vector components 
As mentioned before, a vector has a magnitude and a direction. What this means in 2D is that you need 
two numbers to specify a vector. Take a look at Figure 3-23. The two numbers are the length r of the 
vector and the angle ! that it makes with the positive x-axis. But we can also specify the two numbers as 
the extent of the vector in the x- and y- direction, denoted by x and y respectively. These are called the 
vector components.  

The relation between (r, !) and (x, y) can be obtained with the simple trigonometry discussed in the last 
section. Looking at Figure 3-23 again, we know this: 

cos θ( ) = x / r
sin θ( ) = y / r  

 

 

 



Chapter 3 

74 

 

This gives the following: 

x = rcos θ( )
y = rsin θ( )  

θ

r
y = r sin θ

x = r cos θ  

Figure 3-23. Vector components 

Working out the vector components in this way from the magnitude and angle of a vector is known as 
“resolving the vector” along the x- and y-axes. Actually, you can resolve a vector along any two mutually 
perpendicular directions. But most of the time, we’ll be doing that along the x- and y-axes.  

There are lots of different notations for vectors, and it’s easy to get bogged down with notation. But in 
ActionScript you just have to remember that a vector has components. So any notation that makes you 
remember that is just as good as any other. We’ll use the following notation for compactness, denoting 
vectors using bold letters and denoting their components by enclosing them using square brackets: 

v = a, b[ ] 

In 3D, you need not two, but three, components to specify a vector, so we write this: 

v = a, b, c[ ]  

Position vectors 
The position vector of an object is a vector pointing from the origin to that object. Hence, we can write the 
position vector in terms of the coordinates of the object: 

r = x, y[ ] in 2D  

r = x, y, z[ ] in 3D 
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Adding vectors using components 
Here’s how you add two vectors using components: 

a, b[ ] + c, d[ ] = a + c, b + d[ ] 

Pretty simple, isn’t it? Why this is so should be clear from Figure 3-24. You separately add the horizontal 
components and the vertical components of the two vectors you’re adding. This gives you the components 
of the resultant vector.  

As an example, applying this to the Bug displacement problem shown in Figure 3-22 gives this 
displacement, which you can easily verify on the graph: 

0, 10[ ] + 7, 7[ ] = 7, 17[ ]  

Feel free to practice doing vector additions with pen and paper; after going through a few, it should 
become obvious and help you build your intuition about vectors and vectors components.  

Similarly, vector subtraction using components is simply this: 

 

     a, b[ ] − c, d[ ] = a − c, b − d[ ]  

b  

a  

c  

d 

 

Figure 3-24. Adding vectors using components 

Multiplying a vector by a number 
Multiplying a vector by a number just multiplies each of its components by that number:  

4 a, b, c[ ] = 4a, 4b, 4c[ ]  
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In particular, if we multiply a vector by –1, we get this, which gives the negative of that vector: 

− a, b, c[ ] = −a, − b, − c[ ]  

Dividing a vector by a number N is just the same as multiplying the vector by the reciprocal 1/N of that 
number.  

Vector magnitude 
The magnitude (length) of a vector is given by applying Pythagoras’s Theorem to its components:  

In 2D, the magnitude of [x, y] is x2 + y2
; or in ActionScript code: 

Math.sqrt(x*x+y*y). 

In 3D, the magnitude of [x, y, z] is x2 + y2 + z2
; or in ActionScript code: 

Math.sqrt(x*x+y*y+z*z). 

Note that if we divide a vector by its magnitude, we get a vector of length one unit in the same direction as 
the original vector. This is called a unit vector.  

Vector angle 
Calculating the angle of a vector from its components is no more difficult than calculating its magnitude. In 
ActionScript, this can be done most easily using the Math.atan2() function. 

The angle of a vector [x, y] is given by Math.atan2(y, x). Beware—you need to specify the arguments 
as y first and then x.  

Multiplying vectors: Scalar or dot product 
Is it possible to multiply two vectors? The answer is yes. Mathematicians have defined a “multiplication” 
operation called scalar product, in which two vectors produce a scalar. Recall that a scalar only has a 
magnitude and no direction; in other words, it is basically just a number. The rule is that you multiply the 
corresponding components of each vector and add the results: 

x1, y1[ ]• x2, y2[ ] = x1⋅ x2 + y1⋅ y2  

The scalar product is denoted by a dot, so it is also called the dot product.  
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Expressed in terms of vector magnitudes and direction, the dot product is given by the following, where # 
is the angle between the two vectors, and r1 and r2 are their lengths:  

x1, y1[ ]• x2, y2[ ] = r1⋅r2 ⋅cos θ( )  

The geometrical interpretation of the scalar product is that it’s the product of the length of one vector with 
the projected length of the other (see Figure 3-25). 

r2 

θ

r1

r1 cos θ  

Figure 3-25. The scalar product between two vectors 

This is useful when you need to find the angle between two vectors. In ActionScript, you just do this:  
  
angle = Math.acos((x1*x2+y1*y2)/(r1*r2)) 

Note that if the angle between two vectors is zero (they are parallel), cos (#) = 1 and the dot product is just 
the product of their magnitudes.  

If the two vectors are perpendicular, then cos (#) = cos (π/2) = 0, and so the dot product is zero. This is a 
good test to check if two vectors are perpendicular or not. All these formulas and facts carry over to 3D, 
with the dot product given by the following: 

x1, y1, z1[ ]• x2, y2, z2[ ] = x1⋅ x2 + y1⋅ y2 + z1⋅ z2  

Scalar products crop up in several places in physics. We’ll come across an example in the next chapter, 
with the concept of work, which is defined as the dot product of force and displacement. So, although the 
dot product may appear somewhat abstract and mysterious as a math construct, it will hopefully make 
more intuitive sense when you come across it again in an applied context in Chapter 4. 

Multiplying vectors: Vector or cross product 
In 3D, there is another type of product known as the vector product because it gives a vector instead of a 
scalar. The rule is quite a bit trickier.  
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If you have two vectors a = [x1, y1, z1] and b = [x2, y2, z2], and their vector product is given by a vector c 
= a x b = [x, y, z], the components of c are given by the following: 

x = y1⋅ z2 − z1⋅ y2
y = z1⋅ x2 − x1⋅ z2
z = x1⋅ y2 − y1⋅ x2

 

Now this is not exactly intuitive, is it? There sure is some logic to it, as with everything in math. But trying 
to explain it would be too much of a diversion. So let’s just accept the formula.  

The vector product is also called the cross product because of the “cross” notation used to denote it. The 
vector product of two vectors a and b gives a third vector that is perpendicular to both a and b.  

In terms of vector magnitudes and directions, the cross product is given by this: 

a × b = absin θ( ) n  

where # is the smaller angle between a and b, and n is the unit vector perpendicular to a and b and 
oriented according to the right-hand rule (see Figure 3-26): hold your right hand with the forefinger pointing 
along the first vector a, and your middle finger pointing in the direction of b. Then n will point in the 
direction of the thumb, held perpendicular to a and b.  

 

Figure 3-26. The right hand rule for the vector product 

Note that the cross product is zero when # = 0 (because sin (0) = 0). Hence, the cross product of two 
parallel vectors gives the zero vector.  

Like the scalar product, vector products appear in several places in physics; for example in rotational 
motion.  
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Building a Vector class with vector algebra 
Flash CS4 and CS5 ship with a Vector3D class with vector algebra built in using appropriately named 
functions. Here are some examples: 
 

var vec1:Vector3D = new Vector3D(1,1,1); 
var vec2:Vector3D = new Vector3D(1,1,0); 
trace(vec1.length); // magnitude of vec1  
trace(vec1.lengthSquared); // magnitude squared of vec1 
trace(vec1.dotProduct(vec2)); // returns dot product of vec1 with vec2 
trace(vec1.crossProduct(vec2)); // returns cross product of vec1 with vec2 
trace(Vector3D.angleBetween(vec1,vec2)*180/Math.PI); // static method that returns the angle 
//between two vectors 

Have a look at the AS3.0 documentation to see all the methods available.  

(By the way, there is another AS3.0 class called Vector. This Vector class has nothing to do with the 
math vectors we’re talking about here. The AS3.0 Vector class is basically an indexed array whose 
elements must all be instances of the same class.)  

Unfortunately, there is no corresponding built-in Vector2D class in AS3.0. Of course, you could just use 
Vector3D and set the third component to zero, but if you’re only going to do 2D, a Vector2D class would 
save on unnecessary calculations. So we built a lightweight Vector2D class. Here is the code (see 
Vector2D.as). The method names have been chosen to correspond to those of Vector3D.  
 
package { 
        public class Vector2D { 
                private var _x:Number; 
                private var _y:Number; 
                public function Vector2D(px:Number,py:Number):void { 
                        _x = px; 
                        _y = py; 
                } 
                public function get x():Number{ 
                        return _x; 
                } 
                public function set x(px:Number):void{ 
                        _x = px; 
                } 
                public function get y():Number{ 
                        return _y; 
                } 
                public function set y(py:Number):void{ 
                        _y = py; 
                } 
                public function get length():Number{ 
                        return Math.sqrt(lengthSquared); 
                } 
                public function get lengthSquared():Number{ 
                        return _x*_x + _y*_y; 
                } 
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                public function clone():Vector2D { 
                        return new Vector2D(_x,_y); 
                } 
                public function negate(vec:Vector2D):void { 
                        _x = - _x; 
                        _y = - _y; 
                } 
                public function normalize():Number { 
                        if (length > 0) { 
                                _x /= length; 
                                _y /= length; 
                        } 
                        return length; 
                } 
                public function add(vec:Vector2D):Vector2D { 
                        return new Vector2D(_x + vec.x,_y + vec.y); 
                } 
                public function incrementBy(vec:Vector2D):void { 
                        _x += vec.x; 
                        _y += vec.y; 
                } 
                public function subtract(vec:Vector2D):Vector2D { 
                        return new Vector2D(_x - vec.x,_y - vec.y); 
                } 
                public function decrementBy(vec:Vector2D):void { 
                        _x -= vec.x; 
                        _y -= vec.y; 
                } 
                public function scaleBy(k:Number):void { 
                        _x *= k; 
                        _y *= k; 
                } 
                public function dotProduct(vec:Vector2D):Number { 
                        return _x*vec.x + _y*vec.y; 
                } 
                static public function distance(vec1:Vector2D,vec2:Vector2D):Number{ 
                        return (vec1.subtract(vec2)).length;  
                } 
                static public function angleBetween(vec1:Vector2D,vec2:Vector2D):Number{ 
                        return Math.acos(vec1.dotProduct(vec2)/(vec1.length*vec2.length)); 
                } 
        } 
} 

The usage of the class Vector2D is similar to that of Vector3D. The file VectorExamples.as contains 
some examples.  

Simple calculus ideas 
As stated at the beginning of this chapter, we do not assume that all readers will have a background in 
calculus. If you do, that is certainly handy; but we still recommend that you skim through this section, 



Some Math Background 

81 

 

especially the code examples and the section on discrete calculus, to see how we apply calculus in code. 
If calculus is completely new to you, this section is designed as a gentle overview of some of the basic 
concepts. So although you won’t be able to “do” calculus just by reading this section, you will hopefully 
gain enough understanding to appreciate the meaning of physics formulas that involve calculus. 
Additionally, you will be introduced to discrete calculus and the subject of numerical methods, which will 
provide a foundation for approaching more complex physics simulations. 

So what is calculus? In one sentence, it’s a mathematical formalism for dealing with quantities that change 
continuously with respect to other quantities. Because physics deals with laws that relate some quantities 
with other quantities, calculus is clearly relevant.  

Calculus consists of two parts. Differential calculus (or differentiation) deals with the rate of change of 
quantities. Integral calculus (or integration) deals with continuous sums. The two are related by the 
fundamental theorem of calculus, which states that integration is the reverse of differentiation.  

That all sounds very mysterious if you’ve never come across calculus before, so let’s start from something 
you know to give you a gentle introduction to the subject. By the end of this chapter, these statements will 
make much more sense to you. 

Slope of a line: gradient 
The idea of rate of change is an important concept in physics. If you think of it, we are trying to formulate 
laws that tell us how, for example, the motion of a planet changes with time; how the force on the planet 
changes with its position, and so on. The key words here are “changes with.” The laws of physics, it turns 
out, contain the rate of change of different physical quantities such as position, velocity, and so on. 

Informally, “rate of change” tells us how quickly something is changing. Usually we mean how fast it’s 
changing in time, but we could also be interested in how “fast” something changes with respect to some 
other quantity, not just time. For example, as a planet moves in its orbit, how quickly does the force of 
gravity change with its position?  

So, in math terms, let’s consider the rate of change of a quantity y with respect to another quantity x 
(where x could be time t or some other quantity). To do this, we’ll use graphs because that will help us 
visualize relationships more easily.  

Let’s start with two quantities that have a simple, linear, relationship with each other; that is, they are 
related by 

y = ax + b  

As you saw in the coordinate geometry section, this implies that the graph of y against x is a straight line. 
The constant b is the y-intercept; the point at which the line intersects the y-axis. We’ll now show that the 
constant a gives a measure of the rate of change of y with x.  

Look at Figure 3-27. Of the two lines, in which one is y changing faster with x? 
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(x1, y1) 

x2 – x1 

(x2, y2)

y2 – y1 

B 

A 

 

Figure 3-27. The gradient (slope) of a line 

 

Clearly it’s A because it is “steeper,” so the same increase in x leads to a larger increase in y. The 
steepness of the slope of the line therefore gives a measure of the rate of change of y with x. We can 
make this idea precise by defining the rate of change as follows: 

Rate of change = (change in y) / (change in x) 

It is customary to use the symbol ∆ to denote “change in”, so we can write this: 

Rate of change = ∆y
∆x  

Let’s give the rate of change a shorter name; let’s call it gradient. Here’s the idea: take any two points on 
the line with coordinates (x1, y1) and (x2, y2), calculate the difference in y and the difference in x and 
divide the former by the latter: 

Gradient = y2 − y1
x2 − x1  

With a straight line, you’ll find that no matter which pair of points you take, you’ll always get the same 
gradient. Moreover, that gradient is equal to a, the number that multiplies x in the equation y = ax + b.  

This makes sense because a straight line has a constant slope, so it should not matter where you 
measure it. This is a very good start. We’ve got a formula for calculating the gradient or rate of change. 
The only problem is that it is restricted to quantities that are linearly related to each other. So how do we 
generalize this result to more general relationships (for example, when y is a nonlinear function of x?) 

Rates of change: derivatives 
You already know that the graph of a nonlinear function is a curve instead of a straight line. Intuitively, a 
curve’s slope is not constant—it changes along the curve. Therefore, whatever the rate of change or 
gradient of a nonlinear function might be, it is not constant but depends on x. In other words, it is also a 
function of x.  
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Our objective now is to find this gradient function. In a math course, you’d do some algebra and come up 
with a formula for the gradient function. For example, you can start with the function y = x2 and show that 
its gradient function is 2x. But because you’re not in a math course, let’s do that with code instead. But 
first, we need to define what we mean by the gradient of a curve. 

Because the gradient of a curve changes along the curve, let’s focus on a fixed point P on the curve 
(Figure 3-28).  

P (x1, y1) 
Q (x2, y2) 

 

Figure 3-28. The gradient of a curve 

Then let’s pick any other point Q near point P. If we draw a line segment joining P and Q, the slope of that 
line approximates the slope of the curve. If we imagine that Q approaches P, we can expect the gradient of 
the line segment PQ to be closer and closer to the gradient of the curve at P.  

 

What we are doing, in effect, is using the formula for the gradient of a line we had before and reducing the 
intervals ∆x and ∆y: 

Gradient = ∆y
∆x

= y2 − y1
x2 − x1  

We can then repeat this process at different locations for the point P along the curve to find the gradient 
function. Let’s do this now in GradientFunction.as:  
 
package{ 
        import flash.display.Sprite; 
 
        public class GradientFunction extends Sprite{ 
 
                private var numPoints:uint=1001; 
                private var numGrad:uint=250; 
                private var xRange:Number=6; 
                private var xStep:Number; 
 
                public function GradientFunction(){ 
                        init(); 
                } 
                private function init():void{ 
                        var graph:Graph = new Graph(-4,4,-10,10,275,210,450,350); 
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                        graph.drawgrid(1,0.2,2,0.5); 
                        graph.drawaxes('x','y'); 
                        addChild(graph); 
                        var xA:Array = new Array(); 
                        var yA:Array = new Array(); 
                        // calculate function 
                        xStep = xRange/(numPoints-1); 
                        for (var i:uint=0; i<numPoints; i++){ 
                                xA[i] = (i-numPoints/2)*xStep; 
                                yA[i] = f(xA[i]); 
                        } 
                        graph.plot(xA,yA,0xff0000,false,true); // plot function 
                        // calculate gradient function using forward method 
                        var xAr:Array = new Array(); 
                        var gradA:Array = new Array(); 
                        for (var j:uint=0; j<numPoints-numGrad; j++){ 
                                xAr[j] = xA[j]; 
                                gradA[j] = grad(xA[j],xA[j+numGrad]); 
                        } 
                        graph.plot(xAr,gradA,0x0000ff,false,true); // plot gradient function 
                } 
                private function f(x:Number):Number{ 
                        var y:Number; 
                        y = x*x; 
                        return y; 
                } 
                private function grad(x1:Number,x2:Number):Number{ 
                        return (f(x1)-f(x2))/(x1-x2); 
                } 
        } 
} 

The relevant lines are the ones that compute the gradient function in init() and the function grad(). 
This function simply computes the gradient (y2 – y1) / (x2 – x1) given x1 and x2 as input. The line that 
decides which points to use is the following: 
 
gradA[j] = grad(xA[j],xA[j+numGrad]); 

Here numGrad is the number of grid points that Q is away from the point P (the point at which we are 
evaluating the gradient). Obviously, the smaller the value of numGrad, the more accurate the calculated 
gradient will be. 

We have used a total of 1,000 gridpoints in an x-interval of 6 (from -3 to 3). That gives us a step size of 
0.006 units per gridpoint. Let’s use numGrad=1 to start with. This is the smallest possible value. Running 
the code plots the gradient function alongside the original function y = x2. The graph of the gradient 
function is a straight line passing through the origin. When x = 1, y = 2, when x = 2, y = 4, and so on. You 
can probably guess that the equation of the line is y = 2x. Now any calculus textbook will tell you that the 
gradient function of y = x2 is y = 2x. So this is good. You’ve successfully calculated your first gradient 
function! 
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Now change the value of numGrad to 50. You’ll see that the computed gradient function line shifts a bit; it’s 
no longer y = 2x. Not too good. Try reducing numGrad. You’ll find that a value of up to about 10 gives you 
something that looks very close to y = 2x. That’s a step size of 10 x 0.006 = 0.06. Anything much larger 
than this and you’ll start losing accuracy.  

Let’s finish off this section by introducing some more terminology and notation. The gradient function is 
also called the derived function or derivative with respect to x. We’ll use these terms interchangeably. The 
process of calculating the derivative is called differentiation.  

We showed that the ratio ∆y/∆x gives the gradient of a curve at a point provided that ∆x and ∆y are small. 
In formal calculus, we say that ∆y/∆x tends to the gradient function as ∆x and ∆y go to zero.  

To express the fact that the gradient function is really a limiting value of ∆y/∆x, we write it like this:  

dy
dx  

This is the standard notation for the derivative of function y with respect to x. Another notation is y’ (“y 
prime”); or if we write y = f(x), the derivative can also be denoted by f’ (“f prime”).  

There is nothing stopping you from calculating the derivative of a derivative. This is called the second 
derivative, and is written as follows: 

d 2y
dx2

 
In fact, as you’ll find out in the next chapter, velocity is the derivative of position (with respect to time), and 
acceleration is the derivative of velocity. So acceleration is the second derivative of position with respect to 
time. In the notation, v = dx/dt, a = dv/dt, so a = d2x/dt2.  

We calculated the derivative of a scalar function, but you can also differentiate vectors. You just find the 
derivative of each vector component separately.  

For example, vx = dx/dt, vy = dy/dt, and vz = dz/dt are the three velocity components. We can write this 
more compactly in vector form as follows, where v = [vx, vy, vz] and r = [x, y, z]: 

v = dr
dt  

Discrete calculus: difference equations 
What we did while calculating the gradient function in the preceding code is an example of discrete 
calculus: calculating the derivative using numerical methods. A numerical method is basically an algorithm 
for performing a mathematical calculation in an approximate way using code. This is needed if we don’t 
have an exact formula for the quantity we are calculating. 
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 In the preceding example, we had y = x2 and needed to calculate y’ using the discrete form of the 
derivative: 

′y = dy
dx

≈ ∆y
∆x  

To do this, we used a difference equation of the form: 

′y n( ) = y n +1( ) − y n( )
x n +1( ) − x n( )  

This is called a forward difference scheme because we are calculating the derivative at step n by using 
values of the function at the next step n+1.  

There are many other difference schemes. Let’s try a central difference scheme: 

′y n( ) = y n +1( ) − y n −1( )
x n +1( ) − x n −1( )  

It’s called a central difference scheme because we’re picking a point on either side of the point P at which 
we’re evaluating the gradient. Here is the code that does this: 
 
// calculate gradient function using centered method 
        var xArc:Array = new Array(); 
        var gradAc:Array = new Array(); 
        for (var k:uint=numGrad; k<numPoints-numGrad; k++){ 
                xArc[k-numGrad] = xA[k]; 
                gradAc[k-numGrad] = grad(xA[k-numGrad],xA[k+numGrad]); 
        } 

If you run this code, you’ll see that it gives you the same answer as the previous scheme for numGrad = 1 
(recall that numGrad is the number of gridpoints between P and Q, and that the smaller it is, the more 
accurately the computed gradient will be). But if you now try larger values of numGrad, you’ll find that it’s 
still pretty accurate for a value as large as 250, which amounts to a grid size of 1.5. Compare that with the 
maximum step size of 0.06 for the forward difference scheme—it’s 25 times larger!  

This shows that the central difference scheme is much more accurate than a forward scheme. Figure 3-29 
shows the derivatives calculated by the two methods for numGrad = 50. Note that we are plotting two 
different kinds of things on this graph: the original function y and its gradient function dy/dx. Hence, the 
labeling on the y-axis. The line that passes exactly through the origin is the gradient function obtained by 
using the central difference scheme. With your knowledge of coordinate geometry, you should be able to 
deduce that it’s a plot of the function 2x. In other words, dy/dx = 2x. Anyone who’s done any calculus will 
instantly recognize 2x as the gradient function of y = x2, our original function—so the central difference 
scheme is doing very well. The other line, which is computed using the forward difference scheme, has a 
bit of an offset, though, which means it will have an error associated with it. This is called a numerical 
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integration error. Of course, there is an error associated with all numerical schemes. But in this case, the 
error due to the central difference scheme is so small that it is not visible on the plot. We’ll go into much 
more detail on numerical accuracy in Chapter 14. 

 

Figure 3-29. Derivatives computed by the forward (thin line) and central (thick line) difference schemes. 

Doing sums: integrals 
Now we ask this question: Is it possible to do the reverse? Suppose we know the derivative of a function; 
can we find the function? The answer is yes. This is called integration. Again, usually in math you’ll do that 
using analytical methods. But here we’ll integrate numerically by using code.  

As an example of numerical integration, let’s reverse the preceding forward difference scheme to find 
y(n+1), which gives this: 

y n +1( ) = y n( ) + ′y n( ) ⋅ x n +1( ) − x n( )!" #$  

Now y’ is given, so we can calculate y(n+1) from the previous y(n). So you can see that this will be an 
iterative process in which we increment the value of y. It’s a sum, and that’s what integration is. The result 
of integration is called the integral, just like the result of differentiation is called the derivative.  
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Let’s apply this to the derivative y’ = 2x. We should be able to recover the function y = x2. Here’s the code 
that does this: 
 
package{ 
        import flash.display.Sprite; 
        public class Integration extends Sprite{ 
                private var numPoints:uint=1001; 
                private var numGrad:uint=1; 
                private var xRange:Number=6; 
                private var xStep:Number; 
 
                public function Integration(){ 
                        init(); 
                } 
                private function init():void{ 
                        var graph:Graph = new Graph(-4,4,-10,10,275,210,450,350); 
                        graph.drawgrid(1,0.2,2,0.5); 
                        graph.drawaxes('x','y'); 
                        addChild(graph); 
                        var xA:Array = new Array(); 
                        var yA:Array = new Array(); 
                        // calculate function 
                        xStep = xRange/(numPoints-1); 
                        for (var i:uint=0; i<numPoints; i++){ 
                                xA[i] = (i-numPoints/2)*xStep; 
                                yA[i] = f(xA[i]); 
                        } 
                        graph.plot(xA,yA,0xff0000,false,true); // plot function 
                        // calculate gradient function using forward method 
                        var xAr:Array = new Array(); 
                        var gradA:Array = new Array(); 
                        for (var j:uint=0; j<numPoints-numGrad; j++){ 
                                xAr[j] = xA[j]; 
                                gradA[j] = grad(xA[j],xA[j+numGrad]); 
                        } 
                        graph.plot(xAr,gradA,0x0000ff,false,true); // plot gradient function 
                        // calculate integral using forward method 
                        var xAi:Array = new Array(); 
                        var integA:Array = new Array(); 
                        xAi[0] = -3; 
                        integA[0] = 9; 
                        for (var k:uint=1; k<numPoints; k++){ 
                                xAi[k] = xA[k]; 
                                integA[k] = integA[k-1] + f(xA[k-1])*(xA[k]-xA[k-1]); 
                        } 
                        graph.plot(xAi,integA,0x00ff00,false,true); // plot integral 
                } 
                private function f(x:Number):Number{ 
                        var y:Number; 
                        y = 2*x; 
                        return y; 
                } 
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                private function grad(x1:Number,x2:Number):Number{ 
                        return (f(x1)-f(x2))/(x1-x2); 
                } 
                private function integ(x1:Number,x2:Number):Number{ 
                        return (f(x1)-f(x2))/(x1-x2); 
                } 
        } 
} 

The full source code is in Integration.as. One thing you’ll notice is that you have to specify the starting 
point. This is clear from the preceding equation because y(n+1) depends on y(n), you need to know the 
value of y(0) (and x(0)) to begin with. This is called an initial condition. You always have to specify an initial 
condition when you are integrating. In the code we did that by specifying that x(0) = –3 and y(0) = 9. Try 
another initial condition and see what you get; for example, x(0) = –3, y(0) = 0.  

This example might appear artificial, but in fact it describes an actual physical example: throwing a ball 
vertically upward. The function f(x) denotes the vertical velocity, and its integral is the vertical 
displacement. In fact, the derivative f’(x) is the acceleration. If you compute it (as we’ve done in the code), 
you’ll find that it’s a constant—a straight line with the same value of y for all x, like the acceleration due to 
gravity is constant. And in case you haven’t guessed what x stands for in this example, it represents time. 
The initial condition x(0) = –3, y(0) = 9 represents the initial position of the ball. Now, it’s clear why you 
need an initial condition in the first place and why different initial conditions give different curves. Of 
course, with x representing time, you’d probably start with x(0) = 0. If you feel so inclined, go ahead and 
animate a ball using the integrated values of y to show that it really produces a ball thrown upward. One 
thing you’d need to do is to scale y so that it extends over enough pixels on the stage.  

You could start with the constant acceleration f’(x) and integrate it to get the velocity and then integrate the 
velocity to get the time. In fact, this is what we did, in a simplified way, in the first example of the book: 
BouncingBall.as back in Chapter 1.  

The forward scheme that we used in this example is the simplest integration scheme possible. In Chapter 
14, we’ll go into considerable detail on numerical integration and different integration schemes. 

Summary 
Wow! Well done for surviving this chapter. You now have a remarkable set of tools at your disposal. 
Hopefully, you can begin to see the potential for applying these ideas and methods. No doubt you have 
many ideas of your own.  

In case you’ve had difficulty with some of the material in this chapter, don’t worry. Things will become 
much clearer when you see them applied in practice in later chapters. You might want to come back to this 
chapter again to refresh your memory and reinforce your understanding. 

You’re now ready for physics. So take a well-deserved break and, when you feel ready, let’s move on to 
the next chapter.  
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Chapter 4 

Basic Physics Concepts 

In the previous two chapters, we have covered a great deal of background material in ActionScript coding 
and math tools. This chapter will provide a gentle overview of basic physics in order to establish some key 
concepts. Along the way, we will illustrate some of these concepts using ActionScript examples and will 
build some useful physics classes that will be used throughout the book. 

Topics covered in this chapter include the following: 

! General physics concepts and notation: Physics deals with measurable quantities. This brief 
section reviews some basic facts about the nature of physical quantities and their units, and 
explains the use of scientific notation for expressing the values of physical quantities. 

! Things"particles and other objects in physics: Things in physics are modeled using idealized 
concepts such as particles. We build an AS3.0 Particle class that implements appropriate 
particle properties and methods, as well as related classes.  

! Describing motion"kinematics: This section explains the concepts and methods needed to 
describe and analyze motion. It contains some essential definitions and formulas that any 
prospective physics programmer must know. 

! Predicting motion"forces and dynamics: To predict motion, you need to understand what 
causes it: force. Dynamics is the study of force and motion. By specifying the forces acting on an 
object, you can compute its motion. 

! Energy concepts: Energy is a powerful concept in physics and enables some otherwise tricky 
problems to be solved in a simple way.  



Chapter 4 

92 

 

General physics concepts and notation 
This short section reviews some general concepts and establishes some essential terminology and 
notation that apply across all of physics.  

Physical quantities and units 
In physics, when you talk about length or mass or energy, you want to be as precise as possible. Ideally, 
you want to be able to measure or calculate the things that you talk about. For example, the size of an 
object is not just a quality; it’s a quantity. Physical quantities are measurable properties. They can be given 
a numerical value, or magnitude.  

There is something else that a physical quantity must have: a unit. For example, we don’t just say that the 
length of a particular table is 2; we say it is 2 meters. Meter (m) is the unit. Why do we need a unit? A unit 
does two things. First, it tells us what kind of thing we are talking about. Meter tells me I am dealing with a 
length, not a temperature or something else. Second, the unit establishes a reference against which we 
are comparing the magnitude of the quantity. When we say that a table’s length is 2m, what we are really 
saying is that the length is twice as long as that of a reference that we call the meter. All measurements 
are only meaningful against some reference that we compare with.  

As you might imagine, there are different choices of units. For example, to measure lengths or distances, 
you can use meters or feet. The usual unit of length in scientific literature is the meter (m) and its 
subdivisions and multiples, such as centimeter (cm) and kilometer (km). The key thing is to use consistent 
units, not mix different types of units. Otherwise, we can use any system of units that is appropriate. For 
example, in Flash graphics and animation work, we usually measure distances in pixels. 

In the last chapter, you came across scalars and vectors. Just to recap briefly, a vector is a mathematical 
object that has a magnitude and a direction, whereas a scalar is one that only has a magnitude. Physical 
quantities can be scalar quantities or vector quantities. An example of a vector quantity, referred to in the 
last chapter, is displacement. You’ll come across more examples later in this chapter.  

Scientific notation 
One frequently encounters very large as well as very small numbers in physics. For example, the speed of 
light is approximately 300 000 000 m/s. Instead of writing all these zeros, we usually write this as 3 x 108 
m/s. The 108 (“ten to the power of 8”) is 1 followed by 8 zeros, which equates to 100 million. This is known 
as scientific notation. The idea is to write large or small numbers in this form, where A is greater or equal 
to 1 but less than 10, and B is a positive or negative integer: 

A ! 10B 

As shown in the example, if B is positive, 10B is 1 followed by B zeros. What if B is a negative integer? In 
that case, we place the 1 in the Bth position after the decimal place, with zeros before it: for instance, 10-4 
is the same as 0.0001. 

As an example, the mass of an electron (the tiny particle that circles the center of atoms) is approximately 
9.1 ! 10-31 kg.  
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In ActionScript, you write this as 9.1e-31 and the velocity of light as 3e8. The “e” here must not be 
confused with the number e introduced in the last chapter, which is Math.e in ActionScript. Here, e is used 
to denote the power of 10 by which we multiply the number preceding it. 

Things: particles and other objects in physics 
To describe and model the real world, physics has to have some representation of physical things. The 
theories of physics are conceptual and mathematical models of reality. They consist of concepts that are 
idealizations from the things that exist in real life. One such idealization is the concept of a particle. 
Although we’ll focus exclusively on particles in this section, to put them in context, here is a list of the 
variety of “things” you’ll come across in this book: 

! Particles: Starting from this section, much of this book will deal with particles. We say more 
about particles shortly, but in a nutshell they can be thought of as indivisible units that exist at 
discrete points in space. Therefore, they are distinguished from more complex objects that can be 
extended or can consist of multiple parts. Particles move in a simple way: they can basically just 
change their position. This is also known as translation.  

! Rigid bodies: A rigid body is an extended object whose size and shape cannot be changed 
easily, such as a table or car. Rigid bodies can move by translation like particles, but in addition 
they can undergo rotation. Rigid body motion will be covered in Chapter 13.  

! Deformable bodies: Like rigid bodies, deformable bodies can translate and rotate, but in addition 
their shape and/or size can also change. Examples include a rubber ball, a rag doll, or a piece of 
cloth. An approach to model deformable bodies will be discussed in Chapter 13.   

! Fluids: Fluids differ from the objects described previously in that they have no well-defined size 
or shape, but have the ability to flow from one part of space to another. Because any part of a 
fluid can move, it is much more difficult to simulate fluid motion accurately. But sometimes it is 
possible to “cheat” by modeling fluids using particles. This is the approach we take in Chapter 12 
to create some interesting fluid visual effects.  

! Fields: Fields are more abstract entities. In a broad sense, a field is some physical quantity that 
exists continuously over space. For example, we will introduce the concept of a force field in 
Chapter 10. 

What is a particle? 
Because we are going to do lots of things with particles, let’s discuss them a bit more. What are particles? 
Probably the first things that might come to mind are tiny entities such as electrons. In physics these are 
called fundamental or elementary particles. That’s not necessarily what we are talking about here.  

The sense in which we are going to use the word particle is as a mathematical idealization for any physical 
object whose inner structure or composition is not important for the problem that we are considering. This 
might include atoms, or billiard balls, or even stars in a galaxy! In that sense, a particle is basically just a 
bunch of properties that characterize the object as an individual thing.  
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Particle properties 
Let’s be more precise about what we mean by that last statement. What properties are we talking about? A 
particle has the following properties:   

! Position: It has to be somewhere! That means it must have coordinates x, y, z.  

! Size: It exists in space, so it must have a size. 

! Velocity: Things move, so they have a velocity. We define velocity formally in the next section; 
for now just note that it is a vector with components such as position. 

! Mass: As a physical thing, it must also have mass. 

! Charge: Some elementary particles, such as electrons, also have a property called an electric 
charge, which makes them experience an interesting type of force known as the electromagnetic 
force. Because we’ll play with that force in this book, we want to give our particles a charge 
property, too.  

! Others (spin, lifetime, and so on): There are other properties we could include, taking 
inspiration from elementary particles in physics. But for now, we’ll stick with the five properties 
listed here.  

This background gives us enough ingredients to actually start building some ActionScript classes to 
represent particles and their behaviors, although some of the particle properties and motion concepts 
introduced as we do so will be covered in greater depth only as we progress through the chapter. 

To start with, we will create an AS3.0 Particle class that implements the particle properties described 
above. We will then create a Mover class that will allow Particle instances to move, and update the 
Particle class with public methods that implement motion behaviors. We will then create a Ball class 
that extends Particle, drawing graphics so that Particle instances actually look like particles. Finally, a 
MultiMover class will be created that extends Mover so that multiple particles can be moved together.  

Building a Particle class 
It makes sense to first create a Particle class by extending a display object class; in doing so, we inherit 
the position properties x, y, z and the size properties width and height. Let us extend Sprite. So, our 
Particle class begins life looking something like this: 
 
package com.physicscodes.objects { 
        import flash.display.Sprite; 
        public class Particle extends Sprite{ 
 
        } 
} 

You’ll notice that we’re placing the Particle class in the package com.physicscodes.objects. We’ll 
soon start accumulating classes, so it’s time to get organized!  
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Particle already has inherited properties x, y, z; and width and height. In addition, we need to create 
properties based on the physical properties such as mass, charge, and velocity described in the last 
section. These should be able to be read as well as modified. Table 4-1 shows the properties we want to 
create. 

Table 4-1. Properties of the Particle class 

Property Type Possible Values and Meaning 

mass Number Any positive value (default 1) 

charge Number Any value: positive, negative or zero (default)  

xpos Number Any value; x-component of position 

ypos Number Any value; y-component of position 

zpos Number Any value; z-component of position 

vx Number Any value (default 0); x-component of velocity 

vy Number Any value (default 0); y-component of velocity 

vz Number Any value (default 0); z-component of velocity 

pos Vector3D Any Vector3D value; 3D position vector 

velo Vector3D Any Vector3D value; 3D velocity vector 

pos2D Vector2D Any Vector2D value; 2D position vector 

velo2D Vector2D Any Vector2D value; 2D velocity vector 

The choice of some of these properties and their possible values requires some explanation. It is clear that 
mass cannot be negative or zero because every particle has mass. As you will see in Chapter 10, charge 
can be positive, negative, or zero. A particle with a charge of zero would behave as if it had no charge at 
all.  

You may wonder why we need to have the additional properties xpos, ypos, and zpos for position 
components given that Particle already has inherited position properties x, y and z. The reason is that 
Flash stores position coordinates (and everything else that uses pixels) in units of twips, which are 1/20 of 
a pixel. That means x, y, and z will always be multiples of 0.05. Therefore, if you require accuracy in your 
calculations, relying on these as position coordinates is not a good idea. In contrast, the variables xpos, 
ypos, and zpos are defined to Number precision"similar to the velocity components vx, vy, and vz.    

Having extolled the virtues of vectors in the last chapter, we’d be hypocrites not to use them. Therefore, 
we create position and velocity vectors pos and velo as Vector3D objects from their respective 
components. We also create Vector2D versions pos2D and velo2D. Note that if you are using Flash CS3, 
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the z components and Vector3D versions won’t work, so you’ll have to comment out the relevant pieces of 
code.  

The implementation of these properties proceeds as follows. To begin with, we use getters and setters 
instead of public variables. For example, showing only the code relevant for the mass property, we have 
this:  
 
package com.physicscodes.objects { 
        import flash.display.Sprite; 
 
        public class Particle extends Sprite{ 
                private var _mass:Number; 
        } 
        public function get mass():Number{ 
                return _mass; 
        } 
        public function set mass(pmass:Number):void{ 
                _mass = pmass; 
        } 
} 

Hence, we use a private variable _mass that is accessed through get mass() and set mass(). Through 
these accessors, you can get or set the mass property of a Particle instance called particle simply by 
typing particle.mass. It could be argued that, in this case, the getter/setter is not doing anything useful, 
and we might as well use a public property. But we’ve followed this technique to be consistent with best 
practices.   

We would also want to be able to set the mass and charge of our particles when we create them, so it 
makes sense to use a constructor and feed those as parameters in the constructor: 
 
public function Particle(pmass:Number=1, pcharge:Number=0){ 
        _mass = pmass; 
        _charge = pcharge; 
} 

The mass and charge properties are optional parameters, with default values of 1 and 0 respectively.  

There are getters and setters for all the other variables. For example, here are the getters and setters for 
the x-components of position and velocity, xpos and vx: 
 
private var _x:Number; 
private var _vx:Number=0; 
public function get xpos():Number{ 
        return _x; 
} 
public function set xpos(px:Number):void{ 
        _x = px; 
        x = _x; 
} 
public function get vx():Number{ 
        return _vx; 
} 
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public function set vx(pvx:Number):void{ 
        _vx = pvx; 
} 

Internally, xpos is using the private variable _x, and vx is using the private variable _vx. Note that the 
setter for xpos additionally includes a line that assigns the value of _x to the x property of the Particle 
instance. With this setup, all calculations involving position can therefore be done using xpos (and ypos 
and zpos), with the x (and y and z) property set accordingly so that the Particle instance is positioned at 
the calculated location. Hence, in this case the getter/setter pair is actually doing something quite valuable.     

Similarly, here are the getters and setters for the pos and velo properties: 

 
private var _pos:Vector3D; 
private var _velo:Vector3D;  
public function get pos():Vector3D{ 
        return new Vector3D(_x,_y,_z); 
} 
public function set pos(ppos:Vector3D):void{ 
        _x = ppos.x; 
        _y = ppos.y; 
        _z = ppos.z; 
        x = _x; 
        y = _y; 
        z = _z; 
}public function get velo():Vector3D{ 
        return new Vector3D(_vx,_vy,_vz); 
} 
public function set velo(pvelo:Vector3D):void{ 
        _vx = pvelo.x; 
        _vy = pvelo.y; 
        _vz = pvelo.z; 
} 

Setting pos will automatically position the Particle instance at the new location specified by the pos 
vector.  

Have a look at Particle.as. We also created 2D versions of these properties, called pos2D and velo2D. 
In fact, we’ll mostly use the 2D versions in this chapter. It should be straightforward for you to modify the 
example codes if you want to do 3D. We added a couple of public methods, multiply(k:Number) and 
addScaled(vec:Vector2D, k:Number), to the Vector2D class (which is now in the 
com.physicscodes.math package). Doing vec1.multiply(k:Number) multiplies vector vec1 by the 
scalar k. Doing vec1.addScaled(vec:Vector2D, k:Number) adds k times vec to vec1. 

For example, to update the position of a Particle instance called particle, do this: 
 
particle.pos2D = particle.pos2D.add(particle.velo2D.multiply(dt)); 

Or do this, which involves a single method call addScaled() rather than the two method calls multiply() 
and add(). 
 
particle.pos2D = particle.pos2D.addScaled(particle.velo2D, dt); 
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These are equivalent to the component form: 
 
particle.xpos += particle.vx * dt; 
particle.ypos += particle.vy * dt; 

Moving particles: the Mover class 
We now have a Particle class with all the properties we need. But the particles that will be instantiated 
from this class won’t know how to do anything (move, for example). There are two options for handling 
this: we can write code externally to make it move, or we can create a method that will make it move. We’ll 
show an example of how to do both of these things shortly. But before we do that, let’s try and take 
advantage of object-oriented programming (OOP). With both methods, we want to move an object 
repeatedly in time. So let’s first create a Mover class that we’ll use with either method.    

The task of the Mover class is to make particles realize that they need to move at the velocity they 
possess. Mover also has to introduce time. The simplest way to do this is to use the enterframe event. 
Better still is to use the Timer class with the getTimer() function, as described in Chapter 2. Here is a 
basic Mover class that does this: 
 
package com.physicscodes.motion{ 
        import flash.events.TimerEvent; 
        import flash.utils.Timer; 
        import flash.utils.getTimer; 
        import com.physicscodes.objects.Particle; 
        public class Mover { 
                private var _particle:Particle; 
                private var _time:Number; 
                private var _t0:Number; 
                private var _dt:Number; 
                private var _timer:Timer; 
 
                public function Mover(pparticle:Particle):void { 
                        _particle = pparticle; 
                } 
                public function startTime(ptimestep:Number=20,psteps:Number=0):void { 
                        _timer=new Timer(ptimestep,psteps); 
                        _timer.addEventListener(TimerEvent.TIMER,onTimer); 
                        _timer.start(); 
                        _time = 0; 
                        _t0 = getTimer(); 
                } 
                public function stopTime():void { 
                        _timer.removeEventListener(TimerEvent.TIMER,onTimer); 
                        _timer.stop(); 
                } 
                public function killTime():void { 
                        stopTime(); 
                        _timer=null; 
                        if (_timer && _timer.running) _timer.stop(); 
                } 
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                public function get time():Number { 
                        return _time; 
                } 
                public function get dt():Number { 
                        return _dt; 
                } 
                private function onTimer(pEvent:TimerEvent):void { 
                        _dt = 0.001 * (getTimer() - _t0); 
                        _time += _dt; 
                        _t0  = getTimer(); 
                        moveObject(); 
                        pEvent.updateAfterEvent(); 
                } 
                protected function moveObject():void { 
                        _particle.pos2D = _particle.pos2D.addScaled(_particle.velo,_dt); 
                } 
        } 
} 

Most of the code deals with setting up the time-keeping, as described in Chapter 2, and should therefore 
be familiar. The public function startTime() sets up a timer and an event listener, taking two optional 
parameters, which are the usual Timer parameters. The public method stopTime() removes the event 
listener and stops the timer. The event listener increments the time and also calls the protected method 
moveObject(), which simply increments the position of a particle passed as a parameter in the 
constructor of the class, using the velocity of the particle and the time increment. The reason for declaring 
moveObject() as protected is to make it available to subclasses of Mover. We’ll soon be extending it 
and will need to override the moveObject() method to modify its functionality. There are also getters for 
time and dt, which are useful for using with outside code. 

Having created the Mover class, life is now extremely simple. Now you can forget about Timer or 
getTimer(), and all the hassle associated with that time-keeping procedure. By simply instantiating 
Mover, you never have to worry about doing any of that stuff again. 

To use Mover, you just need the following two lines, where particle is a previously created Particle 
instance: 
 
var mover:Mover=new Mover(particle); 
mover.startTime() 

The method startTime() on the second line could take two optional parameters, as described previously. 
That’s the first, external, method of animating a particle.  

The second method is even simpler. We begin by adding the following public methods to the Particle 
class itself: 
 
public function move(ptimestep:Number=20,psteps:Number=0):void{ 

_mover = new Mover(this); 
_mover.startTime(ptimestep,psteps); 

} 
public function pause():void{ 
        if (_mover){ 
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                _mover.stopTime(); 
        } 
} 
public function resume():void{ 
        if (_mover){ 
                _mover.startTime(); 
        } 
} 
public function stop():void{ 
        if (_mover){ 
                _mover.killTime(); 
                _mover = null; 
        } 
} 

The public method move(), with the two optional Timer parameters, does just what we did before; it 
creates a Mover instance and calls its startTime() method. We also created pause(), resume(), and 
stop() methods. To make a particle move according to its current velocity, you therefore only need a 
single line of code: 
 
particle.move(); 

And to make it stop: 
 
particle.stop(); 

Can it get any simpler than this? 

Extending the Particle class 
What we’ve done in the last section is great stuff, but you haven’t seen anything yet. That’s because our 
particles are currently invisible. The Particle class has deliberately been kept to a minimum level of 
complexity. It’s time now to extend it and include something that we can see. To do this, we’ll reinvent the 
Ball class by making some modifications to the old version that we used in previous chapters.  

The Ball class 
The first modification is to extend Particle instead of Sprite. Doing this means that Ball inherits the 
properties of Particle, such as velocity and velocity components. So we don’t need to create them in 
Ball again. Here is the class definition and constructor: 
 
public class Ball extends Particle{ 
        private var _radius:Number; 
        private var _color:uint; 
        private var _gradient:Boolean; 
        private var _sprite:Sprite; 
 
        public function Ball(pradius:Number=20, pcolor:uint=0x0000ff, pmass:Number=1, 
pcharge:Number=0, pgradient:Boolean=true){ 
                this.mass=pmass; 
                this.charge=pcharge; 
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                _radius=pradius; 
                _color=pcolor; 
                _gradient = pgradient; 
                _sprite = new Sprite(); 
                drawBall(); 
        } 
} 

As you can see, the constructor takes five optional arguments: radius, color, mass, charge and 
gradient. The actual drawing now takes place in a private method drawBall(), which looks as follows: 
 
private function drawBall():void{ 
        with (_sprite.graphics){ 
        if (_gradient){ 
                var matrix:Matrix = new Matrix(); 
                matrix.createGradientBox(_radius,_radius,0,-_radius,-_radius/2); 
                beginGradientFill(GradientType.RADIAL,[0xffffff,_color],[1,1],[0,255],matrix); 
        }else{ 
                beginFill(_color); 
        } 
                drawCircle(0,0,_radius); 
                endFill(); 
        } 
        addChild(_sprite); 
} 

As you can see, the Boolean gradient option determines whether the ball is drawn with a gradient fill 
(the default) or a simple fill. 

Two new public functions, clone() and clear(), have been added: clone() creates a copy of the Ball 
object, whereas clear() clears all the graphics and removes the particle instance from the display list. 
Finally, getters and setters have been added for radius, color, and gradient. When these properties 
are changed, the Ball instance is redrawn with the new radius, color, or gradient option. Pretty neat! 

Using the Ball class 
Using the Ball class is quite straightforward. This code snippet creates a ball object, initializes its 
position and velocity, and then moves it:  
 
var ball:Ball; 
ball = new Ball(); 
ball.pos=new Vector3D(150,50,0); 
ball.velo=new Vector3D(30,20,0); 
addChild(ball); 
ball.move(); 

This piece of code produces a bunch of particles of random size, color, location, and velocities (see Figure 
4-1):   
 
var numBalls:Number = 10; 
for (var i:uint=1; i<=numBalls; i++){ 
        var ball:Ball; 
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        var radius:Number = (Math.random()+0.5)*20; 
        var color:uint = Math.random()*0xffffff; 
        ball = new Ball(radius,color); 
        ball.pos=new Vector3D(Math.random()*550,Math.random()*400,0); 
        ball.velo=new Vector3D((Math.random()-0.5)*100,(Math.random()-0.5)*100,0); 
        addChild(ball); 
} 

 

Figure 4-1. A multicolored bunch of Ball objects 

To animate the balls, you could do ball.move() after the addChild(ball) line within the for loop. This 
will make each particle move individually, using its own timer. However, this is a bit of a waste of 
resources. Even with a relatively small number of particles, things might slow down noticeably.  

It makes more sense to use a single Mover instance to handle the motion of all the balls. We can do this 
by putting all the Ball instances into an array that we’ll then pass to a modified version of Mover, which 
we’ll call MultiMover. Here is the code that puts the balls into an array: 
 
var numBalls:Number = 10; 
var balls:Array = new Array(); 
for (var i:uint=1; i<=numBalls; i++){ 
        var ball:Ball; 
        var radius:Number = (Math.random()+0.5)*20; 
        var color:uint = Math.random()*0xffffff; 
        ball = new Ball(radius,color); 
        ball.pos=new Vector3D(Math.random()*550,Math.random()*400,0); 
        ball.velo=new Vector3D((Math.random()-0.5)*100,(Math.random()-0.5)*100,0); 
        addChild(ball); 
        balls.push(ball); 
} 
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You then pass the array balls as an argument in the constructor of a MultiMover: 
 
var multimover:MultiMover = new MultiMover(balls); 
multimover.startTime(); 

The code for this animation is in BallTest.as. 

Let’s now take a look at the MultiMover class. We could just have modified Mover and saved it as a 
different class called MultiMover. But a smarter thing to do is to extend the Mover class and change only 
the bits that need changing. Here’s the full code for MultiMover.as: 
 
package com.physicscodes.motion { 
        import com.physicscodes.motion.Mover; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
 
        public class MultiMover extends Mover{ 
                private var _particles:Array; 
                public function MultiMover(pparticles:Array):void{ 
                        _particles = pparticles; 
                        super(null); 
                } 
                override protected function moveObject():void{ 
                        for (var i:uint=0; i<_particles.length; i++){ 
                                var particle:Particle = _particles[i]; 
                                particle.pos2D = particle.pos2D.addScaled(particle.velo2D,dt); 
                 } 
                } 
        } 
} 

MultiMover takes an array of particles as argument instead of a particle object as Mover does. Then it 
overrides the moveObject() method of Mover, and its new moveObject() method instead loops over the 
particles in the array, moving each one in turn.   

You can, of course, use MultiMover for a single particle if you ever fancy doing that: simply pass the 
particle within an array. This is for a Ball instance named ball: 
 
var mover:MultiMover=new MultiMover([ball]); 

In all these examples, the balls move at the same constant velocity. The really interesting stuff is when the 
velocity changes; we’ll do that soon in this chapter.   

Describing motion: kinematics 
In this section, we will start to describe motion more formally using precise concepts, equations, and 
graphs. The description of motion is called kinematics. In kinematics, we are not concerned with what 
causes motion, but only with how to describe it. The next section, dynamics, will look at the cause of 
motion: force.  
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Concepts: displacement, velocity, speed, acceleration 
Up to now, we’ve talked about things like velocity and acceleration rather loosely. It’s time now to say 
precisely what we mean by these quantities.  

Here are the main concepts that require definition in kinematics:   

! Displacement  

! Velocity (and the associated concept of speed) 

! Acceleration 

These physical quantities rest upon more fundamental concepts that are taken as self-evident and do not 
require definition: position, distance, and time. For vector quantities, there is a fourth basic concept: angle, 
which defines a direction in space.   

Displacement 
Displacement is a vector quantity associated with the motion of an object. To be more precise, it’s the 
vector connecting the initial position with the final position of the object. Remember the example of Bug 
from the last chapter? Bug moves a distance of 10 units along the y-axis from the origin"that’s a 
displacement. From there, it then undergoes another displacement of 10 units to the right (in the +ve x 
direction).  

In the above example, the net or resultant displacement of Bug is then !(200), or approximately 14.1 units 
at an angle of 45 degrees. But the net distance it moves is, of course, 20 units. This example illustrates the 
difference between displacement and distance. In general, an object might move along any complicated 
trajectory: the distance moved would then be the length along the trajectory, whereas the displacement 
would always be the vector joining the initial position to the final position of the object (see Figure 4-2).  

 

Figure 4-2. Displacement vector (arrow) contrasted with distance along trajectory 

Displacement is usually denoted by the symbol s or x, and its magnitude as s or x. The usual unit of 
displacement (and distance) is the meter and its multiples (for example, km) and fractions (cm, mm, and 
so on). In Flash, where you’ve got a stage on a computer screen rather than real space, you’ll think of 
distance and displacement in terms of pixels, which we’ll often abbreviate as px.  
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Velocity 
Velocity is defined as the rate of change of displacement with time. It tells you how quickly something is 
moving, but also in what direction it is moving. Hence, velocity is a vector quantity.  

The usual symbol for velocity is u or v; for its magnitude, u or v. 

Remember what rate of change means in calculus? It’s the gradient function, or derivative. Therefore, 
velocity is the derivative of displacement with time. In calculus notation we write this as 

v = ds
dt  

Again, this derivative is the limit of the ratio ∆s/∆t as the time interval ∆t (and therefore also the 
displacement change ∆s) becomes small. So, for finite intervals, we can write 

v = ∆s
∆t  

This gives us the average velocity over the time interval ∆t, whereas v = ds/dt gives us the instantaneous 
velocity at a given time. In the special case when velocity is constant, the average velocity is equal to the 
instantaneous velocity at any time.   

As mentioned before, the usual unit for velocity in physics is meters per second (m/s), although km/hr and 
miles/hr are commonly used in everyday life. In Flash, the measure of time is still the second, but the 
measure of distance is the pixel. So, you’ll usually think of velocity in terms of pixels per second (px/s). 

In a computer code, we are always dealing with discrete intervals, so we are really dealing with average 
velocities. But if we use a small enough time interval, the average is close to the instantaneous value. One 
can rearrange the last equation to give ∆s in terms of v and ∆t: 

∆s = v ∆t  

This equation tells us that the displacement increment is given as the product of velocity and the time 
interval. This is exactly what we do in the moveObject() method of the Mover class: 
 
particle.pos2D = particle.pos2D.add(particle.velo2D.multiply(_dt)); 

You might also recognize this as being equivalent to integrating in time using the forward scheme (refer to 
Chapter 3). That makes perfect sense"because velocity is the derivative of displacement with time, 
displacement is the integral of velocity with time. We’ll use this integration scheme, specifically known as a 
Euler scheme, until we get to Part IV of the book.  
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Speed 
Speed is the scalar version of velocity; it has no direction. Speed is defined as the rate of change of 
distance with time, or, in other words, as distance moved per unit time. The unit of speed is the same as 
that of velocity. 

The average speed of an object is the total distance travelled divided by the total time taken: 

average speed = total distance travelled
total time taken  

In this book, most of the time we’ll be dealing with velocity and velocity components rather than speed.  

Acceleration 
Acceleration is defined as the rate of change of velocity with time. It tells you how fast an object’s velocity 
is changing. If you’re driving a car at a constant velocity of 20 m/s (approx 45 miles/hr) in a straight line, 
you’re not accelerating—the acceleration is zero. But if you apply the accelerator and increase the car’s 
speed from 20 m/s to 30 m/s in 10 seconds, the average acceleration is (30 – 20)/10 m/s per second, or 1 
m/s2. This means that the velocity increases by 1 m/s in each second. Acceleration can also be negative; 
in that case, the velocity magnitude decreases.  

The calculus definition of acceleration is  

a = dv
dt  

and the discrete version is 

a = ∆v
∆t  

These equations are similar to those for velocity, with displacement replaced by velocity. Like the 
corresponding equations for velocity, a = ∆v/∆t gives us the average acceleration over the time interval ∆t, 
whereas a = dv/dt gives us the instantaneous acceleration at a given time. 

In the special case when acceleration is constant, the average acceleration is equal to 
the instantaneous acceleration. We’ll illustrate this fact in the next section. 

Reversing the above equation gives this: 

∆v = a ∆t  
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Interpreted as a discrete equation, this gives us an integration scheme for updating velocity given the 
acceleration. This is how you would code it up in ActionScript using Vector2D:  
 
particle.velo2D = particle.velo2D.add(_acc.multiply(_dt)); 

or 
 
particle.velo2D = particle.velo2D.addScaled(_acc, _dt); 

Here _acc is a private variable representing acceleration. It is a Vector2D object. Suppose we use a fixed 
value: 
 
private var _acc:Vector2D=new Vector2D(0,10); 

This will make our particles accelerate downward at a rate of 10 px/s2, simulating the effect of gravity. 

Because acceleration is the rate of change of velocity, it is non-zero if the direction of motion changes, 
even if the speed is constant. A common example is that of an object moving at constant speed in a circle. 
Because the object’s direction of motion changes, its velocity changes. Therefore, its acceleration is not 
zero. We’ll look at this situation in detail in Chapter 9.  

Combining vector quantities 
Because displacement, velocity, and acceleration are vector quantities, it goes without saying that they 
must be combined (added or subtracted) using vector methods. You saw an example of how this is done 
in the previous chapter, so we won’t repeat it here.  

Why would you want to combine these quantities? You’ll frequently want to add displacements and 
velocities to calculate their total (also known as their resultant). Again, you saw an example of resultant 
displacement in the last chapter. An example of a situation in which you would want to add velocities is 
that of a boat on a flowing river. The resultant velocity of the boat is then given by the vector sum of its 
velocity in the water with the velocity of the water current (see Figure 4-3).  

c

v v + c 

 

Figure 4-3. Resultant velocity 

You’ll need to use vector subtraction when calculating relative velocities. Suppose you have a spaceship A 
chasing another spaceship B, moving at different velocities a and b in space (see Figure 4-4). What is the 
velocity of B relative to A? That’s the velocity of B from the point of view of A. In other words, it’s the 
velocity of B in a frame of reference in which A is not moving (we say it’s at rest). A little quiet thinking 
should convince you that it’s given by the velocity of B minus that of A, in a vector sense: b – a. Figure 4-4 
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shows you what b – a means geometrically: it’s the same as b + (–a), and because (–a) points opposite to 
a with the same magnitude, we end up with b – a pointing in the direction shown. This is the velocity of B 
as seen by A from its point of view.  

B

A

a  

b 

b – a  
– a  

 

Figure 4-4. Relative velocity 

Describing motion using graphs 
The motion of an object can be represented graphically in different ways. For a particle moving in two 
dimensions, you can plot its y-coordinate against its x-coordinate at different times. The resulting graph 
would, of course, just give you the trajectory of the particle.  

You can also plot the components of displacement, velocity or acceleration against time. These graphs 
can tell us useful things about how the particle moves.  

You will soon see examples in which we make use of the GGraph class that we introduced in the last 
chapter to create such plots.  

Equations of motion for uniform acceleration 
For the special case of motion under constant acceleration (also known as uniform motion), it is possible, 
starting only from the definitions of velocity and acceleration, to arrive at a very useful set of equations. 
These equations of motion can be used to analyze problems in which the acceleration is constant, 
including the motion of bodies falling under gravity and the motion of projectiles. 

We could just state the equations of motion and ask you to accept them. But you might understand them 
better if you see where they come from. And it’s not really difficult; you just need to do a tiny amount of 
algebra. The starting point is the definition of average acceleration: 

aav = ∆v
∆t  

If the acceleration is constant, aav is also equal to the instantaneous acceleration a"it is true at any time t. 

Let’s now establish our initial conditions by saying that at time t = 0 (initially), s = 0 (zero initial 
displacement), and v = u (the initial velocity is denoted by u). 
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Therefore at time t, we have ∆v = v – u, and ∆t = t – 0 = t, so that 

a = v − u( )
t  

It is now easy to change the subject of this formula to get this:  

v = u + a t  

This formula gives us the velocity v at any time t, given the initial velocity u and the (constant) acceleration 
a.  

It would be nice to have a similar equation for displacement too. Can it be done? Yes, you just need to 
apply the same trick, this time starting from the definition of average velocity: 

vav = ∆s
∆t  

Now we have ∆s = s – 0 = s, and ∆t = t – 0 = t, which gives 

vav = s
t  

Because the velocity increases linearly, the average velocity vav is just ½ (u + v)"the average of the initial 
and final velocities. Substituting into the preceding equation gives 

s = 1
2

u + v( )t  

Now you can use the formula already derived (v = u + a t) to substitute for v. Do this and simplify, and you 
should get this: 

s = u t + 1
2

a t2  

Now sit down and admire this remarkable result of your hard work. What you have here is a formula that 
tells you the displacement s of a particle at any time t, in terms of the initial velocity u of the particle and 
the (constant) acceleration a.  
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This will equal the position vector of the particle at time t if it starts out at the origin at time t = 0. In general, 
if the particle starts out at location pos0 = (x0, y0, z0) at time t = 0, its position vector pos = (x, y, z) at time 
t will be given by this, in pseudocode: 
 
pos = u * t  + 0.5 * a * t * t + pos0  

This gives you the position of the particle as an exact analytical equation. There is no need to use 
numerical integration in this case.   

You can code up this solution directly in vector form (as we do), or split it into components if you prefer. In 
pseudocode, you get this: 
 
x = ux * t + 0.5 * ax * t * t + x0 
y = uy * t + 0.5 * ay * t * t + y0 
z = uz * t + 0.5 * az * t * t + z0 

Before we leave this section, let’s mention that there is a third formula that sometimes proves useful. The 
two formulas derived previously (v = u + a t, and s = u t + ½ a t2) give you the velocity v and the 
displacement s, each as a function of time t. If you eliminate the time t between these two equations, you 
can get an equation for v and s in terms of each other:  

v2 = u2 + 2 a • s  

Note that this one is a scalar equation, not a vector equation.  

We repeat: the equations of motion derived in this section are valid only for constant 
acceleration. If the acceleration changes with time, they will give the wrong answer. 

Applying the equations to projectile motion 
It’s time for an example. Let’s apply the preceding equations to model the motion of a projectile such as a 
cannonball. To do this, we’ll neglect all other forces except gravity. In that case, the force on the projectile 
at any time during its flight is constant. This will give it a constant acceleration (you’ll understand fully why 
in the next chapter).  

We do not model the explosive force that shoots the cannonball in the first place. That force is very brief, 
and its effect is to impart an initial velocity u to the cannonball.  

In this special case, the equations for the position of the projectile in component form reduce to this, in 
pseudocode: 
 
x = ux * t + x0 
y = uy * t + 0.5 * g * t * t + y0 
z = uz * t  + z0 
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Because the acceleration due to gravity points vertically downward, its x and z components ax and az are 
zero and ay = g. If you use vectors, you simply need to specify the acceleration vector as (0, g, 0) in 3D 
and (0, g) in 2D in the equation pos = u * t  + 0.5 * a * t * t + pos0.  

Let’s use these formulas to code a simple projectile simulation. To do this, we’ll extend Mover again. The 
new class is called Projectile.  

Here is the full code of Projectile.as:    
 
package{ 
        import com.physicscodes.motion.Mover; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
 
        public class Projectile extends Mover{ 
                private var _particle:Particle; 
                private var _acc:Vector2D; 
                private var _pos0:Vector2D; 
                private var _velo0:Vector2D; 
                private var _euler:Boolean; 
 
                public function Projectile(pparticle:Particle, ppos0:Vector2D, 
                pvelo0:Vector2D, pacc:Vector2D, peuler:Boolean=true):void{ 
                        _particle = pparticle; 
                        _acc = pacc; 
                        _euler = peuler; 
                        _pos0 = ppos0; 
                        _velo0 = pvelo0; 
                        super(pparticle); 
                } 
                override protected function moveObject():void{ 
                        if (_euler){ 
                                super.moveObject(); 
                                updateVelo(); 
                        }else{ 
                                useAnalyticalSoln(); 
                        } 
                } 
                private function updateVelo():void{ 
                        _particle.velo2D = _particle.velo2D.addScaled(_acc,dt); 
                } 
                private function useAnalyticalSoln():void{ 
                        _particle.pos2D =  
                        _pos0.addScaled(_velo0,time).addScaled(_acc,0.5*time*time);  
                } 
        } 
} 

As you can see, the constructor of Projectile takes five arguments. The first one is a particle object, 
which is passed to the Mover constructor via super(). The next three arguments take the initial position, 
initial velocity, and acceleration of the particle as Vector2D objects. The final argument is a Boolean 
parameter euler with a default value of true. We override the moveObject() method of Mover. If the 
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euler parameter is true, we call super.moveObject(), which invokes the Euler numerical scheme 
implemented in Mover for updating the position of the particle. We also call the private method 
updateVelo(), which implements the Euler integration scheme (as discussed in the section on velocity) 
for updating the velocity by adding the acceleration times the current time interval dt.  

If the euler parameter is false, a private method useAnalyticalSoln() is called instead, which assigns 
a new current position to the particle based on the exact analytical formula pos = u * t  + 0.5 * a * t * t + 
pos0. No numerical approximation is then involved.  

Let’s see both methods in action. ProjectileTest.as creates two balls and moves one using the 
numerical Euler scheme and the other one using the exact analytical solution. Here is the full code: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class ProjectileTest extends Sprite{ 
                public function ProjectileTest():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var pos0:Vector2D = new Vector2D(100,350); 
                        var velo0:Vector2D = new Vector2D(20,-80); 
                        var gravity:Vector2D = new Vector2D(0,10); 
 
                        var ball:Ball; 
                        ball = new Ball(15,0x000000); 
                        ball.pos2D = pos0; 
                        ball.velo2D = velo0; 
                        addChild(ball); 
 
                        var ball1:Ball; 
                        ball1 = new Ball(15,0xaaaaaa); 
                        ball1.pos2D = pos0; 
                        ball1.velo2D = velo0; 
                        addChild(ball1); 
 
                        var projectile:Projectile=new Projectile(ball,pos0," 
velo0,gravity,true); 
                        var projectile1:Projectile=new Projectile(ball1,pos0" 
,velo0,gravity,false); 
                        projectile.startTime(); 
                        projectile1.startTime(); 
                } 
        } 
} 

The two balls (one grey and one black) are initially positioned at the same location (100, 350), have the 
same initial velocity (20, -80), and are subjected to the same downward acceleration (0, 10) to simulate 
gravity. If you run the code, you’ll see both balls start off together and move in a parabolic path like 
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projectiles are supposed to do. As the simulation progresses, you’ll see them begin to separate, as 
pictured in Figure 4-5, because of numerical errors due to the Euler scheme.  

The grey ball is exactly where it should be because it follows the exact analytical solution of the equation 
of motion. Now you probably won’t normally care about the difference. But if you’re building an accurate 
simulation of projectiles or a game of billiards, you would. The difference in position shown in Figure 4-5 is 
after only about 15 seconds of run time. If you run this for a few minutes and include bouncing or collisions 
with other particles, your particle will soon be in places it shouldn’t be.   

So, what can be done about this if your simulation or game requires high accuracy? If your simulation is 
simple enough for an analytical solution to exist (as in the present example), using that solution would 
solve the problem. However, in the vast majority of scenarios, analytical solutions do not exist. In those 
cases, you need to use a more accurate integration scheme than the Euler scheme.  

Chapter 14, in Part IV of the book, is devoted entirely to more accurate integration schemes. But before we 
get there, we will use the Euler scheme in most of the examples because Euler is the simplest and 
quickest scheme, and our main aim in much of the book prior to Part IV is to demonstrate physics effects 
without necessarily worrying too much about absolute accuracy. As we go along, we will point out 
examples in which the lack of accuracy may be especially important, although we will defer any solutions 
to Chapter 14.  

The choice of integration scheme is not the only consideration if you are worried about numerical 
accuracy. Another possible source of error is how numbers are stored or handled—for example, this is 
why we chose to use Number variables like xpos instead of using the built-in x property when building the 
Particle class earlier in this chapter. Errors can also arise due to the algorithms for dealing with sudden 
changes such as bouncing and collisions. Chapter 15 will include a discussion of these other sources of 
error and how they can be dealt with.   

 

Figure 4-5. Simulating the motion of a projectile with both numerical and analytical solutions 
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More motion-related concepts: inertia, mass, and momentum 
So far, we’ve been limited to a few motion concepts, and the progress we can make just with those is 
rather restricted. The greatest power comes with the notion of forces and how it affects motion. We’ll 
introduce that approach in a conceptual way in the next section and then develop it fully in the next 
chapter.  

Before we do so, we need to introduce two new concepts that act as a connection between motion and the 
forces that produce them: mass and momentum.  

Let’s start with mass. In physics, mass has a very specific meaning: it is a measure of inertia. Inertia 
(literally “laziness”) is resistance to motion. The more massive an object is, the more it resists motion—it is 
more difficult to push a car than a bike. So, we say that the mass of a car is larger than that of a bike. The 
usual unit of mass in physics is the kilogram (kg). The usual symbol for mass is m.  

In physics, the mass of an object is not the same as its weight. Weight is actually a force, the force of 
gravity that the Earth exerts on it. Mass is a scalar; weight is a vector. We’ll come back to this in the next 
section. 

The momentum of an object, denoted usually by the symbol p, with magnitude p, is defined as the product 
of its mass and its velocity. It is a vector quantity.     

p = m v  

Because it is equal to a scalar (mass) times velocity, it has the same direction as that of the velocity 
vector.  

Informally, momentum is a measure of the “quantity of motion” that a body possesses—for the same 
velocity, a car has “more motion” than a bike because it is more difficult to stop the car. Momentum is 
important for two reasons: it is intimately connected with force, and there is a law known as the law of 
conservation of momentum that’s very useful for solving problems such as collisions between particles. 
We’ll take a close look at momentum and its conservation in the next chapter.  

Predicting motion: forces and dynamics 
In the last section, we could “solve” the projectile problem by obtaining a formula for the position of the 
projectile as a function of time. That was possible because we knew the acceleration—it was constant and 
was equal to g, the acceleration due to gravity.   

The problem of predicting the motion of an object basically boils down to calculating the acceleration at 
each time a(t), whether by some analytical formula or by some numerical procedure. Once we know a, we 
know how to do the rest—we can integrate numerically (using the Euler or some other scheme) or use an 
analytical solution if one exists. 

In the case of gravity near the Earth’s surface, you now know that a = g, so that’s nice and simple. But how 
can we calculate the acceleration of an object in general? Before we can give the answer, we need to talk 
a bit more about forces. 
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The cause of motion: forces 
A force is an abstract concept in physics that denotes “something” that makes things move. To be more 
precise, if a bit mysterious, forces change the way things move. The meaning of this statement will be 
made clear in just a moment.  

Intuitively, you can think of a force as some kind of push or pull. Gravity is a force; it pulls you toward the 
Earth. Friction is another type of force; it pushes against a moving object.  

Forces can be measured and calculated. The unit of force is the newton, denoted by the symbol N.  

Forces are useful because knowing the forces acting on a body allows prediction of its motion. How this is 
done will be explained next. 

The relationship between force, mass, and acceleration 
Let’s go back to the question we asked at the beginning of this section. How can we work out the 
acceleration of an object? The answer turns out to be surprisingly simple. Without further ado, here it is: 

F = m a  

F is the total force acting on an object, m is its mass, and a is the acceleration that’s produced by the 
force. That’s it. This is a most remarkable formula, probably the most important formula in this book. It’s 
remarkable because it connects motion (more precisely, acceleration) with its cause (force) in probably the 
simplest way you can imagine.  

The equation F = ma is a special case of Newton’s second law of motion. It’s the most common form of 
this law. In the next chapter, we’ll look at the general form of the law. 

You can rewrite the formula as follows, which you can now use to calculate the acceleration a given the 
mass m of an object and the force F acting on it: 

a = F
m  

As we discussed in Chapter 1, the motion of an object is a function of the forces acting on the object: 

motion = function{forces} 

Well, a = F/m is exactly what that means. That’s our function. Forces cause acceleration; they cause the 
velocity of an object to change. And that’s how we calculate that change in motion.  

This formula is consistent with our conceptual idea of force and mass as causing and resisting motion, 
respectively. For a given force, the acceleration produced is less for a larger mass because we’ll be 
dividing the force by a larger number.   

The next question is this: how do we know the force F? Well, in fact, there are many different types of 
forces. Luckily, there are formulas for each type of force. The formulas come from physics theories or 
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experiments. For us, it does not matter where they come from, of course. The point is that we can 
calculate all the forces acting on an object at any time and then add them all up to give the total or 
resultant force F. We then divide this total force F by the mass m of the object; that gives us the 
acceleration a of the object. Problem solved. 

Types of forces 
In Part II of the book, we’ll be looking at different types of forces in a lot of detail. Here are some quick 
examples.  

Gravity is perhaps the most obvious example of a force. The force of gravity acting on an object is also 
known as its weight. The Earth (or any other planet or star) exerts a gravitational force on any object near 
it that is in proportion to the mass of that object. So the weight of an object of mass m is given by  

Weight = m g  

where g is a vector that points vertically downwards with constant magnitude g.  

Using a = F/m, this gives a = mg/m = g. In other words, the weight of an object (the force of gravity on it) 
produces an acceleration of g if it’s the only force acting on the object. This shows that g is actually an 
acceleration, known as the acceleration due to gravity. Near the Earth’s surface, it has a magnitude of 
approximately 9.81 m/s2. Note that the mass m of the object “drops out”—all objects fall with the same 
acceleration regardless of their mass or size (as long as other forces such as air resistance are negligible 
compared with gravity). 

Another common type of force is a contact force, which is the force that an object experiences when it 
comes into direct physical contact with another object. This occurs, for example, when you push 
something, when two objects collide, or when two things are pressed together by another force (for 
example, a book pressing against a table because of its weight). If you are reading a physical copy of this 
book, lay it on the table. The reason it does not fall through the table is because the latter is exerting an 
upward contact force that balances the force of gravity on the book.  

Another type of contact force is friction, which acts when two objects that are in contact move relative to 
each other. If you push the book along the table, friction is the force that resists the motion of the book. 
We’ll look at contact forces in Chapter 7. 

There are also several examples of forces due to fluids, such as pressure, drag (a type of frictional force), 
and upthrust. We’ll look at these forces in detail in Chapter 7.  

Then there are electric and magnetic forces, which can also act together as an electromagnetic force. 
These forces are exerted and experienced by particles and objects that possess a physical property called 
electric charge. In fact, apart from gravity, all the everyday forces such as contact forces, fluid forces, and 
so on originate from the electromagnetic forces that atoms and molecules exert on each other. We’ll look 
at these forces in Chapter 10 and see how they can be used to produce interesting effects.  
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Combining forces: force diagrams and resultant force 
In the equation F = ma, F is the total or resultant force. Because force is a vector quantity, the resultant 
force due to two or more forces must be obtained by vector addition, as described in Chapter 3. 

A vector diagram that shows the forces acting on a body is called a force diagram. Force diagrams can be 
useful tools because they help us to work out the resultant force. The point is that it does not matter if the 
forces acting on a body are of different types. You can add gravity to friction and drag, for example, as 
long as you do so using vector addition.  

As vectors, forces can be “resolved” or “decomposed” into perpendicular components, as explained in the 
last chapter. Sometimes it might prove helpful to analyze a problem by resolving forces into their 
components and combining all the horizontal and vertical components separately.  

Figure 4-6 shows an example of a force diagram. It shows the forces acting on an object sliding down an 
inclined plane. There are three forces acting on this object: its weight mg, which acts downward; a 
frictional force f exerted by the surface, which acts opposite to the direction of its motion; and a contact 
force R, which the surface exerts upon it, acting perpendicular to the surface. Note that you don’t care 
about the force that the object exerts on the surface. If you are modeling the motion of an object, you care 
only about the forces acting on it, not the forces exerted by it.  

30°

R 

mg sin 30°

f  

mg

mg cos 30°

 

Figure 4-6. Force diagram for a body sliding down an inclined plane 

If you were to simulate the motion of an object such as the one shown in Figure 4-6 (perhaps a car going 
downhill), how would you do it? As always, with a bit of common sense logic, some physics formulas, and 
some code. We won’t go into detail into the physics and coding (we’ll save that for Chapter 7, when we 
look at friction and contact forces in detail), but here is the common sense bit. From experience, you know 
that the object will slide along the surface while always maintaining contact. So it makes sense to resolve 
the forces along the plane. Well, f is already along the plane; R is perpendicular to it and so has no 
component along it; the component of gravity force (weight) is mg sin 30° down the incline. Hence, the 
magnitude of the resultant force down the incline is given by 

F = m g sin 30°( ) − f  

Of course, you’ll need to know how to calculate the frictional force f. We’ll tell you that in Chapter 7. Once 
you know f, you can calculate the acceleration a = F/m, as you must surely know by now.  
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Forces in equilibrium 
Sometimes, with two or more forces acting on an object, it so happens that the vector sum (resultant) of 
the forces is zero. In that case the forces are said to be in equilibrium. In terms of the motion of the body, 
it’s as if no forces were acting on it.  

Let’s go back once more to the equation a = F/m. The equation implies that if the resultant force F = 0, 
then a = 0. Therefore, if there is no resultant force acting on a body, the body does not accelerate. In other 
words, its velocity does not change, whatever it is. This means two things. First, if the object is not moving 
(if it’s at rest), it will remain at rest. But also, if the object was already moving at some velocity, it will 
maintain that velocity and neither accelerate nor decelerate (which is really a negative acceleration). The 
latter conclusion might come as a surprise to you; we’ll pick up on it again when we discuss Newton’s laws 
of motion in the next chapter.  

Figure 4-7 shows two examples of an object in equilibrium while under the action of more than one force. 
In the first example, a book rests motionless on a level table, so it must experience at least two forces that 
add up to zero. You know that one of them must be the force of gravity, which acts downward. There is 
another force, a contact force R that the table exerts on the book that acts upward, opposing the force of 
gravity exactly.  

The second, slightly more complicated example, again shows an object at rest. But this time there are 
three forces acting on it. The object is suspended by means of two strings. So there is a tension force in 
each string as well as the force of gravity acting on the object. If you add up the three forces, their vector 
sum must be zero. And if you resolve each force into horizontal and vertical components and then add all 
the horizontal components together and all the vertical components together, both will add up to zero.  

R

mg

T1 

mg

T2 

 

Figure 4-7. Examples of forces in equilibrium  

The example in Figure 4-8 shows the force diagram for a plane flying at constant velocity. From the 
previous discussion above, we again deduce that the resultant force on it must be zero, no matter how 
many of them there are or how complicated they are. In fact there are four main forces acting on the plane: 
a forward thrust, an opposing drag, a downward weight, and an upward lift. Lift balances the weight of the 
plane, and thrust balances the drag force on the plane. It may sound a bit counterintuitive that the thrust 
and drag are equal. In fact, thrust must exceed drag only when the plane is accelerating, for example 
during take-off and ascent. But once the plane has reached a uniform velocity, thrust is needed only to 
overcome drag.  
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Figure 4-8. Forces on a plane moving at constant velocity are also in equilibrium 

An example: object falling under gravity and drag 
All this discussion on forces might appear somewhat abstract, and you are probably keen to see how it’s 
all applied in practice. Although we’ll have plenty of examples in Part II, let’s look at a simple example now 
to whet your appetite. Don’t worry if you don’t understand everything immediately: it will all make complete 
sense after you’ve seen a few more examples in Part II.   

In this example, a ball is dropped in a fluid such as air and, as it falls, it experiences a downward force of 
gravity W and an upward drag force D (see Figure 4-9). Gravity is, of course, constant and given by this: 

W = m g  

We’ll have more to say about the drag force in Chapter 7; for now we just borrow a formula that says this: 

D = −k v  

In other words, the drag force is proportional to the velocity of the ball through the fluid (the minus sign 
indicates that the drag force is opposite in direction to the velocity). Using these two formulas, we can 
make the following deductions. Initially, the ball is at rest, so the drag force on it is zero. As the ball falls, it 
accelerates under gravity, so its velocity increases, and so does the drag force D. Eventually (if the ball 
falls long enough without hitting the ground), the drag force will become equal to the force of gravity, so the 
two will balance. At that point, we’ll have equilibrium, so the acceleration will be zero, as discussed in the 
previous section. The ball will then continue falling at a constant velocity, known as terminal velocity. This 
is what we expect to happen according to physics theory, but: can we reproduce it in a simulation? 

D 

W 
 

Figure 4-9. A ball falling in air, experiencing forces of gravity W and drag D 
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To simulate this example, we first create a class, as in the Projectile example, that will extend Mover. 
We call this class Faller. The job that we want Faller to do is to take a Particle instance, subject it to 
the two forces of gravity and drag; calculate their resultant; and then calculate the acceleration, velocity 
and position of the Particle instance. We’d also like to plot graphs of the acceleration and velocity. Here 
is a piece of code that does all this:    
 
package { 
        import com.physicscodes.motion.Mover; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.math.Graph; 
 
        public class Faller extends Mover{ 
                private var _particle:Particle; 
                private var _force:Vector2D; 
                private var _acc:Vector2D; 
                private var _g:Number=10; 
                private var _k:Number=0.5; 
                private var _graphAcc:Graph; 
                private var _graphVelo:Graph; 
 
                public function Faller(pparticle:Particle):void{ 
                        _particle = pparticle; 
                        setupGraphs(); 
                        super(pparticle); 
                } 
         override protected function moveObject():void{ 
                        super.moveObject(); 
                        calcForce(); 
                        updateAccel(); 
                        updateVelo(); 
                        plotGraphs(); 
                } 
                private function calcForce():void{ 
                        _force = new Vector2D(0,_particle.mass*_g-_k*_particle.vy); 
                } 
                private function updateAccel():void{ 
                        _acc = _force.multiply(1/_particle.mass); 
                } 
                private function updateVelo():void{ 
                        _particle.velo2D = _particle.velo2D.addScaled(_acc,dt); 
                } 
                private function setupGraphs():void{ 
                        //_graph= new Graph(xmin,xmax,ymin,ymax,xorig,yorig,xwidth,ywidth); 
                        _graphAcc= new Graph(0,30,0,10,150,250,600,200); 
                        _graphAcc.drawgrid(5,1,5,1); 
                        _graphAcc.drawaxes('time (s)','acceleration (px/s/s)'); 
                        _particle.stage.addChild(_graphAcc); 
                        _graphVelo= new Graph(0,30,0,25,150,550,600,200); 
                        _graphVelo.drawgrid(5,1,5,1); 
                        _graphVelo.drawaxes('time (s)','velocity (px/s)'); 
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                        _particle.stage.addChild(_graphVelo) 
                } 
                private function plotGraphs():void{ 
                        _graphAcc.plot([time], [_acc.y], 0xff0000, false, true); 
                        _graphVelo.plot([time], [_particle.vy], 0xff0000, false, true); 
                } 
        } 
} 

This is similar to what we did in the Projectile class in the last section: extend Mover, pass the 
Particle instance via super(), and override the moveObject() method of Mover. The significant 
additions are the three methods calcForce(), updateAccel(), and updateVelo() that are called within 
moveObject(). If you look at the code within these methods, you will see that they respectively compute 
the resultant downward force using F = mg – kv, the acceleration using a = F/m, and the new velocity 
using ∆v = a ∆t. The rest of the code deals with setting up graphs and plotting the vertical components of 
acceleration and velocity.    

In a separate file, ForcesExamples.as, we then create a Ball instance, suitably positioned, and feed it to 
a Faller instance whose startTime() method is then invoked to start the simulation: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class ForcesExample extends Sprite{ 
                public function ForcesExample():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var ball:Ball; 
                        ball = new Ball(15,0x000000,1); 
                        ball.pos2D = new Vector2D(75,50); 
                        addChild(ball); 
 
                        var faller:Faller=new Faller(ball); 
                        faller.startTime(); 
                } 
        } 
} 

Run the code, and you will see something like in Figure 4-10. As the ball falls, it initially accelerates at the 
value of g = 10 (as set in the code) and its velocity starts to increase sharply. But then the drag force starts 
increasing; this reduces the resultant downward force and therefore the downward acceleration, causing 
the velocity to increase less rapidly. About 10 seconds into the simulation, the acceleration has fallen to 
zero because the drag force has now grown enough to exactly balance the downward force of gravity. 
From then onward, the ball’s velocity is constant at the value of 20 px/s. This is all just as described 
previously, so the simulation really works! In fact, the value of the terminal velocity is exactly as predicted 
by physics theory.  
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To see this, we reason that when terminal velocity is reached: 

drag = gravity, and so, k v = m g 

This gives v = mg/k. In our simulation, m = 1, g = 10 and k = 0.5. This gives v = 20 px/s, exactly as 
computed by the simulation. Not bad at all for a first example on forces, don’t you agree?   

 

Figure 4-10. Simulating a ball falling under gravity and drag 

Energy concepts 
We’ve talked a lot about forces, but there is another physics concept that is perhaps equally important: 
energy. From our point of view, the important thing is that energy concepts sometimes provide an 
alternative way to solve problems that can prove tricky or even impossible to solve using the approach of 
forces. Just like momentum, this is because there is a powerful law of conservation of energy (which we’ll 
talk about shortly). In fact, conservation of energy and momentum can be applied together to solve 
problems involving collisions, as we shall see in Chapter 5 and, in more detail, in Chapter 11. 
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Unlike momentum, energy is a bit trickier to define. Before we can do so, we need to introduce a closely 
related concept—that of work.  

The notion of work in physics 
We’ve often said that force causes motion, but we’ve also seen that a force can exist in equilibrium with 
other forces, when motion cannot occur. To distinguish the motion-producing effect of a force from that of 
merely balancing another force, we introduce the concept of work.  

In physics, we say that work is done by a force when it produces motion in the direction along which it 
acts. The amount of work done W is then defined as the product of the force magnitude F and the 
displacement s in the direction of the force: 

W = F s  

OK, that may sound a bit abstract. Let’s look at an example. Let’s say a stone is dropped from a certain 
height h above the ground (see Figure 4-11).  

h 
mg 

 

Figure 4-11. An object dropped from rest at a height h above the ground 

Then the weight of the stone (the force of gravity on it) does work by displacing it downward. According to 
the preceding definition, the amount of work done in falling a distance h to the ground is therefore given by 
the following because here F = mg and s = h: 

W = F s = m g h  

Because work is the product of a force and a distance (and recalling that the unit of force is the newton, 
N), its unit is Nm (newton times meter). This unit also has a special name, the joule (J). So, J = Nm. Work 
is a scalar quantity.   

What if the displacement is not in the same direction as the force? For example, what if the stone is thrown 
at an angle rather than dropped vertically downward? Then the work done is given as the product of the 
force and the projection of the displacement in its direction (see Figure 4-12).  
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Figure 4-12. Work done is the scalar product of force and displacement 

You might recognize this as the dot product between F and s, where # is the angle between the force F 
and the displacement s: 

W = F • s = F s cos θ( )  

Hence, if the angle # is zero, then W = F s (because cos (0) = 1). But if # is 90 degrees, cos # = 0, so W = 
0. In other words, the work done by a force is zero if the displacement is perpendicular to the force.  

Note that the resultant acceleration must always be in the direction of the resultant force. 
However, the resultant motion (displacement) may or may not be in the direction of the 
resultant force. 

The capacity to do work: energy 
Now that we know what work is, the definition of energy is simple: Energy is the capacity to do work. Take 
the example of the stone dropped from a height: because it can do work by falling it must possess energy 
just by being above the ground. This energy is called potential energy (usually abbreviated as p.e., with 
symbol Ep). Similarly, a moving object can do work by colliding with another object, exerting a contact 
force during the collision and causing it to move under the action of this force. Hence, moving bodies also 
have energy, known as kinetic energy (usually abbreviated as k.e., with symbol Ek).  
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In fact, work causes a transfer or conversion of energy. For example, applying a force to make an object 
move imparts kinetic energy to it. This causes a decrease in energy for the agent applying the force. This 
is expressed generally in the work-energy theorem:  

Energy transferred = work done  

In symbols: 

∆E = ∆W  

Because we are here equating energy and work, it follows that energy has the same unit as work: the joule 
(J). Like work, energy is a scalar quantity. 

Energy transfer, conversion, and conservation 
Just as there are many different types of forces, there are also many different types of energy. Examples 
include light energy, thermal energy, nuclear energy, and so on. But usually we will be concerned with only 
two forms of energy: kinetic and potential energy. At a fundamental microscopic level, all forms of energy 
are manifestations of these two basic forms.  

Energy can be transferred from one body to another. Energy can also be converted from one form to 
another. Whether energy is transferred or converted, total energy is always conserved.  

An example of energy transfer is the collision of two particles, where one of the particles loses k.e. and the 
other gains k.e. An elastic collision is defined as one in which the total kinetic energy is conserved (k.e. is 
not converted into other forms of energy as a result of the collision); otherwise, the collision is inelastic. 
Therefore, if the collision is elastic, the amount of k.e. gained by one is exactly equal to that lost by the 
other.  

As an example of energy conversion, a body released from a certain height loses potential energy but 
gains kinetic energy as it accelerates downward"its p.e. gets converted to k.e. If the body falls only under 
the action of the gravitational force, the gain in k.e. is exactly equal to the loss in p.e."the total energy, 
kinetic plus potential, remains constant. If there are other forces, such as friction (due to air resistance), a 
small amount of energy is converted to thermal energy of the body and the surrounding air by doing work 
against friction. The total energy in all forms still remains the same. This is known as the principle of 
conservation of energy.  

This principle is so important, let’s state it once more, in a more general way: 

Energy can be converted from one form to another or transferred from one body to 
another during interactions, but the total energy of a closed system is constant. 

“Closed system” means a system that has no interaction outside of itself. Within the system, the 
interactions and exchanges can be as many or as complicated as you want; the principle will still hold. For 
example, if you have hundreds of particles colliding with each other in a closed system, the principle will 
hold. If you have zillions of molecules interacting in an isolated gas, the principle still holds.   
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Potential and kinetic energy 
Because potential energy and kinetic energy are so important, let’s see how we can calculate them. Let’s 
start with potential energy. When we discussed the concept of work, recall that the work done by an object 
falling from a height h above ground was shown to be equal to mgh. Now, because work done is equal to 
energy transferred, the object must have possessed that amount of energy before it fell. Because it was 
dropped from rest at height h, its velocity was initially zero and so it had no kinetic energy to start with. 
Hence, its energy was all potential energy to start with. We therefore conclude that an object of mass m at 
a height h above the ground has an amount of potential energy given by 

Ep = m g h  

This is our formula for potential energy.  

Let’s now work out a formula for kinetic energy. Consider the same example of the falling stone. 
Neglecting energy lost by friction, the kinetic energy of the stone just before it hits the ground must equal 
the potential energy it had initially (because it does not have any p.e. at the ground, so it must all have 
been converted to k.e.). So the final k.e. is also equal numerically to mgh. Here h is the distance that the 
stone has fallen. Because k.e. is energy possessed due to motion, we really want a formula for k.e. as a 
function of the velocity the stone has, not the displacement it has undergone. Remember the formula 
connecting velocity and displacement? Using v2 = u2 + 2 a . s, and noting that u = 0, a = g, and s = h, we 
get v2 = 2gh.  

Using this, all we need to do now is replace gh by ½ v2 and we end up with this: 

Ek = 1
2
m v2

 

This is the formula for the kinetic energy of a body of mass m moving at a velocity v.  

Power 
The final concept we’ll introduce is that of power. In talking about energy, we seem to have given up the 
concept of time. We’ve talked about work being done and energy being exchanged or transferred, but 
without reference to how fast it happens. Power introduces time in the energy approach.  

Power is defined as the rate of doing work. In calculus notation, the power P is therefore given by the 
following: 

P = dW
dt  
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Or, in discrete form: 

P = ∆W
∆t  

In words, it is work done divided by time taken. From this definition, the unit of power is therefore J/s. This 
unit has a special name. It’s called the watt (W). Another commonly used unit is the horsepower (HP). 
Power is a scalar quantity, just like energy. 

We can reverse the last formula to obtain the work done in a time interval ∆t when power P is deployed: 

∆W = P∆t  

Power is a very useful concept for analyzing the operation of machines, such as vehicles. In this 
connection, suppose that a machine is doing work by exerting a force F and moving its point of application 
at a velocity v in the direction of F. Then, the work done is ∆W = F∆s. (Note: this is just the formula W = Fs 
written for small changes ∆W and ∆s.)  

From the definition of power as rate of doing work, the power output of the machine is therefore this: 

P = ∆W
∆t

= F∆s
∆t  

And because ∆s/∆t = v, we end up with this formula: 

P = F v  

So the power deployed by the machine is equal to the product of the force F it applies and the velocity v it 
produces.  

You usually need to apply power concepts if you are simulating machines engineered by humans, such as 
cars and boats. 

Example: a rudimentary “car” simulation 
We conclude this chapter by showing you a simple example of how to apply power and energy concepts to 
simulate motion, without the explicit use of forces. In this example, you will apply power to a Ball object 
(the car) to accelerate it against frictional and other power losses, in the same manner as you press the 
gas pedal of your car to keep it moving.   

The setup file for this simulation, which is called EnergyExample.as, simply creates a Ball object, 
initializes its position and velocity, and then passes it to the constructor of an instance of an Accelerator 
class:  
 
package{ 
        import flash.display.Sprite; 
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        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class EnergyExample extends Sprite{ 
                public function EnergyExample():void{ 
                        init(); 
                } 
 
                private function init():void{ 
                        var ball:Ball; 
                        ball = new Ball(15,0x000000,1); 
                        ball.pos2D = new Vector2D(50,50); 
                        ball.velo2D = new Vector2D(20,0); 
                        addChild(ball); 
 

                        var accelerator:Accelerator=new Accelerator(ball); 
                        accelerator.startTime(); 
                } 
        } 
} 

In the previous code, we have given the ball an initial velocity of 20 px/s in the x-direction. The mass of the 
ball is 1 unit.   

Here is the full code for the Accelerator class: 
 

package { 
        import com.physicscodes.motion.Mover; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.math.Graph; 
        import flash.events.KeyboardEvent; 
        import flash.ui.Keyboard; 
 
        public class Accelerator extends Mover{ 
                private var _particle:Particle; 
                private var _powerLossFactor:Number=0.1; 
                private var _powerApplied:Number=50; 
                private var _ke:Number; 
                private var _vmag:Number; 
                private var _mass:Number; 
                private var _graph:Graph; 
                private var _applyThrust:Boolean=false; 
 
                public function Accelerator(pparticle:Particle):void{ 
                        _particle = pparticle; 
                        _mass = _particle.mass; 
                        _vmag = _particle.velo2D.length; 
                        _ke = 0.5*_mass*_vmag*_vmag; 
                        setupGraphs(); 
                 _particle.stage.addEventListener(KeyboardEvent.KEY_DOWN,startThrust); 
                        _particle.stage.addEventListener(KeyboardEvent.KEY_UP,stopThrust); 
                        super(pparticle); 
                } 
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                private function startThrust(evt:KeyboardEvent):void{ 
                        if (evt.keyCode==Keyboard.UP){ 
                                _applyThrust = true; 
                        } 
                } 
 
                private function stopThrust(evt:KeyboardEvent):void{ 
                        _applyThrust = false; 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        applyPower(); 
                        updateVelo(); 
                        plotGraphs(); 
                } 
 
                private function applyPower():void{ 
                        if (_applyThrust){ 
                                _ke += _powerApplied*dt; 
                        } 
                        _ke -= _powerLossFactor*_vmag*_vmag*dt; 
                } 
 
                private function updateVelo():void{ 
                        _vmag = Math.sqrt(2*_ke/_mass); 
                        _particle.vx = _vmag; 
                } 
 
                private function setupGraphs():void{ 
                        //_graph= new Graph(xmin,xmax,ymin,ymax,xorig,yorig,xwidth,ywidth); 
                        _graph= new Graph(0,60,0,50,100,550,600,400); 
                        _graph.drawgrid(5,1,5,1); 
                        _graph.drawaxes('time (s)','velocity (px/s)'); 
                        _particle.stage.addChild(_graph); 
                } 
 
                private function plotGraphs():void{ 
                        _graph.plot([time], [_particle.vx], 0xff0000, false, true); 
                } 
 
        } 
 
} 

As in the last example, we are extending Mover and adding functionality by overriding its moveObject() 
method as well as adding some other methods. We also have some private properties: _mass (the mass of 
the particle), _vmag (its velocity magnitude), _ke (its kinetic energy), _powerApplied (the applied power), 
and _powerLossFactor (a coefficient we use to calculate the power loss due to friction and other factors). 
The values of _vmag and _ke are initialized in the constructor.  
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The most important parts of the code are the two methods applyPower() and updateVelo(), which are 
called at every timestep within the moveObject() method.  

In applyPower(), we are updating the kinetic energy of the ball. The _applyThrust Boolean variable 
tells us if the up arrow key is pressed; if so, the k.e. is updated by multiplying the power by the time interval 
dt. What we are doing here is to apply this formula: 

∆Ek = P∆t  

You might not immediately recognize this formula, but it is obtained by equating the work done ∆W = P∆t 
with the kinetic energy gained according to the work-energy theorem, as discussed earlier. Conceptually, 
what is happening is that the applied power is doing mechanical work on the ball, which results in an 
increase in its kinetic energy.  

In applyPower(), you will notice that we also reduce the kinetic energy of the ball by an amount equal to 
_powerLossFactor*_vmag*_vmag*dt. This is equivalent to applying a power loss given by the following, 
where k is a constant corresponding to _powerLossFactor: 

P = −k v2
 

This formula comes from applying the formula P = F v we saw in the last section and modeling the total of 
all resistive forces (such as friction and drag) by F = –k v, as a force proportional to the velocity of the ball 
(see Chapter 7). This is a crude approximation, but will do for the purpose of our simple example.   

The updateVelo() method first computes the velocity magnitude from the updated kinetic energy by this 
formula, which is obtained by reversing the formula for kinetic energy Ek = ½ m v2: 

v = 2Ek /m  

It then updates the ball’s velocity accordingly.  

There is also code for plotting a graph of the horizontal velocity component of the ball and for applying the 
power when the user holds down the up arrow key. These pieces of code should be straightforward, so we 
will not go into them here.  

If you run the code, you will find that the ball starts moving, but its velocity is gradually reduced, owing to 
the effect of the power loss. If you then press and hold down the up arrow key, the applied power will 
cause an increase in the ball’s k.e., making it accelerate. If the power is applied continuously, eventually 
the velocity will tend to a constant value, but if the up arrow key is released, the velocity will reduce again 
as shown in Figure 4-13. This behavior mirrors the operation of a car accelerator in a simple way. 
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Figure 4-13. A rudimentary car simulation 

Summary 
That was another long overview chapter, and you’ve now learned an awful lot of physics concepts. This 
chapter completes Part I of the book. The next chapter will bring together what you’ve learned so far to lay 
out the principles of how to simulate a wide range of forces and motions.  

Get ready for the real action! 
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Particles, Forces, and Motion 
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Chapter 5 

The Laws Governing Motion 

Chapter 4 in Part I of this book provided some of the general conceptual background for describing and 
analyzing motion. That background included a discussion of motion-related concepts such as velocity, 
acceleration, and force. In the present chapter, we’ll use those concepts to formulate the physics laws that 
will allow you to calculate the motion of particles under any type of force. The next five chapters will then 
apply the laws to a number of different forces. We’ll illustrate the application of the principles with brief 
examples, with the aim of building on them in the next few chapters.   

We have deliberately kept this chapter brief and focused on the fundamental laws and principles that you 
will need for applying to the examples in this part of the book and beyond. You can come back to this 
chapter as needed to refresh your understanding of the underlying physics principles, as you work your 
way through their applications in the rest of the book.  

Topics covered in this chapter include the following: 

• Newton’s laws of motion: Newton’s three laws provide the link between force and motion. 
These laws allow us to predict the motion of objects under the action of known forces. 

• Applying Newton’s laws: We build a couple of classes that will help to implement Newton’s 
laws of motion numerically in code and illustrate their use with a couple of examples.    

• Newton’s second law as a differential equation: In physics textbooks, Newton’s second law is 
sometimes expressed as a differential equation and solved analytically using calculus. We 
briefly discuss the connection between that formulation and our numerical method, and 
illustrate it with an example.   

• Principle of conservation of energy: We apply the principle of conservation of energy to 
motion by considering the potential and kinetic energy of moving particles. 

• Principle of conservation of momentum: We take a look at conservation of momentum and its 
application to a simple example involving collisions. 

• Laws governing rotational motion: The preceding laws can be extended to objects undergoing 
rotational motion. We do not discuss rotation here, but will do so in later chapters.   
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Newton’s laws of motion 
Newton’s three laws of motion, formulated in his classic book Principia Mathematica in 1687, provide the 
link between force and motion. You might recall that we said in the last chapter that the formula F = ma 
provides that link. This formula is actually the second of Newton’s three laws of motion. In fact, it is a 
special form of that law. In this chapter, we’ll go a bit deeper, looking at the general form of Newton’s 
second law as well as the two other laws.   

Newton’s first law of motion (N1) 
The first law of motion tells you what happens if there is no force acting on an object (see Figure 5-1). 
Think of an object that is at rest and not moving. If you don’t apply any force on it (in other words, if you 
leave it alone), what do you think will happen? That’s right"nothing. Things don’t suddenly start moving 
on their own. This is basically what the first law says. Common sense? But wait, there is more. Suppose 
the object is already moving and there is no force on it. What would happen to it? Everyday experience 
might tempt you into thinking that the object would slow down and finally stop. So you might be surprised 
to hear that the first law says that the object would carry on moving at its initial velocity as long as there is 
no force on it! 

This proposition seems to run somewhat counter to our everyday experience. For example, a ball rolling 
on the ground always comes to rest. In fact, it does so because friction with the ground is causing it to slow 
down. In the absence of friction, the ball would carry on indefinitely. This can be demonstrated by 
minimizing friction with the underlying surface"for example, by using marbles on a perfectly smooth 
horizontal surface. The marbles then move in a straight line for long distances without significant decrease 
in their velocity. 

Another way of putting this is that you don’t need a force for an object to continue moving at constant 
velocity. You only need a force to make it change its velocity"for example, by starting to move, or 
speeding up or slowing down. In other words, you only need a force to make an object accelerate (or 
decelerate).  

Armed with this insight, we can formulate Newton’s first law of motion succinctly in the following form, 
which covers both the cases of an object at rest and moving at constant velocity: 

If the resultant force acting on an object is zero, its acceleration is zero. F = 0 implies a = 0. 

This law is so important, that we’ll say it in yet another way. If no resultant force acts on an object, its 
velocity must be constant (including zero). Conversely, if an object has a constant velocity (which may be 
zero), you know for certain that the resultant force on it must be zero.  

Finally, note that we said that the resultant force is zero. We’re not saying that no forces are acting on the 
object. As you saw in the last chapter, two or more forces acting on the same object can be in equilibrium 
so that their resultant is zero. In such a case, the first law will still hold. It does not distinguish between no 
resultant force and no force at all.  

The Mover class from Chapter 4 implements the first law: it takes a particle and moves it at its velocity 
forever. It knows nothing about forces.    
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F = 0 implies a = 0 

v = constant   

Figure 5-1. Schematic illustration of Newton’s first law of motion 

Newton’s second law of motion (N2) 
Newton’s second law of motion builds upon the first law (see Figure 5-2). The first law tells you what 
happens when no resultant force acts on an object. The second law tells you what happens when a 
resultant force does act on an object. It tells you that the object’s motion changes. But that’s not all. It tells 
you exactly by what amount it changes"it gives you an exact formula connecting the force applied and 
the change in motion produced.  

Recall from the last chapter that momentum (with the symbol p and defined as p = mv) represents the 
“quantity of motion” that an object possesses. Newton’s second law connects the force applied to the 
change in momentum it produces. We won’t go into how Newton arrived at that formula, but here it is:  

If a resultant force F acts on an object, its momentum changes so that the rate of change of momentum is 
equal to the force applied. F = dp/dt. 

This is the general form of Newton’s second law, and it may appear somewhat unintuitive, at least until you 
get used to it! In Calculus-speak, this tells us that the applied force is equal to the time derivative of 
momentum. Essentially, the time derivative of momentum tells us how fast the momentum is changing on 
an instantaneous basis. This means that the force being applied at any given time is equal to the change 
in momentum per unit time.  

We have seen similar formulas before. For example, v = ds/dt and a = dv/dt. Newton’s second law is 
exactly of the same form: F = dp/dt. Note that the preceding equations for velocity and acceleration are 
actually definitions, whereas F = dp/dt is a law that tells us how things behave in the real world.   

In this general form, the second law might seem quite different from the first law. In the first law, we were 
talking about acceleration, and now we are talking about rate of momentum change. There is actually a 
link between the two when we apply the second law to objects whose mass doesn’t change, such as 
particles.  

To see the link, recall again that momentum is defined by p = mv. For a particle, the mass m is constant. 
In that case, the rules of calculus tell us that dp/dt = m dv/dt. If you’re into calculus, what we’ve done here 
is to calculate the (time) derivative of p, which must be equal to the derivative of mv (because these two 
things are equal: p = mv). But m is constant, so the derivative of mv is equal to m times the derivative of v. 
You probably recall that dv/dt = a (the definition of acceleration). Therefore, we conclude that for a particle 
dp/dt = ma. Because Newton assures us that F = dp/dt, we’ve recovered our old friend F = ma. So here is 
the special form of Newton’s second law of motion: 

If a resultant force F acts on an object of constant mass m, it produces an acceleration a given by the 
formula F = ma. 

If you now compare this form of the second law with the statement of the first law given in the last section, 
you’ll see that N1 is really just a special case of N2. Starting with F = ma and putting F = 0 gives ma = 0, 
and hence a = 0. In other words, F = 0 gives a = 0, which is exactly what the first law says. So the first law 
is “contained” within the second law. Good, that’s one fewer law to worry about!  
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F = dp/dt = ma
 

Figure 5-2. Schematic illustration of Newton’s second law of motion 
You’ll use Newton’s second law in the form of F = ma most of the time. But do bear in mind that it’s not the 
most general form of the law"it applies only if the mass m does not change. There is a third form of the 
law that applies when instead of an object of fixed mass m, you have a stream of substance moving at a 
certain velocity. For example, the exhaust gases from a rocket are pushed out at a constant velocity v 
relative to the rocket. Because v is now constant, calculus rules tell us that dp/dt = v dm/dt. Therefore, the 
force on the gases is given by F = v dm/dt, where dm/dt is the rate of change of mass (the mass of gas 
released per second). We’ll use this form of Newton’s second law to model a rocket in Chapter 6. 

The force F needed to move any substance at a rate of dm/dt at constant velocity v is given by F = v 
dm/dt. 

Despite its simplicity, Newton’s second law is arguably the most important law in Newtonian mechanics. 
It’s almost magical how it connects forces and motion. But it is also utterly useless unless we know how to 
work out the forces acting on an object. We need force laws. We’ll look at some examples of force laws 
shortly. But before we do that, you want to know about Newton’s third law, don’t you?  

Newton’s third law of motion (N3) 
In the last chapter, we said that force is the cause of changes in motion. As you have just seen, Newton’s 
second law makes that statement much more precise, giving us a formula for calculating the change in 
motion arising from a given force. But so far, we haven’t said much about where forces come from. Many 
forces arise because of the presence of other objects. Newton’s first and second laws tell us how an 
object’s motion responds to an applied force. Newton’s third law tells us how two objects interact by 
exerting forces on each other. Here it goes: 

If a body A exerts a force F on another body B, body B must in turn exert an equal and opposite force –F 
on body A. 

Okay, let’s clarify things a bit. What this means is that forces between objects always exist as an action-
reaction pair. Both forces exist simultaneously; there is no delay between them. And even if their 
magnitudes and directions change with time, they remain equal and opposite at all times.  

Newton’s third law of motion is frequently misunderstood and misquoted. One of the common mistakes is 
to think that action and reaction forces “balance” each other. In fact, in an action-reaction pair, the forces 
act on different objects. Therefore, it is wrong to think that they “balance” or “cancel” each other. In other 
words, they are not in equilibrium. Each force acts on a different object and affects its motion individually. 
Subtleties like these make Newton’s third law somewhat difficult to understand deeply at an abstract level. 
But it helps a lot to see how the law is applied in analyzing specific problems. For example, Newton’s third 
law is applied to analyze the interaction between two particles in the section on “The principle of 
momentum conservation” that follows. You will also see it applied in the analysis of different examples 
throughout the book. 
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 Here are some examples of action-reaction pairs of forces: 

• Two colliding bodies exert equal and opposite forces on each other, even if they have 
different masses, as depicted in Figure 5-3. 

• The Earth is exerting a force of gravity on you equal to your weight. This implies that you are 
also exerting an equal and opposite force of gravity on the Earth! 

• In a rocket, the engine exerts a downward force on the exhaust gases, which in turn exerts an 
equal and opposite force on the rocket, propelling it forward. 

 

 

Figure 5-3. Schematic illustration of Newton’s third law of motion 

Applying Newton’s laws 
Practically the whole of the rest of this book is about applying Newton’s laws of motion. Here, we’ll just 
establish the method, build a couple of helper classes, and illustrate their application with some simple 
examples.  

General method for applying F = ma 
To analyze a problem for applying F = ma, use the following procedure: 

Draw a diagram representing the interacting objects in the problem. 

Choose the object whose motion is to be calculated and indicate using arrows all the forces acting 
on it due to other objects. Ignore the forces exerted by the object on other objects. This gives 
you a force diagram, as described in Chapter 4.  

Calculate the resultant force F on the object (using vector addition, as described in Chapter 3) and 
apply the second law F = ma to calculate the acceleration a. 

In principle, that’s all there is to it. You have to do steps 1 and 2 using pen and paper. Let’s build a class 
that will help us do step 3.   

The Forcer class 
What we need here is a class that allows you to calculate the forces on a particle, find their resultant, and 
hence compute their acceleration. You can then use the acceleration to update the velocity and position of 
the particle. Recall the sense in which we are using the term “particle,” as discussed in the last chapter: 
any object whose inner structure is irrelevant from the point of view of the simulation. So, for our purposes, 
a particle could be a ball as well as a planet. 

 

 

F–F
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Let’s call the class Forcer. Because we are going to move the particle, it makes sense for Forcer to extend 
Mover. So we begin with the following code: 

 public class Forcer extends Mover{ 
   
  private var _particle:Particle;  
 
  public function Forcer(pparticle:Particle):void{ 
   _particle = pparticle; 
   super(pparticle); 
  }  
      
 }   

Next we want to override the moveObject() method of Mover, so that it not only moves the particle 
according to its existing velocity but also updates the velocity. To do this, it must first calculate the force 
and hence the acceleration. So our new moveObject() method should look something like this: 

  override protected function moveObject():void{ 
   super.moveObject(); 
   calcForce(); 
   updateAccel(); 
   updateVelo(); 
  } 

The job of calcForce() is to calculate the resultant force on the particle. We’ll look at that last. The 
updateAccel() method updates the acceleration once we know the force. How do we do that? Of course, 
using F = ma to give a = F/m. So, with _acc and _force defined as private Vector2D objects, 
updateAccel() is just a one-liner:  

 
  private function updateAccel():void{ 
   _acc = _force.multiply(1/_particle.mass); 
  } 
 

Recalling from Chapter 4 that ∆v = a∆t, the updateVelo() method is just as simple:  

   
  private function updateVelo():void{ 
   _particle.velo2D = _particle.velo2D.addScaled(_acc,dt);  
   
  } 

Finally, the calcForce() method should calculate each force acting on the particle and then add them up 
to give _force. Note that the private variable _force can be referenced by external code as force by the 
use of getter/setter code. The code that goes into calcForce() will depend on the problem and the forces 
involved. So we create a “dummy” calcForce() method, declaring it as protected so that it can be 
overridden by subclasses of Forcer: 

  protected function calcForce():void{ 
   _force = Forces.zeroForce(); 
  } 
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All this method currently does is to set the force to zero. It does this using the Forces.zeroForce() 
method, which produces a Vector2D object with zero components. Of course, we haven’t talked about the 
Forces class yet, so let’s do that now. 

The Forces class 
Exactly what goes into calcForce() is going to depend on the problem at hand, but it will always involve 
specifying the forces on the particle and then adding them up. So, let’s build a new class to help us with 
these tasks. 

The class we’ll build will basically just contain static methods for different types of forces. So we’ll name 
the class Forces, appropriately enough. In general, the force on a particle could depend on the particle 
properties (size, position, velocity, mass, charge), as well as on properties of the environment it is in, or on 
other objects. These properties will need to be specified as arguments in the relevant methods.  

Let’s look at some examples. First, let’s create a zero force. This is a force with a magnitude of zero, and 
therefore with components equal to zero.  

Here is the static function that will make one: 

static public function zeroForce():Vector2D { 
return (new Vector2D(0,0)); 

} 

Next, let’s create a gravity force method: 

static public function constantGravity(m:Number,g:Number):Vector2D { 
return new Vector2D(0,m*g); 

} 

The force of gravity on an object of mass m is given by mg and points downward. Hence, we give the 
values of m and g as arguments and are given back a vector with the vertical (y) component being mg and 
the horizontal (x) component being zero. You’ll note that we’ve named the function constantGravity 
instead of simply gravity. This is because we are reserving the name gravity for the more general form of 
the force of gravity, which you’ll learn about in Chapter 10. The form of gravity given by mg is near-Earth 
gravity, as experienced by objects near the surface of the Earth. More about this in the next chapter.   

As another example, let’s look at drag, which is the resistive force experienced by an object moving in a 
fluid such as air or water. We’ll take a much deeper look at drag in Chapter 7, but for now let’s just say that 
at low speeds the drag force is given by –kv. That’s a constant k times the velocity v of an object. The 
minus sign signifies that the drag force is in the opposite direction to the velocity. Let us create a function 
for this type of drag force, which we call linearDrag.  

Here is the static method linearDrag:  

static public function linearDrag(k:Number,vel:Vector2D):Vector2D { 
 var force:Vector2D; 
 var velMag:Number=vel.length; 
 if (velMag>0) { 
  force=vel.multiply(-k); 
 }else{ 
  force=new Vector2D(0,0); 
 } 
 return force; 
} 
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As you can see, the linearDrag function takes two arguments: the drag coefficient k and the velocity vel 
of the object.  

Next, we create a static method add() for adding any number of forces:  

static public function add(arr:Array):Vector2D { 
 var forceSum:Vector2D = new Vector2D(0,0); 
 for (var i:uint=0; i<arr.length; i++){ 
  var force:Vector2D = arr[i]; 
  forceSum.incrementBy(force); 
 } 
 return forceSum; 
} 

The add() method takes as argument an array of forces. It loops through the array, adding the forces in 
turn and returning the final vector sum. This is all we need for now. In the next few chapters, we’ll be 
adding lots more force functions as static methods in the Forces class.  

A simple example: projectile with drag 
To demonstrate how to use the Forcer and Forces class, let’s look at a specific example. Suppose we 
want a particle to move under gravity while experiencing the drag force (such as an object thrown or falling 
through a fluid such as air or water). Then we would first create a new class that extends Forcer and 
overrides its calcForce() method. Here is an example of such a class, called TestForcer:  

package { 
 import com.physicscodes.motion.Forcer; 
 import com.physicscodes.motion.Forces;  
 import com.physicscodes.objects.Particle;   
 import com.physicscodes.math.Vector2D; 
 
 public class TestForcer extends Forcer{ 
  private var _particle:Particle;   
  private var _g:Number=10; 
  private var _k:Number=0.1; 
 
  public function TestForcer(pparticle:Particle):void{ 
   _particle = pparticle;   
   super(pparticle); 
  }  
 
  override protected function calcForce():void{ 
   var gravity:Vector2D = Forces.constantGravity(_particle.mass,_g); 
   var drag:Vector2D = Forces.linearDrag(_k,_particle.velo2D); 
   force = Forces.add([gravity, drag]); 
  } 
 } 
} 

The structure of this class is very simple. It takes a Particle reference pparticle in its constructor and 
passes it to Forcer via super(pparticle). The new thing that it does beyond what Forcer does is to 
override calcForce() and include the forces of gravity and linear drag by making use of the relevant static 
methods of the Forces class. So we’ve invoked Forces.constantGravity(), using g = 10 and the particle 
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mass. We’ve also invoked Forces.linearDrag() using k = 0.1. Then we added the two forces by passing 
them as an array argument to the Forces.add() method and assigned the result to the force variable.  

Making a ball move under gravity and drag is now very easy. We do this in ForcesTest.as:   

package{ 
 import flash.display.Sprite; 
 import com.physicscodes.objects.Ball; 
 import com.physicscodes.math.Vector2D;  
  
 public class ForcesTest extends Sprite{ 
  public function ForcesTest():void{ 
   init(); 
  } 
  private function init():void{ 
   var pos0:Vector2D = new Vector2D(50,400); 
   var velo0:Vector2D = new Vector2D(60,-60);    
 
   var ball:Ball; 
   ball = new Ball(15,0x0000ff); 
   ball.pos2D = pos0; 
   ball.velo2D = velo0; 
   addChild(ball); 
 
   var forcer:TestForcer=new TestForcer(ball);   
   forcer.startTime(); 
  } 
 } 
} 

We create a ball with an initial position and velocity and add it to the display list. The code that animates 
the ball is then just two lines long. We create a TestForcer object called forcer, passing the Ball instance 
as an argument. Then we invoke the startTime() method of forcer. That’s it.   

Run the code and you will see a ball being thrown upward; it is then pulled down by gravity and slowed 
down by drag.  

To appreciate the effect that the additional drag force has on the ball’s motion, replace the last two lines in 
calcForce() in TestForcer.as with the following line:  

force = gravity; 

This makes the ball move under gravity only. If you now run the code, you will see the ball following a 
parabolic trajectory, as in the projectile simulation of the last chapter.  

On the other hand, if you keep the drag force and increase the drag coefficient _k to 0.5, the drag force will 
have a more extreme effect, quickly killing the horizontal motion of the ball and making it fall almost 
vertically thereafter"similar to what a balloon might do if you hit it upward.  

This simple example demonstrates how easy it is to make use of the Forcer and Forces classes to build 
simulations, and how you can get different effects by changing the forces and their parameters in the 
calcForce() method.    

Just to give you an idea of how flexible and powerful this approach is, let’s look at a relatively more 
complicated example. 
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A more complicated example: floating ball 
The example we are going to look at involves throwing a ball about in air or water and making it behave as 
it would do in real life. This example uses more physics than we’ve covered, so we won’t go into the details 
of the physics or coding involved, leaving a more complete discussion for Chapter 7. At this stage, we just 
want to whet your appetite by showing you what is possible to be done with a fairly small amount of 
straightforward coding using the approach outlined in this section. 

The source code for this example is in the files FloatingBall.as and Floater.as. FloatingBall.as just 
sets up the graphic elements (see Figure 5-4) and then creates an instance of Floater, which does all the 
hard work.  

 

Figure 5-4. The floating ball simulation 

Here is the code in Floater.as: 

package { 
 import com.physicscodes.motion.Forcer; 
 import com.physicscodes.motion.Forces;  
 import com.physicscodes.objects.Particle;   
 import com.physicscodes.math.Vector2D; 
 import flash.events.MouseEvent;  
 
 public class Floater extends Forcer{ 
  private var _particle:Particle;   
  private var _g:Number=50; 
  private var _rho:Number=1.5; 
  private var _V:Number=1; 
  private var _k:Number=0.01; 
  private var _yLevel:Number=200; 
  private var _xEdge:Number=300; 
  private var _groundLevel:Number=150; 
  private var _vfac:Number=-0.8; 
  private var _stageWidth:Number=800; 
 
  public function Floater(pparticle:Particle):void{ 
   _particle = pparticle;   
   _particle.stage.addEventListener(MouseEvent.MOUSE_DOWN,onDown); 
   super(pparticle); 
  }  
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  override protected function calcForce():void{ 
   var gravity:Vector2D = Forces.constantGravity(_particle.mass,_g); 
   var rball:Number=0.5*_particle.height; 
   var xball:Number=_particle.x;     
   var yball:Number=_particle.y;    
   var dr:Number= (yball-_yLevel)/rball; 
   var ratio:Number; // volume fraction of object that is submerged 
   if (dr <= -1){ // object completely out of water 
    ratio=0; 
   }else if (dr < 1){ // object partially in water   
  
    //ratio = 0.5 + 0.5*dr; // for cuboid 
    ratio = 0.5 + 0.25*dr*(3-dr*dr); // for sphere 
   }else{ // object completely in water 
    ratio=1; 
   } 
   var upthrust:Vector2D = new Vector2D(0,-_rho*_V*ratio*_g); 
   var drag:Vector2D = _particle.velo2D.multiply(-
ratio*_k*_particle.velo2D.length); 
   force = Forces.add([gravity, upthrust, drag]);  
   if (xball < rball){ 
    _particle.xpos = rball; 
    _particle.vx *= _vfac;     
   } 
   if (xball > _stageWidth - rball){ 
    _particle.xpos = _stageWidth - rball; 
    _particle.vx *= _vfac;     
   }   
  } 
   
  private function onDown(e:MouseEvent):void{ 
   _particle.velo2D = new Vector2D(0,0); 
   _particle.stage.addEventListener(MouseEvent.MOUSE_UP,onUp); 
   _particle.xpos = _particle.stage.mouseX; 
   _particle.ypos = _particle.stage.mouseY;    
   stopTime();    
  } 
  private function onUp(e:MouseEvent):void{ 
   _particle.velo2D = new Vector2D(_particle.stage.mouseX-
_particle.xpos,_particle.stage.mouseY-_particle.ypos); 
   _particle.stage.removeEventListener(MouseEvent.MOUSE_UP,onUp); 
   startTime();    
  } 
 } 
} 
 

Without going into details, you can see that we have a more complicated calcForce() method that 
includes three forces: gravity, upthrust, and drag. There is also some logic in calcForce() that tells the 
code how to work out the forces on the ball depending on where it is. Additionally, there is some logic to 
tell the code what to do at the boundaries. Finally, there are a number of parameters to do with the 
different forces. On the whole, though, this is certainly not an overly complex piece of code, and it should 
be possible for you to get the gist of what it’s doing.    
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The onDown() and onUp() methods allow the user to interact with the simulation by clicking the mouse. If 
you click anywhere on the stage, the ball will immediately move there. If you hold down the mouse button, 
drag the cursor, and then release the mouse, the ball is imparted a velocity numerically equal to the 
distance between the ball and the point at which the mouse is released.  

Run the simulation and play around to see how much it behaves like the real thing, all accomplished with a 
relatively small amount of code. It’s fun!  

Newton’s second law as a differential equation 
This section is especially meant for readers who want to relate what we are doing here with what you 
would typically find in physics textbooks or on physics web sites or Wikipedia. You can safely skip it if you 
wish. 

If you are a serious physics programmer, it’s likely that you’ll find yourself digging into physics textbooks or 
online sources at some point or other. Now, if you are looking for the solution of any problem involving 
Newton’s second law, chances are that you will come across things called differential equations, and 
pages of math to solve them analytically. How does all that stuff relate to our approach of solving Newton’s 
law numerically as discussed in the last section?      

Taking a deeper look at F = ma 
A differential equation is an equation that contains derivatives of quantities. Solving differential equations is 
in general more complicated than solving ordinary algebraic equations because it involves integration 
(refer to Chapter 3). 

Newton’s second law, in the form F = ma, might appear superficially like a simple algebraic equation.  

However, it is useful to remember that acceleration is actually the derivative of velocity, a = dv/dt, so that 
we can also write Newton’s second law as 

m dv
dt

= F  

This is a so-called first order differential equation with respect to velocity because it involves the first 
derivative of velocity. Recalling that v = ds/dt, we can then write the previous equation as 

m d
2s
dt2

= F 

This is now a second order differential equation with respect to displacement, because it involves the 
second derivative of displacement (refer to Chapter 3).  

In general, the force F can be a function of position and velocity. You will see an example of such a force 
function shortly. 

You will sometimes see Newton’s second law expressed in these forms if you look in physics textbooks. In 
principle, the preceding differential equations can be solved by integrating analytically or numerically to 
yield the displacement s and velocity v as a function of time. Most physics textbooks focus on analytical 
solutions. But an analytical solution is possible only in special cases and it requires application of calculus 
integration techniques. On the other hand, it is always possible to solve the differential equation 
numerically. In fact, this is what we are doing in the Mover and Forcer classes. Specifically, we are 
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integrating the first form of the differential equation in the updateVelo() method of Forcer and then 
integrating the velocity to give the displacement in the moveObject() method of Mover. 

The next example will illustrate a case in which we can solve Newton’s second law both analytically and 
numerically. We’ll use this example to show you what a typical analytical solution of this differential 
equation might look like. We’ll also compare the exact analytical solution with the numerically integrated 
solution produced by Forcer to see how good the latter is.  

An example: Fall under gravity and drag revisited 
This example builds upon the one described in the last chapter, in which we simulated the fall of a ball 
under the combined forces of gravity and drag, and showed that it attained terminal velocity as predicted 
by simple physics theory. Here we’ll update the example to compare the detailed analytical solution with 
the simulation.  

The differential equation in this case is as follows (note that this is a 1-D case; hence there is no need to 
use vector notation): 

m d
2s
dt2

= mg − kv  

Or in first-order form in terms of velocity:  

m dv
dt

= mg − kv  

The analytical solution of this equation is given in many physics textbooks. For an object dropped from 
rest, it is this: 

v = mg
k

1− exp −k t m( )!" #$  

When the time t is large, the exponential term tends to zero (recall the review of the exponential function in 
Chapter 3). Therefore, according to this equation, v tends to a limiting value of mg/k, which is of course the 
terminal velocity. So the solution agrees with what we found in Chapter 4. In addition, it now tells us the 
velocity at any time t, not just the terminal velocity.    

This solution can in turn be integrated to give the displacement s at any time t. The result is this: 

s = mg
k
t + m
k

exp −k t m( ) − m
k

!
"%

#
$& 

These analytical solutions for the displacement s and velocity v may now be compared with the simulated 
results. In ForcesExample2.as and Faller2.as, we updated ForcesExample.as and Faller.as from the 
last chapter to make this comparison. We have also rewritten the Faller2 class to extend Forcer instead 
of Mover, and overridden the calcForce() method as in the last example. In fact, the calcForce() method 
looks identical to that in the last example because the same forces (gravity and drag) are involved. 
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 The relevant piece of code is the function plotGraphs() that plots graphs to compare the analytical and 
numerical values of s and v: 

private function plotGraphs():void{   
 _graphDisp.plot([time], [_particle.ypos-_y0], 0xff0000);    
 _graphDisp.plot([time], [_m*_g/_k*(time+_m/_k*Math.exp(-_k/_m*time)-_m/_k)], 
0x0000ff); 
 _graphVelo.plot([time], [_particle.vy], 0xff0000);    
 _graphVelo.plot([time], [_m*_g/_k*(1-Math.exp(-_k/_m*time))], 0x0000ff); 
} 

We are plotting the vertical displacement of the ball, which is _particle.ypos minus its initial value _y0, as 
well as its value as given by the analytical solution on the Graph instance _graphDisp. Similarly, _graphVelo 
displays the vertical velocity as computed by the code and the analytical solution. The simulation is shown 
in Figure 5-5. The agreement between the two is so good that the respective curves lie on top of each 
other in both graphs. So we’re happy that in this case the simple Euler integration scheme implemented in 
Mover and Forcer is actually doing a pretty decent job.  

 

Figure 5-5. Comparing numerical and analytical solutions for a ball falling under gravity and drag 

The principle of energy conservation 
We introduced energy and its conservation in the last chapter. The key point to reiterate here is that we 
can apply the principle of conservation of energy to work out how things move and how they interact with 
other things.  
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It’s also important to remember that the principle can apply to the conversion of energy between different 
forms, as well as to the transfer of energy between different objects. Here is a statement of the principle 
once more, in a slightly different form: 

In any conversion of energy between different forms, or in transfer of energy between different objects, the 
total amounts of energy before and after the conversion or transfer are always equal. 

A particularly useful form of the principle is when the energy conversion or transfer involves only potential 
and kinetic energy. We refer to p.e. and k.e. collectively as mechanical energy.  

Conservation of mechanical energy 
Although the principle of conservation of energy in its general form is powerful and is always true, it may 
be difficult to apply in practice because it is not always easy to calculate all the energy forms involved in an 
interaction. For example, think of the energy transformations involved when a ball is dropped, falls through 
air, and bounces off a surface. The ball initially has p.e. and, as it falls through air, the p.e. is gradually 
converted into k.e. as it accelerates due to gravity. A small amount of energy is also converted into heat 
due to friction (drag) through the air. When it hits the surface, a large amount of energy may be transferred 
to the surface. Some more of the energy is usually converted into heat on impact, and some may be 
converted into sound as well. Now, we’ll steer clear of trying to calculate things like heat and sound energy 
because that can get pretty complicated. But sometimes, if they can be assumed to be small, we only 
need to deal with p.e. and k.e. In that case, we say that mechanical energy is conserved.  

Conservation of mechanical energy is a particularly useful principle because it involves the energy forms 
associated with motion (k.e.) and position (p.e.). We’ll look at two examples of its application in this 
chapter. One is the elastic collision of two particles, when the total kinetic energy of the particles is 
conserved. We’ll look at this in the next section, “The principle of momentum conservation.” The other 
example is the motion of a projectile neglecting drag due to air resistance. Let’s look at this example now.   

An example: Energy changes in a projectile 
To simplify things, let’s assume the projectile is launched vertically upward from ground level with some 
initial velocity u. Then we have a 1D problem with constant acceleration under gravity, and we can use the 
1D version of the analytical equations of motion introduced in the last chapter: 

v = u + a t  

s = u t + 1
2
a t2  

Here s = h, the height of the projectile above ground, and a = –g, where g is the acceleration due to 
gravity. So we can write this: 

v = u − g t  

h = u t − 1
2
g t2  
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It is now straightforward to calculate the p.e. and k.e. of the projectile at any time by using the following: 

Ep = m g h  

Ek = 1
2
m v2

 

Here is a code that computes and plots the p.e., k.e., and their sum for 10 seconds, using values of m = 1, 
g = 10 px/s2, and u = 50 px/s. Note that the mass of a Ball instance is 1 mass unit by default, so there is 
no need to set it to 1 in the code. The source code is in ProjectileEnergy.as. 

package{ 
 import flash.display.Sprite; 
 import flash.utils.Timer; 
 import flash.events.TimerEvent;  
 import com.physicscodes.math.Graph; 
 import com.physicscodes.objects.Ball;  
  
 public class ProjectileEnergy extends Sprite{   
  private var u:Number = 50; // initial velocity 
  private var g:Number = 10; // gravity 
  private var groundLevel:Number=350;   
  private var n:int=0;       
  private var tA:Array = new Array(); 
  private var hA:Array=new Array();    
  private var peA:Array = new Array(); 
  private var keA:Array = new Array();    
  private var teA:Array = new Array();   
  private var ball:Ball;       
  private var timer:Timer;   
  private var graph:Graph; 
  
  public function ProjectileEnergy(){ 
   init();    
  }    
  private function init():void{ 
   setupBall();    
   setupGraph(); 
   setupArrays();    
   setupTimer(); 
  } 
  private function setupBall():void{ 
   ball = new Ball(10); 
   ball.x = 550; 
   ball.y = groundLevel; 
   addChild(ball);    
  } 
  private function setupGraph():void{ 
   graph = new Graph(0,10,0,1500,50,350,450,300);    
   graph.drawgrid(1,0.5,500,100);    
   graph.drawaxes('t','p.e., k.e., total');    
   addChild(graph);    
  } 
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  private function setupTimer():void{ 
   timer = new Timer(100); 
   timer.addEventListener(TimerEvent.TIMER,animate);   
   timer.start(); 
  }   
  private function setupArrays():void{ 
   var t:Number;   
   var v:Number; 
   var m:Number = ball.mass; 
   for (var i:uint=0; i<=100; i++){ 
    tA[i] = i*0.1; 
    t = tA[i]; 
    v = u - g*t;  
    hA[i] = u*t - 0.5*g*t*t; 
    peA[i] = m*g*hA[i]; 
    keA[i] = 0.5*m*v*v; 
    teA[i] = peA[i] + keA[i]; 
   }    
  } 
  private function animate(evt:TimerEvent):void{ 
   ball.y = groundLevel-hA[n]; 
   graph.plot([tA[n]], [peA[n]], 0xff0000, true, false);  
   graph.plot([tA[n]], [keA[n]], 0x0000ff, true, false);  
   graph.plot([tA[n]], [teA[n]], 0x000000, true, false); 
   evt.updateAfterEvent();    
   n++; 
   if (n==hA.length){ 
    timer.stop(); 
    timer.removeEventListener(TimerEvent.TIMER,animate); 
   } 
  }   
 } 
}  

The code should be easy to understand. In Figure 5-6, we show the three plots as a function of time. The 
series of dots that curves upward is the p.e., the one that curves downward is the k.e. and the one that is 
horizontal (constant) is the total energy (the sum of p.e. and k.e.). From these plots, we learn that, when 
the projectile is initially launched at the ground, it has zero p.e. and maximum k.e. Then for the first 5 
seconds, as it rises, its p.e. increases at the expense of its k.e. At exactly 5 seconds, its k.e. is zero, 
signifying that it is momentarily at rest. This happens when it reaches its highest point. It then starts falling 
down again. As it does so, its p.e. starts falling again, and its k.e. increases as it speeds up toward the 
ground. Throughout its motion, the sum of the p.e. and k.e. is constant, as indicated by the horizontal 
series of dots. This demonstrates the conservation of energy. Note that the sum of p.e. and k.e. is only 
constant because we’ve neglected drag effects. If you include drag, then you’ll find that the sum of p.e. 
and k.e. decreases slightly with time. If you’re extra keen, you can show this by adding a drag term and 
integrating the equations of motion numerically to give v and h as a function of time.  
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Figure 5-6. Energy graphs for a projectile"downward curve: k.e.; upward curve: p.e.; constant 
line: total  

The principle of momentum conservation 
As mentioned in the last chapter, there is a conservation principle for momentum just like the one for 
energy. Let’s state the principle first and then explain it:  

For any system of interacting particles, the total momentum of all the particles remains constant, as long 
as no external forces act on the system. 

“Interacting particles” means that the particles influence each other by exerting forces on each other. The 
forces can be of any type; for example, gravitational forces between stars in a galaxy. The principle is true 
regardless of the nature of the forces between the particles. Once you define your system, the particles in 
that system may be mutually subjected to any number of internal forces between themselves"the total 
momentum of that system will be conserved as long as there are no forces from external agents.  

Conservation of momentum is closely connected with Newton’s laws of motion. In fact, under certain 
conditions, it may be derived from Newton’s laws. Let’s see how.  

The starting point is Newton’s second law F = dp/dt, which we can write in the discrete form F = ∆p/∆t. 
Multiplying both sides by ∆t gives this: 

F ∆t = ∆p  



           The Laws Governing Motion 

 

153 

This is, of course, just Newton’s second law written in a slightly different form, for a small but finite time 
interval ∆t. What it tells us is that if a force F acts on a particle for a small duration ∆t, multiplying F by ∆t 
gives you the change in momentum ∆p of the particle. We call the quantity F∆t the impulse due to the 
force. The preceding relationship is called the impulse-momentum theorem.  

Next, imagine two particles interacting (exerting forces on each other; for example by colliding), as 
depicted in Figure 5-7. From Newton's third law of motion, they exert equal and opposite forces 
simultaneously on each other. If they exert forces F and –F on each other for a time interval of %t, they 
experience impulses of –F %t and F %t, respectively. From the impulse-momentum theorem, this implies 
that they exchange momentum, gaining –%p and %p, respectively. The total momentum of both particles is 
still the same, however, because one gains exactly the negative amount that the other gains; in other 
words, the momentum lost by one particle is gained by the other. This argument extends to any number of 
interacting particles, so we have the principle of conservation of momentum.  

- F ∆t = - ∆p F ∆t =  ∆p
 

Figure 5-7. Two interacting particles exchanging momentum 

Examples of momentum conservation include the following: 

• An apple falling to Earth acquires downward momentum at each instant. Considering the 
apple-Earth system, the Earth itself must “fall” toward the apple to compensate. But because 
the mass of the Earth is so large, its velocity toward the apple is tiny. 

• The exhaust gases from a rocket and the rocket itself get equal momentum changes in 
opposite directions. 

• In an explosion, the total momentum of all the fragments must equal the momentum of the 
whole object before the explosion. If the object was initially at rest, the total momentum (as a 
vector sum of the momenta of all the fragments) after the explosion is still zero.  

To give you a feel for how you’ll be applying this principle in practice, here is a numerical example. 
Suppose you fire a bullet of mass 40 g from a rifle of mass 1.6 kg, and the exit velocity of the bullet is 80 
m/s. What is the recoil velocity of the rifle?  

Let’s denote the mass and velocity of the bullet by m and v, respectively. And we’ll denote the mass and 
velocity of the rifle by M and V, respectively. Initially, both are at rest so that the total momentum is zero.  

The principle of conservation of momentum therefore implies that the final momentum should be zero, too: 

M V +m v = 0  

This equation can be easily rearranged to give this: 

V = −m v
M  

Substituting the values of m, v and M give the following: 

V = −0.04 × 80 /1.6 m/s = −2 m/s  
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Therefore, the recoil velocity of the rifle is 2 m/s. The minus sign means that it is in the opposite direction 
to the velocity of the bullet.  

Example: 1D elastic collision between two particles 
Conservation of momentum is especially useful in handling collisions between particles. A collision is a 
special type of interaction in which particles exert large forces on each other for a very brief duration.  

A whole chapter is dedicated to collisions (see Chapter 11). Here we’ll look briefly at the simplest case of 
elastic collisions between two particles in 1D. Elastic in this context means that kinetic energy is 
conserved. In other words, no energy is converted to other forms (such as heat) during the collision. 
Momentum is, of course, always conserved.  

Let’s say the masses of the particles are m1 and m2, their initial velocities before collision are u1 and u2, 
and their final velocities after collision are v1 and v2 (see Figure 5-8). Applying conservation of momentum 
then tells us that  

m1⋅v1+m2 ⋅v2 = m1⋅u1+m2 ⋅u2  

Applying conservation of kinetic energy gives this: 

1
2
m1⋅v12 + 1

2
m2 ⋅v22 = 1

2
m1⋅u12 + 1

2
m2 ⋅u22

 

Remember that the formula for kinetic energy is ½ m v2. 

Before collision:  m1, u1 m2, u2 

After collision:  m1, v1 m2, v2  

Figure 5-8. Change in particle velocities caused by a collision 
What we have here are two equations containing two unknown quantities: the final velocities v1 and v2 of 
the two colliding particles. Everything else is known. These equations can be solved to give a general 
formula for v1 and v2 in terms of the known quantities m1, m2, u1, and u2. But we’ll save that for Chapter 
11.  

For now, let’s discuss the case where m1 = m2, i.e. the two particles have the same mass. In that case, 
one can show that v1 = u2 and v2 = u1; in other words, the final velocity of particle 1 is equal to the initial 
velocity of particle 2, and vice versa. Particles of the same mass that collide elastically simply swap their 
velocities!  

We’ll now build an example that implements this special case. First, we’ll build a class that implements 
collisions. Because a collision always involves at least two particles in motion, it makes sense to extend 
MMultiMover from Chapter 4. So, let’s create a new class called Collider that extends MultiMover and adds 
the capability to detect and respond to collisions. Here is a simple way to do that: 

package {  
 import com.physicscodes.motion.MultiMover; 
 import com.physicscodes.objects.Particle;   
 import com.physicscodes.math.Vector2D; 
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 public class Collider extends MultiMover{ 
   
  private var _particles:Array; 
 
  public function Collider(pparticles:Array):void{ 
   _particles = pparticles; 
   super(pparticles); 
  }    
  override protected function moveObject():void{ 
   super.moveObject(); 
   checkCollision(); 
  }   
  private function checkCollision():void{ 
   for (var i:uint=0; i<_particles.length; i++){ 
    var particle1:Particle = _particles[i]; 
    for (var j:Number=i+1; j<_particles.length; j++){ 
     var particle2:Particle = _particles[j];   

if (Vector2D.distance(particle1.pos2D,particle2.pos2D) 
<= 0.5*(particle1.width+particle2.width)){   

      var vtemp:Vector2D = particle1.velo2D; 
      particle1.velo2D = particle2.velo2D; 
      particle2.velo2D = vtemp;  
     } 
    } 
   }    
  } 
 } 
} 
 
 

Like MultiMover, Collider takes an array of particles as an argument in its constructor. The key extra 
thing it does is to override moveObject() by adding the new method checkCollision(). In 
checkCollision(), we test for collisions between pairs of particles in the array. We use the 
Vector2D.distance() static method to do this; note that by using the particle.width property we assume 
that the particles are circular. If collision is detected, we swap the velocities of the two particles.  

The file CollisionsTest.as contains an example of using the Collider class. Here’s the full code: 

package{ 
 import flash.display.Sprite; 
 import com.physicscodes.objects.Ball; 
 import com.physicscodes.math.Vector2D;  
 import com.physicscodes.motion.Mover; 
  
 public class CollisionsTest extends Sprite{ 
  private var _ball1:Ball = new Ball(15,0x0000ff); 
  private var _ball2:Ball = new Ball(15,0xff0000); 
  private var _ball3:Ball = new Ball(15,0x00ff00);   
   
  public function CollisionsTest():void{ 
   init(); 
  } 
  private function init():void{ 
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   setupBall(_ball1,new Vector2D(50,200),new Vector2D(30,0));  
   setupBall(_ball2,new Vector2D(500,200),new Vector2D(-20,0)); 
   setupBall(_ball3,new Vector2D(300,200),new Vector2D(10,0)); 
    
   var collider:Collider=new Collider([_ball1,_ball2,_ball3]);  
   collider.startTime(10); 
  } 
  private function setupBall(ball:Ball,pos:Vector2D,velo:Vector2D):void{  
   ball.pos2D = pos; 
   ball.velo2D = velo;    
   addChild(ball);    
  } 
 } 
}  

To make things a bit more interesting, we created three balls aligned horizontally and given them different 
horizontal velocities using the private method setupBall(). Then we created an instance of Collider, 
passing the three Ball instances within an array. We then invoke the startTime() method of the collider to 
begin the animation.  

If you run the code, you’ll see that, initially, all three balls get closer together. They then suffer three 
successive collisions that swap the velocities of each colliding pair. In the end, they all move away from 
each other.       

Laws governing rotational motion 
In this chapter, we have focused on translational motion, when the object being considered changes its 
position. But what if an object rotates about a center or (if it’s an extended object) revolves on itself about 
some axis?   

It turns out that analogous principles for rotational kinematics, dynamics, and conservation principles exist. 
For example, the analog of Newton’s laws of motion can be wriiten down for rotational motion. Analogous 
to momentum, there is a quantity called angular momentum and it is also conserved. 

We’ll look at rotational mechanics in Chapters 9 and 13. 

Summary 
This chapter laid the foundation for simulating the motion of particles under any type of force. The laws of 
motion and conservation principles discussed here can be applied in many different scenarios. In the 
remaining chapters of Part II, we’ll apply those laws to simulate the motion of objects under the action of a 
wide variety of force laws 
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Chapter 6 

Gravity, Orbits, and Rockets 

Starting from this chapter, you’ll be exploring lots of different forces and the types of motion they produce. 
Here we focus exclusively on the force of gravity. You’ll learn how gravity makes things move both on 
Earth and in space. And before you know it, you’ll be able to code up orbits and rockets!  

Topics covered in this chapter include the following: 

! Gravity: Gravity, or gravitation, is the force that the Earth exerts on all objects near it. But there is 
a lot more to gravity than we’ve discussed so far.  

! Orbits: An example of the effect of gravity is to keep planets in orbits around the Sun. Learn how 
to easily build simple orbit simulations. 

! Local gravity: How gravity behaves at the local scale, near the surface of the Earth. 

! Rockets: Build a simple rocket, launch it, and make it orbit a planet. 

Gravity 
As inhabitants of a planet, we are aware of gravity perhaps more than any other force. Gravity, also known 
as gravitation, will play a part in most of the simulations you’ll build in this book. In fact, you’ve already 
come across several examples. However, in all the cases you’ve met so far, we’ve dealt with gravity as it 
exists near the surface of the Earth"as a constant force. It’s now time to take a deeper look at gravity.  
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Gravity, weight, and mass 
Let’s first recap briefly what you already learned about gravity in the previous chapters. If an object has 
mass m, then Earth exerts a force on it that points vertically downward. The magnitude of this force of 
gravity is equal to mg, where g is a constant equal to approximately 9.81 m/s2 near the Earth’s surface. 
This force is also called the weight of the object.  

The constant g is equal to the acceleration that any object would experience if it were to move under the 
sole effect of gravity. We can see this by using Newton’s second law F = ma. If the resultant force F is just 
the force of gravity, then F = mg. Hence, we have this: 

m a = m g  

And dividing both sides by m gives us this: 

a = g  

This result tells us that all objects moving under the action of gravity as the only force experience the same 
acceleration regardless of their mass, or indeed, of any other properties. So, assuming all other forces can 
be neglected, if you drop a hammer and a house from the same height, both would accelerate at the same 
rate and therefore fall at the same time!  

Of course, if you drop a feather, it will take much longer to fall. That’s because there is an upward drag 
force due to air that opposes its fall. There is also a drag force in the cases of a stone or a house, but in 
those cases that force is negligibly small compared with their weight, and so has a negligible impact on 
their motion. If you were to drop a feather and a hammer on the Moon, where there is no air and therefore 
no drag, they would both fall at the same time. In fact, the astronaut David Scott did exactly that during the 
Apollo 15 mission. You can even see a video of this feat on NASA’s web site or on YouTube (search for 
“hammer and feather”). 

Newton’s universal law of gravitation 
The Earth is not the only object that exerts a force of gravity. Newton taught us that any object exerts a 
gravitational pull on any other object. So, not only does the Earth exert a gravitational force on us but each 
of us also exerts a gravitational force on the Earth, and indeed on each other, too! 

Newton gave an exact formula for how to calculate the gravitational force between any two objects: the 
force law for gravity: 

F =G m1 m2

r2  

In this formula, m1 and m2 are the masses of the objects involved, and r is the distance between their 
centers. The symbol G is a universal constant with the value of 6.67428 ! 10-11 Nm2/kg2. It is called the 
gravitational constant. By universal, we mean that it has the same value irrespective of the properties of 
the interacting objects. Newton postulated that the same formula, with the same value of G, holds for any 
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two objects"from tiny particles to planets and stars. Hence, we called it Newton’s universal law of 
gravitation.  

Let’s try and understand what this formula is telling us. First of all, the gravitational force F is proportional 
to the masses m1 and m2 of the two objects. Therefore, the larger those masses are, the larger the force 
will be. Second, the force is inversely proportional to the square of their distance apart"that means we are 
dividing by r2. Therefore, the larger the distance between the two objects, the smaller the force will be 
(because we’ll be dividing a number by the square of a very large number). Third, because we are 
multiplying by a small number G (6.67428 ! 10-11 is equal to 0.0000000000667428), the force will be tiny 
except when very large masses are involved. So, gravity is a very weak force, except when at least one of 
the objects has a very large mass. 

To give you an idea of what we mean, let’s calculate the gravitational force between two persons (whom 
we’ll call Joe1 and Joe2) of mass 80 kg each standing a distance of 1m apart, and compare it with the 
gravitational force that the Earth exerts on each of them.  

Using the previous formula, the force between Joe1 and Joe2 is given by F = 6.67428 ! 10-11 ! 80 ! 80 / 
1 N = 4.3 ! 10-7 N (approximately). That’s 0.427 millionth of a newton.  

The force that the Earth exerts on each is, of course, equal to their weight mg = 80 ! 9.81 N = 785 N 
(approximately). That’s nearly 2 billion times larger! 

We haven’t said anything about the direction of the force yet. Newton said that the force always acts along 
the line joining the centers of the two objects (see Figure 6-1).  

Another thing that should be noted is that the forces on Joe1 and Joe2 form an action-reaction pair. So 
Joe1 exerts a force of 4.3 ! 10-7 N on Joe2, and vice-versa, with the two forces being equal and 
opposite"and similarly for the force between each of the two Joes and the Earth.  

m1
m2

r 

F – F 

 

Figure 6-1. Newton’s law of universal gravitation 

Creating the gravity function 
We’ll now create a static method of the FForces class that will implement gravity in the form of Newton’s 
law of gravitation. The method will take as input the variables that go into the force law for gravity, namely 
G, m1, m2, and r. It must return a vector force. Therefore, we need a vector form for Newton’s law of 
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 gravitation that implements the fact that the force points along the line joining the two objects. Let’s just 
give the formula and explain it afterward:  

F = −G m1 m2

r3 r  

Comparing with the previous formula, what we’ve done is write the force as a vector; then we multiplied 
the original equation by –r/r. Recall from Chapter 3 that r/r is a unit vector in the direction of r, where r is 
here the position vector of one of the objects relative to the location of the other object.  

As shown in Figure 6-2, r is the difference in the position vectors of the two objects, and r is its magnitude, 
which is simply the distance between the two objects. Recall that there are two forces, not one: the force 
on object 1 due to object 2, and vice-versa. These two forces have the same magnitude but the opposite 
direction. We always define r to be the position vector of the object on which the force is acting, relative to 
the object that is exerting the force. We need the minus sign because that force is directed in the opposite 
direction to r.  

r1 r2

F 

 r = r2  –  r1

 

Figure 6-2. Vector form of Newton’s law of universal gravitation 

Here is the static method to implement the gravity force: 
  
static public function gravity(G:Number,m1:Number,m2:Number,r:Vector2D):Vector2D { 
        return r.multiply(-G*m1*m2/(r.lengthSquared*r.length)); 
} 

We just use the multiply() method of the Vector2D class to return a new vector that multiplies r by (-G 
m1*m2/r3). Let’s now use this gravity() method in the next few examples.  

Before we can apply the gravity function, we have to choose suitable values for G, m1, m2, and r. 
Remember that we are modeling things on a computer screen. Therefore we have to scale physical values 
appropriately so that we get the right amount of motion on the screen in a sensible time. For example, if 
we were simulating the motion of the Earth around the Sun, we really don’t want to use the real values of 
all the variables such as the mass of the Sun and so on. Doing that would mean we’d have to wait for a 
year to see the Earth go once around the Sun!  
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In Part IV, we’ll show you how to create a scaled computer model properly. For now, we’ll simplify things 
and make some suitable choices just to make things look roughly right on the screen. To do this, we’ll 
choose our own units for all the variables of the model.   

Let’s start with the distance r. That’s an easy one"the natural unit to use here is pixels. This leaves us 
with mass and G. We can give G any value we like, so let’s choose G = 1. Having made these two 
choices, we now need to choose suitable values for the masses so that the right amount of motion is 
produced to be noticeable on the screen. Let’s look at an example: orbits! 

Orbits 
With our gravity function, it’s very easy to create a realistic-looking orbits simulation. Figure 6-3 shows a 
screenshot of what we’ll create: a planet orbiting a sun, against a background of fixed stars. For simplicity, 
we assume that the sun remains fixed. In reality, as we saw previously, both the sun and the planet will 
experience a gravitational force of the same magnitude but in opposite directions (with the force on each 
one pointing toward the other). So both the planet and the sun will move. But if the mass of the sun is 
much larger than that of the planet, the motion of the sun will be so small it will hardly be perceivable, 
anyway. That’s because F = ma again, so that the acceleration a = F/m. Thus, if the mass m is very large, 
the acceleration a will be very small. So to save coding and CPU time, we can neglect the motion of the 
sun altogether. 

 

Figure 6-3. A planet orbiting a stationary sun 
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Orbiter class 
With this in mind, we can build a class, Orbiter, which will make a particle orbit a stationary particle. 
Here’s what Orbiter looks like: 
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
 
        public class Orbiter extends Forcer{ 
 
                private var _orbitingParticle:Particle; 
                private var _massOrbiter:Number; 
                private var _massAttractor:Number; 
                private var _center:Vector2D; 
                private var _G:Number = 1; 
 
                public function Orbiter(porbitingParticle:Particle,pattractor:Particle):void{ 
                        _orbitingParticle = porbitingParticle; 
                        _massOrbiter = porbitingParticle.mass; 
                        _massAttractor = pattractor.mass; 
                        _center = pattractor.pos2D; 
                        super(porbitingParticle); 
                } 
 
                override protected function calcForce():void{ 
                        force = 
Forces.gravity(_G,_massAttractor,_massOrbiter,_orbitingParticle.pos2D.subtract(_center)); 
                } 
        } 
} 

Orbiter extends the Forcer class introduced in the last chapter. Remember that Forcer extends Mover 
and implements Newton’s second law, F = ma, to make a particle (specified as an argument in its 
constructor) move under forces specified in its calcForce() method. If you look at the Orbiter() 
constructor, you’ll see that it takes two arguments, both Particle objects. The first particle is the orbiter, 
which is passed to the constructor of Forcer using the super() method. The second argument is the 
fixed attractor. The code stores the masses of the two particles and the position of the attractor particle in 
private variables. 

The last bit of code overrides the calcForce() function of Forcer by specifying the resultant force as a 
gravity force. It passes the values of G (set to 1), the masses of the two particles, and the position vector 
of the orbiter relative to that of the attractor: _orbiter.pos2D.subtract(_center). 

Note that the Forces.gravity() function has to know the position vector of the orbiter at each timestep, 
recalculating the gravitational force on the orbiter based on its position vector. Hence, we have supplied 
_orbiter.pos2D within the argument of Forces.gravity(). Because the particle masses are constant, 
we can simply pass the value stored in the private variables _massOrbiter instead of referencing 
_orbiter.mass on each timestep. 
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We’ll now use the Orbiter class to create the simulation shown in Figure 6-3. Take a look at this listing 
from Orbits.as:  
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class Orbits extends Sprite{ 
                public function Orbits():void{ 
                        init(); 
                } 
                private function init():void{ 
 
                        // create 100 stars randomly positioned 
                        for (var i:uint=0; i<100; i++){ 
                                var star:Ball = new Ball(Math.random()*3,0xffff00); 
                                star.pos2D = new 
Vector2D(Math.random()*stage.stageWidth,Math.random()*stage.stageHeight); 
                                addChild(star); 
                        } 
 
                        // create a stationary sun 
                        var sun:Ball; 
                        sun = new Ball(70,0xff9900,1000000); 
                        sun.pos2D = new Vector2D(275,200); 
                        addChild(sun); 
 
                        // create a moving planet 
                        var planet:Ball; 
                        planet = new Ball(10,0x0000ff,1); 
                        planet.pos2D = new Vector2D(200,50); 
                        planet.velo2D = new Vector2D(80,-40); 
                        addChild(planet); 
 
                        // make the planet orbit the sun 
                        var orbiter:Orbiter=new Orbiter(planet,sun); 
                        orbiter.startTime(10); 
                } 
        } 
} 

The code is very straightforward. First, we create a bunch of 100 stars as Ball instances and place them 
randomly on the stage. This is, of course, purely for aesthetic reasons. If you don’t like stars, go ahead and 
get rid of them. Next we create a sun as another Ball instance, setting its radius to 70 pixels and its mass 
to 1,000,000. We position the sun at (275, 200). By default, the velocity of the sun is zero. Then we create 
a planet as a Ball instance, set its radius to 10, and set its mass to 1. The initial position and velocity of 
the planet are then set. Finally, the code that makes the planet orbit the sun is as simple as creating an 
Orbiter instance, with planet and sun as its arguments, and invoking its inherited startTime() method. 
Go ahead and run the code"it really works!  
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Observe that the planet tries to move away at its initial velocity, but is pulled back by the sun’s gravity. You 
might wonder why the planet does not fall into the sun. Well, in fact it is “falling” toward the sun all the time 
but, because of its initial position and velocity, it “misses” the sun every time. Notice also that the planet 
travels faster when it’s near the sun. This happens because the force of gravity is larger and therefore its 
acceleration is larger closer to the sun.   

This code produces a realistic orbit simulation because it has basically all the physics governing orbital 
motion under gravity. And the physics really boils down to just four equations: 

F = −G M m
r3 r  

F = m a  

a = dv
dt  

v = ds
dt  

In these equations, m is the mass of the planet, and M is the mass of the sun. The first two equations are 
laws, and the last two are just definitions. To recap, this is what our code is doing at each timestep: From 
the first law, you compute the gravitational force. You then use the second law to compute the 
acceleration. Knowing the acceleration, you integrate the third equation to compute the velocity. Finally, 
knowing the velocity, you integrate the fourth equation to give the displacement. This tells you where you 
must move your particle at each timestep.   

Have a go at changing the parameters in the code to see their effect. For example, you can change the 
masses of the planet and the sun, or the initial position and velocity of the planet. We’ve chosen the mass 
of the sun to be 1,000,000 times that of the planet. This is a realistic ratio; for example, the mass of the 
Sun is 330,000 times that of the Earth and 6,100,000 times that of Mercury.   

Change the mass of the sun to 2,000,000. The planet is pulled closer to the sun because the force of 
gravity is proportional to the mass of the sun. So, doubling the sun’s mass doubles the force of gravity and 
therefore the acceleration toward the sun. Conversely, if you decrease the mass of the sun to 900,000, 
you’ll see that the sun’s pull on the planet is weaker, so that the planet wanders further away.  

Now change the mass of the planet instead. Make it 0.001 and then 1000. You’ll see that the mass of the 
planet has no effect on its motion. What’s going on is that you are increasing the force on the planet by 
increasing its mass, but then you must divide the larger force by its larger mass. Take a look at the first 
two equations above. In the first one, you multiply by the mass of the planet to calculate the gravitational 
force. In the second one, you then need to divide that force by the same mass to calculate the 
acceleration. The net result is that the acceleration is independent of the mass of the planet. This is just as 
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it should be. It’s the astronomical equivalent of the hammer-and-feather experiment we mentioned at the 
beginning of this chapter.   

Does this mean that the motion is unchanged even if the planet’s mass is comparable to that of the sun? 
No, not really. Remember the approximation we made at the beginning? We assumed that the mass of the 
sun was much larger than that of the planet, so that we could neglect the sun’s motion under the 
gravitational force exerted on it by the planet. If the planet’s mass is a sizeable fraction of the sun’s mass, 
we’ll need to model the motion of the sun too, even if we are just interested in the planet’s motion! That’s 
because as the sun moves around, its distance from the planet will change, which will modify the force on 
the planet. What we’ve done so far is to model one-body motion. To deal with this problem, we’ll need to 
model two-body motion. It’s not really that much more difficult, and we’ll do that later. We’ll even look at the 
motion of a large number of particles under mutual gravitational forces in a later chapter.     

Next, experiment with different initial velocities for the planet. For example, changing the velocity vector to 
(70, –40) gives a more circular orbit, similar to the Earth’s orbit. A velocity of (85, –40) gives a highly 
elongated orbit like that of a comet. Later in the book we’ll show you how to work out exactly what velocity 
you need to produce a circular orbit.  

If the velocity of the planet is small, it will get sucked into the sun. For example, change the velocity to 
(0,0). The planet accelerates toward the sun’s center, as it should do, but then something weird happens 
when it actually gets there. For example, it might bounce back or fly off at high speed. This is an 
unphysical behavior, and it happens because we have not accounted for the finite size of the objects in the 
code. Because Newton’s law of gravitation is proportional to 1/r2, the force becomes larger as the distance 
r becomes smaller. For example, when r is 10 pixels, 1/r2 has the value of 0.01 when r is 1, 1/r2 is 1 and 
when r is 0.1, 1/r2 is 100. So, when r approaches zero (when the centers of the two particles nearly 
coincide), the gravitational force becomes indefinitely large. At the same time, the vector r, which is the 
position vector pointing from the sun to the planet, becomes so small that numerical errors make its 
direction unpredictable. Therefore, the planet suffers a large acceleration in some apparently random 
direction at the center of the sun.   

This is a general problem that you’ll encounter with a force law like Newton’s law of gravitation. The way 
you deal with it depends on precisely what you want to model. If something is falling into the sun, chances 
are you’d want to make it disappear when it does so"that’s simple enough to code up and you don’t need 
any special physics. If something is colliding with a solid planet like the Earth, it will burn up in the Earth’s 
atmosphere, create a crater, or smash up the Earth, depending on its size. Any of this would be rather 
tricky to model in a precise way, although you could conceivably create some movie-style special effects! If 
something is falling into one of the gas giants like Jupiter or Saturn, you might want to model how gravity 
varies inside the planet. We’ll see an example of how you might be able to do that later in this chapter.  

Escape velocity 
It turns out that if the velocity magnitude of a planet is less than a certain critical value, it will always be 
“caught” by the gravitational attraction of the sun, either orbiting or ending up in a collision with the sun. 
The critical value above which a planet would escape the sun’s gravity is called the escape velocity. The 
formula for the escape velocity is given by the following, where M is the mass of the sun and r is the 
distance from its center: 
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v = 2GM
r  

So the escape velocity is a function of distance from the center of the attracting body.  

Note that whatever we said about a planet orbiting the sun applies more generally to any object orbiting 
another object under the force of gravity"for example, a satellite (natural or artificial) orbiting a planet. 
Hence, using the last formula, the escape velocity of any object at the Earth’s surface is given by the 
following, where Me and re are the mass and radius of the Earth, respectively: 

v = 2GMe

re
 

Putting in the values for G, Me, and re into the above formula gives v = 11.2 km/s. This is the escape 
velocity at the Earth’s surface: if you could throw a projectile with a velocity at least equal to this velocity, it 
would escape the Earth’s gravity. For comparison, the escape velocity from the surface of the Sun is 618 
km/s. By contrast, the escape velocity from the surface of Eros (a near-Earth asteroid with dimensions of 
approximately 34 km ! 11 km ! 11 km) is a mere 10 m/s. You could drive off the asteroid in a car! 

Going back to the Orbits simulation G = 1, the mass of the sun is 1,000,000 and the planet is initially at a 
distance of !(752 + 1502) = 167.7 pixels from the sun. So the escape velocity at the initial location of the 
planet is !(2*1*1000000/167.7) = 109.2 pixels per second. You can check this with the simulation. First, 
change the initial velocity of the planet to (80, 0), so that its magnitude is 80. The planet will orbit the sun. 
Now increase the initial velocity magnitude to 100 by changing the velocity to (100, 0). The planet will 
move further from the Sun, but will still orbit it. Even if you change the velocity to (105, 0) and wait long 
enough, the planet will disappear from the edge of the stage, but will eventually come back to complete an 
orbit. But if you increase the velocity magnitude beyond 109.2, it will never come back. We don’t advise 
you to wait!  

Two-body motion 
So far, we’ve made a single object move under the gravitational attraction of another object. But we know 
that gravitational forces come as an action-reaction pair, so the other object must also experience an equal 
and opposite force. The result is that the other object will also move. We can implement this in a simple 
way by generalizing the Orbiter class so that the orbiter particle experiences a gravitational force pointing 
toward a second particle’s current position, not just toward a fixed point. We call the new class 
Gravitator: 
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
 
        public class Gravitator extends Forcer{ 
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                private var _particleA:Particle; 
                private var _particleB:Particle; 
                private var _G:Number = 100000; 
                private var _massA:Number; 
                private var _massB:Number; 
                private var _r:Vector2D; 
 
                public function Gravitator(pparticleA:Particle,pparticleB:Particle):void{ 
                        _particleA = pparticleA; 
                        _particleB = pparticleB; 
                        _massA = pparticleA.mass; 
                        _massB = pparticleB.mass; 
                        super(pparticleA); 
                } 
 
                override protected function calcForce():void{ 
                        _r = _particleA.pos2D.subtract(_particleB.pos2D); 
                        force = Forces.gravity(_G,_massA,_massB,_r); 
                } 
        } 
} 

Comparing Gravitator with Orbiter, you’ll see that it does essentially the same thing as its 
predecessor, except that in the calcForce() method we’re now taking the position vector r to be in 
relation to the current position of the second particle. This means that the first particle will be attracted to 
the second one with the correct gravitational force, even if the latter is moving. The other thing we’ve done 
in Gravitator is to change the value of G to 100,000. You can give G any value you want if you 
compensate by using appropriate values for the masses to create the desired effect.  

Now look at the code in TwoMasses.as: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class TwoMasses extends Sprite{ 
                public function TwoMasses():void{ 
                        init(); 
                } 
                private function init():void{ 
 
                        var ball1Init:Ball = new Ball(10,0x9999ff,1); 
                        ball1Init.pos2D = new Vector2D(150,200); 
                        addChild(ball1Init); 
 
                        var ball2Init:Ball = new Ball(40,0xff9999,64); 
                        ball2Init.pos2D = new Vector2D(350,200); 
                        addChild(ball2Init); 
 
                        var ball1:Ball; 
                        ball1 = new Ball(10,0x0000ff,1); 
                        ball1.pos2D = ball1Init.pos2D; 
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                        ball1.velo2D = new Vector2D(0,150); 
                        addChild(ball1); 
 
                        var ball2:Ball; 
                        ball2 = new Ball(40,0xff0000,64); 
                        ball2.pos2D = ball2Init.pos2D; 
                        ball2.velo2D = new Vector2D(0,0); 
                        addChild(ball2); 
 
                        var gravitator1:Gravitator=new Gravitator(ball1,ball2); 
                        gravitator1.startTime(10); 
 
                        var gravitator2:Gravitator=new Gravitator(ball2,ball1); 
                        gravitator2.startTime(10); 
 
                } 
        } 
} 

What we’ve done here is pretty simple. We created a couple of Ball instances, ball1 and ball2, and 
then passed them as arguments into a couple of Gravitator instances with the order of the arguments 
reversed. This makes each ball move under the gravity exerted by the other. From the values specified 
previously, ball2 has a radius 4 times larger than ball1 and a mass 64 times larger. Also, ball1 has an 
initial velocity of (0, 150), whereas ball2 is initially stationary.  

We also created two more Ball instances, ball1Init and ball2Init, to indicate the initial positions of 
their respective counterparts in a lighter color.  

If you run the code, you’ll see that ball1 orbits ball2, while the latter appears to wobble. This makes 
sense. Both ball1 and ball2 experience the same force at any given time, but because ball2 is 64 
times larger than ball1, its acceleration is 64 times less (applying a = F/m). Therefore, ball2 moves 
much less than ball1, as the screenshot in Figure 6-4 suggests. 

Now make the mass and size of ball2 the same as those of ball1 by modifying the appropriate line so 
that it reads thus: 
 
ball2 = new Ball(10,0x0000ff,1); 

Then change the initial velocities of the two balls by making the following changes to the code:  
 
ball1.velo2D = new Vector2D(0,10); 
ball2.velo2D = new Vector2D(0,-10); 

If you now run the code, you’ll find that the two balls orbit each other in a strange sort of dance, alternately 
coming together and then moving further away. What is happening is that they are orbiting a common 
center, known as their center of mass. In fact, this was also happening when the balls had different 
masses; but the center of mass then was within the large ball, so that it appeared to wobble.  
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Figure 6-4. Two-body motion (lighter versions show initial positions of respective balls) 

Local gravity 
We are most familiar with gravity close up. How does local, near-Earth gravity relate to what you’ve 
learned so far? In this section, we establish the connection between Newton’s universal law of gravitation 
and the formula F = mg that we previously used for gravity. This will lead us to clarify the significance of 
the acceleration due to gravity g. We’ll then discuss how g varies with distance from the center of the 
Earth, and how it differs on other celestial bodies.  

The force of gravity near the Earth’s surface 
Time to come back to Earth! At the beginning of this chapter (as well as in previous chapters), we said that 
the force of gravity near the Earth on an object of mass m is given by F = mg, with g being approximately 
9.81 m/s2. Then, for most of this chapter so far, we’ve been using Newton’s law of universal gravitation, 
which says that the gravitational force is given by F = Gm1m2/r2. How do we reconcile those two different 
formulas?  

The answer is that they are both correct. If M is the mass of the Earth (or any other planet or celestial body 
we’re considering), and m is the mass of an object on or near it, the second formula gives this: 

F = G M m
r2  

 
This has to give the same force as F = mg. Therefore, this must be true: 

m g = G M m
r2  
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Now we can divide both sides of this equation by m to get rid of it. We are then left with this: 

g = G M
r2  

This formula shows that g is related to the mass M of the Earth and the distance r from its center. It tells us 
that g is actually a “nickname” for GM/r2. 

If an object is sitting on the Earth’s surface, its distance from the Earth’s center is equal to the radius of the 
Earth. The mass of the Earth is 5.974 ! 1024 kg and its radius is 6.375 ! 106 m. 

Therefore, using the last formula, the value of g at the Earth’s surface is given by this, which is the exact 
value that was quoted before: 

g = 6.67 ! 10-11 ! 5.974 ! 1024 / (6.374 ! 106)2 = 9.81 m/s2, 

Therefore, F = mg is consistent with Newton’s law of universal gravitation.  

Because it is always pointing toward the Earth’s center, gravity acts vertically downward wherever we are 
on or near the Earth’s surface (see Figure 6-5). 

 

Figure 6-5. Near-Earth gravity 

Variation of gravity with height 
The formula g = GM/r2 tells us that we can use F = mg to calculate the force of gravity at any distance from 
the Earth, provided that we account for the variation of g with distance from the center of the Earth.  

 

If an object is at a height h above the surface of the Earth, its distance from the Earth’s center is given by 
this, where R is the radius of the Earth: 

r = R + h  

Therefore, the value of g at a height h above the Earth’s surface is given by this: 
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g = G M
R + h( )2  

Because the value of g at the Earth’s surface is 9.81 m/s2, a little bit of algebra gives the two equivalent 
formulas: 

g = 9.81 R
2

r2  

g = 9.81 R2

R + h( )2  

Using this formula, you can show that the value of g at the height of the International Space Station, which 
is 350 km above the Earth’s surface, is about 8.8 m/s2. The value of g at the distance of the Moon 
(384,000 km away) is approximately 0.0026 m/s2. Remember that g gives you the acceleration of an object 
under gravity, and this acceleration is independent of the mass of the object. So, if the Moon were 
replaced with a football, it would experience the same acceleration.  

You might be curious to know how g varies within the Earth. A simple model shows that g decreases 
approximately linearly from the surface of the Earth down to zero at the Earth’s center. The formula is as 
follows, where R is the radius of the Earth: 

g = 9.81 r
R

, for r < R  

Figure 6-6 shows the variation of g with normalized distance r/R from the Earth’s center. As discussed 
previously, g increases linearly from the center of the Earth up to its surface (where r/R = 1 and g = 9.81). 
It then decreases rapidly with the inverse square of distance from the Earth’s center.  
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Figure 6-6. Variation of g with distance from the center of the Earth 

Gravity on other celestial bodies 
The formula g = GM/r2 allows you to calculate the value of g on other celestial bodies such as planets and 
stars, if you know their mass and radius.  

Table 6-1 shows the approximate value of g on the surface of a few celestial bodies. These values show 
that the Sun’s gravity is about 28 times that of Earth, while the Moon’s is about one-sixth that of Earth. The 
value of g on the surface of Jupiter, the largest planet in the solar system, is about 2.5 times that of Earth. 
Ceres and Eros are asteroids, and their gravity is extremely weak: Earth’s gravity is about 36 times that of 
Ceres and more than 1660 times that of Eros.  

Table 6-1. Gravity on Different Celestial Bodies 

Celestial Body Value of g in m/s2 

Earth 9.81 

Sun 274 

Moon 1.6 

Jupiter 25 

Ceres 0.27 

Eros 0.0059 
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Rockets 
Rockets are used for a variety of purposes, including launching spacecraft and missiles or as fireworks. In 
all rocket types, the rocket is propelled by exhaust formed from burning propellants within the rocket. In 
what follows, we give a very simplified account of the physics involved in rocket motion and show you how 
to put together a simple rocket simulation that can be incorporated in your Flash games.  

It is rocket science! 
Without going into engineering details on the operation of various types of rocket engines, let’s just say 
that hot gases at high pressure are produced and pushed through a nozzle at high velocity. By Newton’s 
third law, the exhaust gases push back upon the rocket, propelling it forward. The forward force generated 
is called the thrust.   

Apart from the thrust, there may be other forces on the rocket, depending on where it is and how it’s 
moving. Gravity is one of them. If the rocket is traveling through the Earth’s atmosphere, it will also 
experience a retarding drag force as well as a lift force (see the next chapter). We’ll neglect the effects of 
drag and lift here.  

On Earth, there will also be effects due to the variation of pressure with altitude, which will affect the thrust, 
drag, and lift. We’ll neglect those effects, too.  

As the rocket rises, the strength of the gravity that it experiences decreases in the manner described 
earlier in this chapter. We will account for this effect.  

Rockets generally carry a substantial proportion of their mass as fuel. Therefore, the mass of a rocket will 
vary substantially as the fuel gets used up. This decrease in mass will affect the acceleration of the rocket 
and must therefore be included in the modeling.  

Modeling the thrust of a rocket 
To model the thrust on a rocket, we make use of the alternate form of Newton’s second law given in the 
last chapter.  

Remember that the force needed to move a substance at the rate of dm/dt at a velocity v is given by the 
formula F = v dm/dt. The exhaust gases from a rocket exit at an effective exhaust velocity ve and at a 
mass rate dm/dt that can be controlled. Therefore, the force on the gases is given by  

F = ve
dm
dt  

Using Newton’s third law, the thrust on the rocket is therefore given by this: 

F = −ve
dm
dt  



Chapter 6 

174 

The minus sign in the preceding vector equation means that the thrust generated is in the opposite 
direction to the exhaust velocity. 

There may also be side thrusters on a rocket to provide a sideways thrust as needed. These work on the 
same principle as the main engine.  

Building a rocket simulation 
Okay, let’s built a rocket! But before you jump up and down in glee, please note that we’ll just focus on the 
physics here; we leave it as an exercise for you to come up with the nice graphics and special effects.   

To begin with, we’ll borrow the Orbits.as file, make some modifications, and save the new file as 
RocketTest.as. Here’s what it should look like: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Ball; 
 
        public class RocketTest extends Sprite{ 
                public function RocketTest():void{ 
                        init(); 
                } 
                private function init():void{ 
                        // create 100 stars randomly positioned 
                        for (var i:uint=0; i<100; i++){ 
                                var star:Ball = new Ball(Math.random()*2,0xffff00); 
                                star.pos2D = new 
Vector2D(Math.random()*stage.stageWidth,Math.random()*stage.stageHeight); 
                                addChild(star); 
                        } 
 
                        // create a stationary planet 
                        var planet:Ball; 
                        planet = new Ball(100,0x0033ff,1000000); 
                        planet.pos2D = new Vector2D(400,400); 
                        addChild(planet); 
 
                        // create a rocket 
                        var rocket:Rocket; 
                        rocket = new Rocket(10,15,0xcccccc,10); 
                        rocket.pos2D = new Vector2D(400,300); 
                        addChild(rocket); 
 
                        // launch the rocket from the planet 
                        var rocketer:Rocketer=new Rocketer(rocket,planet); 
                        rocketer.startTime(10); 
                } 
        } 
} 
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The setup is pretty similar to that of Orbits, except that we now have a stationary planet in place of the 
sun and a rocket in place of the planet. Note that the rocket is an instance of the Rocket class, which we 
will create as a subclass of Particle (as described a little later).  

Functionally, the crucial difference from Orbits is that we now invoke a Rocketer instance instead of an 
Orbiter. So we should create a Rocketer class.  

The Rocketer class 
The Rocketer class is the “engine” that will drive the rocket, taking into account the planet’s gravity. 
Rocketer takes two arguments: a rocket (as a Rocket object) and a planet (as a Ball object). Like 
Orbiter, Rocketer will extend the Forcer class and override the calcForce() method. But it will have 
to do much more work than Orbiter. The full source code is in Rocketer.as, and is fairly long. So we’ll 
dissect it and explain the important bits.  

Let’s first take a look at the constructor: 
 
public function Rocketer(procket:Rocket,pplanet:Ball):void{ 
        _rocket = procket; 
        _massPlanet = pplanet.mass; 
        _centerPlanet = pplanet.pos2D; 
        _radiusPlanetSquared = pplanet.radius*pplanet.radius; 
        pplanet.stage.addEventListener(KeyboardEvent.KEY_DOWN,startSideThrust); 
        pplanet.stage.addEventListener(KeyboardEvent.KEY_UP,stopSideThrust); 
        super(procket); 
} 

This looks familiar; it’s similar to what Orbiter did, except that we also now set up a couple of event 
listeners that call associated event handlers for detecting when the user presses the right and left arrow 
keys or releases them:  
 
                private function startSideThrust(evt:KeyboardEvent):void{ 
                        if (evt.keyCode==Keyboard.RIGHT){ 
                                _applySideThrust = true; 
                                _orientation = 1; 
                        } 
                        if (evt.keyCode==Keyboard.LEFT){ 
                                _applySideThrust = true; 
                                _orientation = -1; 
                        } 
                } 
 
                private function stopSideThrust(evt:KeyboardEvent):void{ 
                        _applySideThrust = false; 
                } 

Whenever the right or left arrow key is pressed and held down, the _applySideThrust Boolean variable 
is set to true; _applySideThrust reverts to false when the keys are released. This variable will control 
the thrust applied by the side thrusters. The private variable _orientation is given an integer value of +1 
or  –1 to distinguish between right and left key presses. 
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Rocketer overrides the moveObject() method of Forcer (as well as the calcForce() method). After 
invoking super.moveObject(), it calls a new private method updateMass(). It needs to do this because 
the mass of the rocket is changing. 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        updateMass(); 
                        rotateObject(); 
                        monitor(); 
                } 

The code in updateMass() checks whether there is any fuel left in the main and side thrusters; if so, it 
increments the mass of fuel used and decrements the mass of the rocket by the same amount. For the 
side thrusters, it also checks whether _applySideThrust is true: 
 

private function updateMass():void{ 
                        if (_fuelUsed < _fuelMass){ 
                                _fuelUsed += _dmdt*dt; 
                                _rocket.mass += -_dmdt*dt; 
                        } 
                        if (_fuelSideUsed < _fuelSideMass && _applySideThrust){ 
                                _fuelSideUsed += _dmdtSide*dt; 
                                _rocket.mass += -_dmdtSide*dt; 
                        } 
                } 

The rotateObject() method does just what its name suggests. It rotates the rocket so that it always 
points in the direction in which the rocket is moving:  
 

private function rotateObject():void{ 
    _rocket.rotation = _rocket.velo2D.angle*180/Math.PI + 90; 
         } 

We do this by calculating the angle of the velocity vector, using a new angle property that we added to the 
Vector2D class that returns the angle of a vector: 
 

public function get angle():Number{ 
          return Math.atan2(_y,_x); 

} 

The final method called in moveObject() is monitor(). This method does two things. First, it checks if all 
the fuel in the main tank has been used up and, if so, it calls the stopExhaust() public method of the 
rocket so that the exhaust does not show any more. The _showExhaust Boolean variable is used so that 
it needs to do this only once.  
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The second thing that monitor() does is to check whether the rocket collides with the planet; if so, it 
simply invokes the stopTime() method inherited from Mover, which stops the timestepping, freezing all 
motion:  
 

private function monitor():void{ 
                        if (_showExhaust && _fuelUsed >= _fuelMass){ 
                                _rocket.stopExhaust(); 
                                _showExhaust = false; 
                        } 
                        if (_rocket.pos2D.subtract(_centerPlanet).lengthSquared < 
_radiusPlanetSquared){ 
                                this.stopTime(); 
                        } 
                } 

Finally, in calcForce(), we specify the forces on the rocket and add them up as usual. The first force is 
the force of gravity that the planet exerts on it. Then there is the main thrust and side thrust. The main 
thrust is applied as long as there is fuel; the amount of fuel is set in the variable _fuelMass. The side 
thrust is applied if there is fuel and if _applySideThrust is true. In either case, the thrust is calculated 
using the formula F = –ve dm/dt. The amount of fuel, exhaust velocity, and mass rate are set 
independently for the main thrusters and the side thrusters. (In reality, the exhaust velocity and mass rates 
can be varied to control the thrust, but for simplicity we’ve taken them to be fixed here.) 
 
                override protected function calcForce():void{ 
                        var gravity:Vector2D = 
Forces.gravity(_G,_massPlanet,_rocket.mass,_rocket.pos2D.subtract(_centerPlanet)); 
                        var thrust:Vector2D = new Vector2D(0,0); 
                        var thrustSide:Vector2D = new Vector2D(0,0); 
                        if (_fuelUsed < _fuelMass){ 
                                thrust = _ve.multiply(-_dmdt); 
                        } 
                        if (_fuelSideUsed < _fuelSideMass && _applySideThrust){ 
                                thrustSide = _veSide.multiply(-_dmdtSide*_orientation); 
                        } 
                        force = Forces.add([gravity, thrust, thrustSide]); 
                } 

If you run the simulation, you’ll see that the rocket is launched automatically. It moves very slowly at first; 
then both its velocity and its acceleration increase until its fuel is used up. It then slows down under the 
gravitational pull of the planet. If you don’t do anything, it will fall back on to the planet. If you press the 
right or left arrow keys, a side thrust will be applied to the right or left, respectively. If you apply too much 
or too little side thrust, the rocket will either escape the planet’s gravity or be pulled back into a collision 
course with the planet. See if you can make the rocket orbit the planet! This involves applying the right 
amount of side thrust at the right time.  
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Figure 6-7. A rocket orbiting a planet! 

The Rocket class 
Finally, let’s take a quick look at the Rocket class that creates a visible rocket object. Embarrassingly, our 
“rocket” is simply a rectangle joined to a triangle, with another (transparent) triangle attached at the end to 
represent gases from the exhaust. But do please go ahead and create a better-looking version if you feel 
the urge to exercise your artistic skills at this point.  

Here is the full source code in Rocket.as: 
 
package { 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.objects.Triangle; 
 
        public class Rocket extends Particle{ 
                private var _width:Number; 
                private var _height:Number; 
                private var _color:uint; 
                private var _particle:Particle; 
                private var _exhaust:Triangle; 
 
                public function 
Rocket(pwidth:Number=20,pheight:Number=40,pcolor:uint=0x0000ff,pmass:Number=1,pcharge:Number=0
){ 
                        this.mass=pmass; 
                        this.charge=pcharge; 
                        _width=pwidth; 
                        _height=pheight; 
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                        _color=pcolor; 
                        _particle = new Particle(pmass,pcharge); 
                        drawRocket(); 
                } 
                private function drawRocket():void{ 
                        drawCapsule(); 
                        drawTank(); 
                        drawExhaust(); 
                        addChild(_particle); 
                } 
                private function drawCapsule():void{ 
                        var triangle:Triangle = new Triangle(0,0,_width,1.5*_width,_color); 
                        addChild(triangle); 
                } 
                private function drawTank():void{ 
                        with (_particle.graphics){ 
                                beginFill(_color,1); 
                                drawRect(0,0,_width,_height); 
                                endFill(); 
                        } 
                } 
                private function drawExhaust():void{ 
                        with (_particle.graphics){ 
                                _exhaust = new 
Triangle(0,_height+1.5*_width,_width,2.5*_width,_color,0.4); 
                                _particle.addChild(_exhaust); 
                        } 
                } 
                public function stopExhaust():void{ 
                        _particle.removeChild(_exhaust); 
                } 
                public function clear():void{ 
                        _particle.graphics.clear(); 
                        removeChild(_particle); 
                } 
                public function dropTank():void{ 
                        clear(); 
                } 
        } 
} 

Rocket extends Particle and draws a rocket using parameter values for width, height and color, 
supplied as arguments in the constructor. It does this in three separate stages through three aptly named 
private methods drawCapsule(), drawTank(), and drawExhaust(). Then there are additional public 
methods, including the stopExhaust() method mentioned earlier that removes the exhaust when the fuel 
runs out. 

It’s easy to see how this simple simulation can be developed into an interesting game. Besides improved 
graphics and special effects, you could add extra features and controls for greater realism. With this in 
mind, we need to point out that there are several limitations in the way we implemented some of the 
operational features of the rocket. For a simple Flash game, these limitations probably won’t be a big deal, 
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but they might well matter if you are trying to build a realistic simulator. In any case, it’s worth knowing 
about them.  

We already mentioned that we fixed the thrust of the rocket, although in reality it can be controlled by 
varying the speed of exhaust and the mass rate of the ejected gases. More importantly, the direction of the 
main and side thrust has been implemented in a way that is, strictly speaking, incorrect. The main thrust of 
a rocket acts along its axis no matter what the angle of the rocket is, and its side thrust will be at some 
specified angle relative to the rocket’s angle. What we did in this simplified simulation is to fix the main and 
side thrust to act in the vertical (y) and horizontal (x) directions, regardless of the inclination of the rocket. 
Another simplification is the way we handled the rotation of the rocket"by simply aligning it with the 
velocity vector. In reality, rocket rotation and stability is a much more complicated affair. We also neglected 
the effect of air pressure, drag, and lift when the rocket is moving in an atmosphere.   

Another obvious simplification we made is to put the whole rocket into orbit. In reality, space-borne rockets 
include one or more disposable tanks that are dropped when their fuel gets used up. With this in mind, we 
created a public dropTank() method in the Rocket class that basically makes the tank disappear. You 
might like to use dropTank() to create the illusion of the tank being detached from the rocket and falling 
back to Earth after its fuel is used up. Because the dropTank() method just makes the existing tank 
disappear, you’ll have to create a new one and make it fall under the planet’s gravity. We leave this as an 
exercise for you. The Rocket class could be enhanced functionally, too. For example, it might make sense 
to include the amount of fuel, fuel used, exhaust velocity, and mass rate as properties of Rocket instead of 
hard-coding them into Rocketer.   

Finally, the examples we coded in this chapter are realistic in that they contain the correct physics 
equations, but the values chosen for the various parameters are not necessarily to scale. For example, in 
the orbits simulation, the sizes of the planet and the sun are grossly exaggerated in comparison with their 
distances. This was necessary in order to see both the objects and their motion on a computer screen. 
Scaling issues are discussed in detail in Chapter 15.  

Summary 
This chapter showed you the richness and variety that the gravitational force can exhibit, and the different 
types of motion it can produce. In a fairly short chapter, you’ve been able to code up orbits, two objects 
moving in interesting ways under their mutual gravity, and a rocket simulation from launch to orbit.   

It’s amazing how much fun can be had with a just a few physics formulas and a little bit of code. You now 
have a taste of what can be done, even with a single force such as gravity. We’ll play more with gravity in 
later chapters. Meanwhile, we’ll introduce a whole lot of other forces in the next chapter.  
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Chapter 7 

Contact and Fluid Forces 

In the last chapter, we looked in some detail at gravity, which is a force that acts at a distance. Besides 
gravity, most of the forces that we encounter in our daily lives actually arise due to direct contact with other 
objects, either solids or fluids. Because on this planet we are usually in contact with a solid floor and are 
surrounded by fluid, either air or water, it is surely a good thing to know what forces they exert on things. 
This chapter will look at these forces.  

Specifically, these forces include the following: 

! Contact forces: Contact forces are forces that two solid objects exert on each other when in 
direct contact. Examples include normal forces, friction, and tension. 

! Pressure: Fluids exert pressure. Any object in the fluid experiences a force due to this fluid 
pressure. 

! Upthrust or buoyancy: Upthrust, also known as buoyancy, is the resultant pressure force 
experienced by a body that is partially or fully immersed in a fluid.  

! Drag: An object moving through a fluid experiences a retarding force that tends to oppose its 
motion. This is the drag force.  

! Lift: An object moving through a fluid may experience another force perpendicular to the direction 
of motion, known as the lift force. The lift force is what makes airplanes fly. 

! Wind: Although wind is not itself a force, it does exert a force on any object over which it blows. 
Wind also produces turbulence, which can cause an object to move erratically. 
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As this list indicates, these varieties of forces include interactions between solid objects as well as 
interactions between a solid object and a fluid, in both cases as a result of direct physical contact. But 
technically, the term contact force is reserved for a force that exists between two solid objects. Only the 
first section will deal with contact forces in this technical sense. Most of the chapter will then focus on 
forces exerted by fluids on solid objects. That’s partly because the latter are more complex but also 
manifest in a richer variety, with interesting features and effects. In looking at fluid forces, we’ll restrict our 
attention to forces that solid objects experience in a fluid. We do not consider the forces acting on the fluid 
and the effect these forces have on the fluid itself. Fluid motion is a more complicated problem and is not 
treated in this book. 

Here are just some of the things you’ll be able to simulate after reading this chapter: motion with friction, 
floating objects, bubbles, balloons, parachutes, lift forces, wind, and turbulence effects. You will also know 
most of the physics you need to build a submarine simulation (see Chapter 16). 

Contact forces 
Simply stated, a contact force is a force experienced by a solid object due to contact with another solid 
object. Pushing and pulling involve contact forces. So does running, or simply standing. Collisions involve 
large contact forces that operate for a very small duration.  

Normal contact forces 
Before we do anything else, it must be explained that the word normal here is meant in the mathematical 
sense of the word, which is perpendicular rather than the opposite of abnormal.  

When two solid objects are brought into contact, each of them exerts a normal force on the other that 
prevents them from merging together. The magnitude of the normal force depends on the force with which 
the two objects are pushed together. 

An example of a normal contact force is the reaction that the floor exerts on you. In fact, that force is why 
we are aware of our weight. Without the normal reaction from the floor (and therefore without the normal 
force), we would fall through the floor.  

Now, whenever we introduce a new force in this book, we’ll give you a way to calculate it. That’s how you 
can simulate it. If you cannot calculate a force, there is no point in talking about it! 

How do you calculate the normal force? It depends on the situation. Unlike for gravity, there is no universal 
formula that will tell you what the normal force is. Usually, you can deduce it from the other forces acting 
on the object.  

Here is an example. Consider a book resting on a flat horizontal table (see Figure 7-1). There are two main 
forces acting on the book: the force of gravity W = mg exerted by the Earth and acting vertically downward, 
and the normal contact force N exerted by the table on the book acting vertically upward (the normal 
contact force is usually denoted by N or R). Because the book does not move, the resultant force on it 
must be zero (Newton’s first law of motion). Therefore, we can deduce that the normal force N in this case 
is equal in magnitude to the weight W of the book.  
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The normal force will change if, for example, the table is tilted. You’ll see in an example how to calculate 
the normal force in such a case.  

N

W  

Figure 7-1. The normal contact force acting on a book resting on a table 

Tension and compression 
Tension in strings is another contact force. If you tie an object with a piece of string and then suspend the 
object by holding the other end of the string (see Figure 7-2), the string exerts a pull on the object that 
prevents it from falling down. The string can only do this if it is taut. By Newton’s third law of motion, the 
object exerts an equal and opposite force on the string. The force on the string is called tension. Informally, 
we also refer to the force that the string exerts on the object as tension. The effect of tension on the string 
itself is to stretch it slightly. If the object stops moving then the tension must be equal to the weight of the 
object. If the object is very heavy, the tension may stretch the string to breaking point.  

Springs also experience tension. Springs are designed so that large extensions are produced for relatively 
small tensions. Because a spring will tend to regain its normal length when stretched, it will pull back on 
the object that is stretching it. The opposite of tension is compression. Springs can also be compressed; 
they then exert a push on the object compressing them.  

Springs are both great fun and extremely useful for producing a variety of effects. In fact, the next chapter 
is devoted exclusively to springs and spring-like motion.  

T 

W  

Figure 7-2. Tension in a string 

Friction 
Frictional forces are forces that resist the relative movement of two bodies that are in contact or the 
movement of a body through a fluid. For example, if you push a book along a table, it will slow down and 
come to a stop. That’s because of the frictional force that the table surface exerts on it. The friction 
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between two solid objects is also called dry friction. Fluids such as air or water also exert a frictional force, 
known as viscous fluid drag.  

We’ll discuss fluid drag later in this chapter. In this section, we’ll look at dry friction between two solid 
objects and how we can model it.  

As discussed, friction is a force that resists the relative motion of two objects in contact with each other. 
This implies that the frictional force on an object will act in a direction opposite to its motion. But an object 
does not necessarily have to move in order to experience friction. If an object is experiencing a force that 
tends to move it against another object, it can also experience friction, even if it does not actually move. In 
fact, it is friction that stops it from moving. So there are actually two types of friction: friction experienced by 
a stationary object, and friction experienced by a moving object. We call them static and kinetic friction, 
respectively.  

Modeling static and kinetic friction  
We model both types of friction using the concept of a coefficient of friction. Let’s start with kinetic friction 
because it is a bit simpler.  

Common experience tells us that there will be more friction if we press two surfaces together while trying 
to slide one over the other. That’s because the two objects “stick together” more if pressed together. It’s 
also clear that the amount of friction will depend upon the material making up the object. Rubber, for 
example, would give more friction than glass. It should therefore come as no surprise to learn that the 
magnitude of the frictional force F is given by the following, where N is the normal force between the two 
objects and Ck is a number that depends on the two surfaces, known as the coefficient of kinetic friction: 

F =Ck N  

By Newton’s third law, a force of the same magnitude acts on both objects; for each object, the force acts 
in a direction to oppose its motion relative to the other object. Kinetic friction is also sometimes referred to 
as dynamic or sliding friction. 

Static friction is a bit different. Whereas the kinetic frictional force has just one value for a given pair of 
surfaces and normal contact force, the static frictional force can take on any value up to a maximum value. 
The maximum value is given by the following: 

Fmax = Cs N  

This is similar in form to the formula for kinetic friction, but with a different coefficient, known as the 
coefficient of static friction. Its value is usually larger than the corresponding value of Ck for the same two 
surfaces. Hence, the maximum static frictional force is larger than the kinetic frictional force. 

To understand static versus kinetic friction, consider the following thought experiment. Suppose you are 
pushing an object in contact with a surface. If the force you apply has a magnitude less than Fmax as given 
by the preceding formula, the frictional force will be equal to the applied force, so that the resultant force is 
zero and the object does not move. If you now push harder so that the applied force is larger than the 
value of Fmax, the frictional force will be equal to Fmax (because it cannot exceed that maximum value). 
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Therefore, the frictional force cannot completely balance the applied force, and the object will begin to 
accelerate under the resultant force. As soon as it starts moving, the frictional force will reduce to a value 
equal to the magnitude of the kinetic friction. Hence, the resultant force will suddenly increase, and the 
object will accelerate faster. If you’ve ever tried to move a piece of heavy furniture, you will readily 
appreciate this fact: it is easier to push once it’s already moving. That’s because kinetic friction is less than 
the maximum value of static friction.  

Coefficients of friction  
Some examples of coefficients of friction are given in Table 7-1. The key point is that the values are 
generally less than 1. It is very rare for the coefficient of friction to be larger than 1 because that would 
imply a frictional force larger than the normal contact force holding the two objects together.  

Note that although the values are representative of the materials cited, actual coefficients of friction may 
vary due to the nature of the surface of actual objects. For game programming purposes, this does not 
present a big problem.  

It is impossible to give a comprehensive list of friction coefficients; but if what you need is not listed here it 
should be easy to find it online.  

Table 7-1. Static and Kinetic Coefficients of Friction 

Materials Cs Ck 

Wood on wood 0.25–0.5  0.2 

Steel on steel 0.74 0.57 

Rubber on concrete 1.0 0.8 

Glass on glass 0.94 0.4 

Ice on ice 0.1 0.03 

Example: Sliding down a slope 
Time for an example! You can now apply what you learned about normal contact forces and friction to 
simulate an object sliding down an inclined plane. First, let’s apply the physics concepts to this particular 
example.  

The physics 
The force diagram for this simulation is shown in Figure 7-3. As indicated on the diagram, there are three 
forces acting on the object: gravity mg, normal contact force N, and friction f. Because the object moves in 
a straight line along the surface, the resultant force acts along the surface. There is no resultant force 
perpendicular to the surface.  
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Therefore, resolving the forces along the surface gives the magnitude of the resultant force F as follows, 
where # is the angle of the inclined plane:  

F = mgsin θ( ) − f  

Resolving forces perpendicular to the surface must give a zero resultant, so that the normal contact force 
N is balanced by the component of gravity perpendicular to the surface. Note that friction f acts along the 
surface, so its component perpendicular to the surface is zero. Hence, N = mgcos θ( )  

The magnitude of the frictional force f is given by the following when the object is moving: 

f = Ck N  

If it is not moving, the resultant force F along the surface must be zero, so f has to balance the component 
of gravity along the surface. From the preceding equation, setting F = 0 gives this: 

f = mgsin θ( )  

It will be true up to a maximum value of the following: 

f = Cs N  

If the value of the gravity component (mg sin (#)) exceeds this critical value (Cs N), f will have the latter 
value, at least momentarily. As soon as the object starts moving, f will have the value Ck N. 

θ

N

mg sin q 

f  

mg 

mg cos q 

 

Figure 7-3. Force diagram for an object sliding down an inclined plane 

Now that you know the physics and have the relevant formulas, you can start coding. This will be a two-
step process, pretty similar to what you did in the last chapter. First, you’ll create the visual setup; then 
you’ll put together in a separate class the code that drives the simulation.  

Creating the visual setup 
The visual setup file is called SSliding.as. Here is the code in that file: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
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        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class Sliding extends Sprite{ 
                public function Sliding():void{ 
                        init(); 
                } 
                private function init():void{ 
 
                        // create a ball 
                        var ball:Ball; 
                        ball = new Ball(20,0x0000ff,1); 
                        ball.pos2D = new Vector2D(50,130); 
                        ball.velo2D = new Vector2D(0,0); 
                        addChild(ball); 
 
                        // create an inclined plane 
                        var xtop:Number=50; 
                        var ytop:Number=150; 
                        var xbot:Number=450; 
                        var ybot:Number=250; 
 
                        var surface:Sprite = new Sprite; 
                        with (surface.graphics) { 
                                lineStyle(1,0x333333,1); 
                                moveTo(xtop,ytop); 
                                lineTo(xbot,ybot); 
                        } 
                        addChild(surface); 
 
                        // make the ball move 
                        var angle:Number = Math.atan2(ybot-ytop,xbot-xtop); 
                        var mover:ObliqueMover = new ObliqueMover(ball,angle); 
                        mover.startTime(10); 
                } 
        } 
} 

This code should look very familiar. We create a ball and a line, and place the ball on the line. Then we 
work out the angle of the line using the end points and the Math.atan2() function. If you are unsure about 
what is happening here, take a look at the subsection “The inverse trig functions” in Chapter 3 again. 
Finally, we make the ball move down the inclined line using the yet-to-be-created ObliqueMover class, 
passing the ball and the angle of the line as parameters in its constructor.  

Making things move 
The structure of the ObliqueMover class should also look familiar to you. Here is the full code:  
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
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        import flash.display.Sprite; 
 
        public class ObliqueMover extends Forcer{ 
                private var _particle:Particle; 
                private var _angle:Number; 
                private var _g:Number=10; 
                private var _ck:Number=0.2; 
                private var _cs:Number=0.25; 
                private var _vtol:Number=0.000001; 
 
                public function ObliqueMover(pparticle:Particle,pangle:Number):void{ 
                        _particle = pparticle; 
                        _angle = pangle; 
                        super(pparticle); 
                } 
 
                override protected function calcForce():void{ 
                        var gravity:Vector2D = Forces.constantGravity(_particle.mass,_g); 
                        var normal:Vector2D = Vector2D.vector2D(_particle.mass*_g*Math.cos! 
(_angle), 0.5*Math.PI-_angle,false); 
                        var coeff:Number; 
                        if (_particle.velo2D.length<_vtol){  // static friction 
                                coeff = Math.min(_cs,_particle.mass*_g*Math.sin(_angle));  
                        }else{  // kinetic friction 
                                coeff = _ck;  
                        } 
                        var friction:Vector2D = normal.perp(coeff); 
                        force = Forces.add([gravity, normal, friction]); 
                } 
        } 
} 

All the code for the simulation is now in place, but if you go ahead and run it you won’t see anything 
moving yet. We’ll explain what to do to make that happen shortly. But before doing so, we’ll explain what 
the code is doing. 

ObliqueMover extends Forcer, as you expect. The constructor passes the particle and angle parameters 
to private variables _particle and _angle, respectively and then invokes the constructor of Forcer with 
the particle as a parameter. ObliqueMover then overrides the calcForce() method as usual, calculating 
the three relevant forces gravity, normal, and friction at each timestep and then adding them up to 
get the resultant force by using the Forces.add() method. The calculation of the normal and friction 
forces requires explanation. For the normal force, we are using a new method of Vector2D called 
vector2D(), which is defined as follows: 
 

static public function vector2D(mag:Number, angle:Number,clockwise:Boolean=true):Vector2D{ 
        var vec:Vector2D = new Vector2D(0,0); 
        vec.x = mag*Math.cos(angle); 
        vec.y = mag*Math.sin(angle); 
        if (!clockwise){ 
                vec.y *= -1; 
        } 
        return vec; 
} 
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This method takes two required Number arguments, mag and angle (in radians), and an optional Boolean 
argument clockwise, and returns a Vector2D object which is a 2D vector with the specified magnitude 
and angle. It does this by converting from the (magnitude, angle) representation to the component 
representation of a vector (refer to the section “Resolving vectors,” in Chapter 3). The clockwise 
parameter tells vector2D() whether the angle is taken in a clockwise direction (the default) or in an 
anticlockwise direction.  

Using the previous formulas and Figure 7-3, we know that the magnitude of the normal force is equal to 
mg cos (#), and its angle is equal to π/2 – # (that’s 90° – #, in radians) taken in an anticlockwise sense. 
Therefore, the normal force is given by this: 
 
normal = Vector2D.vector2D(_particle.mass*_g*Math.cos(_angle), 0.5*Math.PI-_angle, false); 

The friction force is perpendicular to the normal force and has a magnitude of coeff*N, where coeff is 
the coefficient of friction and N is the magnitude of the normal force. It is therefore given by the following, 
where perp() is another new method we created in the Vector2D class (which we shall describe shortly) 
and coeff is equal to Ck N when the object starts moving; and is equal to mg sin (#), up to a maximum of 
Cs N, when the object is not moving: 
 
var friction:Vector2D = normal.perp(coeff); 

This is implemented in the following way: 
 
if (_particle.velo2D.length<_vtol){  // static friction 
        coeff = Math.min(_cs*normal.length,_particle.mass*_g*Math.sin(_angle));  
}else{  // kinetic friction 
        coeff = _ck*normal.length;  
} 

Note that we make use of the Math.min() function to implement the fact that for static friction, coeff is 
either equal to mg sin a, or Ck N, whichever is smaller. 

The perp() method of Vector2D is defined like this: 
 

public function perp(u:Number,anticlockwise:Boolean=true):Vector2D{ 
                        var vec:Vector2D = new Vector2D(_y, -_x); 
                        if (length > 0) { 
                                if (anticlockwise){ 
                                        vec.scaleBy(u/length); 
                                }else{ 
                                        vec.scaleBy(-u/length); 
                                } 
                        }else{ 
                                vec=new Vector2D(0,0); 
                        } 
                        return vec; 
                } 

This definition implies that if vec is a Vector2D object, and k is a number, vec.perp(k) returns a 
Vector2D object that is perpendicular to vec and of length k, with an anticlockwise orientation to vec (in 
the Flash coordinate system). Refering to Figure 7-4, which shows a screenshot of the setup, 
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normal.perp(coeff)therefore gives a vector of magnitude coeff directed up the slope, just as the 
frictional force should be.  

 

Figure 7-4. An object sliding down a slope 

When checking to see if the object is not moving, we don’t actually check that its velocity is zero but that 
it’s smaller than some small value _vtol (set at 0.000001 in the code). The value of _g is set at 10 and, 
taking both the sliding object and the surface to be made of wood, we choose _ck = 0.2 and _cs = 
0.25. 

If you run the code with the given choice of values for the parameters, you’ll see that nothing happens. The 
object just stays there. How can this be? To understand this, take a look again at Figure 7-3. It is clear that 
the object can slide only if the component of gravity along the slope exceeds the maximum static friction. 
In other words, it will slide if the following condition is true: 

mgsin θ( ) >Cs N  

Because N = mg cos (#), this is equivalent to the following: 

mgsin θ( ) > Cs mgcos θ( )  

Dividing both sides of this inequality by mg cos (#) gives you this: 

tan θ( ) > Cs  
So the object will slide only if the tangent of the slope angle is greater than the coefficient of static friction.  

 

 

 



Contact and Fluid Forces 

191 

Now you can calculate tan (#) from the values of xtop, ytop, xbot, and ybot as follows: 

tan θ( ) = ybot − ytop
xbot − xtop

= 250 −150
450 − 50

= 0.25  

This is exactly equal to the value of Cs specified in the code. Therefore, gravity is not sufficient to 
overcome the force of friction, and the object does not slide. If you increase the angle of the slope slightly, 
the object will slide. For example, if you change the value of ybot to 260, this will give tan (#) = 110/400 = 
0.275, which is larger than the value of Cs.  

In this example, the object slides along a surface without rolling. Rolling involves rotational motion of a 
rigid body (it will be discussed in Chapter 13). 

Pressure 
The rest of this chapter will deal with forces that originate from pressure, more specifically fluid pressure. 
Technically, pressure is associated with solids as well as liquids and gases. But the concept is especially 
useful in relation to fluids, so it tends to be associated more with liquids and gases. 

The meaning of pressure 
So what is pressure? It is the normal (perpendicular) force per unit area exerted on the surface of an 
object. The origin of that perpendicular force can be different in different cases. Pressure due to solids and 
liquids is usually due to the force of gravity. Pressure in gases is due to collisions by gas molecules.  

The key question is this: how can we calculate pressure and thus the forces on an object in a fluid? Once 
we can do that, we can try to simulate the motion of an object in a fluid.  

Based on this definition of pressure, if a force F acts normally to a surface with area A, the average 
pressure P on the surface is given by the following: 

P = F
A  

Because pressure is force divided by area, its unit is N/m2. This unit has a special name: the pascal, Pa.  

What if F acts at an angle to the normal? Then you need to resolve F to find the component along the 
normal, and that normal component is what you use in the preceding formula. This gives us a method for 
calculating the pressure if we know the force, and vice versa.  

Pressure is not restricted to fluids (although fluid pressure will be our main concern in this chapter), and it 
is actually easier to introduce the method of calculating pressure using a simple illustrative example of a 
solid object. 

Suppose that a cuboid (box) of length l, width w, height h, and mass m sits on a table (see Figure 7-5). 
What is the pressure it exerts on the table? 
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W 

 

Figure 7-5. A box sitting on a table  

The force it exerts on the table is equal to its weight, and that force is perpendicular to the table surface, so 
we have F = mg. The area A = lw. Hence, the pressure P is given by this: 

P = mg
A

= mg
lw  

Density 
We can make some more progress by introducing the concept of density.  

Density is defined as mass per unit volume. Density gives you a way of comparing the relative “heaviness” 
of different substances"take the same volume of each substance and compare how much each weighs.  

We use the Greek symbol ρ (“rho”) for density. So, based on the definition, we can write: 

ρ = m
V  

Because density is a mass divided by a volume, its unit is kg/m3. Because things expand when heated, 
especially liquids and gases, the density of a fluid varies with temperature (and also with pressure). At 
20°C and standard atmospheric pressure, the density of water is approximately 1000 kg/m3, and that of air 
is approximately 1.2 kg/m3. That means a box measuring 1m x 1m x 1m (of volume 1m3) would hold 1000 
kg (1 ton) of water and 1.2 kg of air.  

Manipulating the above formula gives this: 

m = ρ V  

It also gives this: 

V = m
ρ  

We’ll use these formulas frequently in the rest of this chapter.  
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Just like pressure, the concept of density applies to solids as well as liquids. Going back to the preceding 
illustrative example of the cuboid, we can replace the mass m in the formula for pressure by using m = ρV 
= ρlwh because the volume of the cuboid is V = lwh: 

P = mg
lw

= ρlwhg
lw

= ρgh  

This is a very useful formula. It gives the pressure exerted by a regular object (in this case, a cuboid) on a 
surface in terms of three known quantities: the density of the object, the acceleration due to gravity, and 
the height of the object. Note that we could have used another shape other than a box, as long as it had 
regular cross-section A. The area A would cancel out in the same way, leaving the same formula: P = ρgh. 

In the next section, we’ll find that this formula is actually even more general, and also applies to the 
pressure exerted by fluids, provided that we reinterpret h. 

Variation of pressure with depth in a fluid 
Instead of a solid, now consider a column of liquid of the same shape as the solid in the last section.  

Exactly the same math applies, and we again end up with the following, where P is the pressure 
underneath the column of fluid, ρ is the density of the fluid, and h is the height of the fluid column: 

P = ρ g h  

Now mentally transport yourself to the ocean. 

At a depth h beneath the sea surface, there is a column of water of height h above. Hence, the pressure at 
depth h below the surface is given by the same formula: 

P = ρ g h  

Note that this is the pressure due to the water only. There is also an additional pressure due to the air 
above the water surface. This is atmospheric pressure, which we can denote by A. Then the total pressure 
at a depth h in the ocean is A + ρgh, assuming the density of water is constant with depth. This formula 
shows that pressure in a fluid increases with depth, which makes perfect sense because there is more 
fluid above that is “weighing down.”  

The same is true in the atmosphere, too. The air pressure we feel at the surface of the Earth is due to the 
column of air above our heads. Standard atmospheric pressure is approximately 100 kPa, or 100,000 Pa. 
This is sometimes simply called 1 atmosphere (atm).  

Because the density of water is 1000 kg/m3, and g is approximately 10 m/s2, using the formula P = ρgh 
tells us that 10 m of water will exert approximately the same pressure as 1 atm. So, at an ocean depth of 
10 m, the pressure will be 2 atm, including the pressure of the air above.  



Chapter 7 

194 

Static and dynamic pressure 
So far, when we talked about pressure in a fluid, we’ve been referring to static pressure. The formula P = 
ρgh applies to static pressure. Static pressure is defined at any point in a flow, and it is isotropic; that is, it 
has the same value in any direction. It exists even in static fluids (fluids that are at rest). 

In a moving fluid, there is another kind of pressure, known as dynamic pressure. Dynamic pressure is due 
to the flow of fluid. For example, the flow of water from a tap gives rise to dynamic pressure. When the 
water hits the sink, it exerts a force on the sink. Similarly, the wind exerts a force due to the dynamic 
pressure associated with it. The formula for the dynamic pressure at any point in a fluid is the following, 
where v is the velocity of the fluid at that point: 

P = 1
2

ρ v2
 

The same is true for an object moving with velocity v in a fluid; it’s the relative velocity between the object 
and the fluid that matters. 

The total pressure in a moving fluid is the sum of the static and the dynamic pressure.  

Upthrust (buoyancy) 
After this background on pressure and density, we are now ready to introduce the forces due to fluids. So 
let’s start with upthrust, also known as buoyancy.  

Here is a simple experiment for you to do in the bath. Try pushing a hollow ball under water. What do you 
feel? You should feel a force trying to push the ball back upward. This is the upthrust force. Now let go of 
the ball. What happens? It pops back up and oscillates at the water surface before settling down. You will 
create such an effect soon.  

Upthrust is also responsible for making us feel lighter in the swimming pool or bath. It acts upward, 
opposing the force of gravity.  

What causes upthrust? The physical origin of upthrust is the difference in pressure that exists at different 
heights in a fluid. To see what we mean, take a look at Figure 7-6a, which shows an object partially 
immersed in a fluid such as water. The pressure on the top face of the object is equal to atmospheric 
pressure A and pushes the object downward, while the pressure on the bottom surface is equal to A + 
ρgh, where ρ is the density of the fluid, and h is the depth to which the object is submerged. This pressure 
acts upward, so that there is a net upward pressure equal to ρgh. Hence, because force = pressure x 
surface area, there is a resultant upward force U due to this pressure difference given by the following 
(where S is the area of the top and bottom faces of the object"taken to be equal here for simplicity): 

U = ρ g h S  

This is the upthrust or buoyancy force.  
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Note that because pressure is isotropic, it also acts on the sides of the object. But the pressures on 
opposite sides are equal and opposite at each height, so their effects are cancelled. Similar conclusions 
hold if the object is completely immersed in a fluid (see Figure 7-6b), including objects in air. That’s 
basically because pressure increases with depth in a fluid, so the pressure at the base of a submerged 
object will always be greater than that at its top. So there will be a net upward pressure on the object due 
to the fluid.  

ba  

Figure 7-6. An object immersed in a fluid experiences upthrust due to a pressure difference 

Archimedes’s Principle 
Let’s revisit the last formula we derived in the last section. The magnitude of the upthrust U was found to 
be given by U = ρghS. Now h is the height of the submerged portion of the object and S is its cross-
sectional area (which we assume to be constant for simplicity). Hence, hS is equal to the volume V of the 
submerged portion of the object. So we can write this: 

U = ρ ghS = ρ gV  

But then ρV = m, the mass of the fluid whose place has been taken by the submerged portion of the 
object, so we can now write this: 

U = mfluid g  

This is just the weight of the displaced fluid. Hence, we have derived Archimedes’s principle:  

Archimedes’s principle: The upthrust on an object immersed in a fluid is equal to the 
weight of fluid it displaces. 

Archimedes was an ancient Greek scientist, mathematician, and all-round genius. According to legend, 
upon discovering this principle, he jumped out of his bath shouting “Eureka!”, which means “Found it!”  
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Apparent weight 
Upthrust leads to the phenomenon of apparent weight. Figure 7-7 illustrates the concept. Any object that is 
partially or completely immersed in a fluid will experience an upward upthrust force U that opposes the 
downward force of gravity W on it.  

Hence, the apparent weight of the object is given by 

Wapparent =W −U .  

U 

W 
 

Figure 7-7. Upthrust reduces the apparent weight of an object to W – U  

The phenomenon of apparent weight is responsible for why we feel lighter in the bath or a swimming pool. 
Exploiting the apparent weight effect, astronauts train while submerged in a giant water tank to simulate 
reduced or zero gravity.  

Submerged objects 
Objects that are completely immersed (submerged) in a fluid obviously displace their own volume of fluid.  

The apparent weight of a completely immersed object can therefore be written as follows because both the 
object and the displaced fluid have the same volume V: 

Wapparent =W −U = mobject g −mfluid g = ρobject V g − ρfluid V g  

It can therefore be written in the following form: 

Wapparent = ρobject − ρfluid( )V g  

This is a very useful formula that gives the resultant downward force, or apparent weight, of an object 
submerged in a fluid in terms of their densities and the volume of the submerged object. 

From this formula, we can deduce: 

! If the density of the object is greater than that of the fluid, the apparent weight will be positive (i.e. 
downward) but less than the real weight. You can experience this lower apparent weight in the 
bath or a swimming pool. 
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! If the density of the object is much larger than that of the fluid, the apparent weight is nearly equal 
to the real weight because the upthrust is negligible compared to the weight of the object. For 
example, the upthrust on a stone in air can usually be neglected. 

! If the density of the object is exactly equal to that of the fluid, the apparent weight will be zero, 
and so the object will float in the fluid.  

! If the density of the object is less than that of the fluid, the apparent weight is negative (it acts 
upward) and so the object will rise. For example, air bubbles in water have a very large upthrust 
compared with their weight due to the density of air being much lower than that of water, hence 
they rise quickly.  

Floating objects 
A special form of Archimedes’s principle applies for floating bodies. This is the so-called law of flotation.  

Law of flotation: A floating object displaces its own weight of fluid. 

Here’s the logic. A floating body has no net force acting on it; otherwise, it would either rise or sink. 
Because the only two forces acting on it are its weight and upthrust, they must balance. Hence, the 
upthrust on a floating body must equal the weight of the body. By Archimedes’s principle, this implies that 
the weight of fluid displaced is equal to the weight of the body. So the apparent weight of a floating object 
is zero"it “feels weightless.” 

As discussed previously, this is also the situation when a body is submerged in a fluid with a density equal 
to the body’s own density. In fact, an object that is floating on the surface of a liquid, such as a ship on 
water, has an “effective density” that is the same as that of the water, even though it may be made of 
metal with a higher density than that of water. That’s because the part of the ship below the water surface 
also includes air enclosed within the ship’s interior, which lowers its average density.  

Example: Balloon 
We’ve had a fair bit of theory, so let’s look at an example. This example (shown in Figure 7-8) simulates a 
simple hot-air balloon. Hot-air balloons work, well, by heating air. The heated air has a density less than 
that of the ambient air, so it rises. By controlling the temperature of the air in the balloon, you can control 
its density and therefore the upthrust on it. 

The setup code for this simulation is found in Balloon.as, and is very simple: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class Balloon extends Sprite{ 
                public function Balloon():void{ 
                        init(); 
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                } 
                private function init():void{ 
 
                        // create a balloon 
                        var balloon:Ball; 
                        balloon = new Ball(20,0x0000ff,1); 
                        balloon.pos2D = new Vector2D(400,500); 
                        balloon.velo2D = new Vector2D(0,0); 
                        addChild(balloon); 
 
                        // make the balloon rise 
                        var riser:Riser=new Riser(balloon); 
                        riser.startTime(10); 
                } 
        } 
} 

We simply create a balloon as a Ball object, we make it rise using the Riser class, passing the balloon 
object as a parameter.  

You could probably write the code for Riser without too much help by now. Here is a basic code that 
subjects the balloon to gravity and upthrust:  
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
 
        public class Riser extends Forcer{ 
                private var _particle:Particle; 
                private var _g:Number=10; 
                private var _rho:Number=1.2; 
                private var _rhoP:Number=1.1; 
                private var _V:Number; 
 
                public function Riser(pparticle:Particle):void{ 
                        _particle = pparticle; 
                        super(pparticle); 
                } 
 
                override protected function calcForce():void{ 
                        var gravity:Vector2D = Forces.constantGravity(_particle.mass,_g); 
                        _V = _particle.mass/_rhoP; 
                        var upthrust:Vector2D = Forces.upthrust(_rho,_V,_g); 
                        force = Forces.add([gravity, upthrust]); 
                } 
        } 
} 

Nothing new here in terms of the code structure. Riser extends Forcer and overrides the calcForce() 
method, specifying two forces (gravity and upthrust) and then adds them up. The upthrust is calculated 
using the newly created Forces.upthrust() static function that basically uses the formula U = ρgV, 
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where ρ (variable _rho) in the code is the density of the fluid and V (variable _V in the code) is the volume 
of air displaced. This is the volume of the balloon because it is completely immersed in air. So _V is 
calculated using the mass of the balloon and its effective density _rhoP, using the formula volume = 
mass/density. The effective density _rhoP is the density of the whole balloon, including any load it carries 
(not just the density of the air in it).  

The critical parameter in the simulation is the ratio of the balloon density to ambient air density 
_rhoP/_rho. If the effective balloon density _rhoP is smaller than the air density _rho (that ratio is smaller 
than 1), the balloon will rise. If _rhoP is larger than _rho, it will sink.  

 

Figure 7-8. Simulating a hot-air balloon 

To make the simulation more interactive, we’ve also included some code in Riser.as so that you can 
increase and decrease the density _rhoP of the balloon by pressing the up and down arrow keys, 
respectively. The code traces out the value of the ratio (_rhoP/_rho) whenever _rhoP is changed. See if 
you can make the balloon rise and then remain stationary at some height.  

There is something missing in this simulation. The balloon rises too fast; it basically accelerates under the 
effect of the excess upthrust force, so its upward velocity keeps on rising. In reality, it will be slowed down 
by drag. So let’s take a look at how we can include drag effects.  

Drag 
Trying to model drag can prove somewhat confusing for someone who is not familiar with fluid dynamics. 
One reason is because there is not just one, but several types of drag. Depending on the object and flow 
you are simulating, you might need to consider different types of drag.  

Another source of difficulty is that a lot of what we know about drag is based on empirical work. The laws 
of drag were discovered by doing lots of experiments, and not as part of a beautiful universal theory like 
gravity.  

The bottom line is that you will bump into formulas that were developed from experimental results that you 
just have to accept without argument.  
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For most of what we’ll do in this book, we’ll use one of two drag laws: one that holds for low velocities (or 
so-called laminar flow) and another (more common) one that holds for higher velocities (or so-called 
turbulent flow).  

Drag law for low velocities 
For an object moving through a fluid at very low velocities, the flow around the object is laminar, or 
streamlined. This generates relatively low drag. The drag force then obeys Stokes’s law, which says that 
the drag force is proportional to the velocity of the object. For a spherical object, the Stokes’s drag formula 
is the following, where r is the radius of the sphere and the Greek letter η denotes a property of the fluid 
known as viscosity (more precisely, dynamic viscosity): 

F = − 6 π η r v  

Note that dynamic viscosity is also denoted by the Greek letter &. The viscosity of a fluid is a measure of 
the resistance it offers to objects moving through it. Intuitively, it represents the “thickness” of the fluid. So 
the viscosity of water is higher than that of air, and the viscosity of oil is higher than that of water. 
Therefore, an object moving at the same velocity through water experiences a larger drag force than 
through air. The formula also tells us that a larger object experiences more drag because the parameter r 
is greater for a larger object.  

To use this formula in an accurate simulation, you need to know the viscosity of the fluid in which your 
object is moving. Like density, viscosity depends on temperature. At 20°C, the dynamic viscosity of water 
is 1.0 ! 10-3 kg/(ms), and that of air is 1.8 ! 10-5 kg/(ms)"about 55 times smaller.  

In coding up this drag force, we will lump together all the factors multiplying the velocity into a single factor 
denoted by k, so that the linear drag law becomes the following, where k = 6πηr for a sphere: 

F = −k v  

Writing the linear drag law in this form is in fact more general because it then also applies to other, non-
spherical objects, for which k is not given by this formula. By choosing suitable values for k, we can model 
the linear drag force on objects of any shape.  

This is basically the form of drag that we coded up into the Forces.linearDrag() function back in 
Chapter 5:  
 
static public function linearDrag(k:Number,vel:Vector2D):Vector2D { 
        var force:Vector2D; 
        var velMag:Number=vel.length; 
        if (velMag>0) { 
                force=vel.multiply(-k); 
        }else { 
                force=new Vector2D(0,0); 
        } 
        return force; 
} 
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Drag law for high velocities 
Stokes’s drag law holds only for low velocities. At higher velocities, the flow around the immersed object 
becomes turbulent, generating eddies that disturb the flow and make it chaotic. The drag force law is then 
different from that of laminar flow and is proportional to the square of the velocity of the object. The drag 
formula is given by the following, where ρ is the density of the fluid; A is the area of the frontal area of the 
object (the area on which the fluid impacts as the object moves through it); and Cd is a parameter called 
the drag coefficient, which depends on characteristics of the object such as its shape, surface properties, 
and characteristics of the flow: 

F = − 1
2

ρ A Cd v v  

Note that the formula involves the product of the velocity v with its magnitude v. This gives a vector of 
magnitude v2 in the direction of v. Hence, the drag force law is quadratic in the velocity, with a magnitude 
given by this: 

F = 1
2

ρ A Cd v2
 

In this form, it is clear that quadratic drag depends on dynamic pressure P = ½ ρv2, and indeed we can 
write this: 

F = P A Cd  

As mentioned previously, the drag coefficient Cd can depend on a large number of factors. Its value is 
found by experiment for particular objects and setups. For example, the drag coefficient of a sphere can 
range from 0.07 to 0.5. Similarly, you can find the drag coefficients for a large number of object shapes 
(both in 2D and in 3D) in physics or engineering textbooks or websites.  

As for the laminar drag formula, we’ll simplify the previous formula by defining a drag constant k for high 
velocities as the following: 

k = 1
2

ρ A Cd  

So the drag law for high velocities can be written in this form: 

F = −k v v  

We now define a second drag force function in the Forces class called drag(), which looks as follows: 
 
static public function drag(k:Number,vel:Vector2D):Vector2D { 
        var force:Vector2D; 
        var velMag:Number=vel.length; 
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        if (velMag>0) { 
                force=vel.multiply(-k*velMag); 
        }else { 
                force=new Vector2D(0,0); 
        } 
        return force; 
} 

Which drag law should I use? 
We have described two drag laws, linear and quadratic, saying the former applies at low velocities and the 
latter at high velocities. But so far we’ve been rather vague about what “low” and “high” mean. What is the 
“critical velocity” that distinguishes between low and high? 

To answer this question, we introduce the concept of Reynolds number of a flow. In simple terms, the 
Reynolds number tells us whether a flow is laminar or turbulent. Therefore it tells us, among other things, 
whether a linear or a quadratic drag law applies. The Reynolds number, denoted by the symbol Re, is 
defined by the following equation, where u is a characteristic velocity associated with the flow, d is a 
characteristic length scale, and the Greek symbol ! (“nu”) is the so-called kinematic viscosity of the fluid:  

Re = u d
ν  

The kinematic viscosity is defined as the ratio of the dynamic viscosity and the density of the fluid: 

ν = µ
ρ  

Using the values of dynamic viscosity and density given before, we can deduce that at 20°C the kinematic 
viscosity of water is 1.0 ! 10-6 m2/s and that of air is 1.5 ! 10-5 m2/s. 

The choice of what velocity u and what length scale d to use to calculate the Reynolds number depends 
on the problem. For an object such as a sphere moving in a fluid, u is just the velocity of the object and d is 
a linear dimension (the diameter for a sphere).  

Now it is found experimentally that laminar flow dominates and therefore Stokes’s law for linear drag holds 
when the Reynolds number is much less than 1. Using the formula for the Reynolds number and setting 
Re = 1, this implies that the critical velocity that determines which drag law applies is given by 

 uc ≈ ν
d  

If the velocity of the object is much less than this critical value vc, the drag law is linear; if it is much larger 
than vc, the drag law is quadratic. If the velocity is intermediate between those two limits, a combination of 
both laws can be used.  
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As an example, the diameter of a soccer ball is 22 cm, or 0.22 m. Using the values of the kinematic 
viscosity of water and air given previously, we deduce that the critical velocity for such a ball is 0.1 mm/s in 
water and 1.5 mm/s in air (yes, those are in millimeters per second). These are tiny velocities, so for all 
practical purposes you can assume that a ball this size moving in water or air will always obey a quadratic 
drag law. This also applies to most everyday objects moving at normal velocities in air or water. 

On the other hand, a ball bearing of diameter 1 mm falling in glycerin (which has a kinematic viscosity of 
1.2 ! 10-3 m2/s at 20°C) has a critical velocity of 1.2 m/s. That’s a much larger critical velocity. The 
maximum velocity that the ball bearing reaches (its terminal velocity) is much less than this. Therefore, the 
linear drag law applies in this case.  

Adding drag to the balloon simulation 
As shown in the last section, the drag law that is appropriate for most everyday objects moving in air or 
water is the quadratic drag law, as coded up in the Forces.drag() function. It is a very simple matter to 
add drag to the last example of the balloon simulation. We simply update calcForce() as follows: 
 
override protected function calcForce():void{ 
        var gravity:Vector2D = Forces.constantGravity(_particle.mass,_g); 
        _V = _particle.mass/_rhoP; 
        var upthrust:Vector2D = Forces.upthrust(_rho,_V,_g); 
        var drag:Vector2D = Forces.drag(_k,_particle.velo2D); 
        force = Forces.add([gravity, upthrust, drag]); 
} 

The new private variable _k is the drag constant k. In the sample code provided, we give it the value of 
0.01. If you run the simulation with these modifications, you’ll see that the balloon no longer rises at an 
accelerating rate. The addition of the drag force slows down its ascent, and the effect is more realistic.  

Example: Floating ball 
Let’s build another simulation from scratch to illustrate the effect of drag, together with upthrust and 
gravity. We’ll simulate the motion of a ball that is thrown, dropped, or released in water.  

The main code is in the file FloatingBall.as and should once again look familiar to you:  
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class FloatingBall extends Sprite{ 
                public function FloatingBall():void{ 
                        init(); 
                } 
                private function init():void{ 
 
                        // create a ball 
                        var ball:Ball; 
                        ball = new Ball(20,0x0000ff,1); 
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                        ball.pos2D = new Vector2D(50,50); 
                        ball.velo2D = new Vector2D(40,-20); 
                        addChild(ball); 
 
                        // create water 
                        var water:Sprite = new Sprite; 
                        with (water.graphics) { 
                                beginFill(0x00ffff,0.5); 
                                drawRect(0,100,stage.stageWidth,stage.stageHeight-100); 
                                endFill(); 
                        } 
                        addChild(water); 
 
                        // make the ball move 
                        var floater:Floater=new Floater(ball); 
                        floater.startTime(10); 
                } 
        } 
} 

First, we create a Ball instance and set its position and velocity. Then we create a bluish filled rectangle 
to represent water, setting its alpha property to 0.5, so that you can see the ball through it. The rectangle 
is positioned so that its upper edge, representing the water level, is at y = 100. Finally, the ball is moved by 
instantiating a Floater class and calling its startTime() method.  

This is what the Floater class looks like: 
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
        import flash.events.MouseEvent; 
 
        public class Floater extends Forcer{ 
                private var _particle:Particle; 
                private var _g:Number=10; 
                private var _rho:Number=1.5; 
                private var _V:Number=1; 
                private var _k:Number=0.01; 
                private var _yLevel:Number=100; 
 
                public function Floater(pparticle:Particle):void{ 
                        _particle = pparticle; 
                        _particle.addEventListener(MouseEvent.MOUSE_DOWN,onDown); 
                        super(pparticle); 
                } 
 
                override protected function calcForce():void{ 
                        var rball:Number=0.5*_particle.height; 
                        var yball:Number=_particle.y; 
                        var dr:Number= (yball-_yLevel)/rball; 
                        var ratio:Number; // volume fraction of object that is submerged 
                        if (dr <= -1){ // object completely out of water 
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                                ratio=0; 
                        }else if (dr < 1){ // object partially in water  
                                //ratio = 0.5 + 0.5*dr; // for cuboid 
                                ratio = 0.5 + 0.25*dr*(3-dr*dr); // for sphere 
                        }else{ // object completely in water 
                                ratio=1; 
                        } 
                        var gravity:Vector2D = Forces.constantGravity(_particle.mass,_g); 
                        var upthrust:Vector2D = Forces.upthrust(_rho,_V*ratio,_g); 
                        var drag:Vector2D = Forces.drag(_k*ratio,_particle.velo2D); 
                        force = Forces.add([gravity, upthrust, drag]); 
                } 
 
                private function onDown(e:MouseEvent):void{ 
                        _particle.velo2D = new Vector2D(0,0); 
                        _particle.stage.addEventListener(MouseEvent.MOUSE_UP,onUp); 
                        _particle.startDrag(true); 
                        stopTime(); 
                } 
                private function onUp(e:MouseEvent):void{ 
                        _particle.pos2D = new Vector2D(_particle.x,_particle.y); 
                        _particle.stage.removeEventListener(MouseEvent.MOUSE_UP,onUp); 
                        _particle.stopDrag(); 
                        startTime(10); 
                } 
        } 
} 

As you expect, Floater extends Forcer and overrides its calcForce() method. We also added code 
that allows dragging and dropping the ball, which should be self-explanatory. Of course, the user won’t be 
able to drag the ball when it’s completely immersed in water.  

Let us focus on the code within the calcForce() method. The last four lines of the code should be 
evident: we are calculating the three forces (gravity, upthrust, and drag) that act on the ball and then 
adding them up to obtain the resultant force. The new thing here is the inclusion of a factor called ratio, 
which is the fraction by volume of the ball that is submerged in the water. This is used to compute the 
upthrust in the water (according to Archimedes’s principle), and the drag in the water (assuming that this is 
also proportional to the volume fraction that is submerged"it is actually a fairly crude approximation, but 
will help keep things much simpler). For simplicity, we neglect the upthrust and drag forces that the ball 
might experience in air. It is not difficult to see how they could be included too, if needed. All this should be 
easy to follow; the subtlety is in the piece of code that calculates ratio.  

To calculate ratio, you need to do some geometrical thinking. Take a look at Figure 7-9, which 
represents a cuboid and a sphere partially immersed in water. In our Flash movie, assuming that the 
registration point of the corresponding objects is at the center of the objects, we need a formula that gives 
ratio in terms of the position of the object and the position of the water level. 



Chapter 7 

206 

dd

 

Figure 7-9. Objects partially immersed in water 

To do this, it turns out to be convenient to first define a parameter dr that tells you how much the center of 
the object is above or below the water level, as a fraction of the radius of the ball (or half-height of the 
cuboid). So, dr is defined as the following, where r is the half-height of the object (and is equal to the 
radius for the ball): 

dr = position of object -  water level
half-height of object

= d
r

 

A little bit of thinking should convince you that dr = –1 means that the object (whether ball or cuboid) is just 
completely out of the water, and that dr = 1 means that it is just completely inside the water. Therefore, if 
dr <= –1, ratio is zero, and if dr >= 1, ratio is 1. The trickier bit is when the object is partially 
submerged. In the case of a cuboid, simple geometry tells us that (yes, you can work it out yourself) 

ratio = 0.5 + 0.5 dr  

In the case of a sphere, it’s a bit more complicated to work out (you need to do a bit of calculus), but here 
is the formula: 

ratio = 0.5 + 0.25 dr 3 − dr2( )  

That’s all we need.  

In the code, the volume _V of the ball is set to 1, and its mass is also 1. Therefore, its density (= 
mass/volume) is 1. The density of the water is set to 1.5. Therefore, because the density of the ball is less 
than that of the water, it will float.  

In FloatingBall.as, the initial position and velocity of the ball are given as follows:  
 
ball.pos2D = new Vector2D(50,50); 
ball.velo2D = new Vector2D(40,-20); 

This puts the ball initially above the water and imparts a velocity with an upward component and a 
component to the right. If you run the code, you’ll see that the ball then follows a curved (parabolic) path in 
the air until it hits the water. It then slows down suddenly because of the drag and upthrust in the water, 
sinking a bit and then rising again to the surface and oscillating on the water surface until it stops. A 
screenshot of the simulation is shown in Figure 7-10. 
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Figure 7-10. A floating ball 

The simulation is so realistic that you can experiment with it to learn about the physics involved! While the 
ball floats, drag it by clicking on any part that is above the water. Then release it above the water. It will fall 
into the water, decelerate, rise, and again oscillate on the water surface a few times before stopping. The 
higher you drop it, the further it will sink. Now drag it and release it underwater. It will rise to the surface 
and again oscillate a few times before stopping.  

You can also play around by changing the initial conditions or the values of the parameters. For example, 
change the mass of the ball to 2 or the volume to 0.5, so that the density is 2. The ball will then sink 
instead of floating because its density is greater than the density of the water, which is 1.5.  

Want to try something different? What would happen if the ball were very light? Try it. Reduce the density 
to 0.5 by increasing the volume to 2. What happens when you release the ball under water? It shoots out 
into the air, before falling back into the water. If you’ve ever tried doing this with a real ball, you’ll know that 
it’s a real effect. Our simulation is so realistic it can be used to perform “virtual experiments”. And we 
haven’t even paid any attention to numerical accuracy (which we’ll look at in Part Four of the book). 

This example is particularly instructive in that it shows how a simulation that includes the relevant physics 
can behave pretty much like the real thing would do in real life. The simulation knows how to deal with any 
change in initial conditions or parameters, without the need for you to tell it anything more! This is the 
power of real physics simulation. It gives you a lot for your money, perhaps more than you’d expect"and 
it’s much easier than faking it! 

Terminal velocity 
As you discovered in the last examples, the presence of the drag force means that the velocity of a rising 
or falling object cannot increase indefinitely. To understand why, consider the case of an object released 
from a height (far from the ground) and falling under gravity. This example was discussed in Chapter 4 and 
elaborated upon in Chapter 5, but it is worth having a recap here to gain a deeper understanding, now that 
we know more about the drag force. In particular, the previous discussions were in terms of the linear drag 
formula; it is useful to know how the results generalize to quadratic drag, and also when upthrust is taken 
into account.  
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In Figure 7-11, there is a downward gravity force W = mg acting on the object, and an upward drag force 
D. The drag force has a magnitude given by kv at very low velocities but more usually by kv2. Now initially 
the velocity of the object is zero, so that the drag force is zero. As it accelerates under gravity, its velocity 
increases and therefore the drag force increases, too. This reduces the resultant downward force to W – 
D, and therefore reduces the acceleration. Because the force of gravity is constant, as the velocity 
increases, there will be a point at which the drag force will be equal to gravity; in other words, the resultant 
force W – D will be zero, so the acceleration of the object will be zero. In other words, it will eventually 
move at a constant velocity: the terminal velocity. 

D 

W 
 

Figure 7-11. Force balance giving rise to terminal velocity 

As shown in Chapter 4, it is easy to work out the magnitude of the terminal velocity. It is the value of v at 
which W – D = 0. Because W = mg, if we use D = kv, we get this: 

m g = k v  

So that  

v = m g
k  

This is the terminal velocity for laminar flow. It holds for an object moving in a fluid with high viscosity (such 
as oil).  

If we use the drag law for higher velocities, D = kv2, we instead get  

m g = k v2
 

It then implies that  

v = m g
k  

We can also generalize these formulas to include upthrust (see Figure 7-12) by replacing the weight W = 
mg by the absolute value of the apparent weight Wapparent = (ρobject  –  ρfluid) V g. 



Contact and Fluid Forces 

209 

U 

W 

D 

 

Figure 7-12. Force balance with upthrust 

If you are doing a simulation in which the object attains terminal velocity very quickly, you may get away 
with just giving the object a constant velocity equal to the terminal velocity by making use of the preceding 
formulas. This will preserve the physical realism of the simulation (if the initial acceleration is not important) 
while cutting down the computing time significantly. For example, bubbles rising in water attain terminal 
velocity very rapidly and can be simulated in this way if there are no other forces apart from gravity, 
upthrust, and drag.  

As discussed in Chapter 5, the motion of an object under gravity, upthrust, and drag can be solved 
analytically using calculus to give not only the terminal velocity but also the velocity at any time. For 
example, for an object dropped from rest in a fluid, the analytical solution assuming linear drag and 
neglecting upthrust is given by 

v = mg
k

1− exp −k t m( )!" #$  

This gives the velocity of the object at time t after being dropped. The solutions with quadratic drag and 
including upthrust look a bit more complicated, and you can find them in physics textbooks. 

Example: Parachute 
Parachutes work by exploiting the fact that the drag force is proportional to the area of an object. Going 
back to the formula for quadratic drag F = –kvv, with the drag constant k given by k = ½ ρACd, we can see 
that the larger the area of an object, the greater the drag force will be. Opening a parachute suddenly 
increases the surface area exposed to the air, thereby increasing the value of k. This greatly increases the 
drag force and therefore slows down a parachutist.  

Our present example is an educational exercise to illustrate this principle. Take a look at 
ParachuteTest.as: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class ParachuteTest extends Sprite{ 
                public function ParachuteTest():void{ 
                        init(); 
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                } 
                private function init():void{ 
 
                        // create a sky diver 
                        var skydiver:Ball; 
                        skydiver = new Ball(20,0x0000ff,1); 
                        skydiver.pos2D = new Vector2D(650,50); 
                        addChild(skydiver); 
 
                        // make the skydiver fall 
                        var parachute:Parachute=new Parachute(skydiver); 
                        parachute.startTime(10); 
                } 
        } 
} 

This simply creates a skydiver as a Ball instance (!) and then sends him into a parachute fall using the 
Parachute class, which looks like this: 
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.math.Graph; 
        import flash.events.MouseEvent; 
 
        public class Parachute extends Forcer{ 
 
                private var _particle:Ball; 
                private var _g:Number=10; 
                private var _rho:Number=0.1; 
                private var _V:Number=1; 
                private var _k:Number=0.01; 
                private var _linearFactor:Number=3; 
                private var _graph:Graph; 
 
                public function Parachute(pparticle:Ball):void{ 
                        _particle = pparticle; 
                        _particle.stage.addEventListener(MouseEvent.MOUSE_DOWN, 
openParachute); 
                        setupGraph(); 
                        super(pparticle); 
                } 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        plotGraph(); 
                } 
                override protected function calcForce():void{ 
                        var gravity:Vector2D = Forces.constantGravity(_particle.mass,_g); 
                        var upthrust:Vector2D = Forces.upthrust(_rho,_V,_g); 
                        var drag:Vector2D = Forces.drag(_k,_particle.velo2D); 
                        force = Forces.add([gravity, upthrust, drag]); 
                } 
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                private function openParachute(evt:MouseEvent):void{ 
                        _k *= _linearFactor*_linearFactor; 
                        _particle.radius *= _linearFactor; 
                        _particle.stage.removeEventListener(MouseEvent.MOUSE_DOWN, 
openParachute); 
                } 
                private function setupGraph():void{ 
                        _graph = new Graph(0,100,0,50,50,350,450,300); 
                        _graph.drawgrid(10,5,10,5); 
                        _graph.drawaxes('t','vy'); 
                        _particle.stage.addChild(_graph); 
                } 
                private function plotGraph():void{ 
                        _graph.plot([time], [_particle.vy], 0xff0000, false, true); 
                } 
        } 
} 

Parachute extends Forcer and overrides calcForce(), adding gravity, upthrust, and drag in the usual 
way. In addition, an event listener is set up in the constructor for a MOUSE_DOWN event. In the 
corresponding event handler openParachute(), the radius of the parachute is increased by a factor equal 
to _linearFactor (which is given the value of 3 in the code), and the value of the drag constant _k is 
increased by a factor equal to the square of _linearFactor (by 9). The event listener is then removed. 
This means that the parachute is made three times bigger (by radius) and the drag constant is made nine 
times larger the first time the user clicks the mouse. Finally, a Graph object is set up in setupGraph(), 
which is called in the constructor, and used to plot the vy component of the parachute’s velocity at each 
time by calling the plotGraph() method within the  moveObject() method.  

If you now run the code (without opening the parachute) you’ll find that the parachute accelerates quickly 
at first, more slowly until it reaches a constant velocity (terminal velocity) about 10 seconds into the fall. 
The value of the terminal velocity is approximately 30 pixels per second. If you then click to “open the 
parachute,” it will become bigger and immediately slow down, reaching a new lower terminal velocity of 
approximately 10 pixels per second in a few seconds. The terminal velocity is the same whenever you 
open the parachute: it’s independent of time, only depending on the mass m of the parachute, the 
acceleration due to gravity g, and the drag constant k through the formula v = !(mg/k). Figure 7-13 shows 
a typical shape of the velocity-time graph.  
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Figure 7-13. Velocity-time graph for a parachute 

Lift 
You saw that the drag force depends upon the dynamic pressure. There is another force that also depends 
on the dynamic pressure: it’s called lift. More precisely, it is the difference in dynamic pressure on opposite 
sides of an object that is responsible for these forces. Whereas the drag force on an object acts opposite 
to the velocity of the object, the lift force acts perpendicular to the velocity (see Figure 7-14). Now, 
because there is always a difference in the dynamic pressure between the front and back of a moving 
object, there is always a drag force on a moving object. However, if an object is perfectly symmetrical 
along an axis in the direction of motion, the flow (and therefore the dynamic pressure) on either side of the 
object will be exactly the same). In that case, there is no lift force. But any asymmetry in the flow"for 
example, caused by an asymmetrical wing shape (for aircraft) or angle of attack, will give rise to a lift force 
perpendicular to the direction of motion.  

L 

D 
v 

 

Figure 7-14. Drag and lift force on an object moving in a fluid 

The lift force is what enables airplanes to fly. In that case, the direction of motion is usually horizontal, so 
the lift force acts vertically upward and balances the weight of the plane. But lift does not always have to 
act vertically upward. Depending on the direction of motion, it can act in any direction.  
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Lift is sometimes confused with upthrust. In fact, upthrust is sometimes mistakenly referred to as lift. Like 
upthrust, lift arises because of a difference in pressure. Upthrust is due to the difference in static pressure 
between the top and bottom of an object that is due to the weight of the displaced fluid (buoyancy); but lift 
is due to the difference in dynamic pressure between opposite sides of an object that lie along the direction 
of its motion. This causes a difference in the static pressure between the opposite sides mentioned earlier. 
Thus, whereas upthrust is always upward (as its name suggests), this is not necessarily so for lift. More 
crucially, the physics laws and therefore the formulas that govern these two forces are completely 
different. Consider this: lift is the force that makes an airplane fly; upthrust is the force that makes a 
balloon float; the mechanisms are different in the two cases. 

Lift coefficients 
The lift force is modeled in terms of a lift coefficient, in exactly the same way as quadratic drag. Hence the 
magnitude of the lift force can be written as follows, where CL is the lift coefficient and A is the area of the 
object along the direction of motion (rather than perpendicular to it as for drag): 

F = 1
2

ρ A CL v2
 

Like the drag coefficient Cd, the lift coefficient CL depends on a variety of factors. For aircraft, the important 
variables are wing shape and angle of attack.  

As we did for the drag force, we can define a lift constant k = ½ ρACL, which then enables us to write the 
magnitude of the lift force as F = kv2. 

The direction of the lift force is perpendicular to the direction of the velocity. Taking this into account, we 
can define a Forces.lift() function as follows: 
 
static public function lift(k:Number,vel:Vector2D):Vector2D { 
        var force:Vector2D; 
        var velMag:Number=vel.length; 
        if (velMag>0) { 
                force=vel.perp(k*velMag); 
        }else { 
                force=new Vector2D(0,0); 
        } 
        return force; 
} 
 

Example: An airplane 
Let’s now demonstrate how the lift force can make an airplane fly. The file Airplane.as contains the 
setup code for a basic flight demonstration: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
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        import com.physicscodes.objects.Particle; 
 
        public class Airplane extends Sprite{ 
                public function Airplane():void{ 
                        init(); 
                } 
                private function init():void{ 
 
                        // create a plane 
                        var plane:Plane = new Plane(); 
                        plane.width *= 0.3; 
                        plane.height *= 0.3; 
                        plane.pos2D = new Vector2D(100,750); 
                        plane.velo2D = new Vector2D(0,0); 
                        addChild(plane); 
 
                        // make the plane fly 
                        var flyer:Flyer=new Flyer(plane); 
                        flyer.startTime(10); 
                } 
        } 
} 

A plane object is created (in the Flash version, from a Plane symbol in the library) and placed on the 
“runway” with an initial velocity of zero. Then the plane is made to move by instantiating a Flyer class. 
Here is the code in Flyer.as: 
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
 
        public class Flyer extends Forcer{ 
 
                private var _particle:Particle; 
                private var _g:Number=10; 
                private var _kDrag:Number=0.01; 
                private var _kLift:Number=0.5; 
                private var _magThrust:Number=5; 
                private var _groundLevel:Number=750; 
 
                public function Flyer(pparticle:Particle):void{ 
                        _particle = pparticle; 
                        super(pparticle); 
                } 
 
                override protected function calcForce():void{ 
                        var gravity:Vector2D = Forces.constantGravity(_particle.mass,_g); 
                        var velX:Vector2D = new Vector2D(_particle.vx,0); 
                        var drag:Vector2D = Forces.drag(_kDrag,velX); 
                        var lift:Vector2D = Forces.lift(_kLift,velX); 
                        var thrust:Vector2D = new Vector2D(_magThrust,0); 
                        var normal:Vector2D; 
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                        if (_particle.y >= _groundLevel){ 
                                normal = gravity.multiply(-1); 
                        }else{ 
                                normal = new Vector2D(0,0); 
                        } 
                        force = Forces.add([gravity, drag, lift, thrust, normal]); 
                } 
        } 
} 

As depicted in Figure 7-15, there are four main forces on an airplane in flight: gravity (W), thrust (T), drag 
(D), and lift (L). When the airplane is on the ground, there is also the normal contact force due to the 
ground. Hence, the calcForce() method of Flyer computes these forces and adds them up. Gravity is 
straightforward as usual. The drag and lift forces are computed in a simplified way, by only considering the 
horizontal component of the airplane’s velocity. Also, the airplane is assumed to be horizontal at all times, 
with an angle of attack that is zero. The thrust is modeled as a constant force. Finally, the normal force is 
set to be equal and opposite to gravity when the plane is on the ground, and zero otherwise.  
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Figure 7-15. The four forces on a airplane in flight 

When you run the simulation, you’ll see that the plane takes off only when it has attained a high enough 
velocity to create sufficient lift to overcome its weight (see Figure 7-16). If you reduce the magnitude of the 
thrust __magThrust to 3 or 4, the plane moves along the runway, but never takes off. Under the horizontal 
thrust and drag forces, it attains a maximum horizontal velocity (similar to terminal velocity) that is 
insufficient to generate enough lift to overcome its weight.  
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Figure 7-16. Plane flying due to the lift force 

To reiterate, we’ve made a lot of simplifications in this example. We’ll build a much more complete and 
realistic flight simulator in the final chapter, in which we’ll also look at the drag, lift, and thrust forces on an 
airplane in more detail.  

Wind and turbulence 
Wind is not itself a force, but it can generate forces. Wind is the movement of air, and has an associated 
velocity at each point in space and time. It can be quite complicated, but fairly realistic effects can be 
achieved even with simple models of the wind. A constant wind blowing over a stationary object can be 
viewed in a similar way to an object moving through air, with the direction reversed. It generates drag and 
lift forces in a similar way.  

Force due to the wind 
As we saw at the beginning of the chapter, moving fluids have an associated dynamic pressure. Wind is 
nothing but moving air. When wind blows on an object or surface, it therefore exerts a force due to the 
dynamic pressure.  

How do we calculate this force? According to what we said, only the relative velocity matters. So, the force 
exerted by the wind is just the drag force in reverse, where w is the wind velocity: 

F = 1
2

ρACd w w  

Hence, we can use the drag force function to model wind, using the wind velocity and a negative drag 
constant k.  
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Wind and drag 
An object moving in air will, of course, still experience drag, even in the presence of wind. Therefore, the 
net force due to the motion of the object and that of the air (wind) will be the drag force taking as reference 
the relative velocity between the object and the air. Therefore, the combined force due to wind and drag is 
given by the following, where |w – v| denotes the magnitude of the vector (w – v): 

F = 1
2

ρACd w − v w − v( ) 

Note that |w – v|  is not usually equal to the difference (w – v) in the magnitudes of w and v.  

We can use the drag force function to compute the combined effect of wind and drag by using the relative 
velocity between an object and the air. 

Steady and turbulent flow 
We now know how to calculate the force on an object in the presence of wind given the wind velocity. But 
how do we model the wind velocity w itself? 

The answer is that it depends on the situation we are modeling. The behavior of the wind is rather 
complicated because it varies both in space and in time. Wind depends on complex atmospheric 
conditions as well as obstacles such as buildings and trees. However, for most purposes, you’d probably 
want to keep things as simple as you can get away with. So we’ll discuss only some simple ways of 
modeling the wind velocity.  

The simplest model of the wind is to assume that the velocity w is constant both in space and time. This 
corresponds to what is called a uniform and steady flow. A slightly more complicated model is to assume a 
steady flow (still constant in time) that is constant horizontally but varies with height. This model would 
account for the fact that the wind speed is lower near the ground and becomes higher farther up.  

Most of the time, the wind is not steady, but consists of gusts that blow apparently randomly. The gusts 
produce what is called turbulent flow, which can make things move in complex ways.  

Example: Air bubbles in a steady wind 
In this example, we’ll model a steady and uniform wind blowing some bubbles in air. BubblesWind.as 
contains the setup code: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class BubblesWind extends Sprite{ 
                public function BubblesWind():void{ 
                        init(); 
                } 
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                private function init():void{ 
 
                        // create bubbles 
                        var bubbles:Array = new Array(); 
                        var color:uint = 0x00ffff; 
                        var numBubbles:Number = 20; 
                        var rho:Number = 0.99; 
                        for (var i:uint=1; i<=numBubbles; i++){ 
                                var radius:Number = Math.random()*20+5; 
                                var V:Number = 4*Math.PI*Math.pow(radius,3)/3; 
                                var mass:Number = rho*V; 
                                var bubble:Ball = new Ball(radius,color,mass); 
                                bubble.pos2D=newVector2D(Math.random()*stage.stageWidth,! 
 Math.random()*stage.stageHeight); 
                                bubble.velo2D=new Vector2D((Math.random()-0.5)*20,0); 
                                addChild(bubble); 
                                bubbles.push(bubble); 
                        } 
 
                        // make the bubbles move 
                        var mover:BubbleWindMover=new BubbleWindMover(bubbles); 
                        mover.startTime(10); 
                } 
        } 
} 

We’re creating a bunch of bubbles as Ball objects and giving them a random radius. Their volume and 
mass are then calculated using the formula for the volume of a sphere and the density of the bubbles, 
which is specified as 0.99. The bubbles are given a random position and a small random horizontal 
velocity. Then they are collected into an array, which is then passed as a parameter into the constructor of 
the class that contains the simulation “engine” BubbleWindMover.  

Here is the code in BubbleWindMover.as: 
 
package { 
        import com.physicscodes.motion.MultiForcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
 
        public class BubbleWindMover extends MultiForcer{ 
 
                private var _particles:Array; 
                private var _g:Number=10; 
                private var _rho:Number=1; 
                private var _rhoP:Number=0.99; 
                private var _kfac:Number=0.01; 
                private var _windvel:Vector2D = new Vector2D(40,0); 
 
                public function BubbleWindMover(pparticles:Array):void{ 
                        _particles = pparticles; 
                        super(pparticles); 
                } 
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                override protected function calcForce(pparticle:Particle):void{ 
                        var V:Number = pparticle.mass/_rhoP; 
                        var k:Number = pparticle.width*pparticle.width*_kfac; 
                        var gravity:Vector2D = Forces.constantGravity(pparticle.mass,_g); 
                        var upthrust:Vector2D = Forces.upthrust(_rho,V,_g); 
                        var relwind:Vector2D = _windvel.subtract(pparticle.velo2D); 
                        var wind:Vector2D = Forces.drag(-k,relwind); 
                        force = Forces.add([gravity, upthrust, wind]); 
                } 
        } 
} 

BubbleWindMover extends MultiForcer, overriding its calcForce() method. Three forces are 
calculated and added: gravity, upthrust, and the wind (drag) force. The upthrust is calculated using the 
volume of each bubble, worked out using the formula volume = mass/density. To compute the force due to 
wind, the relative velocity is computed by subtracting the bubble’s current velocity from the velocity of the 
wind _windvel, which is given as a constant horizontal vector. The wind/drag force is then calculated by 
using Forces.drag() with a negative drag coefficient –k and the relative velocity as arguments. Note that 
k includes a factor equal to the square of the bubble’s width. That’s to take into account the fact that the 
drag force is proportional to the area of the bubble, which is itself proportional to the square of its diameter.  

If you run the simulation, you’ll see that the bubbles drift in the direction of the wind while rising slowly, as 
you’d expect (see Figure 7-17). Play with the wind velocity and other parameters to see how the motion is 
modified.  

 

Figure 7-17. Bubbles in a steady wind 

Modeling turbulence 
Turbulence is a complex phenomenon. In fact, it is so complex that you need huge supercomputers with 
hundreds of processors to accurately compute turbulent flows even for simple configurations. On the other 
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hand, there are numerous approaches for modeling turbulence in an approximate way. One simple 
approach is to use random numbers. 

You can produce effects that look like turbulence by superimposing random noise on an otherwise steady 
wind field. This exploits the statistical properties of turbulence, which can usually be represented by 
decomposing the wind velocity at any time in the following way, where wsteady is a steady part and wfluctuating 
is a time-varying part that captures the turbulent fluctuations: 

w = wsteady + wfluctuating  

The steady part wsteady is just a constant vector, as we modeled in the previous bubbles simulation. We 
can model wfluctuating by a vector whose components are random numbers that are updated at each 
timestep. To do this in the bubbles simulation, just add the following line of code at the beginning of 
calcForce() in BubbleWindMover.as: 
 
_windvel = new Vector2D(20 + (Math.random()-0.5)*1000,(Math.random()-0.5)*1000); 

We did this and saved the new file as BubbleTurbulenceMover.as, together with a modified setup file 
BubblesTurbulence.as. We also added some code to indicate the variation of the wind vector w. The 
code produces a line in the middle of the stage directed along the instantaneous wind direction and with 
length proportional to the magnitude of the wind velocity.  

The preceding line of code specifies the wind velocity w as the sum of a steady wind vector (20, 0) that 
blows to the right at 20 pixels per second, and a random wind vector (Math.random()-
0.5)*1000,(Math.random()-0.5)*1000) with x and y components that range from –500 to 500 pixels 
per second. The wind velocity is the same at all locations on the stage.  

Experiment by changing these values to whatever you like. The magnitude of the steady wind (here set by 
the value of 20) gives the bubbles a steady drift. The magnitude of the fluctuations (here set by the factor 
of 1000), controls the gustiness of the wind and makes the bubbles fluctuate. You can produce a fairly 
convincing turbulence effect in this way.  

Summary 
This chapter introduced a number of forces that act on solid objects in contact with other solid objects or 
with fluids. If you are simulating nearly anything on Earth, chances are you’ll need to model these forces. 
What you learned in this chapter has given you a solid foundation upon which you can build to create more 
complex effects and simulations. In the final chapter, you will have the opportunity to develop more 
complete simulations using the physics explained here. 
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Chapter 8 

Restoring Forces: Springs and Oscillations 

Springs are among the most useful tools you’ll come across, especially when it comes to creating 
interesting physics effects. A great many systems can be modeled using springs and spring-like motion. 
Therefore, learning the basics of spring motion is time well spent. But beware: springs are strangely 
addictive! 

Topics covered in this chapter include the following: 

! Free oscillations: An object will oscillate under the action of a spring force, also known as a 
restoring force. 

! Damped oscillations: Damping dissipates the energy of oscillations so that they die out with 
time.  

! Forced oscillations: Oscillations can be driven by external forces that sustain them against 
damping forces. 

! Coupled oscillators: Interesting effects can be produced by using multiple springs and objects 
coupled together. 

Springs and oscillations: Basic concepts 
We introduced oscillations back in Chapter 3, while discussing sinusoidal waves and their combinations 
(refer to the section “Using trig functions for animation”). An oscillation is a repeating motion around some 
central position. Simple examples of oscillating systems include a pendulum and a swing.  
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Oscillations abound in natural systems, too: trees oscillate under a blowing wind, and floating objects 
oscillate on the water surface due to passing waves. Man-made mechanisms that include springs involve 
oscillations. Hence, there is an intuitive association between oscillations and springs; in fact, we will use 
the terms oscillations and spring-like motion interchangeably. This association is more than verbal: 
oscillating systems can usually be modeled using virtual “springs.”    

What causes oscillations and why are they so common? Let’s answer these questions before we begin to 
model springs and spring-like behavior. 

Spring-like motion 
You’ve already met spring-like motion in this book, probably without realizing it. The floating ball simulation 
of the last chapter provided an example in which the ball oscillated on the water surface in a spring-like 
fashion. Lots of other things undergo spring-like motion: the suspension mechanism of a car; and the 
swaying of a tree, its branches, and their leaves in the wind. Other things, although they don’t necessarily 
appear to be spring-like, can nevertheless be modeled using springs: deformable bodies such as ropes, 
clothes, and hair. Surely then, there must be common characteristics that these systems exhibit that make 
them amenable to modeling using springs. So, what are the general characteristics of oscillating systems? 

Restoring force, damping, and forcing 
An oscillating system will usually involve the following ingredients: 

! An equilibrium position in which an object would remain if it were not moving. 

! A restoring force that pulls the object back toward the equilibrium position if it is displaced.  

! A damping force that reduces the oscillations with time. 

! A driving force that displaces the object from its equilibrium position.  

Of those, the first two are essential to generate oscillations, whereas the last two may or may not be 
present, depending on the system. Although more complex systems may not appear to show these 
characteristics, they can be composed of (or be modeled by) component parts that do"such as a rope 
that can be represented as a chain of springs.  

In understanding the roles of the restoring force, damping and forcing, a relevant concept is that of 
amplitude. The amplitude of an oscillation is the maximum displacement from the equilibrium position. If 
you pull a swing away from its equilibrium position and then let go, the initial displacement will be the 
amplitude of the oscillation.  

The restoring force changes the displacement with time, but it does not change the amplitude (maximum 
displacement). The amplitude depends on the amount of energy in the system. A damping force takes 
away energy from the system and therefore reduces the amplitude with time. This is what would happen if, 
after initially displacing it, you left the swing to oscillate on its own. A driving force puts energy into the 
system and therefore tends to increase the amplitude of the oscillations. With both damping and forcing 
being present, it is possible for the energy put into the system to compensate exactly for the energy lost by 
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damping. In that case, the amplitude remains constant with time, as if only a restoring force were present. 
In the swing example, this is achieved by pushing the swing periodically with the right amount of force.  

Hooke’s law 
In most oscillating systems, the force law that governs the restoring force is Hooke’s law (because a 
gentleman name Robert Hooke discovered it at some point in history).  

Hooke’s law is quite simple. Let’s explain it for springs first because that’s the original form of the law. 
Take a look at Figure 8-1, which shows a spring of natural length l, fixed at one end, that is then stretched 
by an amount x, so that its length becomes l + x.  

l

x
 

Figure 8-1. A stretched spring experiences a restoring force proportional to the extension x. 

Hooke’s law then says that the spring will be pulled back by a force of magnitude F given by 

F = −k x  

In other words, the restoring force is proportional to the extension x. The constant of proportionality k is 
known as the spring constant, and it is a measure of the stiffness of the spring. The larger the value of k is, 
the larger the force will be for a given extension, so that the spring will be pulled back more strongly when 
stretched.   

The minus sign indicates that the force is in the opposite direction to the extension. So if the spring is 
compressed instead, the force will push back to increase its length.   

The vector form of the equation is this, where now r is interpreted as the displacement vector of the free 
endpoint of the spring: 

F = −k r  

For most of what we’ll do in this chapter (and probably for what you’ll want to do, too, we won’t care much 
about the actual spring. What we’ll be more interested in is the motion of a particle attached to the end of a 
spring. How would such an object move? As every kid knows, it will oscillate about the equilibrium position.  

In fact, we could get rid of the spring altogether and just consider the effect of the restoring force on the 
particle. This is what we’ll do in many examples. In such a case, the displacement vector r in Hooke’s law 
is interpreted as the displacement from the equilibrium position about which the particle is oscillating, as 
shown in Figure 8-2.   
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r 
 

Figure 8-2. A particle oscillating about an equilibrium position  

A word of warning before we end this section: it should not be assumed that all oscillations obey Hooke’s 
law; many don’t. However, a great many types of moving systems follow Hooke’s law, at least 
approximately. So we’ll stick with Hooke’s law in this chapter.  

Free oscillations 
Let’s start by modeling free oscillations. What that means is that the system oscillates purely under the 
action of the restoring force, without any other force. Of course, for an object to oscillate, something (an 
applied force) must have moved it away from its equilibrium position in the first place. But what we are 
interested in here is what happens after that initial forcing is removed and the oscillating system is left to 
itself.  

The spring force function 
To begin with, we need to create a new force function in the FForces class for the restoring force. Let’s call 
it spring(). It is a very simple function: 
 
static public function spring(k:Number,r:Vector2D):Vector2D { 
        return r.multiply(-k); 
} 

The function spring() takes two arguments, which are the spring constant k and the displacement vector 
r (this is just the vector r in the previous formulas). It returns the restoring force F = –k r.  

Let’s now use that function to create a basic oscillator. 

Creating a basic oscillator 
You know what’s coming next, don’t you? Here is some code that creates the object that we want to 
oscillate as a Ball object called object. We don’t actually create a spring (in the visual sense) but instead 
another Ball object that we call attractor, whose position will be the equilibrium position. We then pass 
both object and attractor to the constructor of a BasicOscillator object, which is what will create the 
oscillations. Both are given an initial velocity of zero and are placed some distance apart by giving them 
different position vectors pos2D:  
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class BasicOscillations extends Sprite{ 
 



Restoring forces: Springs and oscillations 

225 

                public function BasicOscillations():void{ 
                        init(); 
                } 
 
                private function init():void{ 
                        // create an object 
                        var object:Ball; 
                        object = new Ball(15,0x0000cc,1); 
                        object.pos2D = new Vector2D(100,50); 
                        object.velo2D=new Vector2D(0,0); 
                        addChild(object); 
 
                        // create a spring 
                        var attractor:Ball; 
                        attractor=new Ball(2,0x000000); 
                        attractor.pos2D=new Vector2D(275,200); 
                        attractor.velo2D=new Vector2D(0,0); 
                        addChild(attractor) 
 
                        // make the object-spring system move 
                        var oscillator:BasicOscillator=new BasicOscillator(object,attractor); 
                        oscillator.startTime(10); 
                } 
        } 
} 

And here is the code for BasicOscillator: 
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class BasicOscillator extends Forcer{ 
                private var _object:Ball; 
                private var _center:Vector2D; 
                private var _displ:Vector2D; 
                private var _kSpring:Number=1; 
 
                public function BasicOscillator(pobject:Ball,pattractor:Ball):void{ 
                        _object = pobject; 
                        _center = pattractor.pos2D; 
                        super(_object); 
                } 
                override protected function calcForce():void{ 
                        _displ=_object.pos2D.subtract(_center); 
                        force = Forces.spring(_kSpring,_displ); 
                } 
        } 
} 
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Pretty standard stuff, with the overridden calcForce() method first calculating the displacement vector 
_displ of the object relative to the attractor and then using it to calculate the spring force that the attractor 
exerts on the object. The parameter _kSpring is the spring constant k.  

Run the code and you’ll see the ball oscillate about the attractor, as expected. Now change the spring 
constant value from 1 to 10. This gives you a stiff spring. If you now run the code, you’ll see the ball 
oscillate faster. If you want it to oscillate at a different amplitude, just change the initial position in 
BasicOscillations.as. 

Next change the value of k back to 1, then change the initial velocity of the ball to (200,0): 
 
object.velo2D=new Vector2D(200,0); 

When you run the code, you should now see the ball “orbit” the attractor in some sort of oval trajectory. It’s 
a bit like what you saw with gravity in Chapter 6. Both gravity and springs are attractive forces that always 
act toward a point. But gravity decreases with distance, whereas the spring force increases with distance. 
That’s because gravity is proportional to 1/r2, whereas the spring force is proportional to r, where r is the 
distance from the center of attraction. 

Simple harmonic motion 
The type of oscillatory motion you’ve just seen is technically called simple harmonic motion (SHM). An 
object undergoes SHM if the only force acting on it is the spring force, as was the case in the previous 
example.  

Because the only force in SHM is the restoring force F = –kr, and Newton’s second law says that F = ma, 
these two equations together tell us that for SHM: 

m a = −k r  

Dividing both sides of this equation by m gives this: 

a = − k
m

r  

Here m is the mass of the oscillating particle, and k is the spring constant, so the ratio k/m is a constant. 
This equation therefore tells us that the acceleration of the oscillating particle is proportional to its 
displacement vector from the center. The constant of proportionality is negative, meaning that the 
acceleration is always opposite to the displacement vector (it always points toward the center because the 
displacement vector always points away from the center by definition). See Figure 8-3. 

r

a  

Figure 8-3. The acceleration in SHM always points toward the center, opposite to displacement 
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Remember back in Chapter 3 where we talked about derivatives and said that acceleration is the second 
derivative of displacement? This means the following: 

a = d
2r
dt2  

Therefore we can write the SHM equation a = –(k/m)r in the equivalent form: 

d 2r
dt2

= − k
m

r  

This makes it clear that the equation that governs SHM is a second–order differential equation, as 
described in Chapter 5. What BasicOscillator has been doing is to solve this second–order differential 
equation numerically using the Euler scheme (again as described in Chapter 5). As a reminder, 
BasicOscillator extends Forcer, which itself extends Mover; and Forcer integrates the acceleration to 
give the velocity (in the updateVelo() method), whereas Mover integrates the velocity to give the 
displacement (in moveObject()), both using Euler.   

In fact the preceding differential equation can also be solved analytically to give a formula for the 
displacement as a function of time. This is an exercise in college-level calculus, and here is the solution, 
where A and B are constant vectors that depend on the initial conditions, and ω is the angular velocity of 
the oscillation (see Chapter 3): 

r = Acos ω t( ) + Bsin ω t( ) 

Hence, SHM consists of the sum of a sine and a cosine function. This is not surprising because SHM is 
basically an oscillatory motion and, as you know from Chapter 3, sin and cos are oscillatory functions. The 
value of ω sets the frequency and therefore the period of oscillation, whereas the values of A and B set the 
amplitude of the oscillations (the maximum displacement of the object from its equilibrium position).   

Anyone with a little knowledge of calculus can immediately write down the velocity vector v by 
differentiating the preceding expression for r because v = dr/dt. The result is this:  

v = −ω Asin ω t( ) + ω Bcos ω t( )  

What are the values of A, B, and ω? A and B are set by the initial conditions that you specify for the 
displacement and velocity of the object at the start (the values of r and v at time t = 0). Let’s call the initial 
displacement vector r0 and the initial velocity vector v0. If we now put t = 0 into the preceding equations for 
r and v because cos(0) = 1 and sin(0) = 0, we get this: 

r0 = A  
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We also get the following: 

v0 = ω B  

This tells us right away that A = r0 and B = v0/ω. 

If you were to solve that differential equation, you would also find that the angular velocity ω is actually 
given by this formula: 

ω = k
m  

This is called the natural frequency of the system. If the oscillating system is given an initial perturbation 
(to move the object away from its equilibrium position), but is thereafter left on its own, it will oscillate at 
that frequency and only at that frequency in the absence of other influences such as damping. 

Now, if you remember (again from Chapter 3) that ω = 2πf and f = 1/T, where f is the frequency (the 
number of oscillations per second) and T is the period of oscillation (the time to do one oscillation), you 
can use the preceding formula to obtain both the frequency and period of the oscillation in terms of the 
parameters k and m: 

f = 1
2π

k
m  

T = 2π m
k  

These formulas tell you that if you increase the spring stiffness k, the frequency of the oscillations will 
increase and its period will decrease (it will oscillate faster). If you increase the mass of the oscillating 
particle instead, the reverse will happen, and it will oscillate more slowly. Go ahead and try it! 

These are the only two parameters that affect the frequency and period; the initial position and velocity of 
the object do not. You might think that if the object is initially farther away from the center it will take longer 
to complete one oscillation. But not with SHM. What happens is that if the object is farther away, it 
experiences a larger acceleration at the start so that on average it acquires a larger velocity, which 
compensates for the longer distance it has to travel to complete one oscillation. Skeptical? Try it by timing 
the oscillations with a stopwatch or tracing the time.     

In fact, we can do better than that. Let’s plot a graph.  
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Oscillations and numerical accuracy 
We modify BasicOscillations.as by changing the initial position of the oscillating object as follows: 
 
object.pos2D = new Vector2D(100,50); 

Then we modify this line:  
 
var oscillator:BasicOscillator=new BasicOscillator(object,attractor); 

to the following:  
 
var oscillator:FreeOscillator=new FreeOscillator(object,attractor); 

After changing the class and constructor names from BasicOscillations to FreeOscillations, we 
then save the file as FreeOscillations.as.   

Now it’s time to create FreeOscillator.as by modifying BasicOscillator.as. The modifications we 
need to do are to enable a graph to be plotted showing the displacement of the object against time as it 
moves.  

Here is the full code for FreeOscillator.as with the changes in bold text: 
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.math.Graph; 
 
        public class FreeOscillator extends Forcer{ 
                private var _object:Ball; 
                private var _center:Vector2D; 
                private var _displ:Vector2D; 
                private var _kSpring:Number=1; 
                private var _graph:Graph; 
 
                public function FreeOscillator(pobject:Ball,pattractor:Ball):void{ 
                        _object = pobject; 

_center = pattractor.pos2D; 
                        setupGraph(); 
                        super(_object); 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        plotGraph(); 
                } 
 
                override protected function calcForce():void{ 
                        _displ=_object.pos2D.subtract(_center); 
                        force = Forces.spring(_kSpring,_displ); 
                } 
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                // create a displacement-time graph 
                private function setupGraph():void { 
                        _graph= new Graph(0,20,-250,250,50,250,450,200); 
                        _graph.drawgrid(5,1,50,50); 
                        _graph.drawaxes('time (s)','displacement (px)'); 
                        _object.stage.addChild(_graph); 
                } 
                private function plotGraph():void{ 
                        _graph.plot([time], [_displ.x], 0xff0000, false, true); 
                        _graph.plot([time], [_displ.y], 0x0000ff, false, true); 
                } 
        } 
} 

So we import the Graph class, declare a new private variable _graph as a Graph object, call the new 
private method setupGraph() from within the constructor, and override the moveObject() method to call 
the new private method plotGraph() at each timestep. 

The setupGraph() method does exactly what its name suggests: it sets up the Graph object _graph with 
appropriate parameters and adds it to the stage.  

The plotGraph() method, which is called at each timestep, invokes the plot() public method of Graph 
to plot the x and y coordinates of the displacement of the object relative to the attractor.  

If you now run the code, you’ll see something like Figure 8-4. Sure enough, the horizontal displacement (x) 
of the object with time is a sinusoidal wave, as we said in the last section. The vertical displacement is 
always zero because of the initial condition we chose. But it’s easy to change it by giving the object an 
initial vertical component of velocity or a different initial vertical position. Then the y displacement would 
also vary sinusoidally. You can also change the values of k, m, and the initial position of the object to verify 
the statements we made at the end of the last section on how the frequency and period of oscillations vary 
(or not) with these parameters.  
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Figure 8-4. Plotting the displacement of an oscillating object as a function of time 

Let’s now see how accurate our simulation is by comparing the trajectory of the oscillating object with what 
the analytical solution given in the last section predicts.   

To do this, we modify FreeOscillations.as to FreeOscillations2.as by changing the initial velocity 
of the oscillating object as follows: 
 
object.velo2D=new Vector2D(0,50); 

Then we modify this line:  
 
var oscillator:FreeOscillator=new FreeOscillator(object,attractor); 

to the following:  
 
var oscillator:FreeOscillator2=new FreeOscillator2(object,attractor); 
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The FreeOscillator2 class is just a modified version of FreeOscillator, with the addition of code that 
calculates the values of A, B, and ω (defined as private variables _A, _B and _omega in the code) using the 
previously given equations ω = !(k/m), A = r0 , and B = v0/ω. This is done in the constructor of 
FreeOscillator2, which therefore contains the additional lines: 
 
_omega = Math.sqrt(_kSpring/_object.mass); 
_A = _object.pos2D.subtract(_center); 
_B = _object.velo2D.multiply(1/_omega); 

In the plotGraph() method, we then insert the following additional lines to plot the x and y components of 
the analytical solution v =  –ωA sin (ωt) + ωB cos (ωt):  
 
var r:Vector2D = _A.multiply(Math.cos(_omega*time)).add(_B.multiply(Math.sin(_omega*time))); 
_graphX.plot([time], [r.x], 0x00ff00, false, true); 
_graphY.plot([time], [r.y], 0xff00ff, false, true); 

Another modification compared to FreeOscillator2 is that we now have two Graph objects _graphX and 
_graphY (set up in a suitably modified setupGraph() method), on which we plot the x and y 
displacements, respectively, in plotGraph().  

If you now run the code, you’ll see the object orbiting the attractor in an elongated orbit, and you’ll see a 
pair of graphs for each of the horizontal and vertical displacements of the object. In each pair of graphs, 
one corresponds to the analytical solution computed by the specified formulas, whereas the other 
corresponds to the numerical solution as computed by the simulation. You can see that they are quite 
close to each other, practically overlapping (see Figure 8-5). Euler integration is not doing such a bad job 
in this case.  

However, if you now change the value of _kSpring to 10, for example, so that the “spring” is stiffer and 
the object moves faster, you’ll see that the difference between the two is more significant, signaling that 
Euler is losing accuracy. If you try a value for _kSpring of 100, then Euler gives you complete rubbish, 
and the object ends up in completely the wrong place at the wrong time. So here you begin to see that you 
can get the wrong physics if you are not careful with your integrator, especially in the case of springs. 
You’ll see how to overcome this problem in Chapter 14. Meanwhile, for the rest of this chapter we’ll avoid 
very high values of the spring constant.  
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Figure 8-5. Comparing the numerical and analytical solutions for the oscillator  

Damped oscillations 
In the previous examples, the oscillations just go on forever. In practice, this rarely happens. Oscillating 
systems are usually damped. That means the oscillations are reduced and die out in time due to energy 
being removed from the system. This is similar to the drag force, which dissipates kinetic energy of a 
moving object and makes it slow down. To implement damping in our springs, we need a damping force.   

Damping force 
The damping force is usually modeled as being proportional to the velocity of the moving object. This 
means that, at any instant in time, it is given by this equation, where c is a constant known as the damping 
coefficient, and the minus sign indicates that the force is in the opposite direction to the velocity: 

F = −c v  

Notice that this is of exactly the same form as the force law for linear drag. We could, therefore, use the 
linearDrag() function to implement damping in spring motion. However, although drag is certainly a form 
of damping, it is not physically the only form of damping, although the two terms are sometimes used 
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interchangeably. Drag is the resistive force exerted by a fluid on a moving object immersed in it. Spring 
damping, on the other hand can be due to external factors such as fluid drag or external friction, or to 
internal factors such as internal friction, which arise from the molecular material properties of springs. In 
fact, you could have both internal damping due to spring resistance and drag due to fluid resistance side 
by side (with different coefficients, of course). For example, a mass suspended on a spring and oscillating 
in a fluid such as air or water experiences both internal friction and fluid drag. For these reasons, we prefer 
to create a separate function for damping. The form of this function is identical to that for linearDrag(), 
as shown in this listing: 
 
static public function damping(c:Number,vel:Vector2D):Vector2D { 
        var force:Vector2D; 
        var velMag:Number=vel.length; 
        if (velMag>0) { 
                force=vel.multiply(-c); 
        }else { 
                force=new Vector2D(0,0); 
        } 
        return force; 
} 

The effect of damping on oscillations 
We’ll now modify FreeOscillations.as and FreeOscillator.as to create classes that handle damping 
in addition to the spring force. The new files are called DampedOscillations.as and 
DampedOscillator.as, respectively. DampedOscillations.as differs from FreeOscillations.as only 
in the name of the class and constructor and in that it instantiates a DampedOscillator class. 
DampedOscillator.as basically introduces a new force: damping. So one difference from 
FreeOscillator is that it declares a damping coefficient _cDamping and assigns it a value: 
 
private var _cDamping:Number=0.5; 

The other difference is that it includes a damping force in calcForce() and adds it to the spring force to 
work out the resultant force: 
 
override protected function calcForce():void{ 
        _displ=_object.pos2D.subtract(_center); 
        var restoring:Vector2D = Forces.spring(_kSpring,_displ); 
        var damping:Vector2D = Forces.damping(_cDamping,_object.velo2D); 
        force = Forces.add([restoring, damping]); 
} 

That’s it. If you run the code with _kSpring = 10 and _cDamping = 0.5, you’ll see something like what’s 
shown in Figure 8-6. The oscillations die out in time, and the object eventually settles at the equilibrium 
position, as you’d expect.  
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Figure 8-6. Damped oscillations 

At this point, you should play with the damping constant _cDamping to see what you get. Choose a lower 
value, and you’ll see the oscillations persist longer, whereas a higher value will kill them off sooner. You 
might think that the larger the value of c, the quicker the object will stop. In fact, there is a critical value of c 
for which the oscillations die in the minimum time. In fact, there are no oscillations at all. The object simply 
moves smoothly to the equilibrium position without oscillating beyond it. This is called critical damping, and 
an example is shown in Figure 8-7. For _kSpring = 10 in our simulation, the critical value of _cDamping is 
about 5.5, and the object reaches its equilibrium position in about 1 second. If you increase _cDamping 
beyond this critical value, for example to 10 or 20, you’ll see that the object actually takes longer to reach 
its equilibrium location. This is because the increased damping slows it down so much that, although it 
does not go beyond the equilibrium position, it takes longer to get there. Critical damping is a very useful 
thing that’s applied in things like damping mechanisms in doors.    
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Figure 8-7. Critical damping 

Analytical solutions for oscillations with damping 
This brief section is for enthusiasts. You may safely skip it if complicated formulas are not your thing. The 
point of this section is to show you how the analytical solution quoted previously for free oscillations 
changes in the presence of damping, and how well our simulation does at reproducing it. Thus, it is more 
educational than practical.  

Newton’s second law for oscillations under a spring force F = –kr, together with a damping force F = –cv is 
the following: 

m a = −k r − c v  

This can be written in terms of derivatives as (after dividing both sides by m): 

d 2r
dt2

= − k
m

r − c
m
dr
dt  

The analytical solution of this differential equation is given by the following: 

r = Acos ωd t( ) + Bsin ωd t( )!" #$ exp −γ ω0 t( )  
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where the constants γ, ω0, ωd, A and B are given by the following: 

γ = c
2 mk  

ω 0 = k
m  

ωd = ω0 1−γ 2
 

A = r0  

B =
v0 + γ ω0 r0( )

ω d
 

Comparing with the previous solution without damping, you’ll notice that there is an additional exponential 
factor in the expression for r, which is responsible for the decay in the sinusoidal oscillations (see Chapter 
3). The new parameter γ is due to the damping. In the absence of damping, c = 0 and so γ = 0; the solution 
then reduces to that without damping. Note also that the angular frequency of the oscillations is now ωd 
(because it appears in the sine and cosine), which is less than the natural frequency ω0 in the absence of 
damping (which was previously denoted by ω).  

We coded up these equations in a modified version of FreeOscillator2.as that we call 
DampedOscillator2.as. Take a look at the code if you wish. If you run the corresponding code 
DampedOscillations2.as, you’ll find that there is again some discrepancy between this analytical 
solution and the numerical solution computed by the simulation. In fact, sometimes you might find that the 
oscillating object goes seemingly wild, ending up in places it shouldn’t be. The important take-away 
message from all this is that Euler simply does not cut it when it comes to simulations like this, except for 
the simplest motions. In Chapter 14, we shall discuss alternative integration schemes that overcome this 
problem. 

Forced oscillations 
In the presence of damping, the oscillations of a system will die out in time. Therefore, a force is needed to 
sustain oscillations or to initiate them in the first place. That’s called a driving force, or forcing. 

Driving forces 
Driving forces can be of any form, so let’s denote them simply by f (t). This simply means that the force is 
a function of time without specifying the form of the force law at all.  
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For example, we could have a periodic force of the form F = A cos (ωt) + B sin (ωt), where A and B are 
constant vectors that give the amplitude (maximum magnitude) and direction of the force, and ω is the 
angular frequency of the forcing. This could, for example, represent an oscillator interacting with and 
driving another, such as a periodic wind blowing over a suspension bridge and causing it to vibrate.   

Let’s start with an example.  

Example: A periodic driving force  
We’ll start by modifying DampedOscillator2.as. We do not want to plot the analytical solutions here, so 
we get rid of the relevant lines in plotGraph(), but keep the three lines that compute _gamma, _omega0, 
and _omegad in the constructor. These are the variables corresponding to the constants γ, ω0, and ωd. 
After deleting any unnecessary variable declarations, we rename the class and constructor to 
ForcedOscillator and save the file as ForcedOscillator.as. We also create a 
ForcedOscillations.as file to go with it.   

Remember that _omega0 (ω0) is the natural angular frequency of the undamped system, and _omegad (ωd) 
is the angular frequency with damping. Let’s begin by adding the following lines to calcForce():  
 
var forcing:Vector2D = new Vector2D(200*Math.cos(2*_omegad*time)+200*Math.sin! 
(2*_omegad*time), 0);  
force = Forces.add([restoring, damping, forcing]); 

This adds a driving force of the form F = A cos (ωt) + B sin (ωt), with A and B both of magnitude 200 and 
in the x direction (we need fairly large values to see a noticeable difference of the forcing on the 
oscillations), and ω = 2 ωd. So we are forcing the system with a driving force that varies sinusoidally with 
time at an angular frequency that is twice the frequency of the damped system.   

Run the code, and you’ll see that the oscillations start to die out as they did before without the forcing. 
Then, after awhile, the object starts to oscillate at around twice the frequency it did before, but with at a 
much smaller amplitude. This carries on indefinitely. So, the effect of the sinusoidal driving force is to 
eventually make the system oscillate at the driving frequency (albeit at reduced amplitude), rather than the 
frequency that the system would prefer to oscillate at on its own. You can try this with different forcing 
frequencies. For example, if you use ωd/2, half the damped system’s frequency, the oscillations will 
eventually have a frequency of half the initial, unforced frequency. The conclusion is that if you force a 
system to oscillate at a frequency other than its natural frequency, it will still oscillate but at a reduced 
amplitude.    

Now make the forcing frequency exactly equal to ωd by modifying the forcing vector to this: 
 
var forcing:Vector2D = new Vector2D(200*Math.cos(_omegad*time)+200*Math.sin(_omegad*time), 0); 

When you run the code, you’ll now see that the oscillations quickly settle into equilibrium at the original 
frequency ωd and maintain a large, constant amplitude without decaying. The system is now “happy” 
because it is forced at exactly the frequency it likes to oscillate. Hence, it settles down quickly and 
oscillates with a large amplitude. So, although damping reduces the energy of the system, forcing puts 
energy back into the system and sustains the oscillations.  
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When the forcing frequency is equal to the natural frequency of the oscillating system, we have what is 
called resonance. It happens in lots of situations, from pushing a child’s swing to the tuning of radio 
circuits. Resonance can have bad effects, too, such as unwanted vibrations in bridges due to periodic wind 
gusts. In fact, resonance due to wind gusts was infamously responsible for the collapse of the Tacoma 
Narrows Bridge in Washington in 1940.  

Example: A random driving force  
Next, let’s try a random forcing. This is as easy as replacing one line of code. Let’s try this first: 
 
var forcing:Vector2D = new Vector2D(1000*Math.random(),0); 

This applies a random force of up to 1,000 units in the positive x direction (to the right). If this were the only 
force, it would send the object flying off to the right, never to be seen again. But the presence of the 
restoring force (as its name suggests) pulls the object back toward the attractor. In fact, because the 
restoring force is proportional to the displacement from the attractor, the farther away the object moves, 
the stronger it gets pulled back. This creates an interesting effect that you’ll surely want to experiment with. 
Because we made the force act only to the right, the object will spend most of its time on the right side of 
the attractor, although it occasionally gets pulled slightly to the left.  

To make the oscillations more symmetrical around the attractor, simply change that line of code to this: 
 
var forcing:Vector2D = new Vector2D(1000*(Math.random()-0.5),0);  

This produces a random force with an x component between –500 and +500, where the minus sign means 
that the force is directed to the left instead of to the right. Run the code, and you’ll get a non-periodic 
oscillator (the object oscillates without regularity).  

Finally, let’s make the object oscillate under a random force in 2D by modifying the same line of code to 
the following: 
 
var forcing:Vector2D = new Vector2D(1000*(Math.random()-0.5),1000*(Math.random()-0.5)); 

If you run the code, you’ll see that the system quickly goes into a state where the oscillations in the x and y 
directions are of comparable magnitude, with the object hovering around the attractor (see Figure 8-8). 
The object is kicked in different directions at every timestep, but it is also pulled back toward the attractor. 
It’s not allowed to get away, no matter how large the forcing is because the farther it goes the more 
strongly it gets pulled back. That’s an interesting effect. It’s some kind of crazy random orbiting motion. Or 
maybe even like a bee buzzing around a flower. Play with that one for sure! 
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Figure 8-8. Oscillator with random forcing 

Gravity as a driving force: bungee jumping  
Let’s now move on to something a little different: bungee jumping! Someone jumps off a bridge or similar 
structure tied to an elastic cord whose other end is tied to a fixed support on the structure. The elastic cord 
has a natural unstretched length, say cordLength. So if the distance of the jumper from the fixed support 
is less than cordLength, gravity and drag are the only forces on the jumper. But once that distance 
exceeds cordLength, the elastic (spring) force will come into effect, and pull the jumper back.  

So here gravity is acting as the driving force, so that f(t) = mg, where m is the mass of the jumper. It’s a 
constant forcing, unlike the types of forcing discussed before. The main damping mechanism is provided 
by drag through the air, so can be implemented using the Forces.drag() method. Finally, the spring 
force is applied only if the jumper’s distance from the fixed support exceeds the natural unstretched length 
of the cord, cordLength. This distance may be less than cordLength initially (before the jumper jumps off 
some supporting structure), but also whenever the jumper bounces back high enough.  

Because this example is a little different from the last few, we’ll list the full source code and then go 
through the main points. Let’s start with the setup file, which is called simply Bungee.as: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
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        import com.physicscodes.objects.Particle; 
 
        public class Bungee extends Sprite{ 
 
                public function Bungee():void{ 
                        init(); 
                } 
 
                private function init():void{ 
                        // create a spring 
                        var spring:Sprite=new Sprite(); 
                        addChild(spring); 
 
                        // create a fixed support 
                        var fixedPoint:Ball; 
                        fixedPoint=new Ball(2,0x000000); 
                        fixedPoint.pos2D=new Vector2D(275,50); 
                        addChild(fixedPoint); 
 
                        // create the bungee jumper 
                        var jumper = new Jumper(); 
                        jumper.pos2D = new Vector2D(275,50); 
                        jumper.mass = 90; 
                        addChild(jumper); 
 
                        // get things moving 
                        var oscillator:BungeeOscillator = new BungeeOscillator! 
(jumper,fixedPoint, spring); 
                        oscillator.startTime(); 
                } 
        } 
} 

Notice that we are creating three objects here: a spring, a fixed point, and a jumper. The spring object is 
just an empty sprite; we’ll actually draw something on it in the BungeeOscillator class that makes the 
whole thing work. The jumper is an instance of Jumper, a drawn MovieClip with the base class of 
Particle. The three objects are passed into the constructor of BungeeOscillator, which looks like this: 
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import flash.display.Sprite; 
 
        public class BungeeOscillator extends Forcer{ 
                private var _object:Particle; 
                private var _center:Vector2D; 
                private var _displ:Vector2D; 
                private var _g:Number=20; 
                private var _kDamping=0.1; 
                private var _kSpring=25; 
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                private var _cordLength:Number=100; 
                private var _spring:Sprite; 
 
                public function BungeeOscillator(pobject:Particle,pfixedSupport:Ball,! 
 pspring:Sprite):void{ 
                        _object = pobject; 
                        _center = pfixedSupport.pos2D; 
                        _spring = pspring; 
                        super(_object); 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        drawSpring(); 
                } 
 
                private function drawSpring():void{ 
                        with (_spring.graphics){ 
                                clear(); 
                                if (_displ.length > _cordLength){ 
                                        lineStyle(2,0x999999); 
                                }else{ 
                                        lineStyle(1,0xcccccc); 
                                } 
                                moveTo(_center.x,_center.y); 
                                lineTo(_object.x,_object.y) 
                        } 
                } 
 
                override protected function calcForce():void{ 
                        _displ=_object.pos2D.subtract(_center); 
                        var gravity:Vector2D = Forces.constantGravity(_object.mass,_g); 
                        var damping:Vector2D = Forces.drag(_kDamping,_object.velo2D); 
                        var extension:Vector2D = _displ.subtract(_displ.unit().multiply! 
(_cordLength)); 
                        var restoring:Vector2D; 
                                if (_displ.length > _cordLength) { 
                                restoring = Forces.spring(_kSpring,extension); 
                        }else{ 
                                restoring = new Vector2D(0,0); 
                        } 
                        force = Forces.add([gravity, damping, restoring]); 
                } 
        } 
} 

First, note the large value we used for the spring constant _kSpring (25). That’s because we’ve specified 
the mass of the jumper as 90 in Bungee.as, instead of 1 as in all the previous simulations. This mirrors the 
fact that, if you want to make a big guy oscillate at the end of an elastic cord, the cord had better be pretty 
stiff! 

Looking next at the calcForce() method, we see that we are including gravity, damping, and restoring 
forces, as discussed previously. The first two are implemented in a straightforward way as usual. There 
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are two differences in how we calculate the restoring force compared with earlier examples. First, the 
displacement vector that must be used to calculate the restoring force is now the displacement vector of 
the end point of the elastic cord (the extension), as explained at the beginning of this chapter, not the 
displacement of the object from the fixed support. Therefore, we first calculate that extension as a vector in 
the line: 
 
var extension:Vector2D = _displ.subtract(_displ.unit().multiply(_cordLength)); 

We then supply extension as the second argument in Forces.spring(). 

Secondly, the restoring force is non-zero only if the object is farther from the support than the length of the 
cord. That’s the same as saying that _displ.length > _cordLength. This explains the code within the if 
block.  

The other new thing is that we’ve included a drawSpring() method, called within an overridden 
moveObject() method, that draws a line to represent the elastic cord at each timestep. The line is drawn 
thinner and fainter when the cord is unstretched. As usual, run the code and feel free to play with the 
parameters. The initial position of the object is the same as that of the fixed support. This makes the object 
oscillate in a vertical straight line (it makes the oscillations 1D). To make it 2D, simply change the initial x-
coordinate of the object in Bungee.as; for example:  
 
object.pos2D = new Vector2D(300,50); 

A screenshot of the demo is shown in Figure 8-9. 

 

Figure 8-9. A bungee jump simulation 

Example: Driving force by user interaction 
User interaction can also be viewed as some kind of forcing. In this example, we will build a simulation in 
which the user can click and drag the object and release it in any location. This will disturb the system, 
setting it to oscillate.   

It is fairly straightforward to modify the bungee simulation to do what we want here. We’ll call the new 
classes DraggingOscillations.as and DraggingOscillator.as. DraggingOscillations.as is 
actually pretty similar to Bungee.as, so we won’t bother discussing it here, other than mention that we’ve 
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changed the mass of the object back to 1. In DraggingOscillator.as, the main changes are that we’ve 
added code to enable dragging and modified the calcForce() method. Here is the modified code: 
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import flash.display.Sprite; 
        import flash.events.MouseEvent; 
 
        public class DraggingOscillator extends Forcer{ 
                private var _object:Ball; 
                private var _center:Vector2D; 
                private var _displ:Vector2D; 
                private var _g:Number=20; 
                private var _kDamping=0.5; 
                private var _kSpring=1; 
                private var _springLength:Number=200; 
                private var _spring:Sprite; 
 
                public function DraggingOscillator(pobject:Ball, pfixedSupport:Ball,! 
 pspring:Sprite):void{ 
                        _object = pobject; 
                        _center = pfixedSupport.pos2D; 
                        _spring = pspring; 
                        _object.addEventListener(MouseEvent.MOUSE_DOWN,onDown); 
                        super(_object); 
                } 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        drawSpring(); 
                } 
                private function drawSpring():void{ 
                        with (_spring.graphics){ 
                                clear(); 
                                lineStyle(2,0x999999); 
                                moveTo(_center.x,_center.y); 
                                lineTo(_object.x,_object.y) 
                        } 
                } 
                override protected function calcForce():void{ 
                        _displ=_object.pos2D.subtract(_center); 
                        var gravity:Vector2D = Forces.constantGravity(_object.mass,_g); 
                        var damping:Vector2D = Forces.damping(_kDamping,_object.velo2D); 
                        var extension:Vector2D = _displ.subtract(_displ.unit().multiply! 
(_springLength)); 
                        var restoring:Vector2D = Forces.spring(_kSpring,extension); 
                        force = Forces.add([gravity, damping, restoring]); 
                } 
                private function onDown(e:MouseEvent):void{ 
                        _object.velo2D = new Vector2D(0,0); 
                        _object.stage.addEventListener(MouseEvent.MOUSE_UP,onUp); 
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                        _object.startDrag(true); 
                        _spring.graphics.clear(); 
                        stopTime(); 
                } 
                private function onUp(e:MouseEvent):void{ 
                        _object.pos2D = new Vector2D(_object.x,_object.y); 
                        _object.stage.removeEventListener(MouseEvent.MOUSE_UP,onUp); 
                        _object.stopDrag(); 
                        startTime(); 
                } 
        } 
} 

In calcForce(), we include gravity as before, while damping is included using the Forces.damping() 
function. We then calculate the extension of the spring and feed it into the restoring force as before. 
However, because this is a spring that can also be compressed and is not an elastic cord, we apply the 
restoring force even if the extension is negative, so we got rid of the if statement we had before.  

There is also an event listener in the constructor, listening out for MOUSE_DOWN events and triggering the 
onDown() event handler when the object is clicked. The onDown() method sets the velocity of the object 
to zero, sets up an event listener that listens to MOUSE_UP events, allows dragging, clears the spring, and 
stops the timer. The onUp() event handler is invoked when the object is released, and it updates the 
position vector of the object, removes the event listener, stops dragging, and restarts the timer.  

All that is fairly straightforward. Run the code and you’ll see the object fall down under gravity and be 
pulled back again by the spring, oscillating with reducing amplitude due to the damping. If you drag the 
object and release it, it oscillates again due to the forcing.  

Coupled oscillators: Multiple springs and objects 
In all the examples so far, we’ve considered only a single object and spring system. Things get even more 
interesting when you couple more than one object and spring system together. In fact, you can create 
extended systems based on objects with masses connected by springs. In the next subsection, you’ll see 
an example of what can be done. Then we’ll look at more complicated examples in Chapter 13 when we 
model deformable bodies.  
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Example: A chain of objects connected by springs 
What you’ll create is shown in Figure 8-10: a number of balls connected by springs, with the first ball 
connected to a support. The support will then be moved around, causing the chain of suspended balls to 
move around, too.  

 

Figure 8-10. A chain of objects held together by springs 

The forces that will be modeled include gravity, damping, and restoring force. The springs will have a 
natural length, as in the last couple of examples. Each ball will therefore experience gravity, damping, a 
restoring force due to a spring above, and another restoring force due to a spring below (except for the last 
ball). The springs themselves will be assumed to be massless.  

Here is the code in the setup file, called CoupledOscillations.as: 

  
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class CoupledOscillations extends Sprite{ 
                public function CoupledOscillations():void{ 
                        init(); 
                } 
 
                private function init():void{ 
                        // create a spring 
                        var spring:Sprite=new Sprite(); 
                        addChild(spring); 
 
                        // create a fixed support 
                        var fixedPoint:Ball; 
                        fixedPoint=new Ball(2,0x000000); 
                        fixedPoint.pos2D=new Vector2D(275,50); 
                        addChild(fixedPoint); 
 
                        // create the oscillating objects 
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                        var objects:Array = new Array(); 
                        var numObjects:Number = 6; 
                        for (var i:uint=0; i<numObjects; i++){ 
                                var object:Ball= new Ball(15,0x0000ff,1); 
                                //object.pos2D = new Vector2D(275+60*i,100+60*i); 
                                object.pos2D = new Vector2D(275,100+60*i); 
                                addChild(object); 
                                objects.push(object); 
                        } 
 
                        // get things moving 
                        var oscillator:CoupledOscillator = new CoupledOscillator! 
(objects,fixedPoint,spring); 
                        oscillator.startTime(); 
                } 
        } 
} 

As in the last two examples, we first create a spring sprite on which the “springs” will be drawn. We then 
create a Ball object to act as a “fixed” support (in reality, we’ll make it move, too). Then we create a whole 
bunch of Ball objects and put them in an array called objects. Finally, we create an instance of a 
CoupledOscillator class, pass it the relevant objects, and fire the startTime() method.  

Before we look at CoupledOscillator.as, we need to modify MultiForcer slightly. We call the modified 
version MultiForcer2, and here is the full code of that class:  

 

package com.physicscodes.motion { 
        import com.physicscodes.motion.Mover; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
 
        public class MultiForcer2 extends Mover{ 
 
                private var _particles:Array; 
                private var _force:Vector2D; 
                private var _acc:Vector2D; 
 
                public function MultiForcer2(pparticles:Array):void{ 
                        _particles = pparticles; 
                        super(null); 
                } 
 
                public function get force():Vector2D { 
                        return _force; 
                } 
                public function set force(pforce):void { 
                        _force = pforce; 
                } 
                override protected function moveObject():void{ 
                        for (var i:uint=0; i<_particles.length; i++){ 
                                var particle:Particle = _particles[i]; 
                                particle.pos2D = particle.pos2D.addScaled(particle.velo2D,dt); 
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                                calcForce(particle,i); 
                                _acc = _force.multiply(1/particle.mass); 
                                particle.velo2D = particle.velo2D.addScaled(_acc,dt); 
                        } 
                } 
                protected function calcForce(pparticle:Particle,pnum:uint):void{ 
                        _force = Forces.zeroForce(); 
                } 
        } 
} 

If you compare this with the code for MultiForcer, you’ll notice that the only differences between the two 
are in the two lines set in bold. We have modified the method calcForce() by including another 
argument, which is of type uint. In moveObject(), when we call calcForce(), we then include an 
additional parameter i, which is the index number of the relevant particle in the array. Why do we need to 
do this? For each ball, we need to calculate the spring force exerted by the springs connected to it from 
the previous and the next balls. Therefore, it would be handy if we knew exactly which ball we’re dealing 
with, and therefore which balls are before and after it. That’s what the extra parameter achieves.   

By extending MultiForcer2, CoupledOscillator will automatically have this capability, too. So, it will be 
able to work out each ball’s nearest neighbors and hence apply the spring force linked with each one. Here 
is the code in CoupledOscillator.as: 

 

package { 
        import com.physicscodes.motion.MultiForcer2; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
        import flash.display.Sprite; 
 
        public class CoupledOscillator extends MultiForcer2{ 
                private var _objects:Array; 
                private var _support:Ball; 
                private var _center:Vector2D; 
                private var _displ:Vector2D; 
                private var _g:Number=20; 
                private var _kDamping=0.5; 
                private var _kSpring=10; 
                private var _springLength:Number=50; 
                private var _spring:Sprite; 
 
                public function CoupledOscillator(pobjects:Array,psupport! 
:Ball,pspring:Sprite):void{ 
                        _objects = pobjects; 
                        _support = psupport; 
                        _center = _support.pos2D; 
                        _spring = pspring; 
                        super(_objects); 
                } 
                override protected function moveObject():void{ 
                        super.moveObject(); 
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                        drawSpring(); 
                } 
 
                override protected function calcForce(pparticle:Particle,pnum:uint):void{ 
                        var centerPrev:Vector2D; 
                        var centerNext:Vector2D; 
                        if (pnum > 0){ 
                                centerPrev = _objects[pnum-1].pos2D; 
                        }else{ 
                                centerPrev = _center; 
                        } 
                        if (pnum < _objects.length-1){ 
                                centerNext = _objects[pnum+1].pos2D; 
                        }else{ 
                                centerNext = pparticle.pos2D; 
                        } 
                        var displPrev:Vector2D = pparticle.pos2D.subtract(centerPrev); 
                        var displNext:Vector2D = pparticle.pos2D.subtract(centerNext); 
                        var extensionPrev:Vector2D = displPrev.subtract(displPrev.unit().! 
multiply(_springLength)); 
                        var extensionNext:Vector2D = displNext.subtract(displNext.unit().! 
multiply(_springLength)); 
                        var gravity:Vector2D = Forces.constantGravity(pparticle.mass,_g); 
                        var damping:Vector2D = Forces.damping(_kDamping,pparticle.velo2D); 
                        var restoringPrev:Vector2D = Forces.spring(_kSpring,extensionPrev); 
                        var restoringNext:Vector2D = Forces.spring(_kSpring,extensionNext); 
                        force = Forces.add([gravity, damping, restoringPrev, restoringNext]); 
                } 
 
                private function drawSpring():void{ 
                        with (_spring.graphics){ 
                                clear(); 
                                lineStyle(2,0x999999); 
                                moveTo(_center.x,_center.y); 
                                for (var i:uint=0; i<_objects.length; i++){  
                                        var X:Number = _objects[i].xpos; 
                                        var Y:Number = _objects[i].ypos; 
                                        lineTo(X,Y); 
                                } 
                        } 
                } 
 
        } 
} 

Most of the code should be familiar to you by now. The new features are the bits of code that deal with the 
fact that we have multiple moving objects and springs, and each object experiences a restoring force due 
to its nearest neighbors. In calcForce(), we take this into account by first defining variables centerPrev 
and centerNext that are given the positions of the balls just before and just after the current ball, by using 
the array index pnum that is now passed as a parameter in calcForce(). For the first ball, centerPrev is 
given the position of the fixed support; for the last ball, centerNext is given the position of the current ball. 
The values of centerPrev and centerNext are then used to calculate the displacement vectors of the 



Chapter 8 

250 

ball from the previous and the next balls in the usual way. Then the spring extension from the natural 
length of the spring _springLength is worked out for each spring as in the last two examples. Finally, the 
spring force due to each spring is calculated using Forces.spring() and added to the gravity and 
damping forces. 

The drawSpring() method, which is called from the moveObject() method, now draws a line starting 
from the fixed support through each ball.  

The initial positions of the objects are set in CoupledOscillations.as. Run the code with different initial 
positions to see how the balls move under the gravity and the spring forces to rearrange themselves in 
their equilibrium positions.   

Again, don’t be afraid to experiment. For example, add the following code in moveObject() to make the 
support oscillate sinusoidally, dragging the chain along with it:  
 
_support.xpos = 100*Math.sin(1.0*time)+275; 
_center = _support.pos2D; 

This gives you something like what’s pictured in Figure 8-10.  

How about trying different masses and different spring constants? Or allowing the balls to be dragged? Or 
see if you can figure out how to make closed chains. We’ll leave you to it. 

Summary 
We hope you had a lot of fun playing with the examples in this chapter. As we said at the beginning of the 
chapter, springs are not only fun but also extremely useful. Springs can be used creatively in many 
ways"for example, you could apply them to velocity, so that an object accelerates and decelerates 
smoothly to attain a given “equilibrium” velocity. Hopefully you’ll be able to find many uses for them. Your 
imagination is the limit. We’ll certainly bump into springs again later in this book.  
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Chapter 9 

Centripetal Forces: Rotational Motion 

Circular and rotational motions are widespread both in nature and in man-made machines, from merry-go-
rounds to the orbits and spins of planets. To analyze and model such types of motion, we need some 
special tools: the linear kinematics and dynamics presented in Chapter 5 need to be extended to rotational 
motion. In a nutshell, this is what the present chapter will begin to look into.   

Topics covered in this chapter include the following: 

! Kinematics of uniform circular motion: The kinematics of rotational motion can be developed 
in analogy with linear kinematics.   

! Centripetal acceleration and centripetal force: An object in uniform circular motion still 
experiences acceleration and therefore a force directed toward the center of rotation.  

! Non-uniform circular motion: This happens if there is a tangential component of force in 
addition to a centripetal component.  

The material covered in this chapter will also be relevant for handling rigid body motion in Chapter 13.  

Kinematics of uniform circular motion 
In Chapter 4, we laid out the framework for describing motion using concepts such as displacement, 
velocity, and acceleration. As we said there, this framework is technically called kinematics. Those 
concepts sufficed to describe so-called linear or translational motion. But for analyzing circular or rotational 
motion, we need additional concepts.  



Chapter 9 

252 

In fact, the concepts of rotational kinematics can be developed in complete analogy with those of linear 
kinematics. For starters, we have rotational analogs of displacement, velocity, and acceleration that are 
called angular displacement, angular velocity, and angular acceleration, respectively. So let’s start by 
looking at them.   

Angular displacement 
Recall that displacement was defined back in Chapter 4 as distance moved in a specified direction. What 
is the equivalent definition for angular displacement?  

First, we need to figure out what concepts are equivalent to distance and direction in rotational motion. 
Take a look at Figure 9-1, which compares translational motion with rotational motion. On the left, an 
object moves along a distance d in a given direction. On the right, an object rotates through an angle θ 
about some center, in a given sense (clockwise in this case). So, it’s clear that in rotational kinematics, 
angle takes the place of distance, and rotation sense (clockwise or anticlockwise) takes the place of 
direction.  

d
θ

 

Figure 9-1. Translation and rotation compared for particle motion 

Another context in which angular displacement arises is when a rigid body rotates about a fixed axis, as 
shown in Figure 9-2. In this case, each point on the rigid body moves through the same angle θ about the 
axis of rotation. 

θ

θ

 

Figure 9-2. Rotation of a rigid body about an axis 

In either case (particle rotation about a center or rigid body rotation about an axis), the idea is therefore the 
same. Hence, we define angular displacement as the angle through which an object moves about a 
specified center and in a specified sense.  

This definition implies that the magnitude of angular displacement is an angle. The usual convention is to 
use radians for the angle, so we’ll do that here.  
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Angular velocity 
In analogy with linear velocity, angular velocity is defined as the rate of change of angular displacement 
with time. The usual symbol for angular velocity is ω (the Greek letter omega), so its defining equation in 
calculus notation is this: 

ω = dθ
dt  

For a small time interval ∆t and angle change ∆θ, it can be expressed in this discrete form: 

ω = ∆θ
∆t  

The latter equation can also be written in the following form: 

∆θ = ω ∆t  
This last form of the equation is what we’ll use most frequently in code, to calculate the angular 
displacement due to an angular velocity ω in a time interval ∆t.  

Angular velocity is measured in radians per second (rad/s) because we divide angle by time to calculate it.  

You’ll frequently deal with situations where the angular velocity is constant. For example, a particle in 
uniform circular motion has a constant angular velocity, although its linear velocity is not constant 
(because its direction of motion changes). Another example is that of an object spinning at a constant rate, 
such as the Earth. 

Angular acceleration 
Angular acceleration is the rate of change of angular velocity. It is denoted by the Greek letter α (alpha), 
and its defining equation is this: 

α = dω
dt  

The definition of angular acceleration implies that it is zero if the angular velocity is constant. Therefore, an 
object in uniform circular motion has zero angular acceleration. That does not mean that its linear 
acceleration is zero. In fact, the linear acceleration cannot be zero because the direction of motion (and 
therefore the linear velocity) is constantly changing. We’ll come back to this point a little later in the 
chapter.  
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Period, frequency, and angular velocity 
Uniform circular motion or rotation is a type of periodic motion (see “Basic Trigonometry” in Chapter 3) 
because the object returns to the same position at regular intervals. In fact, as discussed in Chapter 3, 
circular motion is related to oscillatory, sinusoidal motion. Back then, we defined the angular frequency, 
frequency, and period of an oscillation and showed that they were related by these equations:  

f = 1
T  

ω = 2π f = 2π
T  

The same relationships hold for circular motion, as should be evident by considering Figure 3-16. For 
circular motion ω is now the angular velocity; it’s the same as the angular frequency of the corresponding 
sinusoidal oscillation. Similarly, f is the frequency of rotation (the number of revolutions per second). 
Finally, T is the period of revolution (the time it takes to perform one complete revolution). 

As an example, let’s calculate the angular velocity of the Earth as it orbits the Sun using the formula ω = 
2π/T. We know that the period T is approximately 365 days. In seconds, it has the following value: 

T = 365 ! 24 ! 60 ! 60 s ' 3.15 ! 107 s 

Therefore the angular velocity has the following value: 

ω = 2π/T = 2π/(3.15 ! 107) ' 2.0 ! 10–7 rad/s  

This is the angle, in radians, through which the Earth moves around the Sun every second.  

Let’s now calculate the angular velocity of the Earth as it revolves around its axis using the same formula. 
In this case, the period of revolution is 24 hours, and so T has the following value: 

T = 24 ! 60 ! 60 s = 86400 s 

Therefore, the angular velocity is the following: 

ω = 2π/T = 2π/86400 = 7.3 ! 10–5 rad/s 

Note that this is the angular velocity of every point on the Earth, both on its surface and within it. That’s 
because the Earth is a rigid body so that, as it revolves about its axis, every point rotates through the same 
angle in the same time. However, different points have different linear velocities. How is the angular 
velocity related to the linear velocity? Time to find out!   
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Relation between angular velocity and linear velocity 
There is a simple relationship between the linear velocity and angular velocity for an object moving in 
uniform circular motion. To arrive at this relationship, we first note that the displacement ∆s of an object 
moving through an angle ∆θ around a circle of radius r is the length of arc that subtends that angle at the 
center of rotation. It is therefore given by the following: 

∆s = r ∆θ  

This follows from the definition of the radian given in Chapter 3: one radian is the angle subtended at the 
center of a circle by an arc of length equal to the radius of the circle. So, by proportion, an arc that makes 
an angle of ∆θ radians at the center must be of length r ∆θ (see Figure 9-3).  

r∆θ

r

r

1 rad

r

∆θ rad

 

Figure 9-3. Relationship between length of arc and angle at center 

Now we can divide this equation on both sides by the time interval ∆t for the object to move through that 
angle: 

∆s
∆t

= r ∆θ
∆t  

But ∆s/∆t = v and ∆θ/∆t = ω, by definition. Hence, we have the following: 

v = rω  

This formula gives us the linear velocity of an object moving in a circle of radius r at angular velocity ω. 

It also applies to a rigid body undergoing rotation about an axis. In that case, it gives the linear velocity at a 
distance r from the axis of rotation. For a given angular velocity ω, the formula then tells us that the 
velocity is proportional to the distance from the axis (the farther away you are, the faster is the linear 
velocity).  

Let’s apply this formula to the examples discussed in the last section. First, we’ll calculate the linear 
velocity of the Earth in its orbit around the Sun. To work this out, we need to know the radius of Earth’s 
orbit (the distance of the Earth from the Sun): 1.5 ! 1011 m. We’ve already worked out the angular velocity 
of the Earth in its orbit. It is 2.0 ! 10–7 rad/s. 
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Therefore, the orbital velocity of the Earth is given by the following: 

v = r ω = 1.5 ! 1011 ! 2.0 ! 10–7  = 3 ! 104  m/s 

This is 30 km/s, or 100 000 km/hr. That’s about 100 times the typical speed of an airplane! 

As a second example, because the Earth’s radius is 6.4 ! 106 m, and its angular velocity about its own 
axis is 7.3 ! 10–5 rad/s (as we worked out in the last section) the speed of any point on the Earth’s surface 
at the equator due to Earth’s rotation has the following value: 

v = r ω = 6.4 ! 106 ! 7.3 ! 10–5  m/s ' 470 m/s  

This is about 1500 km/hr, or about one and a half times the typical speed of an airplane.  

Example: A rolling wheel 
We now know enough to be able to put together some simple examples. Our first example will be to create 
rolling wheels. In contrast with most of the examples in the last few chapters, this example will not involve 
any dynamics, but only kinematics. So we will not compute motion using forces, but will just tell the objects 
how to move by specifying the velocity directly.  

Another difference is that we will code this example up as a standalone piece of code without using the 
physics library we’ve been developing. This is partly because we haven’t included rotational motion in our 
physics engine yet and partly as an exercise to make sure we remember the basics.  

To begin with, let’s create a wheel. We’d like the wheel to look like that shown in Figure 9-4, with an inner 
and outer rim, and a number of equally spaced spokes (so that we can see it rotating).  

 

Figure 9-4. A rolling wheel  

Here is a Wheel class that does the job: 
 
package{ 
        import flash.display.Sprite; 
        import flash.display.Graphics; 
 
        public class Wheel extends Sprite{ 
 
                private var _innerRadius:Number; 
                private var _outerRadius:Number; 
                private var _numSpokes:Number; 
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                public function Wheel(pIR:Number,pOR:Number, pnumS:Number):void{ 
                        _innerRadius = pIR; 
                        _outerRadius = pOR; 
                        _numSpokes = pnumS; 
                        drawWheel(); 
                } 
 
                private function drawWheel():void{ 
                        with (graphics){ 
                                beginFill(0); 
                                drawCircle(0,0,_outerRadius); 
                                endFill(); 
                                beginFill(0xffffff); 
                                drawCircle(0,0,_innerRadius); 
                                endFill(); 
                                lineStyle(4); 
                        } 
                        for (var n:uint=0; n<_numSpokes; n++){ 
                                with (graphics){ 
                                        moveTo(0,0); 

lineTo(_innerRadius*Math.cos! 
(2*Math.PI*n/_numSpokes), _innerRadius*Math.sin(2*Math.PI*n/_numSpokes)); 
                                } 
                        } 
                } 
        } 
} 

The constructor of Wheel takes three arguments: the inner radius, the outer radius, and the number of 
spokes.  

Now we’ll create a Wheel instance and make it roll. Take a look at the code in WheelDemo.as: 
 
package{ 
        import flash.display.Sprite; 
        import flash.events.Event; 
 
        public class WheelDemo extends Sprite{ 
 
                private var _innerRadius:Number=40; 
                private var _outerRadius:Number=50; 
                private var _numSpokes:Number=10; 
                private var _v:Number; 
                private var _w:Number=1;         // angular velocity in radians per second 
                private var _dt:Number=0.025;    // timestep = 1/FPS 
                private var _fac:Number=1;       // slipping/sliding factor 
 
                private var _wheel:Wheel; 
 
                public function WheelDemo():void{ 
                        init(); 
                } 
 
                private function init():void{ 
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                        _v = _fac*_w*_outerRadius;        // v = r w 
                        _wheel = new Wheel(_innerRadius,_outerRadius,_numSpokes); 
                        _wheel.x = 100; 
                        _wheel.y = 200; 
                        addChild(_wheel); 
                        addEventListener(Event.ENTER_FRAME,onEachTimestep); 
                } 
 
                private function onEachTimestep(evt:Event):void{ 
                        _wheel.rotation += _w*_dt*180/Math.PI; // convert w to deg/s 
                        _wheel.x += _v*_dt; 
                } 
 
        } 
} 

We created a Wheel instance and then set up an ENTER_FRAME event listener with an event handler 
onEachTimestep() that increments the rotation and x properties of the wheel at each timestep. This is 
done using the angular velocity _w and the linear velocity _v by using these formulas: 
 
_wheel.rotation += _w*_dt*180/Math.PI; 
_wheel.x += _v*_dt; 

The first formula indicates that we are specifying the angular velocity in radians per second; hence the 
need for the factor 180/Math.PI. The second formula uses the value of velocity _v that is precalculated in 
the constructor using this formula: 
 
_v = _fac*_w*_outerRadius; 

This is basically the formula v = rω, but with an additional factor _fac included to model the effect of 
slipping or sliding (skidding), with pure rolling if _fac = 1.  

Finally, _dt is the timestep that is given the value of 0.025. You may be wondering where that value 
comes from. This is an estimate of the time interval between successive calls of onEachTimestep(). We 
expect _dt to be approximately equal to the 1/FPS, where FPS is the frame rate of the movie, which we 
set at 40. We reiterate that this is just approximate, but is good enough for this simple demo. Recall that in 
Mover we used the getTimer() function to compute _dt much more accurately.    

Run the code with _fac = 1, and you’ll see the wheel move so that its translational velocity is consistent 
with its rotation rate. This gives the appearance of pure rolling without slipping or skidding. If you change 
the value of _fac to less than 1, say 0.2, the wheel does not move forward fast enough in relation to its 
rotation; it looks like it’s stuck in the mud and is slipping. If you give _fac a value greater than 1, say 5, the 
wheel moves forward faster than it would do purely as a result of its rotation: it appears to be skidding on 
ice.  

Particles with spin 
Before we proceed further, let’s update the Particle and Mover classes to allow particles to spin about 
their center. This is quite straightforward.  
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In Particle, we create a new property _omega with an associated getter get angVelo() and setter set 
angVelo() to represent angular velocity: 
 
// angular velocity in radians per second 
private var _omega:Number=0; 
 
public function get angVelo():Number{ 
        return _omega; 
} 
public function set angVelo(pomega:Number):void{ 
        _omega = pomega; 
} 

In Mover, we include an additional protected method spinObject() in the onTimer() function: 
 
private function onTimer(pEvent:TimerEvent):void { 
        _dt = 0.001 * (getTimer() - _t0); 
        _time += _dt; 
        _t0  =getTimer(); 
        moveObject(); 
        spinObject(); 
        pEvent.updateAfterEvent(); 
} 

with spinObject() looking as follows: 
 
protected function spinObject():void{ 
        if (_particle.angVelo !=0){ 
        _particle.rotation += _particle.angVelo*_dt*180/Math.PI;  
        } 
} 

This code will make the Particle instance spin on its axis if its angular velocity is non-zero. Note the 
factor of 180/Math.PI, which converts angles to degrees (because the rotation property deals with 
degrees rather than radians). A positive value of angVelo will result in a clockwise rotation, and a negative 
value will result in a counterclockwise rotation.  

Any Particle instance animated by a Mover instance will automatically spin if its angular velocity is non-
zero. Let’s look at a specific example now.   

Example: Satellite around a rotating Earth 
What we want to achieve in this example is in essence quite simple: an animation of a satellite in a circular 
orbit around a rotating Earth. The twist is that we want the satellite to orbit so that it is always over the 
same spot on Earth. This is called a geostationary orbit; as you might guess, it’s very useful for 
telecommunications as well as spying.  
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Once again, this example will involve only kinematics and no dynamics (no forces). Later on in the chapter, 
we’ll add in the forces.  

Let’s dive right in and create the setup. We borrow the orbits simulation from Chapter 6 and come up with 
the following code, in the file SatelliteDemo.as:  
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class SatelliteDemo extends Sprite{ 
                public function SatelliteDemo():void{ 
                        init(); 
                } 
                private function init():void{ 
                        // create 100 stars randomly positioned 
                        for (var i:uint=0; i<100; i++){ 
                                var star:Ball = new Ball(Math.random()*3,0xffff00); 
                                star.pos2D = new Vector2D(Math.random()*stage.! 
stageWidth,Math.random()*stage.stageHeight); 
                                addChild(star); 
                        } 
 
                        // create a spinning Earth 
                        var earth:Ball; 
                        earth = new Ball(70,0x0099ff,1000000); 
                        earth.pos2D = new Vector2D(400,300); 
                        earth.angVelo = 0.4; 
                        addChild(earth); 
 
                        // create a moving satellite 
                        var satellite:Ball; 
                        satellite = new Ball(8,0x999999,1); 
                        satellite.pos2D = new Vector2D(600,300); 
                        //satellite.angVelo = earth.angVelo; 
                        // draw antennae 
                        with (satellite.graphics){ 
                                lineStyle(2,0xffffff); 
                                moveTo(0,0); 
                                lineTo(-20,-10); 
                                moveTo(0,0); 
                                lineTo(-20,10); 
                                moveTo(0,0); 
                                lineTo(-15,0); 
                        } 
                        addChild(satellite); 
 
                        // make the satellite orbit the Earth 
                        var orbiter:SatelliteOrbiter=new SatelliteOrbiter(satellite,earth); 
                        orbiter.startTime(10); 
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                        // make the Earth spin 
                        earth.move(); 
                } 
        } 
} 

Most of the code will look familiar. We create some stars, an Earth and a satellite, all as Ball instances. 
The masses that are given to the various objects are irrelevant here as there is no dynamics. You can put 
any value you want and the animation will behave in exactly the same way.  

In addition, we give the Earth a non-zero angular velocity. We also draw three lines on the satellite to give 
it a nice old-fashioned, Sputnik-like appearance. Then we make the satellite move with the help of the 
SatelliteOrbiter class, to be described shortly. Finally we make the Earth spin by the move() method.  

The SatelliteOrbiter class is simpler than you might expect. Here is the full code: 
 
package { 
        import com.physicscodes.motion.Mover; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
 
        public class SatelliteOrbiter extends Mover{ 
                private var _orbiter:Particle; 
                private var _omega:Number; 
                private var _r:Number; 
                private var _x0:Number; 
                private var _y0:Number; 
 
                public function SatelliteOrbiter(porbiter:Particle,pattractor:Particle):void{ 
                        _orbiter = porbiter; 
                        _r = _orbiter.pos2D.subtract(pattractor.pos2D).length; 
                        _omega = pattractor.angVelo; 
                        _x0 = pattractor.xpos; 
                        _y0 = pattractor.ypos; 
                        super(porbiter); 
                } 
 
                override protected function moveObject():void { 
                        _orbiter.pos2D = new 
Vector2D(_r*Math.cos(_omega*time)+_x0,_r*Math.sin(_omega*time)+_y0); 
                } 
 
        } 
} 

The first thing to note is that SatelliteOrbiter extends Mover instead of Forcer (as we’ve been doing 
most of the time). That’s because we are not going to have any forces here. The SatelliteOrbiter 
constructor takes as arguments an orbiter particle (the satellite) and an attractor particle (the Earth). 
Although we are using the words orbiter and attractor, we will not model any actual gravitational forces 
between the particles. Hence, the nature of the animation is different from that of the orbits simulation of 
Chapter 6. In the constructor, the satellite particle is assigned to a private variable _orbiter, and the 
distance of the satellite from the Earth is computed and stored in the variable _r. This distance does not 
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change because the orbit will be circular. Then the angular velocity, and x and y position of the Earth are 
stored in the private variables _omega, _x0 and _y0, respectively.  

The action takes place in the overridden moveObject() method, with a single line of code. All we are 
doing here is telling the satellite where it must be at any time, using these formulas: 

x = rcos ω t( ) + x0  

x = rsin ω t( ) + y0  

You might recall from Chapter 3 that using cos and sin in this way produces circular motion with angular 
frequency ω at a radius r. Adding x0 and y0 (the coordinates of the center of the Earth) makes the satellite 
orbit the Earth. The other important thing is that ω is chosen to be equal to the angular velocity of the 
Earth. This makes the satellite orbit the Earth at exactly the same rate as the Earth spins on its axis. Run 
the simulation, and you’ll see that this is indeed the case.  

We can improve the animation by adding the following line of code to SatelliteDemo.as to make the 
satellite’s antennae always point toward the Earth (see Figure 9.5): 
 
satellite.angVelo = earth.angVelo; 

All this line does is to assign the Earth’s angular velocity to the satellite’s angVelo property, so that it spins 
in sync with the Earth.   

 

Figure 9-5. A spy satellite orbiting the Earth 

The alert reader will have noticed that we’ve called this example an animation rather than a simulation. 
That’s because we basically told the satellite how to move, rather than prescribing the forces that act on it 
and letting them determine the motion of the satellite. Although the animation does have some physics 
realism, it is not totally realistic. One reason is that we have forced the satellite to orbit the Earth at the 
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same rate (the same angular velocity) as the Earth spins around its axis. You can change the distance of 
the satellite from the Earth’s center and it will still orbit at the same rate. In reality, satellites can only do so 
at a specific distance from the Earth’s center; in other words, all geostationary satellites must be at the 
same distance from the Earth! It is not obvious why that should be so, but the next section will help clarify 
that and help you to build this feature into the animation.  

Centripetal acceleration and centripetal force 
Now that we’ve covered the basics, it’s time to move on to some slightly more difficult concepts: centripetal 
acceleration and centripetal force. Actually they are not really difficult, but they are frequently 
misunderstood. Hence, we’ll try and clear some of the possible confusion as we go along.  

Centripetal acceleration 
As we pointed out in the section on angular velocity, an object moving in a circle (or in a curved path in 
general) has a linear velocity that is changing with time because its direction is changing all the time. 
Therefore, from the definition of acceleration as rate of change of velocity, that means it has a non-zero 
acceleration"we never said that acceleration means just a change in the magnitude of velocity (speed); it 
could mean a change in direction as well. 

It may not be obvious at all, but for an object moving in a circle, this acceleration actually points toward the 
center of the circle. Therefore, it is called centripetal acceleration (from the Latin: centr = “center,” and 
petere = “to seek”). One way to appreciate this is to think of the center as pulling the object, thereby 
changing its direction constantly (see Figure 9-6). We’ll see in a moment how to calculate the centripetal 
acceleration.  

r
a

v

 

Figure 9-6. Centripetal acceleration 

Centripetal acceleration must not be confused with angular acceleration. As explained earlier in this 
chapter, angular acceleration refers to the rate of change of angular velocity. In the case of uniform circular 
motion, the angular acceleration is zero because the angular velocity is constant (that’s what “uniform” 
means), but the centripetal acceleration is not zero. The centripetal acceleration is a measure of the rate of 
change of linear velocity, when the latter is only changing in direction while its magnitude remains 
constant.  
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Centripetal acceleration, velocity and angular velocity 
How do we calculate the centripetal acceleration? Well, there is a simple formula for it. It’s not easy to 
prove, so the best thing is just to believe us! Here is one form of the formula: 

a = v
2

r  

Referring to Figure 9-6, this formula tells us the centripetal acceleration for an object moving with velocity v 
in a circle or arc of radius r. From this we deduce that if the velocity is large, the acceleration is large (for 
the same radius); and if the radius is small, the acceleration is large (for the same velocity magnitude).  

Remembering that v = rω, you can replace v in the preceding formula to come up with an alternative form 
for the formula in terms of r and ω: 

a = rω 2
 

This formula now tells us that the centripetal acceleration is larger when the angular velocity is larger (for 
the same radius). But it also tells us that the centripetal acceleration is larger when the radius is larger, for 
the same angular velocity. This does not contradict what we said previous in relation to the other form of 
the formula, but can seem confusing at first! The key point is that here the linear velocity magnitude is not 
assumed to be constant for different radiuses. In fact, if the angular velocity is constant, then the linear 
velocity magnitude must increase with radius because v = rω.  

One consequence of the last formula is that for a rigid body spinning about its axis, points farther away 
from the axis have a larger acceleration (because all points on the rigid body have the same angular 
velocity) as well as a larger velocity (because v = rω).  

Centripetal force 
We’ve just seen that any object in uniform circular motion must experience an acceleration toward the 
center of the circular trajectory. Therefore, by Newton’s second law, there must be a resultant force on it 
that is also directed toward the center. This is known as the centripetal force.  

The centripetal force is the force that is needed to keep an object in circular motion. It needs to be 
provided continuously by some physical agent; otherwise, the object cannot maintain circular motion.  

As an example, an object whirled around by a string gets its centripetal force from the tension in the string. 
A car moving around a circular track gets centripetal force from friction exerted by the ground on the tires. 
Planets orbiting the Sun experience a centripetal force due to the Sun’s gravitational attraction.   
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It’s very easy to work out the formula for centripetal force. Because F = ma, you just need to multiply the 
formulas for centripetal acceleration by m (the mass of the moving object) to obtain this:  

F = m v
2

r  

And to get this: 

F = m rω 2
 

In vector form, the first formula can be written as follows: 

F = −m v
2

r2 r  

Or it can be written like this, where ru is a unit vector in the direction of the position vector r of the moving 
object with respect to the center: 

F = −m v
2

r
ru  

The minus sign arises because the force points toward the center (opposite to the vector r). Similar vector 
forms also hold for the formula F =  mrω2. 

Common misconceptions about centripetal force 
Centripetal force is probably one of the most misunderstood concepts in physics. Let’s try and clear some 
of the confusion.  

! Centripetal force is not a new “type” of force in the same sense that gravity and friction are types 
of forces. It is simply the force that must be present to make an object move in a circle. Different 
forces can act as centripetal forces, including gravity and friction. 

! Sometimes people mistakenly talk about the need to “balance” the centripetal force. For example, 
a common misunderstanding is that the gravitational force on a planet in orbit around the Sun 
balances the centripetal force. That does not make sense for several reasons. First, the 
centripetal force must point toward the Sun, and so does the gravitational force, so they are both 
in the same direction. Second, if the two forces did balance, the resultant force on the planet 
would be zero; its acceleration would therefore be zero and so it would have to move in a straight 
line at constant velocity (by Newton’s first law of motion). Third, centripetal force is not even a 
“type” of force. The correct thinking is that the gravitational force provides the centripetal force 
necessary for the planet to orbit the Sun.   
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! You may also hear about something called centrifugal force, which has the same magnitude as 
the centripetal force but acts in the opposite direction (away from the center of rotation). 
Centrifugal force is not a real force but a so-called pseudo force. It arises out of the attempt to 
analyze motion within the framework of Newton’s laws but from the point of view of a rotating 
frame of reference. An example is the description of atmospheric motion from a reference frame 
on the Earth (which is, of course, rotating). Although centrifugal force certainly has its place in 
physics in analyzing problems like this, it can cause a lot of confusion, too. Our recommendation 
is therefore to avoid thinking in terms of centrifugal forces.   

Example: Revisiting the satellite animation 
As a first example of the application of the centripetal force concept, let’s go back to the satellite animation 
and inject some more realism into it as promised.  

Here the centripetal force is provided by the force of gravity on the satellite. Therefore we can equate the 
expression for centripetal force with that for the gravitational force to obtain the following equation, where 
m is the satellite mass, M is the Earth mass, r is the distance of the satellite from the Earth’s center and ω 
is the angular velocity of the satellite: 

m rω 2 = GM m
r2  

It is easy to rearrange this equation to give the following: 

r = GM
ω 2

3  

This formula tells us the radius at which the satellite must be in order to orbit at an angular velocity ω. In 
other words, the satellite cannot have just any angular velocity at any distance; the centripetal force 
dictates that it has to rotate at a fixed angular velocity for any given distance from the Earth! In particular, 
we can use the formula to calculate the distance at which it must be to rotate at the same angular velocity 
as the Earth’s spin. If you substitute the values for G, M (the mass of the Earth), and ω (the Earth’s angular 
velocity as we worked out before), you’ll find that the radius of a geostationary orbit is 42,400 km, or 
approximately 6.6 times the radius of the Earth.   

Going back to our animation, we need to make the satellite aware of the constraint between its distance 
from the Earth and its angular velocity around the Earth, as expressed by the previous equation. In fact, in 
the animation we’ll specify the position of the satellite, and therefore the distance r from the Earth, and 
want to work out its resulting angular velocity ω instead of setting it to be equal to that of the Earth.  
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Therefore, we want a formula for ω in terms of r. It’s easy enough to manipulate the previous equation to 
give the following: 

ω = GM
r3  

That’s all we need. We copied SatelliteDemo.as to SatelliteDemo2.as, and SatelliteOrbiter.as 
to SatelliteOrbiter2.as. If you look at the latter file, you’ll see that practically the only change we’ve 
made is to replace this line:  
 
_omega = pattractor.angVelo; 

by the following line: 
 
_omega = Math.sqrt(_G*pattractor.mass/(_r*_r*_r)); 

with the value of the gravitational constant _G being set to 1.  

If you now run the code with the previous positions and masses of the satellite and Earth and angular 
velocity of the Earth, you’ll see that the satellite is no longer in a geostationary orbit. In fact, by the time it 
completes one orbit, its antennae are already pointing the wrong way. If you use the previous formula to 
calculate the value of r for a geostationary orbit with the given values of G = 1, M = 1000000, and ω = 0.4, 
you will get r = 184.2. This is the distance that the satellite should be from the Earth’s center. Given that 
the Earth is located at (400,300), you just need to change the position of the satellite to (584.2,300) in 
SatelliteDemo2.as: 
 
satellite.pos2D = new Vector2D(584.2,300); 

Do this and then run the code. You’ll see that the satellite does orbit at the same angular velocity as the 
Earth.  

Example: Circular orbits with gravitational force 
In this example, we go back to a full dynamical simulation. In fact, we already did that in the orbits 
simulation in Chapter 6, in which we simulated the motion of a planet round the Sun. The simulation 
already “knows” that gravity is a centripetal force, so there is nothing else to add. But if we want circular 
orbits, we can use the centripetal force formula to work out exactly what velocity we need to give the 
planet.  
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Again, this is simply a matter of equating the expressions for centripetal force and gravitational force. This 
time, we use the form F = mv2/r for the centripetal force: 

m v2

r
= GM m

r2  

A little bit of algebra then gives us the following, which is the velocity magnitude that the planet must have 
in order to have a circular orbit around the Sun at a distance r from its center: 

v = GM
r  

Let’s code this up into a modified version of the orbits simulation. The new source files are called 
CircularOrbits.as and Orbiter.as. Let’s look at what Orbiter looks like first: 
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
 
        public class Orbiter extends Forcer{ 
 
                private var _orbiter:Particle; 
                private var _massOrbiter:Number; 
                private var _massAttractor:Number; 
                private var _center:Vector2D; 
                private var _G:Number; 
 
                public function Orbiter(porbiter:Particle,pattractor:Particle,pG:Number):void{ 
                        _orbiter = porbiter; 
                        _massOrbiter = porbiter.mass; 
                        _massAttractor = pattractor.mass; 
                        _center = pattractor.pos2D; 
                        _G = pG; 
                        super(porbiter); 
                } 
 
                override protected function calcForce():void{ 
                        force = Forces.gravity(_G,_massAttractor,_massOrbiter,! 
_orbiter.pos2D.subtract(_center)); 
                } 
        } 
} 

This is very similar to its previous incarnation in Chapter 6. We calculate the gravitational force using 
Newton’s formula in the calcForce() method using the masses of the planet and the Sun and their 
distance apart. One difference is that the constructor now takes three arguments: the orbiter particle, the 
attractor particle, and the value of the gravitational constant G.  
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Next, let’s take a look at the code in CircularOrbits.as: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class CircularOrbits extends Sprite{ 
                public function CircularOrbits():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var G:Number = 1; // Gravitational constant 
                        var sunMass:Number = 1000000; 
                        var planetMass:Number = 1; 
                        var distance:Number; 
                        var vMag:Number; 
 
                        // create 100 stars randomly positioned 
                        for (var i:uint=0; i<100; i++){ 
                                var star:Ball = new Ball(Math.random()*3,0xffff00); 
                                star.pos2D = new Vector2D(Math.random()*stage.! 
stageWidth,Math.random()*stage.stageHeight); 
                                addChild(star); 
                        } 
 
                        // create a stationary sun 
                        var sun:Ball; 
                        sun = new Ball(60,0xff9900,sunMass); 
                        sun.pos2D = new Vector2D(400,300); 
                        addChild(sun); 
 
                        // create a moving planet 
                        var planet:Ball; 
                        planet = new Ball(10,0x0000ff,planetMass); 
                        planet.pos2D = new Vector2D(400,50); 
 
                        distance = planet.pos2D.subtract(sun.pos2D).length; 
                        vMag = Math.sqrt(G*sunMass/distance); 
                        planet.velo2D = new Vector2D(vMag,0); 
                        addChild(planet); 
 
                        // make the planet orbit the sun 
                        var orbiter:Orbiter=new Orbiter(planet,sun,G); 
                        orbiter.startTime(); 
                } 
        } 
} 

Most of the code should be very familiar. We have not given the Sun and planet any spin because that is 
not what we are demonstrating here. The new thing in this simulation is that we give the planet exactly the 
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initial velocity it needs to move in a circular orbit. This is done in the two lines highlighted in bold, using the 
formula v = !(GM/r) that we just derived.   

Run the simulation with the initial values as given in the previous code listing, and you’ll find that the planet 
indeed describes a circular orbit around the Sun. To convince yourself that this works at any distance from 
the Sun, change the initial position of the planet to the following: 
 
planet.pos2D = new Vector2D(400,150); 

This positions the planet closer to the Sun. If you now run the code, you’ll see that the planet orbits the 
Sun at a faster rate, but the orbit is still circular.  

Note that the velocity must be tangential with no radial component (see Figure 9-7). If there is any radial 
velocity component, the planet will either approach or recede from the Sun (its orbit won’t be circular). For 
example, with the initial position of the planet at (400, 50), try the following: 
 
planet.velo2D = new Vector2D(vMag/Math.sqrt(2), vMag/Math.sqrt(2)); 

This gives the planet an initial velocity of the same magnitude vMag as before, but in a different direction, 
so that it has a radial component toward the Sun as well as a tangential component. You will find that the 
planet’s orbit is now highly elliptical, with the planet getting very close to the Sun and then receding away 
from it.  

You are encouraged to try different initial positions and velocities to see the types of orbits you get. You 
should find that, without using the formula v = !(GM/r), it is rather hard to get the initial conditions just right 
to produce even approximately circular orbits by simple trial and error!   

r
v

 

Figure 9-7. Tangential velocity 

Example: Car moving around a bend 
In the next example, we simulate the motion of a car round a circular track and use it to demonstrate 
skidding if the car goes too fast.  

The basic physics here is that when a car moves round a curve or bend, the centripetal force it needs to 
do so is provided by the frictional force on the tires in contact with the road surface (see Figure 9-8).  
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Figure 9-8. Friction provides the centripetal force for a car to negotiate a bend 

Going back to the formula for centripetal force, the faster the car moves, the larger the centripetal force 
needed to keep it moving around the bend:    

F = m v
2

r  

Incidentally, the formula also shows that the centripetal force is larger for sharper bends, which curve with 
a smaller radius. 

The frictional force is the static frictional force and, as discussed in Chapter 7, it has a maximum value 
given by f = CsN, where N is the normal force (which is here equal to the car’s weight mg), and Cs is the 
coefficient of static friction between the tires and the road surface. Therefore, if the centripetal force 
needed to negotiate a bend exceeds the maximum static friction, the car won’t be able to follow the 
curvature of the bend"it will skid.  

We now build a simulation that can handle this scenario in a natural way. The file CarDemo.as creates the 
setup shown in Figure 9-9.  

 

Figure 9-9. The skidding car simulation 
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Here is the code that does it: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.objects.Box; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
        import flash.display.Graphics; 
 
        public class CarDemo extends Sprite{ 
 
                public function CarDemo():void{ 
                        init(); 
                } 
 
                private function init():void{ 
 
                        // create a circular track, e.g. a roundabout 
                        with (graphics){ 
                                beginFill(0xcccccc); 
                                drawCircle(275,200,100); 
                                drawCircle(275,200,50); 
                                endFill(); 
                        } 
 
                        var center:Ball; 
                        center=new Ball(5,0x000000); 
                        center.pos2D=new Vector2D(275,200); 
                        addChild(center); 
 
                        // create a car 
                        var car:Box; 
                        car = new Box(10,20,0x0000ff,90); 
                        car.pos2D = new Vector2D(350,200); 
                        car.velo2D=new Vector2D(0,-20); 
                        car.angVelo = -car.velo2D.length/(car.pos2D.subtract! 
(center.pos2D).length); 
                        addChild(car); 
 
                        // make the car move 
                        var mover:CarMover=new CarMover(car,center.pos2D); 
                        mover.startTime(10); 
                } 
        } 
} 

As shown in the figure, we begin by drawing a circular track and then create a Ball instance representing 
the center of the track. The next step introduces a bit of artistic novelty.  
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Because we are dealing with a car, a Ball instance simply won’t do. Instead, our car is a Box instance. 
Box is a class that is essentially similar to Ball except that it draws a filled rectangle instead of a circle 
with a gradient fill. Box takes five parameters (width, height, color, mass, and charge), all of which have 
default values and are therefore optional: 
 
Box(pboxWidth:Number=20,pboxHeight:Number=20,pcolor:uint=0x0000ff,pmass:Number=1,! 
pcharge:Number=0) 

After creating the car as a Box instance, we position it on the track and give it an initial tangential velocity. 
The next line then gives the car a spin angular velocity equal to its “orbital” angular velocity by using the 
formula ω = v/r, where v is the car’s speed, and r is its distance from the center.    

Finally, a CarMover instance drives the action. CarMover takes the car instance and the position vector of 
the center as arguments. This is what CarMover looks like: 
 
package{ 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Box; 
        import com.physicscodes.math.Vector2D; 
 
        public class CarMover extends Forcer{ 
                private var _car:Box; 
                private var _center:Vector2D; 
                private var _dist:Vector2D; 
                private var _velo:Number; 
                private var _g:Number=10; 
                private var _Cs:Number=1; 
 
                public function CarMover(pcar:Box,pcenter:Vector2D):void{ 
                        _car = pcar; 
                        _center = pcenter; 
                        _velo = pcar.velo2D.length; 
                        super(_car); 
                } 
 
                override protected function calcForce():void{ 
                        _dist=_car.pos2D.subtract(_center); 
                        var centripetalForce:Vector2D = _dist.unit().multiply! 
(-_car.mass*_velo*_velo/_dist.length); 
                        var radialFriction:Vector2D = _dist.unit().multiply! 
(-_Cs*_car.mass*_g); 
                        if(radialFriction.length > centripetalForce.length) {  
                                force = centripetalForce; 
                        } 
                        else{ 
                                force = radialFriction; 
                        } 
                } 
        } 
} 
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The code should be easy to follow. In calcForce(), we calculate the centripetal force using the formula F 
= mv2/r in vector form and the maximum frictional force on the car using the formula F = Csmg (see 
Chapter 7), where m is the mass of the car. For simplicity, we assume that static and dynamic friction are 
the same. Also, we assume that the resultant force on the car is friction in the radial direction. The if block 
checks whether the maximum friction is sufficient to provide the centripetal force. If so, the resultant force 
is taken to be equal to the centripetal force; if not, the resultant force is equal to the maximum friction. 

If you run the simulation with an initial velocity of 10 or 20 px/s, you’ll find that the car moves around the 
track without problem. However, if you increase the velocity beyond about 30, the car will skid!    

Non-uniform circular motion 
So far in this chapter we’ve dealt only with uniform circular motion. How do we handle rotations when the 
angular velocity is not constant? In this last section, we’ll begin to look at this problem and illustrate it with 
an example. A fuller treatment of non-uniform rotation will involve delving into concepts such as angular 
momentum and torque. For that, you’ll have to await Chapter 13.  

Tangential force and acceleration 
The underlying difference between uniform and non-uniform circular motion is that in the former, 
centripetal force is the only force, whereas in the latter there is a tangential as well as a centripetal force 
(see Figure 9-10). Tangential literally means “along a tangent” to the circle. The centripetal force in non-
uniform circular motion is given by the same formulas as for the uniform case. As with centripetal force, the 
tangential force can be due to any number of factors such as gravity or friction. 

Note that centripetal force changes only the direction of motion, which is why uniform circular motion is 
uniform. But because tangential forces act in the direction of the velocity vector, they cause a change in 
the speed of the rotating object. This also means there is a non-zero angular acceleration when a 
tangential force is present.  

Fc
Ft

 

Figure 9-10. Tangential (Ft) and centripetal (Fc) forces 

The bottom line: to simulate non-uniform circular motion, we need forces that will provide both centripetal 
and tangential force components, as demonstrated in our next and final example.  
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Example: A simple pendulum 
A so-called simple pendulum consists of a heavy bob suspended by a cord to a fixed pivot. The pendulum 
is set into oscillation by displacing the bob slightly and releasing it. Simulating a simple pendulum is not 
totally straightforward and does require a bit of thinking to get the physics right.  

Figure 9-11 shows the force diagram for a simple pendulum. The cord will usually be inclined at some 
angle θ to the vertical. We assume that the cord has negligible mass and that there is no friction or drag. 
Let m denote the mass of the bob. There are then two forces acting on the bob: gravity acting vertically 
downward with magnitude mg; and the tension in the cord acting toward the fixed pivot with magnitude T.  

Obviously, the bob moves in a circular arc with the pivot as its center. But the angular velocity of the bob is 
non-uniform. In fact, it is zero when the bob is in its uppermost position and maximum when the bob is at 
its lowest point. Therefore, there is an angular acceleration because of a tangential force component. 
Because the tension is in the radial direction (which is perpendicular to the tangential direction), it has no 
tangential component. But the force of gravity in general does have a tangential component given by mg 
sin(θ). This is the force that causes the angular acceleration. Note that because the angle θ changes with 
time, the tangential force and therefore the angular acceleration are not constant.      

l
l cos θ 

l sin θ 
mg

T

mg sin θ mg cos θ 
θ

θθ

 

Figure 9-11. Geometrical and force diagram for a pendulum 

What is the radial force component that provides the centripetal force? From Figure 9-11, it’s clear that 
gravity has a component mg cos(θ) that acts away from the pivot. Hence, the net radial force component is 
T –  mg cos(θ), and this must be equal to the centripetal force:  

T −mgcos θ( ) = m v
2

r  

Therefore, this implies that the magnitude of the tension T is given by the following:  

T = mgcos θ( ) + m v
2

r  

As is clear from Figure 9-11, the direction of the tension force is opposite to the position vector r of the bob 
relative to the pivot. 
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Now comes the clever bit. All we need to do is to specify the forces of gravity mg and tension T, as given 
by the last equation. Then, once we give it an initial position, the bob ought to know how to move under 
those two forces. Let’s go ahead and code it up.  

PendulumDemo.as contains the code that sets up the objects: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class PendulumDemo extends Sprite{ 
 
                public function PendulumDemo():void{ 
                        init(); 
                } 
 
                private function init():void{ 
                        // create a cord 
                        var cord:Sprite=new Sprite(); 
                        addChild(cord); 
 
                        // pendulum length 
                        var lengthP:Number=100; 
 
                        // create a pivot 
                        var pivot:Ball; 
                        pivot=new Ball(2,0x000000); 
                        pivot.pos2D=new Vector2D(275,150); 
                        addChild(pivot) 
 
                        // create a pendulum bob 
                        var bob:Ball; 
                        bob = new Ball(10,0x333333,1); 
                        var initAngle:Number = 30; 
                        var relativePos:Vector2D = new Vector2D(lengthP*Math.! 
sin(initAngle*Math.PI/180), lengthP*Math.cos(initAngle*Math.PI/180)); 
                        bob.pos2D = pivot.pos2D.add(relativePos); 
                        addChild(bob); 
 
                        // make the pendulum move 
                        var pendulum:Pendulum=new Pendulum(bob,cord,pivot.pos2D); 
                        pendulum.startTime(10); 
                } 
        } 
} 

We begin by creating a cord (a blank Sprite that we’ll draw a line on during the simulation), a pivot, and a 
pendulum bob. The bob is positioned so the cord makes an initial angle of 30 degrees with the vertical. 
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 To see this, refer to Figure 9-11, which shows that the x and y coordinates of the bob relative to the pivot 
are given by the following, where l is the “length” of the pendulum, defined as the distance of the center of 
the bob to the fixed pivot: 

x = l sin θ( )  

y = l cos θ( ) 

Physically, l is equal to the sum of the length of the cord and the radius of the bob. In the code, we denote 
this by the variable lengthP. This relative position vector is calculated and stored in the variable 
relativePos, which is then added to the pivot’s pos2D property to set the position of the bob. The initial 
inclination angle (in degrees) is set by the parameter initAngle.    

The pendulum is set in motion by instantiating the class Pendulum and passing the bob, the cord, and the 
position of the pivot as parameters. This is what Pendulum.as looks like: 
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
        import flash.display.Sprite; 
 
        public class Pendulum extends Forcer{ 
                private var _bob:Ball; 
                private var _cord:Sprite; 
                private var _center:Vector2D; 
                private var _dist:Vector2D; 
                private var _bobMass:Number; 
                private var _lengthP:Number; 
                private var _g:Number=100; 
 
                public function Pendulum(pbob:Ball,pcord:Sprite,ppivotPos:Vector2D):void{ 
                        _bob = pbob; 
                        _bobMass = pbob.mass; 
                        _center = ppivotPos; 
                        _cord = pcord; 
                        _lengthP = _bob.pos2D.subtract(_center).length; 
                        super(pbob); 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        drawSpring(); 
                } 
 
                private function drawSpring():void{ 
                        with (_cord.graphics){ 
                                clear(); 
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                                lineStyle(2,0x999999); 
                                moveTo(_center.x,_center.y); 
                                lineTo(_bob.x,_bob.y) 
                        } 
                } 
 
                override protected function calcForce():void{ 
                        _dist=_bob.pos2D.subtract(_center); 
                        var gravity:Vector2D = Forces.constantGravity(_bobMass,_g); 
                        var tension:Vector2D; 
                        if(_dist.length >= _lengthP) { 
                                tension = _dist.unit().multiply(-(gravity.projection(_dist)+! 
_bobMass*_bob.velo2D.lengthSquared/_lengthP)); 
                        }else{ 
                                tension = new Vector2D(0,0); 
                        } 
                        force = Forces.add([gravity, tension]); 
                } 
        } 
} 

You’ve seen this type of code enough times now, so we’ll just concentrate on explaining the bits that are 
different. That’s basically what’s in the calcForce() method. We calculate gravity in the usual way. The if 
block of code checks to see if the distance of the bob from the pivot is greater or equal to the cord length. 
If so, that means the cord is taut and therefore the tension is non-zero, being calculated using the formula 
T = mg cos(θ) + mv2/r; otherwise, the cord is not taut, so the tension is zero. In the current setup, it is not 
strictly necessary to check if the cord is taut because the simulation starts with a taut cord and it remains 
so all the time. But implementing this check makes the code more robust to possible future modifications. 
Note that the radial component of gravity mg cos(θ) is computed using the nifty projection() method, 
which we introduced into the Vector2D class so that vec1.projection(vec2) gives the projection of 
vector vec1 in the direction of vector vec2. Here is the definition of projection():  
 
public function projection(vec:Vector2D):Number { 
        var proj:Number; 
        if( (length == 0) || ( vec.length == 0) ){ 
                proj = 0; 
        }else { 
                proj = (_x*vec.x + _y*vec.y)/vec.length; 
        } 
        return proj; 
} 

If you run the code and play with the parameters, you’ll see that the pendulum oscillates faster if the cord 
length is shorter and if the value of g is larger. This is just as it should be in reality. In fact you can test how 
good your simulated pendulum is by comparing the period of the oscillations with the theoretical value.  
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Physics theory says that for oscillations of small amplitude, the period of a simple pendulum is given 
approximately by the following, where l is the length of the pendulum:  

T = 2π l
g  

The values we used in the simulation are l = 100 and g = 100. This gives you T = 2π, which is 
approximately 6.3 seconds. Check if the simulation gives this value by tracing the time and timing to ten 
oscillations, for example, and then dividing the total time by ten. You should get a value very close to 6.3 s. 
It works almost like the real thing! See Figure 9-12. 

 

Figure 9-12. The pendulum simulation 

Summary 
This chapter introduced some of the physics needed to handle circular and rotational motion, focusing on 
particle and simple rigid body rotation. This chapter has laid the foundations for a more detailed look at 
rigid body rotation, which we’ll present in Chapter 13. Some of the concepts introduced here will also be 
applied and developed further in the next chapter on long-range forces. 
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Chapter 10 

Long-Range Forces 

In this last chapter of Part II, we’ll introduce yet more force laws. However, the approach and purpose here 
will be more playful than in previous chapters. You’ll learn things that you may not necessarily use for 
making realistic simulations, but more for producing fun animations and effects.   

Topics covered in this chapter include: 

! Particle interactions and force fields: There are two ways of viewing forces that act at a 
distance: in terms of direct interactions between particles or in terms of force fields.  

! Gravitational force: We revisit gravity as an example of a long-range force, giving further 
examples and building a black hole game!  

! Electrostatic force: This relates to the force between electrically charged particles at rest, which 
can be attractive or repulsive. Interesting effects can be produced with electric forces.  

! Electromagnetic force: Moving charges experience a magnetic force as well as an electric 
force. Together, they constitute an electromagnetic force, which can be used to produce more 
complicated types of motion.   

! Other force laws: There is no reason why you can’t invent your own force laws to produce cool 
effects. We’ll take a look at some examples, including so-called central forces of different types.   

Particle interactions and force fields 
Whenever we’ve talked about forces so far in this book, we’ve thought of them as being exerted by 
particles on other particles. But there is another way to think of forces that are exerted at a distance"we 
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can think of them as being due to force fields. This is a fairly subtle concept, so we’ll take some time to 
explain things in the next couple of sections.  

Interaction at a distance 
In this chapter, we’ll deal exclusively with forces that are exerted and felt at a distance; the interacting 
objects don’t need to be in contact. Actually, at a fundamental level, all forces are like that, even contact 
forces. The difference is that contact forces are felt when two objects are very close together. Collisions 
are similar; they occur when two objects are so close together that their constituent molecules exert 
electrical forces on each other. So the real distinction is really between short-range and long-range forces. 
Contact forces and collisions involve short-range forces. Gravity is a long-range force. In general, both 
short-range and long-range forces can be attractive or repulsive.   

From particle interactions to force fields 
Historically, physicists were not very happy about the fact that forces like gravity appear to be exerted 
across empty space, with two remote objects being apparently able to influence each other instantly. This 
was the so-called action-at-a-distance problem. So they came up with the concept of a force field to 
replace the action-at-a-distance concept.  

The idea of a force field, though seemingly esoteric, is actually quite simple. A field of force is simply a 
region of space where a force is felt. If you have two objects with mass, such as a star and a planet, the 
usual way to think of gravity is that they each exert a gravitational force on each other. In the field 
conception, you say that the star sets up a gravitational field that permeates the space around it. Any other 
object, such as a planet, then experiences a force due to the field at the point where it is located. The key 
idea is that the field mediates the interaction between the star and the planet. There is then no action-at-a-
distance any more; the force felt by the planet is a local one, due to the force field that exists locally. In 
fact, the force field exists whether or not there is a planet there to experience a force.  

Note that in the previous example, the planet also sets up its own gravitational field, which then causes the 
star to experience a force equal and opposite to that experienced by the planet, in accordance with 
Newton’s third law of motion.      

As we know, the force felt by the planet depends on its distance from the star. In the field concept, the 
variation of the force with distance is encapsulated in the concept of field strength. In the case of gravity, 
the field strength decreases with distance from the source of the field (in this case, a star). In the next 
section we’ll see the precise form of the field strength due to the star. It is also customary to refer to the 
field strength simply as the field.   

Similar ideas apply to other long-range forces, such as electric forces. Particles create force fields. Other 
particles then experience forces in the presence of that field. The amount of force they experience 
depends on the field strength. 

Why do you have to care about force fields? One important practical advantage is that force fields free us 
from the need to have particles just so they can exert forces. As you’ll see later in the chapter, we can 
produce a force field without worrying about how it can be produced by particles. This gives us great 
flexibility in the type of forces we can subject particles to. The concepts of force field and field strength are 
especially useful in connection with electric and magnetic forces, but let’s take a closer look at them in the 
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context of gravity. They will then be easier to appreciate when we talk about the rather more abstract 
electric and magnetic fields.  

Newtonian gravitation 
Gravity is an archetypal example of a long-range force. The field strength in this case is defined as the 
force per unit mass that acts on a particle at any given point in the field. This is a sensible definition: It tells 
us how strong the gravity force field is by telling us the force that it exerts on an object of unit mass. 

Gravitational field strength is a vector denoted by the symbol g. So, the definition tells us that 

g = F
m  

You will recognize this as being equivalent to the familiar formula for the gravitational force on an object of 
mass m: 

F = m g  

So, the gravitational field strength is a vector with magnitude equal to the acceleration due to gravity g. In 
particular, that means it has the same value for all objects, regardless of their mass or other 
characteristics. In general, the gravitational field strength vector g can change with position, just like the 
(non-bolded) scalar g. In a uniform gravitational field, such as close to the surface of the Earth, both g and 
g are constant.  

To reiterate an important point, the key thing with the definition of the gravitational field strength is that it is 
a property only of the field, as it exists independently of any object that may experience a force due to it. 
Whereas the gravitational force on an object will depend on its mass, the gravitational field strength g itself 
tells us the force per unit mass at any point in the field. From this, we can work out the force F on any 
mass m by multiplying by m.  

Gravitational field due to a particle 
As an example, the gravitational field strength due to a particle of mass M, such as a star, can be 
computed starting from Newton’s law of gravitation: 

F = −G M m
r3 r  

Here, m is the mass of any other particle in the field generated by the mass M, and r is its position vector 
relative to the source of the field.  
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Because the gravitational field strength is defined by g = F/m, we just have to divide the preceding formula 
by m to give this: 

g = −G M
r3 r  

As you can see explicitly in the previous formula, the gravitational field g depends only on the mass M of 
the particle that is producing it and the position vector from the particle, but not on any other particles that 
may be present. We can also deduce that the magnitude of g is given by g = GM/r2, consistent with the 
variation of acceleration due to gravity derived in Chapter 6. 

In general, g could be much more complicated than this simple formula. In a galaxy, for example, g is the 
vector sum of all the fields produced by the individual stars (all of which are, of course, moving). But 
simulating the motion of stars in a galaxy can be done much more efficiently using the field concept than 
by directly calculating all the forces between every pair of stars, as you’ll see in Chapter 12. Meanwhile, it’s 
time to start playing with some simpler examples of gravity as a long-range force.  

Gravity with multiple orbiters 
Our first example will involve a single gravitational attractor, which will be held fixed. We borrow the Orbits 
simulation from Chapter 6, but we’ll add more orbiting planets to make it more interesting and to illustrate 
the fact that each planet experiences a different gravitational field strength at any given time, and therefore 
moves along a different trajectory. Here is the modified code that does this in Orbits.as: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class Orbits extends Sprite{ 
                public function Orbits():void{ 
                        init(); 
                } 
                private function init():void{ 
                        // create 100 stars randomly positioned 
                        for (var i:uint=0; i<100; i++){ 
                                var star:Ball = new Ball(Math.random()*2,0xffff00); 
                                star.pos2D = new Vector2D(Math.random()*stage.stageWidth,! 
Math.random()*stage.stageHeight); 
                                addChild(star); 
                        } 
 
                        // create a stationary sun 
                        var sun:Ball; 
                        sun = new Ball(50,0xff9900,1000000); 
                        sun.pos2D = new Vector2D(400,300); 
                        addChild(sun); 
 
                        // create a moving planet 
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                        var planet:Ball; 
                        planet = new Ball(10,0x0000ff,1); 
                        planet.pos2D = new Vector2D(400,50); 
                        planet.velo2D = new Vector2D(65,0); 
                        addChild(planet); 
 
                        // create another moving planet 
                        var planet2:Ball; 
                        planet2 = new Ball(6,0xcccccc,1); 
                        planet2.pos2D = new Vector2D(500,300); 
                        planet2.velo2D = new Vector2D(0,100); 
                        addChild(planet2); 
 
                        // create another moving planet 
                        var planet3:Ball; 
                        planet3 = new Ball(12,0x996633,1); 
                        planet3.pos2D = new Vector2D(200,300); 
                        planet3.velo2D = new Vector2D(0,-70); 
                        addChild(planet3); 
 
                        // make the planet orbit the sun 
                        var orbiter:Orbiter=new Orbiter([planet, planet2, planet3],sun); 
                        orbiter.startTime(10); 
                } 
        } 
} 

The main thing here is that we are creating three planets and then initializing their positions and velocities 
so that they end up orbiting the sun. The planets are placed at different distances from the sun and then 
given an initial tangential velocity. The magnitudes of the velocities are chosen essentially by trial and 
error; or you can use the method given in Chapter 9 to choose the velocities that will give a roughly circular 
orbit.   

Orbiter.as is based on the version coded up in Chapter 6, with some suitable modifications to allow 
multiple orbiters:  
 
package { 
        import com.physicscodes.motion.MultiForcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
 
        public class Orbiter extends MultiForcer{ 
                private var _massAttractor:Number; 
                private var _center:Vector2D; 
                private var _G:Number = 1; 
 
                public function Orbiter(porbiters:Array,pattractor:Particle):void{ 
                        _massAttractor = pattractor.mass; 
                        _center = pattractor.pos2D; 
                        super(porbiters); 
                } 
                override protected function calcForce(porbiter:Particle):void{ 
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                        force = Forces.gravity(_G,_massAttractor,porbiter.mass,! 
porbiter.pos2D.subtract(_center)); 
                } 
        } 
} 

Notably, Orbiter now extends MultiForcer and the force of gravity is calculated for each orbiter in 
calcForce() using the Forces.gravity() function.  

If you run the code, you’ll get a nice solar system toy simulation (see Figure 10-1). The basic physics is 
there. For example, the nearer a planet is to the sun, the faster it orbits. But this simulation is not 
completely accurate. As you saw in earlier examples, the Euler integration scheme quickly accumulates 
errors. If you are looking to do an accurate Solar System simulation, you’ll need a better integrator. We’ll 
do that in Chapter 16, where we’ll also account for the forces between the planets as well as input 
accurate data on the masses, sizes, positions, and velocities of the planets.  

 

Figure 10-1. Multiple orbiting planets around a sun 

Gravity with multiple attractors 
Let’s complicate things a little by adding another attractor. As in the previous example, we’ll keep the 
attractors fixed. It’s not difficult to make them move; that would produce some interesting overall motion. 
But we’d have to be more careful with our numerical integration scheme. We’ll come back to this issue in 
Chapter 14.   

The new setup code is called Attractors.as and looks as follows: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class Attractors extends Sprite{ 
                public function Attractors():void{ 
                        init(); 
                } 
                private function init():void{ 
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                        var G:Number = 1; // Gravitational constant 
 
                        // create a fixed attractor 
                        var center:Ball; 
                        center = new Ball(20,0x0099ff,1000000); 
                        center.pos2D = new Vector2D(300,300); 
                        addChild(center); 
 
                        // create another fixed attractor 
                        var center2:Ball; 
                        center2 = new Ball(20,0x0099ff,1000000); 
                        center2.pos2D = new Vector2D(500,300); 
                        addChild(center2); 
 
                        // create an orbiter 
                        var orbiter:Ball; 
                        orbiter = new Ball(8,0x999999,1); 
                        orbiter.pos2D = new Vector2D(400,300); 
                        orbiter.velo2D = new Vector2D(0,60); 
 
                        // make the orbiter move 
                        var attractor:Attractor=new Attractor(orbiter,[center, center2],G); 
                        attractor.startTime(10); 
                } 
        } 
} 

The code is basically self-explanatory: We create two attractors called center and center2 and an 
orbiter, all as Ball instances. The attractors are given the same radius and mass. The initial position and 
velocity of the orbiter are then set. As we shall see, completely different trajectories can be produced just 
by changing those initial conditions.  

The orbiter is moved by an instance of the Attractor class. As can be seen from the code, Attractor 
takes three arguments: the orbiter object, an array of attractors, and the value of the gravitational constant 
G (set to 1 here). Here is the code in Attractor.as: 
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
 
        public class Attractor extends Forcer{ 
                private var _orbiter:Particle; 
                private var _attractors:Array; 
                private var _massOrbiter:Number; 
                private var _G:Number; 
 
                public function Attractor(porbiter:Particle,pattractors:Array,pG:Number):void{ 
                        _orbiter = porbiter; 
                        _attractors = pattractors; 
                        _massOrbiter = porbiter.mass; 
                        _G = pG; 
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                        super(porbiter); 
                } 
 
                override protected function calcForce():void{ 
                        var gravity:Vector2D; 
                        force = Forces.zeroForce(); 
                        for (var i:uint=0; i<_attractors.length; i++){ 
                                var attractor:Particle=_attractors[i]; 
                                gravity = Forces.gravity(_G,attractor.mass,_massOrbiter,! 
 _orbiter.pos2D.subtract(attractor.pos2D)); 
                                force = Forces.add([force, gravity]); 
                        } 
                } 
        } 
} 

Again, the code structure is familiar. The new bit is the loop within calcForce(), where we calculate and 
then sum the forces acting on the orbiter due to all the attractors. The code can handle any number of 
attractors.  

Run the code with the following initial conditions specified in Attractors.as: 
 
orbiter.pos2D = new Vector2D(400,300); 
orbiter.velo2D = new Vector2D(0,60); 

This positions the orbiter exactly in the middle of the two attractors and gives it a downward velocity of 60 
px/s. You’ll see that the orbiter oscillates up and down, so that it is at the same distance from each 
attractor, so none of the attractors “wins.” 

 

Now change the initial conditions to the following and rerun the code: 
 
orbiter.pos2D = new Vector2D(400,400); 
orbiter.velo2D = new Vector2D(10,60); 

You’ll find that the orbiter moves in an interesting way: orbiting each attractor alternately, but doing a twist 
in between so that it orbits both of them in a clockwise sense.  

If you now keep the same initial position but change the initial velocity to the following, you’ll see that the 
orbiter orbits both attractors: 
 
orbiter.velo2D = new Vector2D(120,0); 

In general, you could have a distribution of different attractors and it would still be possible for an object to 
orbit the whole bunch.  

Next change the initial conditions to the following: 
 
orbiter.pos2D = new Vector2D(300,400); 
orbiter.velo2D = new Vector2D(90,0); 

This time, the orbiter orbits each attractor alternately, but does so in the opposite sense by following a 
figure-eight trajectory.  
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The key lesson learned from these experiments (see Figure 10-2) is that although the gravitational field is 
fixed by the attractors, the actual trajectories of particles in that field will also depend on their positions and 
velocities.  

 

Figure 10-2. An orbiter moving under the gravitational influence of two attractors 

Needless to say, there are lots of ways you can experiment with this simulation. As an exercise, why don’t 
you add another attractor and see what kind of motion you get? 

Particle trajectories in a gravity field 
In this example, we have a number of attractors, giving rise to a complicated gravity field. The resulting 
trajectories of particles in such a field can be quite complex and sometimes difficult to predict. To make 
things even more interesting, we assume that our attractors are black holes. Let’s first take a look at the 
code that sets up the objects (the relevant file is GravityField.as): 
 
package { 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class GravityField extends Sprite{ 
                public function GravityField():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var timeStep:Number = 10; // simulation timestep in milliseconds 
                        var G:Number = 1; // Gravitational constant 
                        var c:Number = 300; // Speed of light 
                        var numCenters = 10;  
 
                        // create black holes 
                        var centers:Array = new Array(); 
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                        for (var i:uint=0; i<numCenters; i++){ 
                                var radius:Number=20*(Math.random()+0.5); 
                                var mass:Number=(0.5*c*c/G)*radius; // mass of black hole 
                                var center:Ball = new Ball(radius,0x000000,mass,0,false); 
                                center.pos2D = new Vector2D(Math.random()* stage.stageWidth,! 
 Math.random()*stage.stageHeight); 
                                addChild(center); 
                                centers[i] = center; 
                        } 
 
                        // create a moving object 
                        var orbiter:Ball = new Ball(5,0xff0000,1); 
                        orbiter.pos2D = new Vector2D(Math.random()*stage.stageWidth,! 
 Math.random()*stage.stageHeight); 
                        orbiter.velo2D = new Vector2D((Math.random()-0.5)*100,! 
 (Math.random()-0.5)*100); 
                        addChild(orbiter); 
 
                        // make the object move 
                        var attractor:GravityAttractor=new GravityAttractor! 
(orbiter,centers,G); 
                        attractor.startTime(timeStep); 
                } 
        } 
} 

In this code, we create a bunch of black holes as ball instances, place them at random positions on the 
stage and put references to them in an array called centers. We then create a moving Ball object called 
orbiter and assign it a random position and a random velocity. The action is initiated by a 
GravityAttractor instance, which we’ll describe shortly. But before we do that, we need to explain how 
we’ve set the masses of the black holes.  

As you can see from the code, we’ve used the formula M = (0.5c2/G) R, where M is the mass and R is the 
radius of the black hole (which is given a random value between 10 and 30 pixels in the code). What is c, 
and where does this formula come from? This is the formula for the mass of a black hole in terms of its 
radius. The constant c is the speed of light. Our black holes are actually hypothetical Newtonian black 
holes; real (Einsteinian) black holes do not obey Newton’s law of gravitation, but require Einstein’s General 
Relativity (a much more complicated theory that we have no intention of simulating in this book!). The 
value of c will determine the range of masses of the black holes. It’s a case of playing with that value to 
make the black holes produce sufficient, but not too much, attraction so that the particles have a chance to 
do something interesting before being swallowed up by a black hole. The value we chose is 300.   

The main job of the GravityAttractor class is to move the “orbiter” in the combined gravitational field of 
the black holes, which it does in calcForce() by looping over all the attractors and summing their gravity 
forces as in the last example. But it does a few other things as well, which are worth explaining here. First, 
if the orbiter collides with any black hole it disappears and is “recycled” by calling the recycleOrbiter() 
method, as shown in the highlighted code within calcForce():  
 
override protected function calcForce():void{ 
        var gravity:Vector2D = Forces.zeroForce(); 
        force = Forces.zeroForce(); 
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        for (var i:uint=0; i<_attractors.length; i++){ 
                var attractor:Ball=_attractors[i]; 
                var dist:Vector2D = _orbiter.pos2D.subtract(attractor.pos2D); 
                if (dist.lengthSquared > Math.pow(attractor.radius+_orbiter.radius,2)){ 
                        gravity = Forces.gravity(_G,attractor.mass,_massOrbiter,dist); 
                        force = Forces.add([force, gravity]); 
                }else{ 
                        recycleOrbiter(); 
                } 
        } 
} 

The recycleOrbiter() method simply changes the color of the orbiter and reinitializes its position and 
velocity:  
 
private function recycleOrbiter():void{ 
        _orbiter.color=Math.random()*0xffffff; 
        _orbiter.pos2D=new Vector2D(Math.random()*_stageWidth, Math.random()*_stageHeight); 
        _orbiter.velo2D=new Vector2D((Math.random()-0.5)*100, (Math.random()-0.5)*100); 
} 

The orbiter is also “recycled,” if it goes outside of the visible stage area, by a piece of “if” logic in the 
moveObject() method: 
 
override protected function moveObject():void{ 
        super.moveObject(); 
        plotGraph(); 
        if (_orbiter.xpos < 0 || _orbiter.xpos > _stageWidth || _orbiter.ypos < 0 ||! 
 _orbiter.ypos > _stageHeight){ 
                recycleOrbiter(); 
        } 
} 

You’ll notice that we also call a plotGraph() method. What’s this about? Well, we are not really plotting a 
graph, but the trajectory of the orbiter. But we can do this using a Graph instance that has the same range 
as the stage. This is done in the setupGraph() method, which is called within the constructor of 
GravityAttractor. The plotGraph() method then plots the y position of the orbiter against its x 
position. Because plotGraph() is called within moveObject(), it executes on each timestep, so the code 
effectively traces out the trajectory of the orbiter:  

 
private function setupGraph():void { 
        _graph= new Graph(0,_stageWidth,0,_stageHeight,0,0,_stageWidth,_stageHeight); 
        _orbiter.stage.addChild(_graph); 
} 
private function plotGraph():void{ 
        _graph.plot([_orbiter.xpos], [-_orbiter.ypos], _orbiter.color, false, true); 
} 

Take a look at the file GravityAttractor.as if you want to see how all this code fits together. Run the 
code, and you’ll be treated to some interesting trajectories as the orbiter moves through the complex 
gravity field and eventually ends up into a black hole. Each time this happens, it reappears somewhere 
else in a different color and traces out another trajectory that either ends into a black hole or just outside of 
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the stage area. Figure 10-3 shows the type of thing you’ll be able to see. The randomness in the initial 
conditions of the particles has the consequence that different patterns emerge over time, so you might 
want to leave the simulation running for a long time to see this. Moreover, each time you run the simulation 
you will get a different configuration of black holes that will also give different patterns of particle 
trajectories.   

 

Figure 10-3. Particle trajectories in the gravity field of black holes 

Building a simple black hole game  
In our next project, we’ll be a bit more adventurous and actually build a simple game by modifying the last 
simulation. Figure 10-4 shows a screenshot of what the game will look like. The objective of the game is to 
navigate a spaceship (the triangle) through a black hole field. The spaceship starts off near the lower end 
of the stage, and you win if you can pass the winning line at the top. Each time you win, a new black hole 
is added. The positions of the black holes are initialized randomly so that their centers all lie between the 
winning line and another horizontal line lower down. You lose a life each time a black hole captures the 
spaceship. If you go off the stage, the spaceship is repositioned at its initial location. 

 

Figure10-4. The black hole game 



Long-Range Forces 

293 

Creating the visual setup  
The setup file for the game is called BlackHoles.as, and the code is as follows:   
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
        import flash.display.Graphics; 
 
        public class BlackHoles extends Sprite{ 
                public function BlackHoles():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var timeStep:Number = 10; // simulation timestep in milliseconds 
                        var G:Number = 1; // Gravitational constant 
                        var c:Number = 200; // Speed of light 
                        var numCenters = 1;  
 
                        // create a winning line and a bounding line 
                        var yposWinning:Number=50; 
                        var yposEdge:Number=400; 
                        with (graphics){ 
                                lineStyle(2,0xccffcc); 
                                moveTo(0,yposWinning); 
                                lineTo(stage.stageWidth,yposWinning); 
                                lineStyle(1,0xccccff); 
                                moveTo(0,yposEdge); 
                                lineTo(stage.stageWidth,yposEdge); 
                        } 
 
                        // create a spaceship 
                        var ship:Spaceship = new Spaceship(10,15,0xff0000,1); 
                        ship.pos2D = new Vector2D(stage.stageWidth/2,stage.stageHeight-50); 
                        addChild(ship); 
 
                        // create black holes 
                        var centers:Array = new Array(); 
                        for (var i:uint=0; i<numCenters; i++){ 
                                var radius:Number=20*(Math.random()+0.5); 
                                var mass:Number=(0.5*c*c/G)*radius; // mass of black hole 
                                var center:Ball = new Ball(radius,0x000000,mass,0,false); 
                                center.pos2D = new Vector2D(Math.random()*stage.stageWidth,! 
 Math.random()*(yposEdge-yposWinning)+yposWinning); 
                                addChild(center); 
                                centers[i] = center; 
                        } 
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                        // make the spaceship move 
                        var attractor:BlackHoleAttractor=new BlackHoleAttractor(ship,! 
centers,G,c,yposWinning,yposEdge); 
                        attractor.startTime(timeStep); 
                } 
        } 
} 

The code that creates the black holes and assigns their properties is similar to that in the last example, 
with the modification that we’re positioning them between the two vertical levels yposWinning and 
yposEdge, which set the locations of the two horizontal lines. Note that we reduced the speed of light to 
200 px/s so that the attraction is not too strong, making it actually possible to avoid the black holes!  

Then there is a straightforward piece of code that draws the two lines mentioned previously, followed by 
another simple piece of code that creates a spaceship and initializes its position. This code instantiates a 
Spaceship class, which looks as follows: 
 
package { 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.objects.Triangle; 
 
        public class Spaceship extends Particle{ 
                private var _width:Number; 
                private var _height:Number; 
                private var _color:uint; 
 
                public function Spaceship(pwidth:Number=20,pheight:Number=40,! 
pcolor:uint=0x0000ff,pmass:Number=1,pcharge:Number=0){ 
                        this.mass=pmass; 
                        this.charge=pcharge; 
                        _width=pwidth; 
                        _height=pheight; 
                        _color=pcolor; 
                        drawSpaceship(); 
                } 
                private function drawSpaceship():void{ 
                        var triangle:Triangle = new Triangle(0,0,_width,_height,_color); 
                        addChild(triangle); 
                } 
        } 
} 

As you can see, Spaceship extends Particle and simply draws a triangle based on parameters that 
specify the width, height, and color of the triangle, in addition to parameters that specify its mass and 
charge as a Particle subclass.  

The final piece of code in BlackHoles.as instantiates a BlackHoleAttractor class, passing it 
references to the spaceship, the black hole objects and the relevant parameters. This class contains the 
code that implements the functionality of the game, and is described next. 
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Programming the game functionality  
The BlackHoleAttractor class contains a fair bit of code, so let’s dissect it into smaller chunks. To start 
with, here is the class definition and constructor: 
 
public class BlackHoleAttractor extends Forcer{ 
        private var _orbiter:Spaceship; 
        private var _attractors:Array; 
        private var _massOrbiter:Number; 
        private var _G:Number; 
        private var _c:Number; 
        private var _stageWidth:Number; 
        private var _stageHeight:Number; 
        private var _yposEdge:Number; 
        private var _yposWinning:Number; 
        private var txtLives:TextField = new TextField(); 
        private var txtScore:TextField = new TextField(); 
        private var txtFormat:TextFormat = new TextFormat(); 
        private var _applyThrust:Boolean=false; 
        private var _direction:String=""; 
        private var _dir:Vector2D=new Vector2D(0,1); 
        private var _vedmdt:Number=10; // ve*dm/dt 
        private var _numLives:uint=10; 
        private var _score:uint=0; 
 
        public function BlackHoleAttractor(porbiter:Spaceship, pattractors:Array,! 
 pG:Number, pc:Number, pyposW:Number, pyposE:Number):void{ 
                _orbiter = porbiter; 
                _attractors = pattractors; 
                _massOrbiter = porbiter.mass; 
                _G = pG; 
                _c = pc; 
                _yposEdge = pyposE; 
                _yposWinning = pyposW; 
                _stageWidth = _orbiter.stage.stageWidth; 
                _stageHeight = _orbiter.stage.stageHeight; 
                setupEventListeners(); 
                setupText(); 
                super(porbiter); 
        } 
} 

It should be obvious what most of the variable names refer to, so we’ll just describe the few that are 
perhaps less obvious (the last six). The four variables _applyThrust, _direction, _dir, and _vedmdt 
work together in that they are needed to specify the thrust on the spaceship.  

! The first variable, _applyThrust, is a Boolean with a value of true if thrust is applied.  

! The second variable, _direction, is a string that tells us which direction the thrust is applied in. 

! The third, _dir, is a unit vector pointing downward; it will be used to work out the thrust vector. 

! The fourth, _vedmdt, is the value of ve*dm/dt, which gives the magnitude of the thrust on the 
rocket (refer to Chapter 6).  
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! The last two variables, _numLives and _score, are uint variables that store the current number 
of lives and score, respectively.   

Apart from assigning relevant variable values, the constructor calls the two private methods 
setupEventListeners() and setupText(). The latter simply adds the text fields that will hold the text 
displaying the lives and score, and sets their size, position, and formats. So it won’t be shown here, but 
you can take a look in the file BlackHoleAttractor.as. The setupEventListeners() method looks as 
follows:  
 
private function setupEventListeners():void{ 
        _orbiter.stage.addEventListener(KeyboardEvent.KEY_DOWN,startThrust); 
        _orbiter.stage.addEventListener(KeyboardEvent.KEY_UP,stopThrust); 
        _orbiter.stage.addEventListener(MouseEvent.DOUBLE_CLICK,changeSetup); 
        _orbiter.stage.doubleClickEnabled = true; 
} 
 
So, the event handler startThrust() will be invoked if a key is pressed, stopThrust() is 
invoked if the key is released, and changeSetup() is invoked if we double-click. Here is 
what startThrust() and stopThrust() look like: 
 
private function startThrust(evt:KeyboardEvent):void{ 
        _applyThrust = true; 
        if (evt.keyCode==Keyboard.UP){ 
                _direction = "UP"; 
        } 
        if (evt.keyCode==Keyboard.DOWN){ 
                _direction = "DOWN"; 
        } 
        if (evt.keyCode==Keyboard.RIGHT){ 
                _direction = "RIGHT"; 
        } 
        if (evt.keyCode==Keyboard.LEFT){ 
                _direction = "LEFT"; 
        } 
} 
private function stopThrust(evt:KeyboardEvent):void{ 
        _applyThrust = false; 
        _direction = ""; 
} 

Hence, startThrust() sets _applyThrust to true and gives values of “UP”, “DOWN”, “RIGHT”, or 
“LEFT” to _direction based on which of the direction keys is pressed. For its part, stopThrust() resets 
_applyThrust to false and assigns a blank string to _direction.   

The changeSetup() event handler that is invoked by double-clicking anywhere on the stage looks like 
this: 
 
private function changeSetup(evt:MouseEvent):void{ 
        repositionAttractors(); 
        recycleOrbiter(); 
} 
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The two private methods repositionAttractors() and recycleOrbiter() do exactly what their 
names suggest: 
 
private function repositionAttractors():void{ 
        for (var i:uint=0; i<_attractors.length; i++){ 
                var attractor:Ball=_attractors[i]; 
                attractor.pos2D = new Vector2D(Math.random()*_stageWidth,! 
 Math.random()*(_yposEdge-_yposWinning)+_yposWinning); 
        } 
} 
private function recycleOrbiter():void{ 
        _orbiter.pos2D = new Vector2D(_stageWidth/2,_stageHeight-50); 
        _orbiter.velo2D = new Vector2D(0,0); 
        _orbiter.rotation = 0; 
} 

So you can reset the positions of the black holes and the spaceship at any time by double-clicking 
anywhere on the stage.  

Let’s now look at what calcForce() looks like: 
 
override protected function calcForce():void{ 
        force = Forces.zeroForce(); 
        // calculate and add gravity due to all black holes 
        var gravity:Vector2D = Forces.zeroForce(); 
        for (var i:uint=0; i<_attractors.length; i++){ 
                var attractor:Ball=_attractors[i]; 
                var dist:Vector2D = _orbiter.pos2D.subtract(attractor.pos2D); 
                if (dist.lengthSquared > Math.pow(attractor.radius,2)){ 
                        gravity = Forces.gravity(_G,attractor.mass,_massOrbiter,dist); 
                        force = Forces.add([force, gravity]); 
                }else{ // if a black hole eats the ship 
                        updateLives(); 
                        recycleOrbiter(); 
                } 
        } 
        // calculate and add thrust 
        var thrust:Vector2D = Forces.zeroForce(); 
        if (_applyThrust){ 
                if (_direction=="UP"){ 
                        thrust = _dir.para(-_vedmdt); 
                }else if (_direction=="DOWN"){ 
                        thrust = _dir.para(_vedmdt); 
                }else if (_direction=="RIGHT"){ 
                        thrust = _dir.perp(_vedmdt); 
                }else if (_direction=="LEFT"){ 
                        thrust = _dir.perp(-_vedmdt); 
                }else{ 
                        thrust = new Vector2D(0,0); 
                } 
                force = Forces.add([force, thrust]); 
        } 
} 
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The force of gravity due to each black hole is calculated in a for loop and then added to the total force. A 
collision detection test checks that the spaceship is not within the current black hole; if it is, the method 
updateLives() is called, and the spaceship is recycled. The thrust on the spaceship is then calculated 
depending on which arrow key is pressed, as determined by the string stored in the _direction variable. 
For example, if _direction==“UP”, the thrust is applied opposite to the unit vector _dir (which points 
downward) by using the para() public method of Vector2D, scaling _dir by -_vedmdt. If the right or left 
arrow key is pressed, the perp() method is used instead, to give a horizontal vector of length _vedmdt. 
The thrust is then added to the total force.   

The updateLives() method mentioned before decrements the number of lives variable _numLives and 
then calls the showLives() method to display the remaining number of lives:  
 
private function updateLives():void{ 
        _numLives--; 
        showLives(); 
} 
private function showLives():void{ 
        txtLives.text = String(_numLives) + " lives left"; 
        if (_numLives==0){ 
                txtLives.text = "Game over"; 
                stopTime(); 
        } 
        txtLives.setTextFormat(txtFormat); 
} 

Next we’ll take a look at the moveObject() method: 
 
override protected function moveObject():void{ 
        super.moveObject(); 
        if (_orbiter.xpos < 0 || _orbiter.xpos > _stageWidth || _orbiter.ypos > _stageHeight){ 
                recycleOrbiter(); 
        } 
        if (_orbiter.ypos < _yposWinning){ 
                updateScore(); 
                recycleOrbiter(); 
                addAttractor(); 
                repositionAttractors(); 
        } 
        rotateOrbiter(); 
} 

The new bits in here are if blocks of code and the rotateOrbiter() method. The first if block recycles 
the ship if it is outside of the stage area. The second if block checks to see whether the ship has passed 
the winning line. If it has, it updates the score, recycles the orbiter, adds a new black hole, and repositions 
all the black holes. The recycleOrbiter() and repositionAttractors() methods were described 
previously. The updateScore() method increments the current score variable _score by the current 
number of black holes (and so _score has a value equal to the total number of black holes evaded) and 
then calls the showScore() method to display the score:  
 
private function updateScore():void{ 
        _score += _attractors.length; 
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        showScore(); 
} 
private function showScore():void{ 
        if (_score==1){ 
                txtScore.text = "You've just dodged a black hole!" 
        }else{ 
                txtScore.text = "You've dodged " + _score + " black holes!" 
        } 
                txtScore.setTextFormat(txtFormat); 
        } 

And here is the addAttractor() method, which adds a new black hole: 
 
private function addAttractor():void{ 
        var radius:Number=20*(Math.random()+0.5); 
        var mass:Number=(0.5*_c*_c/_G)*radius; // formula for mass of black hole 
        var attractor:Ball = new Ball(radius,0x000000,mass,0,false); 
        _orbiter.stage.addChild(attractor); 
        _attractors.push(attractor); 
} 

Finally, the rotateOrbiter() method rotates the spaceship so that it always points in the direction of its 
velocity: 
 
private function rotateOrbiter():void{ 
        _orbiter.rotation = _orbiter.velo2D.angle*180/Math.PI + 90; 
} 

This completes the description of the game. Take a look at the source files and have fun playing around! 
Feel free to develop the game further. It could certainly do with enhanced graphics and perhaps some 
sound effects, too. In terms of functionality, see if you can improve the controls: for example, allow the 
user to move the spaceship diagonally by pressing an up or down key together with a left or right key.  

Electrostatic force 
The next long-range force we’ll look at is one that exists between electrically charged particles. This is 
called an electric or electrostatic force. But before we get to the force law, we need to explain a few facts 
about electric charges.  

Electric charge 
Electric charge is a physical property of particles just like mass is. Elementary particles, the fundamental 
building blocks of matter, are frequently charged. For example, electrons are particles that orbit the nuclei 
of atoms, and they have negative charge. The nuclei of atoms include protons, which have positive 
charge, and neutrons, which have zero charge. What we call an electric current is actually a flow of free 
electrons in a metal"moving charges (whether electrons or not) constitute an electric current.  

A particle with mass creates a gravitational field that exerts a force on other particles with mass. Similarly, 
a charged particle creates an electric field that exerts a force on other charged particles. The interesting 
thing is that there are two types of charges: positive and negative.    
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Like charges repel; unlike charges attract. 

So a positive charge will attract a negative charge, and vice versa. But the positive charge will repel 
another positive charge; similarly, a negative charge will repel another negative charge. This is different 
from mass, which is always positive and always leads to an attractive gravitational force.   

Coulomb’s law of electrostatics 
The force law for the electric force between two particles is called Coulomb’s law. It is virtually identical in 
form with Newton’s law of gravitation, being given by the following, where Q1 and Q2 are the charges on 
the two particles, r is the distance between them, and k is a constant analogous to G: 

F = k Q1 Q2

r2  

Don’t worry about the value of k; we are not going to model real electrical charges but we’ll just play 
around with the force law to see what kind of motion it produces. So, we can give k any value we like.   

The forces exerted on each particle by the other have the same magnitude but opposite direction, in 
accordance with Newton’s third law. Like gravity, the force is directed along the line joining the two 
particles, so Coulomb’s law can be written in vector form in the following two ways, where ru is a unit 
vector in the direction of r: 

F = k Q1 Q2

r2 ru  

or  

F = k Q1 Q2

r3 r  

Here r is the position vector of the object experiencing the force relative to the object that is exerting the 
force, just like gravity (refer to Chapter 6).  

Note the absence of a negative sign in the preceding formula (recall that the equivalent vector formula for 
gravity had a negative sign). That’s because like charges repel, whereas masses always attract. So if Q1 
and Q2 are both positive or both negative, their product is positive, and the force F is a positive number 
times r. F then is oriented in the direction of r (it is repulsive). But if one of the charges is positive and the 
other is negative, F is a negative number times r and directed opposite to r (it is attractive).   

Let’s create an electric force function similar to the gravity function in the Forces class:  
 
static public function electric(k:Number,q1:Number,q2:Number,r:Vector2D):Vector2D { 
        return r.multiply(k*q1*q2/(r.lengthSquared*r.length)); 
} 
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This is similar in form to the gravity force function, but without the minus sign. As explained previously, the 
sign of the product q1*q2 determines whether we get an attractive or repulsive force. Just by allowing two 
different signs for charges, we get a “richer” force than gravity, although the formula is nearly identical in 
form.  

Charged particle attraction and repulsion 
To see the electric force in action, let’s build a simulation similar to GravityField.as, but with electrically 
charged particles instead of black holes. The new files are ElectricField.as and 
ElectricInteractor.as, and they are similar to GravityField.as and GravityAttractor.as, 
respectively. Let’s take a look first at ElectricField.as: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class ElectricField extends Sprite{ 
                public function ElectricField():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var timeStep:Number = 10; 
                        var k:Number = 1;  
                        var numCenters = 20;  
 
                        var centers:Array = new Array(); 
                        for (var i:uint=0; i<numCenters; i++){ 
                                var center:Ball; 
                                var charge:Number = (Math.random()-0.5)*1000000; 
                                var color:uint; 
                                if (charge < 0){ 
                                        color = 0xff0000; 
                                }else if (charge > 0){ 
                                        color = 0x0000ff; 
                                }else{ // neutral 
                                        color = 0x000000; 
                                } 
                                center = new Ball(20*(Math.random()+0.5),color,1,charge,true); 
                                center.pos2D = new Vector2D(Math.random()*stage.stageWidth,! 
Math.random()*stage.stageHeight); 
                                addChild(center); 
                                centers[i] = center; 
                        } 
 
                        var orbiter:Ball; 
                        orbiter = new Ball(5,0xff0000,1,1); 
                        orbiter.pos2D = new Vector2D(Math.random()*stage.stageWidth,! 
 Math.random()*stage.stageHeight); 
                        orbiter.velo2D = new Vector2D((Math.random()-0.5)*100,! 
 (Math.random()-0.5)*100); 
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                        addChild(orbiter); 
 
                        var electric:ElectricInteractor=new ElectricInteractor(orbiter,! 
centers,k); 
                        electric.startTime(timeStep); 
                } 
        } 
} 

The main difference is that we are giving the centers random positive and negative charges, and coloring 
them blue if their charge is positive and red if their charge is negative (and black if they turn out to have 
zero charge, which would be a rare occurrence because Math.random() would have to return exactly 0.5 
for that to be true). The moving particle, still called orbiter, is given a positive charge of 1. So it will be 
attracted by the red centers and repelled by the blue ones.  

The code for ElectricInteractor.as is very similar to GravityAttractor.as, with the 
Forces.electric() replacing Forces.gravity() in calcForce(), and charges being used instead of 
masses. So let’s just show the calcForce() function:  
 
override protected function calcForce():void{ 
        var electric:Vector2D = Forces.zeroForce(); 
        force = Forces.zeroForce(); 
        for (var i:uint=0; i<_centers.length; i++){ 
                var center:Ball=_centers[i]; 
                var dist:Vector2D = _orbiter.pos2D.subtract(center.pos2D); 
                if (dist.lengthSquared > Math.pow(center.radius+_orbiter.radius,2)){ 
                        electric = Forces.electric(_k,center.charge,_chargeOrbiter,dist); 
                        force = Forces.add([force, electric]); 
                }else{ 
                        recycleOrbiter(); 
                } 
        } 
} 

Figure 10-5 shows an example of what you should see when you run the code.  

 

Figure 10-5. Trajectories in the electric field of multiple charged particles 
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Electric fields 
As with gravity, we can invoke the concept of a force field in electrostatics. Recall that the gravitational 
field strength g was defined as the force exerted per unit mass, g = F/m. Similarly, electric field strength E 
is defined as the force exerted per unit charge:   

E = F / q  

Therefore, if we know the electric field strength, we can easily calculate the electric force the field exerts 
on a particle by multiplying by its charge: 

F = q E  

Compare this with the equivalent formula for gravity: 

F = m g  

Because we want to use the formula F = qE, why not create a force function for it? Let’s call it 
Forces.forceField: 
 
static public function forceField(q:Number, E:Vector2D):Vector2D { 
        return E.multiply(q); 
} 

Note that nothing stops us from using the same function to calculate F = mg, too, if we use m for the 
parameter q and g for E. 

Electric field due to a charged particle 
As an example, using Coulomb’s law, we can calculate the electric field due to a charged particle. Let the 
particle have charge Q. Then the force it exerts on a particle of charge q a distance r away is this: 

F = k Q q
r2  

Therefore, the force per unit charge is this: 

E = k Q
r2  
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In vector form, it can be written as follows: 

E = k Q
r3 r  

This is the formula for the electric field produced by a charged particle. But we can also play around with 
any form for E that we want, without worrying about how it is actually produced. Let’s look at a couple of 
examples.  

Time-varying electric fields 
The electric field of a stationary charge is constant in time, even though it varies in space, as described in 
the previous section. This is similar to the gravitational field of a stationary mass. But if a charged particle 
moves, the electric field it sets up will vary in time. For example, an oscillating charge will produce an 
oscillating electric field. 

A simple example is an electric field that varies in time like a sine or cosine wave. Wave concepts such as 
frequency and amplitude can then be applied to such a sinusoidally varying field, as discussed in Chapters 
3 and 8. Moreover, because an electric field is a vector, its components can vary independently of each 
other. If all this sounds a bit abstract, that’s because an electric field is an abstract concept! You can’t 
visualize an oscillating electric field with two or more components as you can visualize an oscillating mass-
spring system. Nevertheless, the same math can be applied to both.  

Interesting effects can be produced with electric fields that vary in time. In the files 
ElectricFieldExamples.as and Electro.as, we take a look at the types of motion that different electric 
fields produce. ElectricFieldExamples.as is very simple, creating a particle instance and making it 
move using an instance of the Electro class: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Ball; 
 
        public class ElectricFieldExamples extends Sprite{ 
                public function ElectricFieldExamples():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var particle:Ball; 
                        particle = new Ball(5,0xff0000,1,1); 
                        particle.pos2D = new Vector2D(100,300); 
                        addChild(particle); 
 
                        var timeStep:Number = 10; 
                        var electro:Electro=new Electro(particle); 
                        electro.startTime(timeStep); 
                } 
        } 
} 
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Electro.as is simple, too; it basically calculates the force in calcForce() and plots its trajectory using 
the plotGraph() method to draw on a Graph instance previously set up in setupGraph(): 
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.math.Graph; 
 
        public class Electro extends Forcer{ 
                private var _particle:Ball; 
                private var _particleCharge:Number; 
                private var _E:Vector2D; 
                private var _graph:Graph; 
                private var _stageWidth; 
                private var _stageHeight; 
 
                public function Electro(pparticle:Ball):void{ 
                        _particle = pparticle; 
                        _particleCharge = pparticle.charge; 
                        _stageWidth = _particle.stage.stageWidth; 
                        _stageHeight = _particle.stage.stageHeight; 
                        setupGraph(); 
                        super(pparticle); 
                } 
                override protected function calcForce():void{ 
                        _E = new Vector2D(20*Math.sin(1*time),20*Math.cos(1*time)); 
                        force = Forces.forceField(_particleCharge,_E); 
                } 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        plotGraph(); 
                } 
                private function setupGraph():void { 
                        _graph= new Graph(0, _stageWidth, 0, _stageHeight, 0, 0,! 
 _stageWidth, _stageHeight); 
                        _particle.stage.addChild(_graph); 
                } 
                private function plotGraph():void{ 
                        _graph.plot([_particle.xpos], [-_particle.ypos],0x666666, false,! 
 true); 
                } 
 
        } 
} 

Now it’s play time! In the source file, Electro.as, we included a number of different sinusoidally varying 
functions (as commented-out code) for _E in calcForce() that you can try. Try the following function to 
start with: 
 
_E = new Vector2D(0, 50*Math.cos(1*time)); 
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What we’re doing is to apply an electric field with a vertical component that varies sinusoidally in time with 
an amplitude (maximum magnitude) of 50 and a frequency of 1 cycle per second. When you run the code, 
you’ll see that the particle oscillates up and down in response to the applied electric field.  

What happens if we change the amplitude or frequency of the oscillation? If we increase the amplitude, 
we’ll be applying a larger force, so it’s no surprise that the particle will oscillate with larger amplitude. But 
the effect of increasing the frequency of the applied electric field might not be so obvious. Try changing the 
frequency to 3, so that _E becomes this:  
#
_E = new Vector2D(0, 50*Math.cos(3*time)); 

If you now run the code, you’ll find that the particle oscillates with a much smaller amplitude. What’s 
happening here is that the particle, because it has inertia (mass), cannot keep up with the speed of 
variation of the electric field.  

The following function gives a more interesting pattern, by applying an electric field with a constant 
component of magnitude 1 in the horizontal and a sinusoidally varying vertical component with an 
amplitude given by 2*time:   
 
_E = new Vector2D(1, 2*time*Math.cos(1*time)); 

This makes the particle accelerate in the horizontal and oscillate with an increasing amplitude in the 
vertical (see Figure 10-6). 

We’ll let you play with the other example functions given in the file, as well as try your own. Of course, 
there is no reason to restrict yourself to sinusoidally varying functions: feel free to experiment with any 
function you like. 

 

Figure 10-6. Example of the effect of a time-varying electric field on a charged particle 

Electromagnetic force 
The electric (electrostatic) force is but one aspect of charged particles. Moving charged particles 
experience and exert another force"a magnetic force"in addition to the electric force. Therefore, 
accounting for the magnetic force will change the way that charged particles move. In this section, you’ll 
see how to compute the magnetic force and how combining it with the electric force affects the motion of 
charged particles.   

Magnetic fields and forces 
We’ve all experienced the fascination of magnets as kids. Part of their appeal is that you can actually feel 
the force acting between two magnets without them actually touching. Because of this action-at-a-distance 
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characteristic, magnetism fits neatly into the force field concept: a magnet generates a magnetic field 
around it, which then exerts a force on other magnets and magnetic materials.  

What is not obvious at all is that the magnetic field actually has a close connection with the electric field. 
Magnetic fields are generated by moving charges or by electric fields that vary in time. So, an electric 
current in a wire will create a magnetic field. A sinusoidally varying electric field will produce a sinusoidally 
varying magnetic field. The relationship between electric and magnetic fields and the precise way in which 
they are generated are complex; they are described mathematically by a set of vector differential 
equations called Maxwell’s equations. To keep things simple, we’ll simply assume given electric and 
magnetic fields without worrying about how they are produced or how they interact with each other, and 
focus on how they affect the motion of charged particles.    

We already know that the force due to an electric field of strength E on a particle of charge q is given by F 
= qE. What is the equivalent force law for a magnetic field?  

First we need to introduce a magnetic field strength analogous to the electric field strength. There is no 
need to go into the actual definition; suffice it to say that it exists and is given the symbol B, and that it is a 
vector like the electric field strength E.  

The force on a charge q due to a magnetic field B is then given by the following, where v is the velocity 
vector of the charged particle and x denotes the cross (vector) product (refer to Chapter 3): 

F= q v × B  

As explained in Chapter 3, the cross product v x B gives a vector that is perpendicular to both v and B (it 
points in a direction perpendicular to the plane containing the vectors v and B). Multiplying this by q gives 
a vector in the same direction but with q times its magnitude. From Chapter 3, the magnetic force can also 
be written thus, where θ is the angle between the v and B vectors and n is the unit vector perpendicular to 
v and B vectors and oriented according to the right hand rule (refer to Chapter 3): 

F= q v Bsin θ( ) n  

Note that because the magnetic force is always perpendicular to the particle velocity, it therefore acts as a 
centripetal force, causing rotation (refer to Chapter 9). Therefore, we can equate the magnetic force law 
with the centripetal force formula: 

q v Bsin θ( ) = m v
2

r  
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Rearranging this equation gives this: 

r = m v
q Bsin θ( )  

This gives the radius of the trajectory that the charged particle follows. The formula tells us that the radius 
of the circle increases if the mass or velocity increases, and it decreases if either the charge q or the 
magnetic field magnitude B increases.    

The Lorentz force law 
You can combine the electric and magnetic forces on a charged particle to give a single formula for the 
electromagnetic force on the particle: 

F= q E + v × B( )  

This is called the Lorentz force equation.   

We’ll now create a static force function called lorentz() in the Forces class to implement this force law. 
The only problem is that the vector product is only defined in 3D, whereas our forces are currently only in 
2D. But we can implement the magnetic force qv x B in a restricted way if we assume that the magnetic 
field B is always pointing either into or out of the screen. The magnetic force is given by qv x B = qvB sin 
(θ) n (refer to the last section), where θ is the angle between v and B, and in 2D v is always perpendicular 
to B if the latter is pointing into or out of the screen. Because sin (90°) = 1, this gives, in that special case, 
the following, where n is perpendicular to v:  

q v × B = q v B n  

This means that in ActionScript the magnetic force is given by the following, where vel is the velocity 
vector v and B is the magnitude of the magnetic field: 
 
vel.perp(q*B*vel.length) 

The complete Lorentz force function is then as follows: 
 
static public function lorentz(q:Number, E:Vector2D, B:Number, vel:Vector2D):Vector2D{ 
        return E.multiply(q).add(vel.perp(q*B*vel.length)); 
} 

Let’s now play with the Lorentz force function. The file LorentzForce.as sets up a particle and a Lorentz 
class to make it move: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Ball; 
 
        public class LorentzForce extends Sprite{ 
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                public function LorentzForce():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var particle:Ball; 
                        particle = new Ball(5,0xff0000,1,1); 
                        particle.pos2D = new Vector2D(400,500); 
                        particle.velo2D = new Vector2D(40,0); 
                        addChild(particle); 
 
                        var timeStep:Number = 10; 
                        var lorentz:Lorentz=new Lorentz(particle); 
                        lorentz.startTime(timeStep); 
                } 
        } 
} 

We initialized the velocity of the particle to be 40 px/s in the x direction; different results will be obtained for 
different choices of initial velocity.  

The Lorentz class is nearly identical with the Electro class, save for an extra variable _B to represent 
the magnitude of the magnetic field, and a different force function in calcForce(): 
 
override protected function calcForce():void{ 
        _E = new Vector2D(0,0); 
        _B = 0.2; 
        force = Forces.lorentz(_particleCharge,_E,_B,_particle.velo2D); 
} 

Let’s try using different values and math functions for _E and _B to see what we get. To begin with, let _E 
be a zero vector and let _B = 0.2 as in the previous code snippet"in other words, we have a constant 
magnetic field. Run the code and you’ll see that the particle traces out a circular path, as discussed in the 
last section. You can verify what we said at the end of the last section by increasing the value of _B to 0.5 
and noting that the radius of the circular path decreases.  

You can reduce the velocity of the particle on each timestep by adding the following line in calcForce() 
or updateObject(): 
 
_particle.velo2D = _particle.velo2D.multiply(0.999); 
 

This will give you the spiral pattern shown in Figure 10-7.  

 

Figure 10-7. A spiral traced by a particle with decreasing velocity in a constant magnetic field 
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Now add in a non-zero electric field; for example: 
 
_E = new Vector2D(1,0); 
_B = 0.5; 

This will produce a helical trajectory. You can also make the electric field and/or the magnetic field time-
varying functions; for example:  
 
_E = new Vector2D(0,50*Math.cos(1*time)); 
_B = 0.5; 

This will produce interesting trajectories that are not always what you might expect. Have fun 
experimenting!  

Other force laws 
So far in this chapter, we have discussed physical forces that actually exist in nature. But there is no 
reason why we cannot invent our own. Because our main purpose is to play around with forces and their 
effects, we don’t have to be limited by reality. In the next few sections, we’ll introduce different force laws 
and see what they can do. Feel free to create your own! 

Central forces 
A central force is one that satisfies the following two conditions:  

! The magnitude of the force depends only on the distance from a given point. 

! The direction of the force is always toward that point.  

Newtonian gravity, electrostatic forces, and spring forces are all examples of central forces. 
Mathematically, the above two conditions can be combined to give the force vector at any point P as 
follows, where ru is a unit vector of the point P from the force center, r is its distance from that center, and 
f(r) is a function of r:  

F = f r( ) ru  

As you already know, for gravity and electrostatic forces, f(r) is proportional to 1/r2: 

f r( ) ∝ 1
r2  
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This is usually referred to as an inverse square law. Ever wondered what things would be like if gravity 
obeyed a different law"for example, an inverse 1/r or an inverse cube 1/r3 law? Well we can easily find 
out by creating a modified force function for gravity. But rather than create special functions for these 
different cases, let’s create a general central force function that varies according to the following, where 
both k and n can be positive or negative: 

f r( ) = k rn  

This gives the following vector form: 

F = k rn ru  

Or equivalently: 

F = k rn−1 r  

If k is positive, the force is repulsive (because it is in the direction of r); if k is negative, the force is 
attractive (because it is in the opposite direction from r). If n is positive, the force increases with distance; if 
n is negative, the force decreases with distance.  

Examples include the spring force law, for which k is negative and n is 1; and gravity, for which k is 
negative and n is –2. The constant k is usually related to some property of the particle (for example, mass 
or charge).   

Let’s add a central force function to the Forces class: 
 
static public function central(k:Number,n:Number,r:Vector2D):Vector2D { 
        return r.multiply(k*Math.pow(r.length,n-1)); 
} 

The following code, CentralForces.as, sets up a particle that will be subjected to a central force through 
the CentralForcer() class: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Ball; 
 
        public class CentralForces extends Sprite{ 
                public function CentralForces():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var center:Ball; 
                        center = new Ball(2,0x000000); 
                        center.pos2D = new Vector2D(400,300); 
                        addChild(center); 
 
                        var particle:Ball; 
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                        particle = new Ball(5,0xff0000,1); 
                        particle.pos2D = new Vector2D(300,300); 
                        particle.velo2D = new Vector2D(0,-20); 
                        addChild(particle); 
 
                        var timeStep:Number = 10; 
                        var forcer:CentralForcer=new CentralForcer(particle,center); 
                        forcer.startTime(timeStep); 
                } 
        } 
} 

And here is the code for CentralForcer.as: 
 
package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.math.Graph; 
 
        public class CentralForcer extends Forcer{ 
 
                private var _particle:Ball; 
                private var _center:Vector2D; 
                private var _graph:Graph; 
                private var _stageWidth; 
                private var _stageHeight; 
                private var _k:Number=-10; 
                private var _n:Number=0.5; 
 
                public function CentralForcer(pparticle:Ball,pcenter:Ball):void{ 
                        _particle = pparticle; 
                        _center = pcenter.pos2D; 
                        _stageWidth = _particle.stage.stageWidth; 
                        _stageHeight = _particle.stage.stageHeight; 
                        setupGraph(); 
                        super(pparticle); 
                } 
 
                override protected function calcForce():void{ 
                        var r:Vector2D = _particle.pos2D.subtract(_center); 
                        force = Forces.central(_k,_n,r); 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        plotGraph(); 
                } 
 
                private function setupGraph():void { 
                        _graph= new Graph(0, _stageWidth, 0, _stageHeight, 0, 0,! 
 _stageWidth, _stageHeight); 
                        _particle.stage.addChild(_graph); 
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                } 
                private function plotGraph():void{ 
                        _graph.plot([_particle.xpos], [-_particle.ypos],0x666666,! 
 false, true); 
                } 
 
        } 
} 

Nothing exceptional here. We are applying a central force to the particle in calcForce() and then plotting 
its resulting trajectory as before. You can experiment with different values for k and n, as well as different 
initial positions and velocities for the particle.  

Can you always make a particle follow a closed orbit with an attractive central force (negative k)? We 
already know this is possible for a f(r) = k/r2 law (for example, gravity) and a f(r) = kr law (springs). But 
what about other force laws, such as f(r) = k/r or f(r) = r3 ? Try it out and see for yourself! 

As an example, with the following initial conditions, and with (k = –1, n = 1), a spring-like force, you get an 
elongated closed orbit: 
 
center.pos2D = new Vector2D(400,300); 
particle.pos2D = new Vector2D(200,300); 
particle.velo2D = new Vector2D(0,-20); 

With (k = –100000, n = –2), a gravity-like law, you also get a closed elliptical orbit. But with (k = –1000, n = 
–1), a 1/r law, you get a flower-like trajectory that does not close on itself (see Figure 10-8); it is a bound 
orbit, but not a closed one. And with a 1/r3 law you get trajectories that either spiral in or spiral out, but do 
not close: they are neither closed nor bound. Note that the magnitude of k needs to be adjusted depending 
on the value of n to produce displacements of the right magnitude to fit on the stage.  

There is actually a mathematical theorem called Bertrand’s theorem that says the only central force laws 
that give closed orbits are f(r) = k/r2 and f(r) = kr laws. Lucky for Earth (and us!) that gravity is a 1/r2 law! 

In spite of the last statement, it turns out that closed circular orbits exist, as a special case, for all attractive 
central forces if you have just the correct tangential velocity. It’s easy to work out the velocity needed for 
that: just equate the force law with the formula for centripetal force, where m is the mass of the particle: 

m v2

r
= −k rn  

 
Solving for v gives this: 

v = −k rn+1

m  

You can test this formula with the simulation. It should work for any value of n, provided that k is negative.  
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Figure 10-8. Trajectory traced by a particle in a 1/r force field 

Gravity with a spring force law? 
Can you imagine what the universe would be like if gravity obeyed a different force law, for instance a 
spring force law? Well, let’s find out! 

SpringGravity.as sets up a bunch of particles with random positions and velocities and puts them in an 
array called particles. It then creates a Ball object called center that will act as a gravitational attractor 
and gives it a mass of 1 and a charge of 1. Both particles and center are then passed to a 
SpringGravityForcer instance:  
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Ball; 
 
        public class SpringGravity extends Sprite{ 
                public function SpringGravity():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var numParticles:Number=100; 
                        var vmax:Number=100; 
                        var particles:Array = new Array(); 
                        for (var i:uint=0; i<numParticles; i++){ 
                                var particle:Ball; 
                                particle = new Ball(4,0x000000,1); 
                                particle.pos2D = new Vector2D(Math.random()*! 
stage.stageWidth, Math.random()*stage.stageHeight); 
                                particle.velo2D = new Vector2D((Math.random()-0.5)*vmax,! 
 (Math.random()-0.5)*vmax); 
                                addChild(particle); 
                                particles.push(particle); 
                        } 
 
                        // spring force kr 
                        var center:Ball; 
                        center = new Ball(20,0xff0000,1,1); 
                        center.pos2D = new Vector2D(400,300); 
                        addChild(center); 
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                        var timeStep:Number = 10; 
                        var forcer:SpringGravityForcer=new SpringGravityForcer(particles,! 
 center); 
                        forcer.startTime(timeStep); 
                } 
        } 
} 

SpringGravityForcer.as is pretty simple. It extends MultiForcer because there’s a bunch of particles 
to move. The calcForce() method basically computes a central force, using k = –GMm, where the 
gravitational constant G = 1, M is the mass of the center; and m is the mass of the relevant particle (all 1 
here). Note that we’ve stored the value of n in the charge property of center. There’s no reason why we 
can’t do that because we won’t use charge here. Now because k is negative and n = 1, we have a spring 
force. We’ve created spring-force gravity! 
 
package { 
        import com.physicscodes.motion.MultiForcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class SpringGravityForcer extends MultiForcer{ 
 
                private var _center:Ball; 
                private var _G:Number=1; 
 
                public function SpringGravityForcer(pparticles:Array,pcenter:Ball):void{ 
                        _center = pcenter; 
                        super(pparticles); 
                } 
 
                override protected function calcForce(pparticle:Particle):void{ 
                        var k:Number = -_G*_center.mass*pparticle.mass; 
                        var n:Number = _center.charge; 
                        var r:Vector2D = pparticle.pos2D.subtract(_center.pos2D); 
                        force = Forces.central(k,n,r); 
                } 
        } 
} 

Run the code to get an interesting insight into what life might be like with gravity obeying the spring force 
law. You’ll see that all the particles are pulled toward the center undergoing some kind of oscillation (see 
Figure 10-9). If you increase the value of the velocity coefficient vmax, say to 1000, the particles will move 
about more, but will still be pulled into this oscillatory motion.  
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Figure 10-9. Modeling gravity with a spring force 

Multiple attractors with different laws of gravity 
In our final example, FieldForcer.as, we’ll combine central forces with different values of k and n to 
produce a complex force field. This is a universe in which different attractors exert gravity according to 
different force laws. 

Here is the code in FieldForcer.as: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Ball; 
 
        public class ForceFields extends Sprite{ 
                public function ForceFields():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var numParticles:Number=100; 
                        var vmax:Number=20; 
                        var particles:Array = new Array(); 
                        for (var i:uint=0; i<numParticles; i++){ 
                                var particle:Ball = new Ball(4,0x000000,1); 
                                particle.pos2D = new Vector2D(Math.random()! 
*stage.stageWidth, Math.random()*stage.stageHeight); 
                                particle.velo2D = new Vector2D((Math.random()-0.5)*vmax,! 
 (Math.random()-0.5)*vmax); 
                                addChild(particle); 
                                particles.push(particle); 
                        } 
 
                        // k/r force 
                        var center1:Ball = new Ball(20,0xff0000,1000,-1); 
                        center1.pos2D = new Vector2D(200,500); 
                        center1.velo2D = new Vector2D(10,-10); 
                        addChild(center1); 
                        center1.move(); 
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                        // k/r2 force 
                        var center2:Ball = new Ball(20,0x00ff00,100000,-2); 
                        center2.pos2D = new Vector2D(500,100); 
                        addChild(center2); 
 
                        // k/r3 force 
                        var center3:Ball = new Ball(20,0x0000ff,10000000,-3); 
                        center3.pos2D = new Vector2D(600,300); 
                        addChild(center3); 
 
                        var timeStep:Number = 10; 
                        var forcer:FieldForcer=new FieldForcer(particles, [center1, center2,! 
 center3]); 
                        forcer.startTime(timeStep); 
                } 
        } 
} 

As in SpringGravity.as, we set up a bunch of particles and give them random positions and velocities. 
Then we set up three attractors called center1, center2, and center3 and give them masses of 1000, 
100000, and 10000000; and charges of –1, –2, and –3, respectively. As in the last example, the values of 
the charges are used to store the values of n, the central force law index. This means that the attractors 
will exert 1/r, 1/r2, and 1/r3 force laws, respectively. We also give center1 a non-zero velocity and make it 
move by invoking the move() method.  

The simulation is driven by a FieldForcer class instance, which looks as follows: 
 
package { 
        import com.physicscodes.motion.MultiForcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class FieldForcer extends MultiForcer{ 
 
                private var _centers:Array=new Array(); 
                private var _G:Number=1; 
 
                public function FieldForcer(pparticles:Array,pcenters:Array):void{ 
                        _centers = pcenters; 
                        super(pparticles); 
                } 
 
                override protected function calcForce(pparticle:Particle):void{ 
                        var central:Vector2D; 
                        force = Forces.zeroForce(); 
                        for (var i:uint=0; i<_centers.length; i++){ 
                                var center:Ball=_centers[i]; 
                                var k:Number = -_G*center.mass*pparticle.mass; 
                                var n:Number = center.charge; 
                                var r:Vector2D = pparticle.pos2D.subtract(center.pos2D); 
                                if (r.lengthSquared > Math.pow(center.radius,2)){ 
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                                        central = Forces.central(k,n,r); 
                                }else{ 
                                        central = Forces.zeroForce(); 
                                } 
                                force = Forces.add([force, central]); 
                        } 
                } 
 
        } 
} 

This is similar to the last example, except that we now have an array of attracting centers (see Figure 10-
10), so we sum the central force that each exerts in a for loop in calcForce(). Note that we are setting 
the force to be zero if a particle happens to be within a center. This is to improve the visual effect. After all, 
it’s a universe of our own creation, so we can do whatever we want, can’t we? 

 

Figure 10-10. Particles moving in a field composed of different central forces 

If you run the code, you’ll see that most of the particles gravitate around the center that exerts the 1/r 
force. As it moves along, it captures more particles. The gravity of this attractor dominates because a 1/r 
force is a longer-range force than a 1/r2 or a 1/r3 force: it decays less rapidly with distance. The attractor 
that exerts the 1/r3 force holds onto very few particles: its influence decays very rapidly with distance.   

There are tons of other things you could try; for example, make the attractors move in more complicated 
ways (for example, orbit a center or move around and bounce). You could add more attractors or include 
antigravity. Your imagination is the limit.  

Summary 
You now have plenty of tools with a whole lot of forces for creating interesting types of motion. This 
concludes Part II of the book. In Part III, you will apply what you learned in Part II to build more complex 
systems consisting of interacting particles or extended objects. Things will get more complicated, but also 
more fun! 
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Part III 

Multi-particle and Extended Systems 
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Chapter 11 

Collisions 

This chapter deals with an important subject that is bound to crop up in any animation or simulation: 
collisions. More precisely, it focuses primarily on collision resolution"how to respond to collision 
events"as opposed to collision detection, which was discussed to some extent in Chapter 2. Both 
collision detection and collision resolution are vast subjects in their own right. The intricacies of collision 
detection for general objects are outside the scope of this book (because we focus on the physics), but 
things are much simpler for collisions between particles, which is the main subject of this chapter. 
Similarly, it is impossible to cover all aspects of collision resolution in a single chapter. We shall, therefore, 
concentrate on some of the basics that are most commonly encountered. Specifically, we shall restrict 
attention to collisions of particles with fixed walls (bouncing) and with other particles. 

Topics covered in this chapter include the following: 

! Collisions and their modeling: This brief introductory section explains what collisions are and 
outlines the approach we will take to model them. 

! Bouncing off horizontal or vertical walls: By wall, we mean any fixed flat surface that a particle 
can bounce off of. We start with the example of a ball bouncing off a horizontal or vertical wall. 
The collision resolution in this case is simple. The effects of energy loss by bouncing or wall 
friction can also be implemented in a straightforward way. 

! Bouncing off inclined walls: Things get a lot more complicated if the wall is inclined. A general 
method will be given to resolve collisions with walls of any inclination. 

! Collisions between particles in 1D: When particles move along the line joining them, collisions 
are one-dimensional and can be resolved in a straightforward way by applying the laws of 
conservation of momentum and energy. 
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! Collisions between particles in 2D: We discuss a general method for resolving more 
complicated two-dimensional collisions between particles that occur at an angle to the line joining 
them. 

Collisions and their modeling 
Let's begin by defining what we mean by collisions in the context of this book. A collision between two 
objects is a brief interaction during which they come into contact and exchange forces that then modify 
their motion. The task of collision resolution is to determine the motion of the two colliding objects 
immediately after the collision has taken place. 

In Part II of the book, you have been used to solving motion problems using forces. This is not how 
collisions are usually treated. It is very difficult to model the large and brief forces that are exerted during 
collisions. The way collisions are normally handled is through their effect. We know from Newton’s second 
law of motion that forces produce changes in momentum. In Chapter 5, this relationship was expressed in 
the following way through the concept of an impulse F∆t, where ∆p is the change in momentum produced 
by an impulse: 

F∆t = ∆p  

For a particle with constant mass m: 

∆p = m∆v  

so that: 

F∆t = m∆v  

So the effect of a large and brief collision force, in other words an impulse F∆t, is to produce a change of 
velocity given by the preceding formula. 

The way to handle collisions is to directly work out that change in velocity. If you look back to Chapter 5, 
you will recall that this is what the principle of momentum conservation is all about. But momentum 
conservation on its own is not enough for collision resolution. We also have to make assumptions about 
what happens to the kinetic energy of the colliding objects. Hence, the physics involved in collisions 
consist of those two conservation principles taken together. We will apply them either explicitly or tacitly in 
what follows. 

Broadly speaking, we will simulate two types of collisions: particle-particle collisions and particle-wall 
collisions. A wall here means an immovable object, whose motion is not itself being simulated. Specifically, 
we’ll use the word wall to refer to any fixed flat surface from which particles can bounce. Therefore, our 
walls can be horizontal or vertical or oblique; they can also be bounding barriers or barriers placed 
anywhere else in the simulation space. 
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Bouncing off horizontal or vertical walls 
In the first application of collision physics, we will look at how to make a ball bounce off a straight wall that 
is either horizontal or vertical in a 2D simulation space such as a floor, ceiling, or room wall. For illustration, 
we use a vertical wall, but similar principles will apply to horizontal walls as well. 

We’ll look at elastic and inelastic bouncing in turn (bouncing in which the kinetic energy of the ball is or is 
not conserved). 

Elastic bouncing 
If the ball bounces elastically off a wall, its kinetic energy just after bouncing must equal its kinetic energy 
just before bouncing. Because k.e. = ½ mv2, this implies that its velocity magnitude is unchanged by the 
collision. 

Consider first a special case in which the ball hits the wall perpendicularly with velocity v (see Figure 11-1). 
In that case, the ball will bounce back at right angles as well. Therefore, because its velocity magnitude is 
unchanged, its velocity just after bouncing will be –v. 

v 

–v

 

Figure 11-1. A ball bouncing off a wall at right angles 

This is very easy to implement in code: you just reverse the velocity direction after the collision detection. 
However, there is something else to consider. When collision is detected, the ball may have passed the 
edge of the wall, penetrating it slightly. Therefore, before you reverse the ball’s velocity, you need to 
reposition the ball just at the edge of the wall (see Figure 11-2). This is necessary not just to avoid the 
visual effect of the ball penetrating into the wall but also avoids the potential problem of the ball “getting 
stuck” into the wall. The latter situation might arise if the reversed velocity of the ball is not sufficient for it 
to get out of the wall (especially if the velocity is also reduced to account for energy loss"see the next 
section). In that case, the velocity of the ball would be reversed again on the next timestep, sending it back 
into the wall. 
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Figure11-2. Repositioning the ball after collision detection 

Here is a piece of code to illustrate these steps for the scenario shown in Figure 11-2, for a Ball instance 
named _ball and a wall Sprite object named _wall: 
 
if (_ball.x > _wall.x - _ball.radius){ // collision detection 
        _ball.x = _wall.x - _ball.radius;  // reposition ball at wall edge 
        _ball.vx *= -1; // reverse ball’s velocity 
} 

This simple three-line piece of code encapsulates the whole process of how to handle the bouncing of a 
ball colliding perpendicularly with a horizontal or vertical wall: 

1. Collision detection: simple in this case. 

2. Reposition the particle at the point of collision: in this case, just shift it horizontally or vertically 
so that it just touches the wall. 

3. Calculate the particle’s new velocity just after the collision: here, for elastic collisions normal 
(perpendicular) to the wall, just reverse the velocity. 

Note that in steps 1 and 2 in the preceding code we have assumed that the ball’s registration point is at its 
center. If, for instance, the registration point is in the upper-left corner of the ball’s bounding box, then the 
ball’s diameter should be subtracted instead in the corresponding lines of code. Also, this code only covers 
the situation where the ball is moving from left to right, but it is not difficult to see how it can be modified if 
the ball were moving from right to left instead. 

This is all nice and simple, but what if the ball hits the wall at an oblique angle, instead of at right angles 
(see Figure 11-3). In that case, in implementing step 3, we need to consider the components of velocity 
perpendicular and parallel to the wall separately. In the case of a vertical wall shown in Figure 11-3, the 
perpendicular component is _ball.vx, and the parallel component is _ball.vy. What we need to do is to 
reverse the perpendicular component as before and leave the parallel component unchanged. This is just 
what the previous piece of code does, so it should work fine for an oblique impact as well. This technique 
of decomposing the velocity vector into a normal (perpendicular) and a parallel (tangential) component 
with respect to the wall seems entirely natural in this context. But its application is more general: you’ll see 
in the next section that a variant of it applies to the collision between two particles. 

If you need to be extra accurate, there is something else you need to worry about, this time in relation to 
step 2. Take a look again at Figure 11-3. In the previous code, we are repositioning the ball by moving it 
along the x-direction so that it just touches the wall. But when the collision is oblique, its real position at the 
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point of collision is along the line of collision. So the ball also needs to be moved a little along the y-
direction. We’ll devise a general method to do this in the next section. For this simple example, let’s just 
adjust the x-position only. This should work fine and produce a smooth bouncing effect in most common 
situations except perhaps if you have a slow machine, in which case you might find that the ball 
occasionally sticks to the wall. 

 

Figure 11-3. Ball bouncing off a wall at an oblique angle 

The files WWallBouncing.as and WallBouncer.as demonstrate this simple example. Here is the code in 
WallBouncing.as: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Wall; 
 
        public class WallBouncing extends Sprite{ 
                public function WallBouncing():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var ball:Ball = new Ball(15,0x000000,1); 
                        ball.pos2D = new Vector2D(100,100); 
                        ball.velo2D = new Vector2D(500,100); 
                        addChild(ball); 
 
                        var wall:Sprite = new Sprite(); 
                        with (wall.graphics){ 
                                lineStyle(1); 
                                moveTo(0,50); 
                                lineTo(0,350); 
                        } 
                        wall.x = 400; 
                        addChild(wall); 
 
                        var bouncer:WallBouncer=new WallBouncer(ball,wall); 
                        bouncer.startTime(); 
                } 
        } 
} 
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As you can see, this code simply creates a ball as a Ball object and creates a wall as a Sprite on which 
a straight line is drawn. The ball and wall are then made to interact through an instance of WallBouncer, 
which looks like this: 
 
package { 
        import com.physicscodes.motion.Mover; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.objects.Wall; 
        import com.physicscodes.math.Vector2D; 
        import flash.display.Sprite; 
 
        public class WallBouncer extends Mover{ 
                private var _ball:Ball; 
                private var _wall:Sprite; 
 
                public function WallBouncer(pball:Ball,pwall:Sprite):void{ 
                        _ball = pball; 
                        _wall = pwall; 
                        super(pball); 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        checkBounce(); 
                } 
 
                private function checkBounce():void{ 
                        if (_ball.x > _wall.x - _ball.radius){ 
                                _ball.x = _wall.x - _ball.radius; 
                                _ball.vx *= -1; 
                        } 
                } 
        } 
} 

The code is very straightforward: WallBouncer extends Mover rather than Forcer because here we are 
not imposing any forces. Therefore, the velocity of the ball is constant, except when it collides with the 
wall. The key functionality is provided by the checkBounce() method, which contains a piece of 
conditional code identical to the one given previously for a ball colliding perpendicularly with the wall. Note 
that this piece of code would have to be modified slightly if the wall is on the left side or if it is horizontal. 
And if the wall is neither horizontal nor vertical, but at some angle, you need a lot more code than just 
those three lines in the checkBounce() method, as you’ll soon find out! 

Implementing energy loss due to bouncing 
In the previous example, we assumed that there is no loss of kinetic energy, in other words that the 
collision is elastic. Doing this means that the ball bounces back with the same velocity magnitude. It is very 
easy to include the effect of loss of kinetic energy due to bouncing. All you have to do is multiply the 
velocity of the ball normal to the wall by a factor of less that 1 when reversing it.  
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Hence, in the above example, the following line: 
 
_ball.vx *= -1; 

would be replaced by something like this, where _vfac is a number between 0 and 1: 
 
_ball.vx *= -_vfac; // energy loss on bouncing 

A value of 1 corresponds to an elastic collision while a value of 0 corresponds to a completely inelastic 
collision (discussed in more detail a little later), in which the ball just sticks to the wall. You can experiment 
with different values of _vfac to see what you get. 

The reason for multiplying the velocity by this constant factor will become clear further on, when we 
discuss one-dimensional collisions. 

Similarly, you can model the effect of wall friction in a simple way by multiplying the tangential velocity of 
the ball (the velocity component parallel to the wall) by a factor between 0 and 1: 
 
_ball.vy *= _vfac2; // wall friction 

Note the absence of a minus sign in this case, as friction reduces but does not reverse the tangential 
velocity. 

Bouncing off inclined walls 
Things get significantly more complicated if the wall on which the ball bounces is inclined at some angle to 
the horizontal or vertical. The same steps apply as in the case of a horizontal or vertical wall, but they are 
now a bit more complex to implement. Different approaches could be taken here. One common approach, 
described in Keith Peters’s book, Foundation ActionScript 3.0 Animation, is to perform a coordinate 
rotation to make the wall horizontal, do the bouncing, and then rotate the coordinate system back. This is a 
perfectly good way to do it, and we refer you to that book for more details of the procedure. For our 
present purposes, because we are using vectors, we have devised an alternative method that exploits the 
vector formulation and avoids doing the two coordinate rotations. We explain the steps in the new method 
in detail before giving an example of how to implement it. 

Collision detection 
Collision detection is much less straightforward in this case because it is not simply a case of checking the 
x or y position of the ball in relation to that of the wall. But thinking in terms of vectors helps a lot. Take a 
look at Figure 11-4, which shows a particle approaching collision with a wall. There are basically two 
conditions that must be met for a collision to occur: 

! The perpendicular distance of the particle from the wall must be smaller than its radius. 

! The particle must be located between the end points of the wall. 
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Figure 11-4. A ball approaching a wall 

There are a number of ways of implementing either condition. We describe one possible approach here. 
See Figure 11-5, which shows a diagram of the position and displacement vectors corresponding to the 
setup in Figure 11-4. In this diagram, p1 and p2 are the position vectors of the end points of the wall with 
respect to the origin O; w is a vector from the end point marked A (with position vector p1) to the other end 
point. Similarly, p is the position vector of the ball with respect to the origin, b1 and b2 are vectors from the 
ball to the end points of the wall, and d is a perpendicular vector from the ball to the wall (so that d is equal 
to the distance PQ of the ball from the wall). (Note that we are taking the position of a particle to be at its 
center.) In the code implementation, we also assume that the registration point of any particle is located at 
its center. This is true of any BBall instance created from the Ball class. 
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Figure 11-5. Vector diagram for analyzing collision of a ball with an inclined wall 

In terms of these vectors, the first condition is simply the following, where r is the radius of the ball: 

d < r  

The second condition can be phrased in terms of the projections QA and QB of the vectors b1 and b2 in 
the direction of the wall vector w. If the length of both of those projections is smaller than the length of w, it 
means that the ball is between the end points of the wall. Otherwise, if either projection exceeds the length 
of w, the ball must be outside of that range and won’t hit the wall. 
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It remains now to work out the length of the projections and the distance d from the known vectors p1, p2, 
and p. By using the rules of vector addition: 

w = p2 − p1  

In pseudocode, this is the following: 
 
wallVec = _wall.p2.subtract(_wall.p1); 

By a similar reasoning, the vectors b1 and b2 are given by this: 

b1 = p1 − p  

b2 = p2 − p  

In pseudocode, this can be written as follows: 
 
ballToWall1 = _wall.p1.subtract(_ball.pos2D); 
ballToWall2 = _wall.p2.subtract(_ball.pos2D); 

Then the projection of the vectors ballToWall1 and ballToWall2 onto w are given by this: 
 
proj1 = ballToWall1.projection(wallVec); 
proj2 = ballToWall2.projection(wallVec); 

The vector d, which we’ll call dist in pseudocode, can then be obtained by subtracting from b1 the 
projection vector of b1 onto w. In pseudocode it can be written like this: 
 
dist = ballToWall1.subtract(ballToWall1.project(wallVec)); 

You can probably express these quantities in a number of different but equivalent ways. Feel free to do so. 

Repositioning the particle 
The formula we gave in the last section for repositioning the particle at collision detection is specific to a 
vertical wall on the right side in relation to the location of the ball. Its form will look slightly different for the 
walls on the left, top, or bottom. And it’s no good if the wall is inclined. We need something better. That’s 
where vectors come to the rescue again. With vector methods, it is possible to come up with a formula that 
works for any particle velocity and any wall orientation. 

Figure 11-6 shows a ball hitting an inclined wall, the collision being detected after the ball has gone a small 
distance into the wall. As the diagram indicates, the ball must be moved a distance %s = h back along its 
line of approach (opposite to its velocity vector). Here we are assuming that the direction of the velocity 
vector is constant during that small interval. If a force such as gravity is present, this is not strictly true, but 
because the time interval is so small, the velocity direction can be taken as constant to a very good 
approximation. 

Simple trigonometry then shows that the magnitude of %s is given by this, where d is a perpendicular 
vector from the particle’s center at the point of collision detection to the wall (so that its magnitude d is the 
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distance of the particle from the wall), n is a unit vector perpendicular to the wall and pointing into the side 
where the particle normally resides, and # is the angle between the line of approach of the particle (and 
therefore its velocity just before collision) and the wall: 

∆s = r + d • n
sin θ( )  

Note that if the ball’s center at the point of collision detection lies in front of the wall, then d is opposite to 
n, and therefore d " n = –d; if it lies behind the wall, then d points along n, and so d " n = d. Using the dot 
product automatically handles both cases. 

In pseudocode, the displacement vector to reposition the particle is then given by this: 
 
displ = _particle.velo2D.para(deltaS); 

Therefore, the particle’s position needs to be updated as follows: 
 
_particle.pos2D = _particle.pos2D.subtract(displ); 

This all looks nice and simple in comparison to the use of special non-vector code for each wall. 

r + d.n

r

h

n

d

θ

θ

 

Figure 11-6. Repositioning a particle after collision detection with an inclined wall 

Calculating the new velocity 
Just as for a horizontal or vertical wall, the new velocity after bouncing is calculated by first decomposing 
the velocity before bouncing into components parallel and normal to the wall, and then reversing the 
normal component. But because the wall is now oblique, those components are not just the vx and vy 
properties of the particle. Instead, we have to specify them as Vector2D objects in their own right. 

See Figure 11-7 for an illustration of how to do this. If d is a vector from the particle center normal to the 
wall at the point of collision, the normal velocity is given as a vector with magnitude equal to the projection 
of the particle’s velocity onto d and in the same direction as d. 
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Figure 11-7. Decomposing the velocity vector 

In pseudocode, if we calculate the perpendicular vector from the particle to the wall as ddist and denote 
the particle as _particle, the normal velocity is given by the following using the projection() and 
para() methods of the Vector2D class: 
 
normal_velo = dist.para(_particle.velo2D.projection(dist)); 

Recall that vec1.projection(vec2) gives the length of the projection of vector vec1 in the direction of 
vec2, and that vec.para(mag) gives a vector parallel to vector vec and of length mag. 

We can make things even simpler by creating the following project() method in the Vector2D class: 
 
public function project(vec:Vector2D):Vector2D { 
        return vec.para(this.projection(vec)); 
} 

So, vec1.project(vec2) gives a vector in the direction of vector vec2, and with magnitude equal to the 
projection of vec1 in the direction of vec2. With this newly defined method, we can write the normal 
velocity simply as follows: 
 
normalVelo = _particle.velo2D.project(dist); 
 
 

The tangential velocity can then be obtained simply by subtracting the normal velocity from the particle 
velocity (see Figure 11-7): 
 
tangentVelo = _particle.velo2D.subtract(normalVelo); 

These are the precollision velocities. Assuming there is no energy loss, the collision will reverse the normal 
velocity while leaving the tangential velocity unchanged. Therefore, the new velocity of the particle as a 
result of the collision is given by this: 
 
_particle.velo2D = tangent_velo.addScaled(normalVelo,-1); 

If there is energy loss due to bouncing, simply replace the –1 in the previous code by the fraction _fac 
discussed in the last section. 
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Velocity correction just before collision 
If the simulation involved a force, such as gravity, there is something else to worry about. Whenever there 
is a force involved, it means that the particle is accelerating (its velocity is changing all the time). In that 
case, when the particle is repositioned at the edge of the wall, its velocity must also be adjusted to what it 
was at that point. Although this may seem like a small correction, failure to do so could in some cases 
have serious consequences. This applies equally to horizontal or vertical walls if the velocity is changing 
with time. 

As an example, consider a simple example: a ball dropped from a certain height onto a horizontal floor. 
Suppose that collision is detected when the ball has gone slightly past the floor level. If you simply follow 
the procedure given so far, you would move the ball to the level of the floor and then reverse its velocity (if 
you assume no energy loss due to bouncing). The trouble is that because the ball is accelerating under 
gravity, its velocity at the point of collision detection is higher than what it should be at the actual point of 
collision. By simply reversing this velocity, you are sending it off with higher kinetic energy than it’s 
supposed to have as a result of having lost potential energy by falling from its initial height. The 
consequence is that the ball will end up reaching higher than the point it fell from! After a few bounces, 
things could go completely haywire. Of course, if you implement energy loss on bouncing, you may not 
even notice the problem"if accuracy is not important, that may be a simple trick to solve the problem. But 
if you want to be as accurate as possible, or if the nature of the simulation does not permit you to include 
energy loss, then here is the way to do it. 

The aim is to compute the velocity of the particle at the point of collision given that it is accelerating. We 
know the velocity, acceleration, and displacement at the point of collision detection. To proceed, let’s start 
with the calculus definition of acceleration: 

a = dv
dt  

For a reason that will become apparent shortly, we can write it as this (you can think of the two ds factors 
as “cancelling out”): 

a = dv
ds
ds
dt  

Now, because v = ds/dt, we can write it as follows: 

a = v dv
ds  
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This gives us a differential equation connecting the quantities that we were just talking about. Because we 
are doing a discrete simulation, let’s write this: 

dv
ds

≈ ∆v
∆s  

Substituting into the above equation gives this: 

a ≈ v ∆v
∆s  

And so: 

∆v ≈ a ∆s
v  

This formula gives the change in velocity %v that results from a displacement %s under an acceleration a. 
Let v be the velocity at collision detection and v’ be the velocity at collision, so that: 

∆v = v − ′v  

Simple algebra gives this: 

′v
v

≈ 1− a ∆s
v2  

This gives the ratio of the magnitude of the velocity at the point of collision to that at the point of collision 
detection in terms of the acceleration (which is constant in the case of gravity), the velocity at the point of 
collision detection and the displacement of the particle from the point of collision to the position where 
collision is detected. The latter quantity was worked out in the section on “Repositioning the particle.” 
Therefore, the adjustment factor for the velocity can be calculated from these known quantities as given by 
the preceding formula. The preceding formula was derived for a 1D case because we didn’t use vectors, 
but it applies equally to 2D, when the acceleration a and the displacement %s are vectors that may not be 
in the same direction (for example, for a ball moving under gravity). In that case, we take the acceleration 
resolved in the direction of the displacement, so that in effect we need to replace the product a%s by the 
dot product a.%s; and v is the magnitude of the velocity vector. 

Let’s denote the code variable corresponding to the velocity correction factor v’/v as vcor. Then, assuming 
that the direction of the velocity does not change much between the point of collision and the point of 
collision detection, we can write in pseudocode: 
 
veloAtCollision = veloAtCollisionDetection.multiply(vcor); 
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An example of a ball bouncing off an inclined wall 
All that vector algebra is probably beginning to sound a bit heavy. So it’s time to pull together all that we 
have learned in this section to build a full example. Because we are going to do a lot of bouncing around 
walls, it would make sense to create a reusable Wall class. Let’s do that first. 

Creating a Wall class 
The Wall class is a simple class that draws a line between two specified end points to represent a wall. 
The end points are taken to be Vector2D objects. Here is the full code of the Wall class: 
 
package com.physicscodes.objects { 
        import flash.display.Sprite; 
        import com.physicscodes.math.Vector2D; 
 
        public class Wall extends Sprite{ 
                private var _p1:Vector2D; 
                private var _p2:Vector2D; 
                private var _sprite:Sprite; 
 
                public function Wall(p1:Vector2D,p2:Vector2D){ 
                        _p1 = p1; 
                        _p2 = p2; 
                        _sprite = new Sprite(); 
                        drawWall(); 
                } 
 
                public function get p1():Vector2D{ 
                        return _p1; 
                } 
                public function set p1(pvec:Vector2D):void{ 
                        _p1 = pvec; 
                        clear(); 
                        drawWall(); 
                } 
                public function get p2():Vector2D{ 
                        return _p2; 
                } 
                public function set p2(pvec:Vector2D):void{ 
                        _p2 = pvec; 
                        clear(); 
                        drawWall(); 
                } 
                public function get dir():Vector2D{ 
                        return _p2.subtract(_p1); 
                } 
                public function get normal():Vector2D{ 
                        return this.dir.perp(1); 
                } 
                private function drawWall():void{ 
                        with (_sprite.graphics){ 
                                lineStyle(1); 
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                                moveTo(_p1.x,_p1.y); 
                                lineTo(_p2.x,_p2.y); 
                        } 
                        addChild(_sprite); 
                } 
                public function clear():void{ 
                        _sprite.graphics.clear(); 
                        removeChild(_sprite); 
                } 
        } 
} 

The end points, denoted by p1 and p2, can be changed via setters that clear and redraw the line between 
the updated end points. Properties wall.dir and wall.normal are defined via getters that return the 
vector from p1 to p2 (the vector along the wall) and the unit vector normal to the wall, respectively. The 
usefulness of these properties will soon become apparent. 

Creating a Wall instance 
In the file BouncingOffInclinedWall.as, we create a Wall instance that is at an oblique angle to the 
horizontal by the following piece of code: 
 
var wall:Wall; 
wall=new Wall(new Vector2D(50,200), new Vector2D(700,500)); 
addChild(wall); 

So the end point vectors p1 and p2 are [50, 200] and [700, 500], respectively. The rest of the code in 
BouncingOffInclinedWall.as creates a Ball instance, sets its position above the wall, and then 
passes the ball and wall objects to an instance of an InclinedWallBouncer class that makes the ball 
move and handles the bouncing. 

 

Getting a ball to bounce off an inclined wall 
The InclinedWallBouncer class extends Forcer and overrides moveObject() and calcForce(). In the 
latter, it implements the Forces.constantGravity force, so that the ball will be moving under gravity. 
The overridden moveObject() method adds a new private method, checkBounce(), that looks as follows: 
 
private function checkBounce():void{ 
// vector along wall 
        var wdir:Vector2D = _wall.dir; 
// vectors from ball to end points of wall 
        var ballp1:Vector2D = _wall.p1.subtract(_ball.pos2D); 
        var ballp2:Vector2D = _wall.p2.subtract(_ball.pos2D); 
// projection of above vectors onto wall vector 
        var proj1:Number = ballp1.projection(wdir); 
        var proj2:Number = ballp2.projection(wdir); 
// perpendicular distance vector from the object to the wall 
        var dist:Vector2D = ballp1.addScaled(wdir.unit(), proj1*(-1)); 
// collision detection 
        var test:Boolean = ((Math.abs(proj1) < wdir.length) && (Math.abs(proj2) <! 
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 wdir.length)); 
        if ((dist.length < _ball.radius) &&  test){ 
// angle between velocity and wall 
                var angle:Number = Vector2D.angleBetween(_ball.velo2D, wdir); 
// reposition object 
                var normal:Vector2D = _wall.normal; 
                if (normal.dotProduct(_ball.velo2D) > 0){ 
                        normal.scaleBy(-1); 
                } 
                var deltaS:Number = (_ball.radius+dist.dotProduct(normal))/Math.sin(angle); 
                var displ:Vector2D = _ball.velo2D.para(deltaS); 
                _ball.pos2D = _ball.pos2D.subtract(displ); 
// velocity correction factor 
                var vcor:Number = 1-acc.dotProduct(displ)/_ball.velo2D.lengthSquared; 
// corrected velocity vector just before impact 
                var Velo:Vector2D = _ball.velo2D.multiply(vcor); 
// velocity vector component perpendicular to wall just before impact 
                var normalVelo:Vector2D = dist.para(Velo.projection(dist)); 
// velocity vector component parallel to wall; unchanged by impact 
                var tangentVelo:Vector2D = Velo.subtract(normalVelo); 
// velocity vector component perpendicular to wall just after impact 
                _ball.velo2D = tangentVelo.addScaled(normalVelo,-_vfac); 
        } 
// collision at the wall boundaries 
        else if (Math.abs(ballp1.length) < _ball.radius){ 
                bounceOffEnd point(_wall.p1); 
        } 
        else if (Math.abs(ballp2.length) < _ball.radius){ 
                bounceOffEnd point(_wall.p2); 
        } 
} 

This code closely mirrors the description given in the previous sections. Most of it should therefore be 
straightforward (and we’ve left the comments in so you can follow the logic more easily). Let’s therefore 
focus on just a couple of features that were not covered in the preceding discussion. 

First, in the code that repositions the ball after collision detection, note that we check whether the wall 
normal vector has a positive dot product with the ball’s velocity vector; if so, we reverse the wall normal 
vector. To understand why this is done, refer to the section on “Repositioning the particle,” in which we 
said that the normal must point to the side where the particle resides. The latter condition is equivalent to 
saying that the normal vector should point so that it has a normal component in the opposite direction to 
the ball’s velocity and so should have a negative dot product with it (see Figure 11-8). The if code 
enforces that condition. But why do we need to check this every timestep; can’t we fix the normal once and 
for all? The reason is that by doing so we allow for the possibility that the ball could bounce on the bottom 
surface as well as on the top surface of the wall. 
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Figure 11-8. The unit normal vector to the wall should be oriented opposite to the velocity vector. 

The second thing to point out is the presence of the two eelse if blocks of code at the end of the 
checkBounce() function. They are there to handle the case where the ball is within a radius of either of 
the end points of the wall. In that case, they call a private method: bounceOffEndpoint(). The idea is 
that bouncing off the edge of the wall should give rise to a different type of motion and should therefore be 
handled differently. The approach we take is to handle such a collision in a similar way to that between two 
particles, with the additional feature that here one of the “particles,” the wall end point, is fixed and has 
zero radius. The code within the bounceOffEndpoint() method probably won’t make too much sense 
now, but should do so once you’ve covered the material on collisions between particles later in the 
chapter. 

To make the simulation more interactive and fun, there is also code that allows you to click and drag 
anywhere on the stage to change the position and size of the ball. On releasing the mouse, the simulation 
resumes with the new ball. 

Spend some time experimenting with the simulation. Click and drag to create balls of different sizes and 
see how they fall and bounce onto the inclined wall in a natural way. Avoid overlapping the ball with the 
wall when you are dragging as this will result in erratic behavior. Release the ball onto the end points of 
the wall and notice the difference in the way it bounces. Change gravity _g and the energy loss factor 
_vfac. See Figure 11-9. 

 

Figure 11-9. A ball bouncing off an inclined wall 

Next release the ball just above the line and see how it slides down the wall smoothly. This is strongly 
reminiscent of the simulation of a ball sliding down an inclined plane that we did back in Chapter 7 using 
normal contact forces. So, interestingly, our procedure for collision resolution has an unexpected side 
benefit: we also have contact resolution for free. In fact, this is a common approach to handle contact 
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resolution: using impulses produced by “micro-collisions” rather than by explicitly including a normal 
contact force. 

Dealing with a potential “tunneling” problem 
The method of collision detection we described in the last section and implemented in this simulation 
should work well under most normal circumstances. But in some cases, especially if the simulation is run 
on a slow machine and the ball is small and moving fast, it may be possible for the ball to cross the wall 
completely in a single timestep. In that case, collision detection will fail. This is known as tunneling. You 
can probably see this effect if you make the ball very small, (1 px) and release it a long way above the wall 
so that it achieves a high velocity by the time it hits the wall. The ball might then pass straight through the 
wall. 

The collision detection algorithm outlined in the last section fails because the first condition (that the 
particle is closer to the wall than its radius) is never satisfied. We need to modify the algorithm to include 
the new possible scenario. A simple solution is to test whether the ball’s center has moved from one side 
of the wall to the other. If so, that means it has “tunneled” and that in itself provides the collision detection. 

We have implemented this collision detection mechanism in a modified version of the simulation with 
source files BouncingOffInclinedWall2.as and InclinedWallBouncer2.as. If you compare this 
modified code with the original, you will find that a key change is the inclusion of the following code in the 
checkBounce() and onUp() methods in the InclinedBouncer2 class, as well as in the setup file 
BouncingOffInclinedWall2.as: 
 
if (dist.dotProduct(_wall.normal) < 0){ 
        _wall.side = -1; 
}else{ 
        _wall.side = 1; 
} 

This piece of code provides a way of keeping track of which side of each wall the ball is at any moment. To 
do this, it checks the sign of the dot product between the perpendicular vector dist from the particle to the 
wall and the wall normal vector. If the sign is negative, it sets the side property of the wall to –1; 
otherwise, it sets it to 1. The side property of the Wall class has been created specifically for this 
purpose. 

Another important piece of code is the following, which checks to see whether the sign of the dot product 
has reversed (which means that the ball has tunneled); if so, it sets the testTunneling Boolean variable 
to true: 
 
var testTunneling:Boolean; 
if (_wall.side*dist.dotProduct(_wall.normal) < 0){ 
        testTunneling = true; 
}else{ 
        testTunneling = false; 
} 

This sets up the basic collision detection in the case of tunneling. The rest of the changes in the code 
should be easy to follow. 
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If you test BouncingOffInclinedWall2.as you should find that the tunneling problem is fixed. 

Example of ball bouncing off multiple inclined walls 
BouncingOffMultipleInclinedWalls.as and MultipleInclinedWallsBouncer.as generalize the 
last simulation to include several walls (see Figure 11-10). Take a look at the source files; the codes 
generalize the last ones in a straightforward way. In BouncingOffMutipleInclinedWalls.as, you just 
add more walls in the same way - four inclined walls, plus four bounding walls to form a box that encloses 
the other walls and the ball. The walls are then put into an array that is passed, together with the ball, to a 
MultipleInclinedWallsBouncer instance. 

The code in MultipleInclinedWallsBouncer.as is pretty similar to that in InclinedWallBouncer.as, 
with the checkBounce() method now looping over each wall. It also includes a new hasHitAWall 
Boolean variable that is used to stop the looping once a collision with one of the walls is detected. 

Experiment with the simulation, remembering that you can click and drag to reposition and resize the ball. 
As before, avoid positioning the ball so that it overlaps with any of the walls. Doing so will introduce an 
unphysical initial condition (a ball cannot physically overlap with a wall) that will cause some of the 
equations to give nonsensical results, resulting in erratic and unpredictable behavior. 

See how the simulation handles different scenarios properly. For example, try balls of different sizes and 
release them at different locations: above the walls, so that they bounce off; just on the walls, so that they 
slide down; or just above a gap between the walls too small for them, so that they get trapped. You will see 
that collisions under the walls are also handled properly. Note that the four confining walls are treated in 
exactly the same way as the others. You can also click and drag above the top wall to make the ball 
bounce off it! 

 

Figure 11-10. Ball bouncing off multiple walls 

As in the previous simulation, you may encounter the tunneling problem on a slower machine. To fix this, 
we have modified the simulation in exactly the same way as described in the previous subsection. The 
modified source code is in the files BouncingOffMultipleInclinedWalls2.as and 
MultipleInclinedWallsBouncer2.as. You might find that tunneling still sometimes happens at very 
high velocities (for example, try initializing the ball’s velocity with a magnitude in excess of 1000 px/s). The 
problem there is that we are at the limit of the time resolution of the simulation. In principle, you could 
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overcome this by reducing the simulation timestep, but you will at some point be limited by how fast your 
machine can run the simulation. 

Collisions between particles in 1D 
In this section, we will show you how to handle collisions between particles when the approach direction of 
the particles lies along the line joining them. This situation can be described as a 1D collision because the 
motion of the particles takes place in a straight line, both before and after the collision. In general, two 
particles may collide at any angle, changing their direction as they do so. Therefore, the case discussed in 
this section may seem like a very special case. So why study it? The reason is that the methods and 
formulas that hold in this special case can be readily generalized to the more general case where the 
particles may collide at any angle. In fact, this will be done in the next section. 

The steps for handling 1D particle collisions are the following (mirroring the steps for resolving the 
bouncing of a particle moving perpendicular to a wall): 

1. Collision detection 

2. Repositioning the particles at the moment of collision 

3. Calculating the new velocities just after the collision 

In the case of spherical particles (or circular in 2D), the first step, collision detection is very simple. As 
discussed in Chapter 2, you just see whether the distance d between the centers of the two particles is 
less than the sum of their radii, where d is calculated from the position coordinates (x1, y1) and (x2, y2) 
using Pythagoras’s theorem: 

d < r1 + r2  

In 2-D: 

 d = x2 − x1( )2 + y2 − y1( )2
 

Let’s now look at how to reposition the particles when a collision is detected. 

Repositioning the particles 
Just as a particle may sink some distance into a wall by the time a collision is detected, two particles may 
similarly overlap. The complication in this case is that in general both particles may be moving, so both 
need to be moved back to their position at the actual point of contact. But how do we know how much to 
move each particle? 

Let’s begin by considering the case when the two particles are moving toward each other, as shown in 
Figure 11-11. 
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du1 u2

S1 S2
L  

Figure 11-11. Separating overlapping particles moving toward each other 

The amount of overlap L is given by the following, where r1 and r2 are the radii of the two particles, and d is 
the distance between their centers, as given by the Pythagoras formula discussed in the last section: 

L = r1 + r2 − d  

Let s1 and s2 be the magnitudes of the displacements by which the particles must be moved, in opposite 
directions, so that they are just touching. These displacements must add up to give the overlap distance L: 

s1 + s2 = L  

This gives one equation relating s1 and s2 in terms of a known variable L. In order to be able to work out s1 
and s2, we need a second equation connecting them. We can come up with such an equation by recalling 
that, in a small time interval t: 

s1 = u1 t  

And 

s2 = u2 t  

where u1 and u2 are the velocities of the respective particles just before the collision. That’s just using the 
fact that displacement = velocity x time (see Chapter 4). 

Dividing the first equation by the second gives this: 

s1
s2

= u1

u2
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This is our second equation. It is now a matter of simple algebra to solve for s1 and s2 to give this: 

s1 = u1

u1 + u2

L  

s2 = u2

u1 + u2

L  

What this result tells us is that the particles must be displaced in proportion to their velocities just before 
the impact. 

This is great, but what if we have the other possible situation, in which the two particles are moving in the 
same direction (rather than toward each other) with the one behind moving faster (so that a collision 
actually happens), as shown in Figure 11-12. 

du1 u2

S1 S2L  

Figure 11-12. Overlapping particles moving in the same direction 

In that case, the first equation connecting the displacement magnitudes s1 and s2 becomes the following, 
while the second equation is unchanged: 

s1 − s2 = L  

Solving them simultaneously then gives this: 

s1 = u1

u1 − u2

L  

and this: 

s2 = u2

u1 − u2

L  

This is a bit messy because we have different equations depending on whether the particles are moving 
toward each other or not. Luckily, it is possible to incorporate both cases in a single solution by thinking in 



Collisions 

343 

terms of vector displacements. The reasoning is slightly less intuitive, but here is the final result, where the 
symbol |v| signifies the magnitude of vector v: 

s1 = − u1

u1 − u2

L  

s2 = − u2

u1 − u2

L  

Note that we always divide by the magnitude of the relative velocity (u1 – u2). When the particles are 
approaching each other, this is (u1 + u2); otherwise, it is (u1 – u2). Hence, these equations indeed reduce to 
the corresponding equations for the displacement magnitudes in the two cases discussed previously. The 
other good thing is that here the direction of the displacements is also explicit in the formulas: the minus 
sign tells us that s1 is opposite to u1, and s2 is opposite to u2. 

You now know how to reposition the particles once the collision is detected. The final thing to do is to 
calculate the new velocities of the colliding particles just after the collision. We’ll do this separately for 
elastic and inelastic collisions. 

Elastic collisions 
Recall from Chapter 4 that an elastic collision is one in which kinetic energy is conserved. This means that 
we can apply conservation of kinetic energy in addition to conservation of momentum (which is always 
conserved in any collision, elastic or not). For example, the collisions between billiard balls are usually 
modeled as elastic collisions. 

Let the two colliding particles (which we can call particle1 and particle2) have masses m1 and m2, initial 
velocities u1 and u2, and final velocities v1 and v2, respectively. Note that we need only one component of 
velocity because the motion is 1D. Then we can write momentum conservation and energy conservation 
as follows: 

m1v1 +m2v2 = m1u1 +m2u2  

m1v1
2 +m2v2

2 = m1u1
2 +m2u2

2
 

Here the masses m1 and m2 of the particles are known, and so are the initial velocities u1 and u2. The aim 
is to calculate the final velocities v1 and v2 in terms of these known variables. This is a matter of solving 
these two equations simultaneously. The easiest method to do so involves deriving an important 
intermediate result involving the relative velocities of the particles before and after the collision. So let’s do 
that now. 
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Relative velocity of colliding particles 
The first step is to rearrange the previous two equations by combining the terms for each particle on each 
side of the equation (put all the terms with a 1 subscript on one side and the terms with a 2 subscript on 
the other side of the equation): 

m1 v1 − u1( ) = m2 u2 − v2( )  

m1 v1
2 − u1

2( ) = m2 u2
2 − v2

2( )  

 
Now recall the following identity from your school algebra: 

a2 − b2 = a − b( ) a + b( )  

This allows you to write the second equation as follows: 

m1 v1 − u1( ) v1 + u1( ) = m2 u2 − v2( ) u2 + v2( ) 

You can now see that each side of this equation contains the corresponding side of the first equation as a 
factor. So you can divide this equation by the first equation to get rid of those factors, leaving us with this: 

v1 + u1( ) = u2 + v2( )  

This can be rearranged by combining the initial velocities (the u variables) on one side and the final 
velocities (the v variables) on the other side of the equation to give this: 

v1 − v2 = u2 − u1  

Or, equivalently, this: 

v1 − v2 = − u1 − u2( )  

This is our result. Note that (u1 – u2) is the initial relative velocity of particle1 from the point of view of 
particle2. Similarly, (v1 – v2) is the final relative velocity of particle1 from the point of view of particle2. 
Therefore, the preceding result tells us that the relative velocity of separation of the two particles is the 
negative of their relative velocity of approach. This result does not depend on the masses of the particles 
because m1 and m2 were cancelled out. But note that it holds only for elastic collisions. We shall see in the 
next section how it is modified for inelastic collisions. 
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As an immediate application of this result, consider the case when one of the particles, say particle2, is 
immovable (such as a wall). This is the same as saying that u2 = v2 = 0. Putting these values into the last 
equation gives us this: 

v1 = −u1  

This is elastic bouncing off an immovable object, and is the condition that we applied in the first example of 
a ball bouncing elastically off a wall. 

 

Calculating velocities after an elastic collision 
Using the result derived in the last section, it is now easy to work out the velocities after an elastic collision. 
The logic is that energy conservation is incorporated into the equation for relative velocities: 

v1 − v2 = u2 − u1  

So we need to solve this equation simultaneously with the equation expressing momentum conservation: 

m1v1 +m2v2 = m1u1 +m2u2  

The goal is to find the final velocities, v1 and v2, in terms of the other variables (the initial velocities and the 
masses). This can be done by eliminating either v1 or v2 between the two equations and then rearranging 
the resulting equation to find the other one. For example, we first multiply the first equation by m2 to give 
this: 

m2v1 −m2v2 = m2u2 −m2u1  

Adding this to the second equation then gets rid of v2, giving this: 

m1 +m2( )v1 = m1 −m2( )u1 + 2m2u2  

Dividing by (m1+m2) then gives the final result for the velocity of particle1: 

v1 =
m1 −m2( )u1 + 2m2u2

m1 +m2( )  

You could go through a similar algebraic manipulation to calculate v2, but there is no need to: you can just 
swap the 1 and 2 indices on the last equation to give this: 

v2 =
m2 −m1( )u2 + 2m1u1

m1 +m2( )  
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This is the result you are after: you can now calculate the velocities of the two particles just after the 
impact, from the velocities just before the impact (and the masses of the particles). 

Finally, note that you don’t have to calculate v2 from the second equation. Once you know v1, you can just 
work out v2 by rearranging the equation for relative velocities to give the following, which saves on cpu 
time: 

v2 = v1 + u1 − u2  

A special case: particles of equal masses 
In the special case when the particles have the same mass, the formulas take a particularly simple form. 
To see this, simply replacing m1 = m2 = m into the above equations gives this: 

v1 = u2  

and this: 

v2 = u1  

In other words, the particles simply exchange velocities after the collision! This applies regardless of the 
initial velocities of the particles, as long as they have the same mass and the collision is elastic. This is a 
very useful result. If your simulation will only ever involve elastic collisions between particles of the same 
mass, there is no need to code in the complicated general formula given previously, saving on valuable 
cpu time. You might recall that we made use of this result in the simple collision example in Chapter 5. 

As a special case of this special case, if one of the particles is initially at rest (u2 = 0), we get v1 = 0 and v2 
= u1; the other particle then stops dead in its track after the collision, while the initially stationary particle 
moves off at the velocity that the other one had before the collision. 

Another special case: collision with a particle of much larger mass 
On the other hand, if the mass of one of the particles is much larger than the other (for example, m2 >> 
m1), the formulas for the final velocities reduce to this: 

v1 ≈ −u1 + 2u2  

and this: 

v2 = u2 + 2 m1

m2

'
()

*
+,
u1  
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In particular, if the particle with large mass (particle2) is initially stationary, u2 = 0, so 

v1 ≈ −u1  

and 

v2 = 2 m1

m2

'
()

*
+,
u1  

Hence, the lighter particle bounces off the heavier one, almost reversing its velocity. Noting that (m1/m2) is 
a small number much less that 1, we conclude that v2 << u1; hence, the heavier particle moves off at a 
much smaller velocity than the velocity at which the first particle hit it. This is all common sense. 

Inelastic collisions 
Although it is common to model collisions as elastic, most collisions in real life are rarely elastic"they 
usually involve a loss of kinetic energy and are therefore inelastic. 

To model inelastic collisions, a useful starting point is again the relative velocity of the colliding 
particles"through the introduction of a concept known as the coefficient of restitution. 

Coefficient of restitution 
The coefficient of restitution (denoted by the symbol CR) is defined as the ratio between the relative 
velocity after a collision to the relative velocity before the collision: 

CR = v1 − v2

u2 − u1
 

This equation can be rewritten as follows: 

v1 − v2 = CR u2 − u1( )  

For an elastic collision, the relative velocities before and after the collision are related by the equation 
v1 − v2 = u2 − u1 , so the preceding equation tells us that CR = 1 for an elastic collision. 

Conceptually, the coefficient of restitution is a measure of the departure from perfectly elastic collisions. 
Generally, the value of CR will be less than 1. Collisions for which CR > 1 are also possible; they 
correspond to collisions that generate explosive forces, so that the total kinetic energy of the particles after 
the collision is larger than their initial kinetic energy. Such collisions are called superelastic. 
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The special case when CR = 0 refers to so-called completely inelastic collisions. In that case, the relative 
velocity equation reduces to this: 

v1 − v2 = 0  

So that: 

v1 = v2  

In other words, the final velocities of the particles are the same: they stick together. In a completely 
inelastic collision, the loss of kinetic energy is maximum, but not complete (if it were complete, the particles 
would just stop; this would violate momentum conservation). 

As another special case, suppose that one of the particles is immovable (such as a wall). For example, if 
particle2 is immovable, u2 = v2 = 0, so that the relative velocity equation gives this: 

v1 = −CR u1  

This is exactly how we modeled wall collisions involving energy loss earlier in this chapter, with CR 

representing the “bounce” factor. 

Calculating velocities after an inelastic collision 
Starting from the relative velocity equation for inelastic collisions and using a similar method to that used to 
derive the corresponding elastic collision equations, it is easy to show that the final velocities due to an 
inelastic collision are given by this: 

v1 =
m1 −CRm2( )u1 + m2 +CRm2( )u2

m1 +m2( )  

and this: 

v2 =
m2 −CRm1( )u2 + m1 +CRm1( )u1

m1 +m2( )  

This is the most general formula for collisions, as it also includes the elastic formula as a special case (set 
CR = 1 in the above formulas and verify that they reduce to the corresponding formulas for elastic 
collisions). 
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Completely inelastic collisions 
If the collision is completely inelastic (with CR = 0), the last equations reduce to this: 

v1 = v2 = m1u1 +m2u2

m1 +m2( )  

So the two particles stick together and move at the same velocity after the collision. Examples in which 
you might want to model completely inelastic collisions include hitting a character with a snowball or firing 
a bullet that sticks into its target. 

This completes our discussion of particle collisions in 1D. You are no doubt keen to see all that math 
applied in a demo. You’ll get to see a code example very soon, but before we do that, let’s quickly discuss 
how this extends to 2D. Once we’ve covered that, we will then be able to build simulations that can handle 
both 1D and 2D collisions. 

Collisions between particles in 2D 
We are now ready to look at general 2D collisions, in which the direction of approach of the particles is not 
necessarily along the line joining their centers. The way to handle such collisions is to resort to a trick 
similar to that used for a ball colliding with a wall: at the point of collision (when the particles are just 
touching), resolve the velocity of each particle into a normal component along the line joining them, and a 
tangential component perpendicular to that line (see Figure 11-13). The revelation is that, just like in a 
collision with a wall, only the normal velocity components are affected by the collision; the tangential 
components remain the same after the collision (provided it is frictionless). What’s more, the normal 
velocity components are changed in exactly the same way as if the collision were in 1D (as if the tangential 
components were zero). That’s great; it means that we can treat any 2D collision as a 1D collision in terms 
of the normal velocity components. 

u1

u2

 

Figure 11-13. Resolving velocity normal and parallel to line joining particles 
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So the steps for handling 2D particle collisions are the following: 

4. Detecting the collision 

5. Decomposing the initial velocities in normal and tangential components 

6. Repositioning the particles at the moment of collision 

7. Calculating the new normal velocities just after the collision 

8. Adding the new normal velocity components back to the tangential components 

Compared with the procedure for handling 1D collisions, the extra steps are steps 2 and 5. Note also that, 
in step 3, the particles are repositioned using the same formula we derived for 1D collisions (see the 
section on “Repositioning the particles”), but using the normal velocities. 

As mentioned in the section on oblique walls, the usual method we found that people in the Flash 
community use to handle 2D collisions is to rotate the coordinate system, perform a 1D collision, and then 
rotate back the coordinate system. But armed with vectors, the method we suggest actually proves 
simpler: in place of coordinate rotations, we simply resolve vectors and later add them up again. Let’s see 
the method in action! 

An example: 2D collisions between two particles 
This example will pull together everything we have covered on collisions between particles. We will create 
a simulation that can handle a general 2D collision between two particles. Obviously, it will also be able to 
handle 1D collisions simply by choosing appropriate initial positions and velocities for the particles. 

Creating a two-particle collision simulator 
First we create a setup file, BallCollision.as, that will create the two particles as Ball instances and 
set their initial sizes, masses, positions and velocities. Here is the source code that does this: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class BallCollision extends Sprite{ 
                public function BallCollision():void{ 
                        init(); 
                } 
 
                private function init():void{ 
                        var ball1:Ball = new Ball(15,0xff0000,1); 
                        ball1.pos2D = new Vector2D(0,200); 
                        ball1.velo2D=new Vector2D(250,0); 
                        addChild(ball1); 
 
                        var ball2:Ball = new Ball(75,0x0000ff,125); 
                        ball2.pos2D = new Vector2D(300,200); 
                        ball2.velo2D = new Vector2D(50,0); 
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                        addChild(ball2); 
 
                        var collider:BallCollider=new BallCollider(ball1,ball2); 
                        collider.startTime(); 
                } 
        } 
} 

In this source code example, we are creating a small ball of radius 15 pixels and 1 mass unit and a large 
ball of radius 75 pixels and 125 mass units. Note that we’ve scaled masses on the cube of the radius, 
based on 3D geometry (recall that volume of a sphere = 4(r3/3), and assuming that the two balls have the 
same density (recall that mass = density x volume). On this basis, because the large ball has a radius 5 
times that of the smaller one, its mass should be 125 times larger. 

The balls are made to move and interact with an instance of the BallCollider class, which looks like 
this: 
 
package { 
        import com.physicscodes.motion.MultiMover; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class BallCollider extends MultiMover{ 
                private var _ball1:Ball; 
                private var _ball2:Ball; 
 
                public function BallCollider(pball1:Ball,pball2:Ball) :void{ 
                        _ball1 = pball1; 
                        _ball2 = pball2; 
                        super([_ball1,_ball2]); 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        checkCollision(); 
                } 
 
                private function checkCollision():void{ 
                        var dist:Vector2D = _ball1.pos2D.subtract(_ball2.pos2D); 
                        if (dist.length < (_ball1.radius +_ball2.radius) ) { 
                                // normal velocity vectors just before the impact 
                                var normalVelo1:Vector2D = _ball1.velo2D.project(dist); 
                                var normalVelo2:Vector2D = _ball2.velo2D.project(dist); 
                                // tangential velocity vectors 
                                var tangentVelo1:Vector2D =! 
 _ball1.velo2D.subtract(normalVelo1); 
                                var tangentVelo2:Vector2D =! 
 _ball2.velo2D.subtract(normalVelo2); 
 
                                // move particles so that they just touch 
                                var L:Number = _ball1.radius + _ball2.radius-dist.length; 
                                var vrel:Number =normalVelo1.subtract(normalVelo2).length; 
                                ball1.pos2D = _ball1.pos2D.addScaled(normalVelo1,-L/vrel); 
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                                ball2.pos2D = _ball2.pos2D.addScaled(normalVelo2,-L/vrel); 
                                // normal velocity components after the impact 
                                var m1:Number = _ball1.mass; 
                                var m2:Number = _ball2.mass; 
                                var u1:Number = normalVelo1.projection(dist); 
                                var u2:Number = normalVelo2.projection(dist); 
                                var v1:Number = ((m1-m2)*u1+2*m2*u2)/(m1+m2); 
                                var v2:Number = ((m2-m1)*u2+2*m1*u1)/(m1+m2); 
 
                                // normal velocity vectors after collision 
                                normalVelo1 = dist.para(v1); 
                                normalVelo2 = dist.para(v2); 
 
                                // final velocity vectors after collision 
                                _ball1.velo2D = normalVelo1.add(tangentVelo1); 
                                _ball2.velo2D = normalVelo2.add(tangentVelo2); 
                        } 
                } 
 
        } 
} 

The code follows the explanations given in the previous subsections closely, and the comments in the 
code should make it clear what is going on at each step. In fact, the code is substantially simpler than the 
corresponding code for bouncing off an oblique wall. Notice also the symmetry with respect to the two 
balls. The simplicity and relative brevity of the code provide what we think is an attractive alternative to the 
usual method of rotating the coordinate system to resolve oblique collisions. 

Finally, the formula for calculating the final velocities assumes elastic collisions, but it is a simple matter to 
replace it with the alternative (and more general) formula for inelastic collisions. We leave this as an 
exercise for you. 

Experimenting with the particle collision simulation 
If you run the simulation, you’ll see the small ball in a 1D collision with the larger one (see Figure 11-14). 
Let’s start by verifying some of the things we said before when discussing special cases in 1D elastic 
collisions. 

First, set the initial velocity of the large one to zero, simply by commenting out the line that sets its velocity 
in BallCollision.as. You will see that the small ball almost reverses its velocity after the collision, while 
the larger one moves off with a very small velocity, just as we said before. 

Next, make the second ball the same size and mass as the first by replacing the line that instantiates it 
with the following modified line: 
 
var ball2:Ball = new Ball(15,0x0000ff,1); 

Keep the second ball’s velocity at zero and run the code. You will see that, upon collision, the first ball 
stops right in its track, while the second ball moves off at the initial velocity of the first ball. Again this 
confirms the deductions we made previously on the basis of the governing collision equations. 
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Figure 11-14. A two-particle collision simulator 

This is a full 2D collision simulator, so why not get the balls to collide at an angle? For example, while 
keeping the masses and the sizes of the two particles the same, try the following: 
 

ball1.velo2D=new Vector2D(100,-30); 
ball2.velo2D = new Vector2D(-50,-30); 

This shows that our basic 2D particle collision simulator can handle both 1D and 2D collisions properly. So 
let’s now add a bit more complexity. 

Example: multiple particle collisions 
Extending the last simulation to handle lots of particles is simply a matter of creating more ball instances 
and then checking for collisions between each pair of particles. In MultipleBallCollision.as, we 
create nine particles of the same size and mass, put them in an array and then pass that array to an 
instance of a MultiBallCollider class. The latter is very similar to the two-particle version 
BallCollider class, the main difference being a double for loop in the checkCollision() method: 
 

private function checkCollision():void{ 
        for (var i:uint=0; i<_balls.length; i++){ 
                var ball1:Ball = _balls[i]; 
                for(var j:uint=i+1; j<_balls.length; j++){ 
                        var ball2: Ball = _balls[j]; 
 
                        // code in here is similar to BallCollider.as 
                } 
        } 
} 

The key things with the for loops is to pick all possible pairs of particles without double-counting. So the 
first loop iterates over all the elements of the _balls array, picking the first ball, ball1, from it. The 
second loop then iterates over the elements of _balls again to pick ball2, but this time starting from the 
next element from ball1. This avoids checking for collisions between ball1 and ball2, and then again 
between ball2 and ball1. 

The nine balls are initially positioned randomly on the stage. They are given velocities toward the center of 
the stage, with a velocity magnitude proportional to their distance from the center. When you run the 
simulation, the balls move to the center, where they collide a number of times in quick succession, as a 
result of which they bounce outward. Feel free to experiment with different configurations and initial 
velocities. 
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Example: multiple particle collisions with bouncing 
The last example was interesting, but the particles only collided briefly before separating and disappearing 
outside of the stage area. It would be much more fun to confine them so that they collide over and over 
again. To do this, we need to introduce confining walls. So, let’s combine everything we have learned in 
this chapter and build one final example involving multiple particles colliding with each other and with 
walls. The particles will also have different sizes and masses. 

We call the new class Molecules because the result will look like gas molecules bouncing about. Here is 
the setup code in Molecules.as: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.objects.Wall; 
        import com.physicscodes.math.Vector2D; 
 
        public class Molecules extends Sprite{ 
 
                private var _numBalls:uint = 20; 
 
                public function Molecules():void{ 
                        init(); 
                } 
 
                private function init():void{ 
                        var balls:Array=new Array(); 
                        for(var i:uint = 0; i < _numBalls; i++){ 
                                var radius:Number = Math.random()*20 + 5; 
                                var mass:Number = 0.01*Math.pow(radius,3); 
                                var ball:Ball = new Ball(radius,0x666600,mass); 
                                ball.pos2D = new Vector2D( Math.random()*! 
(stage.stageWidth-2*radius)+radius, Math.random()*(stage.stageHeight-2*radius)+radius); 
                                ball.velo2D = new Vector2D((Math.random()-0.5)*80,! 
(Math.random()-0.5)*80); 
                                addChild(ball); 
                                balls.push(ball); 
                  } 
 
                  var walls:Array=new Array(); 

var wall1:Wall=new Wall(new Vector2D(stage.stageWidth,0),new!  
Vector2D(0,0)); 

 addChild(wall1); 
                  walls.push(wall1); 
                 var wall2:Wall=new Wall(new Vector2D(stage.stageWidth,stage.! 
stageHeight), new Vector2D(stage.stageWidth,0)); 

addChild(wall2); 
                 walls.push(wall2); 
                 var wall3:Wall=new Wall(new Vector2D(0,stage.stageHeight), new! 
Vector2D(stage.stageWidth,stage.stageHeight)); 
                 addChild(wall3); 
                 walls.push(wall3); 
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                 var wall4:Wall=new Wall(new Vector2D(0,0), new Vector2D(0,stage.! 
stageHeight)); 
                        addChild(wall4); 
                 walls.push(wall4); 
 
                 var collider:MoleculesCollider = new MoleculesCollider(balls,walls); 
                 collider.startTime(10); 
                } 
        } 
} 

A bunch of 20 balls is created with random radius ranging from 5 px to 25 px, and with masses 
proportional to the cube of the radius. The balls are positioned randomly on the stage and given random 
velocities with a maximum magnitude of 40 px/s. Then four walls are created at the edges of the stage. All 
the objects are then passed to an instance of MoleculesCollider. 

MoleculesCollider is basically a hybrid of the codes for multiple colliding particles and bouncing off 
multiple walls. Hence, there is nothing substantially new, except in the way that they are combined. Here is 
the general structure of the code: 
 
package { 
        import com.physicscodes.motion.MultiMover; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.objects.Wall; 
        import com.physicscodes.math.Vector2D; 
 
        public class MoleculesCollider extends MultiMover{ 
                private var _balls:Array; 
                private var _walls:Array; 
                private var _vfac:Number=1; 
 
                public function MoleculesCollider(pballs:Array,pwalls) :void{ 
                        _balls = pballs; 
                        _walls=pwalls; 
                        super(_balls); 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        checkCollision() 
                } 
 
                … 
 
        } 
} 

The checkCollision() method is almost identical with that of the last example, except for the addition of 
one line in the outer for loop: 
 
private function checkCollision():void{ 
        for (var i:uint=0; i<_balls.length; i++){ 
                var ball1:Ball = _balls[i]; 
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                for(var j:uint=i+1; j<_balls.length; j++){ 
                        var ball2: Ball = _balls[j]; 
                        var dist:Vector2D = ball1.pos2D.subtract(ball2.pos2D); 
                        if (dist.length < (ball1.radius +ball2.radius) ) { 
                        // normal velocity vectors just before the impact 
                        var normalVelo1:Vector2D = ball1.velo2D.project(dist); 
                        var normalVelo2:Vector2D = ball2.velo2D.project(dist); 
                        // tangential velocity vectors 
                        var tangentVelo1:Vector2D = ball1.velo2D.subtract(normalVelo1); 
                        var tangentVelo2:Vector2D = ball2.velo2D.subtract(normalVelo2); 
                        // move particles so that they just touch 
                        var L:Number = ball1.radius +ball2.radius-dist.length; 
                        var vrel:Number = normalVelo1.subtract(normalVelo2).length; 
                        ball1.pos2D = ball1.pos2D.addScaled(normalVelo1,-L/vrel); 
                        ball2.pos2D = ball2.pos2D.addScaled(normalVelo2,-L/vrel); 
                        // perpendicular velocity components after the impact 
                        var m1:Number = ball1.mass; 
                        var m2:Number = ball2.mass; 
                        var u1:Number = normalVelo1.projection(dist); 
                        var u2:Number = normalVelo2.projection(dist); 
                        var v1:Number = ((m1-m2)*u1+2*m2*u2)/(m1+m2); 
                        var v2:Number = ((m2-m1)*u2+2*m1*u1)/(m1+m2); 
                        // normal velocity vectors after collision 
                        normalVelo1 = dist.para(v1); 
                        normalVelo2 = dist.para(v2); 
                        // final velocity vectors after collision 
                        ball1.velo2D = normalVelo1.add(tangentVelo1); 
                        ball2.velo2D = normalVelo2.add(tangentVelo2); 
                        } 
                } 
                checkWallBounce(ball1); 
        } 
} 

The extra line tells the code to see whether ball1 is in collision with any wall. The checkWallBounce() 
method is given here for completeness, but it is essentially the same as in 
MultipleInclinedWallsBouncer.as, except that we got rid of the pieces of code that handle bouncing 
off the wall end points because there are no free wall end points to bounce off in this example: 
 
private function checkWallBounce(pball:Ball):void{ 
        var hasHitAWall:Boolean = false; 
        for (var i:int=0; (i<_walls.length && hasHitAWall==false); i++){ 
                var wall:Wall = _walls[i]; 
                var wdir:Vector2D = wall.dir; 
                var ballp1:Vector2D = wall.p1.subtract(pball.pos2D); 
                var ballp2:Vector2D = wall.p2.subtract(pball.pos2D); 
                var proj1:Number = ballp1.projection(wdir); 
                var proj2:Number = ballp2.projection(wdir); 
                var dist:Vector2D = ballp1.addScaled(wdir.unit(), proj1*(-1)); 
                var test:Boolean=((Math.abs(proj1) < wdir.length) && (Math.abs(proj2) <! 
 wdir.length)); 
                if ((dist.length < pball.radius) &&  test){ 
                        var angle:Number = Vector2D.angleBetween(pball.velo2D, wdir); 
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                        var normal:Vector2D = wall.normal; 
                        if (normal.dotProduct(pball.velo2D) > 0){ 
                                normal.scaleBy(-1); 
                        } 
                        var deltaS:Number =! 
 (pball.radius+dist.dotProduct(normal))/Math.sin(angle); 
                        var displ:Vector2D = pball.velo2D.para(deltaS); 
                        pball.pos2D = pball.pos2D.subtract(displ); 
                        var normalVelo:Vector2D = pball.velo2D.project(dist); 
                        var tangentVelo:Vector2D = pball.velo2D.subtract(normalVelo); 
                        pball.velo2D = tangentVelo.addScaled(normalVelo,-_vfac); 
                        hasHitAWall = true; 
                } 
        } 
} 

Figure 11-15 shows a screenshot of what you will see when you run the code: gas molecules bouncing 
about! Notice that the little molecules generally end up moving faster than the bigger ones because they 
can pick up a lot of momentum when a large one collides with them. A lot of time can be wasted playing 
with this simulation or simply watching it! To make things even more fun, in the source code we have also 
included a modified version of the simulation that allows you to add your own particles by clicking and 
dragging. The relevant files are Molecules2.as and MoleculesCollider2.as. With a lot of particles, you 
might find that some of them, especially the smaller ones, will occasionally tunnel out of the confining 
walls. You can fix this by using the method described in the section on bouncing off inclined walls. 

You may also find that some particles will be overlapping when they are initially created because of the 
random positioning. This will result in some initial erratic behavior that should mostly sort itself out in a few 
timesteps. Other problems could also occur with lots of particles (apart from the obvious one of your 
computer not being able to cope), especially if they are crammed into a small space or if they are moving 
at high speed. You could, for example, have a particle colliding with two other particles in the same 
timestep. Or you could have a particle that is repositioned and ends up overlapping with another particle 
close by. We could go into elaborate methods for dealing with scenarios like these, but we’ve already 
covered a lot of ground in this chapter and need to stop somewhere! 
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Figure 11-15. “Molecules” bouncing off each other and off walls 

Summary 
In this chapter, we have gone from a simple demonstration of a ball bouncing off a vertical wall to creating 
complex simulations involving particles bouncing off multiple inclined walls and particles colliding with 
other particles. We have covered the underlying physics in considerable detail, discussing the equations 
that govern different types of collisions in 1D and 2D. In implementing collision resolution, both with walls 
and between particles, we introduced a novel method using vector algebra that avoids the usual need for 
performing coordinate rotations to resolve collisions in 2D. 
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Chapter 12 

Particle Systems 

In a nutshell, this chapter will show you how to create animated effects and simulations using systems of 
multiple particles. Particle systems are very popular, and a lot of creative work has been done in the Flash 
community over the years using them. We can only really scratch the surface of what is possible in a 
single chapter. Therefore, we shall content ourselves with giving you a few ideas and examples to play 
with and build upon. 

Topics covered in this chapter include these: 

! Introduction to particle system modeling: This brief section will explain what we mean by a 
particle system and what is needed to set one up. 

! Creating animated effects using particles: It is possible to produce some interesting animated 
effects such as smoke and fire using a bunch of particles and some simple physics. We’ll walk 
you through some examples in this section. 

! Particle animations with long-range forces: Particle animations don’t have to look realistic; 
they can be just for fun! We look at a couple of wacky examples using long-range forces such as 
gravity. 

! Interacting particle systems: More complex particle systems include interactions between the 
particles. But this can get pretty computationally expensive with large numbers of particles. We 
give a couple of examples, discussing tricks to overcome this problem. 

The approach in this chapter is to create animations that use some physics, but without necessarily being 
accurate simulations. Above all, this is a subject where experimentation and creativity pay dividends. 
Therefore, don’t be afraid to tinker and invent, even if that means breaking a few laws of physics! 
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Introduction to particle system modeling 
Although a precise definition of a particle system probably does not exist, it helps to explain what we have 
in mind before we do anything else. In the sense in which we use the term, a particle system consists of 
the following ingredients: 

! A group of particles 

! Rules by which they move and change 

! Rules by which they interact (if any) 

This definition is very general: the said “rules” could be based on physics, artificial intelligence, biology, or 
anything else. It won’t come as a surprise that we’ll limit ourselves to particles moving and interacting 
under physical laws (with perhaps the odd tweak here and there). Therefore, the particle systems we’ll 
consider will animate particles according to Newton’s laws of motion under the action of a subset of the 
forces that we discussed in Part II of the book. The different categories of interaction between the particles 
can include the following: 

! No mutual interaction: In this case, the particles are unaware of each other and move 
independently under the action of globally prescribed forces (such as external gravity). Even 
though this is the simplest case, quite impressive effects can be generated using non-interacting 
particles. We will look at several examples in the next two sections. 

! Interaction by collision: Here the particles do not interact except very briefly when they collide. 
The collisions can be resolved using the methods given in Chapter 11. In fact, the last example in 
Chapter 11 showed just such a system of particles interacting via collisions. 

! Short-range interactions: In this case, the particles interact only when they are close together 
but not necessarily touching. They can be modeled using short-range forces of a type that exists 
between molecules. Using such forces it is possible to model fluid effects such as the formation 
and fall of a liquid drop. But these simulations require more advanced methods and will not be 
covered in this book. 

! Long-range interactions: This category involves mutual interactions between the particles at 
any distance, such as gravitational or electric forces between the particles. Typically, every 
particle experiences a force due to every other particle. Clearly the number of computations that 
need to be performed gets very large pretty quickly as you increase the number of particles in the 
system. We look at some examples in the last section of this chapter. 

! Local interactions: These are intermediate interactions between short-range and long-range 
interactions; particles within a certain local neighborhood are linked and interact. Such 
interactions can give rise to organized systems and connected structures. Examples include 
mass-spring systems, which can be used to simulate deformable bodies like ropes and clothes. 
These particle systems are explored in Chapter 13. 
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So what do we need, in terms of physics and coding, to create a particle system? The answer might 
surprise you: not a lot beyond what we’ve already covered in the previous chapters. So there won’t be 
much theory in this chapter, but more on the application of principles that have already been discussed 
with a few extra tricks added in. That means you get to see code much sooner! 

Creating animated effects using particles 
One of the most common uses of particle systems is to create animated visual effects such as smoke and 
fire. In this section, we show you simple ways of producing some of these effects using physics-based 
animation. We start with a very simple example and then create a particle emitter that will allow us to 
create some more elaborate effects. The approach in this section is that we wish to produce animations 
that look realistic, but that don’t have to be completely accurate. 

A simple example: splash effect with particles 
In this example, we will drop objects in water and then create a splash effect using particles. The objects 
will be balls of different sizes and will be dropped one at a time from the same height. The splash will be 
made from a group of Ball objects of smaller size. Let’s dive straight into the code that creates these 
objects. The file is called Splash.as. Here is a full listing of the code: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class Splash extends Sprite{ 
                public function Splash():void{ 
                        init(); 
                } 
                private function init():void{ 
 
                        var water:Sprite = new Sprite(); 
                        with (water.graphics) { 
                                beginFill(0x00ffff,0.5); 
                                drawRect(0,500,stage.stageWidth,stage.stageHeight-500); 
                                endFill(); 
                        } 
                        addChild(water); 
 
                        var drop:Ball = new Ball(8,0x399ff); 
                        drop.pos2D = new Vector2D(400,100); 
                        drop.velo2D = new Vector2D(0,100); 
                        addChild(drop); 
 
                        var numSplashDrops:uint = 20; 
                        var splash:Array = new Array(); 
                        for (var i:uint=0; i<numSplashDrops; i++){ 
                                var radius:Number = Math.random()*2+1; 
                                var splashDrop:Ball = new Ball(radius,0x3399ff); 
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                                splashDrop.visible = false; 
                                addChild(splashDrop); 
                                splash.push(splashDrop); 
                        } 
 
                        var mover:SplashMover=new SplashMover(drop,splash); 
                        mover.startTime(); 
                        drop.move(); 
                } 
        } 
} 

As you can see, we first create a filled rectangle with a transparency of 0.5 to represent water and position 
it at the bottom of the stage. We then create a Ball object named drop (think raindrop) with a radius of 8 
pixels and position it above the water surface, at y = 100. The drop is then given a velocity of 100 px/s 
vertically downward. Next, 20 Ball objects are created with random radiuses between 1 and 3 pixels. 
These will be the splash droplets, and their visibility is initially set to false. They are put into an array called 
splash. 

The drop and the splash array are then passed to a SplashMover instance (to be described shortly) to 
start the animation. The drop is animated independently by invoking its move() method. This makes it 
move at the constant downward velocity of 100 px/s specified earlier in the code. You may be wondering 
why we make the object fall at a constant velocity instead of making it accelerate under gravity. The 
answer is that if it is a raindrop, it would probably have reached terminal velocity anyway. 

We’ll now take a look at the SplashMover class. The full code is not too long, so here it is: 
 
package { 
        import flash.display.Sprite; 
        import com.physicscodes.motion.MultiForcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class SplashMover extends MultiForcer{ 
 
                private var _drop:Ball; 
                private var _particles:Array = new Array(); 
                private var _g:Number = 20; 
                private var _vx:Number = 20; 
                private var _vy:Number = -15; 
                private var _wlevel:Number = 510; 
                private var _fac:Number = 1; 
 
                public function SplashMover(pdrop:Ball,psplash:Array):void{ 
                        _drop = pdrop; 
                        _particles = psplash; 
                        super(_particles); 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
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                        checkDrop(); 
                } 
 
                private function checkDrop():void{ 
                        if (_drop.ypos > _wlevel){ 
                                for (var i:uint=0; i<_particles.length; i++){ 
                                        var splashDrop:Ball = _particles[i]; 
                                        var posx:Number = _drop.xpos+! 
(Math.random()-0.5)*_drop.width; 
                                        var posy:Number = _wlevel-10+! 
Math.random()*_drop.height; 
                                        var velx:Number = (Math.random()-0.5)*_vx*_fac; 
                                        var vely:Number = (Math.random()+0.5)*_vy*_fac; 
                                        splashDrop.pos2D = new Vector2D(posx,posy); 
                                        splashDrop.velo2D = new Vector2D(velx,vely); 
                                } 
                                _drop.xpos = Math.random()*600+100; 
                                _drop.ypos = 100; 
                                _drop.radius = 4 + 8*Math.random(); 
                                _fac = Math.pow(_drop.radius/8,1.5);; 
                        } 
                } 
 
                override protected function calcForce(pparticle:Particle):void{ 
                        force = Forces.constantGravity(pparticle.mass,_g); 
                        if (pparticle.ypos > _wlevel){ 
                                pparticle.visible = false; 
                        }else{ 
                                pparticle.visible = true; 
                        } 
                } 
 
        } 
} 

The first thing to note is that SplashMover extends MultiForcer. That’s because we have a whole bunch 
of particles to move (the splash droplets) and they will be moving under a force (gravity). The splash array 
is assigned to a private variable called _particles. 

The main action takes place in the checkDrop() method, which is executed at every timestep, being 
called from an overriding moveObject() method. This code checks if the drop has fallen below the water 
level (set at 10px below the top edge of the blue rectangle representing the body of water to give a fake 3D 
effect). If that happens, the splash droplets are repositioned around the region of impact and given random 
velocities with an upward vertical component. The magnitude of the velocities depends on parameters _vx 
and _vy that are set initially in the code as well as on a factor _fac, which is updated every time a splash 
occurs, as will be described shortly. The droplets are then made to fall under gravity by using the 
Forces.constantGravity() method in calcForce(). There is an if-else condition that makes them 
invisible if they are below the water level; otherwise they are made visible. 

Back in the checkDrop() method, the falling drop is repositioned at the initial height and at a new random 
horizontal location as soon as it hits the water level. Its radius is then changed to a random value between 
4 and 12 pixels.  
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Then the velocity factor _fac is updated according to the following formula, in which rm is the mean radius 
of the drop (8 pixels): 

fac = r
rm

'
()

*
+,

3/2

 

What is happening here? The idea is that the larger the drop is, the heavier its mass will be (its mass is 
proportional to its volume, or the cube of its radius, r3). Because the drop always has the same velocity, its 
kinetic energy (Ek = ½ mv2) will be proportional to its mass, and therefore to r3. A fraction of that energy will 
be imparted to the splash droplets, and one can therefore expect the average kinetic energy of those 
droplets to be proportional to r3. Because the masses of the droplets are constant, their kinetic energy is 
proportional to the square of their velocity. So we have the following: 

Ek ∝ v2 ∝ r3
 

Therefore, we can write the following: 

v ∝ r3/2
 

This shows that we expect the droplets to have a mean velocity proportional to the radius of the falling 
drop raised to the power of 1.5. The previous formula for _fac implements this fact, with the value of _fac 
being set to 1 when the radius is equal to the mean radius of 8 px. 

If you run the simulation, you will find that the larger the drop is, the higher the droplets will splash because 
of their larger initial velocities. A screenshot is shown in Figure 12-1. As usual, feel free to experiment with 
different parameters. Of course, the visual aspects of the animation can be enhanced in many ways 
according to your imagination and artistic skills. We have focused on the physics and coding aspects; feel 
free to season the appearance to taste. 

 

Figure 12-1. Producing a splash! 

Creating a particle emitter 
Many applications of particle systems require a continuous source of particles. This can be achieved using 
particle emitters. Creating a particle emitter is not difficult; essentially what you need is to create new 
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particles over time. But it is also important to somehow limit the total number of particles to avoid crashing 
your computer! This may mean fixing the total number of particles or recycling/removing them. 

There are several approaches you could take to do these things. We can only give an example here, 
without attempting to cover all the different approaches. 

An example is given in the ParticleEmitterExample.as and ParticleEmitter.as files. The 
ParticleEmitterExample class is very simple, and looks like this: 
 
package{ 
        import flash.display.Sprite; 
 
        public class ParticleEmitterExample extends Sprite{ 
                public function ParticleEmitterExample():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var sprite:Sprite = new Sprite(); 
                        addChild(sprite); 
 
                        var mover:ParticleEmitter = new ParticleEmitter(sprite); 
                        mover.startTime(); 
                } 
        } 
} 

As you can see, there is not much to it. ParticleEmitterExample simply creates a sprite and passes it 
to a ParticleEmitter instance. Everything is happening within the ParticleEmitter class, which looks 
like this: 
 
package { 
        import flash.display.Sprite; 
        import com.physicscodes.motion.MultiForcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class ParticleEmitter extends MultiForcer{ 
                private var _sprite:Sprite; 
                private var _particles:Array = new Array(); 
                private var _maxParticles:uint = 120; 
                private var _g:Number = 20; 
                private var _k:Number = 0.003; 
                private var _vx:Number = 60; 
                private var _vy:Number = -80; 
 
                public function ParticleEmitter(psprite:Sprite):void{ 
                        _sprite = psprite; 
                        super(_particles); 
                } 
 
                override protected function calcForce(pparticle:Particle):void{ 
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                        var gravity:Vector2D = Forces.constantGravity(pparticle.mass,_g); 
                        var drag:Vector2D = Forces.drag(_k,pparticle.velo2D); 
                        force = Forces.add([gravity, drag]); 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        createNewParticles(new Vector2D(_sprite.mouseX,_sprite.mouseY)); 
                        limitParticles(); 
                } 
 
                private function createNewParticles(ppos:Vector2D):void{ 
                        var newBall:Ball = new Ball(2); 
                        newBall.pos2D = ppos; 
                        newBall.velo2D = new Vector2D((Math.random()-0.5)*_vx,! 
 (Math.random()+0.5)*_vy); 
                        _sprite.addChild(newBall); 
                        _particles.push(newBall); 
                } 
 
                private function limitParticles():void{ 
                        if (_particles.length > _maxParticles){ 
                                _sprite.removeChild(_particles[0]); 
                                _particles.shift(); 
                        } 
                } 
 
        } 
} 

As in the previous example, ParticleEmitter extends MultiForcer. The particles are stored in an array 
named _particles. In this example, the calcForce() method includes gravity and drag force. The really 
new stuff appears in the two methods createNewParticles() and limitParticles(), which are called 
from within the moveObject() method. 

The createNewParticles() method does exactly what its name suggests, creating new particles as 
Ball objects at a location specified as a Vector2D input parameter. In this case, the particles are given a 
random velocity, added to the stage of the sprite object, and then pushed into the _particles array. This 
happens once per timestep, so that a new particle is created at each timestep. You might alternatively 
specify a rate at which new particles are created per second; we leave this as an exercise. 

Without the limitParticles() method your animation would quickly fill up with particles until your 
computer couldn’t cope any more. In this example, limitParticles() checks to see if the number of 
particles exceeds the maximum allowed number _maxParticles. If it does, the first (and oldest) particle is 
removed. You don’t want to set _maxParticles too high. In the example file, a value of 120 is chosen. 

Run the simulation and you’ll have a particle emitter! Little balls projected upward and falling back under 
gravity and drag, looking a bit like a spray. We have specified the position of the emitter as the location of 
the mouse cursor, so that you can move the mouse around and watch the fun. 
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You can produce some interesting effects by changing the parameters and initial conditions. For example, 
instead of giving the particles a random velocity, you can introduce the following lines of code into 
createNewParticles(): 
 
var n:int; 
n = _i%7; 
var angle:Number = -(60+10*n)*Math.PI/180; 
var mag:Number = 100; 
newBall.velo2D = Vector2D.vector2D(mag,angle); 
_i++; 

Here, _i is a private int variable initially given the value of 0. This produces a fountain-like pattern, as 
shown in Figure 12-2. 

 

Figure 12-2. Creating a particle emitter 

Creating a smoke effect 
Let us now use our particle emitter to create a smoke effect. This is easier than you might think; in fact, 
you’ve already done most of the work. Let us start with a setup file, Smoke.as, that is essentially the same 
as that in the previous example, except for the relevant class names: 
 
package{ 
        import flash.display.Sprite; 
 
        public class Smoke extends Sprite{ 
                public function Smoke():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var sprite:Sprite = new Sprite(); 
                        addChild(sprite); 
 
                        var mover:SmokeMover=new SmokeMover(sprite); 
                        mover.startTime(); 
                } 
        } 
} 
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The corresponding mover class SmokeMover is built on top of the ParticleEmitter class of the previous 
example, and looks like this, with the new or modified bits highlighted in bold: 
 
package { 
        import flash.display.Sprite; 
        import com.physicscodes.motion.MultiForcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class SmokeMover extends MultiForcer{ 
                private var _sprite:Sprite; 
                private var _particles:Array = new Array(); 
                private var _maxParticles:uint = 120; 
                private var _g:Number = -5; 
                private var _k:Number = 0.005; 
                private var _vx:Number = 60; 
                private var _vy:Number = -80; 
 
                public function SmokeMover(psprite:Sprite):void{ 
                        _sprite = psprite; 
                        super(_particles); 
                } 
 
                override protected function calcForce(pparticle:Particle):void{ 
                        var gravity:Vector2D = Forces.constantGravity(pparticle.mass,_g); 
                        var drag:Vector2D = Forces.drag(_k,pparticle.velo2D); 
                        force = Forces.add([gravity, drag]); 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        createNewParticles(new Vector2D(_sprite.mouseX,_sprite.mouseY)); 
                        limitParticles(); 
                        modifyParticles(); 
                } 
 
                private function createNewParticles(ppos:Vector2D):void{ 
                        var radius:Number = 1 + 3*Math.random(); 
                        var newBall:Ball = new Ball(radius,0xffffff); 
                        newBall.pos2D = ppos; 
                        newBall.velo2D = new Vector2D((Math.random()-0.5)*_vx,! 
 (Math.random()+0.5)*_vy); 
                        _sprite.addChild(newBall); 
                        _particles.push(newBall); 
                } 
 
                private function limitParticles():void{ 
                        if (_particles.length > _maxParticles){ 
                                _sprite.removeChild(_particles[0]); 
                                _particles.shift(); 
                        } 
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                } 
 
                private function modifyParticles():void{ 
                        for (var i:uint=0; i<_particles.length; i++){ 
                                var particle:Ball = _particles[i]; 
                                particle.scaleX *= 1.01; 
                                particle.scaleY *= 1.01; 
                                particle.alpha += -0.01; 
                        } 
                } 
 
        } 
} 

Compared with ParticleEmitter there are two modifications plus the addition of a new method: 
modifyParticles(). The first modification is that we are randomizing the radiuses of the particles 
between the values of 1 and 4 pixels in createNewParticles(). The second modification might appear a 
bit weird: we are giving the gravity constant g a negative value (–5)! What’s going on here? The thing is 
that smoke will tend to rise rather than fall because forces such as buoyancy (upthrust) will overcome the 
force of gravity. But instead of modeling buoyancy, it makes more sense here to simply modify gravity so 
that it acts upward because we are interested only in reproducing the visual effect of smoke approximately. 

The new method, modifyParticles(), is called from moveObject() and is therefore executed at each 
timestep. All we are doing here is to increase the size of the particles by a constant factor and reduce their 
transparency by a fixed amount at each timestep. 

The result of the previous additions and modifications is that the particles grow and fade as they rise, 
before disappearing altogether and being removed and replaced by new particles. If you were to run the 
code as shown previously, you would get an interesting effect, but you couldn’t really call it smoke–see 
Figure 12-3. 

 

Figure 12-3. An interesting effect, but not quite smoke yet! 



Chapter 12 

370 

Time to introduce filters! If you are not familiar with ActionScript filters, we encourage you to spend some 
time reading about them and playing around with them. Check out Adobe’s online AS3.0 documentation or 
pick up a copy of Foundation ActionScript 3.0 Image Effects by Todd Yard. 

We’ll use one of the simplest filters, the BlurFilter, applying it to the Smoke class, which now looks like 
this: 
 
package{ 
        import flash.display.Sprite; 
        import flash.filters.BlurFilter; 
 
        public class Smoke extends Sprite{ 
                public function Smoke():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var sprite:Sprite = new Sprite(); 
                        addChild(sprite); 
 
                        var mover:SmokeMover=new SmokeMover(sprite); 
                        mover.startTime(); 
 
                        filters = [new BlurFilter(8,8,2)]; 
                } 
        } 
} 

As you can see, the changes (highlighted in bold) are minimal: just one line of code plus the appropriate 
import statement. The BlurFilter() function takes three optional arguments: 
 
BlurFilter(blurX:Number = 4.0, blurY:Number = 4.0, quality:int = 1) 

The first two arguments specify the amount of blur to apply in the x and y directions. The third argument 
specifies the number of times to apply the filter and therefore indicates the quality of the blur. A value of 1 
is a low quality blur, 2 is medium quality, and 3 is high quality. We have specified a medium quality blur 
with blur amounts of eight units in each direction; feel free to experiment with different values of these 
parameters. 

If you now run the code, you will see something that looks much more like smoke, as depicted in the 
screenshot in Figure 12-4. 
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Figure 12-4. The smoke effect at last 

This is a basic smoke effect that can be tweaked and enhanced in endless ways. Think of it as a starting 
point for further experimentation rather than as a final result. Moreover, there are lots of other ways to 
produce a smoke effect like this. The preceding method has been adapted from a tutorial by Seb Lee-
Delisle that appeared in Computer Arts magazine (March 2008). It’s nice because of its simplicity and the 
fact that it can be done with pure code alone. 

Creating a fire effect 
It is extremely easy to modify the smoke animation to produce something that looks like fire. In fact, we 
changed only one line of code in the SmokeMover class, just to make the particles slightly bigger: 
 
var radius:Number = 3 + 3*Math.random(); 

This makes particles with radiuses between 3 and 6 pixels. We saved the new file as FireMover.as. We 
then modify the Smoke class by adding a new filter GradientGlowFilter and after appropriate class and 
constructor name changes, save the new file as Fire.as: 
 
package{ 
        import flash.display.Sprite; 
        import flash.filters.BlurFilter; 
        import flash.filters.GradientGlowFilter; 
 
        public class Fire extends Sprite{ 
                public function Fire():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var sprite:Sprite = new Sprite(); 
                        addChild(sprite); 
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                        var mover:FireMover=new FireMover(sprite); 
                        mover.startTime(); 
 
                        var blurFilter:BlurFilter = new BlurFilter(8,8,2); 
                        var gradientGlowFilter:GradientGlowFilter = new GradientGlowFilter! 
(0,45,[0xff0000,0xffff00],[1,1],[50,255],15,15); 
                        filters = [blurFilter, gradientGlowFilter]; 
                } 
        } 
} 

The relevant changes are highlighted in bold. The GradientGlowFilter is a more complicated filter than 
the BlurFilter, with no fewer than 11 optional parameters, of which we’ve specified 7. We refer you to 
Adobe’s online AS3.0 reference for what these parameters mean and leave you to play with their values to 
see their effects. If you run the code with the values shown in the previous listing, you’ll see something like 
Figure 12-5. Of course, you need to see the actual animation to appreciate the effect and colors. 

 

Figure 12-5. Creating a fire effect 

Now that you have the basic tools at your fingertips, you can create more elaborate effects by applying the 
methods to different setups and by combining different techniques. For example, by attaching emitters to 
objects, you can create the illusion of the objects being on fire. You can also add wind, combine smoke 
with the fire, add sparks, and so on. Talking of sparks, let’s go create some now. 
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Creating fireworks 
The end result we want to achieve in this section is an animation that looks like fireworks: a series of little 
explosions each generating colorful sparks that fall under gravity with drag. In order to get there, we will 
first modify the Particle class and then create a sparks animation using the updated Particle class 
before finally adding extra features to make the fireworks. 

Modifying the Particle class 
Something like a spark exists for only a certain duration, after which it will need to be removed or recycled. 
It makes sense therefore to introduce a couple of new properties in the Particle class to represent the 
lifetime and age of a Particle instance. To do this, we add the following code to the Particle class: 
 
// lifetime and age in seconds 
private var _lifetime:Number = 1e8; 
private var _age:Number = 0; 
 
public function get lifetime():Number{ 
        return _lifetime; 
} 
public function set lifetime(plifetime:Number):void{ 
        _lifetime = plifetime; 
} 
public function get age():Number{ 
        return _age; 
} 
public function set age(page:Number):void{ 
        _age = page; 
} 

This creates the two properties, lifetime and age, with default values of 108 and 0, respectively. These 
represent the lifetime and age of a Particle instance in seconds. The value of 108 seconds is equal to 
approximately three years: so as long as your Flash movie does not run for longer than three years, a 
particle with the default lifetime value should never be destroyed. Of course, we could have specified any 
other value that is large enough. The age is the current time in seconds since the Particle instance was 
created. 

It is up to your external code that creates the Particle instance to update its age as time progresses and 
to check and take the appropriate action if its age exceeds its lifetime. 

Making sparks 
Let us now apply the newly created lifetime and age properties to create sparks that exist for a specified 
duration. The new setup file is called Sparks.as and looks like this: 
 
package{ 
        import flash.display.Sprite; 
        import flash.filters.GlowFilter; 
 
        public class Sparks extends Sprite{ 
                public function Sparks():void{ 
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                        init(); 
                } 
                private function init():void{ 
                        var sprite:Sprite = new Sprite(); 
                        addChild(sprite); 
 
                        var mover:SparksMover=new SparksMover(sprite); 
                        mover.startTime(); 
 
                        filters = [new GlowFilter()]; 
                } 
        } 
} 

This is very similar to the setup files in the previous examples, except that we are now using a different 
filter, a GlowFilter() with default parameters. (Again, see the Adobe online AS3.0 reference to learn 
more about this filter and its parameters.) The SparksMover class is a modified version of the FireMover 
class, with the modifyParticles() method replaced by a new ageParticles() method (which calls a 
new removeParticle() method) as well a few small changes, as highlighted in bold in the following code: 
 
package { 
        import flash.display.Sprite; 
        import com.physicscodes.motion.MultiForcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class SparksMover extends MultiForcer{ 
 
                private var _sprite:Sprite; 
                private var _particles:Array = new Array(); 
                private var _maxParticles:uint = 200; 
                private var _g:Number = 10; 
                private var _k:Number = 0.005; 
                private var _vx:Number = 100; 
                private var _vy:Number = -100; 
 
                public function SparksMover(psprite:Sprite):void{ 
                        _sprite = psprite; 
                        super(_particles); 
                } 
 
                override protected function calcForce(pparticle:Particle):void{ 
                        var gravity:Vector2D = Forces.constantGravity(pparticle.mass,_g); 
                        var drag:Vector2D = Forces.drag(_k,pparticle.velo2D); 
                        force = Forces.add([gravity, drag]); 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        createNewParticles(new Vector2D(_sprite.mouseX,_sprite.mouseY)); 
                        limitParticles(); 
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                        ageParticles(); 
                } 
 
                private function createNewParticles(ppos:Vector2D):void{ 
                        var newBall:Ball = new Ball(2,0xffff00,1,0,false); 
                        newBall.pos2D = ppos; 
                        newBall.velo2D = new Vector2D((Math.random()-0.5)*_vx,! 
(Math.random()-0.5)*_vy); 
                        newBall.lifetime = 2 + 2*Math.random(); 
                        _sprite.addChild(newBall); 
                        _particles.push(newBall); 
                } 
 
                private function limitParticles():void{ 
                        if (_particles.length > _maxParticles){ 
                                _sprite.removeChild(_particles[0]); 
                                _particles.shift(); 
                        } 
                } 
 
                private function ageParticles():void{ 
                        for (var i:uint=0; i<_particles.length; i++){ 
                                var particle:Ball = _particles[i]; 
                                particle.age += dt; 
                                particle.alpha += -0.005; 
                                if (particle.age > particle.lifetime){ 
                                        removeParticle(particle,i); 
                                } 
                        } 
                } 
 
                private function removeParticle(pparticle:Particle,pnum:uint):void{ 
                        _sprite.removeChild(pparticle); 
                        _particles.splice(pnum,1); 
                } 
 
        } 
} 

So we now have 200 particles and give them values of _g, _k, _vx, and _vy of 10, 0.005, 100, and –100, 
respectively (which you can change if you want). In createNewParticles(), each particle is given the 
same radius of 2 pixels. Because sparks can fly in any direction, the particles are given random velocities 
in any direction. Then their lifetime is set to a random value between two and four seconds. 

The new ageParticles() method loops over all the particles in the _particles array, updating their age 
every timestep and decreasing their alpha value. This makes them fade with time. The particle’s age is 
then checked against its lifetime: if it exceeds the lifetime, the removeParticle() method is called, which 
removes the particle from the stage and from the _particles array. 

Run the simulation and you’ll get to see some nice sparks following the mouse (see Figure 12-6). 
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Figure 12-6. Making sparks 

Making the fireworks animation 
Now that we have sparks, we can use them to produce fireworks. Instead of producing the sparks 
continuously, we want to do that in a series of little explosions. We’ll have an initial explosion that will 
create a bunch of sparks with random velocities; these sparks will then fall under gravity with drag, fading 
with time. When each spark reaches the end of its lifetime, it will explode, producing further sparks. 
Obviously, we want to stop this process at some point. The easiest way to do this is to limit the duration of 
the animation by imposing a global cutoff time. 

To get started, we produce a setup file named Fireworks.as that is practically identical with the 
Sparks.as file except for the relevant class names. We also need a corresponding FireworksMover 
class. This is modified from the SparksMover class and looks like the following, with modified bits 
highlighted in bold: 
 
package { 
        import flash.display.Sprite; 
        import com.physicscodes.motion.MultiForcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class FireworksMover extends MultiForcer{ 
 
                private var _sprite:Sprite; 
                private var _particles:Array = new Array(); 
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                private var _maxParticles:uint = 200; 
                private var _g:Number = 10; 
                private var _k:Number = 0.005; 
                private var _vx:Number = 150; 
                private var _vy:Number = -100; 
                // number of sparks per explosion 
                private var _numSparks:uint = 10; 
                //minimum and maximum lifetime of sparks in seconds 
                private var _minLife:Number = 2; 
                private var _maxLife:Number = 4; 
                //maximum duration of fireworks in seconds 
                private var _duration:Number = 6; 
 
                public function FireworksMover(psprite:Sprite):void{ 
                        _sprite = psprite; 
                        super(_particles); 
                        createNewParticles(new Vector2D(400,200),0xffff00); 
                } 
 
                override protected function calcForce(pparticle:Particle):void{ 
                        var gravity:Vector2D = Forces.constantGravity(pparticle.mass,_g); 
                        var drag:Vector2D = Forces.drag(_k,pparticle.velo2D); 
                        force = Forces.add([gravity, drag]); 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        limitParticles(); 
                        ageParticles(); 
                } 
 
                private function createNewParticles(ppos:Vector2D,pcol:uint):void{ 
                        for (var i:uint=0; i<_numSparks; i++){ 
                                var newBall:Ball = new Ball(2,pcol,1,0,false); 
                                newBall.pos2D = ppos; 
                                newBall.velo2D = new Vector2D((Math.random()-0.5)*_vx,! 
(Math.random()-0.5)*_vy); 
                                newBall.lifetime = _minLife + (_maxLife-_minLife)! 
*Math.random(); 
                                _sprite.addChild(newBall); 
                                _particles.push(newBall); 
                        } 
                } 
 
                private function limitParticles():void{ 
                        if (_particles.length > _maxParticles){ 
                                _sprite.removeChild(_particles[0]); 
                                _particles.shift(); 
                        } 
                } 
 
                private function ageParticles():void{ 
                        for (var i:uint=0; i<_particles.length; i++){ 
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                                var particle:Ball = _particles[i]; 
                                particle.age += dt; 
                                particle.alpha += -0.005; 
                                if (particle.age > particle.lifetime){ 
                                        if (time<_duration){ 
                                                explode(particle); 
                                        } 
                                        removeParticle(particle,i); 
                                } 
                        } 
                } 
 
                private function explode(pparticle:Particle){ 
                        createNewParticles(pparticle.pos2D,0x00ff00); 
                } 
 
                private function removeParticle(pparticle:Particle,pnum:uint):void{ 
                        _sprite.removeChild(pparticle); 
                        _particles.splice(pnum,1); 
                } 
 
        } 
} 

First note that we changed the value of _vx from 100 to 150. This is just so that the sparks spread 
horizontally more than vertically. We added four new private variables: _numSparks, _minLife, _maxLife, 
and _duration to store the number of sparks, their minimum and maximum lifetimes, and the duration of 
the animation, respectively. The next change is that the createNewParticles() method is now called 
from within the constructor, not within the moveObject() method. This means that the particles are 
created initially, not at every timestep. The createNewParticles() method is modified to accept a new 
argument that specifies the color of the sparks, to create a number _numSparks of particles at a time 
instead of just one, and to assign to those particles a random lifetime between _minLife and _maxLife. 

The ageParticles() method is modified so that, as long as _duration has not been exceeded, any 
particle that exceeds its lifetime explodes before being removed. The explosion is handled by the 
explode() method, which simply calls the createNewParticles() method and specifies the position of 
the dying particle as the location for the explosion and gives a new color for the next generation of sparks. 

Run the code and you will be treated to a fireworks display (see Figure 12-7). Needless to say, you can 
tweak the animation endlessly to improve the appearance and add further effects such as trailing sparks, 
smoke, and even sound effects. We’ve done our job of showing you how to implement the basic physics. 
Now go for it! 

In the source code, we have also included a modified version of the simulation in files named 
Fireworks2.as and FireworksMover2.as. This is an interactive version where you click and hold down 
the mouse anywhere on the stage. The number of sparks _numSparks will be set to equal the duration in 
seconds for which you hold down the mouse, so the longer you press the mouse the greater the number of 
sparks that will be produced per explosion. When you release the mouse, the initial explosion will take 
place at the location of the mouse. The colors of the sparks are also randomized in this version. Try it out! 
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Figure 12-7. Fireworks! 

Particle animations with long-range forces 
It’s now time to transcend reality and start playing around with particles and physics. In this section, we’ll 
be moving lots of particles around under the action of long-range forces and create some interesting 
patterns and animations. 

In this section and the next, we’ll generally be dealing with large numbers of particles and lots of 
calculations. To reduce any unnecessary overheads, we shall therefore make use of a slightly lighter 
version of the Ball class that we’ll call Star. The Star class is similar to the Ball class, but does not 
draw a gradient fill and so does away with the extra code needed to do that. The remaining examples in 
this chapter will make use of the Star class. 

Particle paths in a force field 
Particle trajectories are commonly used in generative art projects. We’ll now set up a simple example 
using multiple particles that can be used as a basis for further explorations. 

The idea of this animation is very simple. We set up a number of stars randomly around a central attractor 
and give them small random velocities. The stars are subjected to a gravitational force toward the attractor 
and move around it, tracing trajectories. 

The setup file is called LongRange.as and contains the following code: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Star; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class LongRange extends Sprite{ 
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                public function LongRange():void{ 
                        init(); 
                } 
                private function init():void{ 
 
                        // create a stationary attracting nucleus 
                        var massNucleus:Number = 10000; 
                        var nucleus:Star = new Star(20,0x333333,massNucleus); 
                        nucleus.pos2D = new Vector2D(400,400); 
                        addChild(nucleus); 
 
                        // initial distribution of stars 
                        var stars:Array=new Array(); 
                        var numStars:Number = 50; 
                        for (var i:Number=0;i<numStars; i++){ 
                                var star:Star = new Star(5,0xffff00,1000); 
                                star.pos2D = new Vector2D(Math.random()*stage.stageWidth,! 
 Math.random()*stage.stageHeight); 
                                star.velo2D = new Vector2D(50*(Math.random()-0.5),! 
 50*(Math.random()-0.5)); 
                                addChild(star); 
                                stars.push(star); 
                        } 
 
                        // make the stars move 
                        var mover:LongRangeMover=new LongRangeMover(stars,nucleus); 
                        mover.startTime(); 
                } 
        } 
} 

This code should be very easy to follow and requires no explanation. The only significantly new thing is 
that we are creating Star instances instead of Ball instances. The mover class LongRangeMover 
contains the following code: 
 
package { 
        import com.physicscodes.motion.MultiForcer2; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.objects.Star; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.math.Graph; 
 
        public class LongRangeMover extends MultiForcer2{ 
                private var _particles:Array; 
                private var _attractor:Star; 
                private var _massAttractor:Number; 
                private var _center:Vector2D; 
                private var _G:Number = 10; 
                private var _graph:Graph; 
                private var _stageWidth; 
                private var _stageHeight; 
                private var _cols:Array = new Array(); 
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                public function LongRangeMover(pparticles:Array,pattractor:Star):void{ 
                        _massAttractor = pattractor.mass; 
                        _center = pattractor.pos2D; 
                        _particles = pparticles; 
                        _attractor = pattractor; 
                        _stageWidth = pattractor.stage.stageWidth; 
                        _stageHeight = pattractor.stage.stageHeight; 
                        setupCols(); 
                        setupGraph(); 
                        super(pparticles); 
                } 
 
                override protected function calcForce(pparticle:Particle,pnum:uint):void{ 
                        var radius:Vector2D=pparticle.pos2D.subtract(_center); 
                        var gravityCentral:Vector2D; 
                        if (radius.length < _attractor.radius) { 
                                gravityCentral = new Vector2D(0,0); 
                        } 
                        else{ 
                                gravityCentral = Forces.gravity(_G, _massAttractor,! 
 pparticle.mass, radius); 
                        } 
                        force = gravityCentral; 
                        plotGraph(pparticle,_cols[pnum]); 
                } 
 
                private function setupCols():void{ 
                        for (var i:uint=0; i<_particles.length; i++){ 
                                _cols.push(0xffffff*Math.random()); 
                        } 
                } 
 
                private function setupGraph():void { 
                        _graph = new Graph(0, _stageWidth, 0, _stageHeight, 0, 0,! 
 _stageWidth, _stageHeight); 
                        _attractor.stage.addChild(_graph); 
                } 
                private function plotGraph(pparticle:Particle,pcol:uint):void{ 
                        _graph.plot([pparticle.xpos], [-pparticle.ypos], pcol, false, true); 
                } 
        } 
} 

Again, there is little that you have not seen before in this code, and we’ll focus on the few new bits. In 
calcForce(), we are subjecting the stars to the gravitational force due to the attractor using the 
Forces.gravity() function, but note that we are setting that force to zero if the stars happen to be within 
the attractor. The setupCols() method sets up an array with random uint values to represent colors, 
and they are used at the end of calcForce() to plot the trajectory of each star in a different random color. 

Run the simulation and play around by changing the parameters and modifying it in any way you can think 
of. If you have a slow machine, you might want to reduce the number of particles. You can come up with 
some interesting patterns (see, for example, Figure 12-8). 
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Figure 12-8. An example of particle trajectories under a central gravitational force 

Building a wormhole 
In this wacky example we are going to create something that does not reflect any real physics but is 
nevertheless interesting to watch! 

A wormhole is a hypothetical object in which you enter a black hole and emerge at some other location in 
space. In our animation, we’ll have a wormhole made up of a black hole that sucks in stars and a white 
hole that spews them out again. To make the animation more visually interesting, the stars coming out of 
the black hole will be increased in size and given a randomized velocity back toward the black hole, 
creating a cycling system. What do you expect to happen eventually? Let’s find out. Here is the code in the 
setup class, Wormhole.as: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Star; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class Wormhole extends Sprite{ 
                public function Wormhole():void{ 
                        init(); 
                } 
                private function init():void{ 
                        // create a stationary black hole 
                        var blackHole:Star = new Star(20,0x222222,10000); 
                        blackHole.pos2D = new Vector2D(400,400); 
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                        addChild(blackHole); 
 
                        // create a stationary white hole 
                        var whiteHole:Star = new Star(10,0xffffff); 
                        whiteHole.pos2D = new Vector2D(400,100); 
                        addChild(whiteHole); 
 
                        // create an initial distribution of stars 
                        var numStars:uint = 1000; 
                        var stars:Array=new Array(); 
                        for (var i:Number=0;i<numStars; i++){ 
                                var star:Star = new Star(2,0xffff00); 
                                star.pos2D = new Vector2D(Math.random()*stage.stageWidth,! 
 Math.random()*stage.stageHeight); 
                                addChild(star); 
                                stars.push(star); 
                        } 
 
                        // make the stars move 
                        var mover:WormholeMover=new WormholeMover(stars,blackHole,whiteHole); 
                        mover.startTime(); 
                } 
        } 
} 

We create a black hole in the middle of the stage and a white hole some distance away. We next create 
1000 stars and place them randomly on the stage. The stars are animated using an instance of the 
WormholeMover class. The code in this class is shown below: 
 
package { 
        import com.physicscodes.motion.MultiForcer2; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.objects.Star; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.math.Graph; 
 
        public class WormholeMover extends MultiForcer2{ 
          private var _particles:Array; 
                private var _attractor:Star; 
                private var _massAttractor:Number; 
                private var _radiusAttractor:Number; 
                private var _center:Vector2D; 
                private var _emitterPos:Vector2D; 
                private var _G:Number = 10; 
 
                public function WormholeMover(pparticles:Array, pattractor:Star,! 
 pemitter:Star):void{ 
                        _massAttractor = pattractor.mass; 
                        _radiusAttractor = pattractor.radius; 
                        _center = pattractor.pos2D; 
                        _emitterPos = pemitter.pos2D 
                        _particles = pparticles; 
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                        _attractor = pattractor; 
                        super(pparticles); 
                } 
 
                override protected function calcForce(pparticle:Particle,pnum:uint):void{ 
                        var radius:Vector2D=pparticle.pos2D.subtract(_center); 
                        var gravityCentral:Vector2D; 
                        if (radius.length < _attractor.radius) { 
                                gravityCentral = new Vector2D(0,0); 
                        } 
                        else{ 
                                gravityCentral = Forces.gravity(_G,_massAttractor,! 
pparticle.mass,radius); 
                        } 
                        force = gravityCentral; 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        recycleParticles(); 
                } 
 
                private function recycleParticles():void{ 
                        for (var i:uint=0; i< _particles.length; i++){ 
                                var star:Star = _particles[i]; 
                                var radius:Vector2D = star.pos2D.subtract(_center); 
                                if (radius.length<_radiusAttractor){ 
                                        star.pos2D =_emitterPos; 
                                        star.velo2D = new Vector2D((Math.random()-0.5)*50,! 
 Math.random()*10); 
                                        star.radius *= 1.5; 
                                } 
                        } 
                } 
        } 
} 

The constructor and calcForce() method are nearly the same as those in the previous example. The 
main novelty is that we have a new recycleParticles() method that is called from an overriding 
moveObject() method. The recycleParticles() method moves particles that enter the black hole to 
the location of the white hole, gives them a random downward velocity, and increases their radius by 50 
percent. 

If you run the code, you’ll find that the stars are sucked into the black hole, emerging larger out of the white 
hole. Because they are spewed around the black hole again, some of the stars are attracted back into it, 
while others end up in an orbit around it. Some stars might manage to escape, depending on what 
maximum magnitude of velocity you set. A few stars go through the wormhole a few times, growing bigger 
and bigger. Eventually you end up with stars of different sizes trapped in perpetual orbit around the black 
hole, as shown in Figure 12-9. Because those stars are in a closed orbit around the black hole and having 
originated from the white hole, their orbits close back on the white hole, giving the impression that the 
latter is also attracting them! 
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Figure 12-9. Stars circulating through a wormhole! 

Interacting particle systems 
So far, the particle systems we have looked at have not involved any mutual interactions between the 
particles. For example, you could let the particles exert a gravitational force on each other. This would 
create some interesting effects. The trouble is that the number of calculations then becomes very large as 
the number of particles is increased. For N particles, there are on the order of N2 interactions because 
every particle interacts with every other particle. Even with only 100 particles, that’s 10,000 extra gravity 
calculations per timestep! The next two examples will illustrate different ways in which we may be able to 
handle this. 

Multiple particles under mutual gravity 
In this example, we will modify the gravity animations in the previous two examples by including mutual 
gravitational forces between the stars. In physics jargon, this will be a direct N-body calculation. 

The following listing is the code in the setup file MultiGravity.as: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.objects.Star; 
 
        public class MultiGravity extends Sprite{ 
                public function MultiGravity():void{ 
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                        init(); 
                } 
                private function init():void{ 
                        // create a stationary attracting nucleus 
                        var massNucleus:Number = 1000; 
                        var nucleus:Star = new Star(20,0x333333,massNucleus); 
                        nucleus.pos2D = new Vector2D(stage.stageWidth/2, stage.stageHeight/2); 
                        addChild(nucleus); 
 
                        // initial distribution of stars 
                        var stars:Array=new Array(); 
                        var numStars:uint = 200; 
                        var massStar:Number = 100; 
                        var vmag:Number = 10; 
                        for (var i:Number=0;i<numStars; i++){ 
                                var star:Star = new Star(2,0xffff00,massStar*! 
(Math.random()+0.1)); 
                                star.pos2D = new Vector2D(Math.random()*stage.stageWidth, ! 
Math.random()*stage.stageHeight); 
                                star.velo2D = new Vector2D(vmag*(Math.random()-0.5), vmag*! 
(Math.random()-0.5)); 
                                addChild(star); 
                                stars.push(star); 
                        } 
 
                        // make the stars move 
                        var mover:MultiGravitator=new MultiGravitator(stars,nucleus); 
                        mover.startTime(); 
                } 
        } 
} 

Here we are creating a central attracting nucleus as well as 200 stars randomly positioned around it and 
with small random velocities. The mass of the nucleus is made 10 times larger than that of the stars, but 
those are parameters that you can change to see their effect. To move the stars, we have a 
MultiGravitator class that looks like this: 
 
package { 
        import com.physicscodes.motion.MultiForcer2; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
 
        public class MultiGravitator extends MultiForcer2{ 
 
                private var _particles:Array; 
                private var _massAttractor:Number; 
                private var _center:Vector2D; 
                private var _G:Number = 1; 
                private var _eps:Number = 1; 
                private var _rmin:Number = 100; 
 
                public function MultiGravitator(pparticles:Array,pattractor:Particle):void{ 
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                        _massAttractor = pattractor.mass; 
                        _center = pattractor.pos2D; 
                        _particles = pparticles; 
                        super(pparticles); 
                } 
 
                override protected function calcForce(pparticle:Particle,pnum:uint):void{ 
                        var radius:Vector2D=pparticle.pos2D.subtract(_center); 
                        var gravityCentral:Vector2D; 
                        if (radius.length < 20) { 
                                gravityCentral = new Vector2D(0,0); 
                        } 
                        else{ 
                                gravityCentral = Forces.gravity(_G,_massAttractor,! 
pparticle.mass,radius); 
                        } 
                        var gravityMutual:Vector2D = new Vector2D(0,0); 
                        for (var i:uint=0; i<_particles.length; i++){ 
                                if (i != pnum){ 
                                        var particle:Particle = _particles[i]; 
                                        var radiusP:Vector2D = pparticle.pos2D.subtract! 
(particle.pos2D); 
                                        if (radiusP.length < _rmin){ 
                                                var gravityP:Vector2D =! 
 Forces.gravityModified(_G, particle.mass, pparticle.mass, radiusP, _eps); 
                                                gravityMutual.incrementBy(gravityP); 
                                        } 
                                } 
                        } 
                        force = Forces.add([gravityCentral, gravityMutual]); 
                } 
 
        } 
} 

The structure of MultiGravitator is quite simple: it consists of just the constructor and calcForce(). 
You are already familiar with the first half of the code in calcForce(), which computes the force 
gravityCentral on the stars due to the central nucleus. The second half of the code calculates the total 
force gravityMutual on a star because of all the other stars (excluding itself, hence the if (i != 
pnum){} condition) and adds it to the gravityCentral force to get the total force on each star. 

There are two new features in this code, in another if statement nested within the first: 
 
if (radiusP.length < _rmin){ 
        var gravityP:Vector2D = Forces.gravityModified(_G, particle.mass, pparticle.mass,! 
 radiusP, _eps); 
        gravityMutual.incrementBy(gravityP); 
} 

The first new feature is the if condition, which checks to see whether the distance of the current star from 
any other star is less than a certain minimum distance _rmin. The gravity force due to the latter star is 
included only if the condition is satisfied. This is called the local interaction approximation. The idea is that 
because gravity is an inverse square law, its magnitude falls off rapidly with distance. So if the other star is 
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very far away, including the force it exerts won’t make much difference to the total force and is just a waste 
of resources. So you include only the influence of the nearest neighbors. In an accurate simulation, you 
would have to be careful to implement this approximation properly, as there are some subtleties. But 
because we are just playing around, so to speak, there is no need to go into those finer points. The value 
of _rmin chosen in the code is 100 pixels, but you can experiment with other values. Giving _rmin the 
value of 0 would effectively exclude all mutual interactions between the stars. Giving _rmin a value larger 
than 800 would include interactions between all 200 stars: that’s about 400,000 extra gravity calculations, 
and will certainly slow down your animation! 

The second new feature is that we are using a modified version of the gravity function called 
Forces.gravityModified() to compute the interactions between the stars. The new function is defined 
like this: 
 
static public function gravityModified(G:Number, m1:Number, m2:Number, r:Vector2D,! 
 eps:Number):Vector2D { 
        return r.multiply(-G*m1*m2/((r.lengthSquared+eps*eps)*r.length)); 
} 

Comparing this with the Forces.gravity() function, you will find that we have introduced a new 
parameter eps, whose square gets added to the r2 term in the denominator of the function. The 
corresponding mathematical formula is this: 

F =G m1 m2

r2 + ε 2  

The ) symbol stands for the eps parameter. Why do we modify the gravity function in this way? When two 
objects exerting gravitational forces on each other get very close, the forces become very large or even 
infinite (because r goes to zero, and we end up dividing by a small number or zero). This, as you will recall, 
causes the two objects to accelerate enormously and be sent flying off in random directions. The ) factor is 
a common “fudge” to bring that under control. Because )2 is always positive (being the square of a real 
number), the denominator will never be zero. And as long as ) is small, it will not alter the force calculation 
much for most values of r except the very smallest. In the example, eps has a value of 1 pixel. You can 
also experiment with different values to see what effect it produces. 

Run the simulation and experiment with different values of the parameters. For example, you can change 
the masses of the central nucleus and the stars to change the relative importance of the central force 
versus the mutual forces between the stars. Running the code with the default values of the parameters 
will make the stars tend to lump together in different locations, with a few lingering around the central 
attractor. A screenshot is shown in Figure 12-10. Again, you may wish to reduce the number of particles if 
the simulation runs slow on your machine. 
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Figure 12-10. Lots of stars exerting gravitational forces on one another 

A simple galaxy simulation 
What would you need to do to simulate the motion of stars in a galaxy? Well, that is not a trivial job to do 
properly, typically requiring some serious hardware and lots of physics and code. But it is possible to cheat 
and come up with a very simplified approach. While the result certainly won’t look like that in more 
sophisticated approaches, it will give you something interesting to play and experiment further with. 

The most obvious problem that we hit when attempting to model a system like this is how to handle the 
large number of particles you’d need. We are talking at least thousands here, and possibly tens of 
thousands. A direct N-body calculation is impractical with such large numbers of particles, especially for an 
animation that’s going to run in a web browser! 

An alternative approach is to consider the motion of each star in the effective gravitational force field due 
to all the other stars taken together. This is the so-called mean field approach. The star system is then 
effectively considered as a non-interacting collisionless system with each star moving independently in that 
mean field. The mean field can of course evolve over time as the positions of the stars change, and this 
evolution needs to be incorporated in such a simulation. 

There are numerical methods for calculating the mean field due to a general distribution of point masses, 
but they are beyond the scope of this book. However, if we make the assumption that the stars are 
distributed in a spherically symmetric way around the galactic center, things become much simpler thanks 
to a neat mathematical principle. The principle says that for any spherically symmetric mass distribution, 
the gravitational force at any distance r from the center is the same force exerted by the total mass 
enclosed within a sphere of radius r, with that mass taken to be at the center. Any mass outside that radius 
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does not have any effect. That makes things pretty easy. If you start a simulation with a spherically 
symmetric distribution of stars, it should remain spherically symmetric at all times. So you can apply this 
principle at each timestep. 

The stars in a galaxy are not the only source of mass. Many galaxies have a central nucleus that may be a 
supermassive black hole. So the mass of this galactic nucleus needs to be taken into account. But that’s 
easy; we just use the Forces.gravity() function with a specified mass for the nucleus. 

There is also something more exotic that lurks in galaxies: dark matter. In fact, it is estimated that most of 
the mass in a galaxy exists in a dark matter halo around the galaxy. Again, assuming spherical symmetry, 
the contribution of this dark matter to the gravitational force can be calculated in the same way as that of 
the stars. 

With these basic ingredients, let’s put together a quick and dirty galaxy simulation. The setup code is in the 
file Galaxy.as, which looks like this: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Star; 
 
        public class Galaxy extends Sprite{ 
                public function Galaxy():void{ 
                        init(); 
                } 
                private function init():void{ 
                        // create a stationary galaxy center 
                        var nucleus:Star; 
                        //var massNucleus:Number = 0; 
                        var massNucleus:Number = 100000; 
                        nucleus = new Star(20,0x333333,massNucleus); 
                        nucleus.pos2D = new Vector2D(stage.stageWidth/2, stage.stageHeight/2); 
                                addChild(nucleus); 
 
                        // initial distribution of stars 
                        var stars:Array = new Array(); 
                        var numStars:uint = 10000; 
                        var massStar:Number = 10; 
                        var veloMag:Number = 20; 
                        var maxRadius:Number = 400; 
                        for (var i:Number=0; i<numStars; i++){ 
                                var star:Star = new Star(1,0xffff00,massStar); 
                                var radius:Number = nucleus.radius +! 
 (maxRadius-nucleus.radius)*Math.random(); 
                                var angle:Number = 2*Math.PI*Math.random(); 
                                star.pos2D = new Vector2D(radius*Math.cos(angle),! 
 radius*Math.sin(angle)).add(nucleus.pos2D); 
                                var rvec:Vector2D = nucleus.pos2D.subtract(star.pos2D); 
                                star.velo2D = rvec.perp(veloMag); 
                                addChild(star); 
                                stars.push(star); 
                        } 
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                        // make the stars move 
                        var mover:GalaxyMover=new GalaxyMover(stars,nucleus); 
                        mover.startTime(); 
                } 
        } 
} 

We first create a galactic nucleus of mass 100,000 units and radius 20 pixels and place it in the middle of 
the stage. Then we create 10,000 stars (depending on your computer’s speed, you might want to reduce 
this number), each with mass 10 units, and place them in a random circular distribution around the galactic 
center (that’s what the bit of trig code achieves). Note that each “star” here really represents lots of stars; 
there are typically billions of stars in a galaxy, not thousands! The stars are then given an initial tangential 
velocity around the galactic center. Note that the velocity magnitude for each star has the same value 
veloMag; that’s because observed galactic rotation curves show that the velocity in a galaxy is 
approximately independent of the distance from the galactic center. There are already a lot of parameters 
to play with here, such as the mass of the galactic center, the mass of each star, the rotational velocity, 
and so on. You can also try out different initial positions and velocities for the stars. In the file Galaxy.as 
there are some commented lines with different options for these initial conditions. Do try them out to see 
how they lead to different evolutions of the galaxy. 

Here is the full source code for the GalaxyMover class that drives the simulation: 
 
package { 
        import com.physicscodes.motion.MultiForcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.objects.Star; 
 
        public class GalaxyMover extends MultiForcer{ 
                private var _massAttractor:Number; 
                private var _radiusAttractor:Number; 
                private var _center:Vector2D; 
                private var _orbiters:Array; 
                private var _massStars:Array=new Array(); // total mass of stars! 
 within radius r 
                private var _massDark:Array=new Array(); // total mass of dark matter! 
 within radius r 
                private var _G:Number = 1; 
                private var _rmax:Number = 500; 
                private var _constDark:Number=1000; 
                private var _A:Number=1; 
                private var _alpha:Number=0.5; 
 
                public function GalaxyMover(porbiters:Array,pattractor:Star):void{ 
                        _massAttractor = pattractor.mass; 
                        _radiusAttractor = pattractor.radius; 
                        _center = pattractor.pos2D; 
                        _orbiters = porbiters; 
                        super(porbiters); 
                } 
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                override protected function moveObject():void{ 
                        calcMass(); 
                        super.moveObject(); 
                } 
 
                override protected function calcForce(porbiter:Particle):void{ 
                        var radius:Vector2D = porbiter.pos2D.subtract(_center); 
                        if (radius.length < _radiusAttractor) { 
                                force=new Vector2D(0,0); 
                        } 
                        else{ 
                                force = Forces.gravity(_G,_massAttractor+_massStars! 
[Math.ceil(radius.length)]+_massDark[Math.ceil(radius.length)], porbiter.mass,radius); 
                        } 
                } 
 
                private function calcMass():void{ 
                        var distanceToCenter:Number; 
                        var orbiter:Particle; 
                        var massStarRing:Array = new Array(); 
                        var massDarkRing:Array = new Array(); 
                        for (var l:uint=0; l<_rmax; l++){ 
                                massStarRing[l] = 0; 
                                massDarkRing[l] = _constDark*l*l*Math.exp! 
(-_A*Math.pow(l,_alpha)); 
                        } 
                        for (var k:uint=0; k<_orbiters.length-1; k++){ 
                                orbiter = _orbiters[k]; 
                                distanceToCenter = orbiter.pos2D.subtract(_center).length; 
                                massStarRing[Math.ceil(distanceToCenter)] += orbiter.mass; 
                        } 
                        _massStars[0] = massStarRing[0]; 
                        _massDark[0] = massDarkRing[0]; 
                        for(var j:uint=1; j<_orbiters.length-1; j++){ 
                                _massStars[j] = _massStars[j-1] + massStarRing[j]; 
                                _massDark[j] = _massDark[j-1] + massDarkRing[j]; 
                        } 
                        //trace(_massAttractor,_massStars[_rmax-1],_massDark[_rmax-1]); 
                } 
        } 
} 

Let’s start with the calcForce() method. As you can see from the code, we are calculating the total 
gravitational force on each star at its distance from the center (radius) by using the Forces.gravity() 
function, with a mass that is the sum of the galactic nucleus mass and the masses of the stars and dark 
matter within that radius, as stored in the arrays _massStars and _massDark. These arrays are updated 
at each timestep by summing the mass at different distances from the center in the calcMass() method. 
A commented out line at the end of calcMass() traces the three total masses. 
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The mass of the stars is computed simply by locating the stars. For the dark matter, things are different 
because it is not included in the simulation as an object. Therefore, we prescribe a mass distribution based 
on the so-called Einasto profile, which is commonly used in computer simulations of dark matter. The 
mathematical form of that distribution is the following: 

ρ r( ) = ρ0 exp −Arα( )  

Here *0, A and r are constants that must be specified. This formula gives the mass density (mass per unit 
volume). To get the mass at a distance r, one must multiply this mass density by the volume of a thin 
spherical shell of thickness dr. This introduces an extra factor of 4(r2dr (surface area of sphere times the 
thickness of the spherical shell). This gives the formula that is coded up in calcMass(). Don’t worry if this 
dark matter stuff seems a bit difficult to follow. We included it because it can change the dynamics of the 
interacting stars in a significant way, making for a “richer” simulation. But even if you don’t fully understand 
everything here you can still play with the relevant parameters to explore the range of possible effects you 
get with this additional physics included. 

If you run the code with the default parameter values, you should find that after successive initial 
contractions and expansions, the star distribution settles into a quasi steady state. Figure 12-11 shows a 
screenshot of what you might be able to see. One can even discern a hint of a spiral arm structure at times 
(see Figure 12-11), although it would take a more careful simulation to achieve that properly. Again, you 
can change the parameters in GalaxyMover, especially those of the dark matter distribution. It would be 
instructive to see how the simulation changes when you change the relative magnitudes of the galactic 
nucleus mass, the total star mass, and the total dark matter mass. Have fun! 
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Figure 12-11. A simple galaxy simulation 

Summary 
This chapter has provided a taste of what can be achieved with particles and some simple physics. In just 
a short chapter it is impossible to fully cover the subject. We therefore encourage you to search the Web 
and explore what has been achieved within the Flash community and beyond. There is also an open 
source AS3.0 particle engine called Flint, developed by Richard Lord. Take a look here: 
http://flintparticles.org. 

Many examples of inspiring creations by talented individuals exist, too numerous to mention here, but 
we’ve included relevant links on our web site: http://www.physicscodes.com. We’re also encouraging 
readers to share their creations on our website, so you can find more code, ideas, inspiration, and above 
all, you’ll be able to show off your own masterpieces! 
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Chapter 13 

Extended Objects 

In much of this book, we have focused on the motion of particles. In this chapter, we will explore the 
physics governing the motion of extended objects. This topic is important for obvious reasons: objects in 
everyday life are extended in space and have all sorts of shapes, sizes and behavior. To model the motion 
of extended objects, we need to cover some additional physics and methods. This is a big subject that 
could easily have filled several chapters, or even a whole book. We have therefore been selective in our 
coverage, focusing on two topics that we can cover in sufficient depth to provide a good introduction, 
instead of giving a wider but more superficial presentation. 

Topics covered in this chapter include these: 

! Rigid bodies: A rigid body is an extended object with a fixed shape and size. In addition to 
changing its position, such an object can also rotate to change its orientation. We will cover rigid 
body dynamics, rolling, and rigid body collisions, and illustrate them with a number of different 
examples. 

! Deformable bodies: Objects such as ropes and clothes can change their shapes. We can model 
such deformable bodies by means of mass-spring systems, building upon the principles 
discussed in Chapter 8. 

Most of the chapter is devoted to rigid bodies, with a much shorter section on deformable bodies. 

Rigid bodies 
A rigid body is defined as an object that maintains its shape and size when a force is applied to it. In other 
words, rigid bodies do not deform under the action of forces. The rigid body concept is an idealization 
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because in reality nearly all objects suffer some deformation when subjected to forces, even if it is by a 
minute amount. However, when modeling the motion of many objects, it is frequently possible to ignore 
any such deformation and still obtain good results. This is the approach we’ll adopt in this section. 

Basic concepts of rigid body modeling 
Before we can model the motion of rigid bodies, we need to review some relevant concepts from earlier 
chapters and introduce some new ones. These concepts will then be brought together in the next section 
to formulate the laws governing rigid body rotational motion. 

Rigid body motion versus particle motion 
The key difference in the motion of rigid bodies compared to that of particles is that they can undergo 
rotation as well as translation. The translational motion of a rigid body obeys the same laws as that of 
particles (as described in Chapter 5). We must now discuss how the rotational motion can be analyzed. 

Rotational kinematics 
In Chapter 9, we looked at the kinematics of rotational motion, introducing concepts such as angular 
displacement θ, angular velocity ω, and angular acceleration α. As a brief recap, here are the defining 
equations for some of these quantities: 

Angular velocity: 

ω = dθ
dt  

Angular acceleration: 

α = dω
dt  

These rotational kinematics variables are related to the corresponding linear variables, for example: 

Linear and angular displacements: 

s = r θ  
Linear and angular velocities: 

v = rω
 

Linear (tangential) and angular accelerations: 

a = rα  



Extended Objects 

397 

In the context of rigid body rotation, these formulas give the displacement, velocity, and tangential 
acceleration of a point on a rigid body at a distance r from the center of rotation in the absence of 
translational motion"or in addition to those due to translational motion. 

In addition to the tangential acceleration, there is a centripetal (radial) acceleration given by this formula: 

a = v2 / r = rω 2
 

Note that all points on a rigid body must have the same angular displacement, angular velocity, and 
angular acceleration, whereas the linear counterparts of these quantities depend on the distance r from the 
center of rotation. 

We shall also use vector equivalents of the preceding quantities and formulas. For example, the angular 
velocity is really a vector ω with a direction perpendicular to the plane of rotation and with an orientation as 
shown in Figure 13-1. The angular acceleration, as the derivative of the angular velocity, is therefore also 
a vector α. 

ω

 

Figure 13-1. Angular velocity as a vector 

Rotational kinematics with the Particle and Mover classes 
Although this section is about rigid body motion, with the eventual aim of simulating rotational dynamics, 
there are many occasions when you might need a particle or ball to rotate without necessarily dealing with 
full rigid body dynamics. Therefore, it is useful to have functionality that will enable PParticle instances to 
exhibit rotational kinematics. 

We accomplished this to some extent in Chapter 9 by introducing the angVelo property into the Particle 
class and the spinObject() method into the Mover class. Let’s now complete the task by including a 
corresponding property for angular displacement that we’ll call angDispl. 

Internally this property is stored in a private variable named _theta, with a corresponding getter/setter 
pair: 
 
private var _theta:Number=0; //angular displacement in radians 
 
public function get angDispl():Number{ 
        return _theta; 
} 
public function set angDispl(ptheta:Number):void{ 
        _theta = ptheta; 
        this.rotation = ptheta*180/Math.PI; 
} 
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Notice that angDispl is in radians and that the setter modifies the rotation property of the Particle 
instance by first converting it into radians. 

Next we update the spinObject() method of the Mover class to make use of the newly created 
angDispl property: 
 
protected function spinObject():void{ 
        if (_particle.angVelo !=0){ 
                _particle.angDispl += _particle.angVelo*_dt; 
                _particle.rotation = _particle.angDispl*180/Math.PI; 
        } 
} 

These changes will not only enable particles to exhibit rotational kinematics (but not dynamics) but also 
make it automatically available for the rigid body object and mover classes that we will build later by 
extending the Particle and Mover classes. 

Turning effect of a force: torque 
Suppose a rigid body is at rest and we want to translate it (give it some linear velocity). How do we do 
that? We need to apply a force. But what must we do if we want to rotate it about a given axis? Again we 
need to apply a force. But the line of action of the force must not pass through the axis. The turning effect 
of a force is known as a moment or torque, and is defined as the product of the force and the 
perpendicular distance of its line of action from the axis (see Figure 13-2): 

T = F d = F rsin θ( )  

Here, # is the angle between the force F and the vector r from the center of rotation to the point of 
application of the force. 

F 

d 

r 

 

Figure 13-2. Definition of torque due to a force 

In vector form, it is the following: 

T = r × F 

Note that the vector product is not commutative, so the order in which the product is performed matters. 
Because the vector product of two vectors gives a vector that is perpendicular to both, if r and F are in the 
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plane of the paper, the torque will point either into or out of the paper (see the section on the vector 
product in Chapter 3 for how to work out the direction of the resulting vector). 

From this definition, it is clear that the torque is zero if the line of action of the force passes through the 
axis. In general, a force will produce both a linear acceleration and a turning effect. 

Center of mass 
From what we have said in the last section, if an object is free to move (without any constraints) and you 
apply a force on it, it will undergo both a translation and a rotation. An exception arises if the line of action 
of the force passes through a special point known as the center of mass of the object. In that case, the 
applied force produces only translation, but no rotation. 

Center of mass is a general concept that applies to collections of point particles as well as to extended 
objects. In both cases, it represents the location at which the overall mass of the system appears to act. 
For a collection of point particles of mass m1, m2, … located at positions r1, r2, …, the position vector of the 
center of mass is given by the following formula: 

!

!
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++=
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So we add the products mr of the particles vectorally and divide the sum by their total mass. Using the 
symbol +, which stands for sum, we can write this formula in the following shorthand form: 

r =
mi ri-
mi-  

For a rigid body, a generalization of this formula is used by considering the body as being composed of a 
continuous distribution of particles. The center of mass of a rigid body can then be computed using the 
calculus formula: 

r =
rdm.
dm.  

The denominator of this formula is simply equal to the total mass of the rigid body. The location of the 
center of mass will depend on the shape of the body as well as on how its mass is distributed. For objects 
that are symmetrical and with a uniform mass distribution, the center of mass is located at their 
geometrical center. For example, the center of mass of a sphere is located at its center. It is similar for 
other objects such as a cuboids, discs, and rectangles. 

The center of mass is important for a number of reasons. First, it provides a connection between particle 
dynamics and rigid body dynamics: in terms of its translational motion, a rigid body can be thought of as a 
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particle located at its center of mass. Second, the analysis of rigid body motion is much simpler if 
expressed in terms of a coordinate system with the center of mass as the origin. 

Moment of inertia 
We said that torque is the analogue of force for rotational motion: torque is the cause of angular 
acceleration. What is the rotational analogue of mass (inertia)? This may not be obvious, but, as will be 
demonstrated in the next section, it is a quantity known as the moment of inertia. The moment of inertia is 
defined as the sum of mr2 for all the particles comprising the particle system or rigid body, where m is the 
mass of the particle and r is its distance from the axis of rotation. For a discrete system of particles, the 
definition of the moment of inertia (denoted by the symbol I) is therefore the following: 

I = mi ri
2-  

This formula tells us that the larger the mass of the particles or the greater their distance from the axis, the 
larger the moment of inertia. 

For a continuous distribution of mass such as a rigid body, the corresponding calculus definition is the 
following: 

I = r2 dm.  

Both these formulas tell us that the moment of inertia is a property that quantifies the mass distribution in a 
rigid body. Using the calculus formula, one can work out the moment of inertia of a variety of regular rigid 
bodies in both 2D and 3D. The result is a formula in terms of the total mass and some linear dimensions of 
the rigid body. 

For example, the moment of inertia of a hollow sphere of mass m and radius r about an axis through its 
center is given by the following formula: 

I = 2
3
mr2

 

Because moment of inertia depends on the mass distribution, a solid sphere of the same mass m and 
radius r has a different moment of inertia, being given by this formula: 

I = 2
5
mr2

 

So a hollow sphere has a larger moment of inertia (and is therefore harder to rotate) than a solid sphere of 
the same mass and radius. 
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The moment of inertia also depends on the axis around which the rotation takes place. For example, the 
solid cylinder shown in Figure 13-3 has a moment of inertia about the x-axis and y-axis given by the 
following formula (where m is its mass, r is the radius of its circular cross-section and h is its height): 

I = 1
12
m 3r2 + 4h2( )  

x 

y 

z

 

Figure 13-3. Rotation of a solid cylinder about different axes 

The corresponding moment of inertia of the same cylinder about the z-axis is given by a different formula: 

I = 1
2
mr2

 
You can find the moments of inertia of a wide variety of 2D and 3D objects in physics or engineering 
textbooks and web sites. 

Angular momentum 
Another important concept is that of angular momentum, which is the rotational analogue of linear 
momentum. For a particle rotating about a center at a distance r from it, the angular momentum (denoted 
by the symbol L) is defined as the product of its linear momentum and the distance r: 

L = pr = mvr  
In vector form, the angular momentum vector is the vector product of the position and momentum vectors: 

L = r × p  
Using the relationship between linear and angular velocity v = r,, gives this: 

L = mr2 ω  
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Therefore, for a collection of particles all rotating with the same angular velocity ,, the total angular 
momentum is given by the following: 

L = mi ri
2 ω-  

Using the definition of moment of inertia, this gives the following result: 

L = Iω  
In vector form, it is this: 

 
This result also applies to rigid bodies, with the appropriate calculus definition of moment of inertia. 

Modeling rigid bodies 
Armed with our knowledge of rigid body concepts, we may now build some basic classes that will help us 
create rigid body objects. 

Creating a RigidBody class 
The first class we’ll create is the RigidBody class. Because a rigid body has all the properties of a particle 
plus more, it makes sense to extend the Particle class. In fact, our RigidBody class will add only two 
new properties to those already included in the Particle class: center of mass and moment of inertia. So 
here is the RigidBody class code: 
 
package com.physicscodes.objects { 
        import com.physicscodes.math.Vector2D; 
 
        public class RigidBody extends Particle{ 
                private var _cm:Vector2D; // center of mass 
                private var _im:Number; // moment of inertia 
 
                public function RigidBody(pcm:Vector2D, pim:Number=1, pmass:Number=1,! 
 pcharge:Number=0){ 
                        this.mass = pmass; 
                        this.charge = pcharge; 
                        this.pos2D = pcm; // define position of rigid body as its center! 
 of mass 
                        _cm = pcm; 
                        _im = pim; 
                } 
 
                public function get momentOfInertia():Number{ 
                        return _im; 
                } 
                public function set momentOfInertia(pim:Number):void{ 
                        _im = pim; 
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                } 
                public function get centerOfMass():Vector2D{ 
                        return _cm; 
                } 
                public function set centerOfMass(pcm:Vector2D):void{ 
                        _cm = pcm; 
                        this.pos2D = pcm; 
                } 
        } 
} 

The public names of the two new properties are momentOfInertia and centerOfMass. The former is a 
Number; the latter is of Vector2D type. Note that the pos2D property of a RigidBody object is defined as 
its centerOfMass via an assignment in the constructor. That means whenever a RigidBody object is 
instantiated, it will be placed at the location specified by its center of mass. 

Extending the RigidBody class 
Like Particle, the RigidBody class has no graphics. To do anything with it in practice, you need to 
extend it and include some graphics. Let’s create some examples that will be used later in this chapter. 

The BallRB class 
First, let’s modify the Ball class by extending RigidBody instead of Particle. We’ll call the new class 
BallRB. If you look at the code you’ll find that it’s very similar to that of Ball. BallRB takes two more 
parameters than Ball; as you’d expect, these are the center of mass and the moment of inertia, specified 
as parameters pcm and pim, respectively: 
 
public function BallRB(pcm:Vector2D, pradius:Number=20, pcolor:uint=0x000000, pim:Number=1,! 
 pmass:Number=1, pcharge:Number=0, pgradient:Boolean=true){} 

Except for pcm, all the parameters are optional. 

The PolygonRB class 
Next we create a PolygonRB class in a similar way to the BallRB class. The parameters in the constructor 
of this class are as follows: 
 
public function PolygonRB(pvertices:Array, pcm:Vector2D, pcolor:uint=0x000000, pim:Number=1,! 
 pmass:Number=1, pcharge:Number=0){ 

In addition to the new parameters pcm and pim (similar to the BallRB class), the PolygonRB class has a 
pvertices parameter. This is an array of Vector2D values that corresponds to the locations of the 
vertices relative to the center of mass. 

The PolygonRB class draws a Polygon with a fill of the specified color. The order in which the vertices are 
specified is important. The code draws the Polygon by joining the vertices in the specified order, so that 
different shapes result from different orderings of the vertices. 
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The RectangleRB class 
The RectangleRB class extends the PolygonRB class, drawing a filled rectangle of specified width and 
height, with the center of mass located at its geometrical center: 
 
public function RectangleRB(prwidth:Number, prheight:Number, pcm:Vector2D,! 
 pcolor:uint=0x000000, pim:Number=1, pmass:Number=1, pcharge:Number=0){ 

You can, of course, use the PolygonRB class to create a rectangular rigid body, but this class makes the 
task easier. 

Using the rigid body classes 
The file RigidBodyTest.as contains code that demonstrates the use of these rigid body classes. This 
code produces a stationary rectangular rigid body rotated by 45°, a stationary ball rotated by 90°, and a 
rotating square rigid body: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.RigidBody; 
        import com.physicscodes.objects.PolygonRB; 
        import com.physicscodes.objects.RectangleRB; 
        import com.physicscodes.objects.BallRB; 
 
        public class RigidBodyTest extends Sprite{ 
                public function RigidBodyTest():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var cmR:Vector2D = new Vector2D(100,100); 
                        var rectangle:RectangleRB = new RectangleRB(60,30,cmR,0xff0000); 
                        rectangle.angDispl = Math.PI/4; 
                        addChild(rectangle); 
 
                        var cmB:Vector2D = new Vector2D(100,300); 
                        var ball:BallRB = new BallRB(cmB,40,0x0000ff); 
                        ball.angDispl = Math.PI/2; 
                        addChild(ball); 
 
                        var cm:Vector2D = new Vector2D(275,200); 
                        var vertices:Array = new Array(); 
                        var vertex:Vector2D; 
                        vertex = new Vector2D(50,50); 
                        vertices.push(vertex); 
                        vertex = new Vector2D(50,-50); 
                        vertices.push(vertex); 
                        vertex = new Vector2D(-50,-50); 
                        vertices.push(vertex); 
                        vertex = new Vector2D(-50,50); 
                        vertices.push(vertex); 
                        var polygon:PolygonRB = new PolygonRB(vertices,cm); 
                        addChild(polygon); 



Extended Objects 

405 

                        polygon.velo2D = new Vector2D(10,0); 
                        polygon.angVelo = 1; 
                        polygon.move(); 
                } 
        } 
} 

By extending Particle, these rigid body classes can already exhibit rotational as well as linear 
kinematics when used with Mover, as demonstrated by assigning a non-zero angular velocity (as well as a 
non-zero linear velocity) and invoking the move() method on the last object, polygon: 
 
polygon.velo2D = new Vector2D(10,0); 
polygon.angVelo = 1; 
polygon.move(); 

This makes the polygon (a rectangle) rotate clockwise while moving slowly to the right. 

This is all good, but there are much more interesting things we can do if we implement rotational dynamics 
into our simulations. But before we can do that we need a bit more theory. 

Rotational dynamics of rigid bodies 
Having developed relevant rotational motion concepts in analogy with their linear counterparts, we are now 
in a position to formulate the laws of rotational dynamics. Let’s start with the most important one: the 
rotational equivalent of Newton’s second law of motion. 

Newton’s second law for rotational motion 
Consider a rigid body that is rotating about an axis under the action of a force F (which produces a torque 
T), as shown in Figure 13-4. 
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Figure 13-4. A rotating rigid body 
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Let’s think of the rigid body as being composed of little particles, each of mass m, each undergoing a 
tangential acceleration a (ignore any radial acceleration, which does not contribute to rotation). Then, 
applying Newton’s second law to such a particle gives the following: 

F = ma  

Recalling the formula relating the tangential acceleration to the angular acceleration, a = rα, we can write 
the previous formula as follows: 

F = mrα  

Therefore, the torque T = Fr on the particle is obtained by multiplying the previous formula by r to give this: 

T = mr2 α  

To get the total torque on the rigid body, we sum the torques on each particle to give the following formula: 

T = mr2 α-  
Strictly speaking, we should use an integral rather than a discrete sum for a rigid body, but the reasoning 
and final answer are the same: because an integral is nothing but a continuous sum. So we’ll use the 
simpler discrete summation notation here. 

Because all points on a rigid body have the same angular acceleration, α is a constant, and we can take it 
out of the sum. Recognizing + mr2 as the moment of inertia I, we then obtain the following final result: 

T = Iα  
In vector form, it is this: 

 
This formula is the equivalent of Newton’s second law F = ma for rotational motion, with torque, moment of 
inertia, and angular acceleration replacing force, mass, and linear acceleration, respectively. The formula 
enables us to calculate the angular acceleration of a rigid body from the torque exerted on it. It will be 
implemented in the same way that F = ma was implemented in Forcer. 

As a special case, if the torque T is zero, the formula implies that the angular acceleration is also zero. 
This is the analogue of Newton’s first law of motion. 

Just as in linear motion, you can have retarding torques as well as accelerating torques. For example, you 
apply an accelerating torque to make a merry-go-round spin. It then slows down and stops because of the 
action of a retarding torque applied by friction. 
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Rigid bodies in equilibrium 
In Chapter 4, we discussed the situation of an object in equilibrium under the action of multiple forces. For 
example, an airplane moving at constant velocity is in equilibrium under the action of four main forces 
(gravity, thrust, drag, and lift). The condition for equilibrium is that the forces balance (the resultant force is 
zero). But for an extended object, such as a rigid body, this condition is not enough. The resultant torque 
must also be zero; otherwise, the object will undergo rotational acceleration. 

This concept of rotational equilibrium is well illustrated with the example of a balance (see Figure 13-5). 

 

Figure 13-5. Rotational equilibrium illustrated by a balance 

Assuming that the balance is in equilibrium, the downward force exerted by the combined weights on 
either side of the pivot is balanced by the upward contact force exerted by the pivot. Also, the clockwise 
torque or moment generated by one weight is balanced by the counterclockwise torque generated by the 
other weight: this is known as the principle of moments. In vector terms, one of the torques points out of 
the paper and the other points into the paper. 

An example of a situation in which the resultant force may be zero and the resultant torque is not is when 
you turn a knob (see Figure 13-6). In that case, there are two opposite forces applied to either side of the 
knob. If their magnitudes are equal, they will give a zero resultant force. However, their torques will be in 
the same direction (into the paper) because they both generate clockwise rotations. This is an example of 
a couple: a pair of equal and opposite forces that have parallel non-coincident lines of action that therefore 
generate a resultant torque. 

 

Figure 13-6. A couple 

Conservation of angular momentum 
Just as there is a rotational analogue of Newton’s second law, rotational analogues of other laws exist, too. 
We shall now state these laws without proof, starting with the principle of conservation of angular 
momentum. 
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This principle states that the angular momentum of a rigid body or a system of particles is conserved if no 
external torque acts on it. For example, if an object is spinning at constant angular velocity, it will carry on 
doing so unless an external torque is applied to it. That’s the reason the Earth continues to spin on its axis. 
On the other hand, a spinning top soon stops spinning because of opposing frictional torque. 

Angular impulse-momentum theorem 
The conservation of angular momentum is a special case of the angular impulse-momentum theorem. 
Recall the linear impulse-momentum theorem from Chapter 5. The formula expressing that theorem looks 
like this: 

F ∆t = ∆p  
This formula tells us that the impulse applied to an object is equal to the change in momentum produced. 

The rotational analogue of the previous equation is obtained by taking the vector product of r with each 
side of the equation to give the following (because T = r x F and L = r x p): 

T ∆t = ∆L  
In other words, the angular impulse applied to an object is equal to the change in angular momentum it 
produces. Recall that, for a rigid body, angular momentum L = I#. This result will be useful when we 
consider collisions between rigid bodies. 

If the torque T = 0, the theorem gives %L = 0, angular momentum conservation. Therefore, the principle of 
angular momentum conservation is a special case of the angular impulse-momentum theorem as stated 
earlier. 

Rotational kinetic energy 
Because a rigid body can rotate as well as translate, there is kinetic energy associated with rotational 
motion in addition to the kinetic energy associated with linear motion. Recall that the linear kinetic energy 
is given by the following formula: 

Ek = 1
2
mv2

 
 
We said that moment of inertia is analogous to mass, and angular velocity is analogous to linear velocity. 
Therefore, you might not be surprised to learn that rotational kinetic energy is given by the following 
formula: 

Ek = 1
2
Iω 2

 
Therefore, the total kinetic energy of a rigid body is the sum of these two kinetic energies. 
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Work-energy theorem for rotational motion 
In an analogy of the work done by a force, the work done by a torque is equal to the product of the torque 
and the angular displacement it produces: 

W = Tθ  
We can then apply the work-energy theorem (see Chapter 4) to the case of rotational motion, concluding 
that the work done by a torque is equal to the change in rotational kinetic energy that it produces: 

∆W = ∆Ek  
In that case, the kinetic energy is given by Ek = ½ I,2. 

Simulating rigid body dynamics 
We are now ready to implement rigid body dynamics. To do this, we will need to modify the Forcer and 
MultiForcer classes. 

Modifying Forcer and MultiForcer to include rotation 
The ForcerRB class modifies Forcer in a straightforward way to include torque and angular acceleration, 
in an exact analogy to force and linear acceleration. The code listing is shown in full with the added bits in 
bold: 
 
package com.physicscodes.motion{ 
        import com.physicscodes.motion.Mover; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.RigidBody; 
        import com.physicscodes.math.Vector2D; 
 
        public class ForcerRB extends Mover{ 
                private var _rigidBody:RigidBody; 
                private var _force:Vector2D; 
                private var _acc:Vector2D; 
                private var _torque:Number; 
                private var _alp:Number; 
 
                public function ForcerRB(prigidBody:RigidBody):void{ 
                        _rigidBody = prigidBody; 
                        super(prigidBody); 
                } 
 
                public function get force():Vector2D { 
                        return _force; 
                } 
 
                public function set force(pforce):void { 
                        _force = pforce; 
                } 
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                public function get torque():Number { 
                        return _torque; 
                } 
 
                public function set torque(ptorque):void { 
                        _torque = ptorque; 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        calcForce(); 
                        updateAccel(); 
                        updateVelo(); 
                } 
 
                protected function calcForce():void{ 
                        _force = Forces.zeroForce(); 
                        _torque = 0; 
                } 
 
                private function updateAccel():void{ 
                        _acc = _force.multiply(1/_rigidBody.mass); 
                        _alp = _torque/_rigidBody.momentOfInertia; 
                } 
 
                private function updateVelo():void{ 
                        _rigidBody.velo2D = _rigidBody.velo2D.addScaled(_acc,dt); 
                        _rigidBody.angVelo += _alp*dt; 
                } 
        } 
} 

In this code, _torque represents the magnitude of the torque and _alp represents the magnitude of the 
angular acceleration. Hence, they are both numbers rather than Vector2D objects like the corresponding 
_force and _acc variables. The reason we only represent the magnitudes of the torque and angular 
acceleration is that in the 2D examples that we’ll consider the rotation can only take place in the x–y plane 
(there is only one plane), so the direction of any associated angular velocity, angular acceleration, and 
torque will always be in a hypothetical third dimension that sticks either into or out of that plane. The sign 
of the relevant quantity will determine which way it points. 

The MultiForcerRB class modifies the MultiForcer2 class in a similar way to allow multiple rigid bodies 
to be subjected to a torque and to experience a resulting angular acceleration. 

A simple test 
Let’s test the new rotational dynamics code with a simple example. In RigidBodyDynamics.as, we create 
a square rigid body and then subject it to an imposed torque. The setup code looks like this: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.math.Vector2D; 
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        import com.physicscodes.objects.RectangleRB; 
 
        public class RigidBodyDynamics extends Sprite{ 
                public function RigidBodyDynamics():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var cm:Vector2D = new Vector2D(100,200); 
                        var rectangle:RectangleRB = new RectangleRB(100,100,cm); 
                        rectangle.mass = 1; 
                        rectangle.momentOfInertia = 5; 
                        rectangle.velo2D = new Vector2D(10,0); 
                        rectangle.angVelo = 1; 
                        addChild(rectangle); 
 
                        var mover:RigidBodyMover = new RigidBodyMover(rectangle); 
                        mover.startTime(); 
                } 
        } 
} 

The body’s mass and moment of inertia are set and its velocity and angular velocity are initialized. The 
RigidBodyMover class that drives the simulation extends ForcerRB and looks like this: 
 
package { 
        import com.physicscodes.motion.ForcerRB; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.RigidBody; 
 
        public class RigidBodyMover extends ForcerRB{ 
                private var _body:RigidBody; 
                private var _kLin:Number=0.1; // linear damping factor 
                private var _kAng:Number=0.5; // angular damping factor 
 
                public function RigidBodyMover(pbody:RigidBody):void{ 
                        _body = pbody; 
                        super(pbody); 
                } 
 
                override protected function calcForce():void{ 
                        force = Forces.zeroForce(); 
                        force = force.addScaled(_body.velo2D,-_kLin); // linear damping 
                        torque = 1; 
                        torque += -_kAng*_body.angVelo; // angular damping 
                } 
        } 
} 

As you can see in the calcForce() method, a torque of magnitude 1 unit is applied at each timestep. If 
that was all that was done, the square would undergo continuous angular acceleration, rotating faster and 
faster. Therefore, an angular damping term proportional to the angular velocity is also applied to limit its 
angular velocity. A linear damping term is also added to the force. 
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If you run the simulation, you will find that the square translates to the right while rotating in a clockwise 
sense. As time progresses, its linear velocity decreases until it stops (because there is no driving force but 
a retarding force proportional to its velocity), whereas its angular velocity increases to a constant value 
(you can check this by tracing the angular velocity at each timestep). The latter happens because the 
applied torque of 1 unit tends to increase the angular velocity whereas the angular damping term grows as 
the angular velocity increases. Therefore, at some point the damping term balances the applied torque and 
rotational equilibrium is achieved (as well as linear equilibrium). It’s the equivalent of terminal velocity for 
rotational motion. You can calculate the “terminal angular velocity” in the following way. 

 

Start with the equation of angular motion relating torque and angular acceleration: 

T = Iα  
In the present simulation, because there is a driving torque of 1 unit and a retarding torque proportional to 
the angular velocity, the resultant torque T is given by this: 

T = 1− kω  
Using the previous equation of motion then gives the following: 

Iα = 1− kω  
At equilibrium, the angular acceleration - is zero. Therefore, the left hand side of this equation is zero. 
Rearranging gives the following result: 

ω = 1/ k  
This is the “terminal” angular velocity. Using the value of k = 0.5 in the code gives a value of 2 for this 
angular velocity. If you trace the body’s angular velocity at each timestep in the simulation you will find that 
it indeed converges to this value. 

Experiment by changing the mass and moment of inertia of the body. You will find that they affect the time 
it takes to achieve linear and rotational equilibrium respectively, but do not affect the final linear velocity (0) 
or final angular velocity (2). 

We can now simulate rotational dynamics! Let’s build some more interesting examples then. 

Example: a simple wind turbine simulation 
In this example we’ll extend MultiForcerRB to simulate the motion of more than one rigid body. The 
objects we’ll simulate are wind turbines. So we start by creating a TurbineRB class that extends 
PolygonRB, drawing a filled polygon consisting of six vertices. Three of the vertices lie equidistant along 
the circumference of an inner circle, and the other three lie on an outer circle. The vertices on the inner 
and outer circle alternate so that the resulting Polygon looks like a wind turbine. The TurbineRB takes 
parameters as shown here: 
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public function TurbineRB(pri:Number, pro:Number, pcm:Vector2D, pcolor:uint=0x000000,! 
 pim:Number=1, pmass:Number=1, pcharge:Number=0){} 

The new parameters are the first two, pri and pro, representing the inner and outer radius, respectively. 
The code then positions the vertices at the right place and draws the resulting filled polygon. 

The file WindTurbines.as creates three turbines of different sizes, as shown in Figure 13-7. 

 

Figure 13-7. Creating wind turbines! 

The code in WindTurbines.as assigns different masses and moments of inertia to the turbines. The 
masses are assigned in proportion to the square of the outer radius of the turbines (treating them as two-
dimensional), while the moments of inertia are in proportion to the fourth power of the outer radius 
(because I is proportional to mr2, and m is itself proportional to r2). The masses themselves are really 
irrelevant because the turbines will only rotate. Changing their values to anything else won’t make any 
difference to the rotation. But we set appropriate values for physical consistency. Here is the code that 
does all this: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.TurbineRB; 
 
        public class WindTurbines extends Sprite{ 
                public function WindTurbines():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var turbines:Array = new Array(); 
                        var cm:Vector2D; 
 
                        cm = new Vector2D(200,150); 
                        var turbine1:TurbineRB = new TurbineRB(4,50,cm); 
                        turbine1.mass = 1; 
                        turbine1.momentOfInertia = 1; 
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                        addChild(turbine1); 
                        turbines.push(turbine1); 
 
                        cm = new Vector2D(150,400); 
                        var turbine2:TurbineRB = new TurbineRB(6,75,cm); 
                        turbine2.mass = 2.25; 
                        turbine2.momentOfInertia = 5; 
                        addChild(turbine2); 
                        turbines.push(turbine2); 
 
                        cm = new Vector2D(500,300); 
                        var turbine3:TurbineRB = new TurbineRB(12,150,cm); 
                        turbine3.mass = 9; 
                        turbine3.momentOfInertia = 81; 
                        addChild(turbine3); 
                        turbines.push(turbine3); 
 
                        var mover:TurbinesMover = new TurbinesMover(turbines); 
                        mover.startTime(); 
                } 
        } 
} 

The mover class is TurbinesMover, which extends MultiForcer2 and looks like this: 
 
package { 
        import com.physicscodes.motion.MultiForcerRB; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.RigidBody; 
        import com.physicscodes.math.Vector2D; 
        import flash.events.MouseEvent; 
 
        public class TurbinesMover extends MultiForcerRB{ 
                private var _bodies:Array; 
                private var _k:Number=0.5; // angular damping factor 
                private var _tqMax:Number=2; 
                private var _tq:Number=0; 
 
                public function TurbinesMover(pbodies:Array):void{ 
                        _bodies = pbodies; 
                        _bodies[0].stage.addEventListener(MouseEvent.MOUSE_DOWN, onDown); 
                        super(pbodies); 
                } 
 
                override protected function calcForce(pbody:RigidBody,pnum:uint):void{ 
                        force = Forces.zeroForce(); 
                        torque = _tq; 
                        torque += -_k*pbody.angVelo; // angular damping 
                } 
 
                private function onDown(e:MouseEvent):void{ 
                        _bodies[0].stage.addEventListener(MouseEvent.MOUSE_UP,onUp); 
                        _tq = _tqMax; 
                } 
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                private function onUp(e:MouseEvent):void{ 
                        _bodies[0].stage.removeEventListener(MouseEvent.MOUSE_UP, onUp); 
                        _tq = 0; 
                } 
        } 
} 

This code should look familiar from the last example. In the calcForce() method, we specify a zero 
resultant force and a driving torque of magnitude _tq as well as an angular damping term proportional to 
the angular velocity. The value of the torque magnitude _tq is controlled by mouse-click event handlers: if 
the mouse is pressed, _tq is given a value _tqMax (which is 2 by default); if not, it has a value of 0. This 
means any time the mouse is clicked, a constant driving torque is applied to each turbine; otherwise, the 
driving torque is zero. 

Run the simulation and click anywhere on the stage. What do you see? The smallest turbine starts turning 
almost immediately while the largest one only starts turning slowly. This illustrates the concept of rotational 
inertia: a rigid body with a larger moment of inertia will accelerate less than one with a smaller moment of 
inertia for the same torque. This is, of course, nothing but the consequence of T = I-. Similarly, if you stop 
pressing the mouse, the smallest turbine will stop quickly; the largest one will stop only after a long time. 

While this simulation captures the basic dynamics of a rotating turbine, more work is needed to make a 
more realistic simulation of how it operates in practice with wind forcing. For example, the torque and 
damping coefficient for each turbine will depend on characteristics such as its surface area. Wind modeling 
is another subject in its own right. We won’t dwell on these complicating factors; instead we'll move to 
another example! 

Example: Rolling down an inclined plane 
Rolling involves an interesting and particularly instructive application of rotational dynamics, but can be 
fairly complex to understand. Therefore we’ll approach the subject through a specific example. 

In Chapter 7, we simulated the motion of a ball sliding down an inclined plane. One of the things noted 
there was that the ball would slide only if the incline were steeper than a certain critical angle that depends 
on the coefficient of static friction. The simulation worked well, but there was a major defect: the ball would 
not move if the angle was not high enough. This is hardly realistic; in reality balls roll down inclined planes 
whatever their angle of inclination! 

From a particle to a rigid body simulation 
We are now in a position to incorporate rolling into that simulation. But first we need to treat the ball as a 
rigid body instead of a particle. So let’s dig out that old code and modify it to make use of our new rigid 
body classes BallRB and ForcerRB. The new setup file, Rolling.as, initially looks like this: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.BallRB; 
        import com.physicscodes.math.Vector2D; 
 
        public class Rolling extends Sprite{ 
                public function Rolling():void{ 
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                        init(); 
                } 
                private function init():void{ 
                        // create an inclined plane 
                        var xtop:Number=50; 
                        var ytop:Number=150; 
                        var xbot:Number=450; 
                        var ybot:Number=250; 
 
                        var surface:Sprite = new Sprite; 
                        with (surface.graphics) { 
                                lineStyle(1,0x333333,1); 
                                moveTo(xtop,ytop); 
                                lineTo(xbot,ybot); 
                        } 
                        addChild(surface); 
                        var angle:Number = Math.atan2(ybot-ytop,xbot-xtop); 
 
                        // create a rigid ball 
                        var radius:Number = 20; 
                        var cm:Vector2D = new Vector2D(xtop+radius*Math.sin(angle),! 
ytop-radius*Math.cos(angle)); 
                        var ball:BallRB = new BallRB(cm,radius,0x0000ff); 
                        ball.mass = 20; 
                        ball.momentOfInertia = 0.4*ball.mass*ball.radius*ball.radius; 
                        addChild(ball); 
 
                        // make the ball move 
                        var mover:RollingMover=new RollingMover(ball,angle); 
                        mover.startTime(); 
                } 
        } 
} 

This is similar to the code we had before in Chapter 7, and it produces the setup shown in Figure 13-8. In 
addition, we have specified the mass and moment of inertia of the ball. For the latter, we are using the 
formula for the moment of inertia of a solid sphere (I = 2mr2/5), assuming we are simulating a solid 
spherical ball. 

 

Figure 13-8. A ball rolling down an inclined plane 
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The new mover class is RollingMover.as, and here is what it looks like initially (we will soon modify it): 
 
package { 
        import com.physicscodes.motion.ForcerRB; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.RigidBody; 
        import com.physicscodes.objects.BallRB; 
        import com.physicscodes.math.Vector2D; 
 
        public class RollingMover extends ForcerRB{ 
                private var _body:BallRB; 
                private var _angle:Number; 
                private var _g:Number=10; 
                private var _ck:Number=0.2; 
                private var _cs:Number=0.25; 
                private var _vtol:Number=0.000001; 
 
                public function RollingMover(pbody:BallRB,pangle:Number):void{ 
                        _body = pbody; 
                        _angle = pangle; 
                        super(pbody); 
                } 
 
                override protected function calcForce():void{ 
                        var gravity:Vector2D = Forces.constantGravity(_body.mass,_g); 
                        var normal:Vector2D = Vector2D.vector2D(_body.mass*_g*Math.cos! 
(_angle),0.5*Math.PI-_angle,false); 
                        var coeff:Number; 
 
                        if (_body.velo2D.length < _vtol){  // static friction 
                                coeff = Math.min(_cs*normal.length,_body.mass*_g*Math.sin! 
(_angle)); 
                        }else{  // kinetic friction 
                                coeff = _ck*normal.length; 
                        } 
                        var friction:Vector2D = normal.perp(coeff); 
                        force = Forces.add([gravity, normal, friction]); 
                } 
        } 
} 

If you compare this class with the corresponding mover class ObliqueMover from Chapter 7, you’ll find 
that it does the same thing, with identical forces and parameter values. All that we’ve done so far is to 
replace Ball with BallRB and Forcer with ForcerRB so that we can introduce rigid body dynamics. If you 
were to run the code in its current form, the ball would not move, just as in Chapter 7, unless you made the 
incline steeper (for example, by changing the value of ybot in the setup file to 260 or more). We know that 
in real life the ball would roll down the slope even if it can’t slide. So what’s missing? 
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Simulating rolling without slipping 
You might be tempted to just add a torque to calcForce() and see whether that makes the ball roll. As 
you can see from the last line of code, there are three forces included in the simulation: gravity, the normal 
force, and friction (see the force diagram in Figure 13-9). Because both gravity and the normal force act 
through the center of mass, they do not have any associated torque about the center of mass. Only the 
frictional force has a torque about the center of mass of the ball, and the magnitude of that torque is fr, 
where f is the magnitude of the friction force, and r is the radius of the ball. 

Add the following line of code after the last line in calcForce(): 
 
torque = _body.radius*friction.length; 

Now run the code. What do you find? Sure the ball rotates faster and faster under the action of the torque 
generated by the frictional force, but it does not go anywhere! We are still missing something. Leave the 
torque code because it is correct. But we need to do a bit more thinking. 

N

f 

mg θ
 

Figure 13-9. Force diagram for a ball rolling down an inclined plane 

Let’s take another look at Figure 13-9. What else needs to change apart from accounting for the torque 
due to friction? The only other thing is whether the three forces are still the same with rolling. Now gravity 
is a fixed force that depends only on the mass of the object, so it will remain exactly the same, with 
magnitude mg and acting vertically downward. So will the normal force because it must still be equal and 
opposite to the component of gravity normal to the plane (there is no motion in that direction). Therefore, 
the normal force still has magnitude mg cos(#) and acts normal to the plane, as implemented in the code. 

But what needs to change is the frictional force. Rolling friction is generally smaller than static or kinetic 
friction (that’s what makes the wheel such a useful invention!). At the moment, the frictional force is 
generally too large. So the problem really boils down to one thing: to specify the correct frictional force that 
will give rolling without slipping. 

The point is that the condition for rolling without slipping constrains the linear and rotational motion to 
“work together,” and this in turn constrains the magnitude of the frictional force. By formulating the 
constraint from first principles and working out its implications using the equations of linear and rotational 
motion, it is possible to deduce what the frictional force must be. Let’s do that now. 

To make things easier to visualize (but without loss of generality) think of a ball or wheel of radius r that is 
rolling on flat ground with an angular velocity ,, as shown in Figure 13-10. 
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Figure 13-10. A ball or wheel rolling without slipping. 

If the ball or wheel rolls without slipping (let’s call this pure rolling), when it completes one revolution it has 
moved forward a distance equal to 2(r. It does that in a time equal to its period T, which is equal to 2(/, 
(see Chapter 9). The velocity of its center of mass is given by the ratio of the distance moved to the time 
taken, which is therefore given by the following: 

v = rω
 

You will recall that this is just the formula for the linear velocity of any point on the circumference of a 
circle; in pure rolling it also gives the velocity with which the whole object moves forward. This formula 
holds at any time, even if the angular velocity (and therefore the linear center of mass velocity) is 
changing. Differentiating with respect to time then gives the equivalent formula relating the linear center of 
mass acceleration to the angular acceleration: 

a = rα
 

This is the crucial constraint that will help us to calculate the pure rolling frictional force (denoted by f). The 
way that force comes into play is of course through the equations of motion. Applying the linear equation of 
motion F = ma along the slope gives (see Figure 13-9): 

mgsin θ( ) − f = ma
 

Applying the angular equation of motion T = I- gives the following: 

f r = Iα  
We need to solve for the frictional force f, but we don’t know the acceleration a or the angular acceleration 
-. But we do have the constraint a = r- that relates them, so we can use that together with the previous 
equation to eliminate - and obtain the following relationship between the acceleration a and the frictional 
force f: 

a = f r2 I  
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We can now substitute this into the previous equation that arose from the linear equation of motion and, 
after rearranging, obtain the following final result: 

f = mgsin θ( )
1+mr2 I

 
We can also then use the previous equation connecting a and f to deduce the following formula for the 
acceleration of the rolling object: 

a= gsin θ( )
1+ I mr2( )

 
Comparing this with the acceleration of a freely falling object, g, we find that the acceleration of a rolling 
object is reduced by a factor that depends on the ratio I/mr2 for the body, as well as on the angle of 
inclination of the plane (the latter is just because we are looking at the acceleration component down the 
slope, rather than vertically downward). 

Now that we have the formula for the frictional force for pure rolling, it’s a simple matter to include it in the 
code. Remove the if block of code that computes the magnitude of the friction coeff in calcForce() 
and replace it by the following code, which is exactly the formula for f: 
 
coeff = _body.mass*_g*Math.sin(_angle) / (1 + _body.mass*_body.radius*_body.radius /! 
 _body.momentOfInertia); 

Now run the code, and you’ll have the ball rolling down the slope without slipping! 

Allowing both slipping and rolling 
Now increase the slope by changing the value of ybot to 850 and rerun the simulation. The slope is now 
very steep, but the ball will still roll down without slipping. Now we have the opposite problem: the ball 
does not know how to slip! 

To make the simulation more realistic, we need to implement the possibility of both rolling and slipping in a 
simple way just by adding the following if block just after the line that computes coeff: 
 
if (coeff > _cs*normal.length){ 
        coeff = _ck*normal.length; 
} 

This imposes a limit on the maximum magnitude that the rolling friction can have; it resets the magnitude 
of the computed friction to the kinetic friction if it exceeds the static friction. Run the code and you’ll see 
that the ball now slips as it rolls down. If you change ybot back to 250 you will find that the ball undergoes 
pure rolling as before. In fact, you can add a trace("slipping") line inside the if block and run the 
code for different values of ybot. This will tell you unequivocally when the ball is slipping. With the given 
parameter values, you should find that pure rolling occurs up to the value of ybot = 500, corresponding to 
a slope angle of approximately 41.2°. We leave it as an exercise for you to figure out why. (Hint: equate 
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the expression for the rolling friction given in the last subsection with that for the limiting static friction &N = 
&mg cos(#)). 

More experiments with the simulation 
A classic college physics problem is the following: suppose you release two solid cylinders, a light one and 
a heavy one, at the same height on a slope. Assuming that they both roll down the slope without slipping, 
which one will reach the bottom first? Well, you can use your simulation to find out! 

First, change the value of ybot in Rolling.as back to 250, so that you have pure rolling. Then change 
the moment of inertia formula to the following: 
 
ball.momentOfInertia = 0.5*ball.mass*ball.radius*ball.radius; 

This differs from the previous formula for a sphere only in the factor of 0.5; the moment of inertia of a 
cylinder is I = mr2/2. Finally, add the following code at the end of the calcForce() method in 
RollingMover.as: 
 
if (_body.y > 250-_body.radius){ 
        trace(time); 
        stopTime(); 
} 

This will tell you when the cylinder has reached the bottom and will stop the simulation when that happens. 
Experiment with the simulation using different values for the mass and the radius of the cylinder and make 
a note of the time it takes for it to reach the bottom. What do you notice? 

Well, counterintuitive as it may seem, you should find that the cylinder always takes the same time to 
reach the bottom of the slope, regardless of its mass or its radius. To see why that is so, refer to the 
formula for the acceleration derived in the last subsection. Because the moment of inertia of a cylinder is 
given by I = mr2/2, the ratio I/mr2 that appears in that formula has the value of 0.5, giving the acceleration 
of a solid cylinder down the slope as 

a= 2
3
gsin θ( )

 
This interesting result tells us that the acceleration is completely independent of the properties of the 
cylinder such as mass and radius or moment of inertia: they’ve all cancelled out! So, as long as two 
cylinders are both solid, they should always roll down a slope at the same rate! 

However, a hollow cylindrical tube has a moment of inertia given by approximately I = mr2. Going through 
the same calculation then gives the following acceleration: 

a= 1
2
gsin θ( )

 
So a hollow cylindrical tube would accelerate more slowly and therefore take longer to reach the bottom of 
the slope. 
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Rigid body collisions and bouncing 
In Chapter 11, we spent a considerable amount of time discussing particle collisions and bouncing. You 
might perhaps have felt that the math got a bit complicated then. Well, with rigid bodies, things get even 
more complicated! With rigid bodies you have to take into account both the linear motion and the rotation 
of the objects involved in the collision. Particles, spheres, and circular objects don’t rotate as a result of 
collisions (at least if we assume the collisions are frictionless). That’s because for such objects the line of 
collision is always through their center of mass (see Figure 13-11), so the impulsive force due to collision 
does not generate a torque. 

 

Figure 13-11. Colliding spheres 

For an object with a more complicated shape, this won’t be true in general. As with a sphere, the line of 
collision is normal to the surface of an object, but it may not pass through the center of mass of the object 
(see Figure 13-12). Hence, a torque about the center of each of the colliding objects is generated in this 
case, causing them to rotate. 

 

Figure 13-12. Collision between two rigid bodies of arbitrary shape 

The task of collision resolution in this more general case is therefore to calculate the final linear velocities 
v1

f and v2
f and angular velocities #1

f and #2
f of the two objects, given their initial linear velocities v1

i and 
v2

i and angular velocities #1
i and #2

i (the objects could already be rotating before the collision) just before 
the impact. This is what we shall do in this section. 

Linear impulse due to collision 
The linear velocities v1

i, v2
i, v1

f, and v2
f are the initial and final linear velocities of the center of mass of the 

two colliding rigid bodies (denoted by the subscript 1 and 2, respectively). The angular velocities #1
i, #2

i, 
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#1
f, and #2

f are the corresponding angular velocities about the respective center of mass of each rigid 
body. 

The starting point is to apply the impulse-momentum theorem: 

F ∆t = ∆p = m∆v  
Let’s denote the impulse F%t by the symbol J. Then, applying the impulse-momentum theorem to each 
rigid body and remembering that they experience equal and opposite impulse, we can write the following 
equations: 

J = m1 v1
f − v1

i( )
 

−J = m2 v2
f − v2

i( )
 

We note in passing that together these two equations imply the following equation: 

m1v1
i +m2v2

i = m1v1
f +m2v2

f
 

This is nothing but conservation of momentum, as we saw in Chapter 11. We used this equation together 
with the one for the coefficient of restitution CR to obtain the final velocities v1

f and v2
f (denoted therein by 

v1 and v2) in terms of the initial velocities (denoted therein by u1 and u2). Refer to the section “Calculating 
velocities after an inelastic collision” in Chapter 11. Here things are more complicated because we also 
have the angular velocities to worry about, and we need to proceed via a slightly different route. 

The approach we’ll adopt is to express the final velocities in terms of the impulse J and then to work out 
what J is. For the linear velocities, this is simply a matter of rearranging the previous equations involving J 
to obtain the following: 

v1
f = v1

i + J m1  

v2
f = v2

i − J m2  
As with particle collisions, we can supplement these equations by one involving a coefficient of restitution. 
In the particle case, the coefficient of restitution was equal to the negative ratio of the relative normal 
velocities of the colliding particles before and after the collision. One might be tempted to assume the 
same here, using the linear velocities of the center of mass of each particle. But, in fact, the relevant 
velocities in this case are the linear velocities of the points of contact on each body normal to the contact 
surfaces. Referring again to Figure 13-12, these are the velocities at the point P where the two rigid bodies 
make contact. Let’s denote these velocities by vp1 and vp2. They are each given by the vector sum of the 
center of mass velocity and the velocity at the point P due to rotation about the center of mass. 
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 So we have the following equations: 

 

 
These equations are valid at any time and, in particular, just before and just after the collision. Hence, they 
can be written with the “i” and “f” superscripts we have used before. The vectors rp1 and rp2, which are the 
position vectors of the point P relative to the center of mass of each body, are the same during that brief 
interval, so they do not require these superscripts. 

The relative velocities before and after the collision are given by the following: 

vr
i = vp1

i − vp2
i

 

vr
f = vp1

f − vp2
f

 
The coefficient of restitution is then given by the negative ratio of the normal components of these relative 
velocities (where n is the unit normal vector): 

CR = − vr
f • n

vr
i • n

 
The problem is that this involves the final angular velocities as well, which we don’t know. So we need to 
solve for the angular velocities simultaneously. That means we need more equations. This comes from 
applying the angular impulse-momentum theorem. 

Angular impulse due to collision 
Let’s now apply the angular impulse-momentum theorem: 

T ∆t = ∆L  
Because T = r x F and L = I#, this is equivalent to the following: 
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Applying this to each body and again remembering that they experience equal and opposite impulses 
gives us the following equations: 

 

 
These equations can be rearranged to give the final angular velocities in terms of the initial angular 
velocities and the impulse: 

 

 
The only thing we need now is the impulse J, and we can then obtain both the linear and angular 
velocities. 

The final result 
It is possible to solve all these equations together to obtain an expression for the impulse J. We’ll spare 
you the detailed algebra and just give the final answer. Writing J = Jn, where J is the magnitude of the 
impulse, and n is the unit normal vector as before (because the impulse is along the direction of the 
normal), we obtain the following expression for the magnitude of the impulse: 

J = − 1+CR( )vr
i • n

1 m1 +1 m2 + rp1 × n( )2
I1 + rp2 × n( )2

I2  
In the preceding equation, the square of each of the cross product terms (which are vector quantities) 
refers to taking the dot product with itself. 

In the case in which the second rigid body is an immovable object, such as a wall, we can make m2 and I2 
infinite in the previous equation (which eliminates the terms involving them). Note that the relative velocity 
vr

i in that case is just the velocity v i
p1 of point P on body 1. We then end up with the following: 

J = −
1+CR( )vp1

i • n
1 m1 + rp1 × n( )2

I1  
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For easy reference, let’s repeat the equations that allow you to then calculate the final linear and angular 
velocities: 

v1
f = v1

i + J m1  

v2
f = v2

i − J m2  

 

 
In the case of the second object being an immovable wall, v2

f and #2
f are zero. 

Having been through that complex-looking math, you’ll be glad to know that the previous formulas are not 
actually very hard to code up. In coding terms, the trickier aspects of simulating rigid body collisions are 
probably those of collision detection and repositioning, which are equally important and require careful 
consideration when creating realistic simulations. 

Note that these equations are valid for collisions between rigid bodies of any shape. In the examples we 
will put together shortly, we are going to consider polygons. In that case, the most common collision event 
is the collision of a vertex of one polygon with an edge of another. The line of collision is then the normal to 
the relevant edge. But collisions between the vertices of two polygons are also quite common, and it is 
important to have a method to handle them. Other less-common collision scenarios include two vertices of 
an object hitting two different objects at the same time. 

To avoid complications associated with these different collision scenarios and the collision detection and 
handling methods needed to deal with them, we will start with a simple example of a single polygon 
bouncing off a floor. This will allow us to focus on implementing the collision resolution method that was 
developed in the preceding sections. Afterward we will build a more complex simulation involving multiple 
colliding and bouncing objects, which will require us to confront some of the trickier issues mentioned here. 

Example: Simulating a single bouncing block 
We will now build a simple simulation of a rectangular block bouncing off a floor, so that we have a single 
movable object. The setup file for this simulation, RigidBodyBouncing.as, looks like this: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.RectangleRB; 
        import com.physicscodes.objects.Wall; 
        import com.physicscodes.math.Vector2D; 
 
        public class RigidBodyBouncing extends Sprite{ 
                public function RigidBodyBouncing():void{ 
                        init(); 
                } 



Extended Objects 

427 

                private function init():void{ 
                        // create a rectangular block 
                        var cm:Vector2D = new Vector2D(275,100); 
                        var body:RectangleRB = new RectangleRB(100,50,cm,0x0000ff); 
                        body.mass = 1; 
                        body.momentOfInertia = 5000; 
                        body.angDispl = Math.PI/4; 
                        addChild(body); 
 
                        // create the floor 
                        var wall:Wall; 
                        wall=new Wall(new Vector2D(30,350),new Vector2D(520,350)); 
                        addChild(wall); 
 
                        // get things moving 
                        var mover:RigidBodyBouncer =new RigidBodyBouncer(body,wall); 
                        mover.startTime(); 
                } 
        } 
} 

We create a rectangular block as a RectangleRB instance and a floor object using the Wall class of 
Chapter 11. The block is given a moment of inertia of 5000 and an initial orientation of (/4 radians (45°). 
The simulation is driven by the RigidBodyBouncer class, which looks like this: 
 
package { 
        import com.physicscodes.motion.ForcerRB; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.PolygonRB; 
        import com.physicscodes.objects.Wall; 
        import com.physicscodes.math.Vector2D; 
 
        public class RigidBodyBouncer extends ForcerRB{ 
                private var _body:PolygonRB; 
                private var _wall:Wall; 
                private var _g:Number=20; 
                private var _cr:Number=0.4; // coefficient of restitution 
                private var _k:Number=1; // angular damping factor 
 
                public function RigidBodyBouncer(pbody:PolygonRB,pwall:Wall):void{ 
                        _body = pbody; 
                        _wall = pwall; 
                        super(pbody); 
                } 
 
                override protected function calcForce():void{ 
                        // external forces and torques 
                        force = Forces.constantGravity(_body.mass,_g); 
                        torque = 0; // no external torque since gravity is the only force 
                        torque += -_k*_body.angVelo; // damping 
 
                        // collision detection 
                        var testCollision:Boolean = false; 
                        var j:uint; 
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                        for (var i:uint=0; i<_body.vertices.length;i++){ 
                        if (_body.pos2D.add(_body.vertices[i].rotate(_body.angDispl)).y >=! 
 _wall.p1.y){ 
                                if (testCollision==false){ 
                                        testCollision = true; 
                                        j = i; 
                                }else{ // that means one vertex is already touching 
                                        stopTime(); // block is lying flat on floor, so stop 
                                } 
                        } 
                        } 
 
                        // collision resolution 
                        if (testCollision == true){ 
                                _body.ypos += _body.pos2D.add(_body.vertices[j].rotate! 
(_body.angDispl)).y*(-1) + _wall.p1.y; 
                                var normal:Vector2D = _wall.normal; 
                                var rp1:Vector2D = _body.vertices[j].rotate(_body.angDispl); 
                                var vp1:Vector2D = _body.velo2D.add(rp1.perp! 
(-_body.angVelo*rp1.length)); 
                                var rp1Xnormal:Number = rp1.crossProduct(normal); 
                                var impulse:Number = -(1+_cr)*vp1.dotProduct(normal) /! 
 (1/_body.mass + rp1Xnormal*rp1Xnormal/_body.momentOfInertia); 
                                _body.velo2D = _body.velo2D.add(normal.multiply! 
(impulse /_body.mass)); 
                                _body.angVelo += rp1.crossProduct(normal)*impulse! 
 /_body.momentOfInertia; 
                                testCollision = false; 
                        } 
                } 
        } 
} 

As you can see, the code looks surprisingly short given the apparent complexity of the preceding 
discussion of the theory. The code in calcForce() is split into three parts, specifying the external forces 
and torques, collision detection, and collision resolution. The first part prescribes gravity as the only force 
on the block and specifies a zero external torque because gravity does not generate torque about its 
center of mass. We do include a damping torque, though, the magnitude of which is controlled by the 
damping parameter _k (which you can set to zero if you wish). 

The collision detection code loops over the vertices of the block and tests to see whether any of them is 
lower than the floor using the following condition: 
 
if (_body.pos2D.add(_body.vertices[i].rotate(_body.angDispl)).y >= _wall.p1.y){} 
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This line might look a bit complicated, so let’s break it down. First the easy bit: _wall.p1.y just gives the y 
position of the wall. Next _body.vertices[i] is the position vector of the vertex currently being tested 
relative to the center of mass of the block. The rotate() method is a newly created method of the 
Vector2D class that rotates a vector through the angle specified as its argument (in radians). It is defined 
as follows: 
 
public function rotate(angle:Number):Vector2D{ 
        return new Vector2D(_x*Math.cos(angle)-_y*Math.sin(angle), _x*Math.sin(angle)! 
 +_y*Math.cos(angle)); 
} 

It uses some trigonometry to do that, which you may try to figure out as an exercise. We are therefore 
rotating the position vector of the current vertex through an angle equal to the angular displacement 
_body.angDispl of the block to account for the block’s orientation. Then we add this to the block’s (center 
of mass) position. We do this because we need the position vector of the vertex in the Flash coordinate 
system, not in the center of mass coordinate system. Finally, we test whether the y component of this 
vector is greater than the y location of the wall. If it is, a collision is detected, and the Boolean parameter 
testCollision (with an obvious name) is set to true and the index of the vertex is stored in the uint 
variable j. But this is only done provided testCollision is currently false (another collision has not 
already been detected in the same timestep). If testCollision was already true, that means another 
vertex is already in collision with the floor. Physically, it means that the block is now lying flat on the floor. 
The reasonable thing to do then is to stop the simulation. We do this using the stopTime() public method 
inherited from Mover. 

The collision resolution code executes if a collision is detected (if testCollision is true). The first line 
repositions the block by simply moving it up by the amount that it fell below the wall. The next few lines of 
code simply implement the equations given at the end of the last section and should be straightforward to 
follow. The only subtlety is the use of the crossProduct() method, which is another newly created public 
method of the Vector2D class defined as follows: 
 
public function crossProduct(vec:Vector2D):Number { 
        return _x*vec.y - _y*vec.x; 
} 

This might confuse you if you recall that the cross product of two vectors is only supposed to exist in 3D 
and to be itself a vector. Because our simulation is in 2D, we’ve defined the analogue of the cross product, 
but can only give its magnitude because the cross product of two vectors should be perpendicular to both 
and should therefore need a third dimension to exist. The bottom line is that this trick enables us to use the 
formulas involving vector products in the last section pretty much as they are, as long as we keep in mind 
that it will only give us the magnitude of the cross product (which, in fact, is all that we need in those 
formulas). 

There is not much more to say about this simulation. Run it and enjoy! See Figure 13-13 for a screenshot. 
As usual, see the effect of changing the parameters like the moment of inertia, the coefficient of restitution, 
and the angular damping factor. As an additional exercise, why not replace the rectangle with another 
polygon, such as a triangle or a pentagon? 
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Figure 13-13. A falling block bouncing off a floor 

Example: Colliding blocks 
As discussed earlier, with multiple blocks colliding together, a large part of the effort is involved with 
detecting collisions between the objects and then keeping them apart. So let’s spend some time 
discussing how they are applied in a specific example. The example will involve a group of polygons with 
different sizes and orientations dropped from a height so that they fall onto and bounce off a floor, colliding 
with one another as they do so. 

Referring to Figure 13-14, consider first the most common scenario when a vertex P of one block (object 
1) collides with an edge of another (object 2). At the moment of collision detection, P is inside the second 
polygon. If you consider the position vectors of the vertices of the second polygon relative to P, they 
should all have positive dot products with the normal from P to the side adjacent to them (by convention, 
we’ll consider the side that is in an counterclockwise direction from the relevant vertex). So if you test all 
these dot products and any one of them is negative, you know that no collision has taken place. You could 
also do a weaker test first by seeing whether the distance between the centers of mass of the two objects 
is larger than the distance to their farthest vertices. If so, you don’t have to bother doing the more detailed 
collision detection test. 

1

2

P

C

 

Figure 13-14. Vertex-edge collision between two polygons 

To reposition an object after a vertex-edge collision, you simply move it back along the normal to the edge 
where the collision took place by an amount equal to the perpendicular distance from the point P to the 
relevant edge. The correct normal is determined by checking which one has the minimum angle with the 
position vector of P relative to the center of mass of object 1 (refer to Figure 13-14). 
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Another scenario is when a vertex of one object collides with a vertex of another. You might think that 
would be a rare event, but it tends to happen more often than you’d think. For example, a vertex of one 
polygon can slide along an edge of another until it hits the vertex at the end. In the case of vertex-vertex 
collisions, a simple method is to check for the distance between two vertices; if it’s smaller than a certain 
amount (let’s say 1 px), that’s counted as a collision. 

We apply these methods in our example simulation. The setup code for the simulation is in the file 
RigidBodyCollisions.as. This code produces a number of polygons of different sizes and orientations 
and assigns them masses proportional to their areas and moments of inertia based on their masses and 
dimensions. A Wall object is also produced to represent the floor. The mover class is called 
RigidBodyCollider and it builds upon the RigidBodyBouncer class of the last example. We won’t list all 
the code here, but only show the calcForce() method so you get an idea of the main logic: 
 
override protected function calcForce(pbody:PolygonRB,pnum:uint):void{ 
        force = Forces.constantGravity(pbody.mass,_g); 
        torque=0; 
        checkWallBounce(pbody); 
        for (var i=0;i<_objects.length;i++){ 
                if(i!==pnum){ 
                        checkObjectCollision(pbody,_objects[i]); 
                } 
        } 
} 

There is only gravity as an external force on each object and no external torque. At each timestep, the 
checkWallBounce() method checks if the current object is colliding with a wall and handles the collision if 
necessary. This method is in essence very similar to the code we saw in the previous example for 
detecting and resolving wall collisions. Then the checkObjectCollision() method sees whether the 
current object is colliding with any other object and resolves the collision if it takes place. The collision 
resolution code is along the same lines as that of the wall collision, but of course using the corresponding 
formulas for two-body collisions. The rest of the code in checkObjectCollision() detects any vertex-
side or vertex-vertex collisions between two objects and repositions them according to the methods 
described previously. See the source code for the detailed implementation. 

If you run the code you will find that the simulation generally works well, correctly handling the collision 
scenarios it is designed to detect. But because we kept the simulation simple, you may notice some 
problems every now and then, especially when things get crowded and multiple collisions are involved. 
The problems can get worse if higher velocities are involved; for example, if g is increased. You could 
improve the simulation by devising methods to handle more of these possible collision scenarios. You 
could also introduce friction to make it look more realistic at the moment the blocks slide along the floor 
once they have settled due to the lack of friction. A screenshot of the simulation is shown in Figure 13-15. 
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Figure 13-15. The multiple colliding blocks simulation 

Deformable bodies 
You now know how to simulate rigid body motion, but how do you simulate the motion of deformable 
bodies such as ropes and clothes, whose shapes can change? There are various approaches to do that, 
but we’ll introduce one particular approach based on the spring physics that we covered in Chapter 8. Let’s 
begin by a brief recap of the main principles and formulas of spring physics and discussion of how they 
can be applied to model deformable bodies. 

Mass-spring systems 
The basic modeling approach is to represent a deformable extended object as a series of particles with 
mass joined together by virtual springs. Hence we generally refer to such models as mass-spring systems. 
As an illustration of the method, consider the simple one-dimensional chain of particles and springs shown 
in Figure 13-16. 

i i – 1 i + 1  

Figure 13-16. A 1D chain of particles connected by springs 

Each particle experiences a spring force that depends on its distance from the adjacent particles. We can 
impose a certain equilibrium distance L between the particles. If two particles are closer together than the 
distance L, they repel; if they are farther apart than L, they attract. The length can be thought of as the 
natural unstretched length of the virtual spring connecting the two particles. 

As described in Chapter 8, the spring force between any two particles is given by the following equation, in 
which k is the spring constant and x is the extension: 

F = −k x  
The magnitude of the extension x is the amount by which the spring is stretched beyond its unstretched 
length L. In the case of two adjacent particles connected by a spring, it is therefore equal to the distance d 
between the particles minus L: 

x = d − L  
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In vector form, it is this: 

x = d − L( ) d
d  

Here d is the distance vector between the two particles. For example, the ith particle in the preceding 1D 
chain experiences a force due to the (i+1)th particle given by this, where r is the position vector of the 
respective particle: 

F = −k ri − ri+1 − L( ) ri − ri+1

ri − ri+1  
Similarly, the ith particle experiences a force due to the (i-1)th particle given by the following: 

F = −k ri − ri−1 − L( ) ri − ri−1

ri − ri−1  
This 1D model can be extended to 2D or 3D, and each particle can then be subjected to a spring force due 
to more neighbors according to the previous formulas. 

You also want to have damping in your mass-spring system; otherwise, the particles would just oscillate 
forever. The damping term is usually linear in the relative velocity with a constant coefficient c (which can 
be chosen to minimize the time it takes to reach equilibrium), as we discussed in Chapter 8: 

F = −cvr  
In the specific context of our connected mass-spring system, the velocity vr is the velocity of the relevant 
particle relative to the particle exerting the force on it. Therefore, the damping force on the ith particle 
relative to the (i+1)th particle is given by this: 

F = −c vi − vi+1( )
 

Similarly, the damping force on the ith particle relative to the (i+1)th particle is given by the following: 

F = −c vi − vi−1( )
 

To get a mass-spring system to work properly, it is frequently necessary to adjust the mass, stiffness, and 
damping coefficient. Generally you’ll want the stiffness k to be high to reduce the stretchiness of your 
object. The problem is that the resulting spring system becomes more unstable, and it is not unusual to 
see a simulation explode before your very eyes! Let’s put together an example, and you’ll soon get to see 
what we mean! 



Chapter 13 

434 

Rope simulation 
This example builds upon the last example in Chapter 8, where we simulated a chain of particles 
connected together by springs (see the “Coupled Oscillations” code). We will now make some small but 
significant changes to that simulation to make it behave more like a rope. The modified code is Rope.as 
and RopeMover.as. Rope.as sets up the visual elements and looks like this: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class Rope extends Sprite{ 
                public function Rope():void{ 
                        init(); 
                } 
                private function init():void{ 
                        // create a sprite to draw the springs on 
                        var spring:Sprite=new Sprite(); 
                        addChild(spring); 
 
                        // create a fixed support 
                        var fixedPoint:Ball; 
                        fixedPoint=new Ball(2,0x000000); 
                        fixedPoint.pos2D=new Vector2D(100,100); 
                        addChild(fixedPoint); 
 
                        // create the masses 
                        var objects:Array = new Array(); 
                        var numObjects:Number = 15; 
                        var spacing:Number = 20; // make close to spring length 
                        for (var i:uint=0; i<numObjects; i++){ 
                                var object:Ball= new Ball(2,0x000000,10); 
                                object.pos2D = new Vector2D(fixedPoint.x+spacing*(i+1),! 
fixedPoint.y); 
                                addChild(object); 
                                objects.push(object); 
                        } 
 
                        // get things moving 
                        var mover:RopeMover=new RopeMover(objects,fixedPoint,spring); 
                        mover.startTime(); 
                } 
        } 
} 

In this code, we are creating 16 Ball objects of radius 2 pixels and placing them initially 20 pixels apart on 
a horizontal straight line. The first ball will remain fixed in the simulation. A Sprite object named spring is 
also created. This will hold lines that will connect the balls together, giving the appearance of a rope.  

The system is set into motion by a RopeMover instance. RopeMover is a modification of the 
CoupledOscillator class of Chapter 8 and looks like this, with the changes in bold: 
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package { 
        import com.physicscodes.motion.MultiForcer2; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
        import flash.display.Sprite; 
        import flash.events.MouseEvent; 
 
        public class RopeMover extends MultiForcer2{ 
                private var _objects:Array; 
                private var _support:Ball; 
                private var _center:Vector2D; 
                private var _displ:Vector2D; 
                private var _g:Number=10; 
                private var _kDamping:Number=20; 
                private var _kSpring:Number=500; 
                private var _springLength:Number=20; 
                private var _spring:Sprite; 
                private var _drop:Boolean=false; 
 
                public function RopeMover(pobjects:Array,psupport:Ball,pspring:Sprite):void{ 
                        _objects = pobjects; 
                        _support = psupport; 
                        _center = _support.pos2D; 
                        _spring = pspring; 
                        _spring.stage.addEventListener(MouseEvent.MOUSE_DOWN, onDown); 
                        super(_objects); 
                } 
 
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        drawSpring(); 
                        _center = _support.pos2D; 
                } 
 
                override protected function calcForce(pparticle:Particle,pnum:uint):void{ 
                        var centerPrev:Vector2D; 
                        var centerNext:Vector2D; 
                        var veloPrev:Vector2D; 
                        var veloNext:Vector2D; 
                        if (pnum > 0){ 
                                centerPrev = _objects[pnum-1].pos2D; 
                                veloPrev = _objects[pnum-1].velo2D; 
                        }else{ 
                                centerPrev = _center; 
                                veloPrev = new Vector2D(0,0); 
                        } 
                        if (pnum < _objects.length-1){ 
                                centerNext = _objects[pnum+1].pos2D; 
                                veloNext = _objects[pnum+1].velo2D; 
                        }else{ 
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                                centerNext = pparticle.pos2D; 
                                veloNext = pparticle.velo2D; 
                        } 
                        var gravity:Vector2D = Forces.constantGravity(pparticle.mass,_g); 
                        var velo:Vector2D = pparticle.velo2D.multiply(2).subtract! 
(veloPrev).subtract(veloNext); 
                        var damping:Vector2D = Forces.damping(_kDamping,velo); 
                        var displPrev:Vector2D = pparticle.pos2D.subtract(centerPrev); 
                        var displNext:Vector2D = pparticle.pos2D.subtract(centerNext); 
                        var extensionPrev:Vector2D = displPrev.subtract! 
(displPrev.unit().multiply(_springLength)); 
                        var extensionNext:Vector2D = displNext.subtract! 
(displNext.unit().multiply(_springLength)); 
                        var restoringPrev:Vector2D = Forces.spring(_kSpring,extensionPrev); 
                        var restoringNext:Vector2D = Forces.spring(_kSpring,extensionNext); 
                        force = Forces.add([gravity, damping, restoringPrev, restoringNext]); 
                        if (pnum==_objects.length-1 && !_drop){ 
                                force = new Vector2D(0,0); 
                                pparticle.velo2D = new Vector2D(0,0); 
                        } 
                } 
 
                private function drawSpring():void{ 
                        with (_spring.graphics){ 
                                clear(); 
                                lineStyle(2,0x009999); 
                                moveTo(_center.x,_center.y); 
                                for (var i:uint=0; i<_objects.length; i++){ 
                                        var X:Number = _objects[i].xpos; 
                                        var Y:Number = _objects[i].ypos; 
                                        lineTo(X,Y); 
                                } 
                        } 
                } 
 
                private function onDown(e:MouseEvent):void{ 
                        _spring.stage.addEventListener(MouseEvent.MOUSE_UP, onUp); 
                        _drop = true; 
                } 
                private function onUp(e:MouseEvent):void{ 
                        _spring.stage.removeEventListener(MouseEvent.MOUSE_UP, onUp); 
                        _drop = false; 
                } 
 
        } 
} 

Most of the code is unchanged from that in CoupledOscillations.as, and we therefore refer you to the 
relevant discussion in Chapter 8 if it is not completely obvious and you need a refresher of how it works. 
We’ll instead focus on the key changes. 

First, notice that we are storing the velocities of the particles before and after the current one in variables 
veloPrev and veloNext. They are then combined with the velocity of the current particle to give the 
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parameter velo, which is used to compute the damping force using the Forces.damping() function. You 
might be wondering why we are combining the velocities in that way. Referring to the formulas for the 
damping force given in the last subsection, we are adding up the damping force on the current particle 
relative to the two neighboring particles to give this: 

F = −c vi − vi+1( ) + −c vi − vi−1( ) = −c 2vi − vi+1 − vi−1( )  

The variable velo is just the combined effective velocity that results from that sum. Note that in 
CoupledOscillator.as we used the absolute velocity of the current particle (not the velocities relative to 
its neighbors) to compute the damping force on it. You might want to experiment by comparing the 
behavior of the simulation if you do the same here. 

Another change is that we are fixing the last particle in the chain by setting the force on it and its velocity to 
zero, unless the Boolean parameter _drop is true: 
 
if (pnum==_objects.length-1 && !_drop){ 
        force = new Vector2D(0,0); 
        pparticle.velo2D = new Vector2D(0,0); 
} 

The parameter _drop, initially set to false, is controlled by user interaction through the event handlers 
onDown() and onUp() that respond to a MOUSE_DOWN and MOUSE_UP event, respectively. As long as the 
user holds the mouse down, _drop is true, and the last particle can move under the action of forces like 
the rest of the particles (except the first). If the mouse is released, the last particle stops wherever it is. 
There is a slightly modified version of the simulation with the source files Rope2.as and RopeMover2.as 
that responds in a different way to mouse clicks: when the mouse is held down, a force is applied toward 
the mouse with a magnitude proportional to the distance from the mouse to the last particle; the force is 
removed when the mouse is released. Although we refer to the first version of the simulation in the 
following discussion, much of it applies equally well to the modified version. 

Note the values of the parameters that we specify in RopeMover.as and Rope.as: gravity is 10 units, 
spring length is 20 pixels, and the mass of the particles is 10 units. Most importantly, note the high values 
used for the spring damping coefficient (20) and the spring constant (500) compared to what they were in 
the coupled oscillations simulation of Chapter 8, where these parameters had values of 0.5 and 10, 
respectively. As you experiment with this simulation, do try different values for these parameters to see 
how they change its behavior. 

Run the simulation with the default values of these parameters. See how the particles fall from their initial 
positions under the effect of gravity, but are held together by the spring force. After some brief oscillations 
and slight stretching, they settle down into a curved shape that hangs down like a rope (see Figure 13-17). 
This is a characteristic mathematical curve known as a catenary: it’s the shape that a chain fixed at both 
ends naturally takes under the effect of its own weight. After it has settled down, click and hold down the 
mouse so that the end of the string falls down: see how the “rope” can readjust itself. Now release the 
mouse and notice that the rope again settles into a characteristic curve: this is a different section of the 
catenary. 
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Figure 13-17. A rope simulation 

Experiment by changing the values of the parameters. First, let’s increase the value of the spring constant 
_kSpring to 1000. See how the rope now stretches less. You might be tempted to try a much larger value 
to see whether you can get an even tighter rope. Fine, go ahead and increase _kSpring to 5000 (just 
don’t say we didn’t warn you) and rerun the simulation. Whoops! Your rope just blew up! Welcome to 
numerical instability. Unfortunately, this is a common problem with mass-spring systems: they are prone to 
blow up, especially for high values of the spring constant. This arises because of an underlying issue with 
integration schemes known as numerical instability, which we’ll discuss in more detail in the next chapter. 

You can similarly play with the damping coefficient _kDamping and note that its value affects how quickly 
the oscillations stop. Things can get nasty here, too. For example, keep _kSpring at its initial value of 500 
and decrease the value of _kDamping to 1. The simulation seems to be well-behaved initially, apparently 
settling down as before. But wait a little longer and you soon start seeing little fluctuations growing and 
distorting the rope into something that you can’t call a rope any more. And before you know it, it all 
explodes again! 

To conclude: mass-spring systems are easy to create and fun to watch, but they can prove highly unstable 
in certain parameter regimes. Some things can be done to improve their stability, for example by using an 
improved integration scheme (see the next chapter), but they should be used with care. 

Cloth simulation 
It is fairly straightforward to extend our rope simulation to 2D to create a simple cloth simulation. Of course, 
to create a realistic simulation of a cloth that can bend we really need a 3D simulation, even if the cloth 
itself is 2D, to allow for movement and bending of the cloth in the third dimension. But we can quickly 
make a 2D version that will reproduce at least some elements of the behavior of a moving cloth. So let’s 
make some quick modifications to the rope simulation and create a 2D version of it. The new setup file is 
called Cloth.as and contains the following code: 
 
package{ 
        import flash.display.Sprite; 
        import com.physicscodes.objects.Ball; 
        import com.physicscodes.math.Vector2D; 
 
        public class Cloth extends Sprite{ 
                public function Cloth():void{ 
                        init(); 
                } 
 
                private function init():void{ 
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                        // create a sprite to draw the springs on 
                        var spring:Sprite=new Sprite(); 
                        addChild(spring); 
 
                        // create the masses 
                        var rows:uint=10; 
                        var cols:uint=15; 
                        var refPoint:Vector2D = new Vector2D(120,50); 
                        var objects:Array = new Array(); 
                        for (var i:uint=0; i<cols*rows; i++){ 
                                var object:Ball= new Ball(2,0x000000,10); 
                                var ncol:Number=Math.floor(i/rows); 
                                var spacing:Number = 20; // make close to spring length 
                                object.pos2D = new Vector2D(refPoint.x+ncol*spacing,! 
 refPoint.y+(i-ncol*rows-1)*spacing); 
                                addChild(object); 
                                objects.push(object); 
                        } 
 
                        // fixed points 
                        var fixedPoints:Array = new Array(0,70,140); 
 
                        // get things moving 
                        var mover:ClothMover = new ClothMover(objects, fixedPoints, cols,! 
 rows, spring); 
                        mover.startTime(); 
                } 
        } 
} 

Apart from the obvious generalization of the setup to 2D, note that we have also specified an array of 
points on the cloth that we want to remain fixed. In the listing, we are holding the cloth fixed at three points, 
giving the appearance of a piece of cloth that is hung on a line. 

The ClothMover class that drives the simulation is fairly long, but it is an obvious generalization of the 
RopeMover class and so we won’t list it here. Take a look at the code in the source files, though. Arguably 
some of the coding in that class could be done more concisely and elegantly by using arrays instead of 
different variables (such as extensionUp, extensionDown, and so on) that do the same thing in different 
directions. But the code is probably easier to understand in the current inelegant form, and the comments 
should also help. The main idea is that now each particle is experiencing a force due its four nearest 
neighbors to the left, right, up, and down, respectively. If a particle is on the edge of the cloth, it obviously 
does not have one or more of these forces. All the particles are subject to gravity. The other change is in 
terms of user interaction; clicking and holding down the mouse now applies a steady wind blowing to the 
right. 

Run the simulation and you’ll have a hanging piece of cloth that you can blow the wind over by clicking the 
mouse (see Figure 13-18). Experiment with the parameters of the simulation to see what they do. For 
example, you can try and increase the number of particles, reduce their spacing, and so on. You might 
also want to increase the spring constant and see how far you can go before you tear the cloth to pieces! 
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Figure 13-18. A simple cloth simulation 

Needless to say, this is a very basic cloth simulation that can be enhanced in endless ways. Functionally, 
the most important improvement is probably to make the cloth move in 3D. You could also connect each 
particle to more neighbors; for example, the four nearest diagonal neighbors and the next nearest 
neighbors up, down, left, and right. That would improve the way the cloth behaves. Visually, you could fill 
up the areas between the particles, add texture, lighting and so on. Over to you! 

Summary 
This chapter introduced rigid body dynamics and collisions, and showed you how to model deformable 
bodies using mass-spring systems. Needless to say, what we have covered in this chapter is only the tip of 
the iceberg. There are many more topics on the general subject of extended systems that we can only 
briefly mention here: constrained systems, forward and inverse kinematics, and Verlet systems. Some of 
them can provide alternative approaches to simulating both rigid bodies and deformable bodies, but we do 
not have the space to include a discussion of them in this book. 

This chapter completes Part III. In the first two chapters of Part IV, we will look at advanced numerical 
schemes and some other technical issues involved in creating more complex simulations, and then 
conclude with some simulation projects in the final chapter. 
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Part IV 

Building More Complex Simulations 
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Chapter 14 

Numerical Integration Schemes 

In the previous two parts of this book we have covered a lot of physics. In the process we have managed 
to largely avoid getting into complex numerical issues. In this fourth and last part of the book we will 
discuss, over the next two chapters, some technical and numerical issues that you’ll need to consider if 
you are building more complex simulations, and illustrate their application with some examples in the final 
chapter. In this chapter we will focus exclusively on the important subject of numerical integration 
schemes. Because no new physics will be presented, there won’t be any new simulations in this chapter, 
but just some simple codes to test the different schemes.  

Numerical integration is a branch of numerical analysis that deals with the solution of differential equations. 
An integration scheme is a particular method for doing numerical integration in a form that you can readily 
write into code. We need an integration scheme to simulate motion because it involves solving Newton’s 
second law of motion (which is a differential equation; see Chapter 5).  

Topics covered in this chapter include the following: 

• General principles: We begin by stating the general problem to be solved and explain the 
different types of integration schemes available and their characteristics.   

• Euler integration: This is the simplest integration method and is the one we have been using 
throughout the book so far. It is fast and very easy to code up, but it is inaccurate and can be 
unstable, which can lead to problems with some types of simulations.  

• Runge-Kutta integration: This method is much more accurate than the Euler scheme, but it 
involves a lot of calculations and can therefore slow down your simulation. It is particularly 
suited to highly accurate simulations.  

• Verlet integration: This method is not as accurate as Runge-Kutta, but is generally better 
than the Euler scheme. It is well suited to a number of game programming and animation 
applications.  
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General principles 
Before we look at specific integration schemes, it is useful to start by posing the problem of numerical 
simulation in a general way and then looking at how numerical integration approaches its solution. We 
then discuss the general characteristics of integration schemes and review some terminology associated 
with different types of schemes. 

Statement of the problem 
Numerical integration is a method of solution of a problem. So what is the problem we are trying to solve? 

Motion of a particle as an initial value problem 
To simplify the discussion, consider the problem of simulating the motion of a single particle under the 
action of forces. Suppose the particle starts out at a location given by its initial position vector x(0) with 
respect to an origin O and with an initial velocity v(0) (see Figure 14-1). The problem is then to determine 
the trajectory as a function of time. Mathematically, this is equivalent to determining the position and 
velocity vectors x(t) and v(t) as a function of time. This is called an initial value problem.  

 

Figure 14-1. The initial value problem for particle motion simulation 

In the preceding problem, the velocity of the particle v could itself be changing in time (in other words, the 
particle could be accelerating). That is why we need Newton’s second law:  

a = F
m  

Knowing the acceleration at any time then allows us to calculate the velocity v by integrating the equation 
defining acceleration: 

dv
dt

= a  

Similarly, applying the definition of velocity, the position can be obtained by integrating the velocity in time:  

dx
dt

= v  
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As discussed in Chapter 5, these differential equations can sometimes be solved analytically to give 
closed-form expressions for x(t) and v(t) as functions of time. In computer simulation, the integration needs 
to be done numerically.  

Numerical integration means that the position and velocity of the particle can be calculated and updated 
only in small discrete steps. This is done by first discretizing the previous equations of motion. 

Numerical discretization and difference schemes 
We gave an example of the discretization procedure back in Chapter 3 when discussing the numerical 
calculation of gradient functions in general mathematical terms. You may want to refer to the section on 
calculus in Chapter 3 for a refresher.  

In the current context, you can apply numerical discretization to the last two equations to convert them into 
a form that can be put into code and solved on a computer.  

This is done by approximating the derivatives in those equations by algebraic fractions. For example, we 
can approximate the acceleration dv/dt using small changes %v and %t in v and t like this: 

a = dv
dt

≈ ∆v
∆t  

The next step is then to represent the discrete step changes %v and %t in terms of values at definite times 
because that is what you know (or rather what your computer knows). This can be done in different ways, 
known as difference schemes.  

As an example, you can take %t to be the time at the next timestep minus the current time, and similarly for 
the velocity interval %v. This gives a forward difference scheme, as discussed in Chapter 3 (n here 
denotes the timestep number):  

a n( ) = v n +1( ) − v n( )
t n +1( ) − t n( )  

Similarly, the velocity can be approximated by a forward difference scheme in the following way: 

v n( ) = x n +1( ) − x n( )
t n +1( ) − t n( )  

Now you’ve converted the differential equations into algebraic equations that you can understand and 
manipulate easily. More importantly, it’s in a form that a computer can calculate. This is the role of 
discretization.  

But before you can put anything into code, there is one more step you need to do: convert the preceding 
difference scheme to an integration scheme.  

Numerical integration and integration schemes 
Numerical integration was also introduced in general terms in Chapter 3. The key idea is that we need to 
find the velocity and position at the new time in terms of those at the old time. So, just as we did in Chapter 
3, we manipulate the previous equations to give the following expressions for v(n+1) and x(n+1), 
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 in which we have written the time difference t(n+1) – t(n) as %t (the timestep): 

v n +1( ) = v n( ) + a n( ) ⋅ ∆t  

x n +1( ) = x n( ) + v n( ) ⋅∆t  
This gives a forward integration scheme known as the Euler scheme, as you know. With these equations, 
you can obtain the new velocity and position of your particle in terms of its velocity and position at the 
previous timestep. You can now put these equations directly into code and simulate the motion of the 
particle by repeating that calculation at each timestep. This will give you a discrete approximation to the 
true trajectory of the particle, as shown schematically in Figure 14-2. A good simulation means that this 
approximated trajectory is as close to the real one as needed for your particular purpose. How good the 
approximation turns out to be will depend on a number of factors, including the following:  

• Physics of the problem: Effectively, this is captured by how the acceleration a varies with time. 
Some physical problems are easier to simulate accurately than others, especially if the 
acceleration does not vary too much with time. 

• Simulation timestep: Generally, the smaller the timestep the better the approximation will be. 
But reducing the timestep comes at a cost because your simulation may run more slowly. 
Referring to Figure 14-2, smaller timesteps mean that the distance between the dots is reduced 
and that the approximated curve is closer to the true one.  

• Integration scheme: The choice of integration scheme generally has a significant effect on the 
accuracy, stability, and speed of execution of your simulation. But there is often a trade-off 
between these desirable characteristics.      

 

 

Figure 14-2. Numerical integration gives an approximation to the true trajectory. 

Characteristics of numerical schemes 
When deciding which integration scheme to use there is a set of characteristics that you need to bear in 
mind, which determine how “good” that scheme is and how well suited it is to the application you have in 
mind. We’ll briefly discuss some of these characteristics separately, but remember that they are 
connected.    

Consistency 
Consistency of a numerical scheme is the property that the numerical scheme is consistent with the 
original differential equation in the sense that it approximates the differential equation. Formally, in the limit 
of indefinitely small timesteps, the numerical solution should be identical to the true solution of the 
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differential equation. This can be viewed as a necessary condition for any numerical scheme. If it’s not 
true, the scheme will give the wrong physics and is essentially useless.   

Stability 
In the last chapter you saw a spectacular example of numerical instability with the rope simulation “blowing 
up” when the spring stiffness was too high. Formally, the stability of a numerical scheme is its capability to 
reduce errors (or “perturbations,” as they are usually called) over time. A scheme is stable if an error or 
perturbation at any time decays with time; it is unstable if the error grows with time. A scheme can be 
conditionally stable (meaning that it is stable under certain conditions) or unconditionally stable (it is 
always stable, regardless of the conditions).  

Convergence 
Convergence is the requirement that as we reduce the timestep, the resulting numerical solution should 
approach the true solution. Consistency is a necessary condition for convergence, but not a sufficient 
condition. Again, clearly a numerical scheme is of no use if it is not convergent. For convergence, a 
scheme must also be stable. 

Accuracy 
Replacing a differential equation by finite differences inevitably introduces errors (known as discretization 
errors). Needless to say, it is desirable to keep these errors as small as possible. The accuracy of a 
numerical scheme determines how small or how large these errors will be. The timestep also has an 
important effect on the numerical errors; errors are generally smaller the smaller the timestep (if the 
scheme is convergent). The order of a numerical scheme determines how quickly the errors diminish as 
you reduce the timestep. A first-order scheme has an error that is proportional to the timestep %t, a 
second-order scheme has an error proportional to (%t)2, and so on. Therefore, as the timestep %t is 
reduced, a second-order scheme will converge faster to the real solution, making it more accurate.   

Efficiency 
The efficiency of a numerical scheme quantifies how quickly (in wall clock time) it can compute a solution 
per unit simulation time. For the same timestep, the more complex a numerical scheme is, the lower is its 
efficiency because it has to perform a greater number of calculations and associated operations to 
produce a given solution per timestep. More accurate schemes are usually more complex and therefore 
less efficient. There is, therefore, usually a trade-off to achieve between accuracy and efficiency. However, 
in an actual implementation, the overall efficiency of a numerical method depends on the size of timestep 
that it can allow while preserving stability and accuracy. It could turn out that a simple scheme requires a 
much larger timestep to remain stable than a more complicated one, making it effectively less efficient in 
terms of overall computing time per simulation time.  

Types of integration schemes 
The terminology of numerical analysis can sound confusing because of the plethora of schemes, their 
associated names, and the different ways to classify them. The following list contains very brief 
descriptions of some of the terminology associated with the classification of integration schemes. Note that 
the categories mentioned here are not mutually exclusive; they overlap. 

• Forward/backward schemes: You may come across scheme names such as forward Euler 
and backward Euler. These names show that the scheme is derived from a corresponding 
forward or backward difference scheme.   
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• Implicit/explicit schemes: An explicit scheme is one in which the values of the state 
variables at the new timestep are computed in terms of only the variables at the previous 
timestep; this makes an explicit scheme straightforward to apply. In an implicit scheme, an 
equation involving variables at both the old and the new timestep must be solved to calculate 
the variables at the new timestep; this makes such schemes less efficient.  

• Single-step/multistep methods: A single-step method uses information from a single 
previous timestep to calculate variables at the new timestep. A multistep method uses 
information from more than one previous timesteps.  

• Predictor-corrector methods: As its name suggests, a predictor-corrector method involves 
two stages: a step that predicts a value at the new timestep, followed by another step that 
applies a correction to the estimated value.   

• Runge-Kutta methods: This refers to a class of higher-order methods that proceed by 
employing intermediate stages and can be explicit as well as implicit. We will consider two 
examples of such methods, including the fourth-order Runge-Kutta (RK4) method, which is 
often referred to as the Runge-Kutta method.    

Modifying Forcer to allow for different integration schemes 
In the next sections we discuss a number of different schemes and then write code that will implement 
them. It would be helpful to be able to switch between different schemes easily, which would be 
convenient for comparing different schemes and for choosing an appropriate scheme for each problem.  

So let’s modify Forcer to allow that. The new version is called ForcerIntegrator, and the code looks like 
this to start with: 

package com.physicscodes.motion{  
 import com.physicscodes.motion.Mover; 
 import com.physicscodes.objects.Particle;   
 import com.physicscodes.math.Vector2D; 
 import com.physicscodes.motion.Forces; 
 
 public class ForcerIntegrator extends Mover{ 
  private var _particle:Particle; 
  private var _force:Vector2D; 
  private var _acc:Vector2D;  
 
  public function ForcerIntegrator(pparticle:Particle):void{ 
   _particle = pparticle; 
   _oldpos = _particle.pos2D; // initialize old position 
   super(pparticle); 
  }  
   
  public function get force():Vector2D { 
   return _force; 
  }    
   
  public function set force(pforce):void { 
   _force = pforce; 
  } 
   
  protected function calcForce(ppos:Vector2D,pvel:Vector2D):void{ 
   _force = Forces.zeroForce(); 
  } 
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  private function getAcc(ppos:Vector2D,pvel:Vector2D):Vector2D{ 
   calcForce(ppos,pvel); 
   return _force.multiply(1/_particle.mass); 
  } 
 
  override protected function moveObject():void{ 
   myFavoriteScheme(); 
  }     
 
  private function myFavoriteScheme():void{    
   // scheme-specific code goes in here    
  } 
     
 }  
} 

We have made some changes to the code (indicated with bold type). The calcForce() method now takes 
two arguments, ppos and pvel, which reference position and velocity vectors. This will be needed because 
some schemes require the evaluation of the acceleration (and hence the force) at different times. They will 
do that by calling the private getAcc() method that calculates the acceleration, also with position and 
velocity vectors as arguments. The moveObject() method overrides the default one in Mover. This is where 
you will call the method that implements the integration scheme. All the scheme-specific code will be in its 
own method. In this way it will be easy to implement new schemes and to switch between schemes. Note 
that we are only applying the changes to the linear motion because we will only use the new integration 
schemes for particle motion; you could also implement them on the rotational motion along the same lines.   

Euler integration 
We have talked about and used the Euler integration scheme a lot in this book, so you are therefore very 
familiar with it by now. But what you might not know is that there are several different versions of the Euler 
scheme. Let’s take a look at some of them and their properties.  

Explicit Euler 
The Euler integration scheme that we derived earlier in this section from the forward difference scheme is 
called (appropriately enough) the forward Euler scheme. Also, because it is an explicit scheme, it is also 
known as the explicit Euler scheme. Here are the equations again: 

v n +1( ) = v n( ) + a n( ) ⋅ ∆t  

x n +1( ) = x n( ) + v n( ) ⋅∆t  
Because it is simple, the explicit Euler scheme is fast, but it is only first-order accurate and is often 
unstable.  

Note that when implementing this scheme in code, we update the position based on the current velocity 
before updating the velocity based on the current acceleration, to be consistent with the previous 
equations.    
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In our new class ForcerIntegrator, the relevant code is in the EulerExplicit() method, which looks like 
this: 

private function EulerExplicit():void{    
 _acc = getAcc(_particle.pos2D,_particle.velo2D);  
 _particle.pos2D = _particle.pos2D.addScaled(_particle.velo2D,dt); 
 _particle.velo2D = _particle.velo2D.addScaled(_acc,dt);    
}  
 
 

Implicit Euler 
The explicit Euler scheme was obtained by starting from a forward difference approximation to the 
derivative. You can instead start from a backward difference scheme: 

a n +1( ) = v n +1( ) − v n( )
t n +1( ) − t n( )  

v n +1( ) = x n +1( ) − x n( )
t n +1( ) − t n( )  

Rearranging these difference equations then gives the following: 

v n +1( ) = v n( ) + a n +1( ) ⋅ ∆t  

x n +1( ) = x n( ) + v n +1( ) ⋅∆t  

This looks similar to the corresponding equation for the explicit Euler scheme, except for one crucial 
difference: the right sides of those equations contain the acceleration as well as the velocity at the new 
timestep. We therefore have an implicit equation that needs to be solved first before we can obtain the 
velocity at the new timestep. This involves further calculations, which make implicit schemes less efficient 
(as well as a pain to code up!). A major advantage of the implicit scheme is that it is unconditionally stable. 
If you want to make sure that your simulation will never blow up, it’s worth considering using an implicit 
scheme. But because we don’t use the implicit Euler scheme in this book, we won’t bother coding it up.   

Semi-implicit Euler 
The semi-implict Euler scheme, as its name suggests, is somewhere between the explicit and implicit 
Euler schemes. In one common variant, the velocity is advanced based on the acceleration at the previous 
timestep, as in the explicit scheme, but the position is advanced based on the updated velocity at the new 
timestep, as in the implicit scheme: 

v n +1( ) = v n( ) + a n( ) ⋅ ∆t  

x n +1( ) = x n( ) + v n +1( ) ⋅∆t  

The advantage of the semi-implicit scheme is that it is more stable than the explicit scheme and also 
conserves energy. This energy-conserving property makes it more accurate than the explicit scheme, 
although it is still first order.  
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The semi-implicit scheme is simple to implement. Compared with the implementation of the explicit 
scheme, you just reverse the order in which you update the position and velocity. Here is the 
corresponding function EulerSemiImplicit() in ForcerIntegrator: 

private function EulerSemiImplicit():void{    
 _acc = getAcc(_particle.pos2D,_particle.velo2D);  
 _particle.velo2D = _particle.velo2D.addScaled(_acc,dt);    
 _particle.pos2D = _particle.pos2D.addScaled(_particle.velo2D,dt);   
} 

There is another variant of the semi-implicit Euler scheme (with similar properties to the other version), in 
which the position is advanced based on the current velocity instead of the updated velocity, and the 
velocity is advanced based on the updated acceleration (and therefore at the updated position): 

x n +1( ) = x n( ) + v n( ) ⋅∆t  

v n +1( ) = v n( ) + a n +1( ) ⋅ ∆t  

Note that because the acceleration potentially depends on the position and it must be evaluated at the new 
time, the position must be updated first in code. This version of the semi-implicit Euler scheme is the one 
that we have been using throughout most of the book, and it has mostly worked quite well, at least from 
the perspective of creating simple demos of various types of physics effects. 

We’ve coded this up in the function EulerSemiImplicit2() in ForcerIntegrator: 

private function EulerSemiImplicit2():void{    
 _particle.pos2D = _particle.pos2D.addScaled(_particle.velo2D,dt); 
 _acc = getAcc(_particle.pos2D,_particle.velo2D);  
 _particle.velo2D = _particle.velo2D.addScaled(_acc,dt);    
} 

Comparing the explicit and semi-implicit Euler schemes 
To compare the explicit and semi-implicit Euler schemes, let’s put together a very simple simulation of a 
particle oscillating under the effect of a spring force. The file Spring.as sets up a particle and a center 
toward which a spring force acts, and creates two other particles at the points where its trajectory should 
theoretically end. The Oscillator class then applies the spring force and simulates the motion of the 
moving particle, tracing out its trajectory. There is nothing new in terms of physics or coding in those files, 
so we won’t list any code here. But the key thing is that Oscillator extends ForceIntegrator, and you 
can change the integration scheme in the moveObject() method of the latter.  

For the purpose of comparing the different schemes, let’s set the timestep at 50 milliseconds in all the 
tests that we’ll be doing. In the present example, we do this by specifying 50 as an argument within the 
startTime() method of the mover class in Spring.as as follows: 

var oscillator:Oscillator=new Oscillator(particle,center);  
oscillator.startTime(50); 

Run the simulation in turn with the EulerExplicit(), EulerSemiImplicit() and EulerSemiImplicit2() 
methods, keeping the same timestep in all three cases. You can choose an integration scheme by 
uncommenting the relevant line of code in the moveObject() method in ForcerIntegrator.as and 
commenting out the other lines. You will find that the particle oscillates as expected and remains nicely 
within the bounds of the endpoints with either of the two semi-implicit schemes. The semi-implicit Euler 
method nearly conserves energy; it’s a so-called symplectic method. However, the explicit Euler scheme 
behaves very badly: the oscillations grow larger and larger (see Figure 14-3). The simulation blows up: 
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explicit Euler creates energy! Things get much better if you introduce some physics that can remove 
energy, such as drag or friction. However, the scheme can’t simulate pure periodic oscillatory motion.    

 

Figure 14-3. The explicit Euler scheme is too unstable to properly simulate spring motion  

As another test of the stability of these schemes, try running the rope simulation of the last chapter with the 
explicit Euler scheme by changing the order of the position and velocity updates in MultiForcer2: it’s not a 
pretty sight! The explicit Euler scheme can’t simulate the rope even at a much lower stiffness. Interestingly, 
even the first version of the semi-implicit scheme does not do as well as the second version, becoming 
unstable for much smaller values of the stiffness. By comparison, the second version of the semi-implicit 
scheme is quite robust, although it also eventually fails, as you saw in the last chapter.  

Why use Euler and why not? 
Many programmers use nothing but Euler integration, whereas others keep as far away from Euler as they 
can. So should you use Euler or not?  

To answer this question wisely, it is important to distinguish between the different versions of the Euler 
method. People often talk of the Euler scheme as if there were only one. But we’ve just seen that different 
versions of Euler have very different properties, which can lead to vastly different performance depending 
on the nature of your simulation. There is bad Euler and there is better Euler. You should definitely avoid 
the bad, explicit Euler. Semi-implicit Euler is actually not that bad (after all, we’ve survived for most of the 
book with it!). It is as easy to code up as the explicit Euler scheme, but has much nicer properties. In code, 
the difference between the explicit and semi-implicit Euler schemes simply amounts to swapping the order 
in which you compute things (so be careful!). So there really is no reason to use the explicit Euler scheme. 
The semi-implicit Euler scheme is widely used in rigid body physics engines.  

If you need absolute stability, the fully implicit Euler scheme is worth considering, although we haven’t 
really shown you how to solve an implicit equation. But now that you have a better insight into numerical 
schemes, it shouldn’t be hard to figure it out from books or online sources. The extra computational cost 
involved in solving the resulting implicit equation makes the implicit Euler scheme seem less attractive in 
terms of efficiency. But you can use large timesteps without worrying about numerical instability, which 
would improve the efficiency. However, large timesteps would then result in poor accuracy, especially 
given that Euler is only first order. That’s probably fine if accuracy is not important compared with stability 
(for example, if you just want your simulation not to blow up, without worrying about its accuracy).    

However, if you really need accuracy, the first-order Euler schemes we have discussed won’t serve you 
well. What you probably need then is something like a Runge-Kutta scheme.  

Runge-Kutta integration 
Runge-Kutta schemes are more complex than the Euler scheme, but they pay off in terms of considerably 
greater accuracy. If accuracy is critical for your simulation, you should seriously consider Runge-Kutta. It 
does come at a performance price, though, especially if you opt for the higher-order schemes. We’ll 
describe two of the most popular Runge-Kutta schemes. 
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Second-order Runge-Kutta scheme (RK2) 
The second-order Runge-Kutta method (RK2) is also known as Heun’s method or the improved Euler 
method. It is a two-stage predictor-corrector method that uses the explicit Euler’s method as predictor and 
a so-called trapezoidal method as corrector. Here are the equations defining the method: 

p1 = x n( )  

v1 = v n( )  

a1 = a p1, v1( )  

 

 

v2 = v1 + a1 ⋅∆t  

a2 = a p2, v2( )  

x n +1( ) = x n( ) +
v1 + v2( )

2
⋅∆t  

v n +1( ) = v n( ) +
a1 + a2( )

2
⋅ ∆t  

The temporary variables p1, v1, and a1 are the initial position, velocity, and acceleration vectors; similarly, 
p2, v2, and a2 are the corresponding variables at the end of the timestep as computed by the forward Euler 
scheme. That’s the predictor part. The last two equations apply the corrector by updating the position and 
velocity using (respectively) the average velocity and average acceleration over the timestep interval.  

RK2 is more accurate than Euler because the Euler scheme uses only the velocity and acceleration at the 
old timestep to work out the new velocity and position of the particle. That would be fine if there were no 
acceleration, so that the velocity remained constant during a timestep, but both the velocity and the 
acceleration could be changing. For example, for a projectile the velocity changes both in magnitude and 
in direction. The Euler scheme takes into account the velocity only at the beginning of a timestep, but the 
RK2 scheme takes the average of the velocities at the beginning and the end of the timestep. So the 
position at the end of the timestep as predicted by RK2 ends up being closer to the real position.  

The accuracy of this method is second order, so it is significantly more accurate than the Euler method. 
Here is the relevant RK2() function in ForcerIntegrator: 

private function RK2():void{    
 var pos1:Vector2D = _particle.pos2D; 
 var vel1:Vector2D = _particle.velo2D; 
 var acc1:Vector2D = getAcc(pos1,vel1);  
 var pos2:Vector2D = pos1.addScaled(vel1,dt);  
 var vel2:Vector2D = vel1.addScaled(acc1,dt); 
 var acc2:Vector2D = getAcc(pos2,vel2);  
 _particle.pos2D = pos1.addScaled(vel1.add(vel2),dt/2); 
 _particle.velo2D = vel1.addScaled(acc1.add(acc2),dt/2); 
{  

p2 = p1 + v1 ⋅∆t
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The RK2() function involves a few more lines of code than the semi-implicit Euler schemes. For the same 
timestep an increase in accuracy is therefore achieved at the expense of reduced speed.  

Fourth-order Runge-Kutta scheme (RK4) 
This is the most well-known Runge-Kutta scheme, and is often called the Runge-Kutta scheme. As its 
name suggests, it is fourth-order accurate. So if you halve the timestep, the error should be reduced by a 
factor of one-sixteenth! The idea is similar to that of RK2, but there are more intermediate steps, and the 
intermediate variables and their averages are computed differently. Here is the full set of equations: 

p1 = x n( )  

v1 = v n( )  

a1 = a p1, v1( )  

p2 = p1 + v1 ⋅ ∆t 2  

v2 = v1 + a1 ⋅ ∆t 2  

a2 = a p2, v2( )  

p3 = p1 + v2 ⋅∆t 2  

v3 = v1 + a2 ⋅∆t 2  

a3 = a p3, v3( )  

p4 = p1 + v3 ⋅∆t  

v4 = v1 + a3 ⋅∆t  

a4 = a p4, v4( )  

x n +1( ) = x n( ) +
v1 + 2v2 + 2v3 + v4( )

6
⋅ ∆t  

v n +1( ) = v n( ) +
a1 + 2a2 + 2a3 + a4( )

6
⋅ ∆t  

Following is the corresponding RK4() method: 

private function RK4():void{    
 var pos1:Vector2D = _particle.pos2D; 
 var vel1:Vector2D = _particle.velo2D; 
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 var acc1:Vector2D = getAcc(pos1,vel1);  
 var pos2:Vector2D = pos1.addScaled(vel1,dt/2);  
 var vel2:Vector2D = vel1.addScaled(acc1,dt/2); 
 var acc2:Vector2D = getAcc(pos2,vel2);  
 var pos3:Vector2D = pos1.addScaled(vel2,dt/2);  
 var vel3:Vector2D = vel1.addScaled(acc2,dt/2); 
 var acc3:Vector2D = getAcc(pos3,vel3);  
 var pos4:Vector2D = pos1.addScaled(vel3,dt);  
 var vel4:Vector2D = vel1.addScaled(acc3,dt); 
 var acc4:Vector2D = getAcc(pos4,vel4);  
 var velsum:Vector2D = vel1.addScaled(vel2,2).addScaled(vel3,2).add(vel4); 
 var accsum:Vector2D = acc1.addScaled(acc2,2).addScaled(acc3,2).add(acc4); 
 _particle.pos2D = pos1.addScaled(velsum,dt/6); 
 _particle.velo2D = vel1.addScaled(accsum,dt/6);   
}    

That’s a lot of calculations to do in a single timestep! So let’s see what RK4 can do for us. We’ll compare 
the Euler, RK2, and RK4 methods for three different problems.  

Stability and accuracy of RK2 and RK4 compared with Euler 
To check the stability of RK2 and RK4, you can repeat the Springs test, using the RK2() and RK4() 
methods. You’ll find that the oscillatory motion is perfectly simulated by both: there isn’t even a slight 
decrease or increase in the amplitude of oscillation (and therefore of energy) as far as the eye can tell (if 
you want, you can perform more quantitative tests by plotting a graph).    

To test the accuracy of the schemes and compare it with that of the previous schemes in a simple way, 
let’s put together a simple orbits simulation. The files are called Orbits.as and Orbiter.as. Again there is 
nothing that you haven’t seen in those files, and we won’t list any code from them here. The test is that the 
orbits should close on themselves; if they don’t, the scheme is introducing significant errors.  

Run the code with different integration schemes in ForcerIntegrator as before. With the explicit Euler 
integrator, the orbit will end up all over the place: it never closes on itself (see Figure 14-4). That should be 
enough to convince you never to use the explicit Euler scheme! 

 

Figure 14-4. The explicit Euler scheme is too inaccurate to produce a closed orbit  

All the other schemes do a pretty decent job. But if you run the simulation for a long time, you will find that 
even the semi-implicit Euler schemes start losing accuracy and tracing slightly non-overlapping circles 
(see Figure 14-5) because they are only first-order accurate. By comparison, we ran the RK4 scheme for a 
much longer duration, but could not notice any loss of accuracy. The RK2 scheme is intermediate in 
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accuracy between the semi-implicit Euler scheme and the RK4 scheme. For this simple example you will 
hardly notice any difference between RK2 and RK4. 

 

Figure 14-5. The semi-implicit Euler scheme accumulates errors after a few orbits  

Verlet integration 
The third and final class of integration schemes that we’ll discuss is called Verlet integration. Originally 
developed for handling complex and variable molecular dynamics simulations because of its stability 
properties, the approach is now widely used in game programming and animation.  

Verlet integration is employed in so-called Verlet systems to simulate the motion of particles subject to 
constraints. This technique can be applied to connected structures as in ragdoll physics, forward and 
inverse kinematics, and even rigid body systems. We do not have space to explore this approach, but we 
refer you to a very good introduction to the subject in the book Advanced ActionScript 3.0 Animation, by 
Keith Peters. We mention Verlet systems merely to distinguish them from the Verlet integration scheme 
because they are sometimes confused: Verlet systems are named as such because they use the Verlet 
integration scheme. But the scheme itself is completely independent of that modeling approach; in fact, it 
can be used with any other approach, such as the rigid body dynamics discussed in Chapter 13.      

Verlet integration schemes are generally not as accurate as RK4 but, on the other hand, are very efficient 
in comparison. Let’s take a look at two common variants of the method: Position Verlet and Velocity Verlet.  

Position Verlet 
In the Position Verlet method, also known as the Standard Verlet method, the velocity of a particle is not 
stored. Instead, the last position of the particle is stored, and its velocity can then be computed as needed 
by subtracting the last position from the current position and dividing by the timestep.  

Just as the explicit Euler scheme can be derived starting from the forward difference approximation of the 
first derivative, the standard Verlet scheme can be derived from the central difference approximation to the 
second derivative (see Chapter 3). We won’t show the derivation here but only quote the final result: 

x n +1( ) = 2x n( ) − x n −1( ) + a n( ) ⋅ ∆t( )2
 

This equation gives the position at the new timestep in terms of the positions at the previous two timesteps 
without using the velocity. 
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 If desired, the velocity can be computed from the positions"for example, using backward differencing: 

v n +1( ) = x(n +1) − x(n)
∆t  

Alternatively you can use the central differencing scheme, because the previous position is also known, to 
give a more accurate estimate of the velocity: 

v n +1( ) = x(n +1) − x(n −1)
2∆t  

One problem with the Position Verlet equation as given previously is that it assumes that the timestep is 
constant. But in general the timesteps in your simulation could be variable. In fact, if you are using Timer or 
EnterFrame, the timesteps will usually vary slightly. To allow for variable timesteps a modified version of 
the equation is used: 

x n +1( ) = 2x n( ) − x n −1( )∆t n( ) ∆t n −1( ) + a n( ) ⋅ ∆t n( )( )2
 

In this equation, %t(n) denotes the current timestep, and %t(n-1) denotes the previous timestep. This form 
can be called the time-corrected or time-adjusted Position Verlet scheme. 

Another potential problem that arises in the implementation of the Position Verlet scheme is the 
specification of the initial conditions. Because the scheme does not use velocity but the position at the 
previous timestep, you cannot directly specify the initial velocity together with the initial position as you 
would normally do. Instead, you need to specify the initial position x(0) as well as the previous position x(–
1) before the initial position! That might sound like nonsense, but you can actually infer the value of that 
hypothetical position from the initial velocity by applying the backward difference formula for the velocity 
given previously. Setting n = –1 in that formula gives the following: 

v 0( ) = x(0) − x(−1)
∆t  

Solving this equation for x(–1) then gives this: 

x(−1) = x(0) − v 0( )∆t  
We can now code up a PositionVerlet() function in ForcerIntegrator as follows: 

private function PositionVerlet():void{    
 var temp:Vector2D = _particle.pos2D; 
 if (_n==0){  
  _acc = getAcc(_particle.pos2D,_particle.velo2D);  
  _oldpos = _particle.pos2D.addScaled(_particle.velo2D,-dt).addScaled(_acc,! 
dt*dt/2); 
  _olddt = dt; 
 } 
 _acc = getAcc(_particle.pos2D,_particle.velo2D); 
 _particle.pos2D = _particle.pos2D.addScaled(_particle.pos2D.subtract(_oldpos),! 
dt/_olddt).addScaled(_acc,dt*dt);  

_particle.velo2D = (_particle.pos2D.subtract(_oldpos)).multiply(0.5/dt); 
 _oldpos = temp;  
 _olddt = dt; 
 _n++; 
} 
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Note that we have new private variables _oldpos and _olddt for storing the previous position and the 
previous timestep. There is also a private uint variable _n that represents the number of timesteps that 
have elapsed since the last call to that function. As you can see from the code, the first time the function is 
called, the position x(–1) is set.  

Velocity Verlet 
One of the problems with the Position Verlet method is that the velocity estimation is not very accurate. 
The Velocity Verlet method fixes this, albeit at some cost in efficiency. The Velocity Verlet is the more 
commonly used version of the two. The scheme equations are these: 

x n +1( ) = x n( ) + v n( ) ⋅ ∆t + 1
2

a n( ) ⋅ ∆t( )2
 

v n +1( ) = v n( ) + 1
2

a n( ) + a n +1( )!" #$∆t  

Comparing the first equation with the corresponding equation in the Euler scheme shows that we now 
have an additional term that includes the acceleration. The Euler scheme therefore assumes that the 
acceleration is zero in the interval of one timestep, whereas the Velocity Verlet method takes into account 
the acceleration but assumes it is constant during that interval. Perhaps you recall the equation s = ut + ½ 
at2 from Chapter 4. The equation for the position update in the Velocity Verlet is exactly of that form (the 
displacement is s = x(n+1) – x(n)).  

Also note that the velocity update equation uses the average of the acceleration at the old and the new 
timestep rather than the acceleration just at the old timestep. Hence, it is a better approximation of the 
velocity. For these reasons the Velocity Verlet scheme is more accurate than the Euler scheme, as well as 
having other nice properties such as greater stability and conservation of energy.  

Here is the VelocityVerlet() method in ForcerIntegrator: 

private function VelocityVerlet():void{    
 _acc = getAcc(_particle.pos2D,_particle.velo2D); 
 var accPrev:Vector2D = _acc;  
 _particle.pos2D=_particle.pos2D.addScaled(_particle.velo2D,dt).addScaled(_acc,dt*dt/2)
; 
 _acc = getAcc(_particle.pos2D,_particle.velo2D); 
 _particle.velo2D = _particle.velo2D.addScaled(_acc.add(accPrev),dt/2);  
}   

Testing the stability and accuracy of the Verlet schemes 
You can now run the spring and orbit simulations using the Verlet schemes. You should find that they do 
quite a good job in both cases. Verlet schemes are stable, but they are less accurate than RK4.  

A simple test to illustrate the differences in the accuracy of all the different schemes can be done by 
performing a simulation for a problem with a known analytical solution, against which the numerical 
solutions can then be compared. You might recall that we did such a test for the Euler scheme for a 
projectile simulation back in Chapter 4. Let’s do something similar now for all the different schemes.  

The files Projectile.as and Projector.as contain the setup code and the simulation code, respectively. 
Once again we won’t show any code listings because you’ve seen those sorts of things tons of times by 
now. The main thing is that the Projectile class creates a ball and initializes its position and velocity such 
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that the ball is thrown upward at an angle, and the Projector class extends ForcerIntegrator and 
subjects the ball to gravity. We have set the timestep at 50 milliseconds, as in the other test simulations.  

Run the simulation with different integrators specified in ForcerIntegrator. The code in Projector plots 
the analytical trajectory as well as the numerically computed trajectory (which, of course, the ball follows). 
You will find that the time-corrected Position Verlet and all the Euler integrators give a trajectory that 
deviates slightly from the analytical trajectory (see Figure 14-6). On the other hand, the trajectories 
predicted using the Velocity Verlet, RK2, and RK4 schemes are so close to the analytical trajectory that 
they cannot be distinguished. Like RK2, the Velocity Verlet scheme is a second-order scheme. Note that 
these comparisons are for a specific problem, involving constant acceleration. Different schemes might be 
more or less accurate with different problems.  

 

Figure 14-6. Projectile trajectory simulated with Position Verlet scheme (lower curve) 

Finally, you might want to check how well the standard Position Verlet does without the time correction. To 
do this, replace the line of code that updates the position in PositionVerlet() with the following one: 

_particle.pos2D =! 
_particle.pos2D.add(_particle.pos2D).subtract(_oldpos).addScaled(_acc,dt*dt);    

If you then run the code you will find that the simulation gets it completely wrong! The message is that time 
correction is essential if you have variable timesteps in your simulation.  

Summary 
If you plan to get into physics simulation seriously, sooner or later you need to worry about the accuracy 
and stability of your integration scheme. This chapter has presented some of the most common options at 
your disposal. The choice of a particular scheme depends on the problem as well as on other practical 
factors. In the previous chapters of the book we used the Euler scheme exclusively. In Chapter 16 you’ll 
see an example in which you need a more accurate integration scheme. 



 
 
 
 
 
 
 

461 

Chapter 15 

Other Technical Issues 

This penultimate chapter brings together a few topics that you may need to consider if you are going to 
build more complex simulations. When building such simulations there are likely to be other considerations 
besides just the physics. Specifically, this chapter focuses on issues that crop up in the following common 
scenarios: if you are building simulations in 3D, if you want your simulation to be a “scale model” of a real 
system, or if accuracy is particularly important.  

Topics covered in this chapter include these: 

• Doing physics in 3D: This section discusses how to extend our framework to create 3D 
simulations. In the process we’ll cover some 3D vector and matrix math and associated 
ActionScript 3.0 classes that will help to handle rigid body rotations in 3D.   

• Building scale models: This section discusses how to choose units and parameter values to 
create a scale model of the system you are trying to simulate.  

• Building accurate simulations: This section reviews some of the factors you need to take 
into account if you want to create a simulation that needs to be highly accurate.   

Because 3D physics is probably what you are likely to be most interested in, we devote the major part of 
the chapter to doing that. Please note that the focus will be very much on doing physics in 3D, rather than 
on 3D programming in general. Thus, although we’ll inevitably have to discuss some aspects of 3D coding 
in Flash, this chapter is not about the latest cutting-edge 3D technology. Flash 3D is a huge subject in 
itself; there are now a multitude of 3D engines in ActionScript that can do very powerful things, and 
Adobe’s upcoming Stage3D will revolutionize the way we do 3D in Flash. But these topics are really 
outside the scope of this book. We’ll take a much more “primitive” approach here, giving you a good basic 
understanding of how to program physics in 3D that will help you, regardless of whether you use one of 
the more advanced frameworks or not. 
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Doing physics in 3D 
With the exception of some simple examples in the earlier chapters, the coded examples in this book have 
all been in 2D. What does it take to do physics in 3D? How do the physics and coding in 3D differ from that 
in 2D?   

3D versus 2D physics 
Let’s first discuss 3D physics. Most of the physics we’ve discussed is essentially unchanged in going from 
2D to 3D. The fundamental laws of motion for linear and rotational motion remain the same in their vector 
forms. Particle motion is treated in a similar way, with the difference that in 3D particles can move in an 
extra dimension (that’s obvious, isn’t it?). Later on in this section we’ll extend the motion classes to 3D, 
which will allow you to simulate the motion of any number of particles under the action of different types of 
forces in 3D space.  

Collisions are more complicated because you have to consider the 3D geometry of the colliding objects. 
Rigid body dynamics is also more complicated because rotation in 3D is more complex and requires some 
more advanced math. So the next section mainly concentrates on presenting the math background 
needed to handle 3D rotations.  

3D math 
There are two pieces of math you need in 3D: vectors in 3D, which are needed to analyze motion just like 
in 2D; and matrices, which you need to handle rotations.  

Vector math in 3D 
Vectors in 3D are straightforward extensions of their 2D counterparts. In Chapter 3, we reviewed vector 
algebra in 2D and in 3D side by side. You may wish to read that section again if you need a refresher. The 
most important difference between vector algebra in 2D and 3D, apart from the fact that there are three 
components instead of two, is that you can do cross products in 3D.  

The Vector3D class 
Back in Chapter 3, we built a Vector2D class that we have then steadily been enhancing with new 
methods. In Flash Player 10 there is now a built-in Vector3D class with methods that permit all the basic 
vector algebra operations that we would expect, such as add(), subtract(), scaleBy(), dotProduct(), 
crossProduct(), and so on. However, note that there are no corresponding methods equivalent to our 
Vector2D methods such as multiply() and addScaled().  

In addition to the three vector components x, y, and z, the Vector3D class also allows for a fourth 
component, w, which can be used to provide additional information such as rotation. If a value for w is not 
specified, then a default value of 0 is assumed, like for the other components: 

public function Vector3D(x:Number = 0, y:Number = 0, z:Number = 0, w:Number = 0) 

Do take the time to have a look at the different properties and methods of Vector3D in the online AS3.0 
documentation.  

Extending Vector3D: the Vector3DX class 
The additional methods of the Vector2D class such as multiply() and addScaled() have proven to be 
quite useful. The difference between the multiply() and scaleBy() methods is that the former returns a 
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new vector whereas the latter updates the current vector. This is similar to the difference between the 
add() and incrementBy() methods. As pointed out in the last section, the Vector3D class has an add() 
method but no corresponding multiply() method. We have therefore created a Vector3DX class in the 
com.physicscodes.math package that extends the Vector3D class, augmenting it with additional methods 
such as multiply(), addScaled(), and unit() that work in analogy with their Vector2D counterparts. There 
is also a public static convert() method for converting a Vector3D object into a Vector3DX object. All these 
methods leave the w property unchanged.  

You don’t have to use the Vector3DX class, but it can save a few lines of code, especially if your code is 
long and complex. We’ll make use of the Vector3DX class in the next chapter.  

Matrices and rotation in 2D 
We’ve done a good job of avoiding matrices so far, even when discussing rigid body rotation in Chapter 
13. While it was fine to do so in 2D, it is more difficult to ignore matrices in 3D. But before we discuss 
matrix algebra and rotations in 3D, it would help a lot to do so first in the simpler 2D context.  

A matrix is essentially an array of numbers, pretty much like a vector. But although a vector is a one-
dimensional array, a matrix can be higher dimensional. We’ll only ever need to worry about two-
dimensional matrices, which look something like this: 

1 3 4 5
3 2 5 2
0 −2 7 2

'

(

)
)
)

*

+

,
,
,

 

This matrix has 3 rows and 4 columns; it’s a 3 x 4 matrix. Let’s call it A. Then we can identify particular 
matrix elements by the row and column number. For example, A(3,2) =  –2.  

Just like arrays, matrices are useful when you have to deal with similar quantities and you have to perform 
the same operations on them. They provide a compact way to perform calculations; for example, when you 
have to do rotations and other transformations. But, just as a math vector is more than an array in the 
sense that it has definite rules for vector algebra (such as vector addition or multiplication), so is a matrix. 
Let’s look at the rules of matrix algebra. 

Matrix algebra in 2D 
You can add and subtract matrices by adding and subtracting the corresponding elements. This means 
that you can only add or subtract matrices with the same size, for example for 2 x 2 matrices: 

a1 b1

c1 d1

'

(
))

*

+
,,

+
a2 b2

c2 d2

'

(
))

*

+
,,

=
a1 + a2 b1 + b2

c1 + c2 d1 + d2

'

(
))

*

+
,,  

Matrix addition can be applied to represent translations, or displacements, where the position of an object 
is shifted in space; for example, the following shifts the position of a point by an amount dx and dy along 
the x and y directions, respectively. This can be represented using 2 x 1 matrices as follows: 

x
y

'

(
)

*

+
, + dx

dy
'

(
)

*

+
, = x + dx

y + dy
'

(
)

*

+
,  
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Matrix multiplication is a bit more complicated. When you multiply two matrices A and B, you multiply each 
row of A by each column of B, element by element, and add the results. Here’s an example for 2 x 2 
matrices: 

a1 b1

c1 d1

'

(
))

*

+
,,

a2 b2

c2 d2

'

(
))

*

+
,,

=
a1 a2 + b1 c2 a1 b2 + b1 d2

c1 a2 + d1 c2 c1 b2 + d1 d2

'

(
))

*

+
,,  

This means that you can only multiply matrix A by matrix B if A has the same number of columns as B has 
rows. In other words, you can multiply an M x N matrix only by an N x P matrix.  

Note that multiplying the mth row by the nth column gives you the (m,n) matrix element in the product. Also, 
the result of multiplying an M x N matrix by an N x P matrix is an M x P matrix.   

Matrix multiplication can transform objects in all sorts of ways, depending on the form of the matrix we’re 
multiplying with. Let’s begin with rotation matrices. 

Rotation matrices in 2D 
Matrices are especially useful for doing rotations. To see this, let’s say you have an object that you want to 
rotate through an angle # about an axis perpendicular to the xy plane through the origin (see Figure 15-1). 
For now let’s use the math coordinate system so that the y-axis points upward, and angles are measured 
in a counterclockwise sense.   

 

O

y (x’, y’)

(x, y)

x
θ

 

Figure 15-1. Rotating an object in 2D  

Using trigonometry, you can show that each point on the object with coordinates (x, y) will be moved to a 
new position with coordinates (x’, y’) given by the following equations: 

′x = x cos θ( ) − ysin θ( )
′y = xsin θ( ) + ycos θ( )  

By the way, this is the math behind the rrotate() method of the Vector2D class that we introduced in 
Chapter 13. You can represent this relationship between the new and old coordinates as a single matrix 
equation: 

′x
′y

'

(
)

*

+
, =

cos θ( ) −sin θ( )
sin θ( ) cos θ( )

'

(
)
)

*

+
,
,

x
y

'

(
)

*

+
,  
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What we have done here is to represent each of the position vectors r and r’ of points (x, y) and (x’, y’) as 
a matrix with a single column (called a column matrix or column vector). If you multiply out the matrices on 
the right side and equate the elements of the resulting column vector with those on the left side of the 
equation, you will recover the previous two equations.  

We can write this matrix equation in a convenient shorthand form as follows: 

′r = Rr  

The matrix R is called the rotation matrix, and is given by the following: 

R =
cos θ( ) −sin θ( )
sin θ( ) cos θ( )

'

(
)
)

*

+
,
,  

Instead of rotating the object, you could also rotate the coordinate system (axes): 

R =
cos θ( ) sin θ( )

−sin θ( ) cos θ( )
'

(
)
)

*

+
,
,  

What’s happening here is that rotating the coordinate axes by angle # is the same as rotating the object by 
angle –#. So, if you replace # by –# in the original matrix and use the fact that sin (–#) = – sin (#), and cos 
(–#) = cos (#), you end up with the second matrix. So, the rule for swapping between object and 
coordinate system rotations is to “reverse the signs of the sines.”  

Doing other transformations with matrices 
You can do all sorts of other transformations with matrices, not just rotation. Here are the matrices for 
some common transformations in 2D: 

Reflection in x-axis: 
1 0
0 −1

'

()
*

+,  

Reflection in y-axis: 
−1 0
0 1

'

()
*

+,  

Scaling: 
sx 0
0 sy

'

(
)

*

+
,  

Skewing (shearing) parallel to x-axis: 
1 k
0 1

'

()
*

+,  
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Skewing (shearing) parallel to y-axis: 
1 0
k 1

'

()
*

+,  

Using the Matrix class 
AS3.0 includes a Matrix class, which is basically a transformation matrix that combines four major types: 
translation, scaling, rotation and skewing.   

The Matrix class takes six numbers (a, b, c, d, tx, and ty) as input and produces a matrix with this form:  

a c tx
b d ty
0 0 1

'

(

)
)
)

*

+

,
,
,

 

The resulting transformation properties of the matrix depend on the values of these inputs. The two 
translation parameters tx and ty specify the distance by which an object is shifted along the x and y 
direction, respectively.  

If b and c are zero, then we have a scaling with a = sx and d = sy, the scaling factors in the x and y 
directions respectively.  

If a and d are zero, we can set b and c to skew an object along the y- and x-axis, respectively.  

Finally, we can set a, b, c, and d in the form of a rotation matrix that (no surprise) will rotate an object 
through an angle #:  

cos θ( ) −sin θ( )
sin θ( ) cos θ( )

'

(
)
)

*

+
,
,  

Note that the AS3.0 Matrix class is not endowed with ordinary matrix algebra. You cannot, for example, 
perform matrix multiplication on two Matrix objects in the math sense. Instead you apply the 
transformations using built-in methods of the Matrix class; for example, rotate(), scale(), translate(). 
Much more detailed explanations can be found in the AS3.0 online documentation.  

Matrices and rotation in 3D 
In 3D, the situation is complicated by the fact that you have three components and also three independent 
directions about which you can perform rotations. The rotation matrix is a 3 x 3 matrix, and for rotation 
about the z-axis it is given by this: 

cos θ( ) −sin θ( ) 0
sin θ( ) cos θ( ) 0

0 0 1

'

(

)
)
))

*

+

,
,
,,
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The rotation matrix about the x-axis is given by this:  

1 0 0
0 cos θ( ) −sin θ( )
0 sin θ( ) cos θ( )

'

(

)
)
))

*

+

,
,
,,

 

A rotation about the y-axis is given by this matrix: 

cos θ( ) 0 sin θ( )
0 1 0

−sin θ( ) 0 cos θ( )

'

(

)
)
)

*

+

,
,
,  

As in the 2D case, the signs of the sines are reversed if the coordinate axes are rotated instead.  

Rotation matrices can be combined by multiplying them together. So a rotation with matrix R1 followed by 
a rotation with matrix R2 is equivalent to a rotation with matrix R2 R1. Note that the order of the rotation 
matters in 3D. For example, rotating a cuboid by 90° clockwise about the x-axis and then 90° clockwise 
about the z-axis will have the cuboid end up in a different orientation than a corresponding rotation about 
the z-axis followed by a rotation about the x-axis. Try it with a book! Mathematically, this corresponds to 
the fact that matrix multiplication is not commutative. In other words:  

R1 R2 ≠ R2 R1  

On the other hand, very small incremental (infinitesimal) rotations are commutative, so it does not matter in 
what order infinitesimal rotations about different axes are performed. This has important implications for 
how we can represent angular orientation and angular velocity in 3D. The noncommutativity of rotations 
about the x-, y-, and z-axis means that there is no unambiguous meaning to angular orientation as a vector 
with three components. So you cannot form a true vector from angular rotation # in 3D. However, you can 
form a vector for small angular increments %! and therefore for angular velocity # = d!/dt. This point may 
sound like it’s of mere academic interest, but you’ll soon see how it will help us to build relevant classes 
and generate rotations for rigid bodies in 3D.        

Matrix3D class 
Flash Player 10 has a Matrix3D class that, like the 2D Matrix class, avoids the need to perform any 
matrix multiplications to apply transformations such as rotations. Instead it performs transformations using 
built-in methods. The transformations it can handle are rotations, scaling, and translation.  

A Matrix3D instance is assigned automatically to any display object if its z property or any scaling or 
rotation property (such as rotationX) is set. The Matrix3D object can then be accessed through the 
display object’s transform.matrix3D property as follows: 

obj.transform.matrix3D  

An example of a Matrix3D method is the appendRotation() method: 

public function appendRotation(degrees:Number, axis:Vector3D, pivotPoint:Vector3D = null):void 
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This method performs an incremental rotation of an object about a specified axis after other 
transformations have been applied. It takes three arguments, the third being optional. The first argument is 
the angle in degrees through which the object is to be rotated; the second argument is the axis about 
which the rotation takes place. Any Vector3D instance can be specified, and there are also Vector3D 
constants to denote the coordinate axes: X_AXIS (Vector3D(1,0,0)), Y_AXIS (Vector3D(0,1,0)), and 
Z_AXIS (Vector3D(0,0,1)).  

We will not go into all the various methods but instead explain each method that we use when we 
introduce them. Refer to the AS3.0 online documentation for details.  

Creating classes for 3D objects and motion 
After all that theory, we are now in a position to modify some of the base classes in our framework to 
include 3D properties and methods.  

First, let’s modify the Particle class. This class already had some 3D properties"xpos, ypos, zpos; and 
vx, vy, vz (and their associated Vector3D properties pos and velo)"but we’ll modify it and create a 
separate Particle3D class so as not to clutter Particle with extra code that won’t be needed. Also, there 
is code in Particle that we won’t need in Particle3D: code associated with the angDispl() property. We 
do not need angular displacement because it does not generalize to 3D. This follows from the fact that 
there is no unambiguous meaning to an angular orientation vector in 3D due to the noncommutativity of 
rotations about different axes, as discussed in the previous section on “Matrices and rotation in 3D.” 
Therefore, we’ll get rid of it. But because angular velocity does generalize to a vector, the angVelo() 
Number property is now replaced by a Vector3D property with the same name. This is to allow for the fact 
that these quantities can have any direction in 3D space because an object in 3D can rotate about any 
axis (whereas rotation in 2D is restricted to be around the z-axis because objects are constrained to 
remain within the 2D plane). We’ve also added corresponding components of these vectors with public 
names omegax, omegay, and omegaz (for the angular velocity components about the x-, y-, and z-axis). 

Next, we modify the RigidBody class, calling the new class RigidBody3D, by extending the Particle3D 
class (instead of Particle) and replacing all Vector2D variables by corresponding Vector3D variables. A 
significant change in RigidBody3D is to replace the momentOfInertia property (a Number) by a moment of 
inertia vector Im consisting of three components Ixx, Iyy, and Izz, so that the constructor of RigidBody3D 
takes a total of four arguments: 

RigidBody3D(pcm:Vector3D, pim:Vector3D, pmass:Number=1, pcharge:Number=0) 

Strictly speaking, the moment of inertia I in 3D is a 3 x 3 matrix and is not given by just three numbers. But 
for some shapes, such as cuboids, only the three diagonal elements of that matrix Ixx, Iyy, and Izz are 
non-zero. Assuming that we will be dealing only with such objects, we can then simplify the math and 
coding considerably by working with those three components that we can put into a Vector3D object rather 
than with a 3 x 3 matrix.    

Now it’s time to modify the relevant motion classes. We’ll modify three of them for now (Mover, ForcerRB, 
and Forces), calling the new classes Mover3D, ForcerRB3D, and Forces3D, respectively. In Mover3D, we 
replace all Particle and Vector2D objects by Particle3D and Vector3D, respectively. In using Vector3D 
we have to remember that some methods that we used for Vector2D, such as addScaled(), are not 
available for Vector3D. So we need to modify the code accordingly. For example, this is the updated 
moveObject() method: 

protected function moveObject():void { 
 var vec:Vector3D = _particle.velo; 
 vec.scaleBy(_dt); 
 _particle.pos = _particle.pos.add(vec); 
} 
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Because there is now no angDispl property, we get rid of the spinObject() method used to update the 
angular displacement. So although Mover3D will make a 3D object translate, it won’t make it rotate. We’ll 
apply rotations in a different way, as you’ll see in the example toward the end of this section.  

ForcerRB3D, which extends Mover3D, takes a RigidBody3D object in its constructor: 

public function ForcerRB3D(prigidBody:RigidBody3D):void{ 
 _rigidBody = prigidBody; 
 super(prigidBody); 
}  

The main modification is then to take into account the Vector3D nature of the torque, angular acceleration, 
and angular velocity vectors. The important changes are the following methods: 

protected function calcForce():void{ 
 _force = new Vector3D(0,0,0); 
 _torque = new Vector3D(0,0,0);   
} 
 
private function updateAccel():void{ 

var vec:Vector3D = _force; 
 vec.scaleBy(1/_rigidBody.mass); 
 _acc = vec; // linear acceleration update 
    
 // (note that a diagonal moment of inertia matrix is assumed here) 
 vec=_torque; 
 vec.x*=1/_rigidBody.Im.x;   
 vec.y*=1/_rigidBody.Im.y; 
 vec.z*=1/_rigidBody.Im.z; 
 _alp=vec; // angular acceleration update 
} 
   
private function updateVelo():void{ 
 var vec:Vector3D = _acc; 
 vec.scaleBy(dt); 
 _rigidBody.velo = _rigidBody.velo.add(vec); // linear velocity update 
     
 vec=_alp; 
 vec.scaleBy(dt); 
 _rigidBody.angVelo = _rigidBody.angVelo.add(vec); // angular velocity update  
} 

As you can see, in updateAccel() we are assuming that the inertia matrix of the rigid body is diagonal (as 
discussed earlier in this section), so that we can deal with the diagonal components Ixx, Iyy, and Izz 
instead of a matrix. This approach will suffice for the simple example that we’ll build in this chapter.  

Finally, we update the Forces class to Forces3D.as simply by replacing Vector2D objects by Vector3D 
objects, taking care to use only methods that are defined for Vector3D.  

We are now almost ready to go 3D. The only thing we are missing is a 3D object that we can actually see 
(remember that Particle3D and RigidBody3D, like their 2D counterparts, don’t have any graphics). We 
need a 3D model.  
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Creating 3D models 
There are a variety of ways to create 3D models. We refer you to the growing number of books on 3D in 
Flash"or perhaps you are a 3D expert yourself! We’ll keep things very simple here and use the drawing 
application programming interface (API) to create a polyhedron (the 3D equivalent of a polygon) just like 
we created the Polygon class in Chapter 13.  

Applying perspective distortion 
The method we will use here is based on a 3D tutorial by Barbara Kaskosz on the Flash & Math web site 
(www.flashandmath.com), which is a highly recommended web site. The method consists of applying 
perspective projection to a polyhedron object defined by vertices and faces, sorting the faces by their 
average z distance (so-called z-sorting), and then drawing the edges and faces of the resulting polyhedron 
using the drawing API. The following perspective formula is used to rescale the coordinates of the vertices: 

λ = f
f + z  

Here . is the scaling factor, z is the z-coordinate of the vertex, and f is a perspective parameter analogous 
to the focal length of a camera. The scaling factor is the factor by which the dimensions of an object are 
modified due to perspective. This formula shows that the scaling factor depends on the distance z. If z is 
large, the scaling factor . is much less than 1, so we have a large amount of perspective distortion. But if z 
is zero, the scale factor . is 1, so there is no distortion.  

The formula also shows that the scaling factor to perspective depends on the value of f due. If f is large, 
adding z to it does not change it much (unless z is very large), so the ratio f/(f+z) is nearly unity. Therefore, 
larger values of f produce less perspective distortion. You need to choose a value for f that will produce the 
desired perspective effect.  

PolyhedronRB class 
The PolyhedronRB class implements the method described in the previous section. The constructor of 
PolyhedronRB takes no fewer than 11 arguments, the last five of which are optional: 

PolyhedronRB(pfl:Number, pcm:Vector3D, pim:Vector3D, pvertices:Vector.<Vector3D>,! 
pfaces:Vector.<Array>, pfacesColors:Array, pedgesColor:uint=0x000000,  pfacesAlpha:Number=0.8,! 
pedgesThickness:uint=2, pmass:Number=1, pcharge:Number=0)#

The first parameter is the “focal length,” the next two are Vector3D parameters that specify the center of 
mass and moment of inertia components (Ixx, Iyy, Izz), respectively. The pvertices parameter is a 
Vector (typed array) consisting of Vector3D instances that each specifies the position of a vertex in 3D 
space. The pfaces parameter is a Vector of arrays, each of which specifies a group of vertices (identified 
by the index number in the pvertices Vector). An example will soon make all this clearer.  

The next parameter is an array that gives the colors of each face. The next five parameters are optional 
and specify the color of the edges (as a single color, with a default of black), the transparency of the faces 
(with a default value of 0.8), the thickness of the edges (default value 2), and the mass (default value 1) 
and charge (default value 0) of the object.   

The key piece of code in the PolyhedronRB class that we need to focus on is the updatePolyhedron() 
public method: 

public function updatePolyhedron(rotx:Number,roty:Number,rotz:Number):void{ 
 _sprite.transform.matrix3D.appendRotation(rotx,Vector3D.X_AXIS); 
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 _sprite.transform.matrix3D.appendRotation(roty,Vector3D.Y_AXIS); 
 _sprite.transform.matrix3D.appendRotation(rotz,Vector3D.Z_AXIS); 
 drawPolyhedron();      
} 

The method adds incremental rotations (specified as arguments) to the matrix3D property of a Sprite 
object named _sprite using the appendRotation() method of the Matrix3D class described previously. 
The drawPolyhedron() method is then called. This is a private method that transforms the polyhedron by 
applying the Matrix3D transform just updated and then doing the perspective projection, z-sorting, and 
drawing as described in the previous section. We do not need to go over the details, except to show how 
the first step (applying the Matrix3D transform) is done: 

for (i=0; i<_numVertices; i++){ 
 newVertices[i] = _sprite.transform.matrix3D.deltaTransformVector(_vertices[i]); 
}  

Here we are applying the Matrix3D instance that we updated in updatePolyhedron() to each vertex using 
the deltaTransformVector() method of Matrix3D. This method applies the transformation matrix without 
using its translation coefficients. In other words, it applies only rotations and scalings. This is exactly what 
we want because we’ll be doing translations using Mover3D, anyway. An alternative Matrix3D method is the 
transformVector() method, which does apply translations as well.  

In a simulation, we would typically call the updatePolyhedron() public method at each timestep to apply 
the Matrix3D transform to the vertices of the polyhedron and redraw the polyhedron, making it rotate 
dynamically. The physics comes in specifying the angular increments rotx, roty, and rotz as arguments 
in the updatePolyhedron() method at each timestep. Let’s look at a simple example now.   

Example: A rotating cube 
This example will be a 3D extension of the RigidBodyDynamics and WindTurbines simulations of Chapter 
13. We will create a cube in 3D and apply a torque about a given axis through its center of mass by 
clicking and holding the mouse, causing the cube to rotate about that axis in 3D.  

The setup file is called RotatingRBCube.as and contains the following code: 

package{ 
 import flash.display.Sprite; 
 import flash.geom.Vector3D;   
 import com.physicscodes.objects.PolyhedronRB; 
 
 public class RotatingRBCube extends Sprite{ 
  private var _cube:PolyhedronRB; 
  private var _vertices:Vector.<Vector3D>=new Vector.<Vector3D>(); 
  private var _faces:Vector.<Array>=new Vector.<Array>(); 
  private var _facesColors:Array; 
  private var _radius:Number = 60; // half-height of cube 
  private var _fl:Number = 500; // focal length   
  private var _cm:Vector3D = new Vector3D(0,0,0); 
  private var _im:Vector3D = new Vector3D(1,1,1); 
 
  public function RotatingRBCube():void{ 
   init(); 
  } 
  private function init():void{ 
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   // define the cube's vertices relative to its center of mass 
   _vertices[0] = new Vector3D(-_radius,-_radius,-_radius); 
   _vertices[1] = new Vector3D(_radius,-_radius,-_radius); 
   _vertices[2] = new Vector3D(_radius,-_radius,_radius); 
   _vertices[3] = new Vector3D(-_radius,-_radius,_radius); 
   _vertices[4] = new Vector3D(-_radius,_radius,-_radius); 
   _vertices[5] = new Vector3D(_radius,_radius,-_radius); 
   _vertices[6] = new Vector3D(_radius,_radius,_radius); 
   _vertices[7] = new Vector3D(-_radius,_radius,_radius); 
    

// define the cube’s faces 
   _faces[0] = [0,4,5,1]; 
   _faces[1] = [1,5,6,2]; 
   _faces[2] = [2,6,7,3]; 
   _faces[3] = [3,7,4,0]; 
   _faces[4] = [4,5,6,7]; 
   _faces[5] = [0,1,2,3]; 
    

// define the faces’ colors 
   _facesColors = ! 
[0xff0000,0x00ff00,0x0000ff,0x00ffff,0xff00ff,0xffff00];  
   // create the cube as a PolyhedronRB instance 
   _cube = new PolyhedronRB(_fl, _cm, _im, _vertices, _faces,! 
_facesColors); 
   addChild(_cube); 
 
   // make the cube move 
   var mover:RotatingRBCubeMover = new RotatingRBCubeMover(_cube); 
   mover.startTime(); 
  } 
 } 
} 

This code should be quite straightforward to follow. The cube (a PolyhedronRB instance) is assigned to a 
private variable _cube, and the private variables _vertices and _faces are Vector objects that hold the 
vertices (as Vector3D instances) and faces (as arrays of integers), respectively. The colors of the faces are 
stored in an array called _facesColors. The focal length is set to 500, although you can adjust its value as 
desired. The _cm variable is the location of the center of mass (set to Vector3D(0,0,0)) by default here, 
although that will be changed in the Mover class). The moment of inertia vector is set to Vector3D(1,1,1); 
because it’s a cube Ixx, Iyy, and Izz need to be equal, but you can change the actual value if you wish.   

In the init() private method the vertices are specified relative to the center of mass of the cube. The 
faces are then defined by specifying the array indices of the vertices on each face. The colors of the faces 
are then specified as an array, and the cube is instantiated and added to the display list. Finally, the cube 
is animated through the startTime() method of a RotatingRBCubeMover instance.  

The RotatingRBCubeMover class, as you’d expect, extends the ForcerRB3D class. Here is the full code: 

package { 
 import com.physicscodes.motion.ForcerRB3D; 
 import com.physicscodes.motion.Forces3D; 
 import com.physicscodes.objects.PolyhedronRB; 
 import flash.geom.Vector3D;    
 import flash.events.MouseEvent;   
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 public class RotatingRBCubeMover extends ForcerRB3D { 
  private var _object:PolyhedronRB; 
  private var _mass:Number; 
  private var _g:Number = 0; 
  private var _k:Number = 0.2; // angular damping factor   
  private var _tq:Vector3D = new Vector3D(0,0,0);   
  private var _tqMax:Vector3D = new Vector3D(10,10,10); 
 
  public function RotatingRBCubeMover(pobject:PolyhedronRB):void { 
   _object = pobject; 
   _mass = _object.mass; 
   _object.pos = new Vector3D(275,200,0); 

  _object.stage.addEventListener(MouseEvent.MOUSE_DOWN, onDown); 
   super(_object); 
  } 
  override protected function calcForce():void { 
   force = Forces3D.constantGravity(_mass,_g); 
   torque = _tq; 
   var vec:Vector3D = _object.angVelo; 
   vec.scaleBy(-_k); 
   torque = torque.add(vec); 
  } 
 
  override protected function moveObject():void{ 
   super.moveObject(); 
   updateObject(); 
  } 
 
  private function updateObject():void{ 
   var vec:Vector3D = _object.angVelo; 
   vec.scaleBy(dt); 
   _object.updatePolyhedron(vec.x,vec.y,vec.z); 
  } 
   
  private function onDown(e:MouseEvent):void{ 
   _object.stage.addEventListener(MouseEvent.MOUSE_UP,onUp); 
   _tq = _tqMax; 
  } 
  private function onUp(e:MouseEvent):void{ 
   _object.stage.removeEventListener(MouseEvent.MOUSE_UP,onUp); 
   _tq = new Vector3D(0,0,0); 
  }         
   
 } 
} 

Again, this is not a difficult piece of code by any means, and you should be able to figure out most of it. In 
the calcForce() method we have a gravity force (but note that g is set to zero by default, so gravity will be 
zero unless you change the value of g) and a constant torque set by the _tq Vector3D variable that is 
controlled by user interaction. If the mouse is held down, the value of _tq is set (through the _tqMax 
variable) to Vector3D(10,10,10); otherwise, it is Vector3D(0,0,0). In calcForce() we also apply a 
damping torque proportional to the angular velocity of the cube.  



Chapter 15 

474 

We override moveObject() to add a new private method named updateObject(), whose task is to calculate 
the angular increment that needs to be applied and to call the public updatePolyhedron() method of the 
cube, passing the components of the angular increment as arguments. The angular increment is 
calculated by multiplying the current angular velocity of the cube by the timestep (using the definition of 
angular velocity): 

 

This ties in with our earlier discussion on matrices in 3D: we can treat a small incremental change in 
angular orientation as a vector.  

Run the simulation and click anywhere on the screen to apply a torque that causes the cube to start 
rotating (see Figure 15-2). Because of the included angular damping torque, the angular velocity does not 
increase indefinitely under the applied torque, but reaches a steady value just like in the 2D wind turbine 
simulation. Experiment by changing the different parameters such as the moment of inertia, the magnitude 
of the applied torque, and the value of g. For example, changing the value of _tqMax to Vector3D(10,0,0) 
applies a torque about the x-axis and therefore generates rotation about that axis. Change the value of g 
to a non-zero value such as 10, and you can make the cube fall as it rotates. 

 

 

Figure 15-2. A cube rotating under the action of an applied torque 

In the source code for this chapter you will also find a slightly modified (and more interactive) version of the 
simulation in the files RotatingRBCube2.as and RotatingRBCubeMover2.as. In that version the magnitude of 
the applied torque is proportional to the distance of the mouse from the cube’s center, and its direction is 
along the axis joining the mouse to the cube’s center.     

Integrating with 3D engines 
That last example was fun, but a lot more can be done with the right tools. The native 3D capabilities of 
Flash Player 10 are rather limited, but there are a number of third-party 3D engines that are vastly more 
powerful. Examples include Away3D, Papervision3D, and Sandy3D. Flash 3D is a whole subject in its own 
right, and a deeper exploration of it is beyond the scope of this book. If you are interested in doing physics 
in 3D, we encourage you to pick up one of the many books on 3D in Flash that have appeared in recent 
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years. We look forward to seeing what you create by combining those 3D engines with the physics you 
learn in this book!  

Looking ahead to Stage3D 
The 3D capabilities of Flash Player 10 that we have explored could more precisely be described as 2.5D. 
They allow 2D objects to be rendered to the screen using perspective projection to create the illusion of 3D 
content. A major new development in the upcoming Flash Player 11 release is the Stage3D APIs (formerly 
known by the code name Molehill). This is a set of low-level, shader-based APIs that will have many 
advanced 3D features, allow GPU hardware acceleration for significant performance improvements, and 
allow both 2D and 3D content to be delivered across multiple devices.    

It is expected that most of the existing Flash 3D engines will be enabled to use Stage3D by the time it is 
available in a future release of Flash Player.  

Building scale models 
Let’s begin this section by clarifying the meaning of the title. By scale model we do not mean a physical 
scale model like that of an airplane. We mean a computer model in which all the relevant physical 
parameters are in appropriate proportion relative to the real system it is meant to simulate. In this sense, a 
scale model may include representing physical objects to scale, but it goes well beyond this simple visual 
aspect; it must also, in some sense that we’ll make more precise soon, scale the physics correctly. 

Scaling for realism 
Why is scale modeling important? Correct scale modeling is necessary for a simulation to replicate 
realistically the behavior of a system that is being modeled. Having the correct physics equations and 
appropriate visual representations as well as added effects like 3D are obviously important for realism in 
your games and simulations. Perhaps less obvious is the need to choose appropriate parameter values 
consistently so that all the aspects of your simulation work together with the right length and time scales to 
produce a realistic model of the real world.  

How do we do this? First, we’ll illustrate the process of scale modeling with a very simple example; then at 
the end of this section we’ll give you a general formal method for dealing with more complex simulations.   

A simple example 
Suppose you want to create a 2D game of volleyball: characters will be tossing the ball around and for 
much of the time it will therefore be moving under gravity, like a projectile. There will be scenery and 
buildings around, and you want your game to be a scale model visually and functionally. To proceed, let’s 
consider a simple hypothetical scene where the ball is at the height of a building and is falling down under 
gravity. You want the ball to fall down at a rate that is consistent with the length scales in the surrounding 
scenery; in this case, the building height. Assuming that the only force is pure gravity without drag or 
friction or wind effects, and considering only the vertical motion for simplicity (but without loss of 
generality), the underlying physics can be described by a single equation. Applying Newton’s second law, 
F = ma, with the force F given by mg, we arrive at this equation: 

a = g  

This equation, of course, merely expresses the fact that all objects fall with the same vertical acceleration 
of g, regardless of their mass or other characteristics. As you know, your simulation will integrate this 
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equation twice: the first time to obtain the velocity of the ball and the second time to obtain its 
displacement. The whole problem is controlled by a single parameter: the acceleration due to gravity g. 
The question therefore boils down to this: what value of g must you use in your simulation so that the ball 
falls at a realistic rate, consistent with the sizes and distances in the game? The actual value of g is 9.8 
m/s2, or approximately 10 m/s2. But this is not the value you can use in your simulation because you are 
not using the same units in your simulation. See Figure 15-3. 

 

 
Figure 15-3. Simulating a falling ball to scale 

Choosing units 
First you need to choose the units for relevant physical quantities in your simulation. The most important 
units you need are those for time, length, and mass. They are called base quantities in physics. Other 
quantities such as velocity and acceleration depend on these base quantities and their units can be 
derived from those of the base quantities by using their defining equations: they are therefore called 
derived quantities.   

In this case, because mass drops out of the equations, it’s completely irrelevant what unit or indeed what 
value you use for the mass of the ball. So that leaves two base quantities that we need to worry about: 
time and length (or distance). 

Let’s assume that you want real-time simulation: in other words, the simulation should proceed at the 
same rate as real “wall-clock” time. (Sometimes you might not want this: for example, if you are simulating 
the solar system, you may not want to wait a year for the Earth to go round the Sun once!) In Figure 15-3, 
the ball in your simulation would then take exactly the same time to fall as it would if falling from the height 
of a real building. Therefore, you choose to measure time in seconds, as in real life. Not only that, but you 
want 1 second of simulation time to be equal to 1 second of real time: your scaling factor for time is 1.   

The natural unit of distance to use for a screen-based visual simulation is the pixel (px). You also need to 
decide on an appropriate scaling factor to convert actual distances to pixels. 

Scaling factors and parameter values 
Suppose that the building in your scene would be 5 m tall in real life, and that you represent it by a 
rectangle of height 200 px. That means your scaling factor is 0.025 m/px; each pixel represents 0.025 m or 



           Other Technical Issues 

 

477 

2.5 cm. You can use this length scale factor to scale other objects accordingly. So if your ball is a 
volleyball of radius 10 cm, its radius in the simulation would be 4 pixels.    

Going back to our original question: what value should you give to g? The way you figure this out is as 
follows. Being an acceleration, g is measured in m/s2. Now, each second is an actual second in the 
simulation, but each meter is 40 px in the simulation. Therefore, scaling the approximate value of g = 10 
m/s2 would give g = 400 in the simulation! 

The files ScaleModel.as and ScaleModelMover.as implement these values in this simple simulation. In the 
code, the ball is made to stop when it falls the 200 px (equivalent to 5 m in reality) to the ground. The time 
since the beginning of the simulation is then traced. Run the simulation and you’ll find that the ball takes 
approximately 1 second to fall to the ground. Is this realistic? It’s easy to find out using the old formula you 
met in Chapter 4: 

s = u t + 1
2
a t2  

Here the displacement s is the height fallen (5 m); u is the initial velocity magnitude (zero) and a is the 
acceleration due to gravity g (10 m/s2). Substituting these values indeed gives t = 1 s. We have a real-time 
scale model! The value traced in the simulation is not exactly 1, but it is close enough. One of the reasons 
it’s not exactly 1 is because the ball is detected to be past the ground level slightly later because it’s 
moving so fast. When you run the simulation, you’ll see that it stops slightly below the “ground”.   

Suppose you naively gave g the value of 10 in the simulation. What would be the consequence? Do this 
now, and you should find that the ball takes more than 6 seconds to reach the ground – hardly realistic!    

Of course, you may not always need to be as careful as this in fixing the parameters of your simulation. 
You may not care about having a scale model at all; perhaps you are just interested in creating an 
animation that looks roughly right. But it’s useful to know how to do this when realism is really important. In 
more complex simulations it helps to have a systematic method to work out the values of your parameters.     

Rescaling equations 
The method of rescaling is a formal procedure that can help to do just this. It is especially useful when you 
have more than one parameter whose value you need to work out or if there are multiple scale factors, but 
we’ll demonstrate the method for the simple example we’ve just looked at.  

Rescaling involves scaling the variables in a system, re-expressing the equations in terms of the new 
scaled variables and then comparing the scaled equation with the original one. The procedure is as 
follows.   

First, write down the governing equation or equations (algebraic or differential), identifying all the variables. 
In our example, the equation is a = g, but this is really the following differential equation: 

d 2s
dt2

= g  

Next, define scaling factors for each of the variables as follows: 

s = λ ŝ t = τ t̂  

Here, the variables with hats are the new scaled variables, and the Greek letters are the corresponding 
scaling factors.  
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Next, substitute the old variables into the original equation. In the preceding differential equation, note that 
the second derivative means that we are dividing a displacement increment by a time increment twice. 
Making the substitution, we therefore arrive at this:  

λ
τ 2
d 2ŝ
dt̂ 2 = g  

We can rewrite this transformed equation as the following: 

d 2ŝ
dt̂ 2 = τ 2g

λ  

Comparing this with the original equation, we deduce that the equation in terms of the scaled variables will 
be exactly the same form as the original equation, provided that the right side is equal to the rescaled 
value of g: 

ĝ = τ 2g
λ  

This equation gives a constraint between the scaling factors and the rescaled value of the parameter g. So 
if we choose two of them, we can obtain the third. In this example, we chose the scaling factors for 
distance and time. So we can get the rescaled value of g by substituting the values of the scaling factors / 
and .. The scaling factor / for time t is 1, as discussed previously, while the scaling factor . for distance s 
is 5/200 or 0.025 m/px, as seen in the last subsection. Therefore, the scaled value of g that we need for 
the simulation is given by the following: 

ĝ = τ 2g λ = 10 0.025 = 400  

This is just as we reasoned earlier.  

Note that we could alternatively fix the rescaled value of g together with the scaling factor of one of the 
variables (either time or length). The previous constraint would then give us the scaling factor for the 
remaining variable.   

For this simple example, the formal procedure just outlined is certainly overkill, but add in more variables 
and a more complex system of equations, and it will come in handy indeed.  

Building accurate simulations 
If you want to build really accurate simulations, there are a number of things that you need to consider 
carefully. We discussed most of them at various times through the book, but it is useful to briefly review 
them here.  

Using Number for calculations 
As we pointed out in Chapter 4, you should avoid using pixel-based properties such as x and y for 
performing calculations. That’s because Flash stores them in units of twips, which are 1/20th of a pixel, or 
0.05 px. Hence, variables that use pixel-based quantities are never more accurate than 0.05, and errors 
may quickly accumulate, making visible differences in simulations.  
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Instead you should use Number variables for performing calculations and then assign the result to an 
object’s x, y, or z properties to update their position as necessary. This is why we defined position 
variables such as xpos as Number variables in classes such as Particle to use in calculations. The 
resulting increase in accuracy can be considerable.   

Choosing an appropriate integration scheme 
The previous chapter was wholly devoted to numerical integration schemes and their characteristics such 
as accuracy and stability. Therefore, there is not much more to be said here. Just to reiterate briefly, the 
usual Euler scheme is not very accurate, being only a first-order scheme; The fourth-order Runge-Kutta 
scheme, RK4, is generally a good choice for simulations where accuracy is important, although this comes 
at the price of reduced efficiency. The RK2 and Velocity Verlet schemes offer a good compromise between 
accuracy and speed, being second order (and therefore more accurate than the Euler scheme) and at the 
same time being substantially simpler than RK4.  

Using an appropriate timestep 
Together with the integration scheme, you need to choose an appropriate timestep for your simulation. 
Numerical schemes are more accurate with smaller timesteps. Higher-order schemes such as RK4 
converge faster than lower-order schemes such as Euler. This implies that RK4 is more accurate for a 
given timestep. You can control the timestep by setting the rate at which a Timer instance fires. However, 
there is a limit to how small the timestep can be because the actual time interval between Timer events 
includes the time it takes to execute all the code within the event handler. Therefore, if your simulation is 
complex and involves lots of calculations or animation, the actual timestep may be substantially larger than 
what you specify in the timer.  

Some simulations are so complex that the calculations cannot be done within a reasonably small timestep, 
and it may not therefore be possible to perform them in real time. One possible solution is to precompute 
and then animate afterward. In this way, you can “decouple” the simulation timestep from the animation 
timestep. An example of this method will be applied in the solar system simulation in Chapter 16. 

Using accurate initial conditions 
Some simulations are sensitive to the values for the position and velocity of the simulated object that you 
start with. A small change in these initial conditions could produce a large change in the subsequent 
motion. For example, in simulations involving orbits, the trajectory of a satellite can change substantially, 
or it may even crash into a planet with the wrong choice of initial conditions. Initial conditions are part of 
the specification of a simulation: the more accurately they are specified, the closer the resulting trajectory 
will be to the expected trajectory.  
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Dealing with boundaries carefully 
Simulations that involve boundaries are particularly prone to inaccuracy. Such interactions must be dealt 
with using special methods to detect and handle collisions at specific instants, and they introduce 
additional sources of error that can be even more important than those associated with numerical 
integration over time. In Chapter 11, we described how to deal with some of those problems in special 
cases, including repositioning and velocity correction at a boundary. Another source of inaccuracy arises 
from uncertainities about the time of collision. In the example of the last section, the ball was detected and 
stopped after it had gone “through” the ground. The time for it to fall to the ground was therefore slightly 
over-estimated. This error can get larger at higher velocities. For extra accuracy, they need to be 
accounted for and corrected.  

Summary 
Well done for making it this far into the book! You now know how to make physics simulations in 3D as 
well as how to create simulations that are accurate scale models of real systems. These are just some of 
the technical issues involved in building more complex simulations. The example simulations we’ll create 
in the final chapter will bring together what you learned in this chapter as well as in the rest of the book. 
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Chapter 16 

Simulation Projects 

This final chapter consists of three simulation projects that will illustrate how the physics and methods 
you’ve learned in this book can be used for different types of applications. The examples are quite different 
from one another, reflecting differences not only in the underlying physics but also in the purpose for which 
they are built.  

The three examples are the following: 

• Build a submarine: The aim here is to show how easily you can modify some of the existing 
code you’ve already come across to create a submarine that you could incorporate in a 2D 
game.   

• Build a flight simulator: In this example we’ll create a 3D flight simulator that could be 
further developed in many interesting ways just for pure fun! 

• Create an accurate solar system model: This project is to create an accurate 3D model of 
the solar system that could be used as an e-learning tool. We will then compare the 
simulation with data generated from a simulation by NASA.   

The idea is that these are your projects, so we give the relevant physics and help you build a basic 
version, but then leave it to you to develop and enhance them in any ways you might want. Have fun! 

Build a submarine 
In Chapter 7 we had a simple but interesting example of a ball floating in water. It is actually quite easy to 
modify that example and turn it into an interactive submarine of a type that can be used in simple 2D 
games. Let’s first quickly review the main physics involved.    
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Brief review of the physics 
In the floating ball example, we identified three main forces that acted on the ball: gravity, upthrust, and 
drag, which are given respectively by the following formulas:  

W = mg  

U = −ρV g  

F = −k v v  

Note that we have written the upthrust formula in vector form: the minus sign is because upthrust acts 
upward, opposing the gravity vector g. Just as a reminder, in that formula * is the density of water and V is 
the volume of water displaced by the object.   

With a submarine you have a fourth force: the thrust T that pushes the sub, allowing it to move horizontally 
through the water. This will be modeled as a horizontal force of constant magnitude when power is 
applied.  

Another relevant piece of physics (as discussed in Chapter 7), is that an object will float if its density (mass 
per unit volume) is less than or equal to that of water, and it will sink otherwise. A submarine functions on 
the principle that its effective density can be varied by filling ballast tanks with sea water or pressurized air: 
its density (mass/volume ratio) varies because its mass thus changes while its volume remains the same.   

The visual setup 
The graphics for this simulation was produced using the Flash IDE. The visual background is quite simple, 
consisting of a rectangle with a gradient fill to represent the sky and another one to represent the sea. A 
screenshot of the simulation is shown in Figure 16-1. There is also some text on the screen that displays 
the ratio of the density of the submarine to that of the water. 

 

Figure 16-1. Screenshot of the submarine simulation 

The submarine was also created using the Flash drawing tools. Figure 16-2 takes a closer look at it. There 
are a few things to be noted about this object. The first is that its registration point is at the bottom of the 
sub, along its middle horizontally. Secondly, the blue rectangle within the sub represents water in the 
ballast tanks. It is an embedded movie clip named water, and its registration point is at its lower-left corner.  
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By controlling its height, the illusion of changing the water level will be created, with the mass of the 
submarine being adjusted accordingly. Finally the propeller is also a separate embedded movie clip; its 
rotation will be flipped alternately by 180°, giving the impression of rotation when a thrust will be applied.    

 

Figure 16-2. A closer look at the submarine  

The setup code 
The setup code is in a file called Submarine.as. The full code listing is as follows: 

package{ 
        import flash.display.Sprite; 
        import flash.text.TextField; 
        import com.physicscodes.math.Vector2D; 
        import com.physicscodes.objects.Particle; 
 
        public class Submarine extends Sprite{ 
                public function Submarine():void{ 
                        init(); 
                } 
                private function init():void{ 
                        var sub:Particle = new Sub(); 
                        sub.pos2D = new Vector2D(250,300); 
                        addChild(sub); 
                         
                        var sea:Sea = new Sea(); 
                        sea.x = 0; 
                        sea.y = 200; 
                        sea.alpha = 0.6; 
                        addChild(sea); 
                         
                        var txt:TextField = new TextField(); 
                        txt.x = 250; 
                        txt.y = 10; 
                        txt.width = 30; 
                        addChild(txt); 
                         
                        var mover:SubmarineMover=new SubmarineMover(sub,txt); 
                        mover.startTime(); 
                } 
        } 
} 

The sub’s class is set as “Sub”, and its base class is set to com.physicscodes.objects.Particle by setting 
its properties in the library. Similarly, the “sea” movie clip is a symbol in the library with a class name of 
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Sea. An instance is created and positioned appropriately on the stage, and its transparency is set to 0.6 so 
that we can see the sub through it. A TextField instance named txt is created. This will be used to display 
the current ratio of the sub’s density to that of the water. Finally, the sub is made to move using an 
instance of the SubmarineMover class.      

The basic motion code 
The SubmarineMover class is a modification of the Floater class that we created back in Chapter 7. The 
main changes have to do with the visual effects and controls (they are described in the next section). The 
basic motion code, as implemented in the calcForce() method, is not actually that different from that in 
Floater. Here is the calcForce() method: 

override protected function calcForce():void{ 
        var dr:Number = (_sub.y-_yLevel)/_sub.height; 
        var ratio:Number; // volume fraction of object that is submerged 
        if (dr <= -1){ // object completely out of water 
                ratio=0; 
        }else if (dr < 1){ // object partially in water 
                ratio = dr; // for cuboid 
        }else{ // object completely in water 
                ratio = 1; 
        } 
        var gravity:Vector2D = Forces.constantGravity(_sub.mass,_g); 
        var upthrust:Vector2D = Forces.upthrust(_rho,_V*ratio,_g); 
        var drag:Vector2D = Forces.drag(_k*ratio,_sub.velo2D); 
        force = Forces.add([gravity, upthrust, drag, _thrust]); 
} 

The variable dr is the fraction of the height of the sub that is submerged under the water level. The 
variable ratio is the volume fraction that is submerged (which determines the upthrust and drag on the 
sub) and depends on the shape of the sub in a complex way. Because this simulation is meant for a 
simple game, it makes sense to deal with it in an approximate way. So we simply treat the sub like a 
cuboid, in which case the volume ratio is simply equal to dr as long as the value of dr is between 0 and 1. 
If dr is negative (in which case the sub is completely outside the water), ratio is set to zero. If dr is greater 
than 1 (in which case the sub is fully immersed), ratio is set to 1.  

The variable ratio is used to adjust the upthrust and drag, and they are then added to the weight of the 
sub. There is a fourth force, _thrust, that is added and that was obviously not in the floating ball example 
of Chapter 7. This is a private Vector2D variable whose value is set according to user interaction. So let’s 
take a look at how the user controls the simulation.    

Adding controls and visual effects 
The aim is to control the submarine by means of the arrow keys on the keyboard. The right arrow will apply 
a forward thrust; the left arrow will apply a backward thrust; the down arrow will introduce water in the 
ballast tanks; and the up arrow will remove water from the ballast tanks and fill them with air. This is done 
via the following two event handlers, which respond to the KEY_DOWN and KEY_UP keyboard events, 
respectively: 

private function keyDownListener(e:KeyboardEvent):void { 
        if (e.keyCode == Keyboard.RIGHT) { 
                _thrust = new Vector2D(_thrustMag,0); 
                _rotate = true; 
        } else if (e.keyCode == Keyboard.LEFT) { 
                _thrust = new Vector2D(-_thrustMag,0); 
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                _rotate = true; 
        } 
        if (e.keyCode == Keyboard.DOWN) { 
                _ballastInc = _incMag; 
        } else if (e.keyCode == Keyboard.UP) { 
                _ballastInc = -_incMag; 
        } 
}                                 
                 
private function keyUpListener(e:KeyboardEvent):void { 
        _thrust = new Vector2D(0,0); 
        _ballastInc = 0; 
        _rotate = false; 
}                 

The private variables _thrustMag and _incMag control the amount of thrust and the amount by which the 
water level is to be increased or decreased (per timestep). The default values in the code are 20 and 0.01, 
respectively. The current value of thrust and water level increment are stored in the private variables 
_thrust and _ballastInc, respectively. The thrust and water level increment are both reset to zero when 
the keys are up again. Finally, the private Boolean variable _rotate determines whether the propeller will 
rotate or not. It is true when the thrust is non-zero and false otherwise.    

The necessary visual changes are controlled by individual methods that are called at each timestep from 
an overriding moveObject() method: 

override protected function moveObject():void{ 
        super.moveObject(); 
        rotatePropeller(); 
        adjustBallast(); 
        updateInfo();  
} 

First the rotatePropeller() method flips the rotation of the propeller at each timestep whenever a thrust is 
applied:  

private function rotatePropeller():void{ 
        if (_rotate){ 
                _sub.propeller.rotation += 180; 
        } 
} 

Next, the adjustBallast() method increments the _waterFraction private variable, which keeps track of 
the amount of water in the ballast tank as a fraction of the amount when it is full. Obviously that fraction 
cannot be made less than 0 or more than 1, hence the code also makes sure that never happens: 

private function adjustBallast():void{ 
        if (_ballastInc != 0){ 

                _waterFraction += _ballastInc; 
                        if (_waterFraction < 0){ 
                                _waterFraction = 0; 
                        } 
                        if (_waterFraction > 1){ 
                                _waterFraction = 1; 
                                } 
                                setWater(); 
        } 
} 
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The final line of code in adjustBallast() calls a setWater() method, whose task it is to adjust the height 
of the water level and the mass of the sub as a result of the change in the mass of the water in the tank: 

private function setWater():void{ 
        _sub.water.height = _waterHeight*_waterFraction; 
        _sub.mass = _emptySubMass + _waterMass*_waterFraction; 
} 

The final method called from moveObject() is the updateInfo() method, which computes and displays the 
updated ratio of the density of the submarine to that of water: 

private function updateInfo():void{ 
        var ratio:Number = _sub.mass/_V/_rho; // ratio of submarine density to water density 
        ratio = Math.round(ratio*100)/100; // round to 2 d.p. 
        _txt.text = String(ratio); 
} 

The full mover code 
This is now the full code in the SubmarineMover class: 

package { 
        import com.physicscodes.motion.Forcer; 
        import com.physicscodes.motion.Forces; 
        import com.physicscodes.objects.Particle; 
        import com.physicscodes.math.Vector2D; 
        import flash.text.TextField; 
        import flash.events.KeyboardEvent; 
        import flash.ui.Keyboard; 
 
        public class SubmarineMover extends Forcer{ 
                private var _sub:Particle; 
                private var _g:Number=10; 
                private var _rho:Number=1; // water density 
                private var _V:Number=1; 
                private var _k:Number=0.05; 
                private var _yLevel:Number=200; 
                private var _thrustMag:Number=20; 
                private var _thrust:Vector2D = new Vector2D(0,0); 
                private var _txt:TextField; 
                private var _rotate:Boolean = false; 
                private var _waterHeight:Number; 
                private var _waterMass:Number = 1; 
                private var _emptySubMass:Number = 0.5; 
                private var _waterFraction:Number = 0.4; // must be between 0 and 1 
                private var _ballastInc:Number=0; // ballast increment 

private var _incMag:Number = 0.01; // magnitude of the ballast increment 
    
                public function SubmarineMover(pparticle:Particle,ptxt:TextField):void{ 
                        _sub = pparticle; 
                        _txt = ptxt; 
                        super(pparticle); 
                        initSetup(); 
                }         
                 
                private function initSetup():void{ 
                        _waterHeight = _sub.water.height; 
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                        setWater(); 
                        _sub.stage.addEventListener(KeyboardEvent.KEY_DOWN, keyDownListener); 
                        _sub.stage.addEventListener(KeyboardEvent.KEY_UP, keyUpListener);
   
                } 
                 
                private function keyDownListener(e:KeyboardEvent):void { 
                        if (e.keyCode == Keyboard.RIGHT) { 
                                _thrust = new Vector2D(_thrustMag,0); 
                                _rotate = true; 
                        } else if (e.keyCode == Keyboard.LEFT) { 
                                _thrust = new Vector2D(-_thrustMag,0); 
                                _rotate = true; 
                        } 
                        if (e.keyCode == Keyboard.DOWN) { 
                                _ballastInc = _incMag; 
                        } else if (e.keyCode == Keyboard.UP) { 
                                _ballastInc = -_incMag; 
                        } 
                } 
                 
                private function keyUpListener(e:KeyboardEvent):void { 
                        _thrust = new Vector2D(0,0); 
                        _ballastInc = 0; 
                        _rotate = false; 
                }   
   
                override protected function moveObject():void{ 
                        super.moveObject(); 
                        rotatePropeller(); 
                        adjustBallast(); 
                        updateInfo(); 
                } 
                 
                private function rotatePropeller():void{ 
                        if (_rotate){ 
                                _sub.propeller.rotation += 180; 
                        } 
                } 
 
                private function adjustBallast():void{ 
                        if (_ballastInc != 0){ 
                                _waterFraction += _ballastInc; 
                                if (_waterFraction < 0){ 
                                        _waterFraction = 0; 
                                } 
                                if (_waterFraction > 1){ 
                                        _waterFraction = 1; 
                                } 
                                setWater(); 
                        } 
                } 
                 
                private function setWater():void{ 
                        _sub.water.height = _waterHeight*_waterFraction; 
                        _sub.mass = _emptySubMass + _waterMass*_waterFraction; 
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                } 
 
                private function updateInfo():void{ 
                        var ratio:Number = _sub.mass/_V/_rho; 
                        ratio = Math.round(ratio*100)/100; // round to 2 d.p. 
                        _txt.text = String(ratio); 
                } 
 
                override protected function calcForce():void{ 
                        var dr:Number = (_sub.y-_yLevel)/_sub.height; 
                        var ratio:Number;  
                        if (dr <= -1){ 
                                ratio=0; 
                        }else if (dr < 1){ 
                                ratio = dr; 
                        }else{ // object completely in water 
                                ratio = 1; 
                        } 
                        var gravity:Vector2D = Forces.constantGravity(_sub.mass,_g); 
                        var upthrust:Vector2D = Forces.upthrust(_rho,_V*ratio,_g); 
                        var drag:Vector2D = Forces.drag(_k*ratio,_sub.velo2D); 
                        force = Forces.add([gravity, upthrust, drag, _thrust]); 
                }         
        } 
} 
 

The submarine is now ready for a test drive! Have fun playing around and experimenting with the 
parameter values as usual.  

Further ideas 
That wasn’t too bad, was it? You now have a basic but functional submarine that you can add in a game. 
Now that it’s in your hands, you can further develop it as you see fit. You can enhance the visual 
appearance of the sub, add scenery such as a nice background with aquatic creatures and plants, add 
bubbles, and so on. You could add a sea floor and handle contact with it using a normal force. It should 
also not be very difficult to convert this simulation to 3D. If you do that, you would, of course, also need to 
add rotation.  

Build a flight simulator 
This project is quite a bit more complicated than the last example because we’ll be working in 3D, and also 
because the physics and operation of aircraft are fairly complex. Therefore we’ll need to spend a bit more 
time on theory before we can get to the coding.  

Physics and control mechanisms of aircraft 
There are two aspects of theory to understand in order to model aircraft. The first is the underlying physics, 
which includes an understanding of the forces and torques acting on the aircraft and how they affect the 
aircraft’s motion. The second aspect is the mechanism by which aircraft control these forces and torques; 
this requires an understanding of the relevant parts of the aircraft and their associated maneuvers.   
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Forces on an aircraft  
We discussed the forces on an airplane in Chapter 7: gravity, thrust, drag, and lift. Figure 16-3 shows a 
force diagram for a plane at an angle to the horizontal. This is a generalization of the force diagram shown 
in Figure 7-15, which was for the special case of an airplane in horizontal flight. Therefore the directions of 
the thrust and drag are not necessarily horizontal, and the lift is not necessarily vertical. As a result, the 
force balance is a little more complex in this case. It is clearly important to get the magnitudes as well as 
the directions of these different forces right at all times (during ascent and descent, and not just during 
horizontal flight), so we need robust equations for computing them in general.   
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Figure 16-3. The four forces on an airplane during flight 

The force of gravity W = mg still acts downward and is constant, of course; so that one is easy. The thrust 
T, whether generated by a propeller or by a jet engine, will usually act along the axis of the plane in the 
forward direction (unless you are considering an aircraft model such as the Harrier, in which the direction 
of the thrust can be varied). The magnitude of the thrust depends on many factors such as engine type, 
engine efficiency, and altitude effects. In our simulation, we’ll simplify things by disregarding all these 
effects, simply prescribing a value that can be changed by the user.    

The drag and lift forces are more subtle. Strictly speaking, they are defined relative to the direction of the 
airflow over the relevant aircraft part such as the wing. Assuming there is no wind, we can approximate 
this as the direction of the aircraft’s velocity. The drag force can then be defined as the component of the 
aerodynamic force (force exerted as a result of the airflow) that acts opposite to the aircraft’s velocity. The 
lift force is the component perpendicular to the aircraft’s velocity.  

The drag formula is the same as that given in Chapter 7, in which v is now interpreted as the velocity of 
the aircraft: 

F = − 1
2

ρ A Cd v v  

The lift formula that we gave in Chapter 7 is generalized to the following formula, in which k is a unit vector 
perpendicular to the plane’s velocity and oriented to point upward from the plane’s wings: 

F = 1
2

ρ A CL v2 k  

These are general fomulas that need to be adapted once we look at the aircraft parts in more detail. In 
particular, the relevant areas for use in those equations should be defined. We also need to specify the 
drag and lift coefficients, which can vary depending on several factors.  
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Torques on an aircraft: rotation 
The forces on an aircraft are not sufficient to compute its motion. As you know, the resultant force 
determines the translational motion, but these forces can also exert torques if their lines of action do not 
pass through the center of mass. The weight of an object acts through a point known as its center of 
gravity. In uniform gravitational fields such as near the surface of the Earth (and an airplane is near 
enough the Earth’s surface for that purpose) the center of gravity coincides with the center of mass. 
Therefore, the weight of an airplane never generates a torque. However, the drag and lift forces act 
through a point known as the center of pressure. This is a similar concept to that of center of gravity, but it 
depends on the shape and inclination of the airplane, and does not in general coincide with its center of 
mass. So it can produce a torque that can send the aircraft spinning if unbalanced. An aircraft therefore 
needs to have stability mechanisms in place to balance this torque.  

Of course, you do sometimes want an airplane to rotate. Figure 16-4 shows three ways in which an 
airplane can rotate about its center of mass and the axes about which it does so. It can pitch by moving its 
nose and tail up and down; it can roll by moving its wing tips up and down; and it can yaw by moving its 
nose and tail sideways. The axes are defined relative to the shape of the aircraft and they all pass through 
its center of gravity. The pitch axis is oriented in a direction parallel to the wingspan, the roll axis is along 
the length of the aircraft, and the yaw axis is perpendicular to the other two axes. An aircraft is designed so 
that it has special parts that can produce these types of motion by controlling the lift and drag forces. Let’s 
look at those now. 

 

Figure 16-4. Pitch, roll, and yaw 
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Aircraft parts and controls 
Aircraft can control their motion by modifying the thrust, drag, and lift forces acting on them. We briefly 
describe the parts of an aircraft that do this and how they do it. The thrust is controlled by the engine 
(which can be of different types, such as propeller or jet) and will propel the plane forward. Figure 16-5 
shows a schematic of an airplane emphasizing those parts that are relevant to the drag and lift and their 
control.  

Fixed “main” parts include these: 

• Fuselage: This is the main body of the aircraft. It is responsible for much of the drag. It also 
creates lift and pitching torque, but only for large inclination angles, and they can usually be 
neglected. It can also create yawing torque for large lateral inclination; again this can usually 
be neglected.    

• Wings: The two wings of an aircraft contribute the most of the lift and drag forces on it. 
Without wings, an airplane just wouldn’t fly. The center of pressure of the lift and drag forces 
on the main wings is close to the center of mass, so one can assume that they contribute no 
torque, just like the fuselage. However, they have movable parts called flaps and ailerons that 
can be maneuvered to modify the lift and drag force and generate rolling torque.   

• Tails: The tails consist of two parts: a horizontal and a vertical tail, which help in maintaining 
horizontal and vertical stability of the airplane. They also have movable parts called elevators 
and rudders that generate pitching and yawing torques.  

Movable “control” parts include the following: 

• Flaps: Flaps are attached to the rear of the wings and are rotated downward during takeoff 
and landing to increase the lift force (and also the drag force during landing to slow down the 
fast-moving aircraft).  

• Ailerons: Ailerons are also attached to the rear of the wing, but farther along toward the wing 
tips. Rotating an aileron downward increases the lift, and rotating it upward decreases the lift. 
The two ailerons are rotated in opposite directions to produce a rolling torque (couple). 
Because the ailerons are far from the center of mass, large torques can be produced by 
relatively small changes in lift on either side of the wings (recall that moment = force x 
distance). Ailerons are usually controlled by a control stick; moving the stick to the right or left 
causes the aircraft to roll to the right or left.  

• Elevators: Elevators are hinged to the rear side of the horizontal tail. Unlike ailerons, the 
elevators move together (both upward or both downward), thereby generating a pitching 
torque. Elevators are controlled by moving a stick forward to raise the nose of the aircraft and 
moving the stick backward to cause the aircraft nose to dip.   

• Rudder: The rudder is attached to the rear of the vertical tail fin. It can rotate to either side, 
causing a yawing torque. The rudder is controlled by two foot pedals so that depressing the 
left or right pedal moves the aircraft’s nose to the left or right, respectively.  
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Figure 16-5. Aircraft parts 

Airfoil geometry and angle of attack 
The shape and inclination of aircraft wings are important factors that determine the magnitude of lift. Figure 
16-6 shows the shape of a cross-section of a wing, called an airfoil. The shape of an airfoil is usually 
rounded at the front and sharp at the rear. The line joining the centers of curvature of the front and rear 
edges is called the chord line.  

The angle between the chord line and the incident air flow (which is generally along the velocity of the 
plane) is called the angle of attack, usually denoted the Greek letter -. The drag and lift coefficients of an 
airfoil depend on the angle of attack, and flight models generally use experimental data or a simple 
function to evaluate those coefficients as a function of angle of attack.   

Air flow Chord line

Angle of attack, α  

Figure 16-6. Flow over an aircraft wing (airfoil) 

Takeoff and landing 
An airplane can take off only if its velocity exceeds a certain threshold. That threshold value corresponds 
to the point at which the lift force balances the weight of the plane. In that case, you can equate the 
expressions for the lift force and the weight: 

1
2

ρ A CL v2 = mg  
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You can then rearrange this formula to give a formula for the velocity, which is the threshold velocity for 
takeoff:  

v = 2mg
ρ A CL

 

During landing you have the opposite problem. You don’t want the velocity with which the plane touches 
the ground to be too high; otherwise, the plane will crash. You can set a reasonable threshold velocity in 
your game or simulation. Another consideration during landing is that the pitch angle must be zero or 
slightly positive; otherwise, the nose of the plane will hit the ground.   

Turning 
Turning is achieved by banking to give a horizontal unbalanced component of the lift force that, because it 
is always perpendicular to the velocity, generates a centripetal force that makes the plane move in a circle 
(see Figure 16-7). Banking is achieved by rolling the plane using the ailerons. The yawing motion 
produced by a rudder is not used for turning, but for aligning the plane in the direction of the velocity.  

W  

Figure 16-7. Force diagram for a banked plane 

What we will create  
The simulation we will create will include the essential physics needed to make an airplane fly, with the 
ability to undergo the different types of motion (straight flight, pitch, roll, and yaw) and maneuvers (takeoff, 
landing, and turning) discussed. The user will be able to control a very simple airplane model using the 
keyboard, in a similar way to a pilot controlling an airplane. The operation of the elevators, ailerons, and 
rudder in creating pitching, rolling, and yawing torque will be simulated. The user can also adjust the 
amount of thrust.  

Creating the visual setup 
The visual setup is minimalist, consisting of a sky background (produced using the Flash drawing tools, 
although it could certainly be done using ActionScript), a runway (produced by a RRoad class that makes 
use of the drawing API) and a very simple airplane model that is an instance of the PolyhedronRB class 
introduced in the last chapter. 

   



Chapter 16 

494 

The visual setup code is in the file Airplane.as and it looks like this: 

package{ 
        import flash.display.Shape;  
        import flash.display.Sprite; 
        import flash.geom.Vector3D;   
        import com.physicscodes.objects.PolyhedronRB; 
 
        public class Airplane extends Sprite{ 
                private var _airplane:PolyhedronRB; 
                private var _vertices:Vector.<Vector3D>=new Vector.<Vector3D>(); 
                private var _faces:Vector.<Array>=new Vector.<Array>(); 
                private var _facesColors:Array;   
                private var _h:Number = 90; 
                private var _fl:Number = 200;   
                private var _cm:Vector3D = new Vector3D(400,600,0); 
                private var _im:Vector3D = new Vector3D(300000,100000,200000);  
 
                public function Airplane():void{ 
                        makeRunway(); 
                        init(); 
                } 
                private function init():void{ 
                        var h:Number = _h;    
                        _vertices[0] = new Vector3D(h,0,0); 
                        _vertices[1] = new Vector3D(-h/2,0,-h/2); 
                        _vertices[2] = new Vector3D(-h/2,0,h/2);  
                        _vertices[3] = new Vector3D(2*h/3,0,0);  
                        _vertices[4] = new Vector3D(-h/2,0,h/4);    
                        _vertices[5] = new Vector3D(-h/2,0,-h/4); 
                        _vertices[6] = new Vector3D(-h/2,-h/3,0);    
                        _faces[0] = [0,1,2]; 
                        _faces[1] = [3,4,6];    
                        _faces[2] = [3,5,6];    
                        _faces[3] = [6,5,4];      
                        _facesColors = [0xFFFFCC,0x00FF66,0x00FF66,0x990000]; 
                        _airplane = new PolyhedronRB(_fl, _cm, _im, _vertices, _faces, 
_facesColors); 
                        _airplane.mass = 30000; 
                        _airplane.pos = _airplane.centerOfMass; 
                        _airplane.velo = new Vector3D(0,0,0); 
                        addChild(_airplane); 
 
                        var mover:AirplaneMover = new AirplaneMover(_airplane); 
                        mover.startTime(); 
                } 
 

                private function makeRunway():void{ 
                        var road:Road = new Road(400,2000,0xcccccc,1); 
                        road.x = 400; 
                        road.y = 600; 
                        road.z = 0; 
                        road.rotationX = -90; 
                        addChild(road);    
                } 
         } 
} 
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The airplane is created as an instance of the PolyhedronRB class and is given a mass of 30000 units and a 
moment of inertia vector of (30000, 10000, 20000). As discussed in the last chapter, this is a simplification 
in which we consider the inertia matrix to consist of only three diagonal components: Ixx, Iyy, and Izz. 
Doing it properly would involve some matrix math and extra computational overhead that seems 
unnecessary for a simple simulation like this one. The “runway” is a Road instance: we won’t show the code 
for the Road class, but you can take a look in the source files. The airplane is driven by an instance of the 
AirplaneMover class. This is a rather lengthy piece of code, so we’ll discuss different parts of it separately.  

Coding up the physics 
The guts of the AirplaneMover class is the calculation of the forces and torques on the airplane, which is 
done in the calcForce() method. This looks quite complicated at first sight, but will make sense when you 
go through it step by step. We have also included plenty of comments in the actual source file; some of 
them are included in the following listings.  

The first three lines of calcForce() set up Vector3D variables ix, iy, and iz to store the airplane’s three 
axes:  

        // update plane axes 
        var ix:Vector3D = _airplane.ix;// unit vector of x axis of airplane;  
        var iy:Vector3D = _airplane.iy;// unit vector of y axis of airplane;  
        var iz:Vector3D = _airplane.iz;// unit vector of z axis of airplane;  

Referring to Figure 16-4, these axes correspond to the roll, yaw and pitch axes respectively. They are 
defined relative to the airplane, and will therefore change in so-called “world space” and need to be 
updated as the plane moves. This is done in the updatePolyhedron() public method of the PolyhedronRB 
class, which has been modified to read as follows: 

public function updatePolyhedron(rotx:Number,roty:Number,rotz:Number):void{   
        // add incremental rotations to matrix3D property of _sprite 
        _sprite.transform.matrix3D.appendRotation(rotx,Vector3D.X_AXIS); 
        _sprite.transform.matrix3D.appendRotation(roty,Vector3D.Y_AXIS); 
        _sprite.transform.matrix3D.appendRotation(rotz,Vector3D.Z_AXIS);          
       
        var clMat:Matrix3D = _sprite.transform.matrix3D.clone(); 
        // unit vectors of the coordinate systems linked with the object  
        _ix= clMat.deltaTransformVector(Vector3D.X_AXIS); 
        _iy= clMat.deltaTransformVector(Vector3D.Y_AXIS); 
        _iz= clMat.deltaTransformVector(Vector3D.Z_AXIS);  
   
        drawPolyhedron();      
} 

The private variables _ix, _iy, and _iz refer to the airplane’s axes, which are accessible publicly as ix, iy, 
iz via appropriate getters. Note that the deltaTransformVector() method of the Matrix3D class is used to 
transform the axes using the current transformation matrix. The updatePolyhedron method is called every 
timestep from the updateObject() method in AirplaneMover (which is itself called in moveObject() every 
timestep): 

private function updateObject():void{ 
        var vec:Vector3D = _airplane.angVelo; 
        vec.scaleBy(dt); 
        _airplane.clear(); 
        _airplane.updatePolyhedron(vec.x,vec.y,vec.z); 
} 
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This passes the current angular displacement increment to updatePolyhedron, which is used to update the 
transformation matrix and thereafter the airplane’s axes and orientation. The key thing is then the update 
of the angular velocity, which takes place in ForcerRB3D (which AirplaneMover extends) based on the 
applied torques. As in the rotating cube example of the last chapter, the update in the translational motion 
is applied separately by Mover3D.    

Going back to calcForce(), the next section of code prescribes the forces on the airplane as a whole. This 
includes gravity, a normal force if the plane is on the ground, a drag force, and a thrust. The drag force is 
computed assuming a constant drag coefficient. This is a simplification; generally the drag coefficient will 
depend on the angle of attack, but this dependence is not modeled here for simplicity. The thrust is applied 
in the direction of the plane’s ix (roll) axis, and its magnitude is controlled by the user by updating the 
_thrustMag variable (as will be described later). The net torque due to these forces is assumed to be zero 
so that the plane maintains rotational equilibrium. A rotational damping term is also applied to help 
stabilize the airplane whenever it does rotate: 

        // *** forces on whole plane *** 
        if(_airplane.ypos < _groundLevel){ 
                force = Forces3D.constantGravity(_massAirplane,_g); // gravity 

}else{ 
                force= new Vector3D(0,0,0); // reaction from ground cancels gravity 
        } 
        force=force.add(Forces3D.drag(_kDrag,_airplane.velo)); // add drag 
 
        var thrust:Vector3D;  
        if (_thrustMag > 0){ 

        thrust = ix.clone(); 
                thrust.scaleBy(_thrustMag); 
        }else{ 
                thrust = new Vector3D(0,0,0); 
        } 
        force = force.add(thrust); // add thrust 
   
        // *** torques on whole plane *** 
        torque = new Vector3D(0,0,0); // gravity, drag and thrust don't have torques 
    
        // but let's add angular damping for stability 
        var vec:Vector3D = _airplane.angVelo; 
        vec.scaleBy(-_kAng); 
        torque = torque.add(vec);  

The remaining code deals exclusively with the forces and torques generated by lift. Because the lift force is 
zero if the plane is not moving, the whole calculation is only done if the plane’s velocity is non-zero. The lift 
forces consist of vertical lift on the wings, elevators and ailerons and of horizontal lift on the rudder. They 
depend on the velocities in the xy and xz planes relative to the airplane. These velocities are therefore 
calculated first. Then they are used to compute the angle of attack - and lateral angle 0 (the angle 
between the x and z component of the plane’s velocity). Note that we are here assuming that there is no 
wind. It would be straightforward to add in the effect of the wind, but that would only complicate the code 
further.   

Next, the lift force on the wings is calculated. The cross product is used because the lift force on the wings 
is perpendicular to the velocity in the xy plane and the wing axis (the pitch axis). The lift coefficient is 
calculated assuming a linear dependence on the angle of attack, with a constant gradient dCL/d-: 

CL = dCL
dα

'
()

*
+,

α  
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Note that we add the inclination of the wing relative to the plane’s roll axis (_alphWing) to the value of - 
calculated previously to obtain the actual angle of attack. We also impose a limiting value on the lift force 
because in reality the lift force does not increase indefinitely with the angle of attack, but reaches a 
maximum value. The lift force on the main wings is also assumed to generate no torque when the plane is 
in equilibrium, just like drag and thrust (or, more accurately, the combined torques of these forces are 
made to cancel out in practice). 

The remaining blocks of code then go on to compute the lift forces on the movable control surfaces 
(elevators, ailerons, and rudder) and the torques they generate. The lift calculation is done in the same 
way as for the main wings. Note that, for simplicity, we consider the whole horizontal tail and vertical tail as 
movable when considering the lift forces and torques on the elevators and rudder. The torques are 
calculated as usual by taking the cross product of the distance vector of the lift force from the center of 
mass and the lift force:  

T = r × F 
The appropriate distance vector needs to be specified for each control surface.   

And here is the block of code that calculates the forces and torques due to lift on the airplane wings and 
control surfaces as just described.  

    
        // *** Now we consider the lift forces and torques on wings and control surfaces  
        if (_airplane.velo.length > 0){ // no lift if velocity is zero 

// velocity of airplane along its x, y and z axes  
                var viX:Number = _airplane.velo.dotProduct(ix); 
                var viY:Number = _airplane.velo.dotProduct(iy 
                var viZ:Number = _airplane.velo.dotProduct(iz); 
                                                      
                var vecX:Vector3D = ix.clone(); 
                var vecY:Vector3D = iy.clone(); 
                vecY.scaleBy(viY); 
                vecX.scaleBy(viX); 

var viXY:Vector3D = vecX.add(vecY); // airplane’s velo in its xy plane  
                                                     
                vecX = ix.clone(); 
                var vecZ:Vector3D = iz.clone(); 
                vecX.scaleBy(viX); 
                vecZ.scaleBy(viZ); 

var viZX:Vector3D = vecX.add(vecZ); // airplane’s velo in its xz plane  
     
                // calculate angle of attack and lateral angle 
                _alph = Math.atan2(viY,viX); // so, the angle of attack 
                if ((viY==0) && (viX==0)){ 
                        _alph = 0; 
                } 
                _beta = Math.atan2(viZ,viX);// lateral angle 
                if ((viZ==0) && (viX==0)){ 
                        _beta = 0; 
                } 
  
                // force: lift on the Wing 
                var veloXY:Vector3D = viXY.clone(); 
                veloXY = veloXY.crossProduct(iz); 
                if (Math.abs(_alph+_alphWing) > 20*Math.PI/180){ 
                        _cLift = 1.2*_alph/Math.abs(_alph);  // impose limit on _cLift 
                }else{ 
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                        _cLift = _dcLdalpha*(_alph+_alphWing);  
}     

  
                veloXY.scaleBy(0.5*_rho*viXY.length*_areaWing*_cLift); 
                var liftW:Vector3D = veloXY.clone(); 
                force = force.add(liftW); 
    
                // assume no overall torque generated by lift on main wings 
    
                // *** lift forces and torques on control surfaces *** 
 
                // force: ailerons; form a couple, so no net force   
                // torque: ailerons 
                veloXY = viXY.clone(); 
                veloXY = veloXY.crossProduct(iz); 
                veloXY.scaleBy(0.5*_rho*viXY.length*_areaAileron*_dcLdalpha *(_alphAl)); 
                var liftAl:Vector3D = veloXY.clone(); // lift on one aileron only  
                var ptorque:Vector3D = iz.crossProduct(liftAl); // T = r x F 

ptorque.scaleBy(_distAlToCM*2); // factor of 2 because two ailerons 
                torque = torque.add(ptorque); 
 
                // force: horizontal tail (elevators); same formula as for the wing  
                veloXY = viXY.clone(); 
         veloXY = veloXY.crossProduct(iz);   
         if(Math.abs(_alphEl+_alph) > 20*Math.PI/180){ 
                        _cLift = 1.2*(_alphEl+_alph)/Math.abs(_alphEl+_alph);  
  }else{ 
                        _cLift = _dcLdalpha*(_alphEl+_alph);  
                }  
                veloXY.scaleBy(0.5*_rho*viXY.length*_areaHorizontalTail*_cLift); 
                var liftHt:Vector3D = veloXY.clone(); 
                force = force.add(liftHt); 
                // torque: horizontal tail 
                ptorque = ix.crossProduct(liftHt); // T = r x liftHt 
                ptorque.scaleBy((-1)*_distVtToCM); // note negative distance along ix  
                torque = torque.add(ptorque); 
 
                // force: vertical tail (rudder); same formula as for the wing; 
                var veloZX:Vector3D = viZX.clone(); 
                veloZX = veloZX.crossProduct(iy); // note axis is along iy. 
                if (Math.abs(_alphRd+_beta) > 20*Math.PI/180){ 
                        _cLift = 1.2*(_alphRd+_beta)/Math.abs(_alphRd+_beta);  
  }else{ 
                        _cLift = _dcLdalpha*(_alphRd+_beta);    
  } 
                veloZX.scaleBy(-0.5*_rho*viZX.length*_areaVerticalTail*_cLift);  
                var _liftVt:Vector3D = veloZX.clone(); 
                force = force.add(_liftVt); 
                // torque: vertical tail 
                ptorque = ix.crossProduct(_liftVt); // T = r x liftVt 
                ptorque.scaleBy(-_distVtToCM); 
                torque = torque.add(ptorque);  
        }   
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Implementing the controls 
The airplane is controlled by using the arrow, Shift and Control (Command on the Mac) keys to control the 
elevators, ailerons, and rudder; and the spacebar together with the caps lock key to control the thrust. This 
is done in the startControl() method. (We won’t list the code here because it’s quite straightforward.) 
The down arrow key increases the pitch raising the airplane’s nose upward, and the up key lowers it. The 
left and right arrow keys make the plane roll to the left and right, respectively. These movements are 
similar to the way the control stick is used by a pilot to control the elevators and ailerons. The rudder is 
controlled using the Shift and Control keys. The maximum angles and increments for these movable parts 
are set at the beginning of the program. The thrust magnitude is increased and decreased by pressing the 
spacebar with the caps lock off and on, respectively. Again, the maximum magnitude of the thrust and its 
increment are set at the beginning of the code, with the default values being 300,000 and 10,000, 
respectively.   

Displaying flight information 
Information about the airplane’s position and velocity as well as currently applied controls is displayed on 
screen when the simulation runs. The relevant text fields are set up in the setupDisplay() method (which 
is called from the constructor) and the information is updated at each timestep in the updateDisplay() 
method (called from the moveObject() method).  

The displayed information includes the altitude of the airplane, its vertical velocity (vy), its horizontal (x, z) 
location and its horizontal (vx, vz) velocity. The first two pieces of information are important to bear in mind 
when you are trying to keep the plane in flight without crashing it. A negative vertical velocity means that 
the airplane is rising; if the vertical velocity is positive, it is losing altitude, so you’d better be on your guard. 
The other two pieces of information are useful to know if you are trying to go somewhere.  

Test flying the simulator 
The airplane is now ready to fly! Run it with the default parameter values. When the simulation starts, the 
plane will just sit there on the runway because its initial velocity is zero and there is no applied thrust. 
Increase the thrust to the maximum value by pressing and holding down the spacebar until the value of 
300,000 is displayed. Then increase the elevators’ angle to -5 by pressing the down arrow key. You will 
see the plane gradually rising as it moves along the runway. Then decrease the pitch angle by pressing 
the up arrow key, which will reduce the lift and decrease the ascent of the plane, or even make it descend. 
See if you can make the airplane rise up to a given altitude and remain there. To do that you need to play 
with the thrust and/or the pitch angle, and you need to make the vertical velocity reach close to zero at 
your desired altitude. Once you’ve achieved that, you can sit back and relax; the plane will take care of 
itself.  

Restart the simulation and try out the aileron and rudder controls. Note that the plane turns when the plane 
rolls, just as described in the “Turning” section. Too much rolling or yawing might make the airplane 
behave somewhat unpredictably, though. See also the detailed comments included in the source code. 
Figure 16-8 shows a screenshot of the simulation with the plane in flight.   
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Figure 16-8. The airplane in flight 

Further things to do 
You probably already have a lot of ideas about how to improve this simulator. Creating a much more 
impressive 3D model airplane is probably one of them, and possibly more visually appealing scenery, too. 
If you use a 3D engine with this flight simulator model, you could go much further with the 3D effects, such 
as switching between different camera views and following the airplane or watching the scenery from the 
plane cockpit. You could also incorporate a more extensive terrain, which could be either generated or 
based on real aerial information. Or add crash scenarios, and so on. You probably have even better ideas 
of your own! 

Create an accurate solar system model 
This project will be somewhat different from most of the examples in the book. The aim here is to create an 
accurate computer model of the solar system that could be used as an e-learning tool for students. The 
key word here is accurate: the visual and animation effects are of lesser importance compared with the 
correctness of the physics and the accuracy of the simulation. Consequently we will depart from our usual 
Mover/Forcer framework and adopt a somewhat different coding approach from the outset that will reflect 
the simulation rather than the animation aspect of the project.  



           Simulation Projects 

501 

What we will create  
Our aim is to create a scale model of the solar system that includes the Sun and the planets. In the 
supplied source code we include the innermost four planets (Mercury, Venus, Earth, and Mars)"the so-
called terrestrial planets. We leave it as an exercise for you to add the other four (Jupiter, Saturn, Uranus 
and Neptune)"the so-called gas giants. This should be easy to do, but will give you a valuable hands-on 
experience with the code.   

Note that Pluto is no longer classified as a planet. In the simulation we’ll pretend that smaller celestial 
bodies like these do not exist, including asteroids and moons. We can neglect them because their effects 
on the motion of the planets are pretty negligible.  

The project will proceed in different stages. First, we’ll set up a simulation loop using the fourth-order 
Runge-Kutta scheme (RK4) in 3D, which we’ll test with a simple example. The source code for this is in 
RK4Test3D.as. Second, we’ll use that simulation loop to model the motion of a single planet in a simple 
idealized way. The source code for that step is in the file SinglePlanet.as. Third, we will include the four 
inner planets and set their properties and initial conditions based on mean astronomical data, so that we’ll 
end up with a reasonably realistic solar system model (or rather half of it). We’ll also need to set up 
appropriate scales carefully. The corresponding file is named SolarSystemBasic.as. Fourth, in the file 
SolarSystem.as, we will include accurate initial conditions, run the simulation for a year, and compare the 
results with corresponding simulation data from NASA to see how good our simulation is.  

The physics 
The simulation will involve modeling the motion of each planet under the action of the combined 
gravitational force exerted on it by the Sun and the other planets. The effect of the Sun will, of course, be 
much larger because of its very large mass compared with those of any of the planets. We’ll adopt a 
coordinate system in which the Sun is fixed, so that we don’t have to model the motion of the Sun itself. 
The planets will be able to move in 3D space under the action of those forces.  

Let m be the mass of a planet, ri its position vector relative to each of the other planets and the Sun (with 
ri

u being the corresponding unit vector), and mi the mass of each of the other planets and the Sun. Then 
the total force on each planet is given by the following formula: 

F = −G mi m
ri

2 ri
u

i
-  

Dividing by the mass, we obtain the acceleration of each planet: 

a = −G mi
ri

2 ri
u

i
-  

This is the equation that the numerical integration code will solve. That’s it. The physics of this problem is 
pretty simple! But there are other issues that make the simulation non-trivial: implementing an accurate 
numerical integration scheme, scaling the model properly, and incorporating accurate initial conditions. 
We’ll handle each of these requirements one step at a time.  

Coding up an appropriate integration scheme 
Because accuracy is our prime concern, it makes complete sense to use RK4. To implement RK4, we’ll 
first create a simple “simulation loop” that will do the timestepping, but we’ll do that independently of the 
“animation loop” like that generated by Timer that we’ve been using so far. It’s easier to do this than to 
explain it, so let’s just do it and we’ll explain afterward. 
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We borrow the RK4 code from the ForcerIntegrator class of Chapter 14 and modify it to come up with the 
following code, which is in the file RK4Test3D.as: 

package{ 
        import flash.display.Sprite; 
        import com.physicscodes.math.Vector3DX; 
  
        public class RK4Test3D extends Sprite{ 
                private var _dt:Number = 0.05; 
                private var _numSteps:Number = 20; 
                private var _t:Number = 0; 
                private var _g:Number = 10; 
                private var _v:Vector3DX = new Vector3DX(0,0,0); 
                private var _s:Vector3DX = new Vector3DX(0,0,0); 
                                 
                public function RK4Test3D():void{ 
                        init(); 
                } 
                 
                private function init():void{ 
                        simulate(); 
                } 
                private function simulate():void{ 
                        trace(_t,_s.y); 
                        for (var i:uint=0; i<_numSteps; i++){ 
                                _t += _dt; 
                                RK4(); 
                                trace(_t,_s.y); 
                        } 
                } 
                private function RK4():void{ 
                        // step 1 
                        var pos1:Vector3DX = _s; 
                        var vel1:Vector3DX = _v; 
                        var acc1:Vector3DX = getAcc(pos1,vel1);  
                        // step 2 
                        var pos2:Vector3DX = pos1.addScaled(vel1,_dt/2);  
                        var vel2:Vector3DX = vel1.addScaled(acc1,_dt/2); 
                        var acc2:Vector3DX = getAcc(pos2,vel2);  
                        // step 3 
                        var pos3:Vector3DX = pos1.addScaled(vel2,_dt/2);  
                        var vel3:Vector3DX = vel1.addScaled(acc2,_dt/2); 
                        var acc3:Vector3DX = getAcc(pos3,vel3);  
                        // step 4 
                        var pos4:Vector3DX = pos1.addScaled(vel3,_dt);  
                        var vel4:Vector3DX = vel1.addScaled(acc3,_dt); 
                        var acc4:Vector3DX = getAcc(pos4,vel4);  
                        // sum vel and acc 
                        var velsum:Vector3DX =! 
vel1.addScaled(vel2,2).addScaled(vel3,2).addScaled(vel4,1); 
                        var accsum:Vector3DX =! 
acc1.addScaled(acc2,2).addScaled(acc3,2).addScaled(acc4,1); 
                        // update pos and velo 
                        _s = pos1.addScaled(velsum,_dt/6); 
                        _v = vel1.addScaled(accsum,_dt/6); 
                } 
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                private function getAcc(ppos:Vector3DX,pvel:Vector3DX):Vector3DX{ 
                        return new Vector3DX(0,_g,0); 
                } 
        } 
} 

Okay, let’s start with the familiar. The RK4() method is a modification of the RK4() method in the 
ForcerIntegrator class that we first saw in Chapter 14. If you compare the two versions you will notice 
one crucial difference: the code deals with the current position and velocity through abstract private 
variables _s and _v, instead of actual particle position and velocity properties. This is the first sign of the 
separation of the animation aspect from the simulation. The other obvious difference is that Vector2D has 
been replaced by Vector3DX. As mentioned in Chapter 15, Vector3DX is a homemade subclass of the 
native Vector3D class that augments it with additional methods such as multiply() and addScaled() that 
we’ve got attached to using (and that simplify resulting code substantially). You can view the Vector3DX 
code in the package com.physicscodes.math. It also has a static method called convert() that converts a 
Vector3D instance into a Vector3DX one.      

Let’s look at the rest of the code in RK4Test3D.as. The getAcc() method that previously invoked 
calcForce() has been simplified here to simply return a constant acceleration vector pointing downward in 
the y direction. That means we are here specializing to a simple gravity problem. The other remaining 
piece of code is the simulate() method, which is called once upon initialization. The core of the code is 
incredibly simple. It is the following for loop, which does all the timestepping, incrementing the current 
time, and calling the RK4() method, which updates the position and velocity vectors _s and _v at each 
timestep:   

for (var i:uint=0; i<_numSteps; i++){ 
        _t += _dt;  
        RK4(); 
} 

From an animation perspective, this code and the associated timestepping will execute all in one go: 
effectively we’ll be pre-computing the motion before doing any animation of existing display objects. There 
isn’t even a display object in this code. The advantage of doing this is that it “decouples” the simulation 
loop from the animation loop (if there’s going to be one), so that either can do their job unhindered by any 
time delays introduced by the other. However, this doesn’t work if your simulation needs to be interactive.  

Looking at how the variables are initialized, we can see that we are simulating the fall of an object from 
rest (_v is initially zero) under gravity for one time unit (because _dt * _numSteps = 0.05*20 = 1). For 
example, choosing units of seconds for _dt and m/s2 for g, this corresponds to letting an object fall from 
rest for 1 second under gravity with g equal to 10 m/s2. Using the formula s = ut + ½ at2 then tells us that 
the object falls a distance of 5 m in that time. In the code, we have traced the pair of values _t and _s.y at 
each timestep, which tells us how far the object has fallen at each time. Run the code and you’ll find that 
the final distance is indeed 5. You can try different timesteps (adjusting the number of steps accordingly) 
and you’ll find that RK4 is doing a pretty good job, pretty much whatever the timestep. For example, even 
with a timestep of 0.5 and with 2 steps (so that the duration is still 1 time unit), it still gives exactly 5!   

Now that we’ve got a good integrator and a basic simulation loop set up, we’re ready to move on and 
create something closer to a planetary system.  

Building an idealized single-planet simulation 
It is straightforward to modify the basic RK4 simulator we just created to simulate a planetary orbit: you 
essentially have to modify the getAcc() method according to Newton’s 1/r2 formula for gravitational force 
and choose appropriate initial conditions for _s and _v. But we also want to see something on the stage! 
So we also add a sun and a planet as Ball objects, and include some code that will show us how their 
positions change with time. We come up with the following code, saved as SinglePlanet.as: 
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package{ 
        import flash.display.Sprite; 
        import com.physicscodes.math.Vector3DX; 
        import com.physicscodes.objects.Ball; 
         
        public class SinglePlanet extends Sprite{ 
                private var _dt:Number = 0.05; 
                private var _numSteps:Number = 2500; 
                private var _animFreq:Number = 40; 
                private var _t:Number = 0; 
                private var _v:Vector3DX = new Vector3DX(5,0,14); 
                private var _s:Vector3DX = new Vector3DX(400,150,0); 
                private var _center:Vector3DX = new Vector3DX(400,400,0); 
                private var _G:Number = 10; 
                private var _massSun:Number = 5000; 
                private var _planet:Ball; 
                private var _sun:Ball; 
     
                public function SinglePlanet():void{ 
                        init(); 
                } 
                 
                private function init():void{ 
                        setup(); 
                        simulate(); 
                } 
                private function setup():void{ 
                        _sun = new Ball(30,0xffff00); 
                        _sun.pos = _center; 
                        addChild(_sun); 
                         
                        _planet = new Ball(5); 
                        _planet.pos = _s; 
                        addChild(_planet); 
                } 
                private function simulate():void{ 
                        for (var i:uint=0; i<_numSteps; i++){ 
                                _t += _dt;  
                                RK4(); 
                                if (i%_animFreq==0){ 
                                        animate(); 
                                } 
                        } 
                } 
 
                private function animate():void{ 
                        _planet.pos = _s; 
                        clonePlanet(); 
                } 
 
                private function clonePlanet():void{ 
                        var pcopy:Ball = _planet.clone(); 
                        pcopy.pos = _planet.pos; 
                        addChild(pcopy); 
                } 
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                private function getAcc(ppos:Vector3DX,pvel:Vector3DX):Vector3DX{ 
                        var r:Vector3DX = Vector3DX.convert(ppos.subtract(_center)); 
                        return r.multiply(-_G*_massSun/(r.lengthSquared*r.length)); 
                } 
                 
                private function RK4():void{ 
                        // code as in previous example  
                } 
                 
        } 
} 

The getAcc() method does what we just said: it applies an acceleration due to the sun’s attraction on the 
planet. We have added an if block of code in the simulate() function that calls an animate() method at 
intervals of _animFreq. The animate() method moves the planet to the current position and then calls the 
clonePlanet() method, which creates a copy of the planet at that position. The net result is a series of 
cloned planets at locations where it has been after equal amounts of time (see Figure 16-9). Not quite 
“animation” because if you run the code you will see everything displayed at once, but it does convey 
some sense of stepping through time. This is a planetary trajectory in 3D; you can see the perspective 
effect causing the planet to appear smaller when its z-coordinate is larger.     

 

Figure 16-9. A planetary trajectory in 3D 

Choosing appropriate scaling factors 
Now that we have an accurate orbits simulator, it’s time to represent the real solar system to scale as the 
next step toward a realistic simulation. To do this, we need to go back to the governing equation. For the 
purpose of choosing appropriate scaling factors, it is the form of the equation that matters instead of the 
details of the various terms. So it will be fine to consider only the portion of the equation reflecting the 
effect of the sun. Also, it’s the magnitude of the relevant quantities that matters, not their direction. The last 
equation therefore leads to the following approximate equation for the acceleration of each planet, in which 
Ms is the mass of the Sun and r is the distance of the planet from it:  

d 2s
dt2

=G Ms

r2  
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We now define scaling factors for time, distance, and mass in a similar way to the example in the last 
chapter: 

s = λ ŝ t = τ t̂ m = µ m̂  

Substituting them into the previous equation and rearranging gives the following corresponding equation in 
terms of the rescaled variables: 

d 2ŝ
dt̂ 2 = Gµτ 2

λ 3
'
()

*
+,
M̂s

r̂ 2  

Comparing the two equations then tells us that the value of the gravitational constant G in the rescaled 
system is given by this: 

Ĝ = Gµτ 2

λ 3  

We now need to choose appropriate scaling factors &, /, and . for the base units for converting quantities 
from the usual SI units to corresponding simulation units. In any given problem a sensible choice for the 
scaling factors should reflect scales relevant to the physics. In this case for example, it makes no sense to 
think of mass values in terms of kg but instead in terms of the mass of the Sun or the mass of the Earth. 
Let’s choose the latter. Similarly, it makes little sense to stick with the second as a unit of time because we 
will be interested in seeing the planets complete at least one revolution around the Sun (the duration of the 
simulation will be on the order of years). Therefore, we’ll choose 1 day as the unit of time. Finally, we could 
choose the mean distance of the Earth from the Sun (known as an astronomical unit: au) as the distance 
unit. That’s about 150 million km, or 150 x 109 m. This would make the distance between the Earth and the 
Sun 1 unit in the simulation by definition. However, because we are building a visual simulation, we’ll be 
thinking of distance in terms of pixels and want to see the Earth a decent number of pixels away from the 
Sun. A more suitable choice of scaling factor in that case is 1 million km (109 m) per pixel, which would 
make the Earth-Sun distance around 150 pixels. Table 16-1 summarizes these choices of scaling factors.    

Table 16-1. Scaling Factors for Base Units 

Scaling factor Value 

& (mass) Earth mass = 5.9736 x 1024 kg 

/ (time) Earth day = 86400 s 

. (length) 1 million km = 109 m 

Scaling factors for derived quantities such as velocity can be worked out from those of the base quantities. 
For example, the scale factor for velocity is given by .//.  

Obtaining planetary data and initial conditions 
The next thing to do is to obtain some planetary data such as the masses of the planets and some suitable 
values for the initial conditions (planets’ positions and velocities). This web page from NASA’s web site has 
all the required information: http://nssdc.gsfc.nasa.gov/planetary/planetfact.html. 
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For easy access, we have saved some of the data that we’ll be using as public static constants in the class 
Astro in package com.physicscodes.constants. This includes, for example, the constants EARTH_MASS, 
EARTH_RADIUS, EARTH_ORBITAL_RADIUS, and EARTH_ORBITAL_VELOCITY and similar constants for other 
planets. Take a look at the file Astro.as. There is a related class called Phys in the same package, which 
contains values of a few physical constants such as the gravitational constant G 
(GRAVITATIONAL_CONSTANT) and the standard value of the acceleration due to gravity on Earth 
(STANDARD_GRAVITY). These values were obtained from the following web page on the NIST web site: 
http://physics.nist.gov/cuu/Constants/. 

The values of the mean orbital radius and the orbital velocity of the planets in the Astro class will be used 
as approximate initial conditions in the basic version of the solar system model that we will construct next. 

Basic solar system model 
We are now ready to put together a basic solar system model that will include all the essential aspects of 
the simulation. The relevant file, SolarSystemBasic.as, contains a fair amount of code. So we’ll break 
things down a bit. Let’s begin by listing the private variables and the init() method:  

package{ 
        import flash.display.Sprite; 
        import flash.geom.Vector3D; 
        import com.physicscodes.math.Vector3DX; 
        import com.physicscodes.motion.Forces3DX; 
        import com.physicscodes.objects.Ball; 
        import flash.events.Event; 
        import com.physicscodes.constants.*; 
        import flash.geom.Matrix3D; 
 
        public class SolarSystemBasic extends Sprite{ 
                // time-keeping variables 
                private var _dt:Number = 1/24; // simulation time unit is 1 day; time-step is 
1 hr 
                private var _numSteps:Number = 8760; // 1 year; 365*24  
                private var _animFreq:Number = 168; // once per week; 24*7 
                private var _t:Number = 0; 
 
                // gravitational constant 
                private var _G:Number; 
 
                // sun variables  
                private var _center:Vector3DX; 
                private var _massSun:Number; 
                private var _radiusSun:Number=30; 
 
                // velocity and position vectors for all planets 
                private var _v:Vector.<Vector3DX>; 
                private var _s:Vector.<Vector3DX>; 
 
                // visual objects 
                private var _sprite:Sprite; 
                private var _sun:Ball; 
                private var _planets:Vector.<Ball>; 
                private var _numPlanets:uint=4; 
                 
                // planets' properties 
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                private var _colors:Array; 
                private var _radiuses:Array; 
                private var _masses:Array; 
                private var _distances:Array; 
                private var _velos:Array; 
                 
                // scaling factors 
                private var _scaleTime:Number; 
                private var _scaleDist:Number; 
                private var _scaleMass:Number; 
                private var _scaleVelo:Number; 
                 
                public function SolarSystemBasic():void{ 
                        init(); 
                } 
 
                private function init():void{ 
                        _sprite = new Sprite(); 
                        addChild(_sprite); 
                        setupScaling(); 
                        setupPlanetData(); 
                        setInitialConditions(); 
                        setupObjects(); 
                        simulate(); 
                } 

} 
} 

 

First, take a look at the private variable definitions. Note in particular that _s and _v are now Vector 
variables consisting of Vector3DX objects: they will contain the position and velocity vectors of all the 
planets. Note also the arrays _colors, _radiuses, and so on that will hold the properties of the planets. 
Next take a look at the init() function. A Sprite instance called _sprite is created; the Sun and planets 
will be placed on that sprite. Then the following methods are called in succession: setupScaling(), 
setupPlanetData(), setInitialConditions(), setupObjects(), and simulate(). Let’s briefly discuss each 
one in turn.  

The setupScaling() method does exactly what its name suggests: it defines the scale factors and then 
uses them to rescale the mass of the sun and the gravitational constant to their simulation values:  

private function setupScaling():void{ 
        scaleMass = Astro.EARTH_MASS; 
        scaleTime = Astro.EARTH_DAY; 
        scaleDist = 1e9; // 1 million km or 1 billion meters 
        scaleVelo = _scaleDist/_scaleTime; // million km per day 
 
        massSun = Astro.SUN_MASS/_scaleMass; 
 
        var G:Number = Phys.GRAVITATIONAL_CONSTANT; 
        G = _scaleMass*_scaleTime*_scaleTime*G / (_scaleDist*_scaleDist*_scaleDist); 
} 

The setupPlanetData() method puts the appropriate values for the planets’ properties in the five arrays 
_radiuses, _colors, _masses, _distances, and _velos. The values we chose for _radiuses are in 
proportion to the four planets’ real radiuses. But please note that they are not in proportion to the radius of 
the Sun (which in reality would be much larger compared with those of the planets). Moreover, neither the 
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radiuses of the planets nor the radius of the Sun are in proportion to the distances between them. If we did 
that, the planets would all be tiny dots in the space available on the stage. The masses, distances, and 
velocities are scaled values of those read in from the Astro class for each planet.  

private function setupPlanetData():void{ 
        _radiuses = [1.9, 4.7, 5, 2.7]; 
        _colors = [0xffffcc, 0xffcc00, 0x0099ff, 0xff6600]; 
                         
        _masses = new Array(); 
        _distances = new Array(); 
        _velos = new Array(); 
                         
        _masses[0] = Astro.MERCURY_MASS/_scaleMass; 
        _masses[1] = Astro.VENUS_MASS/_scaleMass; 
        _masses[2] = Astro.EARTH_MASS/_scaleMass; 
        _masses[3] = Astro.MARS_MASS/_scaleMass; 
                         
        _distances[0] = Astro.MERCURY_ORBITAL_RADIUS/_scaleDist; 
        _distances[1] = Astro.VENUS_ORBITAL_RADIUS/_scaleDist; 
        _distances[2] = Astro.EARTH_ORBITAL_RADIUS/_scaleDist; 
        _distances[3] = Astro.MARS_ORBITAL_RADIUS/_scaleDist; 
 
        _velos[0] = Astro.MERCURY_ORBITAL_VELOCITY/_scaleVelo; 
        _velos[1] = Astro.VENUS_ORBITAL_VELOCITY/_scaleVelo; 
        _velos[2] = Astro.EARTH_ORBITAL_VELOCITY/_scaleVelo; 
        _velos[3] = Astro.MARS_ORBITAL_VELOCITY/_scaleVelo; 
} 

The setInitialConditions() method uses the distances and velocities set up in setupPlanetData() to set 
the initial values of the position and velocity vectors _s and _v for each planet relative to the Sun.  

private function setInitialConditions():void{ 
        _center = new Vector3DX(400,300,0); 
 
        _s = new Vector.<Vector3DX>(); 
        _s[0] = new Vector3DX(400+_distances[0],300,0); 
        _s[1] = new Vector3DX(400+_distances[1],300,0); 
        _s[2] = new Vector3DX(400+_distances[2],300,0); 
        _s[3] = new Vector3DX(400+_distances[3],300,0); 
 
        _v = new Vector.<Vector3DX>(); 
        _v[0] = new Vector3DX(0,_velos[0],0); 
        _v[1] = new Vector3DX(0,_velos[1],0); 
        _v[2] = new Vector3DX(0,_velos[2],0); 
        _v[3] = new Vector3DX(0,_velos[3],0); 
} 
 
The setupObjects() method then creates Ball instances for the Sun and each planet, giving each 
one the appropriate radius, color, and mass and setting the initial positions and velocities.  
 
private function setupObjects():void{ 
        // sun 
        _sun = new Ball(_radiusSun,0xffff00); 
        _sun.pos = _center; 
        _sprite.addChild(_sun); 
                         
        // planets 
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        _planets = new Vector.<Ball>(); 
        for (var n:uint=0; n<_numPlanets; n++){ 
                var planet:Ball = new Ball(_radiuses[n], _colors[n], _masses[n]); 
                planet.pos = _s[n]; 
                planet.velo = _v[n]; 
                _sprite.addChild(planet); 
                _planets.push(planet); 
        } 
} 

Finally we have the simulate() method, together with the associated methods animate() and 
clonePlanet() that we had in the previous version of the code. These are all natural generalizations of 
their previous counterparts to multiple planets, effected with the addition of a uint parameter n that 
represents the array index of the relevant planet. The RK4() and getAccc() methods are also updated to 
include this planet index parameter n, so that they know which planet they are calculating for. Note that 
getAcc() now includes the gravitational force exerted by each of the other planets in addition to that 
exerted by the Sun in calculating the resultant force and acceleration of each planet.  

private function simulate():void{ 
        for (var i:uint=0; i<_numSteps; i++){ 
                _t += _dt;  
                for (var n:uint=0; n<_numPlanets; n++){ 
                        RK4(n); 
                        if (i%_animFreq==0){ 
                                animate(n); 
                        } 
                } 
        } 
} 
 
private function animate(n:uint):void{ 
        _planets[n].pos = _s[n]; 
        clonePlanet(n); 
}                 
 
private function clonePlanet(n:uint):void{ 
        var pcopy:Ball = _planets[n].clone(); 
        pcopy.pos = _planets[n].pos; 
        _sprite.addChild(pcopy); 
} 
 
private function getAcc(ppos:Vector3DX,pvel:Vector3DX,pn:uint):Vector3DX{ 
        var massPlanet:Number = _planets[pn].mass; 
        var r:Vector3DX = Vector3DX.convert(ppos.subtract(_center)); 
        // force exerted by sun 
        var force:Vector3DX = Forces3DX.gravity(_G, _massSun, massPlanet,r); 
        // forces exerted by other planets 
        for (var n:uint=0; n<_numPlanets; n++){ 
                if (n!=pn){ // exclude the current planet itself! 
                        r = Vector3DX.convert(ppos.subtract(_s[n])); 
                        var gravity:Vector3DX = Forces3DX.gravity(_G, _masses[n],! 
massPlanet,r); 
                        force = Forces3DX.add([force, gravity]); 
                } 
        } 
        // acceleration 



           Simulation Projects 

511 

        return force.multiply(1/massPlanet); 
} 
 
private function RK4(n:uint):void{ 
        // step 1 
        var pos1:Vector3DX = _s[n]; 
        var vel1:Vector3DX = _v[n]; 
        var acc1:Vector3DX = getAcc(pos1,vel1,n);  
        // step 2 
        var pos2:Vector3DX = pos1.addScaled(vel1,_dt/2);  
        var vel2:Vector3DX = vel1.addScaled(acc1,_dt/2); 
        var acc2:Vector3DX = getAcc(pos2,vel2,n);  
        // step 3 
        var pos3:Vector3DX = pos1.addScaled(vel2,_dt/2);  
        var vel3:Vector3DX = vel1.addScaled(acc2,_dt/2); 
        var acc3:Vector3DX = getAcc(pos3,vel3,n);  
        // step 4 
        var pos4:Vector3DX = pos1.addScaled(vel3,_dt);  
        var vel4:Vector3DX = vel1.addScaled(acc3,_dt); 
        var acc4:Vector3DX = getAcc(pos4,vel4,n);  
        // sum vel and acc 
        var velsum:Vector3DX=vel1.addScaled(vel2,2).addScaled(vel3,2).addScaled(vel4,1); 
        var accsum:Vector3DX=acc1.addScaled(acc2,2).addScaled(acc3,2).addScaled(acc4,1); 
        // update pos and velo 
        _s[n] = pos1.addScaled(velsum,_dt/6); 
        _v[n] = vel1.addScaled(accsum,_dt/6); 
} 

Run the simulation. Note that it will take a few seconds to run; nothing will seem to happen for a few 
seconds while it’s calculating. That’s because it goes through the whole timestepping loop before doing 
any rendering. The default values in the code for the timekeeping variables are _dt = 1/24, _numSteps = 
8760, and _animFreq = 168. Recalling that in the simulation the unit of time is 1 day, _dt = 1/24 
corresponds to a timestep of 1 hr. Making it larger will mean that the simulation can run the simulation for 
longer in the same wall clock time or can run for the same simulated time in half the wall clock time.  

You can experiment with the timestep to see how large you can make it without losing accuracy 
significantly. The value of 8760 for _numSteps equals 365 x 24; so we are doing an Earth year’s worth of 
simulation. The _animFreq value of 168 is equal to 7 x 24, and so the planets’ positions are visually 
updated once per week. Running the simulation with the default values will produce the trajectories shown 
in Figure 16-10. Earth is, of course, the third planet from the Sun, and it completes a full orbit in the 1 year 
of simulation time, which is reassuring! On the other hand, Mars completes only slightly more than half an 
orbit. If you reduce the simulation time to 8500 timesteps (about 354 days), you will find that Earth just fails 
to complete one orbit, as expected. This is a good indication that we got the simulation at least 
approximately right.  
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Figure 16-10. A basic solar system model that looks a bit artificial 

This is a fully functional and physically quite realistic scale model of the solar system. Apart from the minor 
fact that the sizes of the planets and Sun are not visually represented in proportion to the distances 
between them, the real limitation of the model is that the initial conditions chosen for the planets are not 
actual instantaneous values; they are based on mean values of their distances from the Sun and their 
mean orbital velocities. Also the planets are all aligned in a straight line to start with, which is a bit artificial. 
Let’s fix these limitations now.  

Incorporating accurate initial conditions 
We’re almost there, but to create a truly realistic solar system simulation you need to use accurate data as 
initial conditions. The only thing that needs to change in the code is really the setInitialConditions() 
method. You need to put some real data in there; you can get that data from NASA’s HORIZONS system 
here: http://ssd.jpl.nasa.gov/horizons.cgi. 

This system generates highly accurate trajectory data (known as ephemerides) for a large number of 
objects in the solar system. The data is generated by NASA’s own simulation to extremely high accuracy 
(typically 16 significant figures!). You can choose the data type, coordinate origin, time span, and other 
settings. The file intial_conditions.txt contains some data that we downloaded for the positions and 
velocities of the eight planets at the time of 00:00 on 1 January 2012. Next to the name of each planet 
there are six fields that contain values of x, y, z, vx, vy, and vz, respectively. The positions are in km and 
the velocities in km/s, both relative to the Sun. We have used this data as initial conditions for the four 
planets we are simulating in the version of the code with the filename SolarSystem.as.  

Because we have access to NASA’s simulation data, why not compare our simulation with theirs? So let’s 
do a bit more work before we show you the results.   

Comparing the model results with NASA data 
We have also downloaded and saved position data from the HORIZONS web site for a whole year’s worth 
of simulation, from 1 Jan 2012 to 1 Jan 2013. The data is saved in csv format in a separate file for each 
planet and is located in a subdirectory in the source code folder for this simulation. Note that the 
HORIZONS system is frequently updated as new measurement data is incorporated. The implication is 
that if you download data at a different time you may not obtain exactly the same figures to 16-digit 
accuracy. For most purposes, you wouldn’t even notice the difference, though! 

To compare our simulation with this data, we need to modify the code so that it can read in the data, 
process it, and then plot it together with the simulation data. With all these modifications, the code in 
SolarSystem.as is fairly lengthy. Also, much of the rest of the code is similar to that in 
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SolarSystemBasic.as. So we’ll just show you the main structure with some of the added methods, letting 
you dig into the source file for details. Let’s start with the init() method: 

private function init():void{ 
        setupScaling(); 
        setupPlanetData(); 
        setInitialConditions(); 
        setupDataFile();  
} 

In addition to the previous method calls, init() now calls the setupDataFile() method, which in turn calls 
the loadFile() function that loads in a specified data file and triggers an event handler csvLoaded() when 
that is done.  

private function setupDataFile():void{ 
        var file:String = 'planets_data/' + _planetNames[_ip-1] + '_XYZ.csv'; 
        loadFile(file); 
} 
 
private function loadFile(pFile:String):void{ 
        var dataLoader:URLLoader = new URLLoader(); 
        dataLoader.dataFormat = URLLoaderDataFormat.TEXT; 
        dataLoader.addEventListener(Event.COMPLETE, csvLoaded); 
        dataLoader.load(new URLRequest(pFile)); 
}   
 

The csvLoaded() method sorts through the data and puts it into arrays for the position components:  

private function csvLoaded(e:Event):void { 
        _arrData = e.target.data.split(/\r/);  
        for (var i:int=0; i<_arrData.length; i++) { 
                _tArray[i] = i; 
                var arr:Array = _arrData[i].split(","); 
                _xArray[i] = arr[0]*1000/_scaleDist; 
                _yArray[i] = arr[1]*1000/_scaleDist; 
                _zArray[i] = arr[2]*1000/_scaleDist;  
        } 
        initSetup(); 
}   

After all the data is sorted and put into the data arrays, csvLoaded() calls the initSetup() method, which 
looks like this:  

private function initSetup():void{ 
        _sprite = new Sprite(); 
        addChild(_sprite); 
        setupObjects(); 
        setupGraphs(); 
        plotData(); 
        simulate(); 
} 

In addition to the previous setupObjects() and simulate() method calls, initSetup() calls the additional 
methods setupGraphs() and plotData(), which do exactly what their names suggest. We won’t go into 
the details of the code in these methods, but do take a look at the source code file. There is also a line of 
code in the simulate() method that plots the corresponding simulated position (x, y, and z components 
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relative to the Sun on three separate graphs). You can choose which planet’s data you want to load and 
plot by setting the value of the _ip private variable at the beginning of the code.  

Okay, after all that hard work it’s now time to run the code and see the results. But first, put a comment 
before the line of code that calls the simulate() method in initSetup(). This will only plot NASA’s data 
and won’t run our simulation. If you run the code you’ll see something like in Figure 16-11, in which we 
selected _ip = 4 to plot data for Mars.  

 

Figure 16-11. Initial planet positions and NASA’s 1-year trajectory data for Mars 

Now uncomment the line that calls simulate() and run the code once more. Again, bear in mind that you 
might need to wait for a few seconds before you see anything on the stage. You should now see 
something like in Figure 16-12.  

 

Figure 16-12. Planets’ trajectories in a 1-year simulation with our code 



           Simulation Projects 

515 

The simulated trajectories now look more realistic with proper initial conditions. Note in particular the 
characteristic eccentricity of Mercury’s orbit. On the right side you can now see plots of the position 
components from the simulation. But where are the plots of NASA’s data gone? If you look carefully, you’ll 
see that our simulated plots are sitting right on top of them! Note that we have modified the public plot() 
method of the Graph class to include line thickness and alpha parameters and have made the lines 
representing the simulated values transparent and thicker than the lines corresponding to the NASA data. 
Repeat the simulation plotting the positions of different planets and you’ll see the same thing. You cannot 
distinguish between the two sets of plots at this resolution. Not bad, eh? 

Although we have neglected a whole host of things such as the gas giants (especially Jupiter, the largest 
planet and the closest to the four terrestrial planets) asteroids, and relativistic effects, the results look 
pretty good. Of course, NASA’s simulation has all these and a lot more, together with much more 
advanced numerical methods, which make it much more accurate. It would be interesting to run the 
simulation longer or reduce the timestep to see at what point it starts to show visible differences compared 
with the NASA data. There are, of course small differences, and bearing in mind that 1 px on the screen is 
a million km in reality, they may be significant in absolute terms. Nevertheless, while you may not 
necessarily be able to use this simulation to send your homemade space probe to Mars, you can most 
certainly use it to teach school kids or college students a thing or two about how the solar system works.  

Other things to do  
There are lots of ways in which you could develop or extend this simulation. The most obvious (and most 
straightforward) improvement would be to add in the four outer planets. You could also add in interactivity, 
dynamic scaling, animation, and so on. The file SolarSystemAnimated.as incorporates some basic 
animation into the last version of the simulation that you can no doubt develop further.     

There is also a whole host of 3D features waiting to be exploited here. Our Sun and planets are just 2D 
Ball objects, so you can think of replacing them with 3D balls instead, perhaps with actual images of the 
planets wrapped on them. Then you could add functionality to rotate and scale the view. Perhaps you 
could even show the planets spinning when they are close up. We’ll leave you to it.   

Summary 
With the completion of this book you now have a powerful set of tools at your disposal that will help you 
build more realistic and more engaging games and animations as well as some pretty powerful 
simulations. From the simple bouncing ball simulation of Chapter 1, you’ve come a long way, indeed! 

Let’s have a quick recap of all the ground covered in this book. In Part I, you went through a good deal of 
background material in ActionScript, math, and physics to establish the key concepts and techniques 
relating to physics-based motion and simulation.  

Part II covered the basic laws of motion, and you encountered a wide variety of forces, building lots of 
examples that showed the interesting types of motion they produce.  

In Part III, you simulated systems consisting of multiple particles or extended objects, including particle 
collisions, rigid bodies, and deformable bodies.  

Finally, in Part IV you looked into how to create more complex simulations that require greater attention to 
numerical accuracy or that involve 3D or scale modeling. That’s a lot of stuff. 

This final chapter provided just a tiny glimpse of the possibilities that lie ahead for bringing all that physics 
together and putting it to use. We hope you will continue to have some serious fun with these projects as 
well as many others that you’ll build from scratch. Just don’t forget to share! 
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while loop, 26, 27 
ActionScript filters, 370 
Actionscript physics engine (APE), 5 
adjustBallast() method, 485, 486 
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Aircraft mechanisms 
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forces, 489 
parts and controls, 491, 492 
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turning, 493 

Airfoil, 492 
Airplane.as file, 494 
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theorem, 408 
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calculus notation equation, 253 
definition, 253 
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angVelo() Number property, 468 
animate() method, 505, 510 
appendRotation() method, 471 
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 B 
Base quantities, 476 
Basic physics, 91 

closed system, 125 
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dot product, 124 
energy conservation, 125 
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energy, definition, 124 
energy transfer, 125 
fields, 93 
fluids, 93 
forces 

definition, 115 
drag force, 119, 121, 122 
equilibrium, 118 
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force, 117 
gravity, 119 
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startTime() method, 121 
terminal velocity, 119 
types, 116 

kinematics 
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cannonball, 110 
definition, 103 
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graphical representation, 108 
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mass, 114 
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numerical errors, Euler scheme, 

113 
Projectile.as, 111 
ProjectileTest.as, 112 
relative velocity, 108 
resultant velocity, 107 
speed, 106 
uniform acceleration, motion 

equations, 108–109 
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kinetic energy, 126 
particles 

definition, 93 
particle class (see Particle 

class) 
properties, 94 

physical quantities and units, 92 
potential energy, 126 
power, 126 
rigid bodies, 93 
rudimentary “car” simulation, 130, 

131 
Accelerator class, 128–129 
applyPower() function, 130 
EnergyExample.as, 127 
updateVelo() method, 130 

scalar product, 124 
scientific notation, 92–93 
work, definition, 123 

Bertrand’s theorem, 313 
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Box2DFlash, 5 
 

C 
calcForce() method, 449, 473, 484, 

503 
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Center of mass, 399–400 
Center of pressure, 490 
Centripetal acceleration, 263, 264 
Centripetal force 

circular orbits, 267–270 
circular track, motion of car, 270–

274 
common misconceptions, 265–

266 
definition, 264 
formula, 265 

satellite animation, 266–267 
Chord line, 492 
clonePlanet() method, 505, 510 
Collisions 
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walls 
elastic bouncing (see Elastic 

bouncing) 
energy loss, 326 

bouncing off inclined walls, 337 
bounceOffEnd point() method, 

337 
checkBounce() function, 335, 

337 
collision detection, 327–329 
InclinedWallBouncer class, 335 
MultipleInclinedWallsBouncer, 

339 
particle repositioning, 329–330 
potential tunneling, 338–339 
unit normal vector, 337 
velocity calculation, 330–331 
velocity correction, 332–333 
Wall class creation, 334–335 
Wall instance creation, 335 

conservation principles, 322 
definition, 322 
1D particle collisions (see 1D 

particle collisions) 
2D particle collisions (see 2D 

particle collisions) 
impulse concept, 322 
particle-particle collisions, 322 
particle-wall collisions, 322 

Column matrix/vector, 465 
Conservation of angular momentum, 

407 
Contact forces 

coefficient of friction, 185 
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definition, 181, 182 
frictional forces, 183 
kinetic friction, 184 
normal force, 182–183, 186 
object sliding down, inclined 

plane, 186 
ObliqueMover class, 187–188 
resultant force magnitude, 186 
Sliding.as visual setup file, 186–

187 
static vs. kinetic friction, 184 
tension and compression, 183 
vector2D method, 188, 189 

Coulomb’s law, 300–301 
Coupled oscillators 

calcForce() method, 248–250 
chain of objects, 246 
CoupledOscillator.as code, 246–

250 
drawSpring() method, 250 
Forces.spring() method, 250 
moveObject() method, 250 
MultiForcer, 247, 248 
spring sprite, 247 
startTime() method, 247 

Critical damping, 235, 236 
csvLoaded() method, 513 
 

D 
Damped oscillations, 237 

analytical solutions, 236–237 
calcForce(), 234 
_cDamping, 234, 235 
critical damping, 235, 236 
damping forces, 233–234 
vs. FreeOscillator, 234 

Damping force, 222, 233–234 
Deformable bodies 

cloth simulation, 438–440 
mass-spring systems, 432–433 
rope simulation, 438 

catenary, 437 
Forces.damping() function, 436 
_kDamping, 438 
Rope.as, 434, 437 
RopeMover.as, 434, 436 

deltaTransformVector() method, 471 
Density 

definition, 192 
volume of cuboid, 193 

Derived quantities, 476 
Discretization errors, 447 
1D particle collisions 

collision detection, 340 
elastic collisions 

colliding particles, relative 
velocity, 344–345 

energy conservation, 343 
inelastic collisions, 347–349 
momentum conservation, 343 
particles of equal masses, 346 
particles of larger mass, 346–

347 
velocity calculation, 345–346 

particles repositioning, 340–343 
2D particle collisions 

BallCollider class, 351–352 
BallCollision.as file, 350 
checkCollision() method, 353, 

355–356 
checkWallBounce() method, 356–

358 
vs. 1D particle collisions, 350 
Molecules.as code, 354–355 
Molecules2.as and 

MoleculesCollider2.as, 357 
MoleculesCollider, 355 
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MultipleBallCollision.as, 353 
particle collision simulation, 352–

353 
resolving velocity, 349 

3D physics, 461 
vs. 2D physics, 462 
3D engines 

ActionScript, 461 
integration, 474 

3D models, 470–471 
Flash 3D, 461 
matrices and rotation (see 

Matrices and rotation) 
Matrix3D class, 467–468 
objects and motion, 468–469 
rotating cube 

angular damping torque, 474 
angular velocity, 474 
applied torque, 474 
_cm variable, 472 
_facesColors array, 472 
RotatingRBCubeMover class 

code, 472–473 
_tq Vector3D variable, 473 

Stage3D, 461, 475 
vector math, 462–463 

3D planetary trajectory, 505 
Drag forces, 489 

balloon stimulation, 203 
calcForce() method, 205 
drag() structure, 201 
experiment, simulation, 206, 207 
Floater class, 204–205 
FloatingBall code structure, 203–

204 
kinematic viscosity, 202, 203 
laminar and turbulent flow, 200 
law for high velocity, 201–202 
law for low velocity, 200 

parachute, 209–212 
ratio calculation method, 205–206 
Reynolds number, 202 
terminal velocity, 207–209 

drawPolyhedron() method, 471 
Driving forces, 238 

bungee jumping 
bungee jump simulation, 243 
BungeeOscillator, 241–242 
calcForce() method, 243 
damping mechanism, 240 
displacement vector, 245 
elastic cord, 240 
Forces.drag() method, 240 
overridden moveObject() 

method, 243 
restoring force calculation, 243 
source code, 240–242 

periodic driving force, 238–239 
random driving force, 239, 240 
user interaction, 243–245 

Dry friction, 184 
Dynamic pressure, 194 
 

E 
Elastic bouncing 

checkBounce() method, 326 
collision detection, 323, 324 
elastic collisions, 324 
kinetic energy, 323 
smooth bouncing effect, 325 
WallBouncing.as code, 325 

Elevators, 491 
EulerExplicit() method, 451 
Euler integration scheme, 286 
Euler scheme, 479 
EulerSemiImplicit() method, 451 
EulerSemiImplicit2() method, 451 
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Explicit Euler scheme, 449–452, 
455 

 

F 
Fisix engine, 5 
Flaps, 491 
Flash drawing application 

programming interface 
BouncingBall3DWalls.as code, 

34–35 
fills and gradients, 33 
lines and curves, 32 
setWall() function, 36 

Flash IDE, 482 
Floater class, 484 
Fluid force 

drag (see Drag force) 
lift (see Lift force) 
upthrust, 194 

apparent weight phenomenon, 
196 

Archimedes's principle, 195 
hot-air balloon, 197–199 
law of flotation, 197 
origin, 194 
submerged object, 196 

FOAM, 5 
Forced oscillations. See Driving 

forces 
Force fields, 282–283 
ForcerIntegrator class, 448, 450, 

502 
ForcerRB3D, 469, 496 
Forces3D class, 469 
Forcing, 222 
Forward/backward schemes, 447 
Forward Euler scheme, 449 
Fourier series, 69, 70 

Fourth-order Runge–Kutta scheme 
(RK4), 479, 501 

Free oscillations 
basic oscillator creation, 224–226 
numerical accuracy 

Euler integration, 234 
FreeOscillator.as codes, 229–

230 
FreeOscillator2, 232 
oscillating object, displacement, 

231 
plotGraph() method, 230, 232 
plot() public method, 230 
setupGraph() method, 230 

restoring force, 224 
SHM 

acceleration, 226 
Euler scheme, 227 
Forcer and Mover, 227 
natural frequency, 228 
restoring force, 226 
second–order differential 

equation, 227 
sine and cosine function, 227 
spring force, 226 
spring stiffness, 228 

spring force function, 224 
Fuselage, 491 
 

G 
getAcc() method, 449, 503, 505 
getAccc() method, 510 
Gravitational field strength, 283–284 
Gravity 

Earth motion simulation, 160 
Forces class, 159 
Newton’s universal law of 

gravitation, 158–160 
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weight and mass, 158 
GravityAttractor, 290, 291 
 

H 
Hooke’s law, 223–224 
HORIZONS system, 512 
 

I 
Implicit Euler scheme, 450, 452 
Implicit/explicit schemes, 448 
init() method, 513 
init() private method, 472 
initSetup() method, 513 
Inverse square law, 311 
 

J 
JiglibFlash, 6 
 

K 
KEY_DOWN events, 484 
KEY_UP keyboard events, 484–485 
Kinematic viscosity, 202 

L 
Laws governing motion, 135 

energy conservation principle, 
148–149 
1D version, analytical 

equations, 149 
energy graphs, projectile, 151, 

152 
mechanical energy 

conservation, 149 
ProjectileEnergy.as, 150–151 

momentum conservation principle 

1D elastic collision, 154–156 
impulse-momentum theorem, 

153 
interacting particles, 152, 153 

Newton’s laws of motion (see 
Newton’s laws of motion) 

rotational motion, 156 
Lift forces, 489 

airplane, 213–216 
coefficient, 213 
Forces.lift() function, 213 
object in fluid, 212 
vs. upthrust force, 213 

Linear velocities, 256 
Local gravity 

Earth’s surface 
force of gravity, 169–170 
variation of gravity, 170–172 

planets and stars, 172 
Long-range forces 

central forces 
attractive and repulsive force, 

311 
Bertrand’s theorem, 313 
calcForce(), 313 
CentralForces.as code, 311–

313 
conditions, 310 
flower-like trajectory, 313, 314 
inverse square law, 311 
spring force law, 311 

electromagnetic force 
Lorentz force law, 308–310 
magnetic fields and forces, 

306–308 
electrostatic force 

charged particle attraction and 
repulsion, 301–302 
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charged particle, electric field, 
303–304 

Coulomb’s law, 300–301 
electric charge, 299–300 
gravitational field strength, 303 
time-varying electric fields (see 

Time-varying electric fields) 
multiple attractors 

1/r force, 318 
center1, center2, and center3 

attractors, 317 
FieldForcer.as code, 316–317 
FieldForcer class instance, 317 

Newtonian gravitation (see 
Newtonian gravitation) 

particle interactions and force 
fields, 281–283 

spring force law, 314–316 
Lorentz force law, 308–310 

M 
Mass-spring systems, 432–433 
Math notation, 45 

bell function, 53, 54 
blows up curve, 53 
calculus, definition, 81 
coordinate geometry, 46 
differential calculus, 81 
elementary geometry textbook, 55 
exponential growth function, 50, 

51 
Gaussian curve, 51, 52 
graph class 

drawaxes() function, 47 
drawCircle() method, 47 
drawgrid() function, 46, 47 
graph arguments, 46 
lineTo() method, 47 
parabola curve, 48 

plot() method, 47 
GraphFunctions.as, 52 
initial condition, definition, 89 
integral calculus, 81 
Integration.as, 88, 89 
integration, definition, 87 
Math.exp() function, 50 
MoveCircle.as, 56 
MoveCurve.as, 52 
Newton’s law of gravitation, 59 
parametric equations, 57, 59 
placeBall() function, 53 
plotGraph() function, 53 
polynomial curves, 49, 50 
Pythagoras’s Theorem, 59 
rate of change, 81 

definition, 82 
difference equations, 85–87 
differentiation, definition, 85 
GradientFunction.as, 83–84 
gradient of curve, 83 
nonlinear function, 82 
numGrad points, 84 

second derivative, 85 
setupTimer() function, 53 
straight lines, 48, 49 
trace() function, 55 
trigonometry 

angular frequency/velocity, 66 
cosine function, 63 
damped oscillations, 67, 68 
definition, 60 
degrees and radians, 60–61 
frequency, 66 
inverse trig functions, 64–65 
oscillations, 67 
period, 66 
sine and cosine waves, 68, 70 
sine function, 61–62 
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tangent function, 63–64 
wavelength, 66 

vectors (see Vectors) 
Matrices and rotation 

2D 
array of numbers, 463 
matrix algebra, 463–464 
matrix class, 466 
rotation matrices, 464–465 
transformations, 465–466 

3D, 466–467 
Matrix multiplication, 464 
Matrix3D class, 467 
Molehill, 475 
Moment of inertia, 400, 401 
moveObject() method, 449, 451, 

468, 473, 485, 486 
MultiForcer2, 452 

N 
Newton’s laws of motion, 360 

constantGravity function, 141 
first law of motion (N1), 136–137 
floating ball simulation, 144–146 
F = ma, 139 
Forcer class, 139–141 
linearDrag function, 141–142 
projectile with drag, 142–143 
second law of motion (N2) (see 

Newton’s second law of motion) 
static add() method, 142 
third law of motion (N3), 138–139 
zero force function, 141 

Newton’s second law, 228, 405–
406, 444 

Newton’s second law of motion, 443 
differential equation 

displacement, 147 
F = ma, 146 

numerical vs. analytical 
solutions, 148 

plotGraphs() function, 148 
velocity, first-order form, 147 

exhaust gases, rocket, 138 
momentum, definition, 137 
quantity of motion, 137 

Newton’s third law, 173 
Newton’s universal law of 

gravitation, 158–160 
Newtonian gravitation 

black hole game, 292 
addAttractor() method, 299 
_applyThrust variable, 295 
BlackHoleAttractor class, 295 
calcForce(), 297 
_direction variable, 295 
_dir variable, 295 
moveObject() method, 298 
_numLives and _score 

variables, 296 
repositionAttractors() and 

recycleOrbiter() methods, 
297 

rotateOrbiter() method, 299 
setupEventListeners() method, 

296 
spaceship navigation, 292 
updateLives() method, 298 
updateScore() method, 298 
_vedmdt variable, 295 
visual setup creation, 293–294 

gravitational field strength, 283–
284 

multiple attractors 
Attractors.as code, 286–288 
calcForce(), 288 
center and center2 attractors, 

287 
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figure-eight trajectory, 288 
orbiter movement, 289 

multiple orbiters 
calcForce(), 286 
Euler integration scheme, 286 
force of gravity calculation, 286 
gravitational attractor, 284 
MultiForcer, 286 
Orbits.as code, 284–285 
solar system toy simulation, 

286 
tangential velocity, 285 

particle trajectories 
black holes, 292 
GravityAttractor, 290–291 
GravityField.as code, 289–290 
hypothetical Newtonian black 

holes, 290 
mass of black hole formula, 290 
moveObject() method, 291 
plotGraph() method, 291 
recycleOrbiter() method,, 290 
setupGraph() method, 291 

Numerical integration schemes, 443 
characteristics, 446 
characteristics of numerical 

schemes 
accuracy, 447 
consistency, 446 
convergence, 447 
efficiency, 447 
stability, 447 

definition, 443 
Euler integration 

computational cost, 452 
explicit Euler, 449–452 
implicit Euler, 450 
semi-implicit Euler, 450–452 
timesteps, 452 

Euler scheme, 446 
forward/backward schemes, 447 
implicit/explicit schemes, 448 
modifying Forcer, 448–449 
motion of particle, initial value 

problem, 444–445 
Newton’s second law of motion, 

443 
numerical discretization and 

difference schemes, 445 
physical problem, 446 
predictor-corrector methods, 448 
Runge–Kutta integration 

fourth-order Runge–Kutta  
 scheme (RK4), 454–455 
second-order Runge–Kutta 

scheme (RK2), 453–454 
stability and accuracy, 455–456 

Runge–Kutta methods, 448 
simulation timestep, 446 
single-step/multistep methods, 

448 
Verlet integration 

game programming and 
animation, 456 

position Verlet method, 456–
458 

stability and accuracy, 458–459 
velocity Verlet method, 458 

 

O 
Object data type, 20 
Orbits, 161 

escape velocity, 165 
Orbiter class 

acceleration calculation, 165 
calcForce() method, 162 
circular orbit, 165 
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force of gravity, 164 
Forcer class, 162 
Forces.gravity() function, 162 
gravitational force calculation, 

165 
Orbits.as, 163 
startTime() method, 164 
super() method, 162 

two-body motion, 166–169 
Oscillation, 221, 222 
 

P, Q 
Particle class 

addScaled() method, 97, 98 
Ball class 

ball object, position and 
velocity, 101 

class definition and constructor, 
100–101 

drawBall() method, 101 
multicolored bunch, 102 
MultiMover function, 102, 103 

com.physicscodes.objects 
package, 94 

get mass() function, 96 
Mover class 

moveObject() method, 99 
startTime() function, 99, 100 
stopTime() function, 99 
Timer class, 98, 99 

Number precision, 95 
pos and velo properties, 97 
position and velocity, x-

components, 96–97 
properties, 95 
set mass() function, 96 

Particle systems 
collison interaction, 360 

definition, 360 
fire effect, 371–372 
fireworks 

ageParticles() method, 375 
animation, 376–379 
GlowFilter(), 374 
particle class modification, 373 
sparks, 375 
Sparks.as file, 373–374 
SparksMover class, 374–375 

local interactions, 360 
long-range forces 

Forces.gravity() function, 381 
LongRange.as setup file, 379–

380 
LongRangeMover, 380–381 
setupCols() method, 381 
Star class, 379 
wormhole, 382–385 

long-range interactions, 360 
mutual gravitational forces, 389 

Forces.gravityModified(), 388 
local interaction approximation, 

387 
MultiGravitator class, 386–387 
MultiGravity.as setup file, 385 
N-body calculation, 385 

Newton’s laws of motion, 360 
no mutual interaction, 360 
particle emitter 

calcForce() method, 366 
createNewParticles() method, 

366 
fountain-like pattern, 367 
limitParticles() method, 366 
MultiForcer, 366 
ParticleEmitter class, 365–366 
ParticleEmitterExample.as, 365 

short-range interactions, 360 
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simple galaxy simulation, 394 
calcForce() method, 392 
calcMass() method, 392 
Einasto profile, 393 
Forces.gravity() function, 390 
Galaxy.as code, 390–391 
GalaxyMover class, 391–392 
mathematical principle, 389 
mean field approach, 389 

smoke effect, 371 
ActionScript filters, 370 
BlurFilter, 370 
modifyParticles() method, 369 
moveObject() method, 369 
Smoke.as, 367 
SmokeMover, 368 

splash effect, 364 
checkDrop() method, 363 
Forces.constantGravity() 

method, 363 
MultiForcer, 363 
overriding moveObject() 

method, 363 
splash array, 362, 363 
Splash.as code, 361–362 
SplashMover class, 362–363 
velocity factor _fac formula, 364 

Particle3D class, 468 
Particle3D: code, 468 
Physics programming, 3 

animation vs. simulation, 8 
bouncing ball 

acceleration, 10 
boundary effects, 12 
coding, 2D, 10–11 
contact force, 10 
onEachTimestep() function, 12 

code generation, 4 
computer simulation/model, 4 

definition, physics, 6 
Flash physics engines, 5–6 
force and motion, 7, 8 
laws of physics, 6, 8 
math equations, 6 
process, 9 
realistic animation effects 

creation, 4 
realistic games creation, 4 
types of influences, 7 

Pitch axis, 490 
Planet trajectories, 514 
plotData() method, 513 
PolyhedronRB class, 470, 493, 495 
Predictor-corrector methods, 448 
Pressure 

calculating method, 191 
definition, 191 
density, 192–193 
vs. depth, fluid, 193 
static and dynamic pressure, 194 

Principle of moments, 407 
Projectile.as file, 458 
Projector.as file, 458 
Pseudo force, 266 
public plot() method, 515 
 

R 
Real-time simulation, 476 
Rescaling equations, 477, 478 
Restoring force, 222 
Rigid bodies 

angular momentum, 401–402 
BallRB class, 403 
center of mass, 399–400 
classic college physics problem, 

421 
colliding blocks, 430–432 
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collisions and bouncing 
angular impulse, 424–425 
arbitrary shape rigid bodies, 

422 
colliding spheres, 422 
collision resolution method, 426 
impulse magnitude, 425 
linear and angular velocities 

calculation, 426 
linear impulse, 422–424 

definition, 395 
dynamics simulation 

angular damping, 411 
calcForce() method, 411 
ForcerRB class, 409–410 
linear damping, 411 
RigidBodyDynamics.as, 410–

411 
RigidBodyMover class, 411 
terminal angular velocity, 412 

moment of inertia, 400–401 
moment/torque, 398–399 
move() method, 405 
vs. particle motion, 396 
particle to rigid body simulation, 

415–417 
PolygonRB class, 403 
pos2D property, 403 
RectangleRB class, 404 
RigidBody class code, 402–403 
RigidBodyTest.as code, 404–405 
rolling simulation 

calcForce(), 417 
force diagram, 418 
frictional force formula, 420 
pure rolling, 419 
rolling friction, 418 
torque code, 418 

rotational dynamics 

angular impulse-momentum 
theorem, 408 

conservation of angular 
momentum, 407–408 

Newton’s second law, 405–406 
rotational equilibrium, 407 
rotational kinetic energy, 408 
work-energy theorem, 409 

rotational kinematics, 396–398 
single bouncing block 

Boolean parameter 
testCollision, 429 

calcForce() code, 428 
collision detection code, 428 
crossProduct() method, 429 
RigidBodyBouncing.as, 426–

428 
rotate() method, 429 
stopTime() public method, 429 

slipping and rolling, 420–421 
wind turbine simulation 

calcForce() method, 415 
moments of inertia, 413 
rotational inertia, 415 
TurbineRB class, 412 
TurbinesMover class, 414–415 
WindTurbines.as code, 413–

414 
RigidBody3D class, 468 
RK4() method, 510 
RK4Test3D.as file, 501 
Rockets 

_applySideThrust Boolean 
variable, 175 

drawCapsule() method, 179 
drawExhaust() method, 179 
drawTank() method, 179 
moveObject() method, 176 
monitor(), 176, 177 
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Newton’s third law, 173 
public dropTank() method, 180 
Rocket.as code, 178–179 
Rocketer.as code, 175 
RocketTest.as, 174 
rotateObject() method, 176 
rotation and stability, 180 
super.moveObject(), 176 
thrust, 173–174 
thrusters, 177 
updateMass() method, 176 

Roll axis, 490 
rotate() method, 464 
RotatingRBCube.as file, 471–472 
RotatingRBCube2.as file, 474 
RotatingRBCubeMover class, 472 
RotatingRBCubeMover2.as file, 474 
Rotational motion 

centripetal acceleration, 263, 264 
centripetal force 

circular orbits, 267–270 
circular track, motion of car, 

270–274 
common misconceptions, 265–

266 
definition, 264 
formula, 265 
satellite animation, 266–267 

non-uniform circular motion 
simple pendulum (see Simple 

pendulum) 
tangential force and 

acceleration, 274 
uniform circular motion 

angular acceleration, 253 
angular displacement, 252 
angular velocity (see Angular 

velocity) 
frequency of rotation, 254 

kinematics, 251 
linear/translational motion, 251 
linear velocities, 254 
Particle and Mover classes, 

258–259 
periodic motion, 254 
period of revolution, 254 
rolling wheel, 256–258 
satellite, earth rotation, 259–

263 
Rudder, 491 
Runge–Kutta integration 

fourth-order Runge–Kutta scheme 
(RK4), 454–455 

second-order Runge–Kutta 
scheme (RK2), 453–454 

stability and accuracy, 455–456 
Runge–Kutta methods, 448 
 

S 
ScaleModel.as file, 477 
ScaleModelMover.as file, 477 
Scale models, 461 

computer model, 475 
2D game, 475–476 
for realism, 475 
rescaling equations, 477–478 
scaling factors and parameter 

values, 476–477 
units selection, 476 

Scaling factors, 470, 476, 477, 505, 
506 

Screen-based visual simulation, 476 
Semi-implicit Euler scheme, 450–

452, 456 
setupDataFile() method, 513 
setupDisplay() method, 499 
setupGraphs() method, 513 
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setupObjects() method, 513 
setWater() method, 486 
Simple harmonic motion (SHM) 

acceleration, 226 
Euler scheme, 227 
Forcer and Mover, 227 
natural frequency, 228 
Newton’s second law, 226 
restoring force, 226 
second–order differential 

equation, 227 
sine and cosine function, 227 
spring force, 226 
spring stiffness, 228 

Simple pendulum 
angular acceleration, 275 
angular velocity, 275 
calcForce() method, 278 
geometrical and force diagram, 

275 
nifty projection() method, 278 
Pendulum.as, 277–278 
PendulumDemo code, 276 
pendulum simulation, 279 
radial force component, 275 
relative position vector, 277 
Vector2D class, 278 

simulate() function, 505 
simulate() method, 513 
Simulation projects, 481 

accurate solar system model 
acceleration, 501 
animate() method, 510 
asteroids and moons, 501 
clonePlanet() method, 510 
3D features, 515 
e-learning tool, 500 
gas giants, 501 
initial conditions, 512 

init() method, 507–508 
mean orbital velocities, 512 
mean values, 512 
motion of planet, 501 
vs. NASA data, 512–515 
numerical integration scheme, 

501 
planetary data and initial 

conditions, 506–507 
Pluto, 501 
RK4() method, 503, 510, 511 
RK4Test3D.as file code, 502–

503 
scaling factors, 505, 506 
setInitialConditions() method, 

509 
setupObjects() method, 509 
setupPlanetData() method, 508 
setupScaling() method, 508 
simulate() method, 510 
single-planet simulation, 503–

505 
SolarSystemAnimated.as file, 

515 
SolarSystemBasic.as file, 507 
terrestrial planets, 501 
timestep, 503 
total force, 501 
trajectories, 511, 512 
Vector3DX code, 503 
Vector3DX objects, 508 

3D flight simulator creation 
aircraft mechanisms (see 

Aircraft mechanisms) 
AirplaneMover class, 495 
angle of attack, 496 
calcForce() method, 495, 496 
controls implemention, 499 
cross product, 496 
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deltaTransformVector() method, 
495 

distance vector, 497 
3D model airplane, 500 
flight information display, 499 
forces and torques, 496–498 
maneuvers, 493 
PolyhedronRB class, 495 
test flying, 499, 500 
_thrustMag variable, 496 
types of motion, 493 
updateObject() method, 495 
updatePolyhedron() public 

method, 495 
Vector3D variables, 495 
visual setup, 493–495 
world space, 495 

submarine creation 
com.physicscodes.objects, 483 
controls and visual effects, 484, 

486 
density, 482 
full mover code, 486–488 
gravity, upthrust, and drag 

forces, 482 
motion code, 484 
Submarine.as file code, 483 
SubmarineMover class, 484 
TextField instance, 484 
visual appearance, 488 
visual setup, 482, 483 

SinglePlanet.as code, 503–505 
SinglePlanet.as file, 501 
Single-step/multistep methods, 448 
SolarSystemAnimated.as file, 515 
SolarSystem.as code, 512 
SolarSystem.as file, 501 
SolarSystemBasic.as code, 513 
SolarSystemBasic.as file, 501 

Spring force law, 311 
Spring-like motion, 224 
Stage3D APIs, 475 
startControl() method, 499 
startTime() method, 451, 472 
Static pressure, 194 
String data type, 20 
SubmarineMover class code, 486–

488 
Symplectic method, 451 
 

T 
Tails, 491 
Tension, 183 
_thrust and _ballastInc variables, 

485 
_thrustMag and _incMag variables, 

485 
Time-varying electric fields, 306 

_E in calcForce(), 305 
Electro.as, 305 
Electro class, 304 
mass-spring system, 304 

Transformation matrix, 471 
transformVector() method, 471 
 

U 
updateDisplay() method, 499 
updateInfo() method, 486 
updateObject() method, 473 
updatePolyhedron() method, 470, 

471, 473, 496 
Upthrust force, 194 

apparent weight phenomenon, 
196 

Archimedes's principle, 195 
hot-air balloon, 197–199 
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law of flotation, 197 
origin, 194 
submerged object, 196 

 

V 
Vector2D class, 464 
Vector3D class, 462 
Vector3D object, 468 
Vector3DX class, 462, 463 
Vectors 

addition and subtraction, 72, 73 
algebra, 79–80 
components, 73–74 

angle, 76 
magnitude, 76 
multiplication, number, 75 
position vectors, 74 
vector addition, 75 

displacement, 70, 71 
multiplication 

scalar/dot product, 76–77 
vector/cross product, 77–78 

scalars, 71–72 
Verlet integration 

game programming and 
animation, 456 

position Verlet method, 456–457 
stability and accuracy, 458–459 
velocity Verlet method, 458 

Verlet systems, 456 
Viscous fluid drag, 184 
 
 
 
 
 

W, X 
Wind force 

air bubbles, 217–218 
and drag, 217 
BubbleWindMover engine code, 

218–219 
calculation, 216, 219 
steady and turbulent flow, 217 
turbulence modeling, 219–220 

Wings, 491 
Work-energy theorem, 409 
WOW-Engine, 5 
 

Y, Z 
Yaw axis, 490 
 
 


	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Authors
	About the Technical Reviewer
	About the Cover Image Artist
	Acknowledgments
	Preface
	What this book will (and won’t) teach you
	Overview of this book
	Source code and examples

	Part I The Basics
	Chapter 1 Introduction to Physics Programming
	Why model real physics?
	Creating realistic animation effects
	Creating realistic games
	Building simulations and models
	Generating art from code
	Can’t I just use a physics engine?

	What is physics?
	Everything behaves according to the laws of physics
	The laws can be written as math equations
	Predicting motion

	Programming physics
	The difference between animation and simulation
	The laws of physics are simple
	Hence, they can be readily coded up!
	The four steps for programming physics

	A simple example
	A bouncing ball: the physics
	Coding up a bouncing ball in 2D
	Some code at last!

	Summary

	Chapter 2 Selected ActionScript 3.0 Topics
	ActionScript 3.0 classes
	Classes and objects
	Structure of an AS3.0 class
	Functions, methods and constructors
	Properties
	Static methods and properties
	Inheritance

	ActionScript 3.0 language basics
	Variables and constants
	Data types
	Numeric data types
	Arrays
	Operators
	Math
	Logic
	Loops

	Events in ActionScript 3.0
	Event listeners and handlers
	Events and user interaction
	Drag and drop

	The Flash coordinate system
	2D coordinates
	3D in Flash

	The Flash drawing API
	Drawing lines and curves
	Creating fills and gradients
	Example: Bouncing ball in a box

	Producing animation using code
	Using the built-in frame stepping as a clock
	Using the Timer class
	Using getTimer() to compute elapsed time
	Precalculating motion

	Collision detection
	Using the hitTestObject() method
	Using the hitTestPoint() method
	Distance-based collision detection
	Advanced collision detection

	Summary

	Chapter 3 Some Math Background
	Coordinates and simple graphs
	Building a plotter: the Graph class
	Plotting functions using the Graph class
	Straight lines
	Polynomial curves
	Things that grow and decay: exponential and log functions
	Making an object move along a curve
	Fun with hills
	The trouble with circles
	Using parametric equations
	Distance between two points

	Basic trigonometry
	Degrees and radians
	The sine function
	The cosine function
	The tangent function
	The inverse trig functions
	Using trig functions for animation
	Wavelength, period, frequency and angular frequency
	Oscillations
	Damped oscillations
	Combining sine waves


	Vectors and basic vector algebra
	What are vectors?
	Vectors and scalars
	Adding and subtracting vectors
	Resolving vectors: vector components
	Position vectors
	Adding vectors using components
	Multiplying a vector by a number
	Vector magnitude
	Vector angle

	Multiplying vectors: Scalar or dot product
	Multiplying vectors: Vector or cross product
	Building a Vector class with vector algebra

	Simple calculus ideas
	Slope of a line: gradient
	Rates of change: derivatives
	Discrete calculus: difference equations

	Doing sums: integrals

	Summary

	Chapter 4 Basic Physics Concepts
	General physics concepts and notation
	Physical quantities and units
	Scientific notation

	Things: particles and other objects in physics
	What is a particle?
	Particle properties
	Building a Particle class
	Moving particles: the Mover class
	Extending the Particle class
	The Ball class
	Using the Ball class


	Describing motion: kinematics
	Concepts: displacement, velocity, speed, acceleration
	Displacement
	Velocity
	Speed
	Acceleration

	Combining vector quantities
	Describing motion using graphs
	Equations of motion for uniform acceleration
	Applying the equations to projectile motion
	More motion-related concepts: inertia, mass, and momentum

	Predicting motion: forces and dynamics
	The cause of motion: forces
	The relationship between force, mass, and acceleration
	Types of forces
	Combining forces: force diagrams and resultant force
	Forces in equilibrium
	An example: object falling under gravity and drag

	Energy concepts
	The notion of work in physics
	The capacity to do work: energy
	Energy transfer, conversion, and conservation
	Potential and kinetic energy
	Power
	Example: a rudimentary “car” simulation

	Summary

	Part II Particles, Forces, and Motion
	Chapter 5 The Laws Governing Motion
	Newton’s laws of motion
	Newton’s first law of motion (N1)
	Newton’s second law of motion (N2)
	Newton’s third law of motion (N3)

	Applying Newton’s laws
	General method for applying F = ma
	The Forcer class
	The Forces class
	A simple example: projectile with drag
	A more complicated example: floating ball

	Newton’s second law as a differential equation
	Taking a deeper look at F = ma
	An example: Fall under gravity and drag revisited

	The principle of energy conservation
	Conservation of mechanical energy
	An example: Energy changes in a projectile

	The principle of momentum conservation
	Example: 1D elastic collision between two particles

	Laws governing rotational motion
	Summary

	Chapter 6 Gravity, Orbits, and Rockets
	Gravity
	Gravity, weight, and mass
	Newton’s universal law of gravitation
	Creating the gravity function

	Orbits
	Orbiter class
	Escape velocity
	Two-body motion

	Local gravity
	The force of gravity near the Earth’s surface
	Variation of gravity with height
	Gravity on other celestial bodies

	Rockets
	It is rocket science!
	Modeling the thrust of a rocket
	Building a rocket simulation
	The Rocketer class
	The Rocket class


	Summary

	Chapter 7 Contact and Fluid Forces
	Contact forces
	Normal contact forces
	Tension and compression
	Friction
	Modeling static and kinetic friction
	Coefficients of friction

	Example: Sliding down a slope
	The physics
	Creating the visual setup
	Making things move


	Pressure
	The meaning of pressure
	Density
	Variation of pressure with depth in a fluid
	Static and dynamic pressure

	Upthrust (buoyancy)
	Archimedes’s Principle
	Apparent weight
	Submerged objects
	Floating objects
	Example: Balloon

	Drag
	Drag law for low velocities
	Drag law for high velocities
	Which drag law should I use?
	Adding drag to the balloon simulation
	Example: Floating ball
	Terminal velocity
	Example: Parachute

	Lift
	Lift coefficients
	Example: An airplane

	Wind and turbulence
	Force due to the wind
	Wind and drag
	Steady and turbulent flow
	Example: Air bubbles in a steady wind
	Modeling turbulence

	Summary

	Chapter 8 Restoring Forces: Springs and Oscillations
	Springs and oscillations: Basic concepts
	Spring-like motion
	Restoring force, damping, and forcing
	Hooke’s law

	Free oscillations
	The spring force function
	Creating a basic oscillator
	Simple harmonic motion
	Oscillations and numerical accuracy

	Damped oscillations
	Damping force
	The effect of damping on oscillations
	Analytical solutions for oscillations with damping

	Forced oscillations
	Driving forces
	Example: A periodic driving force
	Example: A random driving force
	Gravity as a driving force: bungee jumping
	Example: Driving force by user interaction

	Coupled oscillators: Multiple springs and objects
	Example: A chain of objects connected by springs

	Summary

	Chapter 9 Centripetal Forces: Rotational Motion
	Kinematics of uniform circular motion
	Angular displacement
	Angular velocity
	Angular acceleration
	Period, frequency, and angular velocity
	Relation between angular velocity and linear velocity
	Example: A rolling wheel
	Particles with spin
	Example: Satellite around a rotating Earth

	Centripetal acceleration and centripetal force
	Centripetal acceleration
	Centripetal acceleration, velocity and angular velocity
	Centripetal force
	Common misconceptions about centripetal force
	Example: Revisiting the satellite animation
	Example: Circular orbits with gravitational force
	Example: Car moving around a bend

	Non-uniform circular motion
	Tangential force and acceleration
	Example: A simple pendulum

	Summary

	Chapter 10 Long-Range Forces
	Particle interactions and force fields
	Interaction at a distance
	From particle interactions to force fields

	Newtonian gravitation
	Gravitational field due to a particle
	Gravity with multiple orbiters
	Gravity with multiple attractors
	Particle trajectories in a gravity field
	Building a simple black hole game
	Creating the visual setup
	Programming the game functionality


	Electrostatic force
	Electric charge
	Coulomb’s law of electrostatics
	Charged particle attraction and repulsion
	Electric fields
	Electric field due to a charged particle
	Time-varying electric fields


	Electromagnetic force
	Magnetic fields and forces
	The Lorentz force law

	Other force laws
	Central forces
	Gravity with a spring force law?
	Multiple attractors with different laws of gravity

	Summary

	Part III Multi-particle and Extended Systems
	Chapter 11 Collisions
	Collisions and their modeling
	Bouncing off horizontal or vertical walls
	Elastic bouncing
	Implementing energy loss due to bouncing

	Bouncing off inclined walls
	Collision detection
	Repositioning the particle
	Calculating the new velocity
	Velocity correction just before collision
	An example of a ball bouncing off an inclined wall
	Creating a Wall class
	Creating a Wall instance
	Getting a ball to bounce off an inclined wall
	Dealing with a potential “tunneling” problem

	Example of ball bouncing off multiple inclined walls

	Collisions between particles in 1D
	Repositioning the particles
	Elastic collisions
	Relative velocity of colliding particles
	Calculating velocities after an elastic collision
	A special case: particles of equal masses
	Another special case: collision with a particle of much larger mass

	Inelastic collisions
	Coefficient of restitution
	Calculating velocities after an inelastic collision
	Completely inelastic collisions


	Collisions between particles in 2D
	An example: 2D collisions between two particles
	Creating a two-particle collision simulator
	Experimenting with the particle collision simulation

	Example: multiple particle collisions
	Example: multiple particle collisions with bouncing

	Summary

	Chapter 12 Particle Systems
	Introduction to particle system modeling
	Creating animated effects using particles
	A simple example: splash effect with particles
	Creating a particle emitter
	Creating a smoke effect
	Creating a fire effect
	Creating fireworks
	Modifying the Particle class
	Making sparks
	Making the fireworks animation


	Particle animations with long-range forces
	Particle paths in a force field
	Building a wormhole

	Interacting particle systems
	Multiple particles under mutual gravity
	A simple galaxy simulation

	Summary

	Chapter 13 Extended Objects
	Rigid bodies
	Basic concepts of rigid body modeling
	Rigid body motion versus particle motion
	Rotational kinematics
	Rotational kinematics with the Particle and Mover classes
	Turning effect of a force: torque
	Center of mass
	Moment of inertia
	Angular momentum

	Modeling rigid bodies
	Creating a RigidBody class
	Extending the RigidBody class
	The BallRB class
	The PolygonRB class
	The RectangleRB class

	Using the rigid body classes

	Rotational dynamics of rigid bodies
	Newton’s second law for rotational motion
	Rigid bodies in equilibrium
	Conservation of angular momentum
	Angular impulse-momentum theorem
	Rotational kinetic energy
	Work-energy theorem for rotational motion

	Simulating rigid body dynamics
	Modifying Forcer and MultiForcer to include rotation
	A simple test

	Example: a simple wind turbine simulation
	Example: Rolling down an inclined plane
	From a particle to a rigid body simulation
	Simulating rolling without slipping
	Allowing both slipping and rolling
	More experiments with the simulation

	Rigid body collisions and bouncing
	Linear impulse due to collision
	Angular impulse due to collision
	The final result

	Example: Simulating a single bouncing block
	Example: Colliding blocks

	Deformable bodies
	Mass-spring systems
	Rope simulation
	Cloth simulation

	Summary

	Part IV Building More Complex Simulations
	Chapter 14 Numerical Integration Schemes
	General principles
	Statement of the problem
	Motion of a particle as an initial value problem
	Numerical discretization and difference schemes
	Numerical integration and integration schemes

	Characteristics of numerical schemes
	Consistency
	Stability
	Convergence
	Accuracy
	Efficiency

	Types of integration schemes
	Modifying Forcer to allow for different integration schemes

	Euler integration
	Explicit Euler
	Implicit Euler
	Semi-implicit Euler
	Comparing the explicit and semi-implicit Euler schemes
	Why use Euler and why not?

	Runge-Kutta integration
	Second-order Runge-Kutta scheme (RK2)
	Fourth-order Runge-Kutta scheme (RK4)
	Stability and accuracy of RK2 and RK4 compared with Euler

	Verlet integration
	Position Verlet
	Velocity Verlet
	Testing the stability and accuracy of the Verlet schemes

	Summary

	Chapter 15 Other Technical Issues
	Doing physics in 3D
	3D versus 2D physics
	3D math
	Vector math in 3D
	The Vector3D class
	Extending Vector3D: the Vector3DX class

	Matrices and rotation in 2D
	Matrix algebra in 2D
	Rotation matrices in 2D
	Doing other transformations with matrices
	Using the Matrix class

	Matrices and rotation in 3D
	Matrix3D class

	Creating classes for 3D objects and motion
	Creating 3D models
	Applying perspective distortion
	PolyhedronRB class

	Example: A rotating cube
	Integrating with 3D engines
	Looking ahead to Stage3D

	Building scale models
	Scaling for realism
	A simple example
	Choosing units
	Scaling factors and parameter values
	Rescaling equations

	Building accurate simulations
	Using Number for calculations
	Choosing an appropriate integration scheme
	Using an appropriate timestep
	Using accurate initial conditions
	Dealing with boundaries carefully

	Summary

	Chapter 16 Simulation Projects
	Build a submarine
	Brief review of the physics
	The visual setup
	The setup code
	The basic motion code
	Adding controls and visual effects
	The full mover code
	Further ideas

	Build a flight simulator
	Physics and control mechanisms of aircraft
	Forces on an aircraft
	Torques on an aircraft: rotation
	Aircraft parts and controls
	Airfoil geometry and angle of attack
	Takeoff and landing
	Turning

	What we will create
	Creating the visual setup
	Coding up the physics
	Implementing the controls
	Displaying flight information
	Test flying the simulator
	Further things to do

	Create an accurate solar system model
	What we will create
	The physics
	Coding up an appropriate integration scheme
	Building an idealized single-planet simulation
	Choosing appropriate scaling factors
	Obtaining planetary data and initial conditions
	Basic solar system model
	Incorporating accurate initial conditions
	Comparing the model results with NASA data
	Other things to do

	Summary

	Index

